
van Vugt

Shelve in
Linux/General

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Linux High Availability Clustering
Pro Linux High Availability Clustering teaches you how to implement HA clusters into
your business. Linux high availability clustering is needed to ensure the availability
of mission critical resources. The technique is applied more and more in corporate
datacenters around the world. While lots of documentation about the subject is avail-
able on the internet, it isn’t always easy to build a real solution based on that scat-
tered information, which is often oriented towards specific tasks only. Pro Linux High
Availability Clustering explains essential high-availability clustering components on all
Linux platforms, giving you the insight to build solutions for any specific case needed.

With the knowledge you’ll gain from these real-world applications, you’ll be able to
efficiently apply Linux HA to your work situation with confidence.

Author Sander Van Vugt teaches Linux high-availability clustering on training
courses, uses it in his everyday work, and now brings this knowledge to you in one
place, with clear examples and cases. Make the best start with HA clustering with Pro
Linux High Availability Clustering at your side.

• Design Linux high availability clusters
• Set up an environment to protect mission critical applications
• Connecting servers in a redundant way to the SAN
• Create an affordable SAN based on open source software
• Set up clusters for protection of Oracle and SAP workloads
• Write your own cluster resource script
• Create an open source SAN
• Create a free hypervisor using KVM as the virtualization platform
• Set up a versatile, fault-tolerant, high-performance web shop

This book is for technical skilled Linux system administrators that want to learn how
they can enhance application availability by using Linux High Availability clusters.

RELATED

9 781484 200803

57999
ISBN 978-1-4842-0080-3

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author���xiii

About the Technical Reviewers��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: High Availability Clustering and Its Architecture■■ ��1

Chapter 2: Configuring Storage■■ ��9

Chapter 3: Configuring the Membership Layer■■ ���27

Chapter 4: Understanding Pacemaker Architecture and Management■■ ����������������������������37

Chapter 5: Configuring Essential Cluster Settings■■ ��51

Chapter 6: Clustering Resources■■ ��71

Chapter 7: Clustering Storage■■ ��87

Chapter 8: Performing Daily Cluster Management Tasks■■ ���97

Chapter 9: Creating an Open Source SAN■■ ���109

Chapter 10: Use Case: Creating a Solution for Xen/KVM High Availability■■ ���������������������121

�Chapter 11: Use Case: Configuring a Load-Balanced Mail Front End with a Database ■■
Back End���133

Index��141

xix

Introduction

This book is about high availability (HA) clustering on Linux, a subject that can be overwhelming to administrators
who are new to the subject. Although much documentation is already available on the subject, I felt a need to write
this book anyway. The most important reason is that I feel there is a lack of integral documentation that focuses
on tasks that have to be accomplished by cluster administrators. With this book, I have tried to provide insight into
accomplishing all of the tasks that a cluster administrator typically has to deal with.

This means that I’m not only focusing on the clustering software itself but also on setting up the network for
redundancy and configuring storage for use in a clustered environment. In an attempt to make this book as useful as
possible, I have also included three chapters with use cases, at the end of this book.

When working with HA on Linux, administrators will encounter different challenges. One of these is that even
if the core components Corosync and Pacemaker are used on nearly all recent Linux distributions, there are many
subtle differences.

Instead of using the same solutions, the two most important enterprise Linux distributions that are offering
commercially supported HA also want to guarantee a maximum of compatibility with their previous solutions, to
make the transition for their customers as easy as possible, and that is revealed by slight differences. For example,
Red Hat uses fencing and SUSE uses STONITH, and even if both do the same thing, they are doing it in a slightly
different way. For a cluster administrator, it is important to be acutely aware of these differences, because they may
cause many practical problems, most of which I have tried to describe in this book.

It has, however, never been my intention to summarize all solutions. I wanted to write a practical field guide that
helps people build real clusters. The difference between these two approaches is that it has never been my intention to
provide a complete overview of all available options, commands, resource types, and so on. There is already excellent
documentation doing this available on the Web. In this book, I have made choices with the purpose of making cluster
configuration as easy as possible for cluster administrators.

An important choice is my preference for the crm shell as a configuration interface. This shell is the default
management environment on SUSE Linux clusters and is not included in the Red Hat repositories. It is, however,
relatively easy to install this shell by adding one additional repository, and, therefore, I felt no need to cover everything
I’m doing in this book from both the crm shell as well as the pcmk shell. This would only make the book twice as long
and the price twice at high, without serving a specific purpose.

I hope this book meets your expectations. I have tried to make it as thorough as possible, but I’m always open to
feedback. Based on the feedback provided, I will make updates available through my web site: www.sandervanvugt.com.
If you have purchased this book, I recommend checking my web site, to see if errata and additions are available.
If you encounter anything in this book that requires further explanation, I would much appreciate receiving your
comments. Please address these to mail@sandervanvugt.nl. and I will share them with the readership of this book.

I am dedicated to providing you, the reader, with the best possible information, but in a dynamic environment
such as Linux clustering, things may change, and different approaches may become available. Please share your
feedback with me, and I will do my best to provide all the readers of this book with the most accurate and up-to-date
information!

—Sander van Vugt

www.sandervanvugt.com

1

Chapter 1

High Availability Clustering and
Its Architecture

In this chapter, you’ll learn how high availability (HA) clustering relates to other types of clustering. You’ll also read
about some typical use cases for HA clustering. After a discussion on the general concepts of HA clustering, you’ll read
about its different components and implementations on Linux.

Different Kinds of Clustering
Roughly speaking, three different kinds of cluster can be distinguished, and all of these three types can be installed on
Linux servers.

•	 High performance: Different computers work together to host one or more tasks that require
lots of computing resources.

•	 Load balancing: A load balancer serves as a front end and receives requests from end users.
The load balancer distributes the request to different servers.

•	 High availability : Different servers work together to make sure that the downtime of critical
resources is reduced to a minimum.

High Performance Clusters
A high performance cluster is used in environments that have heavy computing needs. Think of large rendering jobs
or complicated scientific calculations that are too big to be handled by one single server. In such a situation, the work
can be handled by multiple servers, to make sure it is handled smoothly and in a timely manner.

An approach to high performance clustering is the use of a Single System Image (SSI). Using that approach,
multiple machines are treated by the cluster as one, and the cluster just allocates and claims the resources where they
are available (Figure 1-1). High performance clustering is used in specific environments, and it is not as widespread as
high availability clustering.

Chapter 1 ■ High Availability Clustering and Its Architecture

2

Load Balancing Clusters
Load balancing clusters are typically used in heavy-demand environments, such as very popular web sites. The
purpose of a load balancing cluster is to redistribute a task to a server that has resources to handle the task. That
seems a bit like high performance clustering, but the difference is that in high performance clusters, typically, all
servers are working on the same task, where load balancing clusters take care of load distribution, to get an optimal
efficiency in task-handling.

A load balancing cluster consists of two entities: the load balancer and the server farm behind it. The load
balancer receives requests from end users and redistributes them to one of the servers that is available in the server
farm (Figure 1-2). On Linux, the Linux Virtual Server (LVS) project implements load balancing clusters. HAProxy is
another Linux-based load balancer. The load balancers also monitor the availability of servers in the server farm, to
decide where resources can be placed. It is also very common to use hardware for load balancing clusters. Vendors
like Cisco make hardware devices that are optimized to handle the load as fast and efficiently as possible.

high performance task

resource usage

server 1 server 2 server 3

Figure 1-1.  Overview of high performance clustering

load
balancer

load distribution

web 1 web 2 web 3

server farm

user
requests

Figure 1-2.  Overview of load balancing clusters

Chapter 1 ■ High Availability Clustering and Its Architecture

3

High Availability Clusters
The goal of a high availability cluster is to make sure that critical resources reach the maximum possible availability.
This goal is accomplished by installing cluster software on multiple servers (Figure 1-3). This software monitors the
availability of the cluster nodes, and it monitors the availability of the services that are managed by the cluster (in this
book, these services are referred to as resources). If a server goes down, or if the resource stops, the HA cluster will
notice and make sure that the resource is restarted somewhere else in the cluster, so that it can be used again after a
minimal interruption. This book is exclusively about HA clusters.

What to Expect from High Availability Clusters
Before starting your own high availability cluster project, it is good to have the appropriate expectations. The most
important is to realize that an HA cluster maximizes availability of resources. It cannot ensure that resources are
available without interruption. A high availability cluster will act on a detected failure of the resource or the node that
is currently hosting the resource. The cluster can be configured to make the resource available as soon as possible, but
there will always be some interruption of services.

The topic of this book is HA clustering as it can be used on different Linux distributions. The functionality is
often confused with HA functionality, as it is offered by virtualization solutions such as VMware vSphere. It is good to
understand what the differences and similarities between these two are.

In VMware vSphere HA, the goal is to make sure that virtual machines are protected against hardware failure.
vSphere monitors whether a host or a virtual machine running on a host is still available, and if something happens,
it makes sure that the virtual machine is restarted somewhere else. This looks a lot like Linux HA Clustering. In fact,
in Chapter 11, you’ll even learn how to use Linux HA clustering to create such a solution for KVM Virtual machines.

There is a fundamental difference, though. The HA solution that is offered by your virtualization platform
is agnostic on what happens in the virtual machine. That means that if a virtual machine hangs, it will appear as
available to the virtualization layer, and the HA solution of your virtualization layer will do nothing. It also is incapable
of monitoring the status of critical resources that are running on those virtual machines.

If you want to make sure that your company’s vital resources have maximum protection and are restarted as
soon as something goes wrong with them, you’ll require high availability within the virtual machine. If the virtual
machine runs the Windows operating system, you’ll need Windows HA. In this book, you’ll learn how to set up such
an environment for the Linux operating system.

heartbeat

server 1 server 2 server 3

cluster
resource
(service)

Figure 1-3.  Overview of high availability clusters

Chapter 1 ■ High Availability Clustering and Its Architecture

4

History of High Availability Clustering in Linux
High availability in Linux has a long history. It started in the 1990s as a very simple solution with the name Heartbeat.
A Heartbeat cluster basically could do two things: it monitored two nodes (and not more than two), and it was
configured to start one or more services on those two nodes. If the node that was currently hosting the resources went
down, it restarted the cluster resources on the remaining node.

Heartbeat 2.0 and Red Hat Cluster Suite
There was no monitoring of the resources themselves in the early versions of Heartbeat, and there was no possibility
to add more than two nodes to the cluster. This changed with the release of Heartbeat 2.0 in the early 2000s. The
current state of Linux HA clustering is based in large part on Heartbeat 2.0.

Apart from Heartbeat, there was another solution for clustering: Red Hat Cluster Suite (now sold as the Red Hat
High Availability Add On). The functionality of this solution looked a lot like the functionality of Heartbeat, but it
was more sophisticated, especially in the early days of Linux HA clustering. Back in those days, it was a completely
different solution, but later, the Red Hat clustering components merged more and more with the Heartbeat
components, and in the current state, the differences are not so obvious.

Cluster Membership and Resource Management
An important step in the history of clustering was when Heartbeat 2.0 was split into two different projects. Clustering
had become too complex, and therefore, a project was founded to take care of the cluster membership, and another
project took care of resource management. This difference exists to the current day.

The main function of the cluster membership layer is to monitor the availability of nodes. This function was
first performed by the OpenAIS project, which later merged into the Corosync project. In current Linux clustering,
Corosync still is the dominant solution for managing and monitoring node membership. In Red Hat clustering, cman
has always been used as the implementation of the cluster membership layer. Cman isn’t used often in environments
without Red Hat, but in Red Hat environments, it still plays a significant role, as you will learn in Chapter 3.

For resource management, Heartbeat evolved into Pacemaker, which, as its name suggests, was developed to fix
everything that Heartbeat wasn’t capable of. The core component of Pacemaker is the CRM, or cluster resource manager.
This part of the cluster monitors the availability of resources, and if an action has to be performed on resources, it
instructs the local resource manager (LRM) that runs on every cluster node to perform the local operation.

In Red Hat, up to Red Hat 6, the resource group manager (rgmanager) was used for managing and placing
resources. In Red Hat 6, however, Pacemaker was already offered as an alternative resource manager, and in
Red Hat 7, Pacemaker has become the standard for managing resources in Red Hat as well.

The Components That Build a High Availability Cluster
To build a high availability cluster, you’ll need more than just a few servers that are tied together. In this section, you’ll
get an overview of the different components that typically play a role when setting up the cluster. In later chapters,
you’ll learn in detail how to manage these different components. Typically, the following components are used in
most clusters:

Shared storage•	

Different networks•	

Bonded network devices•	

Multipathing•	

Fencing/STONITH devices•	

Chapter 1 ■ High Availability Clustering and Its Architecture

5

It is important to think about how you want to design your cluster and to find out which specific components are
required to build the solution you need.

Shared Storage
In a cluster, it’s the cluster that decides on which server the shared resources are going to be hosted. On that server,
the data and configuration files have to be available. That is why most clusters need shared storage. There are
exceptions, though.

Some services don’t really have many files that have to be shared, or take care of synchronization of data internally.
If your service works with static files only, you might as well copy these files over manually, or set up a file synchronization
job that takes care of synchronizing the files in an automated way. But most clusters will have shared storage.

Roughly speaking, there are two approaches to taking care of shared storage. You can use a Network File System
(NFS) or a storage area network (SAN). In an NFS, one or more directories are shared over the network. It’s an easy
way of setting up shared storage, but it doesn’t give you the best possible flexibility. That is why many clusters are set
up with an SAN.

A SAN is like a collection of external disks that is connected to your server. To access a SAN, you’ll need a specific
infrastructure. This infrastructure can be Fibre Channel or iSCSI.

Fibre Channel SANs typically are built for the best possible performance. They’re using a dedicated SAN
infrastructure, which is normally rather expensive. Typically, Fibre Channel SANs costs tens of thousands of dollars,
but you get what you pay for: good quality with optimal performance and optimal reliability.

iSCSI SANs were developed to send SCSI commands over an IP network. That means that for iSCSI SAN, a
normal Ethernet network can be used. This makes iSCSI a lot more accessible, as anyone can build an iSCSI SAN,
based on standard networking hardware. This accessibility gives iSCSI SANs a reputation for being cheap and not
so reliable. The contrary is true, though. There are some vendors on the market who develop high-level iSCSI SAN
solutions, where everything is optimized for the best possible performance. So, in the end, it doesn’t really matter, and
both iSCSI and Fibre Channel SANs can be used to offer enterprise-level performance.

Different Networks
You could create a cluster and have all traffic go over the same network. That isn’t really efficient, however, because a
user who saturates bandwidth on the network would be capable of bringing the cluster down, as the saturated network
cluster packets wouldn’t come through. Therefore, a typical cluster has multiple network connections (Figure 1-4).

LAN switch

cluster switch

node 1 node 2 node 3

SAN
switch

SAN
switch

SAN

Figure 1-4.  Typical cluster network layout

Chapter 1 ■ High Availability Clustering and Its Architecture

6

First, there is the user network, from which external users access the cluster resources. Next, you would normally
have a dedicated network for the cluster protocol packets. This network is to offer the best possible redundancy and
ensure that the cluster traffic can come through at all times.

Third, there would typically be a storage network as well. How this storage network is configured depends on
the kind of storage that you’re using. In a Fibre Channel SAN, the nodes in the cluster would have host bus adapters
(HBAs) to connect to the Fibre Channel SAN. On an iSCSI network, the SAN traffic goes over an Ethernet network, and
nothing specific is required for the storage network except a dedicated storage network infrastructure.

Bonded Network Devices
To connect cluster nodes to their different networks, you could, of course, use just one network interface. If that
interface goes down, the node would lose connection on that network, and the cluster would react. As a cluster is all
about high availability, this is not what you typically want to accomplish with your cluster.

The solution is to use network bonding. A network bond is an aggregate of multiple network interfaces. In most
configurations, there are two interfaces in a bond. The purpose of network bonding is redundancy: a bond makes sure
that if one interface goes down, the other interface will take over. In Chapter 3, you will learn how to set up bonded
network interfaces.

Multipathing
When a cluster node is connected to a SAN, there are typically multiple paths the node can follow to see the LUN
(logical unit number) on the SAN. This results in the node seeing multiple devices, instead of just one. So, for every
path the node has to the LUN, it would receive a device.

In a configuration where a node is connected to two different SAN switches, which, in turn, are connected to two
different SAN controllers, there would be four different paths. The result would be that your node wouldn’t see only
one iSCSI disk, but four. As each of these disks is connected to a specific path, it’s not a good idea to use any single one
of them. That is why multipath is important.

The multipath driver will detect that the four different disks are, in fact, all just one and the same disk. It offers
a specific device, on top of the four different disks, that is going to be used instead. Typically, this device would have
a name such as mpatha. The result is that the administrator can connect to mpatha instead of all of the underlying
devices, and if one of the paths in the configuration goes down, that wouldn’t really matter, as the multipath layer would
take care of routing traffic to an interface that still is available. In Chapter 2, you will learn how to set up multipathing.

Fencing/STONITH Devices and Quorum
In a cluster, a situation called split brain needs to be avoided. Split brain means that the cluster is split in two (or more)
parts, but both parts think they are the only remaining part of the cluster. This can lead to very bad situations when
both parts of the cluster try to host the resources that are offered by the cluster. If the resource is a file system, and
multiple nodes try to write to the file system simultaneously and without coordination, it may lead to corruption of the
file system and the loss of data. As it is the purpose of a high availability cluster to avoid situations where data could be
lost, this must be prevented no matter what.

To offer a solution for split-brain situations, there are two important approaches. First, there is quorum. Quorum
means “majority,” and the idea behind quorum is easy to understand: if the cluster doesn’t have quorum, no actions
will be taken in the cluster. This by itself would offer a good solution to avoid the problem described previously, but to
make sure that it can never happen that multiple nodes activate the same resources in the cluster, another mechanism
is used as well. This mechanism is known as STONITH (which stands for “shoot the other node in the head”), or
fencing. Both the terms STONITH and fencing refer to the same solution.

Chapter 1 ■ High Availability Clustering and Its Architecture

7

In STONITH, specific hardware is used to terminate a node that is no longer responsive to the cluster. The idea
behind STONITH is that before migrating resources to another node in the cluster, the cluster has to confirm that the
node in question really is down. To do this, the cluster will send a shutdown action to the STONITH device, which will,
in turn, terminate the nonresponsive node. This may sound like a drastic approach, but as it guarantees that no data
corruption can ever occur and can clean up certain transient errors (such as a kernel crash), it’s not that bad.

When setting up a cluster, you must decide which type of STONITH device you want to use. This is a mandatory
decision, as STONITH is mandatory and not optional in Linux HA clusters. The following different types of STONITH
devices are available:

Integrated management boards, such as HP ILO, Dell DRAC ,and IBM RSA•	

Power switches that can be managed, such as the APC master device•	

Disk-based STONITH, which uses a shared disk device to effectuate the STONITH operation•	

Hypervisor-based STONITH, which talks to the hypervisor in a virtualization environment•	

Software and demo STONITH solutions (which, in fact, should be avoided at all times)•	

In Chapter 5, you’ll learn how to configure different STONITH and fencing solutions.

Summary
This chapter has given an overview of Linux HA clustering. You’ve read how HA clustering relates to other types of
clustering, and you’ve learned about the different software components that are used in a typical HA environment.
You also have learned about the different parts that are used in high availability clustering, which allows you to
properly prepare your high availability environment. In the next chapter, you’ll learn how to configure and connect to
storage in high availability environments.

9

Chapter 2

Configuring Storage

Almost all clusters are using shared storage in some way. This chapter is about connecting your cluster to shared
storage. Apart from connecting to shared storage, you’ll also learn how to set up an iSCSI storage area network (SAN) in
your own environment, a subject that is even further explored in Chapter 10. You’ll also learn the differences between
network attached storage (NAS) and SAN and when to use which. The following topics are covered in this chapter:

Why most clusters need shared storage•	

NAS or SAN?•	

iSCSI or Fibre Channel?•	

Configuring the LIO iSCSI target•	

Connecting to an iSCSI SAN•	

Setting up multipathing•	

Why Most Clusters Need Shared Storage
In an HA cluster, you will make sure that vital resources will be available as much as possible. That means that at one
time, your resource may be running on one node, while at another time, the resource may be running on another
node. On the other node, the resource will need access to the exact same files, however. That is why shared storage
may come in handy.

If your resource only deals with static files, you could do without shared storage. If modifications to the files are
only applied infrequently, you could just manually copy the files over, or use a solution such as rsync to synchronize
the files to the other nodes in the cluster. If, however, the data is dynamic and changes are frequent, you’ll need
shared storage.

Typically, a resource uses three different kinds of files. First, there are the binaries that make up the program or
service that is offered by the resource. It is best to install these binaries locally on each host. That ensures that every
single host in its update procedures will update the required binaries, and it will make sure that the host can still run
the application if very bad things are happening to the cluster and you’re forced to run everything stand-alone.

The second part of data that is typically used are configuration files. Even if many applications store configuration
files by default in the local /etc directory, most applications do have an option to store the configuration files
somewhere else. It often is a good idea to put these configuration files on the shared storage. This ensures that your
cluster application always has access to the same configuration. In theory, manual synchronization of configuration
files between hosts would work as well, but in real life, something always goes wrong, and you risk ending up with
two different versions of the same application. So, make sure to put the configuration files on the shared storage and
configure your application to access the files from the shared storage and not locally.

Chapter 2 ■ Configuring Storage

10

The third and most important type of files that applications typically work with is the data files. These normally
are a valuable asset for the company, and also, they have to be available from all nodes at all times. That is why the
nodes in the cluster are configured to access an SAN disk and the data files are stored on the SAN disk. This ensures
that all hosts at all times can access the files from the SAN. The SAN itself is set up in a redundant way, to ensure that
the files are highly protected and no interruption of services could occur because of bad configuration. See Figure 2-1
for an overview of this setup.

NAS or SAN?
When choosing the right solution for shared storage, you must select between network attached storage (NAS) and
storage area networks (SAN). Let’s discuss some differences and advantages between these two.

NAS
Network attached storage (NAS) is basically a network share that could be offered by any server on the network. In
Linux clusters, NAS is typically provided by means of Network File System (NFS) shares, but a Common Internet File
System (CIFS) is also a valid option to provide NAS functionality. The advantage of an NAS is that it is simple to set up.
There are some other considerations, though.

Typically, NAS services are provided by a server in the network. Now, when setting up a cluster environment, it
is of greatest importance to avoid having a single point of failure in the network. So, if you were planning to set up an
NFS server to provide for shared storage in your cluster environment, you would have to cluster that as well, to make
sure that the shared storage was still available if the primary NFS server dropped. So, you would have to cluster the
NFS or CIFS server and make sure that no matter where the services itself were running, it had access to the same files.
HA NAS servers that are using NFS or CIFS are commonly applied in HA cluster environments.

A common reason why NAS solutions are used in HA environments is because an NAS gives concurrent file
system access, which an SAN won’t, unless it is set up with OCFS2 or GFS2 at the client side.

SAN
A storage area network (SAN) is tailored to offer the best possible redundancy, as well as performance to access storage
(Figure 2-2). It typically consists of disk arrays. To access these disks, a dedicated network infrastructure is used.

Figure 2-1.  Cluster application file access overview

Chapter 2 ■ Configuring Storage

11

The disks in the SAN filer are normally set up using RAID. Typically, different RAID arrays are configured to
make sure the SAN can survive a crash of several disks simultaneously. On top of those RAID arrays, the logical unit
numbers (LUNs) are created. Nodes in the cluster can be authorized to access specific LUNs, which to them will
appear as new local disks.

To access the SAN filer, a redundant network infrastructure is normally used. In this infrastructure, most items
are double, which means that the nodes have two SAN interfaces that are connected to two SAN switches, which are,
in turn, connected to two different controllers on the SAN. All this is to make sure that if something fails, the end user
won’t notice anything.

iSCSI or Fibre Channel?
Once you have decided to use a storage area network (SAN), the next question arises: is it going to be Fibre Channel
or iSCSI? The first SANs that came on the market were Fibre Channel SANs. These were filers that were optimized for
the best possible performance and in which a dedicated SAN network infrastructure was used as well. That is because
in the time the first SAN solutions appeared, 100 Mbit/s was about the fastest speed available on LAN networks, and
compared to the throughput on a local SCSI bus, that was way too slow. Also, networks in those days were using hubs
most of the time, which meant that network traffic was dealt with in a rather inefficient way.

However, times have changed, and LAN networks became faster and faster. Gigabit is the minimum standard in
current networks, and nearly all hubs have been replaced with switches. In the context of these improved networks,
a new standard was created: iSCSI. The idea behind iSCSI is simple: the SCSI packets that are generated and sent on a
local disk infrastructure are encapsulated in an IP header to address the SAN.

Fibre Channel SAN has the reputation of being more reliable and faster than iSCSI. This doesn’t have to be true,
though. Some high-end iSCSI solutions are offered on the market, and if a dedicated iSCSI network is used, where
traffic is optimized to handle storage, iSCSI can be as fast and as reliable as Fibre Channel SAN. iSCSI does have an
advantage that Fibre Channel SANs don’t offer, and that is the relatively easy way that iSCSI SAN solutions can be
created. In this chapter, for example, you will learn how to set up an iSCSI SAN yourself.

Another alternative to implement Fibre Channel technology without the need to purchase expensive Fibre
Channel hardware is to use Fibre Channel over Ethernet (FCoE). This solution allows Fibre Channel to use 10 Gigabit
Ethernet (or faster), while preserving the Fibre Channel protocol. FCoE solutions are available in the major Linux
distributions.

Figure 2-2.  SAN overview

Chapter 2 ■ Configuring Storage

12

Understanding iSCSI
In an iSCSI configuration, you’re dealing with two different parts: the iSCSI target and the iSCSI initiator (Figure 2-3).
The iSCSI target is the storage area network (SAN). It runs specific software that is available on TCP port 3260 of the
SAN and that provides access to the logical unit numbers (LUNs) that are offered on the SAN. The iSCSI initiator is
software that runs on the nodes in the cluster and connects to the iSCSI target.

To connect to the iSCSI target, a dedicated SAN network is used. It normally is a regular Ethernet network, but
configured in a specific way. To start with, the network is redundant. That means that two different network interfaces
on the cluster nodes connect to two different switches, which in turn connect to two different controllers on the SAN
that each are accessible by two different network interfaces as well. That means that no less than four different paths
exist to access the LUNs that are shared on the SAN. That leads to a situation where every LUN risks being seen four
times by the cluster nodes. You’ll read more about this in the section about multipathing later in this chapter.

On the SAN network, some specific optimizations can be applied as well. Optimization begins on the cluster
nodes, where the administrator can choose to select, not ordinary network cards, but iSCSI host bus adapters (HBAs).
These are smart network cards that have been produced to handle iSCSI traffic in the most optimal way. They have
their maximum packet size on the Ethernet level set to an MTU of 9000 bytes, to make sure the traffic is handled as
fast as possible, and they often use an iSCSI offload engine to handle the iSCSI traffic even more efficiently. However,
iSCSI HBAs have become less popular and tend to be replaced by fast network interface cards (NICs).

Configuring the LIO iSCSI Target
There are many different vendors on the market that make iSCSI solutions, but you can also set up iSCSI on Linux.
The Linux-IO (LIO) Target is the most common iSCSI target for Linux on recent distributions (Figure 2-4). You will
find it on all recent distributions. On SUSE Linux Enterprise Server 12, for instance, you can easily set it up from the
YaST management utility. On other distributions, you might find the targetcli utility to configure the iSCSI target.
Of course, when setting up a single iSCSI target, you must realize that this can be a single point of failure. Later in this
chapter, you’ll learn how to set up iSCSI targets in a redundant way.

Figure 2-3.  iSCSI overview

Chapter 2 ■ Configuring Storage

13

When setting up a target, you must specify the required components. These include the following:

•	 Storage device: This is the storage device that you’re going to create. If you’re using Linux
as the target, it makes sense to use LVM logical volumes as the underlying storage device,
because they are so flexible. But you can choose other storage devices as well, such as
partitions, complete hard disks, or sparse files.

•	 LUN ID: Every storage device that is shared with an iSCSI target is shared as a LUN, and every
LUN needs a unique ID. A LUN ID is like a partition ID; the only requirement is that it has to
be unique. There’s nothing wrong selecting subsequent numeric LUN IDs for this purpose.

•	 Target ID: If you want to authorize targets to specific nodes, it makes sense to create different
targets where every target has its own target ID, also known as the Internet Qualified Name
(IQN). From the iSCSI client you need the target ID to connect, so make sure the target ID
makes sense and makes it easy for you to recognize a specific target.

•	 Identifier: The identifier helps you to further identify specific iSCSI targets.

•	 Port number: This is the TCP port the target will be listening on. By default, port 3260 is used
for this purpose.

Figure 2-4.  Setting up the LIO Target from SUSE YaST

Chapter 2 ■ Configuring Storage

14

The following procedure demonstrates how to use the targetcli command line utility to set up an iSCSI target:

	 1.	 Start the iSCSI target service, using systemctl start target.service.

	 2.	 Make sure that you have some disk device to share. In this example, you’ll read how to
share the logical volume /dev/vgdisk/lv1. If you don’t have a disk device, make one (or
use a file for demo purposes).

	 3.	 The targetcli command works on different backstores. When creating an iSCSI disk, you
must specify which type of backstore to use. Type targetcli to start the targetcli and
type backstores to get an overview of available backstores.
 
/>ls
o- / ... [...]
 o- backstores .. [...]
 | o- block .. [Storage Objects: 0]
 | o- fileio ... [Storage Objects: 0]
 | o- pscsi .. [Storage Objects: 0]
 | o- ramdisk .. [Storage Objects: 0]
 o- iscsi .. [Targets: 0]
 o- loopback ... [Targets: 0]
 

	 4.	 Now let’s add the LVM logical volume, using the following command:
 

/backstores/block create lun0 /dev/vgdisk/lv1
 

If you don’t have a physical storage device available, for testing purposes, you can create an iSCSI target for a
sparse disk file using the following:
 
/backstores/fileio create lun1 /opt/disk1.img 100M
 
	 5.	 At this point, if you type ls again, you’ll see the LUN you’ve just created.

 
/>ls
o- / ... [...]
 o- backstores .. [...]
 | o- block .. [Storage Objects: 1]
 | | o- lun0 [/dev/vgdisk/lv1 (508.0MiB) write-thru deactivated]
 | o- fileio ... [Storage Objects: 0]
 | o- pscsi .. [Storage Objects: 0]
 | o- ramdisk .. [Storage Objects: 0]
 o- iscsi .. [Targets: 0]
 o- loopback ... [Targets: 0]
 

	 6.	 Now you need to define the target itself.
 
/> /iscsi create
Created target iqn.2003-01.org.linux-iscsi.localhost.x8664:sn.9d07119d8a12.
Created TPG 1.
 

Chapter 2 ■ Configuring Storage

15

	 7.	 Type cd. It gives an interface that shows all currently existing objects, from which you can
select the object you want to use with the arrow keys.
 
o- / ...[...]
 o- backstores ..[...]
 | o- block ..[Storage Objects: 1]
 | | o- lun0[/dev/vgdisk/lv1 (508.0MiB) write-thru deactivated]
 | o- fileio ...[Storage Objects: 0]
 | o- pscsi ..[Storage Objects: 0]
 | o- ramdisk ..[Storage Objects: 0]
 o- iscsi ..[Targets: 1]
 | o- iqn.2003-01.org.linux-iscsi.localhost.x8664:sn.9d07119d8a12 ...[TPGs: 1]
 | o- tpg1 ...[no-gen-acls, no-auth]
 | o- acls ..[ACLs: 0]
 | o- luns ..[LUNs: 0]
 | o- portals ..[Portals: 0]
 o- loopback ...[Targets: 0]
 

Use the arrow keys to select the tpg1 object that you’ve just created.

	 8.	 Now, type portals/ create to create a portal with default settings.
 
/iscsi/iqn.20...119d8a12/tpg1> portals/ create
Using default IP port 3260
Binding to INADDR_ANY (0.0.0.0)
Created network portal 0.0.0.0:3260.
 

	 9.	 Now, you can actually assign the LUN to the portal.
 
/iscsi/iqn.20...119d8a12/tpg1> luns/ create /backstores/block/lun0
Created LUN 0.
 

	 10.	 And if you want to, limit access to the LUN for a specific iSCSI initiator, using
the IQN of that iSCSI initiator (typically, you can get the IQN from the
/etc/iscsi/initiatorname file).
 
acls/ create iqn.2014-03.com.example:123456789
 

	 11.	 Use cd / and ls to view the current settings.
 
/>ls
o- / ... [...]
 o- backstores .. [...]
 | o- block .. [Storage Objects: 1]
 | | o- lun0 [/dev/vgdisk/lv1 (508.0MiB) write-thru activated]
 | o- fileio ... [Storage Objects: 0]
 | o- pscsi .. [Storage Objects: 0]
 | o- ramdisk .. [Storage Objects: 0]
 o- iscsi .. [Targets: 1]
 | o- iqn.2003-01.org.linux-iscsi.localhost.x8664:sn.9d07119d8a12 ... [TPGs: 1]
 | o- tpg1 ... [no-gen-acls, no-auth]
 | o- acls .. [ACLs: 0]

Chapter 2 ■ Configuring Storage

16

 | o- luns .. [LUNs: 1]
 | | o- lun0 [block/lun0 (/dev/vgdisk/lv1)]
 | o- portals .. [Portals: 1]
 | o- 0.0.0.0:3260 ... [OK]
 o- loopback ... [Targets: 0]
 

	 12.	 And write the configuration and exit.
 
/>saveconfig
Last 10 configs saved in /etc/target/backup.
Configuration saved to /etc/target/saveconfig.json
/>exit
Global pref auto_save_on_exit=true
Last 10 configs saved in /etc/target/backup.
Configuration saved to /etc/target/saveconfig.json
 

	 13.	 At this point, you have a working iSCSI target. The next section teaches you how
to connect to it.

Connecting to an iSCSI SAN
Once your storage area network (SAN) is up and running, you can connect to it. Connecting to an iSCSI SAN works
the same, no matter what kind of SAN you’re using. To connect to the SAN, you’ll use the iscsiadm command. Before
you can use it efficiently, this command needs a bit of explanation. Some Linux distributions offer a solution to make
client configuration easy. On SUSE, this module is offered from the YaST management utility.

The iscsiadm command has different modes. Each of the modes is used at a different stage in handling the iSCSI
connection. As an administrator, you’ll commonly use the following modes:

•	 discoverydb, or discovery: This mode is used to query an iSCSI target and find out which
targets it is offering.

•	 node: This is the mode you’ll need to log in to a specific iSCSI target.

•	 session: In this mode, you can get information on current sessions or establish a new session
to a target you’re already connected to.

•	 iface and host: These modes allow you to specify how you want to connect to a specific
target. The difference between iface and host is discussed in more detail later.

When working with iSCSI, you must also know that it doesn’t really have you modify configuration files. To establish
a connection, you’ll just log in to the iSCSI target. This automatically creates some configuration files for you, and these
configuration files are persistent. That means that after a reboot, your server will automatically remember its last iSCSI
connections. This makes sense, because it is likely that your server has to connect to the same disks again after a reboot.
For the administrator, it means that you have to be aware of the configuration, and in some cases, you have to apply
additional operations to remove an iSCSI connection that is no longer needed. Now, let’s have a look at how to create a
new session with an iSCSI target.

Before using the iscsiadm command to connect to an iSCSI target, you have to make sure that the supporting
modules are loaded. Typically, you do that by starting the iSCSI client-support script. The names of these scripts
differ among the various distributions. Assuming that the name of the service script is iscsi.service, use systemctl
start iscsi.service; systemctl enable iscsi.service (service iscsi start; chkconfig iscsi on on a

Chapter 2 ■ Configuring Storage

17

System-V server). To make sure all prerequisites are loaded, you can type lsmod | grep iscsi before continuing.
The result should look like the following:
 
node1:/etc/init.d # lsmod | grep iscsi
iscsi_tcp 18375 1
libiscsi_tcp 20820 1 iscsi_tcp
libiscsi 53181 2 iscsi_tcp,libiscsi_tcp
scsi_transport_iscsi 57581 3 iscsi_tcp,libiscsi
scsi_mod 231658 12 sd_mod,iscsi_tcp,libiscsi,scsi_transport_iscsi,
sg,sr_mod,scsi_dh_rdac,scsi_dh_emc,scsi_dh_hp_sw,scsi_dh_alua,scsi_dh,libata

Step 1: discovery Mode
To start with, you must discover what the iSCSI target has to offer. To do this, use iscsiadm --mode discovery
--type sendtargets --portal 192.168.1.125:3260 --discover. This command gives back the names of the iSCSI
targets it has found.
 
iscsiadm --mode discovery --type sendtargets --portal 192.168.1.125:3260 --discover
192.168.1.125:3260,1 iqn.2014-03.com.example:HAcluster
192.168.1.125:3260,1 iqn.2014-01.com.example:kiabi
 

The command you’ve just issued doesn’t just show you the names of the targets, it also puts them in the iSCSI
configuration that is in $ISCSI_ROOT/send_targets. ($ISCSI_ROOT is /etc/iscsi on SUSE and /var/lib/iscsi on
Red Hat.) Based on that information, you can already use the -P option to print information that is stored about the
current mode on your server. The -P option is followed by a print level, which is like a debug level. All modes support
0 and 1; some modes support more elevated print levels as well.
 
node1:/etc/iscsi/send_targets # iscsiadm --mode discoverydb -P 1
SENDTARGETS:
DiscoveryAddress: 192,3260
DiscoveryAddress: 192.168.178.125,3260
DiscoveryAddress: 192.168.1.125,3260
Target: iqn.2014-01.com.example:kiabi
 Portal: 192.168.1.125:3260,1
 Iface Name: default
Target: iqn.2014-03.com.example:HAcluster
 Portal: 192.168.1.125:3260,1
 Iface Name: default
iSNS:
No targets found.
STATIC:
No targets found.
FIRMWARE:
No targets found.
 

In the preceding example, you used the SENDTARGETS discovery type. Depending on your SAN environment,
other discovery types are available as well.

iSNS allows you to set up an iSNS server, which centrally registrates iSCSI targets.•	

•	 firmware is a mode that is used on hardware iSCSI adapters that are capable of discovering
iSCSI targets from the firmware.

SLP is not implemented currently.•	

Chapter 2 ■ Configuring Storage

18

Step 2: node Mode
Based on the output of the former command, you will know the IQN names of the targets. You’ll need these in the
next command, in which you’re going to log in to the target to actually create the connection. To log in, you’ll use
the node mode. Node in iSCSI terminology means the actual connection that is established between an iSCSI target
and a specific portal. The portal is the IP address and the port number that have to be used to make a connection to
the iSCSI target. Now, take a look at the output from the previous discoverydb command, where information was
displayed in print level 1. This command shows that two different addresses were discovered where the iSCSI target
port is listening, but only one of these addresses has actual associated targets, which can be reached by means of the
portals that are listed. This immediately explains why the command in the following code listing fails. Even if the iSCSI
port is actually listening on the IP address that is mentioned, there is no target nor portal available on that IP address.
 
node1:/etc/iscsi/send_targets # iscsiadm --mode node --targetname iqn.2014-01.com.example:HAcluster
--portal 192.168.178.125:3260 --login
iscsiadm: No records found
 

Now let’s try again on the IP address, to which the iSCSI target is actually connected.
 
node1:/etc/init.d # iscsiadm --mode node --targetname iqn.2014-03.com.example:b36d96e3-9136-44a3-
8bc9-78bd2754a137
--portal 192.168.122.1:3260 --login
Logging in to [iface: default, target: iqn.2014-03.com.example:b36d96e3-9136-44a3-8bc9-78bd2754a137,
portal: 192.168.122.1,3260] (multiple)
Login to [iface: default, target: iqn.2014-03.com.example:b36d96e3-9136-44a3-8bc9-78bd2754a137,
portal: 192.168.122.1,3260] successful.
 

As you can see, because you came in through the right portal this time, you’ll get a connection. And as, in this
case, the iSCSI target is bound to IP address 0.0.0.0, you’ll get a multiple connection, one for each IP address.

At this point, you can verify the connection. An easy way to do that is by using the lsscsi command.
 
node1:/etc/init.d # lsscsi
[0:0:0:0] cd/dvd QEMU QEMU DVD-ROM 0.15 /dev/sr0
[2:0:0:0] disk IET VIRTUAL-DISK 0 /dev/sda
 

As you can see, a virtual disk /dev/sda of the disk type IET has been added. You are now connected to the iSCSI
target! If the iSCSI supporting service is enabled in your run levels, the iSCSI connection will also automatically be
reestablished while rebooting.

To automatically reestablish all iSCSI sessions, the iSCSI initiator writes its known configuration to
$ISCSI-ROOT/nodes. In this directory, you’ll find a subdirectory with the name of the target’s IQN as its name. In this
subdirectory you’ll also find a subdirectory for each of the portals the server is connected to, and in that subdirectory,
you’ll find the default file, containing the settings that are used to connect to the iSCSI target.
 
node1:/etc/iscsi/nodes # ls
iqn.2014-03.com.example:b36d96e3-9136-44a3-8bc9-78bd2754a137
node1:/etc/iscsi/nodes # cd iqn.2014-03.com.example\:b36d96e3-9136-44a3-8bc9-78bd2754a137/
node1:/etc/iscsi/nodes/iqn.2014-03.com.example:b36d96e3-9136-44a3-8bc9-78bd2754a
137 # ls
192.168.122.1,3260,1 192.168.178.36,3260,1

Chapter 2 ■ Configuring Storage

19

node1:/etc/iscsi/nodes/iqn.2014-03.com.example:b36d96e3-9136-44a3-8bc9-78bd2754a
137 # cd 192.168.122.1,3260,1/
node1:/etc/iscsi/nodes/iqn.2014-03.com.example:b36d96e3-9136-44a3-8bc9-78bd2754a
137/192.168.122.1,3260,1 # ls
default
 

This configuration ensures that you’ll reestablish the exact same iSCSI sessions when rebooting.

Step 3: Managing the iSCSI Connection
Now that you’ve used the iscsiadm --mode node command to make a connection, there are different things that
you can do to manage that connection. To start with, let’s have a look at the current connection information, using
iscsiadm --mode node -P 1. The following gives a summary of the current target connections that are existing:
 
node1:~ # iscsiadm --mode node -P 1
Target: iqn.2014-03.com.example:b36d96e3-9136-44a3-8bc9-78bd2754a137
 Portal: 192.168.178.36:3260,1
 Iface Name: default
 Portal: 192.168.122.1:3260,1
 Iface Name: default
 

To get a bit more information about your current setting, including the performance parameters that have been
defined in the default file for each session, you can use iscsiadm --mode session -P 1, as follows:
 
node1:~ # iscsiadm --mode session -P 2
Target: iqn.2014-03.com.example:b36d96e3-9136-44a3-8bc9-78bd2754a137
 Current Portal: 192.168.122.1:3260,1
 Persistent Portal: 192.168.122.1:3260,1

 Interface:

 Iface Name: default
 Iface Transport: tcp
 Iface Initiatorname: iqn.1996-04.de.suse:01:77766ea5aae2
 Iface IPaddress: 192.168.122.130
 Iface HWaddress: <empty>
 Iface Netdev: <empty>
 SID: 1
 iSCSI Connection State: LOGGED IN
 iSCSI Session State: LOGGED_IN
 Internal iscsid Session State: NO CHANGE

 Timeouts:

 Recovery Timeout: 120
 Target Reset Timeout: 30
 LUN Reset Timeout: 30
 Abort Timeout: 15

Chapter 2 ■ Configuring Storage

20

 CHAP:

 username: <empty>
 password: ********
 username_in: <empty>
 password_in: ********

 Negotiated iSCSI params:

 HeaderDigest: None
 DataDigest: None
 MaxRecvDataSegmentLength: 262144
 MaxXmitDataSegmentLength: 8192
 FirstBurstLength: 65536
 MaxBurstLength: 262144
 ImmediateData: Yes
 InitialR2T: Yes
 MaxOutstandingR2T: 1

Disconnecting an iSCSI Session
As mentioned previously, iSCSI is set up to reestablish all sessions on reboot of the server. If your configuration
changes, you might have to remove the configuration. To do this, you’ll have to remove the session information. To start
with, you must disconnect, which also means that the connection is gone from the iSCSI target server perspective. To
disconnect a session, you’ll use iscsiadm --mode node --logout. This disconnects you from all iSCSI disks, which
allows you to do maintenance on the iSCSI storage area network. If, after a reboot, you also want the iSCSI sessions
not to be reestablished automatically, the easiest approach is to remove the entire contents of the $ISCSI_ROOT/node
directory. As on a reboot, the iSCSI service won’t find any configuration; you’ll be able to start all over again.

Setting Up Multipathing
Typically, the storage area network (SAN) topology is set up in a redundant way. That means that the connection your
server has to storage will survive a failure of a controller, disk, network connection, or anything on the SAN. It also
means that if you’re connecting to the SAN over multiple connections, the logical unit numbers (LUNs) on the SAN
will be presented multiple times. If there are four different paths to your LUNs, on the connected node, you’ll see
/dev/sda, /dev/sdb, and /dev/sdc, as well as /dev/sdd, all referring to the same device.

As all of the /dev/sd devices are bound to a specific path, you shouldn’t connect to either of them. If the
specific path you’re connected to at that moment would fail, you would lose your connection. That is why multipath
was invented.

Multipath is a driver that is loaded and that analyzes all of the storage devices. It will find that the devices
/dev/sda, /dev/sdb, /dev/sdc, and /dev/sdd are all referring to the same LUN, and, therefore, it will create a specific
device that you can connect to instead. Let’s have a look at what this looks like on an example server.

To start with, the iscsiadm -m session -P 1 command shows that two different connections to the SAN exist,
using different interfaces and different IP addresses.
 

Chapter 2 ■ Configuring Storage

21

[root@apache2 ~]# iscsiadm -m session -P 1
Target: iqn.2001-05.com.equallogic:0-8a0906-48578f104-b07002fe41053218-sharedmoodle2
 Current Portal: 192.168.50.126:3260,1
 Persistent Portal: 192.168.50.121:3260,1

 Interface:

 Iface Name: p1p1
 Iface Transport: tcp
 Iface Initiatorname: iqn.1994-05.com.redhat:33dbb91a277a
 Iface IPaddress: 192.168.50.103
 Iface HWaddress: <empty>
 Iface Netdev: p1p1
 SID: 1
 iSCSI Connection State: LOGGED IN
 iSCSI Session State: LOGGED_IN
 Internal iscsid Session State: NO CHANGE
 Current Portal: 192.168.50.16:3260,1
 Persistent Portal: 192.168.50.121:3260,1

 Interface:

 Iface Name: p1p2
 Iface Transport: tcp
 Iface Initiatorname: iqn.1994-05.com.redhat:33dbb91a277a
 Iface IPaddress: 192.168.50.198
 Iface HWaddress: <empty>
 Iface Netdev: p1p2
 SID: 2
 iSCSI Connection State: LOGGED IN
 iSCSI Session State: LOGGED_IN
 Internal iscsid Session State: NO CHANGE
 

When using lsscsi on that host, you can see that there’s a /dev/sdb and a /dev/sdc. So, in this case, there are
two different paths to the SAN.
 
[root@apache2 ~]# iscsiadm -m session -P 1
Target: iqn.2001-05.com.equallogic:0-8a0906-48578f104-b07002fe41053218-sharedmoodle2
 Current Portal: 192.168.50.126:3260,1
 Persistent Portal: 192.168.50.121:3260,1

 Interface:

 Iface Name: p1p1
 Iface Transport: tcp
 Iface Initiatorname: iqn.1994-05.com.redhat:33dbb91a277a
 Iface IPaddress: 192.168.50.103
 Iface HWaddress: <empty>
 Iface Netdev: p1p1

Chapter 2 ■ Configuring Storage

22

 SID: 1
 iSCSI Connection State: LOGGED IN
 iSCSI Session State: LOGGED_IN
 Internal iscsid Session State: NO CHANGE
 Current Portal: 192.168.50.16:3260,1
 Persistent Portal: 192.168.50.121:3260,1

 Interface:

 Iface Name: p1p2
 Iface Transport: tcp
 Iface Initiatorname: iqn.1994-05.com.redhat:33dbb91a277a
 Iface IPaddress: 192.168.50.198
 Iface HWaddress: <empty>
 Iface Netdev: p1p2
 SID: 2
 iSCSI Connection State: LOGGED IN
 iSCSI Session State: LOGGED_IN
 Internal iscsid Session State: NO CHANGE
 

On this server, the multipath driver is loaded. To check the current topology, you can use the multipath -l
command.
 
[root@apache2 ~]# multipath -l
mpatha (36090a048108f574818320541fe0270b0) dm-2 EQLOGIC,100E-00
size=700G features='0' hwhandler='0' wp=rw
|-+- policy='round-robin 0' prio=0 status=active
| `- 7:0:0:0 sdb 8:16 active undef running
`-+- policy='round-robin 0' prio=0 status=enabled
 `- 8:0:0:0 sdc 8:32 active undef running
 

As you can see, a new device has been created, with the name mpatha. This device is created in the /dev/mapper
directory on the cluster node that runs the multipath service. You can also see that it is using round-robin to connect
to the underlying devices sdb and sdc. Of these, one has the status set to active, and the other has the status set
to enabled.

At this point, the cluster node would address the SAN storage through the /dev/mapper/mpatha device. If during
the connection one of the underlying paths failed, it wouldn’t really matter. The multipath driver automatically
switches to the remaining device.

/etc/multipath.conf
When starting the multipath service, a configuration file is used. In this configuration file, different settings with
regard to the multipath device can be specified. In the following listing, you can see what the contents of the file
might look like:
 
#blacklist {
wwid 26353900f02796769
devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
devnode "^hd[a-z]"
#}

Chapter 2 ■ Configuring Storage

23

#multipaths {
multipath {
wwid 3600508b4000156d700012000000b0000
alias yellow
path_grouping_policy multibus
path_checker readsector0
path_selector "round-robin 0"
failback manual
rr_weight priorities
no_path_retry 5
}
multipath {
wwid 1DEC_____321816758474
alias red
}
#}
#devices {
device {
vendor "COMPAQ"
product "HSV110 (C)COMPAQ"
path_grouping_policy multibus
getuid_callout "/lib/udev/scsi_id --whitelisted --device=/dev/%n"
path_checker readsector0
path_selector "round-robin 0"
hardware_handler "0"
failback 15
rr_weight priorities
no_path_retry queue
}
device {
vendor "COMPAQ"
product "MSA1000"
path_grouping_policy multibus
}
#}
#
defaults {
 udev_dir /dev
 find_multipaths yes
 user_friendly_names yes
}
 
multipaths {
 multipath {
 wwid 36090a048108f574818320541fe0270b0
 alias mpatha
 }
}
 

Chapter 2 ■ Configuring Storage

24

In this preceding listing, different parameters are used. To start with, there is a blacklist section (which is
commented out). In this section, you can exclude specific devices. This makes sense, if you’re using SAN hardware
that has its own multipath drivers and shouldn’t use the generic Linux multipath driver. While blacklisting, you can
use a World Wide ID (WWID) to refer to the specific device that should be excluded. Also, in the blacklist section, you
can see a list of devnodes that are excluded. This list typically contains the local devices, as you wouldn’t want to do
any multipathing on local devices.

At the end of the configuration file, you can see the settings that actually are effective in this configuration.
It starts with the defaults, indicating which directory to use to create the device files for multipath devices. Next,
it instructs the multipath driver to use user-friendly names. Another important part is where an alias is set. This alias
is based on the WWID, which is the unique ID for a multipath device. If you do nothing, you’ll just have a generic
device mapper device name like /dev/dm-1, referring to the multipath device.

Because the /dev/dm-* names are set locally and can be different on different nodes in the cluster, they may
never be used. This is why a WWID is used instead, to set an alias for the multipath device. To find out which WWID to
use, apply the following procedure:

	 1.	 Make sure all of the SAN connections are operational.

	 2.	 Start the multipath service, using a command such as systemctl start
multipath.service (it might be different on your distribution).

	 3.	 Type multipath -l to find the current WWIDs and identify which specific ID is used on
which specific LUNs.

	 4.	 Decide which alias to use and create the configuration in /etc/multipath.conf.

Specific Use Cases for Multipath
Setting up multipath on a storage area network (SAN) that has two different interfaces is easy. Some modern
SANs, however, use virtual interfaces on the SAN, in which the SAN handles the redundancy internally. In such
a configuration, you may connect your cluster node to the SAN over redundant paths, but it would get the same
information on both paths, with the result that your cluster node doesn’t see that there are actually two paths. On
a Fibre Channel SAN, this is typically dealt with by the HBA, and there won’t be any problem. On an iSCSI SAN,
however, it may lead to a situation in which the second path is simply ignored. So, there would be physically multiple
paths, of which only the first path is used. That would mean that connection to storage is lost, if that specific path goes
down. To deal with these specific cases, you’ll have to set up the iSCSI connections in a specific way.

Let’s have a look at what exactly the problem is. In Figure 2-5, you see a schematic overview of the configuration.
The situation is easily simulated in a test environment. Just make sure a cluster node has two physical interfaces
with different IP addresses in the same IP subnet. Next, try to connect to the SAN using the iscsiadm command, as
described above, with iscsiadm -m discoverydb --type discovery --portal 192.168.50.121:3260 --discover
and iscsiadm -m node --targetname iqn.2013-03.com.example:apache --portal 192.168.50.121:3260 --login.
You’ll notice that you just have one established session.

Chapter 2 ■ Configuring Storage

25

The following procedure describes how to establish the iSCSI connection in the right way, allowing you to work
on a truly redundant configuration.

	 1.	 Log out from all existing sessions: iscsiadm --mode node --targetname iqn.2013-03.
com.example:apache --portal 192.168.50.121:3260 --logout

	 2.	 Stop the iscsid service and remove all current session configuration files: systemctl
stop iscsid.service; rm -rf $ISCSI_ROOT/nodes $ISCSI_ROOT/ifaces

	 3.	 Now, you have to define different interfaces in iSCSI. This tells iSCSI that each interface
should be dealt with separately.
 
iscsiadm --mode iface --interface p2p1 -o new
iscsiadm --mode iface --interface p2p2 -o new
 

	 4.	 After defining the interfaces, you must write the interface settings. These settings are
written to the $ISCSI_ROOT/ifaces directory and allow iSCSI to distinguish between the
interfaces.
 
iscsiadm --mode iface --interface p2p1 -o update --name
\ iface.net_ifacename --value=p2p1
iscsiadm --mode iface --interface p2p2 -o update --name
\ iface.net_ifacename --value=p2p2
 

	 5.	 Before getting operational, you’ll have to tell the kernel of each node that it can accept
packets that are sent to addresses in the same IP network on different interfaces. To
prevent spoof attacks, this is off by default, which means that the kernel accepts packets to
a specific IP subnet on one interface only. To change this behavior, add the following line
to the end of /etc/sysctl.conf and reboot:
 
net.ipv4.conf.default/rp_filter = 2
 

Figure 2-5.  Partial multipathing configuration

Chapter 2 ■ Configuring Storage

26

	 6.	 After the reboot, you can start the iSCSI discovery.
 
iscsiadm -m discoverydb -t sendtarets -p 192.168.50.121:3260 --discover
 

As a result, you will see two connections, one for each interface. You might also see an error “could not scan
/sys/class/iscsi_transport.” This error is perfectly normal the first time you scan on the new interfaces, so you can
safely ignore it.

	 7.	 Now, you can log in to the SAN with the command iscsiadm -m node -l.

	 8.	 At this point, you can start the multipath driver, using systemctl start
multipathd.service.

	 9.	 If you now type multipath -l, you’ll see that the multipath devices have been
created properly.

Summary
Connecting to shared storage is important in any high availability cluster. In this chapter, you’ve read about the
different kinds of shared storage that are available and how you can connect to them. In particular, you’ve learned
how to connect to an iSCSI SAN, using the iscsiadm command. Also, you have learned how to guarantee redundancy
on the SAN connections, by using the multipath driver. In the next chapter, you will learn how to set up the lower
layers of the cluster.

27

Chapter 3

Configuring the Membership Layer

For nodes to be able to see one another, you have to configure the cluster membership layer. This layer consists
of the infrastructure that is used by the nodes for communication, as well as a software layer that has the nodes
actually communicate. This chapter explains how to configure the membership layer. The following topics
are discussed:

Configuring the network•	

Dealing with multicast•	

•	 corosync or cman?

Configuring •	 corosync

Configuring •	 cman

Configuring the Network
Before even starting to think about configuration of the software, you’ll have to set up the physical network, and there
are a few choices to make. First, you must decide which network you want to use. The choices are between using the
LAN and using a dedicated cluster network.

For test environments, it is acceptable to send cluster traffic over the LAN. For production networks, you
shouldn’t. That is because the cluster traffic is sensitive, and important decisions are made, based on the result of the
cluster traffic. If packets don’t come through, the cluster will draw the conclusion that a node has disappeared, and it
will act accordingly. That means that it will terminate the node it doesn’t see anymore, by using STONITH, and it will
next migrate resources away to a new location. Both involve downtime for the user who’s using the resources, and that
is why you want a dedicated cluster network.

On the cluster network, you also need protection on the network connection. You don’t want the cluster to fail
if a network card goes down, or if a cable is disconnected. That’s why you want to configure network bonding, also
referred to as link aggregation.

In a network bond, one logical interface is created to put two (or more) physical interfaces together. The physical
interfaces don’t contain any information if they’re in a bond; they are just configured as slaves to the bond. It is the
boding interface that contains the IP address configuration. So, the clients communicate to the bonding interface,
which uses the bonding kernel module to distribute the load over the slave interfaces.

Chapter 3 ■ Configuring the Membership Layer

28

Network Bonding Modes
When configuring network bonding, there are different modes that you can choose from. The default mode is
balance-rr, a round-robin mode in which network packets are transmitted in sequential order from the first available
network interface through the last. This mode provides load balancing as well as fault tolerance. On some SAN filters,
round-robin is deprecated, because according to the vendor, it leads to packet loss. In that case, the Link Aggregation
Control Protocol (LACP) is often favored. LCAP, however, doesn’t work without support on the switch. The advantage
of plain round-robin is that it works without any additional configuration.

Table 3-1 gives an overview of the modes that are available when using bonding on Linux.

Table 3-1.  Linux Bonding Modes

Mode Use

balance-rr This is the round-robin mode in which packets are transmitted in sequential order from the
first network interface through the last.

active-backup In this mode, only one slave is active, and the other slave takes over, if the active slave fails.

balance-xor A mode that provides load balancing and fault tolerance and in which the same slave is used
for each destination MAC address.

broadcast This mode provides fault tolerance only and broadcasts packets on all slave interfaces.

802.3ad This is the LACP mode that creates aggregation groups in which the same speed and duplex
settings are used on all slaves. It requires additional configuration on the switch.

balance-tlb In this mode, which is known as adaptive transmit load balancing, a packet goes out,
according to load, on each network interface slave. Incoming traffic is received by a
designated slave interface.

balance-alb This works like balance-tlb but also load balances incoming packets.

Configuring the Bond Interface
Configuring a bond interface is not too hard, although the exact procedure may be a bit different on a specific Linux
distribution. The procedure described here is based on SUSE Linux Enterprise Server 11 and also works on Red Hat
Enterprise Linux 12. Networking has changed considerably in the recently released SUSE Linux Enterprise Server 12
and also in Red Hat Enterprise Linux 7. I recommend using SUSE’s YaST setup utility or the Red Hat nm-tui utility, for
setting up bonding in these distributions.

The first step is to create an interface configuration file for the bond. This would typically have the name ifcfg-bond0,
and you will find it in /etc/sysconfig/network (SUSE) or /etc/sysconfig/network-scripts (Red Hat).
In Listing 3-1, you see what the file may look like.

Listing 3-1.  Sample Bond Configuration File

san:~ # cat /etc/sysconfig/network/ifcfg-bond0
BONDING_MASTER='yes'
BONDING_MODULE_OPTS='mode=active-backup miimon=100'
BONDING_SLAVE0='eth0'
BONDING_SLAVE1='eth1
BOOTPROTO='static'
BROADCAST=''

Chapter 3 ■ Configuring the Membership Layer

29

ETHTOOL_OPTIONS=''
IPADDR='192.168.122.140/24'
MTU=''
NAME=''
NETWORK=''
REMOTE_IPADDR=''
STARTMODE='auto'
USERCONTROL='no'
 

There are a few things to note in this sample file. First, the BONDING-SLAVE lines indicate which network interface
is used as slave device. As you can see, in this configuration, there are two interfaces added to the bond.

Another important parameter is BONDING_MODULE_OPTS. Here, the options that are passed to the bonding kernel
module are specified. As you can see, the mode is set to active_backup, and the miimon parameter tells the bond how
frequently the bonding interface has to be monitored (expressed in milliseconds). If you want to make sure your bond
reacts fast, you might consider setting this parameter to 50 milliseconds.

If you have specified the BONDING_SLAVE lines in the bond configuration, you don’t have to create any
configuration for the interfaces that are assigned to the bond device. Just make sure that no configuration file exists for
them, and the bond will work. There’s also no need to tell the kernel to load the bonding kernel module. This will be
loaded automatically when the bond device is initialized from the network scripts.

If you don’t have the BONDING_SLAVE lines in the bond configuration, you have to modify the interface file for each
of the intended slave interfaces. (These are the files /etc/sysconfig/network-scripts/ifcfg-eth0 and so on.)
In Listing 3-2, you can see what the contents of this file has to look like.

Listing 3-2.  Sample Interface File with Bonding Configuration

DEVICE=eth0
BOOTPROTO=none
ONBOOT=yes
USERCTL=no
MASTER=bond0
SLAVE=yes
TYPE=Ethernet

Dealing with Multicast
Another part of network configuration to consider is multicast support. Multicast is the default communication
method, because it is easy to set up. For environments in which multicast cannot be used, unicast is supported as
well. Later in this chapter, you’ll read how to set up your cluster for unicast. On many networks, this is an issue. In
general, if all the cluster nodes are connected to the same physical switch, there are no issues with multicast. On many
networks, different switches are connected to one another to create one big broadcast domain. If that is the case, you
specifically have to take action, to make sure multicast packets originating from one switch are forwarded to all other
switches as well.

The parameter to look at is multicast snooping (also referred to as IGMP snooping). IGMP snooping causes
the switch to forward multicast packets only to those switch ports in which a multicast address has been detected.
In general, this is good, because it means that all other nodes are not receiving the multicast packet. On networks
where switches are interconnected, however, it may cause problems. As cluster nodes by default use multicast to
communicate, it will lead to cluster nodes not seeing one another. If this happens, you may consider switching off
multicast snooping completely on the switches (which will degrade performance, though).

Chapter 3 ■ Configuring the Membership Layer

30

If your switch is a virtual bridge device, as is commonly used on KVM and Xen virtualized environments, you can
modify the multicast_snooping behavior by changing a parameter in the sysfs file system. In /sys/class/net, every
bridge that is configured has a subdirectory, for example, /sys/class/net/br0. In this directory, you’ll find the bridge/
multicast_snooping file, which, by default, has the value 1, to enable multicast snooping. If you’re experiencing
problems with multicast, change the value of this file to 0, by echoing the value into the file. If that works, you can also
try the value 2, which does enable multicast_snooping, but in a smart mode, that is supposed to work also between
different switches that are interconnected.

To automate this configuration setting, you should include it somewhere in the boot procedure. You can do this
by modifying the /etc/init.d/boot.local file to include the following script lines:
 
set multicast_snooping
cd /sys/class/net
for i in br*
do
 echo 0 > br$i/bridge/multicast_snooping
done

corosync or cman?
In all current HA cluster stacks, corosync is the default solution. That means that you should use corosync in all cases.
In some specific situations, however, corosync doesn’t work. At the time this was written, that was the case with Red
Hat Enterprise Linux 6.X, in which cLVM or GFS2 file systems had to be used. This behavior is expected to change with
Red Hat Enterprise Linux 7.X.

Configuring corosync
To create a cluster that is based on Corosync, make sure that the corosync, pacemaker, and crmsh packages are
installed. In this section, you’ll configure corosync only, but it must be aware of the resource management layer as
well, and that is why you want to install the pacemaker while installing the corosync package. To be able to manage
the Pacemaker layer later, also install the crmsh environment at this point. The following procedure describes how to
set up a base cluster using corosync:

	 1.	 Open the file /etc/corosync/corosync.conf in your favorite text editor.

	 2.	 Locate the bindnetaddr parameter. This parameter should have as its value the IP address
that is used to send the cluster packets. Next, change the nodeid parameter. This is the
unique ID for this node that is going to be used on the cluster. To avoid any conflicts with
auto-generated node IDs, it’s better to manually change the node ID. The last byte of the IP
address of this node could be a good choice for the node ID.

	 3.	 Find the mcastaddr address. As not all multicast addresses are supported in all situations,
make sure the multicast address starts with 224.0.0. (Yes, really, it makes no sense, but
some switches can only work with these addresses!) All nodes in the same cluster require
the same multicast address here. If you have several clusters, every cluster needs a unique
multicast address. The final result will look like Listing 3-3.

Chapter 3 ■ Configuring the Membership Layer

31

Listing 3-3.  Example corosync.conf Configuration File

compatibility: whitetank
 
aisexec {
 user: root
 group: root
}
 
service {
 ver: 0
 name: pacemaker
 use_logd: yes
}
 
totem {
 version: 2
 token: 5000
 token_retransmits_before_loss_const: 10
 join: 60
 consensus: 6000
 vsftype: none
 max_messages: 20
 clear_node_high_bit: yes
 secauth: off
 threads: 0
 
 interface {
 ringnumber: 0
 bindnetaddr: 192.168.122.130
 mcastaddr: 239.0.0.95
 mcastport: 5405
 ttl: 1
 }
}
 
logging {
 fileline: off
 to_stderr: no
 to_logfile: no
 to_syslog: yes
 syslog_facility: daemon
 debug: off
 timestamp: off
 logger_subsys {
 subsys: AMF
 debug: off
 }
}
 
amf {
 mode: disabled
}
 

Chapter 3 ■ Configuring the Membership Layer

32

	 4.	 If you’re creating the configuration on SUSE, you’ll be fine and won’t need anything else. On
Red Hat, you will have to tell corosync which resource manager is used. That is because on
Red Hat, you might be using rgmanager instead. To do this on Red Hat, create a file with the
name /etc/corosync/service.d/pcmk, and give it the same contents as in Listing 3-4.

Listing 3-4.  Telling corosync to Start the Pacemaker Cluster Manager

service {
name: pacemaker
ver: 1
}
END
 

Note that in the sample corosync.conf configuration file from Listing 3-3, there already is a service { } section
that tells corosync to load pacemaker. As this section is absent in the sample configuration files on Red Hat, you risk
overlooking it.

	 5.	 Close the configuration file and write the changes. Now, start the corosync service. SUSE
uses the openais service script to do that (that’s for legacy reasons). On Red Hat and
related distributions, you can just use service corosync start to start the corosync
service. Also, make sure the service will automatically restart on reboot of the node, using
chkconfig [openais|corosync] on. On SLES 12 and RHEL 7, you’ll use systemctl start
pacemaker to start the services and systemctl enable pacemaker to make sure it starts
automatically.

	 6.	 At this point, you have a one-node cluster. As root, run the crm_mon command, to verify
that the cluster is operational (see Listing 3-5).

Listing 3-5.  Verifying Cluster Operation with crm_mon

Last updated: Tue Feb 4 08:42:18 2014
Last change: Tue Feb 4 07:41:00 2014 by hacluster via crmd on node2
Stack: classic openais (with plugin)
Current DC: node2 - partition WITHOUT quorum
Version: 1.1.9-2db99f1
1 Nodes configured, 2 expected votes
0 Resources configured.
 
Online: [node2]
 

	 7.	 At this point, you have a one-node cluster. You now have to get the configuration to the
other side as well. To do this, use the command scp /etc/corosync/corosync.conf
node1 (in which you need to change the name node1 by the name of your other node).
On SLES, the recommended way is to use hac-cluster-join from the new node, which
copies over corosync.conf and sets up SSH and other required parameters.

	 8.	 Open the file /etc/corosync/corosync.conf on the second node and change the nodeid
parameter. Make sure a unique node ID is used, or use automatically configured node
IDs (which is the default). Also, change the bindnetaddr line. This should reflect the IP
network address that corosync should bind to (and not the IP address).

	 9.	 Start and enable the openais service and run crm_mon. You should now see that there are
two nodes in the cluster.

Chapter 3 ■ Configuring the Membership Layer

33

Understanding corosync.conf Settings
Now that you have established your first cluster, let’s have a look at some of the configuration parts in the corosync.conf
file. The first important part is the service section, which you can see in Listing 3-3. In this section, you’ll tell corosync
what it should load. Instead of putting this configuration in corosync.conf, you can also include it in the /etc/corosync/
service.d directory.

In Listing 3-3, you can see that the name of the service to be loaded is set to pacemaker. Apart from that, the
use_mgmtd parameter is used to load the management daemon, an interface that is required to use the legacy crm_gui
management tool. The parameter use_logd tells the cluster to have its own log process. Both of these parameters are
no longer needed in the latest releases of SLES and RHEL.

The important part of the corosync.conf file is the totem section. Here, you define how the protocol should
be used. In the totem topology, a cluster ring is used. This ring consists of all the cluster nodes, which pass a token
around the ring. The token parameter specifies how much time is allowed for the token to be passed around,
expressed in milliseconds. So, by default, the token has five seconds to pass around the ring.

Related to the token parameter is the token_retransmits_before_loss_const parameter. This is the amount
of tokens that can be missed before a node is considered to be lost in the cluster. A node will be considered lost if it
hasn’t been heard from for the token time-out period, so, by default, after five seconds.

The next important part is the declaration of the interfaces. In Listing 3-4, only one interface is declared to use
one ring only. If you want cluster traffic to be redundant, you might consider setting up a redundant ring, by including
a second interface. If you do, make sure to use a unique multicast address and give the ring number 1. Also, you must
set the rrp_mode (redundant ring protocol mode). Set it to active, to make sure that both rings are actively being
used. Instead of using rrp, it is a better solution to use bonding on the network interface, which is easier to set up and
enables redundancy for other services also.

You could also include a logging section, to further define how logging is handled. Listing 3-6 gives a sample
configuration.

Listing 3-6.  Sample corosync.conf Logging Section

logging {
 fileline: off
 to_stderr: no
 to_logfile: yes
 to_syslog: yes
 logfile: /var/log/cluster/corosync.log
 debug: off
 timestamp: on
}
 

Use these self-explanatory parameters to define how logging should be handled in your cluster.

Networks Without Multicast Support
On some networks, multicast is not supported. If that is the case for your network, the procedure that was described
in the previous section did not work. You’ll have to create a configuration that is based on the UDPU protocol
configuration, to get it working. The most relevant differences with the configuration that was described previously
are the following:

In the interface section, you have to include the addresses of all nodes that are allowed as •	
members on the cluster.

You no longer need a multicast address.•	

Chapter 3 ■ Configuring the Membership Layer

34

In Listing 3-7, you can see what a typical unicast cluster configuration would look like.

Listing 3-7.  Unicast corosync Cluster Configuration

aisexec {
 group: root
 user: root
}
service {
 use_mgmtd: yes
 use_logd: yes
 ver: 0
 name: pacemaker
}
totem {
 rrp_mode: none
 join: 60
 max_messages: 20
 vsftype: none
 transport: udpu
 nodeid: 145
 consensus: 6000
 secauth: off
 token_retransmits_before_loss_const: 10
 token: 5000
 version: 2
 interface {
 bindnetaddr: 192.168.1.0
 member {
 memberaddr: 192.168.1.144
 }
 member {
 memberaddr: 192.168.1.145
 }
 mcastport: 5405
 ringnumber: 0
 }
 clear_node_high_bit: no
}
logging {
 to_logfile: no
 to_syslog: yes
 debug: off
 timestamp: off
 to_stderr: no
 fileline: off
 syslog_facility: daemon
}
amf {
 mode: disable
}
 

Chapter 3 ■ Configuring the Membership Layer

35

There are two configuration parameters that need a bit more explanation in Listing 3-7. Also in unicast mode,
redundant rings can be used (but consider using bonding instead). And if you want to keep the contents of the
corosync.conf file identical on all nodes, you may consider using auto-generated node IDs.

Configuring cman
As mentioned previously, corosync should be the default solution you’re using to implement the membership layer.
As you will have a hard time using corosync with cLVM and GFS2 shared storage in Red Hat 6.X, on occasion, you also
might have to use cman at the membership layer. The following procedure describes how to do this:

	 1.	 Install required software.

yum install -y cman gfs2-utils gfs2-cluster
 
	 2.	 Edit /etc/sysconfig/cman and make sure it includes the following line:
 

CMAN_QUORUM_TIMEOUT=0
 
	 3.	 Create the file /etc/cluster/cluster.conf with the following contents (make sure to

replace node names). Note that it does include a fencing “dummy.” cman must be able to
fence nodes, but if that happens, it must send the fencing instruction to the Pacemaker
layer (fencing is discussed in depth in Chapter 5):
 
<?xml version="1.0"?>
<cluster config_version="1" name="mysql-cluster">
 <logging debug="off"/>
 <clusternodes>
 <clusternode name="mysql1.moodle.hosting.local" nodeid="1">
 <fence>
 <method name="pcmk-redirect">
 <device name="pcmk" port="mysql1.moodle.hosting.local"/>
 </method>
 </fence>
 </clusternode>
 <clusternode name="mysql2.moodle.hosting.local" nodeid="2">
 <fence>
 <method name="pcmk-redirect">
 <device name="pcmk" port="mysql2.moodle.hosting.local"/>
 </method>
 </fence>
 </clusternode>
 </clusternodes>
 <fencedevices>
 <fencedevice name="pcmk" agent="fence_pcmk"/>
 </fencedevices>
</cluster>
 

Chapter 3 ■ Configuring the Membership Layer

36

	 4.	 Run ccs_config_validate to validate the configuration.

	 5.	 Start cman and pacemaker services on both nodes, as follows:
 

service cman start; service pacemaker start
 
	 6.	 Put both services in the runlevels, as follows:
 

chkconfig cman on; chkconfig pacemaker on
 
	 7.	 Use cman_tool nodes to verify availability of the nodes.

	 8.	 Use crm_mon to verify availability of the resources.

	 9.	 Restart both nodes and use cman_tool nodes to verify that all comes up.

Summary
In this chapter, you have learned how to create the cluster membership layer. You first read how to set up network
bonding to add protection at the network level. Next you read how to make sure multicast works smoothly in your
environment. Following that you read how to set up corosync in either multicast or unicast mode. The last part of this
chapter was dedicated to installing cman in Red Hat environments. In the next chapter, you’ll learn more about the way
Pacemaker is organized and managed.

37

Chapter 4

Understanding Pacemaker
Architecture and Management

If you really want to be a good cluster administrator, you have to understand the way the Pacemaker resource
manager is organized. Understanding architecture is of vital importance for managing Pacemaker, because error
messages often are organized around different parts of the Pacemaker architecture, and even tools focus on specific
parts of the architecture.

The following topics are covered in this chapter:

Pacemaker related to other parts of the cluster•	

Pacemaker internal components•	

Cluster management tools•	

Pacemaker Related to Other Parts of the Cluster
When building a cluster, it is relevant to know how Pacemaker relates to other parts of the cluster. Figure 4-1 gives
an overview.

CLVM2 GFS2 OCFS2

distributed lock
manager

pacemaker

resource
agent corosync

Figure 4-1.  Pacemaker related to other parts of the cluster

Chapter 4 ■ Understanding Pacemaker Architecture and Management

38

Resource Agents
As you already know, Pacemaker is the part of the cluster that takes care of resource management. To manage resources,
resource agents are used. A resource agent is a script that the cluster uses to start, stop, and monitor resources. It can
be compared to a systemctl or a runlevel script, but it has been adapted for use in the cluster. It is also the resource
agent that defines which properties can be managed by the cluster. As a cluster administrator, it is important to know
which properties you can use, before starting to configure resources. Later in this chapter, you will learn how the cluster
management tools can help you to analyze which properties are offered by the resource agents.

corosync/cman
As you’ve already learned, Corosync is the layer that takes care of node membership. You have also seen that it is
configured to communicate to Pacemaker. Pacemaker receives updates about changes in cluster membership status,
based on which it can initiate certain events, such as resource migration.

The Storage Layer
Pacemaker clusters can be used to manage shared storage devices. For all of these, a distributed lock manager (DLM)
is required. This DLM takes care of synchronizing locks on storage devices between nodes, which is especially
important if shared storage is involved, such as cLVM2 clustered logical volumes or the GFS2 and OCFS2 clustered file
systems. Chapter 7 covers in depth how to configure and manage shared storage in a cluster.

Pacemaker Internal Components
Within the Pacemaker resource manager, different components communicate to one another to decide where the
resources should be started. Figure 4-2 gives a schematic overview of the most important part of the Pacemaker
internal architecture.

Irmd pengine

hawk
pcmk
crmsh

cib
crmdstonithd

fenced

Figure 4-2.  Pacemaker internal architecture

Chapter 4 ■ Understanding Pacemaker Architecture and Management

39

Cluster Information Base
The heart of the cluster is the Cluster Information Base (CIB). This is the in-memory actual state of the cluster that is
continuously synchronized between nodes in the cluster. It is very important to know that as a cluster administrator, you
will never directly modify the CIB. For advanced debugging purposes, however, it is a useful source of information.

To understand how the cluster management tools work, it is good to know how the CIB is organized. In Listing 4-1,
you see the abbreviated output of the cibadmin -Q command, which dumps the contents of the CIB. The total output
of this command in the sample cluster from which it was taken is about ten pages. For readability, I have omitted most
of its contents.

Listing 4-1.  Partial cibadmin -Q Output

[root@mysql2 ~]# cibadmin -Q
<cib epoch="89" num_updates="34" admin_epoch="0" validate-with="pacemaker-1.2" cib-last-written="Thu
Mar 20 16:46:01 2014" update-origin="mysql1.moodle.hosting.local" update-client="crm_resource" crm_
feature_set="3.0.7" have-quorum="1" dc-uuid="mysql2.moodle.hosting.local">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 �<nvpair id="cib-bootstrap-options-dc-version" name="dc-version" value="1.1.10-14.el6_5.2-

368c726"/>
 �<nvpair id="cib-bootstrap-options-cluster-infrastructure" name="cluster-infrastructure"

value="classic openais (with plugin)"/>
 <nvpair id="cib-bootstrap-options-expected-quorum-votes" name="expected-quorum-votes" value="2"/>
 <nvpair id="cib-bootstrap-options-last-lrm-refresh" name="last-lrm-refresh" value="1395330310"/>
 </cluster_property_set>
 </crm_config>
 <nodes>
 <node id="mysql2.moodle.hosting.local" uname="mysql2.moodle.hosting.local"/>
 <node id="mysql1.moodle.hosting.local" uname="mysql1.moodle.hosting.local"/>
 </nodes>
 <resources>
 <primitive id="FenceSQ1" class="stonith" type="fence_drac5">
 <instance_attributes id="FenceSQ1-instance_attributes">
 <nvpair name="action" value="reboot" id="FenceSQ1-instance_attributes-action"/>
 <nvpair name="cmd_prompt" value="/admin1->" id="FenceSQ1-instance_attributes-cmd_prompt"/>
 <nvpair name="ipaddr" value="192.168.12.130" id="FenceSQ1-instance_attributes-ipaddr"/>
 <nvpair name="login" value="stoasadmin" id="FenceSQ1-instance_attributes-login"/>
 <nvpair name="passwd" value="pw4osstsvr00150800" id="FenceSQ1-instance_attributes-passwd"/>
 �<nvpair name="pcmk_host_list" value="mysql1.moodle.hosting.local" id="FenceSQ1-instance_

attributes-pcmk_host_list"/>
 </instance_attributes>
 <operations>
 <op name="monitor" interval="30s" id="FenceSQ1-monitor-30s"/>
 </operations>
 <meta_attributes id="FenceSQ1-meta_attributes">
 <nvpair name="target-role" value="Started" id="FenceSQ1-meta_attributes-target-role"/>
 </meta_attributes>
 </primitive>
</resources>
 <constraints/>
 </configuration>

Chapter 4 ■ Understanding Pacemaker Architecture and Management

40

 <status>
 �<node_state id="mysql2.moodle.hosting.local" uname="mysql2.moodle.hosting.local" in_ccm="true"

crmd="online" crm-debug-origin="do_update_resource" join="member" expected="member">
 <transient_attributes id="mysql2.moodle.hosting.local">
 <instance_attributes id="status-mysql2.moodle.hosting.local">
 �<nvpair id="status-mysql2.moodle.hosting.local-probe_complete" name="probe_complete"

value="true"/>
 </instance_attributes>
 </transient_attributes>
 <lrm id="mysql2.moodle.hosting.local">
 <lrm_resources>
 <lrm_resource id="FenceSQ1" type="fence_drac5" class="stonith">
 �<lrm_rsc_op id="FenceSQ1_last_0" operation_key="FenceSQ1_monitor_0" operation="monitor"

crm-debug-origin="build_active_RAs" crm_feature_set="3.0.7" transition-
key="4:0:7:a63f6998-a28f-47de-a5d4-556478e3fc71" transition-magic="0:7;4:0:7:a63f6998-
a28f-47de-a5d4-556478e3fc71" call-id="5" rc-code="7" op-status="0" interval="0" last-
run="1395412070" last-rc-change="1395412070" exec-time="1" queue-time="0" op-digest="70a
09aaf1ff48a25e3db5aa620331d03"/>

 </lrm_resource>
</status>
</cib>
 

In the CIB, you can find two main parts. The first part contains the cluster configuration. The latter part contains
status information. Within the configuration part of the cluster, there are three different main parts. First is the
crm_config. This part contains generic configuration parameters that apply to the entire Pacemaker layer. Next is the
<nodes> section. Here, you can find all nodes that are currently a part of the cluster. Last is the resources section. Here,
all the resources that are managed by the cluster are defined.

The last part of the CIB is also the lengthiest part. It contains current status information about the resources
in the cluster. This is important debugging information for cluster administrators, as it tells exactly what has been
happening in the cluster recently. In Listing 4-2, you can see a schematic overview of the CIB composition.

Listing 4-2.  CIB Schematic Overview

<configuration>
 <crm_config>
 ..
 </crm_config>
 <nodes>
 ..
 </nodes>
 <resources>
 <primitive>
 ..
 </primitive>
</configuration>
<status>
 ..
</status>
 

In the preceding CIB example, you see the different elements that make up the cluster. It all starts with the cluster
generic settings, which specify general properties of the cluster. Then there is a definition of the nodes, which are the
members of the cluster. Following that, there is the resource configuration, and in the end, there is an overview of the
current status of the cluster.

Chapter 4 ■ Understanding Pacemaker Architecture and Management

41

As a cluster administrator, you will mostly deal with resource management. There are different types of
resources, as follows:

•	 Primitives: A primitive is a service that is managed by the cluster. It’s a single instance of the
service, and it is comparable to services, as they are managed by sysctl, or runlevels, on a non-
clustered node.

•	 Groups: A group is a collection of primitives. The advantage of working with groups is that the
cluster will start the primitives that are part of the group, in the order that they are defined in
the group. The cluster will also always keep the primitives in the same group together. If one
primitive in a group fails, no subsequent primitives can be started.

•	 Clones: A clone is a primitive that needs to be started by the cluster more than once. Clones are
useful for services that have to be started in an active/active mode, such as clustered file systems.

•	 Master slaves: A master slave is a special kind of clone, of which some instances (at least one)
are the active master, and other instances are slave. Master slave resources are relatively rare.
In Chapter 10, you will read how this resource type is used for the Distributed Replicated Block
Device (DRBD).

crmd
The cluster resource manager daemon (crmd) is the process that manages the actual state of the cluster. The main
task of the crmd is to direct the information flow between the various components of the cluster, such as resource
placement on specific nodes. It also takes care of node transitions, where nodes go to another state.

On every cluster, there is a crmd process on each node. One of these is the master. The node where the master
crmd is actually operational is recognized as the designated coordinator (DC). If the DC is on a node that fails, the
cluster will automatically select a new DC quickly.

pengine
The Cluster Information Base (CIB) provides a declarative description of the desired cluster state, and the policy
engine (pengine) is the part of the cluster that computes how it should be achieved. This generates a list of
instructions that is sent to the crmd. The easiest way for an administrator to influence the behavior of the pengine is
by defining constraints in the cluster. You can read more about constraint definitions in Chapter 8.

lrmd
The local resource manager daemon (lrmd) is a part of the cluster that runs on every cluster node as well. If the
crmd decides that a particular resource should run on a specific node, it will instruct the lrmd on that node to start
the resource. In case that doesn’t work, the lrmd will get back to the crmd and disclose that starting the resource has
failed. The cluster can then try to start the resource on another node in the cluster. The LRM also takes care of issuing
monitor operations and stop operations on resources that are running on specific nodes.

stonithd/fenced
The stonithd process (or its equivalent, fenced, on Red Hat–based clusters) receives instructions from the crmd
about changed node states. If a cluster node doesn’t reply anymore on the cluster membership layer, the cluster
membership layer will tell the crmd, and the crmd instructs stonithd to terminate that node. This is vital for proper
operation of the cluster, and even if the software (still) allows administrators to define clusters without stonithd, you
should never do that, because it makes for an unreliable cluster. In Chapter 5, you’ll read how to configure base cluster
settings as well as STONITH.

Chapter 4 ■ Understanding Pacemaker Architecture and Management

42

Cluster Management Tools
To modify the current state of the cluster, different management tools are available. In the end, they all do the same:
modify the current state of the cluster as it is kept in the CIB.

Even if different management tools exist, in this book, I’ll mainly demonstrate how the cluster is managed from
the CRM shell. This tool provides an easy-to-use interface that works well from command-line environments and
allows you to script cluster management tasks. If you prefer managing the cluster from a graphical environment, Hawk
is the recommended solution. In this section, you will learn how to work with both. The other tools that are available
are recommended for occasional use only. For that reason, I won’t cover them in depth.

crm shell
The crm shell (see Listing 4-3) provides a direct interface to CIB. Newer versions of the crm shell also allow
configuration of the Corosync layer and other parts of the cluster. You’ll notice that new features are being added
constantly. It is installed by default on some Linux distributions, but not on all. If you can type the crm command,
you’re good to go; if that doesn’t work, make sure to install the crmsh package for your distribution.

Typing the crm command opens the crm shell interactive interface. Instead of opening the crm interface and
working from there, you can also choose to type the complete command from the bash command line. You’ll see
some examples later in this subsection.

Listing 4-3.  crm Shell Interface

node1:~ # crm
crm(live)# help
 
This is the CRM command line interface program.
 
Available commands:
 
 cib manage shadow CIBs
 resource resources management
 configure CRM cluster configuration
 node nodes management
 options user preferences
 history CRM cluster history
 site Geo-cluster support
 ra resource agents information center
 status show cluster status
 quit,bye,exit exit the program
 help show help
 end,cd,up go back one level
 
crm(live)#
 

From the crm shell interface, different commands are offered. Each of these has sub-commands as well. In order to
choose the right option, it makes sense to know what these commands are all about. Table 4-1 provides an overview.

Chapter 4 ■ Understanding Pacemaker Architecture and Management

43

From the crm main shell interface, you can type any of the commands listed in Table 4-1, to enter a specific
management environment.

Type, for example, configure, if you require access to specific cluster-management commands. This brings you
to the interface that you can see in Listing 4-4.

Listing 4-4.  From the Main Shell to the configure Subtree of the Configuration

crm(live)configure# help
 
This level enables all CIB object definition commands.
The configuration may be logically divided into four parts:
nodes, resources, constraints, and (cluster) properties and
attributes. Each of these commands support one or more basic CIB
objects.
 
Nodes and attributes describing nodes are managed using the
`node` command.
 

Table 4-1.  Explanation of Main crm Shell Features

Command Function

cib Use this to work with shadow CIBs. These allow you to first apply all changes offline and,
once you’re satisfied with the modifications, apply them to the live cluster. Working with
shadow CIBs is covered in Chapter 9 of this book.

resource This is one of the most important commands. It allows you to manage the current status of
resources in the cluster.

configure This important command has options to configure resources and generic cluster properties.
It also offers commands to make backups of the current cluster state or load a previous
configuration from a text file.

node This allows you to manage the current state of nodes, such as deleting nodes or setting
nodes in maintenance mode.

options This contains some commands that allow you to specify the environment from which the
cluster administrator works.

history Here, you’ll find commands that help you browse cluster maintenance history.

site This command category is used for environments in which a cluster between different sites
has to be created.

ra This command category provides all you need to manage and view resource agent scripts.
It contains some useful commands that help you find out which properties are available for
specific resource types.

status This shows the cluster status, equivalent to using the crm_mon command.

quit, bye, exit These close the crm shell.

help This gives usage help.

end, cd, up Use these commands to go back one level in the shell interface.

Chapter 4 ■ Understanding Pacemaker Architecture and Management

44

Commands for resources are:
 
- `primitive`
- `monitor`
- `group`
- `clone`
- `ms`/`master` (master-slave)
 
In order to streamline large configurations, it is possible to
define a template which can later be referenced in primitives:
 
- `rsc_template`
 
In that case the primitive inherits all attributes defined in the
template.
 
There are three types of constraints:
 
- `location`
- `colocation`
- `order`
 
Finally, there are the cluster properties, resource meta
attributes defaults, and operations defaults. All are just a set
of attributes. These attributes are managed by the following
commands:
 
- `property`
- `rsc_defaults`
- `op_defaults`
 
In addition to the cluster configuration, the Access Control
Lists (ACL) can be setup to allow access to parts of the CIB for
users other than `root` and `hacluster`. The following commands
manage ACL:
 
- `user`
- `role`
 
The changes are applied to the current CIB only on ending the
configuration session or using the `commit` command.
 
Comments start with `#` in the first line. The comments are tied
to the element which follows. If the element moves, its comments
will follow.
 
Available commands:
 
 node define a cluster node
 primitive define a resource
 monitor add monitor operation to a primitive
 group define a group
 clone define a clone

Chapter 4 ■ Understanding Pacemaker Architecture and Management

45

 ms define a master-slave resource
 rsc_template define a resource template
 location a location preference
 colocation colocate resources
 order order resources
 rsc_ticket resources ticket dependency
 property set a cluster property
 rsc_defaults set resource defaults
 role define role access rights
 user define user access rights
 op_defaults set resource operations defaults
 show display CIB objects
 edit edit CIB objects
 filter filter CIB objects
 delete delete CIB objects
 default-timeouts set timeouts for operations to minimums from the meta-data
 rename rename a CIB object
 refresh refresh from CIB
 erase erase the CIB
 ptest show cluster actions if changes were committed
 cib CIB shadow management
 cibstatus CIB status management and editing
 template edit and import a configuration from a template
 commit commit the changes to the CIB
 verify verify the CIB with crm_verify
 upgrade upgrade the CIB to version 1.0
 save save the CIB to a file
 load import the CIB from a file
 xml raw xml
 quit exit the program
 help show help
 end go back one level

crm(live)configure#
 

As you can see, in some of the sub-shells, many sub-commands are available, and detailed help about using
the specific sub-environment is available as well. To get back from a sub-shell to the parent shell, you can type end.
Another useful feature in the crm shell is tab completion. Just type the beginning of the command you want to use,
and then press tab to complete the command.

Apart from moving to a specific location within the crm shell, you can also type on a bash command line
everything you need. That means that you can choose either to type crm, then configure, and then edit, or you can
just type the command crm configure edit from a bash shell environment. The latter approach works best when
you’re at ease with the options that are available, and it provides a great opportunity to use cluster-management
commands in automated and scripted environments. Throughout the rest of this book, you’ll find many examples of
how to use the crm command to create a specific configuration.

Hawk
Hawk is the High Availability Web Konsole. Hawk has been made available for SUSE Linux Enterprise, OpenSUSE,
Debian, and Fedora. You can, however, use the Fedora built on Red Hat and on similar distributions as well. Also, it’s
open source, so source code is available, and you’re welcome to compile it. As all of the Hawk development occurs on
the SUSE Linux Enterprise Server, the information in this section is based on the SLES configuration.

Chapter 4 ■ Understanding Pacemaker Architecture and Management

46

Figure 4-3.  Cluster summary in Hawk

Hawk consists of two parts. First, there is the Hawk service script. You need to start it on the node that you want to
use for enabling Hawk access. Once started, you can access the Hawk-management interface from a browser.

Before you can use Hawk, you must configure a user account. This user account has to be a member of the
haclient group, and you have to provide a password for this user. You could use the hacluster or any other user you
want to employ for cluster administration in Hawk. Make sure this user has a password, before you first start up the
Hawk service. Then use systemctl start hawk.service to start the Hawk service (or service hawk start, if you’re
on a Linux that uses System V init for starting services). This runs the service on https port 7630 on that specific node.

To connect to Hawk, start a browser and enter the URL https://yourserver:7630. You’ll see a message
indicating that your connection with the server is untrusted (unless a trusted certificate has been installed). Proceed
anyway, until you see the login prompt. On that prompt, enter the username hacluster (or the name of any other user
that you have made a member of the haclient group) and provide the password. Next, click login to connect to the
cluster. Figure 4-3 shows a cluster summary.

Hawk provides different views, which are available through three buttons at the upper-right of the hawk interface.
To get insight on the current state of the cluster, you may prefer the tree view. This gives a hierarchical overview of all
the resources that are currently configured in the cluster (Figure 4-4).

https://yourserver:7630/

Chapter 4 ■ Understanding Pacemaker Architecture and Management

47

To get an overview of which resources are started on which server, you may prefer the table view (Figure 4-5).
This view is especially useful when troubleshooting the current state of larger clusters.

Figure 4-4.  Tree view

Figure 4-5.  Table view

Chapter 4 ■ Understanding Pacemaker Architecture and Management

48

The button bar on the left gives access to the tasks that are provided. After starting, you’ll see the summary
screen by default. A very useful element is the cluster simulator. It allows you to work on a copy of the CIB to
simulate specific states of the cluster and see what’s happening. In Chapter 9, you’ll read more about working
in the simulator.

The third button allows access to the history explorer. This feature uses SSH key–based access to all nodes in the
cluster, to give an overview of all the transitions that have recently been happening in the cluster. For this feature to
work, make sure to set up SSH key–based authentication for the hacluster user.

Next, there is a wizard from which you can easily create some cluster resources. On my system, it allows you to
create cluster objects easily for a web server, an OCFS2 Filesystem, and OCFS2 additional resources. This may be
different on the version of the software you are using.

The cluster properties tab has you apply default properties to the entire cluster. You will read about some of these
properties in the next chapter. Next, there is the resources tab, from which you can easily add the different resources
you want to manage in your cluster. In all of the next chapters, you’ll receive more information on doing this.
Next, there is the constraints tab, which has you specify rules that should be respected by the cluster when loading
resources. More about this is provided in Chapter 8. Last, there is run hb_report, a graphical interface to the Y utility,
which has you gather debug information that is useful for troubleshooting the cluster. Chapter 9 tells you what exactly
hb_report is doing.

Other Tools
As stated before, there are also some other tools that are not discussed in as much detail in this book, either because
they are legacy or because they are restricted to specific environments. The next subsections give a short description
of these tools.

crm_gui
In previous versions of Pacemaker, crm_gui (previously available as hb_gui) was the only graphical tool that could be
used. It has been made obsolete by the introduction of Hawk, but the crm_gui binary may still be available on your
distribution.

cib and crm tools
In Heartbeat version 2, originally, there was no easily accessible tool to manage cluster components. Instead, there
were different tools to manage the state of the Cluster Information Base (CIB) and crmd. These tools are still available,
but they have been made largely obsolete by the crm shell.

An important tool from the past is cibadmin. This tool was used to push chunks of XML code directly into the
configuration, to create and modify cluster resources. Yes, back in those days, you had to write your resources in XML
first. In current clusters, the most important manipulation that still remains is the cibadmin -E --force command.
This command erases the entire contents of the CIB on all nodes in the cluster and, thus, provides a way to start all
over again. On some occasions, this may be useful.

Apart from cibadmin, you have probably noticed that there are other crm tools. All of these can be used, but the
same functionality is provided from the crm shell. In this book, you’ll occasionally see the crm_mon command being
used. It is an easy command that provides an overview of the current state of the cluster, as you have seen earlier in
this chapter.

Chapter 4 ■ Understanding Pacemaker Architecture and Management

49

pcs
When Red Hat launched its Pacemaker stack on Red Hat 6, it created the pcmk (contained in the pcs package)
command with it. This command aims to eventually provide functionality similar to that of the crm shell. As the Y shell
currently is available in repositories for all distributions and pcs is not, I don’t cover it in depth in this book. This is
also because it isn’t as feature-rich as crmsh. You will see some examples, however, in chapters where specific features
for Red Hat clusters are discussed.

Conga: Luci and Ricci
Conga is the solution that provides the luci and ricci services. Luci and ricci are also specific to Red Hat environments.
Ricci is an agent that has to be started on all nodes in the cluster. In a Pacemaker cluster, it interfaces to the crmd, to
get status information and send changes to the cluster. The luci service has to be installed on a server that doesn’t
specifically have to be a cluster node. Luci contacts the different ricci nodes to interface with them. From Conga, you’ll
have a web interface that allows you to manage and monitor the cluster.

Summary
In this chapter, you have learned how Linux clusters are organized. You have read about architecture and how the
cluster membership layer performs a role that is much different from the role of the cluster resource manager layer. In
the next chapter, you will learn how to start building the lower layers of the cluster.

51

Chapter 5

Configuring Essential Cluster Settings

When setting up a cluster, there are some basic settings to take care of. These are settings that apply to the entire
cluster and define how the cluster is operating under specific conditions. Also, you have to make sure that STONITH
(Shoot The Other Node In The Head), also known as fencing, is taken care of. This chapter shows you how and
introduces the following topics:

Specifying default cluster settings•	

Setting up STONITH•	

Using fencing on Red Hat clusters•	

Specifying Default Cluster Settings
Before creating anything in the cluster, you should take a minute to think about some default cluster settings. By
default, the cluster is designed to work well without changing any of the cluster properties. In specific situations,
however, it does make sense to change the defaults for a few settings, as follows:

•	 no-quorum-policy

•	 default-resource-stickiness

•	 stonith-action

no-quorum-policy
The quorum is the majority in the cluster. To avoid an occurrence of split brain, the cluster will only react if it has a
quorum. Imagine a five-node cluster in which, owing to a network failure, two groups are formed: a three-node group
and a two-node group. In that situation, only the three-node group has a majority. Therefore, only the three-node
group will be able to run resources in the cluster. This is a very important setting, because if the two-node group also
ran resources, a risk of resource corruption would arise. For that reason, the default no-quorum-policy is set to stop.

The following no-quorum-policy settings are available:

•	 stop: This is the default setting. If quorum is lost, all resources are stopped immediately, to
ensure that only a cluster that has a majority can run resources.

•	 ignore: This is what was needed in a two-node cluster using a Corosync version older than
2.3.x. A two-node cluster would always lose quorum if one node went down. To ensure that
resources can still operate, set no-quorum-policy to ignore. In Corosync 2.3 and later, the
quorum is provided by Corosync, which has a two-node setting. By giving this the value of 1,
the quorum will automatically be handled the right way, even in a two-node cluster.

Chapter 5 ■ Configuring Essential Cluster Settings

52

•	 freeze: If the quorum is lost, nothing will occur, and resources will just remain where they are.
This might be needed, for example, where services such as OCFS2 and GFS2 can’t stop cleanly
in a partition that has become non-quorate. In such a situation, this is probably the sanest
choice for everything. Services would be fenced if a quorate partition remained, but otherwise,
it’s the best shot at providing services.

•	 suicide: All nodes that themselves detect that they have lost quorum will self-fence.

The no-quorum-policy is set to the value stop, the default setting in clusters that consist of three or more nodes.
It makes sense to use this in a three-node cluster, because in the event of split brain, where one node is running alone,
it should really understand that it may never run any of the resources. That’s exactly what the no-quorum-policy stop
is doing: it stops all resources on a node that loses quorum, so that the other nodes in the cluster can safely take over
the resources.

As discussed, in some cases, it makes sense to use freeze as the no-quorum-policy value. The procedure below
describes how to do that.

	 1.	 Open a shell on one of the cluster nodes, either as root or as user hacluster.

	 2.	 Type crm configure edit. This brings you in a vim editing mode, in which you can
change cluster parameters.

	 3.	 Locate the line that reads property $id="cib-bootstrap-options" and add the following
line to the end: no-quorum-policy="freeze".

	 4.	 Note the use of slashes. All lines that are not the last line in this part of the configuration
should end with a slash (see the following listing).
 
property $id="cib-bootstrap-options" \
 dc-version="1.1.9-2db99f1" \
 cluster-infrastructure="classic openais (with plugin)" \
 expected-quorum-votes="2" \
 no-quorum-policy="ignore"
 

	 5.	 Write the changes and quit the editor interface. You have now successfully defined the
required settings for a two-node cluster.

default-resource-stickiness
The default-resource-stickiness parameter can come in handy, if you want to influence where resources are
placed. The default behavior is that resources will try to get back to the node that was originally servicing them. That
means that after a failure, the resource will be moved over to another node in the cluster, and once the original node
comes back, the resource will come back to the original node again. That is not ideal, as the user will experience a
downtime twice. To prevent this from happening, you can set the default-resource-stickiness parameter.

This parameter takes a value between -1,000,000 and 1,000,000. (Don’t use the commas when specifying these
values. I have only included them here to increase readability!) A negative value means that the cluster will always
remove it from its current location, which is pointless. So, don’t use it, unless you want to demo a cluster with a lot
of activity. The value of 0 normally means the resource will move back to its original location, and with a positive
value, the resource will stay where it is. It is a good idea to use a moderate positive value here, such as 10,000, which
means the cluster prefers leaving the resource where it is, preventing it from moving back to the original node with
the downtime that is associated with that. You should realize, however, that it depends on the other weights that are
used—for example, in the constraints. Do notice that resource stickiness can also be set on a per-resource basis.

Chapter 5 ■ Configuring Essential Cluster Settings

53

stonith-action
As you can read in the next section of this chapter, STONITH is what stops a node at the moment cluster
communication to the node fails. By default, after a STONITH (Shoot The Other Node In The Head) operation, the
node will reboot and automatically be added to the cluster again. That might sound good, but if your node suffers
from a serious problem, chances are that immediately after getting back in the cluster, it experiences the same
problem and is restarted again. To prevent this from happening, you might want to add stonith-action="poweroff"
to the cluster configuration. That ensures that after it has been killed by its peers, the node only comes back if it is
manually restarted by the system administrator. Note that this can also be achieved by a setting for the SBD (STONITH
Block Device) STONITH agent. Consult the man page for more details.

You can also configure the settings mentioned previously from the Hawk web interface. In Hawk, select the
Cluster Properties tab on the left. Next, under Cluster Configuration, use the drop-down list to set all properties you
want to configure for your cluster (Figure 5-1).

Figure 5-1.  Setting cluster properties from Hawk

Setting Up STONITH
As discussed previously, STONITH (Shoot The Other Node In The Head) is a mandatory mechanism that guarantees
the integrity of the cluster before moving over resources. Even if it is technically possible, you should never disable
STONITH, as unpredictable results may occur. In some environments, STONITH is referred to as fencing. Both refer
to the same mechanism. The acronym STONITH comes from Linux HA history, whereas in Red Hat HA clusters, the
word fencing is more common.

Apart from the fact that STONITH guarantees integrity of resources in the cluster by terminating nodes that
don’t reply to the cluster anymore, it also is a requirement to move resources in the cluster. That means that when the
cluster reacts on incidents, it won’t move any resources until STONITH has confirmed that the failing node has been
terminated. This is the essence of STONITH: it forces the failing node off the cluster and into a clean state, so that its
resources can be started elsewhere. STONITH also helps in cleaning up transient/temporary errors and crashes.

Chapter 5 ■ Configuring Essential Cluster Settings

54

Different Solutions
The essence of STONITH is that one of the cluster nodes that is still in a stable state and part of a quorate cluster has to
send a message to a management mechanism for a failing node, so that it can be terminated. There’s no need to
bring it down in an orderly manner, just pulling the power plug is good enough. As you can imagine, a mechanism
that is external to the operating system of the failing node is required for a good STONITH solution. Different
approaches exist.

•	 Hardware-based: STONITH communicates to a hardware device, like a Dell DRAC (Dell
Remote Access Controller), HP ILO, or IBM RSA management board that is integrated in the
server. The management board gets the instruction to terminate the failing node. Another
example of hardware-based STONITH is using a manageable power switch that can get the
instruction from the cluster to terminate the failing node.

•	 Based on shared disk: The cluster writes a “poison pill” to a shared disk device. The node for
which the poison pill is created must process the poison pill and self-terminate.

•	 Hypervisor-based: This is for machines on a virtualization platform only. The virtualization
platform gets the instruction to terminate the failing node, which obviously is a virtual
machine.

•	 Test solutions: These are solutions such as null STONITH, SSH-based STONITH, or
“meatware” STONITH. In null STONITH, a STONITH agent is loaded that doesn’t do anything
at all. It only meets the software requirement that STONITH has available. In SSH STONITH,
the cluster will use SSH to connect to the failing node and tell it to halt. (You can imagine that
this may be difficult, if the failing node has really failed.) Meatware STONITH is the solution by
which a “meatware device” (which is the administrator) gets the instruction to manually stop
the failing node and confirm to the cluster that it has indeed been stopped.

All of these solutions work well, with the exception of the test solution. But it’s always better to implement
STONITH that is based on a test solution than no STONITH at all!

Every STONITH solution consists of three parts.

A stonithd process that is begun when starting the cluster software. This stonithd process has •	
to be running on all nodes. It normally doesn’t require much additional configuration.

A resource agent that can run as a program. On an SLES server, you’ll find these agents in the •	
/usr/lib64/stonith/plugins directory, and you can get an overview of all installed agents by
using the stonith -L command.

Instructions in the cluster that tell the cluster how to execute STONITH operations.•	

The generic approach for setting up STONITH is first to find out exactly how a specific STONITH agent should be
used. A KVM-based STONITH agent, for example, requires a completely different approach than an IPMI (intelligent
platform management interface)-based STONITH agent. In the procedural descriptions provided in the subsequent
sections, you’ll find specific instructions for some of the resource agents.

If you know how the STONITH agent works, you’ll next have to run the agent without the cluster, to verify that
you can operate STONITH actions from the command line. Once you’ve verified that, you can integrate the STONITH
configuration in the cluster.

To use STONITH, you need a STONITH agent that supports the mechanism you want to use for STONITH. By
default, many STONITH agents are installed. You may request a list of all of these by using the command stonith -l.
Listing 5-1 shows what the output of this command looks like.

Chapter 5 ■ Configuring Essential Cluster Settings

55

Listing 5-1.  Using stonith -l to Get a List of Available STONITH Agents

node1:~ # stonith -L
apcmaster
apcmastersnmp
apcsmart
baytech
bladehpi
cyclades
drac3
external/drac5
external/dracmc-telnet
external/hetzner
external/hmchttp
external/ibmrsa
external/ibmrsa-telnet
external/ipmi
external/ippower9258
external/kdumpcheck
external/libvirt
external/nut
external/rackpdu
external/riloe
external/sbd
external/vcenter
external/vmware
external/xen0
external/xen0-ha
ibmhmc
ipmilan
meatware
nw_rpc100s
rcd_serial
rps10
suicide
wti_mpc
wti_nps

Setting Up libvirt Hypervisor-Based STONITH
As a hypervisor-based STONITH solution is relatively easy to set up, I’ll discuss this setup in detail. In this section,
you’ll learn generic techniques that also apply to hardware and shared disk–based STONITH.

In this section, you’ll also read how to set up STONITH for KVM virtual machines. This is a typical scenario that
will be used in test environments in which multiple virtual machines are running on top of the same KVM hypervisor.
The STONITH agent that manages virtual machines in a KVM environment talks to the libvirt daemon. libvirt is a
process that can be used to manage virtual machines on either the KVM or the Xen virtualization platform.

Chapter 5 ■ Configuring Essential Cluster Settings

56

	 1.	 The first step in the configuration of every STONITH agent is that you must set up access
for the STONITH agent to the device. If the device is an ILO board in an HP server, you
need a username and password. In this case, the STONITH “device” is a KVM hypervisor,
so you need a means of allowing the STONITH agent to communicate with the KVM
hypervisor. For this specific STONITH agent, SSH keys are the most efficient solution. The
following steps help you set up SSH key–based authentication.

	 a.	� Make sure that hostname resolving is set up properly, so that all cluster nodes and the
KVM host can find one another based on their names.

	 b.	� As root on the first cluster node, use ssh-keygen -t dsa. Press Enter to accept the
default answers for all questions.

	 c.	� Still on the first cluster node, use ssh-copy-id ~/.ssh/id_dsa.pub kvmhost to copy
the SSH public key to the kvmhost. Replace “kvmhost” with the actual name of the
KVM host.

	 d.	 Repeat these commands on all other cluster nodes.

	 2.	 The libvirt STONITH agent that you are going to use to send STONITH commands to KVM
virtual machines requires that the libvirt package be installed on all virtual machines. Use
zypper in libvirt on all KVM virtual machines in the cluster now, to accomplish this.
Without this package, the hypervisor won’t be able to contact virtual machines in order to
terminate them.

	 3.	 At this point, you should have met all prerequisites, and it’s time for the first test. To start
with, you should now request the parameters this STONITH agent requires. To do this,
use stonith -t external/libvirt -n. The command shows you that the STONITH
agent needs a hostlist, a hypervisor_uri, and a reboot_method. To use all these in the
appropriate command, you can now run the following command:
 
stonith -t external/libvirt hostlist="node1,node2" hypervisor_uri="qemu+ssh://lin/system"
-T reset node1
 

In this command, numerous arguments are used. First, following -t, the name of the STONITH agent is referred
to. This name must be the same as something you’ve seen in the output of the stonith -L command. Next, the
hostlist parameter is used to give a comma-separated list of nodes that can be managed by this STONITH agent.
Next, there is the hypervisor_uri. The URI starts with the access mechanism, which, in this case, is qemu+ssh (which
means you’re sending a command to the qemu layer using SSH). Next in the URI is the name of the KVM host,
followed by /system. Following that is the STONITH action, which is defined with the option -T reset and is the last
parameter you have of the name of the node to be STONITHed.

If the manual STONITH worked, you’re ready to proceed. If it did not, you should check naming, which is the
most common error for this STONITH agent. The names of the hosts you are addressing have to be recognized by the
KVM hypervisor (run virsh list on the hypervisor to find out), and they also have to be the kernel names, as used on
the nodes (use uname -n to find out). If the virsh list name doesn’t match the uname -n name, this STONITH method
isn’t going to work, so make sure you fix it before going on!

At this point, you’re ready to put all the required parameters in the cluster. You can, of course, take the easy
approach and use the Hawk web interface, from which you can select all available options from the drop-down list.
You can also add the resource directly into the cluster, using the crm shell interface. To be able to add the resource
from the shell, you have to find out which parameters are supported by the resource you want to add. These are the
parameters you’ve previously found with the stonith -t external/libvirt -n command. Next, the only thing you
have to do is put them in the cluster, using the right syntax. The following procedure describes how to do this.

Chapter 5 ■ Configuring Essential Cluster Settings

57

	 1.	 On one of the cluster nodes, as root or any user that has been granted CIB access, enter the
command crm. This takes you into the crm shell.

	 2.	 Type configure. You are now in the configuration environment. Type help to see a list of
all commands that are available. Now type edit to open the cluster editor. At this point,
you should see something similar to Listing 5-2.

Listing 5-2.  Editing the Cluster Configuration

node node1
node node2
property $id="cib-bootstrap-options" \
 dc-version="1.1.9-2db99f1" \
 cluster-infrastructure="classic openais (with plugin)" \
 expected-quorum-votes="2"
#vim:set syntax=pcmk
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"/tmp/tmpFYbDVV.pcmk" 7L, 197C
 

	 3.	 As you are in a vim interface, you can use your normal editor skills to add the following
block somewhere in the configuration:
 
primitive stonith-libvirt stonith:external/libvirt \
 params hostlist="node1,node2" \ 	
 hypervisor_uri="qemu+ssh://lin/system" \
 op monitor interval="60" timeout="20" \
 meta target-role="Started"
 

	 4.	 Now, type commit, to write the changes to the cluster, and type exit, to quit the crm shell.
You can now verify that the STONITH agent is running somewhere in the cluster, using
crm_mon or crm status.
 
node2:~ # crm status
============
Last updated: Tue Apr 1 03:40:30 2014
Last change: Sat Mar 22 10:18:29 2014 by hacluster via crmd on node1
Stack: openais

Chapter 5 ■ Configuring Essential Cluster Settings

58

Current DC: node1 - partition with quorum
Version: 1.1.6-b988976485d15cb702c9307df55512d323831a5e
2 Nodes configured, 2 expected votes
1 Resources configured.
============
 
Online: [node1 node2]
 
 kvm-stonith (stonith:external/libvirt): Started node1
 

	 5.	 After configuring STONITH, you can run a STONITH test on either of the nodes, for
instance, by using killall -9 corosync. That should put the node in an unreachable
state and issue a STONITH action on the node.

Setting Up Hardware-Based STONITH: The APC Master Power Switch
As a cluster administrator, it is important that you be able to deal with STONITH in different environments. So, let’s
have a look at hardware-based STONITH and configure an APC Master power switch. This is a manageable multiple
socket that servers are connected to to get their power. On an APC power switch, every socket has a port name, and as
an administrator, you can configure which port contains which server. That means that from the cluster, you can tell
the power switch to switch off power on a specific port, to switch off the node that is connected to that port. Note that
hardware solutions such as the APC power switch have become more uncommon, because most servers nowadays
come with management boards.

Before using the APC Master in your cluster, you have to set it up. You can use the following procedure to give
the device an IP address. Before you start, make sure that the APC is connected to your LAN and that you have some
servers connected to the power outlets of the APC.

	 1.	 Write down the MAC address of the device. You can find this address on a sticker on the
device.

	 2.	 Use ARP to define an IP address for the device on your local computer. You won’t really
set the IP address on the device, but you will tell your computer that the device can be
reached at this IP address—and that works fine for the further configuration. On Linux,
you would do that using the following command:
 
arp -s 192.168.1.245 00:c0:b7:4b:c9:d9
 

	 3.	 Now, use ping with a package size of 113 bytes to set the IP address on the local device as
well.
 
ping 192.168.1.245 -s 113
 

You will see the device answering to the ping package.

	 4.	 Use telnet to connect to the device. The default username is apc; the default password is
also apc. Make sure to change the password, to prevent others from having fun with your
equipment.

	 5.	 After logging in to the device, choose Network from the Console menu; select TCP/IP and
then Manual boot mode. You need this to tell the device that it’s not booting through a
DHCP server.

Chapter 5 ■ Configuring Essential Cluster Settings

59

	 6.	 Back in the main Network menu, specify the System IP, Subnet Mask, and Default Gateway
address.

	 7.	 Use Ctrl+C to exit the Control Console menu, followed by option 4 to log out. This will
write the changes to the device and make them persistent.

At this point, your APC device is ready for use in the cluster. Time for a small test. The following procedure
outlines how you can power cycle a port on the APC.

	 1.	 Open a telnet session to the APC and enter the username and password that you’ve
provided for the device (default for both is apc). This gives you the main menu, which you
can see in Listing 5-3.

Listing 5-3.  The Main Menu from Which You Can Control Access to the APC PDU

American Power Conversion Network Management Card AOS v3.7.0
 
(c) Copyright 2008 All Rights Reserved Rack PDU APP v3.7.0

Name : RackPDU Date : 09/19/2000
 
Contact : Unknown Time : 12:20:01
 
Location : Unknown User : Administrator
 
Up Time : 0 Days 0 Hours 5 Minutes Stat : P+ N+ A+
 
 
 
Switched Rack PDU: Communication Established
 
------- Control Console ---
 
 1- Device Manager
 
 2- Network
 
 3- System
 
 4- Logout
 
 
 <ESC>- Main Menu, <ENTER>- Refresh, <CTRL-L>- Event Log
 

	 2.	 From the menu, select 1, to gain access to the device manager. This gives you access to
three different options, from which you select option 2, Outlet Management.

Chapter 5 ■ Configuring Essential Cluster Settings

60

	 3.	 At this point, select option 1, Outlet Control/Configuration. This gives you a list of all
available power outlets and their current status. (See Listing 5-4)

Listing 5-4.  The Outlet Control/Configuration Menu

------- Outlet Control/Configuration --
 
 1- Outlet 1 ON
 
 2- Outlet 2 ON
 
 3- Outlet 3 ON
 
 4- Outlet 4 ON
 
 5- Outlet 5 ON
 
 6- Outlet 6 ON
 
 7- Outlet 7 ON
 
 8- Outlet 8 ON
 
 9- Master Control/Configuration
 
 
 <ESC>- Back, <ENTER>- Refresh, <CTRL-L>- Event Log >
 

	 4.	 Now, select the outlet that you want to shut down and say that you want to work on
outlet 1. Next, choose option 1, Control Outlet.

	 5.	 At this point, you see the menu with available options (see Listing 5-5). From this menu,
select Immediate Reboot and confirm your choice by typing “Yes.” The power will now be
recycled, and your server will reboot.

Listing 5-5.  The Control Outlet Menu Gives You Different Power Management Options

------- Control Outlet --
 
 Name : Outlet 1
 
 Outlet : 1
 
 State : ON
 
 1- Immediate On
 
 2- Immediate Off
 
 3- Immediate Reboot
 
 4- Delayed On
 

Chapter 5 ■ Configuring Essential Cluster Settings

61

 5- Delayed Off
 
 6- Delayed Reboot
 
 7- Cancel
 

Now that you have a generic feeling for what you can do from the APC PDU, it’s time to make it usable for your
cluster. First, you have to think about how you want the nodes to be connected to the PDU’s. You should make sure
not to connect all nodes to one single PDU. That would make that PDU a single point of failure. So, if you are building
a four-node cluster, connect two nodes to PDU1 and two nodes to PDU2, in which case your resources will survive a
situation in which a PDU goes down. If your server has more than one power supply (which is quite common), make
sure that they are all connected to the same PDU, or else it won’t work.

Next, you have to set up the PDU itself. That means that you must configure a name for each of the ports of the
device. The cluster is going to talk to the APC and tell it to switch down node1, for example. But in order to enable this,
the APC has to know what it’s talking to when talking to node1. Configure this by giving a name to each of the ports
on the device. After doing that, you also have to set it up to use the Simple Network Management Protocol (SNMP).
STONITH is going to use this protocol to talk to the device, and to configure this, you have to set a password that allows
SNMP to make changes to the current configuration. The next procedure describes how to perform these two steps.

	 1.	 Open a telnet session to the PDU and log in with the username and password that are set
on the device (defaults are apc, apc).

	 2.	 From the main menu, select option 1, Device Manager. Next, choose option 2, Outlet
Management, followed by option 1, Outlet Control/Configuration. This allows access to
the outlet configuration menu, from which you can enter a name for each of the outlets
(Listing 5-6). Make sure that the name corresponds to the real hostname of the node.

Listing 5-6.  The Outlet Control/Configuration Menu

------- Outlet Management ---
 
 1- Outlet Control/Configuration
 
 2- Outlet Restriction
 
 <ESC>- Back, <ENTER>- Refresh, <CTRL-L>- Event Log
 
> 1
 
------- Outlet Control/Configuration --
 
 1- node1 ON
 
 2- node2 ON
 
 3- SAN ON
 
 4- Outlet 4 ON
 
 5- Outlet 5 ON
 
 6- Outlet 6 ON
 

Chapter 5 ■ Configuring Essential Cluster Settings

62

 7- Outlet 7 ON
 
 8- Outlet 8 ON
 
 9- Master Control/Configuration
 
 <ESC>- Back, <ENTER>- Refresh, <CTRL-L>- Event Log
 

	 3.	 After configuring a name for the outlet, make sure that you select option 5, Accept
Changes, to actually write the changes to the device. After doing that, press the Escape key
five times, which brings you back to the main menu.

	 4.	 From the main menu, select Network, and from the Network menu, select SNMP. In
the SNMP menu, select 2—SNMPv1 Specific Settings. This allows access to a list of four
different access controls. Access control number 1 allows you to set the SNMP read
community name; access control number 2 allows you to set the write community name.
At this point, select option 2, which gives access to the default settings for the write
community. It’s a good idea to change to something more secure the default setting on
which the community name private is used. (Otherwise, anyone who uses private as the
community name to access your PDU will have complete write access to the device!)

	 5.	 After making the changes, select option 4, to accept the changes and write them to the
device. Next, press Escape until you get back to the main menu, then log out from the
device (Listing 5-7).

Listing 5-7.  Change the Default Write Community Name private to Something That Is More Secure

------- SNMPv1 Access Control 2 ---
 
 Access Control Summary
 
 # Community Access NMS IP

 1 public Read 0.0.0.0
 
 2 private Write 0.0.0.0
 
 3 public2 Disabled 0.0.0.0
 
 4 private2 Disabled 0.0.0.0
 
 1- Community Name: private
 
 2- Access Type : Write
 
 3- NMS IP/Name : 0.0.0.0
 
 4- Accept Changes:
 
 ?- Help, <ESC>- Back, <ENTER>- Refresh, <CTRL-L>- Event Log
 

Chapter 5 ■ Configuring Essential Cluster Settings

63

You have now used manual power cycling on a host, and you have set up the PDU to communicate to the cluster.
Following the next procedure, you’ll learn how to set up the cluster to use the PDU for STONITH operations.

	 1.	 Make sure Hawk is started on one of the cluster nodes and log in to it.

	 2.	 Click Resources and add a Resource ID. Choose, for example, the Resource ID
apc-stonith and select the class stonith.

	 3.	 Note that there are different resource agents that seem to make sense. To control a power
switch using the SNMP protocol, select the type external/rackpdu.

	 4.	 Make sure all of the required parameters have the appropriate values. You must at least
specify the following three parameters:

•	 community: This is the SNMP community name that is needed to connect to the power
switch.

•	 hostlist: Set this to AUTO, to query the device for all hostnames that are available, or
specify the names of the cluster nodes manually.

•	 pduip: This is the IP address of the device.

	 5.	 Now, you can set the target-role to Started and create the resource.

You should now have a working resource for the APC master device. Listing 5-8 shows what its configuration
looks like from the crm shell.

Listing 5-8.  APC Master STONITH Device Configuration

primitive apc-stonith stonith:external/rackpdu \
 params pduip="192.168.122.22" hostlist="AUTO" community="private" \
 op start interval="0" timeout="20" \
 op stop interval="0" timeout="15" \
 op monitor interval="3600" timeout="20" start-delay="15" \
 meta target-role="Started"

Configuring STONITH for Dell DRAC and Other Server Management Cards,
Such As HP ILO
Many server brands are equipped with a management card. This management card has its own operating system,
and it allows you to manage the state of the server. As an administrator, you can log in to the management card and
manually restart a server, for example. In a cluster, you can create a resource agent to do this automatically for you.

There is a challenge when working with DRAC hardware, which is that there are so many versions of it. The DRAC
(Dell Remote Access Controller) version that is supported quite well in the cluster is DRAC5. From DRAC6 on, you
have to enter a bit of additional configuration.

Before setting up the STONITH resource agent in the cluster, you have to make sure that you can connect to it
from the cluster. This involves a number of tasks.

	 1.	 Configure the DRAC device on its own network and make sure that the DRAC network
interfaces can be reached from the console of the cluster nodes. If you cannot ping the
DRAC interfaces, you certainly won’t be able to log in and perform STONITH operations.

	 2.	 Set the DRAC username and password. You’ll need these to connect to it from the
STONITH RA.

	 3.	 Enable SSH.

Chapter 5 ■ Configuring Essential Cluster Settings

64

After configuring the DRAC BIOS, boot the server. Once it is up and running again (and you have performed this
procedure on all the nodes in your cluster), you can start configuring the resource.

The basic resource agent to use to configure DRAC is the DRAC5 resource agent. It is the starting point for all
DRAC management cards. Alternatively, you can use the IPMI resource agent. This agent uses IPMI, a generic set of
commands that can be used on different resource agents.

The DRAC5 resource agent is using a relatively simple shell script: /usr/lib64/stonith/plugins/external/
drac5. The foundation of this script is that it is using SSH to log in to the DRAC card and execute a command. To
execute the command, the racadm command is used, followed by the action that has to be performed. The following
line contains the foundation of all that the DRAC5 resource agent is doing:
 
/usr/bin/ssh -q -x -n $userid$ipaddr racdm serveraction "$1"
 

The specific command that is passed to the DRAC interface is specified as the first argument of the script. For
instance, if the reset argument is used, the racadm command hardreset is used to reset the server.

What makes dealing with the default resource agent a bit tough is that it knows only three default parameters:
hostname, ipaddr, and userid. The hostname is the name of the host that needs to be managed; the ipaddr refers to
the IP address of the DRAC card; and userid is the ID of the user who needs to log in to the device. That means that
the resource agent has to be started with the right argument to start with. Even if the script has different arguments
that can be used (such as gethosts, on, off, reset, and more), the CRM has no option to pick from these different
arguments. That is why the default-stonith-action parameter is used instead. The second thing that makes using
this agent a bit difficult is that you cannot specify a password to log in with. Instead, the DRAC device has to be
configured for SSH-based login.

The configuration of the resource for the DRAC STONITH agent can resemble Listing 5-9.

Listing 5-9.  DRAC Device Configuration

primitive drac-node1 stonith:external/drac5 \
 params ipaddr="192.168.10.1" hostname="node1" userid="dracadmin" \
 op start interval="0" timeout="20" \
 op stop interval="0" timeout="15" \
 op monitor interval="3600" timeout="20" start-delay="15" \
 meta target-role="Started"
 

Because the DRAC STONITH agent is relatively small, and because it does make sense to understand how a
fencing agent can be organized, Listing 5-10 gives the content of the resource agent on an SLES 11 SP3 server. It is
recommended to have a look at it, even if you don’t use DRAC, because understanding how resource agents are
organized is really helpful for troubleshooting them.

Listing 5-10.  Contents of the DRAC5 Resource Agent

node1:/usr/lib64/stonith/plugins/external # vim drac5
#!/bin/sh
#
External STONITH module for DRAC5 adapters.
#
Author: Jun Wang
License: GNU General Public License (GPL)
#
...
 

Chapter 5 ■ Configuring Essential Cluster Settings

65

drac_on() {
 sshlogin poweron
}
 
drac_off() {
 sshlogin poweroff
}
 
drac_status() {
 sshlogin powerstatus
}
 
case $1 in
gethosts)
 echo $hostname
 ;;
on)
 drac_poweron
 ;;
off)
 drac_poweroff
 ;;
reset)
 drac_reset
 ;;
status)
 drac_status
 ;;
getconfignames)
 for i in hostname ipaddr userid; do
 echo $i
 done
 ;;
getinfo-devid)
 echo "DRAC5 STONITH device"
 ;;
getinfo-devname)
 echo "DRAC5 STONITH device"
 ;;
getinfo-devdescr)
 echo "DRAC5 host reset/poweron/poweroff"
 ;;
getinfo-devurl)
 echo "http://www.dell.com"
 ;;
getinfo-xml)
 cat <<EOF
<parameters>
 

http://www.dell.com/

Chapter 5 ■ Configuring Essential Cluster Settings

66

<parameter name="hostname" unique="1">
<content type="string" />
<shortdesc lang="en">
Hostname
</shortdesc>
<longdesc lang="en">
The hostname of the host to be managed by this STONITH device
</longdesc>
</parameter>
 
<parameter name="ipaddr" unique="1">
<content type="string" />
<shortdesc lang="en">
IP Address
</shortdesc>
<longdesc lang="en">
The IP address of the STONITH device
</longdesc>
</parameter>
 
<parameter name="userid" unique="1">
<content type="string" />
<shortdesc lang="en">
Login
</shortdesc>
<longdesc lang="en">
The username used for logging in to the STONITH device
</longdesc>
</parameter>
 
</parameters>
EOF
 ;;
*)
 exit 1
 ;;
esac
 

IPMI and Other Management Boards
Because there is no standard for server management cards, a generic solution was created to interface with them. This
is IPMI. Many vendors, including Dell, HP, and IBM provide support for the IPMI standard. That means that instead
of passing vendor-specific commands to the management card, you can use IPMI commands, which are supposed
to work on all management cards. Before using them, you should, however, always make sure that IPMI support is
enabled on the management cards that you’re using!

Chapter 5 ■ Configuring Essential Cluster Settings

67

The IPMI resource agent uses the ipmitool command. This is a binary that should be installed on your server
and which you can use to send specific commands to an IPMI-enabled interface. Use the command ipmitool --help
to find out which arguments can be used with it. To use it in an automated way from the IPMI management interface,
you can use the following parameters in the IPMI STONITH resource:

•	 hostname: The name of the host that should be STONITHed

•	 interface: The IPMI interface, typically set to LAN

•	 ipaddr: The IP address of the IPMI device

•	 ipmitool: If not in the $PATH, this should be the complete path of the ipmitool command.

•	 passwd: The password used to log in to the device

•	 userid: The username needed to log in to the IPMI device

Setting Up Shared Disk-Based STONITH
A convenient method for setting up STONITH is to use the STONITH Block Device (SBD). This STONITH method
needs access to a shared disk device, so you can only use it if an SAN disk is available. On the SAN disk, you have to
create a small partition (8MB is enough) to store the SBD STONITH information. For reliability, three devices can be
used instead of one, if possible.

SBD STONITH is based on the principle of a poison pill. If a node has to be terminated, a poison pill is written for
that node in the SBD partition. Eating the poison pill is mandatory, which means that as long as the SBD process on
the failing node is still available, it will process the poison pill and commit suicide.

In the following procedure, you’ll learn how to set up an SBD-based STONITH.

	 1.	 Make sure a shared device is available and create a small, 8MB partition on the device. Do
NOT put a file system on the partition; an unformatted partition is enough!

	 2.	 From one of the nodes connected to the shared device, you have to initialize the shared
device. To do this, use sbd -d /dev/sdc1 create. (Read carefully, the command is sbd,
not SBD!) Also, you should consider using /dev/disk/by-id names, which won’t change,
instead of short names like /dev/sdc1.

	 3.	 Verify that the SBD metadata are written to the device, using sbd -d /dev/sdc1 dump.
This should show something similar to Listing 5-11.

Listing 5-11.  Verifying SBD Metadata

node2:~ # sbd -d /dev/sdc1 dump
==Dumping header on disk /dev/sdc1
Header version : 2.1
UUID : aaa1b226-8c0c-45ac-9f88-8fe5571f8fc7
Number of slots : 255
Sector size : 512
Timeout (watchdog) : 5
Timeout (allocate) : 2
Timeout (loop) : 1
Timeout (msgwait) : 10
==Header on disk /dev/sdc1 is dumped
 

Chapter 5 ■ Configuring Essential Cluster Settings

68

	 4.	 To protect your configuration from a system hang (where stonithd can no longer be
addressed to crash the failing node), it is mandatory to load a watchdog module in the
kernel. Some hardware has a specific watchdog, if your hardware doesn’t, you can load the
software-based watchdog softdog. To make sure that this module is loaded upon a system
start, open /etc/init.d/boot.local with an editor and put the line modprobe softdog
in this file. You should, however, use softdog only as a last resort. A hardware-assisted
watchdog is the only reliable protection against the kernel crashing.

	 5.	 To use SBD STONITH, you also have to make sure the sbd daemon is started with
the cluster. On systemd-based systems, this is done via the sbd.service file (which
automatically groups itself with Pacemaker). Up to SLES 11, this process was started from
the openais cluster load script, but it needs a configuration file /etc/sysconfig/sbd that
has the following contents:
 
SBD_DEVICE="/dev/sdc1"
SBD_OPTS="-W -P"
 

Note that making an error here has severe consequences: if the SBD device is not available, the cluster will not
start. At this point, it’s a good idea to restart the nodes in the cluster.

	 6.	 After restart, you can use the sbd -d /dev/sdc1 list command. This gives an overview of
nodes that have the sbd daemon started and are currently using the SBD STONITH device.
 
node1:~ # sbd -d /dev/sdc1 list
0 node2 clear
1 node1 clear
 

	 7.	 Now, it’s time for a first test. Use the following command to effectuate a STONITH
operation from the command line: stonith -t external/sbd sbd_device=/dev/sdc1 -T
reset node2. This should crash the node.

	 8.	 If the preceding test worked well, you can perform a second test and see if the watchdog
is doing its work. On one of the nodes, use echo c > /proc/sysrq-trigger to crash the
node. If the watchdog is doing its work properly, the node will be STONITHed.

	 9.	 If your previous tests have all succeeded, you can now add the resource agent to the
cluster. Use crm configure edit and add the following line to the cluster configuration:
 
primitive sbd-stonith stonith:external/sbd \
 

	 10.	 You can now use crm_mon to verify the current cluster configuration and check that the
STONITH agent has properly loaded.

Using Fencing on Red Hat Clusters
If you understand how to use STONITH, you’ll also understand how to use fencing. On Red Hat clusters, the fence
daemon fenced is used with its own specific resource agent scripts to implement the same functionality as STONITH.
All of the basic building blocks are the same as in STONITH; only the resource scripts are different. (If you require
fencing and not STONITH, it’s still a good idea to read the section about STONITH, to get a general sense of how
it works.)

A number of fence scripts are available on Red Hat systems, and you can run all of them as commands on the
command line, as well as from the cluster, to pass the fencing parameters to the cluster automatically.

Chapter 5 ■ Configuring Essential Cluster Settings

69

Because in some cases it requires some additional configuration on your fencing hardware, it is a good idea to
test your fencing mechanism, using the fence commands from the command line before putting the configuration
in the cluster. Have a look at the available command arguments before trying them, because they will be different on
each fencing device. Once you’ve found out how a specific device is to be used, you can try a fencing operation from
the command line. The following command, for example, would use fence_drac5 to send a fencing operation to
node1 using SSH:
 
fence -a 192.168.100.1 -l dracadmin -p password -x
 

Continue only if you have confirmed that this command is exhibiting the expected behavior.
Before putting the configuration in the cluster, you should find out which are the available parameters. You can

do this by using the crm ra meta command, which provides a large amount of detailed information. For example,
use crm ra meta stonith:fence_drac5 to get an overview of all of the available parameters for DRAC5, including a
description of how to use these parameters.

After finding out which parameters to use, you can include the fence device in the cluster configuration. In
Listing 5-12, you can see what the configuration would look like to fence a specific node using the fence_drac5 agent.

Listing 5-12.  Sample Fence Configuration for DRAC

primitive Fenceapache1 stonith:fence_drac5 \
 params action="reboot" cmd_prompt="/admin1->" ipaddr="192.168.12.97" login="admin"
passwd="secret" secure="1" pcmk_host_list="apache1.moodle.hosting.local" \
 op monitor interval="30s" \
 meta target-role="Started"

Summary
In this chapter, you have read how to build the basic cluster configuration. You have learned how to set some basic
cluster parameters and how to work with STONITH or fencing to guarantee the integrity of resources in the cluster. In
the next chapter, you’ll discover how to add services to the cluster to be managed as cluster resources.

71

Chapter 6

Clustering Resources

At this point, all the prerequisites are met, and it’s time to start creating some cluster resources. In this chapter, you’ll
read how to create a basic configuration; in later chapters, you’ll learn how to work with more advanced parameters.

What Makes Clustered Resources Different
The purpose of high availability is to make sure your vital resources will be available at all times. To accomplish that
goal, you have to make sure that the resources are not started by the node’s init system but that they are managed by
the cluster. That means that you must take the resources out of the systemd enabled services, so that the cluster is the
only software taking care of starting them.

There are many ways to start resources. A simple cluster can start a service without any further dependencies.
But you’ll have to deal with dependency requirements soon enough. It’s like starting resources on a local machine,
with which, for instance, you have to take care that the file systems are loaded before the services that use these
file systems. On clusters, that’s not much different. In the next sections, we’ll work out the case of clustering an
Apache file server.

Clustering an Apache File Server
In this first example, you’ll learn how to cluster a typical Apache web service. The approach discussed here doesn’t
just work for an Apache web service; it’s applicable to other services as well. So, even if you don’t need Apache but
something else—like a database, for instance—read this chapter, to learn how to set up resources in a clustered
environment.

Understanding Resource Agents
To configure Apache in a cluster, you have to make sure that the Apache service can be reached, no matter where it is
running. That means that it is not enough just to cluster the Apache web service, because no matter where it runs, the
web service has to be accessible by the same IP address, and it must be able to access the same files in its document
root. Typically, that means that you’ll have to create three resources: an IP address, a file system, and a web service.
Next, you must configure a group that is going to keep all these resources together, no matter where in the cluster they
are activated.

To create resources, you need resource agents (RAs). A resource agent is like a service load script, as they were
used in System-V runlevels, but a service script that contains cluster parameters as well. The resource agents are
installed with the cluster, and they are subdivided into different classes.

Chapter 6 ■ Clustering Resources

72

•	 lsb: LSB (Linux Standard Base) resource agents are system V init scripts that can be started
from the cluster. These scripts are not installed with the cluster but are installed with the
operating system itself. When browsing these, you’ll see only a list of all the scripts in the
/etc/init.d directory. They don’t contain any cluster information and should, therefore, only
be used if no real cluster resource agents are available. Note that on a modern server that uses
systemd, you won’t see many LSB services.

•	 ocf: OCF (Open Cluster Framework) resource agents look a lot like LSB scripts, but they
have specific parameters that relate to the cluster. They also often contain properties that
normally are stored in configuration files. By storing these properties in the resource agent’s
configuration, they are easily made available on the node that has to run the resource agent. If
you can choose between an OCF and an LSB resource agent, you should always use the OCF
resource agent. OCF scripts come from different sources, and, therefore, you will find that
there is a subdivision of the OCF RAs by their “provider.”

•	 heartbeat: These are the resource agents provided by the main resource-agents package.
(The name of this provider has historical connotations, as the agents were originally
packed with the Heartbeat project.)

•	 linbit: These are RAs that are used for setting up a Distributed Replicated Block Device
(DRBD) and related configuration. Read Chapter 9 for an example using DRBD.

•	 lvm2: Some RAs that are needed for setting up clustered LVM logical volumes

•	 OCFS2: Some RAs that are needed for setting up OCFS2 cluster shared file systems.
See Chapter 7 for further details.

•	 pacemaker: This contains the resource agents that are shipped with the Pacemaker
project.

Other “provider” names are possible, as third parties may ship their own agents with their •	
software.

•	 service: These resource agents are used to manage systemd service scripts from the cluster.
As with LSB scripts, you better avoid using them, if an OCF alternative exists.

•	 stonith: These are the agents for STONITH, as previously discussed. While they are
configured as primitives, they are not resource agents. They use completely different
application programming interfaces (APIs) and have a different purpose.

Creating Resources
When adding resources to the cluster, it may be challenging to use the correct parameters. In the procedure following,
you will learn how to discover parameters from the crm shell and how to add resources to the cluster, based on the
parameters you’ve found. After creating the individual resources, you’ll next learn how they can be joined together in a
group. Before proceeding, make sure that Apache is installed and a file system is created on the shared storage device.

Note■■   Before clustering anything, make sure the software is available to all nodes in the cluster. You could take care
of this by setting up a shared file system in the cluster and installing the binaries on that shared file system (read the next
chapter for more details on how to do this). Alternatively, you can just install the binaries on all cluster nodes that need to
be able to run them.

 

Chapter 6 ■ Clustering Resources

73

	 1.	 Log in to one of the cluster nodes, either as user root or as user hacluster.

	 2.	 Type the crm command and then ra. From there, type list ocf, to display a list of all OCF
resource agents. Browse through the list and verify that you see the IPaddr2, Filesystem,
and apache resource agents.

	 3.	 Still from the crm ra environment, type meta IPaddr2, to show a list of parameters
that can be used by the IPaddr resource agents. Listing 6-1 shows what the output of
this command may look like. With this procedure, we are going to use the following
parameters. Read through the explanation of how to use these resource agents.

•	 ip: The IP address that is going to be used for the resource you’re adding to the cluster.

•	 cidr_netmask: The cidr netmask that is used in your IP network, that is, 24 and not
255.255.255.0

Listing 6-1.  Displaying RA Properties

Manages virtual IPv4 addresses (Linux specific version) (ocf:heartbeat:IPaddr2)
 
This Linux-specific resource manages IP alias IP addresses.
It can add an IP alias, or remove one.
In addition, it can implement Cluster Alias IP functionality
if invoked as a clone resource.
 
Parameters (* denotes required, [] the default):
 
ip* (string): IPv4 address
 The IPv4 address to be configured in dotted quad notation, for example
 "192.168.1.1".
 
nic (string): Network interface
 The base network interface on which the IP address will be brought
 online.
  
 If left empty, the script will try and determine this from the
 routing table.
  
 Do NOT specify an alias interface in the form eth0:1 or anything here;
 rather, specify the base interface only.
  
 Prerequisite:
  
 There must be at least one static IP address, which is not managed by
 the cluster, assigned to the network interface.
  
 If you can not assign any static IP address on the interface,
 modify this kernel parameter:
 sysctl -w net.ipv4.conf.all.promote_secondaries=1
 (or per device)
 

Chapter 6 ■ Clustering Resources

74

	 4.	 You now have to find out the attributes for the file system. Still from the crm ra
environment, type meta Filesystem and read the help that is provided. To create a
resource for the file system on the shared storage device, you’ll have to use the following
parameters:

•	 device: This is the name of the block device you want to mount. Make sure to choose
a persistent name. A device name such as /dev/sdb is dynamically generated and may
change. Better use a name that is based on device properties that won’t change, such as
the names that are created in the /dev/disk directory.

•	 directory: This is the directory with which you want to mount the shared storage device.
In the case of an Apache web server, it makes sense to use the DocumentRoot stanza
from the Apache configuration file as the directory (/srv/www/htdocs on SUSE, /var/
www/html on Red Hat). Note that, normally, it is recommended to use a specific instance
and not the system-wide web server.

•	 fstype: This is the file system type that you’ve formatted the shared storage device with.

As you can see, the parameters that you’ll be using to create a file system resource are the same parameters as the
ones you’ll use when mounting a file system manually.

	 5.	 Next, you must find the properties that are going to be assigned to the apache OCF
resource. From the crm resource prompt, if you use meta ocf:apache to display a list of
parameters, you’ll notice that there are no mandatory parameters for this resource. You’ll
also notice that many parameters can be managed by the cluster, such as the Apache
configuration file. This is useful if you want to take out certain parameters from the regular
location and store it on the shared storage device.

Before making your final selection for the Apache resource, you should consider that there are two ways to create
that resource. You can use the OCF resource, and you can use the LSB, or service resource. The difference is that the
OCF resource manages many Apache properties from the cluster, whereas the LSB, or service resource, is only capable
of starting and stopping the resource.

	 6.	 Based on the information you’ve received in the previous three steps, you can now add the
resources and their configuration to the cluster. So, enter the command crm configure
edit and add configuration to the end of the configuration file, as in Listing 6-2.

Listing 6-2.  Adding Resources for the Apache Server to the Cluster

primitive fs-apache ocf:heartbeat:Filesystem \
 params fstype="xfs" device="/dev/sda1" directory="/srv/www/htdocs" \
 op stop interval="0" timeout="60" \
 op start interval="0" timeout="60" \
 op monitor interval="20" timeout="40" \
 meta target-role="Started"
primitive ip-apache ocf:heartbeat:IPaddr2 \
 params cidr_netmask="24" ip="192.168.122.40" \
 op stop interval="0" timeout="20s" \
 op start interval="0" timeout="20s" \
 op monitor interval="10s" timeout="20s"
primitive service-apache-1 ocf:heartbeat:apache \
 op stop interval="0" timeout="60" \
 op start interval="0" timeout="60" \
 op monitor interval="20" timeout="40"
 

Chapter 6 ■ Clustering Resources

75

	 7.	 After adding the configuration to the cluster, type crm_mon, to verify that the resource is
properly activated. If you’re having problems activating the resources in the cluster, read
Chapter 8, for tips about troubleshooting. If all is well, the crm_mon output should look like
Listing 6-3. Note that this is not the recommended way of setting things up, because there
are dependencies between the different primitives. To make sure all comes up in the right
order, use grouping, as explained later in this chapter.

Listing 6-3.  Verifying Successful Resource Loading

============
Last updated: Sat Apr 26 06:32:51 2014
Last change: Sat Apr 26 06:29:53 2014 by hacluster via crmd on node2
Stack: openais
Current DC: node1 - partition with quorum
Version: 1.1.6-b988976485d15cb702c9307df55512d323831a5e
2 Nodes configured, 2 expected votes
4 Resources configured.
============
 
Online: [node1 node2]
 
kvm-stonith (stonith:external/libvirt): Started node1
ip-apache (ocf::heartbeat:IPaddr2): Started node2
fs-apache (ocf::heartbeat:Filesystem): Started node1
service-apache-1 (ocf::heartbeat:apache): Started node2
 

In the sample code from the previous procedure, you can see that a resource definition consists of several lines.
The first line defines the name of the resources and the resource agent that has to be used. After that comes a line
that defines the parameters of the resource, like the cidr_netmask and the ip address parameters for the IP address.
Following that are three lines that define the operations that this resource should use. These define how the resource
should be stopped, started, and monitored.

Note that instead of entering the configuration in the editor interface, the resources could have been entered
one by one from the command line. This offers the advantage that tab completion provides for further parameters
and help as to what any specific parameter implies. If, however, you want to be able to base the new configuration on
existing lines in the configuration, you might be better off using the editor interface, as discussed here, anyway.

Defining Operations
When adding a resource to the cluster, it is important to properly define how the resource should be started, stopped,
and monitored. If a resource normally takes time to come up, you need to give it the appropriate time in the cluster as
well. This is done by defining a time-out for stopping and starting the resource. The following two lines give a resource
60 seconds to start and 60 seconds to stop:
 
op stop interval="0" timeout="60" \
op start interval="0" timeout="60" \
 

If the resource cannot start within the start time-out interval, the cluster will draw the conclusion that the
resource doesn’t run on this node and try to start it somewhere else. (This behavior may be modified by adjusting the
start-is-fatal property. In addition, it will stop the resource first.) If the resource doesn’t stop within the
time-out of 60 seconds, the cluster will by default force it to a halt via STONITH, with all the associated possible

Chapter 6 ■ Clustering Resources

76

negative consequences. Therefore, it is very important to measure the time it takes to start and stop the resource, by
starting it outside of the cluster as a stand-alone application. Next, make sure that your cluster has more than enough
time to respect these time-out values!

Another important operation is the monitor operation. This defines how often the cluster should check if the
resource is still available. The time-out defines the period of time the cluster should wait before attempting the first
monitoring action. The interval defines once every how many seconds (or minutes or hours) the cluster should check
whether the resource is still available. If you need your cluster to be responsive, make sure to use low-interval values.

Grouping Resources
If resources should always be together, you have to tell the cluster. If you don’t tell the cluster anything, it will load
balance the resources. That means that it will evenly distribute the resources among the nodes in the cluster. In the
previous procedure, you added resources for an IP address, a file system, and an Apache web service. Now let’s have a
look at what their current state could look like (see Listing 6-4).

Listing 6-4.  Showing Current Resource State

Last updated: Tue Feb 4 13:03:02 2014
Last change: Tue Feb 4 13:02:57 2014 by root via cibadmin on node2
Stack: classic openais (with plugin)
Current DC: node1 - partition with quorum
Version: 1.1.9-2db99f1
2 Nodes configured, 2 expected votes
4 Resources configured.
 
Online: [node1 node2]
 
stonith-libvirt (stonith:external/libvirt): Started node1
ip-apache (ocf::heartbeat:IPaddr2): Started node2
fs-apache (ocf::heartbeat:Filesystem): Started node1
service-apache-1 (ocf::heartbeat:apache): Started node1
 

Failed actions:
 
service-apache-1_start_0 (node=node2, call=26, rc=5, status=complete): not i
nstalled
 

As you can see, the IP address is hosted by node1, where the file system and the Apache service are hosted by
node2. That means that all connections come in on an IP address that doesn’t have an Apache service behind it. So,
this configuration isn’t going to work, as all resources should be kept together!

There are two solutions that ensure that resources are always together. The easiest and recommended solution is
to work with groups. Resources in a group are always kept together on the same node, and they will also be started in
the order in which they are listed in the group. In the case of our Apache web service, this is also important, because
the IP address and the file system have to be available at the moment the Apache service itself is starting. Creating
a group is relatively easy. You just have to add one line into the cluster configuration in which you define the group
name and the names of the resources you want to put in the group.

	 1.	 Make sure you are logged in as root or user hacluster on one of the cluster nodes.

	 2.	 Type crm configure edit and add the following line:
 
group apache-group ip-apache fs-apache service-apache-1
 

Chapter 6 ■ Clustering Resources

77

Alternatively, you can type crm configure group apache-group ip-apache fs-apache service-apache-1
directly from the command line. When typing directly from the command line, you can use tab-completion
for the group’s members.

	 3.	 Close the editor to save and apply the changes and use crm_mon to verify that the resources
are now started from a resource group. In the output of crm_mon, you can see the name of
the group, as well as the resources that are configured in that group (see Listing 6-5).

Listing 6-5.  Monitoring Resources in a Group

============
Last updated: Sat Apr 26 06:36:53 2014
Last change: Sat Apr 26 06:35:55 2014 by root via cibadmin on node1
Stack: openais
Current DC: node1 - partition with quorum
Version: 1.1.6-b988976485d15cb702c9307df55512d323831a5e
2 Nodes configured, 2 expected votes
4 Resources configured.
============
 
Online: [node1 node2]
 
kvm-stonith (stonith:external/libvirt): Started node1
 Resource Group: apache-group
 ip-apache (ocf::heartbeat:IPaddr2): Started node2
 fs-apache (ocf::heartbeat:Filesystem): Started node2
 service-apache-1 (ocf::heartbeat:apache): Started node2

Working with Constraints
A resource group is a convenient way of keeping resources together. If you have a complex dependency, however, a
group is not the best possible way to define that. If the dependencies are becoming more complex, you’re better off
using constraints. A constraint is a set of rules that defines how resources should be loaded.

Constraint Types
Over time, some less common constraint types have been added, but the most important constraint types are the
following:

•	 Location: A location constraint defines on which server a resource should be loaded. You can
also use it to define locations where the resource may never be loaded.

•	 Colocation: A colocation constraint is used to define what specific resources should be loaded
together or, alternatively, that they should never be loaded together.

•	 Order: An order constraint is used to define a specific order. Order constraints are implicit in
resource groups, but using order constraints may be more convenient, as you can define these
between different types of resources. You could, for example, define that a resource group can
only be loaded after some specific primitive has been loaded first.

Chapter 6 ■ Clustering Resources

78

Understanding Scores
When working with constraints, you can define priorities. To define priorities, scores are used. On every constraint,
you can use a score from -1,000,000 (-INFINITY) up to INFINITY (1,000,000), and you can use every value in between.

To express that you never want a certain action to be performed, you can use a negative score. Any score smaller
than 0 will ban the resource from a node.

Let’s have a look at a sample cluster to understand this better. In the sample cluster, four nodes are used: node1,
node2, node3, and node4. You want a resource group with the name db-group to be loaded by preference on node1
or node2. If it cannot be loaded on either, it should be loaded on node3, but it should never load on node4. To express
this in scores, you might assign a score of 100,000 to node1 and node2, a score of 1,000 to node3, and a score of
-INFINITY to node4.

You can, of course, create constraints from the crm shell, but as the syntax can be a bit complex, I recommend
using the Hawk interface to define them. The following procedure explains how to do this.

	 1.	 Log in to the Hawk interface, and from the button bar on the left, click Constraints. This
will show the three different constraints that are available.

	 2.	 Select Location and click + to add a new constraint. This opens the interface that you can
see in Figure 6-1. 

Figure 6-1.  Creating new constraints

Chapter 6 ■ Clustering Resources

79

	 5.	 In the rule editor, enter a score of 100000 and then define the expression #uname (which
refers to the kernel node name of the node), = node1. If you would like to add another
node with the same score, you can specify this node directly under the first expression
(see Figure 6-3).

Figure 6-2.  Working with the constraint rule editor

	 3.	 Enter a constraints ID, and from the Resource drop-down list, select the apache-group
you’ve just created.

	 4.	 At this point, you can simply enter a score and the node where you want this resource to
be running on, but you can also add a more complex constraint, by selecting the Show
Rule Editor box. This opens a new interface that you can see in Figure 6-2. If you want to
configure more complex constraints, you need the rule editor. Let’s assume we want the
apache-group to have a preference for node1 and node2, and, only if it’s not possible to
run it on these, it should run on node3, and at the same time, it should never run
on node4. 

Chapter 6 ■ Clustering Resources

80

	 6.	 To add a node with a lower score, click + and enter a score of 1000. Now add the expression
for node3. Next, you can add another rule with a score of -INFINITY that relates to node4. 

After creating the constraint, it is visible from the crm configure edit interface as well, and you can modify it at will
from the following interface:
 
location group-location apache-group \
 rule $id="group-location-rule" 100000: #uname eq node1 and #uname eq node2 \
 rule $id="group-location-rule-0" 1000: #uname eq node3 \
 rule $id="group-location-rule-1" -inf: #uname eq node4
 

Figure 6-3.  Configuring complex constraints

Chapter 6 ■ Clustering Resources

81

Note that in the example discussed previously, location constraints are used. In many cases, use of these is
not necessary. If the nodes are symmetric, the cluster can find out for itself how to place resources. Alternatively,
utilization parameters can be used to make placement decisions. In these, the node as well as the resources can be
configured with utilization information.

In more complex setups, users may have to specify ordering and colocation, and possibly resource priorities, to
arbitrate capacity shortages or conflicts between anti-colocated resources.

Testing the Configuration
At this point, it’s time to subject the configuration to a test. If the node that is currently hosting the Apache group goes
down, the other node should automatically take over, and the failing node should be terminated by a STONITH operation.

	 1.	 Make sure you can see the console of both nodes and find out where the apache-group is
currently running. Log in as root on the other node and start the command crm_mon here.

	 2.	 On the node that currently hosts the apache-group, use the command echo c > /proc/
sysrq-trigger to crash the node. Watch what is happening in crm_mon. You should see
that the resources are migrated over to the other node.

	 3.	 At the moment the failing node comes back, you will see it appearing in the cluster, and
you’ll notice that the resource group automatically fails back to the original node.

Normally, your cluster should work fine at the moment. If it doesn’t, read the Chapter 8, in which you will find
some important troubleshooting tips.

Understanding Resource Agent Scripts
In this chapter’s previous sections, you have learned how to create resources in a cluster. Behind these resources are
the resource agents, which are scripts that tell the cluster how to deal with the clustered services. An OCF resource
agent is a shell script, enriched with some XML code, and as an administrator, you can create these scripts yourself.
In this section, we’ll explore the structure of an RA script, to help you in developing your own RAs.

To understand how a resource agent script is made, the Dummy RA provides a good example that is not too long.
Use find / -name "Dummy" to find the exact location (/usr/lib/ocf/resource.d/heartbeat/Dummy on SUSE).
In Listing 6-6, you can see what its contents looks like (cleaned up a little bit, so as not to make it too long).

Listing 6-6.  Sample RA Script

node1:/usr/lib/ocf/resource.d/heartbeat # cat Dummy
#!/bin/sh
#
#
Dummy OCF RA. Does nothing but wait a few seconds, can be
configured to fail occasionally.
#
Copyright (c) 2004 SUSE LINUX AG, Lars Marowsky-Brée
All Rights Reserved.
#
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.
#
....
 

Chapter 6 ■ Clustering Resources

82

###
Initialization:
 
: ${OCF_FUNCTIONS_DIR=${OCF_ROOT}/lib/heartbeat}
. ${OCF_FUNCTIONS_DIR}/ocf-shellfuncs
 
###
 
meta_data() {
 cat <<END
<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="Dummy" version="0.9">
<version>1.0</version>
 
<longdesc lang="en">
This is a Dummy Resource Agent. It does absolutely nothing except
keep track of whether its running or not.
Its purpose in life is for testing and to serve as a template for RA writers.
 
NB: Please pay attention to the timeouts specified in the actions
section below. They should be meaningful for the kind of resource
the agent manages. They should be the minimum advised timeouts,
but they shouldn't/cannot cover _all_ possible resource
instances. So, try to be neither overly generous nor too stingy,
but moderate. The minimum timeouts should never be below 10 seconds.
</longdesc>
<shortdesc lang="en">Example stateless resource agent</shortdesc>
 
<parameters>
<parameter name="state" unique="1">
<longdesc lang="en">
Location to store the resource state in.
</longdesc>
<shortdesc lang="en">State file</shortdesc>
<content type="string" default="${HA_RSCTMP}/Dummy-${OCF_RESOURCE_INSTANCE}.state" />
</parameter>
 
<parameter name="fake" unique="0">
<longdesc lang="en">
Fake attribute that can be changed to cause a reload
</longdesc>
<shortdesc lang="en">Fake attribute that can be changed to cause a reload</shortdesc>
<content type="string" default="dummy" />
</parameter>
 
</parameters>
 

Chapter 6 ■ Clustering Resources

83

<actions>
<action name="start" timeout="20" />
<action name="stop" timeout="20" />
<action name="monitor" timeout="20" interval="10" depth="0" />
<action name="reload" timeout="20" />
<action name="migrate_to" timeout="20" />
<action name="migrate_from" timeout="20" />
<action name="meta-data" timeout="5" />
<action name="validate-all" timeout="20" />
</actions>
</resource-agent>
END
}
 
###
 
dummy_usage() {
 cat <<END
usage: $0 {start|stop|monitor|migrate_to|migrate_from|validate-all|meta-data}
 

Expect to have a fully populated OCF RA-compliant environment set.
 
END
}
 
dummy_start() {
 dummy_monitor
 if [$? = $OCF_SUCCESS]; then
 return $OCF_SUCCESS
 fi
 touch ${OCF_RESKEY_state}
}
 
dummy_stop() {
 dummy_monitor
 if [$? = $OCF_SUCCESS]; then
 rm ${OCF_RESKEY_state}
 fi
 return $OCF_SUCCESS
}
 
dummy_monitor() {
 # Monitor _MUST!_ differentiate correctly between running
 # (SUCCESS), failed (ERROR) or _cleanly_ stopped (NOT RUNNING).
 # That is THREE states, not just yes/no.
  
 if [-f ${OCF_RESKEY_state}]; then
 return $OCF_SUCCESS

Chapter 6 ■ Clustering Resources

84

 fi
 if false ; then
 return $OCF_ERR_GENERIC
 fi
 return $OCF_NOT_RUNNING
}
 
dummy_validate() {
  
 # Is the state directory writable?
 state_dir=`dirname "$OCF_RESKEY_state"`
 touch "$state_dir/$$"
 if [$? != 0]; then
 return $OCF_ERR_ARGS
 fi
 rm "$state_dir/$$"
 
 return $OCF_SUCCESS
}
 
: ${OCF_RESKEY_state=${HA_RSCTMP}/Dummy-${OCF_RESOURCE_INSTANCE}.state}
: ${OCF_RESKEY_fake="dummy"}
 
case $__OCF_ACTION in
meta-data) meta_data
 exit $OCF_SUCCESS
 ;;
start) dummy_start;;
stop) dummy_stop;;
monitor) dummy_monitor;;
migrate_to) ocf_log info "Migrating ${OCF_RESOURCE_INSTANCE} to ${OCF_RESKEY_CRM_meta_migrate_
target}."
 dummy_stop
 ;;
migrate_from) ocf_log info "Migrating ${OCF_RESOURCE_INSTANCE} from ${OCF_RESKEY_CRM_meta_migrate_
source}."
 dummy_start
 ;;
reload) ocf_log info "Reloading ${OCF_RESOURCE_INSTANCE} ..."
 ;;
validate-all) dummy_validate;;
usage|help) dummy_usage
 exit $OCF_SUCCESS
 ;;
*) dummy_usage
 exit $OCF_ERR_UNIMPLEMENTED
 ;;
esac
rc=$?
ocf_log debug "${OCF_RESOURCE_INSTANCE} $__OCF_ACTION : $rc"
exit $rc
 

Chapter 6 ■ Clustering Resources

85

As you can see, the script consists of several parts. In the first part, an include file with the name ocf-shellfuncs
is called. This input script file defines several functions that are available in OCF scripts. Make sure it is included if
ever you want to write your own RA script.

Second, there is a somewhat longer section containing metadata. This metadata is in XML format, and it is what
is displayed when using a command such as crm ra meta. It also contains the default values that are used for this
resource type, if not defined otherwise.

Next, the valid arguments are defined. As you can see, such common arguments as start and stop are defined.
Also, the cluster-specific variables are defined here. Later on in the script, these arguments are further defined in bash
functions, with the task that should be accomplished when one of these actions is called. The last part of the script
defines a case loop, where all of the arguments can be called from.

As you can see, the way an RA script is structured is not that complicated. Just make sure that it contains the parts
that are described previously, and you can clusterize anything you’d like. If you have to create your own RA scripts,
it’s a good idea to start from the Dummy script as a sample and work that out to provide all the functionality you
require. For more information about developing resource agents, I’d recommend you consult “OCF Resource Agent
Developer’s Guide” by Florian Haas at www.linux-ha.org/doc/dev-guides/ra-dev-guide.html.

Summary
In this chapter, you have learned how to work with resources in the cluster. You have learned how to create primitives
and how to put several primitives together in a group resource. You’ve also read about how to use constraints to
define complex rules between primitives. In the next chapter, you’ll learn how to work with storage in a clustered
environment.

http://www.linux-ha.org/doc/dev-guides/ra-dev-guide.html

87

Chapter 7

Clustering Storage

When working with cluster resources for services, these services typically require access to files as well. In a cluster
environment, you can work with the filesystem resource to have a file system mount run on the nodes where
you need it. There’s more to clustered file systems, though. In this chapter, you’ll learn how to configure your cluster
for shared file systems.

Using a Cluster File System
In some cases, it makes sense to use a cluster-aware file system. The purpose of a cluster-aware file system is to
allow multiple nodes to write to the file system simultaneously. The default cluster-aware file system on the SUSE
Linux Enterprise Server is OCFS2, and on Red Hat, it is Global File System (GFS) 2. The file system is doing this by
synchronizing caches between the nodes that have the filesystem resource running immediately, which means that
every node always has the actual state of exactly what is happening on the file system.

To create a cluster-aware file system, you need two supporting services. The first of these is the distributed lock
manager, dlm. The second is o2cb, which takes care of the communication of the OCFS2 file system with the cluster.
(Note that for starting SLES 12, only the DLM service is required, and the o2cb service is no longer needed.) As with
the OCFS2 file system itself, these resources have to be started on all nodes that require access to the file system.
Pacemaker provides the clone resource for this purpose. Clone resorts can be applied for any resources that have to be
activated on multiple nodes simultaneously.

Although cluster-aware file systems may sound useful, you don’t need them in all cases. Typically, you’ll need them
in active/active scenarios, where multiple instances of the same resource are running on multiple nodes and are all
active. You don’t have to create a cluster file system, if you only want to run one instance of a resource at the same time.

Apart from the benefits, there are also disadvantages to using cluster file systems. The most important
disadvantage is that the cache has to be synchronized between all nodes involved. This makes a cluster file system
slower than a stand-alone file system, in many cases, especially those that involve a lot of metadata operations.
Because they also provide much stronger coupling between the nodes, it becomes harder for the cluster to prevent
faults from spreading.

It is often believed that a cluster file system provides an advantage over failover times, as compared to a local
node file system, because it is already mounted. However, this is not true; the file system is still paused until fencing/
STONITH and journal recovery for the failed node have completed. This will freeze the clustered file system on all
nodes. It is actually a set of independent local file systems that provides higher availability! Clustered file systems
should be used where they are required, but only after careful planning.

Chapter 7 ■ Clustering Storage

88

Configuring an OCFS2 File System
Before going into detail, it’s good to have a generic overview of the procedure that has to be followed to create an
OCFS2 file system. The procedure is roughly as follows:

	 1.	 Create a resource group containing the dlm and o2cb resources.

	 2.	 Put this group in a clone resource, to ensure that it runs on multiple nodes.

	 3.	 Start the resource on all nodes that have to use the cluster file system.

	 4.	 Use mkfs.ocfs2 to format the OCFS2 file system.

	 5.	 Create a clone resource that also mounts the OCFS2 file system.

Understanding Clone Resources
When working with a clustered file system, the file system must be started on multiple nodes in the cluster. To
accomplish this, you need a special resource type: the clone resource type. Working with clones is not so hard. You’ll
first create primitive resources and, next, configure a clone to run the primitives on multiple nodes simultaneously.
While creating the clone, you’ll define properties that specify how often the resource should be started.

The OCFS2 file system depends on two generic processes that have to be loaded on each OCFS2 node. The first is
the distributed lock manager control daemon. This is the dlm controld process that will be created as a clone resource.
This process is used by cLVM2 (see later in this chapter) and OCFS2, and it coordinates locks between cluster nodes.

The second process that OCFS2 depends on is o2cb, the OCFS2 cluster base. This is the software that tells OCFS2
how to find the cluster. In this case, a pacemaker cluster is used, but OCFS2 can be configured with its own cluster
stack as well. If this is the case, o2cb tells the OCFS2 file system how to find that cluster.

Note■■  T he default configuration for OCFS2 is to use its own cluster stack. If by accident you format an OCFS2 file
system while the o2cb module is not present, you’ll receive a cluster communications error. To fix that, you can use the
tune2fs.ocfs2 command. If that doesn’t work, you will have to format the OCFS2 file system again, while the o2cb
module is running.

The detailed procedure for creating an OCFS2 file system resource is described below.

	 1.	 Type crm configure edit and add the following primitives:
 
primitive dlm ocf:pacemaker:controld \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100" \
 op monitor interval="10" timeout="20" start-delay="0"
primitive o2cb ocf:ocfs2:o2cb \
 op stop interval="0" timeout="100" \
 op start interval="0" timeout="90" \
 op monitor interval="20" timeout="20"
 

	 2.	 Create a group that contains the two primitives you’ve just added, by adding the following
line as well:
 
group ocfs2-base-group dlm o2cb

 

Chapter 7 ■ Clustering Storage

89

	 3.	 At this point, you can create a clone that contains the group and ensures that the primitives
in the group are started on all nodes. While creating the clone, you can consider adding
two parameters. The first is clone-max. This parameter tells the clone how many instances
of the primitive(s) in the clone should be started. Using this parameter makes sense if you
have more nodes in the cluster than the amount of nodes where you want this resource
to be active on. If not set, clone-max defaults to the number of nodes in the cluster. The
clone-node-max parameter tells the cluster how many instances of a primitive can run on
one node. In most cases, you will probably want to set it to one, but on some occasions,
it may make sense to run the primitives more than once. An important parameter to
consider is interleave="true". By setting this parameter, you make loading resources
that have a dependency to some other resources easier. Imagine an order constraint where
clone resource B is started after clone resource A. With the interleave setting to false, clone
resource B would only start when all instances of resource A had been started. If you set
interleave to true, instances of resource B can start loading before resource A has loaded
everywhere. The final configuration for the clone with the OCFS2 supporting modules
would look as follows:
 
clone ocfs2-base-clone ocfs2-base-group \
 meta interleave="true"
 

	 4.	 Write the changes and close the editor. This activates the cloned group immediately.

	 5.	 Type crm_mon to verify that the group has been started. The result should look as follows:
 
Last updated: Tue Feb 4 15:43:15 2014
Last change: Tue Feb 4 15:40:24 2014 by root via cibadmin on node1
Stack: classic openais (with plugin)
Current DC: node2 - partition with quorum
Version: 1.1.9-2db99f1
2 Nodes configured, 2 expected votes
8 Resources configured.
 
Online: [node1 node2]
 
stonith-libvirt (stonith:external/libvirt): Started node1
 Resource Group: apache-group
 ip-apache (ocf::heartbeat:IPaddr2): Started node1
 fs-apache (ocf::heartbeat:Filesystem): Started node1
 service-apache (ocf::heartbeat:apache): Started node1
 Clone Set: ocfs2-base-clone [ocfs2-base-group]
 Started: [node1 node2]
 

	 6.	 As the components that are required to create an OCFS2 file system are operational, you
can now proceed and create the OCFS2 file system. Note that you have two options here.
By this procedure, you’ll create the OCFS2 file system directly on top of a shared disk
device. It might make sense, however, to create an LVM2 sub-layer first. This makes it
easier to change the size of the file system or to work with other advanced features that are
offered by LVM2.

Chapter 7 ■ Clustering Storage

90

Identify the shared SAN disk on which you want to create the file system. On this disk, use the mkfs.ocfs2
command mkfs.ocfs2 /dev/sdb. (Note that I’m using /dev/sdb here only for the purpose of legibility. Use device
names that are based on the naming in /dev/disk/... to ensure that devices are named persistently.)

	 7.	 Create a mount point for the file systems on all nodes involved: mkdir /shared.

	 8.	 Mount the file system on both nodes and write a file on both nodes. You’ll see that the file
immediately becomes visible on the other node as well.

	 9.	 Use crm configure edit to add a primitive for the OCFS2 file system to the cluster. Note
that you’ll add the file system by using a filesystem resource, as you have done previously
when adding an Ext3 file system to the cluster.
 
primitive ocfs-fs ocf:heartbeat:Filesystem \
 params fstype="ocfs2" device="/dev/disk/by-path/ip-192.168.1.125:3260-iscsi-
iqn.2014-01.com.example:kiabi" directory="/shared" \
 op stop interval="0" timeout="60" \
 op start interval="0" timeout="60" \
 op monitor interval="20" timeout="40"
 

	 10.	 As this is an OCFS2 file system, you probably want to run it on multiple nodes. To do
this, put the primitive you’ve just created in a clone, by adding the following lines to the
configuration also:
 
clone ocfs-fs-clone ocfs-fs \
 meta interleave="true"
 

	 11.	 To tell the cluster that the ocfs2-fs-clone should only be started once the
ocfs2-base-clone has successfully been started, you also have to add an order constraint.
 
order ocfs2-fs-after-ocfs-base Mandatory: ocfs2-base-clone ocfs-fs
 

Note that in this case, using constraints is the only option to define the relation between the ocfs2-base clone
and the ocfs2 clone. This allows you to define a relationship between two resources that are further configured as
independent resources. Note the syntax of the order constraint. After defining that it’s an order constraint, a name
is specified, followed by the score. Using scores is important in order constraints. I’ve used the constraint setting of
Mandatory to make sure that the cluster can stop cleanly. Next, the resources are specified—in the order that they
should be loaded.

	 12.	 Save the changes and quit editing mode. The cloned file system has been added to the
cluster, and you can now start running active-active resources on top of it.

LVM2 in Cluster Environments
The Logical Volume Manager (LVM2) offers some advantages to working with storage. In clustered environments,
LVM2 can be used as well, but you’ll have to use clustered LVM2 to make sure that the state of volume groups and
logical volumes is synchronized properly on the cluster. In this section, you’ll learn how to set up cLVM2.

To use cLVM2, you need a few supporting resources. The first of these is dlm, which you’ve also used to configure
an OCFS2 file system. Apart from that, you need cLVM2d, the cluster volume manager daemon. This daemon is used
to synchronize LVM2 metadata in the cluster. These modules must be available on all nodes that are going to provide
access LVM2 volumes that are managed by the cluster. As they have to be loaded on multiple nodes simultaneously,
you have to configure clone resources for them.

Chapter 7 ■ Clustering Storage

91

Once the supporting modules are available, you can create a clustered LVM2 volume group. Note that it is the
volume group and not the LVM2 logical volume that is cloned, and you’ll first have to create it on the command line
of one of the nodes that has dlm and cLVM2d running. After creating the resource for the volume group, you can create
LVM2 logical volumes on any of the nodes in the cluster.

After creating these objects at the LVM2 level, you can create a cluster resource that manages the volume group.
You only need this resource for the volume group, as it is the volume group that is responsible for managing cluster
access to its logical volumes. When creating the volume group, you can also decide whether or not to configure it for
exclusive access. By default, all nodes in the cluster can access the clustered volume group, which makes it easy to
set up a shared file system like OCFS2 on top of it. If it is configured for exclusive access, it will be locked for all other
nodes when it is in use. The procedure below describes how to create a cLVM2 setup.

	 1.	 Type crm configure edit and add the following code to the cluster configuration to add
primitives for cLVM2d and dlm. Note that you only need to add the dlm primitive if you
haven’t done that already in the preceding section.
 
primitive cLVM2-base ocf:LVM22:cLVM2d \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100" \
 op monitor interval="20" timeout="20"
primitive dlm ocf:pacemaker:controld \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100" \
 op monitor interval="10" timeout="20" start-delay="0"
 

	 2.	 As the resources need to be configured as clones, you need to add the clones as well. Note
that in the following sample code, the target-role is set to Stopped. This is because the
cLVM2-clone can only be started after the dlm-clone. If you don’t do anything, the cluster
will bring up the resources, and you risk the cLVM2-clone being started before the
dlm-clone, in which case it fails. To prevent this, we’ll add it to the cluster in Stopped
mode first and start the resource manually in the next step, to bring them up in the right
order. As a permanent, fix we’ll add an order constraint later.
 
clone dlm-clone dlm \
 meta target-role="Stopped" interleave="true"
clone cLVM2-clone cLVM2-base \
 meta target-role="Stopped" interleave="true"
 

	 3.	 Write and commit the changes to the cluster.

	 4.	 Type crm resource start dlm-clone; crm resource start cLVM2-clone. This should
start both clones in the cluster. Don’t proceed before you have confirmed that the clones
have indeed been started.
 
Last updated: Fri Feb 7 13:47:26 2014
Last change: Fri Feb 7 07:37:53 2014 by hacluster via crmd on node1
Stack: classic openais (with plugin)
Current DC: node2 - partition with quorum
Version: 1.1.9-2db99f1
2 Nodes configured, 2 expected votes
15 Resources configured.
 
 

Chapter 7 ■ Clustering Storage

92

Online: [node1 node2]
 
ip-test (ocf::heartbeat:IPaddr2): Started node1
ip-test-encore (ocf::heartbeat:IPaddr2): Started node2
sbd-stonith (stonith:external/sbd): Started node1
 Resource Group: apache-group
 ip-apache (ocf::heartbeat:IPaddr2): Started node2
 fs-apache (ocf::heartbeat:Filesystem): Started node2
 service-apache (ocf::heartbeat:apache): Started node2
 Clone Set: dlm-clone [dlm]
 Started: [node1 node2]
 Clone Set: ocfs2-clone [ocfs2-group]
 Started: [node1 node2]
 

	 5.	 Open the file /etc/lvm/lvm.conf. Look for the parameter lock_mode and make sure it
has the value 3.

	 6.	 At this point, you can create the LVM2 volume group on the command line of one of the
nodes, with the cluster property enabled. The only requirement is that shared storage
needs to be available. Assuming that the shared disk device is available on both nodes
as /dev/sdd, use the following command to create the clustered volume group:
 
vgcreate -c y vgcluster /dev/sdd
 

With this command, you create a volume group with the name vgcluster that is based on the /dev/sdd shared
disk device.

You should note that in this example, the /dev/sdd device name is used. In this case, that is no problem. The
vgcreate command writes metadata to the device, and this metadata will be scanned when the reboot comes up.
Even if the device name changes, for instance, from /dev/sdd to /dev/sde, the metadata will be found anyway, and
the vg name that is in the metadata won’t change.

	 7.	 Now you can create the LVM2 logical volume. To create an LVM2 volume that consumes
all disk space that is available in the volume group, use the following command:
 
lvcreate -n lvcluster -l 100%FREE vgcluster
 

	 8.	 Type lvs to verify that the volume group and the LVM2 logical volume have been created.
 
node2:~ # lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
 lvcluster vgcluster -wi-a---- 508.00m
 

	 9.	 You now have to define a cluster resource that is going to manage access to the volume
group. Use crm configure edit vgcluster and enter the following lines:
 
primitive vgcluster ocf:heartbeat:LVM2 \
 params volgrpname="vgcluster" \
 op start interval="0" timeout="30" \
 op stop interval="0" timeout="30" \
 op monitor interval="10" timeout="30"
 

Chapter 7 ■ Clustering Storage

93

	 10.	 As the primitive that manages access to the clustered volume group needs to be available
on all nodes where the logical volumes can be accessed, you have to put it in a clone
before starting it. To do this, type crm configure edit vgcluster-clone and add the
following lines:

 
clone vgcluster-clone vgcluster \
 meta target-role="Started" interleave="true"
 

	 11.	 Write and quit the cluster editor, which automatically commits the new volume group
resource to the cluster. Type crm resource status vgcluster-clone to verify the current
status of the newly created resource. If all went well, you’ll see that it has been started on
both nodes.
 
node1:~ # crm resource status vgcluster-clone
resource vgcluster-clone is running on: node1
resource vgcluster-clone is running on: node2
 

	 12.	 Type lvs on both nodes to verify the availability of the logical volumes. You should see
them listed on both nodes.

In many cases, the procedure described previously will work fine. Sometimes it won’t (see the following code
listing).
 
Clone Set: vgcluster-clone [vgcluster]
 Started: [node2]
 Stopped: [vgcluster:1]
 

Failed actions:
 
 vgcluster_start_0 (node=node1, call=68, rc=1, status=complete): unknown error
 

If a failure has occurred, you should analyze log files and find out why it occurred and fix it. After analyzing
the error and fixing the possible cause, you can stop the clone, clean up its status, and start it again. The following
procedure describes how you can do that:

	 1.	 Type crm resource stop vgcluster-clone and wait for this to complete. Consider
adding the option -w to the crm command, which has the crm wait for every preceding step
to complete before going on to the next step.

	 2.	 Type crm resource cleanup vgcluster-clone to remove the current status attributes.
This will remove the memory of the resource, which allows it to try to start on all nodes
again, without having the memory that it was unsuccessful to start on some of them.

	 3.	 Use crm start vgcluster-clone to start the resource again.

	 4.	 Type crm resource status vgcluster-clone to verify the status of the resource. You
should see it running without any errors on all of its nodes now.
 
node2:~ # crm resource status vgcluster-clone
resource vgcluster-clone is running on: node2
resource vgcluster-clone is running on: node1
 

Chapter 7 ■ Clustering Storage

94

At this point, you will have working resources. You can start creating file systems on the LVM2 volumes in the
clustered volume group. However, when you reboot a node, starting these resources may fail. This is because nothing
has been defined about the startup order between the cLVM2-clone, the dlm-clone, and the vgcluster-clone.

In the previous section, you have learned that you can create a group to keep resources together and have them
started in the right order. In some cases, you cannot put resources in a group, and constraints are needed to define
how resources should be started.

Imagine that you have an OCFS2 file system that is configured directly on top of shared storage, as discussed in
the previous section. Imagine that apart from the OCFS2 file system, in the same cluster, you need access to clustered
logical volumes as well. Both OCFS2 as well as cLVM2 require controld to be running on the nodes. Unfortunately,
you cannot put the same primitive in multiple groups. In addition, you cannot create multiple primitives and run
them multiple times on the same node. You have to create a clone that starts controld and two groups: one for the
cLVM2 resources and one for the OCFS2 resources. (See Figure 7-1.) Next, you need a rule that defines that controld
has to be started first and the groups can be started next.

Figure 7-1.  Independent stacks configuration overview

Figure 7-2.  OCFS2 on top of cLVM2 stack overview

OCFS2 on Top of cLVM2
As discussed previously, there are different ways in which OCFS2 file systems can be created. Putting OCFS2 on
top of cLVM2 volumes offers more options for managing storage, but it also makes managing the cluster stack
more complicated. For your convenience, Figure 7-2 gives an overview of the stack that is necessary to run such a
configuration.

Chapter 7 ■ Clustering Storage

95

Using GFS2 with Pacemaker
If you’re working on a Red Hat cluster, GFS2 is the default cluster file system. The procedure for using GFS2 in a Red
Hat cluster is a bit different. The first thing to be aware of is that GFS2 needs to run on top of cLVM2, and in Red Hat
Enterprise Linux 6, that only works on top of the cman cluster manager. In Chapter 5, you read how to set up this
cluster manager. Once the clustered LVM2 volumes are available on the cluster nodes, you can make the GFS2 file
system on top of it. The default Red Hat procedure to do this goes beyond the cluster. That means that you can run
mkfs.gfs2 on one of the cluster nodes and take care of the mounts locally: just put a mount line in /etc/fstab to
ensure the proper mounting of the GFS2 volume.

Summary
In this chapter, you have read how to configure the cluster with clustered file systems that allow for active/active access
to the same files from multiple nodes simultaneously. You have also read how to use cLVM2, which may be useful for
stand-alone file systems also. In the next chapter, you’ll read about some common cluster management tasks.

97

Chapter 8

Performing Daily Cluster
Management Tasks

At this point, your cluster should be operational. That means that your work as a cluster administrator can begin, and
you can start managing the cluster resources. All topics in the chapters up to now were mostly about designing the
cluster. This chapter is about managing the cluster, and it discusses typical tasks that a cluster administrator might
have to perform. The following tasks are discussed:

Starting and stopping resources•	

Monitoring resource state•	

Resource migration•	

Using resource cleanup•	

Managing nodes•	

Using unmanaged mode and maintenance mode for maintenance•	

Understanding log files•	

Backup and restore of the cluster configuration•	

Wipe everything and start all over•	

Starting and Stopping Resources
The most important daily cluster management task is the starting and stopping of resources. Many administrators do
not really understand that resources in a cluster are used in a way that is different from resources that run on a local
instance of an operating system. Too often, I have seen people trying to temporarily stop a resource using service
stop resource or systemctl stop resource. That is so wrong! As the resource is managed by the cluster, the cluster
will see that the resource is stopped, and it will immediately start it again, as that is what the cluster was created for! To
manage the current state of resources, cluster commands should be used, not local commands.

Starting and stopping resources is easy, from the crm resource interface, just use start resourcename or stop
resourcename to start or stop a resource. When using these commands, the meta target-role property is set in the
cluster. This property makes sure that the current state of the resource is stored in the cluster, which guarantees that it
comes back in the exact same state, if the state of the cluster suddenly changes. That can also lead to some confusion.

Chapter 8 ■ Performing Daily Cluster Management Tasks

98

Imagine a situation in which a cluster administrator is troubleshooting the current state of a specific
resource. Out of despair, he chooses to set the current state of the resource to stopped, using crm resource stop
resourcename. Later, he finds out that nothing really helps, and he restarts the entire cluster stack, just to find out that
that also didn’t help, and the resource is still in a stopped state! So, do always remember that using crm resource
start and crm resource stop doesn’t just start or stop the resource, it also changes the current state of the resource.
So, you might have to undo it on some occasions!

Monitoring Resource State
It may seem obvious, but monitoring the state of resources in the cluster also is an important task. Until now, you
have used crm_mon to monitor the current state of the cluster. crm_mon is a useful command, as it refreshes itself
automatically, which makes it excellent for monitoring purposes. But it’s not ideal in all cases. To understand why,
let’s have a look at Listing 8-1 and Listing 8-2, which both show the current state of the same cluster.

Listing 8-1.  Using crm_mon to Monitor Cluster State

Last updated: Sat Apr 26 11:35:47 2014
Last change: Sat Apr 26 11:32:22 2014 by root via cibadmin on node1
Stack: openais
Current DC: node1 - partition with quorum
Version: 1.1.6-b988976485d15cb702c9307df55512d323831a5e
2 Nodes configured, 2 expected votes
10 Resources configured.
============
 
Online: [node1 node2]
 
kvm-stonith (stonith:external/libvirt): Started node1
 Resource Group: apache-group
 ip-apache (ocf::heartbeat:IPaddr2): Started node2
 fs-apache (ocf::heartbeat:Filesystem): Started node2
 service-apache-1 (ocf::heartbeat:apache): Started node2
 Clone Set: clvm-clone [clvm-base]
 Started: [node1 node2]
 Clone Set: dlm-clone [dlm]
 Started: [node1 node2]
 
Failed actions:
 drac-node1_monitor_3600000 (node=node1, call=17045, rc=1, status=complete):
unknown error
 kvm-stonith_monitor_3600000 (node=node1, call=21424, rc=1, status=complete):
 unknown error
 drac-node1_monitor_3600000 (node=node2, call=16, rc=-2, status=Timed Out): unknown exec error
 

As you can see, crm_mon gives much detail, including the current state of the cluster, as well as the last errors that
have occurred in the cluster (which may be confusing, because even if the error has occurred a long time ago, it still
is shown).

Chapter 8 ■ Performing Daily Cluster Management Tasks

99

crm status also gives useful information. It shows on which node(s) the resources are started, for example:

Listing 8-2.  Using crm status to Monitor Cluster Resource State

[root@node1 ~]# crm status
Last updated: Mon Jun 9 14:15:12 2014
Last change: Wed May 28 11:54:21 2014 via crm_attribute on node1
Stack: classic openais (with plugin)
Current DC: node2 - partition with quorum
Version: 1.1.10-14.el6_5.2-368c726
2 Nodes configured, 2 expected votes
6 Resources configured
 
Online: [node1 node2]
 
 FenceSQ1 (stonith:fence_ipmilan): Started node2
 Resource Group: mysql-group
 mysql-ip (ocf::heartbeat:IPaddr2): Started node2
 mysql-fs (ocf::heartbeat:Filesystem): Started node2
 mysql-db (ocf::heartbeat:mysql): Started node2
 mysql-web (ocf::heartbeat:apache): Started node2
 

The crm resource status (see Listing 8-3) command doesn’t show as much information. Many people think
that because crm_mon gives so much information, it shows everything you’d ever want to know about the current
cluster status. One important piece of information is missing, however. With crm_mon, you cannot see the resources
that actually are stopped, whereas crm resource status shows the state of all resources, including the resources
that are stopped. Note that the information that is shown with crm [resource] status can also be shown using the
appropriate options with crm_mon.

Listing 8-3.  Using crm resource status to Monitor Cluster Resource State

node1:~ # crm resource status
 kvm-stonith (stonith:external/libvirt) Started
 Resource Group: apache-group
 ip-apache (ocf::heartbeat:IPaddr2) Started
 fs-apache (ocf::heartbeat:Filesystem) Started
 service-apache-1 (ocf::heartbeat:apache) Started
 Clone Set: clvm-clone [clvm-base]
 Started: [node1 node2]
 Clone Set: dlm-clone [dlm]
 Started: [node1 node2]
 Clone Set: vgcluster-clone [vgcluster]
 Stopped: [vgcluster:0 vgcluster:1]
 

If you like graphical interfaces, you can also monitor the current cluster state from Hawk. From Hawk, click
the Cluster Monitor icon, to monitor the current state of the cluster. The default view gives a summary of generic
properties, the amount of resources that is configured, and the amount of errors that has occurred (see Figure 8-1).
From this interface, you can click the links, to get more details. You can also see the last three errors that have
occurred in the cluster. Note that this is a historical overview; you can see past error messages that have been fixed a
long time ago.

Chapter 8 ■ Performing Daily Cluster Management Tasks

100

From Hawk, three different views are offered. If you want to see relations between resources in the cluster, you
can activate the tree view from the button in the upper-right part of the screen. This view does give an overview of
hierarchical relations of primitives that are configured in groups or clones, but it doesn’t show relations that have been
defined by use of constraints (see Figure 8-2).

Figure 8-1.  Monitoring cluster state from Hawk

Chapter 8 ■ Performing Daily Cluster Management Tasks

101

If you have to see which resource is running on which node, you can select the Hawk table view, as shown in
Figure 8-3. It takes the nodes in your cluster as the starting point and shows all resources running on those nodes.

Figure 8-2.  The Hawk tree view shows relations between resources

Chapter 8 ■ Performing Daily Cluster Management Tasks

102

Resource Migration
High availability clusters will take action when a node in the cluster is failing. After failure, resources will be started
somewhere else. The cluster can also automatically migrate resources to load balance services across different servers.
By default, the cluster tries to evenly balance resources over the nodes in the cluster. This is default behavior, which
can be changed by giving the resource stickiness parameter a high positive score.

If you want to prepare for maintenance, you can also perform manual migration actions. By migrating a
resource or resource group, you will actually put a location constraint on the resource, preventing the resource from
automatically moving back to its original location. Because of this constraint, you should also always un-migrate the
resource, or remove the location constraint manually, or specify a “lifetime” for the constraint. This specifies how long
the constraint is supposed to stay, after which it would be automatically removed. The next procedure shows how to
migrate the apache-group resource toward node1.

	 1.	 Type crm resource status to show a list of resources and their current status. Note that
this doesn’t show you the actual node a resource is running on. The crm_mon command
will do that, if you have to know.

	 2.	 Type crm resource migrate apache-group node1 to migrate the apache-group to
node1. Alternatively, the command could be used without mentioning a target node,
which follows the current constraint settings to determine where the resource should be
migrated to.

	 3.	 Now type crm_mon, to verify that the migration was successful.

Figure 8-3.  The Hawk table view helps in analyzing which resource is running on which node

Chapter 8 ■ Performing Daily Cluster Management Tasks

103

	 4.	 Type crm configure show, to display the contents of the current cluster configuration.
Note that a location constraint was added to the cluster.
 
location cli-prefer-apache-group apache-group \
 rule $id="cli-prefer-rule-apache-group" inf: #uname eq node1
 

	 5.	 Close the editor interface and type crm resource unmigrate apache-group. This removes
the location constraint and, depending on the current resource stickiness configuration,
might move the resource back to its original location.

In the preceding example, you have seen that manual migration actions place location constraints on resources.
These constraints will stick on the resources until you use the crm resource unmigrate command to move the
resource back to its original location. Never forget this behavior, as it may cause serious trouble. As you can see in the
code snippet, the constraint that has been placed has a score of inf:, which is infinity. That means that the resource
will never move back, if the target is still up.

Using Resource Cleanup
If the cluster tries to start a resource on a node, it may encounter problems that make it impossible to start the
resource on that node. If that happens, the cluster tries and tries and tries, until the maximum amount of failures has
been reached (which normally happens pretty fast). After reaching the maximum amount of failures, the cluster
stops trying.

From that moment on, the cluster remembers where it wasn’t able to start the resource, which prevents it from
trying it again a few moments later. This, however, can lead to a situation in which a resource still thinks it cannot be
started somewhere else, whereas the problem may very well have been fixed. If that occurs, you have to clean up the
resources (or wait until the failure attributes clean themselves). By applying a cleanup action on a node, resource,
or resource group, it will clear its memory of failures and try to do what the cluster wants it to do once more. Using
resource cleanup is a very common and important action after fixing problems in the cluster. So, in short, the steps to
be taken are as follows:

	 1.	 After noticing the failure of a resource to start, fix the problem.

	 2.	 Perform a cleanup action.

	 3.	 Monitor to see if the cluster is capable of recovering automatically.

The following procedure shows how to perform a cleanup action:

	 1.	 Open a crm shell.

	 2.	 Type resource to access the resource management interface.

	 3.	 Type list to show a list of the resources that are currently active.

	 4.	 Type cleanup resourcename to clean up the resource failure properties.

	 5.	 Wait a few seconds. The resource should automatically switch back to the state it should
be in.

Chapter 8 ■ Performing Daily Cluster Management Tasks

104

Managing Nodes
When performing maintenance in the cluster, it can be necessary to manage the node status (see Listing 8-4). This
should always start with the crm node status command, which shows the status of all nodes in the cluster.

Listing 8-4.  Monitoring Node Status

crm(live)node# status
<nodes>
 <node id="node1" type="normal" uname="node1">
 <instance_attributes id="nodes-node1">
 <nvpair id="nodes-node1-standby" name="standby" value="off"/>
 </instance_attributes>
 </node>
 <node id="node2" type="normal" uname="node2">
 <instance_attributes id="nodes-node2">
 <nvpair id="nodes-node2-standby" name="standby" value="off"/>
 </instance_attributes>
 </node>
</nodes>
 

If you have to perform maintenance on a node but don’t want to bring it down, it’s useful to put the node in
standby mode. In this mode, the node still counts for quorum, but it won’t be a candidate for resources to migrate to.
To put a node in standby mode, use the crm node standby nodename command. This adds the standby attribute to
the node. To bring a node back to normal operational mode, you can use crm node online nodename. This doesn’t
remove the standby attribute from the CIB, but it will give the attribute the value off, as you can see in the preceding
Listing 8-4.

From the node menu, some other operations are available as well. The most interesting of these is the fence
operation. This can be useful for testing your STONITH agent, as this operation will immediately try to fence the node
in question. Be careful using this option, because the selected node will be fenced without further notice!

Using Unmanaged Mode and Maintenance Mode
for Maintenance
On some occasions, you will have to upgrade the cluster software. If an upgrade requires a restart of the cluster
software, you will temporarily loose the resources that are managed by the cluster. Before restarting vital cluster
components, resources are moved to another node in the cluster. To avoid that, you can temporarily unmanage a
resource. By doing this, you’ll temporarily run the resource outside of the cluster, as if it had been started locally. This
means that the cluster temporarily doesn’t care about the resource status. This allows you to shut down the cluster
stack without stopping all resources on it, which is beneficial if you have to perform upgrades on the cluster software.

Once the cluster software is available again, you can manage the resource so that the cluster can take control
again. The following procedure shows how to do this:

	 1.	 Type crm to open the crm shell.

	 2.	 Type resource, followed by status, to see the current state of your resources.

	 3.	 Type unmanage apache-group to put the resources in the apache-group in a temporary
unmanaged state.

Chapter 8 ■ Performing Daily Cluster Management Tasks

105

	 4.	 Type status again. You’ll see the resources being marked as unmanaged.

	 5.	 Enter the command service openais stop. You’ll notice that the node is not
STONITHed.

	 6.	 Type ps aux | grep http. You will see that the Apache processes are still running.

	 7.	 Put the cluster resource back in a managed state by using the commands service
openais start, followed by crm resource manage apache-group.

You can set unmanaged as a generic cluster property as well. This temporarily disconnects all resources from the
cluster, until you remove the unmanaged attribute. The easiest way to put your entire cluster in unmanaged mode is by
adding the is-managed-default=false property to the end of the cluster configuration, using crm configure edit.
To verify that the setting has been applied correctly, type crm resource status.
 
crm(live)# resource status
 kvm-stonith (stonith:external/libvirt) Started (unmanaged) FAILED
 Resource Group: apache-group
 ip-apache (ocf::heartbeat:IPaddr2) Started (unmanaged)
 fs-apache (ocf::heartbeat:Filesystem) Started (unmanaged)
 service-apache-1 (ocf::heartbeat:apache) Started (unmanaged)
 Clone Set: clvm-clone [clvm-base] (unmanaged)
 clvm-base:0 (ocf::lvm2:clvmd) Started (unmanaged)
 Stopped: [clvm-base:1]
 Clone Set: dlm-clone [dlm] (unmanaged)
 dlm:0 (ocf::pacemaker:controld) Started (unmanaged)
 Stopped: [dlm:1]
 Clone Set: vgcluster-clone [vgcluster] (unmanaged)
 Stopped: [vgcluster:0 vgcluster:1]
 

To put the cluster back in managed mode, just remove this line from the cluster configuration. You’ll notice that
the unmanaged property is removed automatically from all resources in the cluster.

As an alternative to unmanaged mode, you can consider using maintenance mode. When the cluster is in
maintenance mode, no operations whatsoever on resources will be attempted by the cluster. To put a cluster in
maintenance mode, use crm configure property maintenance-mode=true. You can now start and stop resources
and do anything you’d like to do, without having the cluster interfering. There’s just one thing to make sure of: you
must always enter maintenance mode before starting maintenance tasks on your cluster! Once you’re done, you can
disable maintenance mode, using crm configure property maintenance-mode=false.

Understanding Log Files
By default, the cluster components send all their log events to syslog. This is directed from the /etc/corosync/
corosync.conf file, which contains a logging section stating that log messages are to be sent to the syslog_facility
daemon. The results can be overwhelming: even under normal operation, the cluster is rather verbose, which gives
great opportunities to analyze if something goes wrong, provided you know what you need to be looking for. In Listing
8-5, you can see a part of the contents of a /var/log/messages file that has been filled by the different parts of the
cluster. (Notice that it spans only two seconds of the lifetime of the cluster!)

Chapter 8 ■ Performing Daily Cluster Management Tasks

106

Listing 8-5.  Analyzing Cluster Log Files

Apr 26 13:35:08 node1 lrmd: [2746]: info: rsc:kvm-stonith monitor[22618] (pid 32083)
Apr 26 13:35:08 node1 stonith-ng: [2744]: info: stonith_command: Processed st_execute from lrmd:
rc=-1
Apr 26 13:35:08 node1 external/libvirt[32090]: [32101]: ERROR: virsh not installed
Apr 26 13:35:09 node1 stonith: external_status: 'libvirt status' failed with rc 1
Apr 26 13:35:09 node1 stonith: external/libvirt device not accessible.
Apr 26 13:35:09 node1 stonith-ng: [2744]: notice: log_operation: Operation 'monitor' [32084] for
device 'kvm-stonith' returned: -2
Apr 26 13:35:09 node1 stonith-ng: [2744]: ERROR: log_operation: kvm-stonith: Performing: stonith -t
external/libvirt -S
Apr 26 13:35:09 node1 stonith-ng: [2744]: ERROR: log_operation: kvm-stonith: failed: 1
Apr 26 13:35:09 node1 stonith-ng: [2744]: info: stonith_device_execute: Nothing to do for
kvm-stonith
Apr 26 13:35:09 node1 lrm-stonith: [32083]: WARN: map_ra_retvalue: Mapped the invalid return code -2.
Apr 26 13:35:09 node1 lrmd: [2746]: info: operation monitor[22618] on kvm-stonith for client 2750:
pid 32083 exited with return code 1
Apr 26 13:35:09 node1 crmd: [2750]: info: process_lrm_event: LRM operation kvm-stonith_
monitor_3600000 (call=22618, rc=1, cib-update=37034, confirmed=false) unknown error
Apr 26 13:35:09 node1 attrd: [2747]: notice: attrd_trigger_update: Sending flush op to all hosts
for: fail-count-kvm-stonith (4694)
Apr 26 13:35:09 node1 crmd: [2750]: WARN: status_from_rc: Action 3 (kvm-stonith_monitor_3600000) on
node1 failed (target: 0 vs. rc: 1): Error
Apr 26 13:35:09 node1 attrd: [2747]: notice: attrd_perform_update: Sent update 30951: fail-count-
kvm-stonith=4694
Apr 26 13:35:09 node1 crmd: [2750]: WARN: update_failcount: Updating failcount for kvm-stonith on
node1 after failed monitor: rc=1 (update=value++, time=1398533709)
Apr 26 13:35:09 node1 attrd: [2747]: notice: attrd_trigger_update: Sending flush op to all hosts
for: last-failure-kvm-stonith (1398533709)
Apr 26 13:35:09 node1 crmd: [2750]: info: abort_transition_graph: match_graph_event:277
- Triggered transition abort (complete=0, tag=lrm_rsc_op, id=kvm-stonith_monitor_3600000,
magic=0:1;3:13955:0:71bfdf97-aad9-4e7d-924c-9de2dcc30927, cib=0.45.74) : Event failed
Apr 26 13:35:09 node1 attrd: [2747]: notice: attrd_perform_update: Sent update 30953: last-failure-
kvm-stonith=1398533709
Apr 26 13:35:09 node1 crmd: [2750]: info: update_abort_priority: Abort priority upgraded from 0 to 1
Apr 26 13:35:09 node1 crmd: [2750]: info: update_abort_priority: Abort action done superceeded by
restart
Apr 26 13:35:09 node1 crmd: [2750]: info: match_graph_event: Action kvm-stonith_monitor_3600000 (3)
confirmed on node1 (rc=4)
Apr 26 13:35:09 node1 crmd: [2750]: info: abort_transition_graph: te_update_diff:176 - Triggered
transition abort (complete=0, tag=nvpair, id=status-node1-fail-count-kvm-stonith, name=fail-count-
kvm-stonith, value=4694, magic=NA, cib=0.45.75) : Transient attribute: update
Apr 26 13:35:09 node1 crmd: [2750]: info: update_abort_priority: Abort priority upgraded from 1 to
1000000
Apr 26 13:35:09 node1 crmd: [2750]: info: update_abort_priority: 'Event failed' abort superceeded
Apr 26 13:35:09 node1 crmd: [2750]: info: abort_transition_graph: te_update_diff:176 - Triggered
transition abort (complete=0, tag=nvpair, id=status-node1-last-failure-kvm-stonith, name=last-
failure-kvm-stonith, value=1398533709, magic=NA, cib=0.45.76) : Transient attribute: update
 

Chapter 8 ■ Performing Daily Cluster Management Tasks

107

The benefit of this verbose logging is that everything is in the logs. You’ll always be able to find the information
you need. The disadvantage is that you may have a hard time finding it, because there’s so much information!

Because logging can go really fast, using tail -f /var/log/messages is probably not going to help. Messages
pass by so quickly, which makes them unreadable. If, however, you apply a filter to your tail, they become a lot more
readable. In general, there are two types of information that you might want to grep for: the name of the part of the
cluster that generated the log or the name of the service that is unwilling to work correctly in the cluster.

In Listing 8-5, you can easily recognize the different daemons that play a role in the cluster.

•	 stonith and stonith-ng: All that is related to fencing

•	 lrmd: The local resource manager daemon, which is responsible for managing resources after
receiving the instruction to do so from the crmd

•	 crmd: The cluster resource manager daemon, which is responsible for managing all transitions
in the cluster

•	 attrd: The attribute daemon, which is responsible for changing status attributes in the cluster

•	 pengine: Responsible for initiating state changes in the cluster

•	 cib: Relates to the Cluster Information Base (CIB), which is the heart of the cluster

•	 external: Relates to external STONITH modules

Understanding what these modules are all about can really help you in troubleshooting. Imagine, for example,
that you’re having a problem with the apache-group resource. It makes a difference whether you find the problem
related to the crmd, the lrmd, or the attrd. If the crmd is logging about a problem with your resource, you are probably
trying to do something that the cluster doesn’t understand. If the lrmd is complaining about the resource, then the
crmd has already agreed to perform the operation, but it cannot be executed by a local machine. If it’s the attrd, there
is a problem changing a status attribute of your resource.

So, if something really doesn’t work, use grep on the /var/log/messages files, to find information about the
resource that isn’t doing what it has to, and check which component of the cluster is having problems with it. Once
you’ve isolated the problem in this way, you’re probably on the right track to fixing the problem!

Backup and Restore of the Cluster Configuration
Everything that is precious requires a backup. From the crm shell, it is relatively easy to create a backup. Use
crm configure save ~/mycluster-$(date +%d-%m-%y).conf to write a file mycluster.conf that has the current date
in it. This saves to a file everything you see when using crm configure edit. It might be a good idea to perform this
command every single day, so that if ever things go wrong, recovery will be easy.

To import configuration from a file, you can use crm configure load ~/mycluster-somedate.conf (or whatever
the file you want to import is named). This will import all settings in the file you’re referring to. You should be aware
that it imports all settings, and because it does, it makes sense to do some housekeeping before you start. You have to
make sure that you don’t try to import resources and other configurations that already exist in the cluster.

In general, there are two methods for using crm configure load. You can work with small input files that contain
specific resources only—to import only those resources—after making sure that they don’t exist any longer in the CIB
itself. Or you can choose to wipe the entire cluster configuration first, which allows you to import a previous state of
the cluster in an easy way.

Chapter 8 ■ Performing Daily Cluster Management Tasks

108

Wipe Everything and Start All Over
If you have a good backup (as discussed in the previous section), on some occasions it makes sense to just throw all
current configuration away and import a previous configuration that you’ve already verified. It speaks for itself that
you should never, ever do this before making sure that you really have a good backup. If you do, type cibadmin -E
--force, to wipe everything you’ve got in the cluster. Next, use crm configure load ~/mycluster-some-old-and-
working-config.conf to load the old configuration into your Cluster Information Base. This, of course, is only a
measure of last resort, if truly nothing else has helped you so far!

Summary
In this chapter, you’ve read about common cluster management tasks. You’ve read how to manage the state of
individual resources, as well as the state of the entire cluster, to perform day-to-day and not-so-common management
tasks. In the next chapter, you’ll learn how to create an open source storage area network, using Pacemaker clustering
software.

109

Chapter 9

Creating an Open Source SAN

Now that you know all about the basic cluster configurations, it’s time to have a look at some practical use cases.
In this chapter, you’ll discover how to create an open source storage area network (SAN) using Pacemaker and
related open source software. You’ll learn how to configure the following:

A mirrored network block device with a distributed replicated block device (DRBD)•	

An iSCSI target to provide access to the DRBD•	

A cluster configuration that manages the location of the active DRBD•	

Creating an Open Source SAN with Pacemaker
Storage area network (SAN) appliances are for sale for large amounts of money. In some cases, it just doesn’t make
sense to spent lots of money on a proprietary SAN appliance when you can create an open source SAN solution.
Even from a performance perspective, an open source software-based SAN solution doesn’t necessarily offer inferior
performance. The advantage of working with this type of solution is that many performance-optimization options are
available, and you are in no way restricted by the optimizations that can be applied.

The creation of an open source SAN involves roughly two steps: first, you have to configure a distributed
replicated block device (DRBD) and have it managed by the cluster. Next, you must configure an iSCSI target and have
it follow the master DRBD. This chapter explains in detail how you can do that.

Configuring RAID 1 over the Network with DRBD
If you want to create an environment where multiple nodes can access your data simultaneously, the distributed
replicated block device (DRBD) is an excellent choice. This is particularly true if you want to set up a two-node cluster,
in which one node must be able to take over the exact state of the other node as fast as possible. The DRBD performs a
delta-sync of blocks over the network, which ensures that you’ll have the exact same state on different machines in a
matter of seconds.

Basically, DRBD is RAID 1 over the network. In the setup that is presented in this chapter, one node behaves
as the active node. The other node is standby, but fully synchronized at all times. That means that in case the active
node goes down, the standby node can take over immediately. It is possible to set up DRBD without a Pacemaker
cluster, but in that case, you would have to switch over active nodes manually if something happened to the node that
is currently active. In the setup presented in this chapter, you’ll learn how to make switches occur automatically, by
integrating the DRBD in a Pacemaker cluster.

One of the good parts of DRBD is that when using it, you don’t need an expensive SAN solution. That is because
basically, DRBD is your SAN. The basic function of an SAN is to provide a shared device in which access is provided at
block level, and that is exactly what DRBD is doing for you. You can even build an additional solution on top of DRBD,

Chapter 9 ■ Creating an Open Source SAN

110

in which an iSCSI target is installed on top of DRBD, to implement a mirrored SAN solution. This is not very hard to
do, just add an iSCSI target resource in your Pacemaker cluster that follows the DRBD master, as described in this
chapter.

Precautionary Measures
The purpose of setting up a DRBD is to create a device that is synchronized over the network. To accomplish this goal,
you need two servers, and on both servers, you need a storage device such as a local hard disk—if possible, of the
same size on both nodes. It doesn’t really matter what you want to use for the shared storage device, many solutions
will work. If you can’t dedicate a complete disk, you can also use a partition or an LVM logical volume. It doesn’t really
matter what you’re using, as long as it can be addressed as a block device.

In this chapter, I’ll work on a dedicated device with the name /dev/vdb that is available on both nodes. After
making this device available, you’ll have to make sure that the DRBD software is installed as well.

Important!■■  T he DRBD is likely to synchronize large amounts of data. If this synchronization happens over the same
network interface that is used for the cluster traffic, you may hit totem time-outs, with the result that the cluster starts
thinking that other nodes are not available. To prevent this from happening, it is very important to separate DRBD
synchronization traffic from totem traffic. The best approach is to use a dedicated network for DRBD. If that is not
feasible, at least you have to make sure that the totem traffic is using another network interface. Especially in test
environments where all is happening on one network interface, it happens too often that cluster time-outs are no longer
respected, and nodes are receiving a STONITH because of that!

Creating the Configuration
After installing the software, you can create the DRBD configuration.

To start, we’ll assume that you’re using two different servers that have the names node1 and node2 and that on
those servers, a dedicated hard disk, /dev/vdb, is available as the DRBD. Also, you’ll have to make sure that the default
DRBD port 7780 is open on the firewall, and then you’ll be ready to get going.

	 1.	 The name of the default DRBD configuration file is /etc/drbd.conf. This file serves as a
starting point for finding the additional configuration, and to accomplish this goal, you’ll
have to include two lines that ensure that these configuration files can be found. To do this,
make sure the following two lines are in the drbd.conf file:
 
include "drbd.d/global_common.conf";
include "drbd.d/*.res";
 

	 2.	 Now, you need to make sure that the real configuration is defined in the /etc/drbd.d/
global_common.conf file. Make sure it includes the following generic settings for smooth
operation:
 
global {
 minor-count 5;
 dialog-refresh 1;
}
common {
}
 

Chapter 9 ■ Creating an Open Source SAN

111

	 3.	 For the next part of the configuration, you’ll have to define the DRBD resource itself. This is
done by creating several configuration files, one for each resource. Just make sure that
this resource-specific configuration file is using the extension .res, to have it included in the
configuration, as indicated in the /etc/drbd.conf file. Following, you can see what
the configuration file would look like for a DRBD resource with the name drbd0. Note that the
handlers section has to be present only if you’re integrating DRBD with a Pacemaker cluster.
Don’t include it in setting up the initial synchronization on the DRBD! That’s why, in the
following listing, that part of the configuration is followed by hashes:
 
resource drbd0 {
 protocol C;
 disk {
 on-io-error pass_on;
 # fencing resource-only;
 }
 #handlers {
 # fence-peer "/usr/lib/drbd/crm-fence-peer.sh";
 # after-resync-target "/usr/lib/drbd/crm-unfence-peer.sh";
 #}
 on node2 {
 disk /dev/vdb;
 device /dev/drbd0;
 address 192.168.122.131:7676;
 meta-disk internal;
 }
 on node1 {
 disk /dev/vdb;
 device /dev/drbd0;
 address 192.168.122.130:7676;
 meta-disk internal;
 }
 syncer {
 rate 7M;
 }
}
 

As the first part of this file, the name of the resource is defined. In this case, we’re using drbd0, but you’re
completely free to choose any name you like. Next, the name of the device node, as it will occur in the /dev directory,
is specified, including the minor number that is used for this device. Make sure that you select a unique resource
name, as well as device name; otherwise, the kernel won’t be able to distinguish between different DRBDs that you
might be using.

Next, you’ll specify which local device is going to be replicated between nodes. Typically, this is an empty device,
but it is possible to put a device with an existing file system on it in a DRBD configuration and synchronize the
contents of that file system to the other device in the DRBD pair. Following the name of the device, you’ll include the
configuration for the different nodes. The node names must be equal to the kernel names as returned by the uname
command. As the last part, you’ll set the synchronization speed. This determines the amount of bandwidth that is
available for DRBD. Don’t set this too high, if you don’t have a dedicated network connection for DRBD; otherwise,
you might be using all the bandwidth, and you’ll risk other traffic not being able to get through, which may result in
cluster nodes being STONITHed.

Chapter 9 ■ Creating an Open Source SAN

112

	 4.	 After creating the initial configuration files on one node, it’s a good idea to verify the
configuration. To do this, use the command drbdadm dump all. If this command displays
the contents of all the configuration files (instead of complaining about missing parts of
the configuration), everything is okay, and you can proceed to the next step.

	 5.	 After verifying the configuration on the first node, you can transfer it to the second node.
Make sure that you can perform the transfer using the node name of the other node. If
nodes cannot reach each other by node name, your DRBD is going to fail. So, if necessary,
configure your /etc/hosts or DNS before moving on.
 
scp /etc/drbd.conf node2:/etc/
scp /etc/drbd.d/* node2:/etc/drbd.d/
 

	 6.	 Now it’s time to create the DRBD metadata on both nodes. First, use the drbdadm
command as in the following example. Next, you can start the DRBD service, as follows:
 
#drbdadm -- --ignore-sanity-checks create-md drbd0
Writing meta data...
initializing activity log
NOT initialized bitmap
New drbd meta data block successfully created.
#service drbd start
 

At this point, you can start the DRBD service, using service drbd start. Next, request its status, using service
drbd status. You’ll then see that both devices have their status connected but also that both are set as secondary
devices and that they’re inconsistent.
 
node1:~ # service drbd status
drbd driver loaded OK; device status:
version: 8.4.1 (api:1/proto:86-100)
GIT-hash: 91b4c048c1a0e06777b5f65d312b38d47abaea80 build by phil@fat-tyre, 2011-12-20 12:43:15
m:res cs ro ds p mounted fstype
0:drbd0 Connected Secondary/Secondary Inconsistent/Inconsistent C
 
	 7.	 Now you can start the synchronization on one of the nodes, using the following command:

 
drbdadm -- --overwrite-data-of-peer primary drbd0
 

If you now use the service drbd status command again to monitor the current synchronization status,
you’ll see that the status is now set to synchronized (sync’ed) and that you have established a Primary/Secondary
relationship. You’ll now have to wait until the status on both nodes is UpToDate.
 
node1:~ # service drbd status
drbd driver loaded OK; device status:
version: 8.4.1 (api:1/proto:86-100)
GIT-hash: 91b4c048c1a0e06777b5f65d312b38d47abaea80 build by phil@fat-tyre, 2011-12-20 12:43:15
m:res cs ro ds p mounted fstype
0:drbd0 SyncTarget Secondary/Primary Inconsistent/UpToDate C
... sync'ed: 4.3% (1006992/1048508)K
 

Chapter 9 ■ Creating an Open Source SAN

113

When synchronization has completed, the output of the service drbd status command will look as following:
 
node1:~ # service drbd status
drbd driver loaded OK; device status:
version: 8.4.1 (api:1/proto:86-100)
GIT-hash: 91b4c048c1a0e06777b5f65d312b38d47abaea80 build by phil@fat-tyre, 2011-12-20 12:43:15
m:res cs ro ds p mounted fstype
0:drbd0 Connected Secondary/Primary UpToDate/UpToDate C

Working with the DRBD
Once the devices have been fully synchronized (depending on the size of the devices, this can take a long time!), you
can create a file system on the primary DRBD node. To do this, you can use the following commands:
 
mkfs.ext3 /dev/drbd0
mount /dev/drbd0 /mnt
 

If all goes well, the device will now be mounted on the primary node on the directory /mnt. If you now create
files in that directory, they will immediately be synchronized to the other node. Because you are using a Primary/
Secondary setup, however, it’s not possible to access these files directly on the other node, but they are present, in case
anything goes wrong.

If all was successful until now, you can perform a test in which you’ll make the other node primary. To do this,
use the following procedure:

	 1.	 Unmount the DRBD on node node1.

	 2.	 Use the following command to make node node1 the secondary: drbdadm secondary
drbd0.

	 3.	 Now go to node node2 and promote the DRBD to primary, using the command drbdadm
primary drbd0.

	 4.	 On node node2, use the command service drbd status to verify that all went well. If this
is the case, your DRBD is now fully operational, and it’s time to move on to the next step
and integrate it in Pacemaker.

Troubleshooting the Disconnect State
If after a change of status, both nodes in the DRBD setup return to a StandAlone state, your DRBD setup is in a split-
brain situation, where there is no way to verify which node contains the primary data set. To remedy such a situation,
you must manually intervene, by selecting one node whose modifications will be discarded. (This node is referred to
as the split-brain victim.) This intervention is performed using the following commands:
 
drbdadm secondary resource
drbdadm -- --discard-my-data connect resource
 

On the other node (the split-brain survivor), if its connection state is also StandAlone, you would enter the
following:
 
drbdadm connect resource

Chapter 9 ■ Creating an Open Source SAN

114

Working with Dual Primary Mode
In some cases, it makes sense to configure DRBD for active/active mode, for instance, if you want to configure a
platform for hosting KVM or Xen virtual machines, in which two hosts are used in a fail-over configuration, to allow
all virtual machines on one host, if required. Note that in such a configuration, it is not necessary to manage the DRBD
resources from the cluster. That is because no state management is required, as the only state the nodes are supposed
to be in is Primary anyway.

To use an active-active configuration, you have to enter some additional configuration. First, in the
resource definition, you’ll have to include a net section that allows the use of two primaries and sets the correct
synchronization protocol. Also, you’ll require a startup section that automatically switches to the primary role on both
nodes on startup. The following lines will do this for you:
 
resource drbd0
 net {
 protocol C;
 allow-two-primaries yes;
 }
 startup {
 become-primary-on-both;
 }
 ...
}

Integrating DRBD in Pacemaker Clusters
Using the drbdadm command, you can manually determine which node is going to be primary and which will be the
secondary. In a real HA environment, you’ll have to integrate the DRBD in the Pacemaker cluster software. Doing this
assumes that the cluster will manage DRBD, and not the local administrator.

Before adding the resources to the cluster, you’ll have to take some precautionary measures in the drbd resource
file as well. By including the following lines, you’ll make sure that if the DRBD replication link becomes disconnected,
the crm-fence-peer.sh script contacts the cluster manager and determines the Pacemaker master-slave resource
that is associated with this DRBD resource. Next, it will ensure that the master-slave resource in Pacemaker will
no longer get promoted on any other node than the currently active one. This guarantees that you don’t get in a
situation in which you have two nodes both thinking that they’re master, which will lead to a split-brain situation. To
accomplish this, include the following in the resource configuration file:
 
resource drbd0 {
 disk {
 fencing resource-only;
 ...
 }
 handlers {
 fence-peer "/usr/lib/drbd/crm-fence-peer.sh";
 after-resync-target "/usr/lib/drbd/crm-unfence-peer.sh";
 ...
 }
 ...
}
 

The next steps describe how to add a resource that manages DRBD in Pacemaker. This procedure assumes that
you already have an operational Pacemaker cluster.

Chapter 9 ■ Creating an Open Source SAN

115

	 1.	 Start Hawk and log in as user hacluster.

	 2.	 Add a primitive for the DRBD resource. Select class OCF, the Provider Linbit, and the
type drbd.

	 3.	 Set the drbd_resource parameter to the name of the drbd resource that you’ve created.
This is the name of the resource as defined in the drbd0.res file and not the name of the
device, so enter drbd0 and not /dev/drbd0.

	 4.	 From the parameters drop-down list, select the drbdconf parameter and provide the value
of the drbd.conf file, which would be /etc/drbd.conf. Also, add the resource name,
which should be the same as the name of the resource as defined in the DRBD resource
file. Next, click Create Resource, to add the resource to your configuration.

	 5.	 At this point, go back to the resources tab and add a master-slave resource. Give it the
name drbd-ms, and as the child resource, select the drbd resource you’ve just created.

	 6.	 Under Meta-Attributes, set the target role to Started and click Create Master/Slave to add
the master-slave resource to the configuration.
 
primitive drbd ocf:linbit:drbd \
 params drbdconf="/etc/drbd.conf" drbd_resource="drbd0" \
 op start interval="0" timeout="240" \
 op monitor interval="20" role="Slave" timeout="20" start-delay="60" \
 op monitor interval="10" role="Master" timeout="20" start-delay="60"\
 op stop interval="0" timeout="100" \
 meta target-role="Started"
ms drbd-ms drbd \
 meta master-max="1" master-node-max="1" clone-max="2" \
 clone-node-max="1" notify="true" \
 meta target-role="Started"

Testing
Before you continue using your setup and add the iSCSI target to the configuration, it’s a good idea to reboot both
nodes in the cluster and make sure that the cluster is indeed managing the DRBD resource and not the local DRBD
service. After the restart, verify that the DRBD resource is started on both nodes, where one of the nodes is used as the
primary and the other is secondary. It’s also a good idea to check the cluster configuration itself. As this is a two-node
cluster, make sure the no-quorum policy is set to ignore. Also, make sure that STONITH is operational. If this is the case,
you can perform a test and switch off the primary node. The secondary node should now automatically take over.

Adding an iSCSI Target to the Open Source SAN
Once your DRBD is operational and managed by the cluster, you have to add an iSCSI target to it. In Chapter 2, you
read how to set up storage, and the iSCSI target in particular. In this section, you’ll read how to set up the iSCSI target
to provide access to the active DRBD and have it managed by the cluster.

There are different approaches to set this up. Using a simplified architecture, you can set up a DRBD on top
of shared storage (as described in the previous section). On top of that, you can configure an iSCSI target and a
dedicated IP address. Figure 9-1 provides an overview of this configuration. Even if this option works, it won’t offer
you much flexibility at the storage layer, because you will need a new DRBD for every additional iSCSI LUN that will
be added. This is fine, if you’re not anticipating many changes, but if you do expect changes in the storage topology,
you might prefer a configuration that is more flexible.

Chapter 9 ■ Creating an Open Source SAN

116

That is why it is much more flexible to create the LVM layer on top of the DRBD. This allows you to be flexible
with regard to the sizes of the LUNs you’re offering to the iSCSI initiators. Figure 9-2 gives an overview of this
configuration.

Figure 9-1.  Open source SAN simple configuration

Figure 9-2.  Open source SAN complex configuration

In the complex configuration, lots of components are required to work together, including the following:

	 1.	 A DRBD

	 2.	 The DRBD master that is managed from the cluster

	 3.	 An LVM configuration with a physical volume (PV), volume group (VG), and logical
volume (LV)on top of the DRBD

	 4.	 An iSCSI target

	 5.	 An iSCSI logical unit that replaces the definition of the LUN in the iSCSI target
configuration file

	 6.	 An IP address that allows nodes to connect to the configuration.

In the preceding section, you learned how to set up the DRBD and the DRBD master in a cluster environment.
In Chapter 2, you learned how to set up an iSCSI. In this section, you read how to set up a clusterized iSCSI target and
iSCSI logical unit, and an IP address on top of that. You will also learn how to set up the LVM configuration in a way
that works in clustered environments.

Chapter 9 ■ Creating an Open Source SAN

117

Creating an Open Source SAN with LVM
To start with, you need to create an LVM physical volume on top of the DRBD. Access to the LVM volume group has to
be set up as managed by the cluster next. To create this configuration, take the following steps:

	 1.	 Make sure that the DRBD is scanned by LVM for LVM metadata. To do this, you have to
change the contents of the /etc/lvm/lvm.conf file to include the DRBDs. This following
example will only consider DRBDs and ignore everything else:

 
filter = ["a|/dev/drbd.*|", "r|.*|"]
 

	 2.	 Now you have to disable the LVM cache on both nodes. Do this by including the following
line, also in /etc/lvm/lvm.conf:
 
write_cache_state = 0
 

Always make sure to remove the current cache that might be existing: rm -rf /etc/lvm/.cache.

	 3.	 Before continuing, use the command vgscan to update LVM metadata.

	 4.	 Assuming the name of the DRBD is drbd0, use pvcreate /dev/drbd0 to mark the DRBD as
a physical volume.

	 5.	 Now you can create the LVM stack, consisting of a PV, a VG, and an LV. The following three
commands will create the volume group and a 1GB logical volume as well. Issue them on
the node that currently has the primary DRBD device (!):
 
pvcreate /dev/drbd0
vgcreate vgdrbd /dev/drbd/by-res/drbd0
lvcreate -L 1G -n lvlun0 vgdrbd
 

	 6.	 At this point, you can put the LVM configuration in the cluster. Type crm configure edit
and add the following lines to the cluster configuration:
 
primitive lvm-drbdvol ocf:heartbeat:LVM \
 params volgrpname="vgdrbd" \
 op monitor interval="10s" timeout="30s" depth="0"
 

	 7.	 Verify that the volume group resource is running in the cluster, before continuing.

Setting Up the iSCSI Target in the Cluster
Now that you’ve added the DRBD and LVM resources in the cluster, you can continue and configure iSCSI. What you
need at this point is an iSCSI target. The configuration related to the iSCSI target consists of three different parts:

The iSCSI target process that needs to be started by the cluster•	

The •	 iSCSILogicalUnit resource, which manages the LUNs that are presented by the
iSCSI target

A cluster IP address that will be used to access the iSCSI target•	

Chapter 9 ■ Creating an Open Source SAN

118

	 1.	 Make sure the iSCSI target software is installed on your computer. In Chapter 2, you can
read in detail about all the different options that exist for creating an iSCSI target. In this
procedure, I’ll show you how to work with the tgt iSCSI target software that you may
still encounter on older Linux distributions. Before proceeding, type { yum | zypper |
install tgtd to install the software. Notice that this installs the tgt target software and
not the ietd. The tgt software offers more advanced ways to define node restrictions, and
therefore, I prefer it for complex environments.

	 2.	 Make sure that the iSCSI target software is not started automatically when your server
boots, using either chkconfig tgtd off or sysctl disable tgtd.

	 3.	 Add the service to the cluster by using crm configure edit and include the following.
(Note that you initially don’t start the iSCSI target, because it needs additional
configuration.)
 
primitive iscsitarget-drbd ocf:heartbeat:iSCSITarget \
 params iqn="iqn.2014-02.com.example:drbdsan" tid="1" \
 implementation="tgt" \
 op monitor interval="10s" timeout="20s" \
 meta target-role="Stopped"
 

	 4.	 At this point, you can add the iSCSI LUN, by adding a cluster resource. Note that on
normal configurations, you would do this in the iSCSI configuration file, but you can do it
perfectly from the cluster as well. The advantage is that the cluster will take care of making
the required configuration present on all nodes in the cluster.
 
primitive drbdvol-lun0 ocf:heartbeat:iSCSILogicalUnit \
 params target_iqn="iqn.2014-02.com.example:drbdsan" lun="1" \
 path="/dev/vgdrbd/lvlun0" \
 op monitor interval="10"
 

At this point, you can start the software in the cluster to begin using your iSCSI-based open source SAN. In
the following sample configuration, you can see everything coming together. First, let’s have a look at the cluster
configuration.
 
chimay:~ # cat cluster-santnet-san.conf
node san-1.example.com
node san-2.example.com
primitive drbd_sandisk0 ocf:linbit:drbd \
 params drbd_resource="sandisk0" drbdconf="/etc/drbd.conf" \
 op stop interval="0" timeout="100" \
 op start interval="0" timeout="240" \
 op monitor interval="20" role="Slave" timeout="20" start-delay="60" \
 op monitor interval="10" role="Master" timeout="20" start-delay="60"
primitive ip-iscsi ocf:heartbeat:IPaddr2 \
 params ip="172.16.50.20" cidr_netmask="24" \
 op stop interval="0" timeout="20s" \
 op monitor interval="10s" timeout="20s" \
 op start interval="0" timeout="20s"

Chapter 9 ■ Creating an Open Source SAN

119

primitive iscsitarget lsb:iscsitarget \
 op stop interval="0" timeout="15" \
 op start interval="0" timeout="15" \
 op monitor interval="15" timeout="15"
primitive vgsan ocf:heartbeat:LVM \
 params volgrpname="vgsan" \
 op monitor interval="10s" timeout="30" depth="0"
group iscsi-group vgsan ip-iscsi iscsitarget \
 meta target-role="Started"
ms sandisk_ms drbd_sandisk0 \
 meta clone-max="2" target-role="Started" notify="true"
order vgsan-after-drbd 1000: sandisk_ms iscsi-group
property $id="cib-bootstrap-options" \
 dc-version="1.1.6-b988976485d15cb702c9307df55512d323831a5e" \
 cluster-infrastructure="openais" \
 no-quorum-policy="ignore" \
 stonith-enabled="false" \
 expected-quorum-votes="2" \
 last-lrm-refresh="1393398237"
 

You can see that the essence of this configuration consists of two parts: the DRBD that is managed with the
master-slave resource drbd and the iscsi-group that is started after that device and makes sure that the iSCSI target
is available at a fixed IP address.

In this cluster, the ietd iSCSI target was used, because it’s an easy setup. The configuration in /etc/ietd.conf
looks as follows:
 
Target iqn.2014-02.santnet.sante:target1
Lun 0 Path=/dev/vgsan/lun0,Type=fileio
Lun 1 Path=/dev/vgsan/lun1,Type=fileio
Lun 2 Path=/dev/vgsan/lun2,Type=fileio
Lun 3 Path=/dev/vgsan/lun3,Type=fileio
 

The configuration of the DRBD is very similar to the configuration described previously in this chapter.
 
san-1:/etc/drbd.d # cat sandisk0.res
resource sandisk0 {
 protocol C;
 disk {
 on-io-error pass_on;
 fencing resource-only;
 }
 handlers {
 fence-peer "/usr/lib/drbd/crm-fence-peer.sh";
 after-resync-target "/usr/lib/drbd/crm-unfence-peer.sh";
 }
 on san-2.example.com {
 disk /dev/sdb;
 device /dev/drbd0;
 address 172.17.50.22:7676;
 meta-disk internal;
 }

Chapter 9 ■ Creating an Open Source SAN

120

 on san-1.example.com {
 disk /dev/sdb;
 device /dev/drbd0;
 address 172.17.50.21:7676;
 meta-disk internal;
 }
 syncer {
 rate 70M;
 }
}
 

Behind the drbd0 iSCSI device is a 1.5TB disk device, servicing dozens of iSCSI initiator hosts in a highly
commercial environment.

Summary
In this chapter, you have learned how to configure an open source storage area network (SAN), using Pacemaker
and other open source software. The result is a serious SAN that can be used in production environments and that
is actually operational at different customers’ sites around the globe. In Chapter 10, you will learn about another use
case, in which Pacemaker is used to provide high availability services for KVM or Xen virtual machines.

121

Chapter 10

Use Case: Creating a Solution for
Xen/KVM High Availability

In previous chapters, you read how virtual machines were used as cluster nodes, to ensure that availability of vital
resources is maximized. But what happens if the virtual machine itself goes down? Chances are that you’re using
VMware and, within VMware, have configured high availability (HA), which ensures that the virtual machines
themselves are restarted, if they go down. In this chapter, you’ll learn how to create an alternative, using open
source software.

In this chapter, the following topics are covered:

Open source virtualization solutions•	

Requirements for setting up an HA solution for virtual machines•	

Example of a virtual machine HA cluster•	

Configuration of Xen virtual machines•	

Configuration of KVMs (Kernal-based Virtual Machines)•	

Introduction: An Overview of Open Source Virtualization Solutions
VMware is dominating the market of virtualization solutions. But using VMware doesn’t make sense, if all you’re
running is Linux servers. Within Linux, there are different excellent solutions for virtualization: KVM, Xen, and Linux
containers. The advantage of all of these is that the technique is included in modern Linux distributions, so the
solution is available for free.

Xen
Of the three leading Linux virtualization solutions, Xen is the oldest. It became popular around the year 2006, by
introducing some solutions that were never seen before in the world of virtualization, and the Xen hypervisor was
included with leading Linux distributions, such as SUSE and Red Hat.

From the beginning, Xen had a hard time getting adopted by the Linux kernel. Many patches were applied to the
Linux kernel to make Xen virtualization happen, and that was the main reason why Xen didn’t become very popular
in the community of Linux developers. The popularity of the Xen project decreased even more when the company
that was created by the founders of Xen was acquired by Citrix, which made the future of Xen as an open source
virtualization platform even more uncertain.

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

122

Citrix, however, wasn’t really capable of turning Xen into a major success, which has led to the company largely
abandoning Xen virtualization, as well as its XenServer, the commercial solution that is based on Xen. As a result of
these events, it became possible for the Linux Foundation to take over the Xen project, which led to a revival of Xen in
the year 2013.

For some Linux distributions, Xen is still an important solution. SUSE and Oracle Linux are offering virtualization
solutions that are based on Xen, and with good reason, as some important customers have adopted Xen as their
default virtualization solution. There’s a reason why they’ve done that. Xen has been around for a long time now, and
the solution is stable. With the Linux Foundation taking over Xen, and important enterprise distributions such as the
SUSE Linux Enterprise Server, that are still offering Xen support, Xen for sure has a bright future.

KVM
Kernal-based Virtual Machine (KVM) is Linux kernel virtualization. The big advantage of KVM is that it is simple:
every Linux kernel includes the two kernel modules that are required for setting up a KVM virtual environment. To use
KVM virtualization, you need hardware support for virtualization on the CPU of your server. This support is offered by
default on most server-grade CPUs, but on the more basic CPU models, it may be missing, which makes it impossible
to use KVM virtualization.

KVM has become the leading hypervisor-based virtualization solution on Linux, especially since Red Hat
adopted the solution as its default and only virtualization solution, with the launch of Red Hat Enterprise Linux 6.

Requirements for Setting Up an HA Solution for Virtual Machines
For setting up a virtual machine cluster, a few specific items have to be set up. First and foremost, you need a
solution that allows multiple host computers to access the virtual machines simultaneously. In most cases, this is
accomplished by putting the virtual machine image files on a storage area network (SAN). Next, the hosts need a
connection to the SAN that allows them to access the virtual machine files and to write to the virtual machine files
simultaneously. There are three possible solutions.

You can set up a cluster file system such as GFS2 or OCFS2. This solution makes sense, if you •	
want to configure the virtual machines with an image file rather than a raw storage device that
is used for access.

You can set up a clustered LVM volume group with a logical volume that is accessible by all •	
nodes simultaneously. This setup allows for a configuration in which the virtual machine uses
a storage device as the back end for its virtual disk, which offers a somewhat more robust and
faster configuration.

You can arrange simultaneous access through a file-sharing service, such as NFS. This is the •	
least preferable solution, because file access via an NFS server is slower than direct file access,
and you would also need to take care of setting up a high availability solution for the NFS
server itself.

In theory, you could also set up a virtualization cluster on top of storage that can be accessed by one node at the
same time only.

Example of a Virtual Machine HA Cluster
There are different ways of creating a cluster for Xen virtual machines. The example from Listing 10-1 is used in
practice to guarantee the availability of Xen virtual machines.

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

123

Listing 10-1.  Xen HA Cluster

node xen-ha-01 \
 attributes standby="off"
node xen-ha-02 \
 attributes standby="off"
node xen-ha-03 \
 attributes standby="off"
node xen-ha-04 \
 attributes standby="off"
primitive clvmd ocf:lvm2:clvmd \
 operations $id="clvmd-operations" \
 op monitor interval="10" timeout="20" \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100" \
 params daemon_timeout="80"
primitive controld ocf:pacemaker:controld \
 operations $id="controld-operations" \
 op monitor interval="10" timeout="20" start-delay="0" \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100"
primitive fs_shared-fs ocf:heartbeat:Filesystem \
 operations $id="fs_shared-fs-operations" \
 op monitor interval="20" timeout="40" \
 op start interval="0" timeout="60" \
 op stop interval="0" timeout="60" \
 op notify interval="0" timeout="60" \
 params device="/dev/shared-fs/shared-fsvol" directory="/shared-fs" fstype="ocfs2"
primitive lvm_activate ocf:heartbeat:LVM \
 operations $id="lvm_activate-operations" \
 op monitor interval="10" timeout="180" \
 op start interval="0" timeout="120" \
 op stop interval="0" timeout="120" \
 params volgrpname="shared-fs" exclusive="false" partial_activation="true"
primitive o2cb ocf:ocfs2:o2cb \
 operations $id="o2cb-operations" \
 op monitor interval="10" timeout="20" \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100"
primitive ping ocf:pacemaker:ping \
 operations $id="ping-operations" \
 op monitor interval="10" timeout="60" \
 op start interval="0" timeout="60" \
 params host_list="192.168.1.254" multiplier="1000"
primitive stonith_sbd stonith:external/sbd \
 meta target-role="Started" \
 operations $id="stonith_sbd-operations" \
 op monitor interval="15" timeout="120" start-delay="15"

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

124

primitive xend lsb:xend \
 operations $id="xend-operations" \
 op monitor interval="15" timeout="30" \
 op start interval="0" timeout="300" \
 op stop interval="0" timeout="300"
primitive xen-vm-01 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-01-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-01.cfg"
primitive xen-vm-02 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-02-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-02.cfg"
primitive xen-vm-03 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-03-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-03.cfg"
primitive xen-vm-04 ocf:heartbeat:Xen \
 meta allow-migrate="true" target-role="Started" \
 operations $id="xen-vm-04-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-04.cfg"
primitive xen-vm-05 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-05-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-05.cfg"

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

125

primitive xen-vm-06 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-06-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-06.cfg"
primitive xen-vm-07 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-07-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-07.cfg"
primitive xen-vm-08 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-08-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-08.cfg"
primitive xen-vm-09 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-09-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-09.cfg"
group storage_group controld clvmd o2cb lvm_activate fs_shared-fs
clone ping_clone ping \
 meta target-role="Started" ordered="true"
clone storage_clone storage_group \
 meta target-role="Started" ordered="true"
clone xend_clone xend \
 meta target-role="Started" ordered="true"
location location_xen-vm-01 xen-vm-01 100: xen-ha-01
location location_xen-vm-02 xen-vm-02 100: xen-ha-01
location location_xen-vm-03 xen-vm-03 100: xen-ha-01
location location_xen-vm-04 xen-vm-04 100: xen-ha-02
location location_xen-vm-05 xen-vm-05 100: xen-ha-02
location location_xen-vm-06 xen-vm-06 100: xen-ha-03
location location_xen-vm-07 xen-vm-07 100: xen-ha-03
location location_xen-vm-08 xen-vm-08 100: xen-ha-04
location location_xen-vm-09 xen-vm-09 100: xen-ha-04

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

126

location ping_xen-vm-01 xen-vm-01 \
 rule $id="ping_xen-vm-01-rule" -inf: pingd lte 0
location ping_xen-vm-02 xen-vm-02 \
 rule $id="ping_xen-vm-02-rule" -inf: pingd lte 0
location ping_xen-vm-03 xen-vm-03 \
 rule $id="ping_xen-vm-03-rule" -inf: pingd lte 0
location ping_xen-vm-04 xen-vm-04 \
 rule $id="ping_xen-vm-04-rule" -inf: pingd lte 0
location ping_xen-vm-05 xen-vm-05 \
 rule $id="ping_xen-vm-05-rule" -inf: pingd lte 0
location ping_xen-vm-06 xen-vm-06 \
 rule $id="ping_xen-vm-06-rule" -inf: pingd lte 0
location ping_xen-vm-07 xen-vm-07 \
 rule $id="ping_xen-vm-07-rule" -inf: pingd lte 0
location ping_xen-vm-08 xen-vm-08 \
 rule $id="ping_xen-vm-08-rule" -inf: pingd lte 0
location ping_xen-vm-09 xen-vm-09 \
 rule $id="ping_xen-vm-09-rule" -inf: pingd lte 0
colocation storage_clone-with-xend_clone inf: storage_clone xend_clone
colocation xend_clone-with-ping_clone inf: xend_clone ping_clone
order storage_clone-after-xend_clone 0: xend_clone storage_clone
order xend_clone-after-ping_clone 0: ping_clone xend_clone
order xen-vm-01-after-storage_clone 0: storage_clone xen-vm-01
order xen-vm-02-after-storage_clone 0: storage_clone xen-vm-02
order xen-vm-03-after-storage_clone 0: storage_clone xen-vm-03
order xen-vm-04-after-storage_clone 0: storage_clone xen-vm-04
order xen-vm-05-after-storage_clone 0: storage_clone xen-vm-05
order xen-vm-06-after-storage_clone 0: storage_clone xen-vm-06
order xen-vm-07-after-storage_clone 0: storage_clone xen-vm-07
order xen-vm-08-after-storage_clone 0: storage_clone xen-vm-08
order xen-vm-09-after-storage_clone 0: storage_clone xen-vm-09
property $id="cib-bootstrap-options" \
 dc-version="1.1.7-77eeb099a504ceda05d648ed161ef8b1582c7daf" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="4" \
 no-quorum-policy="ignore" \
 stonith-action="poweroff" \
 default-resource-stickiness="INFINITY" \
 stonith-enabled="true" \
 symmetric-cluster="true" \
 stonith-timeout="60s" \
 maintenance-mode="false" \
 last-lrm-refresh="1384353701"
 

This configuration is used for a four-node cluster in which resources for an OCFS2 shared file system on top of
cLVM logical volumes is used. In this configuration, you can see the use of some resource agents and parameters that
haven’t been discussed before.

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

127

First, there is the ping resource.
 
primitive ping ocf:pacemaker:ping \
 operations $id="ping-operations" \
 op monitor interval="10" timeout="60" \
 op start interval="0" timeout="60" \
 params host_list="192.168.1.254" multiplier="1000"
 

This resource is used as a helper resource that monitors whether the node is still connected to the network. The
ping resource periodically pings a node that is supposed to be available at all times, in this case, the default gateway.
The secret of this resource is that it is used in a constraint, which creates a dependency between the ping resource
and the other resource(s) in the constraint. In this configuration, if the ping resource fails its test and generates an
exit code 0, it will fail the depending resource on that node as well, thus forcing a migration of the resource to another
node. When using a ping resource, make sure at all times to use the parameter multiplier=1000, or else it won’t
work. Note that the ping resource is configured as a clone, which ensures that it is started on all hosts in the cluster.

For the virtual machines themselves, two primitives are used (see Listing 10-2). First, there is the xend primitive.
xend is the interface that is required for managing Xen virtual machines, and it must be available before any virtual
machine is started. xend is a relatively simple resource, which is why the resource is configured as an LSB resource.
Next, the Xen virtual machines are defined.

Listing 10-2.  Required Resources for the Xen HA

primitive xend lsb:xend \
 operations $id="xend-operations" \
 op monitor interval="15" timeout="30" \
 op start interval="0" timeout="300" \
 op stop interval="0" timeout="300"
primitive xen-vm-01 ocf:heartbeat:Xen \
 meta target-role="Started" allow-migrate="true" \
 operations $id="xen-vm-01-operations" \
 op start interval="0" timeout="5400" \
 op stop interval="0" timeout="5400" \
 op monitor interval="300" timeout="300" start-delay="600" \
 op migrate_to interval="0" timeout="3600" \
 op migrate_from interval="0" timeout="120" \
 params xmfile="/shared-fs/xen-ha/configs/xen-vm-01.cfg"
 

The OCF resources for Xen virtual machines have a few specific attributes. First, they require the meta attribute
allow-migrate="true". This parameter is required to allow for live migration. Also, notice that the Xen RA has
a migrate to and a migrate from parameter, which defines the time-outs for a migration away from the current
location and a migration to the current location. Next, there is the xmfile parameter, which specifies where the
configuration file for the Xen virtual machine can be found.

Because it makes sense that all the virtual machines are started at a preferred node, there are a couple of
location constraints, each with a score of 100. This expresses a slight preference for the resources to run each on its
preferred node.

Last, there are the generic cluster properties. An interesting parameter is the no-quorum-policy, which is set to
ignore. That means that in case quorum is lost, the resources can still be migrated to the remaining nodes. The idea
behind this is that two nodes should suffice to run all virtual machines, and STONITH in this cluster is set up in a way
that guarantees that a split-brain situation can never occur. Also, notice default-resource-stickiness, which is
set to INFINITY. This ensures that the resources will stay where they are and never be migrated automatically, which
would be very bad for the availability of the services.

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

128

Creating a KVM HA Cluster
Many small environments are using KVM for high availability—not KVM in a managed solution like oVirt, but plain
KVM, where virtual machines are running directly on top of the hypervisor that is integrated in the Linux operating
system. In too many cases, it’s just KVM, and no measures have been taken to make sure that business goes on if the
host goes down. In this section, you’ll read how to provide a simple solution that takes care of ensuring the availability
of KVM virtual machines.

KVM is offered with the Linux kernel, so you can use it on any Linux distribution (Figure 10-1). For the KVM part,
there won’t be many differences. For the clustering part, however, there will. Even if clustering is more or less the same
on most Linux distributions, there are small differences that really do matter. As the Pacemaker stack originated from
the SUSE distribution, and Red Hat is just finalizing its solution in recent versions, in this section, I prefer explaining
the SUSE configuration. While trying to configure the setup described in this section on Red Hat, there are still some
rough edges that take away the flexibility to configure the solution that fits your needs best. On SUSE, it all just works.
The version used is a completely patched OpenSUSE 13.1.

Figure 10-1.  KVM virtualization overview

The procedure described here assumes that the nodes are already configured to a storage area network (SAN). If
this is not the case, it is relatively easy to connect virtualization hosts to a Linux SAN, which is offered shared storage
based on the LIO or IET iSCSI target. You can, of course, also use an SAN appliance, if your environment has one. Do
make sure, though, that you’re using an SAN and not network-attached storage (NAS). High availability based on NAS
is possible for virtual machines but not recommended, for performance and reliability reasons. Also, in the following
procedure, you’ll learn how to build the cluster, using the OCFS2 shared file system, and that only works if you’re on
an SAN.

To configure a KVM HA cluster, the following steps must to be performed:

	 1.	 Create the base cluster.

	 2.	 Configure an OCFS2 cluster file system on the SAN.

	 3.	 Install a KVM virtual machine using the SAN disk as the storage back end.

	 4.	 Set up Pacemaker cluster resources for the KVM virtual machine.

	 5.	 Verify the cluster configuration.

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

129

Creating the Base Cluster
To create the basic cluster on OpenSUSE 13.1, you have to perform the following steps:

	 1.	 Use zypper in pacemaker ocfs2-tools lvm2-clvm to install all of the packages required
to build the cluster.

	 2.	 The cluster consists of two layers. The lower layer takes care of communications in the
cluster and is called Corosync. The upper layer takes care of resource management. To
configure the lower layer, a good sample configuration file is provided with the name
/etc/corosync/corosync.conf.example. Copy this file to the file /etc/corosync/
corosync.conf and make sure to modify the following lines:

 
bindnetaddr: 192.168.4.0
 
quorum {
 # Enable and configure quorum subsystem (default: off)
 # see also corosync.conf.5 and votequorum.5
 provider: corosync_votequorum
 expected_votes: 2
}
 

The bindnetaddr line should reflect the IP network address that your node uses to communicate on the network.
The quorum lines tell the cluster how many nodes to expect.

	 3.	 Start and enable the Corosync and Pacemaker services, using systemctl start corosync;
systemctl start pacemaker; systemctl enable corosync; systemctl enable
pacemaker.

	 4.	 Type crm_mon. This should give an output as in Listing 10-1, which verifies that the cluster
is operational.
 
Last updated: Sun May 11 19:38:24 2014
Last change: Sun May 11 19:38:24 2014 by root via cibadmin on suse1
Stack: corosync
Current DC: suse1 (3232236745) - partition with quorum
Version: 1.1.10-1.2-d9bb763
2 Nodes configured
0 Resources configured
 
Online: [suse1 suse2]

Configure the SAN for Shared Storage
To set up the OCFS2 shared file system, you first have to start some supporting services on the cluster. Type crm
configure edit and make sure the following lines are added to the file:
 
primitive dlm ocf:pacemaker:controld \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100" \
 op monitor interval="10" timeout="20" start-delay="0"

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

130

primitive o2cb ocf:ocfs2:o2cb \
 op stop interval="0" timeout="100" \
 op start interval="0" timeout="90" \
 op monitor interval="20" timeout="20"
group ocfs2-base-group dlm o2cb
clone ocfs2-base-clone ocfs2-base-group \
 meta ordered="true" clone-max="2" clone-node-max="1"
property $id="cib-bootstrap-options" \
 cluster-infrastructure="corosync" \
 stonith-enabled="false"
 

After starting these basic services, you can create the ocfs2 file system. To do this, type mkfs.ocfs2 /dev/sdb.
Next, create a directory with the name /shared on both nodes and type crm configure edit again. At this point, add
the following to the cluster configuration:
 
primitive ocfs-fs ocf:heartbeat:Filesystem \
 params fstype="ocfs2" device="/dev/disk/by-path/ip-192.168.1.125:3260-iscsi-iqn.2014-01.com.
example:kiabi" directory="/shared" \
 op stop interval="0" timeout="60" \
 op start interval="0" timeout="60" \
 op monitor interval="20" timeout="40"
clone ocfs-fs-clone ocfs-fs \
 meta clone-max="2" clone-node-max=1
order ocfs2-fs-after-ocfs-base 1000: ocfs2-base-clone ocfs-fs
 

Now, at both nodes, you should have a shared file system available and mounted on the /shared directory. Files
that are written to one node will be immediately visible and accessible at the other node, which is exactly what you
need to set up a high availability environment for virtual machines.

Installing a KVM Virtual Machine
To install KVM virtual machines, the virtualization host has to run the libvirt service. Use systemctl start
libvirtd; systemctl enable libvirtd to do this. If this is the case, there are two solutions for starting the installation:
you can either use the Virtual Machine Manager graphical tool, or you can use virt-install. The Virtual Machine
Manager, which is started with the virt-manager command, requires an X-server to display its graphical windows and
might, for that reason, not be feasible. The virt-manager utility is also useful, if no graphical environment is available,
and allows you to create virtual machines from a scripted environment in a non-interactive way.

To start the VM installation using virt-install, you can use a command such as the following:
 
virt-install --name smallcent --ram 512 --disk path=/shared/smallcent.img,size=4 --network
network:default --vnc --cdrom /isos/CentOS-6.5-x86_64-bin-DVD1.iso
 

By this command, all properties of the virtual machine are specified. The name of the virtual machine is set
to smallcent. This name is important, because it must be used when creating the cluster resource for the virtual
machine. 512MB of RAM is allocated, and a disk file with a size of 4GB is created in the directory /shared. Note that
this directory is supposed to be on the OCFS2 volume that was created in the previous step of this procedure.

For the network, a default configuration is used. The next parameter is important, because it opens a VNC viewer
on the virtual machine, which allows the installation of the virtual machine to be completed interactively. The last
parameter refers to the CD-ROM device that is used to complete the VM installation.

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

131

In this setup, an interactive installation is started. In some cases, this will not be feasible, because no terminal is
connected to the virtualization host. In such a scenario, an automated installation has to be used. Covering such an
installation goes beyond the scope of this book. Consult your distributions documentation for directions on how to set
up an AutoYast (SUSE) or Kickstart (Red Hat) server that can help you with this.

Setting Up Cluster Resources for the KVM Virtual Machine
To integrate the virtual machine in the cluster, you have to make the configuration of the virtual machine available to
the cluster. To do this, you have to dump the XML configuration of the virtual machine to a text file. First, use virsh
list --all to verify the name of the virtual machine. In this example, the name of the virtual machine is smallcent.
Because the cluster needs access to the XML file containing the definition of the virtual machine, you have to dump it
to a file that is on the shared storage device that you’ve set up earlier. To do this, type virsh dumpxml smallcent >
/shared/smallcent.xml.

At this point, you can create the resource for the virtual machine in the cluster. The VirtualDomain resource
agent is used for this purpose. Use crm configure edit and include a configuration that looks like the following:
 
primitive smallcent ocf:pacemaker:VirtualDomain \
 params hypervisor="qemu:///system" migration_transport="ssh" config="/shared/smallcent.xml" \
 meta allow-migrate="true" \
 op stop timeout="120" interval="0" \
 op start timeout="120" interval="0" \
 op monitor interval="20" timeout="20"
 

Note that for the cluster to be able to manage the resource, it is essential that the XML file that contains the
configuration be used from all nodes in the cluster. Therefore, you must make sure to put it on the shared storage
device. In the preceding pcs command, you’ll create a resource with the name smallcent, using the VirtualDomain
resource agent. This resource agent must know where it can find the hypervisor, which is done by including
hypervisor="qemu://system" in the resource definition. To allow for migration of this virtual machine, the
migration_transport mechanism is defined as ssh. Note that this only works if the hosts are configured with keys
that allow for automated login from one host to the other. Next, you have to indicate where the cluster can find the
XML configuration that is used to manage the resource.

At this point, the configuration, as shown with crm configure edit, should resemble the following listing:
 
node $id="3232236745" suse1
node $id="3232236746" suse2
primitive dlm ocf:pacemaker:controld \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100" \
 op monitor interval="10" timeout="20" start-delay="0"
primitive o2cb ocf:ocfs2:o2cb \
 op stop interval="0" timeout="100" \
 op start interval="0" timeout="90" \
 op monitor interval="20" timeout="20"
primitive smallcent ocf:pacemaker:VirtualDomain \
 params hypervisor="qemu:///system" migration_transport="ssh" config="/shared/smallcent.xml" \
 meta allow-migrate="true" \
 op stop timeout="120" interval="0" \
 op start timeout="120" interval="0" \
 op monitor interval="20" timeout="20"

Chapter 10 ■ Use Case: Creating a Solution for Xen/KVM High Availability

132

group ocfs2-base-group dlm o2cb
clone ocfs2-base-clone ocfs2-base-group \
 meta ordered="true" clone-max="2" clone-node-max="1"
property $id="cib-bootstrap-options" \
 dc-version="1.1.10-1.2-d9bb763" \
 cluster-infrastructure="corosync" \
 stonith-enabled="false" \
 last-lrm-refresh="1399852426"
#vim:set syntax=pcmk
 

You can now verify the working of the configuration, using the crm_mon command. If all is configured correctly,
you should now have a fully operational KVM high availability cluster.

Summary
In this chapter, you have learned how to set up a high availability cluster for virtual machines. The next and final
chapter will show you how to set up a complex cluster where web servers and database servers that are both
configured for high availability are working together.

133

Chapter 11

Use Case: Configuring a
Load-Balanced Mail Front End
with a Database Back End

Customer Situation
The configuration that is described in this chapter is part of the most complex cluster that I have ever created. In
fact, it’s not just a cluster, it’s a group of clusters working together to provide a highly redundant environment that is
used by medical doctors in France to access a web-based mailbox. In this chapter, I’m only discussing a part of the
configuration, in which two clusters are working together to deliver e-mail.

The customer expected a substantial workload, so it wanted an environment that is not only redundant from the
perspective of high availability but that also offers simplified load-balancing services. The solution had to be portable
and deployed at customer sites as an appliance; therefore, it had to contain everything from within, without any
dependencies to external hardware or other resources. For that reason, the load balancing was taken care of by round-
robin Domain Name System (DNS).

A challenge when working with round-robin DNS is that it is completely ignorant of the current state of the IP
addresses in the round-robin configuration. In round-robin DNS, multiple IP addresses are configured for one DNS
name. The first connection gets the first IP address, the second connection gets the second IP address, and so on. But
if one of the IP addresses becomes unavailable, round-robin DNS will never know. Therefore, the cluster is configured
with “floating” IP addresses on the public site of the cluster. These floating IP addresses ensure that all IP addresses
that are configured in the round-robin DNS configuration will be available at all times, even if one of the servers goes
down. This allows users to access the Postfix mail servers behind the IP addresses at all times.

At the back end, the customer was using an application that required access to a Postgres database. As the
solution had to be highly available all the way, the Postgres database was in a cluster configuration as well. Note in the
overview picture that the data this collection of clusters is accessing is on an open source SAN solution, as described
in Chapter 9. Figure 11-1 gives an overview of the configuration.

Chapter 11 ■ Use Case: Configuring a Load-Balanced Mail Front End with a Database Back End

134

Database Back End
The back end of the cluster described in this chapter is the database. This cluster is relatively simple and runs on KVM
virtual machines. Because KVM is used as the platform, the STONITH agents in this cluster are based on libvirt, as
you can see in the sample code from Listing 11-1.

Listing 11-1.  Database Cluster

chimay:~ # cat cluster-santnet-pgsql-new.conf
node pgsql-1.example.com
node pgsql-2.example.com
primitive db-pgsql ocf:heartbeat:pgsql \
 op stop interval="0" timeout="120" \
 op start interval="0" timeout="120" \
 op monitor interval="30" timeout="30" \
 meta target-role="Started"
primitive dlm ocf:pacemaker:controld \
 op start interval="0" timeout="90" \
 op stop interval="0" timeout="100" \
 op monitor interval="10" timeout="20" start-delay="0"
primitive ip-pgsql ocf:heartbeat:IPaddr2 \
 params cidr_netmask="24" ip="192.168.50.30" \
 op stop interval="0" timeout="20s" \
 op start interval="0" timeout="20s" \
 op monitor interval="10s" timeout="20s"
primitive o2cb ocf:ocfs2:o2cb \
 op stop interval="0" timeout="100" \
 op start interval="0" timeout="90" \
 op monitor interval="20" timeout="20"

KVM-2KVM-1

F-pgsql
10.29.135.30

PGSQL-2
10.100.37.197

172.16.50.32
PGSQL-1
10.100.37.198

172.16.50.31

F-mailSMTP-1 SMTP-2 IMAP-1 IMAP-2
10.96.18.135

10.96.18.129

10.96.18.136

10.96.18.130

10.96.18.137

10.96.18.131

10.96.18.138

10.96.18.132

B-mailL-SMTP-1 L-SMTP-2 L-IMAP-1 L-IMAP-2
10.100.37.193 10.100.37.194 10.100.37.195 10.100.37.196

172.16.50.11 172.16.50.12 172.16.50.41 172.16.50.42

DRBDSAN-1
10.100.37.205

SAN-2
10.100.37.206

172.16.50.20

172.17.50.21 172.17.50.22

172.16.50.21 172.16.50.22

INTERNET

SWITCH
DRBD

F-webWEB-1 WEB-2
10.96.18.139

10.96.18.133

10.96.18.140

10.96.18.134

F-webL-WEB-1 F-webL-WEB-1WE L-WEB-2L-WEB-1
10.100.37.199

172.16.40.43

10.100.37.200

172.16.50.44

109.26.243.41 109.26.243.42 109.26.243.43 109.26.243.44 109.26.243.45 109.26.243.46

BOX-1 BOX-2
10.96.18.145

10.96.18.143

10.96.18.146

10.96.18.144

SANTNETBOX-ETAB

EXCHANGE
F-SYSLOGL-LOG-1

10.100.37.203

EXCHANGE
10.100.37.199

172.16.40.43

F-webNS-1 NS-2
10.100.37.201 10.100.37.202

F-web

Figure 11-1.  Use case overview

Chapter 11 ■ Use Case: Configuring a Load-Balanced Mail Front End with a Database Back End

135

primitive ocfs2-fs-pgsql ocf:heartbeat:Filesystem \
 params fstype="ocfs2" device="/dev/disk/by-path/ip-172.16.50.20:3260-iscsi-iqn.2014-02.
santnet.sante:target1-lun-0-part1" directory="/var/lib/pgsql" \
 op stop interval="0" timeout="60" \
 op start interval="0" timeout="60" \
 op monitor interval="20" timeout="40"
primitive stonith-vmkvm-pgsql-1 stonith:external/libvirt \
 params hostlist="pgsql-1" hypervisor_uri="qemu+ssh://chimay/system" \
 op monitor interval="60" timeout="20" start-delay="15" \
 op stop interval="0" timeout="15" \
 op start interval="0" timeout="20" \
 meta target-role="Started"
primitive stonith-vmkvm-pgsql-2 stonith:external/libvirt \
 params hostlist="pgsql-2" hypervisor_uri="qemu+ssh://chimay/system" \
 op monitor interval="60" timeout="20" start-delay="15" \
 op stop interval="0" timeout="15" \
 op start interval="0" timeout="20" \
 meta target-role="Started"
group ocfs2-base-group dlm o2cb
group pgsql-group ip-pgsql db-pgsql \
 meta target-role="Started"
clone ocfs2-base-clone ocfs2-base-group \
 meta ordered="true" interleaved="true" clone-max="2" clone-node-max="1"
target-role="Started"
clone ocfs2-fs-clone ocfs2-fs-pgsql \
 meta target-role="Started"
location fence-pgsql-1 stonith-vmkvm-pgsql-1 -inf: pgsql-1.example.com
location fence-pgsql-2 stonith-vmkvm-pgsql-2 -inf: pgsql-2.example.com
order ocfs2-fs-pgsql-after-ocfs2-base 1000: ocfs2-base-clone ocfs2-fs-clone
property $id="cib-bootstrap-options" \
 dc-version="1.1.6-b988976485d15cb702c9307df55512d323831a5e" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="2" \
 no-quorum-policy="ignore" \
 stonith-action="poweroff" \
 last-lrm-refresh="1393400151"
 

When setting up a database cluster, this can be an active/active setup, a master-slave setup, or an active/
passive setup. You might be tempted to think the setup has to be active/active or master-slave, but this is not
required in most cases.

active/active database configurations are required only in high-load environments. The same goes for
master-slave configurations. Also, in nearly all cases, to create a master-slave configuration, support in the
database itself is required. This support, in most cases, also means that additional licenses have to be purchased, and
that makes master-slave configurations in general relatively expensive.

The main difference between a master-slave database configuration and an active/passive configuration is
that in a master/slave configuration, the slave database is already loaded and synchronizing. The result is that if the
master goes down, the slave can take over very fast. This allows the database to react very fast on issues in the cluster.
In an active/passive configuration, the procedure is a lot slower.

Chapter 11 ■ Use Case: Configuring a Load-Balanced Mail Front End with a Database Back End

136

	 1.	 The cluster must detect that the active database is no longer responding.

	 2.	 If the entire node hosting the active database is no longer responding, the node has to be
fenced.

	 3.	 The database has to load on the other cluster node.

In the sample cluster discussed here, an OCFS2 file system is used. Note that this is not a real requirement for
active/passive database configurations, but the customer had a strong preference for a clones OCFS2 file system.
There is also a benefit in such a configuration.

If a cluster is created in which an Ext4 or XFS file system is a part of the cluster resource, the risk of corruption is
higher. Such a corruption may arise when node2 thinks that node1 is down, sends a STONITH to that node, STONITH
fails, but resources are migrated anyway. True, it’s not an extremely likely scenario, but a scenario that is real enough
to consider. (In fact, I have seen such a scenario occurring, not because STONITH was failing, but because the
administrator of the cluster made a stupid error.) If such a situation arises, you may end up with two databases,
both writing to the same file system, without being aware of that. The result in the end is that the file system will be
corrupted. To ensure that this would never happen, in this case, an OCFS2 file system was used.

The interesting part in the configuration of this cluster is in the dependencies of the resources that are different
in nature. First, there is the ocfs2-base-group resource, which takes care of loading dlm and o2cb (the prerequisites
for any OCFSs file system). Next, there is the ocfs2-base-clone, which can only load once the ocfs2-base-group
resource has been loaded. And only when the ocfs2-base-clone has been loaded successfully, can the pgsql-group
be loaded. The only way to make sure that this is occurring correctly is by using order constraints.

First, an order constraint is needed to load the OCFS2 file system after the ocfs2-base-group. Next, an order
constraint is defined between the pgsql-group and the ocfs2-file-system. Note that in Listing 11-1, this second
constraint is missing. (That’s what happens when talking about real-life configurations, which offer a nice opportunity
for new contact with the customer.)

Mail Front End
As mentioned previously, the mail front end has to support the round-robin Domain Name System (DNS) load
balancing (which has nothing to do with the rest of this cluster). For that reason, floating IP addresses are defined. In
this cluster, Internet Message Access Protocol (IMAP) services and Simple Mail Transfer Protocol (SMTP) services
are provided. The idea is that the SMTP services have a preference for two specific nodes in the cluster, and the IMAP
services have a preference for two other specific nodes in this cluster. To accomplish this, you can see that several
constraints are used in this cluster.

The interesting part of this cluster is in the floating IP addresses. The SMTP addresses for the SMTP servers can
run on either the smtp-1 or the smtp-2 hosts, and the addresses for the IMAP servers can run on imap-1 or imap-2.
Note that the score that is used in these constraints is only set to 1,000. This score ensures that if both SMTP servers
are down, the IP address will still be serviced by the IMAP servers.

The SMTP service also plays an important role in this cluster. It has to be started twice, once on each SMTP node.
This is accomplished by putting the primitive in a clone resource that has a location constraint that is set with a score
of -inf, which means never, to run on the IMAP servers. In Listing 11-2, you can see the complete configuration for
this mail front-end cluster.

Listing 11-2.  Use Case Mail Front-End Cluster

chimay:~ # cat cluster-santnet-4node-extern.conf
node imap-1.msexample.com
node imap-2.msexample.com
node smtp-1.msexample.com
node smtp-2.msexample.com

Chapter 11 ■ Use Case: Configuring a Load-Balanced Mail Front End with a Database Back End

137

primitive ip-smtp-1 ocf:heartbeat:IPaddr2 \
 params ip="194.0.153.51" cidr_netmask="24" \
 op stop interval="0" timeout="20s" \
 op monitor interval="10s" timeout="20s" \
 op start interval="0" timeout="20s" \
 meta target-role="Started"
primitive ip-smtp-2 ocf:heartbeat:IPaddr2 \
 params ip="194.0.153.52" cidr_netmask="24" \
 op stop interval="0" timeout="20s" \
 op monitor interval="10s" timeout="20s" \
 op start interval="0" timeout="20s" \
 meta target-role="Started"
primitive ip-imap-1 ocf:heartbeat:IPaddr2 \
 params ip="194.0.153.53" cidr_netmask="24" \
 op stop interval="0" timeout="20s" \
 op monitor interval="10s" timeout="20s" \
 op start interval="0" timeout="20s" \
 meta target-role="Started"
primitive ip-imap-2 ocf:heartbeat:IPaddr2 \
 params ip="194.0.153.54" cidr_netmask="24" \
 op stop interval="0" timeout="20s" \
 op monitor interval="10s" timeout="20s" \
 op start interval="0" timeout="20s" \
 meta target-role="Started"
primitive service-postfix-1 ocf:heartbeat:postfix \
 op stop interval="0" timeout="60" \
 op start interval="0" timeout="60" \
 op monitor interval="20" timeout="40" \
 meta target-role="Started"
primitive stonith-vmkvm-imap-1 stonith:external/libvirt \
 params hostlist="imap-1.msexample.com" hypervisor_uri="qemu+ssh://192.168.50.254/system" \
 op monitor interval="60" timeout="20" start-delay="15" \
 op stop interval="0" timeout="15" \
 op start interval="0" timeout="20" \
 meta target-role="Started"
primitive stonith-vmkvm-imap-2 stonith:external/libvirt \
 params hostlist="imap-2.msexample.com" hypervisor_uri="qemu+ssh://192.168.50.254/system" \
 op monitor interval="60" timeout="20" start-delay="15" \
 op stop interval="0" timeout="15" \
 op start interval="0" timeout="20" \
 meta target-role="Started"
primitive stonith-vmkvm-smtp-1 stonith:external/libvirt \
 params hostlist="smtp-1.msexample.com" hypervisor_uri="qemu+ssh://192.168.50.254/system" \
 op monitor interval="60" timeout="20" start-delay="15" \
 op stop interval="0" timeout="15" \
 op start interval="0" timeout="20" \
 meta target-role="Started"

Chapter 11 ■ Use Case: Configuring a Load-Balanced Mail Front End with a Database Back End

138

primitive stonith-vmkvm-smtp-2 stonith:external/libvirt \
 params hostlist="smtp-2.msexample.com" hypervisor_uri="qemu+ssh://192.168.50.254/system" \
 op monitor interval="60" timeout="20" start-delay="15" \
 op stop interval="0" timeout="15" \
 op start interval="0" timeout="20" \
 meta target-role="Started"
clone smtp-clone service-postfix-1 \
 meta clone-max="2" target-role="Started" clone-node-max="1"
location clone-postfix-loc smtp-clone \
 rule $id="clone-postfix-loc-rule" -inf: #uname eq imap-2.msexample.com or #uname eq
imap-1.msexample.com
location fence-imap-1 stonith-vmkvm-imap-1 -inf: imap-1.msexample.com
location fence-imap-2 stonith-vmkvm-imap-2 -inf: imap-2.msexample.com
location fence-smtp-1 stonith-vmkvm-smtp-1 -inf: smtp-1.msexample.com
location fence-smtp-2 stonith-vmkvm-smtp-2 -inf: smtp-2.msexample.com
location ip-imap-1-loc ip-imap-1 \
 rule $id="ip-imap-1-loc-rule" 1000: #uname eq imap-1.msexample.com or #uname eq
imap-2.msexample.com
location ip-imap-2-loc ip-imap-2 \
 rule $id="ip-imap-2-loc-rule" 1000: #uname eq imap-2.msexample.com or #uname eq
imap-1.msexample.com
location ip-smtp-1-loc ip-smtp-1 \
 rule $id="ip-smtp-1-loc-rule" 1000: #uname eq smtp-1.msexample.com or #uname eq
smtp-2.msexample.com
location ip-smtp-2-loc ip-smtp-2 \
 rule $id="ip-smtp-2-loc-rule" 1000: #uname eq smtp-2.msexample.com or #uname eq
smtp-1.msexample.com
property $id="cib-bootstrap-options" \
 dc-version="1.1.6-b988976485d15cb702c9307df55512d323831a5e" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="4" \
 stonith-action="poweroff" \
 last-lrm-refresh="1391077071"

One Big Cluster or Many Little Clusters?
A question that has arisen while creating this solution is which approach to take. Two different solutions are possible.
It’s an option to create one big cluster, with a total of 14 hosts in this case, that are trying to take care of all services. In
this environment, I selected the solution with many clusters communicating with one another.

To determine whether you need one big cluster or many little clusters, it is important to gauge dependency
relations between services. If there are complex dependency relations, and you want to move resources if some
depending resources are failing, it makes sense to put them all in one big cluster. This wasn’t the case in this
configuration. Communications between the mail front-end cluster and the database back-end cluster was simply
based on IP address, and no other dependencies had to be defined. That is why in this solution, a configuration was
created with many small clusters. Such a configuration has the advantage of making it relatively easy to focus on
specific problems. Should one big cluster have been created, the need for complex constraints, defining relations
between resources, would have been much bigger. This would also have resulted in it being more difficult to get an
overview of resources in the cluster.

Chapter 11 ■ Use Case: Configuring a Load-Balanced Mail Front End with a Database Back End

139

Summary
In this chapter, you have read how Pacemaker can be used to create a complex configuration, where multiple clusters
are working together to create one big solution, where everything is highly available. As IT solutions tend to become
more complicated, resolutions such as this are becoming more common. If a configuration is required in which
multiple nodes have to work together to provide a solution that is highly available, the approach of creating multiple
clusters that communicate with one another is preferable to a solution in which one big cluster tries to host all. By
using several independent clusters, management is made easier.

A, B�       �
Apache web service, 71

C�       �
cibadmin tool, 48
Cluster file system, 87
Cluster information base (CIB), 107

cibadmin–Q output, 39–40
clones, 41
crm_config, 40
groups, 41
master slaves, 41
<nodes> section, 40
primitives, 41

Clustering resources
Apache web service, 71
constraints

configuration, 80–81
creation, 78
rule editor, 79
scores, 78
types, 77

creation
add resources, 74
apache OCF resource, 74
block device, 74
cidr netmask, 73
crm command, 73
directory, 74
fstype, 74
operations, 75–76
resource loading, 75
shared storage device, 72

resource agents (RAs), 71–73, 81
resources grouping, 76

Clustering storage
cluster file system, 87

OCFS2 file system
clone-max, 89
clone resource, 88
cLVM2, 94
GFS2, 95
LVM2 (see Logical Volume Manager (LVM2))
ocfs2-base-clone, 90

Cluster management task
backup and restore configuration, 107
log files, 105
maintenance mode, 105
monitor cluster state

crm_mon, 98
crm resource status, 99
crm status, 99
Hawk, 99

node management, 104
resource cleanup, 103
resource migration, 102
starting and stopping resources, 97
unmanaged mode, maintenance, 104

Cluster resource manager daemon (crmd), 41
Cluster settings

default cluster settings
default-resource-stickiness parameter, 52
Hawk web interface, 53
no-quorum-policy, 51

STONITH (see Shoot The Other Node
In The Head (STONITH))

Colocation constraint, 77
Common Internet File System (CIFS), 10

D, E�       �
Database back end cluster

active/active configurations, 135
active/passive configuration, 135
master-slave configuration, 135
ocfs2-base-group resource, 136

Index

141

Default cluster settings
default-resource-stickiness parameter, 52
Hawk web interface, 53
no-quorum-policy, 51

Distributed lock manager (DLM), 38
Distributed replicated block device (DRBD)

active node, 109
configuration

drbd0, 111
drbdadm command, 112
drbdadm dump all command, 112
drbd.conf file, 110
generic settings, 110
node1 and node2, 110
output, 113
service drbd start command, 112
uname command, 111

delta-sync, 109
dual primary mode, 114
local hard disk, 110
pacemaker clusters integration, 114
primary/secondary setup, 113
split-brain survivor, 113
split-brain victim, 113
standby node, 109

Distributed replicated block device (DRBD), 72

F, G�       �
Fibre Channel SANs, 11

H�       �
HAProxy, 2
High availability clusters

Linux (see Linux high availability clusters)
multiple servers, 3
VMware vSphere HA, 3
vSphere monitor, 3

High Availability Web Konsole (Hawk)
cluster summary, 46
management interface, 46
service script, 46
simulator, 48
SSH key–based access, 48
table view, 47
tree view, 46

High performance cluster, 1

I, J�       �
Internet Message Access Protocol (IMAP), 136

K�       �
Kernal-based Virtual Machine (KVM)

advantage, 122
cluster creation, 129
crm_mon command, 132
installation, 130
Linux distribution, 128
LIO/IET iSCSI target, 128
OCFS2 shared file system, 128
requirements, 122
SAN configuration, 129
VirtualDomain resource agent, 131

L�       �
Libvirt hypervisor-based STONITH, 55
Linux high availability clusters

cluster membership and resource management, 4
components

bonded network devices, 6
cluster network layout, 6
fencing/STONITH devices, 6
multipathing, 6
quorum, 6
shared storage, 5

Heartbeat, 4
Red Hat high availability, 4

Linux Standard Base (LSB), 72
Linux Virtual Server (LVS) project, 2
Load balancing clusters, 2
Local resource manager daemon (lrmd), 41
Location constraint, 77
Logical unit numbers (LUNs), 11
Logical Volume Manager (LVM2)

cLVM2-clone, 91
cLVM2d, 90
crm resource cleanup vgcluster-clone, 93
crm resource status vgcluster-clone, 93
vgcreate command, 92

M�       �
Mail front-end cluster, 136
Membership layer configuration

bond interface, 28
cman, 35–36
corosync, 30

base cluster setup, 30
configuration settings, 33
pacemaker cluster manager, 32
unicast, 34–35

■ index

142

verification, 32
multicast support, 29
network bonding modes, 28

N�       �
Network attached storage (NAS), 10
Network File System (NFS), 5

O�       �
OCFS2 file system

clone-max, 89
clone resource, 88
cLVM2, 94
LVM2 (see Logical Volume Manager (LVM2))
ocfs2-base-clone, 90

Open Cluster Framework (OCF), 72
Open source storage area network (SAN)

DRBD (see Distributed replicated block device
(DRBD))

iSCSI target
complex configuration, 116
setting up, 117
simple configuration, 115

LVM, 110, 117
Order constraint, 77

P, Q�       �
Pacemaker

cibadmin, 48
corosync/cman, 38
crm_gui, 48
crm_mon command, 48
crm shell

bash command line, 42, 45
configuration, 43–45
features, 43
interface, 42

Hawk
cluster summary, 46
management interface, 46
service script, 46
simulator, 48
SSH key–based access, 48
table view, 47
tree view, 46–47

internal components
architecture, 38
CIB (see Cluster information base (CIB))

crmd, 41
lrmd, 41
pengine, 41
stonithd/fenced, 41

luci and ricci services, 49
pcs package, 49
resource agents, 38
storage layer, 38

policy engine (pengine), 41

R�       �
Red Hat clusters, 68

S, T, U, V�       �
SAN. See Open source storage area network (SAN)
Shared storage

binaries, 9
configuration files, 9
Fibre Channel SANs, 11
iSCSI configuration

disconnection, 20
Linux-IO (LIO) target, 12, 16
SAN, 16, 20
target and initiator, 12

multipathing, 20, 26
network attached storage, 10
nodes and setup, 10
storage area network, 11

Shoot The Other Node In The Head (STONITH)
agents, 55
configuration, 63
hardware-based STONITH

APC master STONITH device configuration, 63
APC PDU, 59
APC power switch, 58
outlet control/configuration menu, 60–61
power management options, 60
SNMP menu, 62

hypervisor-based, 54
IPMI standard, 66
KVM-based STONITH agent, 54
libvirt hypervisor-based STONITH, 55
meatware STONITH, 54
null STONITH, 54
Red Hat clusters, 68
SBD, 67
shared disk, 54

Simple Mail Transfer Protocol (SMTP), 136
Simple Network Management Protocol (SNMP), 61

■ Index

143

Single System Image (SSI), 1
STONITH Block Device (SBD), 67
STONITH devices, 7
Storage area network (SAN), 5, 10

W�       �
World Wide ID (WWID), 24

X, Y, Z�       �
Xen virtual machines

high availability cluster, 123
OCF resources, 127
ping resource, 127
requirements, 122
SUSE and Red Hat Linux distributions, 121

■ index

144

Pro Linux High
Availability Clustering

Sander van Vugt

Pro Linux High Availability Clustering

Copyright © 2014 by Sander van Vugt

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0080-3

ISBN-13 (electronic): 978-1-4842-0079-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the author nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Louise Corrigan
Technical Reviewers: Menno van Saagsvelt, Lars Marowsky-Brée
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: Michael G. Laraque
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code

Ce livre est dedié à Florence

vii

Contents

About the Author���xiii

About the Technical Reviewers��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: High Availability Clustering and Its Architecture■■ ��1

Different Kinds of Clustering��1

High Performance Clusters��� 1

Load Balancing Clusters��� 2

High Availability Clusters�� 3

What to Expect from High Availability Clusters��3

History of High Availability Clustering in Linux���4

Heartbeat 2.0 and Red Hat Cluster Suite�� 4

Cluster Membership and Resource Management�� 4

The Components That Build a High Availability Cluster��4

Shared Storage��� 5

Different Networks��� 5

Bonded Network Devices��� 6

Multipathing��� 6

Fencing/STONITH Devices and Quorum�� 6

Summary��7

■ Contents

viii

Chapter 2: Configuring Storage■■ ��9

Why Most Clusters Need Shared Storage��9

NAS or SAN?���10

NAS��� 10

SAN��� 10

iSCSI or Fibre Channel?��11

Understanding iSCSI��� 12

Configuring the LIO iSCSI Target��12

Connecting to an iSCSI SAN���16

Step 1: discovery Mode�� 17

Step 2: node Mode�� 18

Step 3: Managing the iSCSI Connection��� 19

Disconnecting an iSCSI Session��� 20

Setting Up Multipathing��20

/etc/multipath.conf��� 22

Specific Use Cases for Multipath�� 24

Summary��26

Chapter 3: Configuring the Membership Layer■■ ���27

Configuring the Network��27

Network Bonding Modes�� 28

Configuring the Bond Interface��� 28

Dealing with Multicast���29

corosync or cman?���30

Configuring corosync���30

Understanding corosync.conf Settings��� 33

Networks Without Multicast Support�� 33

Configuring cman���35

Summary��36

■ Contents

ix

Chapter 4: Understanding Pacemaker Architecture and Management■■ ����������������������������37

Pacemaker Related to Other Parts of the Cluster���37

Resource Agents��� 38

corosync/cman��� 38

The Storage Layer�� 38

Pacemaker Internal Components���38

Cluster Information Base�� 39

crmd��� 41

pengine��� 41

lrmd�� 41

stonithd/fenced�� 41

Cluster Management Tools���42

crm shell��� 42

Hawk�� 45

Other Tools�� 48

Conga: Luci and Ricci��� 49

Summary��49

Chapter 5: Configuring Essential Cluster Settings■■ ��51

Specifying Default Cluster Settings��51

no-quorum-policy��� 51

default-resource-stickiness��� 52

stonith-action��� 53

Setting Up STONITH��53

Different Solutions�� 54

Setting Up libvirt Hypervisor-Based STONITH��� 55

Setting Up Hardware-Based STONITH: The APC Master Power Switch�� 58

Configuring STONITH for Dell DRAC and Other Server Management Cards, Such As HP ILO������������������������������� 63

IPMI and Other Management Boards�� 66

Setting Up Shared Disk-Based STONITH�� 67

Using Fencing on Red Hat Clusters��68

Summary��69

■ Contents

x

Chapter 6: Clustering Resources■■ ��71

What Makes Clustered Resources Different���71

Clustering an Apache File Server��� 71

Creating Resources��72

Grouping Resources���76

Working with Constraints���77

Constraint Types��� 77

Understanding Scores�� 78

Testing the Configuration���81

Understanding Resource Agent Scripts��81

Summary��85

Chapter 7: Clustering Storage■■ ��87

Using a Cluster File System���87

Configuring an OCFS2 File System���88

Understanding Clone Resources��� 88

LVM2 in Cluster Environments�� 90

OCFS2 on Top of cLVM2�� 94

Using GFS2 with Pacemaker��95

Summary��95

Chapter 8: Performing Daily Cluster Management Tasks■■ ���97

Starting and Stopping Resources���97

Monitoring Resource State���98

Resource Migration��102

Using Resource Cleanup��103

Managing Nodes��104

Using Unmanaged Mode and Maintenance Mode for Maintenance���104

Understanding Log Files���105

■ Contents

xi

Backup and Restore of the Cluster Configuration��107

Wipe Everything and Start All Over��108

Summary��108

Chapter 9: Creating an Open Source SAN■■ ���109

Creating an Open Source SAN with Pacemaker���109

Configuring RAID 1 over the Network with DRBD���109

Precautionary Measures��� 110

Creating the Configuration�� 110

Working with the DRBD ��� 113

Troubleshooting the Disconnect State�� 113

Working with Dual Primary Mode �� 114

Integrating DRBD in Pacemaker Clusters���114

Testing�� 115

Adding an iSCSI Target to the Open Source SAN��115

Creating an Open Source SAN with LVM��� 117

Setting Up the iSCSI Target in the Cluster�� 117

Summary��120

Chapter 10: Use Case: Creating a Solution for Xen/KVM High Availability■■ ���������������������121

Introduction: An Overview of Open Source Virtualization Solutions���121

Xen��� 121

KVM�� 122

Requirements for Setting Up an HA Solution for Virtual Machines���122

Example of a Virtual Machine HA Cluster���122

Creating a KVM HA Cluster ��128

Creating the Base Cluster��� 129

Configure the SAN for Shared Storage��� 129

Installing a KVM Virtual Machine�� 130

Setting Up Cluster Resources for the KVM Virtual Machine�� 131

Summary��132

■ Contents

xii

�Chapter 11: Use Case: Configuring a Load-Balanced Mail Front End with a ■■
Database Back End���133

Customer Situation���133

Database Back End��134

Mail Front End��136

One Big Cluster or Many Little Clusters?��138

Summary��139

Index��141

xiii

About the Author

Sander van Vugt is an independent Linux specialist working out of the Netherlands and serving customers all
over the world. He functions as a consultant, specializing in Linux HA projects and performance issues. Sander is
also the author of more than 55 books, of which most are on Linux-related subjects. Sander also works as a Linux
technical instructor, being certified both in SUSE and Red Hat. You can find additional information about Sander’s
professional interests and qualifications at www.sandervanvugt.com or from his personal web site at
www.sandervanvugt.org.

www.sandervanvugt.com
www.sandervanvugt.org

xv

About the Technical Reviewers

Menno van Saagsvelt works as a senior technical consultant for a company in
the Netherlands, providing e-learning solutions for (big) companies (especially
“Moodle,” on clustered LAMP-stacks).

Between 2004 and 2009, he worked for a television and radio station in
Monroe, Louisiana, as an IT specialist. He was responsible for their web site and the
infrastructure of their web, mail, proxy servers, and intranet.

Before 2004, Menno worked in the Netherlands as an IT technician for a Dutch
Internet service provider.

Lars Marowsky-Brée is a high availability and storage architect with SUSE Linux Products GmbH. He has had
a leading role in making the Pacemaker software into what it currently is, and he graciously accepted the role of
honorary technical reviewer for this book.

xvii

Acknowledgments

A special thanks to the people at Apress, who were willing to accept this project and help me through it. Thanks also to
my technical editor, Menno van Saagsvelt, who worked his way through all of the text I submitted.

I also want to express my gratitude to Loïc Devulder, senior Linux System Administrator at PSA Peugeot Citroën,
who was willing to read through the entire document and share some of his experiences with the software that is
described in this book.

I especially want to thank Lars Marowsky-Brée, cluster and storage architect with SUSE and, as such, responsible
for significant parts of the Pacemaker software, who graciously made himself available to review most of the contents
of this book and make it significantly better.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: High Availability Clustering and Its Architecture
	Different Kinds of Clustering
	High Performance Clusters
	Load Balancing Clusters
	High Availability Clusters

	What to Expect from High Availability Clusters
	History of High Availability Clustering in Linux
	Heartbeat 2.0 and Red Hat Cluster Suite
	Cluster Membership and Resource Management

	The Components That Build a High Availability Cluster
	Shared Storage
	Different Networks
	Bonded Network Devices
	Multipathing
	Fencing/STONITH Devices and Quorum

	Summary

	Chapter 2: Configuring Storage
	Why Most Clusters Need Shared Storage
	NAS or SAN?
	NAS
	SAN

	iSCSI or Fibre Channel?
	Understanding iSCSI

	Configuring the LIO iSCSI Target
	Connecting to an iSCSI SAN
	Step 1: discovery Mode
	Step 2: node Mode
	Step 3: Managing the iSCSI Connection
	Disconnecting an iSCSI Session

	Setting Up Multipathing
	/etc/multipath.conf
	Specific Use Cases for Multipath

	Summary

	Chapter 3: Configuring the Membership Layer
	Configuring the Network
	Network Bonding Modes
	Configuring the Bond Interface

	Dealing with Multicast
	corosync or cman?
	Configuring corosync
	Understanding corosync.conf Settings
	Networks Without Multicast Support

	Configuring cman
	Summary

	Chapter 4: Understanding Pacemaker Architecture and Management
	Pacemaker Related to Other Parts of the Cluster
	Resource Agents
	corosync/cman
	The Storage Layer

	Pacemaker Internal Components
	Cluster Information Base
	crmd
	pengine
	lrmd
	stonithd/fenced

	Cluster Management Tools
	crm shell
	Hawk
	Other Tools
	crm_gui
	cib and crm tools
	pcs

	Conga: Luci and Ricci

	Summary

	Chapter 5: Configuring Essential Cluster Settings
	Specifying Default Cluster Settings
	no-quorum-policy
	default-resource-stickiness
	stonith-action

	Setting Up STONITH
	Different Solutions
	Setting Up libvirt Hypervisor-Based STONITH
	Setting Up Hardware-Based STONITH: The APC Master Power Switch
	Configuring STONITH for Dell DRAC and Other Server Management Cards, Such As HP ILO
	IPMI and Other Management Boards
	Setting Up Shared Disk-Based STONITH

	Using Fencing on Red Hat Clusters
	Summary

	Chapter 6: Clustering Resources
	What Makes Clustered Resources Different
	Clustering an Apache File Server
	Understanding Resource Agents
	Defining Operations

	Creating Resources
	Grouping Resources
	Working with Constraints
	Constraint Types
	Understanding Scores

	Testing the Configuration
	Understanding Resource Agent Scripts
	Summary

	Chapter 7: Clustering Storage
	Using a Cluster File System
	Configuring an OCFS2 File System
	Understanding Clone Resources
	LVM2 in Cluster Environments
	OCFS2 on Top of cLVM2

	Using GFS2 with Pacemaker
	Summary

	Chapter 8: Performing Daily Cluster Management Tasks
	Starting and Stopping Resources
	Monitoring Resource State
	Resource Migration
	Using Resource Cleanup
	Managing Nodes
	Using Unmanaged Mode and Maintenance Mode for Maintenance
	Understanding Log Files
	Backup and Restore of the Cluster Configuration
	Wipe Everything and Start All Over
	Summary

	Chapter 9: Creating an Open Source SAN
	Creating an Open Source SAN with Pacemaker
	Configuring RAID 1 over the Network with DRBD
	Precautionary Measures
	Creating the Configuration
	Working with the DRBD
	Troubleshooting the Disconnect State
	Working with Dual Primary Mode

	Integrating DRBD in Pacemaker Clusters
	Testing

	Adding an iSCSI Target to the Open Source SAN
	Creating an Open Source SAN with LVM
	Setting Up the iSCSI Target in the Cluster

	Summary

	Chapter 10: Use Case: Creating a Solution for Xen/KVM High Availability
	Introduction: An Overview of Open Source Virtualization Solutions
	Xen
	KVM

	Requirements for Setting Up an HA Solution for Virtual Machines
	Example of a Virtual Machine HA Cluster
	Creating a KVM HA Cluster
	Creating the Base Cluster
	Configure the SAN for Shared Storage
	Installing a KVM Virtual Machine
	Setting Up Cluster Resources for the KVM Virtual Machine

	Summary

	Chapter 11: Use Case: Configuring a Load-Balanced Mail Front End with a Database Back End
	Customer Situation
	Database Back End
	Mail Front End
	One Big Cluster or Many Little Clusters?
	Summary

	Index

