

Learning GNU Emacs

Other Resources from O’Reilly

Related titles Unix in a Nutshell

Learning the vi Editor

GNU Emacs Pocket Reference

sed and awk

Essential CVS

Version Control with
Subversion

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

Learning GNU Emacs
THIRD EDITION

Debra Cameron, James Elliott,
Marc Loy, Eric Raymond, and Bill Rosenblatt

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Learning GNU Emacs, Third Edition
by Debra Cameron, James Elliott, Marc Loy, Eric Raymond, and Bill Rosenblatt

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Debra Cameron and Mike Loukides

Production Editor: Jamie Peppard

Cover Designer: Edie Freedman

Interior Designer: Melanie Wang

Printing History:

October 1991: First Edition.

April 1992: Minor corrections.

September 1996: Second Edition.

December 2004: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning GNU Emacs, the image of the gnu, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-00648-9
ISBN13: 978-0-596-00648-8

[M] [1/08]

v

Table of Contents

Preface . ix

1. Emacs Basics . 1
Introducing Emacs! 1
Understanding Files and Buffers 3
A Word About Modes 3
Starting Emacs 5
About the Emacs Display 6
Emacs Commands 10
Opening a File 11
Saving Files 15
Leaving Emacs 15
Getting Help 16
Summary 18

2. Editing . 20
Moving the Cursor 22
Deleting Text 27
Marking Text to Delete, Move, or Copy 32
Emacs and the Clipboard 37
Editing Tricks and Shortcuts 39
Canceling Commands and Undoing Changes 41
Making Emacs Work the Way You Want 45

3. Search and Replace . 49
Different Kinds of Searches 49
Search and Replace 55

vi | Table of Contents

Checking Spelling Using Ispell 64
Word Abbreviations 74

4. Using Buffers, Windows, and Frames . 82
Understanding Buffers, Windows, and Frames 82
Working with Multiple Buffers 85
Working with Windows 88
Working with Frames 93
More About Buffers 95
More About Windows 102
Holding Your Place with Bookmarks 106

5. Emacs as a Work Environment . 114
Executing Commands in Shell Buffers 114
Using Dired, the Directory Editor 123
Printing from Emacs 140
Reading Manpages in Emacs 141
Using Time Management Tools 141

6. Writing Macros . 150
Defining a Macro 151
Tips for Creating Good Macros 154
A More Complicated Macro Example 155
Editing a Macro 157
The Macro Ring 160
Binding Your Macro to a Key 160
Naming, Saving, and Executing Your Macros 161
Building More Complicated Macros 161
Executing Macros on a Region 167
Beyond Macros 168

7. Simple Text Formatting and Specialized Editing . 170
Using Tabs 170
Indenting Text 176
Centering Text 186
Using Outline Mode 187
Rectangle Editing 194
Making Simple Drawings 204

Table of Contents | vii

8. Markup Language Support . 218
Comments 219
Font-Lock Mode 220
Writing HTML 220
Writing XML 243
Marking up Text for TEX and LATEX 258

9. Computer Language Support . 263
Emacs as an IDE 264
Writing Code 266
C and C++ Support 275
Java Support 284
The Java Development Environment for Emacs (JDEE) 285
Perl Support 294
SQL Support 296
The Lisp Modes 298

10. Customizing Emacs . 306
Using Custom 307
Modifying the .emacs File Directly 326
Modifying Fonts and Colors 330
Customizing Your Key Bindings 335
Setting Emacs Variables 339
Finding Emacs Lisp Packages 340
Starting Modes via Auto-Mode Customization 341
Making Emacs Work the Way You Think It Should 342

11. Emacs Lisp Programming . 344
Introduction to Lisp 345
Lisp Primitive Functions 353
Useful Built-in Emacs Functions 358
Building an Automatic Template System 374
Programming a Major Mode 381
Customizing Existing Modes 389
Building Your Own Lisp Library 395

12. Version Control . 398
The Uses of Version Control 398
Version Control Concepts 399

viii | Table of Contents

How VC Helps with Basic Operations 401
Editing Comment Buffers 403
VC Command Summary 403
VC Mode Indicators 404
Which Version Control System? 405
Individual VC Commands 405
Customizing VC 411
Extending VC 412
What VC Is Not 413
Using VC Effectively 413
Comparing with Ediff 414

13. Platform-Specific Considerations . 421
Emacs and Unix 421
Emacs and Mac OS X 427
Emacs and Windows 433

14. The Help System . 440
Using the Tutorial 440
Help Commands 441
Help with Complex Emacs Commands 445
Navigating Emacs Documentation 446
Completion 453

A. Emacs Variables . 457

B. Emacs Lisp Packages . 464

C. Bugs and Bug Fixes . 470

D. Online Resources . 472

E. Quick Reference . 475

Glossary . 487

Index . 493

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ix

Preface

Emacs is the most powerful text editor available today. Unlike most other editors (in
particular, unlike the standard Unix editor, vi), Emacs is a complete working envi-
ronment. No matter what you do, you can start Emacs in the morning, work all day
and all night, and never leave it: you can use it to edit, rename, delete, and organize
files; to compile programs; to run shell commands; and so on. Before windowing sys-
tems like X and Microsoft Windows became popular, Emacs often served as a com-
plete windowing system of its own. All you needed was a terminal, and you could
live within Emacs forever. Emacs is also infinitely flexible; you can write your own
commands, change the keys that are associated with commands, and (if you are will-
ing to take the time) do just about anything you want.

Why Read This Book?
Because it does so much, Emacs has a reputation for being extremely complicated.
We don’t think that’s warranted; we teach you Emacs from the ground up, covering
first the basics and then some of the more advanced features.

In this book, we have tried to reach as broad an audience as possible: from casual
users to professional writers and web authors to programmers to system administra-
tors. No matter what you do with Emacs, you will find it’s easy to learn; after one or
two sessions, you’ll know the basics of editing any file. After you learn the basics,
you can go on to learn about more advanced topics that provide the real benefits of
using Emacs. These include:

• Using multiple windows and buffers so you can work on several files at once

• Customizing keyboard commands

• Tailoring Emacs to fit your work style

• Making Emacs your work environment where you can do all your everyday
tasks, such as organizing files, compiling programs, and issuing shell commands

• Creating macros to streamline repetitive tasks

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

x | Preface

• Using Emacs to support programming in many languages (including C, C++,
Lisp, Java, and Perl)

• Formatting files with various markup languages, such as HTML and XML

• Using word abbreviations to avoid spelling out long phrases or to correct com-
mon misspellings

Of course, many of the topics may not apply to you; some topics may be appropri-
ate for a second reading but not for the first. Toward the end of the preface, we’ll
sketch several different ways to approach the book, depending on your interests and
experience.

Which Emacs Is Which?
Numerous versions of Emacs are available, offering a wide range of features, but two
are in widespread use today: GNU Emacs and XEmacs. (An exhaustive list of Emacs
implementations can be found at http://www.finseth.com/~fin/emacs.html.) XEmacs
was originally tailored for GUI usage and has a fairly wide user base, but lacks some
of the features of GNU Emacs.*

This book covers GNU Emacs. Since its appearance, GNU Emacs has become the
most popular, powerful, and flexible Emacs, and there’s no reason to believe that
this situation will change. If you know GNU Emacs, you will be able to adapt to
any other Emacs implementation with no trouble; it’s not so easy to go in the
other direction.

This book, however, isn’t limited to GNU Emacs users. Because of the similarities
between different Emacs implementations, this book should help you get started
with any Emacs editor. The basic keyboard commands change little from one editor
to another—you’ll find that C-n (for Ctrl-n) almost always means “move to the next
line.” Emacs editors tend to differ in the more advanced commands and features,
but if you are using these more advanced facilities and you aren’t using GNU Emacs,
you should consider making the switch.

What’s New in This Edition?
This third edition covers GNU Emacs 21, specifically 21.3 and even more specifi-
cally 21.3.5.† This new edition has been completely revised and expanded to cover
new features and to meet the evolving needs of Emacs users.

* Quite a few issues come up in discussions of GNU Emacs versus XEmacs, with character encoding schemes,
user interface differences, and copyright issues among them. We’re not interested in taking sides in the bat-
tles between these emacsen.

† Typically we would not find the need to be quite so specific, but the user interface changed at Emacs 21.3.5;
in particular you’ll notice different toolbar icons if you have an earlier version.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xi

Here are some of the highlights of what we’ve changed:

• User interface changes, including the addition of an icon-based toolbar, exten-
sive changes to menus, and a more graphical interface (Chapter 1)

• How Emacs interacts with the operating system clipboard, including specific
clipboard-related commands (Chapter 2)

• Dynamic abbreviations (Chapter 3)

• Expanded coverage of the directory editor, Dired, to help you organize and work
with files more efficiently (Chapter 5)

• Changes to the way Emacs handles tabs and indentation and how to get Emacs
to do what you want it to (Chapter 7)

• Artist mode for drawing with the mouse (Chapter 7)

• Inserting characters from other character sets in HTML files (Chapter 8)

• Using font-lock mode for coloring text for easier editing (Chapter 9)

• Expanded Java coverage, including how to install and use the Java Development
Environment for Emacs (JDEE) (Chapter 9)

• Perl support with Cperl mode (Chapter 9)

• Managing changes to large, multiple file projects more effectively using etags
(Chapter 9)

• Customizing Emacs through the interactive Custom interface or through the .emacs
startup file (Chapter 10)

• Expanded coverage of how version control mode connects with a variety of
change control systems, including CVS, RCS, Subversion, and SCCS
(Chapter 12)

• A new chapter on platform-specific considerations, including details on how to
install the latest version of Emacs on Unix, Windows, and Mac OS X
(Chapter 13)

GNU Emacs and the Free Software
Foundation
You don’t need to know its history to use GNU Emacs, but its origins are an interest-
ing part of computer history. The Free Software Foundation (FSF), which maintains
and distributes GNU Emacs, has become an important part of computer culture.

A long time ago (1975) at MIT, Richard Stallman wrote the first Emacs editor.
According to the folklore, the original Emacs editor was a set of macros for TECO,
an almost incomprehensible and now obsolete line editor. The name Emacs stands
for “Editing Macros.” Tradition also has it that Emacs is a play on the name of a

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

favorite ice cream store. Much has happened since 1975. TECO has slipped into
deserved obscurity, and Emacs has been rewritten as an independent program. Sev-
eral commercial versions of Emacs appeared, of which Unipress Emacs and CCA
Emacs were the most important. For several years, these commercial implementa-
tions were the Emacs editors you were most likely to run across outside of the aca-
demic world.

Stallman’s Emacs became prominent with the birth of the Free Software Founda-
tion (FSF) and the GNU Project in 1984. GNU stands for “GNU’s Not Unix” and
refers to a complete Unix-like operating system (OS) that Stallman and his associ-
ates were building.

Stallman founded the FSF to guarantee that some software would always remain
free. Note that Free does not necessarily mean cheap (you may have to pay a fee to
cover the cost of distribution); it most definitely does mean liberated from restric-
tions about how it can be used and specifically how it can be shared.

Stallman is widely recognized as the founder of the free software movement, which
was an important predecessor of the open source movement. Linux is now the most
prominent example of open source software, and it falls under the GNU Public
License or GPL (available online at http://www.gnu.org/copyleft/gpl.html). Stallman
argues that much of Linux outside the kernel itself is GNU software and so he refers
to it as GNU/Linux. All controversies aside, Stallman’s contribution to the open
source movement cannot be underestimated. GNU software and open source soft-
ware distributed under the GPL are a mainstay for developers and computer users all
over the world.

The FSF was created precisely to distribute programs under terms that encourage
you to share, rather than hoard, software. The GPL is designed to prevent an unfor-
tunately common practice—namely, a company taking public domain code, making
a few modifications and bug fixes, and then copyrighting the modified version. Once
a company does this, the program has essentially become private property and disap-
pears from the public domain. Stallman formed the foundation because he finds this
practice abhorrent. As he explains in the GNU Manifesto, “I cannot in good con-
science sign a nondisclosure agreement or a software license agreement... So that I
can continue to use computers without dishonor, I have decided to put together a
sufficient body of free software so that I will be able to get along without any soft-
ware that is not free.” Elsewhere in the manifesto, Stallman calls sharing software the
“fundamental act of friendship among programmers.” Their software is free because
it can be shared and will always be shareable—without restriction. FSF software is
not under restrictive copyright laws, which Stallman objects to in principle. In fact,
he coined the term copyleft to describe the FSF’s sharable software base.*

* FSF programs such as Emacs are often distributed with commercial systems. Even in these cases, the General
Public License guarantees your right to use and give away their programs without restriction. Of course, the
license does not apply to other proprietary software with which GNU tools have been shipped.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

Since GNU Emacs was first released, many other pieces of the GNU operating envi-
ronment have fallen into place: C and C++ compilers (gcc and g++), a very powerful
debugger (gdb), substitutes for lex and yacc (called flex and bison, respectively), a
Unix shell (bash, which stands for “Bourne-Again Shell”), the Gimp (a graphics tool
comparable to Adobe PhotoShop), GNOME (a desktop environment for Linux), and
many other programs and libraries. Many important open source projects that origi-
nally used variants of the GPL or other licensing schemes have adopted the GPL as
their license, including Python, Mozilla, and Zope. Author David Wheeler argues
that all open source projects should release their software under a GPL-compatible
license* (see http://www.dwheeler.com/essays/gpl-compatible.html for his views and
some statistics about GPL’d software). With Linux, GNU tools, and other GPL’d
software, it’s possible to have a complete operating environment consistent with the
values set forth by the FSF.

An Approach to Learning Emacs
This book is designed to get you started with Emacs as quickly as possible, whether
you are an experienced computer user or a novice. The first two chapters give you
the basics you need to know, and the rest of the book builds on these basics. After
the first two chapters, you don’t have to read the rest consecutively; you can skip to
the topics that interest you. Additionally, the book is designed to give you just the
level of hand-holding you want; you can either read the book in detail or skim it,
looking for tables of commands and examples.

Here are some reading paths you could take:

These reading paths are offered only as a guideline. Emacs is one gigantic, function-
ally rich editor. We’ve divided it up into digestible bites for you, so you don’t have to

* GPL-compatible is a critical distinction for many organizations. As our reviewer Mike Trent points out,
many organizations release their software under a modified GPL because the GPL’s license is actually
“viral.” That is, if one line of GPL’d code appears in a project, the entire project must be GPL’d. This
means corporations interested in protecting their assets but still wanting to share code with the open
source community cannot use the GPL without some modification.

If Read

You are a casual user Preface, Chapters 1–3, 14

You are a programmer or system administrator Preface, Chapters 1–5, 9–12

You are a writer or production person Preface, Chapters 1–3, 7, 8, 14

You want to customize Emacs Chapter 10 and possibly Chapter 11

You write HTML or XML Preface, Chapters 1–3, 8

You want to use operating system commands in Emacs Chapter 5

You use Emacs on Windows or Mac OS X Chapter 13

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

be put off by its size and scope. The best way to learn Emacs is incrementally; learn a
little now, then learn more features as you get curious about them. If you need to do
something and don’t know how to do it in Emacs, Emacs probably already does it; if
it doesn’t, you can learn how to write a Lisp function to add it to Emacs (see
Chapter 11 for details). The online help system is an excellent place to learn about
new features on the fly; online help is discussed in Chapter 1 and in more detail in
Chapter 14.

Here’s a list of some features you might want to learn about on a rainy day:

• How to use multiple Emacs buffers, windows, and frames (Chapter 4)

• Word abbreviation mode (Chapter 3)

• Macros (Chapter 6)

• How to map function keys to Emacs commands (Chapter 10)

• How to issue (and edit) shell commands (Chapter 5)

• How to organize files in Emacs (Chapter 5)

• Using ediff to compare files (Chapter 12)

Here’s a quick summary of what’s in each chapter:

Chapter 1, Emacs Basics, tells you how to start Emacs and how to work with files. It
also provides a quick introduction to the online help system.

Chapter 2, Editing, explains commands for moving around, copying and pasting
text, and undoing changes. It also introduces very basic customization.

Chapter 3, Search and Replace, covers more editing features, including search and
replace, word abbreviation mode, and spell checking.

Chapter 4, Using Buffers, Windows, and Frames, describes how to use multiple buff-
ers and windows, both Emacs-style windows (that divide a single OS window) and
traditional OS windows (which Emacs refers to as frames). It also discusses how to
bookmark your place in large files.

Chapter 5, Emacs as a Work Environment, talks about issuing commands from
within Emacs, working with files and directories, and using basic time management
tools such as the calendar and diary.

Chapter 6, Writing Macros, discusses using macros to eliminate repetitive tasks.

Chapter 7, Simple Text Formatting and Specialized Editing, covers basic text format-
ting (such as tabs, indentation, and centering) as well as some of the more rarefied
features, like outline mode and rectangle editing.

Chapter 8, Markup Language Support, describes Emacs support for HTML, XML,
TEX, and LATEX..

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

Chapter 9, Computer Language Support, covers Emacs as a programming environ-
ment, including editing support for C, Java, Lisp, Perl, and SQL, as well as the inter-
face to compilers and the Unix make utility. It also describes the Java Development
Environment for Emacs (JDEE).

Chapter 10, Customizing Emacs, describes Emacs’s customization facilities. The
interactive Custom tool allows you to change variables without editing your star-
tup file. The chapter also explains how to set up your .emacs customization file. It
describes how to modify your display, keyboard commands, and editing environ-
ment as well as how to load Lisp packages for extra functionality.

Chapter 11, Emacs Lisp Programming, describes the basics of Emacs Lisp, the lan-
guage you can use to further customize Emacs.

Chapter 12, Version Control, describes VC mode for version control and its interface
to CVS, RCS, Subversion, and SCCS.

Chapter 13, Platform-Specific Considerations, discusses how to install Emacs on
Unix, Windows, and Mac OS X. It also provides platform-specific information for
Windows and Mac OS X.

Chapter 14, The Help System, describes Emacs’s rich, comprehensive online help
facilities.

Appendix A, Emacs Variables, lists many important Emacs variables, including all
the variables mentioned in this book.

Appendix B, Emacs Lisp Packages, lists some of the most useful Lisp packages that
come with Emacs.

Appendix C, Bugs and Bug Fixes, tells you how (and when) to report bugs you find in
Emacs. It also describes how to contribute to the GNU Project, whether through
code enhancements or monetarily.

Appendix D, Online Resources, gives a tour of some important Emacs-related web
sites.

Appendix E, Quick Reference, provides brief descriptions of the most important
Emacs commands discussed in this book.

The book concludes with a glossary that defines Emacs terms you’ll encounter, an
index, and a detachable quick reference card that summarizes important commands
for easy access.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

What We Haven’t Included
GNU Emacs is a large and powerful editor; in this book, we give you only a sample
of what it does. Many features have been left out, and more features are added all the
time. Some topics, however, are not covered:

Compatibility modes
GNU Emacs provides compatibility modes for vi, for example. We’ve left a dis-
cussion of these modes out. If you really want to use vi or another editor, do so.
You’re better off getting to know Emacs on its own terms rather than pretend-
ing it is something else.

Many programming language modes
In this book, we discuss editing modes for C++, Java, Lisp, Perl, and SQL. There
are many modes for other languages, including rare languages like Scheme.
There’s no way we could discuss everything.

Advanced Lisp programming
GNU Emacs incorporates a complete Lisp interpreter. We give a very basic and
brief introduction to Emacs Lisp; Chapter 11 should be enough to get you
started, but it really only scratches the surface. We recommend the FSF’s Emacs
Lisp Reference Manual, now included in the Emacs distribution.

Using Emacs to access the Internet
When our last edition came out, it was common to use Emacs to access Internet
resources or read email. Now that isn’t so common; better mailers, browsers,
and other tools are commonly in use on all platforms.

Unicode support
At present, Emacs is on its way to full Unicode support; that is the most impor-
tant change slated for the next major release. At this writing, Unicode support is
spotty.

Games and amusements
GNU Emacs includes an eclectic bunch of games and amusements, including the
ability to pipe random quotations from Zippy the Pinhead into the famous
“Eliza” pseudopsychoanalyst. Emacs 21 includes a Games menu under Tools
with several cool ways to waste time in Emacs (and it doesn’t even include
Emacs’s version of pong, one of our favorites). Alas, we had to draw the line
somewhere.

The Meta Key
Emacs commands consist of a modifier, such as Control, which you hold down
as you would the Shift key, and a series of keystrokes. For example, Control-x
Control-s saves a file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

The other modifier Emacs uses is the Meta key. Few keyboards have keys labeled
Meta. Because of this, in previous editions of this book, we refused to talk about the
Meta key and substituted Esc in all our instructions.

In this edition, we want you to learn where the Meta key is. Typically Meta keys are
to the immediate left and right of the Space bar. On Linux and Windows keyboards,
the Alt key is the Meta key. On Mac keyboards, the Apple key, often called Com-
mand is the Meta key by default.

Why learn about and use the Meta key? The reason is speed. We emphasize key
bindings in this book. New users may find icons and menus helpful, but in the long
run, learning how to keep your hands on the keyboard allows you to gain speed and
boosts your productivity. The Meta key will help you gain that speed and make it
easy for you to use Emacs help, which refers to Meta.

Depending on your style, you may still prefer to use Esc instead of Meta. Just bear in
mind that with Esc you press and release the key, then press the next key.

Conventions Used in This Book
This section covers the conventions used in this book.

Keystroke Notation
Emacs commands consist of a modifier, such as Ctrl or Meta, followed by one or
two characters. Commands shown in this book abbreviate Ctrl to C and Meta to M:

C-g
Hold down the Ctrl key and press g.

M-x
Hold down the Meta key and press x.

Sometimes Meta is followed by a literal hyphen character. In these cases, we spell
out Meta:

Meta -
Hold down the Meta key and press -.

To complete a command you may need to press Enter. (This key may be labeled
Return.)

Enter
Press the Enter key.

Esc
Can be used as an alternative to Meta. Press Esc, release it, then press the next
key.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

A few mouse commands use the Shift key as a modifier, often in combination with
the Ctrl key. This is abbreviated as:

S-right
Hold down Shift and click the right mouse button.

C-S-right
Hold down Shift and Ctrl and click the right mouse button.

All Emacs commands, even the simplest ones, have a full name; for example, forward-
word is equivalent to the keystrokes M-f, and forward-char is equivalent to C-f. This
tying of a command to a keystroke combination is called a key binding. Some com-
mands have only full names, with no corresponding key binding.

When we discuss a command, we’ll give both its full name and the keystrokes (if
any) that you can type to invoke it.

Command Tables
To find a group of commands quickly, look for tables in each section that summa-
rize commands. These tables are formatted like this:

The first column shows the default key binding for the command, the second col-
umn shows the command’s full name, and the third column describes what the
command does. For example, pressing C-n (also known as the next-line com-
mand) moves the cursor to the next line in the file. Some commands, like C-x C-f,
can also be reached through menus. If there is a menu option for a particular com-
mand, it is given in italics below the keystrokes for the command. For example,
you can use the find-file command by typing C-x C-f or by selecting Open File
from the File menu. Sometimes you’ll see (none) in the keystrokes column, which
doesn’t mean you can’t use the command, but rather that the command isn’t
bound to particular keystrokes. To use commands with no keystrokes, type M-x,
followed by the command’s full name, and press Enter. (Try typing M-x pong
Enter sometime.)

Keystrokes Command name Action

C-n next-line Move to the next line.

C-x C-f
File ➝ Open File

find-file Open a specified file.

(none) yow Print ineffable wisdom from the Pinhead in the minibuffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

Examples
Throughout the book, you’ll find keystrokes to type, followed by a screenshot show-
ing the results.

C-x C-f is in bold, indicating that this is exactly what you type. myfile is shown in
constant width italics because you could substitute any filename you choose and
need not type exactly what you see here.

Typically, these screenshots come from a Linux system. We also include screenshots
taken on Mac OS X and Windows. When we show such screenshots, we include an
indication of the platform in the caption for the screenshot.

Toward the end of the book, when we’re discussing programming modes, customi-
zation, and Lisp programming, screenshots become rather unwieldy. We eventually
use fewer of them. Instead, we may show one or two lines of text. If it’s relevant, we
show the cursor’s position:

/* This is a comment */

Font Usage
This book uses the following font conventions:

boldface
Indicates operating system commands, Emacs keystrokes, command names, and
variables.

italic
Indicates filenames, URLs, and new terms when first introduced.

Type: C-x C-f myfile

Use the find-file command to open a file or create a new file.

c

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

constant width
Indicates buffer names, Lisp code, C code, Emacs messages, and other excerpts
from programs.

constant width italic
Indicates dummy parameters that you replace with an actual value. May also be
shown sometimes in angle brackets (<filename>).

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/gnu3/

When you see a Safari® enabled icon on the cover of your favorite tech-
nology book that means the book is avaialbe online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-Books. It’s a virtual library that let’s you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you nee the most accurate, current informa-
tion. Try it free at http://safari.oreilly.com.

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

You can also send questions about Emacs and suggestions about this book to
deb@oreilly.com.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Acknowledgments
Debra Cameron: First, I would like to thank Duffy Craven for introducing me to
Emacs. Second, I would like to thank my coauthors. Bill Rosenblatt was a tremen-
dous help on the first edition of this book, and Eric Raymond worked with blinding
speed and brilliance on the second, providing some input on the third as well. I
would especially like to thank my coauthors Jim Elliott and Marc Loy, without
whom, in all honesty, this third edition would never have been finished. Their con-
stant encouragement, support, and hard work helped make this edition a reality. I
would like to thank all the readers who wrote in with their suggestions, especially
Russell Harris, Seema Kumar, and Hui Oulan. I would also like to thank Eric
Pement, who pointed me to the very interesting TEI Emacs add-on, as well as the
authors of that extended environment for Emacs, including Sebastian Rahtz and Syd
Bauman. Personally, I would like to thank my husband Jim and my kids Meg, David,
Beth, and Kevin for their patience and help during the revision of this book and also
my friends Irene and Jacki for their support. Most of all, I would like to thank all the
developers and hackers who continue to make GNU Emacs the most amazing piece
of software I have ever worked with.

James Elliott: I have to thank Deb for asking me to help people learn about Emacs.
I’ve long admired (and relied on) the editor and its ever-growing ecosystem of tools
and extensions, as well as the philosophy and results of the Free Software Founda-
tion. They represent a distillation of what makes computing an interesting and valu-
able field for me, and I am honored to be part of this project. Ironically, I have to
also thank Deb for letting me take a big chunk of time off when my Hibernate book
came into being.

Thanks are also due to Marc, both for initially introducing me to the fine folks at
O’Reilly and for his help and input on this book. He ended up contributing more
than he signed up for when I got pulled away in the middle. Nor should I forget my
fine colleagues at GE’s Corporate Research and Development Center in Niskayuna,
New York who first introduced me to the mysteries of Emacs as an intern there. I’m
indebted to Joe for his love and support. And let’s hear it for the cast of thousands
who have grown Emacs into what it is today!

Marc Loy: I have the occasionally lazy—no, let’s say overworked—staff at the Uni-
versity of Southern California's computer labs to thank for getting me started on
Emacs. They were out of vi cheat sheets when I sat down to write my first computer
program. (I won’t admit to the language I had to use.) I’ve been grateful for that
happenstance ever since. I’d also like to thank Jim and Deb for their cheery outlook
on things as we finished up this latest edition. As always, my sister Amy and my
partner Ron remain constant forces for good in my world and make all the silliness
(like politics) surrounding the fun stuff (like writing about Emacs) tolerable.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

Eric Raymond: My thanks go first to the hacker community at large, all the people
who created the rich tradition of Emacs Lisp programming that takes Emacs custom-
ization from elegant theoretical possibility to practical tool. I learned what I know
partly from reading code written by the likes of Olin Shivers, Jamie Zawinski, Kyle
Jones, Barry Warsaw, Roland McGrath, Richard Stallman himself (of course), and
many others. Secondly, my thanks and warmest love go as always to my wife Cathe-
rine, who supported me on many levels while I worked on my bits of this book.
Finally, my thanks and respect to the hip, professional, and clueful people at
O’Reilly. They know how to produce a good book and how to treat an author right.
They care, and it shows.

Bill Rosenblatt: I would like to thank the following people: Professor Richard Mar-
tin (Princeton Classics Department), for planting the seed in me that eventually
turned writing from a chore to a pleasure; Intermetrics, Inc., for giving me little
enough to do that I could fritter away my workdays delving into GNU Emacs; Hal
Stern, for getting me this gig; Sandy Wise, for his help; Jessica Lustig, for her love
and support; and most importantly, my grad-school housemates for putting up with
a tied-up phone line at all hours of the day and night.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Emacs Basics

Some of you out there are probably dying to get your hands on the keyboard and
start typing. We won’t try to stop you; turn to the section called “Starting Emacs”
and you can go ahead. But do read the beginning of this chapter later when you’re
ready for a break. Emacs is much easier to learn if you understand some of the basic
concepts involved, which we discuss in the following introduction.

Introducing Emacs!
GNU Emacs is one of the most commonly used text editors in the world today.
Many users prefer Emacs to vi (Unix’s standard editor) or to other GUI text editors.
Why is Emacs so popular? It isn’t the newest tool, and it’s certainly not the prettiest.
But it may well be the most useful tool you’ll ever learn. We want to present what
you need to know about Emacs to do useful work, in a way that lets you use it effec-
tively. This book is a guide for Emacs users; it tries to satisfy the needs of many read-
ers, ranging from casual users to programmers.

Our approach therefore isn’t to tell you absolutely everything that Emacs does. It has
many features and commands that this book doesn’t describe. We don’t think that’s
a problem; Emacs has a comprehensive online help facility that helps you figure out
what these are. We focus our attention on describing how to get useful work done.
After covering basic editing in the first three chapters, we describe how to use Emacs
as a comprehensive working environment: how to boost productivity with multiple
buffers and windows, how to give commands without leaving the editor, how to take
advantage of special editing modes, how to use Emacs for editing special types of
files (source files for various programming languages), and so on. We cover the most
important commands and the most important editing modes. However, you should
always keep one principle in mind: Emacs does many things well, but it isn’t impor-
tant for that reason. Emacs is important because of the integration of different things
you need to do.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Emacs Basics

What does integration mean? A simple example will help. Assume that someone
sends you a mail message describing a special command for accessing a new printer.
You can fire up an Emacs shell, paste the command into Emacs, and execute it
directly. If it works, you can edit your startup file to create an alias for the com-
mand. You can do all this without leaving the editor and without having to retype
the command once. That’s why Emacs is so powerful. It’s more than just an editor;
it’s a complete environment that can change the way you work.

An initial word of advice, too. Many people think that Emacs is an extremely diffi-
cult editor to learn. We don’t see why. Admittedly, it has a lot of features, and you
probably will never use all of them. But any editor, no matter how simple or com-
plex, has the same basic functions. If you can learn one, you can learn any of them.
We’ll give you the standard mnemonic devices that will help you remember com-
mands (like “C-p means previous line”), but we really don’t think even these are nec-
essary. They get you over an initial hump in the learning process but don’t make
much difference in the long run. Learning to use an editor is basically a matter of
learning finger habits: learning where to put your fingers to move to the previous
line. If you experiment with Emacs and try typing a few of our examples, you’ll
quickly acquire these finger habits. And after you’ve acquired these habits, you’ll
never forget, any more than you’ll forget how to ride a bicycle. After using Emacs for
a day or two, we never had to think, “C-p means previous line.” Our fingers just
knew where to go. Once you’re at this point, you’re home. You can become creative
with Emacs and start thinking about how to put its features to work for you. Emacs
has extensive menus, but we still recommend learning the key bindings for com-
monly used commands. Good finger habits can make you an incredibly fast typist,
and reaching from keyboard to mouse only slows you down.

The finger-habits approach also implies a different way of reading this book. Intellec-
tually, it’s possible to absorb a lot from one reading, but you can form only a few
new habits each day. (Unless, of course, they’re bad habits.) Chapter 2 covers most
of the basic editing techniques you’ll use. You may need to read it several times, with
a slightly different focus each time. For example, Emacs gives you many different
ways to move forward: you can move forward one character, one word, one line, one
sentence, one paragraph, one page, and so on. All of these techniques are covered in
Chapter 2. Start by learning how to move forward and backward, then gradually add
more complex commands. Similarly, Emacs provides many different techniques for
searching through a file, covered in Chapter 3. Don’t feel obliged to learn them all at
once; pick something, practice it, and move on to the next topic. No one will com-
plain if you have to work through the first three chapters of our book several times
before you’re comfortable. Time spent developing good habits is time well spent.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

A Word About Modes | 3

Understanding Files and Buffers
You don’t really edit files with Emacs. Instead, Emacs copies the contents of a file
into a temporary buffer and you edit that. The file on disk doesn’t change until you
save the buffer. Like files, Emacs buffers have names. The name of a buffer is usually
the same as the name of the file that you’re editing. There are a few exceptions. Some
buffers don’t have associated files—for example, *scratch* is just a temporary prac-
tice buffer, like a scratchpad; the help facility displays help messages in a buffer
named *Help*, which also isn’t connected to a file.

A Word About Modes
Emacs achieves some of its famed versatility by having various editing modes in
which it behaves slightly differently. The word mode may sound technical, but what
it really means is that Emacs becomes sensitive to the task at hand. When you’re
writing, you often want features like word wrap so that you don’t have to press Enter
at the end of every line. When you’re programming, the code must be formatted cor-
rectly depending on the language. For writing, there’s text mode; for programming,
there are modes for different languages, including C, Java, and Perl. Modes, then,
allow Emacs to be the kind of editor you want for different tasks.

Text mode and Java mode are major modes. A buffer can be in only one major mode
at a time; to exit a major mode, you have to enter another one. Table 1-1 lists some
of the major modes, what they do, and where they’re covered in this book.

Table 1-1. Major modes

Mode Function

Fundamental mode The default mode (Chapter 6)

Text mode For writing text (Chapter 2)

View mode For viewing files but not editing (Chapter 4)

Shell mode For running a shell within Emacs (Chapter 5)

Outline mode For writing outlines (Chapter 7)

Indented text mode For indenting text automatically (Chapter 7)

Paragraph indent text mode For indenting the first line of each paragraph (Chapter 7)

Picture mode For creating ASCII drawings using the keyboard (Chapter 7)

HTML mode For writing HTML (Chapter 8)

SGML mode For writing SGML and XML (Chapter 8)

LaTeX mode For formatting files forTEX and LATEX (Chapter 8)

Compilation mode For compiling programs (Chapter 9)

cc mode For writing C, C++, and Java programs (Chapter 9)

Java mode For writing Java programs (Chapter 9)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Emacs Basics

Whenever you edit a file, Emacs attempts to put you into the correct major mode for
what you’re going to edit. If you edit a file that ends in .c, it puts you into cc mode. If
you edit a file that ends in .el, it puts you in Lisp mode. Sometimes it looks at the
contents of the file rather than just its name. If you edit a file formatted for TEX,
Emacs puts you in LaTeX mode. If it cannot tell what mode you should be in, it puts
you in fundamental mode, the most general of all. Because Emacs is extensible, add-
in modes are also available; we talk about some in this book, though we do not list
them in Table 1-1.

In addition to major modes there are also minor modes. These define a particular
aspect of Emacs’s behavior and can be turned on and off within a major mode. For
example, auto-fill mode means that Emacs should do word wrap; when you type a
long line, it should automatically make an appropriate line break. Table 1-2 lists
some minor modes, what they do, and where they’re covered in this book.

Perl mode and Cperl mode For writing Perl programs (Chapter 9)

SQL mode For interacting with databases using SQL (Chapter 9)

Emacs Lisp mode For writing Emacs Lisp functions (Chapters 9 and 11)

Lisp mode For writing Lisp programs (Chapters 9 and 11)

Lisp interaction mode For writing and evaluating Lisp expressions (Chapters 9 and11)

Table 1-2. Minor modes

 Mode Function

Auto-fill mode Enables word wrap (Chapter 2).

Overwrite mode Replaces characters as you type instead of inserting them (Chapter 2).

Auto-save mode Saves your file automatically every so often in a special auto-save file
(Chapter 2).

Isearch mode For searching (Chapter 3).

Flyspell mode For flyspell spell-checker (Chapter 3).

Flyspell prog mode For spell-checking programs with flyspell (Chapter 3).

Abbrev mode Allows you to use word abbreviations (Chapter 3).

Paragraph indent text mode For indenting the first line of each paragraph (Chapter 7).

Refill mode A mode in which Emacs attempts to fill paragraphs as you edit them (a bit
experimental; mentioned in Chapter 2).

Artist mode For creating ASCII drawings using the mouse (Chapter 7).

Table 1-1. Major modes (continued)

Mode Function

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Starting Emacs | 5

You may have noticed that several modes, including paragraph indent text mode,
outline mode, and compilation mode, are both major and minor modes. Each can be
used alone—as a major mode—or with another major mode as a minor mode.

There are many other modes that we won’t discuss, including modes for some
obscure but interesting programming languages (like Modula-2). There are also some
other modes that Emacs uses itself, like Dired mode for the directory editing feature
(described in Chapter 5).

In addition, if you’re good at Lisp programming, you can add your own modes.
Emacs is almost infinitely extensible.

Starting Emacs
To start Emacs, simply click on the Emacs icon or type emacs on the command line
and press Enter.*

Outline mode For writing outlines (Chapter 7).

SGML name entity mode For inserting special characters in HTML, SGML, and XML documents
(Chapter 8).

ISO accents mode For inserting accented characters in text files.

Font lock mode For highlighting text in colors and fonts to improve readability (separating, for
example, comments from code visually) (Chapter 9).

Compilation mode For compiling programs (Chapter 9).

Enriched mode For saving text attributes (Chapter 10).

VC mode For using various version control systems under Emacs (Chapter 12).

Info mode A mode for reading Emacs’s own documentation (Chapter 14).

* How you start Emacs may vary by platform. Linux has no icon on the desktop by default; Windows and Mac
OS X do (if you’ve installed Emacs on these platforms). Note that Mac OS X comes with a version of GNU
Emacs installed in /usr/bin, and that is what runs by default when you start up Emacs using the Terminal
application. You won’t be able to use the mouse at all if you run Emacs in the Terminal application, and
there are a number of other limitations as well. Better versions of GNU Emacs are available to you; see
Chapter 13 for details.

Table 1-2. Minor modes (continued)

 Mode Function

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Emacs Basics

You’ll see a short message describing a few important menu items and the version of
Emacs that you’re running. It may appear as a graphical splash screen (like the one
shown here) or a text splash screen. This message disappears as soon as you type the
first character. Emacs then puts you in an (almost) empty buffer called *scratch*, an
ideal place for you to experiment.

About the Emacs Display
When you enter Emacs, you see a large workspace near the top of the window where
you do your editing. (See Figure 1-1.)

A cursor marks your position. The cursor is also called point, particularly among peo-
ple who are more familiar with Emacs and in the online help system; therefore, it’s
useful to remember this term.

Click on the Emacs icon or, from the command line, type: emacs Enter

Starting Emacs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

About the Emacs Display | 7

You don’t have to do anything special before you start typing. As long as you type
alphanumeric characters and punctuation, Emacs inserts them into your buffer. The
cursor indicates where Emacs inserts the new characters; it moves as you type.
Unlike many editors (particularly vi), Emacs does not have separate modes for insert-
ing text and giving commands. Try typing something right now, and you’ll begin to
see how easy Emacs is to use. (If you get stuck for any reason, just press C-g.)

The Toolbar
The toolbar is a new feature in Emacs 21. Its basic icons and their functions are listed
in Table 1-3. Note that the toolbar is context sensitive; in some modes, such as the
Info mode for reading the Emacs manual, the toolbar changes to provide browsing
help. We’ll discuss those icons when we cover the relevant modes.

Figure 1-1. Understanding the Emacs display

Table 1-3. Icons on the Emacs toolbar

 Icon Function Where to learn more

Find a file or create a new file (supplying the
filename).

This chapter

Start the directory editor so you can manipu-
late files and folder.

Chapter 5

Kill the current buffer. Chapter 4

Save current buffer in its associated file. This chapter

Save current buffer as a different file. This chapter

menu bar

Tool bar

Cursor

mode line
mini buffer

buffer
name

amount of buffer
displayed

line number major mode

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Emacs Basics

If you don’t like the toolbar, you can hide it using a menu option (Options ➝ Show/
Hide ➝ Toolbar), and choosing Options ➝ Save Options. For more information, see
“Making Emacs Work the Way You Want” at the end of Chapter 2.

The Menus
The menu bar menu lists the options File, Edit, Options, Buffers, Tools, and Help;
you can explore them to see what options are available.

In addition to navigating the menus using the mouse, Emacs now offers pop-up
menus. In the Emacs window, hold down Ctrl and click the right mouse button to
pop up the Edit menu.*

You can access menus without a mouse using the keyboard. In this case, using key-
board commands is much more efficient than menus, but for completeness, we’ll
show you how to use the text-based menus. (If you prefer to use the mouse with
Emacs but have access only to a text interface, see Chapter 13 to learn how to down-
load and install a version of Emacs that runs graphically on Unix, Linux, Mac OS X,
or Windows.)

Undo. Chapter 2

Cut text that comprises the current region. Chapter 2

Copy text in current region. Chapter 2

Paste cut or copied text. Chapter 2

Search for a string. Chapter 3

Print page (with headings). Chapter 5

Customize using interactive interface. Chapter 10

Start online help system. Chapter 14

* Emacs works best with a three-button mouse (more buttons are okay, too).

Table 1-3. Icons on the Emacs toolbar (continued)

 Icon Function Where to learn more

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

About the Emacs Display | 9

If your mouse does not work with the menus, press F10 or M-` (a back quote, the
single open quotation mark, located above the Tab key in the upper-left corner of
many keyboards) to access them.

You can select text-based menu options in three ways:

• You can press Enter to select the default option that appears in the minibuffer. If
you want a different one, press the up or down arrow key until the option you
want appears and press Enter.

• You can type the letter preceding the option in the *Completions* buffer. For
example, type f to choose File.

• You can press PgUp to move to the *Completions* buffer, then use the arrow
keys to move to the option you want. Press Enter. (On Mac OS X, press Shift-
PgUp instead.)

After you select a menu option, choices for that menu appear. Repeat the process
until you find the option you’re looking for.

The Mode Line
Just above the bottom of the window (on the second-to-last line), Emacs prints a lot
of information about what it’s doing. This line is called the mode line. At the begin-

Press: F10

Using text-based menus (Emacs 21.2 on Mac OS X Terminal application).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Emacs Basics

ning of the mode line, you may see some information about the coding system that
Emacs is using for the file; usually you’ll see just --:, indicating that there is no
unusual encoding scheme in place. Near the left edge of the mode line, you may see
two asterisks (**). These asterisks indicate that you’ve modified whatever you’re
editing. If you haven’t made any changes, the asterisks won’t be there. Next, Emacs
prints the name of the buffer you are editing (*scratch*). Following this, Emacs
shows where you are in the buffer—your position relative to the rest of the file and
what line you are on (L5 for line 5 in Figure 1-1). If you’re at the beginning of the file,
Emacs prints the word Top; if you’re at the end, it prints Bot; if you’re in the middle,
it shows you a percentage (for example, 50% means you’re looking at the midpoint);
and if the entire file is visible, Emacs prints the word All. In parentheses following
this is the editing mode or modes you are in, in this case Lisp Interaction is the
major mode (no minor modes are active). The scrollbar on the side of the window
also indicates your position in the file.*

You will often work with several buffers simultaneously. In this case, each buffer has
its own mode line, and when you switch buffers, the mode line reflects the state of
the current buffer. Don’t worry about this for now; just remember that every buffer
has a mode line to describe it.

The Minibuffer
Below the mode line is the minibuffer. This is the area where Emacs echoes the com-
mands you enter and where you specify filenames for Emacs to find, values for
search and replace, and so on. It is also where Emacs displays error messages. If you
find yourself stuck in the minibuffer, press C-g to get out again.

Emacs Commands
You’re about to start learning some Emacs commands, so let’s discuss them a bit
first. How do you give commands? Each command has a formal name, which (if
you’re fastidious) is the name of a Lisp routine. Some command names are quite
long; you usually wouldn’t want to type the whole thing. As a result, we need some
way to abbreviate commands.

Emacs ties a command name to a short sequence of keystrokes. This tying of com-
mands to keystrokes is known as binding. Even things you don’t normally think
about as commands, such as inserting the characters that you type, are handled
through the binding mechanism. Keys like “A” are bound to the Emacs command
self-insert-command, which inserts them into the buffer you are editing.† Most

* The scrollbar’s location depends on the platform and windowing system you’re using. Linux puts scrollbars
on the left while Mac OS X and Windows put them on the right by default. Note also that the order of the
information in the mode line is different if you run Emacs in a terminal window.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Opening a File | 11

actions that you would normally think of as editor commands are bound to key-
stroke sequences starting with Ctrl or Meta. Emacs also binds some commands to
mouse clicks (alone or modified by Shift or Ctrl) and to options on menus.

The authors of Emacs try to bind the most frequently used commands to the key
sequences that are the easiest to reach. Here are the varieties of key sequences you’ll
encounter:

• The most commonly used commands (such as cursor movement commands) are
bound to C-n (where n is any character). To press C-n, press and hold the Ctrl
key and press n, then release both keys.

• Slightly less commonly used commands are bound to M-n. To press M-n, press
and hold the Meta key (usually next to the space bar), then press n.

• Other commonly used commands are bound to C-x something (C-x followed by
something else—one or more characters or another control sequence). Among
other types of commands, file manipulation commands, like the ones you are
about to learn, are generally bound to C-x something.

• Some specialized commands are bound to C-c something. These commands
often relate to one of the more specialized modes, such as Java mode or HTML
mode. You won’t encounter them until later in this book.

• This list still doesn’t take care of all the possibilities. You can get at the remain-
ing commands by typing M-x long-command-name Enter. (This works for any
command really, but the keystrokes are usually easier to learn.)

You can define your own key bindings, too, and you should do so if you find your-
self using the long form of a command all the time. More on this topic in Chapter 10.

You can also access common commands through menus, but for maximum produc-
tivity, we recommend you learn the keystrokes, often given in parentheses following
the menu option.

Opening a File
You can open a file by specifying the filename when you start Emacs from the com-
mand line or by typing C-x C-f (the long command name is find-file).

The paper icon on the toolbar also runs this command. In some applications, a simi-
lar icon simply creates a new, unnamed file (e.g., Document1 in Word). Emacs
expects you to provide a filename, as we’ll see in a moment.

† In certain special editing modes, such as dired-mode for viewing and manipulating directories on your com-
puter, the normal typing keys don’t insert themselves. They are instead bound to special commands that do
things like opening and renaming files. This flexibility in defining and changing keymaps, while it might seem
somewhat arbitrary and overwhelming at first, is one of the great sources of power in Emacs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Emacs Basics

To press C-x C-f, hold down Ctrl, press x and then press f. Now release Ctrl.

After you press C-x C-f, Emacs uses the minibuffer to ask you for the filename.
Whenever Emacs wants input from you, it puts the cursor in the minibuffer. When
you’re done typing in the minibuffer, press Enter.

What if you try to read the same file twice? Instead of creating a new buffer, Emacs
just moves you to the buffer the file is in.

You can also open a file in Emacs by dragging and dropping it on an Emacs window
or on the Emacs icon.

Now is a good time to try typing if you haven’t already done so. You may find your-
self wanting to learn more about cursor movement and editing; that’s fine. Feel free
to skim the rest of this chapter and go on to Chapter 2. We recommend that you
read the sections on saving files and exiting Emacs. There’s also a table of com-
mands at the end of this chapter for future reference. If you’d like to learn more
about working with files as well as some shortcuts, stay with us through the rest of
the chapter.

Press: C-x C-f

Emacs prompts you for a filename.

Type: newfile Enter

Emacs starts another buffer with the new file in it.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Opening a File | 13

If You Read the Wrong File
If you happen to read the wrong file, an easy way to get the right file is by typing C-x
C-v (for find-alternate-file). This command means “Read a different file instead of
the one I just read.” After typing C-x C-v, Emacs puts the name of the current file in
the minibuffer; you can then correct a typo or the path, the most common reasons
for finding the wrong file. Make the correction and press Enter. Emacs replaces the
buffer’s contents with the alternate file.

Letting Emacs Fill in the Blanks
Emacs has a very helpful feature known as completion. If you want an existing file,
you need only type the first few letters of the name, enough to uniquely identify the
filename. Press Tab, and Emacs completes the filename for you. For example, sup-
pose you are trying to find a file called dickens.

Type: C-x C-f di

After C-x C-f, Emacs prompts you for the filename; type the first few letters.

Press: Tab

When you press Tab, Emacs fills in the rest of the filename.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Emacs Basics

If more than one file starts with di, Emacs displays a window with various files that
start with that string. You select one by typing a few more characters (enough to
identify your file as unique) and pressing Tab again. Or you can select one of the
alternatives with the mouse or by pressing PgUp to move to the completions win-
dow, moving to the desired option, then pressing Enter.

Completion also works for long command names. It’s a wonderful Emacs feature
that can save you time—and show you some commands you might not know existed
in the process. Chapter 14 provides more details on the glories of completion.

Inserting and Appending Files
If you want to insert one file into another, you simply move to the appropriate loca-
tion in the file and type C-x i. (Yes, we know, we haven’t told you how to move
around in a file yet. Use the arrow keys for now and we’ll teach you the “real” Emacs
cursor movement commands in Chapter 2.) To append a file, move to the end of the
file (M->) and type C-x i. As with C-x C-f, Emacs prompts you for the filename in
the minibuffer.

How Emacs Chooses a Default Directory
When you use any command that asks for a filename (such as C-x C-f), Emacs dis-
plays a default directory in the minibuffer and asks you to type the rest of the file-
name. How does Emacs choose the default directory? The default directory is taken
from the buffer that the cursor is currently in. If you are editing a file in your home
directory when you type C-x C-f, Emacs assumes you want to edit another file in

Press: Enter

Emacs reads the file dickens.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Leaving Emacs | 15

your home directory. If you are editing the file /sources/macros/html.macs then Emacs
makes the default directory /sources/macros. If you want to find a file in another
directory, edit the default directory that Emacs displays.

Saving Files
To save the file you are editing, type C-x C-s. Emacs writes the file. To let you know
that the file was saved, it puts the message Wrote filename in the minibuffer. If you
haven’t made any changes to the file, Emacs puts the message No changes need to be
saved in the minibuffer. You can also get to this option by pressing the diskette on
the toolbar or choosing Save (current buffer) from the File menu.

If you decide to save something you’ve typed in the *scratch* buffer by typing C-x
C-s, Emacs asks you for a filename. After you give it a filename, Emacs changes the
mode line accordingly.

A related command is write-file (C-x C-w). It is the Emacs equivalent of the Save As
option found on many applications’ File menus. The write-file command asks you to
type a new filename in the minibuffer. However, if you just press Enter instead of
typing a new filename, write-file saves the file with its old name—just as C-x C-s
would have done. (It does ask if you want to replace the current file with the one in
this buffer, however.)

The write-file command is useful for editing files that you do not have permission to
change. Use the find-file command to get the file you want into a buffer, and then
use write-file to create your own private version, with a different name or path. This
maneuver allows you to copy the file to one that you own and can change. Of course,
the original file is not affected.

Leaving Emacs
To quit Emacs, type C-x C-c or close it like you would any other application. If you
have made changes to a buffer, Emacs asks you if you want to save them.* If you type
y, Emacs writes the file, then exits. If you type n, Emacs asks you to confirm that you
want to abandon the changes you made by typing yes or no in full. If you type no,
your normal Emacs session continues just as if you never attempted to exit. If you
type yes, you exit Emacs and the changes you made during this session do not
become permanent. Leaving without saving changes can be useful if you make
changes you didn’t intend to make.

* One exception to this rule is the *scratch* buffer. It’s a scratchpad and Emacs assumes you were doodling,
not doing serious artwork, so to speak. If you do any serious work in the *scratch* buffer, you must save it
explicitly.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Emacs Basics

By the way, Emacs is picky about whether you type y or yes. Sometimes it wants
one, sometimes the other. If it asks for a y, you can sometimes get away with typing
yes but not vice versa. If it beeps and displays, Please answer yes or no, you didn’t
enter the whole word and it wants you to.

Getting Help
Emacs has extensive online help, which is discussed further in Chapter 14. You can
enter help through the lifesaver icon on the toolbar or through the Help menu. Either
method will show you a help menu, described later in this section. To enter help using
the keyboard, press C-h. Pressing C-h ? gives you a list of options. Pressing C-h t
starts a tutorial that is an excellent introduction to Emacs.

To get information about the meaning of a keystroke combination, press C-h k for
describe-key. For example, if you type C-h k C-x i, Emacs displays a description of the
insert-file command, which is bound to C-x i. Pressing C-h f (for describe-function)
asks Emacs to describe a function (really just a command name, such as find-file).
Essentially, C-h k and C-h f give you the same information; the difference is that with
C-h k, you press a key whereas with C-h f, you type a command name.

Assume you want to find out about what C-x i does.

Type: C-h k

Asking for help about a keyboard command.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Getting Help | 17

A few things to notice: the window is now split into two parts because you’re look-
ing at two separate buffers. Each buffer has its own mode line. The lower buffer is
the *Help* buffer; it contains the information about the insert-file command. Emacs
keeps the cursor in the dickens buffer because there’s no good reason for you to edit
the *Help* buffer.

You might also notice that in the text describing this command, Emacs calls the cur-
sor point. This term is used throughout Emacs to refer to the cursor; you’re bound to
encounter it.

To make the *Help* buffer disappear, press C-x 1 (we cover this command in
Chapter 4).

The Help Menu
You can also use the Help menu to access help commands quickly, and you can get
there either through the menu or through the lifesaver on the toolbar. On this menu,
you find options we’ve discussed here: Emacs Tutorial, Describe ➝ Describe Key,
and Describe ➝ Describe Function. It includes a host of interesting options, includ-
ing access to the Emacs frequently asked questions (FAQ) file, a new search feature,
and even an Emacs psychiatrist (you might tell it something like “Emacs is driving
me over the edge today”). There’s an interface to Info, Emacs’s online documenta-
tion. Simply choose Read the Emacs Manual to start Info.

In this section, we’ve given a very brief introduction to a few of the paths you can
take in the help system. There are many more help facilities; they are described thor-
oughly in Chapter 14. The help features we’ve described here should be enough to
get you started; if you want to learn more, jump ahead to Chapter 14.

Type: C-x i

Emacs splits the screen to display help.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Emacs Basics

Summary
Now you know the basic commands for starting and stopping Emacs and for working
with files. Chapter 2 builds on these commands to give you the skills you need for edit-
ing with Emacs. Table 1-4 summarizes the commands we covered in this chapter.

Problems You May Encounter
• Emacs doesn’t do what this book says or look like our screenshots. Make sure

that you have GNU Emacs 21.3.5 or later running by typing M-x version Enter
or selecting Help ➝ About Emacs. Read the section “Making Emacs Work the
Way You Want” in Chapter 2. You may need to install a graphical version of
Emacs if you are running in a terminal window; see Chapter 13 for details.

• The toolbar icons are completely different. The icons changed between Emacs
21.3.1 and Emacs 21.3.5. The older icons do the same thing; the newer ones are
substantially better looking and more intuitive. Upgrade Emacs using instruc-
tions in Chapter 13.

Table 1-4. File handling commands

Keystrokes Command name Action

C-x C-f
File ➝ Open File

find-file Find file and read it in a new buffer.

C-x C-v find-alternate-file Read an alternate file, replacing the one
read with C-x C-f.

C-x i
File ➝ Insert File

insert-file Insert file at cursor position.

C-x C-s
File ➝ Save (current buffer)

save-buffer Save file.

C-x C-w
File ➝ Save Buffer As

write-file Write buffer contents to file.

C-x C-c
File ➝ Exit Emacs

save-buffers-kill-emacs Exit Emacs.

C-h help-command Enter the online help system.

C-h f
Help ➝ Describe Function

describe-function Gives online help for a given command
name.

C-h k
Help ➝ Describe Key

describe-key Gives online help for a given keystroke
sequence.

C-h t
Help ➝ Emacs Tutorial

help-with-tutorial Start the Emacs tutorial.

C-h i
Help ➝ Browse Manuals

info-goto-emacs-command-node Start the Info documentation reader.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Summary | 19

• You can’t access menus using the mouse. Use the text-based menus instead by
pressing F10 or M-`. Better yet, install a graphical version of Emacs using the
instructions in Chapter 13.

• PgUp doesn’t work properly when using text-based menus. PgUp is probably
bound to some application-specific function, such as scrolling in the Mac OS X
Terminal application. Press Shift-PgUp, F10, or M-` to access the menus.

• You can’t see a mode line or minibuffer. Your Emacs window is bigger than your
display. See Chapter 10 for information on how to get Emacs to start with a rea-
sonable window size. As a temporary workaround, resize the window. (On some
Windows systems, maximizing the window ironically makes it smaller, solving
the problem.)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

20

Chapter 2CHAPTER 2

Editing

Now that you know how to enter and exit Emacs as well as the basics of working
with files, it’s time to learn how to move around in and edit files. Emacs offers lots of
ways to move around in files. At first, you might find it confusing that there are so
many ways to do the same thing. Be patient—as you learn, the confusion will lessen,
and you’ll begin to appreciate the variety of Emacs commands. The more ways you
learn, the fewer keystrokes you’ll need to get to the part of the file you want to edit.

If you want to practice commands while you’re reading—which will help you learn
faster—start by typing a page or two from anything you happen to have handy; the
newspaper is fine. That will give you some text to work with as you learn the editing
skills described in this chapter. Don’t worry if you make mistakes; just keep on typ-
ing. You can correct any mistakes after you learn the basic editing skills outlined
here. Learning any editor is primarily a matter of forming certain finger habits rather
than memorizing what the book says. You will learn the right finger habits only if
you start typing.

When you are typing and you get to the right side of the display, you have two
options. You can press Enter to go to the next line, or you can keep typing. If you
type a long line and don’t press Enter, Emacs waits until you reach the end of the
display. Then it puts a curved arrow at the end of the line and one at the beginning
of the next line as a visual indication that the next line is a continuation of the previ-
ous line (see Figure 2-1). If Emacs is run in a nongraphical environment, a backslash
(\) is used instead.

Refill mode is a minor mode that keeps paragraphs neat as you edit them. It is not on
by default. Look at the mode line. If the word Refill appears, you are in refill mode
already. If not, you can turn it on for this buffer only by typing M-x refill-mode
Enter. If you decide that you don’t like refill mode, type M-x refill-mode Enter again.
This command is like a light switch: it toggles refill mode on and off.

You may decide that you want to enter refill mode automatically whenever you edit.
We’ll describe how to do so at the end of this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Editing | 21

In some contexts, refill mode can be annoying, and it is still a work in progress
according to the Emacs manual. You may prefer auto-fill mode. You enter it in the
same way; type M-x auto-fill-mode Enter. The word Fill appears on the mode line.

When you type paragraphs, auto-fill mode formats them. When you edit them, how-
ever, auto-fill mode does not automatically reformat them. You do that yourself
using the fill-paragraph command, M-q.

If you turn on refill mode and then decide to use auto-fill mode, you still have to turn
refill mode off explicitly by typing M-x refill-mode Enter. Otherwise, both modes
appear on the mode line, and refill mode continues its merry automatic reformatting
of paragraphs, ignoring the fact that auto-fill mode has been enabled.

Watch out for one important pitfall when reformatting paragraphs. In text mode, a
paragraph is any text that is indented or has a blank line before and after it. If you
have a file with no blank lines, Emacs thinks it is all one long paragraph. Typing M-q
takes all the text, ignoring line breaks, and makes it one long paragraph. This com-
mand is a particular problem if you have a data file, a program, or if you just prefer
to write files with no blank lines. Luckily, pressing C-_ or C-x u (both for undo)

Figure 2-1. Graphical versions of Emacs use curved arrows to indicate that a line is continued;
terminal versions use backslashes

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: Editing

magically puts things back the way they were. If you regularly create files with no
blank lines, here are some suggestions:

• Instead of writing in text mode, use paragraph indent text mode. In this mode, a
line that starts with any blank space is a new paragraph. Type M-x paragraph-
indent-text-mode to start this mode; you’ll see Parindent on the mode line. See
Chapter 6 for more details.

• Use a specific mode rather than text mode for writing. For example, use HTML
mode or LaTeX mode, described in Chapter 8, for editing files of these types.
These special modes redefine what a paragraph means so that the fill-paragraph
command works correctly. Otherwise, these modes are very similar to text
mode.

• Instead of filling a paragraph, fill a marked section of text called a region (we’ll
discuss regions later in this chapter). Define the region you want to fill and press
M-x fill-region Enter. This command takes a region and formats each individual
paragraph within it.

Table 2-1 lists commands for filling text automatically and reformatting paragraphs
with auto-fill mode.

Moving the Cursor
The easiest way to move the cursor is to click the left button on your mouse or to
press the arrow keys. However, it’s a hassle to reach for a mouse all the time. Learn
to use keyboard commands to move around so that you will ultimately achieve
blinding speed and maximum productivity in Emacs.

To use Emacs commands to move the cursor forward one space, type C-f (f for “for-
ward”). As you might guess, C-b moves the cursor backward. To move up, type C-p

Table 2-1. Text filling and reformatting commands

Keystrokes Command name Action

(none) a

a Remember that (none) in the first column means that you type M-x followed by the command name in the
second column, then press Enter to run the command. There are no default keystrokes. To use the refill-
mode command, type M-x refill-mode Enter.

refill-mode Toggle refill mode, in which Emacs automatically
reformats text.

(none)
Options ➝ Word Wrap in Text
Modes

auto-fill-mode Toggle auto-fill mode, in which Emacs formats para-
graphs as you type them.

M-q fill-paragraph Reformat paragraph.

(none)
Edit ➝ Fill

fill-region Reformat individual paragraphs within a region.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Moving the Cursor | 23

(for previous-line), and to move down, type C-n (for next-line). It’s easier to memo-
rize commands if you remember what the letters stand for.

Figure 2-2 illustrates how to move up, down, left, and right using Emacs commands.

If you’re at the end of a line, C-f moves to the first character on the next line. Like-
wise, if you’re at the beginning of a line, C-b moves to the last character of the previ-
ous line. If there’s no place to go, Emacs beeps and displays the message Beginning
of buffer or End of buffer.

Other Ways to Move the Cursor
Now we’ll learn some more advanced ways to move the cursor. One common way is
moving forward and backward by word: M-f moves forward a word; M-b moves
backward a word. You can also move to the beginning or end of the line. C-a moves
you to the beginning of the line (just like a is the beginning of the alphabet). C-e
moves you to the end of the line. To move backward one sentence, type M-a; to
move forward one sentence, type M-e. To move forward a whole paragraph at a
time, type M-}; to move backward a paragraph, type M-{. If you’re in the middle of a
sentence or paragraph, moving back a sentence or paragraph actually takes you to
the beginning of the current sentence or paragraph.

Figure 2-3 uses a few paragraphs of Victor Hugo’s Les Misérables to show how you
can move the cursor more than one character at a time.

You may have picked up on a pattern here. Notice the difference between com-
mands starting with Ctrl and those starting with Meta. Ctrl commands generally
move in smaller units than their associated Meta commands. For example, C-b
moves the cursor backward one character, whereas M-b moves the cursor back one
word. Likewise, C-a moves to the beginning of the line, whereas M-a moves to the
beginning of a sentence.

Figure 2-2. Basic cursor motion

C-p
(previous-line)

C-n
(next-line)

C-b
(backward-
character)

C-f
(forward-
character)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Editing

There’s one caveat about moving by sentence or paragraph. Emacs defines a sen-
tence pretty strictly. You need two spaces after the final punctuation mark, unless
you’re at the end of the line. If there’s only one space, Emacs won’t recognize it. Sim-
ilarly, moving backward and forward by paragraph involves understanding the
Emacs definition of a paragraph. To Emacs (and to most of us), paragraphs are either
indented with a tab or at least one space or have blank lines between them (block
style). You can change these definitions, but first you have to understand how to use
regular expressions, which are discussed briefly in Chapter 3 and in more depth in
Chapter 11. Chapter 10 discusses how to change variables.

If your file has page breaks in it, you can move to the next page or previous page by
typing C-x] (forward-page) or C-x [(backward-page). Similar to paragraph and sen-
tence movement, moving by page involves the Emacs definition of what a page is. A
variable called page-delimiter defines what constitutes a page break. If there are no
Emacs-recognized page breaks in the file, Emacs regards the buffer as one very long
page. In this case, the forward-page command takes you to the end of the buffer,
and the backward-page command takes you to the beginning of the buffer.

Figure 2-3. Moving the cursor more than one character at a time

 "What name did you say?"
 "Jean Valjean. He is a convict I saw twenty years ago when I was
assistant keeper at the Toulon galleys. On leaving the galleys, this
Valjean, as it appears, robbed a bishop, and then committed a highway
robbery on a little Savoyard. For eight years he has been out of the way
and could not be found, and I imagined--in a word--I did as I said.
Passion decided me, and I denounced you to the Prefect."
 M. Madeleine, who had taken up the charge book again, said, with a
careless accent:
 "And what was the answer you received?"
 "That I was mad!"
 "Well?"
 "They were right."

Initial cursor position

M-}
(forward-paragraph)

Totaa
H

M-a
(backward-sentence)

C-a
(beginning-of-line)

M-{
(backward-paragraph)

M-b
(backward-word)

M-f
(forward-word)

C-e
(end-of-line)M-e

(forward-sentence)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Moving the Cursor | 25

In text mode, a page break is a formfeed character that tells the printer to move to
the next page (to feed the next form or page through the printer, hence the term
formfeed) before continuing to print. If you are in text mode and you want to insert
page breaks in your file, type C-q C-l (the lowercase letter L). C-q is the quoted-
insert command. It tells Emacs to put a C-l control character in your file, rather than
interpreting C-l as the recenter command. A C-l character looks like two characters
(^L), but it’s really only one. (Try to erase one using Del and see what we mean.)

Moving a Screen (or More) at a Time
Like other graphical applications, you can use the scrollbar to move around in
Emacs. Like most things in Emacs, in addition to using the mouse or scrollbar to
move around, you should learn Emacs’s own keyboard commands to maximize your
productivity.

If you want to page through a file one screen at a time, use the PgDown key or type
C-v. Emacs displays the next full screen from your file. It leaves a couple of lines
from the previous screen at the top to give you a sense of context. Likewise, pressing
M-v (or the PgUp key) shows you the previous screen. Together, M-v and C-v pro-
vide a convenient way to scroll through a file quickly.

Scrolling happens automatically if you type any motion command that takes you
beyond the limits of the text currently displayed. For example, if you are on the last
line of the screen and press C-n, Emacs scrolls forward. Similarly, if you are at the
top of the screen and press C-p, Emacs scrolls backward.

You often want to move all the way to the beginning or the end of a file. Type M->
or press End to go to the end of a buffer. To go to the beginning, type M-< or press
Home. It may help you to remember that > points to the end of the buffer, and <
points to the beginning of the buffer.

There are two more ways to move around that may come in handy. M-x goto-line
Enter n Enter moves the cursor to line n of the file. Of course, Emacs starts counting
lines from the beginning of the file. Likewise, M-x goto-char Enter n Enter goes to the
nth character of the file, counting from the beginning. In both cases, n is a number.

For programmers, these commands are useful because many compilers give error
messages like Syntax error on line 356. By using these commands, you can move
easily to the location of your error. There are some more sophisticated ways to link
Emacs with error reports from compilers and other programs. In addition, several
other cursor motion commands are applicable only when you are editing programs
(see Chapter 9 for details).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Editing

Repeating Commands
Now let’s learn some efficiency tricks. Emacs lets you repeat any command as many
times as you want to. First, you can repeat a command any number of times by
pressing M-n before the command, where n is the number of times you want to
repeat it. This command is called the digit-argument command.

You can give M-n a large argument if you want it to repeat the command many
times. For example, let’s say you are editing a large file of 1000 lines. If you typed
M-500 C-n, the cursor would move down 500 lines, to the halfway point in the file.
If you give M-n a larger argument than it can execute, it repeats the command as
many times as possible and then stops.

There’s another multiplier command you can use, too: C-u (the universal-argument
command). You can give C-u an argument just like you do M-n. Typing either M-5
or C-u 5 repeats the command that follows five times. But unlike M-n, C-u doesn’t
need an argument to repeat commands. With no argument, C-u executes the next
command four times. If you type C-u C-u, it executes the command 16 times. In this
way, you can stack up C-u’s to make commands execute many times: 16, 64, 256,
and so on.*

Centering the Display
C-l, the recenter command, puts the current line in the center of the window verti-
cally. This feature is useful if you’re typing at the bottom or the top of the display.
Typing C-l quickly moves the material that you care about to the middle of the dis-
play, where it is easier to see the full context.

C-l also redraws the display, if for any reason it appears obscured or contains ran-
dom characters. This doesn’t happen as often as it used to when we used terminals,
but it can be a handy thing to know about, especially if you find yourself using
Emacs remotely in a terminal interface.

Table 2-2 lists cursor movement commands. If the command is mnemonic, the word
to remember is given in italics.

* Most often, you’ll use C-u as we’ve described here. However, it doesn’t always work as a multiplier; some-
times C-u modifies the command’s function. Later in this chapter, you’ll see one such case. However, if
you’re doing something where a multiplier makes sense, C-u is almost certain to work.

Table 2-2. Cursor movement commands

Keystrokes Command name Action

C-f forward-char Move forward one character (right).

C-b backward-char Move backward one character (left).

C-p previous-line Move to previous line (up).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Deleting Text | 27

Emacs Commands and Your Keyboard
You can access many Emacs commands by pressing standard keys on your key-
board, such as PageDown (to scroll down one screen) or Home (to go to the begin-
ning of a buffer). Figure 2-4 shows a sample keyboard layout and what the keys do.
Your keys may be in a slightly different place, but if you have a key with the same or
a similar name, it should work. We say “should” because there are situations in
which the keys won’t work—for example, if you use Emacs on a remote machine.
We recommend that you also learn the standard Emacs commands; they work on
any keyboard, and they are often easier to reach once you learn them.

Deleting Text
Before you start practicing deletion commands, you might want to know the undo
command, which is discussed fully later in this chapter. Typing C-_ or C-x u undoes
your last edit; typing undo again undoes the edit before that one, and so on.

C-n next-line Move to next line (down).

M-f forward-word Move one word forward.

M-b backward-word Move one word backward.

C-a beginning-of-line Move to beginning of line.

C-e end-of-line Move to end of line.

M-e forward-sentence Move forward one sentence.

M-a backward-sentence Move backward one sentence.

M-} forward-paragraph Move forward one paragraph.

M-{ backward-paragraph Move backward one paragraph.

C-v scroll-up Move forward one screen.

M-v scroll-down Move backward one screen.

C-x] forward-page Move forward one page.

C-x [backward-page Move backward one page.

M-< beginning-of-buffer Move to beginning of file.

M-> end-of-buffer Move to end of file.

(none) goto-line Go to line n of file.

(none) goto-char Go to character n of file.

C-l recenter Redraw screen with current line in the center.

M-n digit-argument Repeat the next command n times.

C-u n universal-argument Repeat the next command n times (four times if you omit n).

Table 2-2. Cursor movement commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Editing

Emacs provides many ways to delete text. The simplest way to delete text is to press
the Del key, which deletes the character immediately to the left of the cursor. See
Figure 2-4 for possible locations of the Del key on your keyboard. It is sometimes
referred to as the Backspace key. Del is easiest to define by what it does: it deletes
the previous character. If you’re typing and you decide to erase the last character you
typed, what key do you reach for? That’s the key Emacs refers to as Del.

Emacs provides a number of other deletion commands—perhaps too many for your
taste, although you’ll eventually find a reason to use most of them. For example, C-d
(for delete-character) deletes the character under the cursor. The command for
deleting the next word is M-d (for kill-word). Once again, note how the Meta key
augments the command: C-d operates on a character, and M-d operates on a word.

Emacs has commands to delete the next or previous word, sentence, and paragraph.
By their names, you can guess what they do when you’re between words, sentences,
or paragraphs. If you’re in the middle of an entity, however, they do something a lit-
tle surprising: they delete a portion of the current word, sentence, or paragraph,
backward or forward depending on whether the command deletes previous or next.
For example, here’s how M-d acts differently depending on where the cursor is.

Figure 2-4. Emacs commands and your keyboard

If the cursor is here: M-d makes this edit:

It was the w rst of times It was the w of times

It was the orst of times It was the of times

It was the wors of times It was the wors of times

1
!

2
"

3
#

4
$

5
%

6
&

7
'

8
(

9
)

0 -
_

=
+

{ }

: "

< ?>

SPACE BAR

Q W E R T Y U I O P []

A S D F G H J K L ; '

Z X C V B N M , /.

delete

tab

caps lock

shift

`
~

shift

\
|

clear = / *

7 8 9 +

4 5 6 -

1 2 3

0 . enter

insert home
page
up

delete end
page
down

control

enter

control

esc F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

alt alt

M-v

M-> C-v

M-<

Del

M-`C-h

Move in direction indicated.

C-x 6 C-x (
C-x)

M-x overwrite-mode

Meta

o

w

t

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Deleting Text | 29

Similarly, if you are in the middle of a word and ask Emacs to delete the previous
word (M-Del, for backward-kill-word), it deletes from the cursor position back to
the beginning of the current word.

If you want to delete an entire line or part of a line, use the command C-k (for
kill-line). This command deletes everything from the cursor to the end of the line.
Typing C-k on a blank line deletes the line itself. So, it usually takes two C-k’s to
delete a line: one to delete the text and one to delete the resulting blank line. If
you want to delete everything from the beginning of the line up to the cursor, try
the more complex incantation Meta - C-k (i.e., hold down Meta, followed by a
hyphen, and then C-k).

You can also use C-k to join two lines. If you’re at the end of a line, C-k deletes the
newline character, effectively making two lines into one long line.

The Kill Ring
By now you may have noticed that some deletion commands in Emacs are called kill
commands, such as kill-region, kill-word, and the like. In Emacs, killing is not fatal,
but in fact, quite the opposite. Text that has been killed is not gone forever but is
hidden in an area called the kill ring. The kill ring, though it sounds somewhat like a
violent gang, is an internal storage area where Emacs puts things you’ve copied or
deleted. Do not confuse the kill ring with the system clipboard, which allows for
copying and pasting between applications. We’ll cover how Emacs relates to the sys-
tem clipboard later in this chapter.

You can get back what you’ve deleted by typing C-y (for yank).* Conveniently, if you
kill several lines in succession, Emacs collects them into a single item and places the
whole unit into the kill ring; a single C-y command will bring everything back. In the
following example, we’ll use C-k four times to delete the first two lines of A Tale of
Two Cities. (Remember: the first C-k deletes the text; the second C-k deletes the
remaining blank line.) Then we’ll use a single C-y to bring everything back.

* You may be used to pressing C-v to paste in all applications if you are a Linux or Windows user. Emacs has
options to change its default paste, cut, and copy commands to the familiar C-v, C-x, and C-c. See “Making
Emacs Work the Way You Want” for details. Also, a quick warning to vi users who are learning Emacs: vi
also uses the term yank, but its meaning is almost the exact opposite. Don’t let this confuse you.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Editing

Initial state:

The cursor is in upper-left corner.

Type: C-k C-k C-k C-k

You have deleted the first two lines with C-k.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Deleting Text | 31

What exactly goes into the kill ring? Everything you delete with C-k in addition to
everything you delete with C-w and everything you copy with M-w (two commands
that you’ll learn shortly) go into the kill ring. Words, sentences, and paragraphs that
you delete with M-d, M-Del, and their relatives also go into the kill ring. In addition,
text that you delete with C-u followed by either Del or C-d goes into the kill ring.
About the only thing that Emacs doesn’t save in the kill ring is single characters,
deleted with Del or C-d. (If you need to, you can get this type of deletion back using
the undo command, bound to both C- _ and C-x u.)

Emacs is clever about what it puts into the kill ring: when it is assembling a big block
of text from a group of deletions, it always assembles the text correctly. For exam-
ple, you can type a few M-d’s, followed by some M-Del’s, with a couple of C-k’s
thrown in. When you type C-y, Emacs yanks all the text that you’ve deleted in the
proper order.

However, there’s one thing you have to watch out for. Emacs stops assembling these
blocks of text as soon as you give any command that isn’t a kill command. For exam-
ple, if you type C-k, then delete a single character with C-d, then type another C-k,
you’ve broken the chain. Emacs doesn’t consider deletion of a single character with
C-d a “kill” command; it’s just a deletion and it isn’t stored. In this case, you haven’t
made a single chain of kill commands; you’ve made two chains. Later, we’ll see how
to get the older killed text back.

Table 2-3 summarizes the commands for deleting, killing, and yanking text, includ-
ing options from the Edit menu.

Type: C-y

You got everything back with a single command.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Editing

Marking Text to Delete, Move, or Copy
What if the text you want to delete is just a phrase? Or half a paragraph? Or several
paragraphs? In Emacs, you select text by defining an area called a region. You can
mark regions with the mouse or by using the keyboard. What happens with the
mouse is a bit complicated, so we describe it later in this chapter, following our dis-
cussion of the system clipboard.

To define a region using the keyboard, you use a secondary pointer called a mark.
Some versions of Emacs display the mark on the screen; unfortunately, in GNU
Emacs, the mark is invisible.

You set the mark at one end of the region by pressing C-Space or C-@, then move
the cursor to the other end of the region. (The cursor is sometimes also referred to as
point. There is one minor but important difference between the cursor and the point,
however. The cursor is on top of a character; in Emacs, the point is actually in
between the character the cursor is on and the previous character. As we said, this
difference is minor, but it helps you to visualize where the cursor should be when
you mark a region.) Figure 2-5 illustrates point, mark, and region.

Let’s mark a sample region. In this example, we remove the phrase “it was the worst
of times.” First, we find the beginning of the phrase. Then we set the mark, move
forward to the end of the phrase, and cut.

Table 2-3. Deletion commands

Keystrokes Command name Action

C-d delete-char Delete character under cursor.

Del delete-backward-char Delete previous character.

M-d kill-word Delete next word.

M-Del backward-kill-word Delete previous word.

C-k kill-line Delete from cursor to end of line.

M-k kill-sentence Delete next sentence.

C-x Del backward-kill-sentence Delete previous sentence.

C-y yank Restore what you’ve deleted.

C-w
Edit ➝ Cut

kill-region Delete a marked region (see next section).

(none) kill-paragraph Delete next paragraph.

(none) backward-kill-paragraph Delete previous paragraph.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Marking Text to Delete, Move, or Copy | 33

Move to the “i” in “it was the age of wisdom.” Because the point is really just before
the “i,” this placement will be just right.

Figure 2-5. Point, mark, and region

Move to the beginning of “it” and press C-Space.

Set the mark; Mark set appears in the minibuffer.

Move cursor to the
end of the text to

be deleted

Use the set-mark command
to define the beginning of

a region

This area is the region

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Editing

Now the region is marked. If the region is not highlighted, you’ll want to make sure it
is marked correctly before giving the delete command. Press C-x C-x (for exchange-
point-and-mark); this command swaps the locations of the mark and the point. If the
cursor moves to where you thought the mark was, the region is marked correctly.
Especially because you can’t see the mark, it’s a good habit to check its location using
C-x C-x before deleting a region. People who have used Emacs for years still forget to
set the mark and then make a deletion without knowing what they’ve just deleted.
(The undo command, bound to C-_ and C-x u, comes in handy in such a case.)

To cut the region, press C-w (for kill-region). (The scissors icon on the toolbar also
works.)

Move to the “i” in “it was the age of wisdom”

The point is at the end of the region to be marked.

Press: C-w

C-w cuts the region.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Marking Text to Delete, Move, or Copy | 35

If you’re not sure of what you deleted, just press C-_ to undo it. The text is still
marked, and you can delete it again with C-w if you want to. To move text, mark it,
press C-w to cut the region, then move the cursor to the place you want to insert the
text, and press C-y. If you yank the text back into the wrong location, just type C-_ to
undo it, then move to the place you really wanted to put the text, and press C-y again.

When you’re defining a region, you normally set the mark at one end and then move
the cursor to the other end of the region. A few shortcuts are helpful in some of the
most common situations. To mark a paragraph, press M-h. This sets the mark at the
end of the paragraph and places the cursor at the beginning automatically. Similarly,
C-x h (for mark-whole-buffer) marks the entire buffer; the cursor goes to the begin-
ning, and the mark is placed at the end. Finally, C-x C-p marks the current page,
with pages being defined by the C-l character if you are in text mode. Of course,
marking a paragraph, page, or buffer is usually only the prelude to some other opera-
tion, like killing (C-w).

Copying Text
To copy text, mark a region, then press M-w (for kill-ring-save; the toolbar icon
with two pieces of paper also runs this command). Move the cursor to the place
where you want to insert the copied text and press C-y. Copying text is exactly the
same as killing it, except that Emacs doesn’t delete anything. The text you have cop-
ied is placed in the kill ring, so you can use C-y to access it as often as you like.

One advantage to M-w is that it works on read-only files and buffers. For example, if
you wanted to create a file of Emacs hints, you could use M-w to copy some text
from online help into one of your buffers.

Here are the steps for some common deletion tasks.

To mark a region:

1. Move the cursor to the beginning of the area you want to delete.

2. Press C-Space. Emacs displays the message Mark set.

3. Move the cursor to the end of the region you want to delete.

To delete a region:

1. Mark the region to be deleted.

2. Press C-w to delete the region.

To move text:

1. Delete the text you want to move using the procedures for marking and deleting
a region.

2. Move the cursor where you want to insert the text.

3. Press C-y. Emacs inserts the text you deleted.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Editing

To copy text:

1. Mark the region you want to copy.

2. Press M-w to copy the text.

3. Move the cursor where you want to insert the copied text and press C-y. Emacs
inserts the text you copied.

Recovering Earlier Deletions
Earlier we mentioned the kill ring, a temporary storage area in which Emacs saves
the stuff you delete. So far, we’ve assumed that you’re interested in resurrecting what
you’ve most recently killed. However, the kill ring does a lot more. It actually stores
your last 30 deletions. We’ve seen that C-y restores the text you deleted most
recently. Typing M-y deletes the text you just yanked and gets the next most recent
text from the kill ring.

Here’s how it works. In Table 2-4, assume that you’ve just killed the words “most
recent.” C-y retrieves these words from the kill ring. When you press M-y, Emacs
gets rid of “most recent” and gets the next entry from the kill ring (“second-last”).

You can keep on typing M-y, retrieving successively more ancient deletions, until
you reach the end of the kill ring (at which point it cycles back to the most recently
killed text; that’s why it’s called a ring).

Thirty deletions by default is a nice size—far more generous than most programs
offer. But you can enlarge or reduce the size of the kill ring if you wish, using a vari-
able called kill-ring-max. To experiment, give the command: M-x set-variable Enter
kill-ring-max Enter new-value Enter (where new-value is a number).

Selecting and Pasting
Using the menus, you can access text from the kill ring in a more straightforward
way: by choosing Edit ➝ Select and Paste. A menu showing deletions appears, with
the most recent ones on top. To show you as many deletions as possible, each line in
the window represents a separate deletion. So if you’ve killed a large region, say 500
lines, you see only the beginning of the first line of that deletion, ellipses, and the end
of the deletion. Your selection is pasted into the buffer at the cursor position.

Table 2-4. The kill ring in action

Keystrokes Action

C-y This was the most recent deletion.

M-y This was the second-last deletion.

M-y This was the third-last deletion.

M-y This was the fourth-last deletion.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and the Clipboard | 37

Table 2-5 summarizes commands for working with regions.

Emacs and the Clipboard
Emacs 21 plays well with the clipboard, though it still may not do what you want it
to in some cases. Let’s dig into this in a little more detail.

Placing Text on the Clipboard
By default, text that you cut or copy using icons on the toolbar or options on the Edit
menu is placed on the clipboard and is accessible to other applications.

Unfortunately, Emacs diverges by platform on this issue. Normally we save platform-
specific issues for Chapter 13, but cutting and pasting is such a vital operation that
we must describe the differences here.

On Windows and Mac OS X (but not on Linux) any text you cut or copy using C-w
or M-w is also copied to the clipboard.

On Windows and Mac OS X, simply selecting text with the mouse places it on the
clipboard. (This doesn’t work on Linux.). Most applications require you to highlight
text, then issue a copy command. Emacs doesn’t. Table 2-6 shows how this works
on various platforms.

Table 2-5. Commands for working with regions

Keystrokes Command name Action

C-@ or C- Space set-mark-command Mark the beginning (or end) of a region.

C-x C-x exchange-point-and-mark Exchange location of cursor and mark.

C-w kill-region Delete the region.

C-y yank Paste most recently killed or copied text.

M-w kill-ring-save Copy the region (so it can be pasted with C-y).

M-h mark-paragraph Mark paragraph.

C-x C-p mark-page Mark page.

C-x h mark-whole-buffer Mark buffer.

M-y yank-pop After C-y, pastes earlier deletion.

Table 2-6. Selecting text with the mouse

Linux Windows Mac OS X graphical Mac OS X terminal

Sends to clipboard? no yes yes noa

a You can make this happen if you highlight the text and then press c-C. Simply high-
lighting the text doesn’t copy it to the clipboard.

Sends to kill ring? yes yes yes no

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Editing

To send text to the clipboard on Linux, select it with the mouse (or mark it as a
region), then click on the cut or copy toolbar icon or menu option. You can also use
the clipboard-specific commands listed in Table 2-8 on any platform.

Retrieving Text from the Clipboard
As we mentioned, in other applications, you typically cut and paste by selecting text,
then issuing a copy command. How do you then paste that text into Emacs?

Not surprisingly, the paste icon on the toolbar and the associated option on the Edit
menu do this in most cases (see Table 2-7; Emacs on Mac OS X disables both the
icon and the option inappropriately; the associated command name clipboard-yank
works, however). C-y inserts text from the clipboard too. Additionally, an easy
mouse gesture works on most platforms: simply click the middle mouse button or
mouse wheel in the Emacs window to paste from the clipboard. The caveat here is
that you must have a mouse with a middle button.

Another issue with cutting and pasting is encoding. Encoding is a complex topic in
Emacs; full Unicode support is slated for Emacs 22. At this point, we can only point
you to a variable that may help you resolve cut-and-paste related encoding issues:
set-clipboard-coding-system.

If you’re interested in the clipboard, you may want to change Emacs’ keys for cut-
ting and pasting to the more universal C-x, C-c, and C-v. See “Making Emacs Work
the Way You Want” later in this chapter for more details.

Table 2-8 summarizes clipboard-related commands.

Table 2-7. Pasting from the clipboard

Linux Windows Mac OS X graphical Mac OS X terminal

C-y pastes? yes yes yes noa

a c-v passtes from the clipboard.

Toolbar paste icon pastes? yes yes no no

Edit ➝ Paste option pastes? yes yes no no

Middle mouse button pastes? yes yes yes no

M-x clipboard-yank pastes? yes yes yes no

Table 2-8. Clipboard commands

Keystrokes Command name Action

(none) clipboard-kill-region Cut region and place both in kill ring and on system clipboard.

(none) clipboard-yank Paste text from clipboard.

(none) clipboard-kill-ring-save Copy text to clipboard.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Editing Tricks and Shortcuts | 39

Editing Tricks and Shortcuts
Now that you’ve learned the basics of editing—moving the cursor to the right posi-
tion, deleting, copying, and moving text—you can learn some tricks that make
editing easier.

Fixing Transpositions
The most common typo involves the transposition of two letters, and most typos are
noticed immediately after you make them. Pressing C-t transposes two letters, to put
them in the right order:

To transpose two letters, put the cursor on the second of the two letters to be trans-
posed. Press C-t. (If you often transpose letters, word abbreviation mode, discussed
in Chapter 3, cleans up typos automatically.)

You can also transpose two words, lines, paragraphs, or sentences. To transpose
two words, put the cursor between the two words and press M-t. After Emacs has
finished, the cursor follows the second of the two (transposed) words:

Interestingly, Emacs moves words, but not punctuation. Let’s say that two names are
reversed:

To transpose two lines, put the cursor anywhere on the second of the two and press
C-x C-t. Emacs moves the second before the first:

Before C-t After C-t

the best of tims , it the best of times it

Before M-t After M-t

one three two one two three

Before M-t After M-t

Charles, ickens Dickens, Charles

Before C-x C-t After C-x C-t

second line first line

irst line second line

third line hird line

e ,

D

f

t

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Editing

Table 2-9 summarizes the transposition commands.

Changing Capitalization
Mistakes in capitalization are also common and annoying typing errors. Emacs has
some special commands for fixing capitalization. To capitalize the first letter of any
word, put the cursor on the first letter and press M-c. To put a word in lowercase,
press M-l. To put a word in uppercase, press M-u. The key bindings here are mne-
monic: Meta followed by c for capitalize, l for lowercase, and u for uppercase. Note
that if the cursor is in the middle of a word, Emacs takes action only from the charac-
ter under the cursor to the end of the word. You can easily use M-l to lowercase the
second half of a word, and so on.

If you notice that the word you just typed is incorrect, you can use the same com-
mands prefaced by Meta- (press and hold Meta followed by a hyphen). This corrects
the previous word without moving the cursor. If the cursor is positioned in the mid-
dle of a word, using Meta- before a command causes it to work on the first part of
the word (the part preceding the cursor), rather than the part following the cursor.

For example, starting with abcd fghij:

Table 2-10 summarizes the capitalization commands.

Table 2-9. Transposition commands

Keystrokes Command name Action

C-t transpose-chars Transpose two letters.

M-t transpose-words Transpose two words.

C-x C-t transpose-lines Transpose two lines.

(none) transpose-sentences Transpose two sentences.

(none) transpose-paragraphs Transpose two paragraphs.

If you press: You’ll get:

Meta - u abcdEFGHIJ

Meta - M-u ABCD fghij

M-c abcdEfghij

Meta - M-c Abcd fghij

Table 2-10. Capitalization commands

Keystrokes Command name Action

M-c capitalize-word Capitalize first letter of word.

M-u upcase-word Uppercase word.

M-l downcase-word Lowercase word.

e

e

e

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Canceling Commands and Undoing Changes | 41

Overwrite Mode
You may be used to typing over old text rather than having to delete it. There is a
certain satisfaction in destroying some really bad text in this way. You can do this in
Emacs, too, by entering a minor mode called overwrite mode. When you’re in over-
write mode, any new text you type wipes out the text that’s underneath. When
you’re not in overwrite mode (i.e., in normal Emacs), any new text you type is
inserted at the cursor position and any subsequent text is pushed to the right. (Other
software may refer to this as insert mode; because it is the way GNU Emacs nor-
mally behaves, it doesn’t have a name here.)

To enter overwrite mode, press the Insert key.* Ovwrt should appear on the mode
line. If this doesn’t work (or if you don’t have an Insert key), type M-x overwrite-
mode Enter. You can turn off overwrite mode by typing M-x overwrite-mode Enter
again. Using Emacs’s command completion, simply type M-x ov and press Enter.
This is enough of a unique string to tell Emacs you want to toggle overwrite mode.
Completion, one of the best shortcuts in Emacs, is discussed further in Chapter 14.

Canceling Commands and Undoing Changes
Sometimes you start a command by accident or change your mind about it. Don’t
worry: with Emacs, you can quit in the middle or undo it.

Canceling Commands
When you want to cancel any command that’s in progress, press C-g. The word Quit
appears in the command area. This command is helpful when you are stuck in the
minibuffer and didn’t really mean to go there. Depending on what you were doing,
you may have to press C-g a few times.

Undoing Changes
What happens if you make a mistake while you’re editing? You can undo your
changes by pressing C-_ or C-x u (for undo; conveniently, the toolbar also has an

Meta - M-c negative-argument; capitalize-word Capitalize previous word.

Meta - M-u negative-argument; upcase-word Uppercase previous word.

Meta - M-l negative-argument; downcase-word Lowercase previous word.

* On a Mac keyboard, we found that the Help key, to the left of Home, toggles overwrite mode.

Table 2-10. Capitalization commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Editing

undo icon, a curved left arrow). By typing undo repeatedly, you can gradually work
your way back to a point before your mistake.* Although the undo command is very
powerful, saving your file frequently, if not compulsively, is nevertheless a good idea.
We usually save a file whenever we stop typing—even if only for a few seconds.
Train your fingers to press C-x C-s whenever you pause; it’s a good habit to form.

If you’re used to typing C-z to undo, you can easily change Emacs’s behavior to
match your habits. See “Making Emacs Work the Way You Want” at the end of this
chapter for information on CUA mode.

What if you’d like to redo a command after you type undo? There is no formal redo
command, but you can use undo in the following way. Just move the cursor in any
direction, and type C-_ or C-x u again. Emacs redoes the last command you undid.
You can repeat it to redo previous undos.

Although undo is an important command, it can be slow if you want to undo a large
number of changes. Table 2-11 summarizes three methods for undoing changes and
circumstances in which you might want to use them.

We’ve already talked about undoing changes with undo; next we describe how to
revert a buffer from a file and how to go back to an earlier version.

Reverting a Buffer from a File
If the undo command isn’t useful, there’s another way to restore a file to an earlier
state. If you want to get the file back to the state that is stored on disk, type M-x
revert-buffer Enter. Emacs asks the following question:

Revert buffer from file filename? (yes or no)

The filename is the name of your original file. Type yes if you want to restore the file,
or no if you’ve changed your mind. Emacs copies the file stored on disk into the
buffer, conveniently forgetting everything that happened since the last time you

* If you find that you repeat the undo command frequently, it’s worth getting fluent with C-_. It’s true that
this requires holding down Ctrl and Shift at the same time, but once you’ve got that down, pressing _ repeat-
edly is much easier than typing C-x u again and again.

Table 2-11. Methods for undoing changes

If you: Use this command:

Don’t like the recent changes you’ve made and want to
undo them one by one

C-_ or C-x u (undo)

Want to undo all changes made since you last saved the file M-x revert-buffer Enter

Want to go back to an earlier version of the file (the file as it
was when you started this editing session)

C-x C-f filename~ Enter C-x C-w filename Enter

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Canceling Commands and Undoing Changes | 43

saved the file. Although this command is called revert-buffer, note that it can revert
only buffers associated with files.

Going Back to a Previous Version: Backup Files
The first time you save a file during an editing session, Emacs creates a backup file. If
something disastrous happens, and the other techniques for undoing changes won’t
help you, you can always return to the backup file. The name of the backup file is the
same as the name of the file you’re editing, with a tilde (~) added. For example, if
you are editing the file text, the backup file is text~.

Emacs doesn’t provide any special commands for restoring a buffer from the backup
copy. The easiest way to do this is to edit the backup copy and then save it as the real
file. For example, if you were working with a file called text, you could: exit Emacs
by typing C-x C-c, then start Emacs again by typing emacs text~. After the backup
file is displayed, save it as the real file by typing C-x C-w text Enter. As a safeguard,
Emacs asks you before it writes over the original file:

File text exists; overwrite? (y or n)

Type y to overwrite the original file with the backup file.

GNU Emacs also has a numbered backup facility. If you turn on numbered backups,
Emacs creates a backup file (with the suffix ~n~) every time you save your file. n
increments with each successive save. If you are nervous about deleting older ver-
sions, it might be worth using: you can keep all of your old versions forever, if you
want to. However, numbered backups can also waste disk space; a happy medium
may be to tell Emacs to keep the last n versions, where n is the number of versions
you want to keep. The variables that control numbered backups are described in
Appendix A. If you are interested in full-blown version control, check out VC mode,
discussed in Chapter 12. Table 2-12 summarizes the commands for stopping com-
mands and undoing changes.

Table 2-12. Stopping and undoing commands

Keystrokes Command name Action

C-g keyboard-quit Abort current command.

C-x u advertised-undoa

a There is no real difference between undo and advertised-undo. They work the same way.

Undo last edit (can be done repeatedly).

C-_
Edit ➝ Undo

undo Undo last edit (can be done repeatedly).

(none) revert-buffer Restore buffer to the state it was in when the file was last
saved (or auto-saved).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Editing

Recovering Lost Changes
We’ve just discussed how to eliminate changes you don’t want to keep; getting back
changes you’ve lost is a different kind of problem. You might lose changes if the
power goes out momentarily or if the computer you’re working on suddenly freezes
or is turned off accidentally. You might also lose changes if you exit Emacs abnor-
mally. Luckily, Emacs, being the watchful editor that it is, saves your file for you
every so often in auto-save files. If you watch carefully, you’ll see the message Auto
saving in the minibuffer from time to time. Using auto-save files, you can get back
most, if not all, of your changes. The name of an auto-save file is the same as the
name of the file you are editing, with a sharp (#) added to the beginning and the
end. For example, if you are editing the file text, its auto-save file is #text#.

To recover text from an auto-save file, type M-x recover-file Enter. Emacs opens a
window that lists both the file and its associated auto-save file so that you can com-
pare the time at which they were created, their size, and so forth. Emacs asks you the
following question:

Recover auto-save file #text#? (yes or no)

Type yes to confirm that you want to copy the contents of the auto-save file into the
current file or no if you change your mind. (If you are unsure, you might want to use
C-x C-f to read the auto-save file #text# into a buffer first and look it over carefully
before using the recover-file command. If you really want to compare the differ-
ences between the two versions, see “Comparing Files Between Windows” in
Chapter 4.)

When does Emacs create auto-save files? Emacs creates an auto-save file every few
hundred keystrokes or if Emacs is terminated abnormally.* You can change the fre-
quency with which Emacs creates auto-save files by changing the variable auto-save-
interval. By default, Emacs creates an auto-save file every 300 keystrokes. For more
information on changing variable values, see Chapter 10.

There’s one more important fact to know about Emacs and auto-save files. If you
delete a large portion of a file, Emacs stops auto-saving the file and displays a mes-
sage telling you so. To make Emacs start auto-saving again, save the file with C-x C-s
or type M-1 M-x auto-save Enter (that’s the number 1).

Now you’ve learned enough commands for most of the editing you’ll do with Emacs.
At this point, you may want to learn how to make Emacs turn on certain features like
auto-fill mode automatically, so you don’t have to turn them on every time you enter
Emacs. The next section provides a brief introduction to customization; this topic is
covered in much greater detail in Chapter 10.

* We should say that Emacs tries to do this. In some cases, Emacs can’t, and there is really no guarantee. Power
surges and OS crashes are examples of times where things happen so fast that Emacs may not be able to cre-
ate an auto-save file. But we are surprised at how often it manages to do so.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Emacs Work the Way You Want | 45

Making Emacs Work the Way You Want
If you’ve been reading straight through this book, you may have started a list of
things you’d like to change about Emacs, such as

• Hiding the toolbar

• Changing Emacs cut and paste commands to C-x, C-c, and C-v

• Turning on text mode and a fill mode so Emacs does word wrap

• Changing the way some of the keys work

We’re going to tell you how to give Emacs the to-do list, a list of options to turn on
each time you enter Emacs. These options are defined in an initialization file called
.emacs. Initialization files run automatically. Some run when you start up your
computer. Others, like .emacs, run when you start up an associated software pro-
gram. So .emacs runs automatically when you start Emacs and turns on whatever
options the file defines. Emacs doesn’t need this file to run; its only purpose is to
make Emacs work the way you want it to.

The .emacs file consists of Lisp statements. If you’re not a Lisp programmer, you can
think of each line as an incantation that follows a certain pattern; you need to type it
exactly.

Emacs now has another way to handle customization: an interactive interface called
Custom that writes Lisp for you and automatically inserts it in your .emacs file. The
Custom interface is discussed in Chapter 10, but we’ll show you an even faster
method for common options.

When you want to add a line to your .emacs file directly, take these steps:

1. Enter Emacs (if you’re not already there).

2. Type C-x C-f ~/.emacs Enter.

3. Type the line to be added exactly as shown in this book and press Enter.

4. Press C-x C-s to save the .emacs file.

5. Press C-x C-c to exit Emacs.

6. Restart Emacs to have the line take effect.

If you make a minor typing mistake (such as forgetting a single quotation mark or a
parenthesis), you are likely to get an error message that says Error in init file
when you restart Emacs. Simply edit the .emacs file again, checking the line you
added against the place you got it from, whether from this book or another user’s .
emacs file. Usually, you can find the error if you look hard enough; if not, find some-
one who has a .emacs file (and preferably understands Lisp) and ask for help. Make
the changes, save the file, and restart Emacs.

What if you make a change that essentially keeps Emacs from being able to start?
You can still exit Emacs, rename the file, edit it, then save it as .emacs and try again.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Editing

Hiding the Toolbar
New users may find the toolbar helpful. Others may not. It’s easy to hide it by select-
ing Options ➝ Show/Hide ➝ Toolbar, and then Options ➝ Save Options.

When Emacs sets options for you through Custom (and this is what it is doing
even when you use the Options menu), it writes your .emacs file. If you already
have a .emacs file, it appends to it. Custom essentially groups all of its settings in
one part of the file, and it is commented to indicate that you should not change it
manually. Here’s the .emacs file that we created by selecting this option:

 (custom-set-variables
 ;; custom-set-variables was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 '(tool-bar-mode nil nil (tool-bar)))
(custom-set-faces
 ;; custom-set-faces was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
)

This may seem a bit bulky, but as we’ll see in the next section, Emacs adds this section
only once and then augments it when you set more options either through the options
menu or directly through the Custom interface. Also note that this auto-generated Lisp
is certainly less clean than Lisp statements you’ll typically see in .emacs files. That’s
another reason not to edit Custom’s work directly.

Turning On CUA Mode for C-x, C-c, and C-v
to Cut, Copy, and Paste
If you’re new to Emacs, you might be used to the Common User Access (CUA) con-
ventions for cutting, copying, and pasting, C-x, C-c, and C-v respectively. You might
reach for C-z for undo. CUA mode was once an add-on mode that you had to install
separately, but it became so popular that it is now part of Emacs. It’s coded in a
clever way that doesn’t interfere with Emacs keystrokes that are prefixed with C-x
and C-c. Details on CUA mode can be found in Chapter 13.

You can turn this feature on through the Options menu to try it out. Simply choose
Options ➝ C-x/C-c/C-v cut and paste (CUA). After you select this option, a check
mark appears next to it on the Options menu. To keep it for subsequent sections,
select Save Options from the Options menu. Emacs writes your .emacs file for you. If
you turned off the toolbar and then set this option, your .emacs file would look like
this (note that the line relating to CUA mode is bold so you can see the difference
from the previous example):

 (custom-set-variables
 ;; custom-set-variables was added by Custom.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Emacs Work the Way You Want | 47

 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 '(cua-mode t nil (cua-base))
 '(tool-bar-mode nil nil (tool-bar)))
(custom-set-faces
 ;; custom-set-faces was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
)

Interestingly, Emacs happily writes the .emacs file even if it is open at the time. You
can watch Emacs change the file if you have it open when you choose Save Options.

Turning On Text Mode and Auto-Fill Mode Automatically
To make text mode the default major mode and start auto-fill mode automatically
each time you enter Emacs, add these lines to your .emacs file:

(setq default-major-mode 'text-mode)
(add-hook 'text-mode-hook 'turn-on-auto-fill)

The first line tells Emacs to make text mode the default major mode; in other words,
“Turn on text mode unless I tell you otherwise.” The second line turns on auto-fill
mode whenever you are in text mode. Alternatively, selecting Options ➝ Word Wrap
in Text Modes, and then Options ➝ Save Options adds auto-fill mode to your .emacs
file directly. It doesn’t make text mode the default major mode, however.

If you prefer refill mode, replace the second line of code with this line:

(add-hook 'text-mode-hook (lambda () (refill-mode 1)))

Remapping Keys
Another major use of the .emacs file is to redefine things about Emacs that irritate
you. You may have ergonomic concerns about Emacs; more than one person has
aggravated carpal tunnel syndrome using the default bindings. You may simply be
used to reaching for certain keys for certain functions and would rather change
Emacs than your habits. Whatever the case, this section gives a brief introduction to
key remapping; for more details, see Chapter 10.

If you use the default bindings (rather than CUA mode), you may use C-x u for
undo.* (Undo is such a common command that it’s easy to type C-x C-u by mistake
when you undo repeatedly. Unfortunately, C-x C-u is a disabled command for

* You could use C-_ for undo instead and then you wouldn’t need to read this section. We recommend that
you read it anyway because you might find another annoying key mapping that you want to change and this
section tells a bit about how to do so.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Editing

upcase-region. If you type C-x C-u, an annoying message about enabling the com-
mand pops up.

If you don’t anticipate a big need for upcasing regions, you can redefine C-x C-u so
that it also runs undo. To do so, add this line to your .emacs file:

(define-key global-map "\C-x\C-u" 'undo)

After making this change, typing C-x C-u runs undo, just as C-x u does.

Emacs customization is extremely powerful, and you can make Emacs work just the
way you want it to. A far more extensive treatment of customization is found in
Chapter 10. This brief introduction is meant to whet your appetite and to make it
possible for you to add lines to your .emacs file as we mention potential customiza-
tions throughout the book.

The next chapter covers topics such as the many searches offered by Emacs, includ-
ing query-replace, as well as spell checking and word abbreviation mode (often used
to correct typos automatically). If you want to learn about these features, go on to
the next chapter. From here on, you can take a selective approach to reading this
book, picking and choosing whatever you want to learn about; you don’t need to
read the rest of the book sequentially.

Problems You May Encounter
• You get an error message when you start Emacs after changing the .emacs file.

The message appears only briefly; press M-p to view it again. Edit your .emacs
file, checking the lines you added carefully against their source for minor typo-
graphical errors. Something as simple as a missing hyphen or apostrophe can
cause this error. Fix the error, save the file, exit Emacs, and reenter. In extreme
cases (the .emacs file is so messed up that Emacs won’t even let you edit it), exit
Emacs, rename the .emacs file, and then start Emacs and edit it again to fix it.
Rename it back to .emacs and start again.

• Paragraphs are not reformatted properly. This seems to relate to window size.
Try resizing the window horizontally until paragraphs format properly.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

49

Chapter 3 CHAPTER 3

Search and Replace

The commands we discussed in the first two chapters are enough to get you started,
but they’re certainly not enough to do any serious editing. If you’re using Emacs for
anything longer than a few paragraphs, you’ll want the support this chapter
describes. In this chapter, we cover the various ways that Emacs lets you search for
and replace text. Emacs provides the traditional search and replace facilities you
would expect in any editor; it also provides several important variants, including
incremental searches, regular expression searches, and query-replace. We also cover
spell-checking here, because it is a type of replacement (errors are sought and
replaced with corrections). Finally, we cover word abbreviation mode; this feature is
a type of automatic replacement that can be a real timesaver.

Different Kinds of Searches
While you’re editing, you frequently want to find something you’ve already typed.
Rather than hunt through the file trying to find what you’re looking for, virtually all
editors provide some kind of search feature that lets you look for a particular text
string. Emacs is no exception to the rule. It supplies a search command—in fact, it
provides a dizzying array of search commands. Here’s a quick summary of the differ-
ent kinds of searches that are available:

Simple search
You give Emacs a search string, and it finds the next occurrence. You will find
this search in almost any editor.

Incremental search
With incremental search, Emacs starts to search the file as soon as you type the first
character of a search string. It continues to search as you type more characters.

Word search
A word search is like a simple search, except that Emacs searches only for full
words and phrases. For example, if you are searching for the word hat, you don’t
have to worry about finding the word that. A word search is also useful when
you need to find a phrase that is spread across two lines.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Search and Replace

Regular expression search
To search for patterns, you can use a regular expression search. For example, if
you wanted to find all instances of B1 and B2, you could search for them using
the regular expression B[12]. However, regular expressions can be extremely
complex. We’ll give a brief introduction to this topic here; it is discussed more
fully in Chapter 11.

Incremental regular expression search
This search procedure is a combination of an incremental search and a regular
expression search.

You can search forward or backward. Searches can be either case-sensitive, meaning
that Emacs considers upper- and lowercase letters to be different (i.e., the words This
and this are different) or case-insensitive, in which upper- and lowercase are not dif-
ferentiated (i.e., This and this are equivalent). By default, searches are case-insensi-
tive, with upper- and lowercase letters considered to be the same. One exception: if
you type any uppercase letters, Emacs makes the whole search string case-sensitive;
it assumes you are looking for something precise since you’ve made the extra effort
to type some letters in uppercase.

Replacement operations are closely related to searches. As with searches, Emacs
offers you several different flavors:

Simple search and replace
In this procedure, Emacs replaces all occurrences of one string with another.
Usually, this is too radical a solution and can have unintended results. Try
query-replace instead.

Query-replace
With query-replace, Emacs conditionally replaces a string throughout a file.
Emacs finds all occurrences of the search string, and for each one it asks you
whether or not to perform the replacement. This type of replacement is useful if
you need to change some, but not all, instances of a word or phrase throughout
a file.

Regular expression replace
Regular expression replacement uses the powerful pattern matching facility of
the same name to find strings and replace them.

So now you know what you’ll be looking at. Don’t be intimidated by the wealth of
searches that are available. In practice, you’ll probably settle on one search com-
mand and one replace command and use these for 99 percent of your work. For
example, we use incremental search and query-replace most of the time. If you’re a
writer, you may use word search all the time; if you’re a programmer, you might
want a regular expression search. If you’re just beginning, you may want to learn
incremental search and read the rest of this chapter later. However, if you know
what’s available, you’ll be able to make use of the other search commands when they
become useful.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Different Kinds of Searches | 51

Incremental Search
Incremental search starts to work from the moment you type the first character of
the search string. Many users like the efficiency of incremental searches, and they
like the highlighting as well. Emacs highlights all occurrences of the search string in
aqua blue (if your display supports it) and uses purple to highlight the string at the
cursor position (the current match).

To start an incremental search, type C-s and then type the text you want to find.
Emacs temporarily enters Isearch mode. Notice how this search works: Emacs
looks for each character as soon as you type it. For example, if you are searching
for the word meter, in an incremental search Emacs finds the next m as soon as you
type the m; it finds the next me as soon as you type the e; it finds the met as soon
as you type the t; and so on. Sooner or later, you either find what you want, or
Emacs is unable to find anything. If you find what you want, press Enter; doing so
stops the search at the current place in the file. If Emacs can’t find anything that
matches your search string, it prints the message Search failed at the bottom of
your screen and then it beeps.

Here’s what happens when we search for the word meter; the numbers show how the
cursor moves with each new letter in the search string.

Type: C-s m

Emacs highlights all the words that start with m.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Search and Replace

In this incremental search, Emacs moves the cursor from position 1 to 2, to 3, and
so on, as you type the search string meter. Also, note that Isearch appears on the
mode line.

What happens if you find the string you’re looking for but not the right occurrence
of the string? Let’s say you’re searching for the word eschatology and you find the
word, but you’re still not in the right place. Simply press C-s again to find the next
occurrence of the current search string. Emacs uses the same search string; you don’t
have to retype it.

Remember to press Enter when you’ve found the text you want. Forgetting to stop
the search (by pressing Enter or with any other cursor movement command) is a
common mistake: you type a few things, and suddenly Emacs is off looking at some
completely different part of the file. What has happened? Emacs thinks you’re still
searching, and it has just added the characters you’ve typed to the search string.

If you type a letter in your search string incorrectly, press Del: Emacs moves back to
the first instance of the reduced string in the file. If you keep pressing Del to delete
characters from the search string, you’ll see Emacs cycle back through the file to
previous matches.

To cancel a search (that is, to give up searching), type C-g. This command brings you
back to the place where the search began.

To search backward through a file, use C-r, which works exactly like C-s except that
it searches in the opposite direction. It puts the cursor at the beginning of the text
you find. Just as you can do when repeating C-s, you can press C-r to make the
search go in the other direction without retyping the search string.

Type: C-s meter

Emacs moves the cursor from one position to another as you type the letters of the
search string.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Different Kinds of Searches | 53

To avoid typing your search string, you can copy text from the buffer into the search
string. To copy text from the cursor position through the next space or punctuation
mark into the search string, type C-s C-w (it may help to think of C-s C-w as “search
a word”). To copy text from the cursor to the end of the line into the search string,
type C-s C-y. Notice that the text that is yanked is always converted to lowercase;
this conversion ensures that the search will be case-insensitive. You can also copy
text from the kill ring to the search string by typing C-s M-y. After you’ve given this
command, you can press M-p to see previous items from the kill ring. M-n takes you
to the next item if you’ve gone back with M-p.

Once you’re in an incremental search, certain keys (such as Enter and Del) have dif-
ferent functions than they normally do. This situation may sound confusing, but it’s
actually fairly easy to get used to. Table 3-1 shows a summary of key functions dur-
ing incremental search.

Simple Searches
Emacs also offers a simple, or nonincremental, search. To use a more straightfor-
ward search, type C-s Enter. Type the search string, press Enter, and Emacs begins
the search. Simply press C-s again to repeat the search. To start a nonincremental
search backwards through the file, press C-r Enter. Again, you type the search string
and press Enter to begin the search.

Table 3-1. Incremental search commands

Keystrokes Command name Action

C-s
Edit ➝ Search ➝ Incremental
Search ➝ Forward String

isearch-forward Start incremental search forward; follow by search
string. Also, find next occurrence (forward) of search
string.

C-r
Edit ➝ Search ➝ Incremental
Search ➝ Backward String

isearch-backward Start incremental search backward; follow by search
string. Also, find next occurrence (backward) of
search string.

Enter isearch-exit In an incremental search , exit the search.

C-g keyboard-quit In an incremental search , cancel the search.

Del isearch-delete-char In an incremental search, delete character from
search string.

C-s C-w isearch-yank-word Start an incremental search with the word the cursor
is on as the search string.

C-s C-y isearch-yank-line Start an incremental search with the text from the
cursor position to the end of the line as the search
string.

C-s M-y isearch-yank-kill Start an incremental search with text from the kill
ring as the search string.

C-s C-s isearch-repeat-forward Repeat previous search.

C-r C-r isearch-repeat-backward Repeat previous search backward.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Search and Replace

The search icon on the toolbar (a magnifying glass over paper) and the Edit ➝ Search
➝ String Forward option run the same kind of a search. The prompt is slightly differ-
ent. C-s Enter prompts you with Search: in the minibuffer while the toolbar icon and
the menu option prompt with Search for string:. This is a minor difference; the
searches are virtually identical otherwise.

Table 3-2 summarizes the simple search commands.

Word Search
If you’re searching for a phrase and you know it’s in the file but you can’t find it with
incremental search, try word search. (You probably can’t find your phrase with
incremental search because the phrase has a line break in it.) Word search is a nonin-
cremental search that ignores line breaks, spaces, and punctuation. It also requires
that your search string match entire words in the file.

To do a word search, type C-s Enter C-w (for word-search-forward). The prompt Word
search appears in the minibuffer. (Don’t be put off by the prompts that appear along
the way: you’ll see an I-search prompt after typing C-s and a Search prompt after
pressing Enter. Ignore these.) Type the search string and press Enter. Emacs searches
for the given string. To do a word search backwards, type C-r Enter C-w instead. For
example, assume that you have the following text, with the cursor at the beginning:

He said, "All good elephants are wise, aren't they?"
She answered, "Some are smarter than others, but we
think this is socially conditioned."

The command C-s Enter C-w they she Enter positions the cursor after the word She.
This command looks complicated, but it’s really nothing more than a word search
(C-s Enter C-w) for the word they, followed by the word she. It ignores the punctua-
tion (?”) and the newline between they and she.

Assume that you’re looking for the word the. You don’t want to bother with thence,
there, theater, thesis, blithe, or any other word that happens to contain the letters the.
In this situation, neither an incremental search nor a simple search is very useful—
you need a word search. If you’re writing a paper, word search is often exactly what
you need. It is the only one of the three basic search commands that allows you to
find what you want even if the phrase is split between two lines.

Table 3-2. Simple search commands

Keystrokes Action

C-s Enter searchstring Enter
Edit ➝ Search ➝ String Forward

Start nonincremental search forward.

C-s Repeat search forward.

C-r Enter searchstring Enter
Edit ➝ Search ➝ String Backwards

Start nonincremental search backward.

C-r Repeat search backward.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Search and Replace | 55

Now that you’ve seen the three most commonly used searches, you might want to
experiment and see which you find most useful.

Search and Replace
Search and replace definitely go together, like coffee and cream. Let’s say you’re
working on a new software application and at the last possible moment, the Market-
ing Department decides to change the product’s name.

Tere’s a press release for Whirligig, an email service that periodically reminds you to
make healthy lifestyle changes like exercising, drinking water, and taking vitamins.
The level of harassment or, as the marketing department says, encouragement, can
be set by the user. Whirligig isn’t really the most descriptive name, so at the last
minute the Marketing Department changes it to HealthBug.

Simple Search and Replace Operations
Assume you’re in the situation we just described. You want to replace every occur-
rence of one string with another. You know that Whirligig is never correct, and there
is absolutely no ambiguity about how you want to replace it. When you want to
replace every instance of a given string, you can use a simple command that tells
Emacs to do just that. Type M-x replace-string Enter, then type the search string and
press Enter. Now type the replacement string and press Enter again. Emacs replaces
all occurrences in the file from the cursor position onward. If you want to search and
replace throughout the file, press M-< to go to the beginning of the file before typing
this command. Here’s a quick example of using replace-string.

Now we’ll do the replacement.

Initial state:

Whirligig appears four times, but the cursor is positioned after the first instance.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Search and Replace

The replacement occurs only from the cursor position onward; Whirligig in the first
sentence is still incorrect. We’ll work with this example again in a moment.

Query-Replace
Few search and replace situations are as straightforward as those we’ve described.
Often you’re not sure that you want to replace every appearance of your search
string: a global replacement can be reckless. If you want to decide whether to replace
the string on a case-by-case basis, use a query-replace, which allows you to change a
string conditionally throughout a file. After Emacs finds an occurrence of the search
string, it asks whether it should replace it, and you respond accordingly.

To use query-replace, go to the beginning of the buffer using M-< and then type M-%.
The prompt Query replace: appears in the minibuffer. Type the search string and
press Enter. Now this appears:

Query replace searchstring with:

Type the replacement string and press Enter. So far, this procedure is almost identi-
cal to a replace-string operation; only the prompts are different.

Emacs now searches for the first occurrence of the search string. When it finds one, a
new prompt appears:

Query replacing searchstring with newstring

Before performing the replacement, Emacs waits for a response to tell it what to do.
Table 3-3 lists the possible responses and their results.

Type: M-x replace-string Enter Whirligig Enter HealthBug Enter

Emacs replaces all instances from the cursor position onward.

Table 3-3. Responses during query-replace

Keystrokes Action

Space or y Replace searchstring with newstring and go to the next instance of the string.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Search and Replace | 57

This list seems like a lot of keystrokes to remember, but you can get away with
knowing two or three. Most of the time you’ll respond to the prompt by pressing
Space, telling Emacs to perform the replacement and go on to the next instance, or n
to skip this replacement and go on to the next instance. If you’re not too sure what
will happen, enter a comma (,); Emacs makes the replacement but doesn’t go on
until you press Space. After performing the first few replaces, you may realize that
there’s no need to inspect every change individually. Typing an exclamation mark (!)
tells Emacs to go ahead and finish the job without bothering you anymore. If you
remember these keystrokes, you’re all set.

How does this work in practice? Let’s revisit our previous example, assuming that we
want to change Whirligig to HealthBug throughout (and that we didn’t save the
changes we made with replace-string).

Del or n Don’t replace; move to next instance.

. Replace the current instance and quit.

, Replace and let me see the result before moving on. (Press Space or y to move on.)

! Replace all the rest and don’t ask.

^ Back up to the previous instance.

Enter or q Exit query-replace.

E Modify the replacement string.

C-r Enter a recursive edit (discussed in detail later).

C-w Delete this instance and enter a recursive edit (so you can make a custom replacement).

C-M-c Exit recursive edit and resume query-replace.

C-] Exit recursive edit and exit query-replace.

Type: M-< M-% Whirligig Enter HealthBug Enter

You’re ready to replace the first occurrence; press Space to go on.

Table 3-3. Responses during query-replace (continued)

Keystrokes Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Search and Replace

This procedure continues until you reach the end of the file. As we’ve said, typing !
fixes the rest of the file.

In Table 3-3, you might have noticed that several keys, such as Space, have special-
ized meanings while the replacement is in progress. In practice, using these keys for a
different function is not confusing, though it might sound bad on paper. You might
want to try a query-replace on a practice file to get the hang of using the different
responses. If you are easily amused, you might enjoy opening the Emacs FAQ, sav-
ing it as another file, then replacing Emacs throughout.

Repeating Query-Replaces (and Other Complex Commands)
Now that you’ve learned the basics of query-replace, let’s talk about a shortcut that
applies not only in query-replace but anywhere in Emacs: repeating complex com-
mands, with slight modifications. We often exit a query-replace by mistake or decide
that the replacement we really wanted was just slightly different. Do we have to type
it all again? No. Simply go the beginning of the file and press C-x Esc Esc. The last
complex command you typed appears. If it’s not the one you want, type M-p to see
the previous command (do this as many times as necessary; M-n goes to the next
command). For example, let’s go to the beginning of the file and repeat the query-
replace we just carried out.

Press: Space

When you press Space, Emacs replaces the first word; the query-replace operation
then moves to the second word.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Search and Replace | 59

When we press M-<, we move to the beginning of the file; when we press C-x Esc
Esc, the last complex command is displayed. Emacs speaks to itself in dark words,
but we can still see that this is the command that we want.

This is the right command, so we don’t have to press M-p to see a previous com-
mand. If we wanted to, we could change the query-replace strings before pressing
Enter. In this case, the Marketing Department has once again changed the product’s
name from HealthBug (since bug could be construed as pest) to HealthBot (neutral,
but a bit less descriptive in our opinion). Our earlier query replace changed Whirli-
gig to HealthBug. We need to modify this command so it replaces Bug with Bot.

Type: M-< followed by C-x Esc Esc

Emacs puts the last complex command in the minibuffer; in fact it looks more
complex than we remember it.

In the minibuffer, change Whirligig to Bug and HealthBug to Bot and press Enter.

Pressing Enter executes the command again with the modified search and replace-
ment strings.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Search and Replace

As we mentioned, C-x Esc Esc works for any command involving input in the
minibuffer, not just query-replace. But we use this feature most frequently in query-
replace. It is also good for repeating keyboard macros (see Chapter 6).

Recursive Editing
When you do a query-replace, you inevitably see something else you want to change
in the file. Try it a few times—you’ll see what we mean! We typically try to remem-
ber the problem until we’re done, then get frustrated when we forget exactly what
and where the problem was.

Fortunately, Emacs provides an easier way. It allows you to start a recursive edit
while you’re in the middle of a query-replace. By starting a recursive edit, you effec-
tively put query-replace on hold while you make any other desired edits. When you
exit the recursive edit, the query-replace resumes where you left off.

To start a recursive edit while in query-replace, press C-r. (Note that like many other
key bindings, C-r has a different meaning in query-replace than it does in standard
Emacs.) When you start a recursive edit, square brackets ([]) appear on the mode
line. Let’s go back, one more time, to our public relations piece. You’ve used query-
replace to find the first Bug to change to Bot, and you are about to press Space to fix
it, when you remember that the lawyers said that the “64 ounces of water” state-
ment was too specific and could be construed as giving medical advice. A quick
recursive edit saves the day.

Now do any editing you want to; you are in an editing mode just like standard
Emacs. Move down to the third line and delete “64 ounces of.” When you want to
resume the query-replace, press C-M-c. This command tells Emacs to leave the
recursive edit and reactivate the query-replace. Emacs moves back to the point where

Type: C-r

Notice the square brackets around (Text Fill), indicating a recursive edit in
progress.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Search and Replace | 61

you were when you started the recursive edit. You can then continue making replace-
ments just as if nothing had happened.

If you decide to exit the recursive edit and cancel the query-replace in one fell swoop,
you can type C-] (for abort-recursive-edit) or M-x top-level Enter rather than C-M-c.

In fact, you can start a recursive edit at any time, not just when you’re in a query-
replace. The command M-x recursive-edit Enter puts you into a recursive edit; C-M-c
takes you out of the recursive edit and brings you back to what you were doing
before. You can even have recursive edits within recursive edits, although the possibil-
ity for confusion increases with each new level.

Are Emacs Searches Case-Sensitive?
By default, Emacs searches are not case-sensitive. Look at the Options menu and
you’ll see that the option Case-Insensitive Search is the only option that is checked
by default.

What does this mean in practical terms? If you search for the word random, the
search finds random, Random, and RANDOM, as well as oddities like RanDoM
and rANdOM. When doing replacements, Emacs pays attention to the form of the
word being replaced and replaces it with the same case. If you replaced random
with tandem, Random would be replaced with Tandem, and RANDOM would be
replaced with TANDEM. If you mix capitalization, the replacement string appears
just as you type it. healthbug would be replaced with HealthBug if that was the case
in the replacement string. In other words, the default search and replacement oper-
ations usually do what you want: they find a search string regardless of its case and
adjust the replacement appropriately for its context. However, sometimes you need
finer control.

Delete “64 ounces of,” then type C-M-c

Emacs goes back to query-replace and you press Space to fix the next Bug.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Search and Replace

The variable case-fold-search determines whether searches are case-sensitive. It
applies to all searches: incremental searches, word searches, searches within search-
and-replace operations, and so on. By default, case-fold-search is set to t, which
means “ignore case unless the user types in mixed or uppercase.” This sensible
default is usually just what you want. But if you need case-sensitive searches, the
Case-Insensitive Search option on the Options menu provides an easy way to experi-
ment with this variable.

Likewise, if you don’t want Emacs to adjust the case of your replacement strings, you
can set the variable case-replace. Again, its value is t (for “true”) by default, which
means “adjust the case of a replacement string to match the original text”—that is,
capitalize the replacement if the original word was capitalized and so on. Setting this
variable to nil means “never adjust the case of the replacement string; always put it
in exactly as I typed it.” To change the value of case-replace, type M-x set-variable
Enter case-replace Enter nil Enter (there’s no menu option for this variable).

Both the menu option and the set-variable command change the behavior of Emacs
only temporarily. If you start a new editing session, you’ll be back to the default
behavior. This is probably what you want, because searching separately for capital-
ized and lowercase words is inconvenient.

You can set the value for the Case-Insensitive Search option permanently by select-
ing Save Options from the Options menu or by adding this line to your .emacs file:

(setq-default case-fold-search nil) ; require exact matches

To set case-replace permanently, add the following line to your .emacs file. You’ll
need to restart Emacs to have the change take effect.

(setq-default case-replace nil) ; never change case when replacing

You could change these variables through Emacs’s interactive customization facility,
Custom, instead (see Chapter 10).

Regular Expressions for Search and Replacement Operations
Sometimes none of the simpler searches described in this chapter are adequate.
Regular expressions allow you to build searches with strings that contain various
wildcards.

Table 3-4 shows some of the characters you can use in creating a regular expres-
sion.

Table 3-4. Characters for creating regular expressions

Character(s) Match

^ Matches the beginning of a line.

$ Matches the end of a line.

. Matches any single character (like ? in filenames).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Search and Replace | 63

If you do a regular expression search for ^word$, you would find instances of word
on a line by itself. The ^ says that the w must be the first character on the line, the $
says that the d must be the last character.

If you wanted to find all words starting with beg and ending with the letter s, you
could use beg[a-z]*s as your regular expression. This would find the words begins,
begets, and begonias, in addition to really odd words like shibegrees and altbegaslia. If
you don’t want these mutants—that is, if you really want words that begin with beg
and end with s, use \<beg[a-z]*s\>. The \< is a special sequence that matches the
beginning of a word; \> matches the end of a word. If you wanted to find the words
beg, big, and bag; but not begonias, and certainly not any strange words with beg on
the inside, you would use \<b[a-z]g\> as the regular expression.

To search for a ^, $, ., *, [,], or any number of other special characters, you obvi-
ously can’t use the character itself. Put a backslash (\) first—i.e., to search for a
period, search for \. For example, to search for the electronic mail address‘:

howie@mcds.com

the regular expression would be:

howie@mcds\.com

This is a barebones introduction to regular expressions; see Chapter 11 for more
details and Mastering Regular Expressions by Jeffrey Friedl (O’Reilly) for a book-
length treatment of this topic.

You can use regular expressions in incremental searches and in query-replace.
Table 3-5 lists the commands you use for regular expression searches. Although they
are initiated with slightly different commands, the searches are the same as those
described earlier in this chapter.

.* Matches any group of zero or more characters (. matches any character and *
matches zero or more of the previous character).

\< Matches the beginning of a word.

\> Matches the end of a word.

[] Matches any character specified within the brackets; for example, [a-z] matches
any alphabetic character.

\s, \S Matches any whitespace character: space, a newline, a tab, a carriage return, a
formfeed, or a backspace; \S matches any character except whitespace.

\d, \D Matches any single digit, 0-9; \D matches any character but a digit.

\w, \W Matches any “word” character (upper- and lowercase letters, digits, and the under-
score character); \W matches any character but these.

Table 3-4. Characters for creating regular expressions (continued)

Character(s) Match

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Search and Replace

Checking Spelling Using Ispell
Emacs includes two spell-checking interfaces: to the Unix spell checker, spell, and
to Ispell, which many people, including us, prefer. We say “interfaces” because
Emacs does not include the executables for either of these spell-checkers. Because
Ispell is superior and runs on a variety of platforms, we’ll cover only Ispell here. If
you attempt to run Ispell and it is not available, you’ll have to install it. Chapter 13
provides details on installing Ispell on Windows and on Mac OS X.

A further enhancement to Ispell is Flyspell, a command that highlights misspelled
words on the fly. If you have Ispell installed, you’ll have Flyspell support as well.

Checking a Buffer
Ispell includes options to check a buffer, a region, the comments in a program, or a
single word. After you type the command telling Ispell what area you want to check,
it works the same way for all these options. We’ll describe ispell-buffer here. If all
the words are spelled correctly, Ispell displays the message, Spell-checking done. If
Ispell finds a misspelled word, a screen like the following appears. Let’s spell-check a
hastily typed passage from Homer’s Odyssey.

Table 3-5. Regular expression search commands

Keystrokes Command name Action

C-M-s Enter
Edit ➝ Search ➝ Regexp Forward

re-search-forward Search for a regular expression for-
ward.

C-M-r Enter
Edit ➝ Search ➝ Regexp Backwards

re-search-backward Search for a regular expression back-
ward.

C-M-s
Edit ➝ Search ➝ Incremental Search ➝

Forward Regexp

isearch-forward-
regexp

Search incrementally forward for a
regular expression.

C-M-r
Edit ➝ Search ➝ Incremental Search ➝

Backward Regexp

isearch-backward-
regexp

Search incrementally backward for a
regular expression.

C-M-%
Edit ➝ Replace ➝ Replace Regexp

query-replace-regexp Query-replace a regular expression.

(none) replace-regexp Globally replace a regular expression
unconditionally (use with caution).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Checking Spelling Using Ispell | 65

Ispell moves to the first unrecognized word, in this case a proper name correctly spelled
(except for the proper accent marks). At the top of the screen, Ispell opens a small win-
dow that displays alternative spellings, numbered starting with 0. The minibuffer says
C-h or ? for more options, SPC to leave unchanged, character to replace word.
In this case, we have a properly spelled name, so press i to ask Ispell to insert it into your
private dictionary, which is kept in a file called .ispell_<language> in your home direc-
tory,* where language is the language you are using (English by default). If this file
doesn’t exist, Ispell creates it without complaint and later asks you if you want to save it.
To insert the word in the dictionary in lowercase, press u and Ispell lowercases the word
and then puts it into your dictionary. Of course, because this is a proper name, we insert
it as it appears in the passage.

Type: Esc x ispell-buffer Enter

Ispell finds the first unrecognized word in the buffer.

* Your default dictionary might be called something else entirely, like .aspell.language.pws. If you run the com-
mand ispell-check-version, you’ll see that although Ispell is supposedly running, it’s really Aspell behind the
scenes.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Search and Replace

Ispell opens a window at the top of the screen listing choices for a replacement. Usu-
ally one of its top few choices is correct.

Press i:

Ispell moves to the next unrecognized word, another proper name.

We insert a few more proper names and move along to the first real misspelling,
pwers.

Ispell finds pwers misspelled.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Checking Spelling Using Ispell | 67

If one of the words that Ispell lists at the top of the screen is correct, you type the
number, and Ispell makes the replacement. To replace a word yourself, press r.
After you type the corrected word, Ispell replaces it. If you press R instead, Ispell
starts a query-replace through which you can correct all cases of the misspelling in
this buffer.

Instead of replacing the word, you may simply want Ispell to skip over it. To skip
this occurrence of a misspelled word, press Space. To ignore a misspelled word for
the rest of the session for all buffers, press a (for accept). Uppercase A has one subtle
difference: it tells Ispell to accept the word for this session but only in this buffer.

If you can see that something more complicated is wrong, you can start a recursive
edit by typing C-r. Fix the error and type C-M-c to exit the recursive edit and resume
Ispell. (You may recall that we discussed recursive editing earlier in this chapter.)

Our passage repeatedly spells would incorrectly and typing the character beside the
correct word only replaces a single incidence, so a better choice would be to type R
to query-replace the word throughout the buffer.

To select powers, press: 1

Ispell replaces the word and goes on to the next misspelling.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Search and Replace

We want to replace all occurrences of the misspelled word, so we’ll type !, which, as
you might recall, means “replace them all without asking.”

Type: R

Ispell asks for the correction for wuld.

Change wuld to would and press Enter.

Ispell starts a query-replace.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Checking Spelling Using Ispell | 69

Ispell replaces the words, then goes on to the next misspelling, crse. Note that this
misspelling occurs before the second incorrect wuld. Because we already query-
replaced wuld with would, Ispell had to move backward to find the next misspelling.

Remember that Ispell, like all spellcheckers, corrects only true misspellings. If a mis-
spelling forms another word, Ispell will leave it alone. It’s up to you to change fries to
fires in this passage.

Different forms of the same word must be corrected separately. For example, if you
misspell receive, receives, and receiving by reversing the i and the e, you must change
each misspelled word.

Checking a Single Word
Sometimes when you are typing, you’ll say, “That doesn’t look right.” To check the
word the cursor is on, type M-$ (for ispell-word). Ispell checks the spelling of the
word and displays word: ok if the word is spelled correctly. If the word is incorrect,
Ispell displays a window with the options discussed earlier.

Completing a Word
You might start typing a word and then wonder, “How is that spelled?” This is
where ispell-complete-word comes in. You’re typing a word and you get stuck. Type
M-Tab (for ispell-complete-word) and you get a list of choices. After typing occur,
you use this command to find out the answer.

Type ! then y when prompted about saving your personal dictionary.

Emacs moves to the “next” misspelling, crse.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Search and Replace

This feature varies in its helpfulness. In this case the replacement needed was shown.
It won’t always work that way, but you can always simply spell it wrong and then
use ispell-buffer to fix it.

Spellchecking on the Fly with Flyspell
Flyspell highlights misspelled words as you type. You can also use it to check exist-
ing text. The commands for doing this are different.

To check text as you type, enter Flyspell mode by typing M-x flyspell-mode Enter. Fly
appears on the mode line. If you set up Emacs to enter Flyspell mode automatically,
your text is always spell-checked “on the fly.” An alternative to Flyspell mode is Fly-
spell prog mode. In this mode, designed for programmers, Emacs highlights misspell-
ings only in comments or strings. To enter it, type M-x flyspell-prog-mode Enter.

Type: occur M-Tab

Ispell choices appear at the top of the screen.

To select occurrence, type: 2

Ispell completes the word for you.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Checking Spelling Using Ispell | 71

To check existing text, you run M-x flyspell-buffer Enter. This command is like
ispell-buffer; it spell-checks the entire buffer. Flyspell’s interface is different; it
underlines all the words it suspects are misspelled and gives you a pop-up menu
of alternatives.

The best way to check out Flyspell mode is to turn it on and type some misspelled
text to see it in action. No matter whether you enter Flyspell mode or run flyspell-
buffer, you correct errors in the same way. We’ll demonstrate flyspell-buffer on our
misspelled odyssey file. Because it’s an existing file (not a new file we’re typing), we
need to issue the flyspell-buffer command.

Flyspell highlights misspelled words in red. Words that are repeatedly misspelled are
highlighted in yellow. Note that it doesn’t highlight the proper names we inserted in
the dictionary earlier using Ispell; Flyspell checks to see whether words are in your
personal dictionary before highlighting them as errors.

You move to a misspelled word and press the middle mouse button to display a pop-
up menu of possible replacements. (This implies that you have a three-button
mouse, and, to be honest, you need one to make Flyspell work properly.) You select
a replacement using the mouse.

Type: Esc x flyspell-buffer Enter

Flyspell highlights misspelled words (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Search and Replace

Move the cursor to crse and press the middle mouse button.

Flyspell displays a pop-up window of alternatives; you choose one with the mouse
(Mac OS X).

Choose curse with the mouse.

Emacs inserts the correct replacement (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Checking Spelling Using Ispell | 73

Ispell inserts new words in the dictionary. Flyspell takes it a step further, creating
word abbreviations for words that you misspell. In essence, a word abbreviation tells
Emacs, in this case, that wrd is just an abbreviation for word, and that therefore
Emacs should replace it automatically. If you turn on word abbreviation mode,
described in the next section, chronic misspellings that Flyspell encounters will be
automatically corrected.

How can you tell Flyspell is using word abbreviations? When you exit a session in
which you’ve used Flyspell, you see a prompt that says, Save abbrevs in ~/.abbrev_
defs (y or n). This automatic correction won’t occur without turning on word abbre-
viation mode, whether in your startup or manually. Read the section on this topic in
this chapter for more details.

What do you do if you encounter a word that’s spelled correctly but that Flyspell
doesn’t recognize? You could insert it in your Ispell dictionary if it’s a word you use
frequently. The Save word option on the Flyspell pop-up menu handles this. For a
temporary fix, the options Accept buffer and Accept session tell Flyspell to accept a
word for the current buffer or for all buffers in the current Emacs session automati-
cally. Of course, if it’s a word you use frequently, you may want to insert it in the
Ispell dictionary to keep Flyspell from flagging it each time.

To enter flyspell mode automatically, add this line to your .emacs file:

(setq-default flyspell-mode t)

Table 3-6 summarizes the Ispell and Flyspell commands.

Table 3-6. Spell-checking commands

Keystrokes Command name Action

M-$
Tools ➝ Spell Checking ➝

Spell-Check Word

ispell-word Check the word the cursor is on or the word following
the cursor.

(none)
Tools ➝ Spell Checking ➝

Spell-Check Region

ispell-region Check spelling of the region.

(none)
Tools ➝ Spell Checking ➝

Spell-Check Buffer

ispell-buffer Check spelling of the buffer.

(none)
Tools ➝ Spell Checking ➝

Spell-Check Message

ispell-message Check spelling of the body of a mail message.

(none)
Tools ➝ Spell Checking ➝

Spell-Check Comments

ispell-comments-and-
strings

Check spelling of comments and strings in a program.

C-u M-$
Tools ➝ Spell Checking ➝

Continue Spell-Checking

ispell-continue Resume Ispell; it works only if stopped Ispell with C-g.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 3: Search and Replace

Word Abbreviations
Word abbreviation mode and dynamic abbreviations are two features that lazy typ-
ists will love. The authors proudly include themselves in that category, so you’ll be in
good company if you choose to explore these features. Dynamic abbreviations are
less complex, so we’ll discuss them first.

Dynamic Abbreviations
Let’s say that you are a scientist writing a paper on invertebrates. You’re likely to
have many long technical words in your paper, and if you’re like us, you get tired of
typing long words.

Dynamic abbreviations come to the rescue. After you’ve typed a long word once, you
can simply type a few letters and give the command M-/ (for dabbrev-expand).
Emacs inserts the nearest word that starts with that string.

Interesting was not the word we were hoping for; it’s invertebrates we wanted. With-
out moving the cursor, type M-/ again.

(none) ispell-kill-ispell Kill the Ispell process, which continues to run in the
background after it is invoked.

M-Tab
Tools ➝ Spell Checking ➝

Complete Word

ispell-complete-word In text mode, list possible completions for the current
word.

(none)
Tools ➝ Spell Checking ➝

Automatic Spell-Checking (Flyspell)

flyspell-mode Enter the Flyspell minor mode, in which incorrectly
spelled words are highlighted.

(none) flyspell-buffer Spell-check the current buffer, underlining all mis-
spelled words. Use middle mouse button to correct.

Type: In M-/

Emacs inserts the last word starting with in, in this case, interesting.

Table 3-6. Spell-checking commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Word Abbreviations | 75

The word being expanded need not be earlier in the file to be considered nearest.
Emacs looks behind and ahead of the cursor position to find words it can expand. If
there are eligible words that are equidistant above and below the cursor position
both, Emacs selects the word that is above as the expansion.

Earlier we talked about completing a word with Ispell. Dynamic abbreviations are a
bit different. When you complete a word, the word probably isn’t in the buffer (yet).
When you use a dynamic abbreviation, you simply don’t want to type a word you
typed earlier and you’re asking Emacs to do it for you.

Using dynamic abbreviations doesn’t require entering a special minor mode, as stan-
dard word abbreviations do. They are simply an aid for the tired typist. Word abbre-
viation mode has some other advantages, though, such as the ability to create an
abbreviation for a phrase or a habitual typo, as we will see next.

Word Abbreviation Mode
Word abbreviation mode lets you define abbreviations for special words and
phrases. You can use it in many ways. Traditionally, abbreviation mode is used so
that you don’t have to type long words or phrases in their entirety. For example, let’s
say you are writing a contract that repeatedly references the National Institute of
Standards and Technology, and you are not allowed to use an acronym. Rather than
typing the full name, you can define the abbreviation nist. Once you have set up this
definition, Emacs inserts the full name whenever you type the abbreviation nist, fol-
lowed by a space, tab, or punctuation mark. Emacs watches for you to type an abbre-
viation, then expands it automatically for you.

Before showing you how to get into word abbreviation mode and define your abbre-
viation list, we’ll start with an example. Our favorite nontraditional use for word
abbreviation mode is to correct misspellings as you type.* Almost everyone has a
dozen or so words that they habitually type incorrectly because of worn neural path-
ways. You can simply tell Emacs that these misspellings are “abbreviations” for the
correct versions, and Emacs fixes the misspellings every time you type them; you

Type: M-/

Emacs inserts the word Invertebrates, which is what we wanted.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Search and Replace

may not even notice that you typed the word wrong before Emacs fixes it. So assume
that you’ve entered word abbreviation mode, and that you’ve defined receive as an
abbreviation for recieve; now, as you’re typing, you make an innocent mistake.

Besides the convenience of being able to invent abbreviations for phrases that you
frequently type, you can see that setting up a short list of abbreviations for common
misspellings could reduce the time it takes to proofread files and reduce the number
of common typing errors.

* Once upon a time this use of word abbreviation mode was nontraditional; these days Flyspell, described ear-
lier, automatically defines misspellings as abbreviations.

Type: You will recieve

You type the offending word but haven’t yet pressed Space, which will cue Emacs to
correct it (Windows).

Type: Space the materials you requested shortly

Emacs corrects the word automatically after you press Space; you need not stop typ-
ing or even be aware that a mistake has been made and corrected (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Word Abbreviations | 77

When you define abbreviations, never use abbreviations that are words in their own
right or Emacs may expand the word when you don’t want it to, because expansion
takes place without asking. For example, if you frequently write about the World
Association for Replicant Technology, don’t define an abbreviation of wart, or you
won’t be able to write about the difficulties of handling toads. (If you use the word
wart so infrequently that you think the convenience of the acronym warrants it, you
can use C-_ to undo the abbreviation when you really want to type wart.)

Emacs knows the abbreviations exactly as you define them. If you define recieve as
an abbreviation for receive, you must also define recieves, recieving, and recieved as
abbreviations to cover all the forms of the word you might misspell.

Before you go ahead and define some abbreviations, here’s one more basic fact you
should know. Emacs classifies abbreviations according to which modes they work in.
Global abbreviations work in all modes; local abbreviations work only in the mode
in which they were defined. For example, if you want abbreviations to work only in
text mode and not in C mode, define them as local while you are in text mode. If you
want abbreviations to work in any mode, define them as global. Remember: abbrevi-
ations are local to modes, not to files or buffers.

Emacs also provides an inverse method for defining abbreviations. This method is
called inverse because you type the abbreviation and then the definition. Some com-
mands (which we won’t discuss) let you type the definition and then the abbrevia-
tion, but they require some tricky key sequences to let Emacs know how many words
preceding the cursor are part of the abbreviation. The inverse method is easier and it
works whether the definition for the abbreviation is one word or ten words.

Trying word abbreviations for one session

Usually, if you go to the trouble of defining a word abbreviation, you will use it in
more than one Emacs session. But if you’d like to try out abbreviation mode to see if
you want to incorporate it into your startup, use the following procedure.

To define word abbreviations for this buffer and session:

1. Enter word abbreviation mode by typing M-x abbrev-mode Enter. Abbrev
appears on the mode line. For a global abbreviation, type the abbreviation you
want to use and type C-x a i g or C-x a - (for add-inverse-global). (For a local
abbreviation, type C-x a i l for add-inverse-local instead.) Emacs then asks you
for the expansion.

2. Type the definition for the abbreviation and press Enter. Emacs then expands
the abbreviation and will do so each time you type it followed by a space or
punctuation mark.

3. When you exit Emacs. it asks if you want to save the abbreviations in .abbrev_
defs. Type y if you want to save them.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 3: Search and Replace

4. The abbreviations you’ve defined will work only in buffers where you enter
abbrev mode.

If you find that you like using word abbreviation mode, you may want to make it
part of your startup, as described in the following section.

Making word abbreviations part of your startup

Once you become hooked on using abbreviation mode, it’s easiest to incorporate it
into your .emacs file. This procedure creates a permanent file of your word abbrevia-
tions that is loaded every time you start Emacs. You can also delete abbreviations
from this file; we’ll discuss how to do so in the next section.

To define word abbreviations and make them part of your startup:

1. Add these lines to your .emacs file:
(setq-default abbrev-mode t)
(read-abbrev-file "~/.abbrev_defs")
(setq save-abbrevs t)

2. Save the .emacs file and reenter Emacs. Abbrev appears on the mode line. You
may get an error message saying Emacs can’t load your abbrev file (understand-
able if you haven’t created the file yet). Ignore this error message; it won’t hap-
pen again.

3. Type an abbreviation and type C-x a i g or C-x a - following the abbreviation.
These commands create a global abbreviation; if you want to create a local
abbreviation instead, type C-x a i l. Emacs asks you for the expansion.

4. Type the definition for the abbreviation and press Enter. Emacs expands the
abbreviation and will do so each time you type it followed by a space or punctu-
ation mark. You can define as many abbreviations as you want to by repeating
Steps 3 and 4.

5. Type C-x C-c to exit Emacs. Emacs asks if you want to save the abbreviations in
.abbrev_defs.

6. Type y to save your abbreviations.

After you define some abbreviations and save them, Emacs loads the abbreviations file
automatically. When you define word abbreviations in subsequent sessions, Emacs
asks again whether you want to save the abbreviations file. Respond with a y to save
the new abbreviations you’ve defined and have them take effect automatically.

Deleting a word abbreviation

If you use word abbreviations frequently, you may define an abbreviation and later
change your mind. You can edit the word abbreviation list by typing M-x edit-abbrevs
Enter. You can see (but not edit) the list by typing M-x list-abbrevs Enter.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Word Abbreviations | 79

After the list is displayed, use C-k (or any other editing commands) to delete the
abbreviations you don’t want to use. Because Emacs itself formats this list, don’t try
to edit lines or add new lines; deleting is about the only operation that’s safe. Here’s
how the abbreviations look when you edit word abbreviations. The file is divided
into different sections based on whether the abbreviations are global or local to a
particular mode:

(text-mode-abbrev-table)

(lisp-mode-abbrev-table)

(fundamental-mode-abbrev-table)

(global-abbrev-table)

"iwthout"1 "without"
"prhase" 1 "phrase"
"teh" 1 "the"
"fo" 1 "of"
"eamcs" 2 "Emacs"
"wrok" 1 "work"
"aslo" 1 "also"
"sotred" 1 "stored"
"inforamtion"1"information"
"esc" 6 "Esc"
"taht" 1 "that"
"chatper"1 "chapter"
"adn" 1 "and"
"iwth" 1 "with"
"chpater"1 "chapter"
"loaction"1"location"
"recieve"1 "receive"
"wart" 1 "World Association for Replicant Technology"

The file is divided into sections by mode. We defined global abbreviations in this
case; any abbreviations Flyspell (described earlier in this chapter) creates are local
abbreviations and would be listed under the mode in which they were defined.

In this buffer, the first column lists the abbreviations (in this case, mostly misspell-
ings). The second column is for internal record keeping; you don’t need to concern
yourself with it. The third column provides the definitions of the abbreviations, the
word or phrase that Emacs substitutes whenever it sees the abbreviation.

To delete any abbreviation, delete the line for that abbreviation and save the file by
typing M-x write-abbrev-file. You can move back to the buffer you were editing
before by typing C-x b (a command for working with multiple buffers, discussed in
Chapter 4).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Search and Replace

Disabling word abbreviations

You can get rid of word abbreviations completely in one of two ways. First, you can
type M-x kill-all-abbrevs Enter. This command disables word abbreviations for the
current session.

Second, you can delete the file the abbreviations are in. If you made word abbrevia-
tions part of your startup, delete the read-abbrev-file line from your .emacs file.

Abbreviations and capitalization

Usually, Emacs capitalizes abbreviations exactly the way you want. If you run into
special situations with abbreviations and capitalization, however, you may wantl to
know what’s going on behind the scenes. Here are the rules:

• If the abbreviation’s definition contains any uppercase letters, Emacs always
inserts the definition without changing anything. For example, if you define ora
as an abbreviation for O’Reilly Media, O’Reilly will always be capitalized exactly
as shown.

• If the abbreviation’s definition is all lowercase, Emacs capitalizes according to
the following rules:

• If you type all of the letters of the abbreviation in lowercase, Emacs inserts
the definition in lowercase.

• If you type any of the letters of the abbreviation in uppercase, Emacs capital-
izes the first letter of the first word.

• If you type all of the letters of the abbreviation in uppercase, Emacs capital-
izes the first letter of every word, unless the variable abbrev-all-caps is set to
t; in this case, it capitalizes all letters.

Table 3-7 shows some examples.

You don’t need to remember the rules, but looking them over may help you out if
you can’t understand how Emacs is capitalizing. In our experience, defining abbrevi-
ations in lowercase circumvents most capitalization problems.

Table 3-7. Word abbreviation capitalization

Abbreviation Definition You type: Expands to: Because:

lc lamb chop lc lamb chop lc is lowercase, so lamb chop is lowercase.

lc lamb chop Lc Lamb chop There’s one capital in Lc, so Lamb is capitalized.

lc lamb chop lC Lamb chop There’s one capital in lC, so Lamb is capitalized.

lc lamb chop LC Lamb Chop LC is all capitals, so both words are capitalized.

lc Lamb Chop lc Lamb Chop Capitals in the definition are always unchanged.

lc Lamb Chop LC Lamb Chop Capitals in the definition are always unchanged.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Word Abbreviations | 81

Table 3-8 summarizes word abbreviation commands.

Problems You May Encounter
• You search for a string you can see on the screen, and Emacs can’t find it. The

most probable explanation is that Emacs is taking into account line breaks and
punctuation, and you’re not including these in the search string. Use word
search, which ignores any line breaks or punctuation, to find the string.

• You get a message that says, Searching for program: No such file or
directory ispell. You don’t have Ispell installed. Ispell is external to Emacs; see
Chapter 13 for details on installing Ispell on Mac OS X and Windows.

• You can’t see the pop-up menu in Flyspell. You activate this pop-up menu by
pointing the mouse at a given word and pressing the middle mouse button.
Essentially, you need a three-button mouse to run Flyspell.

Table 3-8. Word abbreviation commands

Keystrokes Command name Action

M-/ dabbrev-expand Complete this word based on the nearest word that starts with
this string (press M-/ again if that’s not the word you want).

(none) abbrev-mode Enter (or exit) word abbreviation mode.

C-x a - or
C-x a i g

inverse-add-global-abbrev After typing the global abbreviation, type the definition.

C-x a i l inverse-add-mode-abbrev After typing the local abbreviation, type the definition.

(none) unexpand-abbrev Undo the last word abbreviation.

(none) write-abbrev-file Write the word abbreviation file.

(none) edit-abbrevs Edit the word abbreviations.

(none) list-abbrevs View the word abbreviations.

(none) kill-all-abbrevs Kill abbreviations for this session.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

82

Chapter 4CHAPTER 4

Using Buffers, Windows, and Frames

One of the most universally useful features of Emacs is the ability to edit multiple
buffers at once and to display more than one buffer using windows and frames. The
commands for doing this are simple; you learn only a few commands and yet experi-
ence a tremendous boost in productivity. The more you use multiple buffers, frames,
and windows, the more uses you’ll think of for them.

In this chapter, we discuss how to use buffers, windows, and frames. First we cover
the most commonly used commands, then, in the case of buffers and windows, move
on to some more esoteric commands. At the end of the chapter, we discuss book-
marks, a method for marking your place in a file.

Understanding Buffers, Windows,
and Frames
Conceptually, Emacs is different from most applications in two important ways.
First, its window terminology is different. Second, Emacs buffers are not tied to win-
dows or frames, unlike most applications.

Windows Versus Frames
Let’s get our terms straight first. GUI windows are not Emacs windows. Emacs calls
GUI windows frames. In part, this terminology is necessary because Emacs predates
GUIs and is still often used on terminals without GUI windows. Emacs windows are
split screens. We’ve seen them already; for example, when you ask for keyboard
help, you see it displayed in a *Help* buffer at the bottom of your screen. Figures 4-1
and 4-2 show Emacs frames and Emacs windows. In Figure 4-1, we see our dickens
and odyssey buffers in two separate frames. Figure 4-2 shows a single frame display-
ing two Emacs windows, one on top of the other, showing these two files.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Understanding Buffers, Windows, and Frames | 83

From now on, when we say frame, we mean a separate GUI window. When we say
window, we mean a portion of the current Emacs display. And from a practical
standpoint, we emphasize that this is not an either-or proposition. Even if you prefer
multiple frames, you will still use Emacs-style windows sometimes. Emacs itself will
see to that.

Figure 4-1. Editing dickens and odyssey in Emacs frames

Figure 4-2. Editing dickens and odyssey in Emacs windows

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 4: Using Buffers, Windows, and Frames

Buffers: Independent of Windows and Frames
Now what about buffers? Essentially, both windows and frames are ways to display a
buffer, which, as defined in Chapter 1, may contain a copy of a file or not. Buffers
may contain files. They may be Emacs-generated buffers, like *Messages*, *scratch*,
or *Help*. Or they may be buffers that you create but haven’t written to a file.

Most GUI applications tie certain files to certain GUI windows or, in Emacspeak,
frames. Emacs’s detachment of buffers from their display (whether a split display or
a separate frame) is more powerful and flexible. To be honest, most of the time we
prefer using a single Emacs frame and switching between buffers using C-x b. It’s
much easier than mousing between frames or dealing with a split screen, though
each has its advantages in some situations.

More About Buffers
How do you know how many buffers are active in Emacs and what they are? There
are three ways: the buffer list (which appears in a window when you type C-x C-b),
the Buffers menu (which lists active buffers and commands for navigating them), and
the Buffer pop-up menu (accessed by holding down Ctrl and clicking the left mouse
button, which lists buffers by mode).

Emacs creates its own specialized buffers. The names for these internal buffers gener-
ally have the format *buffer name*. *Help*, *scratch*, and *Buffer List* are just a
few of the buffers that Emacs creates.

When you start Emacs, it generates two buffers:

Messages
scratch

Messages is a buffer where Emacs accumulates messages from its startup and from
the minibuffer. *scratch* is just what it sounds like: a temporary scratchpad where
you can type. It won’t be saved unless you explicitly write it to a file using C-x C-w.

Of course, typically you edit files with Emacs. These files are then copied into buff-
ers of the same name. If you ask for help, you’ll also have a *Help* buffer.

The number of buffers you can have really has no limit. Most of the time, only one or
two buffers are displayed, but even if you can’t see them, all the buffers you create in
an Emacs session are still active. You can think of them as a stack of pages, with the
one being displayed as the top page. At any time, you can turn to another page
(another buffer), or you can create a new page.

Each buffer has an associated major mode that determines much about how Emacs
behaves in that buffer. For example, text mode, designed for writing text, behaves
differently from Lisp mode, which is designed for writing Lisp programs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Multiple Buffers | 85

You can display multiple buffers in separate windows or frames or both. The impor-
tant thing to remember is that all the buffers you create are active even if they are not
currently displayed.

Working with Multiple Buffers
If you want to create a buffer that contains a file, simply type C-x C-f to find the file.
Emacs automatically creates a second buffer and moves you there. If you already
have a copy of the file in a buffer, C-x C-f just moves you to the existing buffer. This
move is sensible and probably really what you want anyhow; if C-x C-f read the file
from disk every time, you could end up with many versions of the same file that were
each slightly different. If the filename you give C-x C-f doesn’t exist, Emacs assumes
you want to create a new file by that name and moves you to a blank buffer.

Switching Buffers
C-x C-f is always followed by a filename. The command for moving between buff-
ers, C-x b, is followed by a buffer name. Did you realize that the mode line doesn’t
display filenames but only buffer names? Some versions of Emacs show both, but
GNU Emacs shows only the buffer name. The buffer name and the filename, if any,
are the same unless you change them (see the section “Renaming Buffers,” later in
this chapter).

To move between the buffers, type C-x b. Emacs shows you a default buffer name.
Press Enter if that’s the buffer you want, or type the first few characters of the cor-
rect buffer name and press Tab. Emacs fills in the rest of the name. Now press Enter
to move to the buffer.

You can do the following with C-x b:

If you want to create a second (or third or fourth, etc.) empty buffer, type C-x b.
Emacs asks for a buffer name. You can use any name, for example, practice, and
press Enter. Emacs creates the buffer and moves you there. For example, assume
you’ve been working on your tried-and-true dickens buffer. But you’d like some-
thing new, so you start a new buffer to play with some prose from James Joyce.

If you type C-x b followed by: Emacs:

A new buffer name Creates a new buffer that isn’t connected with a file
and moves there.

The name of an existing buffer Moves you to the buffer (it doesn’t matter whether
the buffer is connected with a file or not).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 4: Using Buffers, Windows, and Frames

This procedure isn’t all that different from using C-x C-f; about the only difference is
that the new buffer, joyce, isn’t yet associated with a file. Therefore, if you quit
Emacs, the editor won’t ask you whether or not you want to save it.

C-x b is especially useful if you don’t know the name of the file you are working
with. Assume you’re working with some obscure file with an unusual name such
as .saves-5175-pcp832913pcs.nrockv01.ky.roadrunner.com. Now assume that you
accidentally do something that makes this buffer disappear from your screen.
How do you get .saves-5175-pcp832913pcs.nrockv01.ky.roadrunner.com back
onto the screen? Do you need to remember the entire name or even a part of it?
No. Before doing anything else, just type C-x b. The default buffer is the buffer
that most recently disappeared; type Enter and you’ll see it again.

Alternatively, the Buffer Menu popup lists buffers by major mode, and you can
choose one. Hold down Ctrl and click the left mouse button to see a pop-up menu of

Type: C-x b joyce

You typed a new buffer name.

Type: Enter

Now you have a new buffer named joyce to type in.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Multiple Buffers | 87

your current buffers. (The Buffers menu at the top of the screen also shows all cur-
rent buffers.)

To cycle through all the buffers you have, type C-x ➝ to go to the next buffer (in the
buffer list) or C-x ← to go to the previous buffer. (Don’t hold down Ctrl while you
press the arrow key or Emacs beeps unhappily.)

Deleting Buffers
It’s easy to create buffers, and just as easy to delete them when you want to. You may
want to delete buffers if you feel your Emacs session is getting cluttered with too
many buffers. Perhaps you started out working on a set of five buffers and now want
to do something with another five. Getting rid of the first set of buffers makes it a bit
easier to keep things straight. Deleting a buffer can also be a useful emergency
escape. For example, some replacement operation may have had disastrous results.
You can kill the buffer and choose not to save the changes, then read the file again.

Deleting a buffer doesn’t delete the underlying file nor is it the same as not display-
ing a buffer. Buffers that are not displayed are still active whereas deleted buffers are
no longer part of your Emacs session. Using the analogy of a stack of pages, deleting
a buffer is like taking a page out of the current stack of buffers you are editing and fil-
ing it away.

Hold down Ctrl and click the left mouse button.

Emacs displays a pop-up menu of current buffers by mode (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 4: Using Buffers, Windows, and Frames

Deleting buffers doesn’t put you at risk of losing changes, either. If you’ve changed
the buffer (and the buffer is associated with a file), Emacs asks if you want to save
your changes before the buffer is deleted. You will lose changes to any buffers that
aren’t connected to files, but you probably don’t care about these buffers.

Deleting a buffer is such a basic operation that it is on the Emacs toolbar, the X sym-
bol. Now let’s learn how to do it from the keyboard to increase your fluency in Emacs.

To delete a buffer, type C-x k (for kill-buffer). Emacs shows the name of the buffer
currently displayed; press Enter to delete it or type another buffer name if the one
being displayed is not the one you want to delete, then press Enter. If you’ve made
changes that you haven’t yet saved, Emacs displays the following message:

Buffer buffer name modified. Kill anyway? (yes or no).

To ditch your changes, type yes, and Emacs kills the buffer. To stop the buffer dele-
tion process, type no. You can then type C-x C-s to save the buffer, followed by C-x k
to kill it.

You can also have Emacs ask you about deleting each buffer, and you can decide
whether to kill each one individually. Type M-x kill-some-buffers to weed out
unneeded buffers this way. Emacs displays the name of each buffer and whether or
not it was modified, then asks whether you want to kill it. Emacs offers to kill each
and every buffer, including the buffers it creates automatically, like *scratch* and
Messages. If you kill all the buffers in your session, Emacs creates a new *scratch*
buffer; after all, something has to display on the screen!

Working with Windows
Windows are areas on the screen in which Emacs displays the buffers that you are
editing. You can have multiple windows on the screen at one time, each displaying a
different buffer or different parts of the same buffer. Granted, the more windows you
have, the smaller each one is; unlike GUI windows, Emacs windows can’t overlap, so
as you add more windows, the older ones shrink. The screen is like a pie; you can cut
it into many pieces, but the more pieces you cut, the smaller they have to be. You
can place windows side-by-side, one on top of the other, or mix them. Each window
has its own mode line that identifies the buffer name, the modes you’re running, and
your position in the buffer. To make it clear where one window begins and another
ends, mode lines are usually shaded.

As we’ve said, windows are not buffers. In fact, you can have more than one win-
dow on the same buffer. Doing so is often helpful if you want to look at different
parts of a large file simultaneously. You can even have the same part of the buffer
displayed in two windows, and any change you make in one window is reflected in
the other.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Windows | 89

The difference between buffers and windows becomes important when you think
about marking, cutting, and pasting text. Marks are associated with buffers, not with
windows, and each buffer can have only one mark. If you go to another window on
the same buffer and set the mark, Emacs moves the mark to the new location, forget-
ting the place you set it last.

As for cursors, you have only one cursor, and the cursor’s location determines the
active window. However, although there is only one cursor at a time, each window
does keep track of your current editing location separately—that is, you can move
the cursor from one window to another, do some editing, jump back to the first win-
dow, and be in the same place. A window’s notion of your current position (whether
or not the cursor is in the window) is called the point. Each window has its own
point. It’s easy to use the terms point and cursor interchangeably—but we’ll try to be
specific.

You can create horizontal windows or vertical windows or both, but personally we
place vertical windows with the more advanced esoterica near the end of the chap-
ter. Here we’ll discuss creating horizontal windows, finding a file in a new window,
and deleting windows.

Creating Horizontal Windows
The most commonly used window command is C-x 2 (for split-window-vertically).
This command splits the current window into two, horizontally oriented windows.
You can repeat this command to split the screen into more horizontal windows.

Initial state:

Editing our trusty dickens buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 4: Using Buffers, Windows, and Frames

You can also have Emacs set up windows for you when you start a session. If you
want to edit two files in horizontal windows, specify their filenames when you start
Emacs at a command prompt. For example, if you wanted to edit dickens and joyce,
you would type emacs dickens joyce and Emacs would display these files in two hor-
izontal windows. If you try this with more than two files, Emacs displays two hori-
zontal windows, with a file in one and a list of buffers in the other.

A number of the “other window” commands are just the ordinary command with a 4
inserted in it. For example, to find a file in another window, type C-x 4 f. (If only one
window is currently open, Emacs opens another one.) To select a different buffer in
another window, type C-x 4 b. Many users find these commands preferable to the
normal C-x C-f and C-x b commands because they save you a step: you need not
move to the window, give a command, and move back.

Once you’ve got multiple windows open, it’s helpful to be able to scroll them with-
out moving there. To scroll the other window, type C-M-v.

Moving Between Windows
To move from one window to another, type C-x o (o stands for other in this com-
mand). If you have more than two windows displayed, Emacs moves from one to the
next. There’s no way to specify which window to move to, so you may have to type
C-x o a few times to get to the one you want if you have more than two windows dis-
played. (You can also click your mouse in a window if you’re using the GUI version.)

Type: C-x 2

The screen is divided into two horizontal windows; the mode line demarcates each
window.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Windows | 91

Now that you can create windows and can move between them, what else can you
do? Practically anything. With our two windows on dickens open, one on top of the
other. Initially, both of these windows are looking at the same file.

We can give any editing commands we want within either window. We can move
back and forth in one window without affecting the other. Let’s see what happens if
we want to edit another file.

Type: C-x 2

Two windows open on dickens.

Type: C-x C-f blake

Now you have two windows, two buffers, and two files.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 4: Using Buffers, Windows, and Frames

By using C-x o, we can edit one file and then the other. We can kill text from one
buffer and yank it back in another. For example, let’s move the first line of Blake’s
poem to the top of the dickens buffer.

Editing with multiple buffers in separate windows is particularly useful if, for exam-
ple, you want to copy material from one file to another or if you want to read a file
containing reference material while editing another. Programmers often need to look
at several different files at the same time—for example, a header file and a code file,
or a function call site and the routine that’s being called. Once you get used to the
commands for moving between different windows, you may spend most of your time
with two or three windows on your screen.

Getting Rid of Windows
Deleting a window only means that it isn’t displayed anymore; it doesn’t delete any of
the information or any of your unsaved changes. The underlying buffer is still there,
and you can switch to it using C-x b. To delete the window you’re in, type C-x 0
(zero). If you want to delete all windows but the one you’re working on, type C-x 1
(one), meaning “make this my one and only window.” As you’d expect, the remaining
window “grows” to fill up the rest of the space. You can also delete all windows on a
certain buffer by typing: M-x delete-windows-on Enter buffername Enter.

Type: C-k C-k C-x o M-< C-y Enter

The Blake text has been yanked into the dickens buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Frames | 93

Working with Frames
By now you know that Emacs calls GUI windows “frames.” In this section, we’ll
cover how to create frames, navigate between frames, and delete frames.

Creating a New Frame
To open a new frame, type C-x 5 2 (for make-frame). Emacs makes a new frame con-
taining the current buffer and puts it on top of the current frame.

If your new frame completely overlaps your current frame, you may need to size the
new frame to tell them apart. For a more convenient solution, add these lines to your
.emacs file:

(setq initial-frame-alist '((top . 10) (left . 30)
 (width . 90) (height . 50)))
(setq default-frame-alist '((width . 80) (height . 45)))

These lines set up sizes for the width and height of Emacs frames. The first frame is
the size set in initial-frame-alist (in this example, 90 characters wide by 50 lines high
with top and left defining an inset), and subsequent frames, specified by default-
frame-alist, will be 80 characters wide and 45 lines high. Depending on your dis-
play, you can make these numbers smaller or larger.

Here we edit a bit of Henry James.

Type: C-x 5 2

Emacs opens a new frame titled james

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 4: Using Buffers, Windows, and Frames

Let’s say we want to open a frame on our dickens buffer.

If you type C-x b to move to another buffer, the name at the top of the frame changes
to the new buffer’s name (and on Linux, it shows the path as well). To move to a
buffer and put it in a new frame, type C-x 5 b. You might have guessed that one.

Frame Names
Note the title of your new frame. The first frame in your session, your initial Emacs
frame, displays Emacs@system name at the top (or Emacs’s best guess at the system
name). Any other frames you create display the buffer name at the top. In fact, once
you have multiple frames, all frames display the buffer name as their title. If you delete
all frames but one, the title once again reverts to Emacs@system name.

Type: C-x 5 f dickens Enter

Emacs opens a new frame on dickens.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

More About Buffers | 95

Moving Between Frames
You can move between frames in several ways. You can use the mouse to select a
frame or press C-x 5 o to go to another frame. To see a list of current frames, select
Frames from the Buffers menu. (If you have only one frame, the Frames option does
not appear on this menu.)

Deleting and Minimizing Frames
To get rid of a frame, press C-x 5 0. Emacs deletes the frame you are in. Deleting a
frame, like deleting a window, affects only the display. The underlying buffer is still
active, and you can move to it by typing C-x b.

If you try to use C-x 5 0 to delete the only frame that is left, Emacs won’t do it. To
exit Emacs, type C-x C-c or close the frame as you would any other GUI window
using the mouse.

To minimize a frame, either minimize it in the usual way or press C-z. Table 4-1
summarizes the frame commands.

More About Buffers
In this section, we’ll learn about saving multiple buffers, renaming buffers, read-only
buffers, and operations you can do with the buffer list—not only a useful tool but a
good introduction to the principles you’ll encounter in the directory editor, Dired,
covered in Chapter 5.

Saving Multiple Buffers
You know about saving buffers individually by typing C-x C-s. Once you’re using
multiple buffers, you should also know that you can save them all at once by typing
C-x s (for save-some-buffers). Emacs asks you if you want to save each buffer that is

Table 4-1. Frame commands

Keystrokes Command name Action

C-x 5 o
Buffers ➝ Frames

other-frame Move to other frame.

C-x 5 0
File ➝ Delete Frame

delete-frame Delete current frame.

C-x 5 2
File ➝ New Frame

make-frame Create a new frame on the current buffer.

C-x 5 f find-file-other-frame Find file in a new frame.

C-x 5 r find-file-read-only-other-frame Finds a file in a new frame, but it is read-only.

C-x 5 b switch-to-buffer-other-frame Make frame and display other buffer in it.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 4: Using Buffers, Windows, and Frames

connected with a file (it doesn’t offer to save new buffers you’ve created but have not
associated with a file and, of course, it doesn’t save its own internal buffers). For
each buffer, you can answer y to save it or n not to. You can also type ! to save all the
buffers without asking. If you want to save this buffer and no more, type a period (.).
If you want to cancel the command and not save the current buffer, press q (of
course, any buffers you saved before pressing q are already saved; q does not undo
those). You may want to look at the buffer before deciding whether to save it; if so,
type C-r. Emacs enters view mode, allowing you to look at the buffer but not make
changes. Press q to exit view mode and continue saving buffers.

Renaming Buffers
When you are editing a file, the buffer takes on the name of the file. If you have long
filenames, you may find it convenient to rename buffers to shorter names (this
renaming doesn’t affect the filename, just the buffer name). This feature is mostly
useful on versions of Emacs that don’t offer good completion capabilities; in GNU
Emacs, whenever you have to type a buffer name, you just type the first few unique
letters and press Tab to have Emacs complete the name for you. In some circum-
stances, you may want to rename buffers.

To rename a buffer, type M-x rename-buffer. Emacs asks for the new name; type it
and press Enter. The new name is displayed on the mode line. Renaming buffers
comes in particularly handy in shell mode, described in Chapter 5. You start one
command shell, and then rename the buffer and start another, in this way running as
many shells as you have use for simultaneously.

As mentioned earlier, in GNU Emacs only the buffer name is displayed on the mode
line, rather than the buffer name and the filename. Even if you rename a buffer that
contains a file, Emacs remembers the connection between buffer and file, which you
can see if you save the file (C-x C-s) or display the buffer list (described later in the
chapter).

What if you have two buffers with the same name? Let’s say you are editing a file called
outline from your home directory and another file called outline from one of your sub-
directories. Both buffers are called outline, but Emacs differentiates them by append-
ing <2> to the name of the second buffer. (You can tell which is which by looking at the
buffer list, discussed later in this chapter.) Emacs offers an option that adds a directory
to buffers in this situation: select Use Directory in Buffer Names from the Options
menu. Let’s say you’ve turned on this option and are editing a file called .localized;
Emacs will call this buffer simply .localized. Now you find a second file of the same
name from a subdirectory. Instead of calling this buffer .localized<2>, Emacs names
the buffer directory/.localized, making it easy for you to tell the buffers apart at a
glance. This option has some limitations. It shows only the parent directory, not the
full path, and it shows directory names only if multiple buffers have the same name.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

More About Buffers | 97

We wish it would go a bit further and provide the option of including the directory on
the mode line for all buffers.

One word of advice: if you have a lot of buffers with names like proposal, proposal <2>,
and proposal<3> around, you’re probably forgetting to edit the directory when you ask
for a file. If you try to find a file but get the directory wrong, Emacs assumes you want
to start a new file. For example, let’s say you want to edit the file ~/work/proposal, but
instead ask for the file ~/novel/proposal. Since ~/novel/proposal doesn’t exist, Emacs cre-
ates a new, empty buffer named proposal. If you correct your mistake (C-x C-f ~/work/
proposal), Emacs renames your buffers accordingly: your empty buffer proposal is
associated with ~/novel/proposal; the buffer you want is named proposal<2>.

Here’s a hint for dealing with the very common mistake of finding the wrong file. If
you notice that you’ve found the wrong file with C-x C-f, use C-x C-v to replace it
with the one you want. C-x C-v finds a file, but instead of making a new buffer, it
replaces the file in the current buffer. It means “get me the file I really meant to find
instead of this one.” Using this command circumvents the problem of having unnec-
essary numbered buffers (i.e., proposal, proposal<2>, and so on) lying around.

Read-Only Buffers
While you’re working, you may need to read some file that you don’t want to
change: you just want to browse through it and look at its contents. Of course, it is
easy to touch the keyboard accidentally and make spurious modifications. We’ve
discussed several ways to restore the original file, but it would be better to prevent
this from happening at all. How?

You can make any buffer read-only by pressing C-x C-q. Try this on a practice buffer
and you’ll notice that two percent signs (%%) appear on the left side of the mode line,
in the same place where asterisks (**) appear if you’ve changed a buffer. The percent
signs indicate that the buffer is read-only.* If you try to type in a read-only buffer,
Emacs just beeps at you and displays an error message (Buffer is read-only) in the
minibuffer. What happens when you change your mind and want to start editing the
read-only buffer again? Just type C-x C-q again. This command toggles the buffer’s
read-only status—that is, typing C-x C-q repeatedly makes the buffer alternate
between read-only and read-write.

Of course, toggling read-only status doesn’t change the permissions on a file. If
you are editing a buffer containing someone else’s file, C-x C-q does not change
the read-only status. One way to edit someone else’s file is to make a copy of your
own using the write-file command, and then make changes. Let’s say you want to

* The exception to the rule that ** means changed and %% means read-only is the *scratch* buffer. Because
Emacs doesn’t warn you if you kill the *scratch* buffer, even if it is changed, it wants to give you some indi-
cation that there are unsaved changes. Instead of %%, the *scratch* buffer puts %* on the mode line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 4: Using Buffers, Windows, and Frames

change a proposal that is owned by someone else. Read the file, write the file as
one you own using C-x C-w, then change it from read-only to writable status by
pressing C-x C-q. None of this, of course, modifies the original file; it just gives
you a copy to work with. If you want to move a minor amount of text from a read-
only file to another, you can mark the text then press M-w to copy it. Move to the
place you want to put the text and press C-y to paste it.

You can open a file as read-only in a new window by typing C-x 4 r or in a new frame
by typing C-x 5 r. This is one of a number of commands in which 4 means window
and 5 means frame.

Getting a List of Buffers
Because you can create an unlimited number of buffers in an Emacs session, you can
have so many buffers going that you can’t remember them all. At any point, you can
get a list of your buffers (yes, we know you know how to do that by holding down
Ctrl and clicking the left mouse button, but this is a little different). This list pro-
vides you with important information—for example, whether you’ve changed the
buffer since you last saved it.

If you press C-x C-b, Emacs lists your buffers. It creates a new *Buffer List* win-
dow on the screen, which shows you all the buffers.

You can use this list as an informational display (“these are my buffers”) or you can
actually work with buffers from this list, as covered in the next section.

Figure 4-3 shows what each of the symbols in the buffer list means.

Type: C-x C-b

Emacs displays a list of buffers.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

More About Buffers | 99

Working with the Buffer List
The buffer list is more than a display. From the buffer list, you can display, delete,
and save buffers. To move to the buffer list window, type C-x o. Emacs puts the cur-
sor in the first column. For a particular buffer, press n or C-n to move down a line or
p or C-p to move up a line. You can also press Space to move down to the next line
and Del to move up. (The up and down arrow keys work, too.) This array of up and
down choices may seem confusing, but multiple bindings are given to make it easy to
move up and down without consulting a book like this one.

You use a set of one-character commands to work with the buffers that are listed. To
delete a buffer, go to the line for the buffer you want to delete and type d or k. The
letter D appears in the first column. You can mark as many buffers for deletion as you
want to. The buffers aren’t deleted immediately; when you’re finished marking buff-
ers, press x (which stands for “execute”) to delete them. If any of the buffers you
want to delete are connected with files, Emacs asks if you want to save the changes
before doing anything. (Note that it does not ask you about buffers that aren’t con-
nected with files, so be sure to save any that you want before deleting them.)

If you change your mind about deleting a buffer before typing x, you can unmark the
buffer by going to the appropriate line and typing u. As a convenience, the Del key
also unmarks the previous buffer in the list. Why would you do this? Simple: d auto-
matically moves you down one line. If you mark a file for deletion and immediately
change your mind, you can press a single Del rather than moving to the previous line
and typing u for unmark).

Figure 4-3. Understanding the buffer list

Current,
Modified, or

read-only

Buffer name Size in bytes

Major mode
File being edited

(and its path)

CRM - Key

% - read only
- marked for deletionD S - marked for saving

- displayed.
* - modified

> - marked for display

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 4: Using Buffers, Windows, and Frames

To save a buffer, go to the line for the buffer you want to save and press s. The letter
S appears in the first column. Press x when you really want to save the buffer. There-
fore, you can look at the buffer list, choose which buffers you want to delete and
which you want to save, and then type x to do everything at once. Again, you can
press u or Del to cancel saves if you change your mind.

One command that affects a buffer immediately when you type it is tilde (~). Typing
~ marks a buffer as unmodified. In effect, this symbol tells Emacs not to save changes
automatically (since the buffer is unmodified, Emacs has no reason to save changes
with its auto-save feature). Of course, if you have made changes, the changes are still
in the buffer; it’s just that you’re in essence “lying” to Emacs to say that no changes
have been made. Also, if you change the buffer again after marking it unmodified,
Emacs once again knows it has been modified and saves it automatically in a backup
file. The backup filename (not coincidentally) has the format filename~.

You can change a buffer’s status from read-write to read-only and back again by
pressing %. Pressing % changes the buffer’s status immediately. Percentage signs
appear on the mode line when a buffer is read-only. When you are editing, you can
toggle a buffer between read-write and read-only by pressing C-x C-q, as we dis-
cussed earlier.

You can also use the buffer list to display multiple buffers in windows. To display
one of the buffers in a full screen, move the cursor into the buffer list’s window; use
C-n and C-p to move to the line for the buffer that you want, and press 1 (the num-
ber one). Emacs displays the buffer in a full-screen window.

If you want to display one of the buffers in place of the buffer list, you can press f. To
put a buffer in another window (i.e., one not occupied by the buffer list), type o. Emacs
displays the buffer in the other window and puts the cursor there. Pressing C-o has a
slightly different result; Emacs displays the buffer in another window but doesn’t put
the cursor there.

One final buffer display command remains. You can ask Emacs to display multiple
buffers and have Emacs create windows for them dynamically. To select buffers to be
displayed in windows, press m (for mark) next to the buffers you want. Emacs dis-
plays a > next to the buffers you mark with m. To tell Emacs to display the buffers
you’ve marked, press v. Emacs makes horizontal windows to display the buffers
you’ve chosen.

To get rid of the *Buffer List* window, type C-x 0 if you are in the buffer list win-
dow or C-x 1 (the number one) if you are in another window. Table 4-2 shows a
summary of buffer manipulation commands.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

More About Buffers | 101

Table 4-3 summarizes the commands for working with the buffer list.

Table 4-2. Buffer manipulation commands

Keystrokes Command name Action

C-x b
Buffers ➝ Select Named Buffer

switch-to-buffer Move to the buffer specified.

C-x ➝

Buffers ➝ Next Buffer
next-buffer Move to the next buffer in the buffer list.

C-x ←
Buffers ➝ Previous Buffer

previous-buffer Move to the previous buffer in the buffer list.

C-x C-b
Buffers ➝ List All Buffers

list-buffers Display the buffer list.

C-x k kill-buffer Delete the buffer specified.

(none) kill-some-buffers Ask about deleting each buffer.

(none) rename-buffer Change the buffer’s name to the name specified.

C-x s save-some-buffers Ask whether you want to save each modified buffer.

Table 4-3. Buffer list commands

Keystrokes Action Occurs

C-n, Space, n, or ↓ Move to the next buffer in the list (i.e., down one line). Immediately

C-p, p, or ↑ Move to the previous buffer in the list (i.e., up one line). Immediately

d Mark buffer for deletion. When you press x

k Mark buffer for deletion. When you press x

s Save buffer. When you press x

u Unmark buffer. Immediately

x Execute other one-letter commands on all marked buffers. Immediately

Del Unmark the previous buffer in the list; if there is no mark, move up one line. Immediately

~ Mark buffer as unmodified. Immediately

% Toggle read-only status of buffer. Immediately

1 Display buffer in a full screen. Immediately

2 Display this buffer and the next one in horizontal windows. Immediately

f Replace buffer list with this buffer. Immediately

o Replace other window with this buffer. Immediately

m Mark buffers to be displayed in windows. When you press v

v Display buffers marked with m; Emacs makes as many windows as needed. Immediately

q Quit buffer list. Immediately

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 4: Using Buffers, Windows, and Frames

More About Windows
Depending on your requirements, you may want to work with side-by-side windows
in addition to or instead of horizontal windows. For finer control, you may want to
know how to size windows (and because they’re not GUI windows, you can’t do that
with the mouse).* You may also want to know how to compare files between win-
dows, a good feature for basic file comparison.

Creating Vertical or Side-by-Side Windows
To split the window vertically into two side-by-side windows, type C-x 3. You can
execute this step repeatedly to create more side-by-side windows.

When you create multiple vertical windows, Emacs usually doesn’t have enough
room to display a full line of text. Because vertical windows don’t usually show full
lines of text, a right arrow (on graphical implementations) or a dollar sign (on termi-
nal-based implementations) at the end of a line tells you the line is continued.

To see the rest of the line, you need to know how to scroll text to the left and right. To
push the text currently being displayed to the left (so you can see what’s on the right),
type C-x <. Left arrows or dollar signs are displayed on the left side of the window to
indicate that there is more text to the left. To push the text being displayed to the right
(so you can see what’s on the left), type C-x >. You can use these commands whenever
one of your lines is too wide, which can happen with or without windows.

* It’s true that you can’t resize Emacs windows using the mouse. But if you resize an Emacs frame, it does
impact the size of the windows, even eliminating windows at times if the frame cannot display all the win-
dows. Of course, as always, eliminating a window doesn’t impact the underlying buffer.

Type: C-x 3

Emacs creates two vertical windows.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

More About Windows | 103

Navigating Windows
How do you move between windows? As we mentioned earlier, C-x o moves you to
the “next” window. But how does Emacs determine what that is?

The best way to express it is to say that Emacs moves through the windows in natu-
ral reading order, from left to right, then down, and again from left to right. In
Figure 4-4, buffer names are numbered to show you how Emacs moves from one
window to the next.

Alternatively, you can simply select the window you want using the mouse.

Figure 4-4. Moving between windows (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 4: Using Buffers, Windows, and Frames

Enlarging and Shrinking Windows
Emacs always splits windows into two equal parts. Such a split is often good enough,
but sometimes it’s not, particularly if you become a window aficionado. When you
have four or five or six windows on your screen at once, controlling each window’s
size becomes important. Otherwise, the windows you are most interested in will
eventually become too small, and useful editing is almost impossible when you can
see only five or six lines from a file. If you want to make the window you’re working
on taller, type C-x ^. Emacs lengthens the current window and makes the one below
it smaller, accordingly. To make the current window wider, type C-x }. Emacs makes
this window wider, at the expense of the one to the right of it.

To make windows smaller, you can shrink them. To shrink a window vertically, type
M-x shrink-window. Emacs shrinks the current window by one line and the other win-
dows on the screen grow accordingly. To shrink a window horizontally, type C-x {.
This command makes the window one column narrower and enlarges the other win-
dows on the screen horizontally.

Usually you want to work in larger increments than one line or one column at a time,
however. When you type C-u preceding any of these commands, the command
works in increments of four lines or columns at a time. For example, with two hori-
zontal windows on the screen, let’s use C-u C-x ^ to enlarge the james window.

As you would expect, when you make the window larger, it automatically fills with
more text from the buffer. There are shortcuts to sizing windows as well. If you have a
very small buffer—for example, a one-line buffer containing the vocabulary-building
word for the day and its definition—you can shrink the window to the size of the
buffer by typing C-x - (for shrink-window-if-larger-than-buffer). If the buffer is larger

Type: C-u C-x ^

Emacs makes the current window larger.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

More About Windows | 105

than the window, this command does nothing. Typing C-x + (for balance-windows)
creates windows of equal size again. (This latter command is also useful if you have an
odd number of windows; C-x + divides the display equally among them.)

Limits on Window Size
Windows in Emacs can be as big as your screen. There’s a limit to how small win-
dows can be, however, and this limit is specified by the variables window-min-
height (whose default is four lines) and window-min-width (whose default is ten
characters). If you enlarge other windows to the point that their counterparts
become less than ten characters wide or four lines high, Emacs deletes the smaller
windows. You can set these variables to other values if you want to; more informa-
tion on setting variables is found in Chapter 10.

Comparing Files Between Windows
Especially if you’re looking for minute differences between large files, the compare-
windows command comes in handy. To use compare-windows, you must first have
the buffers you want to compare in two windows, either side by side or horizontally.
Go to the beginning of each buffer, then type M-x compare-windows. Emacs scrolls
each buffer to the place where the discrepancy is. It places the point in each buffer at
the place of the discrepancy, so using C-x o to move the cursor between buffers will
show you exactly where the files differ.*

Of course, this maneuver finds only the first difference between the two buffers. Find-
ing the second, third, and so on, is a bit tricky. The compare-windows command
works only if the point in both buffers is in exactly the same place. Therefore, you
need to move past the discrepancy in both buffers before you can type M-x compare-
windows again. The Unix diff command provides a more comprehensive (although
somewhat awkward looking) way to find the differences between two files. Emacs
also provides an interface to Ediff, with options on the Compare menu (a submenu of
the Tools menu). Ediff is far more comprehensive; see Chapter 12 for details.

Table 4-4 summarizes the window commands discussed in this chapter.

* You can have more than two windows on the screen, but only two are compared: the one the cursor is in and
the next window (remember that the next window is either to the right or down if there is no window to the
right).

Table 4-4. Window commands

Keystrokes Command name Action

C-x 2
File ➝ Split Window

split-window-vertically Divide current window into two
windows, one above the other.

C-x 3 split-window-horizontally Divide current window into two
side-by-side windows.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 4: Using Buffers, Windows, and Frames

Holding Your Place with Bookmarks
Once you start working with multiple files, remembering just where you were in
each one becomes harder. Bookmarks provide a convenient way of marking your
place in a file, a place you can easily return to. You might, for example, be working
with a file that has a long pathname. Rather than retype the pathname each time you
start Emacs, you could just jump to a bookmark you’ve named current project by
having Emacs find the file and put the cursor wherever you set the bookmark.

Bookmarks make the process of finding your place in any file easier. Particularly if
you are working on a project several directories down from your home directory or
in a totally different filesystem, putting bookmarks in the file makes it easy to get
back there.

C-x > scroll-right Scroll the window right.

C-x < scroll-left Scroll the window left.

C-x o other-window Move to the other window; if there
are several, move to the next win-
dow (see “Navigating Windows”).

C-x 0 delete-window Delete the current window.

C-x 1
File ➝ Unsplit Windows

delete-other-windows Delete all windows but this one.

(none) delete-windows-on Delete all windows on a given
buffer.

C-x ^ enlarge-window Make window taller.

(none) shrink-window Make window shorter.

C-x } enlarge-window-horizontally Make window wider.

C-x { shrink-window-horizontally Make window narrower.

C-x - shrink-window-if-larger-than-buffer Make window smaller if buffer is
smaller than window.

C-x + balance-windows Make windows the same size.

C-M-v scroll-other-window Scroll other window.

C-x 4 f find-file-other-window Find a file in the other window.

C-x 4 b switch-to-buffer-other-window Select a buffer in the other win-
dow.

(none)
Tools ➝ Compare (Ediff) ➝

This Window and Next Window

compare-windows Compare this window with the
next window and show the first
difference.

Table 4-4. Window commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Holding Your Place with Bookmarks | 107

When you create a bookmark, Emacs creates a bookmark file in your home direc-
tory, called .emacs.bmk. It saves any new bookmarks in this file automatically when
you exit Emacs.

Bookmarks are stored by user. If you and others access the same online documenta-
tion set, you can hold your place with your bookmark and they can hold their places
with theirs, never interfering with each other’s reading.

From the Edit menu, you can access the Bookmarks menu, which lists all the book-
mark commands you’ll probably ever need. We feel the menu interface for book-
marks is particularly well developed; even if you don’t normally use menus, you
might want to make an exception in this case. (At least until you learn the com-
mands. Bookmarks are addictive, and when you use them frequently, the commands
are easier to type than to reach by menu.)

Setting Bookmarks
To place a bookmark at the cursor position, type C-x r m (for bookmark-set). Emacs
asks for a bookmark name, which can be virtually any length (practically speaking, as
long as the width of your display) and can include spaces (so current project or Moore
proposal’s greatest flaw or Othello Act 2 Scene 4 would all be fine). Emacs also
puts a default bookmark in parentheses, suggesting the filename if you haven’t used a
bookmark during this session (in which case it uses the bookmark name). Either press
Enter to accept the default or type a bookmark name and then press Enter. You now
have a bookmark you can jump to at any time, in any Emacs session.

One subtlety: if you give a new bookmark the same name as an old one, Emacs
assumes you just want to move the bookmark, even if it was formerly in another
file. So remember to make bookmark names unique unless you are really trying to
move them.

Moving to a Bookmark
To move to a bookmark, press C-x r b (for bookmark-jump). Type the bookmark’s
name, or type the first few letters and press Tab. Emacs either finishes the book-
mark’s name or gives you a window of possible choices. Press Enter after the book-
mark’s name appears. Emacs retrieves the file and places the cursor at the bookmark
location; the file is retrieved no matter how complicated its path is.

With menus, there’s an easier way to move to a bookmark. When you select Edit ➝

Bookmarks ➝ Jump to Bookmark, Emacs displays a window of available book-
marks. Select the bookmark you want, and Emacs displays the file with the cursor in
the bookmark’s position. This is useful if you have set many bookmarks, but we pre-
fer to stick with the keyboard as much as possible.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 4: Using Buffers, Windows, and Frames

Renaming and Deleting Bookmarks
You may find that you made the name of your bookmark too generic; current
project may be too vague if you are juggling projects and the one in your hand is the
current one. To rename a bookmark, type M-x bookmark-rename. If you do the
renaming from the keyboard, Emacs prompts Old bookmark name: and you type the
old name and press Enter. (If you use the menus, you select the old name from a
window instead.) Then Emacs asks, New name: and you type the new name and press
Enter, all very straightforwardly. Renaming a bookmark does just that and nothing
else: it doesn’t change the bookmark’s location or its contents; it simply changes its
name.

To delete a bookmark, press M-x bookmark-delete. Type the name of the book-
mark to delete or select it with the mouse. Deleting a bookmark doesn’t in any way
affect the file that was marked.

This discussion brings up an interesting question. What happens if you delete text in
a file in which you’ve put a bookmark? Because a bookmark points to a position in a
file and not to a piece of text, the bookmark stays in the same place after the text is
deleted, just as the cursor remains in the same place after you delete several para-
graphs. This fact is more intuitive than it sounds. You don’t delete bookmarks by
deleting marked text. Let’s say you have a file with four lines. You bookmark the
third line, then later delete lines two through four. When you jump to that book-
mark again, it appears after the first line, the end of the file.

Inserting text works the same way. Bookmarks point to a position in a file, not to
text. If you insert a new line before the third line, the bookmark remains at the point
in the file where you set it, in this case, the beginning of the new line. If you move
text around, the bookmark points to the same location in the file, the line and col-
umn where you set it.

What happens if you delete a file that has a bookmark in it? If you delete the whole
file or even rename it and then try to access a bookmark attached to the file, Emacs
gives you the following error message:

filename nonexistent. Relocate "bookmark name"? (y or n)

If you press y, you can give a new path to the file, which works well if you really just
renamed or moved the file but didn’t delete it. If you press n, however, Emacs gives
you a message, along with some advice:

Bookmark not relocated, consider removing it

In other words, Emacs argues that no one needs bookmarks to nonexistent files, and
we’re inclined to agree.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Holding Your Place with Bookmarks | 109

Working with a List of Bookmarks
Remember the buffer list we discussed earlier in this chapter? Bookmarks have a sim-
ilar list with one-letter commands that allow you to work with all your bookmarks at
once.

To work with a list of bookmarks, type C-x r l (the lowercase letter “L”). The
Bookmark List buffer appears.

If you press Enter, f, or j, Emacs displays the bookmarked file with the cursor in the
bookmarked location. From the bookmark list, press d to mark bookmarks for dele-
tion, then x to delete them (unlike in the buffer list, in the bookmark list, deleting is
the only reason you need the x command). If you change your mind, press Del to
remove the d before you press x. Pressing r renames a bookmark, and Emacs
prompts you for the new name. To save all the bookmarks, press s. You can mark
several bookmarks and then display their associated files by typing m next to the
bookmarks. A > appears beside bookmarks you’ve marked. When you’ve marked all
you want, type v (for view) and Emacs pulls up the files associated with the book-
marks and displays them in multiple windows (with the cursor at the bookmarked
location, of course). If you just want to move to one bookmarked file, you can press
v without marking the bookmark first.

You can change the display of the bookmark list slightly by pressing t. By default, the
list shows a bookmark’s name, followed by the complete path to the file with which
it is associated. If you press t (for toggle), only the bookmark names appear.

Type: C-x r l

Emacs displays a list of bookmarks and the path to the associated files.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 4: Using Buffers, Windows, and Frames

Table 4-5 summarizes the bookmark list commands. It includes a few commands
relating to annotations; we’ll cover these in the next section.

Annotating Bookmarks
You can add annotations to your bookmarks. These annotations can provide any
type of information you want: details about the file in question, what you are doing
with it, documentation for someone else on your project to review when looking at
your files, or really anything you want.

Annotations are most easily added from the bookmark list itself. Open the book-
mark list using C-x r l, then move to the line of the bookmark you want to annotate.
Type e, the command to edit an annotation.

Table 4-5. Commands for editing the bookmark list

Command Action

Enter, f, or j Go to the bookmark on the current line.

C-o or o Open the bookmark on the current line in another window; o moves the
cursor to that window; C-o keeps the cursor in the current window.

d, C-d, or k Flag bookmark for deletion.

r Rename bookmark.

s Save all bookmarks listed.

m Mark bookmarks to be displayed in multiple windows.

v Display marked bookmarks or the one the cursor is on if none are
marked.

t Toggle display of paths to files associated with bookmarks.

w In the minibuffer, display location of file associated with bookmark.

x Delete bookmarks flagged for deletion.

u Remove mark from bookmark.

Del Remove mark from bookmark on previous line or move to the previous
line (if there is no mark).

q Exit bookmark list.

Space or n Move down a line.

p Move up a line.

l Load a bookmark file (other than the default).

A Display all annotations.

a Display annotation for current bookmark.

e Edit (or create) annotation for the current bookmark.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Holding Your Place with Bookmarks | 111

Emacs provides some guidance in this buffer about what to do. It says that all lines
that start with a comment mark (#) will be deleted and that you press C-c C-c to
save and exit the annotations buffer.

The annotation includes lines that are commented out and won’t become part of the
annotation, but if you’d like to keep the Author and Date lines (logical portions of an
annotation), just uncomment those lines by deleting the initial #. You then add any
annotation you would like and press C-c C-c to exit the window.

Annotations exhibit a couple of behaviors that are at least annoying if not bugs. First,
Emacs defines a # as the default fill prefix. You must either change that (see
Chapter 6 for details) or delete the initial # if Emacs inserts it. Second, and more crit-
ically, Emacs doesn’t automatically save annotations when you exit Emacs. If you set
a bookmark, Emacs saves the bookmarks file automatically (and in fact without ask-
ing). If you set an annotation but do not add or move a bookmark during the ses-
sion, you must save the bookmarks file manually by typing M-x bookmark-save.

After you add an annotation, Emacs puts an asterisk (*) before the bookmark name
as a visual indication that the bookmark has been annotated. To display an annota-
tion for the current bookmark, press a. To display all annotations, press A.

When you jump to a bookmark or move to a bookmarked file from the bookmark
list, annotations are automatically displayed in another window (but don’t edit
them in this window; you must use the procedure described earlier). If you open
the bookmarked file some other way (using C-x C-f, for example), annotations are
not displayed.

From the bookmark list, type: e

Emacs opens a *Bookmark Annotation Compose* window.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 4: Using Buffers, Windows, and Frames

A Few More Bookmark Commands
In addition to those we’ve discussed, there are a few more esoteric bookmark com-
mands. These include bookmark-insert, which inserts the text of the bookmarked
file at the cursor position; bookmark-write, which prompts for a new filename in
which to save bookmarks; and bookmark-load, to load these separate bookmark
files. These commands are less useful than the others, but you may think of some
clever uses we have not.

Table 4-6 summarizes bookmark commands.

Table 4-6. Bookmark commands

Keystrokes Command name Action

C-x r m
Edit ➝ Bookmarks ➝

Set Bookmark

bookmark-set Set a bookmark at the current cursor position.

C-x r b
Edit ➝ Bookmarks ➝

Jump to Bookmark

bookmark-jump Jump to a bookmark.

(none)
Edit ➝ Bookmarks ➝

Rename Bookmark

bookmark-rename Rename a bookmark.

(none)
Edit ➝ Bookmarks ➝

Delete Bookmark

bookmark-delete Delete a bookmark.

(none)
Edit ➝ Bookmarks ➝

Save Bookmarks

bookmark-save Save all bookmarks in default file.

C-x r l
Edit ➝ Bookmarks ➝

Edit Bookmark List

bookmark-menu-list Move to *Bookmark List* buffer.

(none)
Edit ➝ Bookmarks ➝

Insert Contents

bookmark-insert Insert full text of file associated with a given bookmark.

(none)
Edit ➝ Bookmarks ➝

Save Bookmarks As

bookmark-write Save all bookmarks in a specified file.

(none)
Edit ➝ Bookmarks ➝

Load a Bookmark File

bookmark-load Load bookmarks from specified file.

(none)
Edit ➝ Bookmarks ➝

Insert Location

bookmark-insert-location Insert the path to a given bookmark at the cursor position.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Holding Your Place with Bookmarks | 113

Now that you know how to work with multiple buffers, frames, and windows, why
not read the next chapter to discover some of the things you can do with them?
Some, like using the directory editor and working with the command line from
within Emacs, have been alluded to in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

114

Chapter 5CHAPTER 5

Emacs as a Work Environment

Many of the everyday things you do from a command prompt can be done from
within Emacs. You can execute commands, work with directories, and print files—
all without leaving Emacs. Changing tasks is as simple as jumping between buffers.

What’s important about this? Of course, it’s nice to be able to move between tasks
easily. What’s even more important is that you have the same editing environment
no matter what you’re doing: you can use all of the Emacs editing commands to
work on a file, give shell commands, then start up Dired, the directory editor, to do
some file maintenance. It is simple to move text from one window to another. You
can execute a command and then use Emacs commands to cut and paste the results
into a file. If you’re trying to compile a program and keep getting error messages, you
can save the interactive session as a file and confer with someone about the problem.
Despite the many advantages of modern window systems, Emacs often provides the
best way to integrate the many kinds of work you do daily.

Much of the information in this chapter involves integration between Emacs and the
operating system. Emacs is most commonly a Unix editor, so forgive us for a bias in
that direction. But we are happy to report that for users of GNU Emacs on other
platforms, integration with the operating system is still available; you can use shell
mode to run commands and can edit directories with Dired. There’s no reason to
leave Emacs no matter what your platform is.

Executing Commands in Shell Buffers
One of the most important features of Emacs is its ability to run a command shell in
a buffer. Once you have started a shell buffer, you can do all of your normal com-
mand-line work within Emacs. What does this buy you?

• You don’t have to leave Emacs to get a command prompt. If you want to print or
compile a file that you’re editing, you can do it immediately.

• You can use Emacs editing features to write your commands.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Commands in Shell Buffers | 115

• You can use Emacs editing features to “back up” through your command list,
copy an old command, modify it, and execute it again.

• You can save your shell buffer, keeping a transcript of your editing session—
which automatically includes the output from every command that you ran.
For debugging or remembering commands you run infrequently, this can be
invaluable.

• You can copy output from commands into a file or into another command.

• You can save complex commands in a file and insert the file at the prompt,
rather than retyping the command.

As you get used to working within Emacs, you will undoubtedly discover more and
more ways to put shell mode to use.

In this section, we discuss shell mode. Later in this chapter, we discuss directory
editing, printing, and calendar and diary features for doing simple time management
in Emacs. Right now, we’ll start with a simple variation on shell mode, a feature that
lets you execute commands one at a time.

Running One Command at a Time
To run a command while you’re in an Emacs session, type M-!. Emacs asks for the
command you want to run. Type the command and press Enter. Emacs then opens a
window called *Shell Command Output* where it displays the results of your command.

Type: M-!

Emacs prompts you for a command to execute.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 5: Emacs as a Work Environment

Because the output from the diff command is in a buffer, you can edit it, save it, or
do anything else you would like with it. Of course, if the operating system has no diff
command or cannot access it for some reason, this command fails.

An interesting twist to the shell command facility is that you can use a region of a
buffer rather than a traditional file as input to the command. For example, let’s say
we want to sort a phone list. First, we put the cursor somewhere in the list (say, on
the first character of Liam), then we give the mark-paragraph command (M-h). This
command defines the phone list as a region, with the cursor at the beginning of the
paragraph and the mark at the end.

In the following example, the shaded area shows the extent of the region we want to
sort. After selecting a region, we press M-| (for shell-command-on-region); Emacs
prompts for the shell command to run.

Type: diff joyce joyce2

Emacs executes the diff command and puts the output into a *Shell Command Output*
buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Commands in Shell Buffers | 117

Now we give the command sort without specifying any input file. Emacs is taking
care of the input for us.

Emacs has sorted the phone list (i.e., everything within the region).

Type: M-h M-|

Emacs prompts you for a command to execute (Windows).

Type: sort Enter

Emacs runs a sort on the region (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 5: Emacs as a Work Environment

A useful variation for M-! puts the output directly into the current buffer, rather than
into a *Shell Command Output* buffer. To do so, precede the command with C-u: for
example, C-u M-! runs a shell command and puts the output in the current buffer.

Using Shell Mode
Now we’re ready to discuss shell mode, the interactive facility for running com-
mands. To start a shell buffer, type M-x shell Enter. This creates a buffer named
shell. You see the prompt for your shell within this buffer. (This defaults to your
usual shell; you can substitute another shell to use in Emacs. See “Which shell?” later
in this chapter.)

For the most part, shell mode is exactly like the normal command interface, except
that you can use Emacs to edit the commands as you type them. You can copy com-
mands from one place to another, copy the results into a file, save the whole shell
buffer to a file, and so on. Note in Figure 5-1 that Emacs has added a few items to
the menu bar (Complete, In/Out, and Signals).

A few tricks are worth knowing, though. For example, you normally interrupt a
command by typing C-c. If you type C-c in shell mode, Emacs thinks that the C-c
is part of a command meant for it, because many Emacs commands start with C-c.
Therefore, you have to type C-c C-c to terminate the current job. Likewise, under
Unix, you type C-c C-z to stop a job, instead of C-z, and C-c C-d instead of C-d,

Type: C-u M-! ls -la Enter

Emacs runs ls and inserts the result at your current location (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Commands in Shell Buffers | 119

and so on. (C-c C-d is not strictly necessary because Emacs understands C-d in
context. If you’re at the end of the buffer, C-d means “end of file”; if you’re any-
where else, it deletes a character.) Alternatively, you can select options from the
Signals menu rather than using control characters, if desired (for example, select-
ing EOF instead of typing C-d).

Shell mode also provides a few convenient shortcuts. The command M-p retrieves
the last shell command you typed, no matter how far back in the buffer it is. Typing
successive M-p’s brings back earlier commands.

Figure 5-1. Shell buffers for Linux, Mac OS X, and Windows

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 5: Emacs as a Work Environment

In this example, the previous command was more dickensxmas.tex. It’s no longer
on the screen; its output has pushed it off the top. M-p (for comint-previous-input)
retrieves the command, but doesn’t execute it; you can edit the command before
pressing Enter. To find subsequent commands, type M-n.

If these commands sound familiar to you, they should. They are history commands,
which are identical to the minibuffer history commands we discussed in Chapter 3.
The In/Out menu is devoted to working with command history.

Enter and Tab have special functions in shell mode. Pressing Enter executes the
command on the line where the cursor is, even if you move the cursor up to the line
of an earlier command you want to execute again. When you press Enter, Emacs
copies the command to the end of the buffer and executes it. Of course, you can
modify the command before pressing Enter.

Pressing Tab puts the Emacs completion feature into action; use completion for
operating system commands, filenames, and variables. Note that the completion of
system commands works best on Unix implementations like Linux and Mac OS X;
Emacs doesn’t seem to find all the possible Windows commands, for example.

If you type a command that produces a lot of output, cluttering up your session,
there’s an easy way to get rid of it. Type C-c C-o (for comint-kill-output).

Type: M-p

M-p retrieves the last command, even if it isn’t on the screen (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Commands in Shell Buffers | 121

The previous command (ls-la) remains on the screen, but its output, a long list of files, is
deleted. C-c C-o can delete output from only the most recent command; it can’t delete
output from your previous commands.

Another useful command for shell mode is C-c C-r (for comint-show-output). This
command is useful if a command produces a lot of output and causes the first few lines
of output to scroll off the screen. C-c C-r repositions the window so the first line of out-
put from your last command is at the top of the window. If you want to see the end of
the output instead, type C-c C-e (for comint-show-maximum-output); this command
moves the last line of the input to the bottom of the window.

When you’re writing a book, moving by paragraphs makes sense, but when you’re
using a shell, moving by output group is more helpful. An output group consists of a
command and its output. To move to the previous output group, type C-c C-p. To
move to the next output group, type C-c C-n.

An advantage of shell mode is that you can start a command and then edit another
buffer while the command runs. The shell buffer doesn’t need to be onscreen; just type
M-x shell to get the buffer back again.

You can have multiple shell buffers running at once; just use the command M-x
rename-uniquely to rename your shell buffer. You can start another shell buffer, and
another, and another—as many as you need to juggle all your tasks.

Which shell?

Normally, Emacs uses your default shell in shell mode. Under Windows that’s cmd.exe
(the familiar C:\> prompt or a close relative).* But Unix has a wide variety of available

Type: C-c C-o

C-c C-o automatically deletes the output from the last command (Mac OS X).

* You do have choices under Windows as well, thanks to Cygwin (http://cygwin.com/). For example, if you
wanted to run Cygwin’s bash, you’ll find helpful information on how to set that up on Ngai Kim Hoong’s
page on that topic at http://www.khngai.com/emacs/cygwin.php.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 5: Emacs as a Work Environment

shells, including the GNU Project’s bash and the zed shell, zsh. Whatever shell you nor-
mally use, that’s what Emacs starts when you enter shell mode.

How does Emacs know which shell to start? First, it looks at the variable shell-file-
name. Then it looks for a Unix environment variable named ESHELL. Finally it
looks for an environment variable named SHELL. If you want to run another partic-
ular shell (for example, the zed shell) when you’re in Emacs, you can add the follow-
ing command to your .emacs file:

(setq shell-file-name "/bin/zsh")

When Emacs starts an interactive shell, it runs an additional initialization file after
your shell’s normal startup files. The name of this file is .emacs_shell-name, where
shell-name is the name of the shell you want to use in Emacs. It must be located in
your home directory. For example, if you use the C shell, you can add Emacs-only
startup commands by placing them in the file .emacs_csh. Let’s say that when
you’re in Emacs, you want to change the prompt to emacs:% and you want an envi-
ronment variable called WITHIN_EDITOR to be set to T. Here’s the contents of
your .emacs_csh file:

set prompt="emacs:% "
setenv WITHIN_EDITOR T

Within a shell buffer, Emacs also sets the environment variable EMACS to t, and sets
your terminal type (the TERM variable) to emacs.

Making passwords invisible in shell mode

By default, shell mode displays everything you type and that includes passwords—
not a good situation if someone is peering over your shoulder. There is a way around
this problem, however. Before you type the password, type M-x send-invisible.
Emacs asks for the nonechoed text. When you type a character, Emacs puts an aster-
isk in the minibuffer. Press Enter and Emacs enters the password without displaying
it. To have Emacs hide passwords as you type them, add the following two lines to
your .emacs file:

(add-hook 'comint-output-filter-functions
 'comint-watch-for-password-prompt)

Emacs asks for nonechoed text in the minibuffer whenever a password prompt
appears on the screen, making sure that the password is never displayed. Table 5-1
summarizes shell mode commands.

Table 5-1. Shell mode commands

Keystrokes Command name Action

(none) shell Enter shell mode.

C-c C-c
Signals ➝ BREAK

comint-interrupt-subjob Interrupt current job; equivalent to C-c.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 123

Using Dired, the Directory Editor
Dired is one of the most interesting features of Emacs. With Dired, you can look at a
listing of all the files in a directory, delete them, rename them, copy them, and per-
form almost all basic file operations. More important, Dired can make you more pro-
ductive. For example, you can work with groups of files, deleting, moving,
compressing, or even query-replacing strings in them.

There are several ways to start directory editing. If you’re not in Emacs, invoke
Emacs with a directory name as an argument, for example:

% emacs literature

Emacs starts up editing the directory literature: you’ll see a single window that con-
tains a listing of the literature directory. You can also start the directory editor by
using C-x C-f (or any other command for visiting a file) and naming a directory,

C-d comint-delchar-or-maybe-eof Send EOF character if at end of buffer; delete a
character elsewhere.

C-c C-d
Signals ➝ EOF

comint-send-eof Send EOF character.

C-c C-u comint-kill-input Erase current line; equivalent to C-u in Unix shells.

C-c C-z
Signals ➝ STOP

comint-stop-subjob Suspend or stop a job; C-z in Unix shells.

M-p
In/Out ➝ Previous Input

comint-previous-input Retrieve previous commands (can be repeated to
find earlier commands).

M-n
In/Out ➝ Next Input

comint-next-input Retrieve subsequent commands (can be repeated
to find more recent commands).

Enter comint-send-input Send input on current line.

Tab comint-dynamic-complete Complete current command, filename, or variable
name.

C-c C-o
In/Out ➝ Delete Current
Output Group

comint-kill-output Delete output from last command.

C-c C-r comint-show-output Move first line of output to top of window.

C-c C-e
In/Out ➝ Show
Maximum Output

comint-show-maximum-out-
put

Move last line of output to bottom of window.

C-c C-p
In/Out ➝ Backward
Output Group

comint-previous-prompt Move to previous command.

C-c C-n
In/Out ➝ Forward Output Group

comint-next-prompt Move to next command.

Table 5-1. Shell mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 5: Emacs as a Work Environment

rather than a file. For example, typing C-x C-f literature gets you ready to edit the lit-
erature directory. Typing C-x d (for dired) or selecting the folder icon on the toolbar
also starts Dired; you then specify a directory name. Finally, dragging a folder onto
the Emacs window also starts Dired.*

No matter how you start the editor, the result is the same.

As you can see, Dired’s display is similar to what you see if you type ls -l at a Unix
shell prompt. The permissions associated with the file, the owner, the group name,
the size of the file, and the date last modified all precede the filename. All files and
directories are listed, including those whose names start with a dot. The cursor starts
out on a filename, rather than in the first column.

Also, if your display supports colors (unfortunately this book doesn’t), you’ll see that
directories are blue, backup and auto-save files are tan, and symbolic links are pur-
ple. Colors are a function of font-lock mode. If you don’t see colors in your directory
listing, type M-x font-lock-mode Enter or add the following line to your .emacs file:

(global-font-lock-mode t)

By default, the list is sorted by filename, but you can sort it by date instead. Look at
the mode line. It says (Dired by name). To change the order of the display, type s (for
dired-sort-toggle-or-edit). This command puts the newest files at the top of the list,
solving the “Where’s that file I worked on yesterday?” problem quite easily. The
mode line says (Dired by date). Typing s again toggles the sort, putting it back in
alphabetical order.

* The one exception to this is running Emacs in the Mac OS X Terminal application, which has its own drag-
and-drop behavior. In the terminal—and thus in Emacs running in the terminal window—dragging and
dropping a folder inserts the complete pathname of that folder rather than opening the folder in Dired.

Type: C-x C-f literature Enter

A basic directory editor display.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 125

If you remember the commands used to edit the buffer list (from Chapter 4), you will
find that they are almost identical to the directory editor commands. You can do
many additional things, but the basic commands are the same.

Remember, in the directory editor you are working directly with
files, not with buffers. When you delete a file using Dired, it’s gone
permanently.

There are several ways to move around in Dired. The commands Space, C-n, and n all
move you to the next file in the list. Del, C-p, and p all move you to the previous file.
Arrow keys and PgUp and PgDown work as well. You can also use any of the search
commands (incremental search, word search, and so on) to find a particular file.

Viewing and Editing Files
When you look at a directory listing, you may want to get a quick look at the files.
Dired’s v command does just this: put the cursor on the file you want to view and
press v (for dired-view-file). Emacs displays the file in view mode.* This is a read-
only mode, so you can’t modify the file. Press C-c or q to return to the directory list-
ing. While you’re viewing the file, you can use s to start an incremental search, or
press Enter to scroll the display down one line. Typing = tells you what line the cur-
sor is on. There are a number of shortcuts for other Emacs commands (like marking
text), but frankly, the regular commands work correctly. There’s no reason to
remember a special set of commands when the ones you already know work.

If you want to edit a file from the Dired buffer, move to the line the file is on and
press Enter (a variety of other keystrokes work as well, such as f for find or e for
edit). Emacs finds the file and you can edit it. This is a completely normal editing
buffer: you can make any changes you want, save them, visit other files, and so on.
Typing C-x b followed by the name of the directory you were working in moves you
back to the Dired buffer. Or you can use the buffer menu (C-x C-b) to find and dis-
play the Dired buffer.

Viewing and editing files is nice, but you already know how to do that—right?
You’re waiting for the interesting stuff: how to delete files.

* What if it’s a file that shouldn’t be viewed in Emacs, like a JPG or a PDF? In this case, the variable dired-
view-command-alist associates viewers with file extensions. The defaults for this command work on Linux,
but require some tweaking on other platforms. See Chapter 10 for an example of using Custom to change
this variable for Mac OS X and Windows.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 5: Emacs as a Work Environment

Deleting, Copying, and Renaming Files
As we’ve said, file deletion is almost identical to buffer deletion with the buffer list. If
you learned how to delete buffers, you know the basics of deleting files with Dired.
First, you flag a file for deletion by moving to the file’s name and typing d. Doing this
places a D on the left margin and moves the cursor to the next file in the list. You can
flag as many files as you want. You can change your mind at this point and type u to
undelete the file. At some later time, you type x to delete the files (more on this in a
minute). The following screen shows what the Dired buffer looks like when you flag
a few files for deletion.

As we mentioned, you can type u at any time to remove the deletion flags from the
files. Typing u moves you to the next file in the list, and, if it is marked, unmarks it.
You can also use Del to unmark. This command undeletes the previous file in the list
and then moves up one line.

Because Emacs generates backup files and, at times, auto-save files, you may want to
delete them from time to time. Emacs offers shortcut commands to flag such files.
Typing # flags all the auto-save files (files whose names start and end with #) for dele-
tion. Emacs flags them with D. Typing ~ flags all the backup files (whose names end
with ~) for deletion. You can remove the flags from backup files you want to keep,
for example, the backup copies of files you’ve recently worked on.

When you really want files to be deleted from disk, press x. Emacs displays the
names of all the files flagged for deletion and asks you if you want to delete them.

Type: d d d

Three files flagged for deletion (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 127

Type yes to delete them all or type no to return to the Dired buffer without deleting
any of them.

This is the usual way of deleting files, but if you want a file deleted right away, type
an uppercase D. Emacs asks if you want to delete the file (yes or no). Type yes to
delete the file immediately or no to change your mind. In Dired, this is one of a num-
ber of cases in which the lowercase letter (like d to flag for deletion) and the upper-
case letter (like D to delete immediately) have a different meaning.

To copy a file in Dired, type C next to it (it must be a capital C). Emacs asks for the
name of the file you want to copy to. Type the name and press Enter. Emacs says,
Copied: 1 file. To copy several files in the list, preface the C with a number. For
example, typing 3C would copy this file and the next two files. (See “Working with
Groups of Files” later in this chapter for fancier ways to select a group of files to
operate on.)

To rename a file with Dired (similar to the Unix mv command), type R next to the
filename. Emacs asks what the new name should be. Type it and press Enter. Emacs
says, Moved: 1 file.

If you move files between platforms, you can wind up with some filenames in upper-
case and some in lowercase. Files moving from older versions of Windows may be in
all caps, for example. Simply mark the files in question by typing m, then press %l
for lowercase or %u for uppercase. Voilà—painless case consistency.

Compressing and Uncompressing Files
Compressing files saves disk space, and Dired provides an easy way to do it. Put the cur-
sor on the line of the file you want to compress and press Z (for dired-do-compress).
Emacs asks the following:

Compress or uncompress filename? (y or n)

Type: x

Emacs asks you to confirm the deletion by typing yes (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 5: Emacs as a Work Environment

Emacs compresses the file if it’s not compressed and uncompresses it if it is.* Press y
to compress or uncompress the current file. Compression happens immediately, so
you can watch both the extension and file size change as Emacs compresses the file.

What about editing compressed files? Although it’s not on by default, Emacs has
an automatic compression/decompression mode called auto-compress mode. To
enter it for this session, type M-x auto-compress-mode Enter, which turns auto-
matic compression on. To enable auto-compression automatically, add this line to
your .emacs file:

(auto-compression-mode 1)

Comparing Files
In Chapter 4, we discussed comparing files in two windows. Emacs provides a way
to do this using the diff command in Dired. Set the mark on the file you want diff to
compare, put the cursor on the other file, then type =. Emacs compares the two files
and opens a window with a *diff* buffer containing the output from the command.

Emacs has a separate option for comparing a file to its backup file. Put the cursor on
the file you want to compare with its backup and type M-=. Emacs displays a *diff*
buffer showing the differences between the two files.

If you are serious about version control, you may want to check out Chapter 12,
which discusses version control as well as the GNU tool ediff.

Running Shell Commands on Files
While Dired’s implementation of diff is useful (and there are implementations of
chmod, grep, and find as well), in a more general sense, you can perform any com-
mand on a file by pressing an exclamation point (!). For example, let’s alphabetize
the phone list file using the sort command.

* Emacs understands only compress and gzip formats, not ZIP or other proprietary file compression algo-
rithms. When you uncompress files, Emacs recognizes and correctly uncompresses files with the following
suffixes: .z, .Z, or .gz. When you compress files, Emacs uses gzip, resulting in files that end in .gz.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 129

Move to the phone file and press !

Emacs asks what command you want to run (Mac OS X).

Type: sort

Emacs displays the output from the command in a separate window (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 5: Emacs as a Work Environment

Usually, asterisks (*) and question marks are used as wildcards in commands. In
Dired, they have a special meaning. An asterisk means “use the file I’m on or the
files I’ve marked”; that way you don’t have to type filenames explicitly. When mul-
tiple files are marked, a question mark means to run this command separately on
each file.

In a slightly more complex example, you might have a command with more than one
file as an argument. For example, you might want to make a new file out of the
sorted phone list.

Now tell Emacs you want to sort your phone file and put the output in a new file
called phonesorted. The cursor is on the phone file, so you don’t need to type its
name in the command. Substitute an asterisk (*) for the name of the file:

Move the cursor to the phone file, then type: !

Emacs asks what command you want to run (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 131

We created the file, but it doesn’t appear on the display, which is not automatically
updated in this case. To see the phonesorted file, type g.

Dired is frankly inconsistent about whether you type g before the display is updated.
Some commands, as we’ll see shortly, update the display immediately. Others, such
as running shell commands on files, do not (Emacs really doesn’t know what shell

Type: sort * > phonesorted

The operating system sorts the phone file and puts the output into the new file
phonesorted (Mac OS X).

Type: g

Emacs updates the Dired display, showing the file phonesorted (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 5: Emacs as a Work Environment

commands it’s running or their effect on the display). A good rule of thumb is to type
g if you don’t see what you expect to see.

Working with Groups of Files
So far we’ve talked about working with one file at a time; any commands you give
apply to the file the cursor is on. Working with multiple files is a better illustration of
the real power of Dired. You can organize your directories in a flash once you learn a
few shortcuts. First let’s talk about some ways to select files, and then we’ll talk
about what we can do with the selected files.

Selecting files

So far we’ve primarily talked about flagging files for deletion. When you want to do
something else with a group of files, you first mark them with an asterisk. Pressing m
marks the file the cursor is on; an asterisk appears where you normally see a D. Typing
3m marks this file and the next two files. Once you mark files with an asterisk, Emacs
assumes that any command you issue is meant for these files. So if you have three files
marked with an asterisk and press Z to compress, Emacs assumes you want to com-
press those three files. After the compression, the files remain marked with asterisks.
So how do you get rid of the asterisks when you’re done with these files?

To remove the asterisks, you press M-Del (for dired-unmark-all-files). Emacs asks
which marks to remove. Press Enter, and Emacs removes all the marks.

Sometimes it’s easier to mark the files you don’t want to work with than those you
do. Pressing t toggles the marks, marking all unmarked files and removing marks
from those previously marked.

Selecting likely candidates for deletion

Marking files sequentially is simple but, in all honesty, it’s not very powerful.
Emacs provides commands for selecting types of files that you often want to get rid
of when you’re cleaning up a directory: backup files, auto-save files, and so-called
garbage files.

Auto-save files are created when a session terminates abnormally; they have the for-
mat #filename#. Backup files which Emacs creates periodically, have the format
filename~. To mark these files in Dired, type # or ~ respectively.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 133

Emacs also has an option that automatically selects “garbage” files. By default, this
includes files with the following extensions: .log, .toc, .dvi, .bak, .orig, and .rej. Gar-
bage files are defined by a regular expression, which is contained in the variable
dired-garbage-files-regexp; you can change the value of this variable to define gar-
bage files as you see fit (after all, one man’s junk is another man’s treasure).

Selecting files by type

Dired provides commands for selecting executable files, directories, and symbolic
links. To select executable files, type * *. To select directories, type * /. Typing * @
marks symbolic links.

Using regular expressions to choose files

Often you want to select related files and either archive them, move them, compress
them, or just delete them. Typically, you use wildcards to select multiple files. In
Dired, you use regular expressions. To mark a group of files whose filenames match
a regular expression, press % followed by m to mark them with an asterisk.

For example, let’s mark all the files that start with ch. Remembering the quick lesson
on regular expressions from Chapter 3, ^ finds the beginning of a word, so the regu-
lar expression ^ch would mark all the files that start with ch.

Type: %m

Emacs asks for a regular expression so that it can mark the files (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 5: Emacs as a Work Environment

Sometimes it’s more useful to mark files whose contents match a given regular expres-
sion. To mark files that contain a certain regular expression, type % g, followed by the
regular expression to match (think g for grep if you’re familiar with grep).

Now that we’ve got the files marked, let’s talk about what to do with them.

Operating on groups of files

In the course of daily work, a directory can get cluttered with many different kinds of
files. Eventually, you need to make subdirectories to organize the files by project, then
move the files to those subdirectories. You can do both these things from within Dired.

Let’s say that the ch files are chapters from a novel you work on in your spare time.
We need a subdirectory called novel to store the files in. You can create a directory
by typing + (for dired-create-directory).

Type: ^ch Enter

Emacs marks all the files starting with ch and tells you how many it marked.

Type: +

Emacs asks for a directory name (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 135

Now let’s move the ch files we marked into the new directory. We’ll use the rename
command, R. This command, like the Unix mv command, is used for renaming files
and for moving them. Because we have marked more than one file with an asterisk,
when we type R, Emacs assumes we mean to move the marked files.

Type: novel Enter

Emacs creates the directory and displays it on the screen (Windows).

Type: R

Emacs asks where you want to move the marked files to (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 5: Emacs as a Work Environment

Now you can see that the files have moved. Marking files by regular expression
allows you to work with a select group of files quickly.

One of the more interesting things you can do with a group of files is perform a
query-replace on all of them with a single command. On large projects, a last-
minute change often forces arduous searching and replacing of certain text in each
file. First, select the files you want to include in the query-replace, then press Q
(for dired-do-query-replace). Put in the search string, then the replacement string
(the strings can be plain text or a regular expression) and Emacs starts a query-
replace that moves you through each file sequentially. Here’s the only hitch: if you
interrupt the query-replace with a recursive edit, you can’t restart it without going
back to the Dired buffer.

Another interesting command is searching across files for a given regular expression.
To do this, mark the files, then press A. Emacs stops at the first match; press M-, to
move to the next match.

Navigating Directories
Often when you are cleaning up directories, you’re moving files between them, orga-
nizing subdirectories, and the like. This naturally involves a lot of moving among
directories.

To move to the parent directory of the one you’re in, press ^. To move to the next
directory in the buffer, press >; pressing <, not surprisingly, moves you to the previ-
ous directory in the buffer.

Sometimes it’s more convenient to edit a directory and its subdirectories in the same
buffer. To insert a subdirectory in the current Dired buffer, move to it and press i.

Type: novel Enter

Emacs moves the files (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 137

Emacs inserts the subdirectory at the end of the buffer. If you insert more subdirecto-
ries in this fashion, they will appear in alphabetical order at the end of the buffer.

As you can see, much of your file maintenance and cleanup can be done easily from
within Dired. Table 5-2 summarizes Dired commands, some of which we haven’t
fully discussed. There’s more to learn about Dired,* but now that you know the
basics, you can experiment on your own.

* And if all the Dired features aren’t enough, there’s Dired-x, an add-in module that includes other features
such as omitting unimportant files from the listing, finding files mentioned in any buffer, and additional vari-
ables and means of marking files. For more details, see the Info text on this subject (type C-h i to get to the
Info menu).

Table 5-2. Dired commands

Keystrokes Command name Action

C-x d
File ➝ Open Directory

dired Start Dired.

A
Operate ➝ Search Files

dired-do-search Do a regular expression search on marked files;
stops at first match; M-, finds next match.

B
Operate ➝ Byte-compile

dired-do-byte-compile Byte-compile file.

C
Operate ➝ Copy to

dired-do-copy Copy file.

d
Mark ➝ Flag

dired-flag-file-deletion Flag for deletion.

D
Operate ➝ Delete

dired-do-delete Query for immediate deletion.

e

Immediate ➝ Find This File

dired-find-file Edit file.

f dired-advertised-find-file Find (so you can edit).

g
Immediate ➝ Refresh

revert-buffer Reread the directory from disk.

G
Operate ➝ Change Group

dired-do-chgrp Change group permissions.

h describe-mode Display descriptive help text for Dired.

H
Operate ➝ Hardlink to ...

dired-do-hardlink Create a hard link to this file; Emacs asks you to
name the hard link (not all OSes support hard
links).

i
Subdir ➝ Insert This Subdir ...

dired-maybe-insert-subdir Add a listing of this subdirectory to the current
dired buffer; if it’s already there, just move to it.

k dired-do-kill-lines Remove line from display (don’t delete file).

L
Operate ➝ Load

dired-do-load Load file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 5: Emacs as a Work Environment

m or * m
Mark ➝ Mark

dired-mark Mark with *.

M
Operate ➝ Change Mode

dired-do-chmod Use chmod command on this file.

n dired-next-line Move to next line.

o
Immediate ➝

Find in Other Window

dired-find-file-other-window Find file in another window; move there.

C-o
Immediate ➝

Display in Other Window

dired-display-file Find file in another window; don’t move there.

O
Operate ➝ Change Owner

dired-do-chown Change ownership of file.

p dired-previous-line Move up a line.

P
Operate ➝ Print

dired-do-print Print file.

q quit-window Quit Dired.

Q
Operate ➝

Query Replace in Files

dired-do-query-replace Query replace string in marked files.

R
Operate ➝ Rename to

dired-do-rename Rename file.

S
Operate ➝ Symlink to

dired-do-symlink Create a symbolic link to this file; Emacs asks you
to name the symbolic link.

s dired-sort-toggle-or-edit Sort the Dired display by date or by filename (tog-
gles between these).

t
Mark ➝ Toggle Marks

dired-toggle-marks Toggle marks on files and directories; pressing t
once marks all unmarked files and directories;
pressing t again restores original marks.

u
Mark ➝ Unmark

dired-unmark Remove mark.

v
Immediate ➝ View This File

dired-view-file View file (read-only).

w dired-copy-filename-as-kill Copy filename into the kill ring; if multiple files are
marked, copy names of all marked files to kill ring.

x dired-do-flagged-delete Delete files flagged with D.

y dired-show-file-type Display information on the type of the file using
the file command.

Z
Operate ➝ Compress

dired-do-compress Compress or uncompress file.

~
Mark ➝ Flag Backup Files

dired-flag-backup-files Flag backup files for deletion; C-u ~ removes
flags.

Table 5-2. Dired commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Dired, the Directory Editor | 139

#
Mark ➝ Flag Auto-save Files

dired-flag-auto-save-files Flag auto-save files for deletion; C-u # removes
flags.

&
Mark ➝ Flag Garbage Files

dired-flag-garbage-files Flag “garbage” files for deletion.

.
Mark ➝ Mark Old Backups

dired-clean-directory Flag numbered backups for deletion (if any).

=
Immediate ➝ Diff

dired-diff Compare this file to another file (the one at the
mark).

M-=
Immediate ➝

Compare With Backup

dired-backup-diff Compare this file with its backup file.

! or X
Operate ➝ Shell Command

dired-do-shell-command Ask for shell command to execute on the current
file or marked files.

+
Immediate ➝ Create Directory

dired-create-directory Create a directory.

>
Subdir ➝ Next Dirline

dired-next-dirline Move to next directory.

<
Subdir ➝ Prev Dirline

dired-prev-dirline Move to previous directory.

^ dired-up-directory Find the parent directory in a new Dired buffer.

$
Subdir ➝ Hide/Unhide Subdir

dired-hide-subdir Hide or show the current directory or
subdirectory.

M-$
Subdir ➝ Hide All

dired-hide-all Hide all subdirectories, leaving only their names;
repeat command to show.

C-M-n
Subdir ➝ Next Subdir

dired-next-subdir Move to next subdirectory (if you’ve inserted sub-
directories using i).

C-M-p
Subdir ➝ Prev Subdir

dired-prev-subdir Move to previous subdirectory (if you’ve inserted
subdirectories using i).

C-M-u
Subdir ➝ Tree Up

dired-tree-up If you’ve inserted subdirectories using i, move to
the parent directory in this buffer.

C-M-d
Subdir ➝ Tree Down

dired-tree-down If you’ve inserted subdirectories using i, move to
the first subdirectory for this directory in this
buffer.

* c
Mark ➝ Change Marks

dired-change-marks Change marks on specified files, for example, from
* (generic mark) to D (flagged for deletion).

* ! or M-Del
Mark ➝ Unmark All

dired-unmark-all-files Remove all marks from all files.

* *
Mark ➝ Mark Executables

dired-mark-executables Mark executables; C-u * unmarks.

* /
Mark ➝ Mark Directories

dired-mark-directories Mark directories; C-u / unmarks.

Table 5-2. Dired commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 5: Emacs as a Work Environment

Printing from Emacs
Emacs offers several commands for printing buffers and regions. To print a buffer
with page numbers and headers for the filename, type M-x print-buffer Enter. This
command sends the buffer to pr (a program that does simple formatting for listings),
followed by lpr (which sends the listing to the printer). If you want to print the file
directly, without the headers and page numbers that pr provides, give the command
M-x lpr-buffer Enter. You can also use these commands to print a selected portion of
a file. First define a region by setting a mark at one end and moving the cursor to the
other end. Then give the command M-x print-region Enter (or M-x lpr-region
Enter).

The lpr-buffer and lpr-region commands always check the variable lpr-switches to
determine whether any options should be passed to the Unix lpr command. These
options are used to request a particular printer and for many other purposes; see the
manpage for lpr for more information. For example, if you want to use the printer
named lpt1 whenever you print from Emacs, you would want to set lpr-switches to
-Plpt1. To do so, add the following line to your .emacs file:

(setq lpr-switches '("-Plpt1"))

Note the single quote preceding, and the parentheses surrounding, the string "-Plpt1".
This is just weird-but-necessary Lisp syntax; see Chapter 11 for more details.

You can also print from Dired. To print the file the cursor is on, type P. Emacs puts
the default printing command in the minibuffer, and you can modify it.

* @
Mark ➝ Mark Symlinks

dired-mark-symlinks Mark symlinks; C-u * @ unmarks.

M-}
Mark ➝ Next Marked

dired-next-marked-file Move to the next file marked with * or D.

M-{
Mark ➝ Previous Marked

dired-prev-marked-file Move to previous file marked with * or D.

% d
Regexp ➝ Flag

dired-flag-files-regexp Flag for deletion files that match regular expres-
sion.

% g
Regexp ➝ Mark Containing

dired-mark-files-containing-
regexp

Mark files whose contents match regular expres-
sion.

% l
Regexp ➝ Downcase

dired-downcase Lowercase marked files.

% R
Regexp ➝ Mark

dired-do-rename-regexp Rename files with filenames that match regular
expression.

% u
Regexp ➝ Upcase

dired-upcase Uppercase marked files.

Table 5-2. Dired commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Time Management Tools | 141

Emacs also includes commands to print a buffer as a PostScript file. If you have for-
matted text in the file, you can print the buffer with those attributes by typing M-x
ps-print-buffer-with-faces.

Table 5-3 provides a summary of commands for printing.

Reading Manpages in Emacs
You can read Unix online documentation (called manpages) from within Emacs by
typing M-x man or by selecting Man from the Help menu.* This command creates a
buffer with a formatted manpage in it, which you can scroll through (or copy from)
using Emacs commands. Simply type: M-x man Enter Unix-command-name Enter.

For the Unix command name, you can use either a simple name, like ls, or a
manpage section name like ttytab(5).

The advantage of using the man command is that you can scroll through the
manpage easier than you can in some terminal applications or shell windows. Also, if
you try to view manpages in shell mode, they may come out garbled if the settings
aren’t right, whereas man gives you clean text.

Using Time Management Tools
Emacs is a natural place to organize all your work. It won’t replace your Palm or
other handheld, but ongoing work in this area may help you sync your favorite

Table 5-3. Printing commands

Keystrokes Action

M-x print-buffer
File ➝ Print Buffer

Print the buffer (similar to Unix pr | lpr).

M-x print-region
File ➝ Print Region

Print the region (similar to Unix pr | lpr).

M-x lpr-buffer Print buffer with no page numbers (similar to Unix lpr).

M-x lpr-region Print region with no page numbers (similar to Unix lpr).

P
Operate ➝ Print

From Dired, put the default print command in the minibuffer; you
can change it or press Enter to execute it.

M-x ps-print-buffer-with-faces
File ➝ Postscript Print Buffer

Print the buffer with text attributes.

M-x ps-print-region-with-faces
File ➝ Postscript Print Region

Print the region with text attributes.

* This feature works on Linux, but not on Windows. To make it work on Mac OS X, set shell-file-name to
/bin/sh.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 5: Emacs as a Work Environment

device with your Emacs-based schedule. Here we cover the main features that Emacs
itself offers—the calendar and the diary.

Displaying the Calendar
To display the calendar, type M-x calendar. Emacs displays a calendar window with
three months: last month, this month, and next month.

By default, weeks start on Sunday. If you’d like them to start on Monday instead,
type M-x set-variable calendar-week-start Enter 1 Enter. You enter the calendar
again to have this take effect. If you’d like to have the calendar always start on Mon-
day, add this line to your .emacs file:

(setq calendar-week-start-day 1)

If you’d like to see the calendar each time you start Emacs, you can add this line to
your .emacs file:

(calendar)

Moving in the calendar

When you’re in the calendar, Emacs sensibly moves by day rather than by character.
C-f moves you to the next day; C-b moves you to the previous day. C-n moves you to
the same day of the next week; C-p moves you back a week. The arrow keys work the
same way. M-} and M-{ move forward and backward by month, and C-x [and C-x]

Type: M-x calendar

Emacs puts the cursor on today’s date and displays the date on the mode line.
There’s no room to write on the calendar; that’s what the diary is for, which we’ll
discuss shortly.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Time Management Tools | 143

move forward and backward by year. C-v scrolls forward by three months; M-v scrolls
back three months.

The movement commands just discussed move you relative to the cursor position. If
you’re on Tuesday and you press C-n, you’ll move to next Tuesday. If you’re on Jan-
uary 25 and press M-} you’ll move to February 25. If you’re on August 15, 2004 and
press C-x [, you’ll move to August 15, 2003.

Other commands move to the beginning or the end of the week, month, or year. C-a
and C-e move to the beginning and end of the week, M-a moves to the beginning of
the month, and M-< moves to the beginning of the year. Table 5-4 summarizes these
calendar movement commands.

To go to a particular date, press g d. Emacs asks for the year, then the month, and
then the day. Emacs moves you to the day selected (this command is well-suited for
answering that all-important question, “On what day of the week does my birthday
fall in 2020?”).

Table 5-4. Calendar movement commands

Keystrokes Command name Action

(none)
Tools ➝ Display Calendar

calendar Display the calendar.

.
Goto ➝ Today

calendar-goto-today Move to today’s date.

C-f calendar-forward-day Move forward a day.

C-b calendar-backward-day Move backward a day.

C-n calendar-forward-week Move forward a week.

C-p calendar-backward-week Move backward a week.

M-} calendar-forward-month Move forward one month.

M-{ calendar-backward-month Move backward a month.

C-x]
Scroll ➝ Forward 1 Year

calendar-forward-year Move forward a year.

C-x [
Scroll ➝ Backward 1 Year

calendar-backward-year Move backward a year.

C-a
Goto ➝ Beginning of Week

calendar-beginning-of-week Move to the beginning of the week.

C-e
Goto ➝ End of Week

calendar-end-of-week Move to the end of the week.

M-a
Goto ➝ Beginning of Month

calendar-beginning-of-month Move to the beginning of the month.

M-e
Goto ➝ End of Month

calendar-end-of-month Move to the end of the month.

M-<
Goto ➝ Beginning of Year

calendar-beginning-of-year Move to the beginning of the year.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 5: Emacs as a Work Environment

Displaying holidays

Let’s move to a topic everyone is interested in: holidays. To display the holidays for
the part of the calendar you are looking at, type a (for list-calendar-holidays) or
select 3 Months from the Holidays menu.

As you can see, Emacs knows about a fairly wide variety of holidays or, as it calls
them, “notable dates.” If you are somewhere else on the calendar but want to see
holidays surrounding the current month, type M-x holidays. Emacs lists them. To
see whether today is a holiday, type h or select One Day from the Holidays menu.

M->
Goto ➝ End of Year

calendar-end-of-year Move to the end of the year.

g d
Goto ➝ Other Date

calendar-goto-date Go to the specified date.

o calendar-other-month Put the specified month in the middle of the display.

C-x <
Scroll ➝ Forward 1 Month

scroll-calendar-left Scroll forward one month.

C-x >
Scroll ➝ Backward 1 Month

scroll-calendar-right Scroll backward one month.

C-v
Scroll ➝ Forward 3 Months

scroll-calendar-left-three-
months

Scroll forward three months.

M-v
Scroll ➝ Forward 3 Months

scroll-calendar-right-three-
months

Scroll backward three months.

Space scroll-other-window Scroll another window.

Type: a

Emacs lists holidays for the time period shown.

Table 5-4. Calendar movement commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Time Management Tools | 145

Typing x marks holidays in a special way, typically highlighting them in pink. If the
display doesn’t support this, Emacs puts an asterisk to the right of the date. Typing u
removes the marks.

We have taught you only the bare bones of the calendar commands. Emacs offers to
tell you sunrise and sunset and phases of the moon. You can choose other calendars,
like the Islamic calendar, the Hebrew calendar, the Mayan calendar, or even the
French Revolutionary calendar. But we will leave these for you to explore.

More calendar commands are used in the context of the diary, discussed next.

Using the Diary
The diary, closely related to the calendar, allows you to make notes about certain
dates. You can enter a full daily schedule or just mark major events. The level of
detail is entirely up to you.

Creating a diary file

To use the diary, you must have a diary file that contains notations about important
events or things to do. It can remind you to back up your system every Thursday,
that you get paid every two weeks, that you’re on vacation during the first two weeks
in July, or that your mother’s birthday is August 6.

The file must be called diary and must exist in your home directory. In this file,
you insert lines—or have Emacs write lines for you—that note dates you want to
remember. The diary file need not be all in one format and need not be sorted in
any particular order. Date formats can be mixed: December 19, 2004 could be 12/
19/04, Dec 19 04, or dec 19 2004. Here are a few lines from a diary file to illus-
trate what we mean.

11/14 My birthday
July 17 2004 Company picnic
March 18 2004 Annual report due
January 8 2004 Hair appointment
&Saturday Tea with Queen Elizabeth
Friday Payday

If you don’t specify a year, Emacs assumes you want to mark that date every year, as
in birthdays. If you don’t specify a date but only the day of the week (as in tea with
the queen on Saturday), Emacs displays the diary entry every Saturday. Putting an
ampersand (&) before an entry tells Emacs not to mark it on the calendar (you don’t
want every Saturday marked, and you may not want everyone to know that you hang
around with the royal family).

Date formats can be mixed, but the choice to use European date format (DD/MM/
YYYY or 9 October 2004) versus the default American format (MM/DD/YYYY or

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 5: Emacs as a Work Environment

October 9, 2004) must be made before you create the diary file. To specify European
date format, add this line to your .emacs file:

(setq european-calendar-style 't)

Adding diary entries

You can write your own entries or have Emacs help you put them in. To have Emacs
help you, go to the calendar by typing M-x calendar. Then press g d to specify the
date you want to move to. Press i d (for insert-diary-entry). Emacs moves you to the
diary window with the date written out. You can then make a diary entry next to the
date. If your entry spans more than one line, begin the second and subsequent lines
with a single space, so that Emacs understands it’s a continuation. After you make
the notation about the date, Emacs leaves you in the diary buffer so you can make
more entries. Type C-x b to move to another buffer.

The insert-diary-entry command assumes you want to make a single, one-time
entry. To create a recurring entry, you need a few more commands. To insert a
weekly entry, type i w. Emacs moves you to the diary buffer with the day of the week
written out. Type the weekly activity (such as a staff meeting), and save the diary file.
To insert an annual entry, type i y. Emacs moves you to the diary buffer with the day
and month written out; type the annual event. There is a more specific command for
anniversaries. Type i a to add an anniversary; this entry includes the year (though we
have not seen a function that uses this information for any particular purpose, such
as counting which anniversary this is).

You can also put in cyclic diary entries, entries that occur at regular intervals, like
reminders to change the oil in your car every three months. To do so, move to the
date you changed your oil last and type i c. Emacs says, Repeat every how many days:
and you type the number of days between oil changes. Emacs writes a Lisp function
to handle this and puts it in the diary buffer. You can then make a notation next to
the Lisp function, such as a note that tells you to change the oil. The entry that
Emacs inserts looks like this (we put the part about changing the oil in ourselves):

%%(diary-cyclic 90 12 23 2004) Change the oil

The entry says that every 90 days, counting from the day we inserted the entry,
December 23, 2004, we should change the oil in our car.

You can mark a block of dates, as in the case of a week-long conference or a vaca-
tion. Put the cursor on the first date and press C-Space to set the mark.* Move (using
calendar movement commands like C-f, C-n, and so on) to the second date and press

* If you normally use another binding for the set-mark command or if you typically spell out that command,
you’ll run into a problem marking regions in the calendar. In the calendar, C-Space and C-@ run calendar-
set-mark rather than set-mark, so that regions are marked by time rather than just across the screen. To
mark regions correctly in the calendar (linearly by time rather than simply across the screen), you must type
C-Space, C-@, or M-x calendar-set-mark to set the mark.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Time Management Tools | 147

i b. Emacs moves you to the diary buffer and inserts an incantation that marks the
week on your calendar. Make a notation following the Lisp function Emacs inserts.
The entry will look something like this:

%%(diary-block 3 15 2004 3 20 2004) Trip to Alabama

This entry indicates that from March 15 to March 20, we’ll go on a trip to Alabama.

What if you want to note that you have to file your expense report on the fifteenth of
every month? Emacs accepts the asterisk wildcard (*) for the month, as you will see
when you type i m (for insert-monthly-diary-entry). Emacs inserts an asterisk in
place of the month, followed by the day, as in * 15 for something scheduled for the
fifteenth of each month. As always, you make a note following the entry.

Now that you see how Emacs constructs diary entries, you can try writing some of
your own based on what Emacs has done. After all, the diary file is like any other
Emacs file; you can make changes, add lines, and delete lines at will. The only
requirement is that you save the file when you’re through. Now let’s see how to dis-
play diary entries on the appropriate dates.

Displaying diary entries

If you want to review the diary entries for a given date, press d from the calendar. In
order to see the whole diary file, press s from the calendar. If you want today’s diary
entries to display automatically when you start Emacs, add this line to your .emacs file:

(diary)

That way, when you start up Emacs on a day for which there is a diary entry, the
diary entry displays automatically. For example, let’s say you marked your best
friend’s birthday some time ago, and today is the day. When you start Emacs, the
screen would look like this:

You start Emacs.

Emacs displays the diary entry for your friend’s birthday.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 5: Emacs as a Work Environment

If there are no diary entries for a given day, the diary is not displayed. If you start Emacs
with two files so that you are editing in two windows, the diary is also not displayed.

If you have already put in a (calendar) entry in your .emacs file to have the calendar
displayed automatically, the calendar supersedes the diary, and you’ll have to remove
the calendar if you prefer to see the diary instead.

To mark dates with diary entries in red, press m from the calendar. To remove the
marks, press u. (This command removes highlighting for diary entries as well as for
holidays.)

Table 5-5 summarizes the calendar and diary commands.

Table 5-5. Holiday and diary commands

Keystrokes Command name Action

p d calendar-print-day-of-year Display the day of the year this is (for example,
Day 364 of 365).

p o calendar-print-other-dates Display information about this date for all cal-
endars.

Space scroll-other-window Scroll the other window.

q exit-calendar Quit calendar.

a
Holidays ➝ For Window

list-calendar-holidays Display holidays for calendar period shown.

h
Holidays ➝ For Cursor Date

calendar-cursor-holidays In the minibuffer, display holiday information
for the day the cursor is on.

x
Holidays ➝ Mark

mark-calendar-holidays Display holidays in a different typeface, color,
or with an asterisk beside them.

u
Holidays ➝ Unmark Calendar

calendar-unmark Remove marks for holidays and diary entries
(opposite of x command).

i w
Diary ➝ Insert Weekly

insert-weekly-diary-entry Add a weekly entry based on the day of the
week.

i y
Diary ➝ Insert Yearly

insert-yearly-diary-entry Add an annual entry.

i d
Diary ➝ Insert Daily

insert-diary-entry Add an entry for a particular day.

i m
Diary ➝ Insert Monthly

insert-monthly-diary-entry Add an entry for the day of the month.

i c
Diary ➝ Insert Cyclic

insert-cyclic-diary-entry Add an entry to recur every n days.

i a
Diary ➝ Insert Anniversary

insert-anniversary-diary-entry Add an annual entry (the year is included for
reference).

i b
Diary ➝ Insert Block

insert-block-diary-entry Add a block entry.

m mark-diary-entries Display diary entries in a different typeface,
color, or with a plus sign beside them.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Time Management Tools | 149

Problems You May Encounter
• In shell mode on Mac OS X, Emacs says, “Warning: no access to tty (Bad file

descriptor). Thus no job control in this shell.” This happens with the graphical
version of Emacs, not with the version run from the Mac OS X Terminal applica-
tion. If you change to a different shell using the instructions under “Which
shell?” earlier in this chapter, the error goes away.

• Some commands don’t work on Mac OS X. The graphical version of Mac OS X
fails to find some operating system commands, especially when invoking them
through M-! (for shell-command). Change to a different shell; see “Which
shell?” earlier in this chapter for details. Another problem is that some Unix
commands are not available by default on Mac OS X. Try them in the Mac Ter-
minal application to see if they work at all before trying them in shell mode. To
increase Mac OS X’s Unix functionality, use Fink (http://fink.sourceforge.net) to
download a wide variety of Unix commands and software for Mac OS X.

• Some commands don’t work on Windows. This chapter describes many com-
mands that have no Windows equivalent. The Windows port of Emacs works
well for most Dired functions, the calendar, and the diary. To get Unix com-
mand functionality under Windows, install Cygwin (http://cygwin.com).

• Printing does not work from Windows on USB printers. Many USB printers do
not support printing from the command line. This problem is not specific to
Emacs.

d view-diary-entries Display diary entries for the current date.

s
Diary ➝ Show All

show-all-diary-entries Display diary file.

M-= calendar-count-days-region Count the number of days in a region.

M
Moon ➝ Lunar Phases

calendar-phases-of-moon Display phases of the moon for a three-month
period.

S calendar-sunrise-sunset Given longitude and latitude, display sunrise
and sunset times for the current date.

C-Space or C-@ calendar-set-mark Mark regions by time rather than horizontally.

Table 5-5. Holiday and diary commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

150

Chapter 6CHAPTER 6

Writing Macros

What is a macro? In Emacs, a macro is simply a group of recorded keystrokes you
can play back over and over again. Macros are a great way to save yourself repetitive
work. For example, let’s say you want to delete the third column of a table. Nor-
mally, you would go to the first line; move over to the third column; delete it; then
go to the second line; give the same set of commands; and so on, until you finish,
your fingers wear out, or you get too bored. Emacs lets you record the keystrokes
you used to work on the first line of the table, and then “play these back” repeatedly
until the job is done.*

Any command or action you do within Emacs, from typing text to editing to switch-
ing buffers, can be done within a macro. The key to using macros well is, not too sur-
prisingly, recognizing when you’re doing repetitive work: sensing that you have
pressed more or less the same sequence of keys several times in a row. Once you
learn to recognize repetitious work, you have a good feel for when to use macros.
The next talent that you’ll need is, given that you’ve recognized a cycle of “almost
identical” keystrokes, figuring out how to make that cycle precisely identical—that is,
figuring out a set of keystrokes that, if repeated, will do exactly what you want. Nei-
ther of these skills is particularly difficult; with a little practice, you’ll be using mac-
ros all the time.

If this sounds like lazy man’s programming, it is: macros give you a simple way to do
very complicated things without learning Lisp and without learning any customiza-
tion tricks. If the task you build the macro for is something you have to do fre-
quently, you can save macros and load them when you want to use them. In this
way, you can build up a set of convenient macros that become your own editing
commands. Even if you don’t write Lisp, you’re not limited to the commands Emacs
gives you; you can make your own!

* You could delete the third column of a table by marking it as a rectangle, as described in Chapter 7. But bear
with us for the sake of making this point: when you find yourself doing repetitive work, macros are the tool
to remember.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Defining a Macro | 151

What you use macros for will depend on the kind of work you do in Emacs. We’ve
used macros to:

• Mark up text for formatting.

• Copy headings from one buffer to another to create an outline.

• Perform complex search-and-replace type operations that query-replace can’t
quite handle.

• Create index entries.

• Reformat files that were imported from another application.

• Edit tables.

• Compile, run, and test the output from a program with a single command.

• Manipulate and clean large datasets.

You’ll be able to think of many more things to do with macros after you learn the
few basic commands you need to use them.

Defining a Macro
To start defining a macro, press F3 or C-x (.* The abbreviation Def appears on the
mode line, showing that you are in macro definition mode. In this mode, Emacs
records all the keystrokes that you type, whether they are commands or literal text,
so that you can replay them later. To end the macro, press F4 or C-x); you leave
macro definition mode, and Emacs stops recording your keystrokes. Emacs also
stops recording your keystrokes automatically if an error occurs or if you press C-g.

A Macro Revolution
In this book, we almost never emphasize which version of Emacs we’re talking about.
Macros, specifically changes to macros in Emacs 21.3.5, have forced our hand. Macros
underwent a major overhaul in 21.3.5. Although some of the core key bindings still work
the same way, the keyboard macro functionality was radically expanded. If you are run-
ning an earlier version of Emacs, we encourage you to install the latest version (see
Chapter 13) or go to the web site for this book, http://www.oreilly.com/catalog/gnu3/,
which includes a link to an earlier version of this chapter.

* Mac OS X users may have bound F3 and F4, used in defining and executing macros, to another key. These
users should press Option-F3 and Option-F4 to get the same functionality.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 6: Writing Macros

While you’re defining a macro, Emacs acts on your keystrokes as well as recording
them: that is, anything you type while in macro definition mode is treated as a regu-
lar command and executed. While you’re defining a macro, you’re doing completely
normal editing. That way you can see that the macro does exactly what you want it
to, and you can cancel it (with C-g) if you notice that the macro isn’t really quite
what you want.

To execute your macro, press F4 or C-x e. Emacs then replays your keystrokes
exactly. (You can see that F4 has two different functions relating to macros: to end a
macro definition and, after it’s defined, to execute the macro.)

This macro is referred to as the “last” keyboard macro, with last here meaning most
recent. Only one macro is the last keyboard macro. A macro ring, much like the kill
ring, allows you to access a number of macros during an Emacs session.

Table 6-1 shows the steps required to define and execute a macro. This macro takes
a list of names in the ordinary First Name Last Name order and changes it to the fre-
quently needed Last Name, First Name order.

Table 6-1. Steps for creating name transposition macro

Keystrokes Action

F3 or C-x (Start the macro; Def appears on the mode line.

C-a Move to the beginning of the current line.

M-f Move forward a word.

, Type a comma.

M-t Transpose first and last.

C-n Move to the next line.

F4 or C-x) End the macro definition.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Defining a Macro | 153

Now let’s be brave and assume the macro works; we’ll try repeating it five times by
prefacing the command to execute a macro with M-5. Of course, in real life, you’d
be better off trying it once before doing anything so bold.

The macro works well, so we can finish the rest of the buffer with confidence: type
M-100, then C-x e or F4. Emacs stops automatically when you reach the end of the
buffer, so it doesn’t matter if you repeat the macro more times than necessary.

Define the macro using the keystrokes given in Table 6-1.

In defining the macro, you transposed the names on the first line, leaving the cursor
on the second line.

Type M-5 F4 or M-5 C-x e

Now we’ve done the first six lines: one by defining the macro and five more by exe-
cuting it.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 6: Writing Macros

Here are a few points to remember:

• Don’t forget to press F4 or C-x) when you’ve finished the macro. If you try to
execute a macro before it has been defined, Emacs complains and forgets the
macro’s definition.

• C-g terminates a macro, causing Emacs to forget its definition.

• Virtually any error automatically terminates a macro. If Emacs beeps at you, you
have to start over.

• Emacs executes the keystrokes exactly as you type them, with no intelligence
whatsoever. Avoid making assumptions like, “Of course I’ll be at the beginning
(or end) of the line when I execute the macro.”

If you invoke a macro and it does the wrong thing, you can use C-_ to undo it.
Emacs is smart enough to realize that “undo the last command” means “undo the
entire macro” rather than “undo the last command within the macro.” However, if
you repeat a macro multiple times using M-n, C-_ undoes only the last instance of
the macro, not all the instances.

Tips for Creating Good Macros
It’s easy to learn how to record and reuse your keystrokes. However, when you’re
starting out, you make a few mistakes: you create a macro, use it, and then find out
that it doesn’t do exactly what you thought. With a little care, it’s easy to make your
macros more useful and less vulnerable to mistakes.

Good macros work in all situations. Therefore, within a macro, you should use com-
mands that are absolute rather than relative. For example, if you write a macro that
puts a formatting string around the word the cursor is on, you want the macro to
work no matter how long the word is. Therefore, you would use an absolute com-
mand such as M-f (for forward-word) rather than a few C-fs to move forward one
character at a time. Similarly, commands such as C-e and C-a are good for finding
the beginning or end of a line rather than moving the cursor forward or backward.

Often, macros start with a search command that brings you to the place in the file
you want the macro to start. It’s a good idea to type the search argument (as in C-s
searchstring) rather than using the command to repeat the last search (C-s C-s). You
may have changed the search string between the time you define the macro and the
time you execute it, and C-s C-s remembers only what the last search string was.

It is often a good idea to add extra commands (typically C-a and C-e) that aren’t
strictly necessary, just to make sure that you’re positioned correctly on the line. The
fewer assumptions that a macro makes, the better it works. So, if a sequence of com-
mands works correctly only if you start at the end of the line, start the macro with C-e,
even if you already “know” that you want to give the command only when you’re at
the end of the line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

A More Complicated Macro Example | 155

Finally, while we’re reciting rules and cautions, here’s one more: keep in mind that
you probably want to execute macros repeatedly. With a little foresight, you’ll be
able to create macros that can be executed in long chains without problems.

In general, good macros have three parts:

• They find the place you want the macro to start working (often using search).

• They do the work that needs to be done on the text.

• They prepare themselves to repeat.

How can a macro prepare itself to repeat? For example, assume that you’re writing a
macro to delete the third column of a table. After deleting the column, the macro
should position itself at the beginning of the next line (or wherever it needs to be) so
you don’t have to reposition the cursor before reusing it.

Here’s a slightly more complex example. If you start a macro with a search, you have
to make sure that the end of the macro moves the cursor past the last spot you
searched for. If you don’t, the macro will keep finding the same place in the file and
never go on to the next occurrence of what you’re searching for. As a general rule, if
your macro operates on a line of text, it should end by moving to the beginning of
the next line. Remember that your goal is to create a sequence of keystrokes that can
be executed many times in a row, with no interruption.

A More Complicated Macro Example
Sometimes you may want to find all the references to a particular topic in a file.
Table 6-2 lists steps for creating a macro that takes takes every sentence in the buffer
that contains the word Emacs and copies it to another buffer. If you try this macro,
you’ll need to type some text about Emacs into a buffer. You can also get a test file to
work with by opening the Emacs NEWS file (using C-h n), then writing it to a file (C-
x C-w NEWS). This buffer is in view mode by default; change to text mode by typ-
ing M-x text-mode Enter.

Table 6-2. Steps for macro that creates a buffer of Emacs references

Keystrokes Action

F3 or C-x (Start macro definition; Def appears on the mode line.

C-s emacs Find the word Emacs.

Enter Stop the search after it is successful; if the search is unsuccessful, it
rings the bell and stops the macro.

M-a Move to the beginning of the sentence.a

C-Space Set the mark.

M-e Move to the end of the sentence.

M-w Copy the sentence to the kill ring.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 6: Writing Macros

Now, assume that you’ve already constructed the macro outlined in Table 6-2 and
that you can invoke it with F4. The following screen shows what happens when you
run it five times and then display the emacsrefs buffer.

As in the previous example, you can jump back and forth between an unlimited
number of buffers while defining a macro. Macros don’t need to be confined to one
buffer. Macros that work with several buffers are more difficult to debug; when sev-
eral buffers are involved, it becomes harder for you to keep track of where the cursor
and the mark are. It is also easy to make mistaken assumptions about what buffer
you’re visiting; hence, it’s a good idea to specify the buffer name explicitly. How-
ever, after you get accustomed to working with macros and multiple buffers, you’ll
be amazed at how much work you can do with almost no effort.

C-x b emacsrefs Enter Move to a buffer called emacsrefs.

C-y Insert the sentence.

Enter Start the next sentence on a new line.

C-x b Enter Move back to the original buffer.

F4 or C-x) End the macro definition; Def is removed from the mode line.

a M-a’s definition of a “sentence” is controlled by the variable sentence-end, which is a fairly
complex regular expression. By default, a sentence ends with a period, question mark, or
exclamation mark, optionally followed by a quotation mark or parenthesis (including brack-
ets or braces), and followed by two or more spaces or a newline.

Type: M-5 F4 or M-5 C-x e, followed by C-x b Enter

By executing the macro repeatedly, we’ve created a buffer that contains references to
the Emacs editor.

Table 6-2. Steps for macro that creates a buffer of Emacs references (continued)

Keystrokes Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Editing a Macro | 157

Windows are sometimes useful in macros, but, again, you have to watch out. It’s
better to start a macro with one window on the screen, have the macro open other
windows, and finally close all but one window (C-x 1). If you write a macro with two
windows on the screen and later try to execute it with four windows on the screen,
the results will be unpredictable at best! In general, moving to a named buffer, C-x b
buffername, is preferable to moving to the “other” window using C-x o (too vague to
be generally useful). The other window could be anything—a *Help* buffer,
Completion buffer, *shell* buffer, and so on. Moving to a named buffer always
gets you to the right place, no matter how (or whether) the buffer is displayed.

Editing a Macro
You can edit a macro and make changes to it in a few different ways. For this exam-
ple, we chose an all-purpose editing command, edit-kbd-macro, which is bound to
C-x C-k e. Several macro editing commands are available, but this one works for all
types of macros, so it’s good to learn.

Our macro could use a bit of tweaking. First of all, finding references to Emacs in our
copy of the Emacs NEWS file is pretty lame. Perhaps we’re interested in using a
mouse more frequently with Emacs and would like to know about changes to that
part of the interface. We’ll edit the macro to search for the word mouse. We’ll also
modify it so it marks a paragraph rather than a sentence since a sentence doesn’t
really provide enough context to be helpful.

Let’s start editing the macro.

Emacs asks you if you want to edit the last keyboard macro (C-x e), a named macro
(M-x), the last 100 keystrokes as a macro, termed “lossage” (C-h l), or keys (mean-
ing the keystrokes you bound a macro to). Yes, that’s a lot of choices, and later in the
chapter we describe named macros and binding macros to keys (you can experiment

Type: C-x C-k e

Emacs prompts you for the type of macro to edit.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 6: Writing Macros

on your own with creating a macro from lossage). For now, just choose C-x e to edit
the last keyboard macro.

Notice two fields near the top of this buffer, Command: and Key:. Right now, Command:
says last-kbd-macro. If this were a named macro, the command would be the name
you gave your macro. Additionally, for frequent use, you can bind your macro to a
key, at which point the Key: field lists the keystrokes to execute this macro. Right
now it says none because we haven’t defined any keystrokes yet.

Note that Emacs inserts comments all through the macro. It’s attempting to map
keystrokes to commands. You do not need to update these comments or add com-
ments if you add commands to your macro; Emacs does that itself.

To tweak our macro, we change the search string on the second line from emacs to
mouse. Note that we can just press C-k to wipe out the line and type mouse. Now
change M-a to M-{ and M-e to M-}. We change the buffer name from emacsrefs to
mouseinfo.

Type: C-x e

Emacs opens an *Edit Macro* buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Editing a Macro | 159

To exit the macro editing buffer, we have to type C-c C-c and go back to our NEWS
buffer. Let’s do that and then execute the macro again to see what happens.

We’ve made the edits from the previous paragraph. The screen looks like this:

A modified macro that captures information about using a mouse in Emacs.

Type: C-c C-c C-x b Enter M-< M-5 F4 C-x b Enter M-<

The mouseinfo buffer shows paragraphs from our copied NEWS file that mention the
mouse.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 6: Writing Macros

The Macro Ring
Although our latest macro is interesting, it’s not really a general purpose macro. It is
a temporary solution to a one-time problem. It saves you some work, but it isn’t gen-
eral enough to save and use again. On the other hand, our macro to transpose names
is generally useful. We’d like to use it again. We’d like to bind it to a key. But it is no
longer the “latest” keyboard macro.

As we mentioned earlier, Emacs has a macro ring much like the infamous kill ring.
It’s useful in the case we’ve just described, but it’s also useful because of the fragility
of the macro definition process. You create a macro and make a wrong move that
rings the bell, and your macro is canceled. It’s fairly easy to create a macro that does
nothing. Perhaps the macro that you just created was wonderful, and this new non-
functional nothing macro has supplanted it. Again, the macro ring is the solution. To
delete a macro from the ring, type C-x C-k C-d (for kmacro-delete-ring-head). This
deletes the most recently defined keyboard macro.

What if you want to swap the positions of two macros? Instead, type C-x C-k C-t (for
kmacro-swap-ring). This transposes macros 1 and 2.

In a more general sense, you can cycle to the previously defined macro by typing C-c
C-k C-p (for kmacro-cycle-ring-previous). To move the ring the other way, type C-x
C-k C-n (for kmacro-cycle-ring-next). The familiar C-p for previous and C-n for next
bindings are appended to the general macro keyboard prefix C-x C-k.

Before we can work with the transpose names macro, we must either define it again
or, if you’ve been working through our examples, type C-x C-k C-p to move to the
previous macro.

Binding Your Macro to a Key
Binding a macro to a key is easy. The key sequences C-x C-k 0 through 9 and capital
A through Z are reserved for user macro bindings. You can choose one that strikes
you as mnemonic for your macro.

For example, to bind our transpose names macro to C-x C-k T, type C-x C-k b.
Emacs prompts for the key binding. Type C-x C-k T Enter. Emacs confirms,
Keyboard macro bound to C-x C-k T. Binding a macro command to a key in this way
works for only one session. We want to keep this macro, so read on to find out how
to make this binding permanent.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building More Complicated Macros | 161

Naming, Saving, and Executing Your Macros
In this section, we’ll describe how to save macros so that you can use them in differ-
ent editing sessions. To save a macro, bind it permanently to a key, and load it in
subsequent Emacs sessions, follow these steps:

1. Define the macro, if you haven’t already.

2. Type C-x C-k n (for name-last-kbd-macro). Now type a name for your macro
and press Enter. A non-Emacs sounding name is best so that Emacs doesn’t con-
fuse it with one of its own commands. Once you’ve executed this command,
Emacs remembers the macro for the rest of the editing session. To use it again,
type the command M-x name (where name is the name you’ve chosen). Emacs
treats your named macro like one of its own commands; it shows up in comple-
tion lists if you press Tab after typing a few letters of the name.

3. If you want to save the macro definition permanently, you must insert the macro
definition into a file. This could be your .emacs file or a macro file that you load
through your .emacs file. Type C-x C-f filename Enter to find the file into which
to insert the definition and move to the end of it by typing M->.

4. Type M-x insert-kbd-macro Enter macroname Enter. Emacs inserts Lisp code
that represents your macro.

5. Add a line to .emacs make the key binding permanent. For example, if we called
our macro transpose-names and bound it to C-x C-k T, we would add this line
to our .emacs file (or other macro definition file):
(global-set-key "\C-x\C-kT" 'transpose-names)

6. If you save the macro in some other file, it won’t be loaded automatically. For
example, let’s say that you have defined a macro called transpose-names and
placed it in the file html.macs, in the directory ~/macros. Add this line to your
.emacs file to load your macros automatically:
 (load-file "~/macros/html.macs")

7. Save the .emacs file and, if different, the file in which you inserted your macro.
Exit and restart Emacs. You can now execute this macro either by typing M-x
transpose-names Enter or by pressing C-x C-k T.

Building More Complicated Macros
So far, we’ve covered the basics of writing, executing, and saving keyboard macros.
Now let’s discuss a couple of more advanced features Emacs lets you add to your
macros: pausing a macro for keyboard input and inserting a query in a macro.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 6: Writing Macros

Pausing a Macro for Keyboard Input
Sometimes it’s useful to pause a macro briefly so you can type something. For exam-
ple, if you write a lot of letters, you could have a macro that prints out a template
and then pauses for you to fill in variables (such as the date and the recipient’s
name). You can perform this task (and similar tasks) by inserting a recursive edit into
a macro. A recursive edit is just a fancy way to say, “Stop and let me type a while,
then pick up the macro where I left off.”

When you’re defining a macro, type C-u C-x q at the point where you want the
recursive edit to occur. Emacs enters a recursive edit. (You can tell you’re in a recur-
sive edit because square brackets appear on the mode line; you’ll see them in the
screenshots later in this section.) Nothing you type during the recursive edit becomes
a part of the macro. You can type whatever you want to and then press C-M-c to exit
the recursive edit. Notice how the square brackets disappear when you type C-M-c.
When the square brackets are no longer on the screen, you have left the recursive
edit. Anything you type at this point becomes part of the macro. You can put as
many pauses in your macros as you want to.

Example

Here’s an example of a macro that puts a business letter template on the screen and
uses recursive edits to let you type your return address, the recipient’s name and
address, and the date. Because the brackets on the mode line are a pretty subtle clue
to what you are going to type, we’ll give the user of this macro explicit instructions
about what to type. Table 6-3 provides these instructions.

Table 6-3. Steps for creating a business letter macro

Keystrokes Action

F3 or C-x (Start keyboard macro definition.

M-5 Enter Put in 5 blank lines.

Type your address and press C-M-c Display Type your address and press C-M-c on the screen.

C-a Move to the beginning of the line.

C-u C-x q Enter a recursive edit, during which the keystrokes you type are not recorded as
part of the macro.

C-M-c Exit the recursive edit.

C-e Move to the end of the line.

M-5 Enter Move the cursor down 5 lines.

Type recipient name and address and
press C-M-c

Display Type recipient name and address and press C-M-c
on the screen.

C-a Move to the beginning of the line.

C-u C-x q Enter a recursive edit.

C-M-c Exit the recursive edit.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building More Complicated Macros | 163

The following screens show what the macro defined in Table 6-3 looks like when
you run it.

C-e Move to the end of the line.

M-5 Enter Move the cursor down 5 lines.

Type date and press C-M-c Display Type date and press C-M-c on the screen.

C-a Move to the beginning of the line

C-u C-x q Enter a recursive edit.

C-M-c Exit the recursive edit.

C-e Move to the end of the line.

M-5 Enter Move the cursor down 5 lines.

Dear Space Display Dear on the screen.

F4 or C-x) End keyboard macro definition.

Type: F4

The macro pauses so that you can type your address.

Table 6-3. Steps for creating a business letter macro (continued)

Keystrokes Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 6: Writing Macros

Type your address and press: C-M-c

The macro pauses so you can type the recipient’s name and address.

Type the recipient’s name and address and press: C-M-c

The macro pauses so you can type the date.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building More Complicated Macros | 165

Now the macro has finished editing; you can type the recipient’s name and then the
body of the letter, and of course you can go back and edit any of the information
you’ve already filled in.

Adding a Query to a Macro
The more complex the task your macro performs, the more difficult it is to make the
macro general enough to work in every case. Although macros can do a lot of things,
they aren’t programs: you can’t have if statements, loops, and the other things you
associate with a program. In particular, a macro can’t get input from the user and
then take some action on the basis of that input.

However, one feature lets a macro get input, in a limited way, from the user. You can
create a macro that queries the user while it is running; it works much like a query-
replace. To create this kind of a macro, type C-x q when you reach the point in the
macro definition where you want the macro to query the user. Nothing happens
immediately; go on defining the macro as you normally would.

Things get interesting later, when you execute the macro. When it gets to the point
in the macro where you typed C-x q, Emacs prints a query in the minibuffer:

Proceed with macro? (y, n, RET, C-l, C-r)

Type the date and press: C-M-c

The macro finishes by typing the opening for the letter.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 6: Writing Macros

The responses listed here are analogous to those in query-replace:

• Pressing y means to continue and go on to the next repetition, if any.

• Pressing n means to stop executing the macro but go on to the next repetition, if
any.

• Pressing Enter means to stop executing the macro and cancel any repetitions.

• Pressing C-r starts a recursive edit, which lets you do any editing or moving
around you may want to and then resume the macro when you exit the recur-
sive edit. To exit a recursive edit, press C-M-c. Emacs again asks if you want to
proceed with the macro, and you type y for yes or n or Enter for no.

• Pressing C-l puts the line the cursor is on in the middle of the screen (this is good
for getting a feel for the context). Similar to C-r, Emacs again asks if you want to
proceed with the macro, and you have to answer y, n, or Enter.

• Pressing C-g (although not listed as an option) cancels the query and the macro;
it is similar to pressing Enter.

Example

Let’s say that you write a macro that copies comments from a program to another
buffer. The comments in our program are preceded by a slash, so you start the
macro with a search for a slash. However, not all comments are worth copying.
Following the search with a query lets you decide case by case whether the search
has found a comment you want to copy. Table 6-4 shows a macro to copy com-
ments to another buffer.

Table 6-4. Comment-copying macro with a query

 Keystrokes Action

F3 Start the macro definition.

C-s / Search for a slash.

Enter Stop the search when it is successful.

C-x q Insert a query in the macro; Emacs asks you if you want
to proceed at this point when you run the macro.

M-f Move forward one word.

M-b Move to the beginning of this word.

C-Space Set the mark.

C-e Move to the end of the line.

C-f Move forward one character.

M-w Copy the comment to the kill ring.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Macros on a Region | 167

Executing Macros on a Region
A special command lets you execute a macro on each line in a region. How fre-
quently do you encounter an email with text that you want to yank, but that is
quoted several indentation levels? Of course, we can think of several ways to delete
the indentation quickly, but a line-oriented macro is a quick approach too. You
define the macro and execute it on a region by typing C-x C-k r (for apply-macro-to-
region-lines). Remember that earlier we said that macros should set themselves up to
repeat? This command is different because it expects to work on one line at a time.
You don’t want to set it up to repeat by moving to the next line; it does that auto-
matically.

Table 6-5 shows a quick line-oriented macro that deletes indentation marks from
text quoted in an email or newsgroup message.

C-x b comments Move to a buffer called comments.

C-y Insert the comment in the buffer.

C-x b Move back to the original buffer.

F4 End the macro definition.

Table 6-5. Macro for deleting indentation marks

 Keystrokes Action

F3 Start the macro definition.

C-a Move to the beginning of the line.

M-f Move forward one word.

M-b Move to the beginning of this word.

C-Space Set the mark.

C-a Move to the beginning of the line.

C-w Delete the extraneous indentation characters.

F4 End the macro definition.

Table 6-4. Comment-copying macro with a query (continued)

 Keystrokes Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 6: Writing Macros

Beyond Macros
Macros are an important tool for streamlining repetitive editing. They let you write
your own commands for performing complex tasks without needing to know any-
thing more than you already know: the basic Emacs commands for moving around
and manipulating text. Even if you’re an Emacs novice, you should be able to use
macros with little difficulty.

Initial state:

Text indented at various levels (Mac OS X).

Mark the text as a region, move to the beginning of the region, then type: C-x C-k r

Indentation is deleted (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Beyond Macros | 169

However, Emacs is almost infinitely flexible, and macros cannot do everything. In
many situations, there’s no substitute for writing a Lisp function that does exactly
what you want. If you know Lisp or would like to learn some, you can write your
own Lisp functions to do more complex tasks than keyboard macros can handle.
Chapter 11 covers the basics of writing Lisp functions.

Table 6-6 summarizes macro commands.

Table 6-6. Macro commands

Keystrokes Command name Action

C-x (kmacro-start-macro Start macro definition.

F3 kmacro-start-macro-or-insert-
counter

Start macro definition. If pressed while defining a macro,
insert a counter.

C-x) kmacro-end-macro End macro definition.

F4 kmacro-end-or-call-macro End macro definition (if definition is in progress) or invoke
last keyboard macro.

C-x e kmacro-end-and-call-macro Execute last keyboard macro defined. Can type e to repeat
macro.

C-x C-k n name-last-kbd-macro Name the last macro you created (before saving it).

(none) insert-kbd-macro Insert the macro you named into a file.

(none) macroname Execute a named keyboard macro.

C-x q kbd-macro-query Insert a query in a macro definition.

C-u C-x q (none) Insert a recursive edit in a macro definition.

C-M-c exit-recursive-edit Exit a recursive edit.

C-x C-k b kmacro-bind-to-key Bind a macro to a key (C-x C-k 0-9 and A-Z are reserved for
macro bindings). Lasts for current session only.

C-x C-k Space kmacro-step-edit-macro Edit a macro while stepping through it (in our opinion, the
interface is overly complex).

C-x C-k l kmacro-edit-lossage Turn the last 100 keystrokes into a keyboard macro. If any
mouse clicks are among the last 100 keystrokes, does not
work.

C-x C-k e edit-kbd-macro Edit a keyboard macro by typing C-x e for the last keyboard
macro defined, M-x for a named macro, C-h l for lossage, or
keystrokes for a macro bound to a key.

C-x C-k Enter kmacro-edit-macro Edit the last keyboard macro.

C-x C-k C-e kmacro-edit-macro-repeat Edit the last keyboard macro again.

C-x C-k C-t kmacro-swap-ring Transpose last keyboard macro with previous keyboard
macro.

C-x C-k C-d kmacro-delete-ring-head Delete last keyboard macro from the macro ring.

C-x C-k C-p kmacro-cycle-ring-previous Move to the previous macro in the macro ring.

C-x C-k C-n kmacro-cycle-ring-next Move to the next macro in the macro ring.

C-x C-k r apply-macro-to-region-lines Apply this macro to each line in a region.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

170

Chapter 7CHAPTER 7

Simple Text Formatting and
Specialized Editing

Emacs is fundamentally a text editor, rather than a word processor: it is a tool that
creates files containing exactly what you see on the screen rather than a tool that
makes text files look beautiful when printed. However, Emacs does give you the
capability to do the following:

• Indent text using tabs and other indentation tricks.

• Center words, lines, and paragraphs of text.

• Hide and show portions of a document using outline mode, which gives you a
feel for a document’s overall structure. Outline mode can make it easier to go
from rough outline, to detailed outline, to rough draft, to the final product.

• Edit by column rather than by line (especially helpful when you create or change
tables or work with column-oriented datasets), referred to in Emacs as rectangle
editing.

• Create simple pictures using keyboard characters or the mouse.

Much of this chapter, though, focuses on some fairly simple stuff: tabs and indent-
ing text. We describe Emacs’s behavior in primarily two major modes: fundamental
mode and text mode. If you are a developer, you’ll probably want to write code in a
mode appropriate to the language you’re using; see Chapter 9 for details. If you use a
markup language like HTML, see Chapter 8 for additional relevant information.

Using Tabs
Tabs provide an easy way to do some simple formatting. While we were revising this
book, we found that the way Emacs handles tabs has changed a great deal. This sec-
tion describes first how Emacs works by default and then discusses what you can do
to change the default behavior to meet your needs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Tabs | 171

How Emacs 21 Handles Tabs by Default
If you open a new file in text mode, tabs are set every eight spaces by default. (Pro-
gramming modes have their own indentation behavior; see Chapter 9 for details.)

Watch what happens when we type a sentence. The default tab stops change auto-
matically.

Every time you press Tab, Emacs moves the cursor under the next word. This is the
behavior that many people expect when writing code. Neatly lined up code is easier
to read.

As we experimented with this feature, we would tab across under each word, and
press Enter. What happens next is surprising if you are not expecting it. Emacs con-
siders that newline to be the only character you typed on the line, so pressing Tab on
a subsequent line brings you nearly to the end of the line.

Press Tab.

Pressing Tab in text mode or fundamental mode inserts a tab character that moves
the cursor forward eight columns by default.

Type: It was the best of times Enter Tab Tab

Pressing Tab twice moves the cursor under the word was, clearly less than eight
columns.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 7: Simple Text Formatting and Specialized Editing

If you press Enter but don’t press Tab at all, the indentation level moves back to the
left margin.

Changing tabs to align with each word can be helpful, if, for example, you’re typing
tables. However, the default tab behavior may not be helpful to you in all situations.
If you are interested in changing the default behavior, read on and we’ll describe how
to get Emacs to do what you want it to do.

Changing Tab Stops
By default (and if text is not lining up with some previous line of text), tabs are set
every eight characters. Emacs allows you to change the positions of the tab stops. To
change the tab stops, type M-x edit-tab-stops. A *Tab Stops* buffer appears.

Press Tab repeatedly to the end of the window, press Enter, then press Tab once.

Emacs moves the cursor to the column where you pressed Enter.

Type: M-x edit-tab-stops

You now see a tab stop ruler; colons show the locations of tab stops.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Tabs | 173

The colons in the first line of the display show you where tab stops are currently
located. The next two lines form a ruler that shows each character position on the line.
To insert a tab, use C-f to move to the desired column, and then type a colon (:). To
delete a tab, move to the desired tab, and press Space. The *Tab Stops* buffer is in
overwrite mode, so these changes won’t change the position of other tabs. Make sure
that you do all your editing in the first line of the display. Changes made to the other
lines won’t have any effect.

When you’re satisfied with the tab stops, press C-c C-c to install them. If you don’t
make any changes, press C-c C-c to exit the buffer. If you make some changes and
then decide you don’t want them after all, kill the buffer by typing C-x k Enter. The
default tab stops remain in effect.

If you press C-c C-c to install them, the new tab settings affect all buffers that you
create but remain in effect for this Emacs session only.

Again, it may well appear to you that this feature doesn’t work as you would expect.
Because Emacs’s default behavior tries to align with preceding lines, changing tab
stops really affects only the first line of any buffer.

In this example, we set the first tab at column 51, pressed C-c C-c to install the tab
stops, and started a new buffer. Pressing Tab at the beginning of the buffer moves
the cursor immediately to column 51. That works fine.

Now we press Tab a few more times, followed by Enter to move to a new line.

When we press Tab on the second line, Emacs views the newline as the only item on
the last line. Pressing Tab moves us right to the end of the line.

Press Tab once.

Cursor moves to column 51.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 7: Simple Text Formatting and Specialized Editing

As you can see, changing tab stops in this way is of limited efficacy if you’re going to
add blank lines between rows of your table or whatever you’re typing. You’d have to
work around this by adding blank lines after typing the whole table, perhaps using a
macro as described in Chapter 6.

What if You Want Literal Tabs?
Let’s say that all this tab finery is getting on your nerves. You don’t want context-
sensitive indenting; you don’t even want to change tab stops. There is a way to make
Emacs treat tabs just like a regular old typewriter did, moving over eight characters
at a time.*

To insert rigid, typewriter-style tabs, press C-q Tab. In theory, this should insert a
tab character into the file, which would look like ^I. In practice, it moves the cursor
forward rigidly eight columns.

Press Tab on the next line.

Emacs moves to the end of the line.

* You can’t change tab stops with this method, but you can change tab width. We’ll cover this shortly.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Tabs | 175

C-q Tab does in fact insert a tab character in the file. You can check that by erasing it
with a single press of the Del key.

Changing Tab Width
One problem with tabs is that there is no universal definition of what a tab means. In
vi, the default tab width is four columns versus eight columns in Emacs. Further,
Unix generally favors eight columns for tabs while some operating systems tend to
use four spaces. Emacs uses eight columns by default no matter what platform it’s
running on. If you view another user’s file in Emacs, Emacs interprets the tabs as
eight columns each, throwing things off. For this reason, you might want to set your
tab default to four columns by adding this line to your .emacs file:

 (setq-default tab-width 4)

You have to press C-q Tab to have the modified tab width take effect.

Tabs and Spaces
Another characteristic of Emacs’s default behavior is the fact that it may insert a
combination of tabs and spaces when you press Tab. Try to erase a few “tabs” and
you’ll see that often it isn’t one character, but the equivalent number of spaces or a
combination of tabs and spaces. Of course, this largely depends on the tab stops
compared to setting of the tab-width variable. If you set tab stops that are multiples
of six while you have a tab-width of 4 or 8, Emacs is going to have to use a combina-
tion of tabs and spaces to achieve the desired tab stops.

Type: C-q Tab

The cursor moves eight columns forward and does not align with the text in the
previous line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 7: Simple Text Formatting and Specialized Editing

If you want Emacs to insert spaces for indentation rather than tab characters, add
this line to your .emacs file:

(setq-default indent-tabs-mode nil)

With this setting, Emacs inserts only spaces when you press Tab. Pressing C-q Tab
instead inserts a literal tab character. It’s safe to say you won’t enter tab characters
accidentally with this setting.

Changing Tabs to Spaces (and Vice Versa)
We’ve just talked about a way to make sure that Emacs inserts spaces instead of tabs.
But what if you inherit a file and it has tabs that you want to change to spaces?

Emacs provides a command to banish tabs from your files. You can use tabs for edit-
ing and then convert all of the tabs to the appropriate number of spaces so that the
appearance of your file doesn’t change. Unlike tabs, a space is almost always well
defined. The command for eliminating tabs is M-x untabify. There’s a correspond-
ing command to convert spaces into tabs: tabify. However, we trust that you’ll take
our advice and forget about it.

The untabify command works on a region. Therefore, to use it, you must put the
mark somewhere in the buffer (preferably at the beginning), move to some other
place in the buffer (preferably the end), and type M-x untabify Enter. The command
C-x h (for mark-whole-buffer) automatically puts the cursor at the beginning of the
buffer and the mark at the end. It makes untabification a bit easier because you can
do it all at once with the simple sequence C-x h M-x untabify Enter.

Table 7-1 shows the tab commands we’ve covered in this section.

Indenting Text
Emacs provides the ability to indent paragraphs, like a block quote in a paper. It also
allows you to use a paragraph style that indents just the first line of a paragraph. This
section describes indentation-related commands, including how to change the mar-
gins for the current session.

Table 7-1. Tab commands

Keystrokes Command name Action

(none) edit-tab-stops Open a buffer called *Tab Stops* where you can change the tab settings.

(none) untabify Change all tabs into the equivalent number of spaces.

(none) tabify Change groups of three or more spaces to tabs where possible without affecting
the text placement.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Indenting Text | 177

Before we start, make sure you’re in text mode. Look at the mode line and, if the
word Text is displayed, you are in text mode. If not, type M-x text-mode Enter to
enter text mode.

Indenting Paragraphs
Let’s say you’re writing a paper and want to include some indented block quotes.
Emacs’s default behavior makes this a no-brainer.* After you finish your first para-
graph, use tabs or spaces to indent to the desired level and start typing the quote.
Emacs automatically fills the paragraph and the quote correctly, as shown in the fol-
lowing screen.

What if an indented quote has multiple paragraphs? You could just press Enter and
then Tab again at the beginning of subsequent paragraphs or you could press C-j (for
newline-and-indent). Pressing C-j twice gives you a blank line between paragraphs.

Indenting the First Line of a Paragraph
Some people prefer paragraphs in which the first line is indented. Knowing about the
intricacies of tabs, you might be concerned that pressing Tab to indent the opening
line of your paragraph will incite Emacs to indent the whole paragraph as you con-
tinue typing. And it would, to be honest.

* Once upon a time, you had to enter indented text mode explicitly to get the behavior we describe here. Now
it is on by default in text mode.

Some indented text:

Emacs indents the text properly and fills it correctly in auto-fill mode.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 7: Simple Text Formatting and Specialized Editing

Emacs provides a special mode for this purpose: paragraph indent text mode. It’s also
available as a minor mode. Enter either M-x paragraph-indent-text-mode or M-x
paragraph-ident-minor-mode respectively. If you run the major mode, Emacs dis-
plays Parindent on the mode line.

When you press Tab to start a paragraph, Emacs inserts a tab’s worth of space.
When you start a new paragraph, you don’t have to skip a line in between and press-
ing Tab to start that second paragraph yields again a tab’s worth of space, not align-
ing with the second word of the previous line as Emacs would do in text mode or
fundamental mode.

Pressing M-q reformats paragraphs without mushing them all together. If you prefer
indented paragraphs, this mode is exactly what you want. When you need to indent
a block quote, you may want to temporarily enter text mode to make it easier and
add your paragraph indentations manually.

Filling Indented Paragraphs
Let’s say you’ve got a paper with paragraphs indented at various levels. What if you
edit them and need to fill them again? Especially if there are no blank lines in
between paragraphs, M-q munges all the text into one big (nonindented) paragraph.
Instead of M-q, mark the region in question and use a special fill command: M-x fill-
individual-paragraphs. Emacs preserves each paragraph’s indentation.

Let’s contrast these two commands with an example. We’ll use our previous Henry
James example, but delete the lines between paragraphs to show what happens if
you use M-q in this case. These paragraphs need to be reformatted.

Initial state:

Some sample paragraphs from Henry James, in need of reformatting.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Indenting Text | 179

We’ll undo that command, mark the buffer as a region, and use the fill-individual-
paragraphs command.

Indenting regions

What if you have already typed your text without indentation and want to indent it
later? Two commands can handle this, depending on how far you want to indent the
region.

The indent-region command, bound to C-M-\, can indent a region one level easily. If
you want to indent two levels, it is unpredictable. (This command is designed for
indenting code.)

Type: M-q

Emacs munges it all into one large paragraph.

Type: C- _ C-x h M-x fill-individual-paragraphs Enter

Emacs refills the paragraphs properly.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 7: Simple Text Formatting and Specialized Editing

Here’s an example. The second paragraph is marked as a region.

You decide that’s not far enough.

So you can see that this works fine if you’re indenting one level. If you try this with
multiple paragraphs of different indentation levels, indent-region pulls them all to
the right, aligning them with the least indented paragraph, probably not what you
intended. If you write code, however, this command is great for cleaning up messy
indentation.

Type: C-M-\

Emacs indents the paragraph one level.

Type: C-M-\

Emacs creates a stairstep hanging indent.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Indenting Text | 181

The other option is to mark the region and type C-x Tab (for indent-rigidly). By
default, this command indents only one space, so if you want to indent further, you
need to give it an argument. For example, to indent the previous paragraph 15 spaces:

Although arguably it can be a pain to supply an argument, indent-rigidly uniformly
indents text, leaving indented paragraphs indented. If you find yourself wanting to
indent whole files, you may actually want to change the margin settings, as described
in the next section.

Other indentation tricks

Whenever you are using indentation, you can use M-m (for back-to-indentation) to
move to the first nonblank character on a line. On a line that’s not indented, this
command simply moves you to the beginning of the line. In other words, M-m brings
you to the “logical” beginning of the line, which is what you usually mean when you
type C-a.

Another indentation command is C-M-o (for split-line). You can use this command
to create a stairstep effect. Move the cursor to the text that you want to put on the
next line and press C-M-o. Note that there must be some text following the cursor in
order for this command to work properly; if you try it at the end of a line, it does
nothing.

Mark the region then type: M-15 C-x Tab

Emacs indents the paragraph 15 spaces.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 7: Simple Text Formatting and Specialized Editing

Changing Margins
Emacs is not a word processor, but it does have a few commands that change left
and right indentation for a buffer for the current session. First, mark the whole buffer
using C-x h. You can then gchange the indention using M-x followed by one of the
following commands:

increase-left-margin
decrease-left-margin
increase-right-margin
decrease-right-margin

These commands are also available through the Edit menu. Choose Edit ➝ Text
Properties ➝ Indentation to see the options.

Initial state:

We want to split this line.

Type: C-M-o

C-M-o splits the line at the cursor position.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Indenting Text | 183

Unless you supply a numeric argument using C-u or M-n preceding these com-
mands, Emacs increases or decreases the margins by the number of characters in the
variable standard-indent, which defaults to 4. If auto-fill mode is on, Emacs also
reformats the paragraphs automatically.

Margin settings remain in effect for the current session and the current buffer only.
Although the values don’t persist to another session, any text that is indented using
this method remains indented when you reopen the file. If you open the file again
and add some text, however, it is not indented; you have to set the margins again.

These commands work best in cases where you want to change the margin for the
whole buffer. If you define a smaller region, the commands work but if you type
more paragraphs, the margin settings persist whether you want them to or not.
These commands work fine if you’ve completed the file and then decide to change
the indentation.

Alternatively, you can set and save margins using enriched mode, a minor mode that
allows Emacs to save text properties, including margin settings and font changes. See
Chapter 10 for more details on enriched mode.

Using Fill Prefixes
Fill prefixes are a way of putting a certain string of characters at the beginning of
each line in a paragraph or a file. Developers will immediately think of comments as
a potential fill prefix. When writing email or newsposts, email programs often insert
a string to help readers distinguish the threads of a discussion. For those of us writ-
ing text files, fill prefixes can be used to insert whitespace in paragraphs or any rele-
vant string of characters.

The term fill prefix comes from the fact that Emacs calls word wrap auto-fill mode; in
other words, a fill prefix is a string that Emacs should insert at the beginning of each
line (or “prefix” each line with) when doing word wrap.

To use fill prefixes, it’s best to be in auto-fill mode. If your mode line says Fill on it,
you’re already in auto-fill mode. If it doesn’t, type M-x auto-fill-mode Enter.

Now let’s assume that you want to indent a letter. For the first line of the letter, type
your indentation by hand—say, eight spaces. Then type C-x . (for set-fill-prefix).
Emacs displays the message: fill prefix " " in the minibuffer. Then start typing
normally. Whenever you type past the right margin and Emacs breaks a line for you,
it automatically inserts your eight-space indentation at the beginning of the line.

Here’s a slightly more exciting example. There’s no reason that fill prefixes must to
be spaces; they can be anything you choose. Assume that you’re sending an email
message to your friends to announce a unique event and you want an eye-catching
fill prefix.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 7: Simple Text Formatting and Specialized Editing

Once you’ve set the prefix, you can type your message normally.

You had to type “Elephant Riding Party!!!” only once; Emacs inserted the rest auto-
matically. Here are some things you might want to know about fill prefixes:

• Emacs never applies the fill prefix to the first line of a paragraph. You obviously
can’t apply it to the first line of the first paragraph (you have to type it some-
where). But Emacs can’t apply it to the first line of any paragraph. In other words,
if the “elephant riding” message had two paragraphs, you’d have to type (or yank)
the phrase “Elephant Riding Party!!!” at the beginning of the second paragraph.

Type: Elephant Riding Party!!! C-x .

Type the prefix, then C-x . to set it.

Type: The time . . . the zoo.

Emacs inserts the fill prefix at the beginning of each line of the message.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Indenting Text | 185

However, you don’t need to set the fill prefix again. Emacs supplies your prefix
for all lines but the first in subsequent paragraphs. It just gets confused about the
initial line of any paragraph.

• Once you’ve started using a fill prefix, how do you turn it off? There’s no special
command. All you do is put the cursor at the left margin and type C-x . to define
a new, empty fill prefix.

• You can edit paragraphs with fill prefixes, then reformat them with M-q, as long as
the fill prefix is still defined. If you have cleared the fill prefix, Emacs reformats the
paragraph without regard to the fill prefix. If you need to reformat your para-
graphs later, after you’ve canceled the fill prefix, define it again and then type M-q.

Table 7-2 lists the indentation commands we’ve discussed.

Table 7-2. Indentation commands

Keystrokes Command name Action

C-j newline-and-indent Move to the next line and indent to the current
level.

(none) paragraph-indent-text-mode A major mode for writing paragraphs with
indented first lines and no blank lines between
paragraphs.

(none) paragraph-indent-minor-mode The minor mode equivalent of paragraph-indent-
text mode.

(none) fill-individual-paragraphs Reformat indented paragraphs, preserving inden-
tation.

C-x Tab indent-rigidly Indent one column; preface with C-u or M-n to
specify multiple columns.

C-M-\ indent-region Indent a region to match the first line in the region.

M-m back-to-indentation Move the cursor to the first non-whitespace charac-
ter on a line.

C-M-o split-line Split the line at the cursor position and indent it to
the column of the cursor position.

(none)
Edit ➝ Text Properties ➝

Indentation ➝ Indent More

increase-left-margin Increase the left indentation level for the buffer by
four characters by default.

(none)
Edit ➝ Τext Properties ➝

Indentation ➝ Indent Less

decrease-left-margin Decrease the left indentation level for the buffer by
four characters by default.

(none)
Edit ➝ Text Properties ➝

ndentation ➝ Indent Right More

decrease-right-margin Decrease the right indentation level for the buffer
by four characters by default.

(none)
Edit ➝ Text Properties ➝

Indentation ➝ Indent Left More

increase-right-margin Increase the right indentation level for the buffer
by four characters by default.

C-x . set-fill-prefix Use the information up to the cursor column as a
prefix to each line of the paragraph; typing this
command in column 1 cancels the fill prefix.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 7: Simple Text Formatting and Specialized Editing

Centering Text
Another common formatting task is centering text. For example, you might want to
center the title of a document or individual headings within a document. Emacs pro-
vides commands to center lines, paragraphs, and regions.

In text mode, you can center a line by simply typing the line you want to center (or
moving anywhere on an existing line), and then pressing M-s.

You can also center paragraphs and regions. In both cases, Emacs does line-by-line
centering rather than block centering. To center a paragraph, use the command M-S
(for center-paragraph); to center a region, use M-x center-region. For example, let’s
say you want to center the following quotation.

Type: Annual Report

You type the document’s title.

Type: M-s

Emacs centers the line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Outline Mode | 187

In this case, line-by-line centering looks rather artistic. But there are times when you
might wish Emacs did block centering. You can replicate this effect by using the
indent-rigidly command, discussed earlier in this chapter. You just have to play with
the indentation to see how far the block of text should be indented to look centered.

There’s one more choice for centering. You can change justification by choosing
Edit ➝ Text Properties ➝ Justification ➝ Center. This command works on what-
ever text is selected.

Table 7-3 lists the commands used to center text.

Using Outline Mode
When you’re writing something, whether it’s a book, a long paper, or a technical
specification, getting a sense of organization as you go along is frequently difficult.
Without a sense of structure, it is hard to expand an outline smoothly into a longer
paper or to reorganize a paper as you go along. The words get in the way of your
headings, making it hard to see the forest for the trees.

Outline mode provides a built-in solution to this problem. This mode gives you the
ability to hide or display text selectively, based on its relationship to the structure

Type: M-S

Text is now centered.

Table 7-3. Centering commands

Keystrokes Command name Action

M-s center-line Center the line the cursor is on.

M-S center-paragraph Center the paragraph the cursor is on.

(none) center-region Center the currently defined region.

(none)
Edit ➝ Text Properties ➝

Justification ➝ Center

set-justification-center Center selected text.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 7: Simple Text Formatting and Specialized Editing

of your document. For example, you can hide all of your document’s text except
for its headings, thereby giving you a feel for the document’s shape. When you’re
looking at the headings, you can focus on structure without being concerned about
individual paragraphs. When you’ve solved your structural problems, you can
make the text reappear.

Outline mode is more useful for documents with several levels of headings (or for
long programs) than for plain outlines containing very little text. The longer a
document is, the harder it is to get a quick feel for the overall structure; it is in
such a situation that outline mode’s ability to hide and show portions of the text
comes in handy.

Outline mode requires you to follow some special conventions in your outline or
document. Figure 7-1 shows an outline in traditional format and the same outline
prepared for outline mode. On the left, we show a “traditional” outline; on the right,
we show the same outline, after being prepared for outline mode:

Whereas traditional outlines use a hierarchical scheme of Roman numerals, upper-
case letters, numbers, and lowercase letters for heading levels 1 through 4, outline
mode by default expects to see one asterisk (*) for a first-level heading, two for a sec-
ond-level heading, and so on. Lines that don’t start with an *, such as “This book is
all-inclusive,” are referred to as body lines. Notice that Emacs expects to see the
asterisk in the first column. You can use traditional outline indentation, provided
that the asterisks start in the first column.*

Figure 7-1. Traditional Outline versus Outline Mode

* Of course, after the document is complete, you’ll want to remove the asterisks. You can use a query-replace to
change the asterisk-style headers into headers that are appropriate for your preferred formatting style. Find the
lowest-level heading and do its replacement first. If you have third-level headings, replace all occurrences of ***
with the mark-up for a third-level heading, then move on to second-level headings, and finally first-level head-
ings. Be careful on first-level headings, though; there may well be asterisks in the file that are unrelated to head-
ings; preface the asterisk with C-q C-j to ensure that you get an asterisk that starts on a new line. Another
approach is to use Eric Pement’s awk scripts. The script at http://www.student.northpark.edu/pemente/awk/
outline_classic11.awk.txt converts an outline mode outline to a classic outline while the script at http://www.
student.northpark.edu/pemente/awk/outline_numbered11.awk.txt converts to a numbered outline.

Traditional outline

All about the Universe
I. Preface

A. Scope of book
 This book is all-inclusive
B. Intended audience
 Universe dwellers

II. Chapter 1
A. Universe basics

Outline mode

All about the Universe
*Preface
**Scope of book
This book is all-inclusive
**Intended audience
Universe dwellers
*Chapter 1
**Universe basics

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Outline Mode | 189

The sample outline has only two body lines. As we developed the book, though,
we’d gradually add more and more body: “This book is all-inclusive” would be
replaced by a substantial chunk of the preface, and other body lines later in the out-
line would turn into the text for Chapter 1. When used properly, outline mode
removes the distinction between outlining and writing. As your outline grows and
becomes more detailed, it can gradually become your paper.

Entering Outline Mode
To start outline mode, type M-x outline-mode Enter. Outline appears on the mode
line. (Outline mode is also available as a minor mode; we’ll discuss that later in
this section.)

After you are in outline mode, you can use special commands to move quickly from
one part of the outline to another. C-c C-n moves to the next heading or subheading;
C-c C-p moves to the previous one. C-c C-f moves to the next heading of the same
level, so you can use this command to move from one first-level heading to another
throughout the outline, or from one second-level heading to another within a given
entry. C-c C-b moves backward to the previous heading of the same level. If you want
to move from a second-level heading to its first-level heading, up a level in the outline
structure, you type C-c C-u. (If you are on a first-level heading already, C-c C-u beeps
because it can’t move to a higher level.) Figure 7-2 illustrates how these cursor com-
mands would work on our sample outline.

These commands make it easy to solve a lot of organizational problems. If you often
think, “I know I’m writing about widgets, but I can’t remember the bigger point I’m
trying to make,” type C-c C-u to get to the next higher level of the outline. If you
want to figure out how widgets relate to the other topics within the section, use C-c
C-b and C-c C-f to move backward and forward to your other headings.

Figure 7-2. Moving around in outline mode

C-c C-f

C-c C-n

C-c C-b

C-c C-p

C-c C-u

All about the Universe

*Preface

**Scope of the Book

This book is all inclusive

**Intended audience

Universe dwellers

*Chapter 1

**Universe basics

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 7: Simple Text Formatting and Specialized Editing

Hiding and Showing Text
The most important feature of outline mode is the ability to selectively hide or show
different portions of your text. The ability to see a skeletal view of a long document
with outline mode is its best feature; it’s much easier to evaluate the structure of a
document when you can hide everything but the headings and see whether it is
coherent or in need of some reorganization.

Although it sounds like something out of a detective novel, the hide-body com-
mand, C-c C-t, hides all the body (or text) lines but leaves all the headings (lines that
begin with an asterisk) visible. Wherever Emacs hides text, it places an ellipsis (...)
on the corresponding heading line. The ellipsis tells you that some hidden text is
present. The buffer itself is not modified; you’ll notice, if you watch the left side of
the mode line, that the asterisks that indicate a modified buffer don’t appear. If you
save a file and exit while some text is hidden, Emacs saves the hidden text along with
what you see displayed; hiding text in no way implies losing text. The next time you
read the file, Emacs shows all text that was hidden.

Using the hide-body command is a good way to get a feel for the structure of a long
document. You can then type C-c C-t and see only the headings without the text. For
example, let’s start with the simple outline we gave above and hide the body.

To show all the hidden text in a file, whether headings or body, type C-c C-a (for
show-all). These commands, hide-body and show-all, work on the outline as a
whole. A command similar to hide-body is hide-sublevels, C-c C-q. This command
shows only first-level headers, giving you a feel for the major sections in the docu-
ment you’re working on.

Type: C-c C-t

The body is hidden; ellipses show us where body lines are.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Outline Mode | 191

Editing While Text Is Hidden
Now that you know how to hide and show text, let’s discuss some of the properties
of hidden text. Editing a document while some of it is hidden is often useful—it’s a
great way to make major changes in document structure—but there are some dan-
gers that you should be aware of. Let’s say you’ve hidden all text with outline mode
and only the headings are showing, giving you a true “outline” of your document. If
you move a heading that has hidden text and headings associated with it, everything
that is hidden moves when you move the visible text. Later, when you “show” all of
the document, the hidden text appears in its new location—underneath the heading
that you moved. Similarly, if you delete a heading, you delete all hidden text as well.

This feature makes moving blocks of text easy. However, there are some things to
watch out for. If you delete the ellipsis following an entry, Emacs deletes the hidden
information as well. To its credit, Emacs tries to keep you from doing this; it does
not allow you to delete the ellipsis using the Del key or using normal cursor com-
mands like C-b to move the cursor onto it. However, if you’re persistent you can
delete the ellipses (and the text it represents) using, for example, C-k. If you do so,
Emacs deletes the hidden text. Typing C-y yanks the hidden text that you killed
when you deleted the ellipsis; the undo command, C-_, restores the ellipsis. Our
advice is to display text before deleting it so you can see what you’re doing. On the
other hand, when you are moving sections of an outline around, it is helpful to do
sowhile text is hidden so you can keep the structure in mind.

Be careful when moving hidden text to a buffer that’s not in outline mode. Let’s say
that your outline ends with a heading followed by an ellipsis. When marking that
section to move to another buffer, make sure the region includes the newline follow-

Type: C-c C-q

Only first-level headers appear.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 7: Simple Text Formatting and Specialized Editing

ing the ellipsis (for example, move to the beginning of the next line). If you simply
place the cursor following the ellipsis, Emacs copies only the header, not the hidden
text. We’re not sure why. Moving past the newline copies the body as well as the
heading correctly, and pasting it into a buffer in text mode shows all the hidden text.

Marking Sections of the Outline
When you’re moving text around, it’s convenient to be able to mark a section of the
outline and then move it or promote or demote it a level, as we’ll discuss next. To
mark a section of the outline (the current heading and its children), type C-c @ (for
outline-mark-subtree). You can then cut or paste the section you’ve marked. You
might want to type C-x C-x to verify that the region is marked correctly.

Promoting and Demoting Sections
Often as you’re writing, you find that a certain heading should really be promoted or
demoted a level. To promote a heading, type C-c C-^. To demote it a level, C-c C-v.
(Note the clever attempt to make the key bindings indicate that you’re moving head-
ings up or down a level using ^ and v.) This automatically changes the markings for
the heading in question. In other words, promoting a second-level heading removes
an asterisk, making it a first-level heading. You’ll find the commands to move to the
next and previous headings, C-c C-n and C-c C-p, helpful when you are promoting
and demoting sections.

But what if you want to demote not just a heading but a subtree? Or even the
entire outline? At the moment, you’d have to write a Lisp function to do that (or
use someone else’s). Several functions like this have been written by gurus and
posted online, but none are part of Emacs at this writing. We hope this function is
incorporated soon.

Using Outline Minor Mode
Outline mode is also available as a minor mode so that you can use it subordi-
nately to your favorite major mode. To start outline mode as a minor mode, type
M-x outline-minor-mode; Outl appears on the mode line. In some ways, this mode
is less convenient; rather than the simple C-c prefix you use for most outline mode
commands, in outline minor mode, you must preface all commands with C-c @
instead, to avoid interfering with the usual C-c commands of the major mode. So,
if you want to move down to the next heading (the C-c C-n command in outline
mode), you would type C-c @ C-n instead.

Please note that mixing outline major mode and outline minor mode is not only redun-
dant but can be dangerous. Turning on the minor mode while the major mode is on
can confuse Emacs. Exit outline mode, then enter outline minor mode if you wish.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Outline Mode | 193

Table 7-4 summarizes outline mode commands. In the next section, we discuss
another specialized editing method: editing with rectangles.

Table 7-4. Outline mode commands

Keystrokes Command name Action

(none) outline-mode Toggle outline mode.

C-c C-n
Headings ➝ Next

outline-next-visible-heading Move to the next heading.

C-c C-p
Headings ➝ Previous

outline-previous-visible-heading Move to the previous heading.

C-c C-f
Headings ➝

Next Same Level

outline-forward-same-level Move to the next heading of the same level.

C-c C-b
Headings ➝

Previous Same Level

outline-backward-same-level Move to the previous heading of same level.

C-c C-u
Headings ➝ Up

outline-up-heading Move up one heading level.

C-c C-t
Hide ➝ Hide Body

hide-body Hide all body lines.

C-c C-a
Show ➝ Show All

show-all Show everything that’s hidden.

C-c C-q
Hide ➝ Hide Sublevels

hide-sublevels Display first level headers only.

C-c C-o
Hide ➝ Hide Other

hide-other Hide all text and headings outside the current sub-
tree. First level headers show.

C-c @ outline-mark-subtree Mark the current header and all sublevels.

C-c C-^ outline-promote Promote the current heading one level.

C-c C-v outline-demote Demote the current heading one level.

C-c C-d
Hide ➝ Hide Subtree

hide-subtree Hide subheads and body associated with a given
heading.

C-c C-c
Hide ➝ Hide Entry

hide-entry Hide the body associated with a particular heading
(not subheads and their bodies).

C-c C-l
Hide ➝ Hide Leaves

hide-leaves Hide the body of a particular heading and the bodies
of all its subheads.

C-c C-s
Show ➝ Show Subtree

show-subtree Show the subheads and text associated with a given
heading.

C-c C-e
Show ➝ Show Entry

show-entry Show the body associated with a particular heading
(not subheads and their bodies).

C-c C-k
Show ➝ Show Branches

show-branches Show the body of a heading and bodies of all its sub-
heads.

C-c Tab
Show ➝ Show Children

show-children Show the next level of subheads associated with a
particular heading (none of body text).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 7: Simple Text Formatting and Specialized Editing

Rectangle Editing
When you mark regions to move or delete, they always cover the full width of the
window. Editing by region is fine for most of the work that you do in Emacs. But
what if you wanted to edit a table? Regions cover the full width of the window, so
they can’t handle columns. Emacs offers another way to define areas to delete, copy,
and move around: using rectangles. Rectangles are just what they sound like: rectan-
gular areas that you define and manipulate using special rectangle editing com-
mands. Editing with rectangles is useful whenever you want to move or delete
vertical columns of information; for instance, moving a column of a table or rear-
ranging fields in a dataset.

For example, let’s say you want to edit the following table, moving the “Hours” col-
umn to the right side. There’s no way to do this using regions, but it’s easy to do if
you learn some rectangle editing commands.

You define a rectangle the same way you define a region; the commands you use
after marking the area tell Emacs whether you want to work with a region or a rect-
angle. (This is a good time to let go of your mouse and use keyboard commands for
marking the text. Highlighting remains horizontal when you’re working with rectan-
gles and will only confuse you as you begin to think rectangularly. Of course, there’s
nothing wrong with using the mouse to move the cursor quickly; just don’t use it to
highlight text.)

Before we start working with these columns, select the buffer with C-x h and untab-
ify it by typing M-x untabify. Rectangle editing works best with files that do not con-
tain tab characters.

To define a rectangle, move the cursor to the upper-left corner and set the mark by
pressing C-Space, then move the cursor to the lower-right corner of the rectangle.

Initial state:

A flextime schedule.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Rectangle Editing | 195

Once you’re at the lower-right corner of the rectangle, move one character farther.
Why move one character farther? Remember that when you define a region, the
character that the cursor is on isn’t part of the region. (The character that the mark is
on is part of the region.)

Let’s define a rectangle that covers the second column of our table.

Now that the rectangle is marked, we want to delete it and then move it. The command
to delete a rectangle so you can retrieve it elsewhere is C-x r k (for kill-rectangle).

Move to the H in Hours and type C-Space

The mark is set at the upper-left corner of the rectangle to be moved.

Move the cursor to the space following the bottom-right corner of the rectangle, the
c in chipmunk.

The cursor follows the bottom-right corner of the rectangle.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 7: Simple Text Formatting and Specialized Editing

Once again, when you mark a rectangle, you put the cursor on the upper-left corner,
set the mark, then move to the lower-right corner of the rectangle and over one more
space. Emacs expects rectangles to be rectangles. If necessary, it pads an area with
spaces to make up the straight line on the right side.

You can move anywhere on the screen and reinsert the rectangle last killed with the
yank-rectangle command, C-x r y. To put the “Hours” column on the right side of
the table, we move the cursor following the cell phone column.

Type: C-x r k

The rectangle is deleted; it’s in a special rectangle kill buffer.

Place the cursor following Cell and press M-10 Space to move to a good location to
paste the “Hours” column:

Move the cursor to where we want to reinsert the rectangle.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Rectangle Editing | 197

Emacs inserts the rectangle exactly where you tell it to. We moved past the cell
phone column and then added some space between the cell phone and hours col-
umns. Otherwise, Emacs would have blithely inserted the hours column into the
middle of the cell phone column. Note that there’s no equivalent of the kill ring for
rectangles. You can yank only the most recent rectangle.*

Killing and yanking rectangles requires practice. Once you get the hang of the proce-
dure, it is an easy way to edit tables and other column-dependent material.

A few other commands create blank rectangles. For example, let’s say we want to put
four more spaces between the cell phone and hours columns. To do this, we set the
mark, move to the bottom of the column, move forward four spaces, then type C-x r o
(for open-rectangle). This command inserts a blank rectangle and pushes the remain-
ing text to the right.

Type: C-x r y

Emacs inserts the rectangle we killed earlier.

* You can, however, store rectangles in registers, providing the effective equivalent of the kill ring. More on
this shortly.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 7: Simple Text Formatting and Specialized Editing

Now we need to define the amount of space we want to insert. Move down to the
bottom of the rectangle (the “Alvin” line) and then move to the hyphen between 6:00
and 3:00.

Finally, type C-x r o to add the new space to the table.

Move the cursor to the H in Hours and type C-Space

Emacs sets the mark at the upper-left corner of the rectangle.

Move the cursor following 6:00.

The lower right corner of the rectangle is defined.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Rectangle Editing | 199

The clear-rectangle command wipes out text, leaving a blank rectangle in its place.
It’s just as though you had erased a column on a blackboard. Like the blackboard
column, the text column that is wiped out is gone, not stored in the rectangle kill
buffer. To continue with our example, let’s say that after reviewing the schedule, all
those involved agreed that they’d rather not have their cell phones listed.

Type C-x r o

Emacs inserts a blank rectangle that is four spaces wide. It moves the rest of the table
to the right.

Move the cursor to the C in Cell and type C-space.

The upper-left corner of the rectangle to be cleared is marked.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 7: Simple Text Formatting and Specialized Editing

As you can see, the spacing of our table still isn’t perfect; you’d probably want to use
the delete-rectangle command* to delete the extra space between the second and the
third columns. To delete the blank space without storing it, start by moving the cursor
to the space following the longest email address and press C-Space to set the mark,
then move to the opposite corner of the box you want to delete and type C-x r d.

Move to the space following the last phone number and type: C-x r c

The clear-rectangle command removes the “Cell Phone” column and leaves a blank
space in its place.

* Like all Emacs delete commands, delete-rectangle doesn’t store what you delete in the kill ring.

On the header line, move to the column after the longest email address and press
C-Space

The upper-left corner of the rectangle to be deleted is marked.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Rectangle Editing | 201

If you’re doing some really fancy table editing, being able to store several rectangles
is helpful. That way, you can have every column as a rectangle, as well as having a
rectangle for the exact amount of blank space to put between each column. You can
store rectangles in registers by typing C-x r r r where r is any alphanumeric charac-
ter, including punctuation. To insert a rectangle you’ve stored, type C-x r i r. Regis-
ters don’t persist between sessions.

Table 7-5 lists rectangle commands.

Move a few spaces before 6:00 on the last line and type C-x r d

The delete-rectangle command deletes the blank space.

Table 7-5. Rectangle commands

Keystrokes Command name Action

C-x r k kill-rectangle Delete a rectangle and store it.

C-x r d delete-rectangle Delete a rectangle and do not store it.

C-x r y yank-rectangle Insert the last rectangle killed.

C-x r c clear-rectangle Using spaces, blank out the area marked as a
rectangle and do not store it.

C-x r o open-rectangle Insert a blank rectangle in the area marked.

C-x r r r copy-rectangle-to-register Copy rectangle to register r (where r is any
character) .

C-x r i r insert-register Insert rectangle from register r (where r is any
character).

(none) delete-whitespace-rectangle If a rectangle includes initial whitespace,
deletes it, narrowing rectangle.

C-x r t string Enter string-rectangle Change contents of marked rectangle to
string (if string is narrower or wider than
rectangle, dimensions change accordingly).

(none) string-insert-rectangle Prompts for string and inserts rectangle.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 7: Simple Text Formatting and Specialized Editing

CUA Rectangle Editing
If you are familiar with CUA mode, which is part of Emacs starting with 21.3.5, you
may know that it provides cut and paste key sequences familiar to Windows users, as
in C-x to cut and C-v to paste (see Chapter 13). The second most commonly touted
feature of CUA mode is its superior rectangle support.

We’ve just looked at a myriad of rectangle commands. CUA’s rectangle support is far
simpler. By learning essentially one command, you can cut and paste rectangles in
CUA mode.

Unfortunately at present, CUA mode support is standard but not nuanced on Emacs 21.
3.5. You either take the whole enchilada or you don’t. To turn it on, select C-x/C-c/C-v
cut and paste (CUA) from the Options menu. If you don’t generally like to use the CUA
keybindings for cut and paste, you might turn this option on only when you are doing
rectangle editing.

To select a rectangle, type Shift-Enter. Emacs starts to highlight in a dark pink color
by default. You extend the highlighting with normal cursor movement keys (the
mouse does not work at present).

Move to the C in Cell and type: Shift-Enter

The upper-left corner of our rectangle is marked (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Rectangle Editing | 203

The minibuffer displays an array of CUA mode rectangle commands. For now, we’ll
just mark the rectangle and experiment with one of these commands momentarily.

Note that the marked rectangle isn’t strictly rectangular in shape. The phone num-
bers form a true rectangle, but in order to create a rectangle that includes the col-
umn header, we need to ask CUA mode to “pad” the rectangle using M-p, one of the
commands listed in the minibuffer earlier.

Move the cursor to the last number in Alvin’s phone number.

The rectangle is marked (Windows).

Type: M-p

The pad command makes this a true rectangle (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 7: Simple Text Formatting and Specialized Editing

We can now cut or paste the rectangle using C-x or C-v respectively. This is just a
taste of the CUA mode rectangle commands. You can explore more of them on
your own. We thought you should be aware of this method as an alternative to the
more keyboard-intensive rectangle commands that have been part of Emacs for
many years.

Making Simple Drawings
Emacs is not, by any means, a graphics package, but it does provide some limited
drawing capabilities. Emacs includes a picture mode that allows you to draw simple
pictures using keyboard characters; it also includes artist mode, which enables you to
draw quickly using the mouse.

Why would you want to draw with Emacs? Well, Emacs is useful for inserting a
quick drawing or diagram in a mail message, something that most graphics packages
can’t do. It’s also good for making block diagrams, timing diagrams (for electrical
engineers), timelines, and other simple drawings.

Don’t overlook this simple facility! We have seen many papers that were carefully
formatted with a simple star-and-bar diagram dropped in the middle. Sure, you can
use a graphics package to create a much nicer drawing, but if that’s not your area of
expertise, an Emacs ASCII drawing might be just the ticket.* We discuss picture
mode first and then artist mode.

Picture mode turns the area being edited into a kind of drawing board consisting of
columns and rows. In picture mode, you can create simple pictures (such as the one
in Figure 7-3) using keyboard characters without having them “rearranged” by the
word-wrap capabilities of auto-fill mode, for example.

To enter picture mode, type M-x edit-picture. The word Picture appears on the
mode line, followed by the default drawing direction (more on that shortly). Typ-
ing C-c C-c exits picture mode and returns you to whatever major mode you were
in before.

Drawing in Picture Mode
In picture mode, you can “draw” with any character in any of eight directions.
Although you can draw in eight directions, only one direction is available at a time;
this direction is referred to as the default direction. When you first enter picture
mode, the default direction is right, meaning that if you press the hyphen key four

* A number of online groups are dedicated to ASCII art. Of course, all such art requires that you use a mono-
space font for proper viewing. Newsgroups such as alt.ascii.art and web sites such as the Ascii Art Dictionary
(http://www.ascii-art.de/) provide a good introduction.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Simple Drawings | 205

times, you would draw a line to the right, as follows: ----. The default direction is dis-
played on the mode line, like this:

(Picture: right)

By typing special commands that change the default direction, you can draw in seven
other directions as well. For example, C-c \ makes the default direction “southeast;”
the mode line would then read (Picture: se). If you typed four hyphens in this direc-
tion, they would look like stair steps:

-
 -
 -
 -

Figure 7-4 illustrates the commands for setting various directions as the default in
picture mode.

Picture mode tries to make these commands easy to remember, and it doesn’t do too
badly: for example, C-c ^ points upward, C-c-` arguably points to the northwest, and
so on. If you can come up with a good mnemonic device for C-c . let us know!
Maybe you can think of it as “dot for down.”

After you set a default direction, pressing any character repeatedly draws a line of
characters in that direction. Give it a try in a scratch buffer, using the commands in
the figure to change the default direction. Try drawing a box.*

Figure 7-3. Drawing in picture mode

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 7: Simple Text Formatting and Specialized Editing

* Other commands can accomplish this task more quickly, but bear with us for the sake of a simple example.
For example, this little exercise could be accomplished with a single mouse drag in artist mode. Picture mode
also offers a quick command for drawing a rectangle, C-c C-r.

Figure 7-4. Moving around in picture mode

Type: M-x picture-mode

Putting the buffer into picture mode, default direction “right.”

C-c < C-c >

C-c `

C-c ^

C-c '

C-c / C-c \

C-c .

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Simple Drawings | 207

Type: Tab M-20 -

Emacs draws a line to the right. Next, we’ll change the default direction to down,
and use | for the right side of the square.

Type: C-c . M-5 |

Emacs draws a line down. Now we’ll set the default direction to “left,” then draw the
bottom of the square.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 7: Simple Text Formatting and Specialized Editing

Editing in Picture Mode
By now, you should have a basic understanding of what picture mode can do for
you. It’s one of the more complicated minor modes because it redefines what many
of the major editing keys do—and with good reason. The editing techniques you use

Type: C-c < M-20 -

Emacs draws a line to the left. Next, use C-c ^ to set the default direction to “up,”
and then draw vertical bars back to the starting point.

Type: C-c ^ M-5 |

Emacs draws a line up that completes the box.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Simple Drawings | 209

for most ASCII files just won’t work well for pictures. You don’t really want to insert
characters; the standard insert mode would prevent you from editing effectively,
because any character you type distorts the rest of the line. Therefore, picture mode
implicitly changes to overwrite mode. Many other features are redefined—some in
insignificant ways, others in more substantial ways.

Therefore, to do justice to picture mode, we have to revisit most of the basic editing
concepts. Please bear with us, or skip this section if you aren’t interested in pictures.
Let’s start at the beginning: basic cursor motion.

Cursor motion in picture mode

Picture mode makes some small but important changes in the basic cursor com-
mands. There’s an easy way to summarize these changes: in picture mode the buffer
becomes a grid of rows and columns. For example, consider what C-f does in most
other modes: it moves forward through the file, one character at a time. Typing C-f
repeatedly moves the cursor to the left, then at the end of the line, it jumps to the
first character on the next line. picture mode, C-f means “move to the right.” When
you reach the end of the line in picture mode, C-f doesn’t wrap to the next line; it
continues adding characters to the current line.

C-p and C-n become vertical “up” and “down” commands, respectively. Try editing
some sample text, moving to the end of a line, and typing C-p. Normally, as you type
C-p, the cursor stays at the end of the line; if the previous line is short, the cursor
moves to the left when it goes up. In picture mode, C-p and C-n always move up (or
down) in a straight line.

You can get to every place you need to go with C-f, C-b, C-p, and C-n. The arrow
keys work too, but you may want to know the cursor movement commands for mov-
ing in the default direction as well, so you can also go sideways when it’s faster. C-c
C-f moves you forward in the default direction (so “forward” here could mean to the
left, right, up, or down, as well as all directions in between). C-c C-b moves you
backward in the default direction. (Moving “up” or “down” relative to the default
direction isn’t defined.)

For example, let’s say you had drawn the house shown in Figure 7-1 and you wanted
to move the cursor down the left side of the roof. You would set the default direc-
tion to “southwest” by typing C-c /. If the cursor were on the top shingle on the left
side of the roof, typing C-c C-f would move you down the left side of the roof and
typing C-f would move you to the top-right shingle, as shown in Figure 7-5.

Inserting blank lines

As you continue to work in picture mode, you’ll find a few more surprises. Press-
ing Enter in picture mode moves you to the beginning of the next line, without
inserting a blank line—on the assumption that you probably don’t want to change

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 7: Simple Text Formatting and Specialized Editing

the relationship between lines. If you want to insert a new line, type C-o; an empty
line appears beneath the current line, and the cursor does not move. For example,
the cursor is initially on the 0 in the first line. If we want to open another line
between the two, we type C-o.

Figure 7-5. Using the default direction versus typical cursor movement commands

Initial state:

Initial text; the cursor is on the 0 in the first line.

Typing C-f moves the cursor here

Typing C-c C-f
moves the cursor here

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Simple Drawings | 211

One of the more difficult things to do in picture mode is to type a standard carriage
return that breaks a line in the middle. You can move to a point in the middle of a
line, type C-k to kill the right-hand portion, type C-o to insert a blank line; type
Enter to move to the beginning of this blank line, and type C-y to yank the right-
hand part of the line back. Or you can use the split-line command (C-M-o), and then
delete the blank space at the beginning of the new line.

Deletion isn’t quite the same, either. In picture mode C-c C-d is the delete character
command that you’re used to: it deletes the character under the cursor and moves
the rest of the line to the left. An unadorned C-d deletes the character under the cur-
sor, replacing it with a space. Del deletes the character to the left of the cursor,
replacing it with a space.

Table 7-6 contrasts the picture mode commands with their normal text mode behavior.

Type: C-o

C-o opens a new line but doesn’t move the cursor.

Table 7-6. Picture mode v. text mode

Keystrokes In text mode In picture mode Picture mode alternative

Enter Insert a blank line. Move the cursor to the
beginning of the next line.

C-o inserts blank lines.

C-d Delete the character and
move the text to left.

Replace the character with
Space and don’t move.

C-c C-d is like C-d in text mode.

Space Move the text to the right
and insert a space.

Move the cursor to the
right and delete any char-
acter you space over.

None; go back to text mode to insert
blank spaces.

C-k Erase the text on the current
line; pressing C-k twice
deletes a line.

Erase the text on the cur-
rent line; it doesn’t delete
the line.

To delete a line, go back to text
mode or use delete-rectangle.

Tab Insert tabs and move the
remaining text to the right.

Move the cursor across the
screen but don’t affect the
underlying text.

To insert a tab’s worth of space, go
back to text mode.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 7: Simple Text Formatting and Specialized Editing

If you want to insert a block of blank space, you can use a rectangle command such
as open-rectangle. See the discussion of this command earlier in this chapter for
more information. Also, if you want to insert blank space at the end of a line, you
can use C-f.

To perform some tasks, you may find it easier to switch back temporarily to the
mode you’re used to. C-c C-c moves you back to the mode you were in before you
entered picture mode. Make any necessary changes, then enter picture mode again
by typing M-x picture-mode.

If you want to move something you’ve drawn, the easiest way is to use rectangles, as
described earlier in this chapter.

Tabs are also different in picture mode. By default, picture mode interprets the fol-
lowing characters as tab stops if they appear by themselves on a line: exclamation
point (!), hyphen (-) and tilde (~). If these characters appear on a line and the user
presses tab on the next line, these characters are presumed to denote tab stops. You
can change this behavior by setting the variable picture-tab-chars to other charac-
ters. If the characters appear with normal text, they are not interpreted as tab stops.
To use these characters as tab stops, press Esc-Tab (for picture-tab-search).

Table 7-7 summarizes the commands for editing in picture mode.

C-n Move to the next line. Move down, staying in the
same column.

(none)

C-p Move to the previous line. Move up, staying in the
same column.

(none)

C-f Move one character forward
in the file.

Move one character to the
right.

(none)

C-b Move one character back-
ward in the file.

Move one character to the
left; stop at the beginning
of the line.

(none)

Table 7-7. Picture mode commands

Keystrokes Command name Action

(none) picture-mode
or
edit-picture

Enter picture mode.

C-c C-c picture-mode-exit Exit picture mode and return to the previous mode.

C-c ^ picture-movement-up Set the default drawing direction to up.

C-c . picture-movement-down Set the default drawing direction to down.

C-c > picture-movement-right Set the default drawing direction to right.

C-c < picture-movement-left Set the default drawing direction to left.

Table 7-6. Picture mode v. text mode (continued)

Keystrokes In text mode In picture mode Picture mode alternative

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Simple Drawings | 213

Drawing with the Mouse Using Artist
We would be remiss if we didn’t introduce you to artist mode, an easy way to create
ASCII art using the mouse. (You can also use keyboard commands, but trust us—
you won’t want to.)

Artist mode is a minor mode related to picture mode, so you use them together. For
example, you might draw using artist mode, then edit the picture in picture mode.
Or you might choose to use artist mode alone for your creations.

C-c ` picture-movement-nw Set the default drawing direction to northwest.

C-c ‘ picture-movement-ne Set the default drawing direction to northeast.

C-c / picture-movement-sw Set the default drawing direction to southwest.

C-c \ picture-movement-se Set the default drawing direction to southeast.

C-c C-f picture-motion Move the cursor forward in the default drawing direc-
tion.

C-c C-b picture-motion-reverse Move the cursor backward in the default drawing
direction.

C-f picture-forward-column Move the cursor to the right one character.

C-b picture-backward-column Move the cursor to the left one character.

C-n picture-move-down Move the cursor down one character.

C-p picture-move-up Move the cursor up one character.

C-d picture-clear-column Blank out the character under the cursor; doesn’t move
remaining text to the left.

C-c C-d delete-char Delete the character under the cursor and move the
remaining text to the left.

C-k picture-clear-line Delete the text on the current line; the line is not
deleted if used twice.

C-o picture-open-line Insert a blank line.

C-c C-w r picture-clear-rectangle-to-register Clear the rectangle and save it in register r.

C-u C-c C-w r picture-clear-rectangle-to-register Delete the rectangle and save it in register r.

C-c C-x r picture-yank-rectangle-from-register Insert the rectangle saved in register r at the cursor
position.

C-c C-r picture-draw-rectangle Draw a rectangle around current region.

C-c C-y picture-yank-rectangle Paste rectangle.

C-c C-k picture-clear-rectangle Erase rectangle.

C-c Tab picture-set-tab-stops Set tab stops applicable only in picture mode (!, -, and
~ denote tab stops by default).

M-Tab picture-tab-search Move to the next picture mode tab.

Table 7-7. Picture mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 7: Simple Text Formatting and Specialized Editing

We’re going to give you a taste of artist mode; you can perfect your skills in your
spare time. When you start artist mode, picture mode starts automatically.

When you start artist mode, pen drawing is selected by default.

With the pen, you can draw freestyle. Hold down the middle mouse button and a
menu appears, with Drawing, Edit, and Settings submenus. The Drawing menu
offers a variety of shapes from which to choose. Now that we’ve scribbled, let’s cre-
ate some graffiti using the spray can.

Type: M-x artist-mode

Artist appears on the mode line, as does Picture.

Hold down the left mouse button and move around to scribble.

A random scribble.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Simple Drawings | 215

We aren’t going to go deep into artist mode, but we would like to give you a flavor of
the basic drawing choices. You can draw rectangles (our personal favorite), ellipses,
lines (which strive to be straight), and poly-lines (which strive to be polygon-angu-
lar). Figure 7-5 shows a representative sample of shapes. With practice, you can cre-
ate complex drawings and edit them, either using the mouse or using standard
picture mode commands.

For rectangles, lines, and ellipses, hold down the left mouse and pull them to the size
and, in the case of lines, angle you prefer. (Ellipses are made of straight lines, so use
your imagination; this is ASCII art after all.) For poly-lines, draw a line by holding
down the left mouse button, then release it. Move the mouse away from that line to
the next corner of the polygon and click. Emacs draws a line connecting the two
points. Poly-lines allow you to create polygons quickly.

Table 7-8 provides an overview of artist commands. Artist works very well with the
mouse and the middle-button mouse menu; if you’re mouse-averse, you’ll prefer pic-
ture mode.

Select Spray Can from the Drawing menu, then spray the screen by holding down the
left mouse button and moving the mouse.

A random spray.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 7: Simple Text Formatting and Specialized Editing

Figure 7-6. A representative sample of artist shapes

Table 7-8. Artist mode commands

Keystrokes Command name Action

(none) artist-mode Enter artist mode.

C-c C-c artist-mode-off Exit artist mode.

C-f artist-forward-char Move to the right one character (at end of line,
keep adding characters to current line).

C-b artist-backward-char Move to the left one character (at beginning of line,
does nothing).

C-n artist-next-line Move down a column (at end of buffer, keep add-
ing lines to the buffer).

C-p artist-previous-line Move up a column (at first line of buffer moves to
first position in file, then does nothing).

C-c C-a C-o
or
Mouse-2

artist-select-operation Select an operation (press Tab to see a list).

C-c C-a f‘
Artist menu ➝ Edit ➝

Flood-fill

artist-select-op-flood-fill Select flood fill as the operation.

C-c C-a C-k
Artist menu ➝ Edit ➝ Cut

artist-select-op-cut-rectangle Draw a rectangle around an area, then cut.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Simple Drawings | 217

Problems You May Encounter
• Artist mode says you can’t change to another shape while drawing. Exit artist

mode and then reenter. Before drawing anything, click the mouse’s middle button
to display the pop-up menu and select the desired shape from the Drawing menu.

C-c C-a M-w
Artist menu ➝

Edit ➝ Copy

artist-select-op-copy-rectangle Draw a rectangle around an area, then copy.

C-c C-a C-y
Artist menu ➝ Edit ➝ Paste

artist-select-op-paste Paste what you copied wherever you click the
mouse.

C-c C-a v
Artist menu ➝ Drawing ➝

Vaporize

artist-select-op-vaporize-line Erase a line you select (literal line; not a line in the
file).

C-c C-a C-d
Artist menu ➝

Drawing ➝ Erase

artist-select-op-erase-char Set operation to erase (use the mouse as your
eraser).

C-c C-a S
Artist menu ➝ Drawing ➝

Spray-can

artist-select-op-spray-can Set operation to spray can.

C-c C-a e
Artist menu ➝ Drawing ➝

Ellipse

artist-select-op-ellipse Draw ellipses.

C-c C-a p
Artist menu ➝ Drawing ➝

Poly-line

artist-select-op-poly-line Draws poly-lines

C-c C-a r
Artist menu ➝ Drawing ➝

Rectangle

artist-select-op-rectangle Draw rectangles.

C-c C-a l
Artist menu ➝ Drawing ➝

Line

artist-select-op-line Draw lines.

C-c C-a C-r
Artist menu ➝ Settings ➝

Rubber banding

artist-toggle-rubber-banding If on (the default), show shape while stretching; if
not, mark end-points.

C-c C-a C-l
Artist menu ➝ Settings ➝

Set Line

artist-select-line-char Select character to use when drawing lines (- is the
default).

C-c C-a C-f
Artist menu ➝ Settings ➝

Set Fill

artist-select-fill-char Select character to fill shapes with (Space is the
default).

Table 7-8. Artist mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

218

Chapter 8CHAPTER 8

Markup Language Support

It’s true that many of the people who use Emacs are developers, writing code, tweak-
ing it, recompiling it, and just generally enjoying the services of an amazingly extensi-
ble work environment. A variety of people, including developers, need to produce
text for publication, whether internally, online, or in book format. This chapter
describes the markup language support that Emacs offers, a topic relevant to both
information publishers and developers, as more and more development work uses
variants of the Extensible Markup Language, XML.

Choosing a format for producing documents isn’t all that straightforward these days,
especially if you eschew Microsoft Word. Some people write HTML, and Emacs offers
a few options for this. HTML gives you some control over formatting but displays dif-
ferently on various browsers. Of course, it is important as the lingua franca of the Web.

Other text publishing options include the TEX family. TEX(pronounced “tek”) is a
formatter that was developed by Donald Knuth for generating books. LATEX (pro-
nounced “lay-tek”) is a set of TEX commands created by Leslie Lamport. With TEX
and LATEX, you can produce very precisely formatted text with equations, interest-
ing fonts, graphics, headers and footers, and the like. Whether using filters or fea-
tures of the program itself, you can publish TEX documents in a variety of formats.

Another option for publishing text—as well as programming—is XML. XML, when
combined with a Document Type Definition (DTD) or schema, enables you to write
text once and publish it in a variety of formats. Extensible Style Language (XSL) is
also important in this regard. Because the standards are still being defined, organiza-
tions involved in document production may choose an established XML dialect, such
as DocBook, as their publication format. XML at this point provides less precise con-
trol over format, but maximizes flexibility.

XML bridges the programming and publishing worlds, and what you do with XML
will in part determine what tools you use and what support you need. We discuss a
few options for writing XML in Emacs, including psgml mode and Jim Clark’s nxml
mode, which uses Relax NG schemas rather than DTDs for validation.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Comments | 219

Some word processors and other tools integrate formatting and editing. These tools
are often called WYSIWYG (what you see is what you get) tools. What’s the advan-
tage of using Emacs versus a WYSIWYG tool? Well, whether you’re writing LATEX,
XML, or HTML, you can be crystal clear about what’s in the file and how it’s struc-
tured if you use Emacs. Save a Microsoft Word file as HTML and then open the
resulting file in Emacs. Word bloats the file with additional tags and formatting that
is not strictly required. In terms of output, the streamlined and straightforward code
you picture in your mind’s eye when viewing a page is definitely not what you get, an
ironic consequence of using a WYSIWYG tool like Word to create markup files.
Chances are, if you’ve read this far, you’re planning to use Emacs anyway, so we
won’t belabor the point.

In this chapter, we talk about these markup modes:

• For writing HTML, Emacs HTML mode (a subset of SGML mode) and the add-
on HTML helper mode are discussed.

• For writing XML, Emacs SGML mode and the add-on modes psgml mode and
nxml mode are described in brief.

• For writing LATEX documents, Emacs LaTeX mode is discussed.

These major modes help you insert formatting commands, or markup, into your
text. While the amount of help that Emacs offers varies, using the mode designed for
your text formatter will streamline your work.

At this point we must insert a caveat. We provide a barebones introduction to the
markup modes described in this chapter. What we say here will get you started, but
not much more than that. Entire books could be and have been written about using
each of the markup tools described here. Now that that’s out of the way, let’s talk
about a few features that are important in all the modes: comment handling and
font-lock mode.

Comments
All the modes described in this chapter share a feature with the programming lan-
guage modes such as Java mode and Lisp mode, which we discuss in Chapter 9. All
these modes understand comments and use a single command, M-; (for indent-for-
comment) to insert the appropriate comment syntax. Table 8-1 lists the comment
syntax for the tools in this chapter.

Table 8-1. Comments in markup modes

If you type M-; in: Emacs inserts:

HTML mode <!-- -->

HTML helper mode <!-- -->

SGML mode <!-- -->

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 8: Markup Language Support

Font-Lock Mode
Font-lock mode is discussed primarily in Chapter 9; it’s designed for coloring code to
make it easier to read. But the fact is that it works well in other modes too, like the
Buffer List (Chapter 4), Dired (Chapter 5), and in all the markup modes described in
this chapter.

To turn on font lock mode, choose Syntax Highlighting from the Options menu. If
you decide you want to turn it on for every session, select Save Options from the
Options menu and Emacs writes your .emacs file.

For more details on font-lock mode, see Chapter 9.

Writing HTML
Without doubt, the most commonly used markup language today is hypertext
markup language (HTML), used for creating web pages. HTML consists of text with
tags that define characteristics about the text. HTML is not hard to write, and you
could use Emacs or any other editor to write the tags and the text. An HTML tag
generally looks like this:

<tagname>text being tagged</tagname>

For your convenience, several modes are available for writing HTML in Emacs, includ-
ing HTML mode, HTML helper mode, html menus, and a variety of SGML* tools
including sgml mode and psgml mode. Of these tools, we’ve chosen to describe HTML
mode, a variant of sgml mode, which is included in GNU Emacs, and HTML helper
mode, which is a popular add-on. If you are writing XHTML, a stricter version of
HTML that can be validated, you should consider XHTML mode, described briefly in
this section, or psgml mode, covered later in the XML section of this chapter.

Serious web developers may want to investigate some of the cutting edge development
going on to make Emacs even more powerful. Check out HTMLModeDeluxe (http://
www.emacswiki.org/cgi-bin/wiki/HtmlModeDeluxe) and the Emacs WebDev Environ-
ment by Darren Brierton (http://www.dzr-web.com/people/darren/projects/emacs-webdev).

nxml mode <!-- -->

psgml mode <!-- -->

LaTeX mode %% (on blank lines)

% (on lines with content)

* SGML stands for standardized general markup language. Both XML and HTML are descendants of SGML.

Table 8-1. Comments in markup modes (continued)

If you type M-; in: Emacs inserts:

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 221

Both of these tools support mmm mode (where mmm stands for “multiple major
modes”). Using this feature, the cursor changes major mode depending on the section of
the page you are editing. When you edit a script, the mode changes automatically to
support that type of authoring. Both are excellent tools for building complex web pages.

In the following sections, we are not going to teach you to write HTML. (For more
information on writing HTML, see HTML and XHTML: The Definitive Guide by
Chuck Musciano and Bill Kennedy, O’Reilly) Rather, we’re going to teach you the
rudiments of using HTML mode and HTML helper mode to help you create HTML
documents.

Using HTML Mode
To start HTML mode, type M-x html-mode (or simply open an HTML file). Most
authors use a standard template when they write HTML. You may already have one.
If you don’t, HTML mode is happy to supply one for you. Simply start by typing C-c
C-t (for sgml-tag) or by selecting Insert Tag from the SGML menu. If you enter the
<html> tag that signifies the start of an HTML document, Emacs inserts a basic tem-
plate in your buffer.

Type: C-c C-t html Enter

Emacs prompts for a title.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 8: Markup Language Support

Note that Emacs automatically creates a first-level header that is equal to the title
you entered. It also inserts a hyperlink so that readers can email you. Depending
on your spam tolerance, you may want to delete that line. Also, Emacs is just
guessing at your name and email address. You can set these explicitly by adding
two lines to your .emacs file. Change Mr. Dickens’ information to settings appro-
priate for you.

(setq user-mail-address "cdickens@great-beyond.com")
(setq user-full-name "Charles Dickens")

You could approach HTML mode in a couple of ways. You could learn the key
bindings for various tags, or you could simply use the sgml-tag command for every-
thing. It depends how many bindings you want to learn. A mixed approach may be
best, where you learn keystrokes for the most common tags and use sgml-tag for
less common tags.

Key bindings are intuitive in HTML mode. Like most specialized editing modes,
many functions are bound to C-c C-something. We’ve seen C-c C-t to insert a tag.
You won’t be too surprised to find that to move forward to the next tag you type C-c

Type: A Tale of Two Cities Enter

Emacs inserts an HTML template.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 223

C-f and to move back to the previous tag you type C-c C-b. To insert an <href> tag,
type C-c C-h. You see what we mean.

HTML mode is designed for writing HTML, not XHTML. XHTML is stricter,
requiring all tags to have a closing tag. The common <p> tag is a salient example.
HTML authors would never use the closing tag </p> that XHTML requires. HTML
mode inserts a lone <p> tag even when given a command, such as sgml-tag, that nor-
mally inserts a tag pair. If you want to write XHTML, use XHTML mode instead.
Emacs starts this mode itself if your file contains a reference to an XHTML docu-
ment type definition. Other than completion of tags, XHTML mode is very similar to
HTML mode described here.*

Being able to hide the tags is a helpful feature. To hide HTML tags, type C-c Tab;
use the same command to display the tags again. Let’s say that we’ve inserted some
of our dickens file into the dickens.html file we were just working with.

* At this writing, there is no way to enter XHTML mode explicitly. If your file looks like an XHTML file, Emacs
puts you in that mode automatically.

Initial state:

dickens.html with tags showing.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 8: Markup Language Support

You can keep typing text, concentrating on what you’re writing rather than being
distracted by the markup. Emacs protects you from deleting tags when you’re writ-
ing by making hidden text read-only. If you move the cursor onto a hidden tag,
Emacs displays it in the minibuffer.

Of course, the whole purpose of writing HTML is to display it in a web browser.
Typing C-c C-v (for browse-url-of-buffer) opens the default web browser to view the
web page you’re writing.

If you’d like to look at the file in a web browser each time you save, you can turn on
a function called html-autoview-mode, invoked by pressing C-c C-s. When you save
the file, Emacs automatically opens it in the default browser.

Character encoding in HTML mode

What if you want to include special characters or characters from other character
sets in your web page? The short answer is that you can enter a character’s encoding
explicitly. For example, to enter a capital U with an umlaut, you can type Ü.
Many characters can also be represented as named entities, which are certainly eas-
ier to remember than numbers. For example, the named entity for a capital U with
an umlaut is Ü.

But HTML mode does provide more support than this. We’ll take the simplest case
first. Let’s say you can create a character with your keyboard; for a common case,

Type: C-c Tab

Emacs hides the tags.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 225

take the ampersand, a character that must be encoded since it has a special meaning
in HTML. Type C-c C-n & Enter. Emacs inserts the entity for an ampersand, &.
You can insert entities for a wide variety of keyboard characters this way.

But let’s say that you are inserting characters that are not on your keyboard. For exam-
ple, perhaps you are in the U.S. writing up a list of contributors from Europe and many
of their names have accent marks. The ISO Latin-1 character set will handle this.

If you have a keyboard that already emits Latin-1 characters and Latin-1 is your
default coding system for keyboard input, inserting such characters is relatively
straightforward. Simply press C-c 8 to turn on a minor mode called SGML name
entity mode. Emacs says sgml name entity mode is now on.* C-c 8 toggles this state.
Type Latin-1 characters as you normally would and Emacs inserts the named enti-
ties associated with those characters.

For those of us with other keyboard encodings, however, there’s a bit more to do. To
get bindings to insert entities into your HTML file, we discuss two options. The first
is ISO accents mode. This mode provides support, as the name implies, for accented
text. Whether you’re typing umlauts, cedillas, circumflexes, acute, or grave marks,
ISO accents mode is up to the task. The other option is to use the C-x 8 prefix to
insert a wide range of entities, including currency signs, mathematical symbols, and
copyright signs (as well as all the accented characters ISO accents mode supports).

Using ISO accents mode. To use ISO accents mode to insert entities in your file, type C-c 8
to turn on SGML name entity mode, then M-x iso-accents-mode Enter to turn on that
mode. In ISO accents mode, certain characters (including /, ~, ', ", `, and ^) are inter-
preted as prefixes to create accented characters. SGML name entity mode captures these
keystrokes and automatically inserts the appropriate HTML entity. For example, typing
'a produces the HTML entity for á, á. For specific key bindings, see Table 8-2.

Using the C-x 8 prefix. You can also insert a wide range of entities using C-x 8 after you
do some setup.† First enter SGML name entity mode by typing C-c 8. Next specify
Latin-1 as your character set by typing C-x Enter k latin-1 Enter. You can then enter
a large number of entities by typing commands prefixed with C-x 8. For example, to
insert the entity for a yen symbol, type C-x 8 Y. Watch the minibuffer. The literal
character will appear in the minibuffer as the entity is inserted. Both ISO accents
mode and the C-x 8 prefixes allow you to type a single undo command (C-_) to
translate the entity back into the literal character.

* Pay no attention to the fact that this is called SGML versus HTML name entity mode. Since HTML mode is
derived from SGML mode, many commands that work with HTML have sgml in their names. Also, note that
the command is called sgml-name-8bit-mode, a clear discrepancy with the minibuffer message.

† For some reason, perhaps the way SGML name entity mode is programmed, you can insert these entities
only using key bindings. The mode fails to trap the equivalent commands and translate them into entities.
For this reason, we focus on key bindings.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 8: Markup Language Support

Table 8-2 provides a list of accented characters and the bindings that help insert
them. Table 8-3 lists other named entities including punctuation marks and symbols.

Table 8-2. Bindings for inserting entities for accented charactersa

C-x 8 prefix
keystrokes

ISO accents mode
shortcut Character entity

Character displayed
in browser

C-x 8 " " ´ ´

C-x 8 ' a ' a á á

C-x 8 'A 'A Á Á

C-x 8 ' e ' e é é

C-x 8 ' E ' E É É

C-x 8 ' i ' i í í

C-x 8 ' I ' I Í Í

C-x 8 ' o ' o ó ó

C-x 8 ' O ' O Ó Ó

C-x 8 ' u ' u ú ú

C-x 8 ' U ' U Ú Ú

C-x 8 ' y ' y ý

C-x 8 ' Y ' Y Ý

C-x 8 ` a ` a à à

C-x 8 ` A ` A À À

C-x 8 ` e ` e è è

C-x 8 ` E ` E È È

C-x 8 ` i ` i ì ì

C-x 8 ` I ` I Ì Ì

C-x 8 ` o ` o ò ò

C-x 8 ` O ` O Ò Ò

C-x 8 ` u ` u ù ù

C-x 8 ` U ` U Ù

C-x 8 ^ a ^ a â â

C-x 8 ^ A ^ A Â Â

C-x 8 ^ e ^ e ê ê

C-x 8 ^ E ^ E Ê Ê

C-x 8 ^ i ^ i î î

C-x 8 ^ I ^ I Î Î

C-x 8 ^ o ^ o ô ô

C-x 8 ^ O ^ O Ô Ô

C-x 8 ^ u ^ u û û

C-x 8 ^ U ^ U Û Û

C-x 8 " " " " ¨ ¨

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 227

C-x 8 " a " a ä ä

C-x 8 " A " A Ä Ä

C-x 8 " e " e ë ë

C-x 8 " E " E Ë Ë

C-x 8 " i " i ï ï

C-x 8 " I " I Ï Ï

C-x 8 " o " o ö ö

C-x 8 " O " O Ö Ö

C-x 8 " u " u ü ü

C-x 8 " U " U Ü Ü

C-x 8 " s " s ß ß

C-x 8 " y " y ÿ ÿ

C-x 8 " Y " Y Ÿ Ÿ

C-x 8 ~ ~ ¬ ¬

C-x 8 ~ a ~ a ã ã

C-x 8 ~ A ~ A Ã Ã

C-x 8 ~ d ~ d ð

C-x 8 ~ D ~ D Ð

C-x 8 ~ n ~ n ñ ñ

C-x 8 ~ N ~ N Ñ Ñ

C-x 8 ~ o ~ o õ õ

C-x 8 ~ O ~ O Õ Õ

C-x 8 ~ t ~ t þ

C-x 8 ~ T ~ T Þ

C-x 8 / / ÷ ÷
C-x 8 o / / ˚ ˚

C-x 8 / a / a å å

C-x 8 / A / A Å Å

C-x 8 / e / e æ æ

C-x 8 / E / E Æ Æ

C-x 8 / o / o ø ø

C-x 8 / O / O Ø Ø

C-x 8 , , ~~ ¸ ¸

C-x 8 , c ~c ç ç

C-x 8 , C ~C Ç Ç

a For instructions on making these bindings work properly, read this section carefully.

Table 8-2. Bindings for inserting entities for accented charactersa (continued)

C-x 8 prefix
keystrokes

ISO accents mode
shortcut Character entity

Character displayed
in browser

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 8: Markup Language Support

Table 8-4 lists HTML mode commands.

Table 8-3. Bindings for inserting entities for punctuation and symbols

C-x 8 prefix keystrokes Character entity Character displayed in browser

C-x 8 1 / 2 ½ 1⁄2

C-x 8 1 / 4 ¼ 1⁄4

C-x 8 3 / 4 ¾ 3⁄4

C-x 8 SPC nonbreaking space

C-x 8 ! ¡ ¡

C-x 8 $ ¤ ¤

C-x 8 + ± ±
C-x 8 - ­ soft hyphen

C-x 8 . · •

C-x 8 < « «

C-x 8 = ¯ ¯

C-x 8 > » »

C-x 8 ? ¿ ¿

C-x 8 | ¦ |

C-x 8 c ¢ ¢

C-x 8 C © ©

C-x 8 L £ £

C-x 8 P ¶ ¶

C-x 8 R ® ®

C-x 8 S § §

C-x 8 u µ µ
C-x 8 x × ×
C-x 8 Y ¥ ¥

C-x 8 ^ 1 ¹ 1

C-x 8 ^ 2 ² 2

C-x 8 ^ 3 ³ 3

C-x 8 _ a ª a

C-x 8 _ o º o

Table 8-4. HTML mode commands

Keystrokes Command name Action

(none) html-mode Enter HTML mode.

C-c C-t
SGML ➝ Insert Tag

sgml-tag Inserts a tag, prompting for attributes. If you
enter html as the tag name, inserts a tem-
plate html file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 229

C-c Tab
SGML ➝ Toggle Tag Visibility

sgml-tags-invisible Hides or shows the tags in the file.

C-c C-v
SGML ➝ View Buffer Contents

browse-url-of-buffer Display buffer in default browser.

C-c C-s html-autoview- mode If this mode is on (this command toggles it),
display file in browser each time it is saved in
Emacs.

C-c 8 sgml-name-8bit-mode If turned on, certain keystrokes for inserting
Latin-1 characters are captured and replaced
with the appropriate entities. See “Character
encoding in HTML mode” for details.

C-c C-f
SGML ➝ Forward Tag

sgml-skip-tag-forward Move forward to the next tag of the same
level.

C-c C-b
SGML ➝ Backward Tag

sgml-skip-tag-backward Move backward to previous tag of the same
level.

C-c Del or C-c C-d
SGML ➝ Delete Tag

sgml-delete-tag With cursor on or before a tag, deletes tag or
tag pair.

C-c 1 html-headline-1 Insert an <h1>.

C-c 2 html-headline-2 Insert an <h2>.

C-c 3 html-headline-3 Insert an <h3>.

C-c 4 html-headline-4 Insert an <h4>.

C-c 5 html-headline-5 Insert an <h5>.

C-c 6 html-headline-6 Insert an <h6> (useful for footnote text) .

C-c Enter html-paragraph Insert <p> tag.

C-c C-c h
HTML ➝ Href Anchor

html-href-anchor Insert a hyperlink.

C-c C-c n
HTML ➝ Name Anchor

html-name-anchor Insert an anchor so that a link can be created
to the anchored part of the page.

C-c C-c u
HTML ➝ Unordered List

html-unordered-list Create a bulleted list.

C-c C-c o
HTML ➝ Ordered List

html-ordered-list Create a numbered list.

C-c C-c l
HTML ➝ List Item

html-list-item Add an item to a list.

C-c C-c i
HTML ➝ Image

html-image Insert and position cursor
for you to enter filename of image.

C-c C-j
HTML ➝ Line Break

html-line Insert a line break (
).

C-c C-c -
HTML ➝ Horizontal Rule

html-horizontal-rule Insert a horizontal rule (<hr>).

Table 8-4. HTML mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 8: Markup Language Support

Using HTML Helper Mode
HTML helper mode, written by Nelson Minar and now maintained by Gian Uberto
Lauri, offers great flexibility in writing HTML. You can enable various hand-holding
features depending on your level of expertise and preferences.

Why would you choose HTML helper mode over Emacs’s own HTML mode?
Although HTML mode makes it easy to write basic HTML, it provides little support
for programmatic, interactive web pages. HTML helper mode supports ASP, JSP
(and JDE, the Java Development Environment, discussed in Chapter 9), and PHP, to
name a few more advanced features. If you’re writing HTML in Emacs, you’re likely
to be a developer of such pages rather than a more text-oriented author. For this rea-
son, HTML helper mode continues to be popular among Emacs users.

Html helper mode is not part of Emacs by default. You can download it from its
homepage at http://www.nongnu.org/baol-hth. Download the file into a directory
such as ~/elisp, move to that directory, and then type:

% tar xvzf html-helper-mode.tar.gz

The system unpacks the tar file for you. (Of course, if you are installing on Win-
dows, you can simply use WinZip to decompress and unpack the file.) The tar file
contains several components, including:

• html-helper-mode.el—the Lisp file for HTML helper mode

• hhm-changelog—changes that have been made

• hhm-config.el—a Lisp file that allows Emacs customization to work*

C-c C-c r html-radio-buttons Insert a group of radio buttons. Emacs
prompts for a name for the group, then
repeatedly for value, whether it should be
checked, and associated text. Press C-g to
complete the group.

C-c C-c c
HTML ➝ Checkboxes

html-checkboxes Insert a group of checkboxes. Emacs prompts
for a name for the group, then repeatedly for
value, whether it should be checked, and
associated text. Press C-g to complete the
group.

C-c ?
SGML ➝ Describe Tag

sgml-tag-help Provide brief verbal description of tag at cur-
sor position.

* The version we downloaded in August 2004 marked this file as alpha code, so don’t be surprised if you find
bugs. Visit the file to see if its status has changed.

Table 8-4. HTML mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 231

Starting HTML helper mode

Before you can start HTML helper mode, you have to load it into Emacs. (For a com-
plete discussion of this topic, see “Building Your Own Lisp Library” in Chapter 11; we
describe it briefly here.) Begin by typing M-x load-file Enter. Emacs asks which file to
load and you enter ~/elisp/html-helper-mode.el and press Enter, adjusting the path
to reflect the location where you installed html-helper-mode.el. You enter the mode by
typing M-x html-helper-mode Enter. HTML helper appears on the mode line.

Making HTML helper mode part of your startup is easier. Put the following lines in
your .emacs file:

(setq load-path (cons "~/elisp " load-path))
(autoload 'html-helper-mode "html-helper-mode" "Yay HTML" t)

In the first line, insert the complete path for the directory in which html-helper-mode.el
is located in quotation marks, replacing ~/elisp to the correct value for your system. The
second line tells Emacs to load HTML helper mode automatically when you start
Emacs.

If you want to use HTML helper mode for editing HTML files by default, add this
line to .emacs as well:

(setq auto-mode-alist (cons '("\\.html?$" . html-helper-mode) auto-mode-alist))

If you edit other types of files with HTML helper mode, you may want to add lines to
include all the types of files you edit. Adding more lines is the easiest way. For exam-
ple, to make HTML helper mode the default for PHP files, add this line to .emacs:

(setq auto-mode-alist (cons '("\\.php$" . html-helper-mode) auto-mode-alist))

A brief tour of HTML helper mode

The main reason people like HTML helper mode is that it provides easy menu access
to a wide variety of options. Realizing that having a crowded menu with many sub-
menus could overwhelm new users, the authors created an option called Turn on Nov-
ice Menu. Selecting this option from the HTML menu provides a barebones menu, as
shown in Figure 8-1. Novice HTML writers can use these options to create a basic
HTML document without worrying about what forms, JSPs, PHP, and the like mean.

Selecting Turn on Expert Menu from the HTML menu returns the larger menu with
its numerous submenus, as shown in Figure 8-2.

Inserting an HTML template

HTML helper mode inserts a template for you every time you create a new HTML file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 8: Markup Language Support

Figure 8-1. HTML helper mode’s Novice menu (Mac OS X)

Figure 8-2. HTML helper mode’s Expert menu (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 233

The template contains all the basic HTML elements. The entire document is sur-
rounded by <html></html> tags. Then the head and the body are separated. Follow-
ing an <hr> tag that tells the browser to insert a horizontal line, called a horizontal
rule, the <address> tag leaves a place for the author to put in his or her email address.
In these days of spam, it’s unlikely you’ll want to do that. (You can leave the
<address> tag blank or delete it.)

If you do want to include an email address, enter a line like this in your .emacs file
(substituting your own email address, of course):

 (setq html-helper-address-string
 "Charles Dickens")

Type: C-x C-f new.html

HTML helper mode inserts a template with all the basic elements needed for a valid
HTML document (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 8: Markup Language Support

Normally you begin filling out the template by entering title and a level-one header
(these are often the same). You can then begin writing paragraphs of text. Before you
start typing, press M-Enter. Emacs inserts <p></p> and positions the cursor between
them. You can see from the ending paragraph tag that HTML helper mode is work-
ing toward XHTML compliance.

Type: C-x C-f newfile.html

Emacs inserts the HTML template, including the address.

Type: M-Enter

Emacs positions the cursor between <p> and </p> so you can start insert text.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 235

Putting tags around a region

When editing HTML files, you often spend a lot of time marking up existing text. If
you preface any of the tag commands with C-u, Emacs inserts the tags around a
region rather than putting them at the cursor position.* To demonstrate, we’ll start a
new HTML file and insert text from our dickens file.

* For this to work, you must invoke the command through the keyboard, either using its key binding or its
command name. Using a menu option doesn’t work.

Type: C-x C-f ataleoftwocities.html

Emacs inserts the HTML template.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 8: Markup Language Support

If you were really doing this properly, you’d type something like “A Tale of Two Cit-
ies, Chapter 1” as the title and the first-level header. But for now, you just want to
see how to mark up a region of existing text. Begin by marking the Dickens para-
graph as a region and type C-u M-Enter.

Move the cursor past the <h1> pair and type C-x C-i dickens.

Emacs inserts the dickens text file, to which we can add HTML tags.

Type: M-h C-u M-Enter.

Emacs inserts opening and closing paragraph tags.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 237

Using completion

HTML helper mode supports completion. You type the beginning of a tag and press
M-Tab (for tempo-complete-tag).* If there’s more than one possibility, a window of
possible completions appears. Let’s say you are working on a bulleted list.

Note, however, that completion is sometimes case-sensitive. For example, typing <s
M-Tab shows the following completions:

<select <span class=
<span style = <strike>
 <samp>

Notice that the <script> tag is missing. But if you try typing <S M-Tab, the script tag
and its attributes are inserted, as in:

<SCRIPT TYPE="text/javascript">
</SCRIPT>

The distinction between upper- and lowercase shows that HTML helper mode is
moving toward XHTML compliance, but hasn’t quite arrived. XHTML requires that
all tags be lowercase. On the positive side, note that the attribute is in quotation
marks, another XHTML requirement.

* If M-Tab is trapped by the operating system to switch between applications (it is on Red Hat Linux), type
Esc Tab instead.

Type: <olM-Tab

Emacs inserts the tags to begin and end the list and the tag for one list item.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 8: Markup Language Support

Turning on prompting

Some HTML tags require you to input certain attributes. For example, when you
enter a hyperlink, you have to specify the URL of the link and the text that the user
will select. If you type C-c C-a l (the lowercase letter “L”) to enter a link, HTML
helper mode inserts:

with the cursor on the second quotation mark so you can type in the URL. HTML
helper mode offers additional help if you turn on prompting. Add this line to your
.emacs file:

(setq tempo-interactive t)

Note that HTML helper mode prompts only for required attributes; if you want to
input optional attributes, you have to add them by hand.

Whether you consider prompting useful or intrusive is a matter of personal taste. If
you are a beginning HTML author, prompting may help you remember to enter all
the necessary information for each tag. If you find you don’t like it, simply delete the
line you added to the .emacs file.

Character encoding in HTML helper mode

HTML helper mode supports entry of only the most common character entities.
However, it does make it easy to insert these entities. Simply type C-c before the
character in question. For example, type C-c < to enter the escape code for a less-
than sign (<).

Character entities are also available by selecting HTML ➝ Insert Character Entities.

Table 8-5 lists bindings for inserting character entities in HTML helper mode.

Table 8-5. Inserting character entities in HTML helper mode

Keystrokes Command name Character entity
Character rendered
on web page

C-c > tempo-template-html-greater-than > >

C-c < tempo-template-html-less-than < <

C-c & tempo-template-html-ampersand & &

C-c u tempo-template-html-u`-(&ù) ù ù

C-c i tempo-template-html-i`-(&ì) ì ì

C-c o tempo-template-html-o`-(&ò) ò ò

C-c E tempo-template-html-e'-(&é) é é

C-c e tempo-template-html-e`-(&è) è è

C-c a tempo-template-html-a`-(&à) à à

C-c SPC tempo-template-html-nonbreaking-space nonbreaking space

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 239

Table 8-6 lists the key bindings for HTML helper mode. There are key bindings for
advanced HTML features such as forms as well as for some of the HTML 3.0 fea-
tures. Some tags would normally appear on different lines (for example, in the case
of a list); in this table, they are shown on one line.

C-c - tempo-template-html-soft-hyphen ­ soft hyphen

C-c @ tempo-template-html-copyright © ©

C-c $ tempo-template-html-registered ® ®

C-c " tempo-template-html-quotation-mark " "

C-c # tempo-template-html-ascii-code Enter the 3-digit code for
the desired character

specified character

Table 8-6. HTML helper mode commands

Keystrokes Command name Action

C-u universal-argument When used before any other tag command,
insert tags around a region.

M-Tab tempo-complete-tag Complete the current tag.

C-c C-z v
HTML ➝ Load This Buffer
 in Browser

browse-url-of-file Display this file in the default browser.

C-c C-z u
HTML ➝ Browse URL at Point

browse-url-default-browser Load the URL at point in default browser.

C-c M-h 1
HTML ➝ Insert Headers ➝ Header 1

tempo-template-html-header-1 Insert <h1></h1>.

C-c M-h 2
HTML ➝ Insert Headers ➝ Header 2

tempo-template-html-header-2 Insert <h2></h2>.

C-c M-h 3
HTML ➝ Insert Headers ➝ Header 3

tempo-template-html-header-3 Insert <h3></h3>.

C-c M-h 4
HTML ➝ Insert Headers ➝ Header 4

tempo-template-html-header-4 Insert <h4></h4>.

C-c M-h 5
HTML ➝ Insert Headers ➝ Header 5

tempo-template-html-header-5 Insert <h5></h5>.

C-c M-h 6
HTML ➝ Insert Headers ➝ Header 6

tempo-template-html-header-6 Insert <h6></h6>.

M-Enter
HTML ➝ Insert Text Elements ➝

Paragraph

tempo-template-html-
paragraph

Insert <p></p>.

C-c C-a l
HTML ➝ Insert Hyperlinks ➝

Hyperlink

tempo-template-html-hyperlink Insert .

Table 8-5. Inserting character entities in HTML helper mode (continued)

Keystrokes Command name Character entity
Character rendered
on web page

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 8: Markup Language Support

C-c C-a n
HTML ➝ Insert Hyperlinks ➝ Target

tempo-template-html-link-
target

Insert .

C-c Enter
HTML ➝ Insert Text Elements ➝

Line Break

tempo-template-html-line-break Insert a literal line break,
.

C-c =
HTML ➝ Insert Text Elements ➝

Horizontal Line

tempo-template-html-
horizontal-line

Insert a horizontal rule, <hr>.

C-c C-z t
HTML ➝ Insert Timestamp Delimiter

html-helper-insert-timestamp-
delimiter-at-point

Insert timestamp delimiters.

C-c C-h t
HTML ➝ Insert Structural
Elements ➝ Title

tempo-template-html-title Insert <title></title>.

C-c Tab a
HTML ➝ Insert Inlined Images ➝

Image

tempo-template-html-image Insert .

C-c C-l u
HTML ➝ Insert List Elements ➝

Unordered List

tempo-template-html-unor-
dered-list

Insert .

C-c C-l o
HTML ➝ Insert List Elements ➝

Ordered List

tempo-template-html-ordered-
list

Insert .

C-c C-l t
HTML ➝ Insert List Elements ➝

Definition Item

tempo-template-html-
definition-item

Insert <dt><dd>.

C-c C-l l
HTML ➝ Insert List Elements ➝

List Item

tempo-template-html-item Insert .

C-c C-l d
HTML ➝ Insert List Elements ➝

Definition List

tempo-template-html-
definition-list

Insert <dl><dt><dd></dl>.

C-c C-l m
HTML ➝ Insert List Elements ➝

Menu List

tempo-template-html-menu-list Insert <menu></menu>.

C-c C-l r
HTML ➝ Insert List Elements ➝

Directory List

tempo-template-html-
directorylist

Insert <dir></dir>.

C-c C-l i
HTML ➝ Insert List Elements ➝

List Item

html-helper-smart-insert-item Insert .

C-c C-f z
HTML ➝ Insert Form Elements ➝

Rest Form

tempo-template-html-reset-
form

Insert <input type="RESET">.

Table 8-6. HTML helper mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing HTML | 241

C-c C-f b
HTML ➝ Insert Form Elements ➝

Button

tempo-template-html-button Insert <input type="BUTTON">.

C-c C-f m
HTML ➝ Insert Form Elements ➝

Submit Form

tempo-template-html- submit-
form

Insert <input type="SUBMIT">.

C-c C-f s
HTML ➝ Insert Form Elements ➝

Selections

tempo-template-html-selections Insert <select><option></select>
.

C-c C-f o
HTML ➝ Insert Form Elements ➝

Option

tempo-template-html-option Insert <option>.

C-c C-f v
HTML ➝ Insert Form Elements ➝

Option with Value

tempo-template-html-option-
with-value

Insert <option value="">.

C-c C-f i
HTML ➝ Insert Form Elements ➝

Image Field

tempo-template-html-input-
image-field

Insert <input type="IMAGE">.

C-c C-f r
HTML ➝ Insert Form Elements ➝

Radiobutton

tempo-template-html-input-
radiobutton

Insert <input type="RADIO">.

C-c C-f c
HTML ➝ Insert Form Elements ➝

Checkbox

tempo-template-html-checkbox Insert <input type="CHECKBOX">.

C-c C-f p
HTML ➝ Insert Form Elements ➝

Text Area

tempo-template-html-text-area Insert <textarea></textarea>.

C-c C-f f
HTML ➝ Insert Form Elements ➝

Form

tempo-template-html-form Insert <form></form>.

C-c C-f t ‘
HTML ➝ Insert Form Elements ➝

Text Field

tempo-template-html-text-field Insert <input type="TEXT">.

C-c C-f h
HTML ➝ Insert Form Elements ➝

Hidden Field

tempo-template-html-hidden-
field

Insert <input type="HIDDEN">.

C-c M-l s
HTML ➝ Insert Logical Styles ➝ Strong

tempo-template-html-strong Insert .

C-c M-l e
HTML ➝ Insert Logical Styles ➝

Emphasized

tempo-template-html-empha-
sized

Insert .

C-c M-l b
HTML ➝ Insert Logical Styles ➝

Blockquote

tempo-template-html-block-
quote

Insert <blockquote></blockquote>
.

Table 8-6. HTML helper mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 8: Markup Language Support

C-c M-l p
HTML ➝ Insert Logical Styles ➝

Preformatted

tempo-template-html-prefor-
matted

Insert <pre></pre>.

C-c C-p s
HTML ➝ Insert Physical Styles ➝

Strikethru

tempo-template-html-strikethru Insert <s></s>.

C-c C-p f
HTML ➝ Insert Physical Styles ➝ Fixed

tempo-template-html-fixed Insert <tt></tt>.

C-c C-p u
HTML ➝ Insert Physical Styles ➝

Underline

tempo-template-html-underline Insert <u></u>.

C-c C-p i
HTML ➝ Insert Physical Styles ➝ Italic

tempo-template-html-italic Insert <i></i>.

C-c C-p b
HTML ➝ Insert Physical Styles ➝ Bold

tempo-template-html-bold Insert .

C-c C-p c
HTML ➝ Insert Physical Styles ➝

Center

tempo-template-html-center Insert <center></center>.

C-c C-p l
HTML ➝ Insert Physical Styles ➝

Spanning Class

tempo-template-html-spanning-
class

Insert .

C-c C-p 5
HTML ➝ Insert Physical Styles ➝

Spanning Style

tempo-template-html-spanning-
style

Insert .

C-c C-s a
HTML ➝ Insert Logical Styles ➝

Address

tempo-template-html-address Insert <address></address>.

C-c M-l d
HTML ➝ Insert Logical Styles ➝

Definition

tempo-template-html-definition Insert <dfn></dfn>.

C-c M-l v
HTML ➝ Insert Logical Styles ➝

Variable

tempo-template-html-variable Insert <var></var>.

C-c M-l k
HTML ➝ Insert Logical Styles ➝

Keyboard Input

tempo-template-html-keyboard Insert <kbd></kbd>.

C-c M-l r
HTML ➝ Insert Logical Styles ➝

Citation

tempo-template-html-citation Insert <cite></cite>.

C-c M-l x
HTML ➝ Insert Logical Styles ➝

Sample

tempo-template-html-sample Insert <samp></samp>.

C-c M-l c
HTML ➝ Insert Logical Styles ➝ Code

tempo-template-html-code Insert <code></code>.

Table 8-6. HTML helper mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing XML | 243

Writing XML
Writing XML involves entering structured information that complies with a docu-
ment type definition or schema. Even within Emacs, the XML support you receive
varies. At the low end of the spectrum, there is plain vanilla Fundamental mode. It
provides simply a screen where you type. Specialized modes like SGML mode pro-
vide support for entering tags, as we saw earlier in our discussion of HTML mode, a
derivative of SGML mode. But neither of these approaches help you parse or vali-
date XML (SGML mode has a command for validating, but it is tricky to set up cor-
rectly). More advanced Lisp packages, though currently not included in Emacs, are

C-c C-h b
HTML ➝ Insert Structural Elements ➝

Base

tempo-template-html-base Insert <base href="">.

C-c C-h l
HTML ➝ Insert Structural Elements ➝

Link

tempo-template-html-link Insert <link href="">.

C-c C-h m
HTML ➝ Insert Structural Elements ➝

Meta Name

tempo-template-html-meta-
name

Insert <meta content="">.

C-c C-h n
HTML ➝ Insert Structural Elements ➝

Nextid

tempo-template-html-nextid Insert <nextid>.

C-c C-h i
HTML ➝ Insert Structural Elements ➝

Isindex

tempo-template-html-isindex Insert <isindex>.

C-c C-h B
HTML ➝ Insert Structural Elements ➝

Body

tempo-template-html-body Insert <body></body>.

C-c C-h H
HTML ➝ Insert Structural Elements ➝

Head

tempo-template-html-head Insert <head></head>.

C-c C-t t
HTML ➝ Insert Tables ➝ Table

tempo-template-html-table Insert <table></table>.

C-c C-t p
HTML ➝ Insert Tables ➝ html table
caption

tempo-template-html-html-
table-caption

Insert <caption></caption>.

C-c C-t d
HTML ➝ Insert Tables ➝ Table Data

tempo-template-html-table-
data

Insert <TD></TD>.

C-c C-t h
HTML ➝ Insert Tables ➝ Table Header

tempo-template-html-table-
header

Insert <TH></TH>.

C-c C-t r

HTML ➝ Insert Tables ➝ Table Row

tempo-template-html-table-row Insert <TR></TR>.

Table 8-6. HTML helper mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 8: Markup Language Support

available to provide these functions. These add-on packages provide validation
against DTDs or schemas, parsing capabilities, and, typically, an array of standard
DTDs and schema definitions. In Emacs, these tools primarily work in conjunction
with one of two major modes. psgml mode validates XML (and SGML) against
DTDs. The newer nxml mode validates against RELAX NG schemas. We cover both
of these options in this section. Before we go into detail on those modes, however,
let’s look briefly what Emacs has built-in with SGML mode.

Writing XML with SGML Mode
Emacs’s own SGML mode provides support for entering tags. We covered much of
this earlier under HTML mode, so we provide just one brief example here. Inserting,
hiding, and showing tags are especially helpful features provided by SGML mode.

Let’s look at a chapter on enumerated types by Java in a Nutshell author David
Flanagan. This chapter uses the DocBook DTD.

Note that Emacs displays XML on the mode line. XML mode in this context is a sub-
set of SGML mode. Actually, despite this name, all the commands in this mode start
with sgml, not xml. The menu of relevant commands is called SGML as well. Emacs
doesn’t pretend to have extensive XML support.

We want to insert a paragraph before the first paragraph.

Initial state:

Editing a document that uses the DocBook DTD (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing XML | 245

Note that Emacs is not following our indentation style. We can correct it by moving
to the beginning of the line and pressing Tab. See Table 8-4 earlier in this chapter for
details on SGML mode commands.

Add a blank line following the title and type: C-c C-t

Emacs inserts an open angle bracket and prompts for the tag name (Mac OS X).

Type: para Enter

Emacs inserts opening and closing paragraph tags (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 8: Markup Language Support

TEI Emacs: XML Authoring for Linux and Windows
The Text Encoding Initiative (TEI) wanted an XML authoring environment for
Emacs, so it created (the somewhat misleadingly named) TEI Emacs.* Despite its
name, TEI Emacs does not include Emacs itself. Rather, it creates an authoring envi-
ronment for writing XML using nxml mode or psgml mode. It incorporates XSLT
tools, along with most of the standard DTDs, such as the three forms of XHTML
DTDs (strict, frameset, and transitional), DocBook DTDs, and more. Naturally, the
TEI’s own DTDs and schemas are also included.

The active development of this tool and its careful packaging led us to describe this
tool despite the fact that it is limited to Linux and Windows at this writing.† You
should have Emacs 21.3 already installed before you install this tool. Installing TEI
Emacs is trivial. The Windows version has an installer, and Linux users follow sim-
ple instructions at http://www.tei-c.org/Software/tei-emacs/, the web site for down-
loading TEI Emacs.

Writing XHTML Using nxml Mode
James Clark, an XML pioneer, wrote nxml mode to provide Emacs support for his
schema standard RELAX NG. For details on the standard, visit http://www.relaxng.org/
or pick up a copy of RELAX NG by Eric van der Vlist (O’Reilly). The important thing
about nxml mode is that it validates text as you type instead of making validation and
debugging separate steps.

If you did not install TEI Emacs, you can download nxml mode and its schemas
from http://thaiopensource.com/download/. If you decide to become an active nxml
mode user, you may want to join a related Yahoo Group discussion list (see http://
groups.yahoo.com/group/emacs-nxml-mode/).

In this section, we change our running HTML example to XHTML, first using a
RELAX NG schema and nxml mode. Open dickens.html, then enter nxml mode.

* We’d like to thank Emacs guru Eric Pement for pointing out TEI Emacs to Deb.

† We sincerely hope that this support will be extended to Mac OS X as well, providing developers and writers
on that platform the benefits of this tool’s capabilities. Meanwhile, Mac users may want to install nxml mode
from http://thaiopensource.com/download/ and psgml mode from http://www.lysator.liu.se/projects/about_
psgml.html.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing XML | 247

nxml mode tells you what schema it is using in the minibuffer. It’s smart enough to
know that its XHTML schema is best for this purpose.

The mode line tells us that this file is currently invalid. Emacs highlights errors with
red underscores. Let’s deal with these errors one at a time.

Type: C-x C-f dickens.html Enter M-x nxml-mode Enter

Editing dickens.html in nxml mode.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 8: Markup Language Support

Editing XHTML with a schema requires a namespace definition in the <html> tag.
nxml mode knows what we need. This is a good time to use nxml’s completion fea-
ture to let it supply the details for us. C-Enter completes the current tag.

Move the cursor to the red underscore at the end of the html tag.

The minibuffer describes what’s missing.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing XML | 249

The mode line tells us that this file is still invalid. Moving to the underlined address
tag gives us a fairly cryptic reason; it says, Element not allowed in this context.
Let’s move down to the closing body tag to see if that error provides any more
insight into the problem.

Type: Space xmlns=" C-Enter

Emacs inserts the rest of the namespace declaration.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 8: Markup Language Support

This message provides a clue. Although HTML authors are not accustomed to add-
ing closing tags to paragraphs, XHTML requires them. Let’s insert a closing tag after
our paragraph.

Move to </body>.

The minibuffer says Missing end-tag "p" .

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing XML | 251

Note that just typing </ was adequate to insert a closing tag for the current element.
We don’t need to type C-Enter to invoke completion. That’s because in nxml mode,
slash is bound to nxml-electric-slash. It automatically completes the nearest open
element, another shortcut for us.

A similar command is C-c C-f (for nxml-finish-element). With C-c C-f, you don’t
have to type anything; it inserts the relevant closing tag for you.

Look at the mode line now. It says valid. Using nxml mode, it’s not too tough to take
an HTML file and change it to valid XHTML.

Validating text as you type it is a key feature of nxml mode. It’s validating against a
schema. To specify a different schema, type C-c C-s (for rng-set-schema-and-validate).
The minibuffer prompts for the file where the schema resides. A number of schemas can
be found online at http://www.relaxng.org/#schemas. You can also convert DTDs to
schemas using tools listed on that page.

Your menus vary depending on whether you install nxml mode directly or whether you
use TEI’s version. TEI provides support for encoded characters using the UniChar
menu. It also provides extensive XSLT support. TEI’s NXML menu includes some TEI

Move to the line following the Dickens paragraph and type: </

Emacs inserts a closing tag.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 8: Markup Language Support

skeletons as well as nxml mode options. Nxml mode installed from thaiopensource.org
includes an XML menu with options for setting the schema and customizing the mode.
Table 8-7 lists some of the commands available in nxml mode.

Table 8-7. Nxml mode commands

Keystrokes Command name Action

C-Enter nxml-complete Complete the current tag.

/ nxml-electric-slash Add a closing tag for the last open element.

C-c C-n rng-next-error Move to the next error.

C-c C-l rng-save-schema-location Creates (or updates) a file called schemas.xml
in your home directory. This file associates
schemas with files.

C-c C-s rng-set-schema-and-validate Set the schema and validate against it.

C-c C-a rng-auto-set-schema Set the schema automatically according to
the contents of the file.

C-c C-w rng-what-schema Show in the minibuffer the current schema
associated with this file.

C-c C-v rng-validate-mode Toggles whether the mode line indicates that
the file is valid or invalid.

C-c C-u nxml-insert-named-char Insert a named character; press Tab to see a
list.

(none) nxml-insert-xml-declaration Insert an XML declaration at the beginning of
the file.

C-c Tab nxml-balanced-close-start-tag-
inline

Insert the ending tag for the starting tag you
are typing, putting the ending tag on the cur-
rent line.

C-c C-b nxml-balanced-close-start-tag-
block

Insert the ending tag for the starting tag you
are typing, putting the ending tag on a sepa-
rate line.

C-c C-f nxml-finish-element Finish the current element.

M-h nxml-mark-paragraph Mark the current paragraph.

M-} nxml-forward-paragraph Move forward one paragraph.

M-{ nxml-backward-paragraph Move back one paragraph.

C-M-p nxml-backward-element Move back one element.

C-M-n nxml-forward-element Move forward one element.

C-M-d nxml-down-element Move down one element (if nested).

C-M-u nxml-backward-up-element Move up one element (if nested).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing XML | 253

Using psgml Mode
Lennart Stafflin’s psgml mode has been around for a while. It is more robust than
Emacs’s own SGML mode, but, like any add-on, you have to install it in order to
use it. Either install TEI Emacs as described earlier or download psgml mode from
http://www.lysator.liu.se/projects/about_psgml.html and follow the installation
instructions there. TEI Emacs includes a functioning psgml mode, so if you’ve
installed TEI Emacs, your setup work is done.

psgml mode consists of two parts: sgml-mode for writing SGML and xml-mode for
writing XML (and in our case XHTML).

The *SGML LOG* window displays messages about this session. (If it doesn’t appear
immediately, click on the first character in the file.) The log buffer complains that it
could not find an external entity called html. This file has been changed to work with
the XHTML RELAX NG schema. psgml mode expects it to conform to an XHTML
DTD. To get started with the (minimal) work needed to undertake the transformation
from a schema-based file to a DTD-based file, we ask psgml to normalize the buffer.

To start psgml mode to edit our XHTML file, type M-x xml-mode.

XML appears on the mode line and an *SGML LOG* window opens. If you are using
TEI Emacs, XSLT appears on the mode line along with XML.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 8: Markup Language Support

More needs to be done, however. The first statements in an XHTML file include
an XML statement and a DOCTYPE entry that identifies the DTD this document
should be validated against. One of the nice things about TEI Emacs is that it
includes a variety of DTDs. (Users of standard psgml mode don’t have this fea-
ture; sorry.*)

Type: M-x sgml-normalize or select Normalize from the Modify menu

psgml mode eliminates the namespace declaration in the <html> tag.

* A straightforward introduction to setting up a complete environment for psgml mode can be found at http://
openacs.org/doc/openacs-5-0-0/psgml-mode.html.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing XML | 255

That’s all it takes to make this file a well-formed XHTML file. psgml mode allows for
validation against the DTD. Let’s validate it using C-c C-v to make sure it’s okay.

At the beginning of the file, select DTD ➝ Insert DTD ➝ XHTML Transitional.

Emacs inserts the two required elements for us.

Type: C-c C-v

psgml mode inserts the default validate command in the minibuffer; press Enter to
run it.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 8: Markup Language Support

Of course, typical documents are far more complex than this one. Options on the
View menu provide selective hiding and showing of elements, including an option to
hide all tags, allowing you to focus on the content of the file instead.

psgml mode also offers numerous options. If you are running TEI Emacs, you’ll find
the File Options and User Options submenus on the XML/SGML menu. If you’ve
installed psgml mode standalone, you’ll find them on the SGML menu. Table 8-8
summarizes some of the psgml commands.

Press Enter and type y to save the buffer when prompted

The *compilation* buffer indicates (somewhat cryptically) that the document is
valid.

Table 8-8. Bindings in psgml mode

Keystrokes Command name Action

C-M-Space sgml-mark-element Mark the current element.

M-Tab sgml-complete Complete the current tag.

C-M-t sgml-transpose-element Transpose two elements.

C-M-h sgml-mark-current-element Mark the current element.

C-M-k
Modify ➝ Kill Element

sgml-kill-element Delete the current element (and any child ele-
ments).

C-M-u
Move ➝ Backward Up Element

sgml-backward-up-element Move up to the parent element for this ele-
ment.

C-M-d
Move ➝ Down Element

sgml-down-element Move down to the next child element.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing XML | 257

C-M-b
Move ➝ Backward Element

sgml-backward-element Move to the previous element.

C-M-f
Move ➝ Forward Element

sgml-forward-element Move to the next element.

C-M-e
Move ➝ End of Element

sgml-end-of-element Move to the end of the current element.

C-M-a
Move ➝ Beginning of Element

sgml-beginning-of-element Move to the beginning of the current ele-
ment.

C-c C-w
SGML ➝ What Element

sgml-what-element Similar to sgml-position but describes hierar-
chy in terms of tags versus content (for exam-
ple, start-tag in title in head in html).

C-c C-v
SGML ➝ Validate

sgml-validate Insert validation command in the minibuffer
so you can modify it if necessary before press-
ing Enter to execute it.

C-c C-t
SGML ➝ List Valid Tags

sgml-list-valid-tags List tags that are valid in the current context.

C-c C-q
Modify ➝ Fill Element

sgml-fill-element Fill element according to the mode’s indenta-
tion rules.

C-c C-o
Move ➝ Next Trouble Spot

sgml-next-trouble-spot Find the next problem spot and display the
problem in the minibuffer.

C-c C-n
Move ➝ Up Element

sgml-up-element Move to the parent element.

C-c Enter sgml-split-element Split current element.

C-c C-l
SGML ➝ Show/Hide Warning Log

sgml-show-or-clear-log Display or delete the SGML LOG buffer
(menu option name is misleading).

C-c C-k
Modify ➝ Kill Markup

sgml-kill-markup Delete current tag.

C-c /
Markup ➝ End Current Element

sgml-insert-end-tag Insert closing tag for current tag.

C-c -
Modify ➝ Untag Element

sgml-untag-element Delete the current tag pair.

C-c #
Modify ➝ Make Character
Reference

sgml-make-character-reference Change character under the cursor to the
equivalent entity.

C-c C-f C-e
View ➝ Fold Element

sgml-fold-element Hide the current element and its children if
any.

C-c C-u C-e
View ➝ Unfold Element

sgml-unfold-element Show the current element and its children if
any.

C-c C-f C-s
View ➝ Fold Subelement

sgml-fold-subelement Hide subelements.

C-c C-f C-r
View ➝ Fold Region

sgml-fold-region Hide the region.

Table 8-8. Bindings in psgml mode (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 8: Markup Language Support

Marking up Text for TEX and LATEX
GNU Emacs provides excellent support for marking up TEX files. Most people today
use LATEX, which is written in TEX and provides more control over formatting. As a
result, we’ll talk about LaTeX mode here.

Before we launch into this discussion, we assume that you have set up LATEX on your
platform. On Red Hat Linux, it’s set up by default. Windows and Mac OS X users
must install and configure LATEX before proceeding.*

Emacs attempts to guess whether you’re editing a TEX or LATEX file and enter the
appropriate mode. You can force LaTeX mode if Emacs doesn’t enter it automati-
cally by typing M-x latex-mode Enter.

Matching Braces
LATEX commands often take the form \keyword{text}. LaTeX mode doesn’t try to
figure out if you’re using the “right” keywords since the language is extensible and
you may have defined your own keywords. It does, however, provide support for
avoiding the most common error: mismatched curly braces and dollar signs.

In LATEX, curly braces ({}) and dollar signs ($$) should always appear in pairs;
Emacs checks to make sure that each opening brace or dollar sign has a counterpart.
When you type a closing brace or dollar sign, the cursor moves quickly to its coun-
terpart (provided that it is on the screen; it shows the context in the minibuffer if it is
not), then back again.

Emacs generates braces in matching pairs. The command C-c { inserts opening and
closing braces and positions the cursor for typing between the braces.

Typing C-c } moves you past the right brace. It always finds the correct closing brace,
given your current position. If there is no closing brace, you get an error message that
says Scan error: Unbalanced parentheses. You also get this error message if you type
C-c } while the cursor is in a section that is not surrounded by braces, which can be a
little confusing.

C-c C-u C-a
View ➝ Unfold All

sgml-unfold-all Show all hidden tags and text.

* TEI Emacs, mentioned earlier in this chapter, automatically sets up the environment for you and adds more
features including Auctex, a complete authoring environment that supports many TEX variants as well as
bibcite/bibtex for generating bibliographies. However, LaTeX mode under TEI Emacs appears to be a differ-
ent beast from Emacs LaTeX mode, and we do not describe it here.

Table 8-8. Bindings in psgml mode (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Marking up Text for TEX and LATEX | 259

To check for mismatched curly braces and dollar signs, type M-x tex-validate-buffer
Enter. This command checks the entire buffer for unbalanced parentheses, curly
braces, dollar signs, and the like. (If you have a large file, you might want to validate
a region instead using M-x tex-validate-region Enter). If it finds any errors, Emacs
displays an *Occur* buffer with Mismatches: at the top and a list of lines on which it
found errors. You can then easily move to each line that contains an error with M-x
goto-line.

Sometimes a mismatched parenthesis early in the buffer can start a chain reaction of
“errors” through the rest of the file. If you suspect that one of the corrections you
make may have fixed most of the remaining errors, simply run tex-validate-buffer
again.

When you’re stepping through errors, C-c } provides a good way to check where the
closing brace for a given opening brace is. Position the cursor right after the opening
brace and press C-c }.

Quotation Marks and Paragraphing
LaTeX mode also has features for handling quotation marks and paragraph separa-
tion. Typing a quotation mark (") causes Emacs to simulate left and right quotation
marks. Left quotation marks are represented as two backtick characters (``) while
right quotation marks are represented as two apostrophes (' '). (Left and right quota-
tion marks are not part of the standard ASCII character set.) If you need to type a lit-
eral quotation mark for any reason, simply use the quote-character command
preceding the quotation mark, like this: C-q ".

Command Pairs
LaTeX mode provides support for inserting command pairs. To insert a command
pair, type C-c C-o (for latex-insert-block). Emacs prompts for the block name, and
then for associated options. For example, type C-c C-o Enter document Enter Enter
(the second Enter indicates no options). Emacs inserts the command pair and posi-
tions the cursor between them:

\begin{document}

\end{document}

You can use this command to mark up a text file after you write it. If you mark a
region, you can type C-c C-o to wrap a command pair around that region.

A related command is C-c C-e (for latex-close-block). In this case, you type an open-
ing command, press C-c C-e, and Emacs inserts the corresponding closing command.

These commands work with any keyword, regardless of what it is. Emacs can’t check
to make sure that it’s a valid LATEX keyword or even that it’s been defined. For exam-

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 8: Markup Language Support

ple, if you type \begin{eating} C-c C-e, Emacs inserts \end{eating}. It’s up to you to
make sure you use valid keywords.

Processing and Printing Text
In addition to marking up files for LATEX, you can process files, see your errors (if any),
and invoke a viewer, all without leaving Emacs. To process a file, just type C-c C-f (for
tex-file).* Emacs saves the file before processing it. Messages that would appear on
screen are channeled to a buffer called *tex-shell*, which Emacs displays on your
screen. If the buffer isn’t on the screen, typing C-c C-l (for tex-recenter-output-buffer)
automatically displays it.

To demonstrate, let’s try processing dickens.tex, a very basic file indeed.

This command generates a .dvi file, which is an intermediate, device-independent
file. You can view the resulting file by typing C-c C-v. On Linux, the default viewer is
xdvi. Pressing C-c C-v displays the output in an xdvi window.

* If you don’t have your TEX environment set up properly (and it isn’t by default on Mac OS X, for example),
this command hangs or crashes Emacs (pressing C-g may help; in one author’s case it did and in another’s
it didn’t). Try the latex command at a shell prompt to see if the command exists before attempting to process
a file using Emacs.

Type: C-c C-f

Processing a LATEX file displays a special *tex-shell* buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Marking up Text for TEX and LATEX | 261

To print the .dvi file, give the command C-c C-p (for tex-print); this formats the .dvi
file and sends it to your default printer. C-c C-q (tex-show-print-queue) displays the
print queue so you know when to go to the printer to look for your processed output.

Two important variables tell Emacs how to print a TEX, file. You need to know about
them if C-c C-p or C-c C-q doesn’t work correctly; if these commands don’t work,
the configuration of TEX, on your system may be nonstandard, or the print and print
queue commands are slightly different. The variable tex-dvi-print-command deter-
mines the command that is used to print a .dvi file; its default is lpr -d. For print
queues, the command used to show the print queue is controlled by the tex-show-
queue-command variable. By default, tex-show-queue-command is set to lpq.

Table 8-9 summarizes TeX and LaTeX mode commands.

Type: C-c C-v

Output displayed by xdvi.

Table 8-9. TeX and LaTeX mode commands

Keystrokes Command name Action

(none) tex-mode Enter TeX or LaTeX mode according to file’s contents.

(none) plain-tex-mode Enter TeX mode.

(none) latex-mode Enter LaTeX mode.

C-j tex-terminate-paragraph Insert two hard returns (standard end of paragraph)
and check syntax of paragraph.

C-c { tex-insert-braces Insert two braces and put cursor between them.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 8: Markup Language Support

C-c } up-list If you are between braces, position the cursor follow-
ing the closing brace.

(none)
TeX ➝ Validate Buffer

tex-validate-buffer Check buffer for syntax errors.

(none)
TeX ➝ Validate Region

tex-validate-region Check the region for syntax errors.

C-c C-f
TeX ➝ TeX File

tex-file Saves the current file, then processes it.

C-c C-b
TeX ➝ TeX Buffer

tex-buffer Process buffer.a

C-c C-l
TeX ➝ TeX Recenter

tex-recenter-output-buffer Put the message shell on the screen, showing (at
least) the last error message.

C-c C-k
TeX ➝ TeX Kill

tex-kill-job Kill processing.

C-c C-p
TeX ➝ TeX Print

tex-print Print output.

C-c C-q
TeX ➝ Show Print Queue

tex-show-print-queue Show print queue.

C-c C-e latex-close-block Provide closing element of a command pair.

(none) tex-close-latex-block Provide closing element of a command pair.

C-c Tab‘
TeX ➝ BibTeX File

tex-bibtex-file Process the current file using BibTeX, a system for cre-
ating bibliographies automatically.

C-c C-v
TeX ➝ TeX View

tex-view View .dvi output.

(none)
TeX ➝ TeX Print (alt printer)

tex-alt-print Print .dvi file using an alternative printer defined by
the variable tex-alt-dvi-print-command.

C-c C-o latex-insert-block Insert a block (prompts for block name and options).

C-c C-u tex-goto-last-unclosed-
latex-block

Look backward in the file to find the nearest unclosed
block and move the cursor there.

M-Enter latex-insert-item Insert \item.

(none) latex-split-block Insert an end to the current block and the beginning
of a new one.

" tex-insert-quote Insert TeX-style quotation marks.

a Using tex-buffer gives the resulting .dvi file a long and strange filename that includes your domain name.
We recommend using C-c C-f (for tex-file) instead.

Table 8-9. TeX and LaTeX mode commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

263

Chapter 9 CHAPTER 9

Computer Language Support

As many programmers know, the task of programming usually breaks down into a
cycle of think-write-debug. If you have used Unix (or various other operating sys-
tems) for programming, you have probably become accustomed to using separate
tools for each phase of the cycle, for example, a text editor for writing, a compiler for
compiling, and the operating system itself for running programs. You would
undoubtedly find an environment much more productive if the boundaries between
the cycle phases—and the tools that support them—were erased.

Emacs provides considerable support for writing, running, and debugging pro-
grams written in a wide variety of languages, and it integrates this support into a
smooth framework. You never have to leave Emacs when developing programs, so
you will find it easier to concentrate on the actual programming task (i.e., the
“think” part of the cycle) because you won’t have to spend lots of time going from
one tool to another.

When you write code, you can use one of Emacs’s programming language modes;
these turn Emacs into a spiffy syntax-directed or language-sensitive editor that
knows about the syntax of the language. That makes it easier for you to write code in
a uniform, easy-to-read, customizable style. Language modes exist for several differ-
ent programming languages.

Emacs also supports running and debugging programs. Shell mode (see Chapter 5)
and multiple windows (see Chapter 4) allow you to run your code while editing it.
Emacs has a powerful facility for interfacing to many compilers and the Unix make
command: Emacs can interpret compilers’ error messages and visit files where
errors occur at the appropriate line number. Indeed, many tools (such as the Java
build tool, ant) include command-line options to format their output in an Emacs-
friendly way.

In this chapter, we cover the features of language modes in general such as compil-
ing and debugging programs, comments, indentation, and syntax highlighting. We
also spend a bit of time upfront looking at the etags facility, which is a great help to

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 9: Computer Language Support

programmers who work on large, multifile projects. These features apply to all lan-
guage modes. We then delve into Emacs’s support for various languages, including
C, C++, Java, Perl, SQL, and Lisp.

Emacs as an IDE
Emacs provides a number of features that appeal to developers. You can edit code
quickly with font support and auto-completion of function and variable names; you
can compile the program and even run a debugger all without leaving your “editor.”
While you don’t have some of the graphical tools commonly found in commercial
integrated development environments (IDEs), almost every other feature of those
IDEs can be found in Emacs—for every language you could imagine working in.

Of course, there will always be occasions when you need to view your documents
without the bells and whistles some language modes attach. You can always switch
to plain text (M-x text-mode) or, more to the point, fundamental mode
(M-x fundamental-mode).

Compiling and Debugging
As mentioned at the beginning of this chapter, Emacs’s support for programmers
does not end when you are done writing the code. A typical strategy for using Emacs
when working on a large programming project is to log in, go to the directory where
your source files reside, and invoke Emacs on the source files (e.g., emacs Makefile
myproj*.[ch] for C programmers). While you are editing your code, you can compile
it using the commands described later—as you will see, you need not even worry
about saving your changes. You can also test your compiled code in a shell using
shell mode (see Chapter 5). The bottom line is that you should rarely—if ever—have
to leave Emacs throughout your session.

Emacs provides an interface to compilers and the Unix make utility that is more
direct and powerful than shell mode. At the heart of this facility is the command M-x
compile Enter. This command causes a series of events to occur. First, it prompts
you for a compilation command. The default command is make -k,* but if you type
another command, that new command becomes the default for subsequent invoca-
tions during your Emacs session. You can change the default by setting the variable
compile-command in your .emacs file. For example, to use the Java build tool ant as
your default compile command, just add this line:

(setq 'compile-command "ant -emacs")

* The -k option overrides make’s default of stopping after a job returns an error. Instead, make continues on
branches of the dependency tree that do not depend on the branch where the error occurred.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs as an IDE | 265

After you have typed the command, Emacs offers to save all unsaved file buffers,
thus relieving you of the responsibility of making sure your changes have been saved.
It then creates a buffer called *compilation* and an associated window. It runs the
compilation command (as a subprocess, just like the shell in shell mode), with out-
put going to the *compilation* buffer. While the command runs, the minibuffer says
Compiling: run; it says exit when the compile job finishes.

Now the fun begins. If the compilation resulted in an error, you can type C-x ` (for
next-error; this is a backquote, not a single quote). Emacs reads the first error mes-
sage, figures out the file and line number of the error, and visits the file at that line
number. After you have corrected the error, you can type C-x ` again to visit subse-
quent error locations. Each time you type C-x `, Emacs scrolls the *compilation* win-
dow so that the current error message appears at the top.

To start at the first error message again, type C-x ` with a prefix argument (i.e., C-u
C-x `). A nice thing about C-x ` is that you can use it as soon as an error is encoun-
tered; you do not have to wait for the compilation to finish.

The mode of the *compilation* buffer (compilation mode) supports a few other use-
ful commands for navigating through the error messages as summarized in Table 9-1.

Space and Del are handy screen-scrolling commands found in various read-only
Emacs modes.

Note that M-n and M-p do not visit the source code corresponding to the error mes-
sage; they simply allow you to move easily through error messages that may take up
more than one line each. However, you can visit the source code from any error mes-
sage by typing C-c C-c.

How does Emacs interpret the error message? It uses the variable compilation-error-
regexp-alist, which is a list of regular expressions designed to match the error mes-
sages of a wide variety of C and C++ compilers and the lint C code checking program.*

It should also work with compilers for languages for which Emacs has language modes,

Table 9-1. Compilation mode commands

Keystrokes Command name Action

C-x ` next-error Move to the next error message and visit the corre-
sponding source code.

M-n compilation-next-error Move to the next error message.

M-p compilation-previous-error Move to the previous error message.

C-c C-c compilation-goto-error Visit the source code for the current error message.

Space scroll-down Scroll down one screen.

Del scroll-up Scroll up one screen.

* Unfortunately, Emacs won’t understand error messages generated by make itself, such as those due to syntax
errors in your Makefile.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 9: Computer Language Support

such as Java, Fortran, Ada, and Modula-2. Emacs tries to parse (analyze) an error mes-
sage with each of the regular expressions in the list until it finds one that extracts the
filename and line number where the error occurred.

There is a chance that the error message parser won’t work with certain compilers,
especially if you are using Emacs on a non-Unix system. You can find out by trying
M-x compile on some code that you know contains an error; if you type C-x `, and
Emacs claims that there are no more errors, the next-error feature does not work
with your compiler.

If the parser doesn’t work for you, you may want to try adding a regular expression
to compilation-error-regexp-alist that fits your compiler’s error message format.
We’ll show you an example of this in Chapter 11.

The compile package also includes similar support for the Unix grep (search files)
command, thus effectively giving Emacs a multifile search capability. If you type M-x
grep, you are prompted for arguments to send to grep—that is, a search pattern and
filename(s). Emacs runs grep with the -n option, which tells it to print filenames and
line numbers of matching lines.* The same happens as with M-x compile; you can
type C-x ` to have Emacs visit the next matched line in its file.

Writing Code
We have already seen various examples of Emacs modes, including text mode (see
Chapter 2) and shell mode (see Chapter 5). Special functionality like the buffer list
(see Chapter 4) and Dired (see Chapter 5) are actually modes as well. All modes have
two basic components: an Emacs Lisp package that implements the mode and a func-
tion that invokes it.

Language Modes
The version of Emacs on which this book is based (21.3.5) comes with language
modes for Ada, assembly, awk, C, C++, Common Lisp, Fortran, ICON, Java, Lisp,
MIM, Modula-2, Objective-C, Pascal, Pike, Perl, PROLOG, Python, Scheme, SGML,
Simula, and SQL; future versions will undoubtedly add more. Many—but not all—
of the language modes are “hooked” into Emacs so that if you visit a file with the
proper filename suffix, you will automatically be put in the correct mode. To find
out whether Emacs does this for the language you use, look up your language in the
table of Emacs Lisp packages in Appendix B. If one or more suffixes is listed in the
right-hand column, Emacs invokes the mode for files with those suffixes.

* If grep -n is run on only one file, it just prints line numbers; Emacs forces it to print the filename as well in
this case by appending the dummy file /dev/null to the grep command.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing Code | 267

However, if no suffix is listed (or if your compiler supports a different suffix than the
ones listed), you can set up Emacs to invoke the mode automatically when you visit
your source files. You need to do two things: first, look again at the right-hand col-
umn in the package table entry for your language, and you will find the name of the
function that invokes the mode (e.g., ada-mode, modula-2-mode). Second, you
insert code in your .emacs file that tells Emacs to automatically load the proper pack-
age whenever you visit a file with the suffix for the language in question.

You need to write two lines of code for this customization. The first uses the auto-
load function, which tells Emacs where to look for commands it doesn’t already
know about. It sets up an association between a function and the package that
implements the function so that when the function is invoked for the first time,
Emacs loads the package to get the code. In our case, we need to create an associa-
tion between a function that invokes a language mode and the package that imple-
ments the mode. This shows the format of autoload:

(autoload 'function "filename" "description" t)

Note the single quote preceding function and the double quotes around filename
and description; for more details on this Lisp syntax, see Chapter 11. If you are a
PHP programmer, for example, you can grab the latest Emacs PHP mode from http://
sourceforge.net/projects/php-mode/ online. You would then put the following line in
your .emacs file:

(autoload 'php-mode "php-mode" "PHP editing mode." t)

This tells Emacs to load the PHP package when the function php-mode is invoked
for the first time.

The second line of code completes the picture by creating an association between the
suffix for source files in your language and the mode-invoking function so that the
function is automatically invoked when you visit a file with the proper suffix. This
involves the Emacs global variable auto-mode-alist, covered in Chapter 10; it is a list
of associations that Emacs uses to put visited files in modes according to their
names. To create such an association for PHP mode so that Emacs puts all files with
the suffix .php in that mode, add this line to your .emacs file:

(setq auto-mode-alist (cons '("\\.php$" . php-mode) auto-mode-alist))

This Lisp code sets up the following chain of events when you visit a file whose suf-
fix indicates source code in your programming language. Let’s say you visit the file
pgm.php. Emacs reads the file, then finds an entry corresponding to the .php suffix in
the auto-mode-alist and tries to invoke the associated function php-mode. It notices
that the function php-mode doesn’t exist, but that there is an autoload association
between it and the PHP package. It loads that package and, finding the php-mode
command, runs it. After this, your buffer is in PHP mode.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 9: Computer Language Support

For some interpreted languages like Perl and Python, you will also want to update
the interpreter-mode-alist global variable:

(setq interpreter-mode-alist
 (cons '("python" . python-mode)
 interpreter-mode-alist))

If your script file begins with the Unix interpreter prefix #!, Emacs checks that line
to determine what language you are using. That can be especially helpful when the
script file does not have a telltale extension like .py or .pl.

Syntax

Although language modes differ in exact functionality, they all support the same
basic concepts. The most important of these involves knowledge of the syntax of the
language in question—its characters, vocabulary, and certain aspects of its gram-
mar. We have already seen that Emacs handles some syntactic aspects of human lan-
guage. When you edit regular text, Emacs knows about words, sentences, and
paragraphs: you can move the cursor and delete text with respect to those units. It
also knows about certain kinds of punctuation, such as parentheses: when you type a
right parenthesis, it “flashes” the matching left parenthesis by moving the cursor
there for a second and then returning.* This is a convenient way of ensuring that your
parentheses match correctly.

Emacs has knowledge about programming language syntax that is analogous to its
knowledge of human language syntax. In general, it keeps track of the following
basic syntactic elements:

• Words, which correspond to identifiers and numbers in most programming
languages.

• Punctuation, which includes such things as operators (e.g., +, -, <, and >) and
statement separators (e.g., semicolons).

• Strings, which are strings of characters to be taken literally and surrounded by
delimiters (such as quotation marks).

• Parentheses, which can include such things as square brackets ([and]) and curly
braces ({ and }) as well as regular parentheses.

• Whitespace, such as spaces and tabs, which are to be ignored.

• Comments, which are strings of characters to be ignored and surrounded by
delimiters that depend on the language (e.g., /* and */ for C, // and a newline for
C++ and Java, or semicolon (;) and a newline for Lisp).

* Actually, there is a limit to how far back (in characters) Emacs searches for a matching open parenthesis: this
is the value of the variable blink-matching-paren-distance, which defaults to 25,600. The duration of the
“flash” is also configurable: it’s the value (in seconds) of blink-matching-delay, whose default value is 1.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing Code | 269

Emacs keeps this information internally in the form of syntax tables; like keymaps (as
described in Chapter 10), Emacs has a global syntax table used for all buffers, as well a
local table for each buffer, which varies according to the mode the buffer is in. You can
view the syntax table for the current buffer by typing C-h s (for describe-syntax). In
addition, language modes know about more advanced language-dependent syntactic
concepts like statements, statement blocks, functions, subroutines, Lisp syntactic
expressions, and so on.

Comments
All programming languages have comment syntax, so Emacs provides a few features
that deal with comments in general; these are made language-specific in each lan-
guage mode. The universal comment command for all language modes is M-; (for
indent-for-comment).* When you type M-;, Emacs moves to a column equal to the
value of the variable comment-column; if the text on the line goes past that column,
it moves to one space past the last text character. It then inserts a comment delimiter
(or a pair of opening and closing delimiters, as in /* and */ for C) and puts the cursor
after the opening delimiter.

For example, if you want to add a comment to a statement, put the cursor anywhere
on the line containing that statement and type M-;. The result is

 result += y; /* */

You can then type your comment in between the delimiters. If you were to do the
same thing on a longer line of code, say,

 q_i = term_arr[i].num_docs / total_docs;

the result would be

 q_i = term_arr[i].num_docs / total_docs; /* */

You can customize the variable comment-column, of course, by putting the appro-
priate code in your .emacs file. This is the most useful way if you want to do it per-
manently. But if you want to reset comment-column temporarily within the current
buffer, you can just move the cursor to where you want the comment column to be
and type C-x ; (for set-comment-column). Note that this command affects only the
value of comment-column in the current buffer; its value in other buffers—even
other buffers in the same mode—is not changed.

When you are typing a comment and want to continue it on the next line, M-j (for
indent-new-comment-line) does it. This command starts a new comment on the next
line (though some language modes allow you to customize it so that it continues the

* The key binding is mnemonic for Lisp programmers because comments in Lisp start with semicolons.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 9: Computer Language Support

same comment instead). Say you have typed in the text of the comment for this state-
ment, and the cursor is at the end of the text:

 result += y; /* add the multiplicand */

You want to extend the comment to another line. If you type M-j, you get the following:

 result += y; /* add the multiplicand*/
 /* /

You can type the second line of your comment. You can also use M-j to split exist-
ing comment text into two lines. Assume your cursor is positioned like this:

 result += y; /* add the multiplicand */

If you type M-j now, the result is:

 result += y; /* add the */
 /* ultiplicand */

If you want to comment out a section of your code, you can use the comment-region
command (not bound to keystrokes except in certain language modes). Assume you
have code that looks like this:

 this = is (a);
 section (of, source, code);
 that += (takes[up]->a * number);
 of (lines);

If you define a region in the usual way and type M-x comment-region, the result is:

/* this = is (a); */
/* section (of, source, code); */
/* that += (takes[up]->a * number); */
/* of (lines); */

You can easily get rid of single-line comments by typing M-x kill-comment Enter,
which deletes any comment on the current line. The cursor does not have to be
within the comment. Each language mode has special features relating to comments
in the particular language, usually including variables that let you customize com-
menting style.

Indenting Code
In addition to syntactic knowledge, Emacs language modes contain various features
to help you produce nicely formatted code. These features implement standards of
indentation, commenting, and other aspects of programming style, thus ensuring
consistency and readability, getting comments to line up, and so on. Perhaps more
importantly, they relieve you of the tiresome burden of supplying correct indenta-
tion and even of remembering what the current indentation is. The nicest thing
about these standards is that they are usually customizable.

We have already seen that, in text mode, you can type C-j instead of Enter, at the
end of a line, and Emacs indents the next line properly for you. This indentation is

*

m

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing Code | 271

controlled by the variable left-margin, whose value is the column to indent to. Much
the same thing happens in programming language modes, but the process is more
flexible and complex.

As in text mode, C-j indents the next line properly in language modes. You can also
indent any line properly after it has been typed by pressing Tab with the cursor any-
where on the line.

Some language modes have extra functionality attached to characters that terminate
statements—like semicolons or right curly braces—so that when you type them,
Emacs automatically indents the current line. Emacs documentation calls this behav-
ior electric. Most language modes also have sets of variables that control indentation
style (and that you can customize).

Table 9-2 lists a few other commands relating to indentation that work according to
the rules set up for the language in question.

The following is an example of what C-M-\ does. This example is in C, and subse-
quent examples refer to it. The concepts in all examples in this section are applicable
to most other languages; we cover analogous Lisp and Java features in the sections
on modes for those languages.

Suppose you have the following C code:

int times (x, y)
int x, y;
{
int i;
int result = 0;

for (i = 0; i < x; i++)
{
result += y;
}
}

If you set mark at the beginning of this code, put the cursor at the end, and type C-M-\,
Emacs formats it like this:

int times (x, y)
 int x, y;
{
 int i;
 int result = 0;

Table 9-2. Basic indentation commands

Keystrokes Command name Action

C-M-\ indent-region Indent each line between the cursor and mark.

M-m back-to-indentation Move to the first nonblank character on the line.

M-^ delete-indentation Join this line to the previous one.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 9: Computer Language Support

 for (i = 0; i < x; i++)
 {
 result += y;
 }
}

C-M-\ is also handy for indenting an entire file according to your particular indenta-
tion style: you can just type C-x h (for mark-whole-buffer) followed by C-M-\.

M-m is handy for moving to the beginning of the actual code on a line. For example,
assume your cursor is positioned like this:

 int resul = 0;

If you type M-m, it moves to the beginning of the int:

nt result = 0;

As an example of M-^, let’s say you want the opening curly brace for the for state-
ment to appear on the same line as the for. Put the cursor anywhere on the line with
the opening curly brace, type M-^, and the code looks like this:

 for (i = 0; i < x; i++) {
 result += y;
 }

Language modes usually provide additional indentation commands that relate to spe-
cific features of the language. Having covered the general language mode concepts, we
want to show you a few other general utilities: etags and font-lock mode. The etags
facility helps programmers who work on large, multifile programs. All language modes
can also take advantage of font-lock mode to make development more efficient.

etags
Another general feature of Emacs that applies to programmers is the etags facility.*

etags works with code in many other languages as well, including Fortran, Java, Perl,
Pascal, LATEX,, Lisp, and many assembly languages. If you work on large, multifile
projects, you will find etags to be an enormous help.

etags is basically a multifile search facility that knows about C and Perl function defi-
nitions as well as searching in general. With it, you can find a function anywhere in
an entire directory without having to remember in which file the function is defined,
and you can do searches and query-replaces that span multiple files. etags uses tag
tables, which contain lists of function names for each file in a directory along with
information on where the functions’ definitions are located within the files. Many of
the commands associated with etags involve regular expressions (see Chapter 11) in
search strings.

* etags is also a platform-specific feature. The etags facility is available on Unix platforms, including Mac OS X.

t

i

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Writing Code | 273

To use etags, you must first invoke the separate etags program in your current direc-
tory to create the tag table. Its arguments are the files for which you want tag infor-
mation. The usual way to invoke it is etags *.[ch], that is, building a tag table from all
files ending in .c or .h. (That’s for you C programmers; other languages would use
their appropriate extensions, of course.) You can run etags from shell mode or with
the command M-! (for shell-command). The output of etags is the file TAGS, which
is the tag table. When you are writing code, you can update your tag table to reflect
new files and function definitions by invoking etags again.

After you have created the tag table, you need to make it known to Emacs. To do
this, type M-x visit-tags-table Enter. This prompts you for the name of the tag table
file; the default is TAGS in the current directory, as you would expect. After you exe-
cute this step, you can use the various Emacs tags commands.

The most important tag command is M-. (for find-tag). This command prompts you
for a string to use in searching the tag table for a function whose name contains the
string. Supply the search string, and Emacs visits the file containing the matching
function name in the current window and goes to the first line of the function’s defi-
nition. A variation of M-. is C-x 4 . (for find-tag-other-window), which uses another
window instead of replacing the text in your current window.

A nice feature of M-. is that it picks up the word the cursor is on and uses it as
the default search string. For example, if your cursor is anywhere on the string
my_function, M-. uses my_function as the default. Thus, when you are looking
at a C statement that calls a function, you can type M-. to see the code for that
function.

If you have multiple functions with the same name, M-. finds the function in the file
whose name comes first in alphabetical order. To find the others, you can use the
command M-, (for tags-loop-continue) to find the next one (or complain if there are
no more). This feature is especially useful if your directory contains more than one
program, that is, if there is more than one function called main. M-, also has other
uses, as we will see.

You can use the tag table to search for more than just function definitions. The com-
mand M-x tags-search Enter prompts for a regular expression; it searches through all
files listed in the tag table (such as, all .c and .h files) for any occurrence of the regu-
lar expression, whether it is a function name or not. This capability is similar to the
grep facility discussed earlier in this chapter. After you have invoked tags-search,
you can find additional matches by typing M-,.

There is also an analogous query-replace capability. The command M-x tags-query-
replace Enter does a regular expression query-replace (see Chapter 3) on all files
listed in the tag table. As with the regular query-replace-regexp command, if you
precede tags-query-replace with a prefix argument (i.e., C-u M-x tags-query-replace
Enter), Emacs replaces only matches that are whole words. This feature is useful, for

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 9: Computer Language Support

example, if you want to replace occurrences of printf without disturbing occur-
rences of fprintf. If you exit a tags-query-replace with Esc or C-g, you can resume it
later by typing M-,.

The command M-x tags-apropos rounds out the search facilities of etags. If you give
it a regular expression argument, it opens a *Tags List* buffer that contains a list of
all tags in the tag table (including names of files as well as functions) that match the
regular expression. For example, if you want to find out the names of output rou-
tines in a multiple-file C program, you could invoke tags-apropos with the argu-
ment print or write.

Finally, you can type M-x list-tags Enter to list all the tags in the table—that is, all
the functions—for a given C file. Supply the filename at the prompt, and you get a
Tags List buffer showing the names of functions defined in that file along with
their return types (if any). Note that if you move your cursor to this list, you can use
M-. to look at the actual code for the function. M-. picks up the word the cursor is
on as the default function name, so you can just move the cursor to the name of the
function you want to see and press M-. followed by Enter to see it.

Fonts and Font-lock Mode
There’s one last common feature to mention. The use of fonts to help present code is
very popular—so popular, in fact, that it is now universal. Unlike the indentation
and formatting supported by the various language modes, nothing in the code itself
changes. But when you’re in font-lock mode, your program certainly looks different.

You can turn on this feature for any language mode with M-x font-lock-mode to see
for yourself. Keywords get a particular color; comments get a different color and are
often italicized; strings and literals get yet another color. It can aid quick browsing of
code. Many people come to depend on it much the way they rely on proper indenta-
tion. If you become one of those people, you’ll want to make it the default for all lan-
guage sessions. You can add the following line to your .emacs file to achieve this aim:

;; Turn on font-locking globally
(global-font-lock-mode t)

The colors and styles used are customizable if you don’t like the defaults.
M-x list-faces-display produces a list of the named faces Emacs knows about. You’ll
see something similar to the screen shown in Figure 9-1.

Of course, in real life, the colors and bold and whatnot should be more pronounced.
You’ll also see quite a few more faces. You can modify any of those faces with either
M-x modify-face (a simple prompted “wizard” approach) or M-x customize-face
(the big fancy interactive approach). You can also add lines to your .emacs file for
your favorite customizations. Here’s an example:

 '(font-lock-comment-face
 ((((class color) (background light))
 (:foreground "Firebrick" :slant italic)))))

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

C and C++ Support | 275

Note that not all displays support all of the possible variations of bold, italic, under-
line, colors, and so on. This is a classic case of “your mileage may vary.” Still, with
the ability to customize it all yourself, you should be able to find a combination that
works well on your system.

The remaining sections in this chapter deal with several of the language-specific
modes including JDEE, a suite of packages devoted to the world of Java develop-
ment in Emacs.

You need not read all of these sections if you are interested in only one or two of the
languages. If you program in another language for which Emacs has a mode, you
may want to read one of the following sections to get the “flavor” of a language
mode; all language modes have the same basic concepts, so this should get you off to
a good start. Indeed, many language modes use another mode as a base. For exam-
ple, Java mode is really just an extension of C mode.

C and C++ Support
Emacs automatically enters C mode when you visit a file whose suffix is .c, .h, .y (for
yacc grammars), or .lex (lex specification files). Emacs invokes C++ mode when you
visit a file whose suffix is .C, .H, .cc, .hh, .cpp, .cxx, .hxx, .c++, or .h++. You can also

Figure 9-1. Fonts available for customization in Emacs

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 9: Computer Language Support

put any file in C mode manually by typing M-x c-mode Enter. Similarly, you can use
c++-mode to put a buffer into C++ mode.

Both C and C++ modes are implemented in the same Emacs Lisp package, called cc-
mode,* which also includes a mode for the Objective-C language used in Mac OS X.
C mode understands both ANSI C and the older Kernighan and Ritchie C syntax.
We describe C mode functions, but you should assume that everything also applies
to C++ mode. C++ mode has a small number of additional features, which we
describe at the end of this section.

We should also note that the Emacs mode for Perl is derived from an older version of C
mode. If you program in Perl, you will find that virtually all of the motion, indentation,
and formatting commands in C mode apply equally to Perl mode, with perl- replacing
c- in their names. Emacs invokes Perl mode on files with suffix .pl. (However, to be
honest we prefer CPerl mode, discussed later in this chapter.)

In C mode, Emacs understands the syntax elements described earlier in this chapter.
The characters semicolon (;), colon (:), comma (,) curly braces ({ and }), and pound
sign (#, for C preprocessor commands) are all electric, meaning that Emacs automat-
ically indents the current line when you type them. It also actively uses the font
options when you have font-lock mode turned on.

Motion Commands
In addition to the standard Emacs commands for words and sentences (which are
mainly useful only inside multiline comments), C mode contains advanced com-
mands that know about statements, functions,† and preprocessor conditionals. A
summary of these commands appears in Table 9-3.

* We know! There is no M-x cc-mode. It can be confusing. Just try to remember that the modes are named
directly after the language they support.

† The function commands have “defun” in their names because they are actually adaptations of analogous
commands in Lisp mode; a defun is a function definition in Lisp.

Table 9-3. Advanced C motion commands

Keystrokes Command name Action

M-a c-beginning-of-statement Move to the beginning of the current statement.

M-e c-end-of-statement Move to the end of the current statement.

M-q c-fill-paragraph If in comment, fill the paragraph, preserving indentations and decorations.

C-M-a beginning-of-defun Move to the beginning of the body of the function surrounding the point.

C-M-e end-of-defun Move to the end of the function.

C-M-h c-mark-function Put the cursor at the beginning of the function, the mark at the end.

C-c C-q c-indent-defun Indent the entire function according to indentation style.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

C and C++ Support | 277

Notice that the statement motion commands have the same key bindings as
backward-sentence and forward-sentence, respectively. In fact, they act as sen-
tence commands if you use them within a C comment.

Similarly, M-q is normally the fill-paragraph command; C mode augments it with
the ability to preserve indentations and decorative characters at the beginnings of
lines. For example, if your cursor is anywhere in this comment:

/* This is
 * a
 * comment paragraph with wildly differing right
 * margins.
 * It goes on for a while,
 * then stops.
 */

typing M-q has this result:

/* This is a comment paragraph with wildly differing right margins.
 * It goes on for a while, then stops. */

You will find that the preprocessor conditional motion commands are a godsend if
you have to slog through someone else’s voluminous code. Especially if you’re faced
with code built to run on a variety of systems—like Emacs itself—often the most
important question you need answered is, “What code is actually compiled?”

With C-c C-u, you can tell instantly what preprocessor conditional governs the code
in question. Consider this code block:

#define LUCYX
#define BADEXIT -1

#ifdef LUCYX
 ...
 *ptyv = open ("/dev/ptc", O_RDWR | O_NDELAY, 0);
 if (fd < 0)
 return BADEXIT;
 ...
#else
 ...
 fprintf (stderr, "You can't do that on this system!");
 ...
#endif

Imagine that the ellipses (. . .) represent hundreds of lines of code. Now suppose
you are trying to determine under what conditions the file /dev/ptc is opened. If

C-c C-u c-up-conditional Move to the beginning of the current preprocessor conditional.

C-c C-p c-backward-conditional Move to the previous preprocessor conditional.

C-c C-n c-forward-conditional Move to the next preprocessor conditional.

Table 9-3. Advanced C motion commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 9: Computer Language Support

your cursor is on that line of code, you can type C-c C-u, and the cursor moves to
the line #ifdef LUCYX—telling you that the code is compiled if you’re on a
LUCYX system. If you want to skip the code that would not be compiled and go
directly to the end of the conditional, type C-c C-n. We will see another command
that is useful for dealing with C preprocessor code later in this section.

C statement and statement block delimiter characters are bound to commands that,
in addition to inserting the appropriate character, also provide proper indentation.
These characters are {, }, ;, and : (for labels and switch cases). For example, if you are
closing out a statement block or function body, you can press C-j (or Enter) and type
}, and Emacs lines it up with its matching {. This eliminates the need for you to scroll
back through the code to find out what column the { is in.

Because } is a parenthesis-type character, Emacs attempts to “flash” a matching {
when you type }. If the matching { is outside of the text displayed in your window,
Emacs instead prints the line containing the { in the minibuffer. Furthermore, if only
whitespace (blanks or tabs) follows the { on its line, Emacs also prints a ^J (for C-j)
followed by the next line, thus giving a better idea of the context of the {.

Recall the “times” example earlier in this chapter. Let’s say you are typing in a } to
end the function, and the { that begins the function body is off-screen. There is no
code on the line following the beginning {, so you see the following in the minibuffer
after you type }:

Matches {^J int i;

Customizing Code Indentation Style
Coding style in C—or any programming language for that matter—is a very per-
sonal thing. C programmers learn from various books or by referring to various dif-
ferent pieces of other people’s code; eventually they evolve a personal style that may
or may not conform to those that they learned from.

C mode provides a rich set of features for customizing its indentation behavior that
mirrors this way of learning the language. At the simplest level, you can choose a
coding style by name. Then, if you’re not satisfied, you can customize your chosen
style or even create your own from scratch. The latter tasks, however, require a fair
amount of Emacs Lisp programming knowledge (see Chapter 11) and perhaps a bit
of bravery.

You can choose a named coding style with the command M-x c-set-style. This com-
mand prompts you for the name of the style you want. The easiest thing to do at this
point is to type Tab, the completion character (see Chapter 14), which brings up a
Completions window that lists all of the choices. Type one of them and press Enter
to select it.

By default, Emacs comes loaded with the styles shown in Table 9-4.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

C and C++ Support | 279

To show how some of these styles work, let’s start with the C function example from
earlier in this chapter:

int times (x, y)
int x, y;
{
int i;
int result = 0;

for (i = 0; i < x; i++)
{
result += y;
}
}

If you define a region around this code and you type C-M-\ (for indent-region),
Emacs reformats the code in the default style like this:

int times (x, y)
 int x, y;
{
 int i;
 int result = 0;

 for (i = 0; i < x; i++)
{
 result += y;
}

}

If you type C-c . (for c-set-style), enter k&r, and then repeat the reformatting, the
code looks like this:

int times (x, y)

Table 9-4. Built-in cc-mode indentation styles

Style Description

bsd Style used in code for BSD-derived versions of Unix.

cc-mode The default coding style, from which all others are derived .

ellemtel Style used in C++ documentation from Ellemtel Telecommunication Systems Laboratories in Sweden .

gnu Style used in C code for Emacs itself and other GNU-related programs .

java Style used in Java code (the default for Java mode).

k&r Style of the classic text on C, Kernighan and Ritchie’s The C Programming Language .

linux Style used in C code that is part of the Linux kernel.

python Style used in python extensions.

stroustrup C++ coding style of the standard reference work, Bjarne Stroustrup’s The C++ Programming Language .

user Customizations you make to .emacs or via Custom (see Chapter 10). All other styles inherit these customiza-
tions if you set them.

whitesmith Style used in Whitesmith Ltd.’s documentation for their C and C++ compilers .

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 9: Computer Language Support

int x, y;
{
 int i;
 int result = 0;

 for (i = 0; i < x; i++)
 {
 result += y;
 }
}

Or, if you want to switch to GNU-style indentation, choose the style gnu and refor-
mat. The result is:

int times (x, y)
 int x, y;
{
 int i;
 int result = 0;

 for (i = 0; i < x; i++)
 {
 result += y;
 }
}

Once you decide on a coding style, you can set it up permanently by putting a line in
your .emacs file that looks like this:

(add-hook 'c-mode-hook
 '(lambda ()
 (c-set-style "stylename")))

Unfortunately, we’ll have to wait until Chapter 11 to understand exactly what this
code does. For now, make sure that you insert a single quote (') before the (lambda in
the second line.

Each coding style contains subtleties that makes it nontrivial for Emacs to imple-
ment. Older versions of Emacs did this by defining several variables that controlled
various indentation levels; these were not easy to work with and, frankly, did not
really cover 100 percent of the nuances of each style. The current version of C mode,
in contrast, uses a considerably larger set of variables—too large, in fact, for anyone
other than hardy Emacs Lisp hackers to deal with.

Therefore, C mode keeps track of groups of these variables and their values under
named styles. One huge variable, called c-style-alist, contains all of the styles and
their associated information. You can customize this beast either by changing values
of variables within existing styles or by adding a style of your own. For further
details, look in the file cc-mode.el in your system’s Emacs Lisp directory (see
Chapter 11).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

C and C++ Support | 281

Additional C and C++ Mode Features
C mode contains a number of other useful features, ranging from the generally use-
ful to the arcanely obscure. Perhaps the most interesting of these are two ways of
adding additional electric functionality to certain keystrokes, called auto-newline and
hungry-delete-key.*

When auto-newline is enabled, it causes Emacs to add a newline character and
indent the new line properly whenever you type a semicolon (;), curly brace ({ or }),
or, at certain times, comma (,) or colon (:). These features can save you some time
and help you format your code in a consistent style.

Auto-newline is off by default. To turn it on, type C-c C-a for c-toggle-auto-state.
(Repeat the same command to turn it off again.) You will see the (C) in the mode line
change to (C/a) as an indication. As an example of how it works, try typing in the code
for our times() function. Type the first two lines up to the y on the second line:

int times (x, y)
int x, y

Now press the semicolon; notice that Emacs inserts a newline and brings you down
to the next line:

int times (x, y)
int x, y;

Type the opening curly brace, and it happens again:

int times (x, y)
int x, y;
{

Of course, the number of spaces Emacs indents after you type the { depends on the
indentation style you are using.

The other optional electric feature, hungry-delete-key, is also off by default. To tog-
gle it on, type C-c C-d (for c-toggle-hungry-state). You will see the (C) on the mode
line change to (C/h), or if you have auto-newline turned on, from (C/a) to (C/ah).

Turning on hungry-delete-key empowers the Del key to delete all whitespace to the
left of the point. To go back to the previous example, assume you just typed the open
curly brace. Then, if you press Del, Emacs deletes everything back to the curly brace:

int times (x, y)
int x, y;
{

* These emulate electric-c-mode in the old Gosling Emacs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 9: Computer Language Support

You can toggle the states of both auto-newline and hungry-delete-key with the com-
mand C-c C-t (for c-toggle-auto-hungry-state).

If you want either of these features on by default when you invoke Emacs, you can
put lines like the following in your .emacs file:

(add-hook 'c-mode-hook
 '(lambda ()
 (c-toggle-auto-state)))

If you want to combine this customization with another C mode customization, such
as the indentation style in the previous example, you need to combine the lines of
Emacs Lisp code as follows:

(add-hook 'c-mode-hook
 '(lambda ()
 (c-set-style "stylename")

 (c-toggle-auto-state)))

Again, we will see what this hook construct means in “Customizing Existing Modes”
in Chapter 11.

C mode also provides support for comments; earlier in the chapter, we saw exam-
ples of this support. There is, however, another feature. You can customize M-j (for
indent-new-comment-line) so that Emacs continues the same comment on the next
line instead of creating a new pair of delimiters. The variable comment-multi-line
controls this feature: if it is set to nil (the default), Emacs generates a new comment
on the next line, as in the example from earlier in the chapter:

result += y; /* add the multiplicand */
 /* /

This outcome is the result of typing M-j after multiplicand, and it shows that the
cursor is positioned so that you can type the text of the second comment line. How-
ever, if you set comment-multi-line to t (or any value other than nil), you get this
outcome instead:

result += y; /* add the multiplicand
/

The final feature we’ll cover is C-c C-e, (for c-macro-expand). Like the conditional
compilation motion commands (e.g., C-c C-u for c-up-conditional), c-macro-
expand helps you answer the often difficult question, “What code actually gets com-
piled?” when your source code contains a morass of preprocessor directives.

To use c-macro-expand, you must first define a region. Then, when you type C-c C-e,
it takes the code within the region, passes it through the actual C preprocessor, and
places the output in a window called *Macroexpansion*.

To see how this procedure works, let’s go back to the code example from earlier in
this chapter that contains C preprocessor directives:

#define LUCYX
#define BADEXIT -1

*

*

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

C and C++ Support | 283

#ifdef LUCYX
 *ptyv = open ("/dev/ptc", O_RDWR | O_NDELAY, 0);
 if (fd < 0)
 return BADEXIT;
#else
 fprintf (stderr, "You can't do that on this system!");
#endif

If you define a region around this chunk of code and type C-c C-e, you see following
the message:

Invoking /lib/cpp -C on region...

followed by this:

done

Then you see a *Macroexpansion* window that contains this result:

 *ptyv = open ("/dev/ptc", O_RDWR | O_NDELAY, 0);
 if (fd < 0)
 return -1;

If you want to use c-macro-expand with a different C preprocessor command,
instead of the default /lib/cpp -C (the -C option means “preserve comments in the
output”), you can set the variable c-macro-preprocessor. For example, if you want
to use an experimental preprocessor whose filename is /usr/local/lib/cpp, put the fol-
lowing line in your .emacs file:

(setq c-macro-preprocessor "/usr/local/lib/cpp -C")

It’s highly recommended that you keep the -C option for not deleting comments in
your code.

C++ Mode Differences
As we mentioned before, C++ mode uses the same Emacs Lisp package as C mode.
When you’re in C++ mode, Emacs understands C++ syntax, as opposed to C (or
Objective-C) syntax. That results in differences in how some of the commands dis-
cussed here behave, but in ways that are not noticeable to the user.

There are few apparent differences between C++ and C mode. The most important
is the Emacs Lisp code you need to put in your .emacs file to customize C++ mode:
instead of c-mode-hook, you use c++-mode-hook. For example, if you want C++
mode’s indentation style set to Stroustrup with automatic newlines instead of the
default style, put the following in your .emacs file:

(add-hook 'c++-mode-hook
 '(lambda ()
 (c-set-style "Stroustrup")
 (c-toggle-auto-state)))

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 9: Computer Language Support

Notice that you can set hooks for C mode and C++ mode separately this way, so that
if you program in both languages, you can set up separate indentation styles for each.

C++ mode provides an additional command: C-c : (for c-scope-operator). This com-
mand inserts the C++ double colon (::) scope operator. It’s necessary because the
colon (:) is normally bound to electric functionality that can reindent the line when
you don’t want that done. The scope operator can appear virtually anywhere in C++
code whereas the single colon usually denotes a case label, which requires special
indentation. The C-c : command may seem somewhat clumsy, but it’s a necessary
workaround to a syntactic clash in the C++ language.

Finally, both C and C++ mode contain the commands c-forward-into-nomenclature
and c-backward-into-nomenclature, which aren’t bound to any keystrokes by default.
These are like forward-word and backward-word, respectively, but they treat capital
letters in the middle of words as if they were starting new words. For example, they
treat ThisVariableName as if it were three separate words while the standard forward-
word and backward-word commands treat it as one word. ThisTypeOfVariableName
is a style used by C++ programmers, as opposed to this_type_of_variable_name, which
is somehow more endemic to old-school C code.

C++ programmers may want to bind c-forward-into-nomenclature and c-backward-
into-nomenclature to the keystrokes normally bound to the standard word motion
commands. We show you how to do this in “Customizing Existing Modes” in
Chapter 11.

We’ve covered the main features of C and C++ modes, but actually these modes
include many more features, most of them quite obscure or intended only for hard-
core Emacs Lisp–adept customizers. Look in the Emacs Lisp package cc-mode.el—
and the ever-expanding list of cc- helper packages—for more details.

Java Support
As we mentioned earlier, recent versions of Emacs come with support for Java built-
in (Java mode is based on cc-mode). We’ll explore Java mode briefly and then take a
more in-depth look at the Java Development Environment for Emacs (JDEE).

Java Mode
Java mode shares all of the formatting and font features mentioned above, but under-
stands the Java language specifically. You get thrown into Java mode when opening
any .java file.

When working in Java mode, you have exactly the same features available as you do
in C mode. Syntax highlighting handles Java keywords and syntax when font-lock

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Java Development Environment for Emacs (JDEE) | 285

mode is turned on. You can navigate Java commands using M-a and M-e. When
commenting out a region, it uses the C++ style // comments.

You’ll notice a small augmentation in the indent alignment commands if you choose
to spread your throws or extends clauses over multiple lines. For example, consider
the following method declaration:

public Object getNetResource(String host, int port, String resName)
throws IllegalArgumentException,
IOException,
SQLException,
FileNotFoundException
{

If you mark the region and run M-C-\ to indent the region, it uses a special align-
ment for the exception list:

public Object getNetResource(String host, int port, String resName)
throws IllegalArgumentException,
 IOException,
 SQLException,
 FileNotFoundException

{

It all works like it is supposed to—just with Java as the language at the core of the
action. However, for more than casual Java editing, you should read the next section
on the JDEE.

The Java Development Environment
for Emacs (JDEE)
While you can certainly get started right away with the built-in Java mode, if you do
more than occasional Java programming, you might want to venture into the world
of Paul Kinnucan’s Java Development Environment for Emacs (JDEE). It takes
Emacs into the realm of Java IDE. You won’t find a GUI builder, but everything else
is in place and ready to roll.

Getting Started
You can pick up the latest version of the JDEE online from http://jdee.sunsite.dk/.*

This site is essential to getting the JDEE up and running. You’ll find all sorts of tips
and tricks and full user documentation on all of the bells and whistles is available.

* Before we take you through the installation process, we should mention two caveats. XEmacs has the JDEE
built-in, though it is often out-of-date. TEI-Emacs, an add-on for Linux and Windows described in
Chapter 8, also includes the JDEE.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 9: Computer Language Support

Before you can install the JDEE, you’ll need the following components:

Collection of Emacs Development Environment Tools (CEDET)
Available on SourceForge (http://cedet.sourceforge.net/) or by following the links
from the JDEE home page. This collection is quite popular as a foundation for
more interesting programmer tools. You may already have a sufficient version
installed, but it’s best to get the latest release.

The JDEE Emacs Lisp library package
Available as a separate download from the JDEE site.

One or more JDKs
While technically not required for editing files in Emacs, a JDK is required to
take advantage of any of the compilation or debugging features of the JDEE.
You’ll also have to register each JDK you plan to use, but more on that later.

Installing CEDET
Installing CEDET is fairly straightforward if you have a make command available.
(For Windows users, you’ll want to have the Cygnus Unix Distribution installed. It
gives you access to a large subset of Unix tools which will come in handy far beyond
the installation of the JDEE.)

After you download the CEDET distribution from SourceForge, unpack it wherever
you want it to reside. Open a terminal window (or start a Cygwin bash terminal on
Windows) and change to the directory where you unpacked the distribution. From
there you should be able to run the following command:

shell$ make EMACS=/path/to/emacs

That process will probably take a few minutes to complete. The Lisp files will be
compiled for you.

When the make command completes, you should be in good shape. The last step for
CEDET is to update your .emacs file:

;; Turn on CEDET's fun parts
(setq semantic-load-turn-useful-things-on t)
;; Load CEDET
(load-file "/path-to-cedet/common/cedet.el")

Installing the ELisp Library
Installing the ELisp library package from the JDEE site is also straightforward.
Unpack the downloaded file wherever you like, but before you run the make com-
mand, you’ll need to edit the Makefile and configure the entries outlined in Table 9-5
to match your system.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Java Development Environment for Emacs (JDEE) | 287

Run the make command with the install option to get everything set up:

shell$ make install

The last step for the ELisp library is to make sure the Emacs defaults acknowledge
the new package. You simply need to add the new directory to your load-path vari-
able, as described next.

The ELisp library actually provides a simple template file that matches where you
installed the package. After the make process completes, you should have an elib_
startup.el file in the directory where you ran the make command. That file contains
the line you’ll need to add to your .emacs file or you can merge it with the system
default.el file for everyone to use. (The default.el file is often found in your site-lisp
directory. Chapter 11 has more details.)

Installing the JDEE
Five basic steps are required to install the JDEE on your system:

1. Get the necessary prerequisites downloaded and installed.

2. Update the load path (.emacs).

3. Set theJDEE to load at startup (.emacs).

4. Compile JDEE .el files (optional).

5. Register your JDKs (optional).

The previous section covered the first step. Make sure you take care of those prereq-
uisites before continuing. The next steps can be handled in your .emacs file. The
JDEE site proposes the following entries as a minimal setup; we excerpt them here
(with one or two small tweaks) for easy reference.

;; This .emacs file illustrates the minimal setup
;; required to run the JDEE.

;; Set the debug option to enable a backtrace when a
;; problem occurs.
(setq debug-on-error t)

Table 9-5. JDEE Makefile entries

Makefile entry Example Description

prefix /usr/local The top-level directory for any shared or info directories.

datadir $(prefix)/share The directory where your main Emacs directory is located.

locallisppath $(datadir)/emacs/site-lisp The directory where any local Lisp files should be installed.

ELIBDIR $(locallisppath)/elib The directory where the elib Lisp files will go.

EMACS /usr/bin/emacs The command to start Emacs. This can be a fully qualified
path or simply “emacs” to reach the default version found
on your system.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 9: Computer Language Support

;; Update the Emacs load-path to include the path to
;; the JDEE and its require packages. This code assumes
;; that you have installed the packages in the
;; /usr/local/emacs/site-lisp directory. Adjust appropriately.
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/jde/lisp"))
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/semantic"))
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/speedbar"))
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/eieio"))
(add-to-list 'load-path
 (expand-file-name "/usr/local/emacs/site-lisp/elib"))

;; If you want Emacs to defer loading the JDEE until you open a
;; Java file, edit the following line
(setq defer-loading-jde nil)
;; to read:
;;
;; (setq defer-loading-jde t)
;;

(if defer-loading-jde
 (progn
 (autoload 'jde-mode "jde" "JDE mode." t)
 (setq auto-mode-alist

 (append
 '(("\\.java\\'" . jde-mode))
 auto-mode-alist)))

 (require 'jde))

;; Set the basic indentation for Java source files
;; to two spaces.
(add-hook 'jde-mode-hook
 '(lambda ()
 (setq c-basic-offset 2)))

;; Include the following only if you want to run
;; bash as your shell.

;; Set up Emacs to run bash as its primary shell.
(setq shell-file-name "bash")
(setq shell-command-switch "-c")
(setq explicit-shell-file-name shell-file-name)
(setenv "SHELL" shell-file-name)
(setq explicit-sh-args '("-login" "-i"))
(if (boundp 'w32-quote-process-args)
 (setq w32-quote-process-args ?\")) ;; Include only for MS Windows.

Of course, you’ll need to make sure the paths in the add-to-list 'load-path lines
match the actual directories you’re using.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Java Development Environment for Emacs (JDEE) | 289

Compiling the JDEE Lisp files is not required, but as noted in “Byte-Compiling Lisp
Files” in Chapter 11, it’s a good idea and speeds up several operations including general
startup times. The JDEE makes this step simple. After you have it installed, start Emacs
and run M-x jde-compile-jde. You run this command only once, so it is definitely
worthwhile.

Registering Your Java Tools
The last step we need to cover is registering your Java development kits. This is not
strictly necessary, but you don’t want to skip this step. It is especially handy if you
work in an environment where you have to test multiple versions of the JDK. With
all of your kits registered in the JDEE, you can switch between versions with a sim-
ple variable change.

To register a JDK, use the M-x customize-variable command. The variable you need
to customize is jde-jdk-registry. That will land you in the interactive customization
screen. You can select the INS (insert) button to add the version number and path of
your JDK. You can repeat that process for as many JDKs as you want to register. See
Figure 9-2 for a list of such entries on a Mac OS X system.

Be sure to hit the State button and save this state for future sessions. You can click
the Finish button when you’re done or just close the buffer.

After you have your JDKs registered, you can switch to the active version using that
same M-x customize-variable command. This time, edit the jde-jdk variable. You’ll be
prompted to choose one of the registered versions. You may or may not want to save
this decision for future sessions. In any case, this variable can be edited at any time.

JDK tools.jar problems

The compilation feature requires access to the tools.jar file (or the equivalents built-
in to some JDKs). If the JDEE compile command fails with an error message about
not being able to find the tools.jar file, your best bet is to customize the JDEE vari-
able jde-global-classpath. Make sure that variable includes the tools.jar file.

For some systems that do not have a tools.jar file*, you can steal that file from
another machine, but usually you just need to get your classpath and registry entries
set up correctly. Customizing the variables in Table 9-6 should get you compiling
and running without too much effort.

* For Mac OS X users, the classes normally found in tools.jar are already a permanent part of the standard
classes.jar so they are always available—even though tools.jar isn’t in any of the library locations.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 9: Computer Language Support

Whew! That was a lot of work. But the good news is that once you’ve made it
through the installation process, you have all the spiffy features of the JDEE forever
at your command. So let’s get on with the features!

Editing with the JDEE
First off, you’re still in Emacs, so the usual motion commands described for Java
mode (and C mode) still apply. But the JDEE adds two really great features to your
editing cycle: command completion and class browsing.

Figure 9-2. Inserting JDK entries in a Custom list

Table 9-6. JDEE variables to customize

JDEE variable Sample values

jde-global-classpath /usr/local/j2se:.

jde-jdk-registry Version = 1.4.2
Path = /usr/local/j2se

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Java Development Environment for Emacs (JDEE) | 291

The idea behind command completion is that the JDEE can (usually) predict which
methods and variables are valid choices to make at certain points in your Java pro-
gram. For example, if you start typing System. in your program, there are a finite num-
ber of choices for what follows that period. JDEE can display a list of those choices.

The command to show your list of completions is C-c C-v C-. (for jde-complete),
which defaults to showing you a menu of completions. (You can change that behav-
ior by customizing the jde-complete-function variable.) The completions are gener-
ated by looking at all of the classes listed in the jde-global-classpath variable (or the
CLASSPATH environment variable if no global classpath was defined).

The class browser can be accessed quickly from the JDE menu and launches a Bean-
Shell browser for the class your cursor was on. It’s like a context-sensitive documen-
tation tool, but a bit more powerful. Figure 9-3 shows what you get when starting
the browser while your cursor is on the word System.

You can also launch the class browser with the M-x jde-browse-class-at-point com-
mand.

One other edit-time feature worth pointing out is the Code Generation item in the
JDE menu. It has some great timesavers built-in, as shown in Table 9-7.

Figure 9-3. The BeanShell class browser launched from the JDEE

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 9: Computer Language Support

Other helpers are available from the JDE menu. Generate Get/Set Pairs in particular
is great for working with JavaBeans design patterns. Just create your list of attributes
and then run the wizard. It even checks to see if you already have an existing get/set
pair. If you do, it notes that get/set pair as “existing” and keeps on trucking so you
can use the wizard to update existing classes.

Compiling and Running with the JDEE
Compiling the current buffer can be done quickly with the C-c C-v C-c command.
Any errors show up in the compilation buffer. That compilation buffer also allows
you to navigate quickly to any errors that the compiler finds. Simply move your cur-
sor to the error in question (using the normal motion commands) and hit Enter.
You’ll find yourself in the right file on the right line number. Very handy indeed.

Note that you can also run ant builds with M-x jde-ant-build. Check out the JDEE
documentation or the help for various jde-ant variables for more information.

Running a simple program that has its own main() method is easy: just press C-c C-v
C-r. That command executes the current buffer (by opening an execution buffer
named *fully.qualified.ClassName*). Any output from the program shows in the
buffer. You can move around in the buffer just as you would in a normal text buffer.

Of course, if you are working on anything other than a simple test class, you’ll prob-
ably be in a package. Java’s use of the classpaths rarely leaves room for being at the
“bottom” of a package hierarchy. For example, in the package com.oreilly.demo, you
want to start execution from the same directory that contains the com directory, not
from the demo directory that contains the actual Java files. Regrettably, the demo
directory is the default.

You can edit the following variables to make executing in larger projects a bit more
convenient:

Table 9-7. Code Generation menu options

Keystrokes
Menu option
(M-x command) Action

C-c C-v C-l (lowercase L) Println Wizard
(jde-gen-println)

Prompts for the contents to print and inserts a com-
plete System.out.println() method for you.

C-c C-v C-z Import Class
(jde-import-find-and-import)

Prompts for the (simple) class name to import and
automatically adds the proper import line to the top
of your file.

C-c C-v i Implement Interface
(jde-wiz-implement-interface)

Prompts you for the name of the interface to imple-
ment. Adds any missing import statements (includ-
ing dependent imports, such as imports required for
method arguments). Provides commented skeletons
for each of the methods in the interface.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Java Development Environment for Emacs (JDEE) | 293

jde-run-working-directory
The directory in which execution starts

jde-run-application-class
The fully qualified name of the class that contains the main() method to execute

With those values set, you should be able to run your application from any buffer,
regardless of what directory the file you’re editing happens to be in.

Another fun note about running your application through the JDEE: if any stack
traces appear because of exceptions, you can navigate those traces by using the C-c
C-v C-[and C-c C-v C-] commands (up and down, respectively). Again, Emacs
makes it possible to manage quite a large portion of a development project all from
one interface.

Debugging with the JDEE
A crucial element in any good IDE is its debugger. The JDEE allows you to stay in
the Emacs realm while interacting with the jdb process. The JDEE also comes with
its own debugger, the JDEbug application. JDEbug is more powerful but requires
more setup effort.

Before we touch anything, you need to make sure that your classes are
compiled with support for debugging. Otherwise, many things will
appear broken when you run the debugger.

To add debug support when you compile, you run the javac com-
mand with the –g option. With the JDEE you can also use the variable
jde-compile-option-debug to hold all the variations for debugging you
like. If you customize this variable through Custom (see Chapter 10),
just choose the “all” option for which debugging information to
include. (Optionally, you can be more specific and select from the
three types of debug information: Lines, Variables, and Source.)

We’ll look at the jdb route just to get you started. You can start the debug session by
typing M-x jde-jdb. The same variables that control the starting directory and main
application class are used for debugging purposes.

After you have launched the debugger, you can control the debug process in a num-
ber of ways.

• Interact directly with the jdb process in the *debug* buffer. Here you can type
any command that you would normally give when running jdb.

• Use the Jdb menu. You have all the usual debug options available: step into/
over, continue, toggle breakpoint, and so on. This is a bit more limited than the
first approach, but easier to manage if you’re new to jdb.

• Use keyboard commands while you’re in your source buffer. These commands
are even more limited than the menu options, but give you really quick access to

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 9: Computer Language Support

the most common tasks (namely stepping and break points). Table 9-8 shows
the commands that are available while you’re in a source buffer.

Figure 9-4 shows a simple application running in debug mode. Notice the small
black triangle to the left of the Java source code in the upper buffer. That’s the debug
cursor that lets you know where you are in the file. It tracks the commands you
issue, whether by directly entering jdb commands, by menu option, or through the
keyboard.

Learning More about the JDEE
Clearly, there is a lot more to the JDEE than we can cover here. The package you down-
load comes with some good documentation and several user guides for the basic JDEE
and various options like the debuggers. The JDEE web site, at http://jdee.sunsite.dk, is a
great source of information, too. As you would expect from an Emacs package, you can
customize everything. Those customizations are stored in your .emacs file so you can
tweak them by hand (or at least peek at them).

The best approach is to install the JDEE and start coding with it. If you find yourself
saying “There should be a way to do X,” get out the documentation. Chances are
there is a way to do X—usually with more options than you could hope for!

Perl Support
Emacs has Perl support. Indeed, much like Perl itself, there are multiple ways to get
things done—in this case, multiple Perl modes: the classic Perl mode (which comes
up by default) and the more popular CPerl mode.

You should have a version of CPerl mode built right in, but you can also pick up the
latest release from CPAN (the Comprehensive Perl Archive Network) online at http://
www.cpan.org.

You can add one of the following pairs of lines to your .emacs file to make sure CPerl
mode is invoked rather than Perl mode

Table 9-8. JDEE debugger controls

Keystrokes Menu item JDB command

C-c C-a C-s Step Into step

C-c C-a C-n Step Over next

C-c C-a C-c Continue cont

C-c C-a C-b Toggle Breakpoint stop in/stop at/clear

C-c C-a C-p Display Expression print

C-c C-a C-d Display Object dump

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Perl Support | 295

;; load cperl-mode for perl files
(fset 'perl-mode 'cperl-mode)

;; or maybe use an alias
(defalias 'perl-mode 'cperl-mode)

CPerl mode is mostly like cc-mode with respect to motion and other programming
language features. It also includes fun debug operations. You can start the debug-
ger with M-x cperl-db. You’ll be prompted to verify the debugger command and
then be dropped into a split-screen mode. One buffer allows you to drive the nor-
mal perldb environment with all the regular commands you’re accustomed to
using in the Perl debugger.

The other buffer shows your script and follows along as you work through the debug-
ger. It tracks the line you’re about to execute as you issue commands in the other
buffer. It’s amazing how quickly you grow to depend on having such tools available
while you’re developing scripts. It is worth trying out if you’ve never done it before.

Figure 9-4. Debugging a Java application with jdb

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 9: Computer Language Support

Perl Caveats
A big reason we wanted to mention Perl mode here is to highlight a few caveats. Perl
is an amazingly expressive language much more akin to the idioms found in human
languages than just about any other computer language out there. That expressive-
ness can cause problems—especially when considering the expressiveness of regular
expressions.

Perl supports all sorts of “funny” variable names like $' and $/. CPerl mode boasts
the use of a syntax table to help understand most of Perl’s odd and occasionally dis-
ruptive verbiage. The older Perl mode has no such trick up its sleeves and suffers
under many circumstances in the font-lock and indentation realms. This is one of the
main reasons to make the leap into CPerl mode.

Even with that syntax table, though, you’ll probably find some combinations of vari-
ables and strings that give Emacs headaches. Sometimes restructuring your code will
help, sometimes not. The important thing to remember is that it won’t harm your
program at all. It might make things a bit less readable, but the script itself should
run just fine. And if it doesn’t, you can always launch the debugger to find out why!

Here are some parting .emacs thoughts for you Perl programmers. These lines select
cperl-mode as the default and make sure the syntax highlighting is turned on. These
lines also turn on folding (outline-minor-mode in the snippet below). Folding allows
you to “hide” chunks of your code, such as functions where the body of the function
is “folded” into the name. That can make it easier to get a grip on everything that is
going on in the file. Try it—it can become addictive!

;; Turn on highlighting globally
(global-font-lock-mode t)

;; automatically load cperl-mode for perl files
(fset 'perl-mode 'cperl-mode)

;; show only the toplevel nodes when loading a file
(add-hook 'cperl-mode-hook 'hide-body)

;; outline minor mode with cperl
(add-hook 'cperl-mode-hook 'outline-minor-mode)

;; Change the prefix for outline commands from C-c @ to C-c C-o
(setq outline-minor-mode-prefix "\C-co")

(load-file "cperl-mode.el")

SQL Support
For you database folks out there, you can even run interactive SQL sessions through
Emacs. You can navigate through your SQL command history using normal motion

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL Support | 297

commands and even create complex SQL statements in any buffer and then shuttle
them off to the interactive area for debugging.

Prerequisites
Before we get started with SQL queries, you do need to have a few things in place.
Most of the SQL interaction modes require an actual client application for their par-
ticular database. For example, we use the MySQL server. We have to install the
MySQL client programs (mysql, at a minimum) on any system where we want to use
SQL mode. Even though the MySQL version of SQL mode is built-in, we still need
access to a real client. This is true for every type of database you expect to access.

And speaking of communicating with the database, you must also have the basics of
communication taken care of. You need to have network access to the server in ques-
tion. You also need to have a valid username and password for connecting to that
server. A good rule before jumping into SQL mode in Emacs is to make sure you can
connect and interact with your database server from your machine. If it works from a
terminal window or other client application, you can make it work in Emacs.

One last thing to remember: the various SQL modes in Emacs are just helpers, so you
can’t do anything with them that you couldn’t do with your normal database client.
You won’t magically have access to that restricted table with everyone’s salaries. Sorry.
Even so, it’s just more convenient to stay in Emacs when possible, so let’s forge ahead.

Modes of Operation
You’ll find two modes of operation for dealing with SQL. The interactive mode lets
you communicate directly with a database server and run commands and view their
output immediately. The editing mode allows you to build up (and edit) more com-
plex commands. If you want, you can have the editing buffer send parts of itself to
the interactive session for testing and verification.

Interactive mode

Start the interactive mode by typing M-x sql-mysql (or rather, your own variant of
the interactive modes shown in Table 9-9).

You’ll be prompted for things like your username and password, the database or cat-
alog to use, and the server to contact. Remember the prerequisites, though; many

Table 9-9. Commands for entering database-specific SQL modes

sql-db2 sql-linter sql-postgres

sql-informix sql-ms (Microsoft) sql-solid

sql-ingres sql-mysql sql-sqlite

sql-interbase sql-oracle sql-sybase

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 9: Computer Language Support

modes require that you have a normal command-line client available. The mode sim-
ply supplies an intelligent layer on top of those clients.

After you get connected, just type normal SQL commands that your server under-
stands. Most interactive clients have some type of “end-of-line” marker to let the sys-
tem know when to send a completed command. In MySQL, for example, you can
end statements with a semicolon (;) or the \g sequence.

Emacs keeps these commands in a history buffer for you so that you can revisit them.
M-p and M-n allow you navigate to previous and next commands respectively. (C-p
and C-n simply allow you to move around in the buffer as you would expect.)

Editing mode

You can also put a buffer directly into SQL mode with M-x sql-mode. This provides
some assistance for motion and composition of SQL statements, but mostly it’s there to
let you build complex statements and then ship them to the interactive buffer for execu-
tion. Table 9-10 shows how to send various segments of the buffer to the database.

The output of all of these send commands shows up in your interactive buffer. Noth-
ing changes in the editing buffer so you should feel free to experiment. That’s what
these modes are here for!

The Lisp Modes
Emacs has three Lisp modes, listed here by their command names:

emacs-lisp-mode
Used for editing Emacs Lisp code, as covered in Chapter 11 (filename .emacs or
suffix .el).

lisp-mode
Used for editing Lisp code intended for another Lisp system (suffix .l or .lisp).

lisp-interaction-mode
Used for editing and running Emacs Lisp code.

Table 9-10. SQL mode send commands

Keystroke Command name Action

C-c C-c sql-send-paragraph Send the paragraph the cursor is on. A paragraph is defined by the particular
database client. For the sql-mysql process, for example, a paragraph begins with
a statement like select or update and ends with a semicolon. Any number of lines
can intervene.

C-c C-r sql-send-region Send the marked region.

C-c C-b sql-send-buffer Send the entire buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Lisp Modes | 299

All three modes have the same basic functionality; they differ only in the support
they give to running Lisp code.

All three Lisp modes understand the basic syntax elements common to all language
modes. In addition, they have various commands that apply to the more advanced syn-
tactic concepts of S-expressions, lists, and defuns. An S-expression (or syntactic expres-
sion) is any syntactically correct Lisp expression, be it an atom (number, symbol,
variable, etc.), or parenthesized list. Lists are special cases of S-expressions, and defuns
(function definitions) are special cases of lists. Several commands deal with these syntac-
tic concepts; you will most likely become comfortable with a subset of them.

Table 9-11 shows the commands that handle S-expressions.

Since an S-expression can be a wide variety of things, the actions of commands that
handle S-expressions are determined by where your cursor is when you invoke them.
If your cursor is on a (or on a space preceding one, the S-expression in question is
taken to be the list that starts with that (. If your cursor is on some other character
such as a letter or number (or preceding whitespace), the S-expression is taken to be
an atom (symbol, variable, or constant).

For example, suppose your cursor is in this position:

(mary bob (dave (pete)) ed)

If you type C-M-f, the cursor moves like this:

(mary bob (dave (pete)) ed)

That is, the cursor moves forward past the S-expression (dave (pete)), which is a list.
However, say your cursor is positioned like this:

(mary bob (dave (pete)) ed)

When you type C-M-f, it moves here:

(mary bob (dave (pete)) ed)

In this case, the S-expression is the atom bob.

The commands moving in lists are shown in Table 9-12.

Table 9-11. S-expression commands

Keystrokes Command name Action

C-M-b backward-sexp Move backward by one S-expression.

C-M-f forward-sexp Move forward by one S-expression.

C-M-t transpose-sexps Transpose the two S-expressions around the cursor.

C-M-@ mark-sexp Set mark to the end of the current S-expression; set the cursor
to the beginning.

C-M-k kill-sexp Delete the S-expression following the cursor.

(none) backward-kill-sexp Delete the S-expression preceding the cursor.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 9: Computer Language Support

As a mnemonic device, you can think of lists as analogous to lines and S-expressions as
analogous to characters; thus, C-n and C-p appear in list motion commands, whereas
C-f and C-b appear in S-expression motion commands. C-M-n and C-M-p work simi-
larly to C-M-f and C-M-b, respectively, except that you must position the cursor so
that there is a list in front or back of it to move across—that is, there must be an open-
ing or closing parenthesis on, after, or before the cursor. If there is no parenthesis,
Emacs signals an error. For example, if your cursor is positioned like this:

(fred bob (dave (pe e)) ed)

and you type C-M-n, Emacs complains with the message:

Containing expression ends prematurely

However, if your cursor is here:

(fred bob (dave (pete)) ed)

the “next list” is actually (dave (pete)), and the cursor ends up like this if you type
C-M-n:

(fred bob (dave (pete)) ed)

The commands for moving up or down lists enable you to get inside or outside them.
For example, say your cursor is here:

fred bob (dave (pete)) ed)

typing C-M-d moves the cursor here:

(red bob (dave (pete)) ed)

This is the result because fred is the next level down after its enclosing list. Typing
C-M-d again has this result:

(fred bob (ave (pete)) ed)

You are now inside the list (dave (pete)). At this point, typing C-M-u does the oppo-
site of what C-M-d does: it moves the cursor back and outside of the two lists. But if
you type M-x up-list Enter, you will move forward as well as out, resulting in this:

(fred bob (dave (pete)) ed)

The commands for defuns listed in Table 9-13 are more straightforward.

Table 9-12. Commands for moving in lists

Keystrokes Command name Action

C-M-n forward-list Move forward by one list.

C-M-p backward-list Move backward by one list.

C-M-d down-list Move forward and down one parenthesis level.

(none) up-list Move forward out of one parenthesis level.

C-M-u backward-up-list Move backward out of one parenthesis level.

t

(

f

d

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Lisp Modes | 301

These commands work properly only when the (defun that starts the current func-
tion is at the beginning of a line.

Indentation in Lisp Modes
The Lisp modes provide “flashing” of matching left parentheses; if the matching
parenthesis is outside of the current window, the line it is on appears in the
minibuffer. The Lisp modes also provide indentation via the Tab key and C-j for
newline-and-indent (except in Lisp interaction mode, described later in this chap-
ter). The indentation style supported by the Lisp modes “knows” a lot about Lisp
keywords and list syntax; unfortunately, it is not easily customized.*

Here is an example, a Lisp equivalent of the “times” C function shown earlier in the
chapter, that illustrates the indentation style:

(defun times (x y)
 (let ((i 0)
 (result 0))
 (while (< i x)
 (setq result (+ result y)
 i (1+ i)))
 result))

The basic indentation value is 2; this value is used whenever code on the next line
goes down a level in nesting. For example, the body of the function, after the line
containing defun, is indented by 2. The (while... and result)) lines are indented by 2
with respect to the let because they are the body of the block let introduces.

Things like defun, let, and while are function calls, even though they act like key-
words. The indentation convention for function calls is that if there are arguments on
lines after the line where the function name and first argument appear, the addi-
tional arguments line up with the first one. In other words, this has the form:

(function-name arg1
 arg2
 arg3
 ...)

Table 9-13. Commands for working with functions

Keystrokes Command name Action

C-M-a beginning-of-defun Move to the beginning of the current function.

C-M-e end-of-defun Move to the end of the current function.

C-M-h mark-defun Put the cursor at the beginning of the function, put the mark at the end.

* The indentation style is bound up in the Emacs Lisp code for Lisp mode. If you are an experienced Lisp
hacker, you can examine the code for lisp-mode.el in the Emacs Lisp directory and determine how to cus-
tomize indentation the way you wish. A good place to start looking is the function lisp-indent-line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 9: Computer Language Support

The multiple arguments to setq in the preceding function provide another example
of this.

However, the indentation of the line (result 0) shows that something a bit different
happens with lists that are not function calls. The list in question is actually ((i 0)
(result 0)), which is a list with two elements (both of which are also lists). The inden-
tation style supported by the Lisp modes lines up these two elements.

Even though keyword-like terms such as let and while are actually function calls,
the Lisp modes “understand” these functions to the extent that special indentation
conventions are set up for them. For example, if we were to put the condition for
the while-loop on a separate line and press Tab to indent it properly, the result
would be:

 (while
 (< i x)
 (setq result (+ result y)
 i (1+ i)))

Similar things happen with if and cond control structures; Chapter 11 contains prop-
erly indented examples.

Another remark about indentation conventions: the Lisp modes are geared toward a
style in which multiple right parentheses are put on the same line immediately fol-
lowing each other, instead of on separate lines. For example, the line i (1+ i))) con-
tains right parentheses that close off the 1+ function, the setq, and the while
respectively. If you prefer, you can put your closing parentheses on separate lines,
but if you press Tab to indent them, they won’t line up properly with their matching
open parentheses; you have to indent them manually.

In addition to the Tab and C-j commands for indentation, the Lisp modes support
the command C-M-q (for indent-sexp), which indents every line in the S-expression
just following the cursor. You can use this command, for example, to indent an
entire function definition: just put the cursor right before the defun and type C-M-q.

Comments in Lisp Modes
Comments in the Lisp modes are handled by the universal comment command M-;,
which indents out to comment-column (or, if there is text at that column, one space
past the last character), inserts a semicolon, and puts the cursor just past it. If you
want a comment to occupy an entire line (or to start anywhere other than at com-
ment-column), you must move to where you want the comment to start and type the
semicolon yourself. Note that if you press Tab on any line that contains only a com-
ment, the comment moves out to comment-column. To get around this, use two or
more semicolons; doing so causes Tab to leave the comments where they are. The
Lisp modes also support the other comment commands discussed earlier in the chap-
ter, including M-j to extend a comment to another line and M-x kill-comment Enter

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Lisp Modes | 303

to get rid of a single-line comment. These features are common to all three Lisp
modes; next, we discuss the features unique to each.

Emacs Lisp Mode Differences
Emacs Lisp mode was designed to be used with code meant to run within Emacs
itself, so it facilitates running the code you type. Lisp is an interpreted (as opposed to
purely compiled) language, so it is possible to blur the line between the write and
run/debug phases of Lisp programming; Emacs Lisp mode takes some advantage of
this opportunity, whereas Lisp interaction mode goes even further, as we’ll see later.
In Emacs Lisp mode, the command C-M-x (eval-defun) picks up the function defini-
tion around or after the cursor and evaluates it, meaning that it parses the function
and stores it so that Emacs “knows” about the function when you invoke it.

Emacs Lisp mode also includes the command M-Tab (for lisp-complete-symbol),*

which performs completion on the symbol (variable, function name, etc.) preceding
the cursor, as described in Chapter 14. Thus, you can type the shortest unambiguous
prefix for the symbol, followed by M-Tab, and Emacs tries to complete the symbol’s
name for you as far as it can. If it completes the symbol name, you can go on with
whatever you are doing. If it doesn’t, you haven’t provided an unambiguous prefix.
You can type more characters (to disambiguate further), or you can type M-Tab again,
and a help window showing the choices pops up. Then you can type more characters
and complete the symbol yourself, or you can try for completion again.

Lisp Mode Differences
Lisp mode (as opposed to Emacs Lisp mode) is meant for use with Lisp processors
other than the Emacs Lisp interpreter. Therefore it includes a couple of commands
for interfacing to an external Lisp interpreter. The Lisp mode command C-c C-z
(run-lisp) starts up your system’s Lisp interpreter as a subprocess and creates the
lisp buffer (with an associated window) for input and output.† If a Lisp subpro-
cess already exists, C-c C-z uses it rather than creating a second one. You can send
function definitions to the Lisp subprocess by putting the cursor anywhere within a
function’s definition and using C-M-x, which in this case stands for lisp-send-defun.
This procedure causes the functions you define to become known to the Lisp inter-
preter so that you can invoke them later.

* This key binding may not work on all platforms. If it is intercepted by the operating system (as it is on Red
Hat Linux), type Esc Tab instead (remember to release Esc before you press Tab).

† This Lisp mode command (run-lisp) was designed to run with the franz Lisp system on BSD Unix systems,
though it should work with other Lisp interpreters.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 9: Computer Language Support

Working with Lisp Fragments
Emacs Lisp mode is probably the best thing to use if you are editing entire files of
Emacs Lisp code, for example, if you are programming your own mode (as described
in Chapter 11) or modifying an existing one. However, if you are editing “little”
pieces of Lisp code (for example, making additions or modifications to your .emacs
file), Emacs has more powerful features you can use that further blur the line
between writing and running code.

Commands for evaluating a line of Lisp

The first of these is the command M-: (for eval-expression). This command enables
you to type a one-line Lisp expression of any kind in the minibuffer; the expression is
evaluated, and the result is printed in the minibuffer. This is an excellent, quick way
to check the values of Emacs variables and to experiment with “internal” Emacs
functions that aren’t bound to keys or that require arguments. You can use the sym-
bol completion command M-Tab while you are using eval-expression.

Unfortunately (or fortunately, depending on your point of view), Emacs doesn’t nor-
mally let you use eval-expression. If you try pressing M-:, you will see the message
loading novice... in the minibuffer. Then a window pops up with a message on the
order of, “You didn’t really mean to type that, did you?” You get three options: press
Space to try the command only once, y to try it and enable it for future use with no
questions asked, or n to do nothing.

If you want to use eval-expression, type y. This command actually results in the fol-
lowing line being put in your .emacs file:

(put 'eval-expression 'disabled nil)

If you are a knowledgeable Lisp programmer, you will understand that this addition
sets the property disabled of the symbol eval-expression to nil. In other words,
Emacs considers certain commands to be verboten to novice users and thus allows
commands to be disabled. If you want to skip this entire procedure and just use eval-
expression, simply put the above line in your .emacs file yourself (make sure you
include the single quotes).

Another feature that helps you exercise Emacs Lisp code is C-x C-e (for eval-last-sexp).
This command runs the line of Lisp that your cursor is on and prints its value in the
minibuffer. C-x C-e is handy for testing single lines of code in an Emacs Lisp file.

Using Lisp interaction mode

An even more powerful feature is Lisp interaction mode. This is the mode the default
buffer *scratch* is in. Filenames with no suffixes normally cause Emacs to go into
Lisp interaction mode, though you can change this using the variable auto-mode-
alist, described earlier in this chapter and in more detail in Chapter 10. You can also
put any buffer in Lisp interaction mode by typing M-x lisp-interaction-mode Enter;

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Lisp Modes | 305

to create an extra Lisp interaction buffer, just type C-x b (for switch-to-buffer), sup-
ply a buffer name, and put it in Lisp interaction mode.

Lisp interaction mode is identical to Emacs Lisp mode except for one important fea-
ture: C-j is bound to the command eval-print-last-sexp. This command takes the S-
expression just before point, evaluates it, and prints the result in the buffer. To get
the usual newline-and-indent functionality attached to C-j in other modes, you must
press Enter, followed by Tab.

Remember that an S-expression is any syntactically valid expression in Lisp. Therefore,
you can use C-j in Lisp interaction mode to check the values of variables, enter function
definitions, run functions, and so on. For example, if you type auto-save-interval and
press C-j, the value of that variable (300 by default) appears. If you type a defun and
press C-j after the last right parenthesis, Emacs stores the function defined (for future
invocation) and prints its name; in this case, C-j is similar to C-M-x (for eval-defun)
except that the cursor must be after (as opposed to before or in the middle of) the func-
tion being defined. If you invoke a function, Emacs evaluates (runs) the expression and
responds with whatever value the function returns.

C-j in Lisp interaction mode gives you an excellent way to play with, incrementally
develop, and debug Emacs Lisp code, and since Emacs Lisp is “true” Lisp, it is even
useful for developing some bits of code for other Lisp systems.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

306

Chapter 10CHAPTER 10

Customizing Emacs

As you have probably noticed throughout this book, Emacs is very powerful and very
flexible. You can take advantage of that power and flexibility to configure Emacs to
match your work style and preferences. We’ll look at several of the most common
customization tasks and also look at a few resources for more in-depth coverage than
we can provide here.

You can customize Emacs in three ways: using Custom, the interactive interface;
using the Options menu, which is really a backdoor to Custom; and directly by add-
ing lines of Lisp to your .emacs file. This chapter covers all three of these methods.

No matter what method you use, though, the .emacs startup file is modified. Cus-
tom modifies it for you when you save settings through that interface. The Options
menu invokes Custom behind the scenes; when you choose Save Options, Custom
again modifies .emacs. Throughout the book, we have been providing lines for you to
add to .emacs directly so you could adjust Emacs to your preferences.

Before we get started, we should say that the very easiest way to customize Emacs is
by selecting an option from the Options menu and choosing Save Options. This
menu is designed to provide easy access to changing frequently used options. For
example, you may not like the Toolbar and its icons, feeling that such graphical cod-
swallop is beneath an Emacs user. You can hide the toolbar through the Show/Hide
option on the Options menu. Choosing Save Options modifies .emacs so the toolbar
is hidden every time you start Emacs. And if you miss the toolbar someday, you can
get it back the very same way.

After describing customization methods, this chapter goes on to discuss several
generic issues relating to customization, including how to change fonts and colors,
modify your key bindings, set Emacs variables, find Lisp packages to load, start
modes automatically based on file suffixes, and inhibit any global customization files
that may be interfering with your own .emacs settings.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 307

Using Custom
Emacs now ships with a quirky graphical-but-not interface that allows you to cus-
tomize most aspects of Emacs without knowing the gory details. This feature, known
as Custom, can be accessed by typing M-x custom or by clicking the tools icon on
the toolbar.

Navigating Custom
You can move around in a given Custom screen much the way you do in any other
part of Emacs. All of the basic cursor movement commands like C-n and C-p work
just as they should. But that’s only part of the story in Custom. To accomplish any-
thing useful, you need to activate special words and phrases. Those bits of text in
grey boxes that look like buttons are the words and phrases in question.

To activate one of these buttons, click on the button with the mouse or position your
cursor inside its borders and press Enter. Figure 10-1 highlights these options.

When you finish looking at a screen, if you are not interested in changing anything,
you can type C-x k to kill the current buffer and go back to the previous screen. You
can also activate the Finish button in the common header set discussed next.

Type: M-x custom Enter

Emacs displays the startup buffer for Custom (Mac OS X).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 10: Customizing Emacs

Common Options
At the top of each page in Custom is a common set of buttons shown in Figure 10-2.
These options affect the entire buffer.

From here you can perform any of the following tasks:

Set for Current Session
Make immediate changes that last for the duration of this session but will be
reset the next time you start Emacs.

Save for Future Sessions
Make immediate changes that last for the duration of this session and will also be
in place the next time you start Emacs. These changes are stored in your .emacs file.

Reset
Switch back to the previous values (previous to your current changes, anyway).

Figure 10-1. Custom button activation using the mouse cursor (top) and the keyboard cursor
(bottom) (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 309

Reset to Saved
Switch back to the previously saved values. In this case, “saved” means saved for
future sessions. If you haven’t made (and subsequently saved) any customiza-
tions to a variable, this option has no effect.

Erase Customization
This option pretty much does what it says. Any customizations made by Cus-
tom, whether for this or future sessions, are removed. Your own personal entries
in your .emacs file should remain intact, but it’s always a good idea to make a
backup before deleting any information.

Finish
Close this buffer and return to the previous customization buffer or back to the
buffer from which you launched Custom. Note that you can also press the q key
to activate Finish from anywhere in a Custom buffer.

Figure 10-2. The actions common to all pages in Custom (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 10: Customizing Emacs

These options are useful when you modify more than one option on a page and want
to save them all at once (and in the same way).

Custom corrals options into customization groups, which are set up in a hierarchy of
parent and child groups. To go to the parent group for the group you’re looking at,
choose the button for the parent group in question following the Go to parent
group: prompt. To make it easier to find things, a group might have more than one
parent. For example, the I18n (internationalization) group has two parents,
Environment and Editing, as shown in Figure 10-3.

Choosing Go to parent group is much like choosing Finish but without closing the
buffer. It’s a useful option if you’re just poking around looking for related variables.
We’ll show you better ways to find particular features to customize later in this chapter.

Customizing with Custom
After you learn your way around, you can tackle customizing Emacs. Each screen of
Custom lists variables and other settings. You can edit the value of any variable in
the grey text field to the right of variable’s name. The current value should be listed.
Just delete the current value and type the new value.

Changing a value, however, is not the last step you have to take. You need to save
the change before it will take effect. You use the State button to save the change (as
mentioned earlier, to save all the values on a page in the same way, you can use the

Figure 10-3. Custom’s Go to parent group prompt

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 311

options near the top of the screen). As with other parts of Custom, you can use your
mouse or the keyboard. Clicking the left mouse button on State should bring up the
list shown in Figure 10-4. Depending on the variable and the change you made (if
any), you may or may not have all of the options available.

Of course, you can also activate the State button by placing your cursor on it and
pressing Enter. That should create a second window with effectively the same
options you get when using the mouse. Figure 10-5 shows the options you see using
the Enter key to select State. This list is dynamic, showing only options that are
available to you. (It won’t show any options if you haven’t changed anything yet, but
it beeps with an error.)

When using the mouse, simply select the desired choice from the list. When using
the text approach, type the number (or other character) corresponding to your

Figure 10-4. Using the mouse to save or reset an option (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 10: Customizing Emacs

desired choice. The options available are similar to those that apply to the entire
buffer. You’ll see the familiar save and reset options along with a few new ones:

Set for Current Session
Same as the global option. Saves the new value for the duration of this session.

Save for Future Sessions
Same as the global option. Applies this value immediately and updates your .emacs
file so the new value is used whenever you start Emacs.

Reset to Current
Goes back to the current value for the variable. Any unsaved changes are thrown
out, but changes saved—even just for this session—count as “current” changes.

Erase Customization
Same as the global option. Any changes to the variable are removed and .emacs
is updated if needed.

Figure 10-5. Using the keyboard to save or reset an option (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 313

Use Backup Value
Goes back to the value saved before the “current” value was set. In other words,
revert to the value replaced by the most recent save.

Add Comment
You can add your own comments to the variable to help you remember why you
made this change. Comments last as long as the saved change. Changes made
only for the current session keep the comment only for the current session (not
often useful). Comments added to changes that you save for future sessions
show up on this screen in those future sessions. Erasing the customized value
also erases comments.

If you make a mistake or supply a value that is not appropriate for the variable, you
get a brief error message in the minibuffer. As with other utilities that grew up in the
world of Unix, no news is good news. If you don’t see any error messages, your
change was successfully saved.

An Abbrev Mode Example
Word abbreviation mode is a wonderful way to correct typos on the fly. But it can’t
work that way unless it is turned on. Let’s use Custom to turn on word abbreviation
mode (discussed in Chapter 3).

Type: M-x custom Enter

Main customization screen.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 10: Customizing Emacs

Click on the Go to Group button next to Editing group

The Editing group.

Click on the Go to Group button next to Abbreviations group

The Abbreviations group.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 315

Finally, we’re at a screen where we can set the option! Notice that the first content
line, Abbrev Mode group, says next to the State button visible group members are
all at standard settings. Also note that Abbrev Mode, near the bottom of the
screen, says this option is unchanged from its standard setting.

We’ll turn on the Abbrev Mode option by pressing the Toggle button.

Click on the Go to Group button next to Abbrev Mode group

The Abbrev Mode group.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 10: Customizing Emacs

The text near Abbrev Mode group now says, You have edited something in this
group, but not set it. The text near the Abbrev Mode option says, you have
edited the value as text, but you have not set the option. These are clear hints
that we must take one more step to set this option. And if those weren’t hints
enough, the minibuffer explicitly instructs, To install your edits, invoke [State]
and choose the Set operation. We could click on the State button next to the
option, but it’s just as convenient (if not more convenient) to click on the Save For
Future Sessions option near the top of the screen. This saves all options we’ve
changed in the buffer, which in our case is just one option.

Click Toggle next to Abbrev Mode

Abbrev mode is set to on.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 317

Next to the Abbrev Mode group it now says, something in this group has been set
and saved. Next to the Abbrev Mode option it says, this option has been set and
saved. Note also that Abbrev appears on the mode line now; we have indeed success-
fully turned on word abbreviation mode. Click Finish repeatedly to kill all the Cus-
tom buffers.

Congratulations; you’re on your way to customizing Emacs. You should spend some
time wandering around in the various groups Custom offers to get a sense of the
things you can control. We’ll look at the popular topics of customizing fonts, colors,
and keyboard mappings in later sections. But Custom offers a much wider variety of
areas to tweak. Don’t be afraid to look around. You can always use the Reset option
to undo something that doesn’t behave the way you expected or wanted.

The Options Menu
You can also access Custom through a bit of a back door: the Options menu.
Figure 10-6 shows the Options menu. There are three key entries at this top level:

Show/Hide
Allows you to turn on (and off) several features of Emacs including the menu bar
and toolbar.

Near the top of the screen, click on Save for Future Sessions

Emacs tells you that it wrote the .emacs file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 10: Customizing Emacs

Save Options
A quick shortcut to saving any changes you make to Emacs through the Options
menu.

Customize Emacs
A submenu that allows you to tweak common items such as fonts and variables as
well as helping you browse and search through the options available to Custom.

A Dired Example
Let’s tackle another Custom example with the help of the Options menu. Dired (dis-
cussed in Chapter 5) has many customizable features. One such feature is the dired-
view-command-alist variable. This is a list of helper applications that allow you to
open various kinds of files. This feature can be quite handy for viewing binary files
such as images or PDF files. This list of helper applications is tailored to Linux. If
you want to use other applications or you’re on a Windows or Mac system, you’ll
need to customize this variable.

Figure 10-6. The Options menu (Windows)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 319

Before you customize this option, you need to open a directory or simply type C-x d
to enter Dired. Next, from the Options ➝ Customize Emacs menu, select the
Specific Option item.

The minibuffer prompts for an option name. We want to customize dired-view-
command-alist.

Choose Options ➝ Customize Emacs ➝ Specific Option

The minibuffer prompts for a specific option to customize (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 10: Customizing Emacs

You should see the familiar Custom options for saving and resetting the values along
with the value of the dired-view-command-alist variable. For this particular vari-
able, we have a list of entries for common file types including PostScript files, PDF
documents, and images. To alter one of the existing entries, simply move to the
String line and edit the text in grey to launch the application you would like to use.
(You can also alter the filename pattern by editing the text in the Regexp line.) For
example, PDF documents can be viewed with the open command in Mac OS X, so
we could change that line as shown in Figure 10-7. In fact, on Mac OS X, you can
use the generic open command for just about every type of file. On Windows it is
even easier. Simply enter %s as the string, and Windows uses its default application
to open that file type.

If you don’t use DVI documents, you can get rid of that association using the DEL
button shown in Figure 10-8.

You can also add new document types and viewers by clicking on any of the INS but-
tons. (The order of the associations isn’t important for this particular variable, but it

Type: dired-view-command-alist Enter

Editing a list entry in Custom (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 321

might matter for other lists.) To insert a new association before the PDF entry, acti-
vate the INS button to the left of the PDF entry.

Figure 10-7. Editing a list entry in Custom (Mac OS X)

Figure 10-8. Deleting a list entry in Custom (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 10: Customizing Emacs

Now you can add an association for playing MP3 files on a PC by editing both the
Regexp and String lines. Note that you’d have to supply a path to your helper appli-
cation (winamp in this example) that matched your system. As mentioned earlier, if
winamp was already the default helper application for MP3s, you could simply type
%s for the String instead of the complete path to winamp.

Click on INS to the left of the PDF entry.

The first step in adding a new item to a list in Custom (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 323

You may have noticed the Save Changes option in the Options menu. This menu
item saves changes you make through the Options menu. For example, you can
modify such settings as whether or not the toolbar is visible or the Save Place in Files
between Sessions option. It does not save changes you have made through Custom—
even if you launched Custom from one of the Options ➝ Customize Emacs sub-
menu items. You’ll still need to use the normal Custom options to save those
changes.

For our Dired variable example, then, you’ll need to select one of the Save options
available. In this case, we’ll save it for the current session only.

Type [.]mp3\' for the Regexp and c:\apps\media\winamp.exe %s for the String:

The second step in adding a new item (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 10: Customizing Emacs

When you’re done saving your changes, you can exit the buffer as usual by clicking
the Finish button, typing q, or typing C-x k to kill the buffer.

But Where Is the Variable I Want?
One of the biggest stumbling blocks to using Custom is knowing where a particular
variable is located. Custom has a lot of groups and subgroups—and they aren’t
always intuitive. There are two quick ways to “search” for a specific variable. You
can press Tab to use the completion feature in the minibuffer or you can browse
through the entire Custom hierarchy.

To use the completion approach, type M-x customize-option or select Options ➝

Customize Emacs ➝ Specific Option. You’ll see Customize Option: in the minibuffer.
You can type a string like font and then hit the Tab key to see what variables start
with that string.

You can also create a custom buffer with options matching a regular expression with
M-x customize-apropos (or Options ➝ Customize Emacs ➝ Options Matching
Regexp). You can type in a regular expression (or a simple string) and Custom builds
a new buffer with all groups containing matching options.

Click on Set for Current Session

Saving changes for this session only (Windows).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Custom | 325

If you want to browse the hierarchy to see the related groups of variables in a reason-
ably compact view, select Options ➝ Customize Emacs ➝ Browse Customization
Groups. That should land you on a screen similar to Figure 10-9.

You can activate the [+] and [-] buttons just like you do other Custom buttons (click
on them with your mouse or move the keyboard cursor to them and press Enter.)
This allows you to browse the entire set of Custom groups and subgroups. After you
find the variable you’re looking for, click on the Option button next to the variable
or click on the Group button for the variable’s parent group if you want to edit mul-
tiple variables in the group.

Figure 10-9. Browsing customization groups (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 10: Customizing Emacs

Modifying the .emacs File Directly
It’s possible to customize Emacs in just about any way you can imagine. Almost
everything you see on the screen, every command, keystroke, message, and so on,
can be changed. As you may imagine, most customizations involve the Emacs
startup file .emacs.

Custom Versus .emacs
The previous section discussed the interactive customization tool, Custom, but left
out some of the details on what happens any time you “save for future sessions.”
Custom places the configuration information in your .emacs file. Some things simply
cannot be done through Custom (yet). Once you get familiar with the types of state-
ments that go into your .emacs file, you may also just find it easier to add a line or
two directly.

We should emphasize that using Custom or editing .emacs by hand is not an either-
or proposition. When you save options via Custom, it adds its settings to the end of
your .emacs file and warns you not to edit them by hand. Despite this prohibition,
you can easily add your own customizations to the beginning of that file. To illus-
trate this, Example 10-1 shows a sample .emacs file for Mac OS X that shows edits
made directly by the user as well as sections added by Custom (shown in bold)

.Example 10-1. A .emacs file for Mac OS X with lines added by the user and by Custom

(setq mac-command-key-is-meta nil)
(diary)
(setq load-path (cons "~/elisp" load-path))
(autoload 'html-helper-mode "html-helper-mode" "Yay HTML" t)
(setq html-helper-build-new-buffer t)
(setq auto-mode-alist (cons '("\.html$" . html-helper-mode) auto-mode-alist))
(setq-default indent-tabs-mode nil)
(setq-default tab-width 15)
(setq-default abbrev-mode t)
(read-abbrev-file "~/.abbrev_defs")
(setq save-abbrevs t)
(fset 'boldword
 [?\C- escape ?f ?\C-x ?\C-x ?< ?b ?> ?\C-x ?\C-x ?< ?/ ?b ?>])
(fset 'italword
 [?\C- escape ?f ?\C-x ?\C-x ?< ?e ?m backspace backspace ?i ?> ?\C-x ?\C-x ?< ?/ ?i ?>
])
(global-set-key "\C-x\C-kI" 'italword)
(setq shell-file-name "/bin/zsh")
(add-hook 'comint-output-filter-functions
 'comint-watch-for-password-prompt)
(custom-set-variables
 ;; custom-set-variables was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Modifying the .emacs File Directly | 327

Will the real .emacs please stand up?

You might have a bit of trouble finding the right .emacs file to work with when
you’re first starting out. Emacs actually looks for a variety of startup files. In order,
they are:

.emacs.elc
The byte-compiled Lisp version or your startup file. This is not editable, but can
make startup quicker if you have a big, complex startup file.

.emacs.el
The more formal name for your startup file. You can use Lisp commands to cus-
tomize and initialize your entire Emacs environment.

.emacs
The common name for the startup file. Exactly like the .emacs.el file, just with-
out the .el extension. Both are editable.

As soon as Emacs finds one of these files, that’s it; then it’s on to the next step in
startup. You can’t have a .emacs.elc for the big customizations and then a separate
.emacs for the last few. Sorry!

For all you Emacs users on Microsoft Windows-based systems, you might bump into
a variation of this file that begins with an underscore (_) rather than a dot (.). In the
past, the Windows filesystem required something before the first dot, so .emacs was
an invalid filename. Consequently, _emacs was adopted. The same order and notes
about the .elc and .el variants applies. In modern versions of Windows, .emacs is a
valid filename and the dot variations take precedence over the underscore versions.

Basic .emacs Statements
Some changes require a knowledge of Emacs Lisp programming (see Chapter 11);
others are simple enough without such knowledge. In this chapter, we cover a vari-
ety of useful customizations that require no programming knowledge. For now, how-
ever, you need to know this: every Emacs command corresponds to a Lisp function,
which has the form:

(function-name arguments)

 ;; If there is more than one, they won't work right.
 '(global-font-lock-mode t nil (font-core))
 '(text-mode-hook (quote (turn-on-auto-fill text-mode-hook-identify))))
(custom-set-faces
 ;; custom-set-faces was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
)

Example 10-1. A .emacs file for Mac OS X with lines added by the user and by Custom (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 10: Customizing Emacs

For example, if you want to move the cursor forward by a word, you type M-f. What
you are actually doing is running the Lisp function:

(forward-word 1)

Caveat editor

Two important comments concerning .emacs files are in order. First, if you are
inserting code into your .emacs file, you may end up putting in something that causes
Emacs to fail or behave strangely. If this happens, you can invoke Emacs without
running your .emacs file: simply invoke Emacs with the command-line option -q, and
Emacs will not run your .emacs file. (Chapter 13 gives instructions for starting Emacs
from the command-line on Windows and Mac OS X.) You can then examine the file
to figure out what went wrong.

The other comment is perhaps the most important piece of advice we can give you con-
cerning customizing your Emacs environment: steal mercilessly from other users. In par-
ticular, if you are dealing with a messy situation involving a configuration problem or a
subtle point about some specialized mode, it is possible that some other user has solved
the problem(s) already. This is not dishonest or subversive in any way; rather, it is
encouraged by the makers of GNU Emacs, who would rather software be shared than
kept to oneself. Emacs even provides an easy way to try out other users’ .emacs files:
invoke Emacs with the option -u username, and username’s .emacs file will run instead
of yours. (Of course, this works only with users on multiuser systems.)

In fact, numerous example .emacs files are available on the Web. (Check out “the
very unofficial” .emacs site, http://www.dotemacs.de/.)

A Sample .emacs File
Here’s a quick example of a (very) simple .emacs file:

;; Turn on font-lock mode to color text in certain modes
(global-font-lock-mode t)

;; Make sure spaces are used when indenting code
(setq-default indent-tabs-mode nil)

The lines beginning with two semicolons are comments. They’re meant to help you
understand what is being configured. Sometimes they also list possible values or the
previous value. You can say anything you want in a comment—as long as it fits on
one line. If you need to spill over onto a second or third line, just begin each succes-
sive line with ;;.

Blank lines are ignored. Every other line (that’s not blank or a comment) is considered
part of a Lisp program that is executed to configure your Emacs session. In this exam-
ple, we first call the global-font-lock-mode function with an argument of t (true, or
“on”). Next we make sure that using the Tab key when writing code doesn’t actually

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Modifying the .emacs File Directly | 329

insert a tab character but uses spaces instead. (This is a good thing to do when writing
code—otherwise your code can come out very messy on systems that use a different
tab width.) We use the setq-default function to assign the indent-tabs-mode a nil (false
or “off”) value. Using setq-default has the advantage of setting the default value only—
modes that choose to override this value may still do so.

If you’re a seasoned Lisp programmer, you can do anything you would normally
have access to in Lisp. There are certainly particular functions and variables you need
to know about to be effective, but it is just a Lisp program.

For the rest of us, this file mostly consists of blocks of Lisp found on the Internet or
on a colleague’s computer. You edit in your personal values and hope it all works.
Really. If you use Custom to manage all of your configuration changes, you don’t
even have to look at .emacs unless you want to add your own lines at the beginning
of the file or look at what Custom has done.

Editing .emacs

The great thing about configuring a text editor is that you can use the editor itself to
make the changes. You can visit the .emacs file just as you would any other file. The
only thing to watch out for is where you are. Some folks put backup copies of this
file in strange places. You want to edit the file that came from your home directory. If
you’re unsure of where you are, you can use the full name ~/.emacs which Emacs
translates to the proper directory.

Note also that .emacs is not required. If you haven’t had any reason to customize
Emacs, it might not exist. But you should feel free to create it when you’re ready to
start tailoring your environment. (Making your first change via Custom will also cre-
ate .emacs if it doesn’t exist.)

The best way to deal with this file really is to find an example file and make small
changes to it. Use those ;; comments liberally. If you’re going to change a line in your
.emacs file, make a copy of it first:

;; Turn off font-lock
;;(global-font-lock-mode t)
(global-font-lock-mode nil)

That way you can easily get back to a known, working version of your .emacs file. If
things get really bad, just start over. Rename your current .emacs file and then copy
and paste small chunks of it at a time.

For changes required by modules and other packages, the documentation for those
modules usually includes example lines for insertion into your .emacs. For example,
the JDEE site includes a sample .emacs file that can be used as-is or appended to an
existing file. (And if you want to get fancy, you can leave the JDEE sample in a sepa-
rate file and simply include a load-file call from your .emacs file. More on load-file
can be found in the Elisp documentation.)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 10: Customizing Emacs

Saving .emacs

You save your .emacs just as you normally save any file. To test any changes you’ve
made, though, you’ll have to do one of two things. The sure-fire method is to quit
Emacs and launch it again. If everything comes up the way you expected, you’re
good to go.

You can also run M-x load-file. You’ll be prompted for the name of the file. Just type
in ~/.emacs Enter and you should be able to check your changes.

Be careful here: it’s entirely possible that something in your current
session will interact with your new .emacs file. For example, if you
have already set a default value for a variable, commenting out that
line of your .emacs file will not remove the value unless you also
remove the default value by hand. If you’ve got a fairly simple configu-
ration, though, you should be fine. Reloading .emacs is certainly faster
that restarting Emacs!

Either way, once you have verified that your configuration works the way you want,
you can forget about this file. Until you want to make more changes, of course!

Modifying Fonts and Colors
Emacs on certain platforms (Windows, Mac OS X, and Unix) can display text in
multiple fixed-width fonts. It doesn’t yet handle proportional-spacing fonts well,
although future releases are expected to address that issue. Emacs can display text in
as many combinations of foreground and background colors as your system sup-
ports. We’ll take a look at your options for changing fonts. You can make quick,
interactive changes in any buffer. You can also customize the fonts and colors used
by automatic highlight features such as Isearch and font-lock mode.

And just in case you want to use Emacs to edit rudimentary styled-text documents,
we’ll also look at how to save and load files that have font and color enriched text.

Changing Fonts Interactively
Both Custom and the Edit menu in Emacs provide you with a way to change the cur-
rent font and color by picking a new one from the Text Properties menu.

To understand the Text Properties menu, you’ll find it useful to know that Emacs
thinks internally in terms of faces. A face is a font and color combination. The Text
Properties menu presents you with a small set of premixed faces and the option to
specify others by name.

We’ll go into more detail about faces, how to name them, and the related Lisp pro-
gramming constructs later in this chapter. For now, consider simply that every

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Modifying Fonts and Colors | 331

character in a buffer may have a different face invisibly associated with it (though
in practice it would be quite surprising if face changes were that frequent!).

Holding down the Shift key while clicking the left mouse button takes you to a menu
of fonts. Selecting one of these instantly changes the Emacs font for the current frame
and redisplays the frame. This is an easy way to experiment with different fonts to
see how well they trade screen space for readability on your display.

Automatic Highlighting and Coloring
A number of modules in Emacs feature text highlighting and syntax coloring. The
various programming and markup language modes (Lisp mode, Java mode, HTML
mode, and so on) have such highlighting. How you customize those fonts and colors
depends heavily on the individual module.

Isearch

The Isearch facility in Emacs has undergone a few changes as it has matured. It uses
font faces and coloring to highlight a document when you search for words or
expressions. You may find the default choices a bit, well, stark. You can customize
the group by typing M-x customize-group Enter isearch-faces Enter to change them.

Incidentally, you might just try changing the face it uses to highlight the secondary
matches, so that it’s less intrusive.

Buffer highlighting

The easiest way to use fonts and colors is to load the Lisp package font-lock.el
(included with the Emacs distribution). This mode tries to highlight interesting fea-
tures of your text buffers using color and different faces. As an example, try picking
out comments in C and Lisp buffers, and painting them in a color that contrasts with
the basic black of the code.

;; Turn on font lock mode every time Emacs initializes a buffer
;; for Lisp or C.
;;
(add-hook 'emacs-lisp-mode-hook 'turn-on-font-lock)
(add-hook 'c-mode-hook 'turn-on-font-lock)

Font-lock mode tends to be especially helpful for colorizing programming language
code or outline mode text but also gives useful results for HTML files and Dired
buffers. In fact, we find it useful in so you may want to turn it on globally instead, as
we did in “A Sample .emacs file” earlier in this chapter. If you want more examples
using font-lock mode, refer back to Chapter 9 on some of the various programming
language modes supported by Emacs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 10: Customizing Emacs

Customizing Fonts Through Custom
Now that you know how to work with Custom, you can also go that route to edit
and alter fonts and colors. The easy way to get started in Custom is to run M-
x customize-group and enter faces for the group name. (Figure 10-10 shows a sam-
ple of the groups you’ll see.)

Changing Colors
But what if you just want to change the default foreground and background colors?
Well, that turns out to be quite simple. You can use the M-x set-foreground-color
and M-x set-background-color commands to pick simple colors (based on their
names such as black, white, yellow, blue, red, etc.). Be careful, though, because
Emacs has no qualms about letting you set these values to garish—or even impossi-
ble—combinations! While black text on a black background may provide some level

Figure 10-10. Font face groups available in Custom (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Modifying Fonts and Colors | 333

of security from anyone peeking over your shoulder, it’s not the most productive
combination in the long run.

To see the range of colors available, run M-x set-foreground-color. When it prompts
you for a color, just press Tab to get a completion list of the possible colors—you
should get quite a few! These names can also be typed into the foreground and back-
ground fields (or any other color-based field) in Custom.

You can also use Custom to control all aspects (including the foreground and back-
ground colors) of the “default” font. Figure 10-11 shows the Custom screen for just
that font after switching the colors to green and black.

You can go through the usual channels discussed previously to customize this face,
or come here directly with M-x customize-face and then enter default at the prompt.

Changing the cursor color

Don’t forget about the cursor! You can also use set-cursor-color to change the color
of the cursor. That can be especially useful if you want a black background—the
default black cursor can easily get lost.

Saving Font- and Color-Enriched Text
The astute reader will have noticed that, although the highlighting machinery allows
us to set up enriched text in a buffer, we haven’t shown a way to save text properties
along with text between sessions. This is a significant issue. As long as there is no
way to save properties along with text, all the font and color machinery remains lit-
tle more than a display hack, good for decorating buffers but adding little to Emacs’s
editing power.

Figure 10-11. Changes to the default font colors effectively set the foreground and background
colors for Emacs (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 10: Customizing Emacs

What’s needed to remedy this situation is a way for text properties to be saved in an
expanded text-markup form and restored into text properties when the file is next
edited.

At the time of this writing, experimental code to support this is included with Emacs.
A library called enriched-mode supports saving text properties into the MIME enriched-
text format specified by the Internet standards document RFC 1896, and can parse files
in that format into Emacs buffers with equivalent text and text properties.

Although this mode is quite usable as is, much design and development still needs to
be done before the capabilities enriched mode supports are mature and well integrated
with other Emacs modes. By the time you read this, there may be several such librar-
ies, each supporting a different enriched format such as HTML. Eventually modes like
these should enable Emacs to support WYSIWYG and even multimedia editing.

To enter enriched mode, type M-x enriched-mode. Enriched appears on the mode
line. Emacs may ask if you want to make newlines between paragraphs hard. (This is
because Emacs reformats the paragraphs when you change margin settings.) Type y.

You can use several font commands to decorate your text. Most begin with the M-g pre-
fix. Table 10-1 lists some of the more common options. If you like using the menus, you
can also select the options in Table 10-1 using the Edit ➝ Text Properties ➝ Face menu.

The commands listed in Table 10-1 apply to the currently marked text. We used a
number of these commands to produce the simple text example shown in
Figure 10-12.

Saving enriched text

When you save enriched text, Emacs marks up the document with XML-like tags.
Emacs will happily read the document back in, although not many other applica-
tions will know what to do with the tags. Still, as you can see below, the tags are
straightforward and would allow custom applications such as CGI scripts for the
Web to parse them quickly.

Content-Type: text/enriched
Text-Width: 70

Table 10-1. Enriched mode font commands

Command Font selected

M-g d default

M-g b bold

M-g i italic

M-g l bold-italic

M-g u underline

M-g o other (allows you to pick a font face by name)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Customizing Your Key Bindings | 335

<x-color><param>blue</param>Testing</x-color>

This is a quick test of the

<x-color><param>red</param>enriched</x-color> mode in Emacs.

<bold>Not sure what's gonna happen.</bold>

Looks good from here.

But, you can’t rely too much on enriched mode yet. For example note the Testing
title line. It doesn’t appear to contain any information about the size of the font—
which is definitely larger if you look at Figure 10-11. Sure enough, killing the buffer
and reloading the file loses the size value. The text is still blue and the content is
available, but some of the formatting has been lost.

The moral is a classic one: be careful. If you have serious enriched text needs, Emacs
is probably not the tool to use (at least not yet). Many of the various word proces-
sors out there will do a much better job. But if you just need some basic enhance-
ments to documents that only you or other Emacs users will view, enriched mode is
just the ticket.

Customizing Your Key Bindings
Perhaps the most common things that Emacs users want to customize are the key-
strokes that cause commands to run. Keystrokes are associated with commands via
key bindings.

Actually, every keystroke runs a command in Emacs. Printable character keys (let-
ters, numerals, punctuation, and spaces) run the self-insert-command, which merely

Figure 10-12. An enriched text example (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 10: Customizing Emacs

causes the key just pressed to be inserted at the cursor in the current buffer. (You
could play a nasty April Fool’s joke on a naïve Emacs user by changing the bindings
of their printable characters.)

The default set of key bindings is adequate for most purposes, of course, but there
are various cases in which you may want to add or change key bindings. Emacs con-
tains literally hundreds of commands, only some of which have key bindings. As you
know, you can access those that don’t have bindings by typing M-x command-name
Enter.

If, however, you intend to use an unbound command often, you may want to bind it
to a keystroke sequence for convenience. You may want to set special keys, such as
arrow, numeric keypad, or function keys, to perform commands you use often.

The other important concept you need to know now is that of a keymap, which is a
collection of key bindings. The most basic default key bindings in Emacs are kept in
a keymap called global-map. There is also the concept of a local keymap, which is
specific to a single buffer. Local keymaps are used to implement commands in modes
(like C mode, text mode, shell mode, etc.), and each such mode has its own keymap
it installs as the local map when invoked. When you type a key, Emacs first looks it
up in the current buffer’s local map (if any). If it doesn’t find an entry there, it looks
in global-map. If an entry for the key is found, its associated command is run.

What happens with commands that are bound to multiple keystrokes, as in C-x k for
kill-buffer? The answer is that the keys C-x, Esc, and C-c are actually bound to spe-
cial internal functions that cause Emacs to wait for another key to be pressed and
then to look up that key’s binding in another map; they also cause messages like C-x-
to appear in the minibuffer if more than a second passes before the next key is
pressed. The additional keymaps for C-x and Esc are called ctl-x-map and esc-map,*

respectively; C-c is reserved for local keymaps associated with modes like C mode
and shell mode.

For example, when you type Esc d or M-d, Emacs looks it up in the buffer’s local
keymap. We will assume it doesn’t find an entry there. Then Emacs searches global-
map; there it finds an entry for Esc with a special function (called ESC-prefix) that
waits for the next keystroke and uses esc-map to determine which command to exe-
cute. When you type d, ESC-prefix looks up the entry for d in esc-map, finds kill-
word, and runs it.

You can create your own key bindings by adding entries in keymaps (or overriding
existing ones). Three functions are available for doing this: define-key, global-set-
key, and local-set-key. Their forms are:

(define-key keymap "keystroke" 'command-name)
(global-set-key "keystroke" 'command-name)
(local-set-key "keystroke" 'command-name)

* You can use Meta in place of Esc, but the bindings are still stored in the esc-map.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Customizing Your Key Bindings | 337

Notice the double quotes around keystroke and the single quote preceding command-
name. This is Lisp syntax; for more details, see Chapter 11. The keystroke is one or
more characters, either printable or special characters. For the latter, use the conven-
tions in Table 10-2.

Thus, the string abc\C-a\ndef is equal to abc, C-a, newline, and def, all concate-
nated into one string. Note that control characters are case-insensitive—that is, \C-A
is the same thing as \C-a. However, the characters that follow control characters may
be case-sensitive; \C-ae could be different from \C-aE, for example.

The function define-key is the most general because it can be used to bind keys in
any keymap. global-set-key binds keys in the global map only; since there is only one
global-map, (global-set-key ...) is the same as (define-key global-map ...). The func-
tion local-set-key binds keys in the local map of the current buffer; it is useful only
for specifying temporary key bindings during an Emacs session.

Here is an example of a simple keyboard customization. Let’s say you are writing
code in a programming language. You compile it and get error messages that con-
tain the line number of the error, and you want to go to that line in the source file to
correct the error.* You would want to use the goto-line command, which is not
bound by default to any keystroke. Say you want to bind it to C-x l. The command
to put into your .emacs file is

(global-set-key "\C-xl" 'goto-line)

This binds the l slot in ctl-x-map to the function goto-line globally—that is, in all
modes. Alternatively, you can use either of the following:

(define-key global-map "\C-xl" 'goto-line)
(define-key ctl-x-map "l" 'goto-line)

These commands have the same effect but aren’t really any more efficient or better.
And really, you shouldn’t have to know that the keymap for C-x is called ctl-x-map.
We’ll stick to showing the global-set-key approach for the remaining examples, but

Table 10-2. Special character conventions

Special character Definition

\C-x C-x (where x is any letter)

\C-[or \e Esc

\M Meta

\C-j or \n Newline

\C-m or \r Enter

\C-i or \t Tab

* There is a better way of dealing with this situation, which we will cover in the next chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 10: Customizing Emacs

remember that you have define-key available for situations where setting the global
key is not appropriate, such as when adding a mode-specific keystroke.

Other examples of key rebindings include binding C-x ? to help-command and C-h
to backward-char. These key rebindings are shown below:

(global-set-key "\C-x?" 'help-command)
(global-set-key "\C-h" 'backward-char)

Notice that these could also be done as

(define-key ctl-x-map "?" 'help-command)
(define-key global-map "\C-h" 'backward-char)

After you put a key binding (or any other code) in your .emacs file, you need to
“run” (or evaluate) the file for the change to take effect. The command for this is M-
x eval-current-buffer Enter. Even better, you could press C-x C-e, which (as we will
see in the next chapter) causes only the single line of Lisp code that your cursor is on
to run. If you don’t do either of these, the changes won’t take effect until the next
time you invoke Emacs.

Special Keys
A more complicated keyboard customization task is binding commands to special
keys, such as arrow, numeric keypad, or function keys, on your keyboard. This level
of customization takes some work, but if you like using special keys, it is well worth
the effort.

Most of the special keys have reasonable names, but using them with the set key
functions discussed above requires using a slightly different syntax. The name of the
key appears inside square brackets rather than inside double quotes. For example,
you could bind the goto-line command to the function key F5 like this:

 (global-set-key [f5] 'goto-line)

And you can certainly use modifiers with your special keys. Control-Alt-F5 can be
bound like this:

 (global-set-key [C-A-f5] 'goto-line)

Table 10-3 lists the names of some common special keys.

Table 10-3. Special key ELisp names

ELisp Name Key ELisp Name Key

DEL or

backspace

Backspace kp-0 .. kp-9 Keypad numbers 0 through 9

delete Delete key kp-enter Enter key on the number pad

down Down arrow key left Left arrow key

end End key next Page Down

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Setting Emacs Variables | 339

Unsetting Key Bindings
You can also remove a particular key binding with the global-unset-key and define-
key commands. For example, the following lines will both remove the goto-line
command bindings from our previous examples:

(global-unset-key [f5])
(define-key ctl-x-map "l" nil)

Of course, you don’t need to unset any bindings if you plan to replace them with
something else. But this can be useful if you have a common “typo” key that you
don’t want firing off when you type it by mistake.

Setting Emacs Variables
Now we will get into ways to affect Emacs’ behavior—not just its user interface. The
easiest way to do so is by setting variables that control various things. We already
saw examples of this like auto-save-interval in Chapter 2. To set the value of a vari-
able, use the setq function in your .emacs, as in:

(setq auto-save-interval 800)

Although auto-save-interval takes an integer (number) value, many Emacs variables
take true or false values, called Boolean in computer parlance. In Emacs Lisp, t is the
true value, and nil is the false value, although in most cases, anything other than nil
is taken to mean true. Emacs variables can take other types of values, and here is
how to specify them:

• Strings of characters are surrounded by double quotes. We saw examples of
strings in the arguments to key binding commands earlier in this chapter.

• Characters are specified like strings but with a ? preceding them, and they are
not surrounded by double quotes. Thus, ?x and ?\C-c are character values x and
C-c, respectively.

• Symbols are given by a single quote followed by a symbol name—for example,
'never (see the variable version-control in Appendix A).

A list of useful Emacs variables, grouped by category, appears in Appendix A, with
descriptions and default values. Emacs has more than 2,500 variables—many more
than are covered in Appendix A. If there is something about Emacs that you want to

f1 .. f35 Function keys F1
through F35

prior Page Up

home Home key right Right arrow key

help Help key up Up arrow key

Table 10-3. Special key ELisp names (continued)

ELisp Name Key ELisp Name Key

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 10: Customizing Emacs

customize, a variable probably controls the feature (especially if what you want to
change involves a number or a true-or-false condition). To find out whether any vari-
ables relate to what you want to do, you can use the apropos-variable command
described in Chapter 14 to look for variables and their descriptions.

Several Emacs variables can have different values for each buffer (local values, in Emacs
parlance) as well as a default value. Such variables assume their default values in buff-
ers where the local values are not specified. A common example is starting a new text
document. The local value for the left-margin variable has not been set, so Emacs uses
the default value for left-margin. You can change the local value in this buffer if you
like. But start a new document in a new buffer and you’ll find that left-margin is back
to the default value—because the second buffer’s local value has not been set.

As you might expect, you can set both the default and local values of such variables.
When you set the value of a variable such as left-margin or case-fold-search with
setq, you are actually setting the local value. The way to set default values is to use
setq-default instead of setq, as in:

(setq-default left-margin 4)

Unfortunately, there is no general way to tell whether a variable has just one global
value or has default and local values (except, of course, by looking at the Lisp code
for the mode). Therefore the best strategy is to use a plain setq, unless you find from
experience that a particular variable doesn’t seem to take on the value you setq it
to—in which case you should use setq-default. For example, if you put the line:

(setq case-fold-search nil)

in your .emacs file, you will find that Emacs still ignores case differences in search
commands as if this variable were still t; instead, you should use setq-default.

Finding Emacs Lisp Packages
Emacs contains lots of Lisp code; in fact, as we will see in Chapter 11, the majority of
Emacs’ built-in functionality is written in Lisp. Emacs also comes with several extra
Lisp packages (also known as libraries) that you can bring in (or load) to add more
features. Lisp packages are being added to Emacs all the time, and sometimes your
system administrator will add packages obtained from sources other than the Free
Software Foundation.

Appendix B lists the most useful built-in Lisp packages, along with explanations of
how to use them. You can also get information about which packages are available
on your system by typing C-h p (for finder-by-keyword). Briefly, the built-in pack-
ages do the following kinds of things:

• Support programming in C, Lisp, Perl, Java, and several other languages (see
Chapter 9).

• Support text processing with TEX, LATEX, XML, and HTML (see Chapter 8).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Starting Modes via Auto-Mode Customization | 341

• Emulate other editors (vi, EDT, and Gosling Emacs).

• Interface to operating system utilities, such as the shell (see Chapter 5).

• Provide editing support functions, such as spell checking (see Chapter 3) and
outline editing (see Chapter 7) as well as text sorting, command history editing,
Emacs variable setting (see Appendix A), and much more.

• Play various games and provide other forms of amusement.

See Appendix B for more details.

Starting Modes via Auto-Mode
Customization
The tables in Appendix B list several major modes that are automatically invoked
when you visit a file whose name ends in the appropriate suffix. Look for “suffix” in
the right-hand columns of the tables to see many of the associations between file-
name suffixes and major modes that Emacs sets up by default. These associations are
contained in the special Emacs variable auto-mode-alist. auto-mode-alist is a list of
pairs (regexp . mode), where regexp is a regular expression (see Chapters 3 and 11)
and mode is the name of a function that invokes a major mode. When Emacs visits a
file, it searches this list (from the beginning) for a regular expression that matches the
file’s suffix. If it finds one, it runs the associated mode function. Notice that any part
of a file’s name—not just its suffix—can actually be associated with a major mode.

You can add your own associations to auto-mode-alist, although the syntax is weird
if you are not used to Lisp (see Chapter 11 for the gory details). If you are program-
ming in the Ada language, and your Ada compiler expects files with suffix .ada, you
can get Emacs to put your files in Ada mode whenever you visit them by putting the
following line in your .emacs file:

(setq auto-mode-alist (cons '("\\.ada$" . ada-mode) auto-mode-alist))

Make sure you include the single quote after the term cons and the dot between
"\\.ada$" and ada-mode. The notation '(x . y) is just Lisp syntax for “make x and
y a pair.” The string "\\.ada$" is a regular expression that means “anything with .
ada at the end of it,” that is, $ matches the end of the string (as opposed to the
end of the line, which is what it matches during regular expression search and
replace). The entire line of Lisp basically means “add the pair ("\\.ada$", 'ada-
mode) to the front of the auto-mode-alist.” Note that, because Emacs searches
auto-mode-alist from the beginning and stops when it finds a match, you can use
the above cons construct to override existing mode associations.*

* Lisp programmers will understand that there are other ways to add to auto-mode-alist, such as append.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 10: Customizing Emacs

As another example, let’s say you save certain mail messages in files whose names
begin with msg-, and you want to edit these files in text mode. Here is the way to do it:

(setq auto-mode-alist (cons '("^msg-" . text-mode) auto-mode-alist))

Notice that in this case we are matching the beginning, rather than the end, of the
filename. The regular expression operator (^) means beginning of string, so the
entire regular expression means “anything beginning with msg-.”

Finally, if the name of a file you are editing does not match any of the regular expres-
sions in auto-mode-alist, Emacs puts it into the mode whose name is the value of the
variable default-major-mode. This mode is normally fundamental mode, a basic
mode without special functionality. However, many people like to set their default
mode to text mode, accomplished by adding a line like this to .emacs:

(setq default-major-mode 'text-mode)

Although we have covered many useful ways to customize Emacs in this chapter,
we have really only scratched the surface. To find out more, turn to Chapter 11
and find out about Lisp programming, the key to getting Emacs to do just about
anything you want.

Making Emacs Work the Way
You Think It Should
Emacs not only has per-user customizations; it can also have sitewide customiza-
tions. If Emacs isn’t doing what you expect it to, you might want to try inhibiting
any global customization file by starting Emacs with no customization.

You can do that by using one of these command-line options when you invoke
Emacs.

• --no-init-file, -q load neither ~/.emacs nor default.el

• --no-site-file do not load site-start.el

If you normally start Emacs from an icon, it’s helpful to learn how to start it from the
command-line for cases like this. (You may also want to use the –debug option some-
time to help you figure out what’s wrong with your .emacs file if it is messed up fol-
lowing a change.) Chapter 13 describes how to start Emacs from the command-line
for Mac OS X and Windows users.

You can also inhibit global initialization by creating a one-line .emacs file in your
home directory. It should look exactly like this:

(setq inhibit-default-init t) ; no global initialization

Start Emacs again. This file prevents Emacs from reading its global initialization file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Emacs Work the Way You Think It Should | 343

There’s still one awkward situation: what if you’re sitting down at someone else’s
system? You start Emacs, and all of a sudden you’re faced with someone else’s “pri-
vate” key bindings and features. Even in this situation, there’s a solution:

• Try using the command emacs -q. The -q option tells Emacs not to read the
user’s .emacs file before starting. By doing this, you’ll avoid the user’s private
customizations.

• Let’s say that after this step, you still don’t have your own customizations. If you
want to make Emacs read your .emacs file, even when you’re using someone
else’s account, give the command emacs -u yourname. For example: emacs -u
deb starts Emacs with the user Deb’s initialization file (/home/deb/.emacs).

The -u option may not work unless you’re on a network where users have a shared
home directory structure. It assumes either that you have the same home directory
on every system, or that you have a different home directory on every system and an
up-to-date .emacs file in all of your home directories.

If all that fails, fear not. You have more options. Let’s take the worst case scenario:
you’re on someone else’s system and you can’t start Emacs from the command line.
Go ahead and start Emacs. You can temporarily overwrite the other user’s key bind-
ings by loading up your own key bindings file in a buffer and running it with M-x
eval-buffer.

You probably should make a separate file with key bindings and other variable
options rather than using your .emacs file. That’s because many times your .emacs
file will have requests to load libraries that exist on a path that works only from
your own system. If you find yourself jumping to a lot of different machines, it’s
worth the effort to create a portable “rebinding” file and put it somewhere accessi-
ble like a web page or a shared file server. Then you can evaluate it manually from
your current Emacs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

344

Chapter 11CHAPTER 11

Emacs Lisp Programming

If you have been using Emacs for a while and have been taking advantage of some of
its more advanced features, chances are that you have thought of something useful
that Emacs doesn’t do. Although Emacs has hundreds of built-in commands, dozens
of packages and modes, and so on, everyone eventually runs into some functionality
that Emacs doesn’t have. Whatever feature you find missing, you can program using
Emacs Lisp.

Before you dive in, however, note that this chapter is not for everyone. It is intended
for people who have already become comfortable using Emacs and who have a fair
bit of programming experience, though not necessarily with Lisp per se. If you have
no such experience, you may want to skip this chapter; if there is something specific
you would like Emacs to do, you might try to find a friendly Emacs Lisp hacker to
help you write the necessary code. Or, if you’re a little adventurous, you could skim
enough to find the file-template example and learn how to install it—it gives you
some useful features.

Readers who are building their Lisp skills but don’t necessarily want to read the
whole chapter might also want to look for the “Treasure Trove of Examples” section
in the middle for a useful tool that can help jumpstart their exploration of the Emacs
libraries.

Note that we do not cover Lisp in its entirety in this chapter. That would require
another large, dense book. Instead, we cover the basics of the language and other fea-
tures that are often useful in writing Emacs code. If you wish to go beyond this chap-
ter, refer to the GNU Emacs Lisp Reference Manual, distributed with Emacs (choose
Help ➝ More Manuals ➝ Introduction to Lisp and Emacs Lisp Reference) for details
about the specific Lisp features in Emacs. You may also turn to any of the various
Lisp textbooks* available for a solid grounding in the language itself.

* We recommend Lisp by Patrick Henry Winston and Berthold Klaus Paul Horn (Addison Wesley).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Lisp | 345

Emacs Lisp is a full-blown Lisp implementation;* thus it is more than the usual
macro or script language found in many text editors. (One of the authors has written
a small expert system entirely in Emacs Lisp.) In fact, you could even think of Emacs
itself as a Lisp system with lots of built-in functions, many of which happen to per-
tain to text manipulation, window management, file I/O, and other features useful to
text editing. The source code for Emacs, written in C, implements the Lisp inter-
preter, Lisp primitives, and only the most basic commands for text editing; a large
layer of built-in Lisp code and libraries on top of that implements the rest of Emacs’s
functionality. A current version of Emacs comes with close to 250,000 lines of Lisp.

This chapter starts with an introduction to the aspects of Lisp that resemble com-
mon programming languages like Java and Perl. These features are enough to enable
you to write many Emacs commands. Then we deal with how to interface Lisp code
with Emacs so that the functions you write can become Emacs commands. We will
see various built-in Lisp functions that are useful for writing your own Emacs com-
mands, including those that use regular expressions; we give an explanation of regu-
lar expressions that extends the introduction in Chapter 3 and is oriented toward
Lisp programming. We then return to the basics of Lisp for a little while, covering
the unique features of the language that have to do with lists, and show how this
chapter’s concepts fit together by presenting a file template system you can install
and use in your own programming or writing projects.

Finally we show you how to program a simple major mode, illustrating that this
“summit” of Emacs Lisp programming isn’t so hard to scale. After that, you will see
how easy it is to customize Emacs’s built-in major modes without having to change
(or even look at) the code that implements them. We finish the chapter by describ-
ing how to build your own library of Lisp packages.

Introduction to Lisp
You may have heard of Lisp as a language for artificial intelligence (AI). If you aren’t
into AI, don’t worry. Lisp may have an unusual syntax, but many of its basic fea-
tures are just like those of more conventional languages you may have seen, such as
Java or Perl. We emphasize such features in this chapter. After introducing the basic
Lisp concepts, we proceed by building up various example functions that you can
actually use in Emacs. In order to try out the examples, you should be familiar with
Emacs Lisp mode and Lisp interaction mode, which were discussed in Chapter 9.

* Experienced Lisp programmers should note that Emacs Lisp most closely resembles MacLisp, with a few
Common Lisp features added. More complete Common Lisp emulation can be had by loading the package
cl (see Appendix B).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 11: Emacs Lisp Programming

Basic Lisp Entities
The basic elements in Lisp you need to be familiar with are functions, variables, and
atoms. Functions are the only program units in Lisp; they cover the notions of proce-
dures, subroutines, programs, and even operators in other languages.

Functions are defined as lists of the above entities, usually as lists of calls to other, exist-
ing functions. All functions have return values (as with Perl functions and non-void
Java methods); a function’s return value is simply the value of the last item in the list,
usually the value returned by the last function called. A function call within another
function is equivalent to a statement in other languages, and we use statement inter-
changeably with function call in this chapter. Here is the syntax for function:

(function-name argument1 argument2 ...)

which is equivalent to this:

method_name (argument1, argument2, ...);

in Java. This syntax is used for all functions, including those equivalent to arithmetic
or comparison operators in other languages. For example, in order to add 2 and 4 in
Java or Perl, you would use the expression 2 + 4, whereas in Lisp you would use the
following:

(+ 2 4)

Similarly, where you would use 4 >= 2 (greater than or equal to), the Lisp equivalent is:

(>= 4 2)

Variables in Lisp are similar to those in any other language, except that they do not
have types. A Lisp variable can assume any type of value (values themselves do have
types, but variables don’t impose restrictions on what they can hold).

Atoms are values of any type, including integers, floating point (real) numbers, char-
acters, strings, Boolean truth values, symbols, and special Emacs types such as buff-
ers, windows, and processes. The syntax for various kinds of atoms is:

• Integers are what you would expect: signed whole numbers in the range -227 to
227-1.

• Floating point numbers are real numbers that you can represent with decimal
points and scientific notation (with lowercase “e” for the power of 10). For
example, the number 5489 can be written 5489, 5.489e3, 548.9e1, and so on.

• Characters are preceded by a question mark, for example, ?a. Esc, Newline, and
Tab are abbreviated \e, \n, and \t respectively; other control characters are
denoted with the prefix \C-, so that (for example) C-a is denoted as ?\C-a.*

* Integers are also allowed where characters are expected. The ASCII code is used on most machines. For
example, the number 65 is interpreted as the character A on such a machine.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Lisp | 347

• Strings are surrounded by double quotes; quote marks and backslashes within
strings need to be preceded by a backslash. For example, "Jane said, \"See Dick
run.\"” is a legal string. Strings can be split across multiple lines without any
special syntax. Everything until the closing quote, including all the line breaks, is
part of the string value.

• Booleans use t for true and nil for false, though most of the time, if a Boolean
value is expected, any non-nil value is assumed to mean true. nil is also used as
a null or nonvalue in various situations, as we will see.

• Symbols are names of things in Lisp, for example, names of variables or func-
tions. Sometimes it is important to refer to the name of something instead of its
value, and this is done by preceding the name with a single quote ('). For exam-
ple, the define-key function, described in Chapter 10, uses the name of the com-
mand (as a symbol) rather than the command itself.

A simple example that ties many of these basic Lisp concepts together is the func-
tion setq.* As you may have figured out from previous chapters, setq is a way of
assigning values to variables, as in

(setq auto-save-interval 800)

Notice that setq is a function, unlike in other languages in which special syntax such
as = or := is used for assignment. setq takes two arguments: a variable name and a
value. In this example, the variable auto-save-interval (the number of keystrokes
between auto-saves) is set to the value 800.

setq can actually be used to assign values to multiple variables, as in

(setq thisvar thisvalue
 thatvar thatvalue
 theothervar theothervalue)

The return value of setq is simply the last value assigned, in this case theothervalue.
You can set the values of variables in other ways, as we’ll see, but setq is the most
widely applicable.

Defining Functions
Now it’s time for an example of a simple function definition. Start Emacs without
any arguments; this puts you into the *scratch* buffer, an empty buffer in Lisp
interaction mode (see Chapter 9), so that you can actually try this and subsequent
examples.

Before we get to the example, however, some more comments on Lisp syntax are
necessary. First, you will notice that the dash (-) is used as a “break” character to

* We hope that Lisp purists will forgive us for calling setq a function, for the sake of simplicity, rather than a
form, which it technically is.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 11: Emacs Lisp Programming

separate words in names of variables, functions, and so on. This practice is simply a
widely used Lisp programming convention; thus the dash takes the place of the
underscore (_) in languages like C and Ada. A more important issue has to do with
all of the parentheses in Lisp code. Lisp is an old language that was designed before
anyone gave much thought to language syntax (it was still considered amazing that
you could use any language other than the native processor’s binary instruction set),
so its syntax is not exactly programmer-friendly. Yet Lisp’s heavy use of lists—and
thus its heavy use of parentheses—has its advantages, as we’ll see toward the end of
this chapter.

The main problem a programmer faces is how to keep all the parentheses balanced
properly. Compounding this problem is the usual programming convention of putting
multiple right parentheses at the end of a line, rather than the more readable technique
of placing each right parenthesis directly below its matching left parenthesis. Your best
defense against this is the support the Emacs Lisp modes give you, particularly the Tab
key for proper indentation and the flash-matching-parenthesis feature.

Now we’re ready for our example function. Suppose you are a student or journalist
who needs to keep track of the number of words in a paper or story you are writing.
Emacs has no built-in way of counting the number of words in a buffer, so we’ll
write a Lisp function that does the job:

1 (defun count-words-buffer ()
2 (let ((count 0))
3 (save-excursion
4 (goto-char (point-min))
5 (while (< (point) (point-max))
6 (forward-word 1)
7 (setq count (1+ count)))
8 (message "buffer contains %d words." count))))

Let’s go through this function line by line and see what it does. (Of course, if you are
trying this in Emacs, don’t type the line numbers in.)

The defun on line 1 defines the function by its name and arguments. Notice that
defun is itself a function—one that, when called, defines a new function. (defun
returns the name of the function defined, as a symbol.) The function’s arguments
appear as a list of names inside parentheses; in this case, the function has no argu-
ments. Arguments can be made optional by preceding them with the keyword
&optional. If an argument is optional and not supplied when the function is called,
its value is assumed to be nil.

 Line 2 contains a let construct, whose general form is:

(let ((var1 value1) (var2 value2) ...)
statement-block)

The first thing let does is define the variables var1, var2, etc., and set them to the ini-
tial values value1, value2, etc. Then let executes the statement block, which is a
sequence of function calls or values, just like the body of a function.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Lisp | 349

It is useful to think of let as doing three things:

• Defining (or declaring) a list of variables

• Setting the variables to initial values, as if with setq

• Creating a block in which the variables are known; the let block is known as the
scope of the variables

If a let is used to define a variable, its value can be reset later within the let block
with setq. Furthermore, a variable defined with let can have the same name as a glo-
bal variable; all setqs on that variable within the let block act on the local variable,
leaving the global variable undisturbed. However, a setq on a variable that is not
defined with a let affects the global environment. It is advisable to avoid using global
variables as much as possible because their names might conflict with those of exist-
ing global variables and therefore your changes might have unexpected and inexpli-
cable side effects later on.

So, in our example function, we use let to define the local variable count and initial-
ize it to 0. As we will see, this variable is used as a loop counter.

Lines 3 through 8 are the statements within the let block. The first of these calls the
built-in Emacs function save-excursion, which is a way of being polite. The function
is going to move the cursor around the buffer, so we don’t want to disorient the user
by jumping them to a strange place in their file just because they asked for a word
count. Calling save-excursion tells Emacs to remember the location of cursor at the
beginning of the function, and go back there after executing any statements in its
body. Notice how save-excursion is providing us with capability similar to let; you
can think of it as a way of making the cursor location itself a local variable.

Line 4 calls goto-char. The argument to goto-char is a (nested) function call to the
built-in function point-min. As we have mentioned before, point is Emacs’s internal
name for the position of the cursor, and we’ll refer to the cursor as point throughout
the remainder of this chapter. point-min returns the value of the first character posi-
tion in the current buffer, which is almost always 1; then, goto-char is called with the
value 1, which has the effect of moving point to the beginning of the buffer.

The next line sets up a while loop; Java and Perl have a similar construct. The while
construct has the general form

 (while condition statement-block)

Like let and save-excursion, while sets up another statement block. condition is a
value (an atom, a variable, or a function returning a value). This value is tested; if it is
nil, the condition is considered to be false, and the while loop terminates. If the
value is other than nil, the condition is considered to be true, the statement block
gets executed, the condition is tested again, and the process repeats.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 11: Emacs Lisp Programming

Of course, it is possible to write an infinite loop. If you write a Lisp function with a
while loop and try running it, and your Emacs session hangs, chances are that you
have made this all-too-common mistake; just type C-g to abort it.

In our sample function, the condition is the function <, which is a less-than function
with two arguments, analogous to the < operator in Java or Perl. The first argument
is another function that returns the current character position of point; the second
argument returns the maximum character position in the buffer, that is, the length of
the buffer. The function < (and other relational functions) return a Boolean value, t
or nil.

The loop’s statement block consists of two statements. Line 6 moves point forward one
word (i.e., as if you had typed M-f). Line 7 increments the loop counter by 1; the func-
tion 1+ is shorthand for (+ 1 variable-name). Notice that the third right parenthesis on
line 7 matches the left parenthesis preceding while. So, the while loop causes Emacs to
go through the current buffer a word at a time while counting the words.

The final statement in the function uses the built-in function message to print a mes-
sage in the minibuffer saying how many words the buffer contains. The form of the
message function will be familiar to C programmers. The first argument to message
is a format string, which contains text and special formatting instructions of the form
%x, where x is one of a few possible letters. For each of these instructions, in the order
in which they appear in the format string, message reads the next argument and tries
to interpret it according to the letter after the percent sign. Table 11-1 lists meanings
for the letters in the format string.

For example:

(message "\"%s\" is a string, %d is a number, and %c is a character"
 "hi there" 142 ?q)

causes the message:

"hi there" is a string, 142 is a number, and q is a character

to appear in the minibuffer. This is analogous to the C code:

printf ("\"%s\" is a string, %d is a number, and %c is a character\n",
 "hi there", 142, 'q');

Table 11-1. Message format strings

Format string Meaning

%s String or symbol

%c Character

%d Integer

%e Floating point in scientific notation

%f Floating point in decimal-point notation

%g Floating point in whichever format yields the shortest string

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Lisp | 351

The floating-point-format characters are a bit more complicated. They assume a certain
number of significant digits unless you tell them otherwise. For example, the following:

(message "This book was printed in %f, also known as %e." 2004 2004)

yields this:

This book was printed in 2004.000000, also known as 2.004000e+03.

But you can control the number of digits after the decimal point by inserting a period
and the number of digits desired between the % and the e, f, or g. For example, this:

(message "This book was printed in %.3e, also known as %.0f." 2004 2004)

prints in the minibuffer:

This book was printed in 2.004e+03, also known as 2004.

Turning Lisp Functions into Emacs Commands
The count-words-buffer function that we’ve just finished works, but it still isn’t as
convenient to use as the Emacs commands you work with daily. If you have typed it
in, try it yourself. First you need to get Emacs to evaluate the lines you typed in,
thereby actually defining the function. To do this, move your cursor to just after the
last closing parenthesis in the function and type C-j (or Linefeed)—the “evaluate”
key in Lisp interaction mode—to tell Emacs to perform the function definition. You
should see the name of the function appear again in the buffer; the return value of
the defun function is the symbol that has been defined. (If instead you get an error
message, double check that your function looks exactly like the example and that
you haven’t typed in the line numbers, and try again.)

Once the function is defined, you can execute it by typing (count-words-buffer) on
its own line in your Lisp interaction window, and once again typing C-j after the
closing parenthesis.

Now that you can execute the function correctly from a Lisp interaction window, try
executing the function with M-x, as with any other Emacs command. Try typing M-x
count-words-buffer Enter: you will get the error message [No match]. (You can type C-g
to cancel this failed attempt.) You get this error message because you need to “register”
a function with Emacs to make it available for interactive use. The function to do this is
interactive, which has the form:

(interactive "prompt-string")

This statement should be the first in a function, that is, right after the line containing
the defun and the documentation string (which we will cover shortly). Using interac-
tive causes Emacs to register the function as a command and to prompt the user for
the arguments declared in the defun statement. The prompt string is optional.

The prompt string has a special format: for each argument you want to prompt the
user for, you provide a section of prompt string. The sections are separated by new-

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 11: Emacs Lisp Programming

lines (\n). The first letter of each section is a code for the type of argument you want.
There are many choices; the most commonly used are listed in Table 11-2.

With the b and f options, Emacs signals an error if the buffer or file given does not
already exist. Another useful option to interactive is r, which we will see later. There
are many other option letters; consult the documentation for function interactive for
the details. The rest of each section is the actual prompt that appears in the
minibuffer.

The way interactive is used to fill in function arguments is somewhat complicated
and best explained through an example. A simple example is in the function goto-
percent, which we will see shortly. It contains the statement

(interactive "nPercent: ")

The n in the prompt string tells Emacs to prompt for an integer; the string Percent:
appears in the minibuffer.

As a slightly more complicated example, let’s say we want to write our own version
of the replace-string command. Here’s how we would do the prompting:

(defun replace-string (from to)
 (interactive "sReplace string: \nsReplace string %s with: ")
 ...)

The prompt string consists of two sections, sReplace string: and sReplace string %s
with:, separated by a Newline. The initial s in each means that a string is expected;
the %s is a formatting operator (as in the previous message function) that Emacs
replaces with the user’s response to the first prompt. When applying formatting
operators in a prompt, it is as if message has been called with a list of all responses
read so far, so the first formatting operator is applied to the first response, and so on.

Table 11-2. Argument codes for interactive functions

Code User is prompted for:

b Name of an existing buffer

e Event (mouse action or function key press)

f Name of an existing file

n Number (integer)

s String

Most of these have uppercase variations

B Name of a buffer that may not exist

F Name of a file that may not exist

N Number, unless command is invoked with a prefix argument, in
which case use the prefix argument and skip this prompt

S Symbol

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Lisp Primitive Functions | 353

When this command is invoked, first the prompt Replace string: appears in the
minibuffer. Assume the user types fred in response. After the user presses Enter, the
prompt Replace fred with: appears. The user types the replacement string and
presses Enter again.

The two strings the user types are used as values of the function arguments from and
to (in that order), and the command runs to completion. Thus, interactive supplies
values to the function’s arguments in the order of the sections of the prompt string.

The use of interactive does not preclude calling the function from other Lisp code; in
this case, the calling function needs to supply values for all arguments. For example,
if we were interested in calling our version of replace-string from another Lisp func-
tion that needs to replace all occurrences of “Bill” with “Deb” in a file, we would use

(replace-string "Bill" "Deb")

The function is not being called interactively in this case, so the interactive state-
ment has no effect; the argument from is set to “Bill,” and to is set to “Deb.”

Getting back to our count-words-buffer command: it has no arguments, so its
interactive command does not need a prompt string. The final modification we
want to make to our command is to add a documentation string (or doc string for
short), which is shown by online help facilities such as describe-function (C-h f).
Doc strings are normal Lisp strings; they are optional and can be arbitrarily many
lines long, although, by convention, the first line is a terse, complete sentence sum-
marizing the command’s functionality. Remember that any double quotes inside a
string need to be preceded by backslashes.

With all of the fixes taken into account, the complete function looks like this:

(defun count-words-buffer ()
 "Count the number of words in the current buffer;
print a message in the minibuffer with the result."
 (interactive)
 (save-excursion
 (let ((count 0))
 (goto-char (point-min))
 (while (< (point) (point-max))
 (forward-word 1)
 (setq count (1+ count)))
 (message "buffer contains %d words." count))))

Lisp Primitive Functions
Now that you’ve seen how to write a working command, we’ll discuss Lisp’s primi-
tive functions. These are the building blocks from which you’ll build your functions.
As mentioned above, Lisp uses functions where other languages would use opera-
tors, that is, for arithmetic, comparison, and logic. Table 11-3 shows some Lisp
primitive functions that are equivalent to these operators.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 11: Emacs Lisp Programming

All the arithmetic functions except 1+, 1-, and % can take arbitrarily many arguments,
as can and and or. An arithmetic function returns floating point values only if at least
one argument is a floating point number, so for example, (/ 7.0 4) returns 1.75, and
(/ 7 4) returns 1. Notice that integer division truncates the remainder.

It may seem inefficient or syntactically ugly to use functions for everything. How-
ever, one of the main merits of Lisp is that the core of the language is small and easy
to interpret efficiently. In addition, the syntax is not as much of a problem if you
have support tools such as Emacs’s Lisp modes to help you.

Statement Blocks
We have seen that a statement block can be defined using the let function. We also
saw that while and save-excursion include statement blocks. Other important con-
structs also define statement blocks: progn and other forms of let.

progn, the most basic, has the form:

 (progn
statement-block)

progn is a simple way of making a block of statements look like a single one, some-
what like the curly braces of Java or the begin and end of Pascal. The value returned
by progn is the value returned by the last statement in the block. progn is especially
useful with control structures like if (see the following discussion) that, unlike while,
do not include statement blocks.

The let function has other forms as well. The simplest is:

 (let (var1 var2 ...)
statement-block)

In this case, instead of a list of (var value) pairs, there is simply a list of variable
names. As with the other form of let, these become local variables accessible in the
statement block. However, instead of initializing them to given values, they are all

Table 11-3. Lisp primitive functions

Arithmetic +, -, *, /

% (remainder)

1+ (increment)

1- (decrement)

max, min

Comparison >, <, >=, <=

/= (not equal)

= (for numbers and characters)

equal (for strings and other complex objects)

Logic and, or, not

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Lisp Primitive Functions | 355

just initialized to nil. You can actually mix both forms within the same let state-
ment, for example:

 (let (var1 (var2 value2) var3 ...)
statement-block)

In the form of let we saw first, the initial values for the local variables can be func-
tion calls (remember that all functions return values). All such functions are evalu-
ated before any values are assigned to variables. However, there may be cases in
which you want the values of some local variables to be available for computing the
values of others. This is where let*, the final version of let, comes in. let* steps
through its assignments in order, assigning each local variable a value before moving
on to the next.

For example, let’s say we want to write a function goto-percent that allows you to go
to a place in the current buffer expressed as a percentage of the text in the buffer.
Here is one way to write this function:

(defun goto-percent (pct)
 (interactive "nGoto percent: ")
 (let* ((size (point-max))
 (charpos (/ (* size pct) 100)))
 (goto-char charpos)))

As we saw earlier, the interactive function is used to prompt users for values of argu-
ments. In this case, it prompts for the integer value of the argument pct. Then the
let* function initializes size to the size of the buffer in characters, then uses that value
to compute the character position charpos that is pct (percent) of the buffer’s size.
Finally, the call of goto-char causes point to be moved to that character position in
the current window.

The important thing to notice is that if we had used let instead of let*, the value of
size would not be available when computing the value of charpos. let* can also be
used in the (var1 var2 ...) format, just like let, but there wouldn’t be any point in
doing so.

We should also note that a more efficient way to write goto-percent is this:

(defun goto-percent (pct)
 (interactive "nPercent: ")
 (goto-char (/ (* pct (point-max)) 100)))

Control Structures
We already saw that the while function acts as a control structure like similar state-
ments in other languages. There are two other important control structures in Lisp: if
and cond.

The if function has the form:

 (if condition true-case false-block)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 11: Emacs Lisp Programming

Here, the condition is evaluated; if it is non-nil, true-case is evaluated; if nil, false-
block is evaluated. Note that true-case is a single statement whereas false-block is a
statement block; false-block is optional.

As an example, let’s suppose we’re writing a function that performs some compli-
cated series of edits to a buffer and then reports how many changes it made. We’re
perfectionists, so we want the status report to be properly pluralized, that is to say
“made 53 changes” or “made 1 change.” This is a common enough programming
need that we decide to write a general-purpose function to do it so that we can use it
in other projects too.

The function takes two arguments: the word to be pluralized (if necessary) and the
count to be displayed (which determines whether it’s necessary).

(defun pluralize (word count)
 (if (= count 1)
 word
 (concat word "s")))

The condition in the if clause tests to see if count is equal to 1. If so, the first state-
ment gets executed. Remember that the “true” part of the if function is only one state-
ment, so progn would be necessary to make a statement block if we wanted to do
more than one thing. In this case, we have the opposite extreme; our “true” part is a
single variable, word. Although this looks strange, it is actually a very common Lisp
idiom and worth getting used to. When the condition block is true, the value of word
is evaluated, and this value becomes the value of the entire if statement. Because
that’s the last statement in our function, it is the value returned by pluralize. Note
that this is exactly the result we want when count is 1: the value of word is returned
unchanged.

The remaining portion of the if statement is evaluated when the condition is false,
which is to say, when count has a value other than 1. This results in a call to the built-in
concat function, which concatenates all its arguments into a single string. In this case it
adds an “s” at the end of the word we’ve passed in. Again, the result of this concatena-
tion becomes the result of the if statement and the result of our pluralize function.

If you type it in and try it out, you’ll see results like this:

(pluralize "goat" 5)
"goats"

(pluralize "change" 1)
"change"

Of course, this function can be tripped up easily enough. You may have tried some-
thing like this already:

(pluralize "mouse" 5)
"mouses"

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Lisp Primitive Functions | 357

To fix this, we’d need to be able to tell the function to use an alternate plural form
for tricky words. But it would be nice if the simple cases could remain as simple as
they are now. This is a good opportunity to use an optional parameter. If necessary,
we supply the plural form to use; if we don’t supply one, the function acts as it did in
its first incarnation. Here’s how we’d achieve that:

(defun pluralize (word count &optional plural)
 (if (= count 1)
 word
 (if (null plural)
 (concat word "s")
 plural)))

The “else” part of our code has become another if statement. It uses the null func-
tion to check whether we were given the plural parameter or not. If plural was omit-
ted, it has the value nil and the null function returns t if its argument is nil. So this
logic reads “if b was missing, just add an s to word; otherwise return the special plu-
ral value we were given.”

This gives us results like this:

(pluralize "mouse" 5)
"mouses"
(pluralize "mouse" 5 "mice")
"mice"
(pluralize "mouse" 1 "mice")
"mouse"

A more general conditional control structure is the cond function, which has the fol-
lowing form:

 (cond
 (condition1 statement-block1)
 (condition2 statement-block2)

...)

Java and Perl programmers can think of this as a sequence of if then else if then else if...,
or as a kind of generalized switch statement. The conditions are evaluated in order, and
when one of them evaluates to non-nil, the corresponding statement block is exe-
cuted; the cond function terminates and returns the last value in that statement block.*

We can use cond to give a more folksy feel to our hypothetical status reporter now
that it’s pluralizing nicely. Instead of reporting an actual numeric value for the num-
ber of changes, we could have it say no, one, two, or many as appropriate. Again we’ll
write a general function to do this:

(defun how-many (count)
 (cond ((zerop count) "no")

* Statement blocks are actually optional; some programmers like to omit the final statement block, leaving the
final “condition” as an “otherwise” clause to be executed if all of the preceding conditions evaluate to nil.
If the statement block is omitted, the value returned by cond is simply the value of the condition.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 11: Emacs Lisp Programming

 ((= count 1) "one")
 ((= count 2) "two")
 (t "many")))

The first conditional expression introduces a new primitive Lisp function, zerop. It
checks whether its argument is zero, and returns t (true) when it is. So when count is
zero, the cond statement takes this first branch, and our function returns the value
no. This strange function name bears a little explanation. It is pronounced “zero-
pee” and is short for “zero predicate.” In the realm of mathematical logic from which
Lisp evolved, a predicate is a function that returns true or false based on some
attribute of its argument. Lisp has a wide variety of similar predicate functions, with
structurally related names. When you run into the next one, you’ll understand it. (Of
course, you might now expect the null function we introduced in the previous exam-
ple to be called “nilp” instead. Nobody’s perfectly consistent.)

The next two conditional expressions in the cond statement check if count is 1 or 2
and cause it to return “one” or “two” as appropriate. We could have written the first
one using the same structure, but then we’d have missed out on an opportunity for a
digression into Lisp trivia!

The last conditional expression is simply the atom t (true), which means its body is
executed whenever all the preceding expressions failed. It returns the value many.
Executing this function gives us results like these:

(how-many 1)
"one"
(how-many 0)
"no"
(how-many 3)
"many"

Combining these two helper functions into a mechanism to report the change count
for our fancy command is easy.

(defun report-change-count (count)
 (message "Made %s %s." (how-many count) (pluralize "change" count)))

We get results like these:

(report-change-count 0)
"Made no changes."
(report-change-count 1)
"Made one change."
(report-change-count 1329)
"Made many changes."

Useful Built-in Emacs Functions
Many of the Emacs functions that exist and that you may write involve searching and
manipulating the text in a buffer. Such functions are particularly useful in special-
ized modes, like the programming language modes described in Chapter 9. Many

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Useful Built-in Emacs Functions | 359

built-in Emacs functions relate to text in strings and buffers; the most interesting
ones take advantage of Emacs’s regular expression facility, which we introduced in
Chapter 3.

We first describe the basic functions relating to buffers and strings that don’t use reg-
ular expressions. Afterwards, we discuss regular expressions in more depth than was
the case in Chapter 3, concentrating on the features that are most useful to Lisp pro-
grammers, and we describe the functions that Emacs makes available for dealing
with regular expressions.

Buffers, Text, and Regions
Table 11-4 shows some basic Emacs functions relating to buffers, text, and strings
that are only useful to Lisp programmers and thus aren’t bound to keystrokes. We
already saw a couple of them in the count-words-buffer example. Notice that some
of these are predicates, and their names reflect this.

Many functions not included in the previous table deal with buffers and text,
including some that you should be familiar with as user commands. Several com-
monly used Emacs functions use regions, which are areas of text within a buffer.
When you are using Emacs, you delineate regions by setting the mark and moving

Table 11-4. Buffer and text functions

Function Value or action

point Character position of point.

mark Character position of mark.

point-min Minimum character position (usually 1).

point-max Maximum character position (usually size of buffer).

bolp Whether point is at the beginning of the line (t or nil).

eolp Whether point is at the end of the line.

bobp Whether point is at the beginning of the buffer.

eobp Whether point is at the end of the buffer.

insert Insert any number of arguments (strings or characters) into the buffer after point.

number-to-string Convert a numerical argument to a string.

string-to-number Convert a string argument to a number (integer or floating point).

char-to-string Convert a character argument to a string.

substring Given a string and two integer indices start and end, return the substring starting after start
and ending before end. Indices start at 0. For example, (substring "appropriate"
2 5) returns "pro".

aref Array indexing function that can be used to return individual characters from strings; takes
an integer argument and returns the character as an integer, using the ASCII code (on most
machines). For example, (aref "appropriate" 3) returns 114, the ASCII code for r.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 11: Emacs Lisp Programming

the cursor. However, region-oriented functions (such as kill-region, indent-region,
and shell-command-on-region—really, any function with region in its name) are
actually more flexible when used within Emacs Lisp code. They typically take two
integer arguments that are used as the character positions of the boundaries for the
region on which they operate. These arguments default to the values of point and
mark when the functions are called interactively.

Obviously, allowing point and mark as interactive defaults is a more general (and
thus more desirable) approach than one in which only point and mark can be used to
delineate regions. The r option to the interactive function makes it possible. For
example, if we wanted to write the function translate-region-into-German, here is
how we would start:

(defun translate-region-into-German (start end)
 (interactive "r")
 ...

The r option to interactive fills in the two arguments start and end when the func-
tion is called interactively, but if it is called from other Lisp code, both arguments
must be supplied. The usual way to do this is like this:

(translate-region-into-German (point) (mark))

But you need not call it in this way. If you wanted to use this function to write
another function called translate-buffer-into-German, you would only need to write
the following as a “wrapper”:

(defun translate-buffer-into-German ()
 (translate-region-into-German (point-min) (point-max)))

In fact, it is best to avoid using point and mark within Lisp code unless doing so is
really necessary; use local variables instead. Try not to write Lisp functions as lists of
commands a user would invoke; that sort of behavior is better suited to macros (see
Chapter 6).

Regular Expressions
Regular expressions (regexps) provide much more powerful ways of dealing with
text. Although most beginning Emacs users tend to avoid commands that use
regexps, like replace-regexp and re-search-forward, regular expressions are widely
used within Lisp code. Such modes as Dired and the programming language modes
would be unthinkable without them. Regular expressions require time and patience
to become comfortable with, but doing so is well worth the effort for Lisp program-
mers, because they are one of the most powerful features of Emacs, and many things
are not practical to implement in any other way.

One trick that can be useful when you are experimenting with regular expressions and
trying to get the hang of them is to type some text into a scratch buffer that corre-
sponds to what you’re trying to match, and then use isearch-forward-regexp (C-M-s)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Useful Built-in Emacs Functions | 361

to build up the regular expression. The interactive, immediate feedback of an incre-
mental search can show you the pieces of the regular expression in action in a way
that is completely unique to Emacs.

We introduce the various features of regular expressions by way of a few examples of
search-and-replace situations; such examples are easy to explain without introduc-
ing lots of extraneous details. Afterward, we describe Lisp functions that go beyond
simple search-and-replace capabilities with regular expressions. The following are
examples of searching and replacing tasks that the normal search/replace commands
can’t handle or handle poorly:

• You are developing code in C, and you want to combine the functionality of the
functions read and readfile into a new function called get. You want to replace
all references to these functions with references to the new one.

• You are writing a troff document using outline mode, as described in Chapter 7.
In outline mode, headers of document sections have lines that start with one or
more asterisks. You want to write a function called remove-outline-marks to get
rid of these asterisks so that you can run troff on your file.

• You want to change all occurrences of program in a document, including pro-
grams and program’s, to module/modules/module’s, without changing program-
ming to moduleming or programmer to modulemer.

• You are working on documentation for some C software that is being rewritten in
Java. You want to change all the filenames in the documentation from <filename>.c
to <filename>.java, since .java is the extension the javac compiler uses.

• You just installed a new C++ compiler that prints error messages in German.
You want to modify the Emacs compile package so that it can parse the error
messages correctly (see the end of Chapter 9).

We will soon show how to use regular expressions to deal with these examples,
which we refer to by number. Note that this discussion of regular expressions,
although more comprehensive than that in Chapter 3, does not cover every feature;
those that it doesn’t cover are redundant with other features or relate to concepts
that are beyond the scope of this book. It is also important to note that the regular
expression syntax described here is for use with Lisp strings only; there is an impor-
tant difference between the regexp syntax for Lisp strings and the regexp syntax for
user commands (like replace-regexp), as we will see.

Basic operators

Regular expressions began as an idea in theoretical computer science, but they have
found their way into many nooks and crannies of everyday, practical computing. The
syntax used to represent them may vary, but the concepts are much the same every-
where. You probably already know a subset of regular expression notation: the wild-
card characters used by the Unix shell or Windows command prompt to match

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 11: Emacs Lisp Programming

filenames. The Emacs notation is a bit different; it is similar to those used by the lan-
guage Perl, editors like ed and vi and Unix software tools like lex and grep. So let’s
start with the Emacs regular expression operators that resemble Unix shell wildcard
character, which are listed in Table 11-5.

For example, to match all filenames beginning with program in the Unix shell, you
would specify program*. In Emacs, you would say program.*. To match all file-
names beginning with a through e in the shell, you would use [a-e]* or [abcde]*;
in Emacs, it’s [a-e].* or [abcde].*. In other words, the dash within the brackets
specifies a range of characters.* We will provide more on ranges and bracketed
character sets shortly.

To specify a character that is used as a regular expression operator, you need to pre-
cede it with a double-backslash, as in * to match an asterisk. Why a double back-
slash? The reason has to do with the way Emacs Lisp reads and decodes strings.
When Emacs reads a string in a Lisp program, it decodes the backslash-escaped char-
acters and thus turns double backslashes into single backslashes. If the string is being
used as a regular expression—that is, if it is being passed to a function that expects a
regular expression argument—that function uses the single backslash as part of the
regular expression syntax. For example, given the following line of Lisp:

(replace-regexp "fred*" "bob*")

the Lisp interpreter decodes the string fred* as fred* and passes it to the
replace-regexp command. The replace-regexp command understands fred* to
mean fred followed by a (literal) asterisk. Notice, however, that the second argu-
ment to replace-regexp is not a regular expression, so there is no need to back-
slash-escape the asterisk in bob* at all. Also notice that if you were to invoke the
this as a user command, you would not need to double the backslash, that is, you
would type M-x replace-regexp Enter followed by fred* and bob*. Emacs decodes
strings read from the minibuffer differently.

Table 11-5. Basic regular expression operators

Emacs operator Equivalent Function

. ? Matches any character.

.* * Matches any string.

[abc] [abc] Matches a, b, or c.

[a-z] [a-z] Matches any lowercase letter.

* Emacs uses ASCII codes (on most machines) to build ranges, but you shouldn’t depend on this fact; it is bet-
ter to stick to dependable things, like all-lowercase or all-uppercase alphabet subsets or [0-9] for digits, and
avoid potentially nonportable items, like [A-z] and ranges involving punctuation characters.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Useful Built-in Emacs Functions | 363

The * regular expression operator in Emacs (by itself) actually means something dif-
ferent from the * in the Unix shell: it means “zero or more occurrences of whatever is
before the *.” Thus, because . matches any character, .* means “zero or more occur-
rences of any character,” that is, any string at all, including the empty string. Any-
thing can precede a *: for example, read* matches “rea” followed by zero or more
d’s; file[0-9]* matches “file” followed by zero or more digits.

Two operators are closely related to *. The first is +, which matches one or more
occurrences of whatever precedes it. Thus, read+ matches “read” and “readdddd”
but not “rea,” and file[0-9]+ requires that there be at least one digit after “file.” The
second is ?, which matches zero or one occurrence of whatever precedes it (i.e.,
makes it optional). html? matches “htm” or “html,” and file[0-9]? matches “file”
followed by one optional digit.

Before we move on to other operators, a few more comments about character sets
and ranges are in order. First, you can specify more than one range within a single
character set. The set [A-Za-z] can thus be used to specify all alphabetic characters;
this is better than the nonportable [A-z]. Combining ranges with lists of characters
in sets is also possible; for example, [A-Za-z_] means all alphabetic characters plus
underscore, that is, all characters allowed in the names of identifiers in C. If you give
^ as the first character in a set, it acts as a “not” operator; the set matches all charac-
ters that aren’t the characters after the ^. For example, [^A-Za-z] matches all nonal-
phabetic characters.

A ^ anywhere other than first in a character set has no special meaning; it’s just the
caret character. Conversely, - has no special meaning if it is given first in the set; the
same is true for]. However, we don’t recommend that you use this shortcut; instead,
you should double-backslash-escape these characters just to be on the safe side. A
double backslash preceding a nonspecial character usually means just that charac-
ter—but watch it! A few letters and punctuation characters are used as regular
expression operators, some of which are covered in the following section. We list
“booby trap” characters that become operators when double-backslash-escaped
later. The ^ character has a different meaning when used outside of ranges, as we’ll
see soon.

Grouping and alternation

If you want to get *, +, or ? to operate on more than one character, you can use the \\(
and \\) operators for grouping. Notice that, in this case (and others to follow), the
backslashes are part of the operator. (All of the nonbasic regular expression operators
include backslashes so as to avoid making too many characters “special.” This is the
most profound way in which Emacs regular expressions differ from those used in other
environments, like Perl, so it’s something to which you’ll need to pay careful attention.)
As we saw before, these characters need to be double-backslash-escaped so that Emacs
decodes them properly. If one of the basic operators immediately follows \\), it works

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 11: Emacs Lisp Programming

on the entire group inside the \\(and \\). For example, \\(read\\)* matches the
empty string, “read,” “readread,” and so on, and read\\(file\\)? matches “read” or
“readfile.” Now we can handle Example 1, the first of the examples given at the begin-
ning of this section, with the following Lisp code:

(replace-regexp "read\\(file\\)?" "get")

The alternation operator \\| is a “one or the other” operator; it matches either what-
ever precedes it or whatever comes after it. \\| treats parenthesized groups differ-
ently from the basic operators. Instead of requiring parenthesized groups to work
with subexpressions of more than one character, its “power” goes out to the left and
right as far as possible, until it reaches the beginning or end of the regexp, a \\(, a \\
), or another \\|. Some examples should make this clearer:

• read\\|get matches “read” or “get”

• readfile\\|read\\|get matches “readfile”, “read,” or “get”

• \\(read\\|get\\)file matches “readfile” or “getfile”

In the first example, the effect of the \\| extends to both ends of the regular expres-
sion. In the second, the effect of the first \\| extends to the beginning of the regexp
on the left and to the second \\| on the right. In the third, it extends to the back-
slash-parentheses.

Context

Another important category of regular expression operators has to do with specify-
ing the context of a string, that is, the text around it. In Chapter 3 we saw the word-
search commands, which are invoked as options within incremental search. These
are special cases of context specification; in this case, the context is word-separation
characters, for example, spaces or punctuation, on both sides of the string.

The simplest context operators for regular expressions are ^ and $, two more basic
operators that are used at the beginning and end of regular expressions respectively.
The ^ operator causes the rest of the regular expression to match only if it is at the
beginning of a line; $ causes the regular expression preceding it to match only if it is
at the end of a line. In Example 2, we need a function that matches occurrences of
one or more asterisks at the beginning of a line; this will do it:

(defun remove-outline-marks ()
 "Remove section header marks created in outline-mode."
 (interactive)
 (replace-regexp "^*+" ""))

This function finds lines that begin with one or more asterisks (the * is a literal
asterisk and the + means “one or more”), and it replaces the asterisk(s) with the
empty string "", thus deleting them.

Note that ^ and $ can’t be used in the middle of regular expressions that are intended
to match strings that span more than one line. Instead, you can put \n (for Newline)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Useful Built-in Emacs Functions | 365

in your regular expressions to match such strings. Another such character you may
want to use is \t for Tab. When ^ and $ are used with regular expression searches on
strings instead of buffers, they match beginning- and end-of-string, respectively; the
function string-match, described later in this chapter, can be used to do regular
expression search on strings.

Here is a real-life example of a complex regular expression that covers the operators
we have seen so far: sentence-end, a variable Emacs uses to recognize the ends of
sentences for sentence motion commands like forward-sentence (M-e). Its value is:

"[.?!][]\"')}]*\\($\\|\t\\| \\)[\t\n]*"

Let’s look at this piece by piece. The first character set, [.?!], matches a period,
question mark, or exclamation mark (the first two of these are regular expression
operators, but they have no special meaning within character sets). The next part,
[]\"')}]*, consists of a character set containing right bracket, double quote, single
quote, right parenthesis, and right curly brace. A * follows the set, meaning that zero
or more occurrences of any of the characters in the set matches. So far, then, this
regexp matches a sentence-ending punctuation mark followed by zero or more end-
ing quotes, parentheses, or curly braces. Next, there is the group \\($\\|\t\\| \\),
which matches any of the three alternatives $ (end of line), Tab, or two spaces.
Finally, [\t\n]* matches zero or more spaces, tabs, or newlines. Thus the sentence-
ending characters can be followed by end-of-line or a combination of spaces (at least
two), tabs, and newlines.

There are other context operators besides ^ and $; two of them can be used to make
regular expression search act like word search. The operators \\< and \\> match the
beginning and end of a word, respectively. With these we can go part of the way
toward solving Example 3. The regular expression \\<program\\> matches “pro-
gram” but not “programmer” or “programming” (it also won’t match “micropro-
gram”). So far so good; however, it won’t match “program’s” or “programs.” For
this, we need a more complex regular expression:

\\<program\\('s\\|s\\)?\\>

This expression means, “a word beginning with program followed optionally by
apostrophe s or just s.” This does the trick as far as matching the right words goes.

Retrieving portions of matches

There is still one piece missing: the ability to replace “program” with “module” while
leaving any s or 's untouched. This leads to the final regular expression feature we
will cover here: the ability to retrieve portions of the matched string for later use. The
preceding regular expression is indeed the correct one to give as the search string for
replace-regexp. As for the replace string, the answer is module\\1; in other words, the
required Lisp code is:

(replace-regexp "\\<program\\('s\\|s\\)?\\>" "module\\1")

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 11: Emacs Lisp Programming

The \\1 means, in effect, “substitute the portion of the matched string that matched
the subexpression inside the \\(and \\).” It is the only regular-expression-related
operator that can be used in replacements. In this case, it means to use 's in the
replace string if the match was “program’s,” s if the match was “programs,” or noth-
ing if the match was just “program.” The result is the correct substitution of “mod-
ule” for “program,” “modules” for “programs,” and “module’s” for “program’s.”

Another example of this feature solves Example 4. To match filenames <filename>.c
and replace them with <filename>.java, use the Lisp code:

(replace-regexp "\\([a-zA-Z0-9_]+\\)\\.c" "\\1.java")

Remember that \\. means a literal dot (.). Note also that the filename pattern
(which matches a series of one or more alphanumerics or underscores) was sur-
rounded by \\(and \\) in the search string for the sole purpose of retrieving it later
with \\1.

Actually, the \\1 operator is only a special case of a more powerful facility (as you
may have guessed). In general, if you surround a portion of a regular expression with
\\(and \\), the string matching the parenthesized subexpression is saved. When you
specify the replace string, you can retrieve the saved substrings with \\n, where n is
the number of the parenthesized subexpression from left to right, starting with 1.
Parenthesized expressions can be nested; their corresponding \\n numbers are
assigned in order of their \\(delimiter from left to right.

Lisp code that takes full advantage of this feature tends to contain complicated regu-
lar expressions. The best example of this in Emacs’s own Lisp code is compilation-
error-regexp-alist, the list of regular expressions the compile package (discussed in
Chapter 9) uses to parse error messages from compilers. Here is an excerpt, adapted
from the Emacs source code (it’s become much too long to reproduce in its entirety;
see below for some hints on how to find the actual file to study in its full glory):

(defvar compilation-error-regexp-alist
 '(
 ;; NOTE! See also grep-regexp-alist, below.

 ;; 4.3BSD grep, cc, lint pass 1:
 ;; /usr/src/foo/foo.c(8): warning: w may be used before set
 ;; or GNU utilities:
 ;; foo.c:8: error message
 ;; or HP-UX 7.0 fc:
 ;; foo.f :16 some horrible error message
 ;; or GNU utilities with column (GNAT 1.82):
 ;; foo.adb:2:1: Unit name does not match file name
 ;; or with column and program name:
 ;; jade:dbcommon.dsl:133:17:E: missing argument for function call
 ;;
 ;; We'll insist that the number be followed by a colon or closing
 ;; paren, because otherwise this matches just about anything
 ;; containing a number with spaces around it.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Useful Built-in Emacs Functions | 367

 ;; We insist on a non-digit in the file name
 ;; so that we don't mistake the file name for a command name
 ;; and take the line number as the file name.
 ("\\([a-zA-Z][-a-zA-Z._0-9]+: ?\\)?\
\\([a-zA-Z]?:?[^:(\t\n]*[^:(\t\n0-9][^:(\t\n]*\\)[:(][\t]*\\([0-9]+\\)\
\\([) \t]\\|:\\(\\([0-9]+:\\)\\|[0-9]*[^:0-9]\\)\\)" 2 3 6)

;; Microsoft C/C++:
 ;; keyboard.c(537) : warning C4005: 'min' : macro redefinition
 ;; d:\tmp\test.c(23) : error C2143: syntax error : missing ';' before 'if'
 ;; This used to be less selective and allow characters other than
 ;; parens around the line number, but that caused confusion for
 ;; GNU-style error messages.
 ;; This used to reject spaces and dashes in file names,
 ;; but they are valid now; so I made it more strict about the error
 ;; message that follows.
 ("\\(\\([a-zA-Z]:\\)?[^:(\t\n]+\\)(\\([0-9]+\\)) \
: \\(error\\|warning\\) C[0-9]+:" 1 3)

;; Caml compiler:
 ;; File "foobar.ml", lines 5-8, characters 20-155: blah blah
 ("^File \"\\([^,\" \n\t]+\\)\", lines? \\([0-9]+\\)[-0-9]*, characters? \
\\([0-9]+\\)" 1 2 3)

;; Cray C compiler error messages
 ("\\(cc\\| cft\\)-[0-9]+ c\\(c\\|f77\\): ERROR \\([^,\n]+, \\)* File = \
\\([^,\n]+\\), Line = \\([0-9]+\\)" 4 5)

;; Perl -w:
 ;; syntax error at automake line 922, near "':'"
 ;; Perl debugging traces
 ;; store::odrecall('File_A', 'x2') called at store.pm line 90
 (".* at \\([^ \n]+\\) line \\([0-9]+\\)[,.\n]" 1 2)

 ;; See http://ant.apache.org/faq.html
 ;; Ant Java: works for jikes
 ("^\\s-*\\[[^]]*\\]\\s-*\\(.+\\):\\([0-9]+\\):\\([0-9]+\\):[0-9]+:[0-9]\
+:" 1 2 3)

 ;; Ant Java: works for javac
 ("^\\s-*\\[[^]]*\\]\\s-*\\(.+\\):\\([0-9]+\\):" 1 2)
)

This is a list of elements that have at least three parts each: a regular expression and
two numbers. The regular expression matches error messages in the format used by a
particular compiler or tool. The first number tells Emacs which of the matched sub-
expressions contains the filename in the error message; the second number desig-
nates which of the subexpressions contains the line number. (There can also be
additional parts at the end: a third number giving the position of the column num-
ber of the error, if any, and any number of format strings used to generate the true

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 11: Emacs Lisp Programming

filename from the piece found in the error message, if needed. For more details about
these, look at the actual file, as described below.)

For example, the element in the list dealing with Perl contains the regular expression:

".* at \\([^ \n]+\\) line \\([0-9]+\\)[,.\n]"

followed by 1 and 2, meaning that the first parenthesized subexpression contains the
filename and the second contains the line number. So if you have Perl’s warnings
turned on—you always do, of course—you might get an error message such as this:

syntax error at monthly_orders.pl line 1822, near "$"

The regular expression ignores everything up to at. Then it finds monthly_orders.pl,
the filename, as the match to the first subexpression “[^ \n]+” (one or more non-
blank, nonnewline characters), and it finds 1822, the line number, as the match to
the second subexpression “[0-9]+” (one or more digits).

For the most part, these regular expressions are documented pretty well in their defi-
nitions. Understanding them in depth can still be a challenge, and writing them even
more so! Suppose we want to tackle Example 5 by adding an element to this list for
our new C++ compiler that prints error messages in German. In particular, it prints
error messages like this:

Fehler auf Zeile linenum in filename: text of error message

Here is the element we would add to compilation-error-regexp-alist:

("Fehler auf Zeile \\([0-9]+\\) in \\([^: \t]+\\):" 2 1)

In this case, the second parenthesized subexpression matches the filename, and the
first matches the line number.

To add this to compilation-error-regexp-alist, we need to put this line in .emacs:

(setq compilation-error-regexp-alist
 (cons '("Fehler auf Zeile \\([0-9]+\\) in \\([^: \t]+\\):" 2 1)
 compilation-error-regexp-alist))

Notice how this example resembles our example (from Chapter 9) of adding support
for a new language mode to auto-mode-alist.

Regular expression operator summary

Table 11-6 concludes our discussion of regular expression operators with a reference
list of all the operators covered.

Table 11-6. Regular expression operators

Operator Function

. Match any character.

* Match 0 or more occurrences of preceding char or group.

+ Match 1 or more occurrences of preceding char or group.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Useful Built-in Emacs Functions | 369

Finally, the following characters are operators (not discussed here) when double-
backslash-escaped: b, B, c, C, w, W, s, S, =, _, ', and `. Thus, these are “booby traps”
when double-backslash-escaped. Some of these behave similarly to the character
class aliases you may have encountered in Perl and Java regular expressions.

A Treasure Trove of Examples
As mentioned above, the full auto-mode-alist has a lot more entries and documenta-
tion than fit in this book. The compile.el module in which it is defined also contains
functions that use it. One of the best ways to learn how to use Emacs Lisp (as well as
discovering things you might not have even realized you can do) is to browse
through the implementations of standard modules that are similar to what you’re
trying to achieve, or that are simply interesting. But how do you find them?

The manual way is to look at the value of the variable load-path. This is the variable
Emacs consults when it needs to load a library file itself, so any library you’re looking
for must be in one of these directories. (This variable is discussed further in the final
section of this chapter.) The problem, as you will see if you look at the current value of
the variable, is that it contains a large number of directories for you to wade through,

? Match 0 or 1 occurrences of preceding char or group.

[...] Set of characters; see below.

\\(Begin a group.

\\) End a group.

\\| Match the subexpression before or after \\|.

^ At beginning of regexp, match beginning of line or string.

$ At end of regexp, match end of line or string.

\n Match Newline within a regexp.

\t Match Tab within a regexp.

\\< Match beginning of word.

\\> Match end of word.

The following operators are mean-
ingful within character sets:

^ At beginning of set, treat set as chars not to match.

- (dash) Specify range of characters.

The following is also meaningful in
regexp replace strings:

\\n Substitute portion of match within the nth \\(and \\), counting from left
\\(to right, starting with 1.

Table 11-6. Regular expression operators (continued)

Operator Function

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 11: Emacs Lisp Programming

which would be pretty tedious each time you’re curious about a library. (An easy way
to see the variable’s value is through Help’s “Describe variable” feature, C-h v.)

One of the authors wrote the command listed in Example 11-1 to address this prob-
lem and uses it regularly to easily snoop on the source files that make much of Emacs
run. If you don’t want to type this entire function into your .emacs by hand, you can
download it from this book’s web site, http://www.oreilly.com/catalog/gnu3.

Example 11-1. find-library-file

(defun find-library-file (library)
 "Takes a single argument LIBRARY, being a library file to search for.
Searches for LIBRARY directly (in case relative to current directory,
or absolute) and then searches directories in load-path in order. It
will test LIBRARY with no added extension, then with .el, and finally
with .elc. If a file is found in the search, it is visited. If none
is found, an error is signaled. Note that order of extension searching
is reversed from that of the load function."
 (interactive "sFind library file: ")
 (let ((path (cons "" load-path)) exact match elc test found)
 (while (and (not match) path)
 (setq test (concat (car path) "/" library)
 match (if (condition-case nil
 (file-readable-p test)
 (error nil))
 test)
 path (cdr path)))
 (setq path (cons "" load-path))
 (or match
 (while (and (not elc) path)
 (setq test (concat (car path) "/" library ".elc")
 elc (if (condition-case nil
 (file-readable-p test)
 (error nil))
 test)
 path (cdr path))))
 (setq path (cons "" load-path))
 (while (and (not match) path)
 (setq test (concat (car path) "/" library ".el")
 match (if (condition-case nil
 (file-readable-p test)
 (error nil))
 test)
 path (cdr path)))
 (setq found (or match elc))
 (if found
 (progn
 (find-file found)
 (and match elc
 (message "(library file %s exists)" elc)
 (sit-for 1))
 (message "Found library file %s" found))
 (error "Library file \"%s\" not found." library))))

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Useful Built-in Emacs Functions | 371

Once this command is defined, you can visit any library’s implementation by typing
M-x find-library file Enter libraryname Enter. If you use it as often as this author
does, you too may find it worth binding to a key sequence. We won’t present a
detailed discussion of how this function works because it goes a bit deeper than this
chapter, but if you’re curious about what some of the functions do, you can put your
cursor in the function name in a Lisp buffer and use the Help system’s “Describe
function” (C-h f) feature to get more information about it.

If you find that most of the time when you ask for a library, you end up with a file
containing a lot of cryptic numeric codes and no comments, check if the filename
ends in .elc. If that is usually what you end up with, it means that only the byte-com-
piled versions of the libraries (see the discussion at the end of this chapter) have been
installed on your system. Ask your system administrator if you can get the source
installed; that’s an important part of being able to learn and tweak the Emacs Lisp
environment.

Functions That Use Regular Expressions
The functions re-search-forward, re-search-backward, replace-regexp, query-replace-
regexp, highlight-regexp, isearch-forward-regexp, and isearch-backward-regexp are
all user commands that use regular expressions, and they can all be used within Lisp
code (though it is hard to imagine incremental search being used within Lisp code).
The section on customizing major modes later in this chapter contains an example
function that uses re-search-forward. To find other commands that use regexps you
can use the “apropos” help feature (C-h a regexp Enter).

Other such functions aren’t available as user commands. Perhaps the most widely
used one is looking-at. This function takes a regular expression argument and does
the following: it returns t if the text after point matches the regular expression (nil
otherwise); if there was a match, it saves the pieces surrounded by \\(and \\) for
future use, as seen earlier. The function string-match is similar: it takes two argu-
ments, a regexp and a string. It returns the starting index of the portion of the string
that matches the regexp, or nil if there is no match.

The functions match-beginning and match-end can be used to retrieve the saved
portions of the matched string. Each takes as an argument the number of the
matched expression (as in \\n in replace-regexp replace strings) and returns the
character position in the buffer that marks the beginning (for match-beginning) or
end (for match-end) of the matched string. With the argument 0, the character posi-
tion that marks the beginning/end of the entire string matched by the regular expres-
sion is returned.

Two more functions are needed to make the above useful: we need to know how to
convert the text in a buffer to a string. No problem: buffer-string returns the entire

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 11: Emacs Lisp Programming

buffer as a string; buffer-substring takes two integer arguments, marking the begin-
ning and end positions of the substring desired, and returns the substring.

With these functions, we can write a bit of Lisp code that returns a string containing
the portion of the buffer that matches the nth parenthesized subexpression:

(buffer-substring (match-beginning n (match-end n)))

In fact, this construct is used so often that Emacs has a built-in function, match-
string, that acts as a shorthand; (match-string n) returns the same result as in the
previous example.

An example should show how this capability works. Assume you are writing the Lisp
code that parses compiler error messages, as in our previous example. Your code
goes through each element in compilation-error-regexp-alist, checking if the text in
a buffer matches the regular expression. If it matches, your code needs to extract the
filename and the line number, visit the file, and go to the line number.

Although the code for going down each element in the list is beyond what we have
learned so far, the routine basically looks like this:

for each element in compilation-error-regexp-alist
 (let ((regexp the regexp in the element)
 (file-subexp the number of the filename subexpression)
 (line-subexp the number of the line number subexpression))
 (if (looking-at regexp)
 (let ((filename (match-string file-subexp))
 (linenum (match-string line-subexp)))
 (find-file-other-window filename)
 (goto-line linenum))
 (otherwise, try the next element in the list)))

The second let extracts the filename from the buffer from the beginning to the end of
the match to the file-subexp-th subexpression, and it extracts the line number simi-
larly from the line-subexp-th subexpression (and converts it from a string to a num-
ber). Then the code visits the file (in another window, not the same one as the error
message buffer) and goes to the line number where the error occurred.

The code for the calculator mode later in this chapter contains a few other examples
of looking-at, match-beginning, and match-end.

Finding Other Built-in Functions
Emacs contains hundreds of built-in functions that may be of use to you in writing
Lisp code. Yet finding which one to use for a given purpose is not so hard.

The first thing to realize is that you will often need to use functions that are already
accessible as keyboard commands. You can use these by finding out what their func-
tion names are via the C-h k (for describe-key) command (see Chapter 14). This
gives the command’s full documentation, as opposed to C-h c (for describe-key-
briefly), which gives only the command’s name. Be careful: in a few cases, some

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Useful Built-in Emacs Functions | 373

common keyboard commands require an argument when used as Lisp functions. An
example is forward-word; to get the equivalent of typing M-f, you have to use
(forward-word 1).

Another powerful tool for getting the right function for the job is the command-
apropos (C-h a) help function. Given a regular expression, this help function
searches for all commands that match it and display their key bindings (if any) and
documentation in a *Help* window. This can be a great help if you are trying to find
a command that does a certain “basic” thing. For example, if you want to know
about commands that operate on words, type C-h a followed by word, and you will
see documentation on about a dozen and a half commands having to do with words.

The limitation with command-apropos is that it gives information only on functions
that can be used as keyboard commands. Even more powerful is apropos, which is
not accessible via any of the help keys (you must type M-x apropos Enter). Given a
regular expression, apropos displays all functions, variables, and other symbols that
match it. Be warned, though: apropos can take a long time to run and can generate
very long lists if you use it with a general enough concept (such as buffer).

You should be able to use the apropos commands on a small number of well-chosen
keywords and find the function(s) you need. Because, if a function seems general and
basic enough, the chances are excellent that Emacs has it built-in.

After you find the function you are interested in, you may find that the documenta-
tion that apropos prints does not give you enough information about what the func-
tion does, its arguments, how to use it, or whatever. The best thing to do at this
point is to search Emacs’s Lisp source code for examples of the function’s use. “A
Treasure Trove of Examples” earlier in this chapter provides ways of finding out the
names of directories Emacs loads libraries from and an easy way of looking at a
library once you know its name. To search the contents of the library files you’ll need
to use grep or some other search facility to find examples, then edit the files found to
look at the surrounding context. If you’re ambitious you could put together the
examples and concepts we’ve discussed so far to write an extension of the find-
library-file command that searches the contents of the library files in each directory
on the load path! Although most of Emacs’s built-in Lisp code is not profusely docu-
mented, the examples of function use that it provides should be helpful—and may
even give you ideas for your own functions.

By now, you should have a framework of Emacs Lisp that should be sufficient for
writing many useful Emacs commands. We have covered examples of various kinds
of functions, both Lisp primitives and built-in Emacs functions. You should be able
to extrapolate many others from the ones given in this chapter along with help tech-
niques such as those just provided. In other words, you are well on your way to
becoming a fluent Emacs Lisp programmer. To test yourself, start with the code for
count-words-buffer and try writing the following functions:

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 11: Emacs Lisp Programming

count-lines-buffer
Print the number of lines in the buffer.

count-words-region
Print the number of words in a region.

what-line
Print the number of the line point is currently on.

Building an Automatic Template System
You’re probably starting to see how all these tools can be put together in really pow-
erful ways. Most of the rest of the chapter consists of examples of building relatively
real and useful new features for Emacs. You can use them as learning tools for how
to build your own, and you may be able to use them as-is, or with a little tweaking,
in your own daily work.

The example we’re about to look at is something that one of the authors developed
over a decade ago to help with the tedium of creating new files in development
projects where a certain amount of structure and standard documentation were
always needed. Many coding and writing projects have this characteristic; each file
needs some boilerplate, but it needs to be adjusted to the details of the file. Emacs
turned out to be very much up to the task of automating a lot of the drudge work,
and this template system has been heavily used ever since.

Most of the code in this example should already make sense to you. A couple of
aspects that will be explained more thoroughly in the next section about program-
ming a major mode. In particular, don’t worry too much yet about exactly what a
“hook” function is, or funcall. For now it’s sufficient to know that the file-not-
found-hook allows us to run code when the user uses find-file to open a file that
doesn’t exist yet (exactly the time at which we’d like to offer our template services).

Before launching into the code, it’s worth looking at an example of it in action.
You’d set up your template by creating a file named file-template-java at the top level
of a Java project directory hierarchy, containing something like the code shown in
Example 11-2.

Example 11-2. file-template-java

/* %filename%
 * Created on %date%
 *
 * (c) 2004 MyCorp, etc. etc.
 */

%package%

import org.apache.log4j.Logger;

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building an Automatic Template System | 375

The template system shown in Example 11-3 causes an attempt to find a nonexist-
ent Java source file within this project hierarchy (for example, via C-x C-f src/com/
mycorp/util/FooManager.java) to result in the prompt Start with template file?
(y or n) in the minibuffer, and if you answer y, you’ll see your FooManager.java
buffer start out with contents in the following example.

:

/**
 * [Documentation Here!]
 *
 * @author %author%
 * @version $Id: ch11,v 1.8 2004/12/01 01:52:45 free1 Exp jamie $
 *
 **/
public class %class% {

 /**
 * Provides access to the CVS version of this class.
 **/
 public static final String VERSION =
 "$Id: ch11,v 1.8 2004/12/01 01:52:45 free1 Exp jamie $";

 /**
 * Provides hierarchical control and configuration of debugging via
 * class package structure.
 **/
 private static Logger log =
 Logger.getLogger(%class%.class);

}

Example 11-3. FooManager.java

/* FooManager.java
 * Created on Sun Nov 9 20:56:12 2003
 *
 * (c) 2004 MyCorp, etc. etc.
 */

package com.mycorp.util;

import org.apache.log4j.Logger;

/**
 * [Documentation Here!]
 *
 * @author Jim Elliott
 * @version $Id: ch11,v 1.8 2004/12/01 01:52:45 free1 Exp jamie $
 *
 **/
public class FooManager {

Example 11-2. file-template-java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 11: Emacs Lisp Programming

The template has been used to populate the buffer with the standard project header
comments and a basic Java class skeleton, with proper contextual values filled in
(such as the current time, the person creating the file, the file and class name, and so
on). Even the Java package statement has been inferred by examining the directory
path in which the source file is being created. The Logger declaration will look famil-
iar to anyone who uses the excellent log4j system to add logging and debugging to
their Java projects. (The strange version numbers in “$Id” strings are managed by the
CVS version control system and will be updated to the proper file and version infor-
mation when it’s checked in. This topic is discussed in Chapter 12.)

To make this work, the template system needs to be able to do a couple of things:

• Intercept the user’s attempt to find a nonexistent file.

• Check whether there is an appropriate template file somewhere in a parent
directory.

• If so, offer to use it, and populate the buffer with the contents of the template file.

• Scan the template file for special placeholders (such as %filename%) and replace
them with information about the file being created.

Let’s look at the source code that makes this all happen! (As always, if you don’t
want to type the code listed in Example 11-4 yourself, you can download it from this
book’s web site.*)

 /**
 * Provides access to the CVS version of this class.
 **/
 public static final String VERSION =
 "$Id: ch11,v 1.8 2004/12/01 01:52:45 free1 Exp jamie $";

 /**
 * Provides hierarchical control and configuration of debugging via
 * class package structure.
 **/
 private static Logger log =
 Logger.getLogger(FooManager.class);

}

* The version presented in this example is simplified for reasons of space and clarity. The full version, which
adds the ability to insert templates for function definitions and process arbitrary Emacs Lisp functions within
template files, is also available for download.

Example 11-4. template.el

;;;;;;;;;;;;;;;;;;;;;;;;;;; -*- Mode: Emacs-Lisp -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;
;; template.el --- Routines for generating smart skeletal templates for files.

Example 11-3. FooManager.java (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building an Automatic Template System | 377

(defvar template-file-name "file-template"
 "*The name of the file to look for when a find-file request fails. If a
file with the name specified by this variable exists, offer to use it as
a template for creating the new file. You can also have mode-specific
templates by appending \"-extension\" to this filename, e.g. a Java specific
template would be file-template-java.")

(defvar template-replacements-alist
 '(("%filename%" . (lambda ()

 (file-name-nondirectory (buffer-file-name))))
 ("%creator%" . user-full-name)
 ("%author%" . user-full-name)
 ("%date%" . current-time-string)
 ("%once%" . (lambda () (template-insert-include-once)))
 ("%package%" . (lambda () (template-insert-java-package)))
 ("%class%" . (lambda () (template-insert-class-name)))
)
 "A list which specifies what substitutions to perform upon loading a
template file. Each list element consists of a string, which is the target
to be replaced if it is found in the template, paired with a function,
which is called to generate the replacement value for the string.")

(defun find-template-file ()
 "Searches the current directory and its parents for a file matching
the name configured for template files. The name of the first such
readable file found is returned, allowing for hierarchical template
configuration. A template file with the same extension as the file
being loaded (using a \"-\" instead of a \".\" as the template file's
delimiter, to avoid confusing other software) will take precedence
over an extension-free, generic template."
 (let ((path (file-name-directory (buffer-file-name)))

(ext (file-name-extension (buffer-file-name)))
attempt result)

 (while (and (not result) (> (length path) 0))
 (setq attempt (concat path template-file-name "-" ext))
 (if (file-readable-p attempt)

 (setq result attempt)
(setq attempt (concat path template-file-name))
(if (file-readable-p attempt)
 (setq result attempt)
 (setq path (if (string-equal path "/")

 ""
 (file-name-directory (substring path 0 -1)))))))

 result))

(defun template-file-not-found-hook ()
 "Called when a find-file command has not been able to find the specified
file in the current directory. Sees if it makes sense to offer to start it
based on a template."
 (condition-case nil
 (if (and (find-template-file)

Example 11-4. template.el (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 11: Emacs Lisp Programming

 (y-or-n-p "Start with template file? "))
 (progn (buffer-disable-undo)

 (insert-file (find-template-file))
 (goto-char (point-min))

 ;; Magically do the variable substitutions
 (let ((the-list template-replacements-alist))
 (while the-list
 (goto-char (point-min))
 (replace-string (car (car the-list))

 (funcall (cdr (car the-list)))
 nil)

 (setq the-list (cdr the-list))))
 (goto-char (point-min))
 (buffer-enable-undo)
 (set-buffer-modified-p nil)))

 ;; This is part of the condition-case; it catches the situation where
 ;; the user has hit C-g to abort the find-file (since they realized
 ;; that they didn't mean it) and deletes the buffer that has already
 ;; been created to go with that file, since it will otherwise become
 ;; mysterious clutter they may not even know about.
 ('quit (kill-buffer (current-buffer))

 (signal 'quit "Quit"))))

; Install the above routine
(or (memq 'template-file-not-found-hook find-file-not-found-hooks)
 (setq find-file-not-found-hooks
 (append find-file-not-found-hooks '(template-file-not-found-hook)))
)

 (defun template-insert-include-once ()
 "Returns preprocessor directives such that the file will be included
only once during a compilation process which includes it an
abitrary number of times."
 (let ((name (file-name-nondirectory (buffer-file-name)))

basename)
 (if (string-match ".h$" name)

(progn
 (setq basename (upcase (substring name 0 -2)))
 (concat "#ifndef _H_" basename "\n#define _H_" basename

 "\n\n\n#endif /* not defined _H_" basename " */\n"))
 "" ; the "else" clause, returns an empty string.
)))

(defun template-insert-java-package ()
 "Inserts an appropriate Java package directive based on the path to
the current file name (assuming that it is in the com, org or net
subtree). If no recognizable package path is found, inserts nothing."
 (let ((name (file-name-directory (buffer-file-name)))

result)
 (if (string-match "/\\(com\\|org\\|net\\)/.*/$" name)

(progn

Example 11-4. template.el (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building an Automatic Template System | 379

You’ll notice that this code makes heavy use of the regular expression facilities,
which is no surprise. The first section sets up some variables that configure the oper-
ation of the template system. template-file-name determines the file name (or pre-
fix) that is used to search for templates; the default value of file-template is probably
fine. template-replacements-alist sets up the standard placeholders, and the mecha-
nism by which they get replaced by appropriate values. Adding entries to this list is
one way to extend the system. Each entry consists of the placeholder to be replaced,
followed by the Lisp function to be executed to produce its replacement. The way
this function can be stored in a list and executed when appropriate later is one of the
great things about Lisp and is discussed in more depth in the calculator mode exam-
ple in the next section. The placeholders supported are:

%filename%
Gets replaced by the name of the file being created.

%creator%, %author%
These are synonyms; both get replaced by the name of the user creating the file.

%date%
Turns into the current date and time when the file is created.

%once%
Expands into boilerplate code for the C preprocessor to cause a header file to
include itself only once, even if it’s been included multiple times by other header
files. (This sort of thing has been taken care of in more modern environments
like Objective C and Java but can still be handy when working with traditional C
compilers.)

 (setq result (substring name (+ (match-beginning 0) 1)
 (- (match-end 0) 1)))

 (while (string-match "/" result)
 (setq result (concat (substring result 0 (match-beginning 0))

 "."
 (substring result (match-end 0)))))

 (concat "package " result ";"))
 "")))

(defun template-insert-class-name ()
 "Inserts the name of the java class being defined in the current file,
based on the file name. If not a Java source file, inserts nothing."
 (let ((name (file-name-nondirectory (buffer-file-name))))
 (if (string-match "\\(.*\\)\\.java" name)

(substring name (match-beginning 1) (match-end 1))
 "")))

(provide 'template)

Example 11-4. template.el (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 11: Emacs Lisp Programming

%package%
Is replaced by the Java package which contains the file being created (assuming
the file is a Java class). This package is determined by examining the directory
structure in which the file is being placed.

%class%
Becomes the name of the Java class being defined in the file, assuming it’s a Java
source file.

The first function, find-template-file, is responsible for searching the directory hier-
archy above the file being created, looking for a file with the right name to be consid-
ered a file template (if template-file-name has been left at its default value, this looks
for either a file named file-template or file-template-ext where ext is the extension at
the end of the name of the file being created). It just keeps lopping the last directory
off the path in which it’s looking, starting with the location of the new file, and see-
ing if it can read a file with one of those names in the current directory, until it runs
out of directories.

The function template-file-not-found-hook is the “main program” of the template
system. It gets “hooked in” to the normal Emacs find-file process, and called when-
ever find-file doesn’t find the file the user asked for (in other words, a new file is
being created). It uses condition-case (a mechanism similar to exception handling in
C++ and Java) to make sure it gets a chance to clean up after itself if the user cancels
the process of filling in the template file. It checks whether the template file can be
found, asks users if they want to use it, and (if they do) loads it into the new buffer
and performs the placeholder substitutions. For an explanation of the list manipula-
tion and funcall code that makes the substitutions work, read the discussion of Cal-
culator mode in the next section. Finally, it jumps to the beginning of the new buffer
and marks it as unchanged (because, as far as users are concerned, it’s a brand new
buffer on which they’ve not yet had to expend any effort).

Immediately after the function definition is the chunk of code that hooks it into the
find-file mechanism. The file-not-found-hooks is a variable that Emacs uses to keep
track of things to do when a requested file is not found. (Giving you opportunities to
change or enhance normal behavior through “hooks” is a wonderful trait of Emacs
that is discussed in more depth following the Calculator mode example later in this
chapter.) Our code checks to make sure it’s not already hooked up (so you don’t end
up having it run twice or more if you re-load the library file during an Emacs ses-
sion), and then installs our hook at the end of the list if it’s not there.

The rest of the file is helper functions to handle the more complex placeholders.
template-insert-java-package figures out the value that should replace %package%,
while template-insert-class-name figures out the Java class name that replaces
%class%.

The last function call in the file, (provide 'template), records the fact that a “fea-
ture” named “template” has been loaded successfully. The provide function works

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Programming a Major Mode | 381

with require to allow libraries to be loaded just once. When the function (require
'template) is executed, Emacs checks whether the feature “template” has ever been
provided. If it has, it does nothing, otherwise, it calls load-library to load it. It’s a
good practice to have your libraries support this mechanism, so that they can be
gracefully and efficiently used by other libraries through the require mechanism.
You’ll find this pattern throughout the Emacs library sources.

Programming a Major Mode
After you get comfortable with Emacs Lisp programming, you may find that that “lit-
tle extra something” you want Emacs to do takes the form of a major mode. In previ-
ous chapters, we covered major modes for text entry, word processor input, and
programming languages. Many of these modes are quite complicated to program, so
we’ll provide a simple example of a major mode, from which you can learn the con-
cepts needed to program your own. Then, in the following section, you will learn
how you can customize existing major modes without changing any of the Lisp code
that implements them.

We’ll develop Calculator mode, a major mode for a calculator whose functionality will
be familiar to you if you have used the Unix dc (desk calculator) command. It is a
Reverse Polish (stack-based) calculator of the type made popular by Hewlett-Packard.
After explaining some of the principal components of major modes and some interest-
ing features of the calculator mode, we will give the mode’s complete Lisp code.

Components of a Major Mode
A major mode has various components that integrate it into Emacs. Some are:

• The symbol that is the name of the function that implements the mode

• The name of the mode that appears in the mode line in parentheses

• The local keymap that defines key bindings for commands in the mode

• Variables and constants known only within the Lisp code for the mode

• The special buffer the mode may use

Let’s deal with these in order. The mode symbol is set by assigning the name of the
function that implements the mode to the global variable major-mode, as in:

(setq major-mode 'calc-mode)

Similarly, the mode name is set by assigning an appropriate string to the global vari-
able mode-name, as in:

(setq mode-name "Calculator")

The local keymap is defined using functions discussed in Chapter 10. In the case of
the calculator mode, there is only one key sequence to bind (C-j), so we use a special

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 11: Emacs Lisp Programming

form of the make-keymap command called make-sparse-keymap that is more effi-
cient with a small number of key bindings. To use a keymap as the local map of a
mode, we call the function use-local-map, as in:

(use-local-map calc-mode-map)

As we just saw, variables can be defined by using setq to assign a value to them, or
by using let to define local variables within a function. The more “official” way to
define variables is the defvar function, which allows documentation for the variable
to be integrated into online help facilities such as C-h v (for describe-variable). The
format is the following:

(defvar varname initial-value "description of the variable")

A variation on this is defconst, with which you can define constant values (that never
change). For example:

(defconst calc-operator-regexp "[-+*/%]"
 "Regular expression for recognizing operators.")

defines the regular expression to be used in searching for arithmetic operators. As
you will see, we use the calc- as a prefix for the names of all functions, variables, and
constants that we define for the calculator mode. Other modes use this convention;
for example, all names in C++ mode begin with c++-. Using this convention is a
good idea because it helps avoid potential name clashes with the thousands of other
functions, variables, and so on in Emacs.

Making variables local to the mode is also desirable so that they are known only
within a buffer that is running the mode.* To do this, use the make-local-variable
function, as in:

(make-local-variable 'calc-stack)

Notice that the name of the variable, not its value, is needed; therefore a single quote
precedes the variable name, turning it into a symbol.

Finally, various major modes use special buffers that are not attached to files. For
example, the C-x C-b (for list-buffers) command creates a buffer called *Buffer
List*. To create a buffer in a new window, use the pop-to-buffer function, as in:

(pop-to-buffer "*Calc*")

There are a couple of useful variations on pop-to-buffer. We won’t use them in our
mode example, but they are handy in other circumstances.

switch-to-buffer
Same as the C-x b command covered in Chapter 4; can also be used with a
buffer name argument in Lisp.

* Unfortunately, because such variables are defined before they are made local to the mode, there is still a
problem with name clashes with global variables. Therefore, it is still important to use names that aren’t
already used for global variables. A good strategy for avoiding this is to use variable names that start with the
name of the mode.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Programming a Major Mode | 383

set-buffer
Used only within Lisp code to designate the buffer used for editing; the best
function to use for creating a temporary “work” buffer within a Lisp function.

More Lisp Basics: Lists
A Reverse Polish Notation calculator uses a data structure called a stack. Think of a
stack as being similar to a spring-loaded dish stack in a cafeteria. When you enter a
number into a RPN calculator, you push it onto the stack. When you apply an opera-
tor such as plus or minus, you pop the top two numbers off the stack, add or sub-
tract them, and push the result back on the stack.

The list, a fundamental concept of Lisp, is a natural for implementing stacks. The list
is the main concept that sets Lisp apart from other programming languages. It is a
data structure that has two parts: the head and tail. These are known in Lisp jargon,
for purely historical reasons, as car and cdr respectively. Think of these terms as “the
first thing in the list” and “the rest of the list.” The functions car and cdr, when given
a list argument, return the head and tail of it, respectively.* Two functions are often
used for making lists. cons (construct) takes two arguments, which become the head
and tail of the list respectively. list takes a list of elements and makes them into a list.
For example, this:

(list 2 3 4 5)

makes a list of the numbers from 2 to 5, and this:

(cons 1 (list 2 3 4 5))

makes a list of the numbers from 1 to 5. car applied to that list would return 1, while
cdr would return the list (2 3 4 5).

These concepts are important because stacks, such as that used in the calculator
mode, are easily implemented as lists. To push the value of x onto the stack calc-
stack, we can just say this:

(setq calc-stack (cons x calc-stack))

If we want to get at the value at the top of the stack, the following returns that value:

(car calc-stack)

To pop the top value off the stack, we say this:

(setq calc-stack (cdr calc-stack))

Bear in mind that the elements of a list can be anything, including other lists. (This is
why a list is called a recursive data structure.) In fact (ready to be confused?) just
about everything in Lisp that is not an atom is a list. This includes functions, which

* Experienced Lisp programmers should note that Emacs Lisp does not supply standard contractions like
cadr, cdar, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 11: Emacs Lisp Programming

are basically lists of function name, arguments, and expressions to be evaluated. The
idea of functions as lists will come in handy very soon.

The Calculator Mode
The complete Lisp code for the calculator mode appears at the end of this section;
you should refer to it while reading the following explanation. If you download or
type the code in, you can use the calculator by typing M-x calc-mode Enter. You will
be put in the buffer *Calc*. You can type a line of numbers and operators and then
type C-j to evaluate the line. Table 11-7 lists the three commands in calculator mode

Blank spaces are not necessary, except to separate numbers. For example, typing
this:

4 17*6-=

followed by C-j, evaluates (4 * 17) - 6 and causes the result, 62, to be printed.

The heart of the code for the calculator mode is the functions calc-eval and calc-next-
token. (See the code at the end of this section for these.) calc-eval is bound to C-j in Cal-
culator mode. Starting at the beginning of the line preceding C-j, it calls calc-next-token
to grab each token (number, operator, or command letter) in the line and evaluate it.

calc-next-token uses a cond construct to see if there is a number, operator, or
command letter at point by using the regular expressions calc-number-regexp,
calc-operator-regexp, and calc-command-regexp. According to which regular
expression was matched, it sets the variable calc-proc-fun to the name (symbol) of
the function that should be run (either calc-push-number, calc-operate, or
calc-command), and it sets tok to the result of the regular expression match.

In calc-eval, we see where the idea of a function as a list comes in. The funcall func-
tion reflects the fact that there is little difference between code and data in Lisp. We
can put together a list consisting of a symbol and a bunch of expressions and evalu-
ate it as a function, using the symbol as the function name and the expressions as
arguments; this is what funcall does. In this case, the following:

(funcall calc-proc-fun tok)

treats the symbol value of calc-proc-fun as the name of the function to be called and
calls it with the argument tok. Then the function does one of three things:

• If the token is a number, calc-push-number pushes the number onto the stack.

Table 11-7. Calculator mode commands

Command Action

= Print the value at the top of the stack.

p Print the entire stack contents.

c Clear the stack.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Programming a Major Mode | 385

• If the token is an operator, calc-operate performs the operation on the top two
numbers on the stack (see below).

• If the token is a command, calc-command performs the appropriate command.

The function calc-operate takes the idea of functions as lists of data a step further by
converting the token from the user directly into a function (an arithmetic operator).
This step is accomplished by the function read, which takes a character string and
converts it into a symbol. Thus, calc-operate uses funcall and read in combination
as follows:

(defun calc-operate (tok)
 (let ((op1 (calc-pop))
 (op2 (calc-pop)))
 (calc-push (funcall (read tok) op2 op1))))

This function takes the name of an arithmetic operator (as a string) as its argument.
As we saw earlier, the string tok is a token extracted from the *Calc* buffer, in this
case, an arithmetic operator such as + or *. The calc-operate function pops the top
two arguments off the stack by using the pop function, which is similar to the use of
cdr earlier. read converts the token to a symbol, and thus to the name of an arith-
metic function. So, if the operator is +, then funcall is called as here:

(funcall '+ op2 op1)

Thus, the function + is called with the two arguments, which is exactly equivalent to
simply (+ op2 op1). Finally, the result of the function is pushed back onto the stack.

All this voodoo is necessary so that, for example, the user can type a plus sign and
Lisp automatically converts it into a plus function. We could have done the same
thing less elegantly—and less efficiently—by writing calc-operate with a cond con-
struct (as in calc-next-token), which would look like this:

(defun calc-operate (tok)
 (let ((op1 (calc-pop))
 (op2 (calc-pop)))
 (cond ((equal tok "+")
 (+ op2 op1))
 ((equal tok "-")
 (- op2 op1))
 ((equal tok "*")
 (* op2 op1))
 ((equal tok "/")
 (/ op2 op1))
 (t
 (% op2 op1)))))

The final thing to notice in the calculator mode code is the function calc-mode,
which starts the mode. It creates (and pops to) the *Calc* buffer. Then it kills all
existing local variables in the buffer, initializes the stack to nil (empty), and creates
the local variable calc-proc-fun (see the earlier discussion). Finally it sets Calculator
mode as the major mode, sets the mode name, and activates the local keymap.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 11: Emacs Lisp Programming

Lisp Code for the Calculator Mode
Now you should be able to understand all of the code for the calculator mode. You
will notice that there really isn’t that much code at all! This is testimony to the power
of Lisp and the versatility of built-in Emacs functions. Once you understand how this
mode works, you should be ready to start rolling your own. Without any further
ado, here is the code:

;; Calculator mode.
;;
;; Supports the operators +, -, *, /, and % (remainder).
;; Commands:
;; c clear the stack
;; = print the value at the top of the stack
;; p print the entire stack contents
;;

(defvar calc-mode-map nil
 "Local keymap for calculator mode buffers.")

; set up the calculator mode keymap with
; C-j (linefeed) as "eval" key
(if calc-mode-map
 nil
 (setq calc-mode-map (make-sparse-keymap))
 (define-key calc-mode-map "\C-j" 'calc-eval))

(defconst calc-number-regexp
 "-?\\([0-9]+\\.?\\|\\.\\)[0-9]*\\(e[0-9]+\\)?"
 "Regular expression for recognizing numbers.")

(defconst calc-operator-regexp "[-+*/%]"
 "Regular expression for recognizing operators.")

(defconst calc-command-regexp "[c=ps]"
 "Regular expression for recognizing commands.")

(defconst calc-whitespace "[\t]"
 "Regular expression for recognizing whitespace.")

;; stack functions
(defun calc-push (num)
 (if (numberp num)
 (setq calc-stack (cons num calc-stack))))

(defun calc-top ()
 (if (not calc-stack)
 (error "stack empty.")
 (car calc-stack)))

(defun calc-pop ()
 (let ((val (calc-top)))
 (if val

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Programming a Major Mode | 387

 (setq calc-stack (cdr calc-stack)))
 val))

;; functions for user commands:
(defun calc-print-stack ()
 "Print entire contents of stack, from top to bottom."
 (if calc-stack
 (progn
 (insert "\n")
 (let ((stk calc-stack))
 (while calc-stack
 (insert (number-to-string (calc-pop)) " "))
 (setq calc-stack stk)))
 (error "stack empty.")))

(defun calc-clear-stack ()
 "Clear the stack."
 (setq calc-stack nil)
 (message "stack cleared."))

(defun calc-command (tok)
 "Given a command token, perform the appropriate action."
 (cond ((equal tok "c")
 (calc-clear-stack))
 ((equal tok "=")
 (insert "\n" (number-to-string (calc-top))))
 ((equal tok "p")
 (calc-print-stack))
 (t
 (message (concat "invalid command: " tok)))))

(defun calc-operate (tok)
 "Given an arithmetic operator (as string), pop two numbers
off the stack, perform operation tok (given as string), push
the result onto the stack."
 (let ((op1 (calc-pop))
 (op2 (calc-pop)))
 (calc-push (funcall (read tok) op2 op1))))

(defun calc-push-number (tok)
 "Given a number (as string), push it (as number)
onto the stack."
 (calc-push (string-to-number tok)))

(defun calc-invalid-tok (tok)
 (error (concat "Invalid token: " tok))

(defun calc-next-token ()
 "Pick up the next token, based on regexp search.
As side effects, advance point one past the token,
and set name of function to use to process the token."
 (let (tok)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 11: Emacs Lisp Programming

 (cond ((looking-at calc-number-regexp)
 (goto-char (match-end 0))
 (setq calc-proc-fun 'calc-push-number))
 ((looking-at calc-operator-regexp)
 (forward-char 1)
 (setq calc-proc-fun 'calc-operate))
 ((looking-at calc-command-regexp)
 (forward-char 1)
 (setq calc-proc-fun 'calc-command))
 ((looking-at ".")

 (forward-char 1)

 (setq calc-proc-fun 'calc-invalid-tok)))
 ;; pick up token and advance past it (and past whitespace)
 (setq tok (buffer-substring (match-beginning 0) (point)))
 (if (looking-at calc-whitespace)
 (goto-char (match-end 0)))
 tok))

(defun calc-eval ()
 "Main evaluation function for calculator mode.
Process all tokens on an input line."
 (interactive)
 (beginning-of-line)
 (while (not (eolp))
 (let ((tok (calc-next-token)))
 (funcall calc-proc-fun tok)))
 (insert "\n"))

(defun calc-mode ()
 "Calculator mode, using H-P style postfix notation.
Understands the arithmetic operators +, -, *, / and %,
plus the following commands:
 c clear stack
 = print top of stack
 p print entire stack contents (top to bottom)
Linefeed (C-j) is bound to an evaluation function that
will evaluate everything on the current line. No
whitespace is necessary, except to separate numbers."
 (interactive)
 (pop-to-buffer "*Calc*" nil)
 (kill-all-local-variables)
 (make-local-variable 'calc-stack)
 (setq calc-stack nil)
 (make-local-variable 'calc-proc-fun)
 (setq major-mode 'calc-mode)
 (setq mode-name "Calculator")
 (use-local-map calc-mode-map))

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Customizing Existing Modes | 389

The following are some possible extensions to the calculator mode, offered as exer-
cises. If you try them, you will increase your understanding of the mode’s code and
Emacs Lisp programming in general.

• Add an operator ^ for “power” (4 5 ^ evaluates to 1024). There is no built-in
power function in Emacs Lisp, but you can use the built-in function expt.

• Add support for octal (base 8) and/or hexadecimal (base 16) numbers. An octal
number has a leading “0,” and a hexadecimal has a leading “0x”; thus, 017
equals decimal 15, and 0x17 equals decimal 23.

• Add operators \+ and * to add/multiply all of the numbers on the stack, not just
the top two (e.g., 4 5 6 \+ evaluates to 15, and 4 5 6 * evaluates to 120).*

• As an additional test of your knowledge of list handling in Lisp, complete the
example (Example 5) from earlier in this chapter that searches compilation-
error-regexp-alist for a match to a compiler error message. (Hint: make a copy
of the list, then pick off the top element repeatedly until either a match is found
or the list is exhausted.)

Customizing Existing Modes
Now that you understand some of what goes into programming a major mode, you
may decide you want to customize an existing one. Luckily, in most cases, you don’t
have to worry about changing any mode’s existing Lisp code to do this; you may not
even have to look at the code. All Emacs major modes have “hooks” for letting you
add your own code to them. Appropriately, these are called mode-hooks. Every built-
in major mode in Emacs has a mode hook called mode-name-hook, where mode-name is
the name of the mode or the function that invokes it. For example, C mode has c-
mode-hook, shell mode has shell-mode-hook, etc.

What exactly is a hook? It is a variable whose value is some Lisp code to run when
the mode is invoked. When you invoke a mode, you run a Lisp function that typi-
cally does many things (e.g., sets up key bindings for special commands, creates buff-
ers and local variables, etc.); the last thing a mode-invoking function usually does is
run the mode’s hook if it exists. Thus, hooks are “positioned” to give you a chance
to override anything the mode’s code may have set up. For example, any key bind-
ings you define override the mode’s default bindings.

We saw earlier that Lisp code can be used as the value of a Lisp variable; this use
comes in handy when you create hooks. Before we show you exactly how to create a
hook, we need to introduce yet another Lisp primitive function: lambda. lambda is
very much like defun in that it is used to define functions; the difference is that

* APL programmers will recognize these as variations of that language’s “scan” operators.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 11: Emacs Lisp Programming

lambda defines functions that don’t have names (or, in Lisp parlance, “anonymous
functions”). The format of lambda is:

(lambda (args)
code)

where args are arguments to the function and code is the body of the function. To
assign a lambda function as the value of a variable, you need to “quote” it to prevent
it from being evaluated (run). That is, you use the form:

(setq var-name
'(lambda ()

code))

Therefore, to create code for a mode hook, you could use the form:

(setq mode-name-hook
 '(lambda ()

code for mode hook))

However, it’s quite possible that the mode you want to customize already has hooks
defined. If you use the setq form, you override whatever hooks already exist. To
avoid this, you can use the function add-hook instead:

(add-hook 'mode-name-hook
 '(lambda ()
code for mode hook))

The most common thing done with mode hooks is to change one or more of the key
bindings for a mode’s special commands. Here is an example: in Chapter 7 we saw that
picture mode is a useful tool for creating simple line drawings. Several commands in pic-
ture mode set the default drawing direction. The command to set the direction to
“down,” picture-movement-down, is bound to C-c . (C-c followed by a period). This is
not as mnemonic a binding as C-c < for picture-movement-left or C-c ^ for picture-
movement-up, so let’s say you want to make C-c v the binding for picture-movement-
down instead. The keymap for picture mode is, not surprisingly, called picture-mode-
map, so the code you need to set this key binding is this:

(define-key picture-mode-map "\C-cv" 'picture-movement-down)

The hook for picture mode is called edit-picture-hook (because edit-picture is the
command that invokes picture mode). So, to put this code into the hook for picture
mode, the following should go into your .emacs file:

(add-hook 'edit-picture-hook
 '(lambda ()
 (define-key picture-mode-map "\C-cv" 'picture-movement-down)))

This instruction creates a lambda function with the one key binding command as its
body. Then, whenever you enter picture mode (starting with the next time you
invoke Emacs), this binding will be in effect.

As a slightly more complex example, let’s say you create a lot of HTML pages. You
use HTML mode (see Chapter 8), but you find that there are no Emacs commands

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Customizing Existing Modes | 391

that enter standard head and title tags, despite the fact that the help text reminds
you of their importance. You want to write your own functions to insert these
strings, and you want to bind them to keystrokes in HTML mode.

To do this, you first need to write the functions that insert the tag strings. The sim-
plest approach would just be to insert the text:

(defun html-head ()
 (interactive)
 (insert "<head></head>"))

(defun html-title()
 (interactive)
 (insert "<title></title>"))

Remember that the calls to (interactive) are necessary so that Emacs can use these
functions as user commands.

The next step is to write code that binds these functions to keystrokes in HTML
mode’s keymap, which is called html-mode-map, using the techniques described in
Chapter 10. Assume you want to bind these functions to C-c C-h (head) and C-c C-t
(title). C-c is used as a prefix key in many Emacs modes, such as the language modes
we saw in the last chapter. Again, this is no problem:

(define-key html-mode-map"\C-c\C-h" 'html-head)
(define-key html-mode-map"\C-c\C-t" 'html-title))

Finally, you need to convert these lines of Lisp into a value for html-mode-hook.
Here is the code to do this:

(add-hook 'html-mode-hook
 '(lambda ()
 (define-key html-mode-map"\C-c\C-h" 'html-head)
 (define-key html-mode-map"\C-c\C-t" 'html-title)))

If you put this code in your .emacs file, together with the earlier function definitions,
you get the desired functionality whenever you use HTML mode.

If you try using these functions, though, you’ll find they have some noticeable draw-
backs compared to the other tag insertion commands in HTML mode. For one thing,
while the other helper commands leave your cursor in between the opening and clos-
ing tags, our insertions leave the cursor after the closing tag, which is not only incon-
sistent, but it’s much less helpful. Also, while the other tags you insert can be
customized in terms of your preferred capitalization, or wrapped around existing
content in the document, our simple-minded insert calls give us no such capabilities.

Luckily, it’s not hard to add the smarts we want. It turns out that HTML mode is
defined in the file sgml-mode.el (we learned this by applying help’s handy describe-
function command, C-h f, to the mode-defining function HTML mode. Armed with
this knowledge, it was an easy matter to pull up and study the Lisp code that makes
it work using the find-library-file utility shown in “A Treasure Trove of Examples”

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 11: Emacs Lisp Programming

earlier in this chapter. A little quick hunting to find a parallel example revealed that
the tag support is implemented using a skeletal function generator. Without going
into too much detail, it turns out that the code we want to use is this:

(define-skeleton html-head
 "HTML document header section."
 nil
 "<head>" _ "</head>")

(define-skeleton html-title
 "HTML document title."
 nil
 "<title>" _ "</title>")

The define-skeleton function sets up the skeletal HTML code to be inserted, and it
does this by writing a Lisp function based on the template you pass it. Its first argu-
ment is the name of the Lisp function to define, and the next is a documentation
string for that function explaining what it inserts. After that comes an optional
prompt that can be used to customize the content to be inserted. We don’t need any
customization, so we leave it as nil to skip the prompt. Finally comes the list of
strings to be inserted, and we mark where we want the cursor to end up with “_”.
(To learn more about the way this skeleton system works, invoke describe-function
on insert-skeleton.)

With these changes, our new commands work just like the other insertion tools in
HTML mode. Even more than the specific Lisp code that came out of this example,
the technique we used to create it is worth learning. If you can develop the skills and
habits involved in tracking down an example from the built-in libraries that is close
to what you want, and digging into how it works just enough to come up with a vari-
ant that solves your problem, you’ll be well on your way to becoming the friendly
Emacs Lisp guru your friends rely on when they need a cool new trick.

Here is a third example. Let’s say you program in C, and you want a Lisp function
that counts the number of C function definitions in a file. The following function
does the trick; it is somewhat similar to the count-lines-buffer example earlier in the
chapter. The function goes through the current buffer looking for (and counting) C
function definitions by searching for { at the beginning of a line (admittedly, this
simplistic approach assumes a particular and rigid C coding style):

(defun count-functions-buffer ()
"Count the number of C function definitions in the buffer."
 (interactive)
 (save-excursion
 (goto-char (point-min))
 (let ((count 0))
 (while (re-search-forward "^{" nil t)
 (setq count (1+ count)))
 (message "%d functions defined." count))))

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Customizing Existing Modes | 393

The re-search-forward call in this function has two extra arguments; the third (last)
of these means “if not found, just return nil, don’t signal an error.” The second
argument must be set to nil, its default, so that the third argument can be supplied.*

Now assume we want to bind this function to C-c f in C mode. Here is how we
would set the value of c-mode-hook:

(add-hook 'c-mode-hook
 '(lambda ()
 (define-key c-mode-map "\C-cf" 'count-functions-buffer)))

Put this code and the function definition given earlier in your .emacs file, and this
functionality will be available to you in C mode.

As a final example of mode hooks, we’ll make good on a promise from the previous
chapter. When discussing C++ mode, we noted that the commands c-forward-into-
nomenclature and c-backward-into-nomenclature are included as alternatives to
forward-word and backward-word that treat WordsLikeThis as three words instead
of one, and that this feature is useful for C++ programmers. The question is how to
make the keystrokes that normally invoke forward-word and backward-word
invoke the new commands instead.

At first, you might think the answer is simply to create a hook for C++ mode that
rebinds M-f and M-b, the default bindings for forward-word and backward-word,
to the new commands, like this:

(add-hook 'c++-mode-hook
 '(lambda ()
 (define-key c++-mode-map "\ef"
 'c-forward-into-nomenclature)
 (define-key c++-mode-map "\eb"
 'c-backward-into-nomenclature)))

(Notice that we are using c++-mode-map, the local keymap for C++ mode, for our
key bindings.) But what if those keys have already been rebound, or what if forward-
word and backward-word are also bound to other keystroke sequences (which they
usually are anyway)? We need a way to find out what keystrokes are bound to these
functions, so that we can reset all of them to the new functions.

Luckily, an obscure function gives us this information, where-is-internal. This func-
tion implements the “guts” of the where-is help command, which we will see in
Chapter 14. where-is-internal returns a list of keystroke atoms that are bound to the
function given as an argument. We can use this list in a while loop to do all of the
rebinding necessary. Here is the code:

(add-hook 'c++-mode-hook
 '(lambda ()
 (let ((fbinds (where-is-internal 'forward-word))

* The second argument to re-search-forward—and other search functions—gives a bound to the search: if
given an integer value n don’t search past character position n. A value of nil, the default, means don’t give
the search a bound.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 11: Emacs Lisp Programming

 (bbinds (where-is-internal 'backward-word)))
 (while fbinds
 (define-key c++-mode-map (car fbinds)
 'c-forward-into-nomenclature)
 (setq fbinds (cdr fbinds)))
 (while bbinds
 (define-key c++-mode-map (car bbinds)
 'c-backward-into-nomenclature)
 (setq bbinds (cdr bbinds))))))

The two lines in the top of the let statement get all of the key bindings of the com-
mands forward-word and backward-word into the local variables fbinds and
bbinds, respectively.

After that, there are two while loops that work like the print-stack function of the
calculator mode shown earlier in this chapter. This use of while is a very common
Lisp programming construct: it iterates through the elements of a list by taking the
first element (the car), using it in some way, and deleting it from the list ((setq list
(cdr list)). The loop finishes when the list becomes empty (nil), causing the while
test to fail.

In this case, the first while loop takes each of the bindings that where-is-internal
found for forward-word and creates a binding in C++ mode’s local keymap, c++-
mode-map, for the new command c-forward-into-nomenclature. The second while
loop does the same for backward-word and c-backward-into-nomenclature.

The surrounding code installs these loops as a hook to C++ mode, so that the
rebinding takes place only when C++ mode is invoked and is active only in buffers
that are in that mode.

One final word about hooks: you may have noticed that some of the mode customi-
zations we have shown in previous chapters include hooks and others do not. For
example, the code in the previous chapter to set your preferred C or C++ indenta-
tion style included a hook:

(add-hook 'c-mode-hook
 '(lambda ()
 (c-set-style "stylename")
 (c-toggle-auto-state)))

whereas the code that sets an alternative C preprocessor command name for the
c-macro-expand command did not:

(setq c-macro-preprocessor "/usr/local/lib/cpp -C")

Why is this? Actually, the correct way to customize any mode is through its hook—
for example, the preceding example should really be:

(add-hook 'c-mode-hook
 '(lambda ()
 (setq c-macro-preprocessor "/usr/local/lib/cpp -C")))

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building Your Own Lisp Library | 395

If you merely want to set values of variables, you can get away without a hook, but a
hook is strictly required if you want to run functions like c-set-style or those used to
bind keystrokes. The precise reason for this dichotomy takes us into the murky
depths of Lisp language design, but it’s essentially as follows.

Variables that are local to modes, like c-macro-preprocessor, do not exist if you
don’t invoke the mode in which they are defined. So, if you aren’t editing C or C++
code, then c-macro-preprocessor doesn’t exist in your running Emacs, because you
haven’t loaded C mode (see below). Yet if your .emacs file contains a setq to set this
variable’s value, then you call the variable into existence whether or not you ever use
C mode. Emacs can deal with this: when it loads C mode, it notices that you have
already set the variable’s value and does not override it.

However, the situation is different for functions. If you put a call to a mode-local
function like c-set-style in your .emacs file, then (in most cases) Emacs complains,
with the message Error in init file, because it does not know about this function
and thus cannot assume anything about what it does. Therefore you must attach this
function to a hook for C mode: by the time Emacs runs your hook, it has already
loaded the mode and therefore knows what the function does.

These examples of hooks are only the briefest indication of how far you can go in
customizing Emacs’s major modes. The best part is that, with hooks, you can do an
incredible amount of customization without touching the code that implements the
modes. In exchange, you should remember, when you do write your own modes, to
think about useful places to put hooks so others can take advantage of them.

Building Your Own Lisp Library
After you have become proficient at Emacs Lisp programming, you will want a
library of Lisp functions and packages that you can call up from Emacs at will. Of
course, you can define a few small functions in your .emacs file, but if you are writ-
ing bigger pieces of code for more specialized purposes, you will not want to clutter
up your .emacs file—nor will you want Emacs to spend all that time evaluating the
code each time you start it up. The answer is to build your own Lisp library, analo-
gous to the Lisp directories that come with Emacs and contain all of its built-in Lisp
code. After you have created a library, you can load whatever Lisp packages you
need at a given time and not bother with the others.

Creating a library requires two simple steps. First, create a directory in which your Lisp
code will reside. Most people create a elisp subdirectory of their home directory. Lisp
files are expected to have names ending in .el (your .emacs file is an exception). The
second step is to make your directory known to Emacs so that when you try to load a
Lisp package, Emacs knows where to find it. Emacs keeps track of such directories in
the global variable load-path, which is a list of strings that are directory names.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 11: Emacs Lisp Programming

The initial value for load-path is populated with the names of the Lisp directories
that come with Emacs, e.g., /usr/local/emacs/lisp. You will need to add the name of
your own Lisp directory to load-path. One way to make this addition is to use the
Lisp function append, which concatenates any number of list arguments together.
For example, if your Lisp directory is ~<yourname>/lisp, you would put the follow-
ing in your .emacs file:

(setq load-path (append load-path (list "~yourname/lisp")))

The function list is necessary because all of the arguments to append must be lists.
This line of code must precede any commands in your .emacs file that load packages
from your Lisp directory.

When you load a library, Emacs searches directories in the order in which they
appear in load-path; therefore, in this case, Emacs searches its default Lisp directory
first. If you want your directory to be searched first, you should use the cons func-
tion described earlier instead of append, as follows:

(setq load-path (cons "~yourname/lisp" load-path))

This form is useful if you want to replace one of the standard Emacs packages with
one of your own. For example, you’d use this form if you’ve written your own ver-
sion of C mode and want to use it instead of the standard package. Notice that the
directory name here is not surrounded by a call to list because cons’s first argument
can be an atom (a string in this case). This situation is similar to the use of cons for
pushing values onto stacks, as in the calculator mode described earlier.

If you want Emacs to search the directory you happen to be in at any given time, simply
add nil to load-path, either by prepending it via cons or by appending it via append.
Taking this step is analogous to putting . in your Unix PATH environment variable.

After you have created a private Lisp library and told Emacs where to find it, you’re
ready to load and use the Lisp packages that you’ve created. There are several ways
of loading Lisp packages into Emacs. The first of these should be familiar from
Chapter 10:

• Type M-x load-library Enter as a user command; see Chapter 10.

• Put the line (load "package-name") within Lisp code. Putting a line like this into
your .emacs file makes Emacs load the package whenever you start it.

• Invoke Emacs with the command-line option "-l package-name". This action
loads the package package-name.

• Put the line (autoload 'function "filename") within Lisp code (typically in
your .emacs file), as described in Chapter 10. This action causes Emacs to
load the package when you execute the given function.*

* There is also the option "-f function-name" which causes Emacs to run the function function-name at startup,
with no arguments.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building Your Own Lisp Library | 397

Byte-Compiling Lisp Files
After you have created your Lisp directory, you can make loading and running your
Lisp files more efficient by byte-compiling them, or translating their code into byte
code, a more compact, machine-readable form. Byte-compiling the Lisp file filename.
el creates the byte code file filename.elc. Byte code files are typically 40 to 75 percent
of the size of their non-byte-compiled counterparts.

Although byte-compiled files are more efficient, they are not strictly necessary. The
load-library command, when given the argument filename, first looks for a file called
<filename>.elc. If that doesn’t exist, it tries <filename>.el, that is, the non-byte-com-
piled version. If that doesn’t exist, it finally tries just <filename>. Thus, you can byte-
compile your .emacs file, which may result in faster startup if your .emacs is large.

You can byte-compile a single function in a buffer of Lisp code by placing your cur-
sor anywhere in the function and typing M-x compile-defun. You can byte-compile
an entire file of Lisp by invoking M-x byte-compile-file Enter and supplying the file-
name. If you omit the .el suffix, Emacs appends it and asks for confirmation. If you
have changed the file but have not saved it, Emacs offers to save it first.

Then you will see an entertaining little display in the minibuffer as the byte-compiler
does its work: the names of functions being compiled flash by. The byte-compiler
creates a file with the same name as the original Lisp file but with c appended; thus,
<filename>.el becomes <filename>.elc, and .emacs becomes .emacs.elc.

Finally, if you develop a directory with several Lisp files, and you make changes to
some of them, you can use the byte-recompile-directory command to recompile
only those Lisp files that have been changed since being byte-compiled (analo-
gously to the Unix make utility). Just type M-x byte-recompile-directory Enter
and supply the name of the Lisp directory or just press Enter for the default, which
is the current directory.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

398

Chapter 12CHAPTER 12

Version Control

The Uses of Version Control
If you write either large programs or long documents, you have probably been
caught at least once in a situation where you’ve made changes that turned out to be a
bad thing, only to be confused and stymied because you weren’t sure exactly how to
reverse them and get back to a known good state. Or, perhaps you’ve released a pro-
gram or document to someone else, then gotten a bug fix or a comment that you
couldn’t integrate properly because you couldn’t recover the old version that person
was working with. Perhaps you’re a member of a development or documentation
team and have felt the need for some way to keep change histories, indicating who
was responsible for each change.

These common kinds of problems can be addressed with a version control system. A
version control system gives you automated help at keeping a change history for a file
or group of files. It allows you to recover any stage in that history, and it makes get-
ting reports on the differences between versions easy.

Today a variety of version control systems are widely available on machines that run
Emacs. Some are commercial, but there are a wealth of free, open, and powerful
choices, and it seems appropriate for our discussion to focus on these. Historically,
Emacs evolved largely in a Unix environment alongside the SCCS and RCS systems,
and its built-in support for version control reflects their approach and terminology.
Today the most popular by far is CVS (which builds on RCS, giving it more flexibil-
ity and power), and there is a new system called Subversion that is starting to catch
on. Preliminary support for working with Subversion shipped with Emacs 21.3.5; its
documentation suggests you check the Subversion site, http://subversion.tigris.org/,
for updates.

Given that when you need version control, you generally need it very badly (and you
have enough other challenges to occupy your mind), it’s not surprising that most
integrated development environments today offer automated support for these tools.
And if any other IDE does it, by now you can certainly predict that Emacs does too!

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Version Control Concepts | 399

In this chapter, we’ll introduce you to the Emacs facility called VC, an Emacs Lisp
minor mode that makes using version control systems very easy. VC runs all version
control commands for you (using Emacs’ subprocess facilities in the same way that
compiler modes do). VC hides almost all the details of their interfaces from you;
instead, you can trigger most basic version control operations with a single com-
mand, with Emacs correctly deducing what needs to be done next.

As noted above, the VC architecture was designed with the behavior of RCS in mind.
So as we explain VC, we’ll explain the RCS terminology and behavior as Emacs pre-
sents it. Where needed, we’ll point out key differences in the way CVS behaves. Sub-
version, in turn, is being designed as a more modern version of CVS, and acts like
CVS with respect to its interactions with Emacs.

Version Control Concepts
Each file under version control has a change history that consists of an initial version
and a series (or sometimes a branching tree) of subsequent revisions.

To make a file version-controlled, you must register it; that is, you must tell the ver-
sion control system to treat the file contents you’re starting with as an initial version
and begin maintaining a change history for it.*

To change a registered file, in the old days you’d have to check out the file. Doing so
notifies the version control system that you’re modifying it. Under SCCS and RCS,
this would lock the file so that no one else could check it out until you were done
(anyone else could still look at it, though). This limitation was one of the major moti-
vations for the development of CVS, the Concurrent Versions System, which doesn’t
make locks. Instead, it tries to reconcile any concurrent changes at the time that they
are committed, as described below. Even so, some developers prefer to configure
CVS to keep files locked at the OS level until they consciously decide they want to
make changes to one of them; this largely mimics the RCS experience, albeit on a
voluntary basis.

In a system like SCCS or RCS that uses locking, you may sometimes find that you
can’t check out a file because someone else has it locked already. Perhaps that per-
son checked it out and wandered away, so that the lock is stale. You may want to
steal the lock—that is, seize control of the work file with whatever changes the other
person has made and take responsibility for checking in a clean set of changes your-
self. (It’s bad practice to do this casually!) Again, this hasn’t generally been an issue
since CVS made concurrent edits a practical option—recall that the “C” in CVS
stands for “concurrent.”

* You don’t need to have registered a file from VC to use VC on it. VC works just fine on a preexisting tree of
version-controlled files.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 12: Version Control

While making changes to your work file (the working copy you’ve checked out) and
experimenting with them, you may decide at any time to revert the work file—that
is, to throw away your changes and undo the check-out operation. After you’ve
made changes to your file that you want to keep, you must check in those changes.
Doing so adds them permanently to the saved change history as a new revision of the
file. Under RCS and SCCS, it also removes the lock on your work file, so that other
people can check it out and edit it. Under CVS and Subversion, the file was never
locked; instead, the version control system tries to reconcile your changes with any
other changes that might have been made since check-out time and yells for help
(manual intervention) if it finds conflicts. Because you never really checked the file
out in a concurrent system, the standard term for integrating your changes back into
such a repository is commit rather than check in. The CVS interface also allows you
to call it checking in, to accommodate people who are used to older systems, and
that’s what Emacs calls it too.

The register, check-out, revert, and check-in operations are the basic ones. But you
may want to do other things as well. You can also retrieve any saved revision, get a
difference report between any two saved versions or any saved version and your (pos-
sibly modified) work file, or even completely remove saved revisions that you want
to throw away (though this is rare).

If conflicts are reported during a check-in operation, Emacs offers to help you resolve
them by launching an Ediff session (described at the end of this chapter). If you
decide against Ediff, you will see the conflicts as represented within the file by the
version control system and you can address them manually or use whatever other
tools you find convenient. If you later decide you do want help from Ediff after all,
you can use M-x vc-resolve-conflicts Enter while you’re editing the conflicted file.

Most version control systems (and all the ones we’re talking about here) associate
change comments with each revision. So each time you check in a registered file, you
can add an explanation of the change to the change history, which won’t be part of
the file itself. Each revision has a revision number, which identifies its place in the
history. The base revision in SCCS, RCS, and CVS is 1.1. If the history is a linear
sequence of changes (which is typical for small projects), sequence numbers are two
numeric fields separated by a dot. Subversion uses a simpler revision numbering
scheme with which you’re undoubtedly familiar: The first revision is numbered 1,
the one that comes after it is 2...subtle, eh?

It is possible to start branches so that variant versions of files can be maintained in
parallel. In such cases, the main trunk still has two-field revision numbers, but
branches have more fields. The exact naming conventions for branches are arcane
and different between SCCS and RCS or CVS; if you need to know about them in
detail, consult the documentation for your version control system. Once again, this is
a whole lot simpler in Subversion, which versions the entire source tree as a unit and
supports efficient copies of parts of the tree. In Subversion, a branch is just another

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

How VC Helps with Basic Operations | 401

directory. There is a lot more to know about version control systems than we go into
here, and two excellent O’Reilly books on the topic are: Essential CVS by
Jennifer Vesperman and Version Control with Subversion by Ben Collins-Sussman,
Brian W. Fitzpatrick, and C. Michael Pilato.

How VC Helps with Basic Operations
Historically, you had to know three or four different shell commands to do the basic
operations of version control (registration, check in, check out, and revert), and you
had to do each one outside your editor (or in an editor subshell). This procedure was
complicated and annoying, or at best a distraction from the flow of working on your
code and changes.

VC’s interface is much simpler. The simplicity comes from noticing that whatever
state your version-controlled file is in, there is normally just one logical thing to do
next. Here are the rules:

• If your file isn’t under version control, the next logical thing to do is register it
and (where relevant) check out a modifiable copy for you.

• If it’s registered, but not checked out by anyone, the next thing you generally want
to do is check it out so you can edit it (again, where relevant, such as if you’re
using CVS in a “keep files read-only unless I say I want to edit them” mode).

• If you have made changes to the file, the next logical thing is to check it back in,
which may involve reconciling your changes with those made by someone else.

• Much more rarely, if you’re using one of the pre-CVS systems, if someone else
has a file checked out, you may want to steal the lock (notifying the lock owner
that you’ve done so).

Indeed, VC mode has just one basic command: C-x v v (for vc-next-action), which
you can think of as “do the next logical thing to this file” or, more precisely: “take
the currently visited file to the next normal version control state.” It follows the
arrows in Figure 12-1, which describes the traditional version control cycle.* This
command is available in every Emacs since 19; when you invoke it, it automatically
fetches the rest of VC and does its job.

There’s a little more to it than that, of course. For one thing, when you check in a set of
changes to a file, VC pops up a buffer for you to enter a change comment. Similarly, if
you’re in an older version control environment, when you steal a lock, VC pops up a
buffer requesting an explanation. This explanation is mailed to the lock owner.

* Minor tricky detail: your very first vc-next-action on a new work file normally takes you from “unregistered”
through “registered, unlocked,” and then to “locked, editable.” Why make you do two commands for those
two steps when one will cover the typical case? If you want to register a file but not check it out, use C-x v i
(for vc-register). With the advent of CVS, this point becomes largely moot as you’ll see in Figure 12-2.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 12: Version Control

VC gives you a revert operation as well: C-x v u (for vc-revert-buffer). Actually, the
function that implements vc-next-action checks to see if the buffer is unmodified
since check-out time; if so, it offers to revert the buffer and unlocks the work file
rather than checking in an empty change.

Although it’s worth understanding this traditional flow because it’s how VC is
designed, working with today’s concurrent version control systems is slightly differ-
ent. Luckily, it’s even a little simpler. Because there is no need to obtain a lock in
order to edit a document, one of the VC steps is missing (or, if you prefer, you can
think of it as implicit). This is illustrated in Figure 12-2.

Figure 12-1. The traditional version control cycle

Figure 12-2. The concurrent version control cycle

unregistered
registered,

unlocked
locked,

editable

add change comments
(optional, but you should)

check-in

check-out

revert
registration

unregistered
registered,

unlocked
locked,

editable

add change comments
(optional, but you should)

commit

edit document

revert
registration

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

VC Command Summary | 403

The transition from the unmodified state to the modified state (with respect to the ver-
sion in the repository) is shown as a dotted line, because you no longer perform a VC
operation here. You just start editing the file you want to work with. Whenever you tell
VC you want the “next action” it’s able to tell whether the document is modified or
not. If it is, the current version is committed (“checked in,” if you will) and you’re
prompted for the change comments. If the file is registered but unmodified, VC simply
displays a message in the minibuffer telling you that the buffer is up to date.

If you prefer to configure CVS to give you read-only versions of files until you explic-
itly choose to edit them, your workflow will remain that of Figure 12-1.

Editing Comment Buffers
In VC mode, three operations typically pop up a buffer to accept comment or notifica-
tion text: check in, lock stealing, and (under circumstances to be explained later in the
chapter) file registration. In each case, the operation is on hold until you type C-c C-c
to commit the comment buffer. You can enter a comment right away and finish the
operation, or you can go off and do something else. VC waits patiently to commit until
you are ready. If you delete the pop-up buffer, the operation is quietly scrubbed.

The comment buffer is a plain-text buffer. However, each time you commit a com-
ment buffer, the contents are saved to a new slot in a ring of comment buffers. You can
cycle backwards in the ring with M-p and forward with M-n, or you can search for text
backwards in the ring with M-r and forward with M-s. By design, these are the same
keys you can use to navigate an Emacs minibuffer command history. By far the most
commonly used of these commands is M-p. Being able to recall and edit the last
change comment is often useful since it’s common to make a series of related changes.

VC Command Summary
To give you the flavor of the other things VC can do for you, Table 12-1 provides a
summary of VC commands. Each one will be explained in detail, but you can proba-
bly guess some of their actions from the command names.

Table 12-1. VC commands

Keystrokes Command name Action

C-x v v vc-next-action Go to the next logical version control state.

C-x v d vc-directory Show all registered files beneath a directory.

C-x v = vc-diff Generate a version difference report.

C-x v u vc-revert-buffer Throw away changes since the last checked-in revision.

C-x v ~ vc-version-other-window Retrieve a given revision in another window.

C-x v l vc-print-log Display a file’s change comments and history.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 12: Version Control

These commands are ordered in the table roughly by decreasing frequency of use.
This is also the order in which we’ll describe them in the following sections. All VC
commands have the common prefix C-x v. Your fingers will learn this prefix quickly,
and all you usually have to remember is the single command suffix. Two minor com-
mands, vc-rename-file and vc-clear-context, are not bound to keys. They are
explained later on.

VC Mode Indicators
VC grabs a bit of the mode line for each buffer visiting a registered file and tries to
use it to keep you informed of the version control state of that file. You’ll notice that
when a buffer is visiting a version-controlled file, the mode tags part of the mode line
(shown in parentheses) shows the name of your version control system and a revi-
sion number for the file.

When those two parts are separated by a dash, the file is not yet checked out; when
they’re separated by a colon, the file has been checked out, and the revision number
is the one the file had when you checked it out. Note that since most people use con-
current version control systems these days, in which you don’t check files out or
obtain locks, you can think of the dash as meaning unmodified, while the colon
means there have been changes that are not yet committed to the repository.

If you don’t see these indicators, the file isn’t registered yet. These three states are
illustrated in Figure 12-3.

C-x v i vc-register Register a file for version control.

C-x v h vc-insert-headers Insert version control headers in a file.

C-x v r vc-retrieve-snapshot Check out a named project snapshot.

C-x v s vc-create-snapshot Create a named project snapshot.

C-x v c vc-cancel-version Throw away a saved revision.

C-x v a vc-update-change-log Update a GNU-style ChangeLog file.

Figure 12-3. Mode lines showing a file that is not under version control, one that is unchanged with
respect to the repository, and one that has had changes saved but not yet committed.

Table 12-1. VC commands (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Individual VC Commands | 405

Which Version Control System?
We said earlier that VC uses any of a number of version control systems (more may
be added in the future). It chooses which to use for any given file by looking for a
corresponding master file—that is, a file containing a change history.

If you’re using RCS, each of your project directories usually has a subdirectory in
which RCS masters live. If you’re using SCCS, there are SCCS subdirectories. CVS is
a little trickier; your project directory has a CVS subdirectory with control informa-
tion in it, but CVS masters are typically kept in one central repository directory, the
location of which is typically given by the CVSROOT environment variable, and will
likely be on another machine completely, using the pserver network protocol. Sub-
version, too, uses a separate server machine to store the revision repository; it gener-
ally uses WebDAV over HTTP for its transactions. Your local Subversion master files
are kept in a subdirectory named .svn.

If VC can’t find a master in any of these special directories, it looks for a master in
the same directory as your work file (so you don’t have to create SCCS or RCS direc-
tories if you don’t mind your work directories being cluttered with masters). VC
checks each of these possibilities (so you can actually use more than one system in
the same directory, although we don’t recommend it).

If VC can’t find a master anywhere, it looks for an RCS, SCCS, CVS, or .svn direc-
tory. The order in which these are attempted is controlled by the variable vc-handled-
backends, described in “Customizing VC” later in this chapter. The first one it finds
tells it which version control system to register new files with. If it can’t find any of
these directories, and you tell it to register a file, it assumes you want to use RCS and
creates the master right alongside your work file.

To find out which of SCCS, RCS, CVS, or Subversion is available on your system,
simply execute the commands comb, rcs, cvs, and svn respectively, with no argu-
ments. If you see an error or usage message, the corresponding system is ready to
use; if you see command not found, it’s not.

Individual VC Commands
We’ve already explained what the main command, vc-next-action, does. Now we’ll
describe each of VC’s other commands in detail. We have chosen the order of these
descriptions to take you from frequently used and simpler commands to rarer and
more complex ones.

You can, accordingly, read to the end of chapter or bail out at any point if you think
you’ve learned all you need to. But try to persevere because you may find that the
descriptions of the less common commands give you some new ideas about how to
track and organize your project files.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 12: Version Control

Working with Groups and Subtrees of Files
Usually, the projects you want to put under version control have more than one file;
it’s normal for them to contain all the files under a specific directory and subdirec-
tory. Therefore, seeing a list of all version-controlled files beneath the current work-
ing directory is often useful. Being able to perform an operation on all of them en
masse is even more useful.

VC mode supports this directly. The command C-x v d (for vc-directory) puts you in
a buffer running a customized Dired (directory editing) mode, which lists all regis-
tered files under the current directory, indicating which, if any, are checked out and
who has locked them. The status field in this listing is automatically kept up to date
by check-in and check-out operations.

If you mark several files in this Dired buffer (with the ordinary Dired mark com-
mand described in Chapter 5) and then perform either a vc-next-action or vc-revert-
buffer, VC performs that operation on all the marked files. The most common case
in which you’ll perform this procedure is when you want to check in changes to sev-
eral files simultaneously. VC helps you out: it pops up a buffer for only one change
comment, which it then applies to every revision the check-in creates.

The vc-revert-buffer design is a bit more conservative; normally, it prompts you once
for each file to make sure you really want to discard its changes.

Some Dired commands are rebound in VC Dired to run version-control commands.
The = keystroke, for example, runs vc-diff on the current file rather than a Dired
diff. And g refreshes all the VC status fields in the directory.

Difference Reports
Earlier, we mentioned that version control systems help you generate difference
reports between versions. VC’s command for this is C-x v = (for vc-diff). This com-
mand normally shows you the difference between your work file and the last revi-
sion you checked in so that you can see exactly what changes you’ll be committing if
you check in again.

If you give this command a prefix argument, C-u C-x v =, it prompts you for a file
name and two revision numbers and reports the difference between those revisions
of the file. If the older revision number is empty (that is, you simply press Enter at
that prompt), it defaults to the last checked-in revision. If the newer revision is
empty, it defaults to the work file. So pressing Enter twice compares the work file
with what was last checked in to the repository, a very common task.

It’s also possible to get a difference report for a whole tree of project files. If the file-
name you give C-u C-x v = is actually a directory, you’ll see the differences between
your specified versions for every registered file underneath that directory.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Individual VC Commands | 407

By design, such a difference report can be shipped and mechanically applied as a
patch using Larry Wall’s patch utility (available on all modern Unixes). This is a tre-
mendous help when you’re cooperating on a software project by email; you can
download sources, register them, make modifications—and then, with one com-
mand, generate a complete patch set of your changes to mail to your collaborators.

The exact format of these reports varies somewhat between version control systems
because VC uses each system’s native difference reporter.* Generally, the output resem-
bles that of the Unix diff command. We’ll see how to customize the report later in this
chapter. Finally, the last section of the chapter introduces Ediff, an alternate and pow-
erful way to compare and resolve differences between multiple files or versions.

Retrieving Old Revisions
You can use the command C-x v ~ (for vc-version-other-window) to retrieve any
saved revision of a file. The revision is retrieved into a work file with the same name
as your file, except for a suffix that identifies its revision number (the suffix is actu-
ally a dot, followed by a tilde, followed by the revision number, followed by another
tilde). So you can retrieve several revisions, and they won’t step on each other. This
command is useful when you want to eyeball the entire old version of a file, as
opposed to just its changes from previous versions or its differences from later ones.

The version suffix format is very close to what Emacs generates for saved versions if
you set the global Emacs Lisp variable version-control (which VC has made pretty
much obsolete). For example, if you’re visiting a file named foo.html and you
retrieve version 1.3 by typing C-x v ~ 1 . 3 Enter, you will now be visiting a file
named foo.html.~1.3~ (and because it ends with a tilde, Dired’s command to flag
backup files will mark it, as discussed in Chapter 5).

Viewing Change Histories
If you use C-x v l (for vc-print-log) on a registered file, VC pops up a buffer contain-
ing that file’s change history. This command is most useful for viewing the change
comments associated with each revision.

Registering a File
Normally, registering a file for version control with C-x v v (for vc-next-action) with
a nonconcurrent version control system also checks out an editable copy. Occasion-
ally it’s useful to be able to just register a file without checking it out. The command
C-x v i (for vc-register) does this. With modern concurrent version control systems,
this distinction is fading away.

* This is a slight oversimplification. VC actually has its own script as a wrapper around SCCS’s sccsdiff, in
order to give it a calling sequence more like RCS’s rcsdiff.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 12: Version Control

Inserting Version Control Headers
Most version control systems encourage you to embed in your file one or more magic
strings that get automatically updated at check-in, check-out, and revert time. The
purpose of these strings is to carry automatically inserted information about the cur-
rent revision number of the file, who last modified it, and when it was last checked
in.

These header strings largely duplicate within the file the version information that VC
puts on the mode line—and the rest of that information you can get with C-x v l (for
vc-print-log). This feature might not seem very useful, but (in particular) embedding
a version string can make it possible to mine version-control information out of a
compiled binary program.

Further, you may frequently view version-controlled files through something other
than Emacs. If so, you won’t have an Emacs mode line displaying version control
information, and there is some value in having the magic headers visible in the file.
Accordingly, VC provides you with a command to insert them. (Note that what VC
inserts are correctly formatted placeholders for the headers; the actual values get
filled in by the underlying version control system each time you commit the file.)

If you type C-x v h (for vc-insert-headers) while visiting a registered and editable file,
VC tries to determine from the syntax of the file how to insert the version control
header(s) as a comment and then do so. VC knows about C and Java code, and
nroff/troff/groff code especially, and can usually deduce the right thing from Emacs’
comment-start and comment-end global variables (set by each major mode) so it can
insert HTML comments, for example. It falls back to #-to-\n comments (like those
used by shell, awk, Perl, tcl, and many other Unix languages) if it can’t figure out
anything better to do. This command is also smart enough to notice if you already
seem to have version control headers present in the file and will ask you for confir-
mation before inserting a redundant set.

One special behavior with respect to C code is worth mentioning. C files don’t actu-
ally get version headers put in comments by default. Instead, Emacs generates a
string initialization for a static dummy variable called vcid. This action is taken so
the header will actually be generated into the corresponding object file as a string,
and you can use the strings command (if you’ve got a Unix-like environment) to see
which versions of its sources a binary was generated from.

Making and Retrieving Snapshots
A snapshot of a project is a set of revisions of the project files treated as a unit. Typi-
cally, releases are associated with points at which the project’s product goes to a cus-
tomer or other outside evaluator.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Individual VC Commands | 409

When you’re working with a subtree of project files and want to define a release of a
document or program, you may find it tedious to have to do it by remembering or
storing long lists of file revision numbers. Accordingly, most version control systems
give you the ability to associate a symbolic release name with all the revisions that
make up a release, and then to use that symbolic name later on when naming revi-
sions for retrieval or difference reports.

Bare RCS and CVS both provide this capability. Bare SCCS does not, but VC
includes code to simulate it under SCCS. In practice, the difference between native
symbolic names and VC’s is next to invisible. The only drawback of VC’s simulation
is that the SCCS tools won’t know about symbolic names when you call them out-
side VC. (Note that this concept doesn’t really apply to Subversion, because in that
environment every revision is a snapshot of the files and directories comprising the
entire module.)

The C-x v s (for vc-create-snapshot) prompts you for a symbolic name. VC then
associates this name with the current revision level of every registered file under the
current directory.

The symbolic names you create with vc-create-snapshot are also valid arguments to
any other VC command that wants a revision number. Symbolic names are espe-
cially useful with vc-diff; it means you can compare named releases with each other
or with your checked-out work files. The C-x v r (for vc-retrieve-snapshot) com-
mand takes a symbolic name and checks out every registered file underneath the cur-
rent working directory at the revision level associated with the name.

Both the snapshot commands will fail, returning an error and not marking or retriev-
ing any files, if any registered file under the current directory is checked out by any-
one. The vc-create-snapshot command fails in order to avoid making a snapshot
that, when retrieved later, won’t restore the current state completely. It also fails in
order to avoid stepping on your work file changes before you’ve had the chance to
check them in or revert them out.

Updating ChangeLog Files
The command C-x v a (for vc-update-change-log) helps VC work with some
project-management conventions used by the Free Software Foundation. FSF
projects generally have in each directory a file called ChangeLog that is supposed to
contain timestamped modification comments for every file in that directory. The
ChangeLog, historically, provided the change history, or audit trail, for which VC
uses change comments.

Rather than make you enter every change comment twice (!), VC provides a hook
that copies recent change comments out of masters beneath the current directory
and appends them to a ChangeLog in the approved format.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 12: Version Control

Renaming Version-Controlled Files
Renaming version-controlled files can be tricky. In RCS or SCCS, you have to
rename not just the work file but its associated master. Under CVS, for reasons too
arcane to go into here, it’s hard to do at all without breaking something.

The vc-rename-file tries to insulate you from the details and to catch and inform you
about various error conditions that can arise. It simply prompts for old and new file-
names, tries to do the right thing, and tells you if it cannot.

Renaming interacts badly with the simulated symbolic-name feature
under SCCS. This is one of the better reasons to use RCS or CVS. And,
actually, if you think you might need to rename or move files, you’re best
off investigating Subversion since one of its major design goals was to be
the first version control system in which this task is straightforward.

When VC Gets Confused
The filesystem operations required to determine a file’s version control state can be
expensive and slow, especially in an NFS or other networked environment. VC goes
to some pains to compensate (unless, as we’ll see later on, you tell it not to).

It has two major methods: (1) caching per-file information (such as the locking user
and current revision number) in memory rather than running version control utili-
ties to parse it out of the relevant master every time, and (2) assuming that it can
deduce a registered file’s version control state from its write permissions. Specifi-
cally, VC assumes that a registered file that is writable is in the checked-out-and-
locked state and that a registered file that is not writable is not a checked-out version
being edited.

Multiuser environments being what they are, VC’s cached information and assump-
tions about permissions occasionally lead it down the wrong path. This situation
almost always occurs because someone has manually changed a file’s permissions
behind VC’s back.

If you think that this situation has occurred, call vc-clear-context. This command
forces VC to throw away all its cached-in-memory assumptions about the version
control state of the files you are working with.

It is also theoretically possible for VC to get confused by a race condition between
two or more VCs, or between VC and someone running the bare SCCS, RCS, or CVS
utilities. This is not just a VC problem; the same sort of race is possible (though less
likely) between two or more people running the bare utilities. However, this kind of
race is very rare even in VC; the authors haven’t heard of any instance in hundreds of
thousands of programmer-hours in which it’s known to have happened.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Customizing VC | 411

If you’re concerned about this issue, the VC source code (vc.el in your Emacs Lisp
source directory) includes a comment giving a careful and extensive analysis of
potential multiuser conflict and race situations. VC is exactly as safe from them as
the underlying utilities can be.

Customizing VC
Some of the rules we’ve described earlier in the chapter for VC’s behavior can be
changed by setting certain Emacs variables related to VC mode. We’ll go over a few
of the most important here.

vc-handled-backends
This variable controls the set of version control systems used by VC, and the
order in which they are found in the list controls the order in which they are
attempted. It defaults to (RCS CVS SVN MCVS SCCS). If you remove values from the
list, they won’t be considered valid version control systems to use. If the list is
empty, VC is disabled entirely.

vc-display-status
This variable displays a file’s revision number and status on the mode line of
each buffer visiting it, if this is non-nil. To avoid expensive queries of the master
file, you may want to turn this variable off if you are running VC over very slow
network links.

vc-backend-header
These variables provides lists of the headers to be inserted by vc-insert-headers
when using the specified version control system. For example, the headers for
CVS are in the variable vc-cvs-header. You can customize these lists if you like a
different format for your version number headers.

vc-keep-workfiles
Normally, VC leaves a read-only copy of the work file in place whenever it per-
forms a check-in. This feature is convenient because it means make and other
tools always find work files where they expect to. If you’re very tight on disk
space, you can turn it off, but then you have to execute an explicit check-out
every time a tool other than VC needs the work file. (Emacs itself knows about
version control through a piece of VC code that’s always resident; its visit com-
mands perform a check-out if necessary, without locking the file.)

vc-mistrust-permissions
This variable is normally nil. Make it t to tell VC not to trust a file’s permissions
or ownership as indicators of its version control state. This change slows VC
down a lot, but it may be necessary if (for example) your development group is
working in several different directories and accessing work files via symbolic
links. In such a case, the permissions and ownership of the link convey nothing
about the state of the work file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 12: Version Control

vc-suppress-confirm
This variable defaults to nil. If it is non-nil, it suppresses the confirmation
prompt vc-revert-buffer normally gives you before discarding changes.

vc-initial-comment
Most version control systems allow (but do not require) you to enter an initial
comment when you register a file—a lead-off for the change history. If this vari-
able is non-nil, VC pops up a buffer for this comment at registration time just as
it normally does for change comments at check-in time.

diff-switches
The Emacs diff.el mode takes command-line switches from this global variable to
pass to diff when generating a change report. VC uses it the same way. It
defaults to the single switch -c to force context-diff format; -u for unified-diff
format is also fairly popular.

A number of other, less important global variables are fully documented in the
Emacs online help system.

Extending VC
VC was designed from the beginning to be usable as a front-end for multiple version
control systems. The code that actually runs the version control tools is carefully iso-
lated from the user-level package logic in such a way that plugging in new systems is
not very hard. VC’s author originally wrote it to handle SCCS and RCS; CVS sup-
port was added later, by a different person, without much difficulty, and Subversion
support was an even simpler variant of the CVS code.

There are a couple of extensions to Emacs for users of ClearCase, a popular commer-
cial project-management system. Whether this code is accepted into the GNU Emacs
distribution, considering the FSF’s hostile attitude towards non-freeware, is another
question. So far they have not been, but you can obtain the packages over the inter-
net. At the time of this writing, the best choice appears to be clearcase.el. The author
of the first implementation, VC-ClearCase, has even stated that he’s switched over to
clearcase.el. The current download site is http://members.verizon.net/~vze24fr2/
EmacsClearCase/. If it’s moved by the time you read this, hopefully a Google search
will steer you in the right direction.

By the time you read this book, then, your VC may well handle additional systems
besides the ones we have described here (though CVS and Subversion are likely to
remain the most popular ones for the foreseeable future). If you are a skilled Emacs
Lisp programmer (or would like to become one) and have your own favorite version
control system, by all means hack the source code—extend VC to use it, and share
your results so that everyone benefits.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using VC Effectively | 413

What VC Is Not
VC is not a total solution to the project-management problem. Although it assists
single-author programming or document maintenance greatly and can give vital help
on small- to medium-scale projects involving several developers, it’s not necessarily
adequate by itself for large multiple-component, multiple-directory projects. The fol-
lowing are some of its more obvious deficiencies for larger projects:

• It is not integrated with a change request or problem-report system.

• Its only way of grouping project files is by directory subtree. This limitation may
create problems for large, multiple-directory projects, especially when two or
more need to share a common library or subtree.

You can work around these deficiencies on small projects. Variant versions might be
handled with compile-time conditions, like #ifdefs in C code. Change requests can
be kept separately in some kind of database (such as the FSF’s GNATS system, or
Mozilla’s Bugzilla). Programmers can carry around in their heads the state needed to
do renames without disruption.

As projects scale up in size and intricacy, however, such ad hoc measures increas-
ingly fail to prevent damaging friction and lead to death by accumulated details.
Complexity control for very large projects requires a fundamentally stronger (and,
unfortunately, more constraining and complex) support environment that goes
beyond version control—a full project-management system.

For more on the design issues in project-management systems, see the latter half of
the book Applying SCCS and RCS by Don Bolinger and Tan Bronson (O’Reilly).

Using VC Effectively
We urge those of you with prior version control experience to heed the following
maxim: to use VC effectively, check in your changes early and often! Of course, when
you are working as part of a team of developers, you do need to take care to check in
only a consistent and working set of files each time. There’s nothing quite equal to
the frustration of discovering that you can no longer compile and test your own code
because someone else has checked in a fragmentary or broken piece of theirs.

If you’re used to version control interfaces that are as clumsy and difficult as bare
SCCS, RCS, or—to a lesser extent—CVS, your reflexes may prevent you from get-
ting the most leverage out of VC. You probably won’t commit often; you’re not used
to being able to instantly get status reports on a whole subtree of files.

It’s worth a little thought and effort to reeducate yourself. You’ll find that, instead of
being an irritating minor chore, version control under VC can be tremendously liber-
ating. By checking changes in often, you’ll find you can afford to experiment more,
because you’ll know how to revert to a known good state quickly if need be.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 12: Version Control

Comparing with Ediff
In working with any version control system, you sometimes want to compare differ-
ent revisions of a file. Often you’re interested in what’s changed in the current work-
ing revision, but sometimes you’re after more historical information. The most
challenging situation arises when an optimistic strategy like CVS is proved wrong,
and you need to merge incompatible changes made by multiple developers to the
same section of a file.

We’ve already described vc-diff, VC’s built-in facility for helping with these tasks.
We would be remiss, however, if we did not introduce you to Ediff, an even more
powerful facility that is available in current releases of GNU Emacs. Ediff is
extremely rich; it almost feels like another program that “takes over” your Emacs ses-
sion for a while. Full coverage would require an entire chapter, or perhaps even its
own handbook, but this introduction will get you started and point you at the built-
in manual if you want to delve deeper.

Starting Ediff
For the most part, you launch Ediff as an independent entity rather than having it
invoked automatically by the version control interface. The exception (as mentioned
above) is if you ask Emacs for help resolving conflicts when they occur during a
check-in operation or manually invoke vc-resolve-conflicts while visiting a buffer
containing such conflicts.

If you want to use Ediff to compare two nonconflicting revisions of a file, choose
Tools ➝ Compare (Ediff) ➝ File with revision, or type M-x ediff-revision Enter. Ediff
prompts you for the file you’d like to compare (defaulting to the file associated with
the current buffer), and the revision(s) you’d like to compare, defaulting to the ver-
sion last checked in and the current state of the buffer. (Ediff can also be used for
many tasks outside the context of version control systems; you might want to
explore the options on the Compare (Ediff) menu on a rainy day.)

The first time you invoke Ediff, you will probably find it disorienting. In addition to
the expected pair of buffers showing you the two files or revisions being compared, it
pops open a small “control window” (see Figure 12-4) in which you type com-
mands. In its default configuration, this is a separate operating system window (or
what Emacs refers to as a “frame”). For Ediff commands to work, this window must
have keyboard focus (must show as being the currently active window as far as the
operating system is concerned). This is different from almost any other situation in
Emacs, in that you’re looking at and manipulating content in one frame while a sec-
ond frame has focus.

In its default configuration, the control window is designed to be small enough not
to get in the way on smaller displays. The problem is that you might not even notice

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Comparing with Ediff | 415

it, let alone realize what it’s for! In addition to being the place you type Ediff com-
mands, this small window shows you where you are in the difference list (in this
case, before the first of seven differences), and reminds you that you can type ? to get
some more help. As a new Ediff user, we strongly recommend that you type ? each
time you fire it up to expand the control window into the larger, Quick Help mode,
shown in Figure 12-5.

In addition to the control window, you’ll see the differences between the files you’re
comparing inside the frame you were previously using for editing. If you’re looking
at a large file, none of the differences might be visible initially. You can jump to the
first difference by typing n or pressing the space bar, as suggested by the quick help
window. (Remember that for any of the Ediff commands to work, the control/quick
help window must have keyboard focus.) The displayed differences will look some-
thing like Figure 12-6.

Ediff centers the difference regions within each buffer, and marks the changed lines
with color, further emphasizing the specific portions of the lines which have changed
to help attract visual attention to the differences. This is much more helpful than the
traditional diff mode, making it worthwhile learning the strange new interface.

Figure 12-4. The Ediff control window in its default state (Mac OS X)

Figure 12-5. The Ediff control window showing Quick Help (Mac OS X)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 12: Version Control

Using Ediff
The basic way to use Ediff is to scroll through the buffers, seeing what has changed
between them. The normal Emacs “browsing” keys (Space to move forward, Del to
move backward) are bound in the control window to take you through the differ-
ences one by one. Pressing n (next) and p (previous) has the same effect. If you want
to go to a specific difference, you can type a number followed by j (jump) to move
immediately to that difference. To scroll up or down by pages rather than by differ-
ences you can use v to move forward and V to move backward. If your buffers con-
tain wide lines, you can also type < and > to scroll left and right. If you’d like to view
the buffers side by side rather than one above the other, type | (vertical bar). Typing
this a second time returns to showing the buffers vertically. To reduce the need to
scroll horizontally, you can make the comparison window as wide as possible by typ-
ing m (this is also a toggle; typing it again returns the window to its previous width).
This command might cause the control window to lose focus, forcing you to click
back into it before issuing the next Ediff command. (See “Recovering from Confu-
sion” later in this chapter.) Important commands available in Ediff are summarized
in Table 12-2.

Figure 12-6. Differences displayed by Ediff

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Comparing with Ediff | 417

Making Changes
In addition to simply viewing the differences between files, you will sometimes want
to resolve or merge them (especially if you’ve entered Ediff as the result of conflicts
that occurred while checking in a file revision). Several commands help with this,
and they generally require you to choose which buffer you want to work from. As
you might have noticed in Figure 12-5, Ediff assigns each file or revision buffer a let-
ter to identify it: A, B and sometimes C if you are comparing three things. A number of

Table 12-2. Ediff commands

Keystrokes Command name Action

Space or n ediff-next-difference Move to the next difference between the files.

Del or p ediff-previous-difference Move to the preceding difference between the files.

j ediff-jump-to-difference Go to the difference specified as a numeric prefix argument.

v or C-v ediff-scroll-vertically Move forward one page in both buffers.

V or M-v ediff-scroll-vertically Move backward one page in both buffers.

< ediff-scroll-horizontally Scroll each buffer to the left.

> ediff-scroll-horizontally Scroll each buffer to the right.

| (vertical bar) ediff-toggle-split Switch between viewing the buffers one above the other and
side-by-side.

m ediff-toggle-wide-display Toggle between normal frame size and making it as wide as
possible.

a ediff-copy-A-to-B Copy the version of the current difference found in buffer A to
buffer B.

b ediff-copy-B-to-A Copy the version of the current difference found in buffer B to
buffer A.

r a or r b ediff-restore-diff Restore the current difference in buffer A (or B) to the way it
was before copying from the other buffer.

A or B ediff-toggle-read-only Switch the specified buffer into (or out of) read-only mode.

g a or g b ediff-jump-to-difference-
at-point

Recenter the comparison buffers on the difference nearest to
your current location (point) in the specified buffer.

C-l ediff-recenter Restore the comparison display so that the highlighted
regions of all buffers being compared are visible; useful if
you’ve been doing something else and want to get back to
comparing.

! ediff-update-diffs Recalculate and redisplay the highlighted regions; useful if
you’ve manually made extensive changes to a buffer.

w a or w b ediff-save-buffer Save the specified buffer to disk.

E ediff-documentation Open the manual for Ediff.

z ediff-suspend Close the Ediff control window, but leave the session active so
you can resume it later.

q ediff-quit Close the Ediff window and end this comparison session.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 12: Version Control

Ediff commands work with these buffer identifiers—the letter X is used to stand for
these labels in the quick help window for most commands that use them.

To copy the version of the current difference found in one buffer to the other buffer,
type the letter assigned to the buffer with the “right” version. For example, to copy A’s
version to B, type a. Ediff makes this change but keeps track of the old value in the
buffer you changed. Following along in our example, if after changing buffer B like this,
you change your mind and want to restore its old state, you can type r b (for “restore
buffer B“). These changes are kept track of on a difference-by-difference basis, so you
don’t have to change your mind right away; you can jump back to that difference and
restore it at a later time, as long as you’re still in the same Ediff session.

Of course, to make changes to a buffer, it cannot be in read-only mode. If you are com-
paring a current file with a historical revision, the buffer representing the older version
is read-only because you can’t change the past. If you want to avoid accidentally
changing a file while browsing differences, you can cause its buffer to become read-
only by typing Shift and the buffer’s letter label. (Shift-b to make buffer B read-only).
This is a toggle, so doing it again makes a read-only buffer editable. If you do this to a
buffer representing a historical revision, although Emacs will then let you edit the
buffer, you’re not actually affecting the revision within the version control system. So
unless you’re trying to confuse yourself, we’d suggest avoiding this practice.

If you’re whipping through the buffers, making many changes by selecting appropri-
ate versions to use within the Ediff control window, you may find yourself wanting
to save one or the other of your difference buffers. While you can certainly click over
to the difference window, move into that buffer, and use the standard C-s command
to save, Ediff offers a more convenient alternative. Simply press w (write) followed
by the buffer’s letter label to save that buffer without leaving the control window.

Quitting Ediff
When you’re done comparing the files, the quickest way to close the control win-
dow and get back to the “normal” Emacs world is to type q to quit your Ediff ses-
sion. After confirming that you really want to do this, Ediff closes the control
window and cleans up after itself. You can also suspend the session temporarily by
typing z for suspend. This closes the Ediff control window, but Ediff remembers that
you were in the middle of a session, to which you can return later whenever you’d
like. The easiest way to do this is to view the list of active Ediff sessions by choosing
Tools ➝ Ediff Miscellanea ➝ List Ediff Sessions. When you actually quit an Ediff ses-
sion, it no longer appears in this list.

Recovering from Confusion
If you’ve been cruising along in Ediff and suddenly find your commands aren’t work-
ing, you’ve probably accidentally clicked on the differences window and are typing in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Comparing with Ediff | 419

one of the buffers directly, or perhaps you used an Ediff command that switched the
window focus on you unexpectedly. Make sure to undo the stray characters you’ve
typed into the comparison buffer, then click on the control window and start issuing
commands again.

Of course, you may want to intentionally jump over to edit one of the buffers as you
notice changes you’d like to make. You can do that at any time; just remember to
switch back to the control window when you want move to other differences or use
other Ediff commands. If, after editing one of the comparison buffers for a while,
you’d like to return to viewing differences, starting with the difference nearest to
your edit location, click in the control window and type g followed by the letter
assigned to the buffer in which you’re interested (as discussed earlier in “Making
Changes”).

If you’ve made substantial changes by editing the buffer directly, you may find that
the difference region highlights have drifted out of synch with the actual location of
differences. To fix this, once the control window has focus, type ! to cause Ediff to
recalculate and redisplay the differences.

If you’ve reconfigured the buffers you’re looking at (perhaps you wanted to look up
some help text, or engage in a side task, which Emacs certainly encourages) you can
restore the window configuration for Ediff by clicking on the control window and
typing C-l (recenter). This sets up the comparison window to display the files you’re
comparing and centers the current difference in each buffer. You may find that it also
causes the comparison window to get keyboard focus, so be sure to click on the con-
trol window if necessary before you try to issue any Ediff commands.

Learning More
As noted, there is a whole lot more to Ediff than we can discuss here. When you
want to explore it, a good starting place is the built-in Ediff manual. You can get to
this by typing E (Shift-e, the capitalization matters) in the Ediff control window. If
you’re not already inside Ediff, you can choose Tools ➝ Ediff Miscellanea ➝ Ediff
Manual, or you can invoke Info, the Emacs documentation browser, by typing C-h i,
and choose Ediff from the main menu of topics. (Typing m for menu, followed by e d
Enter is enough to complete “Ediff” and jump to its manual.)

For more task-specific help, you can click on any of the commands in the quick help
window using your middle mouse button to get help describing what it does. (If you
lack a three button mouse, you can click on the command with your regular mouse
button and then press Enter.)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 12: Version Control

Customizing Ediff
By now it should come as no surprise that you can change many details about the
way that Ediff works so it better fits your way of thinking and working. After you’ve
got a good grasp of the basics, you can use the Custom facility described in
Chapter 10 to tweak the way Ediff works by choosing Tools ➝ Ediff Miscellanea ➝

Customize Ediff. If the use of a separate operating system window (frame) for the
control window is driving you batty, you can toggle that behavior right away by
choosing Tools ➝ Ediff Miscellanea ➝ Toggle use of separate control buffer frame.

Invoking Ediff Automatically
If Ediff is so powerful, why isn’t it the default mode used by the vc-diff command?
The most likely explanation is historical; vc-diff has been around longer than Ediff,
and it would have been disruptive to long-standing users of Emacs if a strange new
interface was unexpectedly foisted on them. It seems people are writing patches to
integrate Ediff more tightly with VC, but they are not (yet?) part of the Emacs distri-
bution. If you’re interested in the current state of any of these efforts, try a Google
search for “vc ediff.”

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

421

Chapter 13 CHAPTER 13

Platform-Specific Considerations

In this chapter, we describe installing Emacs on Unix, Mac OS X, and Windows as
well as some of the subtleties of running Emacs on the latter two platforms.

Emacs 21 runs on free Unix systems including Linux and BSD variants as well as on
commercial Unix versions such as AIX, Solaris, SunOS,‘ and Ultrix. It runs on Mac
OS X (currently a separate fork, but due to be folded into the main distribution start-
ing with 21.4). It runs on Windows and even on MS-DOS. You can still get ports for
Mac OS 8/9 and Amiga (to name only a few). Emacs is truly a multiplatform editor.

We cover installing Emacs on Unix, Mac OS X, and Windows. For Windows and
Mac OS X, prebuilt binaries are available. You may want to build Emacs from
source in order to obtain the latest version. However, we have found up-to-date
binaries online for Windows and Mac OS X; you just have to scout around on the
Net to find them. By the time you read this, the sources for the binaries that we
cite may be out of date. Check out this book’s web site for updated links in that
case (http://www.oreilly.com/catalog/gnu3).

A related issue is where to get Emacs. The Free Software Foundation (FSF) is the offi-
cial source for Emacs, but like most software organizations, official releases are few
and far between. Often, building Emacs from CVS sources is the best way to get a
leading-edge version. Only you can decide whether you would rather have the latest
features—along with some bugs—or download the tried-and-true version from the
FSF’s site.

Emacs and Unix
Emacs was originally built on a Unix system and continues to run on the multitude
of Unix variants out there. We’re going to download the latest source and show you
how to build Emacs from scratch. It’s not really that hard and it has the salutary
effect of keeping you up-to-date with future releases.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 13: Platform-Specific Considerations

Where to Get Emacs?
If you can’t wait, the primary source for downloading Emacs is http://ftp.gnu.org/pub/
gnu/emacs/. Alternatively, you can use CVS to nab the absolute latest build. But more
on that in a minute.

Downloading Emacs from the Web

You can get Emacs from any one of many sites—as long as your Internet connection
is fast enough to transfer a 20 MB file easily. You must also have at least 120 MB of
disk space free; this number will certainly grow in future Emacs releases.

The Free Software Foundation maintains a definitive list of all mirror sites. The FSF
is the principal sponsor of the GNU Project and it is housed at their site. If you want
to look around a bit, http://www.gnu.org/ is the place to start. Or as mentioned ear-
lier, you can just jump directly to the directly listing for Emacs at http://ftp.gnu.org/
pub/gnu/emacs/. You should see a list similar to Figure 13-1.

Figure 13-1. The emacs directory at gnu.org

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Unix | 423

Look for the latest version of Emacs (21.3 in Figure 13-1) and download it.

Where to Put Emacs?
Regardless of where you go to get the source, where you put the files you download
is really up to you. For our Unix-based systems, we downloaded everything into /usr/
local/install. This is a fine place to start, but if you have a favorite download/develop-
ment area, feel free to use that. In fact, you can even put everything in your home
directory while you’re building things.

The only thing to remember is that the build process involves a lot of files that you
won’t need after everything’s done. Make sure you put things somewhere that’s easy
to clean up when all is said and done.

As for the final destination of the executable, that’s also up to you. Most Unix sys-
tems (including Mac OS X) will do well to use the /usr/local hierarchy. That direc-
tory is both common and the default choice in the build scripts. If you’re not on a
machine that you have complete control over, though, you can certainly install
Emacs into your home directory (or a subdirectory you keep for you own software).

One quick note on using your home directory for the executable version of Emacs: it
does make it easy to back up Emacs or transfer it to another machine if you upgrade
your system (we know from experience!). However, it can limit who has access to
Emacs. If another user works on the same machine and you both want to use Emacs,
installing to a common directory (like /usr/local) is definitely the way to go.

Uncompressing and Unpacking
Now that you have the file, you need to do two things to it before you can actually
build Emacs: uncompress and unpack. You can use the tar command to do both.
Make sure you are in the directory where you downloaded the Emacs file. Type the
following command (changing the n to the version number that matches the file you
downloaded), and you will see a list of files.

$ tar xvzf emacs-21.n.tar.gz
x emacs-21.3, 0 bytes, 0 tape blocks
x emacs-21.3/AUTHORS, 77854 bytes, 153 tape blocks
x emacs-21.3/FTP, 8950 bytes, 18 tape blocks
x emacs-21.3/INSTALL, 42841 bytes, 84 tape blocks
x emacs-21.3/README, 4046 bytes, 8 tape blocks
x emacs-21.3/BUGS, 1042 bytes, 3 tape blocks
x emacs-21.3/move-if-change, 129 bytes, 1 tape blocks
x emacs-21.3/ChangeLog, 161418 bytes, 316 tape blocks
x emacs-21.3/Makefile.in, 25461 bytes, 50 tape blocks
. . .

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 13: Platform-Specific Considerations

This list of created files goes on for quite a while—over 2500 files for Emacs 21.3. If
you don’t want to see the list, omit the v (verbose option) from the tar command.
When this command completes, you have all of the files for Emacs.

Now that any necessary preparations are out of the way, you can go through the
steps to build and install Emacs itself.

Downloading Emacs from CVS
As we mentioned earlier, you can also use CVS to pull the source files. The big
advantage with CVS is that you get the absolute latest version.

1. Create or switch to a directory where your Emacs build can remain. Don’t do
this in a temporary directory unless you don’t plan on keeping Emacs around.
Once there, set up the CVS_RSH environment variable:
% setenv CVS_RSH ssh

If the setenv command is not recognized, you’re probably running bash instead
of a csh-derived shell. In that case, use the following command for the environ-
ment variable.
$ export CVS_RSH="ssh"

2. Use the cvs command to grab the source code.
% cvs -z3 -d:ext:anoncvs@savannah.gnu.org:/cvsroot/emacs co emacs
The authenticity of host 'savannah.gnu.org (199.232.41.3)' can't be established.
RSA key fingerprint is 80:5a:b0:0c:ec:93:66:29:49:7e:04:2b:fd:ba:2c:d5.
Are you sure you want to continue connecting (yes/no)?

3. Verify that the public key matches this key:
80:5a:b0:0c:ec:93:66:29:49:7e:04:2b:fd:ba:2c:d5

That just makes sure you actually got connected to the right system and aren’t
being fed some malicious alternative.

4. If the keys match, type yes and press Enter.
Warning: Permanently added 'savannah.gnu.org,199.232.41.3' (RSA) to the list of known
hosts.
cvs server: Updating emacs
U emacs/.cvsignore
U emacs/AUTHORS
U emacs/BUGS
U emacs/COPYING
U emacs/ChangeLog
U emacs/FTP
U emacs/INSTALL
...

You’ll see thousands of filenames flying by. If you have a slow network connection,
this process could take a while. Hang in there, though—you’re on your way to build-
ing the absolute latest version of Emacs!

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Unix | 425

Building Emacs
Unless you get a prebuilt version of Emacs that is right for your system, you will need
to build and install the many executable components of Emacs from source code
before you can use it. At this point, it doesn’t matter how you got the source code
(HTTP or CVS), you just need to compile it! Here is some information to get you
started on this task.

Your source code has a top-level directory with a name like emacs-21.3. In this direc-
tory, you will find files called INSTALL and README. Examine README first; it
contains useful general information as well as last-minute release notes that may be
important for you to read before proceeding. Then read INSTALL, which gives step-
by-step instructions for building Emacs. Even if you aren’t a Unix expert, you should
be able to follow these instructions. (For convenience, we provide a procedure you
can follow later in this section.)

The FSF’s standard installation procedure gets more comprehensive and bulletproof
all the time. Still, the actual ease of building Emacs depends primarily on what com-
bination of hardware and software you have. The FSF’s installation script includes a
program called configure that examines your system, figures out what hardware and
software you are running, and configures Emacs accordingly.

configure is likely to guess correctly if you have a popular combination (such as a
Sun SPARC CPU and a recent release of Solaris). If this is true, you should be able to
build Emacs without lots of tweaking or technical expertise. However, if you have an
unusual setup—a wildly obsolete computer or operating system version, an unusual
hardware/software combination, or unconventional system configuration—then you
will have no choice but to tweak the software. That’s beyond the scope of this book,
but those README and INSTALL files that come with the source distribution are a
great place to start when dealing with uncommon setups.

Here’s a procedure for building Emacs that you can use as a guide:

1. Change to the directory where you uncompressed and unpacked Emacs. For
example, if you placed it in the /usr/local/install directory:
$ cd /usr/local/install/emacs-21.3

2. Run the configure utility.* You should see quite a bit of output that shows what
parts of the system the build script is looking for.
$./configure
creating cache ./config.cache
checking host system type... sparc-sun-solaris2.9
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes

* Depending on your system and its permissions, you may have to switch to the root user using su to install
Emacs. In that case, you won’t need to preface the final make command with sudo.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 13: Platform-Specific Considerations

checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking whether ln -s works... yes
checking how to run the C preprocessor... gcc -E

3. If configure is successful, you should see a handy summary message similar to
the following:
Configured for `sparc-sun-solaris2.9'.

 Where should the build process find the source code? /usr/local/install/emacs-21.3
 What operating system and machine description files should Emacs use?
 `s/sol2-5.h' and `m/sparc.h'
 What compiler should emacs be built with? gcc -g -O2
 Should Emacs use the GNU version of malloc? yes
 Should Emacs use a relocating allocator for buffers? yes
 Should Emacs use mmap(2) for buffer allocation? no
 What window system should Emacs use? x11
 What toolkit should Emacs use? LUCID
 Where do we find X Windows header files? Standard dirs
 Where do we find X Windows libraries? Standard dirs
 Does Emacs use -lXaw3d? no
 Does Emacs use -lXpm? yes
 Does Emacs use -ljpeg? no
 Does Emacs use -ltiff? no
 Does Emacs use -lungif? no
 Does Emacs use -lpng? no
 Does Emacs use X toolkit scroll bars? no

If the configuration process fails for any reason, you’ll want to go back and con-
sult the INSTALL document. It has several tips and tricks for particular systems
and situations.

4. If everything is properly configured, you can go ahead and compile Emacs with
the make utility. This may take a while, so start it before you head out for lunch.
$ make
if [! -f /usr/local/install/emacs-21.3/lisp/abbrev.elc]; then \
 make bootstrap; \
fi
cd lib-src; make all \
 CC='gcc' CFLAGS='-g -O2' CPPFLAGS='' \
 LDFLAGS='' MAKE='make'
gcc -DHAVE_CONFIG_H -I. -I../src -I/usr/local/install/emacs-21.3/lib-src -I/usr/
local/install/emacs-21.3/lib-src/../src -g -O2 -o test-distrib /usr/local/install/
emacs-21.3/lib-src/test-distrib.c
./test-distrib /usr/local/install/emacs-21.3/lib-src/testfile
gcc -DHAVE_CONFIG_H -I. -I../src -I/usr/local/install/emacs-21.3/lib-src -I/usr/
local/install/emacs-21.3/lib-src/../src -g -O2 /usr/local/install/emacs-21.3/lib-
src/make-docfile.c -lsocket -lnsl -lkstat -o make-docfile
...

5. When that completes, the INSTALL document recommends testing your newly
built Emacs with the following command:

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Mac OS X | 427

$ src/emacs –q

Emacs should run and you should get an introduction screen similar to
Figure 13-2.

6. If you see the Emacs splash screen,* you’re in good shape, so go ahead and install
it:
$ sudo make install

or, if you su’d to root earlier, simply:
$ make install

You’ll be prompted for your password. After the install completes, you should
be all set to use Emacs. Congratulations!

Emacs and Mac OS X
As you may have picked up reading other parts of this book, we treat Mac OS X as a
Unix variant for many tasks. We do that with good reason, of course. Mac OS X is
based on Unix. For example, you could more or less follow the CVS and Unix build
instructions in the previous sections and come away with a full installation of Emacs.†

Figure 13-2. Emacs test after building on a Linux system

* One of the authors was not able to see the splash screen, but the install worked fine nonetheless. We say
forge ahead even if you don’t see it.

† We say “more or less” because at the time we went to press, you still needed to grab the source from a sep-
arate site. That difference should eventually disappear as well.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 13: Platform-Specific Considerations

However, as you know, Mac OS X can be a little different in some ways; it doesn’t
have all the Unix utilities by default (see the section on installing Ispell for one exam-
ple of this). This section covers installing Emacs on Mac OS X as well as other issues
such as running Emacs from the command line, changing the location of your Meta
key, and installing Ispell. And if you do want to build Emacs from scratch using CVS,
we have a few notes on that, too.

“But I Already Have Emacs”
Mac OS X comes with a version of Emacs installed: 21.2.1 with Panther (10.3.2) and
21.1.1 with Jaguar (10.2.8). To start this version, use the Terminal application in
your Utilities folder (which is inside the Applications folder) and just type emacs.

Figure 13-3 shows the built-in Emacs running in the Terminal application.

But you should be aware that although it is built-in and certainly the easiest to start
using, this version of Emacs has a few shortcomings:

1. It runs, well, you know, in a Terminal.

2. It does not have any of the graphical user interface features such as icons or
expected mouse behavior.

3. The Terminal application often supercedes Emacs when handling things like the
scrollbars and some key bindings.

Figure 13-3. The Terminal-based Emacs built into Mac OS X

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Mac OS X | 429

If you can live with those restrictions—or have no choice—then feel free to skip the
next section on installing Emacs and get on with using the version you have. The
vast majority of information in this book still applies.

Installing Prebuilt Emacs on Mac OS X
What if you want the latest version of Emacs but don’t want to build it yourself?
After all, not every Mac OS X user is an old Unix hack! Mac systems made a name
for themselves by providing some of the best user interface conventions around in a
single, good-looking package. That hasn’t changed. If you’re not a big fan of do-it-
yourself application building, you can download a nifty application bundle and just
drag-and-drop your way to a recent build of Emacs.

Downloading Alex Rice’s application bundle of Emacs 21.3.5

Most Mac users will want to grab a prebuilt binary version of Emacs that’s all
ready to go. Alex Rice created just such a build. It can be found online (for free!*)
at: http://mindlube.com/products/emacs/index.html. You can download directly
from that page, but be sure to grab the correct version. You can pick from the Jag-
uar (Mac OS X 10.2) version or the Panther (Mac OS X 10.3) version.

You’ll be downloading a .dmg file which is the Mac disk image format. It should
automatically unpack and mount itself, but if it doesn’t for some reason, just double-
click on the .dmg file after it is completely downloaded.

As it launches, you’ll need to read and agree to the license. After you do that, you
should have a new “disk” mounted and you’ll see the Emacs application all ready to
drag and drop. (See Figure 13-4.)

Drag the big gnu to your Applications folder and off you go. That really is all there is
to it. Many, many thanks to Alex Rice and Mindlube! (And feel free to eject the
mounted image once you have copied Emacs to your hard drive.)

Building Emacs from Source on Mac OS X
While Mac OS X is based (very squarely) on Unix, as of build 21.3.5, your best bet
for building Emacs is still to go with a slightly modified build process. (The Mac
build should join up with the normal build in version 21.4.) Until 2004, that sepa-
rate process was maintained by Andrew Choi and made available to the public at
http://members.shaw.ca/akochoi-emacs/. Fortunately, it is still available there,
although Andrew is no longer the Mac maintainer.

* A donation to defray hosting costs would certainly be appreciated; the site includes a link for contributions.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 13: Platform-Specific Considerations

Full instructions on the build can also be found at Andrew’s site.
While the build is essentially the same as it is for other Unix systems
(you run configure and then make), retrieving the source code is best
done through CVS to get the latest version. If you have installed the
Mac Developer Tools CD, you’ll have CVS. If you haven’t installed the
Mac Developer Tools (usually available on a separate CD that came
with your Mac or with your copy of Mac OS X), you must; the Devel-
oper Tools are required to build version 21.3 from source.

Before you build

For the 21.3 build, Andrew Choi has posted the steps required to retrieve and build
Emacs at http://members.shaw.ca/akochoi-emacs/stories/obtaining-and-building.html.

If you plan to go this route on Panther (Mac OS X 10.3), just follow Andrew’s
instructions. Alternatively, you can follow the Unix build instructions from the previ-
ous section. If you’re still running Jaguar, you’ll need to do a bit of preparatory work.
Read on.

Jaguar (Mac OS X 10.2) preparation. The first of the extra notes is that you should
upgrade to Panther (10.3) if you aren’t there already. Seriously. There are lots of ben-
efits. But if that’s just not in the cards for you, you do need to take a small detour
before installing Emacs.

Mac OS X 10.2 lacks a piece of software required for Emacs: texinfo. (That tool
comes preinstalled on 10.3.) It’s not hard to install; you just have to remember to do
it. You basically install the texinfo package as you would if any other Unix package.
You can look back at the previous section for more details, but here are the basics.

Figure 13-4. The mounted disk image for Emacs on Mac OS X (Panther)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Mac OS X | 431

You’ll need to perform these commands from the Terminal application. By default,
Terminal starts you out with a C-Shell variant, so we’ll use the % character for the
prompt in the commands for this section.

1. Pull the texinfo package from the /pub/gnu/texinfo folder at ftp.gnu.org. The
compressed archive file will be called something like texinfo-4.7.tar.gz. Grab the
latest version available.

2. Unpack the archive.
% tar xvzf texinfo-4.7.tar.gz

If you downloaded texinfo through a browser, chances are the browser uncom-
pressed it for you. Some of them might even have unpacked it as well. If you
have a. tar file sitting on your desktop, you can unpack it like this:
% tar xvf texinfo-4.7.tar

3. Move to the texinfo-4.7 directory and configure your build.
% ./configure

4. Assuming that all goes well, you can build everything:
% make

5. And assuming that went well, you can install it. But you’ll have to do that as an
administrator. Fortunately that’s easy to do in the Terminal window. Just run
this command:
% sudo make install

You’ll be prompted for your password. Type it in and everything should go well. If
you aren’t allowed to administer your own machine, you’ll need the help of some-
one who does have admin privileges.

Now that you’ve installed texinfo, you’ll need to download, unpack, and install
Emacs, either by following Andrew Choi’s instructions or ours in the “Emacs and
Unix” section earlier in this chapter.

Your Mac build should end up creating a double-clickable icon that you can drag
and drop into your Applications folder just like the prebuilt download.

Starting Emacs from the Command Line on Mac OS X
On Mac OS X, you have Emacs preinstalled, but as we know, it is an older ver-
sion of Emacs. Let’s say that you have installed the graphical version and want to
start it with some command-line arguments. For example, you might want to run
emacs --debug-init to debug your .emacs file. The Mac OS X Gnu icon certainly
should be a permanent fixture on your Dock, but at times the command line is the
way to go.

We learned this trick from Andrew Choi’s Mac OS X FAQ, and we share it here,
slightly tweaked, for convenience. Check out his page at http://members.shaw.ca/
akochoi-emacs/stories/faq.html.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 13: Platform-Specific Considerations

Essentially, you replace the binary that comes with Mac OS X with a shell script that
runs the new version of Emacs you installed. You might want to simply rename the
old binary so that you can on occasion use it instead.

Here’s the procedure.

1. To be sure which Emacs runs when you type emacs, type which emacs in the
Terminal application.
% which emacs
/usr/bin/emacs

2. Rename or delete /usr/bin/emacs.
% sudo mv /usr/bin/emacs /usr/bin/oldemacs

You’ll be prompted for your password.

3. Create a file called emacs with the following two lines:
#!/bin/sh
/Applications/Emacs.app/Contents/MacOS/Emacs "$@"

If you installed Emacs into a different folder, adjust the second line accordingly.

4. Move the file you created to /usr/bin:
% sudo mv emacs /usr/bin

5. Change /usr/bin/emacs to be executable by the world:
% chmod +x /usr/bin/emacs

Now you can invoke graphical Emacs from the terminal window simply by typ-
ing emacs, with or without command-line arguments.*

Mac OS X and the Meta Key
This book has mentioned using the Command key for Meta on Mac OS X. By
default, the Command key (sometimes called the Open Apple key, or more simply
c) is Meta. But in fact you have a choice. The variable mac-command-key-is-meta
can be used to select which key you want to use.

As the variable name implies, setting mac-command-key-is-meta to t means that you
usec as the Meta key. So you can type the M-x combination ascx.

The alternative (setting mac-command-key-is-meta to nil) sets the Option (or Alt)
key to be your Meta key. You might do this if you want to continue using the Com-
mand key for Mac functions or if you find that Option is simply easier to reach. Of
course, it’s not quite that simple. Emacs still traps the Command key. That trapping
is supposed to be turned off with one more variable: mac-pass-command-to-system,
but to be honest, we never got that to work.

* You can still run this new Emacs as a plain Terminal app with the -nw command-line argument (type
emacs –nw.)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Windows | 433

Installing Ispell
As mentioned in Chapter 3, Emacs uses Ispell for its spell-checking functionality.
However, despite voluminous hooks to it, the Ispell executable is not part of Emacs
and is not installed by default on Mac OS X. You must therefore install Ispell to get
spell-checking to work properly.

We took the easy path to doing this: downloading and installing Fink (see http://fink.
sourceforge.net for instructions). Fink is an all-purpose Mac OS X installer that
enables you to install Unix software on your Mac easily.

After installing Fink, installing Ispell was completely painless:

 % fink install ispell

Just one further step is required so that Emacs finds Ispell without tweaking. Create
a symbolic link between the location where Fink installs Ispell (/sw/bin/ispell) and
where Emacs expects Ispell to be (/usr/bin/ispell).*

% sudo ln -s /sw/bin/ispell /usr/bin/ispell

Voilà. Emacs spell-checking with Ispell now works as described in Chapter 3.

Emacs and Windows
You can also download and install Emacs 21.3 for the various Windows platforms
(Win95, Win98, Win2K, WinXP, and so on). As most Windows machines do not
ship with the tools required to build Emacs from scratch, we’ll look at downloading
and installing prebuilt executables.†

Installing Emacs
As with all platforms, you have choices when installing Emacs on Windows. You can
install a binary hosted by the FSF (likely to be older, but certainly stable). You can
find a more recent binary online (we’ll point you to the one we prefer). You could
also build Emacs from CVS, but if you’re doing that on Windows, chances are you
are not reading this book. Windows comes with no default compilers.

Installing the latest binaries: Nqmacs

Our source for the latest binaries is Nqmacs (http://sourceforge.net/projects/nqmacs/).
This is simply a build of the latest version of GNU Emacs from CVS sources, not a sepa-

* We found this hint on John Schneider’s web page called “Getting Mac OS X.3 to Behave Almost Like My
Linux Boxes” (http://www.eecs.wsu.edu/~schneidj/mac-os-x-10.3.html).

† Okay, okay. If you want to build it on Windows, you certainly can. We suggest grabbing the various devel-
opment tools like make and gcc from the Cygwin project (http://www.cygwin.com) and then following the
Unix build instructions.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 13: Platform-Specific Considerations

rate version of Emacs as the name may imply. Windows binaries are posted here on a
regular basis, giving Windows users access to the latest version without having to build
it themselves.

To install on Windows, simply download the latest binaries, unpack into a new
folder using WinZip or Windows own decompression utilities, go to the bin sub-
folder and double-click on runemacs.exe. By right-clicking on the icon, you can send
a copy of the icon to the desktop.

Installing Emacs from the FSF

As we mentioned, the binaries at the FSF are stable but generally older. For exam-
ple, at this writing, the Nqmacs site provides binaries built on 7/25/04 while the
FSF’s site provides binaries from 3/10/2004.

To download Emacs from the FSF, simply point your browser at http://ftp.gnu.org/
pub/gnu/emacs/. Scroll down to find the windows folder. In there, you should find
several downloads. The binaries come in three flavors:

• bare (barebin)—the bare minimum you need to get going

• standard (bin)—what most folks need to get running

• full (fullbin)—the full meal deal; everything and then some

Grab the one you want and download it. You can use WinZip (http://www.winzip.com)
to unpack it. If you have the Cygwin utilities installed, you can also use gunzip and tar
as we discussed in the Unix installation section.

Be careful! The README.W32 file notes that you may run into some
small problems if you unpack your Emacs distribution into a path
where one or more of the directory names contains spaces. For exam-
ple, don’t unpack Emacs in the Program Files directory. If you don’t
like adding things directly to your C: drive, create an Applications
folder or something similar and unpack Emacs in that folder.

After that’s unpacked, you’re 99 percent of the way there. The latest versions of Emacs
need nothing else, actually; you just double-click on runemacs.exe (in the bin directory
of your Emacs folder) and off you go! If you like, you can create shortcuts in your Start
menu or on the desktop. Just point them at runemacs.exe and you should be set.

Where to Put Your .emacs File
Probably the single biggest Windows consideration is the location of the .emacs file.
This file goes in your “home” directory. We use quotes there because the Windows
world doesn’t have a strictly defined home directory the way some other operating sys-
tems like Unix and Mac OS X do. By default, Emacs assumes that the C:\ folder is your
home directory. You can put your .emacs file there, but you can also modify your home
directory using the Windows environment variable called HOME. To change this envi-

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Windows | 435

ronment variable on Windows XP, select System from the Control Panel. A System
Properties window displays. Choose the Advanced tab, then choose Environment Vari-
ables. HOME is probably not listed; click on New, then type HOME and the path to
your desired home directory. Emacs will now look for the .emacs file in this directory.

Because of naming compatibility issues, older Windows versions of Emacs used
the _emacs file rather than the .emacs file for customization and configuration.
This file is still a valid option. However, if both _emacs and .emacs are found in
the home directory, only .emacs is used.

Starting Emacs from the Command Line
The Emacs bin folder includes two related files, each sporting a Gnu icon: emacs.exe
and runemacs.exe. Typically you’ll use runemacs.exe; this runs Emacs graphically
without opening a console window. The other file, emacs.exe, can be used to run
Emacs from the command line as described next.

To run Emacs from the command line, cd to the directory where you installed Emacs
and type emacs -nw (or whatever command-line argument you wanted to use; -nw
runs Emacs in the console window). You can also do this by choosing Start ➝ Run,
then selecting Browse to locate emacs.exe. Add any command-line arguments you
wish, and then click OK to invoke Emacs using these arguments.

Making Emacs Act like Windows: CUA Mode
CUA stands for common user access, a standard originally developed by IBM. CUA
mandates that certain keys should always perform certain functions. In Windows,
for example, C-c copies and C-v pastes from one application to another. As you
know, Emacs uses these key bindings for its own purposes.

That’s where Kim Storm’s CUA mode comes in. This mode was so popular that it is
now part of Emacs.* It allows standard Windows key bindings, like C-x for cut and
C-v for paste, to work properly within Emacs. It’s quite clever—these keys cut and
paste only when an active selection exists. That leaves the normal functionality of
multistroke commands like C-c C-f in fine shape.

To turn on CUA mode, select C-x/C-c/C-v cut-and-paste (CUA) from the Options
menu. If you decide you want to use CUA mode for multiple sessions, select Save
Options to have Custom (discussed in Chapter 10) automatically add it to your .
emacs file.

As you can see from the option name, in this mode, C-x is used for cutting text, C-c is
used for copying text, and C-v is used for pasting text. What is not so apparent is that

* If you are running an older version of Emacs and want this functionality, visit http://www.cua.dk/emacs.html
to download and install CUA mode.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 13: Platform-Specific Considerations

C-z runs undo rather than minimizing the window (in CUA mode, you can minimize
using C-x C-z).

What if you’re used to confirming a region before you cut it using C-x C-x? You can
type C-c C-x C-x in this case. This works in part because C-c cancels the active
region. Remember that C-x would normally cut.

Strictly speaking, C-x C-x doesn’t immediately cut text, if you type it fast enough.
Cut is really bound to C-x <timeout>. In other words, Emacs is watching to see if
you type something else really quickly. If you have a region highlighted and type C-x
C-s to save the buffer, Emacs does the right thing. But if you pause after C-x, you’ll
cut text. This is true of C-c as well. If you immediately type another sequence after
C-c, Emacs uses C-c as a prefix. If you pause, it copies the highlighted text.

CUA mode has a few other interesting behaviors. It has highly advanced rectangle
support. (Rectangle editing is described in Chapter 7.) It also has the common
behavior of replacing highlighted text. If you select a region and start typing, the
highlighted text is replaced. Taking this one step further, you can do a quick and
dirty search and replace in this way. Let’s say that the text you typed over is just the
first of several identical instances where you want to replace text. Typing M-v (for
cua-repeat-replace-region) replaces the next instance. Repeat this command to con-
tinue making replacements. If there is no string to replace, M-v does nothing.

For example, let’s take our classic Dickens passage and replace the word times with
rhymes:

Highlight the word times.

The word times is highlighted.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Windows | 437

You may love CUA mode or you may hate it; the only way to see if your fingers are
ready for this option is to try it out. If you’ve used Emacs for years, you may find
CUA mode keeps doing unexpected things. Your finger habits are set to Emacs’s
ways. On the other hand, it’s hard to move back and forth between applications and
change your finger habits all the time. If you have not yet gotten used to the Emacs
key bindings, you may well love CUA mode, as many people do.

Type: rhymes

Emacs replaces times with rhymes.

Type: M-v

Emacs replaces the next instance of times with rhymes.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 13: Platform-Specific Considerations

Table 13-1 lists CUA mode commands.

Installing Ispell
Installing Ispell on Windows can be tricky. Emacs 20 and beyond includes features
like Flyspell and earlier versions of Ispell won’t handle that functionality. Many Win-
dows users do not compile their own software, and even if they did, the very newest
Ispell also doesn’t work with Emacs.

We found the version we describe here in a post by Raymond Zeitler (http://lists.
nongnu.org/archive/html/help-emacs-windows/2004-06/msg00023.html), and we
thank him heartily for it. The only downside to this version is that it is designed for
English speakers. It may well work with other languages, but you’d have to find the
<language>.hash file appropriate for your language.

The first step is to download a Windows binary of Ispell 3.1.20.*

Open a command window. On Windows XP, you open it using Start ➝ Run, then
typing command and clicking OK.

Create a temporary directory and move there (you can substitute another name for
tmp).

C:\> mkdir tmp
C:\> cd tmp

FTP to gatekeeper.dec.com.

C:\tmp> ftp gatekeeper.dec.com

Table 13-1. CUA mode commands

Keystrokes Command name Action

C-c C-x C-x cua-exchange-point-and-mark Exchange location of cursor and mark.

C-c copy-region-as-kill Copy the region.

C-x or C-w or S-Delete kill-region Delete the region.

C-v or C-y or S-Insert cua-paste Paste most recently killed or copied text.

M-v cua-repeat-replace-region After highlighting and replacing a string, find the next
string and replace it the same way.

PgUp cua-scroll-up Scroll up one page (or to the beginning of the buffer).

PgDown cua-scroll-down Scroll down one page (or to the end of the buffer).

M-y cua-paste-pop After C-v, pastes earlier deletion.

C-z or C-x u cua-undo Undoes the last change.

C-x C-z iconify-frame Minimize the current frame (what C-z does outside
CUA mode).

* This binary is also available from this book’s web site, http://www.oreilly.com/catalog/gnu3.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs and Windows | 439

Type anonymous as your username and your email address as your password.

Move to the /pub/GNU/windows/emacs/contrib directory.

C:\tmp> cd /pub/GNU/windows/emacs/contrib

Type bin to change to binary mode.

C:\tmp> bin

Download ispell.zip.

C:\tmp> get ispell.zip

Type bye to close your ftp session, then exit to close the MS-DOS window.

Unzip the archive with WinZip or Windows’ own decompression utility. We need to
move a few files around to make Ispell work properly with Emacs.

Move ispell.exe to Emacs’ bin folder. For example, if you called the folder where you
installed Emacs nqmacs, you would place the file in nqmacs\bin.

Move english.hash to your home directory (either C: or the one you defined earlier as
the location for your .emacs file). Now copy english.hash to american.hash (both files
must exist for Ispell to work properly). We suspect but cannot verify that this would
not be necessary for users of systems expecting British English dictionaries.

There’s a lot more to the world of Emacs in Windows. We encourage you to check
out the frequently asked questions and documentation available online at http://
www.gnu.org/software/emacs/windows/.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

440

Chapter 14CHAPTER 14

The Help System

Emacs has the most comprehensive help facility of any text editor—and one of the
best such facilities of any program at all. In fact, the Emacs help facilities probably
cut down the time it took for us to write this book by an order of magnitude, and
they can help you immeasurably in your ongoing quest to learn more about Emacs.

In this chapter, we describe Emacs help in the following areas:

• The tutorial.

• The help key (C-h) and Help menu, which allow you to get help on a wide vari-
ety of topics.

• The help facilities of complex commands like query-replace and dired.

• Navigating Emacs manuals and using the info documentation reader.

• Completion, in which Emacs helps you finish typing names of functions, vari-
ables, filenames, and more. Completion not only saves you time and helps you
complete names of functions you know about but can help you discover new
commands and variables.

Using the Tutorial
If you are just starting out with Emacs, check out the tutorial by typing C-h t (for
help-with-tutorial), which deletes all extra windows (leaving just one) and starts up
a learn-by-doing tutorial. Actually, it displays a file called TUTORIAL in the win-
dow. The tutorial is currently available in 21 languages. The tutorial provides an
introduction to the following Emacs features:

• Basic cursor motion

• Delete and yank

• Visiting and saving files

• Buffers

• Text and auto-fill modes

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Help Commands | 441

• Incremental search

• Basic help commands

You might want to use the tutorial along with Chapters 1 and 2. The tutorial is help-
ful, but of necessity it covers only the most basic information.

Help Commands
Emacs has many help commands, which are available as standard Emacs commands
or as options to the C-h help key. They can be used to find information about com-
mands, keystrokes, variables, modes, and various things about Emacs in general. The
most basic help command is C-h C-h (help-for-help). C-h ? also invokes help-for-
help. This command causes Emacs to open a *Help* buffer in a window with
descriptions of all the help commands. You can type any one of these help keys, or, if
you press Space, the *Help* window scrolls down as if you pressed C-v. Any other
key aborts the whole process. If you scroll to the bottom of the help documentation,
you can type a help key or any other key to abort.

The keys listed in the *Help* are those that, when appended to your help key, run
Emacs help commands at any time. Help commands fall into two general categories:
those that provide answers to specific questions and those that give general informa-
tion about Emacs.

You will find the help commands in the former category to be invaluable after you
have become comfortable with Emacs. Because it is so large and functionally rich,
there will be times when you need to look up a detail such as a keystroke or com-
mand name or when you need to do something with Emacs that you don’t know
exactly how to do. As we’ve repeated again and again throughout this book, Emacs
probably does what you want; you just need to figure out how. The help commands
let you find these things out immediately, without leaving Emacs and without being
a slave to your reference manual (or even this book).

Detail Information
Let’s start with the help commands that are useful when you need to look up a spe-
cific detail. You’ll probably use the commands listed in Table 14-1 most often.

Table 14-1. Detail information help commands

Keystrokes Command name Question answered

C-h c describe-key-briefly What command does this keystroke sequence run?

C-h k
Help ➝ Describe ➝

Describe Key

describe-key What command does this keystroke sequence run, and
what does it do?

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 14: The Help System

What if you press the wrong key, and something happens to your buffer—but you’re
not sure what? Usually, the safest thing to do is to press C-_ or C-x u (undo). But
sometimes this command won’t help, for example, a runaway replace-string. If you
remember what you typed, you can use C-h c (for describe-key-briefly) to see what
command was run; just retype the offending keystroke(s) at the prompt, and Emacs
responds with the name of the command bound to the key(s) in the minibuffer. If the
command name alone doesn’t help, C-h k (for describe-key) pops up a *Help* win-
dow with a description of the command as well as its name and key binding. (C-h k
and C-h c also help you find out what command a toolbar icon or menu item runs.)

However, if you don’t know what keys you pressed, you can type C-h l (for view-
lossage). This pops up a *Help* window showing the last 100 keystrokes you
typed; the offending ones are likely near the end, and you can use C-h c or C-h k
with those keystrokes.

Now suppose you want information on a command that isn’t bound to keystrokes.
Type C-h f (for describe-function) and enter the name of the command at the
prompt; Emacs responds with a *Help* window containing the documentation for
that command. If you remember the name of a command but forget its binding, type
C-h w (for where-is). This is the “opposite” of C-h c; it shows the key binding for a
given command in the minibuffer, or the message command-name is not on any keys
if the command has no binding.

You may forget a detail that involves the value of a variable. For example, will Emacs
respect or ignore case during a search (the variable case-fold-search)? How often are

C-h f
Help ➝ Describe ➝

Describe Function

describe-function What does this function do?

C-h v
Help ➝ Describe ➝

Describe Variable

describe-variable What does this variable mean, and what is its value?

C-h m
Help ➝ Describe ➝

Describe Buffer Modes

describe-mode Tell me about the modes the current buffer is in.

C-h b
Help ➝ Describe ➝

List Key Bindings

describe-bindings What are all the key bindings for this buffer?

C-h w where-is What is the key binding for this command?

C-h s describe-syntax What is the syntax table for this buffer?

C-h l view-lossage What are the last 100 characters I typed?

C-h e view-echo-area-messages What messages have appeared in the minibuffer during
this session?

Table 14-1. Detail information help commands (continued)

Keystrokes Command name Question answered

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Help Commands | 443

my buffers being auto-saved (the variable auto-save-interval)? If you type C-h v (for
describe-variable) followed by the name of the variable, Emacs puts its value as well
as its documentation in a *Help* window. C-h f, C-h w, and C-h v all allow you to
use completion when typing command or variable names. C-h f and C-h v are also
especially useful to Emacs Lisp programmers; note that C-h f gives you information
on all functions, not just those bound to keystrokes as commands.

Another common help situation arises when you use a special mode, such as shell
mode or a mode for a programming language or text processor, and you forget a
command specific to that mode or some other characteristic such as indentation
conventions. If you type C-h m (for describe-mode) in a buffer running the mode,
Emacs pops up a *Help* window showing the mode’s documentation. Documenta-
tion for a mode usually includes all of its local key bindings (for example, all the
commands special to the mode and their associated keystrokes), customization vari-
ables, and other interesting characteristics.

What if you want to find out all the keyboard commands available in a given mode?
C-h b (for describe-bindings) gives you a *Help* window showing all key bindings
active in the current buffer, including local (buffer-specific) as well as global ones. It
also lists all bindings for mouse actions, menu options, and function keys.

C-h b produces quite a lot of output. If you want to limit this output to only those key
bindings with a particular prefix, type that prefix followed by C-h. For example, typ-
ing C-x C-h produces a *Help* window listing all key bindings that begin with C-x.

C-h s (for describe-syntax) is a more specialized command, designed for Lisp pro-
grammers. It produces a *Help* window with a description of the syntax table (see
Chapter 9) active in the current buffer.

Apropos Commands
Another type of help command applies when you want Emacs to do something,
but you’re not sure exactly what command to use or what variable to set. These
are apropos commands, which resemble a rudimentary information retrieval sys-
tem of the type found at many libraries. The apropos command has several forms,
shown in Table 14-2.

Table 14-2. Apropos commands

Keystrokes Command name Question answered

C-h a
Help ➝ Search Documentation ➝

Find Commands by Name

apropos-command What commands include this word?

(none)
Help ➝ Search Documentation ➝

Find Options by Name

apropos-variable What variables include this regular expression?

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 14: The Help System

All apropos commands prompt for regular expressions (an ordinary text string will
work, but you can create more powerful searches using regular expressions; see
Chapter 11 for details). When you type C-h a followed by a regular expression, Emacs
finds all the commands that match it; it displays their key bindings (if any) and the first
lines of their documentation in an *Apropos* window that is in Apropos mode. This
mode displays hyperlinked help. If you click on a bolded item using your middle mouse
button or move the cursor there and press Enter, Emacs displays more information.

As always, if you are leery of using regular expressions, use regular search strings as
long as you stick to nonspecial characters. For example, if you want to know what
replace commands Emacs supports, press C-h a and then type replace; Emacs dis-
plays a list of information on the following commands:

• dired-do-query-replace

• ebrowse-tags-query-replace

• ethio-replace-space

• map-query-replace-regexp

• query-replace

• query-replace-regexp

• query-replace-regexp-eval

• replace-buffer-in-windows

• replace-rectangle

• replace-regexp

• replace-string

• tags-query-replace

If you have ever used an information retrieval system, you already know that some skill
is needed to use such a system effectively. You need to choose your concepts (search
strings) carefully, so that they aren’t too general (too much output to wade through) or
too specific (too little output, making it less likely that you get the information you
want). This problem is compounded when you use the apropos command, which is

(none)
Help ➝ Search Documentation ➝

Find Options by Value

apropos-value What variables are set to this regular expression?

(none)
Help ➝ Search Documentation ➝

Search Documentation Strings

apropos-documentation Where is this regular expression mentioned in the doc-
umentation?

(none)
Help ➝ Search Documentation ➝

Find Any Object by Name

apropos What functions and variables involve this regular
expression?

Table 14-2. Apropos commands (continued)

Keystrokes Command name Question answered

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Help with Complex Emacs Commands | 445

the same as apropos-command except that it reports on all functions (including inter-
nal Emacs functions) and variables as well as commands.

If you type in a search string that is too general, Emacs produces an enormous buffer
of help information. For example, invoking apropos-command with the argument
“buffer” results in output listing well over two hundred Emacs commands. In gen-
eral, you may have to invoke the apropos commands a few times to get the informa-
tion you want (in terms of size as well as relevance).

The apropos command itself is usually overkill, unless you are a Lisp programmer who
needs information on noncommand functions (see Chapter 11 for details on this use of
apropos). Use a more specific command when possible. For example, to get informa-
tion on variables, use apropos-variable. To find out about variables related to auto-sav-
ing, type M-x apropos-variable Enter auto-save Enter. Emacs responds with
information about the variables auto-save-default, auto-save-file-format, auto-save-
file-name-transforms, auto-save-interval, auto-save-list-file-prefix, auto-save-time-
out, auto-save-visited-file-name, and delete-auto-save-files. To find the value and full
description of one of these variables, move to the *Apropos* window and either click
with the middle mouse button or move to the desired variable and press Enter.

Help with Complex Emacs Commands
Many of the more complicated Emacs commands include their own sets of help key-
strokes. These commands often have their own help functionality, but help is
invoked with ? rather than the standard help key. Here is a summary of some popu-
lar complex commands and what ? does within each of them:

dired (C-x d)
You see a list of the most frequently used commands in the minibuffer. This list
is far from complete. Type C-h m (for describe-mode) for more comprehensive
documentation and C-h b (for describe-bindings) for all the key bindings avail-
able to you.

query-replace (M-%)
You see a *Help* window listing the available commands. Typing C-h does the
same thing. This also works with query-replace-regexp.

save-some-buffers (C-x s)
Behavior is similar to query-replace just described.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 14: The Help System

list-buffers (C-x C-b)
You see a *Help* window giving information on buffer menu mode. This com-
mand has the same effect as typing C-h m (for describe-mode).

Completion
When you are responding to a minibuffer prompt with the name of something
on which Emacs can do completion, typing ? at any time gives you a
Completions window with the choices available at that point. Completion is
explained in detail later in this chapter.

Navigating Emacs Documentation
Once upon a time, to get access to Emacs documentation, you ordered manuals from
FSF. You can still do so if you like printed documentation (as we do) and would like
to support the FSF, but most of the documentation you will ever want or need is at
your fingertips right in Emacs.

Using Info to Read Manuals
Most GNU documentation (including Emacs documentation) is in texinfo format
and designed to be read in the Info documentation reader. Typing C-h i (for info)
puts you at the top-level of the Info tree. You’ll see that Emacs is just one choice of
many. In Info, documentation is organized as trees of information called nodes. If
you want information on a topic, you can select its tree; the nodes of the tree con-
tain information on subtopics, subsubtopics, etc., organized hierarchically.

When you type C-h i, you see a read-only buffer containing the directory node of the
Info system in a window in Info mode. If you press h while in Info, you get a tutorial
on Info analogous to the one described earlier for basic Emacs commands.

You’re probably better off typing C-h r, which sends you directly to the Emacs manual.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Navigating Emacs Documentation | 447

Note that the icons are almost completely different in Info mode. Later in this sec-
tion, Table 14-3 lists them, along with the keystrokes needed for navigating in this
mode.

Info is relatively simple, yet complex enough to have its own tutorial. Typing h sends
you through a tutorial to acquaint you with the main commands.

To select a menu option (you see a * next to these), move to that option. Obvi-
ously, moving with the mouse is one method; you then select the option using the
middle mouse button. Alternatively, move to the option by pressing Tab, and then
press Enter.

Type: C-h r

Emacs displays the table of contents for the Emacs manual.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 14: The Help System

If you want to read through the whole topic, you can press Space to scroll down.
Space is helpful for continuous reading because after you complete a topic, it moves
you to the next node at this level. If you read all of this topic, you’ll learn more about
the minibuffer than you ever thought possible.

If you press u twice (to move up a level), you’ll move back to the Emacs table of con-
tents. The up arrow icon on the toolbar does the same thing. To accomplish this
with a single keystroke, type t (for Info-top-node) or click on the house toolbar icon.
That command takes you to the top level in one move, no matter how far down the
Info tree you’ve traveled.

To search for a particular topic, type i or click on the toolbar icon that shows a fin-
ger pointing at a piece of paper.

Move to Minibuffer (you’ll need to scroll down), and then press Enter.

The Minibuffer topic appears.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Navigating Emacs Documentation | 449

Type: i

Emacs prompts for an index topic.

Type: macro Enter

Emacs brings up the first topic related to macros.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 14: The Help System

As you step through index entries in this way, it’s helpful to look at the top of the
screen to see what topic you’re in. You might want to move up a node (or to the pre-
vious or next node) to get a better view of the topic at hand rather than navigating to
the next index entry by typing another comma.

Navigating through Info can take some practice. For example, one might think that
the command p (for Info-prev)* would behave rather like a web browser back but-
ton (especially given that the toolbar icon for this command looks like one). Previ-
ous in this case means relative to the Info documentation tree, not to your session
(though it may appear that way sometimes). It means that you want to move to the
previous item at this level. To move back to the previous screen in your session, use l
(for Info-last), shown on the toolbar with a curved arrow icon (like the icon for undo
in other modes). This command behaves like a web browser back button.

The commands C-h F (for Info-goto-emacs-command-node) and C-h K (for Info-
goto-emacs-key-command-node) let you use Info in a more focused way. They are
essentially the Info equivalents of C-h f (for describe-function) and C-h k (for
describe-key), respectively: they start up the Info system and go directly to the docu-
mentation for the command (for C-h F) or the keystroke(s) (for C-h K) you give as an
argument.

Type a comma: ,

Emacs moves to the next macro-related topic in the index.

* These command names are case-sensitive. For example, completion won’t find them if you type them with
a lowercase i.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Navigating Emacs Documentation | 451

FAQ, News, and Antinews
To display the Frequently Asked Questions (FAQ) file, type C-h f. This file is in Info
format.

Perhaps the most important of the remaining Emacs help commands for hard-core
users and customizers is C-h n (for view-emacs-news), which visits the NEWS file that
comes with Emacs. This file contains a history of changes made to Emacs since the last
major version; for example, all changes in Version 20.1 and following up to the latest
minor version (which in our case is Version 21.3.5, though the file says 21.4). This can

Table 14-3. Info commands

Keystrokes Toolbar icon Command name Action

Tab Info-next-reference Move to the next menu item or
cross-reference.

Space Info-scroll-up Scroll the screen; move to the
next topic at this level when fin-
ished.

Del or PgUp Info-scroll-down Scroll backward.

p Info-prev Move to the previous topic at
this level (not like a browser
back button). If there is no pre-
vious topic, move up a level.

u Info-up Move up a level.

n Info-next Move to the next topic at this
level.

i Info-index Search the index for a topic.

, Info-index-next Go to the next topic in the index.

m Info-menu Select a menu item through the
keyboard.

q Info-exit Quit info.

s Info-search Search for a regular expression.

g Info-goto-node Go to a specified node.

t Info-top-node Go to the top node.

l Info-last Go to the last node you visited
(like a browser back button).

h Info-help Start the info tutorial.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 14: The Help System

be a very long file if there have been several minor releases since the last major ver-
sion—in our case, the file is 12,886 lines long. If you want to look through it for
changes to a specific aspect of Emacs, use an appropriate search command. But if you
just want to skim it, note that this file was intended for use with outline mode: topics
are introduced on lines beginning with *, and subtopics are introduced on lines begin-
ning with **. Use outline mode commands to skim the file; see Chapter 7 for informa-
tion. The outline mode command hide-body displays the main topics and hides the
text; show-all redisplays all the text as well.

An entertaining approach to learning about the latest release is Antinews. This file
takes the viewpoint that Emacs has been downgraded, in our case from 21.4 to 21.3.
It takes you through all the features that have been ripped from Emacs 21.4 to create
Emacs 21.3. Antinews is a menu item on the first page of the Emacs manual you
reach via C-h r.

Table 14-4 summarizes commands relating to reading documentation, getting gen-
eral information about Emacs, and language encoding issues.

Table 14-4. Documentation, general information, and encoding options

Keystrokes Command name Action

C-h t
Help ➝ Emacs Tutorial

help-with-tutorial Run the Emacs tutorial.

C-h i info Start the Info documentation reader. If pref-
aced with C-u, reads an Info file of your choice.

C-h r
Help ➝ Read the Emacs
Manual

info-emacs-manual Opens the Emacs manual.

C-h F
Help ➝ More Manuals ➝ Find
Command in Manual

Info-goto-emacs-command-node Start Info documentation reader at the node
that discusses this command.

C-h K
Help ➝ More Manuals ➝ Find
Key in Manual

Info-goto-emacs-key-command-node Start Info documentation reader at the node
that discusses this key sequence.

C-h n or C-h C-n
Help ➝ Emacs News

view-emacs-news View news about recent changes in Emacs.

C-h C-f
Help ➝ Emacs FAQ

view-emacs-FAQ View a file of frequently asked questions and
their answers about Emacs.

(none)
Help ➝ Search Documentation
➝ Emacs Terminology

search-emacs-glossary Open a glossary of Emacs terms.

(none)
Help ➝ Search Documentation
➝ Look Up Subject in User
Manual

emacs-index-search Search the index of the Emacs user manual.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Completion | 453

Completion
We saw an example of Emacs’s completion facility in Chapter 1. Completion is more
than just a feature: it is a general principle in the design of Emacs. It can be articu-
lated as follows:

If you have to type in the name of something, and that name is one of a finite number
of possibilities, Emacs should figure out what you mean after the smallest possible
number of keystrokes.

(none)
Help ➝ Search Documentation
➝ Look Up Subject in ELisp
Manual

elisp-index-search Search the index of the Emacs Lisp manual.

C-h Enter
Help ➝ More Manuals ➝

Ordering Manuals

view-order-manuals Displays information about ordering print
manuals.

C-h p finder-by-keyword Invoke a menu that lets you get information
about Emacs Lisp packages available on your
system.

C-h C-c
Help ➝ Copying Conditions

describe-copying View the General Public License (GPL).

C-h C-d
Help ➝ Getting New Versions

describe-distribution View information on ordering Emacs from FSF.

C-h C-p describe-project View information on the GNU project. (See the
Preface.)

C-h C-w
Help ➝ (Non)Warranty

describe-no-warranty View the (non-)warranty for Emacs. Emacs
doesn’t provide a warranty, hence the name
here.

C-h C-t view-todo If you’re a programmer looking to contribute
to the Emacs code base, use this command to
view a list of what needs to be done.

C-h C-e
Help ➝ Emacs Known
Problems

view-emacs-problems Displays the PROBLEMS file, which includes a
list of known problems.

C-h h view-hello-file View the HELLO file, which displays the word
“hello” in numerous languages.

C-h L
Help ➝ Describe ➝ Describe
Language Environment

describe-language-environment Prompts for either default (current environ-
ment) or lists possible completions. Menu
option shows these choices.

C-h I or C-h C-\ Help ➝

Describe ➝ Describe Input
Method

describe-input-method Shows current input method (the default) or,
with completion, a list of possible input meth-
ods.

C-h C
Help ➝ Describe ➝ Describe
Coding System

describe-coding-system Shows current coding system (the default) or,
with completion, lists all available coding sys-
tems.

Table 14-4. Documentation, general information, and encoding options (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 14: The Help System

In other words, you can type in the shortest unambiguous prefix and tell Emacs to fig-
ure out the rest of the name. By “shortest unambiguous prefix,” we mean “enough of
the name, starting from the beginning, to distinguish it from the other possibilities.”
Several important things in Emacs have names that are chosen from a finite number
of possibilities, including the following:

• Commands

• Files in a given directory

• Buffers

• Emacs variables

Most of the time, completion is available when you are prompted for a name of
something in the minibuffer. While you are typing in the name, you can use three
keys to tell Emacs to help complete it for you: Tab, Space, and question mark (?).
Their functions are shown in Table 14-5.

You will probably find Tab to be the most useful.

As a running example, assume you have typed C-x C-f to visit a file, and the file you
want to visit is a C program called program.c. Let’s say you type pro and press Tab;
Emacs responds by completing the name to the full program.c. If you press Space,
Emacs completes only as far as program. After Emacs completes the name, you can
press Enter to visit the file.

How much of the name do you need to type in before you can use completion? That
depends on the other possible choices in the given situation. If program.c were the
only file in your directory, you could just type p and press Tab.* If there were other
files in your directory and none of them has a name beginning with p, you could do
the same thing. But if you had a file called problem.c, you would have to type prog
before you pressed Tab; in this case, prog is the shortest unambiguous prefix. If you
just type in pro and press Tab, Emacs responds with a *Completions* window con-
taining a list of the completion choices, in this case program.c and problem.c, and
returns your cursor to the minibuffer so that you can finish typing the filename. The

Table 14-5. Completion keys

Keystroke Action

Tab Completes the name as far as possible.

Space Completes the name out to the next punctuation character.

? Lists the choices at this point in a *Completions* window.

* You can’t just press Tab without typing the p because the current and parent directories, named . and ..,
respectively, are also file choices. Normally, Emacs runs dired when you visit a file that’s a directory.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Completion | 455

same thing happens if you typed a question mark instead of Tab. At this point, you
can type g and press Tab again; Emacs completes the name to program.c.

As another example, let’s say you have documentation for your C program in the file
program.txt, and you want to visit it. You press C-x C-f and type prog at the prompt,
followed by Tab. Emacs completes out to program.. At this point, you can type t and
press Tab again; Emacs completes the entire program.txt. In other words, you can
use completion repeatedly when specifying a name.

Finally, let’s say you also have a file in your directory called simply program, which is
the result of compiling your C file, but you still want to visit the documentation file.
You type prog and press Tab; Emacs completes out to program. (including the
period). At this point, Tab and Space do different things. If you press Tab again,
Emacs responds with the message [Complete, but not unique] in the minibuffer, but
if you press Space, Emacs assumes you aren’t interested in the file program and
attempts to complete further. Because you have the files program.c and program.txt,
Emacs only completes out to program., and you have to type t and press Tab again.

Completion works the same way with buffer names, for example, when you type C-x b
to switch to another buffer in the current window. It also works with command names
when you type M-x—but with one added feature. Notice that when you specify a file
or buffer name, it is possible that the file or buffer you want doesn’t yet exist (for exam-
ple, when you want to create a new file). In this case, of course, you must type in the
entire file or buffer name and press Enter. But when you type M-x for a command,
there is no possibility of the command not existing. Therefore, Emacs automatically
attempts to do completion on command names when you press Enter.

For example, if you want to put a buffer for a text file in auto-fill mode (see
Chapter 2), you can type M-x auto-f and press Enter instead of typing the entire M-x
auto-fill-mode. If you type in a nonunique (ambiguous) prefix of a command
name—for example, if you type M-x aut—and press Enter, then Enter acts just like
Tab; in this case, it completes out to auto. If you press Enter again, Emacs responds
with a *Completions* window listing the choices. To get auto-fill-mode, you have to
type f and press Enter again.

Completion on command names with Enter is very convenient. After you have used
Emacs for a while, you will become familiar with the shortest unambiguous prefixes
for commands you use often, and you can save a considerable amount of typing by
using these prefixes instead of the full names.*

Emacs can also do completion on the names of Emacs variables. In Chapter 2, and
elsewhere, we saw how you can use M-x set-variable to change the values of Emacs
variables. The Enter feature just described works on variables as well as commands;

* For example, if you make changes to your .emacs file regularly, you will appreciate that M-x eval-c is an
acceptable prefix for M-x eval-current-buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 14: The Help System

therefore, you can use completion, including Enter, when doing M-x set-variable.
Actually, commands and variables are both special kinds of Emacs Lisp symbols, and
Emacs can do completion with Enter on all kinds of Lisp symbols. Completion on
Lisp symbols comes in handy when you are using some of the help commands
described earlier in this chapter.

Customizing Completion
If you have read Chapter 10 and are comfortable with setting Emacs variables, you
should know that a few variables can customize the way Emacs does completion.
The variable completion-auto-help determines whether a *Completions* window
automatically appears when you try to use Space or Tab on an ambiguous prefix. Its
default is t, meaning that such windows automatically appear. If you set it to nil,
instead of a *Completions* window appearing, Emacs just displays the message [Next
char not unique] for a couple of seconds in the minibuffer.

If you are a programmer or if you use text formatters like LATEX, you will create
files that are not meant for humans to read, such as object files created by compil-
ers and print files created by text formatters. Ideally, you wouldn’t want Emacs to
bother with these files when you are doing completion; for example, if you have the
files program.c and program.o (object-code output from the compiler), you want
Emacs to recognize only the former. Emacs does have a feature that deals with this;
indeed, you may already have noticed that in this kind of situation, if you type pro-
gram and press Tab, Emacs ignores program.o and completes out to program.c.
The variable completion-ignored-extensions controls this; it is a list of filename
suffixes that Emacs ignores during filename completion. By default, the list
includes tilde (~) for Emacs backup files, .o for programmers, various suffixes for
users, .elc (byte-compiled Emacs Lisp) for Emacs customizers, and others. (Of
course, if you really want to look at these files, you can type their names manually.)

You can add your own “ignored” suffix to the list by putting a line of this form in
your .emacs file:

(setq completion-ignored-extensions
 (cons "suffix" completion-ignored-extensions))

For example, let’s say you are doing text processing with a printer that prints Post-
Script, and your text processor produces print files with the suffix .ps. If you don’t
want to look at these files, put the following line in your .emacs file:

(setq completion-ignored-extensions
 (cons ".ps" completion-ignored-extensions))

Finally, you can tell Emacs to ignore case distinctions when doing completion by set-
ting the variable completion-ignore-case to t (or any value other than nil). Its default
value is nil, meaning that Emacs respects case distinctions.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

457

Appendix A APPENDIX A

Emacs Variables

This appendix lists some Emacs variables. We chose them for their general useful-
ness and for their applicability to subjects in this book.

The variables below are grouped by category, and their default values are shown
(where practical to do so). For more details on specific variables, see the chapters
referred to at the beginning of each table. For information on variables used in pro-
gramming language modes, see Chapter 9.

Table A-1. Backups, auto-save, and versioning (Chapters 2, 12)

Variable Default Description

make-backup-files t If t, create a backup version of the current file before saving it for the first
time.

backup-by-copying nil If t, create backup files by copying rather than renaming the file being
saved to a backup version. The default is renaming, which is more effi-
cient. Copying can yield different results, especially when you’re editing
files owned by another user, and in operating systems that allow “hard
links” to files (alternate names that are associated with the physical file).
There are a raft of variables that can tweak this behavior based on con-
text; check the online help for make-backup-files for the details.

version-control nil If t, create numbered versions of files as backups (with names of the
form filename~N~). If nil, only do this for files that have numbered ver-
sions already. If 'never (note the leading single quote), never make
numbered versions.

kept-new-versions 2 Number of latest versions of a file to keep when a new numbered backup
is made.

kept-old-versions 2 Number of oldest versions of a file to keep when a new numbered
backup is made.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

458 | Appendix A: Emacs Variables

delete-old-versions nil If t, delete excess versions (not those kept according to the above vari-
ables) without asking for confirmation first. If nil, ask for confirmation
first. If any other value, don’t delete excess versions.

auto-save-default t If t, do auto-saving of every file visited.

auto-save-visited-file-
name

nil If t, auto-save to the file being visited rather than to a special auto-save
file.

auto-save-interval 300 Number of keystrokes between auto-saving; if 0, turn off auto-saving.

auto-save-timeout 30 Length of time of inactivity after which Emacs auto-saves. If nil or 0, turn
off this feature.

delete-auto-save-files t Non-nil means delete auto-save files whenever the “real” file is saved.

buffer-offer-save nil Non-nil means offer to save the current buffer when exiting Emacs, even
if the buffer is not a file.

vc-handled-backends (RCS CVS SVN
SCCS Arch
MCVS)

Version control systems used with the vc package. The order in which
they appear in this list controls the order in which they will be attempted
when working with a new file.

vc-display-status t If non-nil, display the version number and the locked state in the mode
line.

vc-keep-workfiles t If non-nil, do not delete work files after you register changes with the
version control system.

vc-mistrust-permissions nil If non-nil, do not assume that a file’s owner ID and permission flags
reflect version control system’s idea of file’s ownership and permission;
get this information directly from version control system.

vc-suppress-confirm nil If non-nil, do not ask for confirmation before performing version control
actions.

vc-initial-comment nil If non-nil, prompt for an initial comment when registering a file with
version control system.

vc-make-backup-files nil If non-nil, make standard Emacs backups of files registered with version
control.

diff-switches -c Command-line switches used to control the format of change reports by
VC as well as diff.el.

Table A-2. Searching and replacing (Chapter 3)

Variable Default Description

case-fold-search t If non-nil, treat upper- and lowercase letters as the same
when searching.

case-replace t If non-nil, preserve the original case of letters when doing
replaces (even if case-fold-search is on).

search-upper-case 'not-yanks If non-nil, uppercase letters in search strings defeat case-fold-
search (i.e., force search to be case-sensitive). The symbol
'not-yanks means convert uppercase letters in yanked text to
lowercase.

Table A-1. Backups, auto-save, and versioning (Chapters 2, 12) (continued)

Variable Default Description

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs Variables | 459

search-exit-option t If non-nil, any control character other than those defined in
incremental search (Del, C-j, C-q, C-r, C-s, C-w, C-y) exits
search.

search-highlight t If non-nil, highlight partial search matches.

query-replace-highlight t If non-nil, highlight matches in query-replace mode.

Table A-3. Display (Chapters 2, 4)

Variable Default Description

next-screen-context-lines 2 Retain this many lines when scrolling forward or backward by C-v or M-v.

scroll-step 0 When moving the cursor vertically out of the current window, scroll this many
lines forward or backward. If 0, scroll enough lines to place the cursor at the
center of the window after scrolling.

hscroll-step 0 When moving the cursor horizontally out of the current window, scroll this
many columns left or right. If 0, scroll enough lines to place the cursor at the
center of the window after scrolling.

tab-width 8 Width of tab stops; when set, it becomes local to the current buffer.

left-margin 0 Number of columns to indent when typing C-j in fundamental mode and text
mode.

standard-indent 4 The number of columns to indent when using commands that increase or
decrease margins.

truncate-lines nil If non-nil, do not wrap long lines; instead, truncate them and use arrows to
show that the line continues off-screen. (Nongraphical versions of Emacs use
$ instead to show where the line extends.)

truncate-partial-width-
windows

t If non-nil, truncate long lines (as above) in all windows that are not the full
width of the display.

window-min-height 4 Minimum allowable height of windows (in lines).

window-min-width 10 Minimum allowable width of vertically split windows (in columns).

ctl-arrow t Non-nil means display control characters using ^X, where X is the letter being
“controlled.” Otherwise, use octal (base 8) ASCII notation for display—for
example, C-h appears as \010 in octal.

display-time-day-and-date nil If non-nil, M-x display-time Enter will also show the day and date.

line-number-mode t If non-nil, display the line number on the mode line.

line-number-display-limit nil Maximum size of buffer (in characters) for which line numbers should be dis-
played. A value of nil means no limit.

column-number-mode nil If non-nil, display the column number on the mode line.

visible-bell nil If non-nil, “flash” the screen instead of beeping when necessary.

track-eol nil If non-nil, whenever the cursor is at the end of the line, “stick” to the end of
the line when moving the cursor up or down; otherwise, stay in the column
where the cursor is.

Table A-2. Searching and replacing (Chapter 3) (continued)

Variable Default Description

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

460 | Appendix A: Emacs Variables

blink-matching-paren t If non-nil, blink matching open parenthesis-type character when a corre-
sponding close parenthesis is typed.

blink-matching-paren-dis-
tance

25600 Maximum number of characters to search through to find a matching open
parenthesis character when a close parenthesis is typed.

blink-matching-delay 1 Number of seconds to pause when blinking a matching parenthesis.

echo-keystrokes 1 Echo prefixes for unfinished commands (e.g., C-) in minibuffer after user
pauses for this many seconds; 0 means don’t do echoing at all.

insert-default-directory t If non-nil, insert the current directory in the minibuffer when asking for a file-
name.

highlight-nonselected-
windows

nil If non-nil, highlight regions in windows other than the one currently
selected; applies to GUI displays and others that support highlighting.

mouse-scroll-delay 0.25 Delay, in seconds, between screen scrolls when mouse is clicked and dragged
from inside a window to beyond its borders. 0 means scroll as fast as possible.

mouse-scroll-min-lines 1 Scroll at least this many lines when mouse is clicked and dragged up or down
beyond a window.

Table A-4. Modes (Chapters 2, 5, 7)

Variable Default Description

major-mode fundamental-mode Default mode for new buffers, unless set by virtue of the
filename; when setting this variable, remember to pre-
cede the mode name with a single quote (the value is a
symbol).

default-major-mode fundamental-mode The major mode for new buffers.

auto-mode-alist (see Chapter 10) List of associations between filenames and major
modes.

interpreter-mode-alist (see Chapter 9) A list similar to auto-mode-alist, but for interpreted
languages like Perl and Python.

indent-tabs-mode t If non-nil, allow the use of tab characters (as well as
spaces) when indenting with C-j. This can really drive
other developers mad, so you should probably disable
this if you are working on a team.

dired-kept-versions 2 When cleaning a directory in Dired, keep this many ver-
sions of files.

dired-garbage-files-regexp "\\.\\(?:aux\\|bak\\
|dvi\\|log\\|orig\\
|rej\\|toc\\)\\'"

Defines what file types are marked when selecting gar-
bage files in Dired.

dired-listing-switches “-al” Options passed to the ls command for generating dired
listings; should contain at least "-l".

dired-view-command-alist (see Chapter 10) Defines helper applications for Dired to invoke when
opening certain types of files.

Table A-3. Display (Chapters 2, 4) (continued)

Variable Default Description

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs Variables | 461

shell-file-name varies Filename of shell to run with functions that use one,
such as list-directory, dired, and compile; taken from
value of the Unix environment variable SHELL.

load-path List of directories to search for Lisp packages to load (see
Chapter 11); often set to lisp subdirectory of directory
where Emacs source code is installed on your system.

lpr-switches nil Defines command-line options to pass to lpr

calendar-week-start-day 0 Day defined as first day of the week. 0 is Sunday, 1 is
Monday and so on.

picture-tab-characters "!-~" Characters interpreted as tab stops in picture mode if
they appear on a line of their own.

Table A-5. Text editing (Chapters 2, 3, 7, 8)

Variable Default Description

sentence-end (see Chapter 13) Regular expression that matches ends of sentences.

sentence-end-double-
space

t If non-nil, do not treat single spaces after periods as ends
of sentences.

paragraph-separate "[\t\f]*$" Regular expression that matches beginnings of lines that
separate paragraphs.

paragraph-start "\f\\|[\t]*$" Regular expression that matches beginnings of lines that
start or separate paragraphs.

page-delimiter "^\f" Regular expression that matches page breaks.

tex-default-mode 'latex-mode Mode to invoke when creating a file that could be either
TEX or LATEX.

tex-run-command "tex" Character string used as a command to run in a subpro-
cess on a file in mode.

latex-run-command "latex" String used as a command to run LATEX in a subprocess.

slitex-run-command "slitex" String used as a command to run SliTEX in a subprocess.

tex-dvi-print-command "lpr -d" Character string used as a command to print a file in tex
mode with C-c C-p.

tex-alt-dvi-print-command "lpr -d" Command to direct .dvi files to a secondary printer.

tex-dvi-view-command (if (eq window-sys-
tem 'x) "xdvi"
"dvi2tty * | cat -s")

Character string used as command to view a .dvi output
file with C-c C-v; this expression yields xdvi on X Window
systems, and a terminal-based alternative on others.
This will only work if a Unix-like operating environment
is present (such as Mac OS X, or Cygwin under Windows).

tex-offer-save t If non-nil, offer to save any unsaved buffers before run-
ning TEX.

tex-show-queue-command "lpq" Character string used as command to show the print
queue with C-c C-q in Tex mode.

tex-directory "." Directory for TEX to put temporary files in; default is the
current directory.

Table A-4. Modes (Chapters 2, 5, 7) (continued)

Variable Default Description

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

462 | Appendix A: Emacs Variables

outline-regexp "[*\f]+" Regular expression that matches heading lines in outline
mode.

outline-heading-end-
regexp

"\n" Regular expression that matches ends of heading lines in
outline mode.

selective-display-ellipses t If t, display "..." in place of hidden text in outline mode;
otherwise don’t display anything.

Table A-6. Programming (Chapter 9)

Variable Default Description

compile-command "make -k" Default compilation command to use when compil-
ing files via Emacs language modes. For example, to
set ant as the default compilation tool, set this to
"ant -emacs".

compilation-error-regexp-alist (very long regular
expression)

Regular expression designed to match error mes-
sages from all the compilers supported by Emacs.

comment-column 32 The column at which Emacs should insert comments.
If code reaches this column, inserts comment one
space beyond code.

comment-multi-line nil If t, continue comment on the next line. If nil, start a
new comment on the next line.

c-style-alist (see Chapter 9) The code indentation style to use. Many are available;
see Chapter 9.

debug-on-error nil If non-nil, emacs will go into debug mode when an
error occurs in evaluating Lisp code. This can be
handy when you’re trying out a new function, but
you probably want to read the debugger’s help first
to learn your way around.

c-macro-preprocessor "/lib/cpp -C" Defines which command is used to invoke C prepro-
cessor when you type C-c C-e.

stack-trace-on-error nil If non-nil, Emacs displays a stack trace when an error
occurs in evaluating Lisp code. This is useful in similar
situations as debug-on-error and might give you
enough information without having to learn the
debugger interface.

Table A-7. Completion (Chapter 14)

Variable Default Description

completion-auto-help t If non-nil, provide help if a completion (via Tab or
Enter in minibuffer) is invalid or ambiguous.

completion-ignored-exten-
sions

(see Chapter 14) List of filename suffixes Emacs ignores when com-
pleting filenames (for example, ~).

completion-ignore-case nil If non-nil, ignore case distinctions when doing com-
pletion.

Table A-5. Text editing (Chapters 2, 3, 7, 8) (continued)

Variable Default Description

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs Variables | 463

Table A-8. Miscellaneous

Variable Default Description

kill-ring-max 60 Keep n pieces of deleted text in the kill ring before
deleting oldest kills.

require-final-newline nil If a file being saved is missing a final newline: nil
means don’t add one; t means add one automati-
cally; otherwise ask whether to add a newline.

next-line-add-newlines nil If non-nil, next-line (C-n or down arrow) inserts
newlines when at the end of the buffer, rather than
signaling an error.

undo-limit, undo-strong-
limit

20000, 30000 These two variables jointly control how much space
Emacs is willing to allocate to supporting the undo
command. If you ever find yourself wanting to undo
more than past what Emacs remembers, you might
want to investigate increasing these limits; with
today’s memory sizes they can probably comfortably
be much larger.

mac-command-key-is-
meta

t If t, the Mac Command key is used for Meta; if nil,
the Option key is Meta instead.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

464

Appendix BAPPENDIX B

Emacs Lisp Packages

The tables in this appendix list the most useful Lisp packages that come with Emacs.
All Lisp packages are typically located in the directory emacs-source/lisp, where
emacs-source is the directory in which you placed the Emacs source distribution. We
have omitted all of the packages that provide “basic” Emacs support; likewise, we
have omitted many packages whose functionality is obsolete or unspeakably
obscure.

While some of these packages are described in some detail in this book, most aren’t;
you will have to rely on GNU Emacs’ help for precise descriptions of what the pack-
age does. See Chapter 14 for details about help; the most important help commands
you will need for finding out about the functionality of Lisp packages are C-h p (for
finder-by-keyword), C-h f (for describe-function), and C-h m (for describe-mode).

C-h p is especially helpful. It lets you navigate through a hierarchy of information
about all packages available on your system, from general areas of functionality, like
those in the tables in this appendix, to the C-h m information about each individual
mode. Unfortunately, the detailed information is sometimes incomplete and also lists
many packages that could not possibly be interesting to anyone other than hard-core
Emacs customizers.

Wherever it is reasonable, the tables in this appendix give commands that “start” the
package. This startup information has the following meanings:

• If the package implements a major mode, the startup command is the function
that puts Emacs into this major mode.

• If the package implements a major mode that is automatically loaded when you
visit a file with a certain suffix, we list “suffix suffixname” in addition to the star-
tup command.

• If the package implements a minor mode, the startup command is the function
that puts Emacs into this minor mode.

• If the package implements a set of general-purpose functions, we’ve tried to pick
the most “typical” of these functions. For example, the studly package imple-

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs Lisp Packages | 465

ments three commands. We arbitrarily picked studlify-region as one way to
invoke this package. If there isn’t any reasonable choice, we list “many.”

Finally, a word on using the packages. Some packages are automatically loaded when
Emacs starts; some are loaded when you visit a file with the appropriate suffix (such
as many of the modes for programming languages); some are automatically loaded
whenever you give the appropriate command (for example, M-x shell Enter loads the
package shell.el for shell-mode); and some are never automatically loaded. So how
do you know which is which?

You don’t really have to concern yourself with this issue. In the tables, the Startup
column tells you what command (or commands) put the package to work. Start
Emacs, and give this command (M-x startup-command Enter). If Emacs complains no
match, the package wasn’t loaded automatically and you need to load the package
“by hand.” To do so during an Emacs session, use the command M-x load-library
name Enter, where the package’s “name” is given in the first column of the table. You
can also tell Emacs to load packages automatically at startup time by putting lines in
your .emacs file that have this form:

(load-library "name")

Finally, if you’re interested in looking at the source code of the libraries, which can
be a great way to pick up techniques as you develop skills in programming Emacs
Lisp, check out the find-library-file function presented in Chapter 11.

Now, without further ado, here are the tables of Lisp packages.

Table B-1. Support for Java, C, and C++ programming

Package Description Startup

cc-mode Major mode for editing Java, C, C++ and Objective-C
source files

java-mode, c-mode, c++-mode, objc-
mode, suffixes .java, .c, .h, .y, .lex, .cc, .hh, .C,
.H, .cpp, .cxx, .hxx, .c++, .h++

cmacexp Function for using cpp to expand macros in C source
code

c-macro-expand

hideif Minor mode for hiding code within C preprocessor
commands

hide-ifdef-mode

cpp Major mode for highlighting and hiding code within
C preprocessor conditionals; takes advantage of
graphical displays

cpp-parse-edit

Table B-2. Support for Lisp programming

Package Description Startup

lisp-mode Major modes for Lisp, Emacs Lisp and Lisp interaction lisp-mode, emacs-lisp-mode, lisp-interac-
tion-mode, suffixes .l, .lisp, .lsp, .ml, .el, and
othersa

scheme Major mode for editing Scheme source files scheme-mode, suffixes .scm, .stk, .ss, .sch,
.oak

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

466 | Appendix B: Emacs Lisp Packages

cl Functions and macros for Emacs Lisp compatibility
with Common Lisp

many

debug Major mode for debugging Emacs Lisp programs debug, automatically invoked if an error
occurs running code when debug-on-error is
not nil

edebug Emacs Lisp debugging functionality, implemented as
a minor mode

edebug

disass Function to disassemble compiled Emacs Lisp code disassemble

elp Code profiler for Emacs Lisp elp-instrument-package, elp-instrument-
function

trace Produces function call traces for Emacs Lisp trace-function

a Emacs Lisp mode is also invoked for files named .emacs or _emacs. In the default configuration, Lisp Inter-
action mode is used by the initial *scratch* buffer.

Table B-3. Support for other programming tasks and languages

Package Description Startup

gud Major mode for working with many different debuggers
including jdb, gdb, sdb, dbx, xdb, perldb, pdb (Python), and
bash

jdb, bashdb, gdb, and many others

perl-mode Major mode for working with Perl source perl-mode, suffixes .pl, .pm, .perl, .al,
and capitalized variants

cperl-mode Major mode for working with Perl source, which many prefer
to the older Perl mode

cperl-mode, suffixes .pl, .pm, .perl, .al,
and capitalized variants

python Major mode for editing Python source files python-mode, suffix .py

tcl Major mode for editing TCL source files tcl-mode, suffixes .tcl, .exp, .itcl, .itk

sql Major mode for editing SQL queries sql-mode, suffix .sql

ada-mode Major mode for editing Ada source files ada-mode, suffixes .ada, .adb, .ads,
.adb.dg, .ads.dg

pascal Major mode for editing Pascal source files pascal-mode, suffixes .p, .pas

modula2 Major mode for editing Modula-2 source code modula-2-mode

fortran Major mode for editing Fortran source files fortran-mode, suffixes .f, .F, .for

f90 Major mode for editing source code in the Fortran 90 dialect f90-mode, suffixes .f90, .f95

asm-mode Major mode for editing assembly language source code asm-mode, suffixes .s, .S, .asm

awk-mode Major mode for editing awk code awk-mode, suffix .awk

m4-mode Major mode for editing m4 macro source m4-mode, suffixes .m4, .mc

ps-mode Major mode for editing PostScript code ps-mode, suffixes .ps, .eps, with any
capitalization

compile Major mode for compiling programs (often through make or
ant) and allowing easy access to the source lines on which
errors are reported

compile

Table B-2. Support for Lisp programming (continued)

Package Description Startup

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs Lisp Packages | 467

Table B-4. Support for Text Processing

Package Description Startup

text-mode Major mode for editing unprocessed text files text-mode, suffixes .txt, .text, .article,
.letter, and files starting with /tmp/Re,
Message and a digit (mail), /tmp/fol (news)

sgml-mode Major mode for editing structured documents (including
HTML and XML)a

a See Chapter 8 for an extensive discussion of working with markup languages in Emacs.

html-mode, xml-mode, sgml-mode, suf-
fixes .htm, .html, .shtml, .xml, .xsl,
.dtd, .sgm, .sgml

tex-mode Major mode for editing TEX and LATEX files tex-mode, latex-mode, suffixes .tex,
.ins, .TeX, .ltx, .sty, .cls, .clo, .bbl

bibtex Major mode for editing bibliography files bibtex-mode, suffix .bib

refbib Convert bibliography files in refer format to bibtex format r2b-convert-buffer

nroff Major mode for editing nroff and troff text files nroff-mode, suffixes .mm, .me, .ms,
.man, or any digit following a period (man-

ual page source)

scribe Major mode for editing Scribe text files scribe-mode, suffix .mss

Table B-5. Emulations for other editors

Package Description Startup

vi Major mode for emulating the vi editor vi-mode

vip Another major mode for emulating vi vip-mode

edt Function to set key bindings to emulate the VAX/VMS EDT editor edt-emulation-on

Table B-6. Interfaces to operating system utilitiesa

a Some of these will be useful on Windows only if you’ve installed a Unix compatibility package like Cygwin
(see http://www.cygwin.com).

Package Description Startup

shell Major mode for interacting with the command-line shell. shell-mode

find-dired Run the find command and use dired on the resulting list of
files.

find-dired

tar-mode Access files inside a tar archive through a dired-like inter-
face.

tar-mode, suffix .tar

arc-mode Access files in several other archive formats through a
dired-like interface.

archive-mode, suffixes .arc, .zip, .lzh,
.zoo, .ear, .jar, .war, as well as capitalized
variants; .sxd, .sxm, .sxi, .sxc, .sxw

lpr Print the contents of a buffer or region. lpr-buffer, print-buffer, lpr-region,
print-region

sort Sort the contents of a buffer. sort-columns, sort-fields, sort-lines,
sort-numeric-fields, sort-paragraphs,
sort-regexp-fields

spell,
ispell

Various tools for checking spelling. See Chapter 3

diff, ediff Tools to help in comparing files. See Chapter 12

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

468 | Appendix B: Emacs Lisp Packages

Table B-7. Networking support

Package Description Startup

ange-ftp Provides transparent access to remote files via FTP most standard file-handling com-
mands

url Functions for retrieving the contents of documents through
URLs

Invoked from Lisp code, not interac-
tively

quickurl Functions for looking up and adding URLs to documents many commands beginning with
quickurl

talk A multi-user talk package that runs in Emacs talk-connect

eudc A unified directory client for looking up address information
from LDAP, BBDB, CCSO PH/QU and other directory servers

eudc-mode

net-utils Provides access to common network utility programs (ping,
traceroute, netstat, etc.

ping, traceroute, netstat, etc.

Table B-8. Games and amusements

Package Description Startup

animate Draws animated text. animate-birthday-present

blackbox Major mode to play the Blackbox game. blackbox-mode

decipher Major mode to cryptanalyze monoalphabetic substitution
ciphers (break simple codes).

decipher

dissociate Randomly scramble text. dissociated-press

doctor Major mode for playing the famous “psychoanalyst” game. doctor

dunnet Major mode for playing an adventure game. dunnet

gomoku Major mode for playing Gomoku. gomoku

hanoi Solve the Towers of Hanoi puzzle for you. hanoi

life Explore cellular automata using John Conway’s “life” game
rules.

life

mpuz Generate a random multiplication puzzle. mpuz

snake Steer an animated snake towards food without hitting your-
self or the walls.

snake

solitaire Play the peg solitaire game. solitaire

studly Randomly capitalize letters for that polished, professional
look.

studlify-region

tetris Guide falling tiles to complete rows. tetris

yow Print a random quotation from Zippy the Pinhead. yow

zone Rearrange your buffer in a hypnotic way. zone

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Emacs Lisp Packages | 469

Again, this is only a sampling of some available packages, to give you a sense of the
breadth and depth of capabilities that ship with Emacs. The list isn’t close to com-
plete even with respect to what’s available at this time, and new features are always
being added. Your best bet is to explore for yourself using the tools mentioned at the
beginning of this appendix. And don’t forget to search the Web for nonstandard
additions that might be just what you need for your own environment and projects!

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

470

Appendix CAPPENDIX C

Bugs and Bug Fixes

There are no perfect programs. GNU Emacs is very thoroughly debugged, but it is
certainly possible to find things that don’t work correctly.

The Free Software Foundation (FSF) welcomes problem reports. However, they need
to be real problem reports; simple differences of opinion about how something
should work are not bugs. If you think that a certain command should work differ-
ently, remember that Emacs has been around for a long time and has many users; it
can’t be changed to satisfy a single user. (On the other hand, in most cases, you
could write some Lisp to change it yourself.) In the GNU Emacs Manual, the FSF
publishes some excellent guidelines for reporting bugs, which we’ll summarize very
quickly:

• Before you report a bug, see if it’s on the list of known problems. You can view
this list by typing C-h C-e.

• You most certainly have a bug if you run into some kind of system error (Emacs
dumps core, terminates with a segmentation fault, crashes, hangs, or does some-
thing else antisocial).

• When reporting bugs, be as specific as possible. A few commands will help you
report exactly what was happening when things went awry. C-h l (for view-los-
sage) reports the last 100 or so keystrokes you made; M-x open-dribble-file file-
name saves every keystroke you type in the specified filename.

• The FSF discourages you from trying to interpret bugs in the bug report. “I did
thus-and-such and this happened” is useful, particularly if the problem is repeat-
able; “I think there’s a problem with font handling” doesn’t give any useful
information at all.

• Always report which version of Emacs you are using. The command M-x emacs-
version gives you the relevant information.

• Always report the contents of the file you were editing (if it makes a difference),
the contents of your .emacs file, which mode you were in, and any Lisp libraries
(custom or otherwise) that you have to load in order to create the problem.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Bugs and Bug Fixes | 471

We will add one very important guideline:

• Although we have taken every effort to write a book that is accurate, we are far
from perfect. With that in mind, please do not cite this book as an authority
when reporting a bug. Although we haven’t asked, the Free Software Founda-
tion would be completely justified in rejecting any bug reports based on a third-
party publication. If you suspect a bug, use the GNU Emacs Manual or the help
facility to find out what the command that’s giving you trouble is really sup-
posed to do. In doing so, you may find out that this book is incorrect; if you do,
please report the problem to booktech@oreilly.com.

If you do have a bug to report, type M-x report-emacs-bug to send it from within
Emacs. You’ll be prompted for a subject line and dropped into Emacs’ interface for
sending mail. If mail from Emacs isn’t set up properly, you can email emacs-pretest-
bug@gnu.org using your preferred mail client. Be sure to include an informative sub-
ject line that summarizes the problem.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

472

Appendix DAPPENDIX D

Online Resources

This appendix includes some helpful Emacs web sites. Some of those listed describe
add-on packages for Emacs. In some cases, the sites have been stable for years and
are likely to remain that way. In other cases, web sites come and go and URLs
change. If you find errors in this list or have suggestions for additions, please email
us at booktech@oreilly.com.

Table D-1. Emacs web sites

Web site URL

The Free Software Foundation http://www.fsf.org/

The official web site for GNU Emacs http://www.gnu.org/software/emacs/

The GNU General Public License http://www.gnu.org/copyleft/gpl.html

The web site for this book http://www.oreilly.com/catalog/gnu3/

The very unofficial dotemacs home (great collection of .emacs
files to aid you in creating your own)

http://www.dotemacs.de/

Dotfiles.com (includes dot files for other applications as well as
Emacs)

http://www.dotfiles.com/

The Emacs Wiki http://www.emacswiki.org/cgi-bin/wiki /

Emacs Haiku http://www.dina.dk/~abraham/religion/haiku-2.txt

Emacs implementations http://www.finseth.com/~fin/emacs.html

David Wheeler’s essay arguing for a GPL-compatible license for
open source projects

http://www.dwheeler.com/essays/gpl-compatible.html

Table D-2. Platform and accessibility-related web sites

Web site URL

FSF’s download site for Emacs for Unix and Windows http://ftp.gnu.org/pub/gnu/emacs/

Andrew Choi’s Mac OS X FAQ and build instructions http://members.shaw.ca/akochoi-emacs/

http://members.shaw.ca/akochoi-emacs/stories/
obtaining-andbuilding.html

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Online Resources | 473

Alex Rice’s Mac OS X build http://mindlube.com/products/emacs/index.html

Fink, a Unix software installer for Mac OS X http://fink.sourceforge.net/

John Schneider’s “Getting Mac OS X.3 toBehave Almost Like My
Linux Boxes”

http://www.eecs.wsu.edu/~schneidj/mac-osx-10.3.html

Nqmacs, a Windows Emacs binary http://sourceforge.net/projects/nqmacs /

Cygwin: Unix commands for Windows http://www.cygwin.com/

Ngai Kim Hoong’s page relating to Emacs and Cygwin (even
Emacs and Palm Pilots)

http://www.khngai.com/emacs/

Kim Storm’s CUA mode http://www.cua.dk/emacs.html/

Emacspeak (an audio interface to Emacs) http://emacspeak.sourceforge.net/

Table D-3. Text-related sites

Web site URL

Ispell FAQ http://www.kdstevens.com/~stevens/ispell-faq.html

Raymond Zeitler’s post pointing to the right version
of Ispell for Windows

http://lists.nongnu.org/archive/html/help-emacs-windows/2004-06/
msg00023.html

Eric Pement’s “Understanding GNU Emacs and
Tabs” page

http://www.student.northpark.edu/pemente/emacs_tabs.htm

Eric Pement’s awk scripts for converting to outline
mode outlines to classical outline formats

http://www.student.northpark.edu/pemente/awk/outline_classic11.
awk.txt

http://www.student.northpark.edu/pemente/awk/outline_
numbered11.awk.txt

ASCII art (fun with picture mode) http://www.ascii-art.de/

Table D-4. Programming languages, version control, and customization sites

Web site URL

CPAN (the Comprehensive Perl Archive Network) http://www.cpan.org/

Collection of Emacs Development Environment Tools (CEDET) http://cedet.sourceforge.net/

JDEE site http://jdee.sunsite.dk/

PHP mode http://sourceforge.net/projects/php-mode/

Subversion http://subversion.tigris.org

Clearcase extensions (clearcase.el) http://members.verizon.net/~vze24fr2/
EmacsClearCase/

Table D-2. Platform and accessibility-related web sites (continued)

Web site URL

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

474 | Appendix D: Online Resources

Table D-5. Markup language-related sites

Web site URL

psgml mode http://www.lysator.liu.se/projects/about_psgml.html

psgml setup instructions from OpenACS http://openacs.org/doc/openacs-5-0-0/psgml-mode.html

Norm Walsh’s DocBook site http://www.docbook.org/

TEI Emacs (also includes JDEE for Linux and Windows) http://www.tei-c.org/Software/tei-emacs/

Jim Clark’s nxml mode http://thaiopensource.com/download/

Nxml mode mailing list http://groups.yahoo.com/group/emacs-nxml-mode/

RELAX NG http://www.relaxng.org/

HTML helper mode http://www.nongnu.org/baol-hth/

HTMLModeDeluxe http://www.emacswiki.org/cgi-bin/wiki/HtmlModeDeluxe/

Darren Brierton’s Emacs WebDev Environment http://www.dzr-web.com/people/darren/projects/emacs-webdev /

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

475

Appendix E APPENDIX E

Quick Reference

This quick reference is arranged topically, in roughly the same order as the com-
mands were treated in the text. Unfortunately, it's impossible to be both “quick”
and thorough, particularly with an editor as large and comprehensive as GNU
Emacs. We’ve tried to take a middle road between completeness and quickness; we’ll
confess that, if we’ve erred, we’ve erred on the side of quickness.

Table E-1. File-handling commands (Chapter 1)

Keystrokes Command name Action

C-x C-f
File ➝ Open File

find-file Find file and read it in a new buffer.

C-x C-v find-alternate-file Read an alternate file, replacing the one read with C-x C-f.

C-x i
File ➝ Insert File

insert-file Insert file at cursor position.

C-x C-s
File ➝ Save (current buffer)

save-buffer Save file.

C-x C-w
File ➝ Save Buffer As

write-file Write buffer contents to file.

C-x C-c
File ➝ Exit Emacs

save-buffers-kill-emacs Exit Emacs.

Table E-2. Cursor movement commands (Chapter 2)

Keystrokes Command name Action

C-f forward-char Move forward one character (right).

C-b backward-char Move backward one character (left).

C-p previous-line Move to previous line (up).

C-n next-line Move to next line (down).

M-f forward-word Move one word forward.

M-b backward-word Move one word backward.

C-a beginning-of-line Move to beginning of line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

476 | Appendix E: Quick Reference

C-e end-of-line Move to end of line.

M-e forward-sentence Move forward one sentence.

M-a backward-sentence Move backward one sentence.

C-v scroll-up Move forward one screen.

M-v scroll-down Move backward one screen.

M-< beginning-of-buffer Move to beginning of file.

M-> end-of-buffer Move to end of file.

(none) goto-line Go to line n of file.

(none) goto-char Go to character n of file.

M-n digit-argument Repeat the next command n times.

C-u n universal-argument Repeat the next command n times (four times if you omit n).

Table E-3. Deleting, yanking, region, and clipboard commands(Chapter 2)

Keystrokes Command name Action

C-d delete-char Delete character under cursor.

Del delete-backward-char Delete previous character.

M-d kill-word Delete next word.

M-Del backward-kill-word Delete previous word.

C-y
Edit ➝ Paste Most Recent

yank Restore what you’ve deleted.

C-w
Edit ➝ Cut

kill-region Delete a marked region (see next section).

C-@ or C- Space set-mark-command Mark the beginning (or end) of a region.

C-x C-x exchange-point-and-mark Exchange location of cursor and mark.

C-w kill-region Delete the region.

C-y yank Paste most recently killed or copied text.

M-w kill-ring-save Copy the region (so it can be pasted with C-y).

C-x h mark-whole-buffer Mark buffer.

M-y yank-pop After C-y, pastes earlier deletion.

(none) clipboard-kill-region Cut region and place both in kill ring and on sys-
tem clipboard.

(none) clipboard-yank Paste text from clipboard.

(none) clipboard-kill-ring-save Copy text to clipboard.

Table E-2. Cursor movement commands (Chapter 2) (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 477

Table E-4. Text filling and reformatting commands (Chapter 2)

Keystrokes Command name Action

(none)
Options ➝ Word Wrap in Text
Modes

auto-fill-mode Toggle auto-fill mode, in which Emacs formats
paragraphs as you type them.

M-q fill-paragraph Reformat paragraph.

(none)
Edit ➝ Fill

fill-region Reformat individual paragraphs within a region.

Table E-5. Stopping and undoing commands (Chapter 2)

Keystrokes Command name Action

C-g keyboard-quit Abort current command.

C-x u advertised-undo Undo last edit (can be done repeatedly).

C-_
Edit ➝ Undo

undo Undo last edit.

(none) revert-buffer Restore buffer to the state it was in when the file was
last saved (or auto-saved).

Table E-6. Search and replace commands (Chapter 3)

Keystrokes Command name Action

C-s
Edit ➝ Search ➝ Incremental Search
➝ Forward String

isearch-forward Start incremental search forward; follow by search
string. Also, find next occurrence (forward) of search
string.

C-r
Edit ➝ Search ➝ Incremental Search
➝ Backward String

isearch-backward Start incremental search backward; follow by search
string. Also, find next occurrence (backward) of search
string.

Table E-7. Regular expression search commands (Chapter 3)

Keystrokes Command name Action

C-M-s Enter
Edit ➝ Search ➝ Regexp Forward

re-search-forward Search for a regular expression forward.

C-M-r Enter
Edit ➝ Search ➝ Regexp Backwards

re-search-backward Search for a regular expression backward.

C-M-s
Edit ➝ Search ➝ Incremental Search ➝

Forward Regexp

isearch-forward-
regexp

Search incrementally forward for a regular
expression.

C-M-r
Edit ➝ Search ➝ Incremental Search ➝

Backward Regexp

isearch-backward-
regexp

Search incrementally backward for a regular
expression.

C-M-%
Edit ➝ Replace ➝ Replace Regexp

query-replace-regexp Query-replace a regular expression.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

478 | Appendix E: Quick Reference

Table E-8. Spell-checking commands (Chapter 3)

Keystrokes Command name Action

(none)
Tools ➝ Spell Checking ➝

Spell-Check Buffer

ispell-buffer Check spelling of the buffer.

(none)
Tools ➝ Spell Checking ➝

Spell-Check Comments

ispell-comments-and-strings Checks spelling of comments and strings in a
program.

(none)
Tools ➝ Spell Checking ➝ Automatic
Spell-Checking (Flyspell)

flyspell-mode Enter the flyspell minor mode, in which
incorrectly spelled words are highlighted.

(none) flyspell-buffer Spell-check the current buffer, underlining
all misspelled words. Use middle mouse but-
ton to correct.

Table E-9. Buffer commands (Chapter 4)

Keystrokes Command name Action

C-x b
Buffers ➝ Select Named Buffer

switch-to-buffer Move to the buffer specified.

C-x →
Buffers ➝ Next Buffer

next-buffer Move to the next buffer in the buffer list.

C-x ←
Buffers ➝ Previous Buffer

previous-buffer Move to the previous buffer in the buffer list.

C-x C-b
Buffers ➝ List All Buffers

list-buffers Display the buffer list.

C-x k kill-buffer Delete the buffer specified.

(none) kill-some-buffers Ask about deleting each buffer.

Table E-10. Windows and frames (Chapter 4)

Keystrokes Command name Action

C-x 2
File ➝ Split Window

split-window-vertically Divide current window into two windows, one above the
other.

C-x 3 split-window-horizontally Divide current window into two side-by-side windows.

C-x o other-window Move to the other window; if there are several, move to
the next window.

C-x 0 delete-window Delete the current window.

C-x 1
File ➝ Unsplit Windows

delete-other-windows Delete all windows but this one.

C-x 4 f find-file-other-window Find a file in the other window.

C-x 4 b switch-to-buffer-other-
window

Select a buffer in the other window.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 479

(none)
Tools ➝ Compare (Ediff) ➝

This Window and Next Window

compare-windows Compare this window with the next window and show
the first difference.

C-x 5 o
Buffers ➝ Frames

other-frame Move to other frame.

C-x 5 0
File ➝ Delete Frame

delete-frame Delete current frame.

C-x 5 2
File ➝ New Frame

make-frame Create a new frame on the current buffer.

C-x 5 f find-file-other-frame Find file in a new frame.

C-x 5 r find-file-read-only-other-
frame

Finds a file in a new frame, but it is read-only.

C-x 5 b switch-to-buffer-other-
frame

Make frame and display other buffer in it.

Table E-11. Shell mode commands (Chapter 5)

Keystrokes Command name Action

(none) shell Enter shell mode.

C-c C-c
Signals ➝ BREAK

comint-interrupt-subjob Interrupt current job; equivalent to C-c.

C-c C-z
Signals ➝ STOP

comint-stop-subjob Suspend or stop a job; C-z in Unix shells.

M-p
In/Out ➝ Previous Input

comint-previous-input Retrieve previous commands (can be repeated to find
earlier commands).

M-n
In/Out ➝ Next Input

comint-next-input Retrieve subsequent commands (can be repeated to find
more recent commands).

Enter comint-send-input Send input on current line.

Tab comint-dynamic-complete Complete current command, filename, or variable name.

Table E-12. Dired commands (Chapter 5)

Keystrokes Command name Action

C-x d
File ➝ Open Directory

dired Start Dired.

C
Operate ➝ Copy to

dired-do-copy Copy file.

d
Mark ➝ Flag

dired-flag-file-deletion Flag for deletion.

D
Operate ➝ Delete

dired-do-delete Query for immediate deletion.

f dired-advertised-find-file Find (so you can edit).

Table E-10. Windows and frames (Chapter 4) (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

480 | Appendix E: Quick Reference

g
Immediate ➝ Refresh

revert-buffer Reread the directory from disk.

m or * m
Mark ➝ Mark

dired-mark Mark with *.

Q
Operate ➝ Query Replace
in Files

dired-do-query-replace Query replace string in marked files.

R
Operate ➝ Rename to

dired-do-rename Rename file.

s dired-sort-toggle-or-edit Sort the Dired display by date or by filename (toggles
between these).

t
Mark ➝ Toggle Marks

dired-toggle-marks Toggle marks on files and directories; pressing t once
marks all unmarked files and directories; pressing t again
restores original marks.

u
Mark ➝ Unmark

dired-unmark Remove mark.

+
Immediate ➝ Create Directory

dired-create-directory Create a directory.

* ! or M-Del
Mark ➝ Unmark All

dired-unmark-all-files Remove all marks from all files.

Table E-13. Macro commands (Chapter 6)

Keystrokes Command name Action

C-x (kmacro-start-macro Start macro definition.

F3 kmacro-start-macro-or-
insert-counter

Start macro definition. If pressed while defining a macro,
insert a counter.

C-x) kmacro-end-macro End macro definition.

F4 kmacro-end-or-call-macro End macro definition (if definition is in progress) or invoke
last keyboard macro.

C-x e kmacro-end-and-call-macro Execute last keyboard macro defined. Can type e to repeat
macro.

C-x C-k n name-last-kbd-macro Name the last macro you created (before saving it).

C-x C-k e edit-kbd-macro Edit a keyboard macro by typing C-x e for the last key-
board macro defined, M-x for a named macro, C-h l for
lossage, or keystrokes for a macro bound to a key.

C-x C-k Enter kmacro-edit-macro Edit the last keyboard macro.

Table E-14. Outline mode commands (Chapter 7)

Keystrokes Command name Action

(none) outline-mode Toggle outline mode

Table E-12. Dired commands (Chapter 5) (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 481

C-c C-t
Hide ➝ Hide Body

hide-body Hide all body lines.

C-c C-a
Show ➝ Show All

show-all Show everything that’s hidden.

Table E-15. Compilation mode commands (Chapter 9)

Keystrokes Command name Action

C-x ` next-error Move to the next error message and visit the corresponding source
code.

M-n compilation-next-error Move to the next error message.

M-p compilation-previous-error Move to the previous error message.

C-c C-c compilation-goto-error Visit the source code for the current error message.

Table E-16. Basic indentation commands (Chapters 7 and 9)

Keystrokes Command name Action

C-M-\ indent-region Indent each line between the cursor and mark.

M-m back-to-indentation Move to the first nonblank character on the line.

M-^ delete-indentation Join this line to the previous one.

Table E-17. C motion commands (Chapter 9)

Keystrokes Command name Action

M-a c-beginning-of-statement Move to the beginning of the current statement.

M-e c-end-of-statement Move to the end of the current statement.

M-q c-fill-paragraph If in comment, fill the paragraph, preserving indentations and deco-
rations.

C-M-a beginning-of-defun Move to the beginning of the body of the function surrounding the
point.

C-M-e end-of-defun Move to the end of the function.

C-M-h c-mark-function Put the cursor at the beginning of the function, the mark at the end.

C-c C-q c-indent-defun Indent the entire function according to indentation style.

C-c C-u c-up-conditional Move to the beginning of the current preprocessor conditional.

C-c C-p c-backward-conditional Move to the previous preprocessor conditional.

C-c C-n c-forward-conditional Move to the next preprocessor conditional.

Table E-14. Outline mode commands (Chapter 7) (continued)

Keystrokes Command name Action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

482 | Appendix E: Quick Reference

Table E-18. SQL mode commands (Chapter 9)

Keystrokes Command name Action

C-c C-c sql-send-paragraph Send the paragraph the cursor is on. A paragraph is defined by the particular
database client. For the sql-mysql process, for example, a paragraph begins with
a statement like select or update and ends with a semicolon. Any number of lines
can intervene.

C-c C-r sql-send-region Send the marked region.

C-c C-b sql-send-buffer Send the entire buffer.

Table E-19. Lisp commands (Chapter 9)

Keystrokes Command name Action

C-M-b backward-sexp Move backward by one S-expression.

C-M-f forward-sexp Move forward by one S-expression.

C-M-t transpose-sexps Transpose the two S-expressions around the cursor.

C-M-@ mark-sexp Set mark to the end of the current S-expression; set the cursor to the beginning.

C-M-k kill-sexp Delete the S-expression following the cursor.

(none) backward-kill-sexp Delete the S-expression preceding the cursor.

C-M-n forward-list Move forward by one list.

C-M-p backward-list Move backward by one list.

C-M-d down-list Move forward and down one parenthesis level.

(none) up-list Move forward out of one parenthesis level.

C-M-u backward-up-list Move backward out of one parenthesis level.

C-M-a beginning-of-defun Move to the beginning of the current function.

C-M-e end-of-defun Move to the end of the current function.

C-M-h mark-defun Put the cursor at the beginning of the function, put the mark at the end.

Table E-20. VC commands (Chapter 12)

Keystrokes Command name Action

C-x v v vc-next-action Go to the next logical version control state.

C-x v d vc-directory Show all registered files beneath a directory.

C-x v = vc-diff Generate a version difference report.

C-x v u vc-revert-buffer Throw away changes since the last checked-in revision.

C-x v ~ vc-version-other-window Retrieve a given revision in another window.

C-x v l vc-print-log Display a file’s change comments and history.

C-x v i vc-register Register a file for version control.

C-x v h vc-insert-headers Insert version control headers in a file.

C-x v r vc-retrieve-snapshot Check out a named project snapshot.

C-x v s vc-create-snapshot Create a named project snapshot.

C-x v c vc-cancel-version Throw away a saved revision.

C-x v a vc-update-change-log Update a GNU-style ChangeLog file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 483

Table E-21. Ediff commands (Chapter 12)

Keystrokes Command name Action

Space or n ediff-next-difference Move to the next difference between the files.

Del or p ediff-previous-difference Move to the preceding difference between the files.

j ediff-jump-to-difference Go to the difference specified as a numeric prefix argument.

a ediff-copy-A-to-B Copy the version of the current difference found in buffer A to
buffer B.

b ediff-copy-B-to-A Copy the version of the current difference found in buffer B to
buffer A.

r a or r b ediff-restore-diff Restore the current difference in buffer A (or B) to the way it was
before copying from the other buffer.

A or B ediff-toggle-read-only Switch the specified buffer into (or out of) read-only mode.

g a or g b ediff-jump-to-difference-at-
point

Recenter the comparison buffers on the difference nearest to your
current location (point) in the specified buffer.

! ediff-update-diffs Recalculate and redisplay the highlighted regions; useful if you’ve
manually made extensive changes to a buffer.

w a or w b ediff-save-buffer Save the specified buffer to disk.

z ediff-suspend Close the Ediff control window, but leave the session active so you
can resume it later.

q ediff-quit Close the Ediff window and end this comparison session.

Table E-22. CUA mode commands (Chapter 13)

Keystrokes Command name Action

C-c C-x C-x cua-exchange-point-and-mark Exchange location of cursor and mark.

C-x or C-w or S-Delete kill-region Delete the region.

C-v or C-y or S-Insert cua-paste Paste most recently killed or copied text.

C-c copy-region-as-kill Copy the region.

M-v cua-repeat-replace-region After highlighting and replacing a string, find the
next string and replace it the same way.

M-y cua-paste-pop After C-v, pastes earlier deletion.

C-z or C-x u cua-undo Undoes the last change.

C-x C-z iconify-frame Minimize the current frame (what C-z does out-
side CUA mode).

Table E-23. Help commands (Chapter 14)

Keystrokes Command name Question answered

C-h k
Help ➝ Describe ➝ Describe Key

describe-key What command does this keystroke sequence run, and
what does it do?

C-h f
Help ➝ Describe ➝ Describe Function

describe-function What does this function do?

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

484 | Appendix E: Quick Reference

C-h v
Help ➝ Describe ➝ Describe Variable

describe-variable What does this variable mean, and what is its value?

C-h m
Help ➝ Describe ➝ Describe Buffer
Modes

describe-mode Tell me about the modes the current buffer is in.

C-h b
Help ➝ Describe ➝ List Key Bindings

describe-bindings What are all the key bindings for this buffer?

C-h a
Help ➝ Search Documentation ➝

Find Commands by Name

apropos-command What commands include this word?

(none)
Help ➝ Search Documentation ➝

Find Options by Name

apropos-variable What variables include this regular expression?

(none)
Help ➝ Search Documentation ➝

Find Any Object by Name

apropos What functions and variables involve this regular
expression?

Table E-24. Documentation help commands (Chapter 14)

Keystrokes Command name Action

C-h t
Help ➝ Emacs Tutorial

help-with-tutorial Run the Emacs tutorial.

C-h i info Start the Info documentation reader. If prefaced with
C-u, reads an Info file of your choice.

C-h r
Help ➝ Read the Emacs Manual

info-emacs-manual Open the Emacs manual.

C-h K
Help ➝ More Manuals ➝

Find Key in Manual

Info-goto-emacs-key-
command-node

Start Info documentation reader at the node that dis-
cusses this key sequence.

(none)
Help ➝ Search Documentation ➝

Look Up Subject in User Manual

emacs-index-search Search the index of the Emacs user manual.

C-h p finder-by-keyword Invoke a menu that lets you get information about
Emacs Lisp packages available on your system.

Table E-25. Important modes

Mode Function

fundamental-mode The default mode

text-mode Major mode for writing text (Chapter 2)

outline-mode Major mode for writing outlines (Chapter 7)

picture-mode Major mode for creating ASCII drawings using the keyboard (Chapter 7)

html-mode Major mode for writing HTML (Chapter 8)

Table E-23. Help commands (Chapter 14) (continued)

Keystrokes Command name Question answered

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 485

sgml-mode Major mode for writing SGML and XML (Chapter 8)

latex-mode Major mode for formatting files for TEX and LATEX (Chapter 8)

c-mode, c++-mode Major mode for writing C and C++, and Java programs (Chapter 9)

java-mode Major mode for writing Java programs (Chapter 9)

perl-mode, cperl-mode Major modes for writing Perl programs (Chapter 9)

sql-mode Major mode for interacting with databases using SQL (Chapter 9)

emacs-lisp-mode Major mode for writing Emacs Lisp functions (Chapters 9 and 11)

lisp-mode Major mode for writing Lisp programs (Chapters 9 and 11)

lisp-interaction-mode Major mode for writing and evaluating Lisp expressions (Chapters 9 and11)

auto-fill-mode Minor mode that enables word wrap (Chapter 2)

overwrite-mode Minor mode that replaces characters as you type instead of inserting them (Chapter 2)

flyspell-mode Minor mode for flyspell spell-checker (Chapter 3)

flyspell-prog-mode Minor mode for spell-checking programs with flyspell (Chapter 3)

abbrev-mode Minor mode for word abbreviations (Chapter 3)

artist-mode Minor mode for creating ASCII drawings using the mouse (Chapter 7)

font-lock-mode Minor mode for highlighting text in colors and fonts (Chapter 9)

vc-mode Minor mode for using version control systems (Chapter 12)

Table E-25. Important modes (continued)

Mode Function

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

487

Glossary

abbrev mode
A mode in which you define abbrevia-
tions that are automatically replaced when
you type them. You might define abbrevi-
ations for phrases, long words, or com-
mon misspellings. Emacs’ abbreviation
facility, also found in vi, is similar to, but
significantly predates, features like
auto-text in Microsoft Word. For more
information on abbrev mode, see
Chapter 3.

ange-ftp mode
An easy-to-use interface to the file transfer
protocol (FTP) written by Andy Norman.
Use the find-file command to find files and
directories on the Internet or other net-
works as if they were on the local system.
To specify a remote file,
just type /user@systemname:/pathtofile/fi
lename. The slash at the beginning and the
colon between the system name and path
are easy to forget, and ange-ftp mode won’t
work without them. If you omit the path
and filename, Emacs uses Dired to display
the top directory on the remote system (if
the remote system permits directory list-
ings). Rather than using FTP commands to
retrieve files, you can display them or copy
them using Dired commands. Ange-ftp
mode, then, is useful for looking at files as
well as downloading them. However, like
FTP itself, it is highly insecure.

auto-fill mode
A minor mode in which Emacs does word
wrap. When you reach the end of a line

and auto-fill mode is on, you can keep
typing and Emacs breaks lines appropri-
ately. Auto-fill mode is off by default.

auto-save file (#file#)
Emacs periodically saves your buffer in a
temporary file called an auto-save file.
Emacs also saves files in an auto-save file
if a session is terminated abnormally. For
example, if you are working on a file
called budget and the system goes down,
look for an auto-save file called #budget#
when the system is back up. For more
information on auto-save files, see
Chapter 2.

backup file (file~)
When you tell Emacs to save a file, it first
copies the current version to a file of the
same name followed by a tilde (~). For
example, if you save the file budget, Emacs
moves the previous version to budget~. If
you later decide you don’t want the
changes you saved, you can use the
backup file. For more information on
backup files, see Chapter 2.

body
In outline mode, there are headers (the
skeleton of the outline) and paragraphs of
text, which form the body.

bookmark
A named location in a file. Finding a file
always brings you to the beginning; mov-
ing to a bookmark opens the file and
brings you to a particular location. Book-
marks are helpful for marking places in

buffer

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

488 | Glossary

online documentation and other files you
read or refer to as well as for specifying
where you left off when working on a file.
For more information on bookmarks, see
Chapter 4.

buffer
The work area in which Emacs displays a
copy of a file or a blank area in which you
can type. When you edit a file, Emacs
copies the file into a buffer of the same
name; the file on disk remains unchanged.
When you save a buffer, Emacs copies the
changes you have made into the file on
disk. In addition to buffers for working
with files, Emacs creates its own special-
ized buffers for processes, such as work-
ing with the command line, using the
calendar feature, and displaying help, for
example.

byte-compile
A method for compiling Emacs Lisp files,
whose names end in .el. After you
byte-compile a file, its name ends in .elc.
Byte-compiling Emacs Lisp functions
makes them load more efficiently.

calendar
An Emacs facility that allows users to
work with a calendar. When you type M-x
calendar, Emacs displays a three-month
calendar at the bottom of the screen with
the cursor on the current date. You can
mark dates with diary entries and view
holidays from the calendar. For more
information about the calendar, see
Chapter 5.

clipboard
An interprogram storage area. Text cut in
one application can be pasted in another.
Commands such as clipboard-yank spe-
cifically deal with the clipboard rather
than the kill ring, which is the storage area
for cut or copied text in Emacs. See
Chapter 2 for more details and see also kill
ring.

comment
Text that is ignored by a programming
language or text formatting program.

Emacs inserts comment syntax appropri-
ate for the mode you are in when you type
M-;. In some general modes, such as text
mode and fundamental mode, no com-
ment syntax is defined.

completion
A shortcut feature that allows you to type
the first few letters of a command, vari-
able, or filename and press Tab. Emacs
either completes it (if it’s unique) or lists
possibilities in a *Completions* buffer.

copyleft
An agreement that software should be
shared freely with others and that those
others in turn must be able to share it. A
copyright restricts usage of information
whereas a copyleft is designed to guaran-
tee its continued free availability to all.
The term copyleft is also used to refer to
the GNU General Public License. You can
view the GPL by typing C-h C-c.

CUA
Common User Access. A standard origi-
nally set by IBM that dictates that certain
key sequences should run certain com-
mands, including C-c to copy, C-x to cut,
and C-v to paste. CUA mode allows
Emacs users to use CUA key sequences.
See Chapter 13.

cursor
The cursor indicates where you are in the
buffer. Emacs often refers to the cursor as
point. Technically, point is located
between two characters: the cursor and
the previous character.

customization
By default, Emacs behaves in a given way.
Through customization you tailor that
behavior to your needs and preferences.
You customize Emacs using Custom, the
interactive customization interface, or
directly by changing the .emacs file. Cus-
tomization is discussed in detail in
Chapter 10.

cut
To kill text so that it can later be yanked
(pasted).

GNU

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Glossary | 489

default
The normal value for a variable or option.
For example, by default, auto-fill mode is
not turned on.

default direction
Normally when you type, text appears
from left to right. In picture mode, it’s
possible to move in eight different direc-
tions. When you start picture mode, the
default direction is right. You can specify
a different direction, like up, down, north-
west, southeast, and so on, which then
becomes the default direction. C-c C-f to
move forward and C-c C-b to move back-
wards are relative to the default direction.

delete
To omit text and not store it in the kill
ring for later retrieval.

diary
An Emacs feature that allows you to make
notes about certain dates. Emacs then dis-
plays a reminder on the date you’ve
marked. Diary entries can be set for a
given date, a block of dates, or periodi-
cally (biweekly, for example). For more
information on the diary, see Chapter 5.

directory
A data structure for organizing files. Syn-
onymous with folder.

Dired
The directory editor. Using Dired, you can
perform various operations on files and
directories, such as moving, compressing,
deleting, copying, and byte-compiling. For
more information on Dired, see
Chapter 5.

.emacs file
The initialization file where you change
Emacs default behavior. The commands
in this file run when you start Emacs.
However, Emacs does not need this file in
order to run. Throughout the book, we
suggest lines you can add to your .emacs
file to change some aspect of Emacs
behavior. Custom, the interactive custom-
ization interface, modifies .emacs when
you use it to modify options and save your
changes.

emacsen
The generic term for various versions of
Emacs.

file
A storage area on disk. When you find a
file in Emacs, it copies the file into a
buffer, a working area in memory. When
you save changes, Emacs copies the
changes in the current buffer and over-
writes the file on disk.

fill prefix
In text mode and auto-fill mode, a fill pre-
fix is a string of characters you define that
Emacs inserts at the beginning of each line
of a paragraph. Fill prefixes could be a
string of spaces (this is an easy way to
indent text) or a simple greater-than sign
(>), often used in email to differentiate
text being quoted from a previous mes-
sage.

frame
A window in which Emacs buffers are
displayed. By default, users have one
frame, but they can create more. When
there is one frame, the system’s name
appears as the title. When there are multi-
ple frames, the frames are titled by buffer
name. In common usage, what Emacs
calls a frame is called a window. How-
ever, in Emacs, a window is a portion of a
frame or a split screen. For more informa-
tion on windows and frames, see
Chapter 4.

global abbreviations
Abbreviations you have defined that work
in every major mode. By contrast, local
abbreviations work only in the mode in
which you define them. Global abbrevia-
tions, then, are good when you always
want Emacs to make automatic replace-
ments; local abbreviations are good for
replacements you want in text mode, for
example, but not in C mode. For more
information on abbreviations, see
Chapter 3.

GNU
An acronym for “GNU’s Not Unix.”

header

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

490 | Glossary

header
1. The beginning of a file, such as a LATEX
file, that defines certain characteristics
about the document’s format. 2. Version
control information embedded in a file
that is automatically updated at check-in,
check-out, and revert time.

home directory
Your personal directory. On a Unix sys-
tem, often /home/username. On Win-
dows, either C:\ or a directory specified by
the HOME environment variable.

incremental search
A search that Emacs launches as soon as
you type the first character of the search
string.

initialization file
See .emacs file

kill
To delete and store text in the kill ring.

kill ring
The area where Emacs holds deletions. By
default, the kill ring holds the last 60 dele-
tions or kills. Note that deletion com-
mands (such as C-d to delete a character)
do not store deleted text in the kill ring;
see Chapter 2 for details.

local abbreviations
Abbreviations you have defined that are
specific to (or “local to”) a given mode.
You might want different abbreviations in
text mode and in C mode, for example.
For more information on abbreviations,
see Chapter 3.

macros
A sequence of recorded keystrokes. For
information on creating macros, see
Chapter 6.

major mode
Emacs’s way of adapting its behavior to
the primary task at hand. Text mode is a
major mode designed for writing text; C
mode is for writing C programs. Different
modes have different commands that
make sense in that mode, in addition to

global commands that work in every
mode.

mark
A secondary pointer that, along with the
cursor, is used to define the boundaries of
a region. Regions can be deleted, moved,
or copied. In GNU Emacs, the mark is not
displayed.

minibuffer
An area at the bottom of the screen into
which the user enters certain information.
For example, when you write a file by typ-
ing C-x C-w, Emacs asks for the filename
in the minibuffer. Emacs also displays
messages in this area.

minor mode
Features that can be turned on and off
independent of the major mode you are
in. Auto-fill mode, which does word wrap
automatically, is a minor mode.

mode
Emacs’s way of adapting its behavior to
the task at hand. There are major modes,
that define the primary task at hand, and
minor modes, options that you turn on
and off within a major mode. For exam-
ple, text mode is a major mode; auto-fill
mode, which enables word wrap, is a
minor mode.

mode line
The last line of an Emacs window, often
displayed in reverse video or in another
color. The mode line tells what buffer you
are editing, the major and minor modes
you have turned on, and where you are in
the buffer. Optionally, the mode line pro-
vides other information, such as the time
of day.

output groups
In shell mode, an output group consists of
a shell command and its output. An out-
put group provides a convenient way to
move between commands in shell mode
since the output of any given command
may be several screens long.

variable

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Glossary | 491

overwrite mode
A minor mode that allows users to type
over existing text. To start overwrite
mode, type M-x overwrite-mode Enter.

paragraph formatting
See auto-fill mode.

paste
To insert text that has been stored in the
kill ring or on the system clipboard. The
Emacs term for paste is yank.

path
The location of a given file or folder. For
example, the .emacs file is usually stored
in a user’s home directory. On some Unix
systems, the path to this file is /home/user-
name/.emacs.

pause
A macro feature that stops a macro tem-
porarily to allow user input. The user then
restarts the macro by typing C-M-c. For
more information, see Chapter 6.

picture mode
A major mode designed for creating sim-
ple drawings using keyboard characters.
See Chapter 7 for more information.

point
The cursor position. To be precise, point
is considered to be between the character
under the cursor and the previous charac-
ter. In practice, you can usually consider
the cursor and point synonymous. Know-
ing precisely where point is, however, can
help you understand the workings of cer-
tain commands better (such as yanking or
transposition commands).

query
A macro feature that allows the user to
decide whether to continue a macro or to
stop it.

query-replace
A search and replacement feature that
allows users to decide, on a case-by-case
basis, whether a given replacement should
be done.

read-only
A file or buffer that can be viewed but not
modified. You can copy text from a

read-only buffer and paste it into another
buffer.

read-write
A file or buffer that can be viewed (read)
and changed (written to).

rectangle editing
Using rectangles, you can rearrange and
edit columns of information. For more
information on using rectangles, see
Chapter 7.

region
The area between the cursor (also called
point) and the mark. Regions can be cut,
moved, or copied. The region currently
defined is highlighted on some displays. If
it isn’t, you can press C-x C-x (for
exchange-point-and-mark) to see the
region’s boundaries.

registers
Areas in which you store rectangles, cur-
sor positions, or text. Similar to the kill
ring, but registers are given single-charac-
ter names for easy (and often repeated)
retrieval of information.

regular expression
A feature that allows sophisticated and
flexible matching of strings. Emacs sup-
ports regular expression searches and reg-
ular expression replacement. See Chapters
3 and 11.

search and replace
See query-replace.

search string
In a search, the text that is being searched
for.

setup file
See .emacs file.

shell buffer
An Emacs-created buffer for working with
the command line, allowing you to use
Emacs editing commands and features,
such as completion, while interacting with
the operating system. To start a shell
buffer, type M-x shell.

variable
Emacs provides hundreds of features that
you can tailor by setting variables. You

window

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

492 | Glossary

can set variables for a single session by
typing M-x set-variable variablename or
permanently using the .emacs file or Cus-
tom, the interactive customization inter-
face. See Chapter 10.

window
An area of the screen in which a buffer is
displayed. By default, Emacs has one win-
dow. Many features, including help, auto-
matically break the screen into two
windows. You can set up horizontal win-
dows (the most frequently used kind) and
vertical or side-by-side windows. It is pos-
sible to have multiple windows on one
buffer. GUI windows are referred to as
frames.

word search
A search facility that ignores line breaks
and punctuation. If you can’t find some
text that you know is there with other
searches, such as incremental-search,
chances are there is a line break that incre-
mental-search interprets as a character.
Try word search instead.

word wrap
See auto-fill mode.

yank
Paste text that has been cut or killed.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

493

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

* (asterisk)
buffers and, 97
Dired, 130
in mode line, 10

(comment mark), annotations, 111
$$ (dollar signs) in LaTeX, 258
% (percent sign)

buffers and, 97
? (question mark), Dired, 130
~ (tilde)

backup files and, 43
buffers and, 100

A
abbrev mode, 4, 487
abbreviations, 487

capitalization and, 80
defining, 77
disabling, 80
Flyspell, 73, 74

deleting, 78
global, 77
local, 77

active buffers, checking, 84
alternation operators, regular expressions in

functions, 363
ange-ftp mode, 487
annotations, bookmarks, 110, 111
apropos command, help, 443
argument codes, Lisp interactive

functions, 352
artist mode, 4

commands, 216

drawing with mouse, 213
asterisk (*)

Dired, 130
mode line, 10

atoms (Lisp), 346
syntax, 346

auto complete, 13
auto-fill mode, 4, 21, 47, 487
automatic template system, building, 374
auto-newline, C programming language

mode, 281
auto-save files, 487

creation, 44
Dired, 132
recovering text from, 44
variables, 457

auto-save mode, 4

B
backups

files, 43, 487
Dired, 126
overwriting original with, 43

numbered backups, 43
variables, 457

backward movement of cursor, 23
binding, 10

macros to keys, 160
blank lines in picture mode, 209
bookmarks, 106, 487

annotations, 110
commands, 112
deleting, 108

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

494 | Index

jumping to, 107
list, 109

commands, 110
display, 109

moving to, 107
renaming, 108
setting, 107
text insertion and, 108

Boolean syntax (Lisp), 347
braces ({ }) in LaTeX, 258
buffer highlighting, 331
buffer list

commands, 101
saving buffers, 100
symbols, 98
window, moving to, 99
(see also buffers)

buffers, 3, 488
* (asterisk), 97
% (percent sign), 97
~ (tilde) and, 100
active, 84
annotations, # (comment mark), 111
built-in functions, 359
commands, 100
comment buffer, VC mode, 403
cycling through, 87
default directory, 14
deleting, 87
displaying, windows, 88
editing multiple in separate windows, 92
frames, 84
Help, 17
internal, names, 84
Ispell and, 64
listing, 98

by major mode, 86
major modes, 84, 381
marks, 89
Messages, 84
minibuffer, 10
mode line, 17
modes and, 3
multiple, 85

displaying, 100
names

mode line, 96
named same, 96
renaming buffers, 96

number of, 84
read-only, 97

toggling status, 97

reverting from files, 42
saving

buffer list, 100
multiple, 95

scratch, 10
shell commands, output, 118
status, 100
switching between, 85
windows and, 84
(see also shell buffers)

Buffers menu, 84
bug reports, 470
built-in functions, 358

buffers, 359
locating, 372
regions, 359
regular expressions, 360

match portions, 365
operator context, 364
operators, 361, 368
operators, grouping, 363

text, 359
byte-compiling Lisp files, 397, 488

C
C language mode, 266
C++ language mode, 266
C++ mode/C mode comparison, 283
C motion commands, 276
C programming language mode

auto-newline, 281
hungry-delete key, 281

C programming language, support, 275
C++ programming language, support, 275
calculator mode, Lisp, 384

code, 386
calendar, 488

display, 142
holiday commands, 148
holiday display, 144
movement commands, 143
navigating, 142
week start day, 142

canceling commands, 41
canceling searches, 52
capitalization, 40
capitalization commands, 40
capitalization in abbreviations, 80
carriage return, picture mode, 211
case-fold-search variable, 62
Case-Insensitive Search option, 61
case-replace variable, 62

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 495

case-sensitivity in searches, 50, 61
C-c commands, 11
cc mode, 3
CEDIT (Collection of Emacs Development

Environment Tools),
installation, 286

centering, 186
display, 26
line-by-line, 187

C-h command, 16
change comments, version control, 400
ChangeLog files, version control, 409
changes

recovering, 44
undoing, 41

character encoding
HTML helper mode, 238
HTML mode, 224

characters
regular expressions, 62
syntax (Lisp), 346
variables, 339

ClearCase, VC and, 412
clipboard, 37

commands, 38
pasting from, 38
text

placing in, 37
retrieving, 38

colons, tab stops and, 173
color

automatic, 331
changing, 332
cursor, 333

color-enriched text, saving, 333
columns, editing (see rectangle editing)
command pairs, LaTeX mode, 259
command-line

Emacs startup
Mac OS X, 431
Windows, 435

options, 342
commands, xvii, 10

artist mode, 216
bookmark list, 110
bookmarks, 112
buffer list, 101
buffer manipulation, 100
C commands, 11
C motion commands, 276
calendar movement, 143
canceling, 41

capitalization, 40
C-c, 11
C-h, 16
clipboard, 38
compilation mode, 265
Ctrl, 23
Ctrl key and, 11
CUA mode, 438
cursor movement, 22, 23, 26
C-x commands, 11
deletion commands, 31
diary, 148
digit-argument, 26
Dired, 137
Ediff, 416
enriched mode fonts, 334
file-handling commands, 18
find-file, 15
Flyspell, 73
help commands, 441

apropos, 443
complex commands, 445

holiday commands, 148
HTML helper, 239
HTML mode, 228
incremental searches, 53
indentation, 181, 185
Info commands, 451
Ispell, 73
keyboard access, 27
keystrokes, 10
kill commands, 29
killing, 31
LaTeX mode, 261
M commands, 11
macro commands, 169
Meta, 23
nxml mode, 252
outline mode, 193
picture mode, 212
printing commands, 140, 141
programming language codes, 271
rectangles, 201
redoing, 42
reformatting commands, 22
regions, 37
repeating, 26, 58
search commands, 54
searches, regular expressions in, 63
S-expressions (LISP), 299
shell commands, Dired, 128
shell mode, 115, 122

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

496 | Index

commands (continued)
stopping, 43
tab commands, 176
TeX mode, 261
text filling, 22
transposition, 40
undoing changes, 43
VC mode, 401, 403

difference reports, 406
groups, 406
subtrees, 406

windows, 90, 105
write-file, 15
yanking text, 31

comment buffer, VC mode, 403
comments, 488

change comments, version control, 400
copying, macro for, 166
Custom interface, 313
Lisp mode, 302
markup languages, 219
programming language mode, 269
syntax and, 268

comparing files
between windows, 105
Dired, 128

compatibility mode, xvi
compilation mode, 3, 5

commands, 265
error message parser, 266
error messages, 265
JDEE and, 292

compilation, programming language
modes, 264

compile package, 266
compilers, interface, 264
completing words, Ispell, 69
completion, 13, 488

Custom interface variables, 324
customization, 456
HTML helper mode, 237
keys, 453
variables, 463

compressing files, Dired, 127
conditional expressions, Lisp functions, 358
constants, major modes, 381
context operators, regular expressions in

functions, 364
control structures, Lisp functions, 355
copying files, Dired, 126
copying text, 35, 36

comments, macro, 166

CUA and, 46
marking, 32
search strings, 53

copyleft, 488
CPerl mode, 4, 294
Ctrl commands, 23
Ctrl key, commands and, 11
CUA (Common User Access), 46
CUA mode

commands, 438
Emacs on Windows, 435
rectangle mode, 202

cursor, 6, 488
color, 333
editing and, 28
picture mode, 209
windows, 89

cursor movement, 22
backward one word, 23
to beginning of file, 59
commands, 23, 26
end of file, 25
forward one word, 23
screen by screen, 25
scrolling, 25
sentence by sentence, 24

Custom interface, 306, 307
comments, 313
.emacs file and, 326
erasing customization, 309
font customization, 332
navigation, 307
options, 308
resetting, 308
session settings, 308, 312
State button, 311
variable location, 324
word abbreviation mode and, 313–317

customization, 45
auto-mode and, 341
completion, 456
Custom interface, 306, 307

erasing customization, 309
navigation, 307
options, 308
State button, 311

cut commands, 45
Ediff, 420
erasing, 309
fonts, 332
key bindings, 335
keyboard, 45, 47

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 497

Lisp and, 306
modes, 389–395
online resources, 473
Options menu, 306, 317

Dired and, 318
paste commands, 45
special keys, 338
toolbar, hiding/showing, 46
VC mode, 411

Customize Emacs option, Options
menu, 318

cut commands, customizing, 45
cutting, CUA and, 46
cutting text, encoding and, 38
CVS, Emacs

building, 425
downloading, 424

C-x commands, 11
cyclic diary entries, 146
cycling through buffers, 87

D
debugging

bug reports, 470
JDEE and, 293
programming language modes, 264

default
direction, 489
tabs, 171

default directories, 14
defining macros, 151
deleting

bookmarks, 108
buffers, 87
commands for, 31
files, Dired, 126, 132
frames, 95
kill ring and, 31
lines of text, 29
in picture mode, 211
recovering, 36
regions, 34, 35
text, 27
undoing, 35
windows, 92

deleting text, marking for, 32
diary, 489

adding entries, 146
blocks of dates, marking, 146
cyclic entries, 146
entry display, 147
file creation, 145

dictionary, Ispell, 65
difference reports, VC mode, 406
digit-argument command, 26
directories, default, 14
Directory Editor (see Dired)
Dired, 123

* (asterisk), 130
? (question mark), 130
colors, 124
commands, 137
comparing files, 128
compressing files, 127
copying files, 126
customization, Options and, 318
deleting files, 126
display, 124

sorting, 124
editing files, 125
file groups, 134
files

auto-save, 132
backups, 126
selecting, 132

marking files, 132
navigating directories, 136
permissions, 124
query-replace, 136
renaming files, 126
selecting files by type, 133
selecting files with regular

expressions, 133
shell commands, 128
sorting, 130
uncompressing files, 127
viewing files, 125

disabling abbreviations, Flyspell, 80
display, 6

calendar, 142
centering, 26
diary entries, 147
variables, 459

distribution of Emacs, xii
Document Type Definition (see DTD)
documentation of Emacs, navigating, 446
downloading Emacs

CVS, 424
Unix and, 422

drawings, 204
artist mode, 213
picture mode, 204

DTD (Document Type Definition), XML
and, 218

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

498 | Index

dynamic abbreviations, Flyspell, 74

E
Ediff, 414

commands, 416
customization, 420
launching, 414
leaving, 418

editing
capitalization, 40
columns (see rectangle editing)
cursor and, 28
files, Dired, 125
hidden text, 191
introduction, 20
JDEE and, 290
macros, 157
multiple buffers, separate windows, 92
picture mode and, 208
recovering edits, 44
rectangles and, 194

CUA mode and, 202
recursive, 60
transpositions, 39
undoing edits, 41

editing mode, SQL, 298
ELisp library, JDEE installation, 286
Emacs

CVS and
building Emacs, 425
downloading, 424

documentation, navigation, 446
history of, xi
integration, 2
introduction, 1
Mac OS X, 427

building Emacs from source code, 429
command line startup, 431
Ispell installation, 433
Jaguar, 430
Meta key, 432
prebuilt Emacs, 429

popularity, 1
quitting, 15
starting, 5
Unix, 422

downloading, 422
location, 423
uncompressing, 423
unpacking, 423

versions, 18, 428
Windows and

command line startup, 435
CUA mode, 435
Emacs installation, 433
FSF installation, 434
Ispell installation, 438

.emacs file, 489
Custom interface and, 326
error messages on startup, 48
Lisp and

editing files, 329
sample file, 328
saving files, 330

Lisp functions and, 327
location, 434
statements, 327
word abbrevations, 78

Emacs Lisp mode, 4
encoding, cutting and pasting, 38
enlarging windows, 104
enriched mode, 5

fonts, commands, 334
enriched text, saving, 334
enriched-mode library, 334
error message parser, compilation mode, 266
error messages

compilation mode, 265
.emacs files changes, 48

etags, 263, 272
executing macros, 152, 161

regions, 167
expressions

conditional, Lisp functions, 358
regular, functions, 360

Extensible Markup Language (see XML)
extensions, filename, 4

F
faces (fonts), 330
FAQ file display, 451
file-handling commands, 18
filenames, 4

extensions, 4
files, 3

adding lines, 45
auto-save, 487

creating, 44
Dired, 132

backups, 43, 487
Dired, 126
numbered backups, 43
overwriting original, 43

buffers, reverting from, 42

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 499

comparing
between windows, 105
Dired, 128

compressing, Dired, 127
copying, Dired, 126
deleting, Dired, 126
diary, creation, 145
editing, Dired, 125
groups, Dired, 134
inserting in other files, 14
Lisp, byte-compiling, 397
marking, Dired, 132
opening, 11
reading wrong file, 13
renaming

Dired, 126
version controlled, 410

saving, 15
selecting

Dired, 132
with regular expressions, Dired, 133

selecting by type, Dired, 133
uncompressing, Dired, 127
version controlled (see version control)
viewing, Dired, 125

file-template-java file, 374
fill mode, word wrap and, 45
fill prefixes, 183, 489
find-file command, 15
find-library file, 370
finger habits, 2
first line of paragraph, indents, 177
floating point number syntax (Lisp), 346
Flyspell, 70

abbreviations, capitalization and, 80
commands, 73
dynamic abbreviations, 74
highlighting, 71
word abbreviation mode, 75
word abbreviations, 73, 74

defining, 77
deleting, 78
disabling, 80

Flyspell mode, 4
Flyspell prog mode, 4
font lock mode, 5, 220, 274
font-enriched text, saving, 333
fonts

changing interactively, 330
Custom interface, 332
enriched mode, commands, 334
faces, 330

Isearch and, 331
programming language modes, 274

FooManager.java file, 375
formatting paragraphs, troubleshooting, 48
Fortran language mode, 266
forward movement of cursor, 23
fragments, Lisp, 304
frames, 489

buffers and, 84
creating, 93
deleting, 95
minimizing, 95
moving between, 95
names, 94
sizing, 93
windows comparison, 82

FSF (Free Software Foundation), xi
bug reports, 470
downloading Emacs and, 421
Emacs installation, 434

functions
built-in, 358

buffers, 359
locating, 372
regions, 359
text, 359

Lisp, 346
argument codes, 352
conditional expressions, 358
control structures, 355
converting to Emacs

commands, 351–353
defining, 347–351
primitive, 353
regular expressions and, 371
return values, 346
statement blocks, 354
syntax, 346

Fundamental mode, 3

G
games, xvi
games and amusements, Lisp packages, 468
global abbreviations, 489

Flyspell, 77
grouping operators, regular expressions in

functions, 363
groups

output, 490
VC mode, 406

groups of files, Dired, 134
GUI windows (see windows)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

500 | Index

H
headers

HTML mode, 222
version control, 408

help
buffer, 17
commands, 441

apropos, 443
complex commands, 445

details, 441
point, 17
tutorial, 440

Help menu, 16, 17
hidden text, editing, 191
hiding/showing

HTML tags, 223
text, 190
toolbar, 8, 46

highlighting
automatic, 331
buffer highlighting, 331
Flyspell, 71
searches and, 51

holiday commands, 148
holidays, displaying in calendar, 144
horizontal windows, 89
HTML helper mode, 220, 230

character encoding, 238
commands, 239
completion, 237
prompting, 238
starting, 231
templates, 231

HTML (hypertext markup language), 218
ISO accents mode, 225
writing in, 220

HTML mode, 3, 220
accented characters, 226
character encoding, 224
commands, 228
headers, 222
hiding/showing tags, 223
hyperlinks and, 222
key bindings, 222
punctuation, 228
starting, 221
symbols, 228
XHTML and, 223

HTMLModeDeluxe, 220
hungry-delete-key, C programming language

mode, 281
hyperlinks, HTML mode, 222

hypertext markup language (see HTML)

I
icons, toolbar, 7

troubleshooting, 18
IDEs (integrated development

environments), 264
incremental regular expression searches, 50
incremental searches, 49, 51

commands, 53
regular expressions, 63
starting, 51

Indented text mode, 3, 176
indents, 176

commands, 181, 185
Lisp mode, 301
paragraphs, 177

filling, 178
first line, 177

programming language modes, 270, 278
commands, 271

regions, 179
tips, 181

Info commands, 451
Info mode, 5
inserting files in other files, 14
installation

Emacs on Mac OS X
building from source, 429
prebuilt, 429

Emacs on Unix, 421
Emacs on Windows, 433
Ispell

on Mac OS X, 433
on Windows, 438

JDEE, 287
integer syntax (Lisp), 346
integration, 2
interactive functions, argument codes, 352
interactive mode, SQL, 297
internal buffers, names, 84
Isearch mode, 4

fonts and, 331
ISO accents mode, 5

HTML, 225
Ispell

buffer, 64
commands, 73
completing words, 69
dictionary, inserting words, 65
Mac OS X installation, 433
replacing words, 69

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 501

single word checking, 69
skipping words, 67
Windows installation, 438

J
Java mode, 4, 284
Java tools registration, 289
JDEE (Java Development Environment for

Emacs), 284, 285
CEDET installation, 286
Code Generation menu options, 292
compiling and, 292
debugging and, 293
editing with, 290
ELisp library, installation, 286
installation, 287
JDK (Java Development Kit)

registration, 289
resources, 294
running and, 292

jumping to bookmarks, 107

K
key bindings

customization, 335
defining, 11
HTML mode, 222
psgml mode, 256
unsetting, 339

keyboard
binding macros to, 160
command access, 27
commands, 10
cursor movement and, 22
customization, 45, 47
macro input pauses, 162
menu access, 8
regions, marks, 32
remapping keys, 47

keymaps, 11
keystrokes, macro definition, 152
kill commands, 29
kill ring, 31, 490

recovering deletions and, 36
killing, commands for, 31

L
LaTeX, 218

$$ (dollar signs), 258
braces, 258

LaTeX mode, 3

command pairs, 259
commands, 261
paragraphs, 259
printing in, 260
quotation marks, 259

libraries
enriched mode, 334
Lisp, building, 395
source code, 465

lines of text, deleting, 29
Lisp

atoms, 346
calculator mode, 384

code, 386
customization and, 306
.emacs and

editing files, 329
sample file, 328
saving files, 330

files, byte-compiling, 397
fragments, 304
functions, 346

argument codes, interactive
functions, 352

conditional expressions, 358
control structures, 355
converting into commands, 351–353
defining, 347–351
.emacs file and, 327
primitive, 353
return values, 346
statement blocks, 354

introduction, 345
libraries, building, 395
line evaluation commands, 304
lists, 383
packages, 464

C support, 465
C++ support, 465
games and amusement, 468
Java support, 465
Lisp programming support, 465
networking support, 468
text processing, 467

S-expressions, commands, 299
stacks, 383
variables, 346

Lisp interaction mode, 4, 304
Lisp language mode, 266
Lisp mode, 4, 298

comments, 302
differences, 303
indentation, 301

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

502 | Index

Lisp packages, 340
Lisp programming, xvi, 344
Lisp statements, 45
listing

bookmarks, 109
commands, 110
display, 109

buffers, 98
by major mode, 86
symbols, 98
(see also buffer list)

lists, Lisp, 383
literal tabs, 174
local, abbreviations, 490
local keymap, major modes, 381
locked files, version control, 399
lpr-buffer command, 140
lpr-region command, 140

M
Mac OS X

Emacs, 427
building from source code, 429
command-line startup, 431
Ispell installation, 433
Jaguar, 430
Meta key, 432
prebuilt, 429

troubleshooting commands, 149
macro ring, 160
macros

binding to keys, 160
commands, 169
defining, 151
editing, 157
example

business letter with pauses, 162
comment copying, 166
indentation marks, 167
references buffer creation, 155
transposition macro, 152

execution, 152, 161
introduction, 150
naming, 161
pausing for keyboard input, 162
queries, adding, 165
regions, 167
repeating, 153
saving, 161
writing tips, 154

major modes, 3, 490
buffers, 84

listing by, 86
minor mode dual position, 5
programming, 381

calculator, 384
components, 381

make utility (UNIX), 264
manpages, reading, 141
margins, 182
marking files in Dired, 132
marking sections, Outline mode, 192
marking text, 32

paragraphs, 35
regions, 35

marks, 490
buffers, 89
regions, 32

markup languages
comments, 219
DTD (see DTD)
font-lock mode, 220
HTML (see HTML)
LaTeX (see LaTeX)
online resources, 473
TeX (see TeX)
WYSIWYG tools, 219
XML (see XML)

menu bar, 8
menus, 9

Buffers, 84
Help, 17
keyboard access, 8
mouse and, troubleshooting, 19
pop-ups, 8
text-based, option selection, 9

Messages buffer, 84
Meta commands, 23
Meta key

Mac OS X, 432
placement of, xvii
using, 11
versus Esc, xvii

minibuffer, 10, 490
absent, 19
troubleshooting, 19

minimizing frames, 95
minor modes, 4, 490

outline, 192
refill mode, 20

mmm (multiple major modes) mode, 220
mode line, 9, 490

* (asterisk) in, 10
buffer name, 96

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 503

buffers, 17
troubleshooting, 19

modes, 3
abbrev, 4
artist, 4
auto-fill, 4, 21, 47
auto-mode and, 341
auto-save, 4
cc mode, 3
compatibility, xvi
compilation, 3, 5
Cperl, 4
customizing, 389–395
Emacs Lisp, 4
enriched, 5
Flyspell, 4
font-lock, 5, 220
fundamental, 3
HTML helper, 220, 230

character encoding, 238
commands, 239
prompting, 238
starting, 231
templates, 231

HTML mode, 3, 220
character encoding, 224
commands, 228
hiding/showing tags, 223
key bindings, 222
starting, 221

HTMLModeDeluxe and, 220
Indented text mode, 3
Info, 5
Isearch, 4
ISO accents, 5
Java, 4
LaTeX mode, 3
Lisp, 4
Lisp interaction, 4
major modes, 3

buffers, 84
programming, 381–389

minor modes, 4
mmm (multiple major modes), 220
nxml, commands, 252
Outline, 3, 4, 187, 189

marking sections, 192
overwrite, 4, 41
paragraph indent text, 3, 4, 22
Perl, 4
picture mode, 3, 204

editing in, 208

programming language modes, 263
psgml, 220, 253
Refile, 4
Refill, 20
SGML, 3

writing XML, 244
sgml mode, 220
SGML name entity, 4
shell, 3, 118
SQL, 4
text, 3

default, 47
variables, 460
VC, 5
view mode, 3

mouse
drawing, artist mode, 213
menu access, troubleshooting, 19
text selection, 37

moving
between windows, 90
to bookmarks, 107
text, 35

marking, 32
windows, buffer list, 99

multiple buffers, 85
displaying, 100
saving, 95

N
names

bookmarks, renaming, 108
buffers

named same, 96
renaming buffers, 96

frames, 94
macros, 161
major modes, 381

navigation
calendar, 142
Custom interface, 307
Dired, 136
Emacs documentation, 446
windows, 103

Nqmacs, 433
numbered backups, 43
nxml mode

commands, 252
writing XHTML, 246

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

504 | Index

O
online resources, web sites, 472
opening files, 11
operators

regular expressions, 368
alternation functions, 363
context, 364
functions, 361
grouping functions, 363

Options menu, 317
customization and, 306
Customize Emacs option, 318
Dired and, 318
Save Options option, 318
Show/Hide option, 317

Outline minor mode, 192
Outline mode, 3, 4, 187

commands, 193
demoting sections, 192
marking sections, 192
promoting sections, 192
starting, 189

output groups, 121, 490
overwrite mode, 4, 41, 491

P
packages, Lisp, 340, 464

C support, 465
C++ support, 465
games and amusement, 468
Java support, 465
Lisp programming support, 465
networking support, 468
text processing, 467

paragraph indent text mode, 3, 4, 22
paragraphs

centering, 186
formatting, troubleshooting, 48
indents, 177

filling, 178
LaTeX mode, 259
marking, 35

parentheses, syntax and, 268
paste commands, customizing, 45
pasting text, 36

from clipboard, 38
CUA and, 46
encoding and, 38

pausing macros for keyboard input, 162
Perl mode, 4, 266, 294
permissions, Dired display, 124

PgUp command, troubleshooting, 19
PgUp key, with text-based menu options, 9
picture mode, 3, 204

blank lines, 209
blank space, blocks, 212
carriage return and, 211
commands, 212
cursor motion, 209
deletion, 211
drawing in, 204
editing in, 208
tabs, 212
text mode comparison, 211

platform-specific considerations, 421–439
point, 6, 491

Help, 17
(see also cursor)

pop-up menus, 8
prefixes, fill prefixes, 183
primitive functions, Lisp, 353
printing, 140

commands for, 140, 141
LaTeX mode, 260

programming
Lisp (see Lisp programming)
major modes, 381

calculator mode, 384
components, 381

modes for, xvi
variables, 462

programming language modes, 263
C, 266, 275

commands, 276
C++, 266, 275
code indentation, 278
comments, 269
compiling in, 264
CPerl, 294
debugging in, 264
fonts, 274
indentation, commands, 271
indents, 270
Java, 266, 284
Lisp, 266

comments, 302
indentation, 301
Lisp interaction mode, 304

Lisp modes, 298
Perl, 266, 294
Scheme, 266
SGML, 266
Simula, 266

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 505

SQL, 266, 296
editing mode, 298
interactive mode, 297

syntax, 268
programming languages, online

resources, 473
prompting, HTML helper mode, 238
psgml mode, 220, 253

bindings, 256
punctuation, 39

HTML mode, 228
syntax and, 268

Q
queries, macros, 165
query-replace, 50, 56

Dired, 136
recursive editing and, 60
regular expressions, 63
repeating, 58
responses, 56

question mark (?), Dired, 130
quitting Emacs, 15
quotation marks, LaTeX mode, 259

R
reading files, wrong file, 13
reading manpages, 141
read-only buffers, 97

toggling status, 97
recovering deletions, 36
recovery

from auto-save files, 44
changes, 44

rectangle commands, 201
rectangle editing, 194

CUA mode and, 202
recursive editing, 60
redoing commands, 42
refill mode, 4, 20
reformatting commands, 22
regions, 22, 491

built-in functions, 359
centering, 186
commands for, 37
defining, 32
deleting, 34, 35
indents, 179
macros, 167
marking, 35
marks, keyboard, 32

registering files, version control and, 399
registers, 491
regular expression replace, 50
regular expression searches, 50
regular expressions, 491

built-in functions
operator context, 364
operators, 368

characters in, 62
file selection, Dired, 133
functions, 360, 371

match portions, 365
operators, 361
operators, grouping, 363

incremental searches, 63
query-replace, 63
search and replace and, 62
searches, commands, 63

remapping keys, 47
renaming

bookmarks, 108
files

Dired, 126
version controlled, 410

renaming buffers, 96
repeating

commands, 26, 58
macros, 153
query-replace, 58

replacing (see search and replace)
reporting bugs, 470
resetting, Custom interface and, 308
resources, web sites, 472
return values, functions (Lisp), 346
returns, picture mode, 211
Reverse Polish Notation calculator, 383
reverting buffers from files, 42
revision number, version control, 400
revisions, retrieving (VC mode), 407

S
Save Options option, Options menu, 318
saving

buffers
buffer list, 100
multiple, 95

files, 15
scratch buffer, 15

macros, 161
scratch buffer, 10, 15
screen by screen movement, 25
scrolling, 25

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

506 | Index

search and replace
canceling searches, 52
Case Insensitive Search, 61
case-fold-search variable, 62
case-replace variable, 62
case-sensitivity, 50, 61
copying to search string, 53
direction of search, 50, 52
etags and, 272
highlighting, 51
incremental regular expression

searches, 50
incremental searches, 49, 51

commands, 53
starting, 51

operations, 55
query-replace, 50, 56
regular expression replace, 50
regular expression searches, 50
regular expressions, commands, 63
regular expressions in, 62
search commands, 54
simple search and replace, 50
simple searches, 49, 53
special characters, 63
troubleshooting, 81
variables, 459
word searches, 49, 54

search icon, toolbar, 54
security, shell mode and, 122
selecting files

by type in Dired, 133
with regular expressions, Dired, 133

selecting text, 36
mouse, 37

send commands, SQL, 298
session settings, Custom interface, 308, 312
S-expressions (LISP), commands, 299
SGML mode, 3

writing XML, 244
sgml mode, 220
SGML name entity mode, 4
shell buffer, 114, 491

history commands, 120
multiple, 121
output groups, 121
starting, 118

shell commands
Dired, 128
history commands, 120
output to buffer, 118

shell mode, 3, 118
commands, 115, 122
security and, 122
troubleshooting, 149

Show/Hide, Options menu, 317
shrinking windows, 104
side-by-side windows, 102
simple search and replace, 50
simple searches, 49, 53

commands, 54
sizing

frames, 93
windows, 19, 104

limits, 105
sorting, Dired and, 130
source code, Emacs, Mac OS X and, 429
spaces, changing to/from tabs, 176
special characters

conventions, 337
search and replace, 63

special keys, customization, 338
spelling

Flyspell, 70
Ispell

buffer, 64
completing words, 69
single word, 69

splitting windows, 89
vertically, 102

SQL mode, 4
SQL (Structured Query Language), 296

editing mode, 298
interactive mode, 297
send commands, 298

stacks, Lisp and, 383
Stallman, Richard, xi
starting Emacs, 5
Stat button, Custom interface, 311
statement blocks, Lisp functions, 354
statements, .emacs, 327
status, buffers, 100
stopping commands, 43
strings

syntax and, 268
Lisp, 347

variables, 339
switching between frames, 95
switching between windows, 90
switching buffers, 85
symbols

buffer list, 98

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 507

HTML mode, 228
major modes, 381
syntax (Lisp), 347
variables, 339

syntax
atoms (Lisp), 346
functions (Lisp), 346
highlighting (see font-lock mode)
programming language modes, 268

T
tab commands, 176
tabs, 170

colons at tab stops, 173
converting to spaces, 176
default, 171
literal tabs, 174
picture mode, 212
spaces, 175
tab stops, changing, 172
width, 175

TEI (Text Encoding Initiative) Emacs, 246
Template.el file, 376
templates

automatic template system, 374
FccManager.java file, 375
file-template-java file, 374
HTML helper mode, 231

TeX, 218
TeX mode commands, 261
text

built-in functions, 359
centering, 186
clipboard

placing text in, 37
retrieving from, 38

color-enriched, saving, 333
copying, 35, 36
deleting, 27

recovering, 36
regions, 35

editing hidden, 191
enriched, saving, 334
fill prefixes, 183
font-enriched, saving, 333
hidden, editing, 191
hiding/showing, 190
indents, 176

paragraph first line, 177
paragraphs, 177, 178

inserting, bookmarks and, 108
lines, deleting, 29

margins, 182
marking, 32

paragraphs, 35
regions, 35

moving, 35
online resources, 473
outline mode, 187
overwriting, 41
pasting, 36
regions, 32

deleting, 35
marking, 35

selecting, 36
mouse, 37

tabs, 170
uppercase, 40

text editing, variables, 461
text filling commands, 22
text mode, 3

centering lines, 186
default, 47
picture mode comparison, 211
word abbreviations, 77
word wrap and, 45

Text Properties menu, font changes, 330
text-based menus, option selection, 9
tilde (~), buffers and, 100
toolbar, 7

customizing, 45
hiding/showing, 8, 46
icons, 7

troubleshooting, 18
search icon, 54

transposition commands, 40
transpositions, 39
troubleshooting

menu access, 19
minibuffer, 19
mode line, 19
paragraph formatting, 48
PgUp, 19
search and replace, 81
shell mode, 149
toolbar icons, 18

tutorial for help system, 440
typos

flyspell mode and, 70
transpositions, 39
word abbreviation mode, 75

U
uncompressing files, Dired, 127

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

508 | Index

undoing, 35
backup files and, 43
changes, commands for, 43
edits, 41

Unix, 421
Emacs, 422

downloading, 422
location, 423
uncompressing, 423
unpacking, 423

make utility, 264
uppercase text, 40

V
variables

auto-save, 457
backups, 457
case-fold-search, 62
case-replace, 62
characters, 339
completion, 463
display, 459
Lisp, 346
location, Custom interface, 324
major modes, 381
miscellaneous, 463
modes, 460
programming, 462
search and replace, 459
setting, 339
strings, 339
symbols, 339
text editing, 461
versioning, 457

VC mode, 5
change histories, 407
ChangeLog files, 409
ClearCase and, 412
commands, 401, 403

difference reports, 406
groups, 406
subtrees, 406

comment buffer, 403
customization, 411
extensions, 412
file registration, 407
indicators, 404
snapshots, 408

version control
change comments, 400
ChangeLog files, 409
changes to files, 417

checked-out files, 410
Ediff and, 414
file registration, 407
files, registering, 399
headers, 408
locked files, 399
online resources, 473
renaming files, 410
revision number, 400
revisions, retrieving, 407
snapshots, 408
system selection, 405
uses, 398
work files, 400
(see also VC mode)

version, Emacs, x
versioning, commands, 457
vertical windows, 102
View mode, 3
viewing files, Dired, 125

W
web sites, 472
whitespace, syntax and, 268
windows, 492

buffer display, 88
buffer list, moving, 99
buffers and, 84
commands, 90, 105
cursors, 89
deleting, 92
enlarging, 104
files, comparing between, 105
frames comparison, 82
horizontal, 89
moving between, 90
multiple buffers in separate windows, 92
navigating, 103
shrinking, 104
side-by-side, 102
sizing, 104

limits, 105
splitting, 89

vertically, 102
startup and, 90
vertical, 102

Windows and Emacs
command line startup, 435
CUA mode, 435
installation, 433, 434
Ispell installation, 438

word abbreviation mode

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 509

Custom interface and, 313–317
Flyspell, 75

word abbreviations, Flyspell, 73, 74
word searches, 49, 54
word wrap, 45
words

searching by, 492
syntax and, 268

work files, version control, 400
workspace, 6
write-file command, 15
writing

in HTML, 220
XHTML, nxml mode and, 246
XML, 243

SGML mode, 244
writing macros, tips for, 154
WYSIWYG (what you see is what you get)

tools, 219

X
X Window System

minibuffer, missing, 19
mode line, missing, 19
window, size problems, 19

XHTML
HTML mode and, 223
writing, nxml mode, 246

XML (Extensible Markup Language), 218
DTD and, 218
psgml mode, 253
TEI Emacs, 246
writing, 243

SGML mode, 244

Y
yanking text, commands for, 31

About the Authors
Debra Cameron is the president of Cameron Consulting. In addition to her love for
Emacs, Deb researches emerging technologies and their applications. Her book
Optical Networking: A Wiley Tech Brief (2002) describes applications ranging from a
grassroots neighborhood network in Sweden to Canada’s optical Ethernet. Deb also
writes and presents videos on computer security topics. Deb frequently edits for
O’Reilly and others, working on titles such as DNS and Bind, TCP/IP Network
Administration, and HTML and XHTML: The Definitive Guide, as well as numerous
Java tomes. After using a variety of operating systems from CP/M onward, her coau-
thors Jim and Marc converted her to her platform of choice, Mac OS X.

James Elliott is a senior software engineer at Berbee, with over 15 years of professional
experience as a systems developer. Thanks to some clever and helpful colleagues at his
first internship, he’s benefited from Emacs that entire time. A decade before starting
that career, he cultivated his involvement and fascination with computers. He has a
passion for building and sharing high-quality tools and frameworks to simplify the
tasks of other developers, and Emacs is a great foundation. After a globe-trotting child-
hood, Jim earned his bachelor’s degree in computer science at Rensselaer Polytechnic
in upstate New York, and his master’s degree at the University of Wisconsin-Madison,
with some interesting stints at Bell Laboratories (in Murray Hill, birthplace of C and
Unix). Although he succumbed to the allure of the real world shortly after completing
his Ph.D. qualifying exams, he was happy to find interesting work in Madison, where
he lives with his partner Joe Buberger and two challenging cats.

Marc Loy is a senior-level programmer with over two decades of programming experi-
ence. He has played with Java since the alpha days and can’t find his way back to C.
He received his master’s degree in computer science at the University of Wisconsin-
Madison. He is currently digging into the world of digital video but still makes time to
churn out the occasional coding project.

Eric Raymond is an observer-participant anthropologist in the Internet hacker
culture. His research has helped explain the decentralized open source model of soft-
ware development that has proven so effective in the evolution of the Internet. His
own software projects include one of the Internet’s most widely used email transport
programs. Eric is also a science fiction fan, a musician, an activist for the First and
Second Amendments, and a martial artist with a Black Belt in Tae Kwon Do. His
home page is at http://www.catb.org/~esr.

Bill Rosenblatt is the president of GiantSteps/Media Technology Strategies, a
consulting firm in New York City. Before founding GiantSteps, Bill was CTO of
Fathom, an online content and education company associated with Columbia
University and other scholarly institutions. He has been a technology executive at
McGraw-Hill and Times Mirror and head of strategic marketing for media and
publishing at Sun Microsystems. Bill was also one of the architects of the Digital

Object Identifier (DOI), a standard for online content identification and digital rights
management.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Learning GNU Emacs, Third Edition is a gnu (or wilde-
beest). Gnus are African antelopes that inhabit the Serengeti Plains. Male gnus
(bulls) reach up to 52 inches in height and 500 pounds inweight, and have the most
lethal horns of any of the antelopes. Bulls are very territorial and tend to remain
alone. The females and young generally live in small herds. However, they may
congregate in the tens of thousands during migration. Gnus are the favorite prey of
lions.

Jamie Peppard was the production editor and proofreader for Learning GNU Emacs
Third Edition. Nancy Reinhardt was the copyeditor . Adam Witwer and Claire
Cloutier provided quality control. Mary Agner provided production assistance.
Johnna VanHoose Dinse wrote the index.

Edie Freedman designed the cover of this book using a 19th-century engraving from
the Dover Pictorial Archive. Clay Fernald produced the cover layout with Quark
Express 4.1 using Adobe’s ITC Garamond font. Emma Colby produced the Quick
Reference card with Adobe InDesign CS using the fonts Linotype Birka and Adobe
Myriad Condensed.

Melanie Wang designed the interior layout, based on a series design by David
Futato. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont’s
TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand MX
and Adobe Photoshop CS.

	Table of Contents
	Preface
	Why Read This Book?
	Which Emacs Is Which?
	What’s New in This Edition?
	GNU Emacs and the Free Software Foundation
	An Approach to Learning Emacs
	What We Haven’t Included
	The Meta Key
	Conventions Used in This Book
	Keystroke Notation
	Command Tables
	Examples
	Font Usage

	How to Contact Us
	Acknowledgments

	Emacs Basics
	Introducing Emacs!
	Understanding Files and Buffers
	A Word About Modes
	Starting Emacs
	About the Emacs Display
	The Toolbar
	The Menus
	The Mode Line
	The Minibuffer

	Emacs Commands
	Opening a File
	If You Read the Wrong File
	Letting Emacs Fill in the Blanks
	Inserting and Appending Files
	How Emacs Chooses a Default Directory

	Saving Files
	Leaving Emacs
	Getting Help
	The Help Menu

	Summary
	Problems You May Encounter

	Editing
	Moving the Cursor
	Other Ways to Move the Cursor
	Moving a Screen (or More) at a Time
	Repeating Commands
	Centering the Display
	Emacs Commands and Your Keyboard

	Deleting Text
	The Kill Ring

	Marking Text to Delete, Move, or Copy
	Copying Text
	Recovering Earlier Deletions
	Selecting and Pasting

	Emacs and the Clipboard
	Placing Text on the Clipboard
	Retrieving Text from the Clipboard

	Editing Tricks and Shortcuts
	Fixing Transpositions
	Changing Capitalization
	Overwrite Mode

	Canceling Commands and Undoing Changes
	Canceling Commands
	Undoing Changes
	Reverting a Buffer from a File
	Going Back to a Previous Version: Backup Files
	Recovering Lost Changes

	Making Emacs Work the Way You Want
	Hiding the Toolbar
	Turning On CUA Mode for C-x, C-c, and C-v to Cut, Copy, and Paste
	Turning On Text Mode and Auto-Fill Mode Automatically
	Remapping Keys
	Problems You May Encounter

	Search and Replace
	Different Kinds of Searches
	Incremental Search
	Simple Searches
	Word Search

	Search and Replace
	Simple Search and Replace Operations
	Query-Replace
	Repeating Query-Replaces (and Other Complex Commands)
	Recursive Editing
	Are Emacs Searches Case-Sensitive?
	Regular Expressions for Search and Replacement Operations

	Checking Spelling Using Ispell
	Checking a Buffer
	Checking a Single Word
	Completing a Word
	Spellchecking on the Fly with Flyspell

	Word Abbreviations
	Dynamic Abbreviations
	Word Abbreviation Mode
	Trying word abbreviations for one session
	Making word abbreviations part of your startup
	Deleting a word abbreviation
	Disabling word abbreviations
	Abbreviations and capitalization

	Problems You May Encounter

	Using Buffers, Windows, and Frames
	Understanding Buffers, Windows, and Frames
	Windows Versus Frames
	Buffers: Independent of Windows and Frames
	More About Buffers

	Working with Multiple Buffers
	Switching Buffers
	Deleting Buffers

	Working with Windows
	Creating Horizontal Windows
	Moving Between Windows
	Getting Rid of Windows

	Working with Frames
	Creating a New Frame
	Moving Between Frames
	Deleting and Minimizing Frames

	More About Buffers
	Saving Multiple Buffers
	Renaming Buffers
	Read-Only Buffers
	Getting a List of Buffers
	Working with the Buffer List

	More About Windows
	Creating Vertical or Side-by-Side Windows
	Navigating Windows
	Enlarging and Shrinking Windows
	Limits on Window Size
	Comparing Files Between Windows

	Holding Your Place with Bookmarks
	Setting Bookmarks
	Moving to a Bookmark
	Renaming and Deleting Bookmarks
	Working with a List of Bookmarks
	Annotating Bookmarks
	A Few More Bookmark Commands

	Emacs as a Work Environment
	Executing Commands in Shell Buffers
	Running One Command at a Time
	Using Shell Mode
	Which shell?
	Making passwords invisible in shell mode

	Using Dired, the Directory Editor
	Viewing and Editing Files
	Deleting, Copying, and Renaming Files
	Compressing and Uncompressing Files
	Comparing Files
	Running Shell Commands on Files
	Working with Groups of Files
	Selecting files
	Selecting likely candidates for deletion
	Selecting files by type
	Using regular expressions to choose files
	Operating on groups of files

	Navigating Directories

	Printing from Emacs
	Reading Manpages in Emacs
	Using Time Management Tools
	Displaying the Calendar
	Moving in the calendar
	Displaying holidays

	Using the Diary
	Creating a diary file
	Adding diary entries
	Displaying diary entries

	Problems You May Encounter

	Writing Macros
	Defining a Macro
	Tips for Creating Good Macros
	A More Complicated Macro Example
	Editing a Macro
	The Macro Ring
	Binding Your Macro to a Key
	Naming, Saving, and Executing Your Macros
	Building More Complicated Macros
	Pausing a Macro for Keyboard Input
	Example

	Adding a Query to a Macro
	Example

	Executing Macros on a Region
	Beyond Macros

	Simple Text Formatting and Specialized Editing
	Using Tabs
	How Emacs 21 Handles Tabs by Default
	Changing Tab Stops
	What if You Want Literal Tabs?
	Changing Tab Width
	Tabs and Spaces
	Changing Tabs to Spaces (and Vice Versa)

	Indenting Text
	Indenting Paragraphs
	Indenting the First Line of a Paragraph
	Filling Indented Paragraphs
	Indenting regions
	Other indentation tricks

	Changing Margins
	Using Fill Prefixes

	Centering Text
	Using Outline Mode
	Entering Outline Mode
	Hiding and Showing Text
	Editing While Text Is Hidden
	Marking Sections of the Outline
	Promoting and Demoting Sections
	Using Outline Minor Mode

	Rectangle Editing
	CUA Rectangle Editing

	Making Simple Drawings
	Drawing in Picture Mode
	Editing in Picture Mode
	Cursor motion in picture mode
	Inserting blank lines

	Drawing with the Mouse Using Artist
	Problems You May Encounter

	Markup Language Support
	Comments
	Font-Lock Mode
	Writing HTML
	Using HTML Mode
	Character encoding in HTML mode

	Using HTML Helper Mode
	Starting HTML helper mode
	A brief tour of HTML helper mode
	Inserting an HTML template
	Putting tags around a region
	Using completion
	Turning on prompting
	Character encoding in HTML helper mode

	Writing XML
	Writing XML with SGML Mode
	TEI Emacs: XML Authoring for Linux and Windows
	Writing XHTML Using nxml Mode
	Using psgml Mode

	Marking up Text for TEX and LATEX
	Matching Braces
	Quotation Marks and Paragraphing
	Command Pairs
	Processing and Printing Text

	Computer Language Support
	Emacs as an IDE
	Compiling and Debugging

	Writing Code
	Language Modes
	Syntax

	Comments
	Indenting Code
	etags
	Fonts and Font-lock Mode

	C and C++ Support
	Motion Commands
	Customizing Code Indentation Style
	Additional C and C++ Mode Features
	C++ Mode Differences

	Java Support
	Java Mode

	The Java Development Environment for Emacs (JDEE)
	Getting Started
	Installing CEDET
	Installing the ELisp Library
	Installing the JDEE
	Registering Your Java Tools
	JDK tools.jar problems

	Editing with the JDEE
	Compiling and Running with the JDEE
	Debugging with the JDEE
	Learning More about the JDEE

	Perl Support
	Perl Caveats

	SQL Support
	Prerequisites
	Modes of Operation
	Interactive mode
	Editing mode

	The Lisp Modes
	Indentation in Lisp Modes
	Comments in Lisp Modes
	Emacs Lisp Mode Differences
	Lisp Mode Differences
	Working with Lisp Fragments
	Commands for evaluating a line of Lisp
	Using Lisp interaction mode

	Customizing Emacs
	Using Custom
	Navigating Custom
	Common Options
	Customizing with Custom
	An Abbrev Mode Example
	The Options Menu
	A Dired Example
	But Where Is the Variable I Want?

	Modifying the .emacs File Directly
	Custom Versus .emacs
	Will the real .emacs please stand up?

	Basic .emacs Statements
	Caveat editor

	A Sample .emacs File
	Editing .emacs
	Saving .emacs

	Modifying Fonts and Colors
	Changing Fonts Interactively
	Automatic Highlighting and Coloring
	Isearch
	Buffer highlighting

	Customizing Fonts Through Custom
	Changing Colors
	Changing the cursor color

	Saving Font- and Color-Enriched Text
	Saving enriched text

	Customizing Your Key Bindings
	Special Keys
	Unsetting Key Bindings

	Setting Emacs Variables
	Finding Emacs Lisp Packages
	Starting Modes via Auto-Mode Customization
	Making Emacs Work the Way You Think It Should

	Emacs Lisp Programming
	Introduction to Lisp
	Basic Lisp Entities
	Defining Functions
	Turning Lisp Functions into Emacs Commands

	Lisp Primitive Functions
	Statement Blocks
	Control Structures

	Useful Built-in Emacs Functions
	Buffers, Text, and Regions
	Regular Expressions
	Basic operators
	Grouping and alternation
	Context
	Retrieving portions of matches
	Regular expression operator summary

	A Treasure Trove of Examples
	Functions That Use Regular Expressions
	Finding Other Built-in Functions

	Building an Automatic Template System
	Programming a Major Mode
	Components of a Major Mode
	More Lisp Basics: Lists
	The Calculator Mode
	Lisp Code for the Calculator Mode

	Customizing Existing Modes
	Building Your Own Lisp Library
	Byte-Compiling Lisp Files

	Version Control
	The Uses of Version Control
	Version Control Concepts
	How VC Helps with Basic Operations
	Editing Comment Buffers
	VC Command Summary
	VC Mode Indicators
	Which Version Control System?
	Individual VC Commands
	Working with Groups and Subtrees of Files
	Difference Reports
	Retrieving Old Revisions
	Viewing Change Histories
	Registering a File
	Inserting Version Control Headers
	Making and Retrieving Snapshots
	Updating ChangeLog Files
	Renaming Version-Controlled Files
	When VC Gets Confused

	Customizing VC
	Extending VC
	What VC Is Not
	Using VC Effectively
	Comparing with Ediff
	Starting Ediff
	Using Ediff
	Making Changes
	Quitting Ediff
	Recovering from Confusion
	Learning More
	Customizing Ediff
	Invoking Ediff Automatically

	Platform-Specific Considerations
	Emacs and Unix
	Where to Get Emacs?
	Downloading Emacs from the Web

	Where to Put Emacs?
	Uncompressing and Unpacking
	Downloading Emacs from CVS
	Building Emacs

	Emacs and Mac OS X
	“But I Already Have Emacs”
	Installing Prebuilt Emacs on Mac OS X
	Downloading Alex Rice’s application bundle of Emacs 21.3.5

	Building Emacs from Source on Mac OS X
	Before you build

	Starting Emacs from the Command Line on Mac OS X
	Mac OS X and the Meta Key
	Installing Ispell

	Emacs and Windows
	Installing Emacs
	Installing the latest binaries: Nqmacs
	Installing Emacs from the FSF

	Where to Put Your .emacs File
	Starting Emacs from the Command Line
	Making Emacs Act like Windows: CUA Mode
	Installing Ispell

	The Help System
	Using the Tutorial
	Help Commands
	Detail Information
	Apropos Commands

	Help with Complex Emacs Commands
	Navigating Emacs Documentation
	Using Info to Read Manuals
	FAQ, News, and Antinews

	Completion
	Customizing Completion

	Emacs Variables
	Emacs Lisp Packages
	Bugs and Bug Fixes
	Online Resources
	Quick Reference
	Glossary
	Index

