
Certified
OpenStack
Administrator
Study Guide

—
Andrey Markelov

 Cer tified OpenStack
Administrator Study

Guide

 Andrey Markelov

Certified OpenStack Administrator Study Guide

Andrey Markelov
Stockholm, Sweden

ISBN-13 (pbk): 978-1-4842-2124-2 ISBN-13 (electronic): 978-1-4842-2125-9
DOI 10.1007/978-1-4842-2125-9

Library of Congress Control Number: 2016958120

Copyright © 2016 by Andrey Markelov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: Corbin Collins
Technical Reviewer: Anton Arapov
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Mary Bearden
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Courtesy of Freepik.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

 To my wife, Elena, for her love and support.

v

Contents at a Glance

About the Author ... xi

About the Technical Reviewer ... xiii

Introduction ...xv

 ■Chapter 1: Getting to Know OpenStack ... 1

 ■Chapter 2: How to Build Your Own Virtual Test Environment 7

 ■Chapter 3: Identity Management ... 19

 ■Chapter 4: Image Management ... 31

 ■Chapter 5: OpenStack Networking .. 43

 ■Chapter 6: OpenStack Compute ... 65

 ■Chapter 7: OpenStack Dashboard .. 87

 ■Chapter 8: OpenStack Object Storage ... 91

 ■Chapter 9: Block Storage ... 99

 ■Chapter 10: Orchestration of OpenStack ... 119

 ■Chapter 11: Troubleshooting ... 131

 ■Chapter 12: Conclusion ... 153

Index ... 157

vii

Contents

About the Author ... xi

About the Technical Reviewer ... xiii

Introduction ...xv

 ■Chapter 1: Getting to Know OpenStack ... 1

Understanding the Components That Make Up the Cloud .. 2

History of OpenStack Project ... 4

OpenStack Distribution and Vendors .. 5

 ■Chapter 2: How to Build Your Own Virtual Test Environment 7

Installing Vanilla OpenStack with the DevStack Tool .. 7

Installing RDO OpenStack Distribution with PackStack ... 9

Installing Mirantis OpenStack with Fuel Tool ... 13

Using the OpenStack CLI .. 17

 ■Chapter 3: Identity Management ... 19

Architecture and Main Components of Keystone ... 19

Managing Keystone Catalog Services and Endpoints .. 21

Managing/Creating Projects, Users, and Roles .. 24

Managing and Verifying Operation of the Identity Service ... 27

Review Questions ... 29

Answers to Review Questions .. 30

 ■ CONTENTS

viii

 ■Chapter 4: Image Management ... 31

Architecture and Main Components of Glance ... 31

Deploying a New Image to an OpenStack Instance .. 33

Managing Images ... 36

Managing Image Back Ends ... 39

Verifying Operation of the Image Service ... 40

Review Questions ... 41

Answers to Review Questions .. 42

 ■Chapter 5: OpenStack Networking .. 43

Architecture and Components of Neutron .. 43

Architecture of Open vSwitch ... 45

Manage Network Resources .. 48

Manage Project Security Group Rules .. 57

Manage Quotas .. 59

Verify Operation of Network Service .. 61

Review Questions ... 63

Answers to Review Questions .. 64

 ■Chapter 6: OpenStack Compute ... 65

Architecture and Components of Nova ... 65

Managing Flavors ... 69

Managing and Accessing an Instance Using a Keypair .. 70

Launching, Shutting Down, and Terminating the Instance ... 72

Managing Instance Snapshots ... 76

Managing Quotas ... 78

Getting Nova Stats .. 80

Verifying Operation and Managing Nova Compute Servers .. 82

Review Questions ... 85

Answers to Review Questions .. 86

 ■ CONTENTS

ix

 ■Chapter 7: OpenStack Dashboard .. 87

Architecture of Horizon... 87

Verify Operation of the Dashboard ... 88

Review Question ... 89

Answer to Review Question ... 89

 ■Chapter 8: OpenStack Object Storage ... 91

Overview of Swift Object Storage .. 91

Managing Permissions on a Container in Object Storage .. 93

Using the cURL Tool for Working with Swift ... 94

Managing Expiring Objects... 95

Monitoring Swift Cluster... 95

Review Questions ... 97

Answers to Review Questions .. 98

 ■Chapter 9: Block Storage ... 99

Architecture and Components of Cinder .. 99

Manage Volume and Mount It to a Nova Instance .. 102

Create Volume Group for Block Storage ... 107

Manage Quotas .. 108

Back Up and Restore Volumes and Snapshots ... 110

Manage Volume Snapshots .. 112

Manage Volumes Encryption .. 114

Set Up Storage Pools .. 116

Review Questions ... 117

Answers to Review Questions .. 118

 ■Chapter 10: Orchestration of OpenStack ... 119

Architecture and Components of Heat ... 119

Introducing the Heat OpenStack Template ... 120

Launching a Stack Using a HOT ... 122

 ■ CONTENTS

x

Using Heat CLI and Dashboard ... 126

Review Questions ... 129

Answers to Review Questions .. 130

 ■Chapter 11: Troubleshooting ... 131

The Main Principles of Troubleshooting ... 131

How to Check the OpenStack Version .. 133

Where to Find and How to Analyze Log Files ... 133

Back Up the Database Used by an OpenStack Instance ... 135

Analyze Host/Guest OS and Instance Status .. 136

Analyze Messaging Servers ... 140

Analyze Network Status ... 142

Digest the OpenStack Environment .. 148

Review Questions ... 151

Answers to Review Questions .. 152

 ■Chapter 12: Conclusion ... 153

Index ... 157

xi

 About the Author

 Andrey Markelov is an experienced Linux and cloud architect who
currently works as a Senior Solution Architect at Ericsson in Sweden.
Before Ericsson, Andrey worked as the first ever Red Hat Solution Architect
in Russia and with various large system integrators. He has written more
than 50 articles about Linux and Unix systems services, virtual systems,
and OpenSource, published in the Russian IT Press (Linux Format RE ,
 Computerra , PCWeek/RE , and others). Andrey is the author of the only
Russian OpenStack book at the moment. He also has experience in
teaching Microsoft and Red Hat authorized courses over the past ten years.
Andrey has been a Red Hat Certified Architect since 2009. He has the
following certifications: Microsoft Certified System Engineer, Sun Certified
System Administrator, Novell Certified Linux Professional, Mirantis
Certified OpenStack Administrator, and Certified OpenStack Administrator
by The OpenStack Foundation. His LinkedIn profile can be found at
 http://ru.linkedin.com/in/amarkelov .

http://ru.linkedin.com/in/amarkelov

xiii

 About the Technical Reviewer

 Anton Arapov leads the team responsible for infrastructure projects in Xura, which help customers unlock
and protect the full potential of their mobile communication channels, while supporting the evolution to
LTE 4G services and accelerating return on investment. Nowadays, virtualization is crucial for achieving the
goals. Prior to Xura, Anton held a role of Engineering Manager at Red Hat, responsible for development of
virtualization technologies in Linux Kernel.

xv

 Introd uction

 The Certified OpenStack Administrator (COA) is the first professional certification offered by the OpenStack
Foundation. As OpenStack’s web site states, it’s designed to help companies identify top talent in the
industry, and help job seekers demonstrate their skills.

 The COA certification is available to anyone who passes the exam. No mandatory learning is required.
However, the Certified OpenStack Administrator is a professional, typically with at least six months’
OpenStack experience. It is very important to gain practical skills of work with OpenStack before taking the
exam. If you read this or any other books or if you watch any video courses with no practice, you will likely
fail your exam. Practice, practice, practice is the only way to successfully reach the exam goals.

 Quick facts about the exam:

• The duration is 2.5 hours.

• The price (at the time of writing) to take the exam is $300. One free retake per exam
purchase will be granted in the event that a passing score is not achieved.

• The exam is performance-based. You may use a graphical interface or the
command line.

• The exam is available anywhere in the world through the Internet.

• Candidates are monitored virtually by a proctor during the exam session via
streaming audio, video, and screensharing.

 This book is organized to cover all COA exam requirements, publicly available at www.openstack.org/
coa/requirements . They are also shown at Figure I-1 in short form. Exam objectives are subject to change.
Please visit the COA exam web site for the most current listing of exam objectives. Even if you don’t plan to
take the COA exam, this book can be a useful tutorial for OpenStack operators.

http://www.openstack.org/coa/requirements
http://www.openstack.org/coa/requirements

 ■ INTRODUCTION

xvi

 Tips for COA Exam Preparation
 If you successfully run through all of the book’s contents and think you are ready for exam, you should
start by reading the OpenStack Foundation Certification Candidate Handbook for OpenStack Foundation
Certified OpenStack Administrator (COA). This guide is available from the COA web site at www.openstack.
org/coa/ . It contains all the instructions and conditions you need to know before taking the exam.

 A day before the exam, it is better to rest and not to study until into the late evening. Try to schedule the
exam for the first part of the day when your brain is fresh.

 It’s very important to test your PC to make sure it meets the minimal requirements with the exam
provider’s web site. Figure I-2 shows the requirements (at the time of this writing). Pay attention to the
screen resolution. At the time of writing, the minimum was set to 1280x800. It is really a minimum value and
it will probably be uncomfortable to work with exam consoles with this resolution. I would recommend you
use a monitor as big as possible.

 Figure I-1. OpenStack COA exam requirements

http://www.openstack.org/coa/
http://www.openstack.org/coa/

 ■ INTRODUCTION

xvii

 The handbook tells you to launch http://docs.openstack.org/ to access the technical
documentation. Take some time to investigate the information. You do not need to memorize everything,
but it is good to know what the documentation web site contains.

 It is probably better not to type long names of projects, volumes, directories, and so forth but rather to
copy them from the exam task list to the command line during the exam. You can avoid mistypes and errors
if you do so. Use Ctrl+Insert to copy and Shift+Insert to paste in Microsoft Windows operating systems.
Shortcuts Ctrl+C and Ctrl+V are not currently supported in the exam terminal.

 It is highly recommended to use one of the terminal multiplexers because the exam terminal has a
single console. You can use the screen command or the more advanced tmux . Take your time to practice
with one of them. If you choose to use tmux you can start a new session with the command:

 # tmux new

 If the connection is lost, you can rejoin a session with the command:

 # tmux attach

 In Figure I-3 you can see what the tmux display looks like. Table I-1 lists the most common shortcuts for
 tmux commands.

 Figure I-2. Screenshot of compatibility checklist at exam provider web site

http://docs.openstack.org/

 ■ INTRODUCTION

xviii

 Figure I-3. The tmux screen multiplexer

 Table I-1. Some of tmux Command Key Bindings

 Command Key Bindings Action

 Ctrl-B ? Show screen with help.

 Ctrl-B d Detach from session.

 Ctrl-B s List sessions.

 Ctrl-B c Create a new window.

 Ctrl-B n Change to the next window.

 Ctrl-B p Change to the previous window.

 Ctrl-B 0…9 Select windows 0 through 9.

 Ctrl-B % Create a horizontal pane.

 Ctrl-B " Create a vertical pane.

 Ctrl-B ↑↓→← Move to pane.

 ■ INTRODUCTION

xix

 Other OpenStack Certifications
 Although I have the other two OpenStack certificates, there will not be any discussion of other vendors’
OpenStack exams in this book. This book may help for their preparation, but it does not contain any specific
information other than for the COA exam. Exam objectives can be different. The comparison in Table I-2 is
purely for information purposes only. It is accurate at the time of writing but is always subject to change.

 Table I-2. Comparison of OpenStack Certifications

 Vendor COA Mirantis Red Hat

 Certification name Certified OpenStack
Administrator

 Mirantis Certified
Administrator for
OpenStack

 Red Hat Certified
System Administrator
in Red Hat OpenStack

 Exam availability Worldwide (through Internet
connection)

 Restricted (vendor
and partners
facility)

 Restricted (vendor
and partners facility)

 Performance-based Yes Yes (MCA200) Yes

 Vendor neutral Yes Yes No

 Free retake per purchase One No No

 Certification validity 3 years -- 3 years

 Passing score 78% -- 210 out of 300

 Exam price $300 $600 $600

 Source of information https://www.openstack.org/coa/ https://training.
mirantis.com/
certification

 https://www.
redhat.com/
en/services/
certification

https://www.openstack.org/coa/
https://training.mirantis.com/certification
https://training.mirantis.com/certification
https://training.mirantis.com/certification
https://www.redhat.com/en/services/certification
https://www.redhat.com/en/services/certification
https://www.redhat.com/en/services/certification
https://www.redhat.com/en/services/certification

1© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_1

 CHAPTER 1

 Getting to Know OpenStack

 Before we delve into a discussion of OpenStack, let’s determine what we mean when we refer to cloud
computing. The National Institute of Standards and Technology’s (NIST) definition is considered the
established definition in the industry:

 Cloud computing is a model of providing widely accessible and convenient access via
the network to the common set of adjustable computational resources on demand
(such as networks, servers, data storages, applications and services). These resourses
can be promptly allocated and released with minimum customer efforts spent for
management and interactions with service provider.

 Figure 1-1. Cloud service models

CHAPTER 1 ■ GETTING TO KNOW OPENSTACK

2

 The service models shown in Figure 1-1 are defined by five essential characteristics, three service
models, and four deployment models. It includes self-service, general access to the network, a common set
of resources, flexibility, and calculation of use. Service models differ by the level of customer control of the
provided infrastructure and include:

• Infrastructure as a service (IaaS) : In this case, the user gets control over all levels
of the software stack above the cloud platform—virtual machines, networks, space
volume at data storage system—given to the user. The user is an administrator of
the operation system and all the work above it to the applications. OpenStack is an
example of IaaS.

• Platform as a service (PaaS): The cloud of this model can exist “inside” the cloud
of the IaaS model. In this case, the user gets control on the level of the platform
applications built, for example, applications server, libraries, programming
environment, and database. The user does not control and does not administer
virtual machines and operational systems deployed on them, data storage systems,
and networks. Ericsson Apcea and Red Hat OpenShift would be examples of PaaS.

• Software as a service (SaaS) : In this case, the user level of control is for only the
application itself. The user would be unaware of what the virtual machine or the
operational system is and would only work with the application. Examples of such
products are Google Docs or Microsoft Office 365.

 Four deployment models of the cloud platform implementations include:

• Private cloud : All the infrastructure is deployed in the data center and defined as a
division of one company or a group of companies.

• Public cloud : Any company or even a person can be a customer of cloud services.
This is the integration model the cloud service providers use.

• Community cloud : This is the model used when a community of companies with
common tasks is the customer (common tasks can be missions, safety requirements,
policies, or compliance with different requirements).

• Hybrid cloud : This is the combination of two or three of the clouds listed above,
where various loads can be located at a private, public, or community cloud.

 OpenStack can be a foundation for Clouds of all four deployment models.

 Understanding the Components That Make Up the Cloud
 OpenStack project, which is also called a cloud operational system, consists of a number of different projects
developing separate subsystems (see Figure 1-2). Any OpenStack installation can include only a part of
them. Some subsystems can even be used separately or as part of any other OpenSource project. Their
number is increasing from version to version of OpenStack project, both through the appearance of new
ones and the functionality split of the existing ones. For example, nova-volume service was extracted as a
separate Cinder project.

 Each project has its own documented set of Representational State Transfer Application Program
Interfaces (REST APIs), command raw utilities, and “native” Python interfaces, providing a set of functions
that are similar to the command raw utilities.

CHAPTER 1 ■ GETTING TO KNOW OPENSTACK

3

 One of the basic services is OpenStack Compute (Nova). This service is installed on all cluster computer
nodes. It manages the level of abstraction of virtual equipment (processors, memory, block devices, network
adapters). Nova provides the management of instances of virtual machines addressing the hypervisor and
giving such commands as it is launching and stopping.

 It’s important to notice that OpenStack technologies are independent of the hypervisor. Support is
implemented through the appropriate drivers in a Nova project. Primarily, OpenStack development and
testing are being made for Kernel-based Virtual Machines (KVMs). Most execution is also implemented on
top of the KVM hypervisor.

 KVM has been a part of Linux kernel since 2007, and it requires virtualization hardware support on
servers with standard architecture (AMD-V or Intel VT-x). At present, KVM is adapted for usage with a
number of different platforms, for example, PowerPC. QEMU (short for Quick Emulator) is used for input/
output devices for emulation in GNU/Linux.

 You can check whether the support is turned on and the processor supports one of the technologies by
executing the following command:

 $ grep -E ' svm | vmx' /proc/cpuinfo

 You should see svm or vmx among the flags supported by the processor. Also if you execute the
command:

 $ lsmod | grep kvm
 kvm_intel 143187 3
 kvm 455843 1 kvm_intel

 or

 $ lsmod | grep kvm
 kvm_amd 60314 3
 kvm 461126 1 kvm_amd

 Figure 1-2. OpenStack architecture and components

CHAPTER 1 ■ GETTING TO KNOW OPENSTACK

4

 you should see two kernel modules loaded in the memory. The kvm is the module independent of the
vendor, and the kvm_intel or kvm_amd executes VT-x or AMD-V functionality, respectively. Pay attention to
the fact that virtualization hardware support could be disabled in the basic input/output system (BIOS) by
default.

 The next service, OpenStack Networking (Neutron), is responsible for network connectivity. Users
themselves can create virtual networks and routers as well as set up Internet provider (IP) addresses. One
of the mechanisms provided by Neutron is called “floating IP.” Thanks to this mechanism, virtual machines
can get externally fixed IP addresses. Such functionality has a network capability balancer as a service, a
firewall as a service, and virtual private network (VPN) as a service can be obtained through the mechanism
of connecting modules.

 OpenStack Keystone identification service is a centralized catalog of users and services that they have
access to. Keystone performs as a united authentication system of the cloud operating system. Keystone
checks the validity of users’ accounts and the accordance of users to the OpenStack projects and roles.
And if it’s compliant, it gives the token for access to other services. Keystone runs a services’ catalog/
directory as well.

 OpenStack Image Service (Glance) runs the catalog of virtual machines’ images, which users can
use as templates to run instances of virtual machines in the cloud. This service also delivers the backup
functionality and snapshots creation. Glance supports many different formats, including vhd , vmdk , vdi , iso ,
 qcow2 , and ami .

 OpenStack Block Storage (Cinder) service manages block storage, which can be used by running
instances of virtual machines. This is permanent data storage for virtual machines. Snapshots can be used
for data saving and restoring or cloning. In most cases data storage based on GNU/Linux servers is used
together with Cinder. However, there are connecting modules for hardware storage.

 OpenStack Object Storage (Swift) service is one of the two original projects that appeared in OpenStack
besides Nova. Originally it was called Rackspace Cloud Files. This service is an object storage, which
allows users to store files. Swift has distributed architecture, allowing horizontal scaling, redundancy, and
replication for failover purposes. Swift is oriented mostly to static data, such as virtual machines’ copies,
backup copies, and archives.

 OpenStack Telemetry (Celiometer) service is a centralized information source based on cloud metrics
for monitoring data. This component delivers the billing ability for OpenStack.

 OpenStack Orchestration (Heat) service has the main task of application life cycle provision in cloud
infrastructure. Using the template in AWS CloudFormation format, this service manages all other OpenStack
services, allowing the creation of most types of resources (virtual machines, volumes, floating IPs, users,
security groups, etc.). Heat can also make application scaling automatic by using data from the Ceilometer
service. Templates describe the relation between the resourses, which allows Heat service to make API
OpenStack calls in the right order, for example, first to create the server and then to connect volume to it.

 Finally, OpenStack Dashboard (Horizon) service allows management of cloud resources through the
web console.

 History of OpenStack Project
 The cloud operational system OpenStack was established in June 2010 as a project that connected NASA’s
Nova virtual servers development system and US hosting-provider Rackspace’s Swift data storage system.
The first version, under the code name Austin, was released in October 2010.

 The third service for Glance image storage had already appeared in the Bexar version in addition to
Nova and Swift. In the Essex version, Horizon management web-console and Keystone identification service
were added. There was the Folsom version of network service, which was originally named Quantum but
then renamed as that name was already a registered trademark, and then the Cinder cloud block storage
service. The Heat orchestration service and Celiometer service were added in the Havana version.

CHAPTER 1 ■ GETTING TO KNOW OPENSTACK

5

 It’s important to understand that OpenStack itself is a development project. The web site Openstack.
org doesn’t provide any reference for distribution. Otherwise, different vendors could create their own
distributions based on this project code.

 At present, OpenStack is being developed under the control of the OpenStack Foundation with about
18,000 individual members and more than 500 corporate members. Almost all IT market leaders support
OpenStack. The OpenStack Foundation budget in 2016 was more than US$16 million per year.

 As per one Linux Foundation report, OpenStack currently has 2.3 million lines of code. The main
programming language is Python. The code itself is distributed under an Apache 2.0 license.

 To easily evaluate each vendor contribution to the OpenStack project, visit http://stackalytics.com .
This service was originally created by Mirantis company to get the statistics and measure the company’s
engineers’ contributions in the project as a whole and its separate parts. Then all the rest of the OpenStack
developers began to use it. The top five contributors now are Red Hat, HP, Mirantis, Rackspace, and IBM.

 In accordance with a Forrester Research report (http://www.openstack.org/assets/pdf-downloads/
OpenStack-Is-Ready-Are-You.pdf), at the present time OpenStack is used by many Fortune 100 companies,
such as BMW, Disney, and Walmart.

 Before going further, perhaps it will be interesting for you to look through the portal https://www.
openstack.org/enterprise/ . You can find some examples of OpenStack usage in production operations at
some of these enterprises.

 OpenStack Distribution and Vendors
 As stated earlier, OpenStack is a cloud infrastructure development project, but not a product. However, many
companies that take part in OpenStack development create their products and distributions on the basis
of its code, often using their proprietary components. This situation is similar to GNU/Linux distributions’
creation. Some examples of OpenStack distributions with links for downloading are shown in Table 1-1 .

 I have tried to give a very short overview of OpenStack distributions in this chapter. But this overview
does not by any means present an overall coverage. Please note that the information in this book is up to
date at the time the book was written in 2016. You can find a full list of major distributions at the Marketplace
tab of the OpenStack official web site at https://www.openstack.org/marketplace/distros/ .

 RDO (RPM Distribution of OpenStack) is the project on open OpenStack distribution creation
sponsored by Red Hat. Unlike for Red Hat commercial distribution, with Red Hat OpenStack Platform (RH
OSP), the RDO support cannot be bought. Interrelation between RH OSP and RDO is very similar to the
interrelation between Red Hat Enterprise Linux (RHEL) and Fedora. RDO is called up to create a community
for Red Hat developments. In the latest versions of RDO, Manager, based on OpenStack Ironic and
OpenStack TripleO projects, is offered to be used for installation. RDO can be deployed on top of RHEL and
its derivatives (CentOS, Oracle Linux, etc.).

 Table 1-1. Download Links for OpenStack Distributions

 OpenStack Distribution Web Site Link

 Red Hat OpenStack Platform (60-day trial) https://www.redhat.com/en/insights/openstack

 RDO by Red Hat https://www.rdoproject.org/

 Mirantis OpenStack
 https://www.mirantis.com/products/mirantis-openstack-
software/

 Ubuntu OpenStack http://www.ubuntu.com/cloud/openstack

 SUSE OpenStack Cloud (60-day trial) https://www.suse.com/products/suse-openstack-cloud/

http://stackalytics.com/
http://www.openstack.org/assets/pdf-downloads/OpenStack-Is-Ready-Are-You.pdf
http://www.openstack.org/assets/pdf-downloads/OpenStack-Is-Ready-Are-You.pdf
https://www.openstack.org/enterprise/
https://www.openstack.org/enterprise/
https://www.openstack.org/marketplace/distros/
https://www.redhat.com/en/insights/openstack
https://www.rdoproject.org/
https://www.mirantis.com/products/mirantis-openstack-software/
https://www.mirantis.com/products/mirantis-openstack-software/
http://www.ubuntu.com/cloud/openstack
https://www.suse.com/products/suse-openstack-cloud/

CHAPTER 1 ■ GETTING TO KNOW OPENSTACK

6

 Another popular GNU/Linux vendor also has its own OpenStack distribution called SUSE OpenStack
Cloud. SUSE Linux Enterprise Server 11 or SUSE Linux Enterprise Server 12 is used as an operation system
distribution. The Cowbar and Chef projects are used as an installation tool. Chef is one of the leading
configuration management tools in the OpenSource world.

 The next distribution is Mirantis OpenStack (MOS). Similar to RDO, there are no proprietary
components in it. The distinctive feature is the Fuel installation system, which can significantly ease large
deployments. The support of OpenStack Community Application Catalog, based on the application’s catalog
Murano, also needs to be mentioned. As a GNU/Linux distribution, MOS requires either Ubuntu or CentOS.
There are scripts for fast deployment on VirtualBox to ease the demo stands deployments or OpenStack
research.

 Oracle OpenStack for Oracle Linux stands out with quite unexpansive technical support for commercial
usage in comparison with its competitors. It’s free when you have premium Oracle Linux support. As
a specialty Oracle, ZFS support can be noted. Solaris x86 is supported as a virtual machine. Similar to
other hardware vendors, for example, IBM and HP, Oracle supports its distribution usage only on its own
hardware. OpenStack Kolla project and Docker containers are used for installation.

 Ericsson Cloud Execution Environment distribution is created with the requirements of network
functions virtualization (NFV) and telecommunication operators specifics in mind. It provides the higher
capacity of network subsystem and orientation to applications that require real-time operations. Compared
to the distributions of any conventional IT companies, Ericsson Cloud Execution Environment is oriented
toward telecommunication operators and provides service-level agreement (SLA) guaranteed by Ericsson.
As a functionality example of VLAN Trunking support, virtual switch (Ericsson Virtual Switch) speeded
with the help of Intel DPDK library, monitoring, high accessibility of virtual machines, and so on can be
considered. As a distinction, it has its own web interface on the Horizon base. The distribution is created on
top of the Mirantis OpenStack. Mirantis is a partner of Ericsson.

 Hewlett Packard Enterprise (HPE) Helion OpenStack is a Hewlett Packard distribution. The company
actively involves its resourses in OpenStack project development.

 In any discussion of OpenStack distributions, it’s necessary to mention the OPNFV (Open Platform for
NFV) project (https://www.opnfv.org). OPNFV is a project based on open standard platform building for
NFV. OPNFV integrated a number of projects, including OpenStack, OpenDaylight, Ceph Storage, KVM, Open
vSwitch, and GNU/Linux. The largest telecommunication companies and vendors are taking part in this
project (AT&T, Cisco, EMC, Ericsson, HP, Huawei, IBM, Intel, NEC, Nokia, Vodafone, ZTE, and many more).

https://www.opnfv.org/

7© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_2

 CHAPTER 2

 How to Build Your Own Virtual
Test Environment

 This chapter describes how to install a virtual lab in preparation for the Certified OpenStack Administrator
exam. You will use the DevStack, PackStack, and Fuel tool options for this installation. Keep in mind that this
chapter is not related to exam questions.

 Installing Vanilla OpenStack with the DevStack Tool
 You have a lot of options for how to create your test environment. I will introduce several of them in this
chapter. First, let’s have a look at the most generic method of OpenStack installation. In this case, you will
install all services from scratch on one PC or virtual machine. You can use one of the common GNU/Linux
distributions like Ubuntu, Fedora, or CentOS. Since this method is very generic, you probably need some
adaptations for your particular environment. More specific examples will be given later in this chapter.

 I recommend using any type of desktop virtual environment like VirtualBox or VMware Workstation.
I would recommended 4BG of memory or more for VM, where you will install all of the OpenStack services.

 First, you will need the OS installed with access to standard repos. Then you need to get the DevStack
tool from GitHub. The main purpose of this tool is to prepare the environment for OpenStack developers,
but you can use it for creating this learning environment. The following instructions are for the most recent
Ubuntu LTS releases. First, you will install the Git tool and download DevStack:

 andrey@ubuntu:~$ sudo apt-get -y install git

 andrey@ubuntu:~$ sudo git clone https://github.com/openstack-dev/devstack.git /opt/devstack/
 Cloning into '/opt/devstack'...
 remote: Counting objects: 33775, done.
 remote: Compressing objects: 100% (6/6), done.
 remote: Total 33775 (delta 2), reused 0 (delta 0), pack-reused 33769
 Receiving objects: 100% (33775/33775), 12.25 MiB | 2.11 MiB/s, done.
 Resolving deltas: 100% (23470/23470), done.
 Checking connectivity... done.

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

8

 Then you create the user with the create-stack-user.sh script, change ownership for /opt/
devstack/ , and switch to the stack user:

 andrey@ubuntu:~$ cd /opt/devstack/

 andrey@ubuntu:/opt/devstack$ sudo tools/create-stack-user.sh
 Creating a group called stack
 Creating a user called stack
 Giving stack user passwordless sudo privileges
 andrey@ubuntu:/opt/devstack$ sudo chown -R stack:stack /opt/devstack/
 andrey@ubuntu:/opt/devstack$ sudo -i -u stack
 stack@ubuntu:~$ cd /opt/devstack/

 DevStack uses a special file located in the root directory of devstack with instructions that describe
how to configure OpenStack services. You can find several examples on the DevStack web site
(http://docs.openstack.org/developer/devstack/) or you can use the following minimal example
of the local.conf file:

 [[local|localrc]]

 ADMIN_PASSWORD="apress"
 SERVICE_PASSWORD="apress"
 SERVICE_TOKEN="apress"
 MYSQL_PASSWORD="apress"
 RABBIT_TOKEN="apress"
 RABBIT_PASSWORD="apress"
 SWIFT_HASH=s0M3hash1sh3r3

 disable_service n-net
 enable_service neutron
 enable_service q-svc
 enable_service q-agt
 enable_service q-dhcp
 enable_service q-l3
 enable_service q-meta
 HOST_IP=10.0.2.15

 enable_service ceilometer-acompute
 enable_service ceilometer-acentral
 enable_service ceilometer-anotification
 enable_service ceilometer-collector
 enable_service ceilometer-alarm-evaluator
 enable_service ceilometer-alarm-notifier
 enable_service ceilometer-api

 enable_service heat h-api h-api-cfn h-api-cw h-eng
 enable_service s-proxy s-object s-container s-account
 SWIFT_REPLICAS=1

 LOGFILE=/opt/stack/logs/stack.sh.log
 SCREEN_LOGDIR=/opt/stack/logs

http://docs.openstack.org/developer/devstack/

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

9

 Now you need to run the stack.sh script from the devstack directory and wait for it to load. Here is an
example:

 stack@ubuntu:/opt/devstack$./stack.sh
 ...
 =========================
 DevStack Component Timing
 =========================
 Total runtime 2239

 run_process 104
 test_with_retry 4
 apt-get-update 7
 pip_install 490
 restart_apache_server 15
 wait_for_service 16
 git_timed 391
 apt-get 195
 =========================

 This is your host IP address: 10.0.2.15
 This is your host IPv6 address: ::1
 Horizon is now available at http://10.0.2.15/dashboard
 Keystone is serving at http://10.0.2.15:5000/
 The default users are: admin and demo
 The password: apress
 2016-05-21 19:41:48.510 | stack.sh completed in 2239 seconds.

 Installation can take some time. The process can be different in different environments or with different
versions of OS. You will probably have to debug some errors. For a more predictable way of installing, see the
next section.

 Installing RDO OpenStack Distribution with PackStack
 PackStack (https://wiki.openstack.org/wiki/Packstack) is another tool that can be used to install
OpenStack. The main purpose of PackStack is to prepare OpenStack’s test environments with rpm-based
distributions. The easiest and most predictable way to use PackStack is to use it with CentOS 7.

 Let’s start with OS preparation. First, you need to install CentOS 7 with the Minimal or Server with GUI
option. Right after installation, you should update the packages and reboot your server:

 # yum -y update
 # reboot

 Next, add additional repositories that contain OpenStack and some supplementary packages:

 # yum -y install epel-release
 # yum install -y https://www.rdoproject.org/repos/rdo-release.rpm

https://wiki.openstack.org/wiki/Packstack

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

10

 Also you need to disable Network Manager service because OpenStack does not support it:

 # systemctl stop NetworkManager.service
 # systemctl disable NetworkManager.service

 I use the old-fashioned “network” service instead:

 # systemctl start network.service
 # systemctl enable network.service

 Make sure you have a static IP address in /etc/sysconfig/network-scripts/ifcfg-* config files. Here
is an example of ifcfg-eth0 :

 TYPE="Ethernet"
 BOOTPROTO="STATIC"
 DEFROUTE="yes"
 IPV6INIT="no"
 NAME="eth0"
 ONBOOT="yes"
 IPADDR0="10.0.2.15"
 PREFIX0="24"
 GATEWAY="10.0.2.2"
 DNS1="10.0.2.2"
 NM_CONTROLLED=no

 If the firewalld daemon is used, you need to change it to iptables . OpenStack can’t use firewalld at
the moment. Now everything is ready and you can install the PackStack tool:

 # systemctl stop firewalld; systemctl disable firewalld
 $ sudo yum install -y centos-release-openstack-mitaka
 $ sudo yum update -y
 # yum install -y openstack-packstack

 Now you can just run the command packstack --allinone , but I recommend another change to
generate the answers file for PackStack:

 # packstack --gen-answer-file ~/answer-file.txt

 Now you are ready to edit the ~/answer-file.txt . This file contains a lot of different options. Some of
them are documented in Table 2-1 .

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

11

 Table 2-1. PackStack Options

 Option with Example Definition

 CONFIG_<name of cioponent>_INSTALL=y Specify 'y' to install OpenStack component.
 <name of component> can be CINDER, GLANCE,
NOVA, NEUTRON , etc. For example CONFIG_SWIFT_
INSTALL=y .

 CONFIG_DEFAULT_PASSWORD=password Default password to be used everywhere
(overridden by passwords set for individual services
or users).

 CONFIG_NTP_SERVERS=192.168.1.1,192.168.1.2 Comma-separated list of NTP servers.

 CONFIG_CONTROLLER_HOST=10.0.2.15 Comma-separated list of servers on which to install
OpenStack services specific to the controller role.

 CONFIG_COMPUTE_HOSTS=10.0.2.15 List of servers on which to install the Compute
service.

 CONFIG_NETWORK_HOSTS=10.0.2.15 List of servers on which to install the Network
service.

 CONFIG_AMQP_BACKEND=rabbitmq Service to be used as the AMQP broker. Usually
 rabbitmq .

 CONFIG_AMQP_HOST=10.0.2.15 IP address of the server on which to install the
AMQP service.

 CONFIG_AMQP_ENABLE_SSL=n Specify 'y' to enable SSL for the AMQP service.

 CONFIG_USE_EPEL=y Specify 'y' to enable the EPEL repository (Extra
Packages for Enterprise Linux). You need to do that
if you are using CentOS or Oracle Linux.

 CONFIG_KEYSTONE_ADMIN_PW=password Password to use for the Identity service 'admin' user.

 CONFIG_KEYSTONE_DEMO_PW=password Password to use for the Identity service 'demo' user.

 CONFIG_GLANCE_BACKEND=file Storage backend for the Image service (controls how
the Image service stores disk images). Valid options
are: file or swift .

 CONFIG_CINDER_BACKEND=lvm Storage backend to use for the Block Storage service.
Valid options are: lvm, gluster, nfs, vmdk, netapp.

 CONFIG_CINDER_VOLUMES_CREATE=y Specify 'y' to create the Block Storage volumes
group. That is, PackStack creates a raw disk image in
 /var/lib/cinder , and mounts it using a loopback
device.

 CONFIG_CINDER_VOLUMES_SIZE=20G Size of Block Storage volumes group.

 CONFIG_NEUTRON_FWAAS=y Specify 'y' to configure OpenStack Networking’s
Firewall-as-a-Service (FWaaS).

 CONFIG_NEUTRON_VPNAAS=y Specify 'y' to configure OpenStack Networking’s
VPN-as-a-Service (VPNaaS).

 CONFIG_SWIFT_STORAGE_SIZE=2G Size of the Object Storage loopback file storage
device.

 CONFIG_PROVISION_DEMO=y Specify 'y' to provision for demo usage and testing.

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

12

 It is best to at least change these options:

 CONFIG_DEFAULT_PASSWORD=password
 CONFIG_KEYSTONE_ADMIN_PW=password
 CONFIG_KEYSTONE_DEMO_PW=password
 CONFIG_USE_EPEL=y
 CONFIG_PROVISION_DEMO=y

 You should for sure use your own password instead of password . Now you are ready to run PackStack:

 # packstack --answer-file ~/answer-file.txt

 You must wait until PackStack completes all of its tasks. It can take 15 to 30 minutes. While working, the
tool will report about all that is happening at each stage, for example:

 Welcome to the Packstack setup utility

 The installation log file is available at: /var/tmp/packstack/20160325-062215-wbPC1v/
openstack-setup.log

 Installing:
 Clean Up [DONE]
 Discovering ip protocol version [DONE]
 Setting up ssh keys [DONE]
 ...
 Applying Puppet manifests [DONE]
 Finalizing [DONE]

 **** Installation completed successfully ******

 Additional information:
 * Time synchronization installation was skipped. Please note that unsynchronized time on

server instances might be problem for some OpenStack components.
 * File /root/keystonerc_admin has been created on OpenStack client host 10.0.2.15. To use

the command line tools you need to source the file.
 * To access the OpenStack Dashboard browse to http://10.0.2.15/dashboard .

 Please, find your login credentials stored in the keystonerc_admin in your home directory.
 * To use Nagios, browse to http://10.0.2.15/nagios username: nagiosadmin, password:

password
 * The installation log file is available at: /var/tmp/packstack/20160325-062215-wbPC1v/

openstack-setup.log
 * The generated manifests are available at: /var/tmp/packstack/20160325-062215-wbPC1v/

manifests

 ■ Tip You can rerun PackStack with option -d if you need to update the configuration.

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

13

 Installing Mirantis OpenStack with Fuel Tool
 PackStack should be used only for learning purposes or demo. In the real world for production usage,
companies use “enterprise grade” installation tools. This kind of installation tool can simultaneously install
OpenStack for hundreds of hosts and can create advanced configuration with high availability of services.
The most mature tool is Fuel, which comes with Mirantis OpenStack.

 First, you need to download the latest version of Mirantis OpenStack (MOS) in ISO format from
 https://software.mirantis.com/openstack-download-form/ . All documentation is available online
at https://docs.mirantis.com/openstack/fuel/ . The easiest way to install MOS for learning purposes
is described in the QuickStart Guide at the Mirantis web site. You also need the Oracle VirtualBox plus
Oracle VM VirtualBox Extension Pack virtualization software and VirtualBox scriprt from Mirantis. You can
download this script from the Mirantis web site at www.mirantis.com . You need at least 8GB on your PC with
VirtualBox. For Microsoft Windows, you will need to install the Cygwin environment from https://www.
cygwin.com/ .

 The workflow of the installation process is shown in Figure 2-1 .

 Figure 2-1. Workflow of installation process (Figure courtesy of Mirantis)

 Unarchive the scripts pack and place the MOS ISO-file into the iso directory. Then run launch.sh
script at the Cygwin prompt (see Figure 2-2):

 cd /cygdrive/c/Users/{name}/Desktop/virtualbox
 sh launch.sh

https://software.mirantis.com/openstack-download-form/
https://docs.mirantis.com/openstack/fuel/
http://www.mirantis.com/
https://www.cygwin.com/
https://www.cygwin.com/

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

14

 As you see, you need to log in on https://10.20.0.2:8443 with the name admin and password admin .
Alternatively, it is possible to connect to http://10.20.0.2:8000 . Before that, if you need to change some
settings for the Fuel host, for example, the DNS server and so on, you can log in to the console prompt and
run the command fuelmenu . Go through the text user interface and change the requested settings. Figure 2-
4 shows an example of the user interface (UI).

 Figure 2-3. Fuel node is ready

 The script installs the Fuel Master node on VirtualBox and creates three VMs for the OpenStack
environment. When installation of the Fuel node ends, you will see something like Figure 2-3 on the VMs screen.

 Figure 2-2. Running launch.sh in Microsoft Windows and Cygwin environment

https://10.20.0.2:8443/
http://10.20.0.2:8000/

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

15

 Figure 2-4. Fuel menu user interface

 Figure 2-5. Enviroments main screen of Fuel

 After log in, Fuel will ask you a question about a support login. As you do not have paid support from
Mirantis, you can skip this step. You need to create a new OpenStack environment from three available
virtual machines. Click the “New OpenStack Environment” button (see Figure 2-5). In the first screen, type a
name for the OpenStack environment. You need to choose options (OpenStack release, hypervisor, network
topology, storage backend) on the next four screens. It is safest to use the default options.

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

16

 At the top right corner you should see the overall count of nodes and the count of free nodes that can
be used in the new environment (3/3). Try to reboot VM if your VM is not shown. VMs should start Ubuntu
based on the PXE pre-boot environment that is available from the Fuel host.

 Click the button with the name of your OpenStack environment. Click the “Add nodes” button on the
Dashboard tab. Go to the Nodes tab and select the roles for each node. To assign roles to the nodes, select
the role you want to assign and click the appropriate nodes in the “Unallocated Nodes” list. At the end, click
the “Apply Changes” button. You need at least one Controller and one Compute host.

 Figure 2-6 shows how the Nodes tab should look now.

 Figure 2-6. Nodes tab of Fuel user interface

 Now everything is ready for deployment. In the Fuel web UI, select the Dashboard tab and click
the “Deploy changes” button. Depending on the configuration of the environment, the deployment
may take from 15 minutes to 1 hour. A screenshot of the deploying changes is shown in Figure 2-7 .
More detailed guidance is available at https://docs.mirantis.com/openstack/fuel/fuel-8.0/
quickstart-guide.html .

https://docs.mirantis.com/openstack/fuel/fuel-8.0/quickstart-guide.html
https://docs.mirantis.com/openstack/fuel/fuel-8.0/quickstart-guide.html

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

17

 Using the OpenStack CLI
 OpenStack comes with a number of client utilities. Most services have their own command-line interface
(CLI) utility that has the same name as the service itself. Some of these utilities will become obsolete
because of the universal openstack CLI. You can use the packet manager to identify installed clients:

 # rpm -qa | grep python.*client
 python-keystoneclient-1.7.2-1.el7.noarch
 python-troveclient-1.3.0-1.el7.noarch
 python-neutronclient-3.1.0-1.el7.noarch
 python-ceilometerclient-1.5.0-1.el7.noarch
 python-heatclient-0.8.0-1.el7.noarch
 python-glanceclient-1.1.0-1.el7.noarch
 python-openstackclient-1.7.2-1.el7.noarch
 python-swiftclient-2.6.0-1.el7.noarch
 python-saharaclient-0.11.1-1.el7.noarch
 python-cinderclient-1.4.0-1.el7.noarch
 python2-os-client-config-1.7.4-1.el7.noarch
 python-novaclient-2.30.1-1.el7.noarch

 For a full list, refer to https://wiki.openstack.org/wiki/OpenStackClients . Most clients have an
internal help section that can be printed with the help option followed by a subcommand. For example:

 $ glance help image-create
 usage: glance image-create [--architecture <ARCHITECTURE>]
 [--protected [True|False]] [--name <NAME>]
 ...

 Figure 2-7. Deplying changes in OpenSource

https://wiki.openstack.org/wiki/OpenStackClients

CHAPTER 2 ■ HOW TO BUILD YOUR OWN VIRTUAL TEST ENVIRONMENT

18

 Universal python-openstackclient has an interactive mode. This mode is indicated by the
 (openstack) prompt:

 $ openstack
 (openstack) help

 Shell commands (type help <topic>):
 ===================================
 cmdenvironment edit hi l list pause r save shell show
 ed help history li load py run set shortcuts

 Undocumented commands:
 ======================
 EOF eof exit q quit

 Application commands (type help <topic>):
 ===
 aggregate add host object list volume unset
 aggregate create object save
 aggregate delete object show
 ...

 Use the following code to get help regarding the subcommand keypair create :

 (openstack) help keypair create
 usage: keypair create [-h] [-f {html,json,json,shell,table,value,yaml,yaml}]
 [-c COLUMN] [--max-width <integer>] [--noindent]
 [--prefix PREFIX] [--public-key <file>]
 <name>

 Create new public key

 positional arguments:
 <name> New public key name
 ...

19© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_3

 CHAPTER 3

 Identity Management

 This chapter covers 12% of the Certified OpenStack Administrator exam requirements.

 Architecture and Main Components of Keystone
 The Keystone or OpenStack Identity service acts as a catalog of all OpenStack services and provides the
ability for authenticating and managing user accounts and role information for the cloud environment. If
you are familiar with the Microsoft Windows Server environment, you can think of Keystone as the “Active
Directory analog” for your OpenStack cloud. Usually Keystone is the first component to be installed when
starting an OpenStack cloud. Keystone supports multiple forms of authentication, including login name and
password, token-based credentials, and REST API log ins.

 First, let’s define some terms which Keystone operates with:

• Service : OpenStack cloud component listed in Keystone catalog. Examples of the
services are Nova, Neutron, Glance, Keystone itself, etc. Service provides one or more
endpoints through which users can access service’s API.

• Endpoint : URL from which the service is available. Service can have three endpoints:
internal, public, and administration. They can have different subsets of API calls. Endpoint
can look like https://controller.my-domain.com:35357/v2.0 . At this URL you would find
that the service is listening to incoming calls on port number 35357 and the API version is
2.0. Common port numbers for OpenStack services are shown in Table 3-1 .

 Table 3-1. Common Port Numbers for OpenStack Services

 Network Port Number OpenStack Service

 5000 Public API endpoint port for Keystone

 35357 Admin API endpoint port for Keystone

 8776 Cinder Block Storage service

 9292 Image service Glance

 9191 Glance Registry

 8774 Compute service Nova

 8080 and 6001-6003 Object Storage services Swift

 9696 Networking service Neutron

 8777 Telemetry service Ceilometer

 8004 Orchestration service Heat

https://controller.my-domain.com:35357/v2.0

CHAPTER 3 ■ IDENTITY MANAGEMENT

20

• Project : Represents the base unit of ownership in OpenStack. Networks,
VMs, users, roles, and so on belong to a particular project. For administrative
operations in OpenStack, an environment special administrative project
“admin” exists.

• Domain : Represents a collection of projects, groups, and users that defines
administrative boundaries for managing OpenStack Identity entities.

• Region : Separates the OpenStack environment with dedicated API endpoints but
with common Keystone service.

• Token : Issued by Keystone service then passed to API requests and used
by OpenStack to verify that the client is authorized to run the requested
operation. The token is issued for a limited time and, if necessary, may be
withdrawn prior to the expiration. In order to get the user token, the user must
either provide a name and password, or the name and the key to access the
API (API key). The token also contains a list of roles that defines the roles
available to the user.

• User : Individual API consumer. User can be associated with roles, projects, or both.

• Role : Specific set of operations associated with a user. A role includes a set of rights
and privileges.

 From an architectural point of view, Keystone is the simplest service in the cloud. As for many other
OpenStack services, OpenStack Identity service uses the MariaDB/MySQL database. As an alternative, it
is possible to store information in the LDAP (Lightweight Directory Access Protocol) server or Microsoft
Active Directory. Starting from the Miaka release, Keystone uses the Apache web server as the front
end, so you no longer need to start openstack-keystone.service . Prior to the Mitaka release, Keystone
worked under the built-in Eventlet Python service by default.

 ■ Tip In modern documents, the OpenStack community prefers to use the term “Project.” In old documents
you can still find the term “tenant.” Keep in mind that “project” and “tenant” are synonymous.

 Let’s have a quick look through the Keystone main configuration file /etc/keystone/keystone.conf .
Table 3-2 summarizes the main configuration options from config.

CHAPTER 3 ■ IDENTITY MANAGEMENT

21

 Managing Keystone Catalog Services and Endpoints
 Before initiating something with OpenStack, you need to go through the authorization and authentication
processes. You can use the CLI commands options, but it is better and easier to create a file with global
variables for GNU/Linux environment and to process this file with the source command. You need to create
in any text editor something like the following code:

 unset OS_SERVICE_TOKEN
 export OS_AUTH_URL=http://10.0.2.15:5000/v2.0
 export OS_TENANT_NAME=admin
 export OS_REGION_NAME=RegionOne
 export OS_USERNAME=admin
 export OS_PASSWORD=openstack
 export OS_IDENTITY_API_VERSION=3

 You need to use your correct IP address and correct admin password for your environment. Now you
can execute the script:

 $ source keystonerc_admin

 Table 3-2. Main Configuration Options from /etc/keystone/keystone.conf

 Example of Config Options Description

 [DEFAULT]
 admin_token = ee224e8...

 A “shared secret” that can be used to bootstrap and debug
Keystone. This “token” does not represent a user.

 [DEFAULT]
 debug = True

 Set logging level to DEBUG instead of default INFO level in
journal.

 [DEFAULT]
 log_dir = /var/log/keystone

 The base directory used for log files.

 [DEFAULT]
 public_port=5000
 admin_port=35357
 admin_bind_host=0.0.0.0
 public_bind_host=0.0.0.0

 The port numbers and IP address which the public and
admin services listen on. In *_bind_host options, four
zeros mean all available ports on the server.

 [database]
 connection = mysql://keystone_
admin:password@10.0.2.15/keystone

 The SQLAlchemy connection string is used to connect to
the database.

 [oslo_messaging_rabbit]
 rabbit_host = localhost
 rabbit_port = 5672
 rabbit_userid = guest
 rabbit_password = guest

 The RabbitMQ broker address, port, user name, and
password.

 [token]
 expiration = 3600

 Token validity timeframe (in seconds). By default–1 hour.

CHAPTER 3 ■ IDENTITY MANAGEMENT

22

 Let’s try to create a service record in Keystone for the OpenStack image service Glance (the Glance
service is described in Chapter 4):

 $ openstack service create --name glance --description "OpenStack Image service" image
 +-------------+----------------------------------+
 | Field | Value |
 +-------------+----------------------------------+
description	OpenStack Image service
enabled	True
id	9d33c464f61749cd9f5811cda1ae5444
name	glance
type	image
 +-------------+----------------------------------+

 Only two mandatory options exist in this particular command. First, the name of the service, and
second, the type of the service. The name is glance and the type is image . You can check the existing services
with their types by using the openstack service list command:

 $ openstack service list
 +----------------------------------+------------+---------------+
 | ID | Name | Type |
 +----------------------------------+------------+---------------+
1b3b63218f1042a4994b51e8d20078ec	cinderv2	volumev2
49b256b46a0f4052acee768b5b0bbe65	cinder	volume
4b815b6d85474c70a449326b6bf4b4ea	ceilometer	metering
7d5da91499224026a21efdf84300381a	nova_ec2	ec2
7e621a56c3aa41f78ed6d5bddaba3a92	swift	object-store
9d33c464f61749cd9f5811cda1ae5444	glance	image
b0763e843e0e4e7284e14e76f4dd702c	keystone	identity
b8367ddba94248cfa16451390684f89c	heat	orchestration
c81578d4864349e1b29a04e2554556bc	nova	compute
d83dacc916434390b3557c4ff0e893a4	neutron	network
e4851946adb14ee481660bd45b76496f	novav3	computev3
ea9433eec76d49ebb11ed47645b5765b	swift_s3	s3
 +----------------------------------+------------+---------------+

 ■ Note You may find it interesting that there are two versions of the Cinder service. That’s because not all
other services support the newest second version of Cinder API.

 If you made a mistake in service creation, you can easily delete it with the openstack service delete
command. After creating the service record in the Keystone catalog, you need to create three endpoints for
this service. This can be done with the next command:

 $ openstack endpoint create \
 > --publicurl http://10.0.2.15:9292 \
 > --internalurl http://10.0.2.15:9292 \
 > --adminurl http://10.0.2.15:9292
 > --region RegionOne image

http://dx.doi.org/10.1007/978-1-4842-2125-9_4

CHAPTER 3 ■ IDENTITY MANAGEMENT

23

 +--------------+----------------------------------+
 | Field | Value |
 +--------------+----------------------------------+
adminurl	http://10.0.2.15:9292
id	5ae58266319446a4837ce0c212c5ad1a
internalurl	http://10.0.2.15:9292
publicurl	http://10.0.2.15:9292
region	RegionOne
service_id	9d33c464f61749cd9f5811cda1ae5444
service_name	glance
service_type	image
 +--------------+----------------------------------+

 ■ Note Starting with the Mitaka release, the syntax of the command has changed. You need to add three
endpoints for service, one by one. Here is an example for the public endpoint: openstack endpoint create
identity public http://controller.test.local:5000/v3 --region RegionOne .

 You can run a check of all of the endpoints:

 $ openstack endpoint list
 +----------------------------------+-----------+--------------+---------------+
 | ID | Region | Service Name | Service Type |
 +----------------------------------+-----------+--------------+---------------+
f312043049e04056a793c16fd4b81bc5	RegionOne	ceilometer	metering
6af17d75bdec498cbc2af32e6625b1b2	RegionOne	keystone	identity
82c5b56f536e446189abbef7c114e9c4	RegionOne	neutron	network
9d6a6b9d9ee744e3a2991dbb39cec995	RegionOne	cinderv2	volumev2
ecfb03318bcb4bd588ee7a02833aae31	RegionOne	nova	compute
93591bd7d0394abc8a1e624e5be2f284	RegionOne	cinder	volume
73598ea8c3e8480a965f83f50fbf92bb	RegionOne	nova_ec2	ec2
bc52befa27da44cfbd709b5c67fc44fe	RegionOne	swift	object-store
d5d7afeaf892470bac9fc587bb413cb3	RegionOne	heat	orchestration
37316205c43746ca96ca6435fd2f4b7a	RegionOne	swift_s3	s3
2d8fb2f861a24f5f8964df225a7961cd	RegionOne	novav3	computev3
5ae58266319446a4837ce0c212c5ad1a	RegionOne	glance	image
 +----------------------------------+-----------+--------------+---------------+

 And you can show the details about a particular endpoint:

 $ openstack endpoint show glance
 +--------------+----------------------------------+
 | Field | Value |
 +--------------+----------------------------------+
adminurl	http://10.0.2.15:9292
enabled	True
id	5ae58266319446a4837ce0c212c5ad1a
internalurl	http://10.0.2.15:9292
publicurl	http://10.0.2.15:9292

http://controller.test.local:5000/v3

CHAPTER 3 ■ IDENTITY MANAGEMENT

24

region	RegionOne
service_id	9d33c464f61749cd9f5811cda1ae5444
service_name	glance
service_type	image
 +--------------+----------------------------------+

 Horizon can handle approximately 70% of the overall available OpenStack functionality. So you can’t
create services and endpoints through the web client, although you can check a list of services and their
current statuses. Log in as admin and go to Admin ➤ System Information (see Figure 3-1).

 Figure 3-1. List of services in Horizon

 Managing/Creating Projects, Users, and Roles
 You can easily create projects, users, and roles with the help of the openstack command. Let’s start from a
new project. You need to use admin credentials for this operation:

 $ source keystonerc_admin
 $ openstack project create --description "Test project" apress
 +-------------+----------------------------------+
 | Field | Value |
 +-------------+----------------------------------+
description	Test project
enabled	True
id	ee6dbb7d8b5e420da8e8bd1b5e23953b
name	apress
 +-------------+----------------------------------+

 ■ Note Starting with the Mitaka release, you need to add the --domain option.

CHAPTER 3 ■ IDENTITY MANAGEMENT

25

 You can get a list of all projects and details about each project as well:

 $ openstack project list
 +----------------------------------+----------+
 | ID | Name |
 +----------------------------------+----------+
1542af2b20d349d29710d8c4019ba202	demo
233d4bfa02ee46e69194a7594570da45	services
560a3e76bdc64ea2bee9316038b12793	admin
ee6dbb7d8b5e420da8e8bd1b5e23953b	apress
+----------------------------------+----------+	
$ openstack project show apress	
+-------------+----------------------------------+	
Field	Value
+-------------+----------------------------------+	
description	Test project
enabled	True
id	ee6dbb7d8b5e420da8e8bd1b5e23953b
name	apress
 +-------------+----------------------------------+

 Now you can create a new user— apressadmin —granting _member_ a role in the Apress project:

 $ openstack user create --password-prompt apressuser
 User Password:
 Repeat User Password:
 +----------+----------------------------------+
 | Field | Value |
 +----------+----------------------------------+
email	None
enabled	True
id	639a67455b474a9eae2a9f048ee811b1
name	apressuser
username	apressuser
+----------+----------------------------------+	
$ openstack role add --project apress --user apressuser _member_	
+-------+----------------------------------+	
Field	Value
+-------+----------------------------------+	
id	9fe2ff9ee4384b1894a90878d3e92bab
name	_member_
 +-------+----------------------------------+

 ■ Note The admin role is global, not per project, so granting a user the admin role in any project gives the
user administrative rights across the whole environment.

CHAPTER 3 ■ IDENTITY MANAGEMENT

26

 If you want to get a list of all of the roles in OpenStack cloud, you can use the command:

 $ openstack role list
 +----------------------------------+------------------+
 | ID | Name |
 +----------------------------------+------------------+
7f8760410d94476c81fa77589cf7f6e2	heat_stack_user
9120dbbe6c324f96978f34ae8e386c36	heat_stack_owner
9d70fe84f7524503aeb69dfa9a2b987e	admin
9fe2ff9ee4384b1894a90878d3e92bab	_member_
e39b1852b0674392a4c56a48e37fa7d7	SwiftOperator
 +----------------------------------+------------------+

 The file policy.json exists in each service /etc/service_name/ directory. In such files, policy
definitions for roles are described. For example, this is a part of /etc/keystone/policy.json :

 {
 "admin_required": "role:admin or is_admin:1",
 ...
 "identity:create_region": "rule:admin_required",
 ...
 "identity:create_domain": "rule:admin_required",
 ...
 "identity:list_groups_for_user": "rule:admin_or_owner",
 }

 The first line is the admin role definition and the next three lines are the policy rules, which are
represented by the following syntax:

 "<service>:<action>" : "<subject conditions>"

 As you can see, to create a region or domain in the identity service, you need an admin role. You will get
an HTTP 403 error code if the current policy doesn’t allow the command to be performed.

 After creating a new user, you may want to create a new keystonerc file for it. You may use the
 keystonerc_admin file as a template. In this case, you need to change the OS_TENANT_NAME, OS_USERNAME
and OS_PASSWORD variables.

 If you need to delete a user or project, you can use the same openstack command but with the delete
subcommand. For example:

 $ openstack user delete apressuser
 $ openstack project delete apress

 It is possible to create, delete, and edit users and projects in OpenStack in web interface (Horizon).
Go to Identity ➤ Users or Identity ➤ Projects. Examples of editing project and creating user are shown in
Figures 3-2 and 3-3 , respectively.

CHAPTER 3 ■ IDENTITY MANAGEMENT

27

 Managing and Verifying Operation of the Identity Service
 For performance, a modern OpenStack installation deploys the Apache HTTP server with mod_wsgi package
to handle requests and Memcached fronfend to store tokens. In CentOS, Scientific Linux, Oracle Linux, and
other Red Hat Enterprise Linux derivatives, distribution for service management systemd is used. You can
check whether Memcached and Apache servers are started and active:

 # systemctl status memcached.service
 ● memcached.service - Memcached
 Loaded: loaded (/usr/lib/systemd/system/memcached.service; enabled; vendor preset: disabled)

 Figure 3-2. Managing project members in Horizon

 Figure 3-3. Creating a new user in Horizon

CHAPTER 3 ■ IDENTITY MANAGEMENT

28

 Active: active (running) since Sun 2016-04-10 13:13:45 MSK; 1h 34min ago
 ...
 # systemctl status httpd.service
 ● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset: disabled)
 Drop-In: /usr/lib/systemd/system/httpd.service.d
 └─openstack-dashboard.conf
 Active: active (running) since Sun 2016-04-10 13:14:50 MSK; 1h 33min ago
 ...

 ■ Note Keystone supports the three types of access tokens: PKI tokens (deprecated), UUID, and starting
with the Mitaka release, Fernet tokens. The latter are non-persistent, lightweight, and reduce the operational
overhead required to run a cloud. In the case of Fernet tokens, you don’t need to run the memcached daemon.

 The standard GNU/Linux command ps can show you two processes with names containing keystone :

 # ps aux | grep keystone
 root 22377 0.0 0.0 112644 960 pts/0 R+ 15:42 0:00 grep --color=auto keystone
 keystone 23767 0.0 1.9 595200 78144 ? Sl 14:14 0:05 keystone-
admin -DFOREGROUND
 keystone 23768 0.0 0.2 397220 10088 ? Sl 14:14 0:00 keystone-
main -DFOREGROUND

 There are two distinct daemon processes created for running through the WSGI module of Apache
HTTP server. You can find their configuration files in the /etc/httpd/conf.d/ directory:

 # ls /etc/httpd/conf.d/*keystone*
 /etc/httpd/conf.d/10-keystone_wsgi_admin.conf /etc/httpd/conf.d/10-keystone_wsgi_main.conf

 Here is a shorted example of the configuration file for admin’s virtual host:

 <VirtualHost *:35357>
 ServerName centos7.test.local
 DocumentRoot "/var/www/cgi-bin/keystone"

 <Directory "/var/www/cgi-bin/keystone">
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Require all granted
 </Directory>

 ErrorLog /var/log/httpd/keystone-error.log
 CustomLog /var/log/httpd/keystone-access.log combined
 WSGIDaemonProcess keystone_admin display-name=keystone-admin group=keystone processes=1
threads=1 user=keystone
 WSGIProcessGroup keystone_admin
 WSGIScriptAlias / "/var/www/cgi-bin/keystone/admin"
 WSGIPassAuthorization On
 </VirtualHost>

CHAPTER 3 ■ IDENTITY MANAGEMENT

29

 In case there is a need for troubleshooting, you may also want to check the endpoints by name or by ID:

 $ openstack endpoint show identity
 +--------------+----------------------------------+
 | Field | Value |
 +--------------+----------------------------------+
adminurl	http://10.0.2.15:35357/v2.0
enabled	True
id	6af17d75bdec498cbc2af32e6625b1b2
internalurl	http://10.0.2.15:5000/v2.0
publicurl	http://10.0.2.15:5000/v2.0
region	RegionOne
service_id	b0763e843e0e4e7284e14e76f4dd702c
service_name	keystone
service_type	identity
 +--------------+----------------------------------+

 As you see, the internal and public URLs are the same, but the admin endpoint uses port 35357, as
discussed earlier in this chapter. In case of debugging, you may want to check the log ins using /var/log/
httpd/keystone_* and /var/log/leystone/keystone.log .

 Review Questions
 1. How would you add the user apressuser with a Member role to the apress

project?

 A. openstack role add --project apress --user apressuser _member_

 B. openstack role add --project apress --user apressuser member

 C. openstack role add --project apress --user _member_ apressuser

 D. openstack role add --project apress --user member apressuser

 2. Which two system services should be started for a proper Keystone functioning
(choose two)?

 A. keystone-main

 B. keystone-admin

 C. memcached

 D. httpd

 3. How would you define a new role in OpenStack cloud (choose all applicable)?

 A. Enter command openstack role create newrole.

 B. Restart httpd service.

 C. Create new "keystonerc" file.

 D. Add definition to policy.json files.

CHAPTER 3 ■ IDENTITY MANAGEMENT

30

 4. How would you separate two or more cloud instances but manage them with one
Keystone instance?

 A. Use Domains feature.

 B. Use Regions feature.

 C. Use availability zones.

 D. Each cloud instance should use own Keystone instance feature.

 5. Which HTTP error code would you get if the Keystone token has expired?

 A. ERROR 404.

 B. ERROR 403.

 C. ERROR 401.

 D. All of them.

 Answers to Review Questions
 1. A

 2. C, D

 3. A, D

 4. A

 5. C

31© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_4

 CHAPTER 4

 Image Management

 This chapter covers 10% of the Certified OpenStack Administrator exam requirements.

 Architecture and Main Components of Glance
 Chapter 3 touched on the Keystone service that acts as a catalog of other OpenStack services. This chapter
covers one of the services that always exists in almost all OpenStack installations. The name of this service
is Glance, and its purpose is to act as an “Images-as-a-Service” provider. First, let’s deconstruct Glance to its
particular components. Have a look at Figure 4-1 .

 Figure 4-1. Architecture of Glance (Cinder and Glance integration is not shown to avoid complexity)

http://dx.doi.org/10.1007/978-1-4842-2125-9_3

CHAPTER 4 ■ IMAGE MANAGEMENT

32

 Glance consists of two services that are implemented as GNU/Linux daemons:

• glance-api : Accepts Image REST API calls for image discovery, retrieval, and storage.

• glance-registry : Stores, processes, and retrieves metadata about images. For
example, metadata are size, type, owner, etc. As you can see in Figure 4-1 , external
services never touches glance-registry directly.

 As you can also see in Figure 4-1 , Glance itself does not store images by themselves. Glance uses
plug-ins for particular storage, which can be your local file system, Swift object storage, Ceph storage,
NFS (Network File System), or other back ends. Metadata of images are stored in the Glance database,
usually as a MariaDB instance.

 Glance supports many disk formats. Table 4-1 describes some of them.

 Table 4-1. Disk Formats Supported by Glance

 Type of Disk Description

 aki An Amazon kernel image.

 ami An Amazon machine image.

 ari An Amazon ramdisk image.

 iso An archive format for the data contents of an optical disk, such as CD-ROM.

 qcow2 Supported by the QEMU emulator that can expand dynamically and supports Copy on
Write.

 raw An unstructured disk image format; if you have a file without an extension, it is possibly
a raw format.

 vdi Supported by VirtualBox virtual machine monitor and the QEMU emulator.

 vhd The VHD disk format, a common disk format used by virtual machine monitors from
VMware, Xen, Microsoft, VirtualBox, and others.

 vmdk Common disk format supported by many common virtual machine monitors.

 Let’s check these services on the OpenStack controller:

 # systemctl | grep glance
 openstack-glance-api.service
loaded active running OpenStack Image Service (code-named Glance) API server

 openstack-glance-registry.service
loaded active running OpenStack Image Service (code-named Glance) Registry server

 As you can see, both services are up and running.
 Usually when the Compute service Nova is trying to spawn a new virtual machine, it sends a GET

request to the URL http://path_to_Glance_service/images/paticular_image_ID . If the glance-api finds
the requested image, the service will return the URL where the image is located. After that, Nova sends the
link to the hypervisor’s driver and hypervisor will download the image directly.

 Then you need to look through the main configuration files for the glance-api and glance-registry. Both
 /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf contain similar settings.

CHAPTER 4 ■ IMAGE MANAGEMENT

33

 ■ Tip Default config files come with a huge amount of comments and are a very good source of information.
But sometimes you need to have a clear look at what is in the configs. You can use RegEx magic to remove all
comments and make the configs shorter. For example, with the command grep -o '^[^#]*' /etc/glance/
glance-registry.conf you can cut the default file from 1200 lines to 29. It can really make your life easier.

 As discussed earlier, Glance uses the database for storing metadata. In both config files, you can find
something like this:

 [database]
 ...
 connection=mysql://glance:password@10.0.2.15/glance

 This is the connection URL for the Glance database. The next important thing you will need is
the authentication parameters for Keystone. As with other services, you will need to define the basic
authentication credentials:

 [keystone_authtoken]
 auth_uri=http://10.0.2.15:5000/v2.0
 identity_uri=http://10.0.2.15:35357
 admin_user=glance
 admin_password=password
 admin_tenant_name=services

 [paste_deploy]
 flavor=keystone

 In our set up, Keystone server has the IP address 10.0.2.15 and you can see the public Identity API
endpoint and Admins Identity API endpoint definitions. Each has its own port number—5000 and 35357,
respectively. Also as you can see, in the config files the user name for Glance, service tenant, and password
are in clear text. It is very important to keep the right permissions for all config files because many of them
contain the password in clear text.

 Depending on the OpenStack version you use you will need to put RabbitMQ settings either in the
 [oslo_messaging_rabbit] or in[DEFAULT] section of /etc/glance/glance-api.conffile . Here is an example:

 [oslo_messaging_rabbit]
 rabbit_host=10.0.2.15
 rabbit_port=5672
 rabbit_hosts=10.0.2.15:5672
 rabbit_use_ssl=False
 rabbit_userid=guest
 rabbit_password=guest
 sss

 Deploying a New Image to an OpenStack Instance
 You can download various cloud-ready images from the Internet. Most major Linux distributions already
have prepared images for OpenStack. Table 4-2 shows several examples.

CHAPTER 4 ■ IMAGE MANAGEMENT

34

 For testing purposes, you can use CirrOS, which is a minimal Linux distro that was designed for testing
images on the cloud. First, you need to download the image:

 $ wget -P /tmp http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img

 ■ Tip In a CirrOS image, the user name of the existing account is cirros. The password is cubswin:).

 Then you can deploy the image in the cloud:

 $ openstack image create --file /tmp/cirros-0.3.4-x86_64-disk.img --disk-format qcow2
--container-format bare --public cirros-0.3.4-x86_64
 +------------------+--+
 | Field | Value |
 +------------------+--+
checksum	ee1eca47dc88f4879d8a229cc70a07c6
container_format	bare
created_at	2016-03-12T18:24:59Z
disk_format	qcow2
file	/v2/images/e5791edb-30dd-475a-9bc4-5938341db655/file
id	e5791edb-30dd-475a-9bc4-5938341db655
min_disk	0
min_ram	0
name	cirros-0.3.4-x86_64
owner	560a3e76bdc64ea2bee9316038b12793
protected	False
schema	/v2/schemas/image
size	13287936
status	active
updated_at	2016-03-12T18:25:00Z
virtual_size	None
visibility	public
 +------------------+--+

 In this particular command --public means that image can be used across project/tenants for every
user in the OpenStack cloud. To get information about the image, you can use the command openstack
image show followed by the ID of the image or name. In this case, the ID is e5791edb-30dd-475a-9bc4-
5938341db655 and the name is cirros-0.3.4-x86_64 .

 Table 4-2. Cloud-Ready Images

 Linux Distro or OS URL

 CirrOS http://download.cirros-cloud.net/

 Ubuntu http://cloud-images.ubuntu.com/

 Debian http://cdimage.debian.org/cdimage/openstack/

 Fedora https://getfedora.org/cloud/download/

 CentOS http://cloud.centos.org/centos/7/

 Windows Server 2012 R2 Evaluation for OpenStack https://cloudbase.it/windows-cloud-images/

CHAPTER 4 ■ IMAGE MANAGEMENT

35

 To get a list of all available images for the current user, use the following:

 $ openstack image list
 +--------------------------------------+---------------------+
 | ID | Name |
 +--------------------------------------+---------------------+
 | f42295b8-d600-4a67-86b7-dcda07652db4 | ubuntu-amd64 |
 | e5791edb-30dd-475a-9bc4-5938341db655 | cirros-0.3.4-x86_64 |
 +--------------------------------------+---------------------+

 As an admin, you can see all the images in the cloud.
 It’s good to know information about an image before onboarding it to OpenStack. Use the command

 qemu-img from the package with the same name:

 $ qemu-img info /tmp/wily-server-cloudimg-amd64-disk1.img
 image: /tmp/wily-server-cloudimg-amd64-disk1.img
 file format: qcow2
 virtual size: 2.2G (2361393152 bytes)
 disk size: 309M
 cluster_size: 65536
 Format specific information:
 compat: 0.10

 It is possible to create an image in OpenStack in a web interface (Horizon). Go to Project ➤ Compute ➤
Images. On the top of the right side of interface, click the “Create Image” button (see Figure 4-2). Only the image
name, format, and file are mandatory.

 Figure 4-2. Creating an image in the Horizon web interface

CHAPTER 4 ■ IMAGE MANAGEMENT

36

 As a user admin you can also see all images on the Admin ➤ Images page. It is possible to edit or add
some part of metadata from this point. Figure 4-3 shows this page.

 Figure 4-3. Admin’s view of images in Horizon web interface

 Managing Images
 Table 4-3 shows the most common commands for Glance management. In old versions of OpenStack,
you can use only the glance command. This command will probably become obsolete in the future. For
searching particular options and command descriptions, add –h to the end of your subcommand. For
example:

 Table 4-3. CLI Commands for Glance Management

 Command Purpose of Command

 openstack image create
 or glance image-create

 Create/upload an image

 openstack image delete
 or glance image-delete

 Delete image(s)

 openstack image add project
 or glance member-create

 Associate project with an image

 openstack image remove project
 or glance member-delete

 Disassociate project with an image

 openstack image list
 or glance image-list

 List available images

(continued)

CHAPTER 4 ■ IMAGE MANAGEMENT

37

 $ openstack image add project -h
 usage: openstack image add project [-h]
 [-f {html,json,json,shell,table,value,yaml,yaml}]
 [-c COLUMN] [--max-width <integer>]
 [--noindent] [--prefix PREFIX]
 [--project-domain <project-domain>]
 <image> <project>

 Associate project with image

 positional arguments:
 <image> Image to share (name or ID)
 <project> Project to associate with image (name or ID)

 ...

 Table 4-3 shows how some commands work.
 Once you have your image set up, you can download it. A simple example looks something like this:

 $ openstack image save ubuntu-amd64 > local_image.img
 $ ls -l local_image.img
 -rw-rw-r-- 1 andrey andrey 323682816 Mar 13 18:36 local_image.img

 You can add your own metadata to an image. For instance, the following command adds two new
properties to the existing image:

 $ glance image-update f42295b8-d600-4a67-86b7-dcda07652db4 --property os_name=linux
--property contact_person="andrey.markelov@ericsson.com"
 +------------------+--------------------------------------+
 | Property | Value |
 +------------------+--------------------------------------+
checksum	89a76d37ee23111237628d6ea38fd7e9
contact_person	andrey.markelov@ericsson.com
container_format	bare
created_at	2016-03-12T18:41:05Z
disk_format	qcow2
id	f42295b8-d600-4a67-86b7-dcda07652db4
min_disk	0
min_ram	0

 Command Purpose of Command

 openstack image save
 or glance image-download

 Save an image locally on disk

 openstack image show
 or glance image-show

 Display image details

 openstack image set Set image properties

 glance image-update Set image metadata

Table 4-3. (continued)

CHAPTER 4 ■ IMAGE MANAGEMENT

38

name	ubuntu-amd64
os_name	linux
owner	560a3e76bdc64ea2bee9316038b12793
protected	False
size	323682816
status	active
tags	[]
updated_at	2016-03-13T15:41:33Z
virtual_size	None
visibility	public
 +------------------+--------------------------------------+

 For deleting a property, use the following command:

 $ glance image-update f42295b8-d600-4a67-86b7-dcda07652db4 --remove-property contact_person

 And if you want, you can delete an image itself:

 $ openstack image delete ubuntu-amd64
 $ openstack image list
 +--------------------------------------+---------------------+
 | ID | Name |
 +--------------------------------------+---------------------+
 | e5791edb-30dd-475a-9bc4-5938341db655 | cirros-0.3.4-x86_64 |
 +--------------------------------------+---------------------+

 For almost all commands, you may use either the name of the image or the ID. The utilities glance
and openstack have the --debug option, if you want to see what is behind the CLI. It might be useful for
troubleshooting or learning more about the API:

 openstack image list --debug
 START with options: ['image', 'list', '--debug']
 ...
 REQ: curl -g -i -X GET http://10.0.2.15:9292/v2/images -H "User-Agent: python-
openstackclient" -H "X-Auth-Token: {SHA1}a7106d46959611d458dbd9a89f01f570bc5fc536"
 "GET /v2/images?marker=e5791edb-30dd-475a-9bc4-5938341db655 HTTP/1.1" 200 69
 RESP: [200] date: Sun, 13 Mar 2016 16:02:50 GMT connection: keep-alive content-type:
application/json; charset=UTF-8 content-length: 69 x-openstack-request-id: req-bf5875a1-
ba85-46f2-8dea-2918272a80da
 RESP BODY: {"images": [], "schema": "/v2/schemas/images", "first": "/v2/images"}

 +--------------------------------------+---------------------+
 | ID | Name |
 +--------------------------------------+---------------------+
 | e5791edb-30dd-475a-9bc4-5938341db655 | cirros-0.3.4-x86_64 |
 +--------------------------------------+---------------------+
 clean_up ListImage:
 END return value: 0

CHAPTER 4 ■ IMAGE MANAGEMENT

39

 Managing Image Back Ends
 Glance can support various data store back ends, such as Swift, Ceph, NFS, local file system, and others.
Storage vendors like EMC or NetApp produce plug-ins for their own hardware. You can define each
particular back end in the [glance_store] section of the configuration file /etc/glance/glance-api.conf .
Here is the simplest example of the local file system:

 [glance_store]
 ...
 default_store = file
 filesystem_store_datadir = /var/lib/glance/images/

 If you look at this directory, you can find files with the names that are equal to the image’s ID:

 # ls -l /var/lib/glance/images/
 total 329080
 -rw-r----- 1 glance glance 13287936 Mar 12 21:25 e5791edb-30dd-475a-9bc4-5938341db655
 -rw-r----- 1 glance glance 323682816 Mar 12 21:41 f42295b8-d600-4a67-86b7-dcda07652db4
 ls -l /var/lib/glance/images/
 $ openstack image list
 +--------------------------------------+---------------------+
 | ID | Name |
 +--------------------------------------+---------------------+
 | f42295b8-d600-4a67-86b7-dcda07652db4 | ubuntu-amd64 |
 | e5791edb-30dd-475a-9bc4-5938341db655 | cirros-0.3.4-x86_64 |
 +--------------------------------------+---------------------+

 Glance can serve multiple back ends at the same time. In this case Glance will choose a particular back
end depending on the free space and priority. For example, if you have two mounted disks in /var/lib/
glance/images/ , you can add something like this:

 [glance_store]
 filesystem_store_datadirs = /var/lib/glance/images/mountA/:10
 filesystem_store_datadirs = /var/lib/glance/images/mountB/:20
 ...

 To limit the size of images, you need to add the image_size_cap parameter and maximum size in bytes
to the glance-api configuration file and restart the glance-api service. Here is an example for adding a 1GB
parameter:

 [default]
 image_size_cap = 1073741824
 ...

 # systemctl restart openstack-glance-api

 If you need to limit the storage amount per user in Glance, use another option:

 [default]
 user_storage_quota = 500MB
 ...

 # systemctl restart openstack-glance-api

CHAPTER 4 ■ IMAGE MANAGEMENT

40

 Verifying Operation of the Image Service
 Let’s check the presence of Glance service in the Keystone services catalog. You can do that with the old-
fashioned command keystone or with the new openstack command. It’s better to use the openstack CLI
when possible because in the future it will probably be the only command-line client available:

 $ source keystonerc_admin
 $ openstack service show glance
 +-------------+----------------------------------+
 | Field | Value |
 +-------------+----------------------------------+
description	OpenStack Image Service
enabled	True
id	9d33c464f61749cd9f5811cda1ae5444
name	glance
type	image
 +-------------+----------------------------------+

 Looks like everything is fine with that. For troubleshooting, you may also need to know where the
 glance-api endpoint is:

 $ openstack endpoint show glance
 +--------------+----------------------------------+
 | Field | Value |
 +--------------+----------------------------------+
adminurl	http://10.0.2.15:9292
enabled	True
id	5ae58266319446a4837ce0c212c5ad1a
internalurl	http://10.0.2.15:9292
publicurl	http://10.0.2.15:9292
region	RegionOne
service_id	9d33c464f61749cd9f5811cda1ae5444
service_name	glance
service_type	image
 +--------------+----------------------------------+

 In this particular environment, the Glance service is listening for incoming connections at the IP
address 10.0.2.15 and port number 9292. All communications are happening through http. In real life it can
also be done through the https protocol. URLs for admin interface, public interface, and internal interface
can also be different. Keep in mind that glance-registry is listening on port 9191, but you will not expose the
registry for external services.

 You may also want to check Glance’s log files. The /var/log/glance/api.log is in charge of glance-api
and /var/log/glance/registry.log for glance-registry service. To adjust how the logs are detailed, you
can add the option to Glance’s configuration files:

 [DEFAULT]
 ...
 verbose = True
 debug = True

CHAPTER 4 ■ IMAGE MANAGEMENT

41

 Review Questions
 1. Where are the images stored when using the local file system by default?

 A. /var/cache/glance/

 B. /var/lib/glance/store/

 C. /var/log/glance/

 D. /var/lib/glance/images/

 2. Which two main daemons does Glance consist of (choose two)?

 A. glance-endpoint

 B. glance-registry

 C. glance-backend

 D. glance-api

 3. What parameter in Glance’s configuration files defines the back end for storing
files?

 A. default_store

 B. B. default_backend

 C. prefered_store

 D. prefered_backend

 4. How can an image in OpenStack cloud be stored with CLI?

 A. openstack image create --file image.img --disk-format qcow2 --container-
format bare --public image

 B. openstack image add --file image.img --disk-format qcow2 --container-
format bare --public image

 C. openstack image create --file image.img --disk qcow2 --container-format
bare --public image

 D. openstack image add --file image.img --disk qcow2 --container-format
bare --public image

 5. How can the storage volume be limited in Glance per user?

 A. Put image_size_cap option to /etc/glance/glance-api.conf

 B. Put image_size_cap option to /etc/glance/glance-registry.conf

 C. Put user_storage_quota option to /etc/glance/glance-api.conf

 D. Put user_storage_quota option to /etc/glance/glance-registry.conf

CHAPTER 4 ■ IMAGE MANAGEMENT

42

 Answers to Review Questions
 1. D

 2. B and D

 3. B

 4. A

 5. C

43© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_5

 CHAPTER 5

 OpenStack Networking

 This chapter covers 16% of the Certified OpenStack Administrator exam requirements.

 Architecture and Components of Neutron
 OpenStack Networking is one of the most complicated OpenStack services. Let’s start by looking at the
architecture and general concepts of Neutron. Figure 5-1 shown the objects in the OpenStack Networking.

 Figure 5-1. Logical objects in the OpenStack Networking service

CHAPTER 5 ■ OPENSTACK NETWORKING

44

 There are several components of most importance in OpenStack Networking:

• Tenant network : A virtual network that provides connectivity between entities.
The network consists of subnets, and each subnet is a logical subdivision of an IP
network. A subnet can be private or public. Virtual machines can get access to an
external world through the public subnet. If a virtual machine is connected only to
the private subnet, then only other virtual machines from this particular network can
access it. Only a user with an admin role can create a public network.

• Router : A virtual network device that passes network traffic between different
networks. A router can have one gateway and many connected subnets.

• Security Group : The set of ingress and egress firewall rules that can be applied to
one or many virtual machines. It is possible to change a Security Group at runtime.

• Floating IP address : An IP address that can be associated with a virtual machine so
that the instance has the same IP from the public network each time it boots.

• Port: A virtual network port within OpenStack Networking. It is a connection
between the subnet and vNIC or virtual router.

• vNIC (virtual Network Interface Card) or VIF (Virtual Network Interface) : An
interface that is plugged into a port in a network.

 Let’s continue this discussion by learning more about Neutron architecture (see Figure 5-2).

 Figure 5-2. Architecture of OpenStack Networking sevice

CHAPTER 5 ■ OPENSTACK NETWORKING

45

 Upstream documentation from docs.openstack.org defines several types of OpenStack nodes. Neutron is
usually spread across three of them. API service usually exists at the control node. Open vSwitch and client-side
Neutron agents are usually started at the Hypervisor or Compute node. And all server-side components of the
OpenStack Networking service work on Networks nodes, which can be gateways to an external network.

 Neutron consists of several services that are implemented as standard GNU/Linux daemons:

• neutron-server : The main service of Neutron. Accepts and routes API requests
through message bus to the OpenStack Networking plug-ins for action.

• neutron-openvswitch-agent : Receives commands from neutron-server and sends
them to Open vSwitch (OVS) for execution. The neutron-openvswitch-agent uses the
local GNU/Linux commands for OVS management.

• neutron-l3-agent : Provides routing and Network Address Translation (NAT) using
standard GNU/Linux technologies like Linux Routing and Network Namespaces.

• neutron-dhcp-agent : Manages dnsmasq services. Dnsmasq is a lightweight Dynamic
Host Configuration Protocol (DHCP) and caching DNS server. Also neutron-dhcp-agent
starts proxies for the metadata server.

• neutron-metadata-agent : Provides the ability for instances to get information
such as hostname, SSH keys, etc. Virtual machines can request HTTP protocol
information such as an URL http://169.254.169.254 at boot time. Usually this
happens with scripts like cloud-init (https://launchpad.net/cloud-init). Agent
acts as a proxy to nova-api for retrieving metadata.

 Neutron also uses Open vSwitch. Its configuration will be discussed in the next section of this chapter.
Table 5-1 lists what type of node (Compute, Network, or Control) services are started and the location of
their configs.

 Table 5-1. OpenStack Neutron Services and Their Placement

 Service Node Type Configuration Files

 neutron-service Control /etc/neutron/neutron.conf

 neutron-openvswitch-agent Network and
Compute

 /etc/neutron/plugins/ml2/openvswitch_agent.ini

 neutron-l3-agent Network /etc/neutron/l3_agent.ini

 neutron-dhcp-agent Network /etc/neutron/dhcp_agent.ini

 neutron-metadata-agent Network /etc/neutron/metadata_agent.ini

 Modular Layer 2 agent (it is not
run as a daemon)

 Network /etc/neutron/plugins/ml2/ml2_conf.ini and /
etc/neutron/plugin.ini (symbolic link to ml2_
conf.ini)

 Architecture of Open vSwitch
 The important part of networking in the OpenStack cloud is OVS. The web site for OVS with documentation
and source code is http://openvswitch.org/ . Open vSwitch is not a part of OpenStack project. However,
OVS is used in most implementations of OpenStack clouds. It has also been integrated into many other
virtual management systems including OpenQRM, OpenNebula, and oVirt. Open vSwitch can provide
support for protocols such as OpenFlow, GRE, VLAN, VXLAN, NetFlow, sFlow, SPAN, RSPAN, and LACP. It
can operate in distributed configurations with a central controller.

https://launchpad.net/cloud-init
http://openvswitch.org/

CHAPTER 5 ■ OPENSTACK NETWORKING

46

 Open vSwitch by itself consists of several components:

• GNU/Linux kernel module openswitch_mod.ko: The module plays the role of ASIC
(application-specific integrated circuit) in hardware switches. This module is an
engine of traffic processing.

• Daemon ovs-vswitchd : The daemon is in charge of management and logic for data
transmitting.

• Daemon ovsdb-server : The daemon is used for the internal database. It also
provides RPC (remote procedure call) interfaces to one or more Open vSwitch
databases (OVSDBs).

 Most likely you will not need to manage Open vSwitch at the exam time, but commands can be useful.
Let’s see some examples of using the management utility ovs-vsctl for interacting with OVS. First, let’s
check for the version of Open vSwitch:

 # ovs-vsctl -V
 ovs-vsctl (Open vSwitch) 2.4.0
 Compiled Oct 7 2015 18:01:06
 DB Schema 7.12.1

 You can create a new bridge and delete it with the help of the commands:

 # ovs-vsctl add-br br-new
 # ovs-vsctl del-br br-new

 The same with adding or removing a physical interface to or from the bridge:

 # ovs-vsctl add-port br-ex enp0s3
 # ovs-vsctl del-port br-ex enp0s3

 The most interesting command is ovs-vsctl show . The output of this command is printed from the lab
environment with three nodes:

 # ovs-vsctl show
 22a0e0a2-7ac2-493a-9398-65e5683835e9
 Bridge br-int
 fail_mode: secure
 Port br-int
 Interface br-int
 type: internal
 Port "tap7fd27c60-32"
 tag: 1
 Interface "tap7fd27c60-32"
 type: internal
 Port patch-tun
 Interface patch-tun
 type: patch
 options: {peer=patch-int}
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}

CHAPTER 5 ■ OPENSTACK NETWORKING

47

 Port "qr-8d2a382b-01"
 tag: 1
 Interface "qr-8d2a382b-01"
 type: internal
 Bridge br-ex
 Port "eth1"
 Interface "eth1"
 Port br-ex
 Interface br-ex
 type: internal
 Port "qg-dbd535f0-05"
 Interface "qg-dbd535f0-05"
 type: internal
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Bridge br-tun
 fail_mode: secure
 Port "gre-c0a87ad2"
 Interface "gre-c0a87ad2"
 type: gre
 options: {df_default="true", in_key=flow, local_ip="10.0.2.15", out_
key=flow, remote_ip="10.0.2.20"}
 Port br-tun
 Interface br-tun
 type: internal
 Port patch-int
 Interface patch-int
 type: patch
 options: {peer=patch-tun}
 Port "gre-c0a87ad7"
 Interface "gre-c0a87ad7"
 type: gre
 options: {df_default="true", in_key=flow, local_ip="10.0.2.15", out_
key=flow, remote_ip="10.0.2.30"}
 ovs_version: "2.4.0"

 As you can see, three bridges exist:

• Integration bridge (br-int) : There is a single integration bridge on each node.
This bridge acts as a virtual switch where all virtual network cards from all virtual
machines are connected. OVS Neutron agent automatically creates the integration
bridge.

• External bridge (br-ex) : This bridge is for interconnection with external networks.
In our example, physical interface eth1 is connected to this bridge.

• Tunnel bridge (br-tun) : This bridge is a virtual switch like br-int . It connects
the GRE and VXLAN tunnel endpoints. As you can see in our particular example, it
connects the node with the IP address 10.0.2.15 and two others with IP 10.0.2.20 and
10.0.2.30. In our example, a GRE tunnel was used.

CHAPTER 5 ■ OPENSTACK NETWORKING

48

 Here is an example of the code from a config file for neutron-openvswitch-agent:

 # grep -o '^[^#]*' /etc/neutron/plugins/ml2/openvswitch_agent.ini
 [DEFAULT]
 [agent]
 tunnel_types =vxlan,gre
 vxlan_udp_port = 4789
 l2_population = False
 drop_flows_on_start = False
 [ovs]
 integration_bridge = br-int
 tunnel_bridge = br-tun
 local_ip = 10.0.2.15
 enable_tunneling=True
 [securitygroup]
 firewall_driver = neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

 See the Tip in Chapter 4 for an explanation of how RegEx can be used in the grep command.

 Manage Network Resources
 Now let’s go through the process of creating all the necessary network resources for connecting an
instance to the external world. For that you can use the neutron command and sometimes nova . Both
commands have built-in help. Use nova help <sub-command> or neutron help sub-command for getting
help for a particular sub-command. First, let’s create a flat external network. You should have admin role
before doing that:

 $ source keystonerc_demo
 $ neutron net-create ext-net --router:external True --provider:physical_network external
--provider:network_type flat
 Created a new network:
 +---------------------------+--------------------------------------+
 | Field | Value |
 +---------------------------+--------------------------------------+
admin_state_up	True
availability_zone_hints	
availability_zones	
created_at	2016-07-17T16:39:51
description	
id	4716a0c7-70c9-44f1-a276-6e159400ba78
ipv4_address_scope	
ipv6_address_scope	
is_default	False
mtu	1500
name	ext-net
provider:network_type	flat
provider:physical_network	external

http://dx.doi.org/10.1007/978-1-4842-2125-9_4

CHAPTER 5 ■ OPENSTACK NETWORKING

49

provider:segmentation_id	
router:external	True
shared	False
status	ACTIVE
subnets	
tags	
tenant_id	ae8d3e3f5cff4a959f1ae1cfe9e80d6d
updated_at	2016-07-17T16:39:51
 +---------------------------+--------------------------------------+

 ■ Tip If you can’t create a network with type flat , then add flat to the type_drivers option in the /etc/
neutron/plugins/ml2/ml2_conf.ini config file. After changes, you will need to restart Neutron service.

 The next step is to create a subnet for this network. It will be an external existing network and you will
need to disable DHCP for this network:

 $ neutron subnet-create ext-net --name ext-subnet --allocation-pool
start=10.0.2.100,end=10.0.2.200 --disable-dhcp --gateway 10.0.2.2 10.0.2.0/24
 Created a new subnet:
 +-------------------+--+
 | Field | Value |
 +-------------------+--+
allocation_pools	{"start": "10.0.2.100", "end": "10.0.2.200"}
cidr	10.0.2.0/24
created_at	2016-07-17T16:43:48
description	
dns_nameservers	
enable_dhcp	False
gateway_ip	10.0.2.2
host_routes	
id	40d6da8b-b7eb-437e-8e84-ef018b773e4a
ip_version	4
ipv6_address_mode	
ipv6_ra_mode	
name	ext-subnet
network_id	4716a0c7-70c9-44f1-a276-6e159400ba78
subnetpool_id	
tenant_id	ae8d3e3f5cff4a959f1ae1cfe9e80d6d
updated_at	2016-07-17T16:43:48
 +-------------------+--+

 If you use Horizon for net and subnet creation, go to Project ➤ Network ➤ Networks and click the
“Create Network” button. You will then see an opened window as shown in Figure 5-3 . By clicking Next, you
will then go to the Subnet tab.

CHAPTER 5 ■ OPENSTACK NETWORKING

50

 Now it is possible to check the work that has already been done. First, let’s check the list of all networks:

 $ neutron net-list
 +----------------------------------+---------+---+
 | id | name | subnets |
 +---------------------------------+----------+--+
 | 4716a0c7-70c9-44f1-a276-6e15.. | ext-net | 40d6da8b-b7eb-437e-8e84-ef018b773e4a
10.0.2.0/24 |
 +---------------------------------+----------+--+

 Then you may want to check the details of ext-net :

 $ neutron net-show ext-net
 +---------------------------+--------------------------------------+
 | Field | Value |
 +---------------------------+--------------------------------------+
admin_state_up	True
availability_zone_hints	
availability_zones	nova

 Figure 5-3. Net creating dialog in Horizon

CHAPTER 5 ■ OPENSTACK NETWORKING

51

created_at	2016-07-17T16:39:51
description	
id	4716a0c7-70c9-44f1-a276-6e159400ba78
ipv4_address_scope	
ipv6_address_scope	
is_default	False
mtu	1500
name	ext-net
provider:network_type	flat
provider:physical_network	external
provider:segmentation_id	
router:external	True
shared	False
status	ACTIVE
subnets	40d6da8b-b7eb-437e-8e84-ef018b773e4a
tags	
tenant_id	ae8d3e3f5cff4a959f1ae1cfe9e80d6d
updated_at	2016-07-17T16:39:51
 +---------------------------+--------------------------------------+

 The corresponding Networks screen from Horizon is shown in Figure 5-4 .

 Figure 5-4. Properties of the chosen network in Horizon

CHAPTER 5 ■ OPENSTACK NETWORKING

52

 The rest of the work you can do as a demo user from the demo project. Actually the only action where
you need an admin role is when you name the network as external. Now let’s create the tenant network:

 $ source keystonerc_demo
 $ neutron net-create demo-net
 Created a new network:
 +-------------------------+--------------------------------------+
 | Field | Value |
 +-------------------------+--------------------------------------+
admin_state_up	True
availability_zone_hints	
availability_zones	
created_at	2016-07-17T16:45:52
description	
id	da07837c-74a5-471b-a79a-810dd3c2a91f
ipv4_address_scope	
ipv6_address_scope	
mtu	1450
name	demo-net
router:external	False
shared	False
status	ACTIVE
subnets	
tags	
tenant_id	16f44d2a075a4139a2a5425a42f1b447
updated_at	2016-07-17T16:45:53
 +-------------------------+--------------------------------------+

 You will also need a subnet for your network:

 $ neutron subnet-create demo-net --name demo-subnet --gateway 172.16.0.1 172.16.0.0/24
 Created a new subnet:
 +-------------------+--+
 | Field | Value |
 +-------------------+--+
allocation_pools	{"start": "172.16.0.2", "end": "172.16.0.254"}
cidr	172.16.0.0/24
created_at	2016-07-17T16:46:53
description	
dns_nameservers	
enable_dhcp	True
gateway_ip	172.16.0.1
host_routes	
id	51a7950a-c132-462e-8b49-72b82ac7a0d2
ip_version	4
ipv6_address_mode	
ipv6_ra_mode	
name	demo-subnet
network_id	da07837c-74a5-471b-a79a-810dd3c2a91f
subnetpool_id	
tenant_id	16f44d2a075a4139a2a5425a42f1b447
updated_at	2016-07-17T16:46:53
 +-------------------+--+

CHAPTER 5 ■ OPENSTACK NETWORKING

53

 You will then need to create a virtual router for routing traffic:

 $ neutron router-create demo-router
 Created a new router:
 +-------------------------+--------------------------------------+
 | Field | Value |
 +-------------------------+--------------------------------------+
admin_state_up	True
availability_zone_hints	
availability_zones	
description	
external_gateway_info	
id	c61bbed9-ee0e-4b9f-b385-1e778b915a1b
name	demo-router
routes	
status	ACTIVE
tenant_id	16f44d2a075a4139a2a5425a42f1b447
 +-------------------------+--------------------------------------+

 Now connect the router with the tenant subnet from one side:

 $ neutron router-interface-add demo-router demo-subnet
 Added interface 875a80bc-adb4-4cff-b029-91af84f6fc86 to router demo-router.

 And from the other side you will need to set ext-net as a gateway for the router:

 $ neutron router-gateway-set demo-router ext-net
 Set gateway for router demo-router

 You can now create a virtual router in Horizon by going to Project ➤ Network ➤ Router tab. An example
of the router properties is shown in Figure 5-5 .

 Figure 5-5. Properties of virtual router in Horizon

CHAPTER 5 ■ OPENSTACK NETWORKING

54

 Now you can check all of the ports. Remember, it is the connection between a subnet and vNIC or a
virtual router:

 $ source keystonerc_admin
 $ neutron port-list
 +---------+------+-------------------+---+
 | id | name | mac_address | fixed_ips |
 +---------+------+-------------------+---+
5c4aa..		fa:16:3e:58:a8:71	{"subnet_id": "51..", "ip_address": "172.16.0.2"}
875a8..		fa:16:3e:9f:f4:bb	{"subnet_id": "51..", "ip_address": "172.16.0.1"}
95db6..		fa:16:3e:64:e2:6d	{"subnet_id": "40..", "ip_address": "10.0.2.100"}
 +---------+------+-------------------+---+

 Then you can get information about any chosen port:

 $ neutron port-show 875a80bc-adb4-4cff-b029-91af84f6fc86
 +-----------------------+--+
 | Field | Value |
 +-----------------------+--+
admin_state_up	True
allowed_address_pairs	
binding:host_id	centos7.test.local
binding:profile	{}
binding:vif_details	{"port_filter": true, "ovs_hybrid_plug": true}
binding:vif_type	ovs
binding:vnic_type	normal
created_at	2016-07-17T16:48:31
description	
device_id	c61bbed9-ee0e-4b9f-b385-1e778b915a1b
device_owner	network:router_interface
dns_name	
extra_dhcp_opts	
fixed_ips	{"subnet_id": "51a7950a-c132-462e-8b49-72b82ac7a0d2",
	"ip_address": "172.16.0.1"}
id	875a80bc-adb4-4cff-b029-91af84f6fc86
mac_address	fa:16:3e:9f:f4:bb
name	
network_id	da07837c-74a5-471b-a79a-810dd3c2a91f
security_groups	
status	ACTIVE
tenant_id	16f44d2a075a4139a2a5425a42f1b447
updated_at	2016-07-17T16:48:35
 +-----------------------+--+

 At this stage, you can start the instance and get an overall picture of configured network by going to
Project ➤ Network ➤ Network Topology. It is shown in Figure 5-6 .

CHAPTER 5 ■ OPENSTACK NETWORKING

55

 At this point you have only one missing part. Your instances within the one tenant network can connect
to each other. But none of the instances can reach out to an external network. You need to add a floating IP
from ext-net to the virtual machine.

 First, let’s create the floating IP. The default quota for the number of floating IPs is 10, and this can be
adjusted by anyone who has admin capacity:

 $ neutron floatingip-create ext-net
 Created a new floatingip:
 +---------------------+--------------------------------------+
 | Field | Value |
 +---------------------+--------------------------------------+
description	
dns_domain	
dns_name	
fixed_ip_address	
floating_ip_address	10.0.2.101
floating_network_id	4716a0c7-70c9-44f1-a276-6e159400ba78
id	2c60a8b3-591d-475e-bb81-2d7c9bd4f18d
port_id	
router_id	
status	DOWN
tenant_id	16f44d2a075a4139a2a5425a42f1b447
 +---------------------+--------------------------------------+

 Figure 5-6. Network Topology tab in Horizon

CHAPTER 5 ■ OPENSTACK NETWORKING

56

 Take a moment to locate the ID of the floating IP from the output. You will need this ID soon. Next, you
should determine which port you will associate the IP with. You can get an internal IP of your instance:

 $ nova list
 +--------------------------------------+-----------------+--------+-------------+----------+
 | ID | Name | Status | Power State | Networks |
 +--------------------------------------+-----------------+--------+-------------+----------+
 | 4b80e2f5-c331-49f3-b653-33aa4ae77233 | apressinstance1 | ACTIVE | Running | demo-net=|
 | | | | | 172.16.0.3 |
 +--------------------------------------+-----------------+--------+-------------+----------+

 After locating the IP, you can then determine the port ID from the list:

 $ neutron port-list
 +--------------------------------------+- .. ---------------+
 | id | .. fixed_ips |
 +--------------------------------------+- .. ---------------+
5c4aa20c-6f85-4f1c-a807-f39db46e7ce5	.. "172.16.0.2"}
875a80bc-adb4-4cff-b029-91af84f6fc86	.. "172.16.0.1"}
e30e079a-985a-4ff2-ab3a-ba79f1841b3b	.. "172.16.0.3"}
 +--------------------------------------+- .. ---------------+

 Now you can associate the floating IP with the port. In the example, the ID of the IP is 2c60a8b3-591d-
475e-bb81-2d7c9bd4f18d and the ID of the port is e30e079a-985a-4ff2-ab3a-ba79f1841b3b:

 $ neutron floatingip-associate 2c60a8b3-591d-475e-bb81-2d7c9bd4f18d e30e079a-985a-4ff2-ab3a-
ba79f1841b3b
 Associated floating IP 2c60a8b3-591d-475e-bb81-2d7c9bd4f18d

 If you check the nova list again, you will find the second external IP and the virtual machine properties:

 $ nova list
 +--------------------------------------+-----------------+--------+-------------+----------+
 | ID | Name | Status | Power State | Networks |
 +--------------------------------------+-----------------+--------+-------------+----------+
4b80e2f5-c331-49f3-b653-33aa4ae77233	apressinstance1	ACTIVE	Running	demo-net=
				172.16.0.3,
				10.0.2.101
 +--------------------------------------+-----------------+--------+-------------+----------+

CHAPTER 5 ■ OPENSTACK NETWORKING

57

 You can find information related to the floating IPs in Horizon by going to Project ➤ Compute ➤ Access
& Security ➤ Floating IPs. An example of information provided at this tab is shown in Figure 5-7 .

 Figure 5-7. Floating IPs tab in Horizon

 Manage Project Security Group Rules
 Security Groups are firewall rules that can filter ingress and egress traffic for virtual machines. They are
implemented with iptables rules in the reference configuration. To create the Security Group use the
command:

 $ nova secgroup-create apress-sgroup "Apress secgroup"
 +--------------------------------------+---------------+-----------------+
 | Id | Name | Description |
 +--------------------------------------+---------------+-----------------+
 | 2ad4b67a-f943-451b-bcd2-14853704bcee | apress-sgroup | Apress secgroup |
 +--------------------------------------+---------------+-----------------+

 Then you can add a rule:

 $ nova secgroup-add-rule apress-sgroup tcp 22 22 0.0.0.0/0
 +-------------+-----------+---------+-----------+--------------+
 | IP Protocol | From Port | To Port | IP Range | Source Group |
 +-------------+-----------+---------+-----------+--------------+
 | tcp | 22 | 22 | 0.0.0.0/0 | |
 +-------------+-----------+---------+-----------+--------------+

CHAPTER 5 ■ OPENSTACK NETWORKING

58

 And you can also apply Security Groups to instances at boot time:

 $ nova boot --flavor m1.tiny --image cirros-raw --security-groups apress-sgroup
apressinstance1
 +--------------------------------------+---+
 | Property | Value |
 +--------------------------------------+---+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	-
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
adminPass	EDZh9ctFcfHz
config_drive	
created	2016-07-17T17:17:31Z
flavor	m1.tiny (1)
hostId	
id	4b80e2f5-c331-49f3-b653-33aa4ae77233
image	cirros-raw (039daa2e-6b3e-4e31-b1da-ab3e6feb8b30)
key_name	-
metadata	{}
name	apressinstance1
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	apress-sgroup
status	BUILD
tenant_id	16f44d2a075a4139a2a5425a42f1b447
updated	2016-07-17T17:17:34Z
user_id	8e28b302669042e58e7ceb642d4f9708
 +--------------------------------------+---+

 Also it is possible to add or remove a Security Group on the fly:

 $ nova add-secgroup apressinstance11 apress-sgroup
 $ nova remove-secgroup apressinstance1 default

 To list the rules, you would use the command:

 nova secgroup-list-rules apress-sgroup
 +-------------+-----------+---------+-----------+--------------+
 | IP Protocol | From Port | To Port | IP Range | Source Group |
 +-------------+-----------+---------+-----------+--------------+
 | tcp | 22 | 22 | 0.0.0.0/0 | |
 +-------------+-----------+---------+-----------+--------------+

 You can find information related to Security Groups in Horizon by going to Project ➤ Compute ➤
Access & Security ➤ Security Groups tab. An example of the information provided on this tab is shown in
Figure 5-8 .

CHAPTER 5 ■ OPENSTACK NETWORKING

59

 Manage Quotas
 A quota limits the number of available resources. The default number of resources allowed per tenant
is defined in the main configuration file /etc/neutron/neutron.conf in the [quota] section. Here is an
example:

 [quota]
 # Number of networks allowed per tenant. A negative value means unlimited.
 # (integer value)
 quota_network = 10

 # Number of subnets allowed per tenant, A negative value means unlimited.
 # (integer value)
 quota_subnet = 10

 # Number of ports allowed per tenant. A negative value means unlimited.
 # (integer value)
 quota_port = 50

 # Default driver to use for quota checks (string value)
 quota_driver = neutron.db.quota.driver.DbQuotaDriver

 # Keep in track in the database of current resourcequota usage. Plugins which
 # do not leverage the neutron database should set this flag to False (boolean
 # value)
 track_quota_usage = true

 # Number of routers allowed per tenant. A negative value means unlimited.
 # (integer value)
 quota_router = 10

 # Number of floating IPs allowed per tenant. A negative value means unlimited.
 # (integer value)
 quota_floatingip = 50

 Figure 5-8. Security Groups tab in Horizon

CHAPTER 5 ■ OPENSTACK NETWORKING

60

 # Number of security groups allowed per tenant. A negative value means
 # unlimited. (integer value)
 quota_security_group = 10

 # Number of security rules allowed per tenant. A negative value means
 # unlimited. (integer value)
 quota_security_group_rule = 100

 Regular users can get their quotas with the neutron quota-show command:

 $ neutron quota-show
 +---------------------+-------+
 | Field | Value |
 +---------------------+-------+
floatingip	50
network	10
port	50
rbac_policy	10
router	10
security_group	10
security_group_rule	100
subnet	10
subnetpool	-1
 +---------------------+-------+

 Admins can do the same, but only for any project with the --tenant_id option. If an admin needs to
change the quotas for a particular project, the following command would be used:

 $ neutron quota-update --tenant_id 16f44d2a075a4139a2a5425a42f1b447 --floatingip 7
 +---------------------+-------+
 | Field | Value |
 +---------------------+-------+
floatingip	7
network	10
port	50
rbac_policy	10
router	10
security_group	10
security_group_rule	100
subnet	10
subnetpool	-1
 +---------------------+-------+

 The neutron quota-list command lists tenants for which the per-tenant quota is enabled. The
command does not list tenants with default quotas:

 $ neutron quota-list
 +------------+---------+------+--------+-----------+----------------+--------+-----------+
 | floatingip | network | port | router | sec_group | sec_group_rule | subnet | tenant_id |
 +------------+---------+------+--------+-----------+----------------+--------+-----------+
 | 7 | 10 | 50 | 10 | 10 | 100 | 10 | 16f44d2.. |
 +------------+---------+------+--------+-----------+----------------+--------+-----------+

CHAPTER 5 ■ OPENSTACK NETWORKING

61

 Admins can manage quotas on a per-project basis in Horizon by going to Identity ➤ Projects ➤ Modify
Quotas through the drop-down menu to the right of the project’s name. Part of the networks quotas edit
page is shown in Figure 5-9 . A user can check the overall limits, including Neutron quotas, in Horizon by
going to Project ➤ Compute ➤ Overview tab.

 Figure 5-9. Checking quotas in Horizon

 Verify Operation of Network Service
 As mentioned earlier, Neutron consists of several components. Its configuration files were shown at the
beginning of this chapter. Neutron API service is bound to port 9696. The log file for the Neutron server is
available at /var/log/neutron/server.log .

CHAPTER 5 ■ OPENSTACK NETWORKING

62

 You can check the supported extension for Neutron with the command:

 $ neutron ext-list
 +---------------------------+---+
 | alias | name |
 +---------------------------+---+
default-subnetpools	Default Subnetpools
network-ip-availability	Network IP Availability
network_availability_zone	Network Availability Zone
auto-allocated-topology	Auto Allocated Topology Services
ext-gw-mode	Neutron L3 Configurable external gateway mode
binding	Port Binding
metering	Neutron Metering
agent	agent
subnet_allocation	Subnet Allocation
l3_agent_scheduler	L3 Agent Scheduler
tag	Tag support
external-net	Neutron external network
net-mtu	Network MTU
availability_zone	Availability Zone
quotas	Quota management support
l3-ha	HA Router extension
provider	Provider Network
multi-provider	Multi Provider Network
address-scope	Address scope
extraroute	Neutron Extra Route
timestamp_core	Time Stamp Fields addition for core resources
extra_dhcp_opt	Neutron Extra DHCP opts
dns-integration	DNS Integration
security-group	security-group
dhcp_agent_scheduler	DHCP Agent Scheduler
router_availability_zone	Router Availability Zone
rbac-policies	RBAC Policies
standard-attr-description	standard-attr-description
router	Neutron L3 Router
allowed-address-pairs	Allowed Address Pairs
dvr	Distributed Virtual Router
 +---------------------------+---+

CHAPTER 5 ■ OPENSTACK NETWORKING

63

 And you can check the state of the running agents with the command:

 $ neutron agent-list
 +------+--------------------+---------+-------------------+-------+----------------+-------+
 | id | agent_type | host | availability_zone | alive | admin_state_up | binary|
 +------+--------------------+---------+-------------------+-------+----------------+-------+
 | 38.. | Open vSwitch agent | centos7 | | :-) | True |
neutron-openvswitch-agent |
 | 66.. | L3 agent | centos7 | nova | :-) | True |
neutron-l3-agent |
 | 7c.. | Metering agent | centos7 | | :-) | True |
neutron-metering-agent |
 | 82.. | DHCP agent | centos7 | nova | :-) | True |
neutron-dhcp-agent |
 | 9b.. | Metadata agent | centos7 | | :-) | True |
neutron-metadata-agent |
 +------+--------------------+---------+-------------------+-------+----------------+-------+

 Review Questions
 1. What service provides routing and Network Address Translation?

 A. neutron-server

 B. neutron-openvswitch-agent

 C. neutron-l3-agent

 D. neutron-metadata-agent

 2. How can you check the status of running Neutron agents?

 A. neutron agents-list-state

 B. neutron agent-list

 C. neutron list-agent

 D. neutron agents-list

 3. Name the Neutron API service config.

 A. /etc/neutron/neutron.conf

 B. /etc/neutron.conf

 C. /etc/neutron/plugin.ini

 D. /etc/neutron/api-server.conf

 4. How can you correctly add a new rule to an existing Security Group?

 A. nova secgroup-add-rule apress-sgroup tcp 22 22 0.0.0.0/0

 B. nova secgroup-add-rule apress-sgroup tcp 22 0.0.0.0/0

 C. nova secgroup-add-new-rule apress-sgroup tcp 22 22 0.0.0.0/0

 D. nova secgroup-add-new-rule apress-sgroup tcp 22 0.0.0.0/0

CHAPTER 5 ■ OPENSTACK NETWORKING

64

 5. Where is the Neutron API log file situated?

 A. /var/log/neutron/neutron.log

 B. /var/log/neutron/server.log

 C. /var/log/neutron/api.log

 D. /var/log/neutron/api-server.log

 Answers to Review Questions
 1. B

 2. C

 3. A

 4. A

 5. B

65© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_6

 CHAPTER 6

 OpenStack Compute

 This chapter covers 15% of the Certified OpenStack Administrator exam requirements.

 Architecture and Components of Nova
 OpenStack Compute (Nova) service is the heart of the OpenStack cloud. Its main goal is to manage basic
virtual machines functions like creating, starting, stopping, and so on. Let’s look at the architecture and
general parts of Nova. As with other services, Nova uses a message broker and database. As usual, by default
the database is MariaDB and the message broker is RabbitMQ. The main services that support Nova are:

• nova-api : This service receives REST API calls from other services and clients and
responds to them.

• nova-scheduler : This is Nova’s scheduling service. It takes requests for starting
instances from the queue and selects a compute node for running a virtual machine
on it. The selection of Hypervisor is based on its weight and filters. Filters can
include an amount of memory, a requested availability zone, a set of group hosts,
among others. The rules apply each time the instance is started or when migrating to
another Hypervisor.

• nova-conductor : This is the proxy service between the database and the nova-
compute services. It helps with horizontal scalability.

• nova-compute : This is the main part of an IaaS system. This daemon usually runs
only on compute nodes. Its role is to rule Hypervisor through the Hypervisor’s
specific API. It is designed to manage pools of computer resources and can work with
widely available virtualization technologies.

• nova-nonvncproxy and nova-consoleauth : These are two services for providing
access to the instances console through remote access VNC protocol. The former
acts as the VNC-proxy and the latter is responsible for authorization.

 Figures 6-1 and 6-2 illustrate the process of starting an instance.

CHAPTER 6 ■ OPENSTACK COMPUTE

66

 Figure 6-1. Instance provision workflow—Part I

CHAPTER 6 ■ OPENSTACK COMPUTE

67

 In this example two hosts are used: compute host, which acts as the Hypervisor when nova-compute
service is running, and controller node, with all its management services. The workflow of the starting
instance is:

 1. The client (in this particular example the client is Horizon web client, but it can
be nova CLI command) asks keystone-api for authentication and generates the
access token.

 2. If authentication succeeds, the client sends a request for a running instance to
nova-api. It is similar to the nova boot command.

 3. Nova service validates the token and receives headers with roles and permissions
from keystone-api.

 4. Nova checks the database for conflicts with existing names of objects and creates
a new entry for this instance in its database.

 Figure 6-2. Instance provision workflow—Part II

CHAPTER 6 ■ OPENSTACK COMPUTE

68

 5. Nova-api sends the RPC for a scheduling instance to nova-scheduler service.

 6. Nova-scheduler service picks up the request from the message queue.

 7. Nova-scheduler service finds an appropriate compute host through the database
via filters and weights. Then scheduler sends the RPC call to nova-compute
service to launch the virtual machine.

 8. Nova-compute service picks up the request from the message queue.

 9. Nova-compute service asks nova-conductor to fetch information about the
instance, for example: host ID, flavor, etc.

 10. Nova-conductor service picks up the request from the message queue.

 11. Nova-conductor service gets information about an instance from the database.

 12. Nova-compute takes the instance information from the queue. At this moment
the compute host knows what image will be used to start the instance. Nova-
compute asks the glance-api service for a particular image URL.

 13. Glance-api validates the token and returns the metadata of the image including
the URL.

 14. Nova-compute service passes a token to neutron-api and asks it to configure the
network for the instance.

 15. Neutron validates the token and configures the network.

 16. Nova-compute interacts with cinder-api to attach the volume to the instance.

 17. Nova-compute generates data for Hypervisor and executes the request via libvirt.

 Now let’s have a look at the main configuration file of Nova: /etc/nova/nova.conf . Table 6-1 shows the
main configuration options available from config.

 Table 6-1. Main Configuration Options from /etc/cinder/cinder.conf

 Examples of Config Options Description

 [DEFAULT]
 my_ip = 10.0.2.15

 Management interface IP address of the controller
node

 [DEFAULT]
 use_neutron = True
 firewall_driver = nova.virt.firewall.
NoopFirewallDriver

 Enables support for the networking service

 [DEFAULT]
 auth_strategy = keystone
 [keystone_authtoken]
 auth_uri = http:// 10.0.2.15:5000
 auth_url = http:// 10.0.2.15:35357
 auth_type = password
 project_domain_name = default
 user_domain_name = default
 project_name = service
 username = nova
 password = openstack

 Authentication parameters: auth_uri -public
Identity API endpoint and auth_url -admin Identity
API endpoint Other parameters set a default project
name, domain name, project name for services, and
account information for Cinder user

(continued)

CHAPTER 6 ■ OPENSTACK COMPUTE

69

 Managing Flavors
 Instance flavor is a template of a virtual machine that describes the main parameters. It is also known as an
instance type. Immediately after installation of OpenStack cloud, you will have several predefined flavors.
You can also add new flavors and delete existing ones. To list the flavors use the following command:

 $ openstack flavor list
 +----+-----------+-------+------+-----------+-------+-----------+
 | ID | Name | RAM | Disk | Ephemeral | VCPUs | Is Public |
 +----+-----------+-------+------+-----------+-------+-----------+
1	m1.tiny	512	1	0	1	True
2	m1.small	2048	20	0	1	True
3	m1.medium	4096	40	0	2	True
4	m1.large	8192	80	0	4	True
5	m1.xlarge	16384	160	0	8	True
 +----+-----------+-------+------+-----------+-------+-----------+

 Examples of Config Options Description

 [api_database]
 connection=mysql+pymysql://nova_
api:password@10.0.2.15/nova_api
 [database]
 connection=mysql+pymysql://
nova:password@10.0.2.15/nova

 Connection strings are used to connect to Nova’s
databases

 [DEFAULT]
 rpc_backend = rabbit
 [oslo_messaging_rabbit]
 rabbit_host = localhost
 rabbit_port = 5672
 rabbit_userid = guest
 rabbit_password = guest

 RabbitMQ broker address, port, user name, and
password

 [vnc]
 vncserver_listen = $my_ip
 vncserver_proxyclient_address = $my_ip

 Management interface IP address of the VNC proxy

 [glance]
 api_servers=10.0.2.15:9292

 Location of the Image Service API

Table 6-1. (continued)

CHAPTER 6 ■ OPENSTACK COMPUTE

70

 You can also use the Nova flavor-list command with the same result. To list the details of the flavor
use:

 $ openstack flavor show m1.tiny
 +----------------------------+---------+
 | Field | Value |
 +----------------------------+---------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	1
id	1
name	m1.tiny
os-flavor-access:is_public	True
properties	
ram	512
rxtx_factor	1.0
swap	
vcpus	1
 +----------------------------+---------+

 By default only admin can list all the flavors and create new ones. Here is an example of creation of a
new publicly available flavor:

 $ source keystonerc_admin
 $ nova flavor-create --is-public true m10.tiny auto 400 3 1
 +-------+----------+-----------+------+-----------+------+-------+-------------+-----------+
 | ID | Name | Memory_MB | Disk | Ephemeral | Swap | VCPUs | RXTX_Factor | Is_Public |
 +-------+----------+-----------+------+-----------+------+-------+-------------+-----------+
 | 33e.. | m10.tiny | 400 | 3 | 0 | | 1 | 1.0 | True |
 +-------+----------+-----------+------+-----------+------+-------+-------------+-----------+

 In this example a new flavor was created with the name m10.tiny that has a 3GB disk, 400Mb RAM, and
1 vCPU. You can delete the flavor with the command:

 $ nova flavor-delete m10.tiny

 For managing flavors in Horizon go to System ➤ Flavors.

 Managing and Accessing an Instance Using a Keypair
 Before launching instances, you should know how to work with OpenSSH keypairs. Getting access to virtual
machines with OpenSSH key-based authentication is essential for using GNU/Linux in the cloud computing
environment.

 SSH (Secure Shell) allows you to authenticate users by using the private-public keypair. You should
generate two linked cryptographic keys: public and private. The public key can be given to anyone. Your
private key should be kept in a secure place—it is only yours. An instance with running the OpenSSH server
that has your public key can issue a challenge that can only be answered by the system holding your private
key. As a result, it can be authenticated through the presence of your key. This allows you to access a virtual
machine in a way that does not require passwords.

CHAPTER 6 ■ OPENSTACK COMPUTE

71

 OpenStack can store public keys and put them inside the instance at the moment it is started. It is your
responsibility to keep the private key secured. If you lose the key, you can’t recover it. In that case you should
remove the public key from your cloud and generate a new keypair. If somebody stole a private key, they can
get access to your instances.

 ■ Tip In a GNU/Linux system, public keys are stored in the ~/.ssh/authorized_keys file.

 Let’s start by creating a keypair. The corresponding command is:

 $ nova keypair-add apresskey1 > ~/apresskey1

 With this command you create a keypair. The private key is stored in the file ~/apresskey1 at your
workstation:

 $ cat ~/apresskey1
 -----BEGIN RSA PRIVATE KEY-----
 FliElAoNnAoKvQaELyeHnPaLwb8KlpnIC65PunAsRz5FsoBZ8VbnYhD76DON/BDVT
 ...
 gdYjBM1CqqmUw54HkMJp8DLcYmBP+CRTwia9iSyY42Zw7eAi/QTIbQ574d8=
 -----END RSA PRIVATE KEY-----

 A public key is stored in your OpenStack cloud and ready to use. You can check the list of public keys
accessible to you with the command:

 $ nova keypair-list
 +------------+---+
 | Name | Fingerprint |
 +------------+---+
 | apresskey1 | f4:64:d2:51:91:04:13:f7:4a:76:e7:36:a6:17:05:77 |
 +------------+---+

 Before an SSH client can use a private key, you should make sure that the file has the correct GNU/
Linux permissions:

 $ chmod 600 apresskey1
 $ ls -l apresskey1
 -rw------- 1 andrey andrey 1684 Aug 24 18:05 apresskey1

 If you want to create and delete keypairs in Horizon, go to Project ➤ Compute ➤ Access & Security
➤ Key Pairs.

 When your instance is running and has a floating IP, you can connect to it with a similar command:

 $ ssh -i ~/apresskey1 cirros@10.100.1.103

 Option -i points to your private key. You will learn in the next section how to run an instance and how
to insert a public key to it.

CHAPTER 6 ■ OPENSTACK COMPUTE

72

 Launching, Shutting Down, and Terminating the Instance
 In general, you need at least three parameters to start an instance: the name of an instance, the flavor, and
the source of an instance. The instance source can be an image, snapshot, or block storage volume. At boot
time you can also specify optional parameters like keypair, security group, user data files, and volume for
persistent storage. Here is the general command line for instance launching:

 $ nova boot --flavor FLAVOR_ID --image IMAGE_ID --key-name KEY_NAME \
 --user-data USER_DATA_FILE --security-groups SEC_GROUP_NAME --meta KEY=VALUE \
 INSTANCE_NAME

 To be more specific, you can try this example:

 $ nova boot --flavor m1.tiny --image cirros-raw --security-groups apress-sgroup --key-name
apresskey1 apressinstance1
 +--------------------------------------+---+
 | Property | Value |
 +--------------------------------------+---+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	-
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
adminPass	et4XhfLmwL7e
config_drive	
created	2016-08-24T16:41:16Z
flavor	m1.tiny (1)
hostId	
id	a526612a-75ce-4856-930e-6bc4e7a54d77
image	cirros-raw (039daa2e-6b3e-4e31-b1da-ab3e6feb8b30)
key_name	apresskey1
metadata	{}
name	apressinstance1
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	apress-sgroup
status	BUILD
tenant_id	16f44d2a075a4139a2a5425a42f1b447
updated	2016-08-24T16:41:16Z
user_id	8e28b302669042e58e7ceb642d4f9708
 +--------------------------------------+---+

 In this example you tried to run the instance with the name apressinstance1 by the flavor m1.tiny
from an image named cirros-raw . You also specified the security group named apress-sgroup and the
keypair apresskey1 . To check the current state of the instances available to you, use the command:

 $ nova list

CHAPTER 6 ■ OPENSTACK COMPUTE

73

 +-------------+-----------------+--------+------------+-------------+---------------------+
 | ID | Name | Status | Task State | Power State | Networks |
 +-------------+-----------------+--------+------------+-------------+---------------------+
 | a526612a-.. | apressinstance1 | ACTIVE | - | Running | demo-net=172.16.0.5 |
 +-------------+-----------------+--------+------------+-------------+---------------------+

 You may want to connect to the instance console in your browser by the noVNC client, which is the
VNC client using HTML5 with encryption support. To get the URL, use the command:

 $ nova get-vnc-console apressinstance1 novnc
 +-------+--+
 | Type | Url |
 +-------+--+
 | novnc | http://10.0.2.15:6080/vnc_auto.html?token=9e2a16e9-904e-4764-b0fa-cebf396f55c6 |
 +-------+--+

 If you put the URL in the address bar of your browser, you can connect to the machine. The example is
shown in Figure 6-3 .

 Figure 6-3. Example of console of running instance in browser

 If you prefer to work with instances in GUI, you can use the Horizon web interface. For that go to Project
➤ Compute ➤ Instances. The example of the launch dialog is shown in Figure 6-4 .

CHAPTER 6 ■ OPENSTACK COMPUTE

74

 In case of an error, you may see something like this:

 $ nova list
 +-------------+-----------------+--------+------------+-------------+---------------------+
 | ID | Name | Status | Task State | Power State | Networks |
 +-------------+-----------------+--------+------------+-------------+---------------------+
 | a526612a-.. | apressinstance1 | ACTIVE | - | Running | demo-net=172.16.0.5 |
 | 7ee3f1e8-.. | apressinstance2 | ERROR | - | NOSTATE | |
 +-------------+-----------------+--------+------------+-------------+---------------------+

 Figure 6-4. Example of a launch instance dialog window

CHAPTER 6 ■ OPENSTACK COMPUTE

75

 To get the detailed information about the instance, you can run the command:

 $ nova show apressinstance2
 +--------------------------------------+---+
 | Property | Value |
 +--------------------------------------+---+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	-
OS-EXT-STS:vm_state	error
OS-SRV-USG:launched_at	-
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
config_drive	
created	2016-08-24T17:39:45Z
fault	{"message": "No valid host was found.
	There are not enough hosts available.",
	"code": 500, "created": "2016-08-24T17:39:46Z"}
flavor	m1.xlarge (5)
hostId	
id	7ee3f1e8-278f-4212-9318-c35eb35fbd37
image	cirros-raw (039daa2e-6b3e-4e31-b1da-ab3e6feb..)
key_name	apresskey1
metadata	{}
name	apressinstance2
os-extended-volumes:volumes_attached	[]
status	ERROR
tenant_id	16f44d2a075a4139a2a5425a42f1b447
updated	2016-08-24T17:39:46Z
user_id	8e28b302669042e58e7ceb642d4f9708
 +--------------------------------------+---+

 The command for starting this instance was:

 $ nova boot --flavor m1.xlarge --image cirros-raw --security-groups apress-sgroup --key-name
apresskey1 apressinstance2

 From the output above, it is easy to see that there is no room to put such a big instance within flavor m1.
xlarge . Flavor m1.xlarge requires 16GB of RAM.

 The next command will completely delete this instance:

 $ nova delete apressinstance2
 Request to delete server apressinstance2 has been accepted.

 If you need to reboot your virtual machine, then use the command:

 $ nova reboot apressinstance1
 Request to reboot server <Server: apressinstance1> has been accepted.

CHAPTER 6 ■ OPENSTACK COMPUTE

76

 For a hard reset of the server you can add the --hard option. You may stop and start an instance if
needed:

 $ nova stop apressinstance1
 Request to stop server apressinstance1 has been accepted.
 $ nova list
 +-------------+-----------------+---------+------------+-------------+---------------------+
 | ID | Name | Status | Task State | Power State | Networks |
 +-------------+-----------------+---------+------------+-------------+---------------------+
 | 27a86b68-.. | apressinstance1 | SHUTOFF | - | Shutdown | demo-net=172.16.0.6 |
 +-------------+-----------------+---------+------------+-------------+---------------------+
 $ nova start apressinstance1
 Request to start server apressinstance1 has been accepted.
 $ nova list
 +-------------+-----------------+--------+------------+-------------+---------------------+
 | ID | Name | Status | Task State | Power State | Networks |
 +-------------+-----------------+--------+------------+-------------+---------------------+
 | 27a86b68-.. | apressinstance1 | ACTIVE | - | Running | demo-net=172.16.0.6 |
 +-------------+-----------------+--------+------------+-------------+---------------------+

 Managing Instance Snapshots
 OpenStack can create snapshots of instances, even if a virtual machine is running. In this case it is the user’s
obligation to keep the data consistent. It is important to know that snapshot is not an instance recovery
point. Snapshot is the same as a regular Glance image. You can start a new virtual machine from the
snapshot of another virtual machine.

 Let’s check whether there is at least one image in Glance and one instance:

 $ nova image-list
 +--------------------------------------+----------------------+--------+--------+
 | ID | Name | Status | Server |
 +--------------------------------------+----------------------+--------+--------+
 | 039daa2e-6b3e-4e31-b1da-ab3e6feb8b30 | cirros-raw | ACTIVE | |
 +--------------------------------------+----------------------+--------+--------+
 $ nova list
 +-------------+-----------------+--------+------------+-------------+---------------------+
 | ID | Name | Status | Task State | Power State | Networks |
 +-------------+-----------------+--------+------------+-------------+---------------------+
 | 27a86b68-.. | apressinstance1 | ACTIVE | - | Running | demo-net=172.16.0.6 |
 +-------------+-----------------+--------+------------+-------------+---------------------+

 Now you can create a snapshot from a running instance:

 $ nova image-create apressinstance1 apressinstance1_snap

CHAPTER 6 ■ OPENSTACK COMPUTE

77

 And after that you can list the available images:

 $ nova image-list
 +-------------+----------------------+--------+--------------------------------------+
 | ID | Name | Status | Server |
 +-------------+----------------------+--------+--------------------------------------+
 | 5b385bc6-.. | apressinstance1_snap | ACTIVE | 27a86b68-80ce-4e4b-925a-9d0f558bd49a |
 | 039daa2e-.. | cirros-raw | ACTIVE | |
 +-------------+----------------------+--------+--------------------------------------+

 As you can see, snapshot was added to the list. You are free to create a new instance from this snapshot:

 $ nova boot --flavor m1.tiny --image apressinstance1_snap apressinstance_from_sn
 +--------------------------------------+---------------------------------------+
 | Property | Value |
 +--------------------------------------+---------------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	-
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
adminPass	Ciuh4iXBBzcX
config_drive	
created	2016-08-26T14:19:54Z
flavor	m1.tiny (1)
hostId	
id	46c28143-ab85-425e-a5a7-46014a43ec32
image	apressinstance1_snap (5b385bc6-8d1..)
key_name	-
metadata	{}
name	apressinstance_from_sn
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	default
status	BUILD
tenant_id	16f44d2a075a4139a2a5425a42f1b447
updated	2016-08-26T14:19:54Z
user_id	8e28b302669042e58e7ceb642d4f9708
 +--------------------------------------+---------------------------------------+

CHAPTER 6 ■ OPENSTACK COMPUTE

78

 Managing Quotas
 A quota limits the number of available resources. The default number of resources allowed per tenant is
defined in the main configuration file: /etc/nova/nova.conf . Here is an example:

 # Number of instances allowed per project (integer value)
 quota_instances=10

 # Number of instance cores allowed per project (integer value)
 quota_cores=20

 # Megabytes of instance RAM allowed per project (integer value)
 quota_ram=51200

 # Number of floating IPs allowed per project (integer value)
 quota_floating_ips=10

 # Number of fixed IPs allowed per project (this should be at least the number
 # of instances allowed) (integer value)
 quota_fixed_ips=-1

 # Number of metadata items allowed per instance (integer value)
 quota_metadata_items=128

 # Number of injected files allowed (integer value)
 quota_injected_files=5

 # Number of bytes allowed per injected file (integer value)
 quota_injected_file_content_bytes=10240

 # Length of injected file path (integer value)
 quota_injected_file_path_length=255

 # Number of security groups per project (integer value)
 quota_security_groups=10

 # Number of security rules per security group (integer value)
 quota_security_group_rules=20

 # Number of key pairs per user (integer value)
 quota_key_pairs=100

CHAPTER 6 ■ OPENSTACK COMPUTE

79

 Regular users can get their quotas by using the nova quota-show command:

 $ nova quota-show
 +-----------------------------+-------+
 | Quota | Limit |
 +-----------------------------+-------+
instances	10
cores	20
ram	51200
floating_ips	10
fixed_ips	-1
metadata_items	128
injected_files	5
injected_file_content_bytes	10240
injected_file_path_bytes	255
key_pairs	100
security_groups	10
security_group_rules	20
server_groups	10
server_group_members	10
 +-----------------------------+-------+

 With the command nova quota-defaults , users can see the default quotas for comparison with their
own quotas. Users can see a part of the current quotas in a graphical view on the Overview page of the
project. An example is shown in Figure 6-5 .

 Figure 6-5. User’s overview of the current quota status

CHAPTER 6 ■ OPENSTACK COMPUTE

80

 Admins can do the same but for any project with the --tenant_id option. If an admin needs to change
the quotas for a particular project, this command would be used:

 $ source keystonerc_admin
 $ nova quota-update 16f44d2a075a4139a2a5425a42f1b447 --instances 4
 $ source keystonerc_demo
 $ nova quota-show | grep instances
 | instances | 4 |

 Admins can manage quotas on a per-project basis in Horizon by going to Identity ➤ Projects ➤ Modify
Quotas and accessing the drop-down menu to the right of the project’s name.

 Getting Nova Stats
 First let’s grab the list of all Hypervisors:

 $ nova hypervisor-list
 +----+---------------------+-------+---------+
 | ID | Hypervisor hostname | State | Status |
 +----+---------------------+-------+---------+
 | 1 | centos7.test.local | up | enabled |
 +----+---------------------+-------+---------+

 In this example only one compute node is presented and it is up and running. You can check which
instances are running at this particular host:

 $ nova hypervisor-servers centos7.test.local
 +----------------------------+-------------------+---------------+---------------------+
 | ID | Name | Hypervisor ID | Hypervisor Hostname |
 +----------------------------+-------------------+---------------+---------------------+
 | 27a86b68-80ce-4e4b-925a-.. | instance-0000000b | 1 | centos7.test.local |
 | ca0b7a1e-8aca-41e4-ac2d-.. | instance-0000000c | 1 | centos7.test.local |
 +----------------------------+-------------------+---------------+---------------------+

 To get a summary of resource usage of all of the instances running on the host, use the command:

 $ nova host-describe centos7.test.local
 +--------------------+----------------------------------+-----+-----------+---------+
 | HOST | PROJECT | cpu | memory_mb | disk_gb |
 +--------------------+----------------------------------+-----+-----------+---------+
centos7.test.local	(total)	1	3952	49
centos7.test.local	(used_now)	3	2048	3
centos7.test.local	(used_max)	3	1536	3
centos7.test.local	16f44d2a075a4139a2a5425a42f1b447	3	1536	3
 +--------------------+----------------------------------+-----+-----------+---------+

CHAPTER 6 ■ OPENSTACK COMPUTE

81

 To search for all running virtual machines, you can use the Nova database:

 # nova-manage vm list | grep active
 apressinstance2 centos7.test.local m1.tiny active 2016-08-24
18:55:30+00:00 039daa2e-6b3e-4e31-b1da-ab3e6feb8b30 16f44d2a075a4139a2a
5425a42f1b447 8e28b302669042e58e7ceb642d4f9708 None 0
 apressinstance1 centos7.test.local m1.tiny active 2016-08-24
18:14:01+00:00 039daa2e-6b3e-4e31-b1da-ab3e6feb8b30 16f44d2a075a4139a2a
5425a42f1b447 8e28b302669042e58e7ceb642d4f9708 None 0

 And as admin you can see an overall picture of all Hypervisors in Horizon. An example is shown in
Figure 6-6 .

 Figure 6-6. Example of the Hypervisors’ summary picture

CHAPTER 6 ■ OPENSTACK COMPUTE

82

 If needed you can easily get diagnostic information about any instance:

 $ nova diagnostics 27a86b68-80ce-4e4b-925a-9d0f558bd49a
 +---------------------------+----------+
 | Property | Value |
 +---------------------------+----------+
memory	524288
memory-actual	524288
memory-rss	46568
tap550ae562-c0_rx	8710
tap550ae562-c0_rx_drop	0
tap550ae562-c0_rx_errors	0
tap550ae562-c0_rx_packets	80
tap550ae562-c0_tx	10614
tap550ae562-c0_tx_drop	0
tap550ae562-c0_tx_errors	0
tap550ae562-c0_tx_packets	106
vda_errors	-1
vda_read	20419584
vda_read_req	1151
vda_write	434176
vda_write_req	125
 +---------------------------+----------+

 And at the end, you can get a summary of the statistics for each tenant:

 $ nova usage-list
 Usage from 2016-07-30 to 2016-08-28:
 +----------------------------------+---------+--------------+-----------+---------------+
 | Tenant ID | Servers | RAM MB-Hours | CPU Hours | Disk GB-Hours |
 +----------------------------------+---------+--------------+-----------+---------------+
 | 16f44d2a075a4139a2a5425a42f1b447 | 6 | 399400.59 | 780.08 | 780.08 |
 | 3e52946ffa538409b34cc3849201aa78 | 2 | 124000.30 | 58.02 | 120.06 |
 +----------------------------------+---------+--------------+-----------+---------------+

 Verifying Operation and Managing Nova Compute Servers
 You can check whether all Nova servers are started and active by using the systemctl command:

 # systemctl status *nova* -n 0
 ● openstack-nova-compute.service - OpenStack Nova Compute Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-compute.service; enabled; vendor
preset: disabled)
 Active: active (running) since Sat 2016-08-27 15:20:00 MSK; 2h 40min ago
 Main PID: 1728 (nova-compute)
 CGroup: /system.slice/openstack-nova-compute.service
 └─1728 /usr/bin/python2 /usr/bin/nova-compute

CHAPTER 6 ■ OPENSTACK COMPUTE

83

 ● openstack-nova-conductor.service - OpenStack Nova Conductor Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-conductor.service; enabled; vendor
preset: disabled)
 Active: active (running) since Sat 2016-08-27 15:19:54 MSK; 2h 40min ago
 Main PID: 982 (nova-conductor)
 CGroup: /system.slice/openstack-nova-conductor.service
 └─982 /usr/bin/python2 /usr/bin/nova-conductor

 ● openstack-nova-novncproxy.service - OpenStack Nova NoVNC Proxy Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-novncproxy.service; enabled;
vendor preset: disabled)
 Active: active (running) since Sat 2016-08-27 15:19:08 MSK; 2h 40min ago
 Main PID: 1014 (nova-novncproxy)
 CGroup: /system.slice/openstack-nova-novncproxy.service
 └─1014 /usr/bin/python2 /usr/bin/nova-novncproxy --web /usr/share/novnc/

 ● openstack-nova-consoleauth.service - OpenStack Nova VNC console auth Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-consoleauth.service; enabled;
vendor preset: disabled)
 Active: active (running) since Sat 2016-08-27 15:19:54 MSK; 2h 40min ago
 Main PID: 989 (nova-consoleaut)
 CGroup: /system.slice/openstack-nova-consoleauth.service
 └─989 /usr/bin/python2 /usr/bin/nova-consoleauth

 ● openstack-nova-api.service - OpenStack Nova API Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-api.service; enabled; vendor
preset: disabled)
 Active: active (running) since Sat 2016-08-27 15:20:00 MSK; 2h 40min ago
 Main PID: 1010 (nova-api)
 CGroup: /system.slice/openstack-nova-api.service
 ├─1010 /usr/bin/python2 /usr/bin/nova-api
 ├─1879 /usr/bin/python2 /usr/bin/nova-api
 ├─1896 /usr/bin/python2 /usr/bin/nova-api

 ● openstack-nova-scheduler.service - OpenStack Nova Scheduler Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-scheduler.service; enabled; vendor
preset: disabled)
 Active: active (running) since Sat 2016-08-27 15:20:19 MSK; 2h 39min ago
 Main PID: 1017 (nova-scheduler)
 CGroup: /system.slice/openstack-nova-scheduler.service
 └─1017 /usr/bin/python2 /usr/bin/nova-scheduler

CHAPTER 6 ■ OPENSTACK COMPUTE

84

 As you can see in this example, all services are running on the same host. In the production
environment, all are running on the control nodes except nova-compute and nova-compute , which are
running on the compute nodes. You can also use nova host-list for listing the hosts and the Nova-related
services that run on them:

 $ nova host-list
 +--------------------+-------------+----------+
 | host_name | service | zone |
 +--------------------+-------------+----------+
centos7.test.local	consoleauth	internal
centos7.test.local	scheduler	internal
centos7.test.local	conductor	internal
centos7.test.local	compute	nova
 +--------------------+-------------+----------+

 Let’s check for the presence of Nova service in the Keystone services catalog:

 $ source keystonerc_admin
 $ openstack service show nova
 +-------------+----------------------------------+
 | Field | Value |
 +-------------+----------------------------------+
description	Openstack Compute Service
enabled	True
id	fae23070b15b428f9cb8b59e5cb2323f
name	nova
type	compute
 +-------------+----------------------------------+

 For troubleshooting, you may also need to know where the glance-api endpoint is:

 $ openstack endpoint show nova
 +--------------+--+
 | Field | Value |
 +--------------+--+
adminurl	http://10.0.2.15:8774/v2/%(tenant_id)s
enabled	True
id	a1472fcf100140c3a0d1cbf42c35502b
internalurl	http://10.0.2.15:8774/v2/%(tenant_id)s
publicurl	http://10.0.2.15:8774/v2/%(tenant_id)s
region	RegionOne
service_id	fae23070b15b428f9cb8b59e5cb2323f
service_name	nova
service_type	compute
 +--------------+--+

 The Nova service is listening for incoming connections at the IP address 10.0.2.15 and port number 8774.

CHAPTER 6 ■ OPENSTACK COMPUTE

85

 You may also want to check Nova’s log files. With the help of the lsof command, you can enumerate the
log files and services that are using it:

 # lsof /var/log/nova/*
 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
 nova-cond 982 nova 3w REG 253,0 100016 136665685 /var/log/nova/nova-conductor.log
 nova-cons 989 nova 3w REG 253,0 414239 136665681 /var/log/nova/nova-consoleauth.log
 nova-cert 990 nova 3w REG 253,0 192460 136665677 /var/log/nova/nova-cert.log
 nova-api 1010 nova 3w REG 253,0 6150041 136538093 /var/log/nova/nova-api.log
 nova-novn 1014 nova 3w REG 253,0 28222 136665680 /var/log/nova/nova-novncproxy.log
 nova-sche 1017 nova 3w REG 253,0 696714 136665683 /var/log/nova/nova-scheduler.log
 nova-comp 1728 nova 3w REG 253,0 7423359 136665687 /var/log/nova/nova-compute.log
 nova-api 1879 nova 3w REG 253,0 6150041 136538093 /var/log/nova/nova-api.log
 nova-api 1896 nova 3w REG 253,0 6150041 136538093 /var/log/nova/nova-api.log

 Review Questions
 1. Which service acts as a proxy service between the database and nova-compute

services?

 A. nova-conductor

 B. nova-nonvncproxy

 C. nova-api

 D. nova-scheduler

 2. How can you add a new flavor with name m5.tiny that has 5GB disk, 2 vCPU, and
500Mb RAM?

 A. nova flavor-create --is-public true m5.tiny auto 500 2 5

 B. nova flavor-create --is-public true m5.tiny auto 5 2 500

 C. nova flavor-create --is-public true m5.tiny auto 500 5 2

 D. nova flavor-create --is-public true m5.tiny auto 5 500 2

 3. Which GNU/Linux permissions should be applied to the private SSH key?

 A. 640

 B. 660

 C. 600

 D. 620

 4. How can the regular user get Nova quotes for the project?

 A. nova quota-list

 B. nova quota-show

 C. nova show-quota

 D. nova list-quota

CHAPTER 6 ■ OPENSTACK COMPUTE

86

 5. How can you get summary statistics for all tenants?

 A. nova show-stat

 B. nova usage-list all

 C. nova statistics

 D. nova usage-list

 Answers to Review Questions
 1. A

 2. C

 3. C

 4. B

 5. D

87© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_7

 CHAPTER 7

 OpenStack Dashboard

 This chapter covers 3% of the Certified OpenStack Administrator exam requirements.

 Architecture of Horizon
 I am assuming that you started using OpenStack Dashboard (Horizon) from the first chapter of this book.
And for first-time OpenStack users, it is probably the easiest interface rather than using CLI. However, you
need to know that Horizon gives access to only about 70-80% of its overall functions. In certain situations
you will be forced to use CLI. Figure 7-1 shows the log-in page for the OpenStack Dashboard. But just what is
OpenStack Dashboard?

 Figure 7-1. Log-in screen of OpenStack Dashboard

 OpenStack Dashboard is a Python project aimed at providing a complete dashboard along with an
extensible framework for building new dashboards. Horizon aims to support all core OpenStack projects.
The minimum required set of running OpenStack services comprises Keystone, Nova, Neutron, and Glance.

CHAPTER 7 ■ OPENSTACK DASHBOARD

88

If the Keystone endpoint for a service is configured, Horizon detects it and enables support for optional
services, such as Cinder, Swift, and Heat. Horizon can also work with services that are out of the scope of
Certified OpenStack Administrator exam and this book, such as Ceilometer, Sahara, and Trove.

 OpenStack Dashboard runs under a web server, which is commonly Apache or NGINX. For large-scale
deployments, it is recommended that you configure a caching layer in front of Horizon, for example, the
 memcached daemon.

 You will need to use a web browser with JavaScript and HTML5 support while working with Horizon.
Horizon is primarily tested and supported on the latest versions of Firefox, Chrome, and Internet Explorer.

 ■ Tip You can enable SSL support for the Dashboard with the packstack installation tool if you used it. You
need to provide the CONFIG_HORIZON_SSL=y option in the answer file for that.

 Verify Operation of the Dashboard
 When you start to work with Horizon, you should put your server IP or name in the web-browser address bar
and connect to port 80 or 443, in case you have SSL-enabled deployment, of your Horizon server. It can be
a separate server or one of the control nodes. You may actually be familiar with most of the menu structure.
Figure 7-2 shows the structure of the Dashboard menu.

 Figure 7-2. Scheme of OpenStack Dashboard menu

CHAPTER 7 ■ OPENSTACK DASHBOARD

89

 The main configuration file of OpenStack Dashboard is /etc/openstack-dashboard/local_settings .
There are lots of different options in this configuration file, however, the most important is:

 OPENSTACK_HOST = "10.0.2.15"

 This is the IP address of the Keystone server. The other interesting option is a session timeout defined in
seconds:

 SESSION_TIMEOUT=3600

 ■ Tip Some vendors may supply their own themes with dashboard installation. If you have a standard look
of your Horizon installation, you can delete additional packages with branded themes. For Ubuntu, use apt-get
remove --auto-remove openstack-dashboard-ubuntu-theme . For Red Hat OpenStack Platform, use rpm -e
openstack-dashboard-theme --nodeps .

 Review Question
 1. What is the main configuration file of the OpenStack Dashboard?

 A. /var/www/html/openstack-dashboard/local_settings

 B. /etc/openstack-dashboard/local_settings

 C. /etc/horizon/horizon.conf

 D. /etc/horizon/local_settings

 Answer to Review Question
 1. B

91© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_8

 CHAPTER 8

 OpenStack Object Storage

 This chapter covers 10% of the Certified OpenStack Administrator exam requirements.

 Overview of Swift Object Storage
 OpenStack Swift is a highly available, distributed, eventually consistent object Software Defined Storage
(SDS) system. In contrast to file storage, object storage works with an object that contains data and metadata
itself. Generally, object storage provides access through an API. Objects are available via URLs and HTTP/
HTTPS protocols. Object storage can distribute requests across a number of storage hosts. All objects are
accessible in one single namespace, and object storage systems are usually highly scalable.

 For passing the Certified OpenStack Administrator exam, you need to know the basic operations with
objects. Logically, Swift consists of three levels: accounts, containers, and objects.

 Account in Swift corresponds to the Project/Tenant in other OpenStack services. Swift users are
primarily people who have a username and password. Swift users correspond to accounts in other
OpenStack services. Objects are stored in containers that belong to the accounts. You can imagine an
account as a file system, with the container as a directory and the object as a file. Figure 8-1 illustrates this.

 Figure 8-1. Logical objects in Swift

CHAPTER 8 ■ OPENSTACK OBJECT STORAGE

92

 You can identify each object by its path:

 /account_name/container_name/object_name

 By default, the data stored in Swift will be replicated three times. The main services of Swift are object,
account, and container services.

 You can start working with containers from the command line with the swift stat command. This
command will show the summary for the containers and objects:

 $ swift stat
 Account: AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d
 Containers: 0
 Objects: 0
 Bytes: 0
 X-Put-Timestamp: 1472659483.68240
 X-Timestamp: 1472659483.68240
 X-Trans-Id: tx2c1ec5c92e084c19b9843-0057c7001b
 Content-Type: text/plain; charset=utf-8

 As you see, there are no objects or containers yet. Let’s try to upload a file to an object store. As a part of
the upload command, you will need to define a container. A container will be created automatically if you
point to a nonexisting container:

 $ swift upload apress_cont1 /etc/hosts
 etc/hosts
 $ swift stat | grep Containers
 Containers: 1
 Containers in policy "policy-0": 1

 With the swift list command, you can list the containers and the objects within the containers:

 $ swift list
 apress_cont1
 $ swift list apress_cont1
 etc/hosts

 To check the status of the object, you can also use the swift stat command:

 $ swift stat apress_cont1 etc/hosts
 Account: AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d
 Container: apress_cont1
 Object: etc/hosts
 Content Type: application/octet-stream
 Content Length: 158
 Last Modified: Wed, 31 Aug 2016 16:05:36 GMT
 ETag: 54fb6627dbaa37721048e4549db3224d
 Meta Mtime: 1370615492.000000
 Accept-Ranges: bytes
 X-Timestamp: 1472659535.94284
 X-Trans-Id: txdc3f00cd63d74a54895c7-0057cb10bf

CHAPTER 8 ■ OPENSTACK OBJECT STORAGE

93

 For downloading the content of a container, use the swift download command as shown:

 $ swift download apress_cont1
 etc/hosts [auth 0.120s, headers 0.236s, total 0.236s, 0.001 MB/s]
 $ cat etc/hosts
 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

 You may also specify a particular object in the container:

 $ swift download apress_cont1 etc/hosts
 etc/hosts [auth 0.328s, headers 0.535s, total 0.537s, 3.212 MB/s]

 Figure 8-2 shows the Horizon web interface.

 Figure 8-2. Swift user interface in the Horizon web client

 Managing Permissions on a Container in Object Storage
 Users can set up access control lists (ACLs) at the container level and define the read and write access.
To successfully write to a container, in addition to write access, a user must also have read access on the
container.

 Here is an example of how to set up a read ACL for users from a demo project, here specifically for user8
from project1 :

 $ swift post apress_cont1 -r "demo:demo, project1:user8"
 $ swift stat apress_cont1
 Account: AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d
 Container: apress_cont1
 Objects: 1
 Bytes: 158
 Read ACL: demo:*,project1:user8
 Write ACL:

CHAPTER 8 ■ OPENSTACK OBJECT STORAGE

94

 Sync To:
 Sync Key:
 Accept-Ranges: bytes
 X-Trans-Id: tx69e4a7910fe94075851c1-0057cb0dd4
 X-Storage-Policy: Policy-0
 X-Timestamp: 1472659535.59030
 Content-Type: text/plain; charset=utf-8

 Working with write ACL is similar:

 $ swift post apress_cont1 -w "demo:demo"
 $ swift stat apress_cont1
 Account: AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d
 Container: apress_cont1
 Objects: 1
 Bytes: 158
 Read ACL: demo:*,project1:user8
 Write ACL: demo:demo
 Sync To:
 Sync Key:
 Accept-Ranges: bytes
 X-Trans-Id: txd5ade59cfa1448da9b1a9-0057cb1009
 X-Storage-Policy: Policy-0
 X-Timestamp: 1472659535.59030
 Content-Type: text/plain; charset=utf-8

 Using the cURL Tool for Working with Swift
 A very common method of working with object storage is by using the cURL command-line tool. cURL
requests usually include an HTTP verb (such as, GET, PUT), authentication information, storage URL, data,
and metadata. To get authentication information and storage URL, use the swift auth command:

 $ swift auth
 export OS_STORAGE_URL=http://10.0.2.15:8080/v1/AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d
 export OS_AUTH_TOKEN=51c5c5fb2ad44e2390cffbff736e4224

 You can create a new container with the PUT verb:

 $ curl -X PUT -H 'X-Auth-Token: 51c5c5fb2ad44e2390cffbff736e4224' http://10.0.2.15:8080/v1/
AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d/apress_cont2

 And here is an example that is similar to using the swift list command:

 $ curl -X GET -H 'X-Auth-Token: 51c5c5fb2ad44e2390cffbff736e4224' http://10.0.2.15:8080/v1/
AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d/
 apress_cont1
 apress_cont2

CHAPTER 8 ■ OPENSTACK OBJECT STORAGE

95

 Next, you can put the file /etc/networks into the apress_cont2 container:

 $ curl -X PUT -H 'X-Auth-Token: 51c5c5fb2ad44e2390cffbff736e4224' http://10.0.2.15:8080/v1/
AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d/apress_cont2/ -T /etc/networks

 For checking the content of the apress_cont2 container, use the command:

 $ curl -X GET -H 'X-Auth-Token: 51c5c5fb2ad44e2390cffbff736e4224' http://10.0.2.15:8080/v1/
AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d/apress_cont2/
 networks

 And at the end, you can get the contents of the object:

 $ curl -X GET -H 'X-Auth-Token: 51c5c5fb2ad44e2390cffbff736e4224' http://10.0.2.15:8080/v1/
AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d/apress_cont2/networks
 default 0.0.0.0
 loopback 127.0.0.0
 link-local 169.254.0.0

 Managing Expiring Objects
 Swift Object storage has the ability to schedule deletion of an object. To do that you need to add the
 X-Delete-At or X-Delete-After header during an object PUT or POST command. The date and time of
deletion should be in Unix Epoch timestamp format. You can use the date command to learn the current
date and time in Unix Epoch timestamp format or for conversion:

 $ date +%s
 1472994354
 $ date -d @1472994354
 Sun Sep 4 15:05:54 CEST 2016

 Also you can use the web site www.epochconverter.com/ for conversion. Here is an example of how to
automatically delete object etc/sysctl.conf in the container apress_cont1 on Wed, 30 Nov 2016 00:00:00
GMT (1473510189):

 $ swift auth
 export OS_STORAGE_URL=http://10.0.2.15:8080/v1/AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d
 export OS_AUTH_TOKEN=cca554f2330c4e859c8c4903729b7166
 $ curl -X POST -H 'X-Auth-Token: dade6fa4180343c895406765d59b1d42' -H 'X-Delete-On:
1473510189' http://10.0.2.15:8080/v1/AUTH_ae8d3e3f5cff4a959f1ae1cfe9e80d6d/apress_cont1/
etc/sysctl.conf
 <html><h1>Accepted</h1><p>The request is accepted for processing.</p></html>

 Monitoring Swift Cluster
 For Swift cluster monitoring of the account, container, and object servers, special recon server middleware
and the swift-recon tool are used. If you installed the OpenStack lab environment with the packstack tool,
you need to do additional configuration of the middleware server. You should change the existing pipeline
option in the [pipeline:main] section and add the new [filter:recon] section in three configuration files.

http://www.epochconverter.com/

CHAPTER 8 ■ OPENSTACK OBJECT STORAGE

96

 Here is an example of changes made in /etc/swift/object-server.conf :

 [pipeline:main]
 pipeline = recon object-server

 [filter:recon]
 use = egg:swift#recon
 recon_cache_path = /var/cache/swift

 Here is an example of changes made in /etc/swift/container-server.conf :

 [pipeline:main]
 pipeline = recon container-server

 [filter:recon]
 use = egg:swift#recon
 recon_cache_path = /var/cache/swift

 This is an example of changes made in /etc/swift/account-server.conf :

 [pipeline:main]
 pipeline = recon account-server

 [filter:recon]
 use = egg:swift#recon
 recon_cache_path = /var/cache/swift

 After that you need to check whether the cache directory exists and has the right permissions:

 # ls -ld /var/cache/swift/
 drwx------ 2 swift swift 67 Sep 4 14:32 /var/cache/swift/

 For tracking asynchronous pending on your object servers, you need to add a job in cron to run the
 swift-recon-cron script:

 # crontab -e
 */5 * * * * swift /usr/bin/swift-recon-cron /etc/swift/object-server.conf

 Now you can try to obtain the cluster load average stats:

 # swift-recon -l
 ===
 --> Starting reconnaissance on 1 hosts
 ===
 [2016-09-04 11:46:03] Checking load averages
 [5m_load_avg] low: 1, high: 1, avg: 1.5, total: 1, Failed: 0.0%, no_result: 0, reported: 1
 [15m_load_avg] low: 1, high: 1, avg: 1.1, total: 1, Failed: 0.0%, no_result: 0, reported: 1
 [1m_load_avg] low: 1, high: 1, avg: 1.3, total: 1, Failed: 0.0%, no_result: 0, reported: 1
 ===

CHAPTER 8 ■ OPENSTACK OBJECT STORAGE

97

 To obtain disk usage stats, use the -d option:

 # swift-recon -d
 ===
 --> Starting reconnaissance on 1 hosts
 ===
 [2016-09-04 11:46:09] Checking disk usage now
 Distribution Graph:
 10% 1 ***
 Disk usage: space used: 201555968 of 1945976832
 Disk usage: space free: 1744420864 of 1945976832
 Disk usage: lowest: 10.36%, highest: 10.36%, avg: 10.357572849%
 ===

 And the last example will allow you to obtain replication stats:

 # swift-recon -r
 ===
 --> Starting reconnaissance on 1 hosts
 ===
 [2016-09-04 11:45:57] Checking on replication
 [replication_failure] low:2, high:2, avg:2.0, total: 2, Failed: 0.0%, no_result: 0,
reported: 1
 [replication_success] low:0, high:0, avg:0.0, total: 0, Failed: 0.0%, no_result: 0,
reported: 1
 [replication_time] low: 0, high: 0, avg: 0.0, total: 0, Failed: 0.0%, no_result: 0,
reported: 1
 [replication_attempted] low: 1514, high: 1514, avg: 1514.0, total: 1514, Failed: 0.0%,
no_result: 0, reported: 1
 Oldest completion was 2016-09-04 11:45:51 (5 seconds ago) by 10.0.2.15:6000.
 Most recent completion was 2016-09-04 11:45:51 (5 seconds ago) by 10.0.2.15:6000.
 ===

 For a complete options list, see the swift-recon(1) main page.

 Review Questions
 1. How can you upload all of the files from the ~user directory to the container

tempcontainer?

 A. swift upload tempcontainer ~user/all

 B. swift upload tempcontainer ~user/*

 C. swift upload ~user/* tempcontainer

 D. swift upload ~user/* tempcontainer all

 2. How can you check the status of the object test in container cont ?

 A. swift stat test cont

 B. swift cont test stat

CHAPTER 8 ■ OPENSTACK OBJECT STORAGE

98

 C. swift stat cont test

 D. swift test cont stat

 3. How can you get disk usage stats in Swift?

 A. recon -l

 B. swift-recon -d

 C. swift-recon -l

 D. recon -d

 4. How can you get a list of all objects in test container?

 A. swift list test

 B. swift test list

 C. swift list

 D. swift list container test

 5. How can you get the object with curl command?

 A. curl -X GET -H ‘X-Auth-Token: token’ http://server/AUTH_User/container/
object

 B. curl -X GET -H ‘X-Auth-Token: token’ http://server/v1/AUTH_User/ -c
container -o object

 C. curl -X GET -H ‘X-Auth-Token: token’ http://server/v1/AUTH_User/
container/object

 D. curl -X GET -H ‘X-Auth-Token: token’ http://server/AUTH_User/
container object

 Answers to Review Questions
 1. B

 2. C

 3. B

 4. A

 5. C

99© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_9

 CHAPTER 9

 Block Storage

 This chapter covers 10% of the Certified OpenStack Administrator exam requirements.

 Architecture and Components of Cinder
 Instances use an ephemeral volume by default. This kind of volume does not save the changes made on it
and reverts to its original state when the current user relinquishes control. One of the methods for storing
data permanently in OpenStack cloud is the use of a block storage service named Cinder. This service is
similar to the Amazon EBS service by its functions.

 Figure 9-1 shows the main components of Cinder.

 Figure 9-1. Architecture of Cinder

CHAPTER 9 ■ BLOCK STORAGE

100

 OpenStack block storage service consists of four services implemented as GNU/Linux daemons:

• cinder-api : API service provides an HTTP endpoint for API requests. At the time of
this writing, two versions of API are supported and required for the cloud. So Cinder
provides six endpoints. The cinder-api verifies the identity requirements for an
incoming request and after that routes them to the cinder-volume for action through
the message broker.

• cinder-scheduler : Scheduler service reads requests from the message queue and
selects the optimal storage provider node to create or manage the volume.

• cinder-volume : The service works with a storage back end through the drivers. The
cinder-volume gets requests from the scheduler and responds to read and write
requests sent to the block storage service to maintain state. You can use several back
ends at the same time. For each back end you need one or more dedicated cinder-
volume service.

• cinder-backup : The backup service works with the backup back end through the
driver architecture.

 As you can see in Figure 9-1 , Cinder uses block storage providers for particular storage. You can find a
list of supported drivers at https://wiki.openstack.org/wiki/CinderSupportMatrix . There are a lot of
storage providers for Cinder, such as LVM/iSCSI, Ceph, Swift, EMC VNX, ScaleIO, IBM Storwize, and others.

 Let’s look at these services in the OpenStack node:

 # systemctl | grep cinder
 openstack-cinder-api.service
loaded active running OpenStack Cinder API Server
 openstack-cinder-backup.service
loaded active running OpenStack Cinder Backup Server
 openstack-cinder-scheduler.service
loaded active running OpenStack Cinder Scheduler Server
 openstack-cinder-volume.service

 You can use the cinder service-list command to query the status of Cinder services:

 $ source keystonerc_admin
 $ cinder service-list
 +------------------+------------------------+------+---------+-------+---------------------+
 | Binary | Host | Zone | Status | State | Updated_at |
 +------------------+------------------------+------+---------+-------+---------------------+
cinder-backup	centos7.test.local	nova	enabled	up	2016-04-24T16:34:08
cinder-scheduler	centos7.test.local	nova	enabled	up	2016-04-24T16:34:06
cinder-volume	centos7.test.local@lvm	nova	enabled	up	2016-04-24T16:34:07
 +------------------+------------------------+------+---------+-------+---------------------+

https://wiki.openstack.org/wiki/CinderSupportMatrix

CHAPTER 9 ■ BLOCK STORAGE

101

 After testing the environment, you can see that all services are running on one host. In the production
environment, it is more common to have cinder-volume service running on separate storage nodes. By
default in test environments Cinder uses the Linux Logical Volume Manager (LVM) back end and the iSCSI
target provided by Targetcli (http://linux-iscsi.org/wiki/Targetcli):

 # systemctl | grep lvmetad.service
 lvm2-lvmetad.service
loaded active running LVM2 metadata daemon
 # systemctl | grep target.service
 target.service
loaded active exited Restore LIO kernel target configuration

 Now let’s look through the Keystone main configuration file /etc/cinder/cinder.conf . Table 9-1
shows the main configuration options available from the config file.

 Table 9-1. Main Configuration Options from /etc/cinder/cinder.conf

 Example of Config Options Description

 [DEFAULT]
 glance_host = 10.0.2.15

 Default Glance host name or IP.

 [DEFAULT]
 backup_driver = cinder.backup.drivers.swift

 Driver to use for backups.

 [DEFAULT]
 auth_strategy = keystone
 [keystone_authtoken]
 auth_uri = http:// 10.0.2.15:5000
 auth_url = http:// 10.0.2.15:35357
 auth_type = password
 project_domain_name = default
 user_domain_name = default
 project_name = service
 username = cinder
 password = openstack

 Authentication parameters: auth_uri , which is
the public Identity API endpoint, and auth_url ,
which is the admin Identity API endpoint. Other
parameters set a default project name, domain
name, project name for services, and account
information for the Cinder user.

 [DEFAULT]
 backup_swift_url = http://10.0.2.15:8080/v1/
AUTH_
 backup_swift_container = volumes_backup
 backup_swift_object_size = 52428800
 backup_swift_retry_attempts = 3
 backup_swift_retry_backoff = 2

 The URL of the Swift endpoint and other Swift
parameters such as: name of Swift container to
use, maximum object size, the number of retries to
make for Swift operations, and the back-off time in
seconds between Swift retries.

 [DEFAULT]
 enabled_backends = lvm

 A list of back-end names to use.

 [database]
 connection = mysql://
cinder:password@10.0.2.15/cinder

 The SQLAlchemy connection string is used to
connect to the database.

(continued)

http://linux-iscsi.org/wiki/Targetcli
http://10.0.2.15:8080/v1/AUTH_
http://10.0.2.15:8080/v1/AUTH_

CHAPTER 9 ■ BLOCK STORAGE

102

Table 9-1. (continued)

 Example of Config Options Description

 [DEFAULT}
 rpc_backend = rabbit
 [oslo_messaging_rabbit]
 rabbit_host = localhost
 rabbit_port = 5672
 rabbit_userid = guest
 rabbit_password = guest

 The RabbitMQ broker address, port, user name,
and password.

 [lvm]
 iscsi_helper=lioadm

 iSCSI target user-land tool to use. The old one
 tgtadm is default. Use lioadm for modern LIO iSCSI
support.

 [lvm]
 volume_group=cinder-volumes
 iscsi_ip_address=10.0.2.15
 volume_driver=cinder.volume.drivers.lvm.
LVMVolumeDriver
 volumes_dir=/var/lib/cinder/volumes
 iscsi_protocol=iscsi
 volume_backend_name=lvm

 LVM back-end options: name of LVM volume
group, iSCSI target IP address, volume driver,
volume configuration file storage directory, and the
back-end name for a given driver implementation.

 Manage Volume and Mount It to a Nova Instance
 Let’s start our example from volume creation. There are two CLI commands that can be used: openstack or
 cinder . Also you can use the Horizon web client. Here is an example using the cinder command:

 $ source keystonerc_demo
 $ cinder create --display-name apresstest1 1
 +---------------------------------------+--------------------------------------+
 | Property | Value |
 +---------------------------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-04-21T05:22:11.000000
description	None
encrypted	False
id	08c41630-4da9-42c5-99bb-f9aa389ce2dc
metadata	{}
multiattach	False
name	apresstest1
os-vol-tenant-attr:tenant_id	1542af2b20d349d29710d8c4019ba202
os-volume-replication:driver_data	None
os-volume-replication:extended_status	None
replication_status	disabled
size	1

CHAPTER 9 ■ BLOCK STORAGE

103

snapshot_id	None
source_volid	None
status	creating
user_id	ec92590f7ff84887ab9c0329f5ce850c
volume_type	None
 +---------------------------------------+--------------------------------------+

 The next example shows use of the universal openstack command:

 $ openstack volume create --size 1 apresstest2
 +---------------------+--------------------------------------+
 | Field | Value |
 +---------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
created_at	2016-04-21T05:23:43.504895
display_description	None
display_name	apresstest2
encrypted	False
id	e42d8fe1-7475-46b6-a769-20a2ce462d3c
multiattach	false
properties	
size	1
snapshot_id	None
source_volid	None
status	creating
type	None
 +---------------------+--------------------------------------+

 Now you can check to make sure that both volumes were created and are now available:

 $ openstack volume list
 +--------------------------------------+--------------+-----------+------+-------------+
 | ID | Display Name | Status | Size | Attached to |
 +--------------------------------------+--------------+-----------+------+-------------+
 | e42d8fe1-7475-46b6-a769-20a2ce462d3c | apresstest2 | available | 1 | |
 | 08c41630-4da9-42c5-99bb-f9aa389ce2dc | apresstest1 | available | 1 | |
 +--------------------------------------+--------------+-----------+------+-------------+
 $ cinder list
 +--------------------+---------+-----------+----+---------------+-----------+-----------+
 | ID |Status |Name |Size|Volume|Bootable|Multiattach|Attached to|
 Type
 +--------------------+---------+-----------+----+---------------+-----------+-----------+
 | 08c41630-4da9-42c5-|available|apresstest1| 1 |- |false |False | |
 99bb-f9aa389ce2dc
 | e42d8fe1-7475-46b6-|available|apresstest2| 1 |- |false |False | |
 a769-20a2ce462d3c
 +--------------------+---------+-----------+----+---------------+-----------+-----------+

CHAPTER 9 ■ BLOCK STORAGE

104

 As mentioned earlier, Cinder uses Linux Logical Volume Manager in test environments by default. You
can easily check this fact by using the lvs command. As you see below, there are two LVM volumes in the
cinder-volumes group with the names that contain the OpenStack’s volumes’ IDs:

 # lvs
 LV VG Attr LSize
 home centos -wi-ao---- 55.64g
 root centos -wi-ao---- 50.00g
 swap centos -wi-ao---- 3.88g
 volume-08c41630-4da9-42c5-99bb-f9aa389ce2dc cinder-volumes -wi-a----- 1.00g
 volume-e42d8fe1-7475-46b6-a769-20a2ce462d3c cinder-volumes -wi-a----- 1.00g

 ■ Note The command lvs is used to report information about logical volumes. Using the Logical Volume
Manager (LVM) is a common way to create the abstraction level of block devices for modern GNU/Linux
distributions. LVM is able to create, delete, resize, mirror, or snapshot logical volumes. Logical volumes are
created from volume groups and volume groups are usually created from physical devices. If you are not
familiar with LVM you can start from a manual page for LVM (man lvm in linux prompt).

 You can also manage existing and create new volumes from within the Horizon web interface. Go to
Compute ➤ Volumes if you are working as a user or System ➤ Volumes if you want to see all of the volumes
as an administrator. In each case, different subsets of options are available. Examples of the different web
interface screenshots are shown in Figures 9-2 and 9-3 .

 Figure 9-2. Volumes in regular users Horizon web interface view

CHAPTER 9 ■ BLOCK STORAGE

105

 Deleting a volume is as easy as creating one. To delete a volume, for example, using the cinder CLI
command, use the following code:

 $ cinder delete apresstest2
 Request to delete volume apresstest2 has been accepted.

 In Figure 9-4 you can see the volume creation dialog used in the Horizon user interface. In the drop-
down menu you can see additional options for creating the image. You can create a volume from another
volume or from the image instead by creating a volume from scratch. For these actions the --image and
 --source options of the openstack CLI command are used. Here is an example of creating a volume from
Glance’s image:

 $ openstack volume create --size 1 --image cirros-0.3.4-x86_64 apresstest3
 +---------------------+--------------------------------------+
 | Field | Value |
 +---------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
created_at	2016-04-24T12:22:47.445562
display_description	None
display_name	apresstest3
encrypted	False
id	e5ac6599-d1a9-4d27-a338-6989e2abc0fc
image_id	e5791edb-30dd-475a-9bc4-5938341db655
multiattach	false
properties	
size	1
snapshot_id	None
source_volid	None
status	creating
type	None
 +---------------------+--------------------------------------+

 Figure 9-3. Volumes for admin users in the Horizon web interface view

CHAPTER 9 ■ BLOCK STORAGE

106

 You can use the openstack volume show command with the image name or ID if you need to look at
the particular volume properties.

 Volumes are useless by themselves. So let’s try to start a new instance of VM and to access a volume
from within this VM:

 $ nova boot --flavor m1.tiny --image cirros-0.3.4-x86_64 apresstestinstance1
 ...
 $ nova list
 +--------------+---------------------+--------+------------+-------------+-----------------+
 | ID | Name | Status | Task State | Power State | Networks |
 +--------------+---------------------+--------+------------+-------------+-----------------+
 | a2deaa34-... | apresstestinstance1 | ACTIVE | - | Running | private=10.0.0.3 |
 +--------------+---------------------+--------+------------+-------------+-----------------+

 Now you can attach the volume apresstest1 to the instance apresstestinstance1 :

 $ openstack server add volume apresstestinstance1 apresstest1
 $ openstack volume list
 +--------------+--------------+--------+------+--+
 | ID | Display Name | Status | Size | Attached to |
 +--------------+--------------+--------+------+--+
 | 78680241-... | apresstest1 | in-use | 1 | Attached to apresstestinstance1 on /dev/vdb |
 +--------------+--------------+--------+------+--+

 Figure 9-4. Creation of a volume from the Horizon web interface view

CHAPTER 9 ■ BLOCK STORAGE

107

 As an alternative, you can use the nova volume-attach command in conjunction with the volume ID:

 nova volume-attach apresstestinstance1 78680241-7928-41d5-b9bc-f2f82dad7bba /dev/vdb
 +----------+--------------------------------------+
 | Property | Value |
 +----------+--------------------------------------+
device	/dev/vdb
id	78680241-7928-41d5-b9bc-f2f82dad7bba
serverId	a2deaa34-2ca0-406f-9ef7-cf2a92cb6751
volumeId	78680241-7928-41d5-b9bc-f2f82dad7bba
 +----------+--------------------------------------+

 For detaching a volume you can use one of these commands:

 $ openstack server remove volume apresstestinstance1 apresstest1
 $ nova volume-detach apresstestinstance1 78680241-7928-41d5-b9bc-f2f82dad7bba

 Create Volume Group for Block Storage
 One of the Certified OpenStack Administrator exam objectives is to create the LVM volume group for block
storage. It is very easy but you need to be aware of the hard disks partitions and the LVM hierarchy.

 Let’s assume that you do not have free space in your current storage. First, you will need to add a new
block device (virtual hard drive in this case) to the controller VM. Usually you will need to reboot the VM
after that.

 Then you need to find a new device name. A device name refers to the entire disk. Device names can be
 /dev/sda , /dev/sdb , and so on when you are using the virtualization-aware disk driver. For example, if you
use the native KVM-based virtualization in GNU/Linux, this code would show the devise name:

 # fdisk -l | grep [vs]d
 Disk /dev/sda: 118.2 GB, 118182313984 bytes, 230824832 sectors
 /dev/sda1 * 2048 1026047 512000 83 Linux
 /dev/sda2 1026048 230823935 114898944 8e Linux LVM
 Disk /dev/sdb: 103.8 GB, 103834320896 bytes, 202801408 sectors

 You can see the new disk /dev/sdb has no partitions on it. Let’s create one partition for the whole disk:

 # fdisk /dev/sdb
 Welcome to fdisk (util-linux 2.23.2).

 Changes will remain in memory only, until you decide to write them.
 Be careful before using the write command.

 Device does not contain a recognized partition table
 Building a new DOS disklabel with disk identifier 0xc2ccdc51.

 Command (m for help): n
 Partition type:
 p primary (0 primary, 0 extended, 4 free)
 e extended

CHAPTER 9 ■ BLOCK STORAGE

108

 Select (default p): p
 Partition number (1-4, default 1):
 First sector (2048-202801407, default 2048):
 Using default value 2048
 Last sector, +sectors or +size{K,M,G} (2048-202801407, default 202801407):
 Using default value 202801407
 Partition 1 of type Linux and of size 96.7 GiB is set

 Before saving changes to the partition table, you also need to change the partition type number from 83
(Linux) to 8e (Linux LVM):

 Command (m for help): t
 Selected partition 1
 Hex code (type L to list all codes): 8e
 Changed type of partition 'Linux' to 'Linux LVM'

 Command (m for help): w
 The partition table has been altered!

 Calling ioctl() to re-read partition table.
 Syncing disks.
 # partprobe

 Now you can create the new volume group for the LVM back end:

 # vgcreate cinder-volumes-2 /dev/sdb1
 Physical volume "/dev/sdb1" successfully created
 Volume group "cinder-volumes-2" successfully created

 Manage Quotas
 It is possible to add quotas for Cinder volumes. Default quotas for new projects are in the Cinder
configuration file. Some of them are shown in Table 9-2 .

 Table 9-2. Quota Configuration Options from /etc/cinder/cinder.conf

 Example of Config Options Description

 quota_volumes = 10 Number of volumes allowed per project.

 quota_snapshots = 10 Number of volume snapshots allowed per project.

 quota_gigabytes = 1000 Total amount of storage, in gigabytes, allowed for volumes and
snapshots per project.

 quota_backups = 10 Number of volume backups allowed per project.

 quota_backup_gigabytes = 1000 Total amount of storage, in gigabytes, allowed for backups per
project.

CHAPTER 9 ■ BLOCK STORAGE

109

 You can show or modify Cinder quotes by using the cinder CLI command or through the Horizon web
interface. In Horizon, all quotas for projects that exist can be found by going to Identity ➤ Projects. Then you
would need to choose “Modify Quotas” from the drop-down menu to the right of the project name. You need
to know the project ID if you work from the command line:

 $ openstack project list
 +----------------------------------+---------+
 | ID | Name |
 +----------------------------------+---------+
007cad0f17df4b6f9ece6e5f630cec83	admin
7cd5f81dc5d849bbb76295e317128373	service
90829e88e94a4a39b9860ac61183e98d	demo
 +----------------------------------+---------+

 Then you can show the quotas for project demo:

 $ cinder quota-show 90829e88e94a4a39b9860ac61183e98d
 +----------------------+-------+
 | Property | Value |
 +----------------------+-------+
backup_gigabytes	1000
backups	10
gigabytes	1000
gigabytes_LUKS	-1
per_volume_gigabytes	-1
snapshots	10
snapshots_LUKS	-1
volumes	10
volumes_LUKS	-1
 +----------------------+-------+

 The results show the current usage of the demo project’s quota:

 $ cinder quota-usage 90829e88e94a4a39b9860ac61183e98d
 +----------------------+--------+----------+-------+
 | Type | In_use | Reserved | Limit |
 +----------------------+--------+----------+-------+
backup_gigabytes	0	0	1000
backups	0	0	10
gigabytes	0	0	1000
gigabytes_LUKS	0	0	-1
per_volume_gigabytes	0	0	-1
snapshots	0	0	10
snapshots_LUKS	0	0	-1
volumes	0	0	10
volumes_LUKS	0	0	-1
 +----------------------+--------+----------+-------+

CHAPTER 9 ■ BLOCK STORAGE

110

 To update Cinder service quotas for an existing project, you need a quota name and the suggested
number:

 $ cinder quota-update --snapshots 17 90829e88e94a4a39b9860ac61183e98d
 +----------------------+-------+
 | Property | Value |
 +----------------------+-------+
backup_gigabytes	1000
backups	10
gigabytes	1000
gigabytes_LUKS	-1
per_volume_gigabytes	-1
snapshots	17
snapshots_LUKS	-1
volumes	10
volumes_LUKS	-1
 +----------------------+-------+

 For removing all quotas for the project use the quota-delete command:

 $ cinder quota-delete 90829e88e94a4a39b9860ac61183e98d

 Back Up and Restore Volumes and Snapshots
 The cinder command can create a whole volume backup or incremental backup (starting from the Liberty
release). You can restore a volume from a backup if the backup’s associated metadata exist in the Cinder
database. You can also export metadata if you are concerned about a database crush.

 First, you need to know the volume ID. You can use the cinder list command to find this. Next, you
can enter the command:

 $ cinder backup-create 78680241-7928-41d5-b9bc-f2f82dad7bba
 +-----------+--------------------------------------+
 | Property | Value |
 +-----------+--------------------------------------+
id	4dc8c496-85f1-438f-9eb7-56fb2aa04503
name	None
volume_id	78680241-7928-41d5-b9bc-f2f82dad7bba
 +-----------+--------------------------------------+

 It is possible to check the status of existing backups using the command:

 $ cinder backup-list
 +-------------+-------------+-----------+------+------+--------------+----------------+
 | ID | Volume ID | Status | Name | Size | Object Count | Container |
 +-------------+-------------+-----------+------+------+--------------+----------------+
 | 4dc8c496-.. | 78680241-.. | available | - | 1 | 22 | volumes_backup |
 +-------------+-------------+-----------+------+------+--------------+----------------+

CHAPTER 9 ■ BLOCK STORAGE

111

 All backups go to the Swift Object Storage by default. You can check the volumes_backup container and
objects inside this container:

 $ swift list
 volumes_backup
 $ swift list volumes_backup
 volume_78680241-7928-41d5-b9bc-f2f82dad7bba/20160424152627/az_nova_backup_4dc8c496-..-00001
 ...
 volume_78680241-7928-41d5-b9bc-f2f82dad7bba/20160424152627/az_nova_backup_4dc8c496-..-00021
 volume_78680241-7928-41d5-b9bc-f2f82dad7bba/20160424152627/az_nova_backup_4dc8c496-.._
metadata
 volume_78680241-7928-41d5-b9bc-f2f82dad7bba/20160424152627/az_nova_backup_4dc8c496-.._
sha256file

 Restoration of an existing backup is similar to the backup procedure:

 $ cinder backup-restore 4dc8c496-85f1-438f-9eb7-56fb2aa04503
 +-------------+---+
 | Property | Value |
 +-------------+---+
backup_id	4dc8c496-85f1-438f-9eb7-56fb2aa04503
volume_id	7cf64dd4-4e35-455e-9b15-f2ad75b6e78b
volume_name	restore_backup_4dc8c496-85f1-438f-9eb7-56fb2aa04503
 +-------------+---+

 With the option --volume you can choose the name or ID of the volume to which you wish to restore
your backup to. By default, a new volume will be created:

 $ cinder list
 +------------+---------+----------------+----+-----------+--------+-----------+------------+
 | ID |Status |Name |Size|Volume Type|Bootable|Multiattach|Attached to |
 +------------+---------+----------------+----+-----------+--------+-----------+------------+
 | 78680241-..|available| apresstest1 |1 |- |false | False | |
 | 7cf64dd4-..|available| restore_backup |1 |- |false | False | |
 _4dc8c496..
 +------------+---------+----------------+----+-----------+--------+-----------+------------+

 As mentioned earlier, you can export the metadata of a volume backup. To do so, you will need to run
this command as an admin user:

 $ source keystonerc_admin

CHAPTER 9 ■ BLOCK STORAGE

112

 $ cinder backup-export 4dc8c496-85f1-438f-9eb7-56fb2aa04503
 +----------------+--+
 | Property | Value |
 +----------------+--+
backup_service	cinder.backup.drivers.swift
backup_url	eyJzdGF0dXMiOiAihaWxhYmxlIiwgImRpc3BsYXlfbmFtZSI6IG51bGwsICJhdmGFiaWxp
	...
 +----------------+--+

 To import backup metadata, run the following command:

 $ cinder backup-import eyJzdGF0dXMiOiAihaWxhYmxlIiwgI.....

 Manage Volume Snapshots
 Using volume snapshots is another way to create a back up of an existing volume. Volume snapshots provide
a way to obtain a nondisruptive copy of the volume. Snapshot will be stored in Cinder’s back-end storage
system, as opposed to Swift Object Storage in cases of backups. In the default installation LVM will take care
of creating snapshots. Do not confuse Cinder snapshots with Nova snapshots. You can use snapshot when
the volume is in use by a VM, but from a consistency point of view, it is best if the volume is not connected to
an instance when the snapshot is taken. It is possible to create new volumes from snapshots.

 Let’s look at some examples of how to work with Cinder snapshots. First, you need to know the volume
ID that will be used:

 $ cinder list
 +--------------------+----------+----------+---+------+-------+---------+---------------+
 |ID |Status |Name |Size|Volume|Bootable|Multiattach| Attached to |
 Type
 +--------------------+----------+----------+---+------+-------+---------+---------------+
 | 78680241-7928-41d5-|available |apresstest1|1 |- |false |False | |
 b9bc-f2f82dad7bba
 +--------------------+----------+----------+---+------+-------+---------+---------------+

 Next, you can enter a command to create a snapshot:

 $ cinder snapshot-create --display-name apresstest1_snap1 78680241-7928-41d5-b9bc-
f2f82dad7bba
 +-------------+--------------------------------------+
 | Property | Value |
 +-------------+--------------------------------------+
created_at	2016-04-25T16:06:04.676842
description	None
id	393a436d-3112-425f-8faf-ca14e3db3092
metadata	{}
name	apresstest1_snap1
size	1
status	creating
volume_id	78680241-7928-41d5-b9bc-f2f82dad7bba
 +-------------+--------------------------------------+

CHAPTER 9 ■ BLOCK STORAGE

113

 Then you should make sure that a snapshot was created:

 $ cinder snapshot-list
 +--------------------+------------------------+-----------+-------------------+------+
 |ID |Volume ID | Status | Name | Size |
 +--------------------+------------------------+-----------+-------------------+------+
 | 393a436d-3112-425f-| 78680241-7928-41d5- | available | apresstest1_snap1 | 1 |
 8faf-ca14e3db3092 b9bc-f2f82dad7bba
 +--------------------+------------------------+-----------+-------------------+------+

 And now knowing the snapshot ID, you can show the details of the snapshot:

 $ cinder snapshot-show 393a436d-3112-425f-8faf-ca14e3db3092
 +--+--------------------------------------+
 | Property | Value |
 +--+--------------------------------------+
created_at	2016-04-25T16:06:04.000000
description	None
id	393a436d-3112-425f-8faf-ca14e3db3092
metadata	{}
name	apresstest1_snap1
os-extended-snapshot-attributes:progress	100%
os-extended-snapshot-attributes:project_id	1542af2b20d349d29710d8c4019ba202
size	1
status	available
volume_id	78680241-7928-41d5-b9bc-f2f82dad7bba
 +--+--------------------------------------+

 At the end, you can create a new volume from the snapshot. As a part of the creation process, you can
specify a new volume size in gigabytes:

 # cinder create --display-name apresstest2_from_snap1 --snapshot-id 393a436d-3112-425f-8faf-
ca14e3db3092 1
 +---------------------------------------+--------------------------------------+
 | Property | Value |
 +---------------------------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-04-25T19:10:40.000000
description	None
encrypted	False
id	027c2640-8f96-4024-8a42-5265b263e32c
metadata	{}
multiattach	False
name	apresstest2_from_snap1
os-vol-tenant-attr:tenant_id	1542af2b20d349d29710d8c4019ba202
os-volume-replication:driver_data	None
os-volume-replication:extended_status	None
replication_status	disabled

CHAPTER 9 ■ BLOCK STORAGE

114

size	1
snapshot_id	393a436d-3112-425f-8faf-ca14e3db3092
source_volid	None
status	creating
user_id	ec92590f7ff84887ab9c0329f5ce850c
volume_type	None
 +---------------------------------------+--------------------------------------+

 You can also delete the snapshot if needed:

 $ cinder snapshot-delete 393a436d-3112-425f-8faf-ca14e3db3092

 Figure 9-5 shows the Volume Snapshots tab in the Horizon web user interface.

 Figure 9-5. Working with snapshots in Horizon web interface view

 Manage Volumes Encryption
 OpenStack supports two options for volume encryption. One of them is called the static shared secret,
and the other is with support of the new Barbican OpenStack Key Manager Service. The easiest way to set
up volume encryption is to use the static secret. The disadvantage of this method is that if shared secret
is compromised, then all volumes will be compromised. To use the static shared secret-based encryption
you need to add one common section to all configuration files: /etc/nova/nova.conf and /etc/cinder/
cinder.conf :

 [keymgr]
 fixed_key = my_fixed_key_value

CHAPTER 9 ■ BLOCK STORAGE

115

 After that you need to restart the correspondent services. Everything is ready now so you can create
the new Cinder LUKS (Linux Unified Key Setup) volume type. LUKS specifies a platform-independent disk
format for use in encryption tools. The reference implementation is based on the cryptsetup GNU/Linux tool
with the dm-crypt back end.

 $ source keystonerc_admin
 $ cinder type-create LUKS
 +--------------------------------------+------+-------------+-----------+
 | ID | Name | Description | Is_Public |
 +--------------------------------------+------+-------------+-----------+
 | 6e565bfa-a16a-4bc5-9bfe-1ec54969ec81 | LUKS | - | True |
 +--------------------------------------+------+-------------+-----------+

 Now you can mark the LUKS volume type as encrypted and provide the necessary details such as cipher
and key size:

 $ cinder encryption-type-create --cipher aes-xts-plain64 --key_size 512 --control_location
front-end LUKS nova.encryptors.luks.LuksEncryptor
 +-------------------------+---------------------+----------+----------+-------------------+
 |Volume Type ID |Provider |Cipher | Key Size | Control Location |
 +-------------------------+---------------------+----------+----------+-------------------+
 | 6e565bfa-a16a-4bc5- |nova.encryptors.luks |aes-xts- |512 |front-end |
 9bfe-1ec54969ec81 LuksEncryptor plain64
 +-------------------------+---------------------+---------+-----------+-------------------+

 The corresponding screenshot of the admin web UI is shown in Figure 9-6 .

 Figure 9-6. Volume Types tab in the Horizon web interface view

CHAPTER 9 ■ BLOCK STORAGE

116

 Now you can create the encrypted volume:

 $ cinder create --display-name volEncr --volume-type LUKS 1
 +---------------------------------------+--------------------------------------+
 | Property | Value |
 +---------------------------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-04-25T19:36:51.000000
description	None
encrypted	True
id	d681fc68-8034-416d-9f46-b521c9c40b8e
metadata	{}
migration_status	None
multiattach	False
name	volEncr
os-vol-host-attr:host	None
os-vol-mig-status-attr:migstat	None
os-vol-mig-status-attr:name_id	None
os-vol-tenant-attr:tenant_id	560a3e76bdc64ea2bee9316038b12793
os-volume-replication:driver_data	None
os-volume-replication:extended_status	None
replication_status	disabled
size	1
snapshot_id	None
source_volid	None
status	creating
user_id	15b05be5765b49698bd2c890399bb8ae
volume_type	LUKS
 +---------------------------------------+--------------------------------------+

 Set Up Storage Pools
 Cinder allows you to use multiple storage pools and storage drivers at the same time. You can find the list,
which contains more than 50 storage drivers, at the Support Matrix web page for Cinder (https://wiki.
openstack.org/wiki/CinderSupportMatrix).

 You need to enumerate all of the back ends when you want to use two or many back ends with different
or the same type of drivers in the [DEFAULT] section of the cinder.conf configuration file:

 [DEFAULT]
 enabled_backends = lvmA, lvmB, nfsA

 Now you need to add sections with back-end specific information for each back end. Here is an example
for two LVM back ends and one NFS back end:

 [lvmA]
 volume_group=cinder-volumes-1

https://wiki.openstack.org/wiki/CinderSupportMatrix
https://wiki.openstack.org/wiki/CinderSupportMatrix

CHAPTER 9 ■ BLOCK STORAGE

117

 volume_driver=cinder.volume.drivers.lvm.LVMISCSIDriver
 volume_backend_name=LVM
 [lvmB]
 volume_group=cinder-volumes-2
 volume_driver=cinder.volume.drivers.lvm.LVMISCSIDriver
 volume_backend_name=LVM
 [nfsA]
 nfs_shares_config=/etc/cinder/shares.txt
 volume_driver=cinder.volume.drivers.nfs.NfsDriver
 volume_backend_name=NFS

 If you want to give the user the right to choose on which back end their volumes are created, then a
volume type must be defined by the admin:

 $ source ~/keystonerc_admin
 $ cinder type-create lvm1
 $ cinder type-create lvm2
 $ cinder type-create nfs1
 $ cinder type-key lvm1 set volume_backend_name=lvmA
 $ cinder type-key lvm2 set volume_backend_name=lvmB
 $ cinder type-key nfs1 set volume_backend_name=nfsA

 Review Questions
 1. How many cinder-volume services exist in a typical installation?

 A. One.

 B. At least three.

 C. One per storage back end.

 D. One per database instance.

 2. What parameter in the configuration file defines the public Identity API
endpoint?

 A. auth_uri

 B. auth_ure

 C. auth_url

 D. auth_url_public

 3. How can you create a volume with a name test and the size 1GB?

 A. openstack volume create test 1

 B. cinder create --name test

 C. openstack volumes create --size 1 test

 D. cinder create --display-name test 1

CHAPTER 9 ■ BLOCK STORAGE

118

 4. What is the Linux LVM partition number?

 A. 82

 B. 8e

 C. 83

 D. 1F

 5. How does Cinder back up differ from snapshot (choose two)?

 A. Back up is stored in Glance.

 B. Back up is stored in Swift.

 C. Back up can’t be incremental.

 D. Back up can be incremental.

 Answers to Review Questions
 1. C

 2. A

 3. D

 4. B

 5. B and D

119© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_10

 CHAPTER 10

 Orchestration of OpenStack

 This chapter covers 8% of the Certified OpenStack Administrator exam requirements.

 Architecture and Components of Heat
 The last but certainly not the least service covered in this book is OpenStack Orchestration (Heat). This
is the orchestration service: “One ring to rule them all.” The main purpose of the service is to manage the
entire lifecycle of the infrastructure and applications within OpenStack clouds. For orchestration, Heat uses
templates that describe instances, networks, volumes, etc. Heat can also rule scale-in/scale-out scenarios
with Ceilometer’s help.

 Two formats of templates can be used with OpenStack Orchestration:

• HOT (Heat Orchestration Template) : OpenStack-native YAML-based template
format.

• CFT (AWS CloudFormation Template) : Compatible with AWS CloudFormation
(http://aws.amazon.com/cloudformation/) JSON-based template format. You
can use a lot of templates designed for AWS. A good starting point for research is
 https://aws.amazon.com/cloudformation/aws-cloudformation-templates/ .

 The OpenStack Orchestration architecture is shown in Figure 10-1 . Heat consists of several services that
are implemented as GNU/Linux daemons and CLI commands:

• heat-api : Accepts an OpenStack-native REST API call for template processing. After
receiving API calls, heat-api processes them by sending them to the heat-engine via
the AMQP protocol.

• heat-api-cfn : This is a CloudFormation API service. It is similar to heat-api by
function.

• heat-engine: The main service of Heat. The engine does all the work of
orchestrating, launching templates, and providing feedback to the client.

• heat-api-cloudwatch : An additional minimal implementation of AWS
CloudWatch–compatible service (https://aws.amazon.com/cloudwatch/). It is
primarily required to enable metric collection for high availability and autoscaling
functionality.

• heat : The CLI tool that communicates with the heat-api.

http://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/aws-cloudformation-templates/
https://aws.amazon.com/cloudwatch/

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

120

 Introducing the Heat OpenStack Template
 The input information for Heat is a template that describes the stack. Stack is the branch of OpenStack
resources that creates an application. Applications can consist of several instances and networks. HOT
(Heat OpenStack Template) was originally introduced in the Icehouse release and it acts as a primary
standard for Heat.

 Have a look at Figure 10-2 , where the structure of the HOT is shown. The template is divided into four
parts. The first part is a template header. It consists of the HOT version and an optional description for the
OpenStack operator. In Table 10-1 you can find the most recent versions of HOT.

 Figure 10-1. Architecture of the OpenStack Orchestration sevice

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

121

 Figure 10-2. Example of the Heat OpenStack Template (HOT) format

 Table 10-1. OpenStack Heat OpenStack Templates Versions

 Series HOT Version

 Icehouse heat_template_version: 2013-05-23

 Juno heat_template_version: 2014-10-16

 Kilo heat_template_version: 2015-03-30

 Liberty heat_template_version: 2015-10-15

 Mitaka heat_template_version: 2016-04-08

 The second optional section is the parameters. This section allows you to customize the deployment
and specify the input parameters that have to be provided when instantiating the template.

 The third section is always mandatory. It starts from general resources and defines actual resources
that make up a stack. There are more than 100 resource types that can be defined here. You can find a full
description of HOT at the OpenStack documentation project site (http://docs.openstack.org/developer/
heat/template_guide/index.html). There should be at least one resource definition in this section.

 The last section defines the output parameters that should be available to the user after a stack has been
created. These output parameters are available from CLI and in the Horizon web client.

http://docs.openstack.org/developer/heat/template_guide/index.html
http://docs.openstack.org/developer/heat/template_guide/index.html

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

122

 Launching a Stack Using a HOT
 To be a little bit more specific, you can check the examples of templates at https://github.com/openstack/
heat-templates/ . There you can find examples of templates that demonstrate core Heat functionality. Here
is a listing of a slightly modified “hello world” example from this repository:

 heat_template_version: 2014-10-16
 description: >
 Apress Certified OpenStack Administrator Study Guide.
 One VM Example

 parameters:
 network:
 type: string
 description: Network for VM
 default: demo-net
 image:
 type: string
 description: Cirros Image for VM
 default: cirros-0.3.4-x86_64

 resources:
 my_server:
 type: OS::Nova::Server
 properties:
 flavor: m1.tiny
 key_name: mykey
 networks:
 - network: { get_param: network }
 image: { get_param: image }
 user_data: |
 #!/bin/sh
 echo "Instance started :)"
 user_data_format: RAW

 outputs:
 instance_name:
 description: The name of VM
 value: { get_attr: [my_server, name] }
 private_ip:
 description: The private IP of VM
 value: { get_attr: [my_server, first_address] }

 The example consists of all four main parts of the template. There are two parameters defined: network
and image. They have default values, but you can redefine them at the time of stack launching. The only
described resource type OS::Nova::Server in this stack is my_server . By the way, you can find descriptions
of all the resource types in the Horizon web interface. The results of this example are shown in Figure 10-3 .
Probably the most interesting part of the definition is the example of how to run a specific script at the time
of starting the instance. And at the end of the template the name of the virtual machine and IP output are
defined.

https://github.com/openstack/heat-templates/
https://github.com/openstack/heat-templates/

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

123

 Now you can start the stack either in Horizon or in command line. If you choose Horizon, then go
to Orchestration ➤ Stacks and click the “Launch Stack” button. You can use the -P option for defining
parameters if you choose to use the command line:

 $ heat stack-create -f Hello-World.yml -P network=private -P image=cirros-raw mystack
 +-----------------------+------------+--------------------+---------------------+--------------+
 | id | stack_name | stack_status | creation_time | updated_time |
 +-----------------------+------------+--------------------+---------------------+---------+
 | 035ffd78-9739-4a7d-.. | mystack | CREATE_IN_PROGRESS | 2016-06-25T07:34:49 | None |
 +-----------------------+------------+--------------------+---------------------+--------------+

 Then you can issue the heat stacl-list command to make sure the stack creation is completed:

 $ heat stack-list
 +---------------------------+------------+-----------------+--------------------+--------------+
 | id | stack_name | stack_status | creation_time | updated_time |
 +---------------------------+------------+-----------------+--------------------+--------------+
 | 035ffd78-9739-4a7d-98cc.. | mystack | CREATE_COMPLETE | 2016-06-25T07:34:4 | None |
 +---------------------------+------------+-----------------+--------------------+--------------+

 Figure 10-3. Example of the resource types’ description in Horizon

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

124

 You will also see the new instance in Nova:

 $ nova list
 +------+-------------------------------+---------+------------+-------------+------------------+
 | ID | Name | Status | Task State | Power State | Networks |
 +------+-------------------------------+---------+------------+-------------+------------------+
 | dd.. | mystack-my_server-2z4b42d2y5w | ACTIVE | - | Running | private=10.0.0.4 |
 +------+-------------------------------+---------+------------+-------------+------------------+

 The name of the instance will consist of the stack name, instance name, and automatically generated
alpha-number appendix. You can show the detailed information about running the stack:

 $ heat stack-show mystack
 +-----------------------+--+
 | Property | Value |
 +-----------------------+--+
capabilities	[]
creation_time	2016-06-25T07:34:49
description	Apress Certified OpenStack Administrator Study Guide.
	One VM Example
disable_rollback	True
id	035ffd78-9739-4a7d-98cc-3f6eb35f16ed
links	http://10.0.2.15:8004/v1/16../stacks/mystack/035f.. (self)
notification_topics	[]
outputs	[
	{
	"output_value": "mystack-my_server-2z4b42d2y5wo",
	"output_key": "instance_name",
	"description": "The name of VM"
	},
	{
	"output_value": "10.0.0.4",
	"output_key": "private_ip",
	"description": "The private IP of VM"
	}
]
parameters	{
	"OS::project_id": "16f44d2a075a4139a2a5425a42f1b447",
	"image": "cirros-raw",
	"OS::stack_id": "035ffd78-9739-4a7d-98cc-3f6eb35f16ed",
	"OS::stack_name": "mystack",
	"network": "private"
	}

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

125

parent	None
stack_name	mystack
stack_owner	None
stack_status	CREATE_COMPLETE
stack_status_reason	Stack CREATE completed successfully
stack_user_project_id	769b289c72bf412fbe33cded5e89ab89
tags	null
template_description	Apress Certified OpenStack Administrator Study Guide.
	One VM Example
timeout_mins	None
updated_time	None
 +-----------------------+--+

 This same information is also available inside the Horizon web interface (see Figure 10-4).

 Figure 10-4. Example of the stack details in the Horizon web interface

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

126

 Using Heat CLI and Dashboard
 Let’s examine the most common operations with stacks. If you troubleshoot the stack and want to see what
happens with the resources, the heat event-list command will be very useful:

 $ heat event-list mystack
 +---------------+-------+------------------------+---------------------+---------------------+
 | resource_name | id | resource_status_reason | resource_status | event_time |
 +---------------+-------+------------------------+---------------------+---------------------+
mystack	911..	Stack CREATE started	CREATE_IN_PROGRESS	2016-06-25T07:34:50
my_server	dd1..	state changed	CREATE_IN_PROGRESS	2016-06-25T07:34:51
my_server	480..	state changed	CREATE_COMPLETE	2016-06-25T07:35:07
mystack	0d8..	Stack CREATE completed	CREATE_COMPLETE	2016-06-25T07:35:07
mystack	855..	Stack CHECK started	CHECK_IN_PROGRESS	2016-06-25T08:03:55
my_server	4d3..	state changed	CHECK_IN_PROGRESS	2016-06-25T08:03:55
mystack	c99..	Stack SUSPEND started	SUSPEND_IN_PROGRESS	2016-06-25T10:53:45
 +---------------+-------+------------------------+---------------------+---------------------+

 In Figure 10-5 you can see how the list of events looks in the Horizon web interface.

 Figure 10-5. Example of the stack events list in the Horizon web interface

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

127

 As the owner of the stack, you can suspend and resume your stacks again:

 $ heat action-suspend mystack
 +---------------------------+------------+----------------+---------------------+--------------+
 | id | stack_name | stack_status | creation_time | updated_time |
 +---------------------------+------------+----------------+---------------------+--------------+
 | 035ffd78-9739-4a7d-98cc.. | mystack | CHECK_COMPLETE | 2016-06-25T07:34:49 | None |
 +---------------------------+------------+----------------+---------------------+--------------+
 $ heat action-resume mystack
 +-------------------------+------------+------------------+---------------------+--------------+
 | id | stack_name | stack_status | creation_time | updated_time |
 +-------------------------+------------+------------------+---------------------+--------------+
 | 035ffd78-9739-4a7d-98.. | mystack | SUSPEND_COMPLETE | 2016-06-25T07:34:49 | None |
 +-------------------------+------------+------------------+---------------------+--------------+

 With Horizon and CLI, it is possible to see the resources of your stack:

 $ heat resource-list mystack
 +---------------+------------------+------------------+-----------------+---------------------+
 | resource_name | physical_res_id | resource_type | resource_status | updated_time |
 +---------------+------------------+------------------+-----------------+---------------------+
 | my_server | dd56daf9-e7b3-.. | OS::Nova::Server | RESUME_COMPLETE | 2016-06-25T07:34:50 |
 +---------------+------------------+------------------+-----------------+---------------------+

 If you prefer to work with Horizon, you can see the same information. An example of the stack resources
in Horizon is shown in Figure 10-6 .

 Figure 10-6. Example of the stack resources as shown in the Horizon web interface

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

128

 As mentioned earlier, heat stack-show will show you the information of all the stacks’ properties
including output. You can use another command if you want to see output only:

 $ heat output-list mystack
 +---------------+----------------------+
 | output_key | description |
 +---------------+----------------------+
 | instance_name | The name of VM |
 | private_ip | The private IP of VM |
 +---------------+----------------------+

 Also you can see the template using the command:

 $ heat template-show mystack

 If you update the text of the template file, you may also want to update a stack. To update an existing
stack from a modified template file, run the following command:

 $ heat stack-update -f Hello-World.yml -P network=private -P image=cirros-raw mystack
 +------+------------+-----------------+---------------------+--------------+
 | id | stack_name | stack_status | creation_time | updated_time |
 +------+------------+-----------------+---------------------+--------------+
 | 6b.. | mystack | CREATE_COMPLETE | 2016-06-25T12:42:50 | None |
 +------+------------+-----------------+---------------------+--------------+

 Some resources are updated in place, while others are replaced with new resources. At the end you can
also delete a stack:

 $ heat stack-delete mystack
 Are you sure you want to delete this stack(s) [y/N]? y
 +-------------------------+------------+------------------+---------------------+--------------+
 | id | stack_name | stack_status | creation_time | updated_time |
 +-------------------------+------------+------------------+---------------------+--------------+
 | 035ffd78-9739-4a7d-98.. | mystack | RESUME_COMPLETE | 2016-06-25T07:34:49 | None |
 +-------------------------+------------+------------------+---------------------+--------------+

 For an overall view of the stack resources and links between them, the “Topology” subtab of the “Stack
Details” page within the project is very useful. An example of two-instance stack topology is shown in
Figure 10-7 .

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

129

 Review Questions
 1. How can the status of the running stack be checked?

 A. heat event-list mystack

 B. heat stack-show mystack

 C. heat stack-check mystack

 D. heat template-show mystack

 2. How can you run a stack (choose all applicable)?

 A. heat stack-create -f Hello-World.yml -P network=private -P image=cirros stack

 B. heat stack-create -f Hello-World.yml -P network=192.168.0.0/24 -P
image=cirros stack

 C. heat stack-create -f Hello-World.yml -P network=private stack

 D. heat stack-create -f Hello-World.yml -P image=cirros stack

 Figure 10-7. Example of the stack topology.

CHAPTER 10 ■ ORCHESTRATION OF OPENSTACK

130

 3. Which service accepts CloudFormation REST API calls for templates processing?

 A. heat-api-cloudwatch

 B. heat-cfn

 C. heat-api-cfn

 D. heat-api

 4. How would you see the stack output (choose all applicable)?

 A. heat output-list mystack

 B. heat output-show mystack

 C. heat stack-show mystack

 D. heat stack-list mystack

 5. Is it possible to update a stack?

 A. Yes, only when stack is suspended.

 B. Yes, you can update running stack.

 C. No.

 Answers to Review Questions
 1. B

 2. A, C, D

 3. C

 4. A, C

 5. B

131© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_11

 CHAPTER 11

 Troubleshooting

 This chapter covers 13% of the Certified OpenStack Administrator exam requirements. Please note that
backing up OpenStack instances is discussed in Chapter 9 and analyzing storage status is discussed in
Chapters 4 , 8 , and 9 .

 The Main Principles of Troubleshooting
 Usually troubleshooting of OpenStack is not straightforward because it consists of a lot of separate projects that
work with one another in different combinations. That is why the discussion of troubleshooting is left until the
end of this book. You need to know the previous material before you learn the troubleshooting techniques.

 First, you should be aware of the concerns about generic debugging. Always make a backup copy of
your configuration file before you begin changing it. Next, it is very important to make only one change at a
time. And at the end, do not forget to revert your configuration files to the original if any test is unsuccessful.

 OpenStack troubleshooting techniques depend to a certain extent on general GNU/Linux
troubleshooting skills. That discussion is outside the scope of this book. However, Table 11-1 briefly
summarizes the main GNU/Linux troubleshooting utilities.

 Table 11-1. Basic GNU/Linux Troubleshooting Commands

 GNU/Linux Command Useful Options and Example

 ps : Report list of the current processes To see every process on the system use the aux
option. It can be useful with the grep command for
searching exact processes or you can use pgrep .

 # ps aux | grep cinder

 cinder 1006 1.0 1.8 468280 74316 ? Ss 11:49 2:36
/usr/bin/python2 /usr/bin/cinder-api --config-file
/usr/share/cinder/cinder-dist.conf --config-file
/etc/cinder/cinder.conf --logfile /var/log/cinder/api.log

 top : Show dynamic view of the system processes.
Unlike the ps output, this command continuously
refreshes the view

 You can use interactive keystrokes in the top
environment. ? - help, q - quit, l - toggles for load
header line, t - toggles for threads header line, m -
toggles for memory header line, u - filter process for
user name, M - sorts process listing by memory usage in
descending order, P - sorts process listing by processor
utilization in descending order, k - kill a process.

(continued)

http://dx.doi.org/10.1007/978-1-4842-2125-9_9
http://dx.doi.org/10.1007/978-1-4842-2125-9_4
http://dx.doi.org/10.1007/978-1-4842-2125-9_8
http://dx.doi.org/10.1007/978-1-4842-2125-9_9

CHAPTER 11 ■ TROUBLESHOOTING

132

 GNU/Linux Command Useful Options and Example

 df : Report file system disk space usage Usually df is used with the -h option that means
human readable format (e.g., 1K 234M 2G)

 # df -h
 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/linux-root 50G 8.8G 42G 18% /
 /dev/mapper/linux-home 56G 33M 56G 1% /home
 /dev/sda1 497M 133M 364M 27% /boot

 du : Estimate file space usage The same -h option as in df is often used.

 # du -h /var/lib/glance/images/
 13M /var/lib/glance/images/

 ip : Show/manipulate routing, devices, policy
routing, and tunnels

 The most common subcommands are show - for
displaying IP information, route - for showing
routing information.

 # ip addr show enp0s3
 2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
 link/ether 08:00:27:41:05:a6 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/8 brd 10.255.255.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe41:5a6/64 scope link
 valid_lft forever preferred_lft forever

 ss and netstat : Utilities to investigate sockets The ss command is similar to the netstat
command and it is used to display socket statistics.
They have similar options. Options are -t - show
TCP sockets, -u - show UDP sockets, -a - show
listening and established sockets, -p - show process
using the sockets.

 # ss -ta
 State Recv-Q Send-Q Local Address:Port Peer Address:Port
 LISTEN 0 128 *:8776 *:*
 LISTEN 0 128 *:25672 *:*
 LISTEN 0 128 *:8777 *:*
 LISTEN 0 128 10.0.2.15:27017 *:*
 LISTEN 0 64 10.0.2.15:rsync *:*
 LISTEN 0 50 *:mysql *:*

 find : Search for files in a directory hierarchy There are many options for the find utility: -name
- find by name, -iname - like -name , but the match
is case insensitive, -group and -user - find file that
belongs to group or user, -type with f or d to find
only files or directories.

 # find /etc -name swift*
 /etc/swift
 /etc/swift/swift.conf
 /etc/logrotate.d/openstack-swift

Table 11-1. (continued)

CHAPTER 11 ■ TROUBLESHOOTING

133

 ■ Note Traditionally, network interfaces are enumerated as eth0,1,2... In some modern Linux
distributions, the default naming behavior can differ. The names of interfaces can be based on device topology,
type, and firmware. For example, the ethernet interface on PCI slot 0 and port number 3 can be named enp0s3 .

 How to Check the OpenStack Version
 It is always good to know which version of OpenStack environment you are working with. Before the Liberty
version, all projects except Swift had a version based on the year and month. Starting with Liberty, all
components have a traditional version structure X.Y.Z., where X is always the same in one release.

 Here is an example for Mitaka:

 # keystone-manage --version
 9.0.0
 # nova-manage --version
 13.0.0

 And here is an example of the old-fashioned version convention used in OpenStack Kilo:

 # keystone-manage --version
 2015.1.0
 # nova-manage --version
 2015.1.0

 Also you can find the version on the System Information tab in the Admin menu at the right corner of
the page bottom. In Table 11-2 , several of the latest OpenStack releases are listed.

 Table 11-2. OpenStack Releases

 Series Releases Initial Release Date

 Juno 2014.2 October 16, 2014

 Kilo 2015.1 April 30, 2015

 Liberty Nova 12.0; Keystone 8.0; Neutron 7.0; Swift 2.4 October 15, 2015

 Mitaka Nova 13.0; Keystone 9.0; Neutron 8.0; Swift 2.6 April 7, 2016

 Newton Nova 14.0; Keystone 10.0; Neutron 9.0; Swift 2.8 October 6, 2016 (planned)

 Where to Find and How to Analyze Log Files
 Usually in GNU/Linux systems log files are persistently stored in the /var/log directory. Here is an example
of this directory’s content from the OpenStack controller node:

 # ls /var/log --group-directories-first -F
 anaconda/ nova/ cron-20160524.gz secure
 audit/ openvswitch/ dmesg secure-20160410.gz
 ceilometer/ ppp/ dmesg.old secure-20160417.gz
 cinder/ puppet/ grubby secure-20160426.gz

CHAPTER 11 ■ TROUBLESHOOTING

134

 glance/ rabbitmq/ lastlog secure-20160524.gz
 glusterfs/ redis/ maillog spooler
 heat/ swift/ maillog-20160410.gz spooler-20160410.gz
 horizon/ tuned/ maillog-20160417.gz spooler-20160417.gz
 httpd/ boot.log maillog-20160426.gz spooler-20160426.gz
 keystone/ btmp maillog-20160524.gz spooler-20160524.gz
 libvirt/ btmp-20160524.gz messages tallylog
 mariadb/ cron messages-20160410.gz wpa_supplicant.log
 mongodb/ cron-20160410.gz messages-20160417.gz wtmp
 nagios/ cron-20160417.gz messages-20160426.gz yum.log
 neutron/ cron-20160426.gz messages-20160524.gz

 As you see, parts of the content are directories and other parts are files. If one of the services has more
than one log file, usually such logs are placed in their own subdirectory. For example, the /var/log/glance/
directory contains two files: api.log and registry.log . The first is the log for the glance-api service and
the second is for the glance-registry . You can also see that part of the files’ names have -YYYYMMDD at
the end of the name and they are compressed by the Gzip tool. The utility logrotate renames, rotates, and
compresses old logs. Instructions for logrotate are stored in the /etc/logrotate.d/ directory and /etc/
logrotate.conf contains the configuration file.

 The logging subsystem of GNU/Linux is based on the Syslog protocol. In modern distributions the
rsyslog daemon sorts and stores syslog messages in files under the /var/log directory. There are some well-
known system-wide log files:

• messages: Most of the syslog messages are stored in this file.

• secure: All authentication-related and security messages are stored here.

• cron: The log file related to periodically executed jobs.

 In general all syslog messages are categorized by a type and a priority. Priority can be from 0 (system
is unusable) up to 7 (debug-level message). The type can be mail , cron , authpriv , etc. The RULES section of
the configuration file /etc/rsyslog.conf contains directives that define where log messages are saved. The
rules consist of the type, dot symbol, priority, and destination. Here is part of a default configuration file with
rules:

 #### RULES ####

 # Log all kernel messages to the console.
 # Logging much else clutters up the screen.
 #kern.* /dev/console

 # Log anything (except mail) of level info or higher.
 # Don't log private authentication messages!
 *.info;mail.none;authpriv.none;cron.none /var/log/messages

 # The authpriv file has restricted access.
 authpriv.* /var/log/secure

 # Log all the mail messages in one place.
 mail.* -/var/log/maillog

CHAPTER 11 ■ TROUBLESHOOTING

135

 # Log cron stuff
 cron.* /var/log/cron

 # Everybody gets emergency messages
 .emerg :omusrmsg:

 # Save news errors of level crit and higher in a special file.
 uucp,news.crit /var/log/spooler

 All log entries in log files are managed by the rsyslog and stored in a standard format:

 Jun 5 13:26:32 test-host nova-compute: 2016-06-01 13:26:32.020 2156 INFO nova.compute.
manager [req-06e94777-d6cb-4093-bfc4-d48ad918e4e8 - - - - -] [instance: 653 ced0c-d50b-413a-
bc09-c3103b149aaf] VM Resumed (Lifecycle Event)

 The first part of the message is the timestamp, then the name of the host, then the name of the program
that sends the message, and the last part is a message.

 For real-time log monitoring, a command tail -f /var/log/logfilename can be very useful. This
command prints the last ten lines of a log and continues to output new lines as they are added to this log file.

 Back Up the Database Used by an OpenStack Instance
 In most common cases, all OpenStack databases are on one MariaDB server. It is very easy to create a
database back up then:

 # mysqldump --opt --all-databases > /tmp/all-openstack.sql

 ■ Tip The mysqldump command will ask you for a password. You can avoid this by adding the –p option with
the password, for example: –p apress .

 If you only want to back up a single database, you can run:

 # mysqldump --opt neutron > /tmp/neutron.sql

 To list all database names you can use mysql CLI:

 # mysql
 Welcome to the MariaDB monitor. Commands end with ; or \g.
 Your MariaDB connection id is 42
 Server version: 5.5.40-MariaDB-wsrep MariaDB Server, wsrep_25.11.r4026

 Copyright (c) 2000, 2015, Oracle, MariaDB Corporation Ab and others.

 Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

CHAPTER 11 ■ TROUBLESHOOTING

136

 MariaDB [(none)]> show databases;
 +--------------------+
 | Database |
 +--------------------+
 | information_schema |
 | cinder |
 | glance |
 | heat |
 | keystone |
 | mysql |
 | neutron |
 | nova |
 | performance_schema |
 | test |
 +--------------------+
 10 rows in set (0.00 sec)

 Analyze Host/Guest OS and Instance Status
 The easiest way to check the status of OpenStack components like hosts and instances is by using the
Horizon web client. The most general view of the cloud is found on the Overview tab on the System
menu. If you are searching for the information about the Hypervisors you need to use the third tab named
Hypervisors. Both tabs are shown, respectively, in Figures 11-1 and 11-2 .

 Figure 11-1. OpenStack usage summary

CHAPTER 11 ■ TROUBLESHOOTING

137

 Usually users can find their instances in the Project menu. Almost all instances can be viewed by the
administrator on the Instances tab of the System menu. Figure 11-3 shows an example of the Instances page.

 Figure 11-2. Hypervisor usage summary

 Figure 11-3. All instances summary.

CHAPTER 11 ■ TROUBLESHOOTING

138

 Of course, you can get the same information using a command line. You would start by gathering
information about the hosts. Then you can get the list of all Hypervisors with the command:

 $ openstack host list
 +--------------------+-------------+----------+
 | Host Name | Service | Zone |
 +--------------------+-------------+----------+
centos7.test.local	cert	internal
centos7.test.local	consoleauth	internal
centos7.test.local	scheduler	internal
centos7.test.local	conductor	internal
centos7.test.local	compute	nova
 +--------------------+-------------+----------+

 or

 $ nova hypervisor-list
 +----+---------------------+-------+---------+
 | ID | Hypervisor hostname | State | Status |
 +----+---------------------+-------+---------+
 | 1 | centos7.test.local | up | enabled |
 +----+---------------------+-------+---------+

 If you want to get more information about specific host, the openstack host show command may help:

 $ openstack host show centos7.test.local
 +--------------------+-------------------------+-----+-----------+---------+
 | Host | Project | CPU | Memory MB | Disk GB |
 +--------------------+-------------------------+-----+-----------+---------+
centos7.test.local	(total)	1	3952	49
centos7.test.local	(used_now)	1	1024	1
centos7.test.local	(used_max)	1	512	1
centos7.test.local	ae8d3e3f5cff4a959f1ae1c	1	512	1
	fe9e80d6d			
 +--------------------+-------------------------+-----+-----------+---------+

 With the nova command, you can get the list of all instances that are hosting each host. For example:

 $ nova hypervisor-servers centos7.test.local
 +--------------+----------------------+-----------------+-------------------------+
 | ID | Name | Hypervisor ID | Hypervisor Hostname |
 +--------------+----------------------+-----------------+-------------------------+
 | c0b91a3c-... | instance-00000001 | 1 | centos7.test.local |
 +--------------+----------------------+-----------------+-------------------------+

 For the same purpose you can search through the Nova database:

 $ nova-manage vm list | grep active
 test-vm centos7.test.local m1.tiny active 2016-06-06 10:05:59+00:00
039daa2e-6b3e-4e31-b1da-ab3e6feb8b30
ae8d3e3f5cff4a959f1ae1cfe9e80d6d a1bec1d6dfcd4e3bb61c522bb319c266 None 0

CHAPTER 11 ■ TROUBLESHOOTING

139

 Also, to print the list of virtual machines, you could use the openstack command:

 $ openstack server list
 +-----------------------------+---------+--------+---------------------+
 | ID | Name | Status | Networks |
 +-----------------------------+---------+--------+---------------------+
 | c0b91a3c- | test-vm | ACTIVE | public=172.24.4.227 |
 | dfc1-4187-9577-95737bff95ac | | | |
 +-----------------------------+---------+--------+---------------------+

 If you want to get all information regarding a specific instance, use the command:

 $ openstack server show test-vm
 +--------------------------------------+--+
 | Field | Value |
 +--------------------------------------+--+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	nova
OS-EXT-SRV-ATTR:host	centos7.test.local
OS-EXT-SRV-ATTR:hypervisor_hostname	centos7.test.local
OS-EXT-SRV-ATTR:instance_name	instance-00000001
OS-EXT-STS:power_state	1
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
OS-SRV-USG:launched_at	2016-06-13T10:05:59.000000
OS-SRV-USG:terminated_at	None
addresses	public=172.24.4.227
config_drive	
created	2016-06-13T10:05:45Z
flavor	m1.tiny (1)
hostId	5e43e36184f81f18ea7d89b122091b6a78194..
id	c0b91a3c-dfc1-4187-9577-95737bff95ac
image	cirros-raw (039daa2e-6b3e-4e31-b1da-a..)
key_name	None
name	test-vm
os-extended-volumes:volumes_attached	[]
progress	0
project_id	ae8d3e3f5cff4a959f1ae1cfe9e80d6d
properties	
security_groups	[{u'name': u'default'}]
status	ACTIVE
updated	2016-06-14T10:06:00Z
user_id	a1bec1d6dfcd4e3bb61c522bb319c266
 +--------------------------------------+--+

CHAPTER 11 ■ TROUBLESHOOTING

140

 Analyze Messaging Servers
 As mentioned earlier, a messaging server is used by almost all OpenStack services. Nowadays the most
common messaging server for OpenStack is RabbitMQ. Alternatives for RabbitMQ are Qpid and ZeroMQ.
For transmitting information between OpenStack services, these servers use AMQP (Advanced Message
Queuing Protocol). I will briefly describe the functions of RabbitMQ here.

 For checking the RabbitMQ status, you can use the command:

 # rabbitmqctl status
 Status of node rabbit@centos7 ...
 [{pid,972},
 {running_applications,[{rabbit,"RabbitMQ","3.3.5"},
 {os_mon,"CPO CXC 138 46","2.2.14"},
 {xmerl,"XML parser","1.3.6"},
 {mnesia,"MNESIA CXC 138 12","4.11"},
 {sasl,"SASL CXC 138 11","2.3.4"},
 {stdlib,"ERTS CXC 138 10","1.19.4"},
 {kernel,"ERTS CXC 138 10","2.16.4"}]},
 {os,{unix,linux}},
 {erlang_version,"Erlang R16B03-1 (erts-5.10.4) [source] [64-bit] [async-threads:30] [hipe]
[kernel-poll:true]\n"},
 {memory,[{total,211601864},
 {connection_procs,2653544},
 {queue_procs,1273056},
 {plugins,0},
 {other_proc,13363136},
 {mnesia,363184},
 {mgmt_db,0},
 {msg_index,86264},
 {other_ets,916560},
 {binary,170846960},
 {code,16700042},
 {atom,602729},
 {other_system,4796389}]},
 {alarms,[]},
 {listeners,[{clustering,25672,"::"},{amqp,5672,"::"}]},
 {vm_memory_high_watermark,0.4},
 {vm_memory_limit,1657934643},
 {disk_free_limit,50000000},
 {disk_free,50450022400},
 {file_descriptors,[{total_limit,16284},
 {total_used,68},
 {sockets_limit,14653},
 {sockets_used,66}]},
 {processes,[{limit,1048576},{used,794}]},
 {run_queue,0},
 {uptime,9767}]
 ...done.

CHAPTER 11 ■ TROUBLESHOOTING

141

 To list all users, use would use the command:

 # rabbitmqctl list_users
 Listing users ...
 guest [administrator]
 ...done.

 As you see in this demo environment, there is only one user guest with administrator rights. All
OpenStack services use that particular user for sending and receiving messages. To check whether you can
find RabbitMQ settings in the services config files:

 rpc_backend = rabbit
 rabbit_host = 10.0.2.15
 rabbit_port = 5672
 rabbit_userid = guest
 rabbit_password = guest

 This is a common part of most configuration files, like /etc/cinder/cinder.conf , /etc/nova/nova.
conf, /etc/neutron/neutron.conf , etc. For managing and monitoring the RabbitMQ server, you can
activate the graphical web console:

 # /usr/lib/rabbitmq/bin/rabbitmq-plugins enable rabbitmq_management
 The following plugins have been enabled:
 mochiweb
 webmachine
 rabbitmq_web_dispatch
 amqp_client
 rabbitmq_management_agent
 rabbitmq_management
 Plugin configuration has changed. Restart RabbitMQ for changes to take effect.
 # systemctl restart rabbitmq-server.service

 Then open the web browser and point it to http://name-of-server:15672 on the RabbitMQ server
host. A screenshot of the console is shown in Figure 11-4 . As you saw before, the login name is guest and the
password is also guest by default.

CHAPTER 11 ■ TROUBLESHOOTING

142

 Analyze Network Status
 First, you can check the list of processes that build up Neutron service:

 # pgrep -l neutron
 971 neutron-meterin
 984 neutron-server
 988 neutron-metadat
 1731 neutron-l3-agen
 1732 neutron-openvsw
 1734 neutron-dhcp-ag
 1825 neutron-rootwra
 2164 neutron-ns-meta

 The exact list of processes can be different and depends on the host configuration. As you know,
Neutron works through a lot of agents or plug-ins. In Horizon, the status of these plug-ins is listed on the
Network Agents tab of the System Information view, as shown in Figure 11-5 .

 Figure 11-4. RabbitMQ web plug-in

CHAPTER 11 ■ TROUBLESHOOTING

143

 At the command line, the same information can be retrieved by using the neutron command:

 $ neutron agent-list
 +------+--------------+--------+----------------+-----+-------------+----------------------+
 | id |agent_type |host |availability_zone|alive|admin_state_up |binary |
 +------+--------------+--------+----------------+-----+-------------+----------------------+
 | 384..|Open vSwitch |centos7| | :-) | True |neutron-openvswitch- |
 agent agent
665..	L3 agent	centos7	nova	:-)	True	neutron-l3-agent
7c4..	Metering agent	centos7		:-)	True	neutron-metering-agent
82b..	DHCP agent	centos7	nova	:-)	True	neutron-dhcp-agent
9b8..	Metadata agent	centos7		:-)	True	neutron-metadata-agent
 +------+--------------+--------+----------------+-----+-------------+----------------------+

 Neutron has its own log file for each agent:

 ls /var/log/neutron/
 dhcp-agent.log metadata-agent.log neutron-ns-metadata-proxy-621d3f89-4db4-4a4d-b6b1-
724ed5de8575.log ovs-cleanup.log
 l3-agent.log metering-agent.log openvswitch-agent.log

 Let’s look at the virtual networks part of OpenStack configuration. And again, you can explore them in
Horizon, as shown at Figure 11-6 , or you can use a command line:

 Figure 11-5. OpenStack Neutron agents list

CHAPTER 11 ■ TROUBLESHOOTING

144

 $ openstack network list
 +--------------------------------------+---------+--------------------------------------+
 | ID | Name | Subnets |
 +--------------------------------------+---------+--------------------------------------+
 | e9021784-0309-4b5c-95de-6227bf18b5b8 | private | 0d9241d8-8a70-48f1-92d7-90a580e7823b |
 | c9ac2cd3-f4fd-4fab-b24a-10145c40bd52 | public | ffc30ff0-75a0-4a27-bfe5-4d5511d58e0e |
 +--------------------------------------+---------+--------------------------------------+

 For getting more information on a specific network, you can click a network name. The relevant
screenshot to show this is Figure 11-7 . If you prefer CLI, you would use the command:

 Figure 11-7. Network overview details

 Figure 11-6. OpenStack networks page

CHAPTER 11 ■ TROUBLESHOOTING

145

 $ openstack network show private
 +---------------------------+--------------------------------------+
 | Field | Value |
 +---------------------------+--------------------------------------+
admin_state_up	UP
availability_zone_hints	
availability_zones	nova
created_at	2016-06-13T09:37:41
description	
id	e9021784-0309-4b5c-95de-6227bf18b5b8
ipv4_address_scope	None
ipv6_address_scope	None
mtu	1450
name	private
project_id	16f44d2a075a4139a2a5425a42f1b447
provider:network_type	vxlan
provider:physical_network	None
provider:segmentation_id	70
router_external	Internal
shared	False
status	ACTIVE
subnets	0d9241d8-8a70-48f1-92d7-90a580e7823b
tags	[]
updated_at	2016-06-14T09:37:41
 +---------------------------+--------------------------------------+

 In the previous command you could use the network name, in this case private , or the network ID.
Figure 11-8 provides the list of virtual routers.

 Figure 11-8. OpenStack routers

 The corresponding CLI command to find the list of routers is:

 $ openstack router list
 +-------------+---------+--------+-------+-------------+-------+---------+
 | ID | Name | Status | State | Distributed | HA | Project |
 +-------------+---------+--------+-------+-------------+-------+---------+
 | 621d3f89-.. | router1 | ACTIVE | UP | False | False | 16f44.. |
 +-------------+---------+--------+-------+-------------+-------+---------+

CHAPTER 11 ■ TROUBLESHOOTING

146

 $ openstack router show router1
 +-------------------------+--+
 | Field | Value |
 +-------------------------+--+
admin_state_up	UP
availability_zone_hints	
availability_zones	nova
description	
distributed	False
external_gateway_info	{"network_id": "c9ac2cd3-f4fd-4fab-b24a-10145c40bd52",
	"enable_snat": true, "external_fixed_ips":
	[{"subnet_id": "ffc30ff0-75a0-4a27-bfe5-4d5511d58e0e",
	"ip_address": "172.24.4.226"}]}
ha	False
id	621d3f89-4db4-4a4d-b6b1-724ed5de8575
name	router1
routes	[]
status	ACTIVE
tenant_id	16f44d2a075a4139a2a5425a42f1b447
 +-------------------------+--+

 For enumerating the list of ports, use the neutron command. Using the command openstack port
show would show the details of the port by port ID:

 $ neutron port-list
 +-------------+------+-------------------+-------------------------------+
 | id | name | mac_address | fixed_ips |
 +-------------+------+-------------------+-------------------------------+
00074f59-..		fa:16:3e:cb:16:0d	{"subnet_id": "0d9241d8-..",
			"ip_address": "10.0.0.1"}
52126845-..		fa:16:3e:ce:f9:ea	{"subnet_id": "ffc30ff0-..",
			"ip_address": "172.24.4.227"}
97380c2c-..		fa:16:3e:4d:35:ff	{"subnet_id": "0d9241d8-..",
			"ip_address": "10.0.0.3"}
b9dc4c94-..		fa:16:3e:6f:14:33	{"subnet_id": "0d9241d8-..",
			"ip_address": "10.0.0.2"}
f03eec13-..		fa:16:3e:44:63:70	{"subnet_id": "ffc30ff0-..",
			"ip_address": "172.24.4.226"}
 +-------------+------+-------------------+-------------------------------+

CHAPTER 11 ■ TROUBLESHOOTING

147

 $ openstack port show 00074f59-66d3-48ec-9585-9e88d24b5ac1
 +-----------------------+---+
 | Field | Value |
 +-----------------------+---+
admin_state_up	UP
allowed_address_pairs	
binding_host_id	centos7.test.local
binding_profile	
binding_vif_details	ovs_hybrid_plug='True', port_filter='True'
binding_vif_type	ovs
binding_vnic_type	normal
created_at	2016-06-12T09:37:52
description	
device_id	621d3f89-4db4-4a4d-b6b1-724ed5de8575
device_owner	network:router_interface
dns_name	None
extra_dhcp_opts	
fixed_ips	ip_address='10.0.0.1', subnet_id='0d9241..'
id	00074f59-66d3-48ec-9585-9e88d24b5ac1
mac_address	fa:16:3e:cb:16:0d
name	
network_id	e9021784-0309-4b5c-95de-6227bf18b5b8
project_id	16f44d2a075a4139a2a5425a42f1b447
security_groups	
status	ACTIVE
updated_at	2016-06-13T09:22:58
 +-----------------------+---+

 ■ Note For real-world network problems and troubleshooting, the utility plotnetcfg can be useful. It creates
a network configuration diagram that can be visualized with the help of the dot utility. For more information,
check the project web site (https://github.com/jbenc/plotnetcfg).

 For a project-level network overview, the Network Topology tab is probably the best place to look.
Figure 11-9 shows an example of the information provided on that page.

https://github.com/jbenc/plotnetcfg

CHAPTER 11 ■ TROUBLESHOOTING

148

 Digest the OpenStack Environment
 As mentioned earlier, all OpenStack services are deployed as GNU/Linux daemons. Part of these services
is represented as a single daemon and part of them consists of two or more services. The best place to
start looking for the services status is on the System Information tab on the Admin menu, as shown in
Figure 11-10 .

 Figure 11-9. Project Network Topology tab

CHAPTER 11 ■ TROUBLESHOOTING

149

 As you can see, all of the services’ information with their status is shown. To do the same thing with a
command line for this demo environment based on CentOS 7, you can use the systemctl command:

 [root@centos7 ~]# systemctl | grep openstack
 openstack-aodh-evaluator.service loaded active running OpenStack Alarm evaluator service
 openstack-aodh-listener.service loaded active running OpenStack Alarm listener service
 openstack-aodh-notifier.service loaded active running OpenStack Alarm notifier service
 openstack-ceilometer-central.service loaded active running OpenStack ceilometer central
agent

 openstack-ceilometer-collector.service loaded active running OpenStack ceilometer
collection service

 openstack-ceilometer-compute.service loaded active running OpenStack ceilometer compute
agent

 openstack-ceilometer-notification.service loaded active running OpenStack ceilometer
notification agent

 openstack-cinder-api.service loaded active running OpenStack Cinder API Server
 openstack-cinder-backup.service loaded active running OpenStack Cinder Backup Server
 openstack-cinder-scheduler.service loaded active running OpenStack Cinder Scheduler Server
 openstack-cinder-volume.service loaded active running OpenStack Cinder Volume Server
 openstack-glance-api.service loaded active running OpenStack Image Service (code-named
Glance) API server

 openstack-glance-registry.service loaded active running OpenStack Image Service (code-
named Glance) Registry server

 Figure 11-10. OpenStack services information

CHAPTER 11 ■ TROUBLESHOOTING

150

 openstack-gnocchi-metricd.service loaded active running OpenStack gnocchi metricd service
 openstack-gnocchi-statsd.service loaded active running OpenStack gnocchi statsd service
 openstack-losetup.service loaded active exited Setup cinder-volume loop device
 openstack-nova-api.service loaded active running OpenStack Nova API Server
 openstack-nova-cert.service loaded active running OpenStack Nova Cert Server
 openstack-nova-compute.service loaded active running OpenStack Nova Compute Server
 openstack-nova-conductor.service loaded active running OpenStack Nova Conductor Server
 openstack-nova-consoleauth.service loaded active running OpenStack Nova VNC console auth
Server

 openstack-nova-novncproxy.service loaded active running OpenStack Nova NoVNC Proxy Server
 openstack-nova-scheduler.service loaded active running OpenStack Nova Scheduler Server

 In the Horizon web client you can also check the status of the computer services and block storage
services on separate subtabs on the System Information tab. Respective examples are shown on
Figures 11-11 and 11-12 .

 Figure 11-11. OpenStack compute services

 Figure 11-12. OpenStack block storage services

CHAPTER 11 ■ TROUBLESHOOTING

151

 Review Questions
 1. How would you search for the Identity Service configuration files in a

configuration directory hierarchy?

 A. find /etc -name keystone*

 B. find /etc --name heat*

 C. find /var --name keystone*

 D. find / --name heat*

 2. Where would you find all of the messages from Cinder service (choose all
applicable)?

 A. /var/log/messages

 B. /var/log/cinder/api.log

 C. /var/log/cinder/scheduler.log

 D. /var/log/cinder/backup.log

 3. How would you back up all the OpenStack databases?

 A. mysqlbackup --opt --all-db > /tmp/all-openstack.sql

 B. mysqlbackup --opt --all-databases > /tmp/all-openstack.sql

 C. mysqldump --opt --all-db > /tmp/all-openstack.sql

 D. mysqldump --opt --all-databases > /tmp/all-openstack.sql

 4. How would you enumerate all the computer hosts (choose all applicable)?

 A. openstack hypervisor list

 B. openstack host list

 C. nova host-enumerate

 D. nova hypervisor-list

 5. How would you get a list of all virtual machines?

 A. openstack vm list

 B. openstack server list

 C. openstack host list

 D. openstack instance list

 6. How would you check the status of the RabbitMQ messaging server?

 A. rabbitmqctl stat

 B. rabbitmq status

 C. rabbitmqctl status

 D. rabbitmq state

CHAPTER 11 ■ TROUBLESHOOTING

152

 7. How would you check the status of the Neutron agents?

 A. neutron agent-list

 B. neutron plugin-list

 C. openstack agent list

 D. openstack network list

 8. How would you get the details of a given router?

 A. neutron router list router

 B. neutron router show router

 C. openstack router list router

 D. openstack router show router

 Answers to Review Questions
 1. A

 2. A, B, C, D

 3. D

 4. B, D

 5. B

 6. C

 7. A

 8. D

153© Andrey Markelov 2016
A. Markelov, Certified OpenStack Administrator Study Guide, DOI 10.1007/978-1-4842-2125-9_12

 CHAPTER 12

 Conclusion

 If you’ve read this far and understand what was presented, you are close to being ready to take the Certified
OpenStack Administrator exam. The next step should be studying the official OpenStack documentation at
 http://docs.openstack.org , which includes the following:

• Install Guides for three GNU/Linux distributions: SUSE Linux, CentOS/RHEL, and
Ubuntu

• Administrator Guide

• Operations Guide

• Security Guide

• Virtual Machine Image Guide

• Architecture Design Guide

• Networking Guide

• Configuration Reference

• API Complete References

 In the Linux world, there’s the “Linux From Scratch (LFS)” project. It is the guide on how to build your
own GNU/Linux installation from nothing to a working instance. In general it is not suitable for production
but used for learning purposes only. Installation guides at the OpenStack web site are like “OpenStack
From Scratch.” These materials are very useful for learning. You will build your own cloud step by step,
configuration file by configuration file. It is highly recommended to follow these guides at least once without
any automation tools.

 The next valuable source of information is mailing lists. Check out https://wiki.openstack.org/
wiki/Mailing_Lists . This archive engine for mailing lists has an internal search ability, so before asking a
question, look there at previous conversations. Most of the interesting lists are called Operators, for cloud
operator’s discussions, and Announcements, for project’s announcements.

 OpenStack project has its own blog and RSS feed named “Planet OpenStack” at http://planet.
openstack.org/ . Planet OpenStack is a collection of thoughts from the developers and other key players of
the OpenStack projects. This project consists of more than 200 blogs.

 Also I can recommend the online magazine by the OpenStack marketing team, available at http://
superuser.openstack.org . The OpenStack Foundation created the Superuser publication to facilitate
knowledge sharing and collaborative problem solving among individuals who are running OpenStack
clouds and the cloud-based infrastructure, across all industries.

 More documentation is produced by specific OpenStack vendors, which is vendor specific and
describes a particular distribution.

http://docs.openstack.org/
https://wiki.openstack.org/wiki/Mailing_Lists
https://wiki.openstack.org/wiki/Mailing_Lists
http://planet.openstack.org/
http://planet.openstack.org/
http://superuser.openstack.org/
http://superuser.openstack.org/

CHAPTER 12 ■ CONCLUSION

154

 Documentation for Mirantis OpenStack has lots of guides at https://docs.mirantis.com/ . They also
have the brilliant “OpenStack: Unlocked” newsletter mailing list with tons of information. You can subscribe
to it at https://content.mirantis.com/openstack-unlocked-newsletter-landing-page.html . Mirantis
also regularly runs webinars. Its landing page is https://www.mirantis.com/openstack-webinars/
including recordings of previous webinars.

 Full Red Hat documentation, including knowledge base and reference architectures, is available only
for customers, but base product documentation is open and can be downloaded at https://access.
redhat.com/documentation/en/ . Choose Red Hat OpenStack Platform from the landing page and you can
access documentation online or download it in EPUB or PDF format.

 For your convenience, I have included lists of OpenStack supporting services and the network ports
used by OpenStack, respectively, in Tables 12-1 and 12-2 .

 Table 12-1. OpenStack and Supporting Services

 Service Description

 rabbitmq-server RabbitMQ: AMQP message broker.

 mariadb MariaDB: One of most popular database servers. Used by most of OpenStack
services.

 glance-api Glance API: Gives access to Image Service REST API.

 glance-registry Glance Registry: Stores the metadata about images.

 cinder-api Cinder API: Gives access to Block storage service REST API.

 cinder-scheduler Cinder Scheduler: Selects the optimal storage provider node on which to create
the volume.

 cinder-volume Cinder Volume: Responds to read and write requests sent to the Block Storage
service to maintain a state. It can interact with a variety of storage providers
through a driver architecture.

 cinder-backup Cinder Backup: Provides backup volumes of any type to a backup storage
provider.

 nova-api Nova API: Accepts and responds to end-user compute API calls.

 nova-scheduler Nova Scheduler: Takes a virtual machine instance request from the queue and
determines on which compute server host it runs.

 nova-conductor Nova Scheduler: Mediates interactions between the nova-compute service and
the database.

 nova-consoleauth Nova Console Authorization: Authorizes tokens for users that console proxies
provide.

 nova-novncproxy Nova noVNC Proxy: Provides a proxy for accessing running instances through a
VNC connection.

 nova-compute Nova Compute: A worker daemon that creates and terminates virtual machine
instances through Hypervisor APIs.

 mongodb NoSQL database used for Ceilometer service.

 ceilometer-api Ceilometer API: Runs on one or more central management servers to provide
data access from the data store.

 ceilometer-collector Ceilometer Collector: Runs on a central management server and dispatches
collected telemetry data to a data store or external consumer.

(continued)

https://docs.mirantis.com/
https://content.mirantis.com/openstack-unlocked-newsletter-landing-page.html
https://www.mirantis.com/openstack-webinars/
https://access.redhat.com/documentation/en/
https://access.redhat.com/documentation/en/

CHAPTER 12 ■ CONCLUSION

155

Table 12-1. (continued)

 Service Description

 ceilometer-notification Ceilometer Notification: Runs on a central management server and consumes
messages from the message queue to build event and metering data.

 ceilometer-central Ceilometer Central: Runs on a central management server to poll for resource
utilization statistics for resources not tied to instances or compute nodes.

 ceilometer-compute Ceilometer Compute: Runs on each compute node and polls for resource
utilization statistics.

 httpd Apache web-server: Used for Horizon and for Keystone.

 heat-engine Heat Engine: Orchestrates the launching of templates and provides events back
to the API consumer.

 heat-api Heat API: An OpenStack-native REST API that processes API requests by
sending them to the Heat engine over the Remote Procedure Call.

 heat-api-cfn Heat API for Cloud Formation: An AWS Query API that is compatible with AWS
CloudFormation. It processes API requests by sending them to the Heat engine
over RPC.

 neutron-server Neutron Server: Accepts and routes API requests to the appropriate OpenStack
networking plug-in for action.

 neutron-l3-agent Neutron 13 Agent: Agent for routing and NAT service.

 neutron-dhcp-agent Neutron DHCP Agent: With the help of dnsmasq processes, it provides DHCP
service for instances.

 neutron-metadata-agent Neutron Metadata Agent: Works with Nova to provide metadata information
into running instances.

 openvswitch Open vSwitch: OpenSource implementation of a distributed virtual multilayer
switch.

 neutron-openvswitch-
agent

 Neutron Open vSwitch Agent: Works with neutron-server and sends through
message broker commands to OVS.

 openstack-swift-proxy OpenStack Swift Proxy: Accepts OpenStack Object Storage API and raw HTTP
requests to upload files, modifies metadata, and creates containers.

 openstack-swift-account OpenStack Swift Account: Manages accounts defined with Object Storage.

 openstack-swift-
container

 OpenStack Swift Container: Manages the mapping of containers or folders,
within Object Storage.

 openstack-swift-object OpenStack Swift Object: Manages actual objects, such as files, on the storage
nodes.

CHAPTER 12 ■ CONCLUSION

156

 Here at the end of this book, I would like to thank all of you readers. I hope you have found it interesting
and useful and enjoyed the reading as much as I enjoyed writing it.

 Table 12-2. Network Ports Used by OpenStack

 Service Port Number

 Keystone: admins API endpoint 35357

 Keystone: public API endpoint 5000

 Glance endpoint 9292

 Glance Registry 9191

 Cinder block storage and iSCSI target 8776, 3260

 Compute Service (Nova) 8774

 Nova API 8773, 8775

 Access to instances by VNC protocol 5900-5999

 VNC proxy for browser access 6080

 HTML5 proxy for browser access 6082

 Swift object storage and rsync 8080, 6000, 6001, 6002, 873

 Heat orchestration service 8004

 Neutron network service 9696

 Ceilometer telemetry 8777

 RabbitMQ AMQP message broker 5672

 MariaDB database 3306

157© Andrey Markelov 2016
A. Markelov, Certified OpensStack Administrator Study Guide , DOI 10.1007/978-1-4842-2125-9

 A, B
 AWS CloudFormation , 4, 119, 155

 C
 CirrOS Linux , 34, 38–39, 58, 71–72, 75–77, 105–106,

123–124, 128
 Cloud Computing

 defi nition , 1
 deployment models , 2
 service models , 1–2

 D
 Disk formats , 32, 34, 37, 115
 Domain , 19, 20, 26, 55, 68, 101

 E
 Encryption of storage , 114–116
 Endpoints , 19–24, 29, 33, 40, 47, 68, 84, 88,

100–101, 156
 External bridge , 47

 F, G
 Flavors , 69–70
 Floating IP , 4, 44, 55–57, 59, 71, 78–79

 H
 Heat Orchestration Template (HOT) , 119
 Hypervisor KVM , 3

 I, J
 Installations

 DevStack tool , 7–9
 Fuel tool , 13–17
 PackStack tool , 9–12

 Instances
 console access , 73
 launching , 70, 72–76
 terminating , 72–76

 Integration bridge , 47–48

 K
 Keystonerc fi le , 26

 L, M, N
 Linux LVM , 101, 104, 107–108
 Logs , 40, 134, 153

 O, P
 Object Storage

 account , 91
 ACLs , 93–94
 container , 91–96
 object , 91–96

 OpenStack
 components , 2–4, 12, 44
 distributions , 5–6, 9
 history , 4–5
 python-openstackclient , 17–18

 OpenStack services
 cinder , 4, 88, 99–102, 104, 108–110, 112,

115–116
 glance , 19, 22, 31–33, 36–37, 40
 heat , 4, 88, 119–124, 126–129
 horizon , 4, 87–89
 keystone , 19–22, 31, 87, 156
 neutron , 4, 19, 43–45, 48, 61–63, 143,

155–156
 nova , 3, 19, 32, 48, 56, 65–70,

75, 79–85
 swift , 4, 88, 91–97

 Open vSwitch (OVS) , 6, 45–48, 155
 OPNFV project , 6

 Index

■ INDEX

158

 Q
 QEMU emulator , 3, 32
 Quotas

 compute , 61, 78–80
 network , 59–61
 storage , 108–110

 R
 RabbitMQ , 11, 21, 33, 65, 69, 102, 140–142, 154, 156
 Region , 20, 23, 26
 Role

 admin role , 25–26, 44, 48, 52

 S
 Security Groups , 4, 44, 57–59, 72, 77, 79, 139, 147
 Snapshots

 instance , 76–77
 volumes , 110–114

 Software Defi ned
Storage, SDS , 91

 SSH Keypairs , 70
 Stack , 2, 8–9, 120–129
 Storage pools , 116–117
 Syslog , 134

 T, U
 Tenant network , 44, 52, 55
 tmux multiplexer , xvii–xviii
 Token , 4, 19–21, 27–28,

67–68, 154

 V, W, X, Y, Z
 virtual Network Interface Card (vNIC) , 44,

54, 147
 Virtual Router , 44, 53–54, 62, 145

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Tips for COA Exam Preparation
	Other OpenStack Certifications

	Chapter 1: Getting to Know OpenStack
	Understanding the Components That Make Up the Cloud
	History of OpenStack Project
	OpenStack Distribution and Vendors

	Chapter 2: How to Build Your Own Virtual Test Environment
	Installing Vanilla OpenStack with the DevStack Tool
	Installing RDO OpenStack Distribution with PackStack
	Installing Mirantis OpenStack with Fuel Tool
	Using the OpenStack CLI

	Chapter 3: Identity Management
	Architecture and Main Components of Keystone
	Managing Keystone Catalog Services and Endpoints
	Managing/Creating Projects, Users, and Roles
	Managing and Verifying Operation of the Identity Service
	Review Questions
	Answers to Review Questions

	Chapter 4: Image Management
	Architecture and Main Components of Glance
	Deploying a New Image to an OpenStack Instance
	Managing Images
	Managing Image Back Ends
	Verifying Operation of the Image Service
	Review Questions
	Answers to Review Questions

	Chapter 5: OpenStack Networking
	Architecture and Components of Neutron
	Architecture of Open vSwitch
	Manage Network Resources
	Manage Project Security Group Rules
	Manage Quotas
	Verify Operation of Network Service
	Review Questions
	Answers to Review Questions

	Chapter 6: OpenStack Compute
	Architecture and Components of Nova
	Managing Flavors
	Managing and Accessing an Instance Using a Keypair
	Launching, Shutting Down, and Terminating the Instance
	Managing Instance Snapshots
	Managing Quotas
	Getting Nova Stats
	Verifying Operation and Managing Nova Compute Servers
	Review Questions
	Answers to Review Questions

	Chapter 7: OpenStack Dashboard
	Architecture of Horizon
	Verify Operation of the Dashboard
	Review Question
	Answer to Review Question

	Chapter 8: OpenStack Object Storage
	Overview of Swift Object Storage
	Managing Permissions on a Container in Object Storage
	Using the cURL Tool for Working with Swift
	Managing Expiring Objects
	Monitoring Swift Cluster
	Review Questions
	Answers to Review Questions

	Chapter 9: Block Storage
	Architecture and Components of Cinder
	Manage Volume and Mount It to a Nova Instance
	Create Volume Group for Block Storage
	Manage Quotas
	Back Up and Restore Volumes and Snapshots
	Manage Volume Snapshots
	Manage Volumes Encryption
	Set Up Storage Pools
	Review Questions
	Answers to Review Questions

	Chapter 10: Orchestration of OpenStack
	Architecture and Components of Heat
	Introducing the Heat OpenStack Template
	Launching a Stack Using a HOT
	Using Heat CLI and Dashboard
	Review Questions
	Answers to Review Questions

	Chapter 11: Troubleshooting
	The Main Principles of Troubleshooting
	How to Check the OpenStack Version
	Where to Find and How to Analyze Log Files
	Back Up the Database Used by an OpenStack Instance
	Analyze Host/Guest OS and Instance Status
	Analyze Messaging Servers
	Analyze Network Status
	Digest the OpenStack Environment
	Review Questions
	Answers to Review Questions

	Chapter 12: Conclusion
	Index

