

Table of Contents
Preface ..
 Who this book is for ..
 Versions ..
 Organization ...
 Conventions used in this book ...
 Differences between the first edition and second edition
 Comments and questions ..
 Hal's acknowledgments from the first edition
 Acknowledgments for the second edition

1
2
2
3
4
5
5
6
6

1. Networking Fundamentals ...
 1.1 Networking overview ..
 1.2 Physical and data link layers
 1.3 Network layer ..
 1.4 Transport layer ..
 1.5 The session and presentation layers

9
9

11
12
18
19

2. Introduction to Directory Services
 2.1 Purpose of directory services
 2.2 Brief survey of common directory services
 2.3 Name service switch ..
 2.4 Which directory service to use

24
24
25
29
29

3. Network Information Service Operation
 3.1 Masters, slaves, and clients
 3.2 Basics of NIS management
 3.3 Files managed under NIS ..
 3.4 Trace of a key match ..

31
31
34
41
52

4. System Management Using NIS
 4.1 NIS network design ..
 4.2 Managing map files ..
 4.3 Advanced NIS server administration
 4.4 Managing multiple domains

56
56
58
65
67

5. Living with Multiple Directory Servers
 5.1 Domain name servers ...
 5.2 Implementation ...
 5.3 Fully qualified and unqualified hostnames
 5.4 Centralized versus distributed management
 5.5 Migrating from NIS to DNS for host naming
 5.6 What next? ...

70
70
72
74
76
77
77

6. System Administration Using the Network File System
 6.1 Setting up NFS ..
 6.2 Exporting filesystems ...
 6.3 Mounting filesystems ...
 6.4 Symbolic links ..
 6.5 Replication ..
 6.6 Naming schemes ...

78
79
80
85
96
99

103

7. Network File System Design and Operation
 7.1 Virtual filesystems and virtual nodes
 7.2 NFS protocol and implementation
 7.3 NFS components ...
 7.4 Caching ..
 7.5 File locking ...
 7.6 NFS futures ...

108
108
109
117
122
127
129

8. Diskless Clients ..
 8.1 NFS support for diskless clients
 8.2 Setting up a diskless client
 8.3 Diskless client boot process
 8.4 Managing client swap space
 8.5 Changing a client's name ..
 8.6 Troubleshooting ..
 8.7 Configuration options ..
 8.8 Brief introduction to JumpStart administration
 8.9 Client/server ratios ..

132
132
133
136
140
142
143
147
150
151

9. The Automounter ..
 9.1 Automounter maps ..
 9.2 Invocation and the master map
 9.3 Integration with NIS ...
 9.4 Key and variable substitutions
 9.5 Advanced map tricks ..
 9.6 Side effects ...

153
154
162
167
169
173
182

10. PC/NFS Clients ...
 10.1 PC/NFS today ..
 10.2 Limitations of PC/NFS ..
 10.3 Configuring PC/NFS ..
 10.4 Common PC/NFS usage issues
 10.5 Printer services ..

184
184
185
188
189
191

11. File Locking ...
 11.1 What is file locking? ..
 11.2 NFS and file locking ..
 11.3 Troubleshooting locking problems

192
192
194
196

12. Network Security ..
 12.1 User-oriented network security
 12.2 How secure are NIS and NFS?
 12.3 Password and NIS security
 12.4 NFS security ...
 12.5 Stronger security for NFS
 12.6 Viruses ...

200
200
206
207
210
223
245

13. Network Diagnostic and Administrative Tools
 13.1 Broadcast addresses ..
 13.2 MAC and IP layer tools ..
 13.3 Remote procedure call tools
 13.4 NIS tools ..
 13.5 Network analyzers ...

247
248
250
268
276
283

14. NFS Diagnostic Tools ..
 14.1 NFS administration tools
 14.2 NFS statistics ...
 14.3 snoop ...
 14.4 Publicly available diagnostics
 14.5 Version 2 and Version 3 differences
 14.6 NFS server logging ...
 14.7 Time synchronization ...

295
295
298
307
311
317
318
331

15. Debugging Network Problems
 15.1 Duplicate ARP replies ...
 15.2 Renegade NIS server ...
 15.3 Boot parameter confusion
 15.4 Incorrect directory content caching
 15.5 Incorrect mount point permissions
 15.6 Asynchronous NFS error messages

335
335
337
338
339
343
345

16. Server-Side Performance Tuning
 16.1 Characterization of NFS behavior
 16.2 Measuring performance ..
 16.3 Benchmarking ..
 16.4 Identifying NFS performance bottlenecks
 16.5 Server tuning ...

349
349
351
352
353
357

17. Network Performance Analysis
 17.1 Network congestion and network interfaces
 17.2 Network partitioning hardware
 17.3 Network infrastructure ..
 17.4 Impact of partitioning ...
 17.5 Protocol filtering ..

367
367
369
371
372
374

18. Client-Side Performance Tuning
 18.1 Slow server compensation
 18.2 Soft mount issues ..
 18.3 Adjusting for network reliability problems
 18.4 NFS over wide-area networks
 18.5 NFS async thread tuning
 18.6 Attribute caching ..
 18.7 Mount point constructions
 18.8 Stale filehandles ...

376
376
381
382
384
385
387
388
390

A. IP Packet Routing ...
 A.1 Routers and their routing tables
 A.2 Static routing ..

392
392
396

B. NFS Problem Diagnosis ...
 B.1 NFS server problems ..
 B.2 NFS client problems ...
 B.3 NFS errno values ...

397
397
398
399

C. Tunable Parameters ..

401

Colophon ..

405

Managing NFS and NIS

1

Preface
Twenty years ago, most computer centers had a few large computers shared by several
hundred users. The "computing environment" was usually a room containing dozens of
terminals. All users worked in the same place, with one set of disks, one user account
information file, and one view of all resources. Today, local area networks have made
terminal rooms much less common. Now, a "computing environment" almost always refers to
distributed computing, where users have personal desktop machines, and shared resources are
provided by special-purpose systems such as file, computer, and print servers. Each desktop
requires redundant configuration files, including user information, network host addresses,
and local and shared remote filesystem information.

A mechanism to provide consistent access to all files and configuration information ensures
that all users have access to the "right" machines, and that once they have logged in they will
see a set of files that is both familiar and complete. This consistency must be provided in a
way that is transparent to the users; that is, a user should not know that a filesystem is located
on a remote fileserver. The transparent view of resources must be consistent across all
machines and also consistent with the way things work in a non-networked environment. In a
networked computing environment, it's usually up to the system administrator to manage the
machines on the network (including centralized servers) as well as the network itself.
Managing the network means ensuring that the network is transparent to users rather than an
impediment to their work.

The Network File System (NFS) and the Network Information Service (NIS)[1] provide
mechanisms for solving "consistent and transparent" access problems. The NFS and NIS
protocols were developed by Sun Microsystems and are now licensed to hundreds of vendors
and universities, not to mention dozens of implementations from the published NFS and NFS
specifications. NIS centralizes commonly replicated configuration files, such as the password
file, on a single host. It eliminates duplicate copies of user and system information and allows
the system administrator to make changes from one place. NFS makes remote filesystems
appear to be local, as if they were on disks attached to the local host. With NFS, all machines
can share a single set of files, eliminating duplicate copies of files on different machines in the
network. Using NFS and NIS together greatly simplifies the management of various
combinations of machines, users, and filesystems.

[1] NIS was formerly called the "Yellow Pages." While many commands and directory names retain the yp prefix, the formal name of the set of
services has been changed to avoid conflicting with registered trademarks.

NFS provides network and filesystem transparency because it hides the actual, physical
location of the filesystem. A user's files could be on a local disk, on a shared disk on a
fileserver, or even on a machine located across a wide-area network. As a user, you're most
content when you see the same files on all machines. Just having the files available, though,
doesn't mean that you can access them if your user information isn't correct. Missing or
inconsistent user and group information will break Unix file permission checking. This is
where NIS complements NFS, by adding consistency to the information used to build and
describe the shared filesystems. A user can sit down in front of any workstation in his or her
group that is running NIS and be reasonably assured that he or she can log in, find his or her
home directory, and access tools such as compilers, window systems, and publishing
packages. In addition to making life easier for the users, NFS and NIS simplify the tasks of

Managing NFS and NIS

2

system administrators, by centralizing the management of both configuration information and
disk resources.

NFS can be used to create very complex filesystems, taking components from many different
servers on the network. It is possible to overwhelm users by providing "everything
everywhere," so simplicity should rule network design. Just as a database programmer
constructs views of a database to present only the relevant fields to an application, the user
community should see a logical collection of files, user account information, and system
services from each viewpoint in the computing environment. Simplicity often satisfies the
largest number of users, and it makes the system administrator's job easier.

Who this book is for

This book is of interest to system administrators and network managers who are installing or
planning new NFS and NIS networks, or debugging and tuning existing networks and servers.
It is also aimed at the network user who is interested in the mechanics that hold the network
together.

We'll assume that you are familiar with the basics of Unix system administration and TCP/IP
networking. Terms that are commonly misused or particular to a discussion will be defined as
needed. Where appropriate, an explanation of a low-level phenomenon, such as Ethernet
congestion will be provided if it is important to a more general discussion such as NFS
performance on a congested network. Models for these phenomena will be drawn from
everyday examples rather than their more rigorous mathematical and statistical roots.

This book focuses on the way NFS and NIS work, and how to use them to solve common
problems in a distributed computing environment. Because Sun Microsystems developed and
continues to innovate NFS and NIS, this book uses Sun's Solaris operating system as the
frame of reference. Thus if you are administering NFS on non-Solaris systems, you should
use this book in conjunction with your vendor's documentation, since utilities and their
options will vary by implementation and release. This book explains what the configuration
files and utilities do, and how their options affect performance and system administration
issues. By walking through the steps comprising a complex operation or by detailing each step
in the debugging process, we hope to shed light on techniques for effective management of
distributed computing environments. There are very few absolute constraints or thresholds
that are universally applicable, so we refrain from stating them. This book should help you to
determine the fair utilization and performance constraints for your network.

Versions

This book is based on the Solaris 8 implementations of NFS and NIS. When used without a
version number, "Solaris" refers to the Solaris 2.x, Solaris 7, and Solaris 8 operating systems
and their derivatives (note that the next version of Solaris after Solaris 2.6 was Solaris 7; in
the middle of the development process, Sun renamed Solaris 2.7 to Solaris 7). NFS- and NIS-
related tools have changed significantly between Solaris 2.0 and Solaris 8, so while it is
usually the case that an earlier version of Solaris supports a function we discuss, it is not
infrequent that it will not. For example, early releases of Solaris 2.x did not even have true
NIS support. For another, Sun has made profound enhancements to NFS with nearly every
release of Solaris.

Managing NFS and NIS

3

The Linux examples presented throughout the book were run on the Linux 2.2.14-5 kernel.
Linux kernels currently implement NFS Version 2, although a patch is available that provides
Version 3 support.

Organization

This book is divided into two sections. The first twelve chapters contain explanations of the
implementation and operation of NFS and NIS. Chapter 13 through Chapter 18 cover
advanced administrative and debugging techniques, performance analysis, and tuning.
Building on the introductory material, the second section of the book delves into low-level
details such as the effects of network partitioning hardware and the various steps in a remote
procedure call. The material in this section is directly applicable to the ongoing maintenance
and debugging of a network.

Here's the chapter-by-chapter breakdown:

• Chapter 1 provides an introduction to the underlying network protocols and services
used by NFS and NIS.

• Chapter 2 provides a survey of the popular directory services.
• Chapter 3 discusses the architecture of NIS and its operation on both NIS servers and

NIS clients. The focus is on how to set up NIS and its implementation features that
affect network planning and initial configuration.

• Chapter 4 discusses operational aspects of NIS that are important to network
administrators. This chapter explores common NIS administration techniques,
including map management, setting up multiple NIS domains, and using NIS with
domain name services.

• Chapter 5 explains the issues around using both NIS and the Directory Name Service
(DNS) on the same network.

• Chapter 6 covers basic NFS operations, such as mounting and exporting filesystems.
• Chapter 7 explains the architecture of NFS and the underlying virtual filesystem. It

also discusses the implementation details that affect performance, such as file
attributes and data caching.

• Chapter 8 is all about diskless clients. It also presents debugging techniques for clients
that fail to boot successfully.

• Chapter 9 discusses the automounter, a powerful but sometimes confusing tool that
integrates NIS administrative techniques and NFS filesystem management.

• Chapter 10 covers PC/NFS, a client-side implementation of NFS for Microsoft
Windows machines.

• Chapter 11 focuses on file locking and how it relates to NFS.
• Chapter 12 explores network security. Issues such as restricting access to hosts and

filesystems form the basis for this chapter. We'll also go into how to make NFS more
secure, including a discussion of setting up NFS security that leverages encryption for
stronger protection.

• Chapter 13 describes the administrative and diagnostic tools that are applied to the
network and its systems as a whole. This chapter concentrates on the network and on
interactions between hosts on the network, instead of the per-machine issues presented
in earlier chapters. Tools and techniques are described for analyzing each layer in the
protocol stack, from the Ethernet to the NFS and NIS applications.

• Chapter 14 focuses on tools used to diagnose NFS problems.
• Chapter 15 describes how to debug common network problems.

Managing NFS and NIS

4

• Chapter 16 discusses how to tune your NFS and, to a lesser extent, NIS servers.
• Chapter 17 covers performance tuning and analysis of machines and the network.
• Chapter 18 explores NFS client tuning, including NFS mount parameter adjustments.
• Appendix A explains how IP packets are forwarded to other networks. It is additional

background information for discussions of performance and network configuration.
• Appendix B summarizes NFS problem diagnosis using the NFS statistics utility and

the error messages printed by clients experiencing NFS failures.
• Appendix C summarizes parameters for tuning NFS performance and other attributes.

Conventions used in this book

Font and format conventions for Unix commands, utilities, and system calls are:

• Excerpts from script or configuration files will be shown in a constant-width font:

192.9.200.1 bitatron

• Sample interactive sessions, showing command-line input and corresponding output,
will be shown in a constant-width font, with user-supplied input in bold:

• % ls
foobar

• If the command can be typed by any user, the percent sign (%) will be shown as the
prompt. If the command must be executed by the superuser, then the pound sign (#)
will be shown as the prompt:

/usr/sbin/ypinint -m

• If a particular command must be typed on a particular machine, the prompt will
include a hostname:

bitatron# mount wahoo:/export /mnt

• Inside of an excerpt from a script, configuration file, or other ASCII file, the pound
sign will be used to indicate the beginning of a comment (unless the configuration file
requires a different comment character, such as an asterisk (*)):

• #
• #Hal's machine

192.9.200.1 bitatron

• Unix commands and command lines are printed in italics when they appear in the
body of a paragraph. For example, the ls command lists files in a directory.

• Hostnames are printed in italics. For example, server wahoo contains home
directories.

• Filenames are printed in italics, for example, the /etc/passwd file.
• NIS map names and mount options are printed in italics. The passwd map is used with

the /etc/passwd file, and the timeo mount option changes NFS client behavior.
• System and library calls are printed in italics, with parentheses to indicate that they are

C routines. For example, the gethostent() library call locates a hostname in an NIS
map.

• Control characters will be shown with a CTRL prefix, for example, CTRL-Z.

Managing NFS and NIS

5

Differences between the first edition and second edition

The first edition was based on SunOS 4.1, whereas this edition is based on Solaris 8. The
second edition covers much more material, mostly due to the enhancements made to NFS,
including a new version of NFS (Version 3), a new transport protocol for NFS (TCP/IP), new
security options (IPsec and Kerberos V5), and also more tools to analyze your systems and
network.

The second edition also drops or sharply reduces the following material from the first edition
(all chapter numbers and titles are from the first edition):

• Chapter 4. Systems and networks are now bigger, faster, and more complicated. We
believe the target reader will be more interested in administering NIS and NFS, rather
than writing applications based on NIS.

• Chapter 9. At the time the second edition was written, most people were accessing
their electronic mail boxes using the POP or IMAP protocols. A chapter focused on
using NFS to access mail would appeal but to a small minority.

• Chapter 14. This chapter survives in the second edition, but it is much smaller. This is
because there are more competing PC/NFS products available than before, and also
because many people who want to share files between PCs and Unix servers run the
open source Samba package on their Unix servers. Still, there are some edge
conditions that justify PC/NFS, so we discuss those, as well as general PC/NFS issues.

• Appendix A. When this appendix was written, local area networks were much less
reliable than they are today. The shift to better and standard technology, even low
technology like Category 5 connector cables, has made a big difference. Thus, given
the focus on software administration, there's not much practical use for presenting
such material in this edition.

• Appendix D. The NFS Benchmark appendix in the first edition explained how to use
the nhfsstone benchmark, and was relevant in the period of NFS history when there
was no standard, industry-recognized benchmark. Since the first edition, the Standard
Performance Evaluation Corporation (SPEC) has addressed the void with its SFS
benchmark (sometimes referred to as LADDIS). The SFS benchmark provides a way
for prospective buyers of an NFS server to compare it to others. Unfortunately, it's not
practical for the target reader to build the complex test beds necessary to get good SFS
benchmark numbers. A better alternative is to take advantage of the fact that SPEC
lets anyone browse reported SFS results from its web site (http://www.spec.org/).

Comments and questions

We have tested and verified all the information in this book to the best of our abilities, but you
may find that features have changed or that we have let errors slip through the production of
the book. Please let us know of any errors that you find, as well as suggestions for future
editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris St.
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

Managing NFS and NIS

6

You can also send messages electronically. To be put on our mailing list or to request a
catalog, send email to:

info@oreilly.com

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/nfs2/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com/

Hal's acknowledgments from the first edition

This book would not have been completed without the help of many people. I'd like to thank
Brent Callaghan, Chuck Kollars, Neal Nuckolls, and Janice McLaughlin (all of Sun
Microsystems); Kevin Sheehan (Kalli Consulting); Vicki Lewolt Schulman (Auspex
Systems); and Dave Hitz (H&L Software) for their neverending stream of answers to
questions about issues large and small. Bill Melohn (Sun) provided the foundation for the
discussion of computer viruses. The discussion of NFS performance tuning and network
configuration is based on work done with Peter Galvin and Rick Sabourin at Brown
University. Several of the examples of NIS and NFS configuration were taken from a system
administrator's guide to NFS and NIS written by Mike Loukides for Multiflow Computer
Company.

The finished manuscript was reviewed by: Chuck Kollars, Mike Marotta, Ed Milstein, and
Brent Callaghan (Sun); Dave Hitz (H&L Software); Larry Rogers (Princeton University);
Vicky Lewold Schulman (Auspex); Simson Garfinkel (NeXTWorld); and Mike Loukides and
Tim O'Reilly (O'Reilly & Associates, Inc.). This book has benefited in many ways from their
insights, comments, and corrections. The production group of O'Reilly & Associates also
deserves my gratitude for applying the finishing touches to this book. I owe a tremendous
thanks to Mike Loukides of O'Reilly & Associates who helped undo four years of liberal arts
education and associated writing habits. It is much to Mike's credit that this book does not
read like a treatise on Dostoevsky's Crime and Punishment.[2]

[2] I think I will cause my freshman composition lecturer pain equal to the credit given to Mike, since she assured me that reading and writing about
Crime and Punishment would prepare me for writing assignments the rest of my life. I have yet to see how, except possibly when I was exploring
performance issues.

Acknowledgments for the second edition

Thanks to Pat Parseghian (Transmeta), Marc Staveley (Sun), and Mike Loukides (O'Reilly &
Associates, Inc.) for their input to the outline of the second edition.

Managing NFS and NIS

7

All the authors thank John Corbin, Evan Layton, Lin Ling, Dan McDonald, Shantanu
Mehendale, Anay S. Panvalkar, Mohan Parthasarathy, Peter Staubach, and Marc Staveley (all
of Sun); Carl Beame and Fred Whiteside (both of Hummingbird); Jeanette Arnhart; and
Katherine A. Olsen, all for reviewing specific chapters and correcting many of our mistakes.

After we thought we were done writing, it fell to Brent Callaghan, David Robinson, and
Spencer Shepler of Sun to apply their formidable expertise in NFS and NIS to make numerous
corrections to the manuscript and many valuable suggestions on organization and content.
Thank you gentlemen, and we hope you recognize that we have taken your input to heart.

Thanks to our editor, Mike Loukides, for giving us quick feedback on our chapters, as well as
riding herd when we weren't on schedule.

Hal Stern's acknowledgments

More than a decade has gone by since the first edition of this book, during which I've moved
three times and started a family. It was pretty clear to me that the state of networking in
general, and NFS and NIS in particular, was moving much faster than I was, and the only way
this second edition became possible was to hand over the reins. Mike Eisler and Ricardo
Labiaga have done a superb job of bridging the technical eon since the first edition, and I
thank them deeply for their patience and volumes of high-quality work. I also owe Mike
Loukides the same kudos for his ability to guide this book into its current form. Finally, a
huge hug, with ten years of interest, to my wife, Toby, who has been reminding me (at least
weekly) that I left all mention of her out of the first edition. None of this would have been
possible without her encouragement and support.

Mike Eisler's acknowledgments

First and foremost, I'm grateful for the opportunity Hal and Mike L. gave me to contribute to
this edition.

I give thanks to my wife, Ruth, daughter, Kristin, and son, Kevin, for giving their husband
and father the encouragement and space needed to complete this book.

I started on the second edition while working for Sun. Special thanks to my manager at the
time, Cindy Vinores, for encouraging me to take on the responsibility for co-authoring this
book. Thanks also to my successive managers at Sun, Karen Spackman, David Brittle, and
Cindy again, and to Emily Watts, my manager at Zambeel, Inc., for giving me the equipment,
software, and most of all, time to write.

Ricardo Labiaga readily agreed to sign on to help write this book when several members of
the second edition writing team had to back out, and thus took a big load off my shoulders.

This book was written using Adobe's Framemaker document editor. During the year 2000,
Adobe made available to the world a free beta that ran on Linux. I thank Adobe for doing so,
as it allowed me to make lots of progress while traveling on airliners.

Managing NFS and NIS

8

Ricardo Labiaga's acknowledgments

Hal, Mike E., and Mike L., I have truly enjoyed working with you on this edition. Thank you;
it's been an honor and a great experience.

I did most of the work on the second edition while working for the Solaris File Sharing Group
at Sun Microsystems, Inc. I thank my manager at the time, Bev Crair, who enthusiastically
encouraged me to sign up for the project and provided the resources to coauthor this edition. I
also thank my successive managers at Sun, David Brittle and Penny Solin, for providing the
necessary resources to complete the endeavor.

Words are not enough to thank my friends and colleagues at Sun and elsewhere, who
answered many questions and provided much insight into the technologies. Special thanks to
David Robinson for his technical and professional guidance throughout the years, as well as
his invaluable feedback on the material presented in this book. Many thanks to Peter Staubach
and Brent Callaghan for the time spent discussing what NFS should and should not do.
Thanks to Mohan Parthasarathy and David Comay of Solaris Internet Engineering for
answering my many questions about routing concepts. Thanks to Carl Williams and Sebastien
Roy for their explanations of the IPv6 protocol. Thanks to Jim Mauro and Richard McDougall
for providing the original Solaris priority paging information presented in Chapter 17. Thanks
to Jeff Mogul of Compaq for his review of the NFSWATCH material, and Narendra
Chaparala for introducing me to ethereal.

I wish to thank Dr. David H. Williams of The University of Texas at El Paso, for providing
me the opportunity to work as a system administrator in the Unix lab, where I had my first
encounter with Unix and networking twelve years ago. I thank my parents from the bottom of
my heart, for their encouragement throughout the years, and for their many sacrifices that
made my education possible.

My deepest gratitude goes to my wife, Kara, for her encouragement, understanding, and
awesome support throughout the writing of this book. Thank you for putting up with my late
hours, work weekends, and late dinner dates.

Managing NFS and NIS

9

Chapter 1. Networking Fundamentals
The Network Information Service (NIS) and Network File System (NFS) are services that
allow you to build distributed computing systems that are both consistent in their appearance
and transparent in the way files and data are shared.

NIS provides a distributed database system for common configuration files. NIS servers
manage copies of the database files, and NIS clients request information from the servers
instead of using their own, local copies of these files. For example, the /etc/hosts file is
managed by NIS. A few NIS servers manage copies of the information in the hosts file, and
all NIS clients ask these servers for host address information instead of looking in their own
/etc/hosts file. Once NIS is running, it is no longer necessary to manage every /etc/hosts file
on every machine in the network — simply updating the NIS servers ensures that all machines
will be able to retrieve the new configuraton file information.

NFS is a distributed filesystem. An NFS server has one or more filesystems that are mounted
by NFS clients; to the NFS clients, the remote disks look like local disks. NFS filesystems are
mounted using the standard Unix mount command, and all Unix utilities work just as well
with NFS-mounted files as they do with files on local disks. NFS makes system
administration easier because it eliminates the need to maintain multiple copies of files on
several machines: all NFS clients share a single copy of the file on the NFS server. NFS also
makes life easier for users: instead of logging on to many different systems and moving files
from one system to another, a user can stay on one system and access all the files that he or
she needs within one consistent file tree.

This book contains detailed descriptions of these services, including configuration
information, network design and planning considerations, and debugging, tuning, and analysis
tips. If you are going to be installing a new network, expanding or fixing an existing network,
or looking for mechanisms to manage data in a distributed environment, you should find this
book helpful.

Many people consider NFS to be the heart of a distributed computing environment, because it
manages the resource users are most concerned about: their files. However, a distributed
filesystem such as NFS will not function properly if hosts cannot agree on configuration
information such as usernames and host addresses. The primary function of NIS is managing
configuration information and making it consistent on all machines in the network. NIS
provides the framework in which to use NFS. Once the framework is in place, you add users
and their files into it, knowing that essential configuration information is available to every
host. Therefore, we will look at directory services and NIS first (in Chapter 2 through Chapter
4); we'll follow that with a discussion of NFS in Chapter 5 through Chapter 13.

1.1 Networking overview

Before discussing either NFS, or NIS, we'll provide a brief overview of network services.

NFS and NIS are high-level networking protocols, built on several lower-level protocols. In
order to understand the way the high-level protocols function, you need to know how the
underlying services work. The lower-level network protocols are quite complex, and several
books have been written about them without even touching on NFS and NIS services.

Managing NFS and NIS

10

Therefore, this chapter contains only a brief outline of the network services used by NFS and
NIS.

Network protocols are typically described in terms of a layered model, in which the protocols
are "stacked" on top of each other. Data coming into a machine is passed from the lowest-
level protocol up to the highest, and data sent to other hosts moves down the protocol stack.
The layered model is a useful description because it allows network services to be defined in
terms of their functions, rather than their specific implementations. New protocols can be
substituted at lower levels without affecting the higher-level protocols, as long as these new
protocols behave in the same manner as those that were replaced.

The standard model for networking protocols and distributed applications is the International
Organization for Standardization (ISO) seven-layer model shown in Table 1-1.

Table 1-1. The ISO seven-layer model
Layer Name Physical Layer
7 Application NFS and NIS
6 Presentation XDR
5 Session RPC
4 Transport TCP or UDP
3 Network IP
2 Data Link Ethernet
1 Physical CAT-5

Purists will note that the TCP/IP protocols do not precisely fit the specifications for the
services in the ISO model. The functions performed by each layer, however, correspond very
closely to the functions of each part of the TCP/IP protocol suite, and provide a good
framework for visualizing how the various protocols fit together.

The lower levels have a well-defined job to do, and the higher levels rely on them to perform
it independently of the particular medium or implementation. While TCP/IP most frequently
is run over Ethernet, it can also be used with a synchronous serial line or fiber optic network.
Different implementations of the first two network layers are used, but the higher-level
protocols are unchanged. Consider an NFS server that uses all six lower protocol layers: it has
no knowledge of the physical cabling connecting it to its clients. The server just worries about
its NFS protocols and counts on the lower layers to do their job as well.

Throughout this book, the network stack or protocol stack refers to this layering of services.
Layer or level will refer to one specific part of the stack and its relationship to its upper and
lower neighbors. Understanding the basic structure of the network services on which NFS and
NIS are built is essential for designing and configuring large networks, as well as debugging
problems. A failure or overly tight constraint in a lower-level protocol affects the operation of
all protocols above it. If the physical network cannot handle the load placed on it by all of the
desktop workstations and servers, then NFS and NIS will not function properly. Even though
NFS or NIS will appear "broken," the real issue is with a lower level in the network stack.

The following sections briefly describe the function of each layer and the mapping of NFS
and NIS into them. Many books have been written about the ISO seven-layer model, TCP/IP,
and Ethernet, so their treatment here is intentionally light. If you find this discussion of
networking fundamentals too basic, feel free to skip over this chapter.

Managing NFS and NIS

11

1.2 Physical and data link layers

The physical and data link layers of the network protocol stack together define a machine's
network interface. From a software perspective, the network interface defines how the
Ethernet device driver gets packets from or to the network. The physical layer describes the
way data is actually transmitted on the network medium. The data link layer defines how
these streams of bits are put together into manageable chunks of data.

Ethernet is the best known implementation of the physical and data link layers. The Ethernet
specification describes how bits are encoded on the cable and also how stations on the
network detect the beginning and end of a transmission. We'll stick to Ethernet topics
throughout this discussion, since it is the most popular network medium in networks using
NFS and NIS.

Ethernet can be run over a variety of media, including thinnet, thicknet, unshielded twisted-
pair (UTP) cables, and fiber optics. All Ethernet media are functionally equivalent — they
differ only in terms of their convenience, cost of installation, and maintenance. Converters
from one media to another operate at the physical layer, making a clean electrical connection
between two different kinds of cable. Unless you have access to high-speed test equipment,
the physical and data link layers are not that interesting when they are functioning normally.
However, failures in them can have strange, intermittent effects on NFS and NIS operation.
Some examples of these spectacular failures are given in Chapter 15.

1.2.1 Frames and network interfaces

The data link layer defines the format of data on the network. A series of bits, with a definite
beginning and end, constitutes a network frame, commonly called a packet. A proper data link
layer packet has checksum and network-specific addressing information in it so that each host
on the network can recognize it as a valid (or invalid) frame and determine if the packet is
addressed to it. The largest packet that can be sent through the data link layer defines the
Maximum Transmission Unit, or MTU, of the network.

All hosts have at least one network interface, although any host connected to an Ethernet has
at least two: the Ethernet interface and the loopback interface. The Ethernet interface handles
the physical and logical connection to the outside world, while the loopback interface allows a
host to send packets to itself. If a packet's destination is the local host, the data link layer
chooses to "send" it via the loopback, rather than Ethernet, interface. The loopback device
simply turns the packet around and queues it at the bottom of the protocol stack as if it were
just received from the Ethernet.

You may find it helpful to think of the protocol layers as passing packets upstream and
downstream in envelopes, where the packet envelope contains some protocol-specific header
information but hides the remainder of the packet contents. As data messages are passed from
the top most protocol layer down to the physical layer, the messages are put into envelopes of
increasing size. Each layer takes the entire message and envelope from the layer above and
adds its own information, creating a new message that is slightly larger than the original.
When a packet is received, the data link layer strips off its envelope and passes the result up to
the network layer, which similarly removes its header information from the packet and passes
it up the stack again.

Managing NFS and NIS

12

1.2.2 Ethernet addresses

Associated with the data link layer is a method for addressing hosts on the network. Every
machine on an Ethernet has a unique, 48-bit address called its Ethernet or Media Access
Control (MAC) address. Vendors making network-ready equipment ensure that every
machine in the world has a unique MAC address. 24-bit prefixes for MAC addresses are
assigned to hardware vendors, and each vendor is responsible for the uniqueness of the lower
24 bits. MAC addresses are usually represented as colon-separated pairs of hex digits:

8:0:20:ae:6:1f

Note that MAC addresses identify a host, and a host with multiple network interfaces may use
the same MAC address on each.

Part of the data link layer's protocol-specific header are the packet's source and destination
MAC addresses. Each protocol layer supports the notion of a broadcast, which is a packet or
set of packets that must be sent to all hosts on the network. The broadcast MAC address is:

ff:ff:ff:ff:ff:ff

All network interfaces recognize this wildcard MAC address as a broadcast address, and pass
the packet up to a higher-level protocol handler.

1.3 Network layer

At the data link layer, things are fairly simple. Machines agree on the format of packets and a
standard 48-bit host addressing scheme. However, the packet format and encoding vary with
different physical layers: Ethernet has one set of characteristics, while an X.25-based satellite
network has another. Because there are many physical networks, there should ideally be a
standard interface scheme so that it isn't necessary to re-implement protocols on top of each
physical network and its peculiar interfaces. This is where the network layer fits in. The
higher-level protocols, such as TCP (at the transport layer), don't need to know any details
about the physical network that is in use. As mentioned before, TCP runs over Ethernet, fiber
optic network, or other media; the TCP protocols don't care about the physical connection
because it is represented by a well-defined network layer interface.

The network layer protocol of primary interest to NFS and NIS is the Internet Protocol, or IP.
As its name implies, IP is responsible for getting packets between hosts on one or more
networks. Its job is to make a best effort to get the data from point A to point B. IP makes no
guarantees about getting all of the data to the destination, or the order in which the data
arrives — these details are left for higher-level protocols to worry about.

On a local area network, IP has a fairly simple job, since it just moves packets from a higher-
level protocol down to the data link layer. In a set of connected networks, however, IP is
responsible for determining how to get data from its source to the correct destination network.
The process of directing datagrams to another network is called routing; it is one of the
primary functions of the IP protocol. Appendix A contains a detailed description of how IP
performs routing.

Managing NFS and NIS

13

1.3.1 Datagrams and packets

IP deals with data in chunks called datagrams. The terms packet and datagram are often used
interchangeably, although a packet is a data link-layer object and a datagram is network layer
object. In many cases, particularly when using IP on Ethernet, a datagram and packet refer to
the same chunk of data. There's no guarantee that the physical link layer can handle a packet
of the network layer's size. As previously mentioned, the largest packet that can be handled by
the physical link layer is called the Maximum Transmission Unit, or MTU, of the network
media. If the medium's MTU is smaller than the network's packet size, then the network layer
has to break large datagrams down into packet-sized chunks that the data link and physical
layers can digest. This process is called fragmentation. The host receiving a fragmented
datagram reassembles the pieces in the correct order. For example, an X.25 network may have
an MTU as small as 128 bytes, so a 1518-byte IP datagram would have to be fragmented into
many smaller network packets to be sent over the X.25 link. For the scope of this book, we'll
use packet to describe both the IP and the data link-layer objects, since NFS is most
commonly run on Ethernet rather than over wide-area networks with smaller MTUs.
However, the distinction will be made when necessary, such as when discussing NFS traffic
over a wide area point-to-point link.

1.3.2 IP host addresses

The internet protocol identifies hosts with a number called an IP address or a host address. To
avoid confusion with MAC addresses (which are machine or station addresses), the term IP
address will be used to designate this kind of address. IP addresses come in two flavors: 32-bit
IP Version 4 (IPv4) or 128 bit IPv6 address. We will talk about IPv6 addresses later in this
chapter. For now, we will focus on IPv4 addresses. IPv4 addresses are written as four dot-
separated decimal numbers between 0-255 (a dotted quad):

192.9.200.1

IP addresses must be unique among all connected machines. Connected machines in this case
are any hosts that you can get to over a network or connected set of networks, including your
local area network, remote offices joined by the company's wide-area network, or even the
entire Internet community. For a standalone system or a small office that is not connected (via
an IP network) to the outside world, you can use the standard, private network addresses
assigned such purposes. See Section 1.3.3 later in this chapter. If your network is connected to
the Internet, you have to get a range of IP addresses assigned to your machines through a
central network administration authority, via your Internet Service Provider. If you are
planning on joining the Internet in the future, you will need to obtain an address from your
network service provider. This may be either an actual provider of Internet service, or your
own organization, if it has addresses to hand out. We won't go into this further in this book.

The IP address uniqueness requirement differs from that for MAC addresses. IP addresses are
unique only on connected networks, but machine MAC addresses are unique in the world,
independent of any connectivity. Part of the reason for the difference in the uniqueness
requirement is that IPv4 addresses are 32 bits, while MAC addresses are 48 bits, so mapping
every possible MAC address into an IPv4 address requires some overlap. There are a variety
of reasons why the IPv4 address is only 32 bits, while the MAC address is 48 bits, most of
which are historical.

Managing NFS and NIS

14

Since the network and data link layers use different addressing schemes, some system is
needed to convert or map the IP addresses to MAC addresses. Transport-layer services and
user processes use IP addresses to identify hosts, but packets that go out on the network need
MAC addresses. The Address Resolution Protocol (ARP) is used to convert the 32-bit IPv4
address of a host into its 48-bit MAC address. When a host wants to map an IP address to a
MAC address, it broadcasts an ARP request on the network, asking for the host using the IP
address to respond. The host that sees its own IP address in the request returns its MAC
address to the sender. With a MAC address, the sending host can transmit a packet on the
Ethernet and know that the receiving host will recognize it.

A host can have more than one IP address. Usually this is because the host is connected to
multiple physical network segments (requiring one network interface, such as an Ethernet
controller, per segment), or because the host has multiple interfaces to the same physical
network segment.

1.3.3 IPv4 address classes

Each IPv4 address has a network number and a host number. The host number identifies a
particular machine on an organization's network. IP addresses are divided into classes that
determine which parts of the address make up the network and host numbers, as demonstrated
in Table 1-2.

Table 1-2. IPv4 address classes
Address Class
and First Octet
Value

Network
Number
Octets

Host
Number
Octets

Address
Form

Number of
Networks

Number of
Hosts per
Network

Maximum Number
of Hosts per Class

Class A: 1-126 1 3 N.H.H.H 126 2563 - 2 2,113,928,964
Class B: 128-191 2 2 N.N.H.H 16,384 2562 - 2 1,073,709,056
Class C: 192-223 3 1 N.N.N.H 2,097,152 254 532,676,608
Class D: 224-239 N/A N/A M.M.M.M N/A N/A N/A
Class E: 240-255 N/A N/A R.R.R.R N/A N/A N/A

Each N represents part of the network number and each H is part of the address's host number.
The 8-bit octet has 256 possible values, but 0 and 255 in the last host octet are reserved for
forming broadcast addresses.

Network numbers with first octet values of 240-254 are reserved for future use. The network
numbers 0, 127, 255, 10, 172.16-172.31, and 192.168.0-192.168.255 are also reserved:

• 0 is used as a place holder in forming a network number, and in some cases, for IP
broadcast addresses.

• 127 is for a host's loopback interface.
• 255 is used for IPv4 broadcast addresses.
• 10, 172.16-172.31, and 192.168.0-192.168.255 are used for private networks that will

never be connected to the global Internet.

Note that there are only 126 class A network numbers, but well over two million class C
network numbers. When the Internet was founded, it was almost impossible to get a class A
network number, and few organizations (aside from entire networks or countries) had enough
hosts to justify a class A address. Most companies and universities requested class B or class

Managing NFS and NIS

15

C addresses. A medium-sized company, with several hundred machines, could request several
class C network numbers, putting up to 254 hosts on each network. Now that the Internet is
much bigger, the rules for class A, B, and C network number assignment have changed, as
explained in Section 1.3.4.

Class D addresses look similar to the other classes in that each address consists of 4 octets
with a value no higher than 255 per octet. Unlike classes A, B, and C, a class D address does
not have a network number and host number. Class D addresses are multicast addresses,
which are used to send messages to more than one recipient host, whereas IP addresses in
classes A, B, and C are unicast addresses destined for one recipient. Multicast on the Internet
offers plenty of potential for efficient broadcast of information, such as bulk file transfers,
audio and video, and stock pricing information, but has achieved limited deployment. There is
an ongoing experiment known as the "MBONE" (Multicast backBONE) on the Internet to
exploit this technology.

Class E addresses are reserved for future assignment.

1.3.4 Classless IP addressing

In the early 1990s, due to the advent of the World Wide Web, the Internet's growth exploded.
In theory, if you sum the maximum number of hosts per classes A, B, and C (refer back to
Table 1-2), the Internet can have a potential for over 3.7 billion hosts. In reality, the Internet
was running out of address capacity for two reasons.

The first had to do with the inefficiencies built into the class partitioning. About 3.2 billion of
the theoretical number of hosts were class A and class B, leaving about 500 million class C
addresses. Most organizations did not need class A or class B addresses, and of those that did,
a significant fraction of their assigned address space was not needed. Most users could get by
with a class C network number, but the typical small business or home user did not need 254
hosts. Thus, the number of class C addresses was bounded by the maximum number of class
C networks, about two million, which is far less than the number of users on the Internet.

The problem of only two million class C networks was mitigated by the introduction of
dynamically assigned IP addresses, and by the introduction of policies that tended to assign IP
network numbers only to Internet Service Providers (ISPs), or to organizations that effectively
acted as their own ISP, which would then use the free market to efficiently reallocate the IP
addresses dynamically or statically to their customers. Thus most Intenet users get assigned a
single IP address, and the ISP is assigned the corresponding network number.

The second reason was routing scalability. When the Internet was orders of magnitude smaller
then it is today, most address assignments were for class A or B and so routing between
networks was straightforward. The routers simply looked at the network number, and sent it
to a router responsible for that route. With the explosion of the Internet, and with most of that
growth in class C network numbers, each network's router might have to maintain tables of
hundreds of thousands of routes. As the Internet grew rapidly, keeping these tables up to date
was difficult.

This situation was not sustainable, and so the concept of "classless addressing" was
introduced. With the exception of grandfathered address assignments, each IP address,
regardless of whether it's class A, B, or C, would not have an implicit network number part

Managing NFS and NIS

16

and host number part. Instead the network part would be designated explicitly via a suffix of
the form: "/XX", where XX is the number of bits of the IP address that refer to the network.
Those organizations that needed more than the 254 hosts that a class C address would
provide, would instead be assigned consecutive class C addresses. For example, an ISP that
was assigned 192.1.2 and 192.1.3 could have a classless network number of 192.1.3.0/23.
Any router on a network other than 192.1.2 or 192.1.3 that wanted to send to either network
number would instead route to a single router associated with the classless network number
192.1.3.0/23 (i.e., any IP address that had its first 23 bits equal to 1100 0000 0000 0001 0000
001).

With this new scheme, larger organizations get more consecutive class C network numbers.
Within their local networks ("Intranets"), they can either use traditional class-based routing or
classless routing that further subdivides the local network address space that can be used. The
largest organizations may find that class-based routing doesn't scale, and so classless routing
is the best approach.

1.3.5 Virtual interfaces

In Section 1.3.2, we noted that a host could have multiple IP addresses assigned to it if it had
multiple physical network interfaces. It is possible for a physical network segment to support
more than one IP network number. For example, a segment might have 128.0.0.0/16 and
192.4.5.6/24. Some hosts on that segment might want to directly address hosts with either
network number. Some operating systems, such as Solaris, will let you define multiple virtual
or logical interfaces for a physical network interface. On most Unix systems, the ifconfig
command is used to set up interfaces. See your vendor's ifconfig manual page for more
details.

1.3.6 IP Version 6

Until now we have been discussing IPv4 addresses that are four octets long. The discussion in
Section 1.3.4 showed a clever way to extend the life of the 32 bit IPv4 address space.
However, it was recognized long ago, even before the introduction of the World Wide Web,
that the IPv4 address space was under pressure. IP Version 6 (IPv6) has been defined to solve
the address space limitations by increasing the address length to 128 bit addresses. At the time
of this writing, while most installed systems either do not support it or do not use it, most
marketed systems support IPv6. Since it seems inevitable that you'll encounter some IPv6
networks in the next few years, we will explain some of the basics of IPv6. Note that IPv6 is
sometimes referred to as IPng: IP Next Generation.

Instead of dotted quads, IPv6 addresses are usually expressed as:

x:x:x:x:x:x:x:x

where each x is a 16 bit hexadecimal value. In environments where a network is transitioning
from IP Version 4 to Version 6, you might want to use a form like:

x:x:x:x:x:x:d.d.d.d

where d.d.d.d represents an IP Version 4 dotted quad.

Managing NFS and NIS

17

When there are one or more consecutive sequences of x's such that each x is all zeroes, the
sequence can be replaced with "::", but there can be only one such "::" abbreviation in an IPv6
address. Thus:

1234:0000:5678:9ABC:DEF0:1234:5678:9ABC
3:0:0:0:0:0:3333:4444

can be abbreviated as:

1234::5678:9ABC:DEF0:1234:5678:9ABC
3::3333:4444

As you might expect, IPv6 dispenses with address classes for unicast addresses. You specify
classless network numbers (address prefixes), using the same classless addressing notation
that IP Version 4 uses.

1.3.6.1 IP Version 6 address pools

While the designation of the network number in IPv6 is classless, the 128-bit address is still
carved up into various pools. Portions of the address space are allocated for:

• Reserved or unassigned for future purposes
• Open Systems Interconnection (OSI) network protocols
• Novell IPX protocols
• Unicast addresses, including:

o global unicast addresses that can be used to send packets to hosts outside the
local site

o site local unicast addresses than can be used to send packets only to hosts
within a site

o link local unicast addresses that can used to send packets only to hosts within a
physical network segment

• Multicast addresses, which start with FF
• Addresses of nodes that support just IP Version 4. These are denoted as:

::FFFF:d.d.d.d

• Addresses of nodes that support IPv6, but want to use existing IP Version 4
infrastructure to encapsulate IPv6 packets within IPv4 packets for transport between
networks. The last 32 bits of these addresses correspond to IPv4 addresses. These
addresses are denoted as:

::d.d.d.d

While this scheme does not let you benefit from IPv6's extended addressing, it does let
you take advantage of IPv6's other features (such as a richer set of protocol options)
while transitioning from IPv4.

Managing NFS and NIS

18

1.3.6.2 IP Version 6 loopback address

Instead of dedicating about 16 million addresses for loopback interfaces as IPv4 does, IPv6
uses just one address for that purpose:

::1

1.3.6.3 IP Version 6 unspecified address

IPv6 introduces the concept of an "unspecified" address, which is all zeroes:

::0

This address can be used by hosts that don't know their own address, but need to generate
queries to determine their address assignment. Such hosts would use "::0" as the source
address in an IPv6 packet.

1.4 Transport layer

The transport layer has two major jobs: it must subdivide user-sized data buffers into network
layer-sized datagrams, and it must enforce any desired transmission control such as reliable
delivery. Two transport protocols that sit on top of IP are the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP), which offer different delivery guarantees.

1.4.1 TCP and UDP

TCP is best known as the first half of TCP/IP; as discussed in this and the preceding sections,
the acronyms refer to two distinct services. TCP provides reliable, sequenced delivery of
packets. It is ideally suited for connection-oriented communication, such as a remote login or
a file transfer. Missing packets during a login session is both frustrating and dangerous —
what happens if rm *.o gets truncated to rm * ? TCP-based services are generally geared
toward long-lived network connections, and TCP is used in any case when ordered datagram
delivery is a requirement. There is overhead in TCP for keeping track of packet delivery order
and the parts of the data stream that must be resent. This is state information. It's not part of
the data stream, but rather describes the state of the connection and the data transfer.
Maintaining this information for each connection makes TCP an inherently stateful protocol.
Because there is state, TCP can adapt its data flow rate when the network is congested.

UDP is a no-frills transport protocol: it sends large datagrams to a remote host, but it makes
no assurances about their delivery or the order in which they are delivered. UDP is best for
connectionless communication on local area networks in which no context is needed to send
packets to a remote host and there is no concern about congestion. Broadcast-oriented
services use UDP, as do those in which repeated, out of sequence, or missed requests have no
harmful side effects.

Reliable and unreliable delivery is the primary distinction between TCP and UDP. TCP will
always try to replace a packet that gets lost on the network, but UDP does not. UDP packets
can arrive in any order. If there is a network bottleneck that drops packets, UDP packets may
not arrive at all. It's up to the application built on UDP to determine that a packet was lost,
and to resend it if necessary. The state maintained by TCP has a fixed cost associated with it,
making UDP a faster protocol on low-latency, high-bandwidth links. The price paid for speed

Managing NFS and NIS

19

(in UDP) is unreliability and added complexity to the higher level applications that must
handle lost packets.

1.4.2 Port numbers

A host may have many TCP and UDP connections at any time. Connections to a host are
distinguished by a port number, which serves as a sort of mailbox number for incoming
datagrams. There may be many processes using TCP and UDP on a single machine, and the
port numbers distinguish these processes for incoming packets. When a user program opens a
TCP or UDP socket, it gets connected to a port on the local host. The application may specify
the port, usually when trying to reach some service with a well-defined port number, or it may
allow the operating system to fill in the port number with the next available free port number.

When a packet is received and passed to the TCP or UDP handler, it gets directed to the
interested user process on the basis of the destination port number in the packet. The
quadruple of:

source IP address, source port, destination IP address, destination port

uniquely identifies every interhost connection in the network. While many processes may be
talking to the process that handles remote login requests (therefore their packets have the
same destination IP addresses and port numbers), they will have unique pairs of source IP
addresses and port numbers. The destination port number determines which of the many
processes using TCP or UDP gets the data.

On most Unix systems port numbers below 1024 are reserved for the processes executing
with superuser privileges, while ports 1024 and above may be used by any user. This enforces
some measure of security by preventing random user applications from accessing ports used
by servers. However, given that most nodes on the network don't run Unix, this measure of
security is very questionable.

1.5 The session and presentation layers

The session and presentation layers define the creation and lifetime of network connections
and the format of data sent over these connections. Sessions may be built on top of any
supported transport protocol — login sessions use TCP, while services that broadcast
information about the local host use UDP. The session protocol used by NFS and NIS is the
Remote Procedure Call (RPC).

1.5.1 The client-server model

RPC provides a mechanism for one host to make a procedure call that appears to be part of
the local process but is really executed on another machine on the network. Typically, the host
on which the procedure call is executed has resources that are not available on the calling
host. This distribution of computing services imposes a client/server relationship on the two
hosts: the host owning the resource is a server for that resource, and the calling host becomes
a client of the server when it needs access to the resource. The resource might be a centralized
configuration file (NIS) or a shared filesystem (NFS).

Managing NFS and NIS

20

Instead of executing the procedure on the local host, the RPC system bundles up the
arguments passed to the procedure into a network datagram. The exact bundling method is
determined by the presentation layer, described in the next section. The RPC client creates a
session by locating the appropriate server and sending the datagram to a process on the server
that can execute the RPC; see Figure 1-1. On the server, the arguments are unpacked, the
server executes the result, packages the result (if any), and sends it back to the client. Back on
the client side, the reply is converted into a return value for the procedure call, and the user
application is re-entered as if a local procedure call had completed. This is the end of the
"session," as defined in the ISO model.

Figure 1-1. Remote procedure call execution

RPC services may be built on either TCP or UDP transports, although most are UDP-oriented
because they are centered around short-lived requests. Using UDP also forces the RPC call to
contain enough context information for its execution independent of any other RPC requests,
since UDP packets may arrive in any order, if at all.

When an RPC call is made, the client may specify a timeout period in which the call must
complete. If the server is overloaded or has crashed, or if the request is lost in transit to the
server, the remote call may not be executed before the timeout period expires. The action
taken upon an RPC timeout varies by application; some resend the RPC call, while others
may look for another server. Detailed mechanics of making an RPC call can be found in
Chapter 13.

1.5.2 External data representation

At first look, the data presentation layer seems like overkill. Data is data, and if the client and
server processes were written to the same specification, they should agree on the format of the
data — so why bother with a presentation protocol? While a presentation layer may not be
needed in a purely homogeneous network, it is required in a heterogeneous network to unify
differences in data representation. These differences are outlined in the following list:

Data byte ordering

Does the most significant byte of an integer go in the odd- or even-numbered byte?

Managing NFS and NIS

21

Compiler behavior

Do odd-sized quantities get padded out to even-byte boundaries? How are unions
handled?

Floating point numbers

What standard is used for encoding floating point numbers?

Arrays and strings

How do you transmit variable-sized objects, such as arrays and strings?

Again, a presentation protocol would not be necessary if datagrams consisted only of byte-
oriented data. However, applications that use RPC expect a system call-like interface,
including support for structures and data types more complex than byte streams. The
presentation layer provides services for encoding and decoding argument buffers that may
then be passed down to RPC for transmission to the client or server.

The External Data Representation (XDR) protocol was developed by Sun Microsystems and
is used by NIS and NFS at the presentation layer. XDR is built on the notion of an immutable
network byte ordering, called the canonical form. It isn't really important what the canonical
form is — your system may or may not use the same byte ordering and structure packing
conventions. The canonical form simply allows network hosts to exchange structured data (as
opposed to streams of bytes) independently of any peculiarities of a particular machine. All
data structures are converted into the network byte ordering and padded appropriately.

The rule of XDR is "sender makes local canonical; receiver makes canonical local." Any data
that goes over the network is in canonical form.[1] A host sending data on the network converts
it to canonical form, and the host that receives the data converts it back into its local
representation. A different way to implement the presentation layer might be "receiver makes
local." In this case, the sender does nothing to the local data, and the receiver must deduce the
packing and encoding technique and convert it into the local equivalent. While this scheme
may send less data over the network — since it is not subject to additional padding — it
places the burden of incorporating a new hardware architecture on the receiving side, rather
than on the new machine. This doesn't seem like a major distinction, but consider having to
change all existing, fielded software to handle the new machine's structure-packing
conventions. It's usually worth the overhead of converting to and from canonical form to
ensure that all new machines will be able to "plug in" to the network without any software
changes.

[1] The canonical form matches the byte ordering of the Motorola and SPARC family of microprocessors, so these processors do not have to perform
any byte swapping to translate to or from canonical form. This byte ordering is called Big Endian. Big Endian ordering is used for many Internet
protocols.

The XDR and RPC layers complete the foundation necessary for a client/server distributed
computing relationship. NFS and NIS are client/server applications, which means they sit at
the top layer of the protocol stack and use the XDR and RPC services. To complete this
introduction to network services, we'll take a look at the two mechanisms used to start and
maintain servers for various network services.

Managing NFS and NIS

22

1.5.3 Internet and RPC server configuration

The XDR and RPC services are useful for applications that need to exchange data structures
over the network. Each new RPC request contains all required information in its XDR-
encoded arguments, just as a local procedure call gets its inputs from passed-in arguments.
RPC services are usually connectionless services because RPC requests do not require the
creation of a long-lived network connection between the client and server. The client
communicates with the server to send its request and receive a reply, but there is no
connection or environment for the communication.

There are many other network services, such as telnet and ftp, that are commonly referred to
as the Internet or ARPA services. They are part of the original suite of utilities designed for
use on the Internet. Internet services are generally based on the TCP protocol and are
connection-oriented — the service client establishes a connection to a server, and data is then
exchanged in the form of a well-ordered byte stream. There is no need for RPC or XDR
services, since the data is byte-oriented, and the service defines its own protocols for handling
the data stream. The telnet service, for example, has its own protocol for querying the server
about end-of-line, terminal type, and flow control conventions.

Note that RPC services are not required to be connectionless. RPC can be run over TCP, in a
connection-oriented fashion. The TCP transport protocol may be used with RPC services
whenever a large amount of data needs to be transferred. NIS, for example, uses UDP (in
connectionless mode) for most of its operations, but switches to TCP whenever it needs to
transfer an entire database from one machine to another. NFS supports either TCP or UDP for
all its operations.

Most Internet services are managed by a super-daemon called inetd that accepts requests for
connections to servers and starts instances of those servers on an as-needed basis. Rather than
having many server processes, or daemons, running on each host, inetd starts them as requests
arrive. Clients contact the inetd daemon on well-known port numbers for each service. These
port numbers are published in the /etc/services file.

inetd sets up a one-to-one relationship between service clients and server-side daemons. Every
rlogin shell, for example, has a client side rlogin process (that calls inetd upon invocation)
and a server-side in.rlogind daemon that was started by inetd. In this regard, inetd and the
services it supports are multi-threaded: they can service multiple clients at the same time,
creating a new separate connection (and state information) for each client. A new server
instance, or thread, is initiated by each request for that service, but a single daemon handles
all incoming requests at once.

Only traffic specific to a single session moves over the connection between a client and its
server. When the client is done with the service, it asks the server to terminate its connection,
and the server daemon cleans up and exits. If the server prematurely ends the connection due
to a crash, for example, the client drops its end of the connection as well.

Some RPC services can't afford the overhead of using inetd. The standard inetdbased services,
like telnet, tend to be used for a long time, so the cost of talking to inetd and having it start a
new server process is spread out over the lifetime of the connection. Many RPC calls are short
in duration, lasting at most the time required to perform a disk operation.

Managing NFS and NIS

23

RPC servers are generally started during the boot process and run as long as the machine is
up. While the time required to start a new server process may be small compared to the time a
remote login or rsh session exists, this overhead is simply too large for efficient RPC
operation. As a result, RPC servers typically have one server process for the RPC service, and
it executes remote requests for all clients in the same process. Some RPC servers are single-
threaded: they execute requests one at a time. To achieve better performance, some RPC
servers are multi-threaded: they have multiple threads of execution within the same process,
sharing the same address space. There may be many clients of the RPC server, but their
requests intermingle in the RPC server queue and are processed in the order in which server
threads are dispatched to deal with the requests.

Instead of using pre-assigned ports and a super-server, RPC servers are designated by service
number. The file /etc/rpc contains a list of RPC servers and their program numbers. Each
program may contain many procedures. The NFS program, for example, contains more than a
dozen procedures, one for each filesystem operation such as "read block," "write block,"
"create file," "make symbolic link," and so on. RPC services still must use TCP/UDP port
numbers to fit the underlying protocols, so the mapping of RPC program numbers to port
numbers is handled by the portmapper daemon (portmap on some systems, rpcbind on
others).

When an RPC server initializes, it usually registers its service with the portmapper. The RPC
server tells the portmapper which ports it will listen on for incoming requests, rather than
having the portmapper listen for it, in inetd fashion. An RPC client contacts the portmapper
daemon on the server to determine the port number used by the RPC server, or it may ask the
portmapper to call the server indirectly on its behalf. In either case, the first RPC call from a
client to a server must be made with the portmapper running. If the portmapper dies, clients
will be unable to locate RPC daemons services on the server. A server without a running
portmapper effectively stops serving NIS, NFS, and other RPC-based applications.

We'll come back to RPC mechanics and debugging techniques in later chapters. For now, this
introduction to the configuration and use of RPC services suffices as a foundation for
explaining the NFS and NIS applications built on top of them.

1.5.3.1 Socket RPC and Transport Independent RPC

RPC was originally designed to work over sockets, a programing interface for network
communication introduced in the 1980s by the University of California in its 4.1c BSD
version of Unix. Solaris 2.0 introduced Transport Independent RPC (TI-RPC). The motivation
for TI-RPC was that it appeared that OSI networking would eventually supplant TCP/IP-
based networking, and so a transport independent interface would make it easier to transition
RPC applications was needed. While OSI networking did not take over, TI-RPC is still used
in Solaris. TI-RPC introduces an additional configuration file, /etc/netconfig, which defines
each transport that RPC services can listen for requests over. In addition to TCP and UDP, the
/etc/netconfig file lists connectionless and connection-oriented loopback transports for RPC
services that don't need to provide service outside the host. In Solaris 8, the /etc/netconfig file
will also let you specify services over TCP and UDP on IPv6 network interfaces.

Managing NFS and NIS

24

Chapter 2. Introduction to Directory Services
The previous chapter gave an overview of the ISO seven-layer model, describing in some
detail the lower layers. In this chapter, we will discuss a class of layer 7— application
protocols known as directory services. NIS is an example of such a directory service.

2.1 Purpose of directory services

The purpose of a directory service is to map names of one form to names of another form.
Often the names of the first form are alphanumeric strings, and the second form are numbers.
Or the names of the first form are simple, whereas the names of second form are complex. In
the days before computing, we used directories, but they were published on paper. The most
obvious one, and perhaps the inspiration for network directory services, is the telephone book.
A typical telephone book for a city in the United States consists of three directories:

• The white pages of residence listings
• The white pages of business listings
• The yellow pages of business listings

The residence white page listings contains a list of names, last name first, and for each entry,
the telephone number. In many cases, each entry contains the street address of the residence.
Thus you can think of the residence white pages in a telephone book, as a way to direct you
from a person's name to his telephone number and address. Hence, a telephone book's formal
name is a telephone directory.

The white pages of residence listings can be thought of as a "structured set of data." If this
data were stored on a computer, a lexicographer would call it a database ; a "structured set of
data" is the definition of database in the Concise Oxford Dictionary. Sometimes, when you
are in a hurry or don't have a telephone number, you dial a special telephone number (411 or
555-1212 in the United States) to ask an operator ("directory assistance") for the telephone
number of the person you want to call. This directory assistance can be thought of as directory
service. You, the caller, are a customer or client of the directory service, and the particular
operator, is a server of the directory service. In the world of computer networking, the human
server is replaced with a directory server of databases. Since there is a server, there has to be a
client. The client-side of a directory service is typically a programming library which allows
other applications to look up entries in the database.

2.1.1 The hosts database

We've so far described a lot of theory, but a concrete example of a database in directory
services should crystallize the concept.

The metaphor of a telephone directory was useful in explaining the concepts of directory
service, client, and server. It turns out that the concept of names of people and their telephone
numbers is also a metaphor for a similar database in computer networking. Recall from
Section 1.3.2 that hosts have unique numbers or addresses, just as every telephone number in
the world is unique. Just as we associate names of people with their telephone numbers, in
computer networking we often want to give individual hosts a name in addition to a host
address. The reasons are that it is easier to remember a name than a number, and just as

Managing NFS and NIS

25

people move geographically, requiring new telephone number assignments, hosts can move
physically (requiring a new address assignment for the host) or conversely, the function the
host was serving can move from one physical host to another (requiring a new name
assignment for the host).

The hostname and address entries are stored in a hosts database that the directory server can
use to respond to requests from clients. As was noted earlier, the client-side of the directory
service is typically a programming library. This is the case for the hosts database. There is a
subroutine, known as gethostbyname() that takes a string name of a host and returns the
address of the host. See your system's manual page for gethostbyname for the precise calling
conventions. Solaris comes with a utility called getent for looking up database entries via the
command line. For example:

% getent hosts frostback
128.0.0.1 frostback

getent can be thought of as one of the most primitive directory service clients, but nearly
every application that deals with the network will be a client that needs to access the hosts
database via the directory service. A more advanced client of the hosts database is a web
browser such as Netscape Navigator or Internet Explorer. Browsers will link to
gethostbyname or a similar interface to find the host addresses corresponding to Universal
Resource Locators (URLs, those things that start with http://).

Going back to the telephone concept, sometimes we would like to know the name of the caller
corresponding to a telephone number. In the United States, when you call a toll free number,
the merchant receiving the call has the capability to display your phone number and can map
it to your name (considering that the merchant is paying for your long distance call, some
might reason that this is fair). In the computer networking world, it is sometimes useful to
know the hostname of the client accessing the server. For example, suppose the server side of
a web browser is a web server. Web servers often keep logs of the "hits" made to the server,
for the purposes of understanding how popular a web site is, what is popular, and what hosts
find it popular. The web server will always be able to find the host address of the client that
made the hit. To figure out the name of the host, there is a programming interface called
gethostbyaddr(), which takes a host address, and returns the name of the host. The
information can be obtained from the hosts database, via the directory service. In other words,
both servers and client of different services, in this case, web services, can be clients of
directory services.

2.2 Brief survey of common directory services

There are numerous different directory services. Here we will discuss some of the commonly
used ones.

2.2.1 Directory Name Service (DNS)

The roots of DNS are in the early (pre-Web) days of the Internet. DNS was developed to
provide hostname and address resolution. Before DNS existed, the authorities for the Internet
maintained a global flat text file of the mappings from hostname to IP address in a file called
hosts.txt, which was then made available for all the nodes on the Internet to download via

Managing NFS and NIS

26

a program called gettable. This is analogous to the telephone company giving you an updated
telephone book periodically. Systems like Unix would convert the file into /etc/hosts.

This hosts.txt system worked fine for the Internet when it had only thousands of hosts. But
when it reached tens of thousands of hosts, it wasn't practical, especially over the slow links
available in the late 1980s. What was needed was a way to decentralize the process of looking
up hostnames and addresses. The Internet was separated into domains, and each domain was
left to identify its own authoritative server for hostnames and addresses within its domain.
The only thing that needed to be maintained in a global database was the list of domain
names, and the servers for that domain. Returning to the telephone directory analogy, when
you live in one area code of the United States, and want to get directory information for
another area code, you can prefix the area code to the number 555-1212 to get the appropriate
directory service operator.

By assigning authority for a domain's directory information to each domain, DNS can be
described as being hierarchical. Similarly, the United States telephone system assigns
authority for a given area code's directory information to one pool of directory service
operators that answer the 555-1212 number. DNS also lets domains within subdomains
further delegate authority, and subdomains in turn. For example, in DNS there is a top-level
domain called ".com" that assigns authority for administering sun.com and oreilly.com to
DNS servers that the owners of sun.com and oreilly.com each designate. Within sun.com,
there are several subdomains, such as eng.sun.com, and east.sun.com. Within eng.sun.com,
there might be a compiler.eng.sun.com, sunos.eng.sun.com, cde.eng.sun.com. Thus DNS is a
multilevel hierarchy, whereas the United States telephone directory service has but two levels
of hierarchy.

DNS has stood the test of time. In 1993, a memorandum (RFC 1401) was written by the chair
of the Internet Architecture Board that noted that the transition from hosts.txt to DNS was
largely complete. This is fortuitous, as the World Wide Web was about to explode from tens
of thousands of hosts to millions. DNS proved capable of handling that explosion.

2.2.2 Network Information Service (NIS)

NIS was developed by Sun Microsystems in the mid-1980s to solve a problem that until then
had no solution in the Unix world. Let's return to the telephone directory service concept. One
nice thing about calling your telephone company's directory service is that the operator (the
server) is more apt to have up-to-date information than you would. Your telephone book is
replaced once a year, whereas the server's information is updated more frequently, perhaps
instantly with each new telephone number assignment and de-assignment. When networking
was added to Unix systems, system administrators very quickly ran into difficulties keeping
files like /etc/hosts (holds hostname to host address mappings) and /etc/passwd (holds
username, user identifier, password). If a system administrator had 100 systems, then adding a
host to a network or a user to the organization meant the tedium of updating the /etc/hosts or
/etc/passwd files on all 100 systems. NIS, originally called the Yellow Pages or YP, was
invented to simplify management of these files by changing the underlying programming
interfaces, such as gethostbyname() and getpwnam(), to use NIS client libraries.

While DNS was being developed around the time NIS was, DNS was mostly concerned with
the directory of hostnames and addresses, whereas NIS went beyond that. In addition, DNS
was designed so that a host in one domain could access information from other domains,

Managing NFS and NIS

27

whereas NIS shared the limitations of the early Internet's hosts.txt file: flat and not very
dynamic.

We will go into much more detail on how NIS operates in Chapter 3.

2.2.3 NIS+

In 1992, Sun Microsystems released NIS+ with Solaris 2.0. Despite its name, NIS+ was more
different than it was similar to NIS. NIS+ was developed to address several deficiencies in
NIS:

Hierarchical operation

While NIS was designed to be split into unique domains, there was no simple way for
a client in one domain to get directory information from another domain. NIS+
addressed this by supporting a multilevel hierarchy in a manner similar to DNS.

Security

There are really two issues here. First is that some kinds of directory information need
to be kept more secure than others, such as a directory containing credit card numbers.
The directory server needs to know who is accessing the data, and properly
authenticate the client. Second, the client needs to be certain that the server is the true
authority for the service. An attacker in the middle between the client and real server
could masquerade as the server and return bogus information. NIS+ deals with both
these issues by supporting mutual authentication: the client and server authenticate
each other, via a secure form of RPC known as RPC/dh, which is described in Chapter
12.

Updates

Updating a NIS database and propagating the changes is a cumbersome process. Only
the system administrator can make updates (with few exceptions), and the changes
must be pushed to each replica server by pushing the entire database, even if only one
record changes. NIS+ supports the ability to allow users to update directory entries
they have access rights to. For example, a user changes the name that appears in the
password database, which might be necessary upon a status change like a new job
title, or a new surname as a result of a marriage or divorce. NIS+ servers have the
capability to accept incremental updates, which allows the updates to be more
efficiently distributed.

2.2.4 X.500

Around the same time DNS and NIS were being designed and deployed, the International
Standards Organization (ISO) started meeting to define an ISO standard directory, called
X.500. X.500 shares DNS's and NIS+'s attributes for hierarchical operation, and NIS+'s
attributes for security and simple update. X.500 differs from DNS, NIS, and NIS+ in the
following ways:

Managing NFS and NIS

28

• X.500 is very explicit about what each level of the hierarchy of a domain name looks
like. If you see a domain name like:

chicago.manufacturing.widget.com

it could easily be a DNS, NIS, or NIS+ name, and it could very well be for a host or a
domain. Moreover, while it might seem like chicago.manufacturing.widget.com refers
to a subdomain of hosts located in the city of Chicago, assigned to Widget, Inc.'s
manufacturing division, it could just as easily refer to a hand held computer on space
station Alpha. This ambiguity is a concern to some folks. Hence, X.500 explicitly
identifies what each level of hierarchy means. For example, the X.500 distinguished
name corresponding to DNS style chicago.manufacturing.widget.com name would be:

{ Country = US, Orglanization = Widget, Inc., Organizational Unit =
Manufacturing, Location = Chicago }

• X.500 supports the notion of schema. A schema is a set of rules for what can be stored
in a database. Defining a directory schema is useful when performing search
operations on a directory. Say a database includes the hire dates of employees, and
you want to search for all employees hired between a particular range of dates.
Because the X.500 directory is "aware" that the field being searched is a date, it is
possible to let the directory server do all the work of finding the matches. With DNS,
NIS, and NIS+, you would be compelled to read every directory entry from the server,
and perform the operation on the client, because the server treats the information
opaquely. The X.500 way saves network bandwidth.

For many common databases, X.500 is overkill, but there are situations where having
an X.500 schema is handy. Say you want to find all the hosts that are in the 192.1.1
network. If you defined X.500's equivalent to the hosts database with a schema that
had substring matching rules, this would be easy and efficient.

2.2.5 Lightweight Directory Access Protocol (LDAP)

X.500 has a protocol called the Directory Access Protocol (DAP) to allow clients to access
X.500 servers. DAP was designed to operate over ISO's Open Systems Interconnect (OSI)
transport and network protocols. Once upon a time, people believed that TCP/IP would wither
away and be replaced by OSI. As it turned out, too many people had deployed TCP/IP-based
networks, and they saw no compelling reason to switch to OSI. Despite OSI mandates by
most governments in the developed world, the Internet transport and network protocols
persisted, and it was obvious by 1994, if not earlier, that the OSI transport and network was
dead. However, as discussed earlier, X.500 has some extremely attractive properties for a
directory, but it comes with the baggage of OSI transport and complex ASN.1 encoding. The
Lightweight Directory Access Protocol (LDAP) was invented to allow clients using TCP/IP
and simpler encoding schemes, to take advantage of the richness of X.500 directory service.

Another difference between LDAP and DAP is that LDAP is under the control of the Internet
Engineering Task Force (IETF), the same organization that produced the standards behind the
Internet. Whether intended or not, the effect is to get IETF to buy into X.500, whereas
previously IETF had no control over OSI transport and network, and so it was much harder
(and eventually impossible) to get IETF to accept OSI transport and network.

Managing NFS and NIS

29

LDAP specifies lots of different security flavors, including ones based on public key
certificates and Kerberos V5.

At the time this book was written, LDAP was only starting to be integrated with operating
systems. Windows 2000 is the first such offering from Microsoft. Solaris 8 includes a fully
integrated LDAP client, but no server.

2.2.6 NT Domain

NT Domain is the directory service used in Windows NT. It was introduced by Microsoft in
1987 and was called Lan Manager at the time. NT Domain is intended to administer users,
groups, printers, and hosts in a Windows environment. NT Domain now supports multilevel
hierarchies, but requires a bilateral trust relationship between each domain. So if there are N
domains in an organization, N * (N - 1) relationships need to be set up. NT Domain supports
slightly better security than NIS. Perhaps the biggest issue with NT Domain is that it is an
undocumented proprietary protocol, making it difficult for Windows and non-Windows
systems to share NT Domain directory information.

Microsoft is moving away from NT Domain in favor of Active Directory, which is a
derivation of the LDAP protocol and X.500.

While NT Domain is not supported on Solaris and most other Unix systems, if you have a
mixed environment, you'll probably run into it.

2.3 Name service switch

With multiple directory services available, having the ability to access different ones is handy.
Solaris has an /etc/nsswitch.conf file that for each database, which lets you decide what
directory you want to get the database contents from. You can even specify multiple
directories. For example, nsswitch.conf might have this entry:

hosts: files nis dns

This entry says that when gethostbyname() and gethostbyaddr() are called to look up
hostnames and addresses, the interfaces will first try to find the information in the local
/etc/hosts file, then check with NIS, then check with DNS. Be aware that some directory
services can't be combined in nsswitch.conf. For example, you cannot have both NIS and
NIS+ listed in nsswitch.conf, even for different databases.

2.4 Which directory service to use

Clearly, LDAP is the future for directory services on all operating systems, including Solaris.
However, at the time this book was written, LDAP was only starting to be integrated with
operating systems. Windows 2000 is the first such offering from Microsoft. Solaris 8 includes
a fully integrated LDAP client, but no server. Moreover, LDAP is more complex to
administer than other directory services.

NIS is perhaps the easiest to administer, but it is also the most limited. It is, however, the
universal directory for Unix systems.

Managing NFS and NIS

30

DNS is the standard for hostnames and addresses, and you'll find it handy for accessing hosts
outside your domain.

NIS+ has gained some acceptance among other non-Solaris Unix operating systems, including
HP's HP-UX, IBM, AIX, and Linux. NIS+ is much more secure than NIS.

This rest of this book ignores NIS+ and LDAP, and focuses on NIS and to some degree DNS,
since those are what you are most likely to encounter. If you are concerned about security,
you'll need to seriously consider deploying NIS+ until LDAP catches up. If security is not a
concern, then NIS is fine.

Managing NFS and NIS

31

Chapter 3. Network Information Service Operation
A major problem in running a distributed computing environment is maintaining separate
copies of common configuration files such as the password, group, and hosts files. Ideally, the
network should be consistent in its configuration, so that users don't have to worry about
where they have accounts or if they'll be able to find a new machine on the network.
Preserving consistency, however, means that every change to one of these common files must
be propagated to every host on the network. In a small network, this might not be a major
chore, but in a computing environment with hundreds or thousands of systems, simple
administrative tasks can turn into all-day projects. Furthermore, without an automated tool for
making changes, the probability of making mistakes grows with the size of the network and
the number of places where changes must be made.

The Network Information System (NIS) addresses these problems. It is a distributed database
system that replaces copies of commonly replicated configuration files with a centralized
management facility. Instead of having to manage each host's files (like /etc/hosts,
/etc/passwd, /etc/group, /etc/ethers, and so on), you maintain one database for each file on one
central server. Machines that are using NIS retrieve information as needed from these
databases. If you add a new system to the network, you can modify one file on a central server
and propagate this change to the rest of the network, rather than changing the hosts file for
each individual host on the network. For a network of two or three systems, the difference
may not be crucial; but for a large network with hundreds of systems, NIS is life-saving.

Because NIS enforces consistent views of files on the network, it is suited for files that have
no host-specific information in them. The /etc/vfstab file of filesystems and mount points, for
example, is a terrible candidate for management by NIS because it's different on just about
every machine. Files that are generally the same on all hosts in a network, such as /etc/passwd
and /etc/hosts, fit the NIS model of a distributed database nicely.

In addition to managing configuration files, NIS can be used for any general data file that is
accessed on one or more key fields. In a later chapter, we will discuss how to use NIS to
manage your own site-specific databases.

This discussion of networking services starts with NIS because it provides the consistency
that is a prerequisite for the successful administration of a distributed filesystem. Imagine a
network in which you share files from a common server, but you have a different home
directory and user ID value on every host. The advantages of the shared filesystem are lost in
such a loosely run network: you can't always read or write your files due to permission
problems, and you don't get a consistent view of your files between machines because you
don't always end up in the same home directory. We'll start with a brief description of the
different roles systems play under NIS, and then look at how to install NIS on each type of
machine.

3.1 Masters, slaves, and clients

NIS is built on the client-server model. An NIS server is a host that contains NIS data files,
called maps. Clients are hosts that request information from these maps. Servers are further
divided into master and slave servers: the master server is the true single owner of the map
data. Slave NIS servers handle client requests, but they do not modify the NIS maps. The
master server is responsible for all map maintenance and distribution to its slave servers. Once

Managing NFS and NIS

32

an NIS map is built on the master to include a change, the new map file is distributed to all
slave servers. NIS clients "see" these changes when they perform queries on the map file — it
doesn't matter whether the clients are talking to a master or a slave server, because once the
map data is distributed, all NIS servers have the same information.

Before going any further, let's take a quick and simple look at how this works. Figure 3-1
shows the relationship between masters, slaves, and clients.

Figure 3-1. NIS masters, slaves, and clients

Consider the hosts NIS map, which replaces the /etc/hosts files on individual systems. If
you're familiar with Unix adminstration, you know that this file tells the system how to
convert hostnames into IP (internet) addresses. When a client needs to look up the internet
address of some system, it would normally read the hosts file. If NIS is running, however, the
client bypasses its hosts file, and instead asks an NIS server (either a master or a slave server
— it doesn't make any difference) for the information it needs.

Now the other side of the coin: you've added a system, and need to modify the hosts NIS map.
You only modify the hosts file on the "master server" — remember, the master server knows
the "truth" about the network.[1] Once you've made your changes, you can rebuild the NIS
database (i.e., the NIS maps) on the master server. The master server then distributes new
versions of the NIS maps to the slave servers, which now provide the updated information to
the NIS clients.

[1] Remember: when you want to make a global change to the network, you must modify the file on the master server. Global changes made to slave
servers or clients will, at best, be ignored.

With the distinction between NIS servers and clients firmly established, we can see that each
system fits into the NIS scheme in one of three ways:

Client only

This is typical of desktop workstations, where the system administrator tries to
minimize the amount of host-specific tailoring required to bring a system onto

Managing NFS and NIS

33

the network. As an NIS client, the host gets all of its common configuration
information from an extant server.

Server only

While the host services client requests for map information, it does not use NIS for its
own operation. Server-only configuration may be useful when a server must provide
global host and password information for the NIS clients, but security concerns
prohibit the server from using these same files. However, bypassing the central
configuration scheme opens some of the same loopholes that NIS was intended to
close. Although it is possible to configure a system to be an NIS server only, we don't
recommend it and don't cover it in this book.

Client and server

In most cases, an NIS server also functions as an NIS client so that its management is
streamlined with that of other client-only hosts.

It is possible to limit the scope of NIS to a few files that are changed infrequently, such as the
/etc/protocols file, but doing so defeats the purpose of using NIS and greatly increases the
cost of network management. Once NIS is running, it will be used by all system library
functions that refer to maps (files) under NIS control. As mentioned in Section 2.3 it is
possible to configure a client to get map or file information for a particular database from
either NIS, files, or both.

Now that we have this client-server model for the major administrative files, we need a way to
discuss where and when a particular set of files applies to a given host. It is much too simple-
minded for a single set of files to apply to every host on a network; a reasonable system must
support different clusters of systems with different administrative requirements. For example,
a group of administrative systems and a group of research systems might share the same
network. In most cases, these two clusters of systems don't need to share the same
administrative information. In some cases, sharing the same administrative files might be
harmful.

To allow an administrator to set different policies for different systems, NIS provides the
concept of a domain. Most precisely, a domain is a set of NIS maps. A client can refer to a
map (for example, the hosts map) from any of several different domains. Most of the time,
however, any given host will only look up data from one set of NIS maps. Therefore, it's
common (although not precisely correct) to use the term "domain" to mean "the group of
systems that share a set of NIS maps." All systems that need to share common configuration
information are put into an NIS domain. Although each system can potentially look up
information in any NIS domain, each system is assigned to a "default domain," meaning that
the system, by default, looks up information from a particular set of NIS maps. In our
example, the research systems would, by default, look at the maps in the research domain,
rather than the maps from the accounting domain; and so on.

It is up to the administrator (or administrators) to decide how many different domains are
needed. In Chapter 4, we will give some rules-of-thumb for deciding how many domains are
needed. Lest you think this is terribly complex, we'll tell you now: many networks, possibly

Managing NFS and NIS

34

even most small networks, can get by with a single domain. We will also take a closer look at
the precise definition of an NIS domain.

3.2 Basics of NIS management

Now that we have laid a conceptual foundation, let's look at how to set the machinery in
motion. Basic NIS management involves setting up NIS servers and enabling NIS on client
hosts. Server management includes three tasks:

• Installing a new NIS environment, building both master and slave servers.
• Starting the ypserv daemon, which enables the system to act as an NIS server.
• Adding new slave servers when growth of your network or NIS performance requires

more server bandwidth.

Enabling NIS on a client requires two tasks:

• Modifying the client's administrative files so that the client can take advantage of NIS.
• Starting the ypbind daemon, which allows the client to make NIS requests.

In this section, we'll review the procedures required to initialize NIS, set up slave servers, and
configure NIS clients.

3.2.1 Choosing NIS servers

First, a few words on how to plan your network. One of the most important decisions you will
make is which systems will be your NIS servers. Because a client gets almost all of its
configuration information from NIS, servers must be highly available in measures of both
uptime and request handling bandwidth. If an NIS server stops responding or replies too
slowly, the client tries to find another, less-loaded server. While this is an argument for at
least one slave server for each master server, it supports an equally strong case for building
NIS on reliable hosts. An interruption in NIS service affects all NIS clients if no other servers
are available. Even if another server is available, clients will suffer periodic slowdowns as
they recognize the current server is down and hunt for a new one.

Use your judgement in defining "highly available." You know what machines have
troublesome hardware or are likely to be commandeered for a trade show, and would
therefore make poor NIS servers. Request handling bandwidth is much harder to measure,
because it is a product of network loading, CPU utilization, and disk activity. In later chapters,
we'll come back to choosing the number of NIS servers and identifying signs that you have
too few servers.

A second imperative for NIS servers is synchronization. Clients may get their NIS
information from any server, so all servers must have copies of every map file to ensure
proper NIS operation. Furthermore, the data in each map on the slave servers must agree with
that on the master server, so that NIS clients cannot get out-of-date or stale data. NIS contains
several mechanisms for making changes to map files and distributing these changes to all NIS
servers on a regular basis.

Managing NFS and NIS

35

3.2.2 Installing the NIS master server

We'll assume that you've already done your planning and decided that you need a single NIS
domain, which will be called bedrock.[2] Before going any further, make sure you've set the
NIS domain name on the master server using domainname. We'll install a server for an NIS
domain named bedrock:

[2] The multiple-domain case is really no different than this; you just have to remember which systems belong to which domain.

newmaster# domainname bedrock

A line like this will usually appear in the /etc/rc2.d/S69inet file for every host (server and
client) in the domain. Setting the domain name if you aren't using NIS is harmless. Reminder:
you are setting the NIS domain name here, not the DNS domain. See Section 3.3.8.1 later in
this chapter.

Note that on Solaris, the domain name setting will not survive a server reboot unless it is
stored in the /etc/defaultdomain file. So, you need to do:

newmaster# domainname > /etc/defaultdomain

After establishing the domain's name, you should go over all the system's administrative files
with a fine-toothed comb: make sure they contain only the entries you want, no more, and no
less. It is important for your network to start with correct map information. Which
administrative files NIS cares about varies, but generally includes the information shown in
Table 3-1.

Table 3-1. Files managed by NIS
File Contains
/etc/auto_* Automounter maps
/etc/bootparams Information about diskless nodes
/etc/ethers Ethernet numbers (MAC addresses)
/etc/group User groups
/etc/hosts Hostnames and IP addresses
/etc/inet/ipnodes Hostnames, IPv4, and IPv6 addresses
/etc/mail/aliases Aliases and mailing lists for the mail system
/etc/netgroup Netgroup definitions (used by NIS)
/etc/netid Netname database for RPC/dh (RPC/dh is discussed in Section 12.5.4)
/etc/netmasks Network "masks"
/etc/networks Network addresses
/etc/passwd Usernames and user IDs
/etc/protocols Network protocol names and numbers
/etc/publickey Public key database for RPC/dh
/etc/rpc Remote procedure call program numbers
/etc/services Network port numbers and service names
/etc/shadow User passwords

With the exception of netgroup, these are all standard Solaris administrative files. Once NIS
is running, it will replace or supplement all of these files, depending on how

Managing NFS and NIS

36

/etc/nsswitch.conf is configured. /etc/netgroup is an administrative file that is only consulted
via the NIS database. Before creating it, see Section 3.3.2 later in this chapter.

Make sure that your /etc/passwd file on the master server does not include the entry:

+::0:0::

This entry is used by NIS client hosts to indicate that they want to include NIS map
information in their password files. On the NIS master server, all entries in the /etc/passwd
file get put into the passwd NIS map. If you leave this NIS "marker" in the master server's
/etc/passwd file, your NIS password file map will contain an entry for a user named +. If you
do leave the entry in the password file, be sure to put an asterisk (*) in the password field so
that this "user" will not have a valid password:

+:*:0:0::

Note that this will not work under all operating systems; in particular you must not use an
asterisk in SunOS 4.0 or later. If you cannot fill the password field of the NIS "marker" entry,
make sure you remove this entry if you decide not to run NIS at some future point. Also, in
Solaris, the plus sign entry has been deprecated in favor of the use of the Name Service
Switch, via the nsswitch.conf file.

If you are using NIS to manage any local files (company phone lists, etc.), you must also
make sure that your local source files are up-to-date. Once you have established the domain's
name and "purified" the master server's source files, you're ready to initialize a master server.
To do so, you will use the ypinit utility. You will first need to ensure that ypinit gets its
naming information from files:

newmaster# cp /etc/nsswitch.files /etc/nsswitch.conf

At this point, you are quite close to creating the NIS maps via the ypinit utility. However,
there is one security issue you need to be aware of. The ypinit utility will generate maps from
the set of files listed in Table 3-1. One of these files is /etc/shadow, which contains a one-way
hash of the password for every account name listed in /etc/passwd. If you look at /etc/shadow,
you should see something like:

root:eOUqsdfpdIaiA:6445::::::
daemon:NP:6445::::::
bin:NP:6445::::::
sys:NP:6445::::::
adm:NP:6445::::::
lp:NP:6445::::::
uucp:NP:6445::::::
nuucp:NP:6445::::::
listen:*LK*:::::::
nobody:NP:6445::::::
noaccess:NP:6445::::::
nobody4:NP:6445::::::
stern:aSuxcvmyerjDM:6445::::::
mre:96wqktpdmrkjsE:6445::::::

The fields are separated by colons (:). The first field is the name of the account or login. The
second field is the one-way hash. Note that the "system" accounts, except for root, have a

Managing NFS and NIS

37

password hash of NP or *LK*. These are not valid hashes, so the accounts are effectively
locked. The nonprivileged accounts, such as stern and mre, have a valid password hash. It is
safe to put the locked accounts in the NIS passwd map, because the password hash is of no
use to an attacker. It is safe to put the nonprivileged accounts in the map because they don't
have privileges. However, it is not safe for the root account to be put into NIS. The reason is
that if an attacker obtains the hash for root, he can perform an off-line brute force attack to
determine the root password of the master NIS server. With that password, the attacker could
render havoc on your network.

Thus, you must take steps to ensure that the passwd map does not have a root entry. The
ypinit utility will invoke the make utility on /var/yp/Makefile. Then Makefile will by default
get the passwd map contents from /etc/passwd and /etc/shadow, but by setting the PWDIR
Makefile variable to something else, you can ensure that ypinit will create the passwd map
without root in it. So do the following:

newmaster# mkdir /etc/nispw
newmaster# chmod 0700 /etc/nispw
newmaster# grep -v '^root:' /etc/passwd > /etc/nispw/passwd
newmaster# grep -v '^root:' /etc/shadow > /etc/nispw/shadow
newmaster# vi /etc/passwd /etc/shadow # delete the nonprivileged entries,
 # e.g., stern and mre
newmaster# cp /var/yp/Makefile /var/yp/Makefile.save
newmaster# vi /var/yp/Makefile # change the PWDIR variable to /etc/nispw

Before you create the new master server, you must decide how many slave servers you will
have. For availability, it is a good idea to have at minimum one slave. Once NIS is installed, if
it ever becomes unavailable, your network will become unusable. The first time your master
server becomes unavailable, your users and you will appreciate being able to use the network.
If you need additional server horsepower, then set up more than one NIS slave server. Once
you know what the names of the slaves are, make sure that the master's /etc/hosts file has
entries for each slave.

To create a new master server, become the superuser on the host and invoke ypinit with the -m
flag:

 Edit /etc/hosts to add entries for each slave
newmaster# /usr/sbin/ypinit -m

ypinit builds the domain subdirectory of /var/yp for the current default domain. Note that the
ypinit utility lives in /usr/sbin, so you should use its full pathname if you don't have this
directory in your search path. In this example, ypinit creates /var/yp/bedrock.

After building the domain subdirectory, ypinit builds a complete set of administrative maps
for your system and places them in this directory. The first map created by ypinit -m is the
ypservers map. ypinit will ask you for a list of hosts that will be running NIS. The hosts
named in the ypservers map do not have to be running NIS at that time, but they should
become NIS servers before the first modifications are made to NIS maps.

You must have one and only one master server per NIS domain. There is nothing in ypinit that
checks for the existence of another master server, so it's possible to create two masters
accidentally in the same domain. Having more than one master may lead to NIS map

Managing NFS and NIS

38

corruption; at best it confuses procedures that contact the NIS master, such as map transfers
and NIS password file updates.

Now enable NIS in nsswitch.conf so that processes on your NIS master host can use NIS for
all of its name service accesses:

newmaster# cp /etc/nsswitch.nis /etc/nsswitch.conf

If you are running Solaris 8 and if you think you will ever use the sec=dh option with NFS,
then it would be an excellent idea to change the entry for publickey in nsswitch.conf to:

publickey: nis

The reason for this step is that the Solaris 8 utilities that manipulate the publickey map get
confused if there are multiple database sources in the publickey entry of nsswitch.conf. You
should do this on NIS slaves and NIS clients as well.

Once ypinit finishes and nsswitch.conf is set up to use NIS, you should start the NIS service
manually via the ypstart script or by rebooting the server host. In Solaris, the relevant part of
the boot script /etc/rc2.d//S71rpc normally looks like this:

Start NIS (YP) services. The ypstart script handles both client
and server startup, whichever is appropriate.

if [-x /usr/lib/netsvc/yp/ypstart]; then
 /usr/lib/netsvc/yp/ypstart rpcstart
fi

Assuming you opt to start the NIS service manually, you would do:

newmaster# /usr/lib/netsvc/yp/ypstart

As the comment in S71rpc says, the ypstart script handles the case when the host is an NIS
server or NIS client or both. Both S71rpc and ypstart came with the system when it was
installed, and normally won't need modifications. The logic in ypstart may require
modifications if a server is a client of one domain but serves another; this situation sometimes
occurs when a host is on multiple networks. Issues surrounding multiple domains are left for
the next chapter.

Test that your NIS server is working:

newmaster# ypcat passwd
noaccess:NP:60002:60002:No Access User:/:
nobody4:NP:65534:65534:SunOS 4.x Nobody:/:
nobody:NP:60001:60001:Nobody:/:
listen:*LK*:37:4:Network Admin:/usr/net/nls:
daemon:NP:1:1::/:
nuucp:NP:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
uucp:NP:5:5:uucp Admin:/usr/lib/uucp:
sys:NP:3:3::/:
bin:NP:2:2::/usr/bin:
adm:NP:4:4:Admin:/var/adm:
lp:NP:71:8:Line Printer Admin:/usr/spool/lp:
stern:aSuxcvmyerjDM:6445::::::

Managing NFS and NIS

39

mre:96wqktpdmrkjsE:6445::::::

You are now ready to add new slave servers or to set up NIS clients. Note that NIS must be
running on a master server before you can proceed.

3.2.3 Installing NIS slave servers

As with a master server, you must establish the domain name and the /etc/hosts file with the
IP addresses of all the slaves and the master:

newslave# domainname bedrock
newslave# domainname > /etc/defaultdomain
 Edit /etc/hosts to add master and slaves

When you initialize a new slave server, it transfers the data from the master server's map files
and builds its own copies of the maps. No ASCII source files are used to build the NIS maps
on a slave server — only the information already in the master server's maps. If the slave has
information in ASCII configuration files that belongs in the NIS maps, make sure the master
NIS server has a copy of this data before beginning the NIS installation. For example, having
password file entries only on an NIS slave server will not add them to the NIS passwd map.
The map source files on the master server must contain all map information, since it is the
only host that constructs map files from their sources.

The slave will need to act as an NIS client in order get initial copies of the maps from the
server. Thus you must first set up the slave as a client:

newslave# /usr/sbin/ypinit -c

You will be prompted for a list of NIS servers. You should start with the name of the local
host (in this example, newslave), followed by the name of the master (in this example,
newmaster), followed by the remaining slave servers, in order of physical proximity.

Now check to see if your slave was already acting as an NIS client already. If so, use ypstop
to terminate it:

newslave# ps -ef | grep ypbind
newslave# /usr/lib/netsvc/yp/ypstop

Now start ypbind:

newslave# /usr/lib/netsvc/yp/ypstart

Slave servers are also initialized using ypinit. Instead of specifying the -m option, use -s and
the name of the NIS master server:

newslave# /usr/sbin/ypinit -s newmaster

Now you need to start the ypserv daemon:

newslave# /usr/lib/netsvc/yp/ypstop
newslave# /usr/lib/netsvc/yp/ypstart

Managing NFS and NIS

40

Finally, set up nsswitch.conf to use NIS:

newslave# cp /etc/nsswitch.nis /etc/nsswitch.conf

3.2.3.1 Adding slave servers later

In general, it is a good idea to initialize your NIS slave servers as soon as possible after
building the master server, so that there are no inconsistencies between the ypservers map and
the hosts that are really running NIS. Once the initial installation is complete, though, you can
add slave servers at any time. If you add an NIS slave server that was not listed in the
ypservers map, you must add its hostname to this map so that it receives NIS map updates.

To edit ypservers, dump out its old contents with ypcat, add the new slave server name, and
rebuild the map using makedbm. This procedure must be done on the NIS master server:

master# ypcat -k ypservers > /tmp/ypservers
 Edit /tmp/ypservers to add new server name
master# cd /var/yp
master# cat /tmp/ypservers | makedbm - /var/yp/`domainname`/ypservers

Once you've changed the master ypservers map on the new slave, you must follow the steps
described in Section 3.2.3 in this chapter.

3.2.4 Enabling NIS on client hosts

Once you have one or more NIS servers running ypserv, you can set up NIS clients that query
them. Make sure you do not enable NIS on any clients until you have at least one NIS server
up and running. If no servers are available, the host that attempts to run as an NIS client will
hang.

To enable NIS on a client host, first set up the nsswitch.conf file:

newclient# cp /etc/nsswitch.nis /etc/nsswitch.conf

Set up the domain name:

newclient# domainname bedrock
newclient# domainname > /etc/defaultdomain

Run ypinit:

newclient# /usr/sbin/ypinit -c

You will be prompted for a list of NIS servers. Enter the servers in order of proximity to the
client.

Kill (if necessary) ypbind, and restart it:

newclient# ps -ef | grep ypbind
newclient# /usr/lib/netsvc/yp/ypstop
newclient# /usr/lib/netsvc/yp/ypstart

Managing NFS and NIS

41

Once NIS is running, references to the basic administrative files are handled in two
fundamentally different ways, depending on how nsswitch.conf is configured:

• The NIS database replaces some files. Local copies of replaced files (ethers, hosts,
netmasks, netgroups,[3] networks, protocols, rpc, and services) are ignored as soon as
the ypbind daemon is started (to enable NIS).

[3] The netgroups file is a special case. Netgroups are only meaningful when NIS is running, in which case the netgroups map
(rather than the file) is consulted. The netgroups file is therefore only used to build the netgroups map; it is never "consulted"
in its own right.

• Some files are augmented, or appended to, by NIS. Files that are appended, or
augmented, by NIS are consulted before the NIS maps are queried. The default
/etc/nsswitch.conf file for NIS has these appended files: aliases, auto_*, group,
passwd, services, and shadow. These files are read first, and if an appropriate entry
isn't found in the local file, the corresponding NIS map is consulted. For example,
when a user logs in, an NIS client will first look up the user's login name in the local
passwd file; if it does not find anything that matches, it will refer to the NIS passwd
map.

Although the replaced files aren't consulted once NIS is running, they shouldn't be deleted. In
particular, the /etc/hosts file is used by an NIS client during the boot process, before it starts
NIS, but is ignored as soon as NIS is running. The NIS client needs a "runt" hosts file during
the boot process so that it can configure itself and get NIS running. Administrators usually
truncate hosts to the absolute minimum: entries for the host itself and the "loopback" address.
Diskless nodes need additional entries for the node's boot server and the server for the
diskless node's /usr filesystem. Trimming the hosts file to these minimal entries is a good idea
because, for historical reasons, many systems have extremely long host tables. Other files,
like rpc, services, and protocols, could probably be eliminated, but it's safest to leave the files
distributed with your system untouched; these will certainly have enough information to get
your system booted safely, particularly if NIS stops running for some reason. However, you
should make any local additions to these files on the master server alone. You don't need to
bother keeping the slaves and clients up to date.

We'll take a much closer look at the files managed by NIS and the mechanisms used to
manage appended files in Section 3.3. Meanwhile, we'll assume that you have modified these
files correctly and proceed with NIS setup.

3.3 Files managed under NIS

Now that we've walked through the setup procedure, we will discuss how the NIS maps relate
to the files that they replace. In particular, we'll discuss how to modify the files that are
appended by NIS so they can take advantage of NIS features. We will also pay special
attention to the netgroups NIS map, a confusing but nevertheless important part of the overall
picture.

Table 3-2 lists the most common files managed by NIS. Not all vendors use NIS for all of
these files, so it is best to check your documentation for a list of NIS-supported files.

Managing NFS and NIS

42

Table 3-2. Summary of NIS maps
Map Name Nickname Access By Contains Default Integration
auto.* Map key /etc/auto_* Append
bootparams Hostname /etc/bootparams Append
ethers.byname ethers Hostname /etc/ethers Replace
ethers.byaddr MAC address /etc/ethers Replace
group.byname group Group name /etc/group Append
group.bygid Group ID /etc/group Append
hosts.byname hosts Hostname /etc/hosts Replace
hosts.byaddr IP address /etc/hosts Replace
ipnodes.byname ipnodes Hostname /etc/inet/ipnodes None; only integrated if IPv6 enabled
ipnodes.byaddr IP address /etc/inet/ipnodes None; only integrated if IPv6 enabled
mail.aliases aliases Alias name /etc/aliases Append
mail.byaddr Expanded alias /etc/aliases Append
netgroup.byhost Hostname /etc/netgroup Replace
netgroup.byuser Username /etc/netgroup Replace
netid.byname Username UID & GID info Replace
netmasks.byaddr IP address /etc/netmasks Replace
networks.byname Network name /etc/networks Replace
networks.byaddr IP address /etc/networks Replace

passwd.byname passwd Username /etc/passwd
/etc/shadow Append

passwd.byuid User ID /etc/passwd
/etc/shadow Append

publickey.byname Principal name /etc/publickey Replace
protocols.bynumber protocols Port number /etc/protocols Replace
protocols.byname Protocol name /etc/protocols Replace
rpc.bynumber RPC number /etc/rpc Replace
services.byname services Service name /etc/services Replace
ypservers Hostname NIS server names Replace

It's now time to face up to some distortions we've been making for the sake of simplicity.
We've assumed that there's a one-to-one correspondence between files and maps. In fact, there
are usually several maps for each file. A map really corresponds to a particular way of
accessing a file: for example, the passwd.byname map looks up data in the password database
by username. There's also a passwd.byuid that looks up users according to their user ID
number. There could be (but there aren't) additional maps that looked up users on the basis of
their group ID number, home directory, or even their choice of login shell. To make things a
bit easier, the most commonly used maps have "nicknames," which correspond directly to the
name of the original file: for example, the nickname for passwd.byname is simply passwd.
Using nicknames as if they were map names rarely causes problems — but it's important to
realize that there is a distinction. It's also important to realize that nicknames are recognized
by only two NIS utilities: ypmatch and ypcat.

Another distortion: this is the first time we've seen the netid.byname map. On the master NIS
server, this map is not based on any single source file, but instead is derived from information
in the group, password, and hosts files, via /var/yp/Makefile. It contains one entry for each
user in the password file. The data associated with the username is a list of every group to
which the user belongs. The netid is used to determine group memberships quickly when

Managing NFS and NIS

43

a user logs in. Instead of reading the entire group map, searching for the user's name, the login
process performs a single map lookup on the netid map. You usually don't have to worry
about this map — it will be built for you as needed — but you should be aware that it exists.
If NIS is not running, and if an NIS client has an /etc/netid file, then the information will be
read from /etc/netid.

3.3.1 Working with the maps

Earlier, we introduced the concept of replaced files and appended files. Now, we'll discuss
how to work with these files. First, let's review: these are important concepts, so repetition is
helpful. If a map replaces the local file, the file is ignored once NIS is running. Aside from
making sure that misplaced optimism doesn't lead you to delete the files that were distributed
with your system, there's nothing interesting that you can do with these replaced files. We
won't have anything further to say about them.

Conversely, local files that are appended to by NIS maps are always consulted first, even if
NIS is running. The password file is a good example of a file augmented by NIS. You may
want to give some users access to one or two machines, and not include them in the NIS
password map. The solution to this problem is to put these users into the local passwd file, but
not into the master passwd file on the master server. The local password file is always read
before getpwuid() goes to an NIS server. Password-file reading routines find locally defined
users as well as those in the NIS map, and the search order of "local, then NIS" allows local
password file entries to override values in the NIS map. Similarly, the local aliases file can be
used to override entries in the NIS mail aliases map, setting up machine-specific expansion of
one or more aliases.

There is yet another group of files that can be augmented with data from NIS. These files are
not managed by NIS directly, but you can add special entries referring to the NIS database (in
particular, the netgroups map). Such files include hosts.equiv and .rhosts. We won't discuss
these files in this chapter; we will treat them as the need arises. For example, we will discuss
hosts.equiv in Chapter 12.

Now we're going to discuss the special netgroups map. This new database is the basis for the
most useful extensions to the standard administrative files; it is what prevents NIS from
becoming a rigid, inflexible system. After our discussion of netgroups, we will pay special
attention to the appended files.

3.3.2 Netgroups

In addition to the standard password, group, and host file databases, NIS introduces a new
database for creating sets of users and hosts called the netgroups map. The user and hostname
fields are used to define groups (of hosts or users) for administrative purposes. For example,
to define a subset of the users in the passwd map that should be given access to a specific
machine, you can create a netgroup for those users.

A netgroup is a set of triples of the form:

(hostname, username, domain name)

Managing NFS and NIS

44

A single netgroup contains one or more of these triples. Host and usernames have their usual
meanings, but a domain name in this instance refers to the NIS domain in which the netgroup
is valid. If an entry in the triple is left blank, that field becomes a wildcard. If the entry is
specified as a dash (-), the field can take no value.

Netgroups are typically used to augment other maps and files; for example, adding a selected
group of users to the password file. The definitions and behavior of netgroups are confusing
because their syntax doesn't exactly match the way the netgroup information is used. Even
though the netgroup syntax allows you to specify user and hostnames in the same triple, user
and hostnames are rarely used together. For example, when a netgroup is used to add users to
an NIS-managed password file, only the usernames are taken from the netgroup. The
hostnames are ignored, because hostnames have no place in the password file. Similarly,
when using a netgroup to grant filesystem access permissions to a set of NFS clients, only the
hostname fields in the netgroup are used. Usernames are ignored in this case, which means a
hostname will be included in the list even if - is used as the username in its triple.

Some examples are helpful:

source (-,stern,nesales), (-,julie,nesales), (-,peter,nesales)
trusted-hosts (bitatron,,), (corvette,,)
trusted-users (bitatron,stern,), (corvette,johnc,)
dangerous-users (,jimc,), (,dave,)

In the first example, source is a group of three users; in this respect, the netgroup is similar to
an entry in /etc/group. The source netgroup in this case grants no specific permissions,
although it could be included in the password file for the source archive machine, granting
selected users access to that host. The second example shows a definition for a set of hosts,
and would be of no use in a password file. In the third example, stern and johnc are members
of the trusted-users group when it is parsed for usernames. Hosts bitatron and corvette are
members of trusted-users when it is parsed for hostnames. Note that there is no interpretation
of the netgroup that associates user stern with host bitatron. In the fourth example, dave and
jimc are members of dangerous-users, but no hosts are included in this group. The domain
name field is used when multiple NIS domains exist on the same network and it is necessary
to create a group that is valid in only one or the other domain.

These groups are very different from those in /etc/group. The group file (or equivalent NIS
map) explicitly grants permissions to users while the netgroup mechanism simply creates
shorthand notations or nicknames. A netgroup can be used in many places where a user or
hostname would appear, such as the password file or in the list of hosts that can access an
NFS filesystem.

You can also build netgroups from other netgroups. For example, you could create the
netgroup hosts-n-users from the following entry:

hosts-n-users trusted-hosts, trusted-users

This netgroup contains all the members of both trusted-hosts and trusted-users.

By using netgroups carefully, you can create special-purpose groups that can be managed
separately. For example, you could create a group of "administrators" that can easily be added

Managing NFS and NIS

45

to the password list of every machine, or a group of "visitors" who are only added to the
password files of certain machines.

A final note about netgroups: they are accessible only through NIS. The library routines that
have been modified to use NIS maps have also been educated about the uses of the netgroup
map, and use the netgroup, password, and host maps together. If NIS is not running,
netgroups are not defined. This implies that any netgroup file on an NIS client is ignored,
because the NIS netgroup map replaces the local file. A local netgroup file does nothing at all.
The uses of netgroups will be revisited as a security mechanism.

3.3.3 Hostname formats in netgroups

The previous section used nonfully qualified hostnames, which are hostnames without a
domain name suffix. This is the norm when using the hosts map in NIS to store hostnames. If
you have hostnames that are available only in DNS, then you can and must use fully qualified
hostnames in the netgroup map if you want those hosts to be members of a particular
netgroup. See Chapter 5 for more details on running NIS and DNS on the same network.

3.3.4 Integrating NIS maps with local files

For files that are augmented by NIS maps, you typically strip the local file to the minimum
number of entries needed for bootstrap or single-user operation. You then add in entries that
are valid only on the local host — for example, a user with an account on only one machine
— and then integrate NIS services by adding special entries that refer to the NIS map files.

The /etc/nsswitch.conf file is used to control how NIS maps and local files are integrated.
Normally if the two are integrated, the file is interpreted first, followed by the NIS map. For
example, look at the passwd entry in the default nsswitch.conf for NIS clients:

passwd: files nis

The keyword files tells the system to read /etc/passwd first, and if the desired entry is not
found, search passwd.byname or passwd.byuid, depending on whether the system is searching
by account name or user identifier number. The reason why the passwd file is examined
before the NIS map is that some accounts, such as root, are not placed in NIS, for security
reasons (see Section 3.2.2 in this chapter). If NIS were searched before the local passwd file,
and if root were in NIS, then there would effectively be one global password for root. This is
not desirable, because once an attacker figured out the root password for one system, he'd
know the root password for all systems. Or, even if root were not in NIS, if clients were
configured to read NIS before files for passwd information, the attacker that successfully
compromised a NIS server, would be able to insert a root entry in the passwd map and gain
access to every client.

The default files and NIS integration will have your clients getting
hostname and address information from NIS. Since you will likely have
DNS running, you will find it better to get host informaton from DNS.
See Chapter 5.

At this point, we've run through most of what you need to know to get NIS running. With this
background out of the way, we'll look at how NIS works. Along the way, we will give more

Managing NFS and NIS

46

precise definitions of terms that, until now, we have been using fairly loosely. Understanding
how NIS works is essential to successful debugging. It is also crucial to planning your NIS
network.

NIS is built on the RPC protocol, and uses the UDP transport to move requests from the client
host to the server. NIS services are integrated into the standard Unix library calls so that they
remain transparent to processes that reference NIS-managed files. If you have a process that
reads /etc/passwd, most of the queries about that file will be handled by NIS RPC calls to an
NIS server. The library calling interface used by the application does not change at all, but the
implementations of library routines such as getpwuid() that read the /etc/passwd file are
modified to refer to NIS or to NIS and local files. The application using getpwuid() is
oblivious to the change in its implementation.

Therefore, when you enable NIS, you don't have to change any existing software. A vendor
that supports NIS has already modified all of the relevant library calls to have them make NIS
RPC calls in addition to looking at local files where relevant. Any process that used to do
lookups in the host table still works; it just does something different in the depths of the
library calls.

3.3.5 Map files

Configuration files managed by NIS are converted into keyword and value pair tables called
maps. We've been using the term "map" all along, as if a map were equivalent to the ASCII
files that it replaces or augments. For example, we have said that the passwd NIS map is
appended to the NIS client's /etc/passwd file. Now it's time to understand what a map file
really is.

NIS maps are constructed from DBM database files. DBM is the database system that is built
into BSD Unix implementations; if it is not normally shipped as part of your Unix system,
your vendor will supply it as part of the NIS implementation. Under DBM, a database consists
of a set of keys and associated values organized in a table with fast lookup capabilities. Every
key and value pair may be located using at most two filesystem accesses, making DBM an
efficient storage mechanism for NIS maps. A common way to use the password file, for
example, is to locate an entry by user ID number, or UID. Using the flat /etc/passwd file, a
linear search is required, while the same value can be retrieved from a DBM file with a single
lookup. This performance improvement in data location offsets the overhead of performing a
remote procedure call over the network.

Each DBM database, and therefore each NIS map, comprises two files: a hash-table accessed
bitmap of indices and a data file. The index file has the .dir extension and the data file uses
.pag. A database called addresses would be stored in:

addresses.dir
index file

addresses.pag
data file

A complete map contains both files.

Managing NFS and NIS

47

Consecutive records are not packed in the data file; they are arranged in hashed order and may
have empty blocks between them. As a result, the DBM data file may appear to be up to four
times as large as the data that it contains. The Unix operating system allows a file to have
holes in it that are created when the file's write pointer is advanced beyond the end of the file
using lseek(). Filesystem data blocks are allocated only for those parts of the file containing
data. The empty blocks are not allocated, and the file is only as large as the total number of
used filesystem blocks and fragments.

The holes in DBM files make them difficult to manipulate using standard Unix utilities. If you
try to copy an NIS map using cp, or move it across a filesystem boundary with mv, the new
file will have the holes expanded into zero-filled disk blocks. When cp reads the file, it doesn't
expect to find holes, so it reads sequentially from the first byte until the end-of-file is found.
Blocks that are not allocated are read back as zeros, and written to the new file as all zeros as
well. This has the unfortunate side effect of making the copied DBM files consume much
more disk space than the hole-filled files. Furthermore, NIS maps will not be usable on a
machine of another architecture: if you build your maps on a SPARC machine, you can't copy
them to an Intel-based machine. Map files are not ASCII files. For the administrator, the
practical consequence is that you must always use NIS tools (like ypxfr and yppush, discussed
in Section 4.2.1) to move maps from one machine to another.

3.3.6 Map naming

ASCII files are converted into DBM files by selecting the key field and separating it from the
value field by spaces or a tab. The makedbm utility builds the .dir and .pag files from ASCII
input files. A limitation of the DBM system is that it supports only one key per value, so files
that are accessed by more than one field value require an NIS map for each key field. With a
flat ASCII file, you can read the records sequentially and perform comparisons on any field in
the record. However, DBM files are indexed databases, so only one field — the key — is used
for comparisons. If you need to search the database in two different ways, using two fields,
then you must use two NIS maps or must implement one of the searches as a linear walk
through all of the records in the NIS map.

The password file is a good example of an ASCII file that is searched on multiple fields. The
getpwnam() library call opens the password file and looks for the entry for a specific
username. Equal in popularity is the getpwuid() library routine, which searches the database
looking for the given user ID value. While getpwnam() is used by login and chown,
getpwuid() is used by processes that need to match numeric user ID values to names, such as
ls -l. To accommodate both access methods, the standard set of NIS maps includes two maps
derived from the password file: one that uses the username as a key and one that uses the user
ID field as a key.

The map names used by NIS indicate the source of the data and the key field. The convention
for map naming is:

filename.bykeyname

The two NIS maps generated from the password file, for example, are passwd.byname (used
by getpwnam()) and passwd.byuid (used by getpwuid()). These two maps are stored on disk
as four files:

Managing NFS and NIS

48

passwd.byname.dir
passwd.byname.pag
passwd.byuid.dir
passwd.byuid.pag

The order of the records in the maps will be different because they have different key fields
driving the hash algorithm, but they contain exactly the same sets of entries.

3.3.7 Map structure

Two extra entries are added to each NIS map by makedbm. The master server name for the
map is embedded in one entry and the map's order, or modification timestamp, is put in the
other. These additional entries allow the map to describe itself fully, without requiring NIS to
keep map management data. Again, NIS is ignorant of the content of the maps and merely
provides an access mechanism. The maps themselves must contain timestamp and ownership
information to coordinate updates with the master NIS server.

Some maps are given nicknames based on the original file from which they are derived. Map
nicknames exist only within the ypwhich and ypmatch utilities (see Section 13.4) that retrieve
information from NIS maps. Nicknames are neither part of the NIS service nor embedded in
the maps themselves. They do provide convenient shorthands for referring to popular maps
such as the password or hosts files. For example, the map nickname passwd refers to the
passwd.byname map, and the hosts nickname refers to the hosts.byname map. To locate the
password file entry for user stern in the passwd.byname map, use ypmatch with the map
nickname:

% ypmatch stern passwd
stern:passwd:1461:10:Hal Stern:/home/thud/stern:/bin/csh

In this example, ypmatch expands the nickname passwd to the map name passwd.byname,
locates the key stern in that map, and prints the data value associated with the key.

The library routines that use NIS don't retain any information from the maps. Once a routine
looks up a hostname, for example, it passes the data back to the caller and "forgets" about the
transaction. On Solaris, if the name service cache daemon (nscd) is running, then the results
of queries from the passwd, group, and hosts maps are cached in the nscd daemon.
Subsequent queries for the same entry will be satisfied out of the cache. The cache will keep
the result of an NIS query until the entry reaches its time to live (ttl) threshold. Each cached
NIS map has different time to live values. You can invoke nscd with the -g option to see what
the time to live values are.

3.3.8 NIS domains

"Domain" is another term that we have used loosely; now we'll define domains more
precisely. Groups of hosts that use the same set of maps form an NIS domain. All of the
machines in an NIS domain will share the same password, hosts, and group file information.
Technically, the maps themselves are grouped together to form a domain, and hosts join one
or more of these NIS domains. For all practical purposes, though, an NIS domain includes
both a set of maps and the machines using information in those map files.

Managing NFS and NIS

49

NIS domains define spheres of system management. A domain is a name applied to a group of
NIS maps. The hosts that need to look up information in the maps bind themselves to the
domain, which involves finding an NIS server that has the maps comprising the domain. It's
easy to refer to the hosts that share a set of maps and the set of maps themselves
interchangeably as a domain. The important point is that NIS domains are not just defined as a
group of hosts; NIS domains are defined around a set of maps and the hosts that use these
map files. Think of setting up NIS domains as building a set of database definitions. You need
to define both the contents of the database and the users or hosts that can access the data in it.
When defining NIS domains, you must decide if the data in the NIS maps applies to all hosts
in the domain. If not, you may need to define multiple domains. This is equivalent to deciding
that you really need two or more groups of databases to meet the requirements of different
groups of users and hosts.

As we've seen, the default domain name for a host is set using the domainname command:

nisclient# domainname nesales

This usually appears in the boot scripts as:

/usr/bin/domainname `cat /etc/defaultdomain`

Only the superuser can set or change the default domain. Without an argument, domainname
prints the currently set domain name. Library calls that use NIS always request maps from the
default domain, so setting the domain name must be the first step in NIS startup. It is possible
for an application to request map information from more than one domain, but assume for
now that all requests refer to maps in the current default domain.

Despite the long introduction, a domain is implemented as nothing more than a subdirectory
of the top-level NIS directory, /var/yp. Nothing special is required to create a new domain —
you simply assign it a name and then put maps into it using the server initialization
procedures described later. The map files for a domain are placed in its subdirectory:

/var/yp/domainname/mapname

You can create multiple domains by repeating the initialization using different NIS domain
names. Each new domain initialization creates a new subdirectory in the NIS map directory
/var/yp. An NIS server provides service for every domain represented by a subdirectory in
/var/yp. If multiple subdirectories exist, the NIS server answers binding requests for all of
them. You do not have to tell NIS which domains to serve explicitly — it figures this out by
looking at the structure of its map directory.

It's possible to treat NIS as another administrative tool. However, it's more flexible than a
simple configuration file management system. NIS resembles a database management system
with multiple tables. As long as the NIS server can locate map information with well-known
file naming and key lookup conventions, the contents of the map files are immaterial to the
server. A relational database system such as Oracle provides the framework of schemas and
views, but it doesn't care what the schemas look like or what data is in the tables. Similarly,
the NIS system provides a framework for locating information in map files, but the
information in the files and the existence or lack of map files themselves is not of
consequence to the NIS server. There is no minimal set of map files necessary to define a
domain. While this places the responsibility for map synchronization on the system manager,

Managing NFS and NIS

50

it also affords the flexibility of adding locally defined maps to the system that are managed
and accessed in a well-known manner.

3.3.8.1 Internet domains versus NIS domains

The term "domain" is used in different ways by different services. In the Internet community,
a domain refers to a group of hosts that are managed by an Internet Domain Name Service.
These domains are defined strictly in terms of a group of hosts under common management,
and are tied to organizations and their hierarchies. These domains include entire corporations
or divisions, and may encompass several logical TCP/IP networks. The Internet domain
east.sun.com, for example, spans six organizations spread over at least 15 states.

Domains in the NIS world differ from Internet name service domains in several ways. NIS
domains exist only in the scheme of local network management and are usually driven by
physical limits or political "machine ownership" issues. There may be several NIS domains
on one network, all managed by the same system administrator. Again, it is the set of maps
and the hosts that use the maps that define an NIS domain, rather than a particular network
partitioning. In general, you may find many NIS domains in an Internet name service domain;
the name service's hostname database is built from the hostname maps in the individual NIS
domains. Integration of NIS and name services is covered in Section 5.1. From here on,
"domain" refers to an NIS domain unless explicitly noted.

3.3.9 The ypserv daemon

NIS service is provided by a single daemon, ypserv, that handles all client requests. It's simple
to tell whether a system is an NIS server: just look to see whether ypserv is running. In this
section we'll look at the RPC procedures implemented as part of the NIS protocol and the
facilities used to transfer maps from master to slave servers.

Three sets of procedure calls make up the NIS protocol: client lookups, map maintenance
calls, and NIS internal calls. Lookup requests are key-driven, and return one record from the
DBM file per call. There are four kinds of lookups: match (single key), get-first, get-next, and
get-all records. The get-first and get-next requests are used to scan the NIS map linearly,
although keys are returned in a random order. "First" refers to the first key encountered in the
data file based on hash table ordering, not the first key from the ASCII source file placed into
the map.

Map maintenance calls are used when negotiating a map transfer between master and slave
servers, although they may be made by user applications as well. The get-master function
returns the master server for a map and the get-order request returns the timestamp from the
last generation of the map file. Both values are available as records in the NIS maps. Finally,
the NIS internal calls are used to effect a map transfer and answer requests for service to a
domain. An NIS server replies only positively to a service request; if it cannot serve the
named domain it will not send a reply.

The server daemon does not have any intrinsic knowledge of what domains it serves or which
maps are available in those domains. It answers a request for service if the domain has a
subdirectory in the NIS server directory. That is, a request for service to domain polygon will
be answered if the /var/yp/polygon directory exists. This directory may be empty, or may not
contain a full complement of maps, but the server still answers a service request if the map

Managing NFS and NIS

51

directory exists. There is no NIS RPC procedure to inquire about the existence of a map on a
server; a "no such map" error is returned on a failed lookup request for the missing map. This
underscores the need for every NIS server to have a full set of map files — the NIS
mechanism itself can't tell when a map is missing until an NIS client asks for information
from it.

If the log file /var/yp/ypserv.log exists when ypserv is started, error and warning messages
will be written to this file. If an NIS server receives a service request for a domain it cannot
serve, it logs messages such as:

ypserv: Domain financials not supported (broadcast)

indicating that it ignored a broadcast request for an unknown domain. If each server handles
only its default domain, binding attempts overheard from other domains generate large
numbers of these log messages. Running multiple NIS domains on a single IP network is best
done if every server can handle every domain, or if you turn off logging. If not, you will be
overwhelmed with these informational error messages that do nothing but grow the log file.

ypserv keeps the file open while it is running, so a large log file must be cleaned up by
truncating it:

cat /dev/null > /var/yp/ypserv.log

Removing the file with rm clears the directory entry, but does not free the disk space because
the ypserv process still has the file open. If you have multiple domains with distinct servers on
a single network, you probably shouldn't enable NIS logging.

3.3.10 The ypbind daemon

The ypbind daemon is central to NIS client operation. Whenever any system is running
ypbind, it is an NIS client — no matter what else it is doing. Therefore, it will be worth our
effort to spend some time thinking about ypbind.

When ypbind first starts, it finds a server for the host's default domain. The process of locating
a server is called binding the domain. If processes request service from other domains, ypbind
attempts to locate servers for them as needed. ypbind reads a file like
/var/yp/binding/bedrock/ypservers to get the name of an NIS server to bind to. If the NIS
server chosen for a domain crashes or begins to respond slowly due to a high load, ypbind
selects the next NIS server in the ypservers file to re-bind. The NIS timeout period varies by
implementation, but is usually between two and three minutes. Each client can be bound to
several domains at once; ypbind manages these bindings and locates servers on demand for
each newly referenced NIS domain.

A client in the NIS server-client relationship is not just a host, but a process on that host that
needs NIS map information. Every client process must be bound to a server, and they do so by
asking ypbind to locate a server on their behalf. ypbind keeps track of the server to which it is
currently directing requests, so new client binding requests can be answered without having to
contact an NIS server. ypbind continues to use its current server until it is explicitly told, as
the result of an NIS RPC timeout, that the current server is not providing prompt service.
After an RPC timeout, ypbind will try the next server in the ypservers file in an attempt to

Managing NFS and NIS

52

locate a faster NIS server. Because all client processes go through ypbind, we usually don't
make a distinction between the client processes and the host on which they are running — the
host itself is called the NIS client.

Once ypbind has created a binding between a client and a server, it never talks to the server
again. When a client process requests a binding, ypbind simply hands back the name of the
server to which the queries should be directed. Once a process has bound to a server, it can
use that binding until an error occurs (such as a server crash or failure to respond). A process
does not bind its domain before each NIS RPC call.

Domain bindings are shown by ypwhich:

% domainname
nesales
% ypwhich
wahoo

Here, ypwhich reports the currently bound server for the named domain. If the default or the
named domain is not bound, ypwhich reports an error:

gonzo% ypwhich -d financials
Domain financials not bound on gonzo

An NIS client can be put back in standalone operation by modifying /etc/nsswitch.conf:

client# cp /etc/nsswitch.files /etc/nsswitch.conf

3.3.11 NIS server as an NIS client

Previously, we recommended that NIS servers also be NIS clients. This has a number of
important effects on the network's behavior. When NIS servers are booted, they may bind to
each other instead of to themselves. A server that is booting executes a sequence of
commands that keep it fairly busy; so the local ypbind process may timeout trying to bind to
the local NIS server, and bind successfully with another host. Thus multiple NIS servers
usually end up cross-binding — they bind to each other instead of themselves.

If servers are also NIS clients, then having only one master and one slave server creates a
window in which the entire network pauses if either server goes down. If the servers have
bound to each other, and one crashes, the other server rebinds to itself after a short timeout. In
the interim, however, the "live" server is probably not doing useful work because it's waiting
for an NIS server to respond. Increasing the number of slave servers decreases the probability
that a single server crash hangs other NIS servers and consequently hangs their bound clients.
In addition, running more than two NIS servers prevents all NIS clients from rebinding to the
same server when an NIS server becomes unavailable.

3.4 Trace of a key match

Now we've seen how all of the pieces of NIS work by themselves. In reality, of course, the
clients and servers must work together with a well-defined sequence of events. To fit all of the
client- and server-side functionality into a time-sequenced picture, here is a walk-through the

Managing NFS and NIS

53

getpwuid() library call. The interaction of library routines and NIS daemons is shown in
Figure 3-2.

1. A user runs ls -l, and the ls process needs to find the username corresponding to the
UID of each file's owner. In this case, ls -l calls getpwuid(11461) to find the password
file entry — and therefore username — for UID 11461.

2. The local password file looks like this:

 root:passwd:0:1:Operator:/:/bin/csh
 daemon:*:1:1::/:
 sys:*:2:2::/:/bin/csh
 bin:*:3:3::/bin:

 uucp:*:4:8::/var/spool/uucppublic:

The local file is checked first, but there is no UID 11461 in it. However,
/etc/nsswitch.conf has this entry:

passwd: files nis

which effectively appends the entire NIS password map. getpwuid() decides it needs
to go to NIS for the password file entry.

3. getpwuid() grabs the default domain name, and binds the current process to a server
for this domain. The bind can be done explicitly by calling an NIS library routine, or it
may be done implicitly when the first NIS lookup request is issued. In either case,
ypbind provides a server binding for the named domain. If the default domain is used,
ypbind returns the current binding after pinging the bound server. However, the calling
process may have specified another domain, forcing ypbind to locate a server for it.
The client may have bindings to several domains at any time, all of which are
managed by the single ypbind process.

4. The client process calls the NIS lookup RPC with key=11461 and map=passwd.byuid.
The request is bundled up and sent to the ypserv process on the bound server.

5. The server does a DBM key lookup and returns a password file entry, if one is found.
The record is passed back to the getpwuid() routine, where it is returned to the calling
application.

Managing NFS and NIS

54

Figure 3-2. Trace of the getpwuid() library call

The server can return a number of errors on a lookup request. Obviously, the specified key
might not exist in the DBM file, or the map file itself might not be present on the server. At a
lower level, the RPC might generate an error if it times out before the server responds with an
error or data; this would indicate that the server did not receive the request or could not
process it quickly enough. Whenever an RPC call returns a timeout error, the low-level NIS
RPC routine instructs ypbind to dissolve the process's binding for the domain.

NIS RPC calls continue trying the remote server after a timeout error. This happens
transparently to the user-level application calling the NIS RPC routine; for example, ls has no
idea that one of its calls to getpwuid() resulted in an RPC timeout. The ls command just
patiently waits for the getpwuid() call to return, and the RPC code called by getpwuid()
negotiates with ypbind to get the domain rebound and to retry the request.

Before retrying the NIS RPC that timed out, the client process (again, within some low-level
library code) must get the domain rebound. Remember that ypbind keeps track of its current
domain binding, and returns the currently bound server for a domain whenever a process asks
to be bound. This theory of operation is a little too simplistic, since it would result in a client
being immediately rebound to a server that just caused an RPC timeout. Instead, ypbind does
a health check by pinging the NIS server before returning its name for the current domain
binding. This ensures that the server has not crashed or is not the cause of the RPC failure. An
RPC timeout could have been caused when the NIS packet was lost on the network or if the
server was too heavily loaded to promptly handle the request. NIS RPC calls use the UDP

Managing NFS and NIS

55

protocol, so the network transport layer makes no guarantees about delivering NIS requests to
the server — it's possible that some requests never reach the NIS server on their first
transmission. Any condition that causes an RPC to time out is hopefully temporary, and
ypbind should find the server responsive again on the next ping. ypbind will try to reach the
currently bound server for several minutes before it decides that the server has died.

When the server health check fails, ypbind broadcasts a new request for NIS service for the
domain. When a binding is dissolved because a host is overloaded or crashes, the rebinding
generally locates a different NIS server, effecting a simple load balancing scheme. If no
replies are received for the rebinding request, messages of the form:

NIS server not responding for domain "nesales"; still trying

appear on the console as ypbind continues looking for a server. At this point, the NIS client is
only partially functional; any process that needs information from an NIS map will wait on
the return of a valid domain binding.

Most processes need to check permissions using UIDs, find a hostname associated with an IP
address, or make some other reference to NIS-managed data if they are doing anything other
than purely CPU-bound work. A machine using NIS will not run for long once it loses its
binding to an NIS server. It remains partially dead until a server appears on the network and
answers ypbind 's broadcast requests for service. The need for reliable NIS service cannot be
stressed enough. In the next chapter, we'll look at ways of using and configuring the service
efficiently.

Managing NFS and NIS

56

Chapter 4. System Management Using NIS
We've seen how NIS operates on master servers, slave servers, and clients, and how clients
get map information from the servers. Just knowing how NIS works, however, does not lead
to its efficient use. NIS servers must be configured so that map information remains consistent
on all servers, and the number of servers and the load on each server should be evaluated so
that there is not a user-noticeable penalty for referring to the NIS maps.

Ideally, NIS streamlines system administration tasks by allowing you to update configuration
files on many machines by making changes on a single host. When designing a network to use
NIS, you must ensure that its performance cost, measured by all users doing "normal"
activities, does not exceed its advantages. This chapter explains how to design an NIS
network, update and distribute NIS map data, manage multiple NIS domains, and integrate
NIS hostname services with the Domain Name Service.

4.1 NIS network design

At this point, you should be able to set up NIS on master and slave servers and have a good
understanding of how map changes are propagated from master to slave servers. Before
creating a new NIS network, you should think about the number of domains and servers you
will need. NIS network design entails deciding the number of domains, the number of servers
for each domain, and the domain names. Once the framework has been established,
installation and ongoing maintenance of the NIS servers is fairly straightforward.

4.1.1 Dividing a network into domains

The number of NIS domains that you need depends upon the division of your computing
resources. Use a separate NIS domain for each group of systems that has its own system
administrator. The job of maintaining a system also includes maintaining its configuration
information, wherever it may exist.

Large groups of users sharing network resources may warrant a separate NIS domain if the
users may be cleanly separated into two or more groups. The degree to which users in the
groups share information should determine whether you should split them into different NIS
domains. These large groups of users usually correspond very closely to the organizational
groups within your company, and the level of information sharing within the group and
between groups is fairly well defined.

A good example is that of a large university, where the physics and chemistry departments
have their own networked computing environments. Information sharing within each
department will be common, but interdepartment sharing is minimal. The physics department
isn't that interested in the machine names used by the chemistry department. The two
departments will almost definitely be in two distinct NIS domains if they do not have the
same system administrator (each probably gets one of its graduate students to assume this
job). Assume, though, that they share an administrator — why create two NIS domains? The
real motivation is to clearly mark the lines along which information is commonly shared.
Setting up different NIS domains also keeps users in one department from using machines in
another department.

Managing NFS and NIS

57

Conversely, the need to create splinter groups of a few users for access to some machines
should not warrant an independent NIS domain. Netgroups are better suited to handle this
problem, because they create subsets of a domain, rather than an entirely new domain. A good
example of a splinter group is the system administration staff — they may be given logins on
central servers, while the bulk of the user community is not. Putting the system administrators
in another domain generally creates more problems than the new domain was intended to
solve.

4.1.2 Domain names

Choosing domain names is not nearly as difficult as gauging the number of domains needed.
Just about any naming convention can be used provided that domain names are unique. You
can choose to apply the name of the group as the NIS domain name; for example, you could
use history, politics, and comp-sci to name the departments in a university.

If you are setting up multiple NIS domains that are based on hierarchical divisions, you may
want to use a multilevel naming scheme with dot-separated name components:

cslab.comp-sci
staff.comp-sci
profs.history
grad.history

The first two domain names would apply to the "lab" machines and the departmental staff
machines in the computer science department, while the two .history domain names separate
the professors and graduate students in that department.

Multilevel domain names are useful if you will be using an Internet Domain Name Service.
You can assign NIS domain names based on the name service domain names, so that every
domain name is unique and also identifies how the additional name service is related to NIS.
Integration of Internet name services and NIS is covered at the end of this chapter.

4.1.3 Number of NIS servers per domain

The number of servers per NIS domain is determined by the size of the domain and the
aggregate service requirements for it, the level of failure protection required, and any physical
network constraints that might affect client binding patterns. As a general rule, there should
be at least two servers per domain: one master and one slave. The dual-server model offers
basic protection if one server crashes, since clients of that server will rebind to the second
server. With a solitary server, the operation of the network hinges on the health of the NIS
server, creating both a performance bottleneck and a single point of failure in the network.

Increasing the number of NIS servers per domain reduces the impact of any one server
crashing. With more servers, each one is likely to have fewer clients binding to it, assuming
that the clients are equally likely to bind to any server. When a server crashes, fewer clients
will be affected. Spreading the load out over several hosts may also reduce the number of
domain rebindings that occur during unusually long server response times. If the load is
divided evenly, this should level out variations in the NIS server response time due to server
crashes and reboots.

Managing NFS and NIS

58

There is no golden rule for allocating a certain number of servers for every n NIS clients. The
total NIS service load depends on the type of work done on each machine and the relative
speeds of client and server. A faster machine generates more NIS requests in a given time
window than a slower one, if both machines are doing work that makes equal use of NIS.
Some interactive usage patterns generate more NIS traffic than work that is CPU-intensive. A
user who is continually listing files, compiling source code, and reading mail will make more
use of password file entries and mail aliases than one who runs a text editor most of the time.

The bottom line is that very few types of work generate endless streams of NIS requests; most
work makes casual references to the NIS maps separated by at most several seconds (compare
this to disk accesses, which are usually separated by milliseconds). Generally, 30-40 NIS
clients per server is an upper limit if the clients and servers are roughly the same speed. Faster
clients need a lower client/server ratio, while a server that is faster than its clients might
support 50 or more NIS clients. The best way to gauge server usage is to watch for ypbind
requests for domain bindings, indicating that clients are timing out waiting for NIS service.
Methods for observing binding requests are discussed in Section 13.4.2.

Finally, the number of servers required may depend on the physical structure of the network.
If you have decided to use four NIS servers, for example, and have two network segments
with equal numbers of clients, joined by a bridge or router, make sure you divide the NIS
servers equally on both sides of the network-partitioning hardware. If you put only one NIS
server on one side of a bridge or router, then clients on that side will almost always bind to
this server. The delay experienced by NIS requests in traversing the bridge approaches any
server-related delay, so that the NIS server on the same side of the bridge will answer a
client's request before a server on the opposite side of the bridge, even if the closer server is
more heavily loaded than the one across the bridge. With this configuration, you have undone
the benefits of multiple NIS servers, since clients on the one-server side of the bridge bind to
the same server in most cases. Locating lopsided NIS server bindings is discussed in
Section 13.4.2.

4.2 Managing map files

Keeping map files updated on all servers is essential to the proper operation of NIS. There are
two mechanisms for updating map files: using make and the NIS Makefile, which pushes
maps from the master server to the slave servers, and the ypxfr utility, which pulls maps from
the master server. This section starts with a look at how map file updates are made and how
they get distributed to slave servers.

Having a single point of administration makes it easier to propagate configuration changes
through the network, but it also means that you may have more than one person changing the
same file. If there are several system administrators maintaining the NIS maps, they need to
coordinate their efforts, or you will find that one person removes NIS map entries added by
another. Using a source code control system, such as SCCS or RCS, in conjunction with NIS
often solves this problem. In the second part of this section, we'll see how to use alternate map
source files and source code control systems with NIS.

4.2.1 Map distribution

Master and slave servers are distinguished by their ability to effect permanent changes to NIS
maps. Changes may be made to an NIS map on a slave server, but the next map transfer from

Managing NFS and NIS

59

the master will overlay this change. Modify maps only on the master server, and push them
from the master server to its slave servers. On the NIS master server, edit the source file for
the map using your favorite text editor. Source files for NIS maps are listed in Table 3-1.
Then go to the NIS map directory and build the new map using make, as shown here:

vi /etc/hosts
cd /var/yp
make
 ...New hosts map is built and distributed...

Without any arguments, make builds all maps that are out-of-date with respect to their ASCII
source files. When more than one map is built from the same ASCII file, for example the
passwd.byname and passwd.byuid maps built from /etc/passwd, they are all built when make
is invoked.

When a map is rebuilt, the yppush utility is used to check the order number of the same map
on each NIS server. If the maps are out-of-date, yppush transfers the map to the slave servers,
using the server names in the ypservers map. Scripts to rebuild maps and push them to slave
servers are part of the NIS Makefile, which is covered in Section 4.2.3.

Map transfers done on demand after source file modifications may not always complete
successfully. The NIS slave server may be down, or the transfer may timeout due to severe
congestion or server host loading. To ensure that maps do not remain out-of-date for a long
time (until the next NIS map update), NIS uses the ypxfr utility to transfer a map to a slave
server. The slave transfers the map after checking the timestamp on its copy; if the master's
copy has been modified more recently, the slave server will replace its copy of the map with
the one it transfers from the server. It is possible to force a map transfer to a slave server,
ignoring the slave's timestamp, which is useful if a map gets corrupted and must be replaced.
Under Solaris, an additional master server daemon called ypxfrd is used to speed up map
transfer operations, but the map distribution utilities resort to the old method if they cannot
reach ypxfrd on the master server.

The map transfer — both in yppush and in ypxfr — is performed by requesting that the slave
server walk through all keys in the modified map and build a map containing these keys. This
seems quite counterintuitive, since you would hope that a map transfer amounts to nothing
more than the master server sending the map to the slave server. However, NIS was designed
to be used in a heterogeneous environment, so the master server's DBM file format may not
correspond to that used by the slave server. DBM files are tightly tied to the byte ordering and
file block allocation rules of the server system, and a DBM file must be created on the system
that indexes it. Slave servers, therefore, have to enumerate the entries in an NIS map and
rebuild the map from them, using their own local conventions for DBM file construction.
Indeed, it is theoretically possible to have NIS server implementation that does not use DBM.
When the slave server has rebuilt the map, it replaces its existing copy of the map with the
new one. Schedules for transferring maps to slave servers and scripts to be run out of cron are
provided in the next section.

4.2.2 Regular map transfers

Relying on demand-driven updates is overly optimistic, since a server may be down when the
master is updated. NIS includes the ypxfr tool to perform periodic transfers of maps to slave
servers, keeping them synchronized with the master server even if they miss an occasional

Managing NFS and NIS

60

yppush. The ypxfr utility will transfer a map only if the slave's copy is out-of-date with respect
to the master's map.

Unlike yppush, ypxfr runs on the slave. ypxfr contacts the master server for a map, enumerates
the entries in the map, and rebuilds a private copy of the map. If the map is built successfully,
ypxfr replaces the slave server's copy of the map with the newly created one. Note that doing a
yppush from the NIS master essentially involves asking each slave server to perform a ypxfr
operation if the slave's copy of the map is out-of-date. The difference between yppush and
ypxfr (besides the servers on which they are run) is that ypxfr retrieves a map even if the slave
server does not have a copy of it, while yppush requires that the slave server have the map in
order to check its modification time.

ypxfr map updates should be scheduled out of cron based on how often the maps change. The
passwd and aliases maps change most frequently, and could be transferred once an hour.
Other maps, like the services and rpc maps, tend to be static and can be updated once a day.
The standard mechanism for invoking ypxfr out of cron is to create two or more scripts based
on transfer frequency, and to call ypxfr from the scripts. The maps included in the
ypxfr_1perhour script are those that are likely to be modified several times during the day,
while those in ypxfr_2perday, and ypxfr_1perday may change once every few days:

ypxfr_1perhour script:

/usr/lib/netsvc/yp/ypxfr passwd.byuid
/usr/lib/netsvc/yp/ypxfr passwd.byname

ypxfr_2perday script:

/usr/lib/netsvc/yp/ypxfr hosts.byname
/usr/lib/netsvc/yp/ypxfr hosts.byaddr
/usr/lib/netsvc/yp/ypxfr ethers.byaddr
/usr/lib/netsvc/yp/ypxfr ethers.byname
/usr/lib/netsvc/yp/ypxfr netgroup
/usr/lib/netsvc/yp/ypxfr netgroup.byuser
/usr/lib/netsvc/yp/ypxfr netgroup.byhost
/usr/lib/netsvc/yp/ypxfr mail.aliases

ypxfr_1perday script:

/usr/lib/netsvc/yp/ypxfr group.byname
/usr/lib/netsvc/yp/ypxfr group.bygid
/usr/lib/netsvc/yp/ypxfr protocols.byname
/usr/lib/netsvc/yp/ypxfr protocols.bynumber
/usr/lib/netsvc/yp/ypxfr networks.byname
/usr/lib/netsvc/yp/ypxfr networks.byaddr
/usr/lib/netsvc/yp/ypxfr services.byname
/usr/lib/netsvc/yp/ypxfr ypservers

crontab entry:

0 * * * * /usr/lib/netsvc/yp/ypxfr_1perhour
0 0,12 * * * /usr/lib/netsvc/yp/ypxfr_2perday
0 0 * * * /usr/lib/netsvc/yp/ypxfr_1perday

ypxfr logs its activity on the slave servers if the log file /var/yp/ypxfr.log exists when ypxfr
starts.

Managing NFS and NIS

61

4.2.3 Map file dependencies

Dependencies of NIS maps on ASCII source files are maintained by the NIS Makefile, located
in the NIS directory /var/yp on the master server. The Makefile dependencies are built around
timestamp files named after their respective source files. For example, the timestamp file for
the NIS maps built from the password file is passwd.time, and the timestamp for the hosts
maps is kept in hosts.time.

The timestamp files are empty because only their modification dates are of interest. The make
utility is used to build maps according to the rules in the Makefile, and make compares file
modification times to determine which targets need to be rebuilt. For example, make
compares the timestamp on the passwd.time file and that of the ASCII /etc/passwd file, and
rebuilds the NIS passwd map if the ASCII source file was modified since the last time the NIS
passwd map was built.

After editing a map source file, building the map (and any other maps that may depend on it)
is done with make:

cd /var/yp
make passwd Rebuilds only password map.
make Rebuilds all maps that are out-of-date.

If the source file has been modified more recently than the timestamp file, make notes that the
dependency in the Makefile is not met and executes the commands to regenerate the NIS map.
In most cases, map regeneration requires that the ASCII file be stripped of comments, fed to
makedbm for conversion to DBM format, and then pushed to all slave servers using yppush.

Be careful when building a few selected maps; if other maps depend on the modified map,
then you may distribute incomplete map information. For example, Solaris uses the netid map
to combine password and group information. The netid map is used by login shells to
determine user credentials: for every user, it lists all of the groups that user is a member of.
The netid map depends on both the /etc/passwd and /etc/group files, so when either one is
changed, the netid map should be rebuilt.

But let's say you make a change to the /etc/groups file, and decide to just rebuild and
distribute the group map:

nismaster# cd /var/yp
nismaster# make group

The commands in this example do not update the netid map, because the netid map doesn't
depend on the group map at all. The netid map depends on the /etc/group file — as does the
group map — but in the previous example, you would have instructed make to build only the
group map. If you build the group map without updating the netid map, users will become
very confused about their group memberships: their login shells will read netid and get old
group information, even though the NIS map source files appear correct.

The best solution to this problem is to build all maps that are out-of-date by using make with
no arguments:

nismaster# cd /var/yp

Managing NFS and NIS

62

nismaster# make

Once the map is built, the NIS Makefile distributes it, using yppush, to the slave servers
named in the ypservers map. yppush walks through the list of NIS servers and performs an
RPC call to each slave server to check the timestamp on the map to be transferred. If the map
is out-of-date, yppush uses another RPC call to the slave server to initiate a transfer of the
map.

A map that is corrupted or was not successfully transferred to all slave servers can be
explicitly rebuilt and repushed by removing its timestamp file on the master server:

master# cd /var/yp
master# rm hosts.time
master# make hosts

This procedure should be used if a map was built when the NIS master server's time was set
incorrectly, creating a map that becomes out-of-date when the time is reset. If you need to
perform a complete reconstruction of all NIS maps, for any reason, remove all of the
timestamp files and run make:

master# cd /var/yp
master# rm *.time
master# make

This extreme step is best reserved for testing the map distribution mechanism, or recovering
from corruption of the NIS map directory.

4.2.4 Password file updates

One exception to the yppush push-on-demand strategy is the passwd map. Users need to be
able to change their passwords without system manager intervention. The hosts file, for
example, is changed by the superuser and then pushed to other servers when it is rebuilt. In
contrast, when you change your password, you (as a nonprivileged user) modify the local
password file. To change a password in an NIS map, the change must be made on the master
server and distributed to all slave servers in order to be seen back on the client host where you
made the change.

yppasswd is a user utility that is similar to the passwd program, but it changes the user's
password in the original source file on the NIS master server. yppasswd usually forces the
password map to be rebuilt, although at sites choosing not to rebuild the map on demand, the
new password will not be distributed until the next map transfer. yppasswd is used like
passwd, but it reports the server name on which the modifications are made. Here is an
example:

[wahoo]% yppasswd
Changing NIS password for stern on mahimahi.
Old password:
New password:
Retype new password:
NIS entry changed on mahimahi

Managing NFS and NIS

63

Some versions of passwd (such as Solaris 2.6 and higher) check to see if the password file is
managed by NIS, and invoke yppasswd if this is the case. Check your vendor's documentation
for procedures particular to your system.

NIS provides read-only access to its maps. There is nothing in the NIS protocol that allows a
client to rewrite the data for a key. To accept changes to maps, a server distinct from the NIS
server is required that modifies the source file for the map and then rebuilds the NIS map
from the modified ASCII file. To handle incoming yppasswd change requests, the master
server must run the yppasswdd daemon (note the second "d" in the daemon's name). This RPC
daemon gets started in the /usr/lib/netsvc/yp/ypstart boot script on the master NIS server only:

if ["$master" = "$hostname" -a X$YP_SERVER = "XTRUE"]; then
 ...
 if [-x $YPDIR/rpc.yppasswdd]; then
 PWDIR=`grep "^PWDIR" /var/yp/Makefile 2> /dev/null` \
 && PWDIR=`expr "$PWDIR" : `.*=[]*<[^]*>``
 if ["$PWDIR"]; then
 if ["$PWDIR" = "/etc"]; then
 unset PWDIR
 else
 PWDIR="-D $PWDIR"
 fi
 fi
 $YPDIR/rpc.yppasswdd $PWDIR -m \
 && echo ` rpc.yppasswdd\c`
 fi
 ...
fi

The host making a password map change locates the master server by asking for the master of
the NIS passwd map, and the yppasswdd daemon acts as a gateway between the user's host
and a passwd-like utility on the master server. The location of the master server's password
file and options to build a new map after each update are given as command-line arguments to
yppasswdd, as shown in the previous example.

The -D argument specifies the name of the master server's source for the password map; it
may be the default /etc/passwd or it may point to an alternative password file.[1] The -m option
specifies that make is to be performed in the NIS directory on the master server. You can
optionally specify arguments after -m that are passed to make. With a default set up, the
fragment in ypstart would cause yppasswdd to invoke make as:

[1] Recall from Section 3.2.2 that we changed PWDR to /etc/nispw.

(cd /var/yp; make)

after each change to the master's password source file. Since it is likely only the password file
will have changed, only the password maps get rebuilt and pushed. You can ensure that only
the password maps get pushed changing the yppaswdd line in ypstart to:

$YPDIR/rpc.yppasswdd $PWDIR -m passwd \
 && echo ` rpc.yppasswdd\c`

Managing NFS and NIS

64

4.2.5 Source code control for map files

With multiple system administrators and a single point of administration, it is possible for
conflicting or unexplained changes to NIS maps to wreak havoc with the network. The best
way to control modifications to maps and to track the change history of map source files is to
put them under a source code control system such as SCCS.

Source code files usually contain the SCCS headers in a comment or in a global string that
gets compiled into an executable. Putting SCCS keywords into comments in the /etc/hosts and
/etc/aliases files allows you to track the last version and date of edit:

header to be added to file:

/etc/hosts header
%M% %I% %H% %T%
%W%
keywords filled in after getting file from SCCS:

/etc/hosts header
hosts 1.32 12/29/90 16:37:52
@(#)hosts 1.32

Once the headers have been added to the map source files, put them under SCCS
administration:

nismaster# cd /etc
nismaster# mkdir SCCS
nismaster# /usr/ccs/bin/sccs admin -ialiases aliases
nismaster# /usr/ccs/bin/sccs admin -ihosts hosts
nismaster# /usr/ccs/bin/sccs get aliases hosts

The copies of the files that are checked out of SCCS control are read-only. Someone making a
casual change to a map is forced to go and check it out of SCCS properly before doing so.
Using SCCS, each change to a file is documented before the file gets put back under SCCS
control. If you always return a file to SCCS before it is converted into an NIS map, the SCCS
control file forms an audit trail for configuration changes:

nismaster# cd /etc
nismaster# sccs prs hosts
D 1.31 00/05/22 08:52:35 root 31 30 00001/00001/00117
MRs:
COMMENTS:
added new host for info-center group
D 1.30 00/06/04 07:19:04 root 30 29 00001/00001/00117
MRs:
COMMENTS:
changed bosox-fddi to jetstar-fddi
D 1.29 90/11/08 11:03:47 root 29 28 00011/00011/00107
MRs:
COMMENTS:
commented out the porting lab systems.

If any change to the hosts or aliases file breaks, SCCS can be used to find the exact lines that
were changed and the time the change was made (for confirmation that the modification
caused the network problems).

Managing NFS and NIS

65

The two disadvantages to using SCCS for NIS maps are that all changes must be made as root
and that it won't work for the password file. The superuser must perform all file checkouts
and modifications, unless the underlying file permissions are changed to make the files
writable by nonprivileged users. If all changes are made by root, then the SCCS logs do not
contain information about the user making the change. The password file falls outside of
SCCS control because its contents will be modified by users changing their passwords,
without being able to check the file out of SCCS first. Also, some files, such as /etc/group,
have no comment lines, so you cannot use SCCS keywords in them.

4.2.6 Using alternate map source files

You may decide to use nonstandard source files for various NIS maps on the master server,
especially if the master server is not going to be an NIS client. Alternatively, you may need to
modify the standard NIS Makefile to build your own NIS maps. Approaches to both of these
problems are discussed in this section.

Some system administrators prefer to build the NIS password map from a file other than
/etc/passwd, giving them finer control over access to the server. Separating the host's and the
NIS password files is also advantageous if there are password file entries on the server (such
as those for dial-in UUCP) that shouldn't be made available on all NIS clients. To avoid
distributing UUCP password file entries to all NIS clients, the NIS password file should be
kept separately from /etc/passwd on the master server. The master can include private UUCP
password file entries and can embed the entire NIS map file via nsswitch.conf.

If you de-couple the NIS password map from the master server's password file, then the NIS
Makefile should be modified to reflect the new dependency. Refer back to the procedure
described in Section 3.2.2.

4.3 Advanced NIS server administration

Once NIS is installed and running, you may find that you need to remove or re arrange your
NIS servers to accommodate an increased load on one server. For example, if you attach
several printers to an NIS server and use it as a print server, it may no longer make a good
NIS server if most of its bandwidth is used for driving the printers. If this server is your
master NIS server, you may want to assign NIS master duties to another host. We'll look at
these advanced administration problems in this section.

4.3.1 Removing an NIS slave server

If you decommission an NIS slave server, or decide to stop running NIS on it because the
machine is loaded by other functions, you need to remove it from the ypserver map and turn
off NIS. If a host is listed in the ypservers map but is not running ypserv, then attempts to
push maps to this host will fail. This will not cause any data corruption or NIS service
failures. It will, however, significantly increase the time required to push the NIS maps
because yppush times out waiting for the former server to respond before trying the next
server.

There is no explicit "remove" procedure in the NIS maintenance tools, so you have to do this
manually. Start by rebuilding the ypservers map on the NIS master server:

Managing NFS and NIS

66

master# cd /var/yp
master# ypcat -k ypservers | grep -v servername\
 | makedbm - /var/yp/`domainname`/ypservers

The ypcat command line prints the entries in the current ypservers map, then removes the
entry for the desired server using grep -v. This shortened list of servers is given to makedbm,
which rebuilds the ypservers map. If the decommissioned server is not being shut down
permanently, make sure you remove the NIS maps in /var/yp on the former server so that the
machine doesn't start ypserv on its next boot and provide out-of-date map information to the
network. Many strange problems result if an NIS server is left running with old maps: the
server will respond to requests, but may provide incorrect information to the client. After
removing the maps and rebuilding ypservers, reboot the former NIS server and check to make
sure that ypserv is not running. You may also want to force a map distribution at this point to
test the new ypservers map. The yppush commands used in the map distribution should not
include the former NIS server.

4.3.2 Changing NIS master servers

The procedure described in the previous section works only for slave servers. There are some
additional dependencies on the master server that must be removed before an NIS master can
be removed. To switch NIS master service to another host, you must rebuild all NIS maps to
reflect the name of the new master host, update the ypservers map if the old master is being
taken out of service, and distribute the new maps (with the new master server record) to all
slave servers.

Here are the steps used to change master NIS servers:

1. Build the new master host as a slave server, initializing its domain directory and filling
it with copies of the current maps. Each map must be rebuilt on the new master, which
requires the NIS Makefile and map source files from the old master. Copy the source
files and the NIS Makefile to the new master, and then rebuild all of the maps — but
do not attempt to push them to other slave servers:

 newmaster# cd /var/yp
 newmaster# rm *.time

newmaster# make NOPUSH=1

Removing all of the timestamp files forces every map to be rebuilt; passing
NOPUSH=1 to make prevents the maps from being pushed to other servers. At this
point, you have NIS maps that contain master host records pointing to the new NIS
master host.

2. Install copies of the new master server's maps on the old master server. Transferring
the new maps to existing NIS servers is made more difficult because of the process
used by yppush: when a map is pushed to a slave server via the transfer-map NIS RPC
call, the slave server consults its own copy of the map to determine the master server
from which it should load a new copy. This is an NIS security feature: it prevents
someone from creating an NIS master server and forcing maps onto the valid slave
servers using yppush. The slave servers will look to their current NIS master server for
map data, rather than accepting it from the renegade NIS master server.

Managing NFS and NIS

67

In the process of changing master servers, the slave servers' maps will point to the old
master server. To work around yppush, first move the new maps to the old master
server using ypxfr:

oldmaster# /usr/lib/netsvc/yp/ypxfr -h newmaster -f passwd.byuid
oldmaster# /usr/lib/netsvc/yp/ypxfr -h newmaster -f passwd.byname
oldmaster# /usr/lib/netsvc/yp/ypxfr -h newmaster -f hosts.byname
 ...include all NIS maps...

The -h newmaster option tells the old master server to grab the map from the new
master server, and the -f flag forces a transfer even if the local version is not out of
order with the new map. Every NIS map must be transferred to the old master server.
When this step is complete, the old master server's maps all point to the new master
server.

3. On the old master server, distribute copies of the new maps to all NIS slave servers
using yppush:

 oldmaster# /usr/lib/netsvc/yp/yppush passwd.byuid
 oldmaster# /usr/lib/netsvc/yp/yppush passwd.byname
 oldmaster# /usr/lib/netsvc/yp/yppush hosts.byname

 ...include all NIS maps...

yppush forces the slave servers to look at their old maps, find the master server (still
the old master), and copy the current map from the master server. Because the map
itself contains the pointer record to the master server, transferring the entire map
automatically updates the slave servers' maps to point to the new master server.

4. If the old master server is being removed from NIS service, rebuild the ypservers map.

Many of these steps can be automated using shell scripts or simple rule additions to the NIS
Makefile, requiring less effort than it might seem. For example, you can merge steps 2 and 3
in a single shell script that transfers maps from the new master to the old master, and then
pushes each map to all of the slave servers. Run this script on the old master server:

#! /bin/sh
MAPS="passwd.byuid passwd.byname hosts.byname ..."
NEWMASTER=newmaster
for map in $MAPS
do
 echo moving $map
 /usr/lib/netsvc/yp/ypxfr -h $NEWMASTER -f $map
 /usr/lib/netsvc/yp/yppush $map
done

The alternative to this method is to rebuild the entire NIS system from scratch, starting with
the master server. In the process of building the system, NIS service on the network will be
interrupted as slave servers are torn down and rebuilt with new maps.

4.4 Managing multiple domains

A single NIS server may be a slave of more than one master server, if it is providing service
to multiple domains. In addition, a server may be a master for one domain and a slave of

Managing NFS and NIS

68

another. Multimaster relationships are set up when NIS is installed on each of the master
servers. In the course of building the ypservers map, the slave servers handling multiple
domains are named in the ypservers map for each domain.

When multiple domains are used with independent NIS servers (each serving only one
domain), it is sometimes necessary to keep one or more of the maps in these domains in
perfect synchronization. Domains with different password and group files, for example, might
still want to share global alias and host maps to simplify administration. Adding a new user to
either domain would make the user's mail aliases appear in the global alias file, to be shared
by both domains. Figure 4-1 shows three NIS domains that share some maps and keep private
copies of others.

Figure 4-1. Map sharing in multiple domains

The hosts and aliases maps are shared between the NIS domains so that any changes to them
are reflected on all NIS clients in all domains. The passwd and group files are managed on a
per-domain basis so that new users or groups in one domain do not automatically appear in
the other domains. This gives the system administrators fine control over user access to
machines and files in each NIS domain.

A much simpler case is the argument for having a single /etc/rpc file and an /etc/services file
across all domains in an organization. As locally developed or third-party software that relies
on these additional services is distributed to new networks, the required configuration changes
will be in place. This scenario is most common when multiple NIS domains are run on a
single network with less than one system administrator per domain.

Sharing maps across domains involves setting up a master/slave relationship between the two
NIS master servers. The map transfer can be done periodically out of cron on the "slave"
master server, or the true master server for the map can push the modified source file to the
secondary master after each modification. The latter method offers the advantages of keeping
the map source files synchronized and keeping the NIS maps current as soon as changes are
made, but it requires that the superuser have remote execution permissions on the secondary
NIS master server.

Managing NFS and NIS

69

To force a source file to be pushed to another domain, modify the NIS Makefile to copy the
source file to the secondary master server, and rebuild the map there:

 hosts.time:

 rebuild hosts.byname and hosts.byaddr
 @touch hosts.time;
 @echo "updated hosts";
 @if [! $(NOPUSH)]; then $(YPPUSH) -d $(DOM) hosts.byname; fi
 @if [! $(NOPUSH)]; then $(YPPUSH) -d $(DOM) hosts.byaddr; fi
 @if [! $(NOPUSH)]; then echo "pushed hosts"; fi
 @echo "copying hosts file to NIS server ono"
 @rcp /etc/hosts ono:/etc/hosts
 @echo "updating NIS maps on ono"
 @rsh ono "(cd /var/yp; make hosts)"

The commands in the Makefile are preceded by at signs (@) to suppress command echo when
make is executing them. rcp moves the file over to the secondary master server, and the script
invoked by rsh rebuilds the maps on server ono.

Superuser privileges are not always extended from one NIS server to another, and this scheme
works only if the rsh and rcp commands can be executed. In order to get the maps copied to
the secondary master server, you need to be able to access that server as root. You might
justifiably be concerned about the security implications, since the rcp and rsh commands
work without password prompts. One alternative is to leave the source files out-of-date and
simply move the map file to the secondary master and have it distributed to slave servers in
the second domain. Another alternative is to use Kerberos V5 versions of rcp and rsh or to
use the secure shell (ssh). Kerberos V5 and ssh are available as free software or in commercial
form. Your vendor might even provide one or both. For Solaris 2.6 and upward, you can get
the Sun Enterprise Authentication Mechanism (SEAM) product from Sun, which has
Kerberos V5, including rcp and rsh using Kerberos V5 security (see Section 12.5.5.2). If you
use SEAM, you'll want to prefix rcp and rsh in the Makefile with /usr/krb5/bin/.

The following script can be run out of cron on the secondary master server to pick up the host
maps from NIS server mahimahi, the master server for domain nesales:

#! /bin/sh
/usr/lib/netsvc/yp/ypxfr -h mahimahi -s nesales hosts.byname
/usr/lib/netsvc/yp/ypxfr -h mahimahi -s nesales hosts.byaddr
/usr/lib/netsvc/yp/yppush -d `domainname` hosts.byname
/usr/lib/netsvc/yp/yppush -d `domainname` hosts.byaddr

The ypxfr commands get the maps from the primary master server, and then the yppush
commands distribute them in the local, secondary NIS domain. The -h option to ypxfr
specifies the hostname from which to initiate the transfer, and overrides the map's master
record. The -s option indicates the domain from which the map is to be taken. Note that in this
approach, the hosts map points to mahimahi as the master in both domains. If the rcp-based
transfer is used, then the hosts map in each domain points to the master server in that domain.
The master server record in the map always indicates the host containing a source file from
which the map can be rebuilt.

Managing NFS and NIS

70

Chapter 5. Living with Multiple Directory Servers
5.1 Domain name servers

The hostname management provided by NIS can be integrated with an Internet Domain Name
Service (DNS), or the DNS facilities can be used to replace the NIS host map in its entirety.
We'll avoid a full-length discussion of setting up a name server. That process depends on the
type of name server supported by your vendor, and it is best described by your vendor's
documentation. Instead, this section concentrates on differences between the scope of the two
hostname services, and support for DNS with and without NIS. Note that the implementation
of Domain name services provided by your vendor may not be called DNS. If the Berkeley
Internet Name Domain name service or one of its derivatives is used, the service is often
called BIND.

5.1.1 DNS versus NIS

DNS provides a hierarchical hostname management system that spans the entire Internet.
Each level in the hierarchy designates authoritative name servers that contain maps of
hostnames and IP addresses, similar to the NIS hosts map but on a larger scale. The DNS
server for a large name service domain would have host information merged from dozens of
NIS domains. First among the advantages of DNS is its ability to decentralize responsibility
for the maintenance of hostname-to-IP address mappings and the resulting domain name
qualification that is used to differentiate identically named hosts.

Decentralized name management means that each organization running a name service
domain — whether it is a subdivision of a corporation or an entire company — can maintain
its own host information without having to notify some central authority of changes in its
local configuration. Host information is published through the authoritative name server for
that domain, and hosts in other name service domains retrieve information from the name
server when needed. Every domain knows how to reach the next highest level in the name
space hierarchy, and it can generally find most of its peer name servers within the same
organization. If a name server does not know how to reach the name server for another
domain, it can ask the next higher level domain name server for assistance.

For example, Princeton University is part of the educational, or .edu, domain. The domain
name for the entire university is princeton.edu, and it is further divided by department:

cs.princeton.edu
politics.princeton.edu
history.princeton.edu

and so on. Each of the name servers for the departmental name service domains knows how to
reach most of the others; therefore each department can run its own systems without having to
notify a campus-wide network manager of any changes to host information. There is also a
name server for the entire princeton.edu domain that points to lower-level name servers for
incoming queries and locates other domains in .edu, .com, or .gov for outbound requests.

In a world in which every machine name must be unique, all of the good names are taken very
quickly. DNS allows each domain to have a distinct name space, so that two domains may

Managing NFS and NIS

71

have hosts with the same name: the name service domain suffix distinguishes them on a
higher level in the hierarchy. This is a job that cannot be performed by NIS, since the
concatenation of /etc/hosts files from several different domains would result in hostname
clashes. If the NIS domains are left independent, there is no global naming authority, because
NIS lacks a mechanism for cross-domain hostname queries.

5.1.2 DNS integration with NIS

Hostnames are managed in a hierarchy. Each host manages its own name, so the hosts are the
"leaf nodes" in this management tree. Hosts are grouped together into NIS or DNS domains,
creating a two-level tree. DNS domains may be further grouped together by company,
department, or physical location, adding more levels to the management hierarchy. NIS fits
into the DNS management scheme at the lowest level in this hierarchy.

Within a single DNS domain, there may be many physical networks with several system
administrators. NIS provides a system for the independent management of these small
networks; NIS host map information can be combined to form the DNS host file. The
approaches for doing this are described in Section 5.2 later in this chapter.

5.1.3 NIS and DNS domain names

If an Internet DNS is used in conjunction with NIS, it is helpful to tie the NIS domain names
to the DNS domain name. Deriving NIS domain names from the DNS domain name links the
two management schemes: the DNS-derived portion of the NIS domain name indicates where
the NIS domain looks for its hostname information. Joining NIS and DNS domain names also
makes sense if you have a single DNS domain that spans several physical locations. Each
office will have its own networks, and its own NIS domains, so using the DNS domain name
in the NIS domain name indicates how these locations fit into the "big picture."

For example, the Polygon Company uses the DNS domain name polygon.com. It has four NIS
domains in its main office, which uses the polygon.com DNS domain name. The NIS domain
names use the DNS domain name as a suffix:

bos-engin.polygon.com
philly-engin.polygon.com
finance.polygon.com
sales.polygon.com

If NIS is set up as the primary directory service, then Solaris versions of sendmail assume that
an NIS domain name was derived from a DNS domain name, and they will strip the first
component to derive the mail domain name. That is, if your NIS domain name is bos-
engin.polygon.com, then sendmail uses polygon.com as your mail domain name by default.
There may be many NIS domains in this DNS domain; sendmail strips off the leading
component to form the DNS domain name.

However, if there are multiple NIS domains within the DNS domain — several sales offices
in different cities, for example — then the NIS domain names should reflect the subdivision
of the DNS domain, as shown in Table 5-1.

Managing NFS and NIS

72

Table 5-1. Subdividing a DNS domain into NIS domains
NIS Domain DNS Domain
boston.sales.polygon.com .sales.polygon.com
philly.sales.polygon.com .sales.polygon.com
rahway.sales.polygon.com .sales.polygon.com
waltham.engin.polygon.com .engin.polygon.com
alameda.engin.polygon.com .engin.polygon.com

Because the NIS domain name contains four dot-separated components, sendmail drops the
first component and uses the remainder as a DNS domain name. This allows all of the sales
offices to be treated as a single administrative unit for mail and hostname management, even
though they require distinct NIS domains.

It is important to note that each single administrative unit, whether it is implemented with one
NIS domain or multiple NIS domains must share the same map entries. Thus, all the hosts
listed in the hosts map of waltham.engin.polygon.com must be listed in the hosts map of
alameda.engin.polygon.com. The converse must be true as well. Getting all hosts to agree on
usernames, uid/gid values, and host addresses is a prerequisite for adding other distributed
services such as the Network File System.

5.1.4 Domain aliases

Some systems impose a fairly small limit on the length of a domain name. If you've chosen a
long NIS domain name, say nesales.East.Sun.COM, then implementations of NIS that restrict
the length of a domain name will not be able to bind to a server.

You could build a second NIS domain with a shorter name and duplicate the maps from the
first domain, but this leaves you with twice the administrative work. An easier solution to this
problem is to create a domain name alias for the longer name by making a symbolic link in
the NIS server directory /var/yp on each server host:

master# cd /var/yp
master# ln -s nesales.East.Sun.COM nesales

NIS servers in the fully qualified domain respond to requests for service for the truncated
domain name because they believe they have a set of maps for the specified domain. It is of
no consequence that the "directory" is really a link to another domain's directory. This trick
can also be used to force two distinct NIS domains to share exactly the same set of maps.

In a simple network, your domain names are likely to be short and easily managed. However,
if you integrate DNS with NIS, and choose NIS domain names based on name service
domains, you may end up with long, multicomponent names such as
grad.history.princeton.edu. Using symbolic links to create aliases for long names may be
necessary to make all of your NIS clients find NIS servers.

5.2 Implementation

There are four ways to integrate NIS with DNS, each of which is described in more detail in
the following subsections.

Managing NFS and NIS

73

5.2.1 Run NIS without DNS on client and server

This is the default for many systems, including Solaris. In this approach, the name services
switch file, nsswitch.conf, is set up so that nis and files are the only directory services listed in
the hosts entry of the nsswitch.conf file. The NIS server is configured (by default) to not use
DNS to resolve hostnames not found in the hosts map.

5.2.2 Run NIS on client, enable DNS on NIS server

Use the NIS maps first, then go to DNS for hostnames that aren't managed by NIS. This is
done using a special flag in the NIS hosts map.

NIS is forced to query DNS for hostnames not found in the hosts map if the map is built with
the "Inter-Domain" key. The NIS-then-DNS algorithm is embedded in the implementation of
ypserv. This means that individual NIS clients don't need to know about the DNS; only the
NIS servers will be calling DNS for non-local hostnames.

In the NIS Makefile, add the -b flag to the makedbm script for the hosts.byname and
hosts.byaddr maps, which will cause the YP_INTERDOMAIN key to be added to the hosts
maps. In Solaris, this is done by changing the following lines in /var/yp/Makefile from:

#B=-b
B=

to:

B=-b
#B=

If a hostname is not found in the NIS map, the YP_INTERDOMAIN keyinstructs NIS to look
up the name with the domain name server. Instead of immediately returning an error
indicating that the hostname key was not found, ypserv asks the DNS server to look up the
hostname. If DNS cannot find the name, then ypserv returns an error to the client. However, if
the DNS server locates the hostname, it returns the IP address information to ypserv, and
ypserv returns it to the client. Integration of NIS and DNS is completely invisible to the client
in terms of calling interfaces: all of the work is done by ypserv on the NIS server.

NIS servers locate DNS servers through the resolver interface, which relies on information in
the /etc/resolv.conf configuration file. The resolver configuration file should point to at least
two DNS servers to provide redundancy in case one DNS server becomes unavailable:

nameserver 130.1.52.28
nameserver 130.1.1.15

The nameserver keyword is used to identify the IP address of a DNS server. The servers are
listed by IP address, since hostnames are dependent on the very mechanism being configured
by this file. Set up a resolv.conf file on every NIS server.

5.2.3 Run DNS on NIS clients and servers

In this approach, NIS clients and servers ignore NIS for hostnames and use only DNS.

Managing NFS and NIS

74

Given that DNS is a full-service hostname management system, some network managers
choose to eliminate the NIS hosts map file and use pure DNS service for hostnames and IP
addresses. On some systems, a new version of gethostent() is required that skips the NIS
query and directly calls the DNS resolver routines for hostname lookups. Check with your
vendor for instructions on how to do this. In Solaris, the name services switch can be used to
set the hosts lookups to just DNS. If you disable NIS hostname management and use DNS
alone, you'll need to set up a resolv.conf file on every host in the network, so that they can
find DNS servers.

The main argument for using DNS only is that it consolidates hostname management under
one distributed service, instead of having it split across two services. The drawbacks to this
approach are that each host is then dependent upon both an NIS and a DNS server for normal
operation (if NIS is running), and a reliable DNS server or sufficient resolver information is
required to make each small network self-supporting. Widespread use of DNS to replace NIS
host maps suffers from the same server availability problems that NIS does — the entire
network is dependent upon reliable and well-behaved servers.

5.2.4 Run NIS on client, enable DNS on NIS client

In this approach, the name services switch file, nsswitch.conf, is set up so that both nis and
dns appear in the hosts entry of the nsswitch.conf file. The host maps should not have the
"Inter-Domain" key enabled since all that will do is result in hostname resolutions via DNS
occurring twice: once in the NIS client and once in the NIS server.

5.3 Fully qualified and unqualified hostnames

DNS and NIS have different semantics when it comes to dealing with qualified and
unqualified hostnames. A fully qualified hostname is one that includes the DNS domain name
as the suffix, whereas the unqualified hostname does not have a domain suffix. So for
example, gonzo.sales.polygon.com is a fully qualified DNS name, but gonzo is an unqualified
name. With both DNS and NIS, there is associated with the name service configuration a
default domain name. If an unqualified hostname is passed to gethostbyname() to be
resolved, then both DNS and NIS will associate the query with the default domain name.
When doing an address to name query, such as via gethostbyaddr(), DNS and NIS behave
differently. DNS will always return the fully qualified hostname, whereas NIS may return the
unqualified hostname. You can do one of two things to address this issue:

• Set up the hosts map to contain only fully qualified names. The problem is that
attempts to look up an unqualified hostname would then fail with NIS, whereas such
attempts would succeed with DNS.

• Include both the fully qualified and unqualified names in the hosts map. A caveat is
that it is not defined as to which hostname, qualified or unqualified, is returned first in
the list of hostnames returned by gethostbyaddr(). In other words, NIS has no concept
of a canonical form for hostnames, unlike DNS. You can mitigate this by ensuring that
for a given IP address there is just one entry in the hosts file used to build the hosts
maps and ensuring that the fully qualified hostname is listed first in the hosts entry for
a given IP address. If you take this route, it is a good idea to use fully qualified
hostnames in netgroups.

Managing NFS and NIS

75

The fully qualified versus unqualified hostname issue can produce practical problems on the
server side of services like NFS and rlogin, which have lists of hostnames to control access. If
the server has both NIS and DNS enabled, then it is possible that sometimes clients will have
hostnames that appear as unqualified, and sometimes as fully qualified. Unless the hostnames
that appear in files such as /etc/dfs/dfstab or /etc/hosts.equiv correspond with what the
directory service uses, access will be mistakenly denied. For example, while we have not
covered NFS operation yet, this is as good as place as any to explain a common NFS access
problem when DNS is being used to resolve hostnames to IP addresses. Suppose you have the
following entry in /etc/dfs/dfstab:

share -o rw=gonzo /export

If DNS is being used, NFS client gonzo will be denied access. This is because if DNS is being
used to resolve hostnames to IP addresses, it is also being used to resolve IP addresses to
hostnames, and DNS always generates fully qualified hostnames. Thus if gonzo is in the
sales.polygon.com domain, then the following gives gonzo access:

share -o rw=gonzo.sales.polygon.com /export

The qualified versus unqualified hostname issue is one that has the potential for causing you
major grief, and at the end of the day, you may decide that it is far simpler to use DNS across
the board. If you do opt to use both NIS and DNS, for consistent results, the following is
recommended:

• Place in the hosts map only unqualified hostnames and only hosts that belong to the
same DNS domain that the NIS domain is based upon.

• Place nis before dns in the hosts entry of nsswitch.conf. This way, if a host is in NIS,
then you will consistently use its unqualified form. If you had DNS before NIS, then
there would be no point in having NIS, except as a fallback in case DNS became
unavailable. In that case, you would find that when DNS failed, access control lists set
up to use the qualified hostname form would not suddenly result in access failures.

• Configure nsswitch.conf to return an error if NIS is down:

hosts: files nis [UNAVAIL=return] dns

This seems nonintuitive, since it means that if NIS is down, you won't be able to
resolve hostnames and addresses. Let's suppose that you had the following in
nsswitch.conf:

hosts: files nis dns

Now suppose gonzo is in NIS, and gonzo.sales.polygon.com is in DNS. Assume
/etc/hosts.equiv contains an entry for gonzo. If you use rlogin to log in from gonzo to
another machine, while NIS is up, then you will be able to log in without a password
prompt. This is because when NIS is up, the IP address of gonzo is resolved by
gethostbyaddr() to gonzo. When NIS is down, you will get a password prompt,
because the IP address is resolved in DNS to gonzo.sales.polygon.com. A workaround
would be to place both gonzo and gonzo.sales.polygon.com in the /etc/hosts.equiv file,
but this is prone to error.

Managing NFS and NIS

76

Of course, if you do configure nsswitch.conf to return an error if NIS is down, then
when NIS is down, you will not be able to access hostnames that are in a different
DNS domain. For example:

% telnet quote.triangle.com

Not to belabor the point, but if NIS availability is a concern for you, and you are
running DNS, then you will want to give serious consideration to not using the hosts
map in nsswitch.conf:

hosts: dns

5.4 Centralized versus distributed management

This section applies to those organizations that have multiple system administration groups,
each responsible for different departments within the organizations. If your organization has
centralized remote control of all soft administration, then these issues will be of less interest
to you.[1]

[1] Soft administraton includes everything that does not require onsite personnel. An example of something that is not soft administration would be
replacing a disk drive.

NIS lends itself to allowing you to give system administration groups for a given department
within your organization responsibility for maintaining the department's NIS maps without
the need for centralized control. However, the nature of hostnames, host addresses, and
domain name management is that some central controls or rules are necessary in order to
prevent mistakes in one department from affecting other departments and beyond.

There are at least three basic approaches to consider for managing hosts and domains.

Complete centralization

In this model, if someone wants an IP address, he or she contacts a single central
committee to get one; the chances of errors are as low as possible, but the latency in
getting requests honored is the longest. Adding new subdomains is also centralized. In
this model, as there are specific system management groups managing the non-hosts
NIS maps for a given department, it is not practical to manage hosts via NIS; you
would use DNS exclusively.

Federation

In this model, the central committee has delegated responsibility for portions of the IP
address space to individual groups responsible for a DNS subdomain. In this model,
either a DNS or a hybrid NIS/DNS model for managing hosts works (such as via the
technical rules listed in Section 5.3 earlier in this chapter). If the individual groups are
using DNS to the exclusion of the NIS hosts map, then there is little work for the
central committee other than to maintain the mapping of subdomains to subdomain
name servers. The central committee, of course, is responsible for adding or deleting
subdomains. If the individual groups use NIS for local hostname information, then the
central committee would maintain the entire DNS infrastructure by periodically
gathering host map information from each group. This could be done automatically.

Managing NFS and NIS

77

Complete decentralization

Each system administration group has the autonomy to modify its NIS host maps as
well as the authority to modify the common DNS database. Such a system will not
scale as the number of subdomains and system administration groups rises. With too
many authorized players, it will be hard to track down problems caused by mistakes,
not to mention avoiding duplicate efforts.

5.5 Migrating from NIS to DNS for host naming

By now you should have a good handle on the differences between NIS and DNS as they
impact host naming. If you are considering migrating from NIS to DNS, you need to decide
what you want to do about unqualified versus qualified hostnames. By going from NIS to
DNS, you are exposing your users to a hierarchical (qualified) naming scheme versus the flat
(unqualified) one they knew under NIS. While you don't want to continue a flat naming
scheme for accessing hosts outside the user's subdomain, you may want to temporarily or
permanently support a flat naming scheme for hosts within each user's subdomain, using
techniques described earlier. Such an approach also gives you more time to find all references
to unqualified hostnames in configuration files and in software packages and correct them to
be qualified.

5.6 What next?

The Network Information Service provides an easy-to-manage general purpose distributed
database system. When used in conjunction with a source code control system and local tools,
it solves many problems with configuration file management by providing audit trails and a
single point of administration. The single biggest advantage of NIS is that it adds consistency
to a network. Getting all hosts to agree on usernames, uid and gid values, and hostnames and
host addresses is a prerequisite for adding other distributed services such as NFS.

Managing NFS and NIS

78

Chapter 6. System Administration Using the Network
File System
The Network File System (NFS) is a distributed filesystem that provides transparent access to
remote disks. Just as NIS allows you to centralize administration of user and host information,
NFS allows you to centralize administration of disks. Instead of duplicating common
directories such as /usr/local on every system, NFS provides a single copy of the directory
that is shared by all systems on the network. To a host running NFS, remote filesystems are
indistinguishable from local ones. For the user, NFS means that he or she doesn't have to log
into other systems to access files. There is no need to use rcp or tapes to move files onto the
local system. Once NFS has been set up properly, users should be able to do all their work on
their local system; remote files (data and executables) will appear to be local to their own
system. NFS and NIS are frequently used together: NIS makes sure that configuration
information is propagated to all hosts, and NFS ensures that the files a user needs are
accessible from these hosts.

NFS is also built on the RPC protocol and imposes a client-server relationship on the hosts
that use it. An NFS server is a host that owns one or more filesystems and makes them
available on the network; NFS clients mount filesystems from one or more servers. This
follows the normal client-server model where the server owns a resource that is used by the
client. In the case of NFS, the resource is a physical disk drive that is shared by all clients of
the server.

There are two aspects to system administration using NFS: choosing a filesystem naming and
mounting scheme, and then configuring the servers and clients to adhere to this scheme. The
goal of any naming scheme should be to use network transparency wisely. Being able to
mount filesystems from any server is useful only if the files are presented in a manner that is
consistent with the users' expectations.

If NFS has been set up correctly, it should be transparent to the user. For example, if locally
developed applications were found in /usr/local/bin before NFS was installed, they should
continue to be found there when NFS is running, whether /usr/local/bin is on a local
filesystem or a remote one. To the user, the actual disk holding /usr/local/bin isn't important
as long as the executables are accessible and built for the right machine architecture. If users
must change their environments to locate files accessed through NFS, they will probably
dislike the new network architecture because it changes the way things work.

An environment with many NFS servers and hundreds of clients can quickly become
overwhelming in terms of management complexity. Successful system administration of a
large NFS network requires adding some intelligence to the standard procedures. The cost of
consistency on the network should not be a large administrative overhead. One tool that
greatly eases the task of running an NFS network is the automounter, which applies NIS
management to NFS configuration. This chapter starts with a quick look at how to get NFS up
and running on clients and servers, and then explores NFS naming schemes and common
filesystem planning problems. We'll cover the automounter in detail in Chapter 9.

Managing NFS and NIS

79

6.1 Setting up NFS

Setting up NFS on clients and servers involves starting the daemons that handle the NFS RPC
protocol, starting additional daemons for auxiliary services such as file locking, and then
simply exporting filesystems from the NFS servers and mounting them on the clients.

On an NFS client, you need to have the lockd and statd daemons running in order to use NFS.
These daemons are generally started in a boot script (Solaris uses /etc/init.d/nfs.client):

if [-x /usr/lib/nfs/statd -a -x /usr/lib/nfs/lockd]
then
 /usr/lib/nfs/statd > /dev/console 2>&1
 /usr/lib/nfs/lockd > /dev/console 2>&1
fi

On some non-Solaris systems, there may also be biod daemons that get started. The biod
daemons perform block I/O operations for NFS clients, performing some simple read-ahead
and write-behind performance optimizations. You run multiple instances of biod so that each
client process can have multiple NFS requests outstanding at any time. Check your vendor's
documentation for the proper invocation of the biod daemons. Solaris does not have biod
daemons because the read-ahead and write-behind function is handled by a tunable number of
asynchronous I/O threads that reside in the system kernel.

The lockd and statd daemons handle file locking and lock recovery on the client. These
locking daemons also run on an NFS server, and the client-side daemons coordinate file
locking on the NFS server through their server-side counterparts. We'll come back to file
locking later when we discuss how NFS handles state information.

On an NFS server, NFS services are started with the nfsd and mountd daemons, as well as the
file locking daemons used on the client. You should see the NFS server daemons started in a
boot script (Solaris uses /etc/init.d/nfs.server):

if grep -s nfs /etc/dfs/sharetab >/dev/null ; then
 /usr/lib/nfs/mountd
 /usr/lib/nfs/nfsd -a 16
fi

On most NFS servers, there is a file that contains the list of filesystems the server will allow
clients to mount via NFS. Many servers store this list in /etc/exports file. Solaris stores the list
in /etc/dfs/dfstab. In the previous script file excerpt, the NFS server daemons are not started
unless the host shares (exports) NFS filesystems in the /etc/dfs/dfstab file. (The reference to
/etc/dfs/sharetab in the script excerpt is not a misprint; see Section 6.2.) If there are
filesystems to be made available for NFS service, the machine initializes the export list and
starts the NFS daemons. As with the client-side, check your vendor's documentation or the
boot scripts themselves for details on how the various server daemons are started.

The nfsd daemon accepts NFS RPC requests and executes them on the server. Some servers
run multiple copies of the daemon so that they can handle several RPC requests at once. In
Solaris, a single copy of the daemon is run, but multiple threads run in the kernel to provide
parallel NFS service. Varying the number of daemons or threads on a server is a performance
tuning issue that we will discuss in Chapter 17. By default, nfsd listens over both the TCP and

Managing NFS and NIS

80

UDP transport protocols. There are several options to modify this behavior and also to tune
the TCP connection management. These options will be discussed in Chapter 17 as well.

The mountd daemon handles client mount requests. The mount protocol is not part of NFS.
The mount protocol is used by an NFS server to tell a client what filesystems are available
(exported) for mounting. The NFS client uses the mount protocol to get a filehandle for the
exported filehandle.

6.2 Exporting filesystems

Usually, a host decides to become an NFS server if it has filesystems to export to the network.
A server does not explicitly advertise these filesystems; instead, it keeps a list of currently
exported filesystems and associated access restrictions in a file and compares incoming NFS
mount requests to entries in this table. It is up to the server to decide if a filesystem can be
mounted by a client. You may change the rules at any time by rebuilding its exported
filesystem table.

This section uses filenames and command names that are specific to Solaris. On non-Solaris
systems, you will find the rough equivalents shown in Table 6-1.

Table 6-1. Correspondence of Solaris and non-Solaris export components
Description Solaris Non-Solaris
Initial list of filesystems to export /etc/dfs/dfstab /etc/exports
Command to export initial list shareall exportfs
List of currently exported filesystems /etc/dfs/sharetab /etc/xtab
Command to export one filesystem share exportfs
List of local filesystems on server /etc/vfstab /etc/fstab

The exported filesystem table is initialized from the /etc/dfs/dfstab file. The superuser may
export other filesystems once the server is up and running, so the /etc/dfs/dfstab file and the
actual list of currently exported filesystems, /etc/dfs/sharetab, are maintained separately.
When a fileserver boots, it checks for the existence of /etc/dfs/dfstaband runs shareall(1M) on
it to make filesystems available for client use. If, after shareall runs, /etc/dfs/sharetab has
entries, the nfsd and mountddaemons are run.

After the system is up, the superuser can export additional filesystems via the share
command.

A common usage error is invoking the share command manually on a
system that booted without entries in /etc/dfs/dfstab. If the nfsd and
mountd daemons are not running, then invoking the share command
manually does not enable NFS service. Before running the share
command manually, you should verify that nfsd and mountd are running.
If they are not, then start them. On Solaris, you would use the
/etc/init.d/nfs.server script, invoked as /etc/init.d/nfs.server start.
However, if there is no entry in /etc/dfs/dfstab, you must add one before
the /etc/init.d/nfs.server script will have an effect.

Managing NFS and NIS

81

6.2.1 Rules for exporting filesystems

There are four rules for making a server's filesystem available to NFS:

1. Any filesystem, or proper subset of a filesystem, can be exported from a server. A
proper subset of a filesystem is a file or directory tree that starts below the mount point
of the filesystem. For example, if /usr is a filesystem, and the /usr/local directory is
part of that filesystem, then /usr/local is a proper subset of /usr.

2. You cannot export any subdirectory of an exported filesystem unless the subdirectory
is on a different physical device.

3. You cannot export any parent directory of an exported filesystem unless the parent is
on a different physical device.

4. You can export only local filesystems.

The first rule allows you to export selected portions of a large filesystem. You can export and
mount a single file, a feature that is used by diskless clients. The second and third rules seem
both redundant and confusing, but are in place to enforce the selective views imposed by
exporting a subdirectory of a filesystem.

The second rule allows you to export /usr/local/bin when /usr/local is already exported from
the same server only if /usr/local/bin is on a different disk. For example, if your server
mounts these filesystems using /etc/vfstab entries like:

/dev/dsk/c0t0d0s5 /dev/rdsk/c0t0d0s5 /usr/local ufs 2 no rw
/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 /usr/local/bin ufs 2 no rw

then exporting both of them is allowed, since the exported directories reside on different
filesystems. If, however, bin was a subdirectory of /usr/local, then it could not be exported in
conjunction with its parent.

The third rule is the converse of the second. If you have a subdirectory exported, you cannot
also export its parent unless they are on different filesystems. In the previous example, if
/usr/local/bin is already exported, then /usr/local can be exported only if it is on a different
filesystem. This rule prevents entire filesystems from being exported on the fly when the
system administrator has carefully chosen to export a selected set of subdirectories.

Together, the second and third rules say that you can export a local filesystem only one way.
Once you export a subdirectory of it, you can't go and export the whole thing; and once you've
made the whole thing public, you can't go and restrict the export list to a subdirectory or two.

One way to check the validity of subdirectory exports is to use the df command to determine
on which local filesystem the current directory resides. If you find that the parent directory
and its subdirectory appear in the output of df, then they are on separate filesystems, and it is
safe to export them both.

Exporting subdirectories is similar to creating views on a relational database. You choose the
portions of the database that a user needs to see, hiding information that is extraneous or
sensitive. In NFS, exporting a subdirectory of a filesystem is useful if the entire filesystem
contains subdirectories with names that might confuse users, or if the filesystem contains
several parallel directory trees of which only one is useful to the user.

Managing NFS and NIS

82

6.2.2 Exporting options

The /etc/dfs/dfstab file contains a list of filesystems that a server exports and any restrictions
or export options for each. The /etc/dfs/dfstab file is really just a list of individual
sharecommands, and so the entries in the file follow the command-line syntax of the share
command:

share [-d description] [-F nfs] [-o suboptions] pathname

Before we discuss the options, pathnameis the filesystem or subdirectory of the filesystem
being exported.

The -d option allows you to insert a comment describing what the exported filesystem
contains. This option is of little use since there are no utilities to let an NFS client see this
information.

The -F option allows you to specify the type of fileserver to use. Since the share command
supports just one fileserver—NFS—this option is currently redundant. Early releases of
Solaris supported a distributed file-sharing system known as RFS, hence the historical reason
for this option. It is conceivable that another file sharing system would be added to Solaris in
the future. For clarity, you should specify -F nfs to ensure that the NFS service is used.

The -o option allows you to specify a list of suboptions. (Multiple suboptions would be
separated by commas.) For example:

share -F nfs /export/home
share -F nfs -o rw=corvette /usr/local

Several options modify the way a filesystem is exported to the network:

rw

Permits NFS clients to read from or write to the filesystem. This option is the default;
i.e., if none of rw, ro, ro=client_list, or rw=client_list are specified, then read/write
access to the world is granted.

ro

Prevents NFS clients from writing to the filesystem. Read-only restrictions are
enforced when a client performs an operation on an NFS filesystem: if the client has
mounted the filesystem with read and write permissions, but the server specified ro
when exporting it, any attempt by the client to write to the filesystem will fail, with
"Read-only filesystem" or "Permission denied" messages.

rw=client_list

Limits the set of hosts that may write to the filesystem to the NFS clients identified in
client_list.

A client_list has the form of a colon-separated list of components, such that a
component is one of the following:

Managing NFS and NIS

83

hostname

The hostname of the NFS client.

netgroup

The NIS directory services support the concept of a set of hostnames named
collectively as a netgroup. See Chapter 7 for a description on how to set up netgroups
under NIS.

DNS domain

An Internet Domain Name Service domain is indicated by a preceding dot. For
example:

share -o rw=.widget.com /export2

grants access to any host in the widget.com domain. In order for this to work, the NFS
server must be using DNS as its primary directory service ahead of NIS (see
Chapter 4).

netmask

A netmask is indicated by a preceding at-sign (@) and possibly by a suffix with a
slash and length to indicate the number of bits in the netmask. Examples will help
here:

share -o rw=@129.100.0.0 /export
share -o rw=@193.150.145.63/27 /export2

The notation of four decimal values separated by periods is known as a dotted quad.

In the first example, any client with an Internet Protocol (IP) address such that its first
two octets are 129 and 100 (in decimal), will get read/write access to /export.

In the second example, a client with an address such that the first 27 bits match the
first 27 bits of 193.150.145.63 will get read/write access. The notation
193.150.145.63/27 is an example of classless addressing, which was previously
discussed in Section 1.3.3.

So in the second example, a client with an address of 193.150.145.33would get access,
but another client with the address 193.150.145.128would not. Chapter 6 clarifies this.

Table 6-2. Netmask matching
Client Address dotted
quad

Client Address
hexadecimal

Netmask dotted
quad

Netmask
hexadecimal Access?

193.150.145.33 0xc1969121 193.150.145.63/27 0xc1969120 Yes
193.150.145.128 0xc1969180 193.150.145.63/27 0xc1969120 No

Managing NFS and NIS

84

-component

Each component in the client_list can be prefixed with a minus sign (-) to offer
negative matching. This indicates that the component should not get access, even if it
is included in another component in the client_list. For example:

share -o rw=-wrench.widget.com:.widget.com /dir

would exclude the host wrench in the domain widget.com, but would give access to all
other hosts in the domain widget.com. Note that order matters. If you did this:

share -o rw=.widget.com:-wrench.widget.com /dir

host wrench would not be denied access. In other words, the NFS server will stop
processing the client_list once it gets a positive or negative match.

ro=client_list

Limits the set of hosts that may read (but not write to) the filesystem to the NFS
clients identified in client_list. The form of client_list is the same as that described for
the rw=client_list option.

anon=uid

Maps anonymous, or unknown, users to the user identifier uid. Anonymous users are
those that do not present valid credentials in their NFS requests. Note that an
anonymous user is not one that does not appear in the server's password file or NIS
passwd map. If no credentials are included with the NFS request, it is treated as an
anonymous request. NFS clients can submit requests from unknown users if the proper
user validation is not completed; we'll look at both of these problems in later chapters.
Section 12.4 discusses the anon option in more detail.

root=client_list

Grants superuser access to the NFS clients identified in client_list. The form of
client_list is the same as that described for the rw=client_list option. To enforce basic
network security, by default, superuser privileges are not extended over the network.
The root option allows you to selectively grant root access to a filesystem. This
security feature will be covered in Section 12.4.2.

sec=mode[:mode ...]

Requires that NFS clients use the security mode(s) specified. Security modes can be:

sys

This is the default form of security, which assumes a trusted relationship between NFS
clients and servers.

Managing NFS and NIS

85

dh

This is a stronger form of security based on a cryptographic algorithm known as
Diffie-Hellman Key Exchange.

krb5
krb5i
krb5p

This is a trio of stronger forms of security based on a key management system called
Kerberos Version 5.

none

This is the weakest form of security. All users are treated as unknown and are mapped
to the anonymous user.

The sec= option can be combined with rw, ro, rw=, ro=, and root= in interesting
ways. We will look at that and other security modes in more detail in Section 12.4.4.

aclok

ACL stands for Access Control List. The aclok option can sometimes prevent
interoperability problems involving NFS Version 2 clients that do not understand
Access Control Lists. We will explore ACLs and the aclokoption in Section 12.4.8.

nosub
nosuid

Under some situations, the nosub and nosuid options prevent security exposures. We
will go into more detail in Chapter 12.

public

This option is useful for environments that have to cope with firewalls. We will
discuss it in more detail also in Chapter 12.

Your system may support additional options, so check your vendor's relevant manual pages.

6.3 Mounting filesystems

This section uses filenames and command names specific to Solaris. Note that you are better
off using the automounter (see Chapter 9) to mount filesystems, rather than using the mount
utility described in this section. However, understanding the automounter, and why it is better
than mount, requires understanding mount. Thus, we will discuss the concept of NFS
filesystem mounting in the context of mount.

Solaris has different component names from non-Solaris systems. Table 6-3 shows the rough
equivalents to non-Solaris systems.

Managing NFS and NIS

86

Table 6-3. Correspondence of Solaris and non-Solaris mount components
Description Solaris Non-Solaris
List of filesystems /etc/vfstab /etc/fstab
List of mounted filesystems /etc/mnttab /etc/mtab
RPC program number to network address mapper

(portmapper)
rpcbind portmap

MOUNT daemon mountd rpc.mountd

NFS clients can mount any filesystem, or part of a filesystem, that has been exported from an
NFS server. The filesystem can be listed in the client's /etc/vfstab file, or it can be mounted
explicitly using the mount(1M) command. (Also, in Solaris, see the mount_nfs(1M) manpage,
which explains NFS-specific details of filesystem mounting.)

NFS filesystems appear to be "normal" filesystems on the client, which means that they can
be mounted on any directory on the client. It's possible to mount an NFS filesystem over all or
part of another filesystem, since the directories used as mount points appear the same no
matter where they actually reside. When you mount a filesystem on top of another one, you
obscure whatever is "under" the mount point. NFS clients see the most recent view of the
filesystem. These potentially confusing issues will be the foundation for the discussion of
NFS naming schemes later in this chapter.

6.3.1 Using /etc/vfstab

Adding entries to /etc/vfstab is one way to mount NFS filesystems. Once the entry has been
added to the vfstab file, the client mounts it on every reboot. There are several features that
distinguish NFS filesystems in the vfstab file:

• The "device name" field is replaced with a server:filesystem specification, where the
filesystem name is a pathname (not a device name) on the server.

• The "raw device name" field that is checked with fsck, is replaced with a -.
• The filesystem type is nfs, not ufs as for local filesystems.
• The fsck pass is set to -.
• The options field can contain a variety of NFS-specific mount options, covered in the

Section 6.3.2.

Some typical vfstab entries for NFS filesystems are:

ono:/export/ono - /hosts/ono nfs - yes rw,bg,hard
onaga:/export/onaga - /hosts/onaga nfs - yes rw,bg,hard
wahoo:/var/mail - /var/mail nfs - yes rw,bg,hard

The yes in theabove entries says to mount the filesystems whenever the system boots up. This
field can be yes or no, and has the same effect for NFS and non-NFS filesystems.

Of course, each vendor is free to vary the server and filesystem name syntax, and your manual
set should provide the best sample vfstab entries.

Managing NFS and NIS

87

6.3.2 Using mount

While entries in the vfstab file are useful for creating a long-lived NFS environment,
sometimes you need to mount a filesystem right away or mount it temporarily while you copy
files from it. The mount command allows you to perform an NFS filesystem mount that
remains active until you explicitly unmount the filesystem using umount, or until the client is
rebooted.

As an example of using mount, consider building and testing a new /usr/local directory. On an
NFS client, you already have the "old" /usr/local, either on a local or NFS-mounted
filesystem. Let's say you have built a new version of /usr/local on the NFS server wahoo and
want to test it on this NFS client. Mount the new filesystem on top of the existing /usr/local:

mount wahoo:/usr/local /usr/local

Anything in the old /usr/local is hidden by the new mount point, so you can debug your new
/usr/local as if it were mounted at boot time.

From the command line, mount uses a server name and filesystem name syntax similar to that
of the vfstab file. The mount command assumes that the type is nfs if a hostname appears in
the device specification. The server filesystem name must be an absolute pathname (usually
starting with a leading /), but it need not exactly match the name of a filesystem exported
from the server. Barring the use of the nosub option on the server (see Section 6.2.2 earlier in
this chapter), the only restriction on server filesystem names is that they must contain a valid,
exported server filesystem name as a prefix. This means that you can mount a subdirectory of
an exported filesystem, as long as you specify the entire pathname to the subdirectory in
either the vfstab file or on the mount command line. Note that the rw and hard suboptions are
redundant since they are the defaults (in Solaris at least). This book often specifies them in
examples to make it clear what semantics will be.

For example, to mount a particular home directory from /export/home of server ono, you do
not have to mount the entire filesystem. Picking up only the subdirectory that's needed may
make the local filesystem hierarchy simpler and less cluttered. To mount a subdirectory of a
server's exported filesystem, just specify the pathname to that directory in the vfstab file:

ono:/export/home/stern - /users/stern nfs - yes rw,bg,hard

Even though server ono exports all of /export/home, you can choose to handle some smaller
portion of the entire filesystem.

6.3.3 Mount options

NFS mount options are as varied as the vendors themselves. There are a few well-known and
widely supported options, and others that are added to support additional NFS features or to
integrate secure remote procedure call systems. As with everything else that is vendor-
specific, your system's manual set provides a complete list of supported mount options. Check
the manual pages for mount(1M), mount_nfs(1M), and vfstab(4).

Managing NFS and NIS

88

For the most part, the default set of mount options will serve you fine.
However, pay particular attention to the nosuid suboption, which is
described in Chapter 12. The nosuid suboption is not the default in
Solaris, but perhaps it ought to be.

The Solaris mount command syntax for mounting NFS filesystems is:

mount [-F nfs] [-mrO] [-o suboptions] server:pathname
mount [-F nfs] [-mrO] [-o suboptions] mount_point
mount [-F nfs] [-mrO] [-o suboptions] server:pathname mount_point
mount [-F nfs] [-mrO] [-o suboptions]
 server1:pathname1,server2:pathname2,...serverN:pathnameN mount_point
mount [-F nfs] [-mrO] [-o suboptions]
 server1,server2,...serverN:pathname mount_point

The first two forms are used when mounting a filesystem listed in the vfstab file. Note that
server is the hostname of the NFS server. The last two forms are used when mounting
replicas. See Section 6.6 later in this chapter.

The -F nfs option is used to specify that the filesystem being mounted is of type NFS. The
option is not necessary because the filesystem type can be discerned from the presence of
host:pathname on the command line.

The -r option says to mount the filesystem as read-only. The preferred way to specify read-
only is the ro suboption to the -o option.

The -m option says to not record the entry in the /etc/mnttab file.

The -O option says to permit the filesystem to be mounted over an existing mount point.
Normally if mount_point already has a filesystem mounted on it, the mount command will fail
with a filesystem busy error.

In addition, you can use -o to specify suboptions. Suboptions can also be specified (without -
o) in the mount options field in /etc/vfstab. The common NFS mount suboptions are:

rw/ro

rw mounts a filesystem as read-write; this is the default. If ro is specified, the
filesystem is mounted as read-only. Use the ro option if the server enforces write
protection for various filesystems.

bg/fg

The bg option tells mount to retry a failed mount attempt in the background, allowing
the foreground mount process to continue. By default, NFS mounts are not performed
in the background, so fg is the default. We'll discuss the bg option further in the next
section. Note that the bg option does not apply to the automounter (see Chapter 9).

Managing NFS and NIS

89

grpid

Since Solaris is a derivative of Unix System V, it will by default obey System V
semantics. One area in which System V differs from 4.x BSD systems is in the group
identifier of newly created files. System V will set the group identifier to the effective
group identifier of the calling process. If the grpid option is set, BSD semantics are
used, and so the group identifier is always inherited from the file's directory. You can
control this behavior on a per-directory basis by not specifying grpid, and instead
setting the set group id bit on the directory with the chmod command:

% chmod g+s /export/home/dir

If the set group id bit is set, then even if grpid is absent, the group identifier of a
created file is inherited from the group identifier of the file's directory. So for
example:

% chmod g+s /export/home/dir
% ls -ld /export/home/dir
drwxr-sr-x 6 mre writers 3584 May 24 09:17
/export/home/dir/
% touch /export/home/dir/test
% ls -l /export/home/dir/test
-rw-r--r-- 1 mre writers 0 May 27 06:07
/export/home/dir/test

quota/noquota

Enables/prevents the quota command to check for quotas on the filesystem.

port=n

Specify the port number of the NFS server. The default is to use the port number as
returned by the rpcbind. This option is typically used to support pseudo NFS servers
that run on the same machine as the NFS client. The Solaris removable media (CD-
ROMs and floppy disks) manager (vold) is an example of such a server.

public

This option is useful for environments that have to cope with firewalls. We will
discuss it in more detail in Chapter 12.

suid/nosuid

Under some situations, the nosuid option prevents security exposures. The default is
suid. We will go into more detail in Chapter 12.

sec=mode

This option lets you set the security mode used on the filesystem. Valid security modes
are as specified in Section 6.2.2 earlier in this chapter. If you're using NFS Version 3,
normally you need not be concerned with security modes in vfstab or the mount
command, because Version 3 has a way to negotiate the security mode. We will go
into more detail in Chapter 12.

Managing NFS and NIS

90

hard/soft

By default, NFS filesystems are hard mounted, and operations on them are retried
until they are acknowledged by the server. If the soft option is specified, an NFS RPC
call returns a timeout error if it fails the number of times specified by the retrans
option.

vers=version

The NFS protocol supports two versions: 2 and 3. By default, the mount command
will attempt to use Version 3 if the server also supports Version 3; otherwise, the
mount will use Version 2. Once the protocol version is negotiated, the version is
bound to the filesystem until it is unmounted and remounted. If you are mounting
multiple filesystems from the same server, you can use different versions of NFS. The
binding of the NFS protocol versions is per mount point and not per NFS client/server
pair. Note the NFS protocol version is independent of the transport protocol used. See
the discussion of the proto option later in this section.

proto=protocol

The NFS protocol supports arbitrary transport protocols, both connection-oriented and
connectionless. TCP is the commonly used connection-oriented protocol for NFS, and
UDP is the commonly used connectionless protocol. The protocol specified in the
proto option is the netid field (the first field) in the /etc/netconfig file. While the
/etc/netconfig file supports several different netids, practically speaking, the only ones
NFS supports today are tcp and udp. By default, the mount command will select TCP
over UDP if the server supports TCP. Otherwise UDP will be used.

It is a popular misconception that NFS Version 3 and NFS over TCP are
synonymous. As noted previously, the NFS protocol version is
independent of the transport protocol used. You can have NFS Version 2
clients and servers that support TCP and UDP (or just TCP, or just
UDP). Similarly, you can have NFS Version 3 clients that support TCP
and UDP (or just TCP, or just UDP). This misconception arose because
Solaris 2.5 introduced both NFS Version 3 and NFS over TCP at the
same time, and so NFS mounts that previously used NFS Version 2 over
UDP now use NFS Version 3 over TCP.

retrans/timeo

The retrans option specifies the number of times to repeat an RPC request before
returning a timeout error on a soft-mounted filesystem. The retrans option is ignored
if the filesystem is using TCP. This is because it is assumed that the system's TCP
protocol driver will do a better of job than the user of the mount command of judging
the necessary TCP level retransmissions. Thus when using TCP, the RPC is sent just
once before returning an error on a soft mounted filesystem. The timeo parameter
varies the RPC timeout period and is given in tenths of a second. For example, in
/etc/vfstab, you could have:

onaga:/export/home/mre - /users/mre nfs - yes
rw,proto=udp,retrans=6,timeo=11

Managing NFS and NIS

91

retry=n

This option specifies the number of times to retry the mount attempt. The default is
10000. (The default is only 1 when using the automounter. See Chapter 9.) See
Section 6.3.4 later in this chapter.

rsize=n/wsize=n

This option controls the maximum transfer size of read (rsize) and write (wsize)
operations. For NFS Version 2, the maximum transfer size is 8192 bytes, which is the
default. For NFS Version 3, the client and server negotiate the maximum. Solaris
systems will by default negotiate a maximum transfer size of 32768 bytes.

intr/nointr

Normally, an NFS operation will continue until an RPC error occurs (and if mounted
hard, most RPC errors will not prevent the operation from continuing) or until it has
completed successfully. If a server is down and a client is waiting for an RPC call to
complete, the process making the RPC call hangs until the server responds (unless
mounted soft). With the intr option, the user can use Unix signals (see the manpage for
kill(1)) to interrupt NFS RPC calls and force the RPC layer to return an error. The intr
option is the default. The nointr option will cause the NFS client to ignore Unix
signals.

noac

This option suppresses attribute caching and forces writes to be synchronously written
to the NFS server. The purpose behind this option to is let each client that mounts with
noac be guaranteed that when it reads a file from the server it will always have the
most recent copy of the data at the time of the read. We will discuss attribute caching
and asynchronous/synchronous NFS input/output in more detail in Chapter 7.

actimeo=n

The options that have the prefix ac(collectively referred to as the ac* options)affect
the length of time that attributes are cached on NFS clients before the client will get
new attributes from the server. The quantity n is specified in seconds. The two options
prefixed with acdiraffect the cache times of directory attributes. The two options
prefixed with acreg affect the cache times of regular file attributes. The actimeo
option simply sets the minimum and maximum cache times of regular files and
directory files to be the same. We will discuss attribute caching in more detail in
Chapter 7.

Managing NFS and NIS

92

It is a popular misconception that if the minimum attribute timeout is set
to 30 seconds, that the NFS client will issue a request to get new
attributes for each open file every 30 seconds. Marketing managers for
products that compete with NFS use this misconception to claim that
NFS is therefore a network bandwidth hog because of all the attribute
requests that are sent around. The reality is that the attribute timeouts are
checked only whenever a process on the NFS client tries to access the
file. If the attribute timeout is 30 seconds and the client has not accessed
the file in five hours, then during that five-hour period, there will be no
NFS requests to get new attributes. Indeed, there will be no NFS requests
at all. For files that are being continuously accessed, with an attribute
timeout of 30 seconds, you can expect to get new attribute requests to
occur no more often than every 30 seconds. Given that in NFS Version
2, and to an even higher degree in NFS Version 3, attributes are piggy-
backed onto the NFS responses, attribute requests would tend to be seen
far less often than every 30 seconds. For the most part, attribute requests
will be seen most often when the NFS client opens a file. This is to
guarantee cache consistency. See Section 7.4.1 for more details.

acdirmax=n

This option is like actimeo, but it affects the maximum attribute timeout on
directories; it defaults to 60 seconds. It can't be higher than 10 hours (36000 seconds).

acdirmin=n

This option is like actimeo, but it affects the minimum attribute timeout on directories;
it defaults to 30 seconds. It can't be higher than one hour (3600 seconds).

acregmax=n

This option is like actimeo, but it affects the maximum attribute timeout on regular
files; it defaults to 60 seconds. It can't be higher than 10 hours (36000 seconds).

acregmin=n

This option is like actimeo, but it affects the minimum attribute timeout on regular
files; it defaults to three seconds. It can't be higher than one hour (3600 seconds).

The nointr, intr, retrans, rsize, wsize, timeo, hard, soft, and ac* options will be discussed in
more detail in the Chapter 18, since they are directly responsible for altering clients'
performance in periods of peak server loading.

6.3.4 Backgrounding mounts

The mount protocol used by clients is subject to the same RPC timeouts as individual NFS
RPC calls. When a client cannot mount an NFS filesystem during the allotted RPC execution
time, it retries the RPC operation up to the count specified by the retry mount option. If the bg
mount option is used, mount starts another process that continues trying to mount the
filesystem in the background, allowing the mount command to consider that request complete

Managing NFS and NIS

93

and to attempt the next mount operation. If bg is not specified, mount blocks waiting for the
remote fileserver to recover, or until the mount retry count has been reached. The default
value of 10,000 may cause a single mount to hang for several hours before mount gives up on
the fileserver.

You cannot put a mount in the background of any system-critical filesystem such as the root (
/) or /usr filesystem on a diskless client. If you need the filesystem to run the system, you
must allow the mount to complete in the foreground. Similarly, if you require some
applications from an NFS-mounted partition during the boot process — let's say you start up a
license server via a script in /etc/rc2.d — you should hard-mount the filesystem with these
executables so that you are not left with a half-functioning machine. Any filesystem that is not
critical to the system's operation can be mounted with the bg option. Use of background
mounts allows your network to recover more gracefully from widespread problems such as
power failures.

When two servers are clients of each other, the bg option must be used in at least one of the
server's /etc/vfstab files. When both servers boot at the same time, for example as the result of
a power failure, one usually tries to mount the other's filesystems before they have been
exported and before NFS is started. If both servers use foreground mounts only, then a
deadlock is possible when they wait on each other to recover as NFS servers. Using bg allows
the first mount attempt to fail and be put into the background. When both servers finally
complete booting, the backgrounded mounts complete successfully. So what if you have
critical mounts on each client, such that backgrounding one is not appropriate? To cope, you
will need to use the automounter (see Chapter 9) instead of vfstab to mount NFS filesystems.

The default value of the retry option was chosen to be large enough to guarantee that a client
makes a sufficiently good effort to mount a filesystem from a crashed or hung server.
However, if some event causes the client and the server to reboot at the same time, and the
client cannot complete the mount before the retry count is exhausted, the client will not mount
the filesystem even when the remote server comes back online. If you have a power failure
early in the weekend, and all the clients come up but a server is down, you may have to
manually remount filesystems on clients that have reached their limit of mount retries.

6.3.5 Hard and soft mounts

The hard and soft mount options determine how a client behaves when the server is
excessively loaded for a long period or when it crashes. By default, all NFS filesystems are
mounted hard, which means that an RPC call that times out will be retried indefinitely until a
response is received from the server. This makes the NFS server look as much like a local
disk as possible — the request that needs to go to disk completes at some point in the future.
An NFS server that crashes looks like a disk that is very, very slow.

A side effect of hard-mounting NFS filesystems is that processes block (or "hang") in a high-
priority disk wait state until their NFS RPC calls complete. If an NFS server goes down, the
clients using its filesystems hang if they reference these filesystems before the server
recovers. Using intr in conjunction with the hard mount option allows users to interrupt
system calls that are blocked waiting on a crashed server. The system call is interrupted when
the process making the call receives a signal, usually sent by the user typing CTRL-C
(interrupt) or using the kill command. CTRL-\ (quit) is another way to generate a signal, as is

Managing NFS and NIS

94

logging out of the NFS client host. When using kill, only SIGINT, SIGQUIT, and SIGHUP
will interrupt NFS operations.

When an NFS filesystem is soft-mounted, repeated RPC call failures eventually cause the
NFS operation to fail as well. Instead of emulating a painfully slow disk, a server exporting a
soft-mounted filesystem looks like a failing disk when it crashes: system calls referencing the
soft-mounted NFS filesystem return errors. Sometimes the errors can be ignored or are
preferable to blocking at high priority; for example, if you were doing an ls -l when the NFS
server crashed, you wouldn't really care if the ls command returned an error as long as your
system didn't hang.

The other side to this "failing disk" analogy is that you never want to write data to an
unreliable device, nor do you want to try to load executables from it. You should not use the
soft option on any filesystem that is writable, nor on any filesystem from which you load
executables. Furthermore, because many applications do not check return value of the read(2)
system call when reading regular files (because those programs were written in the days
before networking was ubiquitous, and disks were reliable enough that reads from disks
virtually never failed), you should not use the soft option on any filesystem that is supplying
input to applications that are in turn using the data for a mission-critical purpose. NFS only
guarantees the consistency of data after a server crash if the NFS filesystem was hard-
mounted by the client. Unless you really know what you are doing, neveruse the soft option.

We'll come back to hard- and soft-mount issues in when we discuss modifying client behavior
in the face of slow NFS servers in Chapter 18.

6.3.6 Resolving mount problems

There are several things that can go wrong when attempting to mount an NFS filesystem. The
most obvious failure of mount is when it cannot find the server, remote filesystem, or local
mount point. You get the usual assortment of errors such as "No such host" and "No such file
or directory." However, you may also get more cryptic messages like:

client# mount orion:/export/orion /hosts/orion
mount: orion:/export/orion on /hosts/orion: No such device.

If either the local or remote filesystem was specified incorrectly, you would expect a message
about a nonexistent file or directory. The device hint in this error indicates that NFS is not
configured into the client's kernel. The device in question is more of a pseudo-device — it's
the interface to the NFS vnode operations. If the NFS client code is not in the kernel, this
interface does not exist and any attempts to use it return invalid device messages. We won't
discuss how to build a kernel; check your documentation for the proper procedures and
options that need to be included to support NFS.

Another cryptic message is "Permission denied." Often this is because the filesystem has been
exported with the options rw=client_list or ro=client_list and your client is not in client_list.
But sometimes it means that the filesystem on the server is not exported at all.

Probably the most common message on NFS clients is "NFS server not responding." An NFS
client will attempt to complete an RPC call up to the number of times specified by the retrans

Managing NFS and NIS

95

option. Once the retransmission limit has been reached, the "not responding" message appears
on the system's console (or in the console window):

NFS server bitatron not responding, still trying

followed by a message indicating that the server has responded to the client's RPC requests:

NFS server bitatron OK

These "not responding" messages may mean that the server is heavily loaded and cannot
respond to NFS requests before the client has had numerous RPC timeouts, or they may
indicate that the server has crashed. The NFS client cannot tell the difference between the
two, because it has no knowledge of why its NFS RPC calls are not being handled. If NFS
clients begin printing "not responding" messages, a server have may have crashed, or you
may be experiencing a burst of activity causing poor server performance.

A less common but more confusing error message is "stale filehandle." Because NFS allows
multiple clients to share the same directory, it opens up a window in which one client can
delete files or directories that are being referenced by another NFS client of the same server.
When the second client goes to reference the deleted directory, the NFS server can no longer
find it on disk, and marks the handle, or pointer, to this directory "invalid." The exact causes
of stale filehandles and suggestions for avoiding them are described in Section 18.8.

If there is a problem with the server's NFS configuration, your attempt to mount filesystems
from it will result in RPC errors when mount cannot reach the portmapper (rpcbind) on the
server. If you get RPC timeouts, then the remote host may have lost its portmapper service or
the mountd daemon may have exited prematurely. Use ps to locate these processes:

server% ps -e | grep -w mountd
274 ? 0:00 mountd
server% ps -e | grep -w rpcbind
106 ? 0:00 rpcbind

You should see both the mountd and the rpcbind processes running on the NFS server.

If mount promptly reports "Program not registered," this means that the mountd daemon never
started up and registered itself. In this case, make sure that mountd is getting started at boot
time on the NFS server, by checking the /etc/dfs/dfstabfile. See Section 6.1 earlier in this
chapter.

Another mountd-related problem is two mountd daemons competing for the same RPC service
number. On some systems (not Solaris), there might be a situation when one mount daemon
can be started in the boot script and one configured into /etc/inet/inetd.conf; the second
instance of the server daemon will not be able to register its RPC service number with the
portmapper. Since the inetd-spawned process is usually the second to appear, it repeatedly
exits and restarts until inetd realizes that the server cannot be started and disables the service.
The NFS RPC daemons should be started from the boot scripts and not from inetd, due to the
overhead of spawning processes from the inetd server (see Section 1.5.3).

There is also a detection mechanism for attempts to make "transitive," or multihop, NFS
mounts. You can only use NFS to mount another system's local filesystem as one of your NFS

Managing NFS and NIS

96

filesystems. You can't mount another system's NFS-mounted filesystems. That is, if
/export/home/bob is local on serverb, then all machines on the network must mount
/export/home/bob from serverb. If a client attempts to mount a remotely mounted directory on
the server, the mount fails with a multihop error message. Let's say NFS client marble has
done:

mount serverb:/export/home/bob /export/home/bob

and marble is also an NFS server that exports /export/home. If a third system tries to mount
marble:/export/home/bob, then the mount fails with the error:

mount: marble:/export/home/bob on /users/bob: Too many levels of remote in
path

"Too many levels" means more than one — the filesystem on the server is itself NFS-
mounted. You cannot nest NFS mounts by mounting through an intermediate fileserver. There
are two practical sides to this restriction:

• Allowing multihop mounts would defeat the host-based permission checking used by
NFS. If a server limits access to a filesystem to a few clients, then one of these client
should not be allowed to NFS-mount the filesystem and make it available to other,
non-trusted systems. Preventing multihop mounts makes the server owning the
filesystem the single authority governing its use — no other machine can circumvent
the access policies set by the NFS server owning a filesystem.

• Any machine used as an intermediate server in a multihop mount becomes a very
inefficient "gateway" between the NFS client and the server owning the filesystem.

We've seen how to export NFS filesystems on a network and how NFS clients mount them.
With this basic explanation of NFS usage, we'll look at how NFS mounts are combined with
symbolic links to create more complex — and sometimes confusing — client filesystem
structures.

6.4 Symbolic links

Symbolic links are both useful and confusing when used with NFS-mounted filesystems.
They can be used to "shape" a filesystem arbitrarily, giving the system administrator freedom
to organize filesystems and pathnames in convenient ways. When used badly, symbolic links
have unexpected and unwanted side effects, including poor performance and "missing" files
or directories. In this section, we'll discuss the many effects that symbolic links can have on
NFS.

Symbolic links differ from hard links in several ways, but the salient distinction is that hard
links duplicate directory entries, while symbolic links are new directory entries of a special
type. Using a hard link to a file is no different from using the original file, but referencing a
symbolic link requires reading the link to find out where it points and then referencing that
file or directory. It is possible to create a loop of symbolic links, but the kernel routines that
read the links and build up pathnames eventually return an error when too many links have
been traversed in a single pathname.

Managing NFS and NIS

97

6.4.1 Resolving symbolic links in NFS

When an NFS client does a stat() of a directory entry and finds it is a symbolic link, it issues
an RPC call to read the link (on the server) and determine where the link points. This is the
equivalent of doing a local readlink() system call to examine the contents of a symbolic link.
The server returns a pathname that is interpreted on the client, not on the server.

The pathname may point to a directory that the client has mounted, or it may not make sense
on the client. If you uncover a link that was made on the server that points to a filesystem not
exported from the server, you will have either trouble or confusion if you resolve the link. If
the link accidentally points to a valid file or directory on the client, the results are often
unpredictable and sometimes unwanted. If the link points to something nonexistent on the
client, an attempt to use it produces an error.

An example here helps explain how links can point in unwanted directions. Let's say that you
install a new publishing package, marker, in the tools filesystem on an NFS server. Once it's
loaded, you realize that you need to free some space on the /tools filesystem, so you move the
font directory used by marker to the /usr filesystem, and make a symbolic link to redirect the
fonts subdirectory to its new location:

mkdir /usr/marker
cd /tools/marker
tar cf - fonts | (cd /usr/marker; tar xbBfp 20 -)
rm -rf fonts
ln -s /usr/marker/fonts fonts

The tar command copies the entire directory tree from the current directory to /usr/marker
(see the manpage for tar(1) for a more detailed explanation).

On the server, the redirection imposed by the symbolic link is invisible to users. However, an
NFS client that mounts /tools/marker and tries to use it will be in for a surprise when the
client tries to find the fonts subdirectory. The client looks at /tools/marker/fonts, realizes that
it's a symbolic link, and asks the NFS server to read the link. The NFS server returns the link's
target — /usr/marker/fonts — and the client tries to open this directory instead. On the client,
however, this directory does not exist. It was created for convenience on the server, but breaks
the NFS clients that use it. To fix this problem, you must create the same symbolic link on all
of the clients, and ensure that the clients can locate the target of the link.

Think of symbolic links as you would files on an NFS server. The server does not interpret
the contents of files, nor does it do anything with the contents of a link except pass it back to
the user process that issued the readlink RPC. Symbolic links are treated as if they existed on
the local host, and they are interpreted relative to the client's filesystem hierarchy.

6.4.2 Absolute and relative pathnames

Symbolic links can point to an absolute pathname (one beginning with /) or a pathname
relative to the link's path. Relative symbolic link targets are resolved relative to the place at
which the link appears in the client's filesystem, not the server's, so it is possible for a relative
link to point at a nonexistent file or directory on the client. Consider this server for /usr/local:

Managing NFS and NIS

98

% cd /usr/local/bin
% ls -l
total 1
lrwxrwxrwx 1 root bin 16 Jun 8 1990 a2ps ->
../bin.mips/a2ps
lrwxrwxrwx 1 root bin 12 Jun 8 1990 mp ->
../bin.mips/mp

If you mount just /usr/local/bin from this server, you will not be able to use any of the
executables in it unless you have them in the directory /usr/local/bin.mips.

Using symbolic links to reduce the number of directories in a pathname is beneficial only if
users are not tempted to cd from one link to another:

ln -s /minnow/fred /u/fred
ln -s /alewife/lucy /u/lucy

The unsuspecting user tries to use the path-compressed names, but finds that relative
pathnames aren't relative to the link directory:

% cd /u/fred
% cd ../lucy
../lucy: No such file or directory

A user may be bewildered by this behavior. According to the /u directory, fred and lucy are
subdirectories of a common parent. In reality, they aren't. The symbolic links hide the real
locations of the fred and lucy directories, which do not have a common parent. Using
symbolic links to shorten pathnames in this fashion is not always the most efficient solution to
the problem; NFS mounts can often be used to produce the same filesystem naming
conventions.

6.4.3 Mount points, exports, and links

Symbolic links have strange effects on mounting and exporting filesystems. A good general
rule to remember is that filesystem operations apply to the target of a link, not to the link
itself. The symbolic link is just a pointer to the real operand.

If you mount a filesystem on a symbolic link, the actual mount occurs on the directory pointed
to by the link. The following sequence of operations produces the same net result:

mkdir -p /users/hal
ln -s /users/hal /usr/hal
mount bitatron:/export/home/hal /usr/hal

as this sequence does:

mkdir -p /users/hal
mount bitatron:/export/home/hal /users/hal
ln -s /users/hal /usr/hal

The filesystem is mounted on the directory /users/hal and the symbolic link /usr/hal has the
mount point as its target. You should make sure that the directory pointed to by the link is on

Managing NFS and NIS

99

a filesystem that is mounted read/write and that performing the mount will not obscure any
required filesystem underneath the symbolic link target.

Exporting a symbolic link from a server follows similar rules. The filesystem or subtree of a
filesystem that is really exported is the one pointed to by the symbolic link. If the parent of the
link's target has already been exported, or a subtree of it is exported, the attempt to export the
link fails.

More interesting than exporting a symbolic link is mounting one from the server. Mounting a
link from a server is not the same thing as mounting a filesystem containing a symbolic link.
The latter means that there is a symbolic link somewhere in the filesystem mounted using
NFS. The former case implies that the server pathname used to locate the remote filesystem is
a link and directs the mount somewhere else. The client mounts the directory pointed to by the
link. As shown in Figure 6-1, if /usr/man is a symbolic link to /usr/share/man, then this mount
command:

mount bitatron:/usr/share/man /mnt

does the same thing as this mount command:

mount bitatron:/usr/man /mnt

Figure 6-1. Mounting a server's symbolic link

A potential problem arises if the symbolic link and the directory it points to are on different
filesystems: it's possible that the server has exported the link's filesystem but not the
filesystem containing the link's target. In this example, /usr/man and /usr/share/man could be
in two distinct filesystems, which would require two entries in the server's dfstab file.

6.5 Replication

Solaris 2.6 introduced the concept of replication to NFS clients. This feature is known as
client-side failover. Client-side failover is useful whenever you have read-only data that you
need to be highly available. An example will illustrate this.

Suppose your user community needs to access a collection of historical data on the last 200
national budgets of the United States. This is a lot of data, and so is a good candidate to store
on a central NFS server. However, because your users' jobs depend on it, you do not want to
have a single point of failure, and so you keep the data on several NFS servers. (Keeping the
data on several NFS servers also gives one the opportunity to load balance). Suppose you

Managing NFS and NIS

100

have three NFS servers, named hamilton, wolcott, and dexter, each exporting a copy of data.
Then each server might have an entry like this in its dfstab file:

share -o ro /export/budget_stats

Now, without client-side failover, each NFS client might have one of the following vfstab
entries:

hamilton:/export/budget_stats - /stats/budget nfs - yes
ro
wolcott:/export/budget_stats - /stats/budget nfs - yes
ro
dexter:/export/budget_stats - /stats/budget nfs - yes
ro

Suppose an NFS client is mounting /stats/budgetfrom NFS server hamilton, and hamilton
stops responding. The user on that client will want to mount a different server. In order to do
this, he'll have to do all of the following:

1. Terminate any applications that are currently accessing files under the /budget_stats
mount point.

2. Unmount /stats/budget.
3. Edit the vfstab file to point at a different server.
4. Mount /stats/budget.

The user might have a problem with the first step, especially if the application has buffered
some unsaved critical information. And the other three steps are tedious.

With client side failover, each NFS client can have a single entry in the vfstab file such as:

hamilton,wolcott,dexter:/export/budget_stat - /budget_stats nfs -
yes ro

This vfstab entry defines a replicated NFS filesystem. When this vfstab entry is mounted, the
NFS client will:

1. Contact each server to verify that each is responding and exporting
/export/budget_stats.

2. Generate a list of the NFS servers that are responding and exporting
/export/budget_stats and associate that list with the mount point.

3. Pick one of the servers to get NFS service from. In other words, the NFS traffic for the
mount point is bound to one server at a time.

As long as the server selected to provide NFS service is responding, the NFS mount operates
as a normal non-client-side failover mount. Assuming the NFS client selected server
hamilton, if hamiltonstops responding, the NFS client will automatically select the next
server, in this case wolcott, without requiring that one manually unmount hamilton, and
mount wolcott. And if wolcott later stops responding, the NFS client would then select dexter.
As you might expect, if later on dexter stops responding, the NFS client will bind the NFS
traffic back to hamilton. Thus, client-side failover uses a round-robin scheme.

You can tell which server a replicated mount is using via the nfsstat command:

Managing NFS and NIS

101

% nfsstat -m
...
/budget_stats from hamilton,wolcott,dexter:/export/budget_stats
 Flags:
vers=3,proto=tcp,sec=sys,hard,intr,llock,link,symlink,acl,rsize=32768,wsize
=32768,
retrans=5
 Failover:noresponse=1, failover=1, remap=1, currserver=wolcott

The currservervalue tells us that NFS traffic for the /budget_stats mount point is bound to
server wolcott. Apparently hamilton stopped responding at one point, because we see non-
zero values for the counters noresponse, failover and remap. The counter noresponse counts
the number of times a remote procedure call to the currently bound NFS server timed out. The
counter failovercounts the number of times the NFS client has "failed over" or switched to
another NFS server due to a timed out remote procedure call. The counter remap counts the
number of files that were "mapped" to another NFS server after a failover. For example, if an
application on the NFS client had /budget_stats/1994/deficit open, and then the client failed
over to another server, the next time the application went to read data from
/budget_stats/1944/deficit, the open file reference would be re-mapped to the corresponding
1944/deficit file on the newly bound NFS server.

Solaris will also notify you when a failover happens. Expect a message like:

NOTICE: NFS: failing over from hamilton to wolcott

on both the NFS client's system console and in its /var/adm/messages file.

By the way, it is not required that each server have the same pathname mounted. The mount
command will let you mount replica servers with different directories. For example:

mount -o ro serverX:/q,serverY:/m /mnt

As long as the contents of serverX:/q and serverY:/m are the same, the top level directory
name does not have to be. The next section discusses rules for content of replicas.

6.5.1 Properties of replicas

Replicas on each server in the replicated filesystem have to be the same in content. For
example, if on an NFS client we have done:

mount -o ro serverX,serverY:/export /mnt

then /export on both servers needs to be an exact copy. One way to generate such a copy
would be:

rlogin serverY
serverY # cd /export
serverY # rm -rf ../export
serverY # mount serverX:/export /mnt
serverY # cd /mnt
serverY # find . -print | cpio -dmp /export
serverY # umount /mnt
serverY # exit

Managing NFS and NIS

102

The third command invoked here, rm -rf ../export is somewhat curious. What we want to do is
remove the contents of /export in a manner that is as fast and secure as possible. We could do
rm -rf /exportbut that has the side of effect of removing /export as well as its contents. Since
/export is exported, any NFS client that is currently mounting serverY:/export will experience
stale filehandles (see Section 18.8). Recreating /export immediately with the mkdir command
does not suffice because of the way NFS servers generate filehandles for clients. The
filehandle contains among other things the inode number (a file's or directory's unique
identification number) and this is almost guaranteed to be different. So we want to remove
just what is under /export. A commonly used method for doing that is:

cd /export ; find . -print | xargs rm -rf

but the problem there is that if someone has placed a filename like foo /etc/passwd (i.e., a file
with an embedded space character) in /export, then the xargs rm -rf command will remove a
file called foo and a file called /etc/passwd, which on Solaris may prevent one from logging
into the system. Doing rm -rf ../export will prevent /export from being removed because rm
will not remove the current working directory. Note that this behavior may vary with other
systems, so test it on something unimportant to be sure.

At any rate, the aforementioned sequence of commands will create a replica that has the
following properties:

• Each regular file, directory, named pipe, symbolic link, socket, and device node in the
original has a corresponding object with the same name in the copy.

• The file type of each regular file, directory, named pipe, symbolic link, socket, and
device node in the original is the same in the corresponding object with same name in
the copy.

• The contents of each regular file, directory, symbolic link and device node in the
original are the equal to the contents of each corresponding object with same name in
the copy.

• The user identifier, group identifier, and file permissions of each regular file,
directory, name pipe, symbolic link, socket, and device node in the original are to
equal the user identifier, group identifier, and file permissions of each corresponding
object with the same name in the copy. Strictly speaking this last property is not
mandatory for client-side failover to work, but if after a failover, the user on the NFS
client no longer has access to the file his application was reading, then the user's
application will stop working.

6.5.2 Rules for mounting replicas

In order to use client-side failover, the filesystem must be mounted with the sub-options ro
(read-only) and hard.

The reason why it has to be mounted read-only is that if NFS clients could write to the replica
filesystem, then the replicas would be no longer synchronized, producing the following
undesirable effects:

• If another NFS client failed over from one server to the server with the modified file, it
would encounter an unexpected inconsistency.

Managing NFS and NIS

103

• Likewise, if the NFS client or application that modified the file failed over to another
server, it would find that its changes were no longer present.

The filesystem has to be mounted hard because it is not clear what it would mean to mount a
replicated filesystem soft. When a filesystem is mounted soft, it is supposed to return an error
from a timed-out remote procedure call. When a replicated filesystem is mounted, after a
remote procedure call times out, the NFS filesystem is supposed to try the next server in the
list associated with the mount point. These two semantics are at odds, so replicated
filesystems must be mounted hard.

The NFS servers in the replica list must support a common NFS version. When specifying a
replicated filesystem that has some servers that support NFS Version 3, and some that support
just NFS Version 2, the mount command will fail with the error "replicas must have the same
version." Usually, though, the NFS servers that support Version 3 will also support Version 2.
Thus, if you are happy with using NFS Version 2 for your replicated filesystem, then you can
force the mount to succeed by specifying the vers=2 suboption. For example:

mount -o vers=2 serverA,serverB,serverC:/export /mnt

Note that it is not a requirement that all the NFS servers in the replicated filesystem support
the same transport protocol (TCP or UDP).

6.5.3 Managing replicas

In Solaris, the onus for creating, distributing, and maintaining replica filesystems is on the
system administrator; there are no tools to manage replication. The techniques used in the
example given in the Section 6.5.1, can be used, although the example script given in that
subsection for generating a replica may cause stale filehandle problems when using it to
update a replica; we will address this in Section 18.8. You will want to automate the replica
distribution procedure. In the example, you would alter the aforementioned example to:

• Prevent stale filehandles.
• Use the rsh command instead of the rlogin command.

Other methods of distribution to consider are ones that use tools like the
rdistandfilesynccommands.

6.5.4 Replicas and the automounter

Replication is best combined with use of the automounter. The integration of the two is
described in Section 9.5.1.

6.6 Naming schemes

Simple, efficient naming schemes make the difference between a filesystem that is well
organized and a pleasure to use, and a filesystem that you are constantly fighting against. In
this section, we'll look at ways of using mount points and symbolic links to create simple,
consistent naming schemes on all NFS clients. NFS provides the mechanism for making
distributed filesystems transparent to the user, but it has no inherent guidelines for creating
easy to use and easier to manage filesystem hierarchies. There are few global rules, and each

Managing NFS and NIS

104

network will adopt conventions based on the number of servers, the kinds of files handled by
those servers, and any peculiar naming requirements of locally developed or third-party
software.

Note that this section assumes that you will not be using the automounter (see Chapter 9). It is
strongly advised that you do use the automounter, because every issue mentioned and solved
here is much more easily solved with the automounter.

As a system administrator, you should first decide how the various NFS fileservers fit
together on a client before assigning filesystem names and filling them with software or users.
Here are some ideas and suggestions for choosing NFS naming schemes:

• Avoid having NFS mounts on directories directly under the root (/) directory of each
NFS client. The reason is that if an NFS server crashes, then any attempts to access the
mounted directory will hang the application even if it is not interested in the NFS
mount point. This can happen if an application invokes the library equivalent of the
pwd command: getcwd(). [1]

[1] The getcwd() routine builds its pathname of the current working directory by searching upward via the ".." directory, and
then reading each directory to find the directory with the same file ID number as the current working directory. To get the file
ID requires invoking the stat() system call on the directory. If the directory is served by an NFS server, and the server is
unavailable, then stat(), hence getcwd(), and the application will hang indefinitely.

• Pick a common directory on each client under which you will mount each user's home
directory. For example, if you pick /users, then each user's home directory is accessed
via the /users/username naming scheme.[2]

[2] The example uses /users and not /home. This is because the automounter in Solaris reserves /home. While you can modify
each Solaris client to remove the reservation, that is tedious. A common error is for people to use vfstab or the mount
command to mount onto /home, and if the automounter has reserved /home, things will fail in odd ways.

This makes it easier to deal with servers that have several filesystems of home
directories. The disadvantage to this approach is that it requires a larger /etc/vfstab file,
with one entry for each user's home directory. If you use the NFS automounter, this
naming scheme is more easily managed than the hostname-oriented one (and the
automounter has a /home/username scheme preconfigured). Directories that follow
any regular naming scheme are easily managed by the automounter, as discussed in
Chapter 9.

• Do not allow the physical location of the files on the server to dictate the pathnames to
be used on the client. For example, if the software tools directory is on
wahoo:/export/home/toolbox, then instead of mounting wahoo:/export/home/toolbox
ontoeachclient's /export/home/toolbox directory, use something more user friendly,
like /software/toolbox:

mount wahoo:/export/home/toolbox /software/toolbox

Normally you don't want people running applications on hosts that are also NFS
servers. However, if you allow this, and if you want users on the NFS server to be able
to access the toolbox as /software/toolbox, then you can either create a symbolic link
from /software/toolbox to /export/home/toolbox, or use the loopback filesystem in
Solaris to accomplish the same thing without the overhead of a symbolic link:

Managing NFS and NIS

105

mount -F lofs /export/home/toolbox /software/toolbox

• Keep growth in mind. Having a single third-party software filesystem may be the most
effective (or only) solution immediately, but over the next year you may need to add a
second or third filesystem to make room for more tools. To provide adequate
performance, you may want to put each filesystem on a different server, distributing
the load. If you choose a naming scheme that cannot be extended, you will end up
renaming things later on and having to support the "old style" names.

In the third-party tools directory example, you could separate tools into subdirectories
grouped by function: /software/tools/epubs for page composition and publishing software, and
/software/tools/cae for engineering tools. If either directory grows enough to warrant its own
filesystem, you can move the subdirectory to a new server and preserve the existing naming
scheme by simply mounting both subdirectories on clients:

 Before: single tools depository
mount toolbox:/export/home/tools /software/tools

 After: multiple filesystems
mount toolbox:/export/home/epubs /software/tools/epubs
mount backpack:/export/home/case /software/tools/cae

6.6.1 Solving the /usr/local puzzle

Let's assume you have a network with many different kinds of workstations: SPARC
workstations, PowerPC-based workstations, Unix PCs, and so on. Of course, each kind of
workstation has its own set of executables. The executables may be built from the same
source files, but you need a different binary for each machine architecture. How do you
arrange the filesystem so that each system has a /usr/local/bin directory (and, by extension,
other executable directories) that contains only the executables that are appropriate for its
architecture? How do you "hide" the executables that aren't appropriate, so there's no chance
that a user will mistakenly try to execute them? This is the /usr/local puzzle: creating an
"architecture neutral" executable directory.

Implementing an architecture-neutral /usr/local/bin is probably one of the first challenges
posed to the system administrator of a heterogeneous network. Everybody wants the standard
set of tools, such as emacs, PostScript filters, mail-pretty printers, and the requisite telephone
list utility. Ideally, there should be one bin directory for each architecture, and when a user
looks in /usr/local/bin on any machine, he or she should find the proper executables. Hiding
the machine architecture is a good job for symbolic links.

One solution is to name the individual binary directories with the machine type as a suffix and
then mount the proper one on /usr/local/bin:

 On server toolbox:
cd /export/home/local
ls
bin.mips bin.sun3 bin.sun4 bin.vax

 On client:
mount toolbox:/export/home/local/bin.`arch` /usr/local/bin

Managing NFS and NIS

106

The mount command determines the architecture of the local host and grabs the correct binary
directory from the server.

This scheme is sufficient if you only have binaries in your local depository, but most sites add
manual pages, source code, and other ASCII files that are shared across client architectures.
There is no need to maintain multiple copies of these files. To accommodate a mixture of
shared ASCII and binary files, use two mounts of the same filesystem: the first mount sets up
the framework of directories, and puts the shared file directories in their proper place. The
second mount deposits the proper binary directory on top of /usr/local/bin:

 On server toolbox:
cd /export/home/local
ls bin
bin.mips bin.sun3 bin.sun4 bin.vax mansharesrc

 On client:
mount toolbox:/export/home/local /usr/local
mount toolbox:/export/home/local/bin.`arch` /usr/local/bin

At first glance, the previous example appears to violate the NFS rules prohibiting the export
of a directory and any of its subdirectories. However, there is only one exported filesystem on
server toolbox, namely, /export/home. The clients mount different parts of this exported
filesystem on top of one another. NFS allows a client to mount any part of an exported
filesystem, on any directory.

To save disk space with the two-mount approach, populate /export/home/bin on the server
with the proper executables, and make the bin.arch directory a symbolic link to bin. This
allows clients of the same architecture as the server to get by with only one mount.

If you keep all executables — scripts and compiled applications — in the bin directories, you
still have a problem with duplication. At some sites, scripts may account for more than half of
the tools in /usr/local/bin, and having to copy them into each architecture-specific bin
directory makes this solution less pleasing.

A more robust solution to the problem is to divide shell scripts and executables into two
directories: scripts go in /usr/local/share while compiled executables live in the familiar
/usr/local/bin. This makes share a peer of the /usr/local/man and src directories, both of
which contain architecture-neutral ASCII files. To adapt to the fully architecture-neutral
/usr/local/bin, users need to put both /usr/local/bin and /usr/local/share in their search paths,
although this is a small price to pay for the guarantee that all tools are accessible from all
systems.

There is one problem with mounting one filesystem on top of another: if the server for these
filesystems goes down, you will not be able to unmount them until the server recovers. When
you unmount a filesystem, it gets information about all of the directories above it. If the
filesystem is not mounted on top of another NFS filesystem, this isn't a problem: all of the
directory information is on the NFS client. However, the hierarchy of mounts used in the
/usr/local/bin example presents a problem. One of the directories that an unmount operation
would need to check is located on the server that crashed. An attempt to unmount the
/usr/local/bin directory will hang because it tries to get information about the /usr/local mount
point — and the server for that mount point is the one that crashed. Similarly, if you try to

Managing NFS and NIS

107

unmount the /usr/local filesystem, this attempt will fail because the /usr/local/bin directory is
in use: it has a filesystem mounted on it.

Managing NFS and NIS

108

Chapter 7. Network File System Design
and Operation
It's possible to configure and use the Network File System without too much knowledge of
how it is implemented or why various design decisions were made. But if you need to debug
problems, or analyze patterns of NFS usage to suggest performance optimizations, you will
need to know more about the inside workings of the NFS protocol and the daemons that
implement it. With an understanding of how and why NFS does the things it does, you can
more readily determine why it is broken or slow — probably the two most common
complaints in any large NFS network.

Like NIS, NFS is implemented as a set of RPC procedures that use eXternal Data
Representation (XDR) encoding to pass arguments between client and server. A filesystem
mounted using NFS provides two levels of transparency:

• The filesystem appears to be resident on a disk attached to the local system, and all of
the filesystem entries — files and directories — are viewed the same way, whether
local or remote. NFS hides the location of the file on the network.

• NFS-mounted filesystems contain no information about the file server from which
they are mounted. The NFS file server may be of a different architecture or running an
entirely different operating system with a radically different filesystem structure. For
example, a Sun machine running Solaris can mount an NFS filesystem from a
Windows NT system or an IBM MVS mainframe, using NFS server implementations
for each of these systems. NFS hides differences in the underlying remote filesystem
structure and makes the remote filesystem appear to be of the exact same structure as
that of the client.

NFS achieves the first level of transparency by defining a generic set of filesystem operations
that are performed on a Virtual File System (VFS). The second level comes from the
definition of virtual nodes, which are related to the more familiar Unix filesystem inode
structures but hide the actual structure of the physical filesystem beneath them. The set of all
procedures that can be performed on files is the vnode interface definition. The vnode and
VFS specifications together define the NFS protocol.

7.1 Virtual filesystems and virtual nodes

The Virtual File System allows a client system to access many different types of filesystems
as if they were all attached locally. VFS hides the differences in implementations under a
consistent interface. On a Unix NFS client, the VFS interface makes all NFS filesystems look
like Unix filesystems, even if they are exported from IBM MVS or Windows NT servers. The
VFS interface is really nothing more than a switchboard for filesystem- and file-oriented
operations, as shown in Figure 7-1.

Managing NFS and NIS

109

Figure 7-1. Virtual File System interfaces

Actions that operate on entire filesystems, such as getting the amount of free space left in the
filesystem, are called VFS operations; calls that operate on files or directories are vnode
operations. On the server side, implementing a VFS entails taking the generic VFS and vnode
operations and converting them into the appropriate actions on the real, underlying filesystem.
This conversion happens invisibly to the NFS client process. It made a straightforward system
call, which the client-side VFS turned into a vnode operation, and the server then converted
into an equivalent operation on its filesystem.

For example, the chown() system call has an analogous operator in the vnode interface that
sets the attributes of a file, as does the stat() system call that retrieves these attributes. There
is not a strict one-to-one relationship of Unix system calls to vnode operations. The write()
system call uses several filesystem calls to get a file's attributes, and append or modify blocks
in the file. Some vnode operations are not defined on certain types of filesystems. The FAT
filesystem, for example, doesn't have an equivalent of symbolic links, so an NFS file server
running on an Windows NT machine rejects any attempts to use the vnode operation to create
a symbolic link.

So far we have defined an interface to some filesystem objects, but not the mechanism used to
"name" objects in the system. In a local Unix system call, these object names are file
descriptors, which uniquely identify a file within the scope of a process. The counterparts of
file descriptors in NFS are filehandles, which are opaque "pointers" to files on the remote
system. An opaque handle is of no value to the client because it can only be interpreted in the
context of the remote filesystem. When you want to make a system call on a file, you first get
a file descriptor for it. To make an NFS call (in the kernel) you must get a filehandle for the
vnode. It is up to the virtual filesystem layer to translate user-level file descriptors into kernel-
level filehandles. Filehandles and their creation will be covered in more depth in the next
section.

7.2 NFS protocol and implementation

NFS is an RPC-based protocol, with a client-server relationship between the machine having
the filesystem to be distributed and the machine wanting access to that filesystem. NFS kernel
server threads run on the server and accept RPC calls from clients. These server threads are
initiated by an nfsd daemon. NFS servers also run the mountd daemon to handle filesystem

Managing NFS and NIS

110

mount requests and some pathname translation. On an NFS client, asynchronous I/O threads
(async threads) are usually run to improve NFS performance, but they are not required.

On the client, each process using NFS files is a client of the server. The client's system calls
that access NFS-mounted files make RPC calls to the NFS servers from which these files
were mounted. The virtual filesystem really just extends the operation of basic system calls
like read() and write(), similar to the way that NIS extends the operation of library calls like
getpwuid(). In NIS, the getpwuid() routine knows how to use the NIS RPC protocol to locate
user information that isn't in the local /etc/passwd file. Within the virtual filesystem, the basic
file- and filesystem-oriented system calls were modified to "know" how to operate on non-
local filesystems.

Let's look at this with an example. On an NFS client, a user process executes a chmod()
system call on an NFS-mounted file. The virtual filesystem passes this system call to NFS,
which then executes a remote procedure call to set the permissions on the file, as specified in
the process's system call. When the RPC completes, the system call returns to the user
process. This example is fairly simple, because it doesn't involve any block I/O to get file data
to or from the NFS server. When blocks of files are moved around, the async threads get
involved to improve NFS performance. This section covers the protocols used by NFS and
features of its implementation that were driven by performance or transparency goals.

7.2.1 NFS RPC procedures

Each version of the NFS RPC protocol contains several procedures, each of which operates on
either a file or a filesystem object. The basic procedures performed on an NFS server can be
grouped into directory operations, file operations, link operations, and filesystem operations.
Directory operations include mkdir and rmdir, which create and destroy directories like their
Unix system call equivalents. readdir reads a directory, using an opaque directory pointer to
perform sequential reads of the same directory. Other directory-oriented procedures are
rename and remove, which operate on entries in a directory the same way the mv and rm
commands do. create makes a new directory entry for a file.

The lookup operation is the heart of the pathname-to-filehandle translation mechanism.
lookup finds a named directory entry and returns a filehandle pointing to it. The open()
system call uses lookup() extensively: it breaks a pathname down into its components and
locates each component in its parent directory. For example, open() would handle the
pathname /home/thud/stern by performing three operations:

• Look up home in the root directory (/).
• Look up thud in /home.
• Look up stern in /home/thud.

File operations are very closely associated with Unix system calls: read and write move data
to and from the NFS client, and getattr and setattr get or modify the file's attributes. In a local
filesystem, such as UFS, these attributes are stored in the file's inode, but file attributes are
mapped to whatever system is used by the NFS server. Link operations include link, which
creates a hard link on the server, and symlink and readlink which create and read the values of
symbolic links, respectively. Finally, statfs is a filesystem operation that returns information
about the mounted filesystem that might be needed by df, for example.

Managing NFS and NIS

111

Other filesystem operations include mounting and unmounting a filesystem, but these are
handled through the NFS mountd server rather than the server threads. Mount operations are
separated from the NFS protocol because mount points revolve around pathnames, and
pathname syntax is peculiar to each operating system. Unix and VMS, for example, do not
use the same syntax to specify the path to a file. The mount protocol is responsible for turning
the server's file pathname into information that NFS can use to locate the file in future
operations.

From the preceding descriptions, it is fairly clear how the basic Unix system calls map into
NFS RPC calls. It is important to note that the NFS RPC protocol and the vnode interface are
two different things. The vnode interface defines a set of operating system services that are
used to access all filesystems, NFS or local. Vnodes simply generalize the interface to file
objects. There are many routines in the vnode interface that correspond directly to procedures
in the NFS protocol, but the vnode interface also contains implementations of operating
system services such as mapping file blocks and buffer cache management.

The NFS RPC protocol is a specific realization of one of these vnode interfaces. It is used to
perform specific vnode operations on remote files. Using the vnode interface, new filesystem
types may be plugged into the operating system by adding kernel routines that perform the
necessary vnode operations on objects in that filesystem.

7.2.2 Statelessness and crash recovery

The NFS protocol is stateless, meaning that there is no need to maintain information about the
protocol on the server. The client keeps track of all information required to send requests to
the server, but the server has no information about previous NFS requests, or how various
NFS requests relate to each other. Remember the differences between the TCP and UDP
protocols: UDP is a stateless protocol that can lose packets or deliver them out of order; TCP
is a stateful protocol that guarantees that packets arrive and are delivered in order. The hosts
using TCP must remember connection state information to recognize when part of a
transmission was lost.

The choice of a stateless protocol has two implications for the design and implementation of
NFS:

• NFS RPC requests must completely describe the operation to be performed. When
writing a file block, for example, the write operation must contain a filehandle, the
offset into the file, and the length of the write operation. This is distinctly different
from the Unix write() system call, which writes a buffer to wherever the current file
descriptor's write pointer directs it. The state contained in the file descriptor does not
exist on the NFS server.

• Most NFS requests are idempotent, which means that an NFS client may send the
same request one or more times without any harmful side effects. The net result of
these duplicate requests is the same. For example, reading a specific block from a file
is idempotent: the same data is returned from each operation.

Obviously, some operations are not idempotent: removing a file can't be repeated
without side effects, because a second attempt to remove the file will fail if the first
one succeeded. Most NFS servers make all requests idempotent by recording recently

Managing NFS and NIS

112

performed operations. A duplicate request that matches one of the recently performed
requests is thrown away by the NFS server.[1]

[1] Not all implementations of NFS have this duplicate request cache. Current releases of Solaris, Compaq's Tru64 Unix, and
other current operating systems implement the cache to improve the performance and "correctness" of NFS. A few, older
implementations of NFS do not reject nonidempotent, duplicate requests. This produces some strange and often incorrect
results when requests are retransmitted. An NFS client that sends the same remove operation to such a server may find that the
designated file was removed, but the RPC call returns the "No such file or directory" error.

The primary motivation for choosing a stateless protocol was to minimize the burden of crash
recovery. Unlike a database system, which must verify transaction logs and look for
incomplete operations, NFS has no explicit crash recovery mechanism. Because no state is
maintained, the server may reboot and begin accepting client NFS requests again as if nothing
had happened. Similarly, when clients reboot, the server does not need to know anything
about them. Each NFS request contains enough information to be completed without any
reference to state on the client or server.

7.2.3 Request retransmission

NFS RPC requests are sent from a client to the server one at a time. A single client process
will not issue another RPC call until the call in progress completes and has been
acknowledged by the NFS server. In this respect NFS RPC calls are like system calls — a
process cannot continue with the next system call until the current one completes. A single
client host may have several RPC calls in progress at any time, coming from several
processes, but each process ensures that its file operations are well ordered by waiting for
their acknowledgements. Using the NFS async threads makes this a little more complicated,
but for now it's helpful to think of each process sending a stream of NFS requests, one at a
time.

When a client makes an RPC request, it sets a timeout period during which the server must
service and acknowledge it. If the server doesn't get the request because it was lost along the
way, or because the server is too overloaded to complete the request within the timeout
period, the client retransmits the request. Requests are idempotent (if the server has a
duplicate request cache), so no harm is done if the server executes the same request twice —
when the NFS client gets a second confirmation from the RPC request, the client discards it.

NFS clients continue to retransmit requests until the request completes, either with an
acknowledgement from the server or an error from the RPC layer. If an NFS server crashes,
clients continue to repeat the call to the RPC layer (if the NFS filesystem is hard-mounted,
otherwise the RPC timeout error is returned to the application) until the server reboots and can
service them again. When the server is up again, NFS clients continue as if nothing happened.
NFS clients cannot tell the difference between a server that has crashed and one that is very
slow. This raises some important issues for tuning NFS servers and networks, which will be
visited in Section 18.1.

The duplicate request cache on NFS servers usually contains a few hundred entries — the last
few seconds (at most) of NFS requests on a busy server. This cache is limited in size to
establish a "window" in which non-idempotent NFS requests are considered duplicates caused
by retransmission rather than distinct requests. For example, if you execute:

% rm foo

Managing NFS and NIS

113

on an NFS client, the client may need to send two or more remove requests to the NFS server
before it receives an acknowledgment. It's up to the NFS server to weed out the duplicate
remove requests, even if they are a second or so apart. However, if you execute rm foo on
Monday, and then on Tuesday you execute the same command in the same directory (where
the file has already been removed), you would be very surprised if rm did not return an error.
Executing this "duplicate request" a day later should produce this familiar error:

% rm foo
rm: foo: No such file or directory

To distinguish between duplicates generated due to an RPC timeout and retry and duplicates
due to you repeating a command (whether it be a day later or a second later), NFS servers
record a 32-bit RPC transaction identifier (xid) with each entry in the duplicate request cache.
The xid is part of every RPC request's header, and it is expected that the NFS client will
generate unique xids.

7.2.4 Preserving Unix filesystem semantics

The VFS makes all filesystems appear homogeneous to user processes. There is a single Unix
system call interface that operates on files, and the VFS and underlying vnode interface
translate semantics of these system calls into actions appropriate for each type of underlying
filesystem. It's important to stress the difference between syntax and semantics of system
calls. Consistent syntax means that the system calls take the same arguments independent of
the underlying filesystem. Semantics refers to what the system calls actually do: preserving
semantics across different filesystem types means that a system call will have the same net
effect on the files in each filesystem type. Unix filesystem semantics collectively refers to the
way in which Unix files behave when various sequences of system calls are made. For
example, opening a file and then unlinking it doesn't cause the file's data blocks to be released
until the close() system call is made. A new filesystem that wants to maintain Unix filesystem
semantics must support this behavior.

The VFS definition makes it possible to ensure that semantics are preserved for all
filesystems, so they all behave in the same manner when Unix system calls are made on their
files. It is easy to use VFS to implement a filesystem with non-Unix semantics. It's also
possible to integrate a filesystem into the VFS interface without supporting all of the Unix
semantics; for example, you can put FAT (a filesystem used in MS-DOS, Windows, and NT
operating systems) filesystems under VFS, but you can't create Unix-like symbolic links on
them because the native FAT filesystem doesn't support symbolic links.

In this section, we'll look at how NFS deals with Unix filesystem semantics, including some
of the operations that aren't exactly the same under NFS. NFS has slightly different semantics
than the local Unix filesystem, but it tries to preserve the Unix semantics. An application that
works with a local filesystem works equally well with an NFS-mounted filesystem and will
not be able to distinguish between the two.

Consistency at the vnode interface level makes NFS a powerful tool for creating filesystem
hierarchies using many different NFS servers. The mount command requires that a filesystem
be mounted on a directory; but directories are vnodes themselves. An NFS filesystem can be
mounted on any vnode, which means that NFS filesystems can be mounted on top of other
NFS filesystems or local filesystems. This is completely consistent with the way in which

Managing NFS and NIS

114

local disks are mounted on local filesystems. /net may be on the root filesystem, and /net/host
is mounted on top of it. A workstation configured using NFS can create a view of the
filesystems on the network that best meets its requirements by mounting these filesystems
with a directory naming scheme of its choice.

Maintaining other Unix filesystem semantics is not quite as easy. Locking operations, for
example, introduce state into a system that was meant to be stateless. This problem is
addressed by a separate lock manager daemon. Another bit of Unix lore that had be preserved
was the retention of an open file's data blocks, even when the file's directory entry was
removed. Many Unix utilities including shells and mailers, use this "delayed unlink" feature
to create temporary files that have no name in the filesystem, and are therefore invisible to
probing users.

A complete solution to the problem would require that the server keep open file reference
counts for each file and not free the file's data blocks until the reference count decreased to
zero. However, this is precisely the kind of state information that makes crash recovery
difficult, so NFS was implemented with a client-side solution that handles the common
applications of this feature. When a remove operation is performed on an open file, the client
issues a rename NFS RPC instead. The file is renamed to .nfsXXXX, where XXXX is a suffix
to make the filename unique. When the file is eventually closed, the client issues the remove
operation on the previously unlinked file. Note that there is no need for an "open" or "close"
NFS RPC procedure, since "opened" and "closed" are states that are maintained on the client.
It is still possible to confuse two clients that attempt to unlink a shared, open NFS-mounted
file, since one client will not know that the other has the file open, but it emulates the
behavior of a local filesystem sufficiently to eliminate the need to change utilities that rely on
it.

7.2.5 Pathnames and filehandles

All NFS operations use filehandles to designate the files or directories on which they will be
performed. Filehandles are created on the server and contain information that uniquely
identifies the file or directory on the server. The client's NFS mount and lookup requests
retrieve these filehandles for existing files. A side effect of making all vnodes homogeneous is
that file pathname lookup must be done one component at a time. Each directory in the
pathname might be a mount point for another filesystem, so each name look-up request cannot
include multiple components. For example, let's look at Client A that NFS-mounts the
/usr/local filesystem and also NFS-mounts a filesystem on /usr/local/bin:

clientA# mount server1:/usr/local /usr/local
clientA# mount server2:/usr/local/bin.mips /usr/local/bin

When the NFS client reaches the bin component in the pathname, it realizes that there is an
NFS filesystem mounted on this directory, and it sends its lookup requests to server2 instead
of server1. If the NFS client passed the whole pathname to server1, it might get the wrong
answer on its lookup: server1 has its own /usr/local/bin directory that may or may not be the
same directory that Client A has mounted. While this may seem to be a very expensive series
of operations, the kernel keeps a directory name lookup cache (DNLC) that prevents every
look-up request from going to an NFS server.

Managing NFS and NIS

115

The lookup operation takes a filename and a filehandle for a directory, and returns a
filehandle pointing to the named file on the server. How then does the pathname traversal get
started, if every lookup requires a filehandle from a previous pathname resolution? The mount
operation seeds the lookup process by providing a filehandle for the root of the mounted
filesystem. Within NFS, the only procedure that accepts full pathnames is the mount RPC,
which turns the pathname into a filehandle for the mounted filesystem.

Let's look at how NFS turns the pathname /usr/local/bin/emacs into an NFS filehandle,
assuming that it's on a filesystem mounted on /usr/local from server wahoo:

• The NFS client asks the mountd daemon on wahoo for a filehandle for the filesystem
the client has mounted on /usr/local, using the server's pathname that was supplied in
the /etc/vfstab file or mount command. That is, if the client has mounted /usr/local
with the /etc/vfstab entry:

wahoo:/tools/local - /usr/local nfs - yes ro,hard

then the client will ask wahoo for a filehandle for the /tools/local directory.[2]

[2] Asking the mountd daemon isn't the only way to get the filehandle for a filesystem. Recall that Chapter 6 briefly mentioned
the public option to the mount command. We will discuss this in more detail in Chapter 12.

• Using the mount point filehandle, the client performs a lookup operation on the next
component in the pathname: bin. It sends a lookup to wahoo, supplying the filehandle
for the /usr/local directory and the name "bin." Server wahoo returns another
filehandle for this directory.

• The client goes to work on the next component in the path, emacs. Again, it sends a
lookup using the filehandle for the directory containing emacs and the name it is
looking for. The filehandle returned by the server is used by the client as a "pointer"
(on the server) to /usr/local/bin/emacs (in the filesystem seen by client) for all future
operations on that file.

Filehandles are opaque to the client. In most NFS implementations on Unix machines, they
are an encoding of the file's inode number, disk device number, and inode generation number.
Other implementations, particularly non-Unix NFS servers that do not have inodes, encode
their own native filesystem information in the filehandle. In any system, the filehandle is in a
form that can be disassembled only on the NFS server. The structures contained in the
filehandle are kept hidden from the client, the same way the structures in an object-oriented
system are hidden in the object's implementation routines. In the case of NFS filehandles, the
data described by the structure doesn't even exist on the client — it's all on the server, where
the filehandle can be converted into a pointer to local file.

Filehandles become invalid, or stale, when the inodes to which they point (on the server) are
freed or re-used. NFS clients have no way of knowing what other operations may be affecting
objects pointed to by their filehandles, so there is no way to warn a client in advance that a
filehandle is invalid. If an RPC call is made with a filehandle that is stale, the NFS server
returns a stale filehandle error to the caller. Say that a user on one client removes an NFS-
mounted directory and its contents using rm -rf test, while another client has a process using
test as its current working directory. The next time the other process tries to read its working
directory, it gets a stale filehandle error back from the NFS server:

Managing NFS and NIS

116

Client A Client B
cd /mnt/test cd /mnt
 rm -rf test
stat(.)-->Stale file handle

If one client removes a file and then creates a new file that re-uses the freed inode, other
filehandles (on other clients) that point to the re-used inode must be marked stale. Inode
generation numbers were added to the basic Unix filesystem to add a time history to an inode.
In addition to the inode number, the filehandle must match the current generation number of
the inode, or it is marked stale. When the inode is re-used for a new file, its generation
number is incremented. Stale filehandles become a problem when one user's work tramples on
an area in use by another, or when a filesystem on a server is rebuilt from a backup tape.
When restoring from a dump tape onto a fresh filesystem, all of the inode generation numbers
in the filesystem are set to random numbers. This causes every filehandle in use for that
filesystem to become stale — every inode pointed to by a pre-restore filehandle now probably
points to a completely different file on the disk.

Therefore, a quick way to cripple an NFS network is to restore a fileserver from a dump tape
without rebooting the NFS clients. When you rebuild the server's filesystems, all of the inode
generation numbers are reset; when you load the tape, files end up with different inode
numbers and different inode generation numbers than they had on the original filesystem. All
NFS client filehandles are now invalid because of the new generation numbers and the
(random) renumbering of each file's inode. Any attempt to use an open filehandle results in
stale filehandle errors. If you are going to restore an NFS-exported filesystem from tape,
unmount it from its clients or reboot the clients.

7.2.6 NFS Version 3

There are four versions of the NFS protocol: Versions 2, 3, and 4. Version 1 did exist, but it
was only a prototype, and neither an implementation nor specification was ever released.
Version 4 has been specified, but at the time this book was written, there were no commercial
implementatons. Version 3 has three major differences from Version 2:

Large file support

Version 2 supported files up to four gigabytes in length, though most implementations
are limited to up to two-gigabyte files. Version 3 supports files up to and including 264
- 1 bytes in length. Large file support was the primary driver for a protocol revision.

Writes to unstable storage

Version 2 of the NFS protocol specified that NFS servers could not reply successfully
to a write request until the data had been committed to stable storage, usually magnetic
disk, but non-volatile RAM was permissible as well. This limited the write throughput
of NFS clients, and so Version 3 of the protocol permits the client to indicate that the
write need not be committed to stable storage. This allows NFS servers to respond
quickly to write requests. Of course, clients are still interested in committing their data
to stable storage, and so Version 3 has a new procedure called commit, which tells the
NFS server to write the uncommitted data to stable storage before returning success.

Managing NFS and NIS

117

The theory behind this, supported by experimental measurement, is that faster
throughput is gained by the NFS server committing data to stable storage in parallel
with the client doing something else (such as generating more NFS requests), before
the client issues the commit. Typically, the NFS Version 3 client will issue a commit
when it is about to close a file, or when buffer space is tight.

Large transfer sizes

NFS Version 2 had a limit of 8192 bytes per NFS read and write request. NFS Version
3 lets the client and server negotiate a mutually acceptable limit.

Recall from Section 1.3.1 that packets larger than the medium's MTU must be
fragmented. Fragmentation of output packets is easy, but the other direction,
reassembly of input fragments, is harder if the fragments arrive out of order, or if a
fragment is dropped or delayed. With larger NFS transfer sizes, the risk of a
reassembly problem is higher, and if there is a problem, the entire datagram must be
retransmitted, including all the fragments. NFS Version 2 was designed to be gentler
to the network during the days when operating systems, routers, and network hardware
were less capable. Nowadays, these components are much more effective, and so NFS
Version 3 removes the artificial limits to transfer size.

7.2.7 NFS over TCP

Both NFS Version 2 and Version 3 operate over UDP and TCP. Since TCP is stateful, and
NFS is stateless, it would seem to be a contradiction, if not an impossibility for NFS to
operate over TCP. However, the layer between NFS and TCP is RPC, and RPC is
implemented to hide state issues of TCP from NFS.

The first time an NFS client contacts a server over TCP, the RPC layer takes care of
establishing a connection. If a server crashes, the client won't know that immediately, but the
next time it sends a request over the connection, the connection will break due to a connection
reset from the server, or a connection timeout. In either case, the RPC layer simply re-
establishes a connection.

Some NFS/TCP implementations, such as that in Solaris, maintain a single connection
between the NFS client and server, such that all traffic—for all users and mount points—is
multiplexed between the client and server. Other implementations, such as those in the BSD
releases, have one connection per mountpoint. Aside from a user-level NFS client like a web
browser, or a Java application linked to NFS classes, you are not likely to encounter an NFS
client that creates a connection per user.

If the client crashes, the server will periodically close connections that haven't been used in a
while. On a Solaris NFS server, this connection idle timer defaults to six minutes.

7.3 NFS components

NFS is similar to other RPC services in its use of a server-side daemon (nfsd) to process
incoming requests. It differs from the typical client-server model in that processes on NFS
clients make some RPC calls themselves, and other RPC calls are made by the clients' async

Managing NFS and NIS

118

threads. All of the NFS client and server code is contained in the kernel, instead of in the
server daemon executable—a decision also driven by performance requirements.

7.3.1 nfsd and NFS server threads

With all of the NFS code in the kernel, why bother with user processes for the server? Why
not make NFS a purely kernel-to-kernel service, without any user processes? On systems that
have an nfsd daemon, nfsd does the following:

• Initializes a transport endpoint to be used by the kernel to process NFS requests from.
This involves allocating a transport endpoint on which to listen for requests, and then
registering the endpoint with the portmapper (rpcbind). It is much more convenient to
do this from a user-level program than in the kernel.

• Invokes a system call to start in-kernel processing of NFS requests on the transport
endpoint.

What the aforementioned system call does varies among implementations. Two common
variations are:

• The nfsd daemon makes one system call that never returns, and that system call
executes the appropriate NFS code in the system's kernel. The process container in
which this system call executes is necessary for scheduling, multithreading, and
providing a user context for the kernel. Multithreading in this case means running
multiple (forked) copies of the same daemon, so that multiple NFS requests may be
handled in parallel on the client and server hosts. For these systems, the most pressing
need for NFS daemons to exist as processes centers around the need for multithreading
NFS RPC requests. Making NFS a purely kernel resident service would require the
kernel to support multiple threads of execution.

• On systems with kernel thread support, such as Solaris 2.2 and higher, the NFS server
daemon (nfsd) takes care of some initialization before making a system call that
causes the kernel to create kernel threads for processing NFS requests in parallel. The
system call does return to nfsd in this case. Since the kernel creates the multiple
threads for parallel processing, there is no need for nfsd to fork copies of itself; only
one copy of nfsd is running.

The alternative to multiple daemons or kernel thread support is that an NFS server is forced to
handle one NFS request at a time. Running multiple daemons or kernel threads allows the
server to have multiple, independent threads of execution, so the server can handle several
NFS requests at once. Daemons or threads service requests in a pseudo-round robin fashion—
whenever a daemon or thread is done with a request it goes to the end of the queue waiting for
a new request. Using this scheduling algorithm, a server is always able to accept a new NFS
request as long as at least one daemon or thread is waiting in queue. Running multiple
daemons or threads lets a server start multiple disk operations at the same time and handle
quick turnaround requests such as getattr and lookup while disk-bound requests are in
progress.

Still, why do systems that have kernel server thread support need a running nfsd daemon
process? With an NFS server that supported just UDP, it would be possible for it to simply
exit once the endpoint was sent to the kernel. With the introduction of NFS/TCP
implementations, transport endpoints get created and closed down continuously. Thus nfsd is

Managing NFS and NIS

119

needed to listen for, accept, and tell the kernel about new connections. Similarly, when the
connections are broken, nfsd takes care of telling the kernel that the endpoint is about to be
closed, and then closes it.

7.3.2 Client I/O system

On the client side, each process accessing an NFS-mounted filesystem makes its own RPC
calls to NFS servers. A single process will be a client of many NFS servers if it is accessing
several filesystems on the client. For operations that do not involve block I/O, such as getting
the attributes of a file or performing a name lookup, having each process make its own RPC
calls provides adequate performance. However, when file blocks are moved between client
and server, NFS needs to use the Unix file buffer cache mechanism to provide throughput
similar to that achieved with a local disk. On many implementations, the client-side async
threadsare the parts of NFS that interact with the buffer cache.

Before looking at async threadsin detail, some explanation of buffer cache and file cache
management is required. The traditional Unix buffer cache is a portion of the system's
memory that is reserved for file blocks that have been recently referenced. When a process is
reading from a file, the operating system performs read-ahead on the file and fills the buffer
cache with blocks that the process will need in future operations. The result of this "pre-fetch"
activity is that not all read() system calls require a disk operation: some can be satisfied with
data in the buffer cache. Similarly, data that is written to disk is written into the cache first;
when the cache fills up, file blocks are flushed out to disk. Again, the buffer cache allows the
operating system to bunch up disk requests, instead of making every system call wait for a
disk transfer.

SunOS 4.x, System V Release 4, and Solaris replace the buffer cache with a page mapping
system. Instead of transferring files into and out of the buffer cache, the virtual memory
management system directly maps files into a process's address space, and treats file accesses
as page faults. Any page that is not being used by the system can be taken to cache file pages.
The net effect is the same as that of a buffer cache, but the size of the cache is not fixed. The
file page cache could be a large percentage of the system's memory if only one or two
processes are doing file I/O operations. For this discussion, we'll refer to the in-memory
copies of file blocks as the "buffer cache," whether it is implemented as a cache of file pages
or as a traditional Unix buffer cache.

The client-side async threads improve NFS performance by filling and draining the buffer
cache on behalf of NFS clients. When a process reads from an NFS-mounted file, it performs
the read RPC itself. To pre-fetch data for the buffer cache, the kernel has the async threads
send more read RPC requests to the server, as if the reading process had requested this data.
NFS functions properly without any async threadson a client — but no read-ahead is done
without them, limiting the throughput of the NFS filesystem. When the async threads are
running, the client's kernel can initiate several RPC calls at the same time. If restricted to a
single RPC call per process, NFS client performance suffers — sometimes dramatically.

When a client writes to a file, the data is put into the buffer cache. After a complete buffer is
filled, the operating system writes out the data in the cache to the filesystem. If the data needs
to be written to an NFS server, the kernel makes an RPC call to perform the write operation.
If there are async threads available, they make the write RPC requests for the client, draining
the buffer cache when the cache management system dictates. If no async threads can make

Managing NFS and NIS

120

the RPC call, the process calling write() performs the RPC call itself. Again, without any
async threads, the kernel can still write to NFS files, but it must do so by forcing each client
process to make its own RPC calls. The async threads allow the client to execute multiple
RPC requests at the same time, performing write-behind on behalf of the processes using NFS
files.

NFS read and write requests are performed in NFS buffer sizes. The buffer size used for disk
I/O requests is independent of the network's MTU and the server or client filesystem block
size. It is chosen based on the most efficient size handled by the network transport protocol,
and is usually 8 kilobytes for NFS Version 2, and 32 kilobytes for NFS Version 3. The NFS
client implements this buffering scheme, so that all disk operations are done in larger (and
usually more efficient) chunks. When reading from a file, an NFS Version 2 read RPC
requests an entire 8 kilobyte NFS buffer. The client process may only request a small portion
of the buffer, but the buffer cache saves the entire buffer to satisfy future references.

For write requests, the buffer cache batches them until a full NFS buffer has been written.
Once a full buffer is ready to be sent to the server, an async thread picks up the buffer and
performs the write RPC request. The size of a buffer in the cache and the size of an NFS
buffer may not be the same; if the machine has 2 kilobyte buffers then four buffers are needed
to make up a complete 8 kilobyte NFS Version 2 buffer. The async thread attempts to
combine buffers from consecutive parts of a file in a single RPC call. It groups smaller buffers
together to form a single NFS buffer, if it can. If a process is performing sequential write
operations on a file, then the async threads will be able to group buffers together and perform
write operations with NFS buffer-sized requests. If the process is writing random data, it is
likely that NFS writes will occur in buffer cache-sized pieces.

On systems that use page mapping (SunOS 4.x, System V Release 4, and Solaris), there is no
buffer cache, so the notion of "filling a buffer" isn't quite as clear. Instead, the async threads
are given file pages whenever a write operation crosses a page boundary. The async threads
group consecutive pages together to form a single NFS buffer. This process is called dirty
page clustering.

If no async threads are running, or if all of them are busy handling other RPC requests, then
the client process performing the write() system call executes the RPC itself (as if there were
no async threads at all). A process that is writing large numbers of file blocks enjoys the
benefits of having multiple write RPC requests performed in parallel: one by each of the
async threads and one that it does itself.

As shown in Figure 7-2, some of the advantages of asynchronous Unix write() operations are
retained by this approach. Smaller write requests that do not force an RPC call return to the
client right away.

Managing NFS and NIS

121

Figure 7-2. NFS buffer writing

Doing the read-ahead and write-behind in NFS buffer-sized chunks imposes a logical block
size on the NFS server, but again, the logical block size has nothing to do with the actual
filesystem implementation on either the NFS client or server. We'll look at the buffering done
by NFS clients when we discuss data caching and NFS write errors. The next section
discusses the interaction of the async threads and Unix system calls in more detail.

The async threads exist in Solaris. Other NFS implementations use
multiple block I/O daemons (biod daemons) to achieve the same result as
async threads.

7.3.3 NFS kernel code

The functions performed by the parallel async threads and kernel server threads provide only
part of the boost required to make NFS performance acceptable. The nfsd is a user-level
process, but contains no code to process NFS requests. The nfsd issues a system call that gives
the kernel a transport endpoint. All the code that sends NFS requests from the client and
processes NFS requests on the server is in the kernel.

It is possible to put the NFS client and server code entirely in user processes. Unfortunately,
making system calls is relatively expensive in terms of operating system overhead, and
moving data to and from user space is also a drain on the system. Implementing NFS code
outside the kernel, at the user level, would require every NFS RPC to go through a very
convoluted sequence of kernel and user process transitions, moving data into and out of the
kernel whenever it was received or sent by a machine.

The kernel implementation of the NFS RPC client and server code eliminates most copying
except for the final move of data from the client's kernel back to the user process requesting it,
and it eliminates extra transitions out of and into the kernel. To see how the NFS daemons,
buffer (or page) cache, and system calls fit together, we'll trace a read() system call through
the client and server kernels:

• A user process calls read() on an NFS mounted file. The process has no way of
determining where the file is, since its only pointer to the file is a Unix file descriptor.

Managing NFS and NIS

122

• The VFS maps the file descriptor to a vnode and calls the read operation for the vnode
type. Since the VFS type is NFS, the system call invokes the NFS client read routine.
In the process of mapping the type to NFS, the file descriptor is also mapped into a
filehandle for use by NFS. Locally, the client has a virtual node (vnode) that locates
this file in its filesystem. The vnode contains a pointer to more specific filesystem
information: for a local file, it points to an inode, and for an NFS file, it points to a
structure containing an NFS filehandle.

• The client read routine checks the local buffer (or page) cache for the data. If it is
present, the data is returned right away. It's possible that the data requested in this
operation was loaded into the cache by a previous NFS read operation. To make the
example interesting, we'll assume that the requested data is not in the client's cache.

• The client process performs an NFS read RPC. If the client and server are using NFS
Version 3, the read request asks for a complete 32 kilobyte NFS buffer (otherwise it
will ask for an 8 kilobyte buffer). The client process goes to sleep waiting for the RPC
request to complete. Note that the client process itself makes the RPC, not the async
thread: the client can't continue execution until the data is returned, so there is nothing
gained by having another process perform its RPC. However, the operating system
will schedule async threads to perform read-ahead for this process, getting the next
buffer from the remote file.

• The server receives the RPC packet and schedules a kernel server thread to handle it.
The server thread picks up the packet, determines the RPC call to be made, and
initiates the disk operation. All of these are kernel functions, so the server thread never
leaves the kernel. The server thread that was scheduled goes to sleep waiting for the
disk read to complete, and when it does, the kernel schedules it again to send the data
and RPC acknowledgment back to the client.

• The reading process on the client wakes up, and takes its data out of the buffer
returned by the NFS read RPC request. The data is left in the buffer cache so that
future read operations do not have to go over the network. The process's read()
system call returns, and the process continues execution. At the same time, the read-
ahead RPC requests sent by the async threads are pre-fetching additional buffers of the
file. If the process is reading the file sequentially, it will be able to perform many
read() system calls before it looks for data that is not in the buffer cache.

Obviously, changing the numbers of async threads and server threads, and the NFS buffer
sizes impacts the behavior of the read-ahead (and write-behind) algorithms. Effects of varying
the number of daemons and the NFS buffer sizes will be explored as part of the performance
discussion in Chapter 17.

7.4 Caching

Caching involves keeping frequently used data "close" to where it is needed, or preloading
data in anticipation of future operations. Data read from disks may be cached until a
subsequent write makes it invalid, and data written to disk is usually cached so that many
consecutive changes to the same file may be written out in a single operation. In NFS, data
caching means not having to send an RPC request over the network to a server: the data is
cached on the NFS client and can be read out of local memory instead of from a remote disk.
Depending upon the filesystem structure and usage, some cache schemes may be prohibited
for certain operations to guarantee data integrity or consistency with multiple processes
reading or writing the same file. Cache policies in NFS ensure that performance is acceptable
while also preventing the introduction of state into the client-server relationship.

Managing NFS and NIS

123

7.4.1 File attribute caching

Not all filesystem operations touch the data in files; many of them either get or set the
attributes of the file such as its length, owner, modification time, and inode number. Because
these attribute-only operations are frequent and do not affect the data in a file, they are prime
candidates for using cached data. Think of ls -l as a classic example of an attribute-only
operation: it gets information about directories and files, but doesn't look at the contents of the
files.

NFS caches file attributes on the client side so that every getattr operation does not have to go
all the way to the NFS server. When a file's attributes are read, they remain valid on the client
for some minimum period of time, typically three seconds. If the file's attributes remain static
for some maximum period, normally 60 seconds, they are flushed from the cache. When an
application on the NFS client modifies an NFS attribute, the attribute is immediately written
back to the server. The only exceptions are implicit changes to the file's size as a result of
writing to the file. As we will see in the next section, data written by the application is not
immediately written to the server, so neither is the file's size attribute.

The same mechanism is used for directory attributes, although they are given a longer
minimum lifespan. The usual defaults for directory attributes are a minimum cache time of 30
seconds and a maximum of 60 seconds. The longer minimum cache period reflects the typical
behavior of periods of intense filesystem activity — files themselves are modified almost
continuously but directory updates (adding or removing files) happen much less frequently.

The attribute cache can get updated by NFS operations that include attributes in the results.
Nearly all of NFS Version 3's RPC procedures include attributes in the results.

Attribute caching allows a client to make a steady stream of access to a file without having to
constantly get attributes from the server. Furthermore, frequently accessed files and
directories, such as the current working directory, have their attributes cached on the client so
that some NFS operations can be performed without having to make an RPC call.

In the previous section, we saw how the async thread fills and drains the NFS client's buffer
or page cache. This presents a cache consistency problem: if an async thread performs read-
ahead on a file, and the client accesses that information at some later time, how does the client
know that the cached copy of the data is valid? What guarantees are there that another client
hasn't changed the file, making the copy of the file's data in the buffer cache invalid?

An NFS client needs to maintain cache consistency with the copy of the file on the NFS
server. It uses file attributes to perform the consistency check. The file's modification time is
used as a cache validity check; if the cached data is newer than the modification time then it
remains valid. As soon as the file's modification time is newer than the time at which the
async thread read data, the cached data must be flushed. In page-mapped systems, the
modification time becomes a "valid bit" for cached pages. If a client reads a file that never
gets modified, it can cache the file's pages for as long as needed.

This feature explains the "accelerated make" phenomenon seen on NFS clients when
compiling code. The second and successive times that a software module (located on an NFS
fileserver) is compiled, the make process is faster than the first build. The reason is that the
first make reads in header files and causes them to be cached. Subsequent builds of the same

Managing NFS and NIS

124

modules or other files using the same headers pick up the cached pages instead of having to
read them from the NFS server. As long as the header files are not modified, the client's
cached pages remain valid. The first compilation requires many more RPC requests to be sent
to the server; the second and successive compilations only send RPC requests to read those
files that have changed.

The cache consistency checks themselves are by the file attribute cache. When a cache
validity check is done, the kernel compares the modification time of the file to the timestamp
on its cached pages; normally this would require reading the file's attributes from the NFS
server. Since file attributes are kept in the file's inode (which is itself cached on the NFS
server), reading file attributes is much less "expensive" than going to disk to read part of the
file. However, if the file attributes are not changing frequently, there is no reason to re-read
them from the server on every cache validity check. The data cache algorithms use the file
attribute cache to speed modification time comparisons.

Keeping previously read data blocks cached on the client does not introduce state into the
NFS system, since nothing is being modified on the client caching the data. Long-lived cache
data introduces consistency problems if one or more other clients have the file open for
writing, which is one of the motivations for limiting the attribute cache validity period. If the
attribute cache data never expired, clients that opened files for reading only would never have
reason to check the server for possible modifications by other clients. Stateless NFS operation
requires each client to be oblivious to all others and to rely on its attribute cache only for
ensuring consistency. Of course, if clients are using different attribute cache aging schemes,
then machines with longer cache attribute lifetimes will have stale data. Attribute caching and
its effects on NFS performance is revisited in Section 18.6.

7.4.2 Client data caching

In the previous section, we looked at the async thread's management of an NFS client's buffer
cache. The async threads perform read-ahead and write-behind for the NFS client processes.
We also saw how NFS moves data in NFS buffers, rather than in page- or buffer cache-sized
chunks. The use of NFS buffers allows NFS operations to utilize some of the sequential disk
I/O optimizations of Unix disk device drivers.

Reading in buffers that are multiples of the local filesystem block size allows NFS to reduce
the cost of getting file blocks from a server. The overhead of performing an RPC call to read
just a few bytes from a file is significant compared to the cost of reading that data from the
server's disk, so it is to the client's and server's advantage to spread the RPC cost over as many
data bytes as possible. If an application sequentially reads data from a file in 128-byte buffers,
the first read operation brings over a full (8 kilobytes for NFS Version 2, usually more for
NFS Version 3) buffer from the filesystem. If the file is less than the buffer size, the entire file
is read from the NFS server. The next read() picks up data that is in the buffer (or page)
cache, and following reads walk through the entire buffer. When the application reads data
that is not cached, another full NFS buffer is read from the server. If there are async threads
performing read-ahead on the client, the next buffer may already be present on the NFS client
by the time the process needs data from it. Performing reads in NFS buffer-sized operations
improves NFS performance significantly by decoupling the client application's system call
buffer size and the VFS implementation's buffer size.

Managing NFS and NIS

125

Going the other way, small write operations to the same file are buffered until they fill a
complete page or buffer. When a full buffer is written, the operating system gives it to an
async thread, and async threads try to cluster write buffers together so they can be sent in NFS
buffer-sized requests. The eventual write RPC call is performed synchronous to the async
thread; that is, the async thread does not continue execution (and start another write or read
operation) until the RPC call completes. What happens on the server depends on what version
of NFS is being used.

• For NFS Version 2, the write RPC operation does not return to the client's async
thread until the file block has been committed to stable, nonvolatile storage. All write
operations are performed synchronously on the server to ensure that no state
information is left in volatile storage, where it would be lost if the server crashed.

• For NFS Version 3, the write RPC operation typically is done with the stable flag set
to off. The server will return as soon as the write is stored in volatile or nonvolatile
storage. Recall from Section 7.2.6 that the client can later force the server to
synchronously write the data to stable storage via the commit operation.

There are elements of a write-back cache in the async threads. Queueing small write
operations until they can be done in buffer-sized RPC calls leaves the client with data that is
not present on a disk, and a client failure before the data is written to the server would leave
the server with an old copy of the file. This behavior is similar to that of the Unix buffer cache
or the page cache in memory-mapped systems. If a client is writing to a local file, blocks of
the file are cached in memory and are not flushed to disk until the operating system schedules
them. If the machine crashes between the time the data is updated in a file cache page and the
time that page is flushed to disk, the file on disk is not changed by the write. This is also
expected of systems with local disks — applications running at the time of the crash may not
leave disk files in well-known states.

Having file blocks cached on the server during writes poses a problem if the server crashes.
The client cannot determine which RPC write operations completed before the crash,
violating the stateless nature of NFS. Writes cannot be cached on the server side, as this
would allow the client to think that the data was properly written when the server is still
exposed to losing the cached request during a reboot.

Ensuring that writes are completed before they are acknowledged introduces a major
bottleneck for NFS write operations, especially for NFS Version 2. A single Version 2 file
write operation may require up to three disk writes on the server to update the file's inode, an
indirect block pointer, and the data block being written. Each of these server write operations
must complete before the NFS write RPC returns to the client. Some vendors eliminate most
of this bottleneck by committing the data to nonvolatile, nondisk storage at memory speeds,
and then moving data from the NFS write buffer memory to disk in large (64 kilobyte)
buffers. Even when using NFS Version 3, the introduction of nonvolatile, nondisk storage can
improve performance, though much less dramatically than with NFS Version 2.

Using the buffer cache and allowing async threads to cluster multiple buffers introduces some
problems when several machines are reading from and writing to the same file. To prevent
file inconsistency with multiple readers and writers of the same file, NFS institutes a flush-on-
close policy:

• All partially filled NFS buffers are written to the NFS server when a file is closed.

Managing NFS and NIS

126

• For NFS Version 3 clients, any writes that were done with the stable flag set to off are
forced onto the server's stable storage via the commit operation.

This ensures that a process on another NFS client sees all changes to a file that it is opening
for reading:

Client A Client B
open()
write()
NFS Version 3 only: commit
close()
 open()
 read()

The read() system call on Client B will see all of the data in a file just written by Client A,
because Client A flushed out all of its buffers for that file when the close() system call was
made. Note that file consistency is less certain if Client B opens the file before Client A has
closed it. If overlapping read and write operations will be performed on a single file, file
locking must be used to prevent cache consistency problems. When a file has been locked, the
use of the buffer cache is disabled for that file, making it more of a write-through than a write-
back cache. Instead of bundling small NFS requests together, each NFS write request for a
locked file is sent to the NFS server immediately.

7.4.3 Server-side caching

The client-side caching mechanisms — file attribute and buffer caching — reduce the number
of requests that need to be sent to an NFS server. On the server, additional cache policies
reduce the time required to service these requests. NFS servers have three caches:

• The inode cache, containing file attributes. Inode entries read from disk are kept in-
core for as long as possible. Being able to read and write these attributes in memory,
instead of having to go to disk, make the get- and set-attribute NFS requests much
faster.

• The directory name lookup cache, or DNLC, containing recently read directory
entries. Caching directory entries means that the server does not have to open and re-
read directories on every pathname resolution. Directory searching is a fairly
expensive operation, since it involves going to disk and searching linearly for a
particular name in the directory. The DNLC cache works at the VFS layer, not at the
local filesystem layer, so it caches directory entries for all types of filesystems. If you
have a CD-ROM drive on your NFS server, and mount it on NFS clients, the DNLC
becomes even more important because reading directory entries from the CD-ROM is
much slower than reading them from a local hard disk. Server configuration effects
that affect both the inode and DNLC cache systems are discussed in Section 16.5.5.

• The server's buffer cache, used for data read from files. As mentioned before, file
blocks that are written to NFS servers cannot be cached, and must be written to disk
before the client's RPC write call can complete. However, the server's buffer or page
cache acts as an efficient read cache for NFS clients. The effects of this caching are
more pronounced in page-mapped systems, since nearly all of the server's memory can
be used as a read cache for file blocks.

Managing NFS and NIS

127

For NFS Version 3 servers, the buffer cache is used also for data written to files
whenever the write RPC has the stable flag set to off. Thus, NFS Version 3 servers
that do not use nondisk, nonvolatile memory to store writes can perform almost as fast
as NFS Version 2 servers that do.

Cache mechanisms on NFS clients and servers provide acceptable NFS performance while
preserving many — but not all — of the semantics of a local filesystem. If you need finer
consistency control when multiple clients are accessing the same files, you need to use file
locking.

7.5 File locking

File locking allows one process to gain exclusive access to a file or part of a file, and forces
other processes requiring access to the file to wait for the lock to be released. Locking is a
stateful operation and does not mesh well with the stateless design of NFS. One of NFS's
design goals is to maintain Unix filesystem semantics on all files, which includes supporting
record locks on files.

Unix locks come in two flavors: BSD-style file locks and System V-style record locks. The
BSD locking mechanism implemented in the flock() system call exists for whole file locking
only, and on Solaris is implemented in terms of the more general System V-style locks. The
System V-style locks are implemented through the fcntl() system call and the lockf() library
routine, which uses fcntl(). System V locking operations are separated from the NFS protocol
and handled by an RPC lock daemon and a status monitoring daemon that recreate and verify
state information when either a client or server reboot.

7.5.1 Lock and status daemons

The RPC lock daemon, lockd, runs on both the client and server. When a lock request is made
for an NFS-mounted file, lockd forwards the request to the server's lockd. The lock daemon
asks the status monitor daemon, statd, to note that the client has requested a lock and to begin
monitoring the client.

The file locking daemon and status monitor daemon keep two directories with lock
"reminders" in them: /var/statmom/sm and /var/statmon/sm.bak. (On some systems, these
directories are /etc/sm and /etc/sm.bak.) The first directory is used by the status monitor on an
NFS server to track the names of hosts that have locked one or more of its files. The files in
/var/statmon/sm are empty and are used primarily as pointers for lock renegotiation after a
server or client crash. When statd is asked to monitor a system, it creates a file with that
system's name in /etc/statmon/sm.

If the system making the lock request must be notified of a server reboot, then an entry is
made in /var/statmon/sm.bak as well. When the status monitor daemon starts up, it calls the
status daemon on all of the systems whose names appear in /var/statmon/sm.bak to notify
them that the NFS server has rebooted. Each client's status daemon tells its lock daemon that
locks may have been lost due to a server crash. The client-side lock daemons resubmit all
outstanding lock requests, recreating the file lock state (on the server) that existed before the
server crashed.

Managing NFS and NIS

128

7.5.2 Client lock recovery

If the server's statd cannot reach a client's status daemon to inform it of the crash recovery, it
begins printing annoying messages on the server's console:

statd: cannot talk to statd at client, RPC: Timed out(5)

These messages indicate that the local statd process could not find the portmapper on the
client to make an RPC call to its status daemon. If the client has also rebooted and is not quite
back on the air, the server's status monitor should eventually find the client and update the file
lock state. However, if the client was taken down, had its named changed, or was removed
from the network altogether, these messages continue until statd is told to stop looking for the
missing client.

To silence statd, kill the status daemon process, remove the appropriate file in
/var/statmon/sm.bak, and restart statd. For example, if server onaga cannot find the statd
daemon on client noreaster, remove that client's entry in /var/statmon/sm.bak :

onaga# ps -eaf | fgrep statd
root 133 1 0 Jan 16 ? 0:00 /usr/lib/nfs/statd
root 8364 6300 0 06:10:27 pts/13 0:00 fgrep statd
onaga# kill -9 133
onaga# cd /var/statmon/sm.bak
onaga# ls
noreaster
onaga# rm noreaster
onaga# cd /
onaga# /usr/lib/nfs/statd

Error messages from statd should be expected whenever an NFS client is removed from the
network, or when clients and servers boot at the same time.

7.5.3 Recreating state information

Because permanent state (state that survives crashes) is maintained on the server host owning
the locked file, the server is given the job of asking clients to re-establish their locks when
state is lost. Only a server crash removes state from the system, and it is missing state that is
impossible to regenerate without some external help.

When a client reboots, it by definition has given up all of its locks, but there is no state lost.
Some state information may remain on the server and be out-of-date, but this "excess" state is
flushed by the server's status monitor. After a client reboot, the server's status daemon notices
the inconsistency between the locks held by the server and those the client thinks it holds. It
informs the server lockd that locks from the rebooted client need reclaiming. The server's
lockd sets a grace period — 45 seconds by default — during which the locks must be
reclaimed or be lost. When a client reboots, it will not reclaim any locks, because there is no
record of the locks in its local lockd. The server releases all of them, removing the old state
from the client-server system.

Think of this server-side responsibility as dealing with your checkbook and your local bank
branch. You keep one set of records, tracking what your balance is, and the bank maintains its
own information about your account. The bank's information is the "truth," no matter how

Managing NFS and NIS

129

good or bad your recording keeping is. If you vanish from the earth or stop contacting the
bank, then the bank tries to contact you for some finite grace period. After that, the bank
releases its records and your money. On the other hand, if the bank were to lose its computer
records in a disaster, it could ask you to submit checks and deposit slips to recreate the
records of your account.

7.6 NFS futures

7.6.1 NFS Version 4

In 1998, Sun Microsystems and the Internet Society completed an agreement giving the
Internet Society control over future versions of NFS, starting with NFS Version 4. The
Internet Society is the umbrella body for the Internet Engineering Task Force (IETF). IETF
now has a working group chartered to define NFS Version 4. The goals of the working group
include:

Better access and performance on the Internet

NFS can be used on the Internet, but it isn't designed to work through firewalls
(although, in Chapter 12 we'll discuss a way to use NFS through a firewall). Even if a
firewall isn't in the way, certain aspects of NFS, such as pathname parsing, can be
expensive on high-latency links. For example, if you want to look at /a/b/c/d/e on a
server, your NFS Version 2 or 3 client will need to make five lookup requests before it
can start reading the file. This is hardly noticeable on an ethernet, but very annoying
on a modem link.

Mandatory security

Most NFS implementations have a default form of authentication that relies on a trust
between the client and server. With more people on the Internet, trust is insufficient.
While there are security flavors for NFS that require strong authentication based on
cryptography, these flavors aren't universally implemented. To claim conformance to
NFS Version 4, implementations will have to offer a common set of security flavors.

Better heterogeneity

NFS has been implemented on a wide array of platforms, including Unix, PCs,
Macintoshes, Java, MVS, and web browsers, but many aspects of it are very Unix-
centric, which prevents it from being the file-sharing system of choice for non-Unix
systems.

For example, the set of attributes that NFS Versions 2 and 3 use is derived completely
from Unix without thought about useful attributes that Windows 98, for example,
might need. The other side of the problem is that some existing NFS attributes are
hard to implement by some non-Unix systems.

Managing NFS and NIS

130

Internationalization and localization

This refers to pathname strings and not the contents of files. Technically, filenames in
NFS Versions 2 and 3 can only be 7-bit ASCII, which is very limiting. Even if one
uses the eighth bit, that still doesn't help the Asian users.

There are no plans to add explicit internationalization and localization hooks to file
content. The NFS protocol's model has always been to treat the content of files as an
opaque stream of bytes that the application must interpret, and Version 4 will not vary
from that.

There has been talk of adding an optional attribute that describes the MIME type of
contents of the file.

Extensibility

After NFS Version 2 was released, it took nine years for the first NFS Version 3
implementations to appear on the market. It will take at least seven years from the
time NFS Version 3 was first available for Version 4 implementations to be marketed.
The gap between Version 2 and Version 3 was especially painful because of the write
performance issue. Had NFS Version 2 included a method for adding procedures, the
pain could have been reduced.

At the time this book was written, the NFS Version 4 working group published the initial NFS
Version 4 specification in the form of RFC 3010, which you can peruse from IETF's web site
at http://www.ietf.org/. Several of the participants in the working group have prototype
implementations that interoperate with each other. Early versions of the Linux
implementation are available from http://www.citi.umich.edu/projects/nfsv4/. Some of the
characteristics of NFS Version 4 that are not in Version 3 include:

No sideband protocols

The separate protocols for mounting and locking have been incorporated into the NFS
protocol.

Statefulness

NFS Version 4 has an OPEN operation that tells the server the client has opened the
file, and a corresponding CLOSE operation. Recall earlier in this chapter, in Section
7.2.2 that the point was made that crash recovery in NFS Versions 2 and 3 is simple
because the server retains very little state. By adding such state, recovery is more
complicated. When a server crashes, clients have a grace period to reestablish the
OPEN state. When a client crashes, because the OPEN state is leased (i.e., has a time
limit that expires if not renewed), a dead client will eventually have its leases timed
out, allowing the server to delete any state. Another point in Section 7.2.2 is that the
operations in NFS Versions 2 and 3 are nonidempotent where possible, and the
idempotent operations results are cached in a duplicate request cache. For the most
part, this is still the case with NFS Version 4. The only exceptions are the OPEN,
CLOSE, and locking operations. Operations like RENAME continue to rely on the
duplicate request cache, a solution with theoretical holes, but in practice has proven to

Managing NFS and NIS

131

be quite sufficient. Thus NFS Version 4 retains much of the character of NFS Versions
2 and 3.

Aggressive caching

Because there is an OPEN operation, the client can be much more lazy about writing
data to the server. Indeed, for temporary files, the server may never see any data
written before the client closes and removes the file.

7.6.2 Security

Aside from lack of multivendor support, the other problem with NFS security flavors is that
they become obsolete rather quickly. To mitigate this, IETF specified the RPCSEC_GSS
security flavor that NFS and other RPC-based protocols could use to normalize access to
different security mechanisms. RPCSEC_GSS accomplishes this using another IETF
specification called the Generic Security Services Application Programming Interface (GSS-
API). GSS-API is an abstract layer for generating messages that are encrypted or signed in a
form that can be sent to a peer on the network for decryption or verification. GSS-API has
been specified to work over Kerberos V5, the Simple Public Key Mechanism, and the Low
Infrastructure Public Key system (LIPKEY). We will discuss NFS security, RPCSEC_GSS,
and Kerberos V5 in more detail in Chapter 12.

The Secure Socket Layer (SSL) and IPSec were considered as candidates to provide NFS
security. SSL wasn't feasible because it was confined to connection-oriented protocols like
TCP, and NFS and RPC work over TCP and UDP. IPSec wasn't feasible because, as noted in
the section Section 7.2.7, NFS clients typically don't have a TCP connection per user;
whereas, it is hard, if not impossible, for an IPSec implementation to authenticate multiple
users over a single TCP/IP connection.

Managing NFS and NIS

132

Chapter 8. Diskless Clients
This chapter is devoted to diskless clients running Solaris. Diskless Solaris clients need not be
served by Solaris machines, since many vendors have adopted Sun's diskless boot protocols.
The current Solaris diskless client support relies entirely on NFS for root and swap filesystem
service and uses NIS maps for host configuration information. Diskless clients are probably
the most troublesome part of NFS. It is a nontrivial matter to get a machine with no local
resources to come up as a fully functioning member of the network, and the interactions
between NIS servers, boot servers, and diskless clients create many ways for the boot
procedure to fail.

There are many motivations for using diskless clients:

• They are quieter than machines with disks.
• They are easier to administer, since there is no local copy of the operating system that

requires updates.
• When using fast network media, like 100Mb ethernet, diskless clients can perform

faster if the server is storing the client's data in a disk array. The reason is that client
workstations typically have one or two disk spindles, whereas if the client data can be
striped across many, usually faster spindles, on the server, the server can provide
better response.

In Solaris 8, support for the unbundled tools (AdminSuite) necessary to configure a server for
diskless client support was dropped. As the Solaris 8 release notes stated:

Solstice AdminSuite 2.3 software is no longer supported with the Solaris 8 operating
environment. Any attempt to run Solstice AdminSuite 2.3 to configure Solstice AutoClients
or diskless clients will result in a failure for which no patch is available or planned. While it
may be possible to manually edit configuration files to enable diskless clients, such an
operation is not recommended or supported.

Setting up a diskless client from scratch without tools is very impractical. Fortunately, Solaris
8, 1/01 Update has been released, which replaces the unbundled AdminSuite with bundled
tools for administering diskless support on the Solaris 8, 1/01 Update servers. Unfortunately,
Solaris 8, 1/01 Update was not available in time to write about its new diskless tools in this
book. Thus, the discussion in the remainder of this chapter focuses on diskless support in
Solaris through and including Solaris 7.

8.1 NFS support for diskless clients

Prior to SunOS 4.0, diskless clients were supported through a separate distributed filesystem
protocol called Network Disk, or ND. A single raw disk partition was divided into several
logical partitions, each of which had a root or swap filesystem on it. Once an ND partition
was created, changing a client's partition size entailed rebuilding the diskless client's partition
from backup or distribution tapes. ND also used a smaller buffer size than NFS, employing
1024-byte buffers for filesystem read and write operations.

In SunOS 4.0 and Solaris, diskless clients are supported entirely through NFS. Two features
in the operating system and NFS protocols allowed ND to be replaced: swapping to a file and

Managing NFS and NIS

133

mounting an NFS filesystem as the root directory. The page-oriented virtual memory
management system in SunOS 4.0 and Solaris treats the swap device like an array of pages, so
that files can be used as swap space. Instead of copying memory pages to blocks of a raw
partition, the VM system copies them to blocks allocated for the swap file. Swap space added
in the filesystem is addressed through a vnode, so it can either be a local Unix filesystem
(UFS) file or an NFS-mounted file. Diskless clients now swap directly to a file on their boot
servers, accessed via NFS.

The second change supporting diskless clients is the VFS_MOUNTROOT() VFS operation.
On the client, it makes the named filesystem the root device of the machine. Once the root
filesystem exists, other filesystems can be mounted on any of its vnodes, so an NFS-mounted
root partition is a necessary bootstrap for any filesystem mount operations on a diskless client.
With the root filesystem NFS-mounted, there was no longer a need for a separate protocol to
map root and swap filesystem logical disk blocks into server filesystem blocks, so the ND
protocol was removed from SunOS.

8.2 Setting up a diskless client

To set up a diskless client, you must have the appropriate operating system software loaded
on its boot server. If the client and server are of the same architecture, then they can share the
/usr filesystem, including the same /usr/platform/<platform> directory. However, if the client
has a different processor or platform architecture, the server must contain the relevant /usr
filesystem and/or /usr/platform/<platform> directory for the client. The /usr filesystem
contains the operating system itself, and will be different for each diskless client processor
architecture. The /usr/platform directory contains subdirectories that in turn contain
executable files that depend on both the machine's hardware implementation (platform) and
CPU architecture. Often several different hardware implementations share the same set of
platform specific executables. Thus, you will find that /usr/platform contains lots of symbolic
links to directories that contain the common machine architecture.

Platform architecture and processor architecture are not the same thing; processor architecture
guarantees that binaries are compatible, while platform architecture compatibility means that
page sizes, kernel data structures, and supported devices are the same. You can determine the
platform architecture of a running machine using uname -i:

% uname -i
SUNW,Ultra-5_10

You can also determine the machine architecture the platform directory in /usr/platform is
likely symbolically linked to:

% uname -m
sun4u

If clients and their server have the same processor architecture but different platform
architectures, then they can share /usr but /usr/platform needs to include subdirectories for
both the client and server platform architectures. Platform specific binaries for each client are
normally placed in /export on the server.

Managing NFS and NIS

134

In Solaris, an unbundled product called AdminSuite is used to set up servers for diskless NFS
clients. This product is currently available as part of the Solaris Easy Access Server (SEAS)
2.0 product and works on Solaris up to Solaris 7.

For each new diskless client, the AdminSuite software can be used to perform the following
steps:

• Give the client a name and an IP address, and add them both to the NIS hosts map or
/etc/hosts file if desired.

• Set up the boot parameters for the client, including its name and the paths to its root
and swap filesystems on the server. The boot server keeps these values in its
/etc/bootparams file or in the NIS bootparams map. A typical bootparams file entry
looks like this:

 buonanotte root=sunne:/export/root/buonanotte \
 swap=sunne:/export/swap/buonanotte

The first line indicates the name of the diskless client and the location of its root
filesystem, and the second line gives the location of the client's swap filesystem. Note
that:

o The swap "filesystem" is really just a single file exported from the server.
o Solaris diskless clients do not actually use bootparams to locate the swap area;

this is done by the diskless administration utlities setting up the appropriate
entry in the client's vfstab file.

• The client system's MAC address and hostname must be added to the NIS ethers map
(or the /etc/ethers file) so that it can determine its IP address using the Reverse ARP
(RARP) protocol. To find the client's MAC address, power it on without the network
cable attached, and look for its MAC address in the power-on diagnostic messages.

• Add an entry for the client to the server's /tftpboot directory, so the server knows how
to locate a boot block for the client. Diskless client servers use this information to
locate the appropriate boot code and to determine if they should answer queries about
booting the client.

• Create root and swap filesystems for the client on the boot server. These filesystems
must be listed in the server's /etc/dfs/dfstab file so they can be NFS-mounted. After the
AdminSuite software updates /etc/dfs/dfstab, it will run shareall to have the changes
take effect. Most systems restrict access to a diskless client root filesystem to that
client. In addition, the filesystem export must allow root to operate on the NFS-
mounted filesystem for normal system operation. A typical /etc/dfs/dfstab entry for a
diskless client's root filesystem is:

 share -F nfs -o rw=vineyard,root=vineyard
 /export/root/vineyard

 share -F nfs -o rw=vineyard,root=vineyard /export/swap/vineyard

The rw option prevents other diskless clients from accessing this filesystem, while the
root option ensures that the superuser on the client will be given normal root
privileges on this filesystem.

Most of these steps could be performed by hand, and if moving a client's diskless
configuration from one server to another, you may find yourself doing just that. However,

Managing NFS and NIS

135

creating a root filesystem for a client from scratch is not feasible, and it is easiest and safest to
use software like AdminSuite to add new diskless clients to the network.

TheAdminSuite software comes in two forms:

• A GUI that is launched from the solstice command:

solstice &

You then double click on the Host Manager icon. Host Manager comes up as simple
screen with an Edit menu item that lets you add new diskless clients, modify existing
ones, and delete existing ones. When you add a new diskless client, you have to tell it
that you want it to be diskless. One reason for this is that Host Manager is intended to
be what its name implies: a general means for managing hosts, whether they be
diskless, servers, standalone or other types. The other reason is that "other types"
includes another kind of NFS client: cache-only clients (referred to as AutoClient
hosts in Sun's product documentation). There is another type of "diskless" client,
which Host Manager doesn't support: a disk-full client that is installed over the
network. A client with disks can have the operating system installed onto those disks,
via a network install (netinstall). Such netinstall clients are configured on the server in
a manner very similar to how diskless clients are, except that unique root and swap
filesystems are not created, and when the client boots over the network, it is presented
with a set of screens for installation. We will discuss netinstall later in this chapter, in
Section 8.8.

• A set of command line tools. The command admhostadd, which will typically live in
/opt/SUNWadm/bin, is used to add a diskless client.

It is beyond the scope of this book to describe the details of Host Manager, or its command-
line equivalents, including how to install them. You should refer to the AdminSuite
documentation, and the online manpages, typically kept under /opt/SUNWadm/man.

Regardless of what form of the AdminSuite software is used, the default server filesystem
naming conventions for diskless client files are shown in Table 8-1.

Table 8-1. Diskless client filesystem locations
Filesystem Contents
/export/root Root filesystems
/export/swap Swap filesystems
/export/exec /usr executables, libraries, etc.

The /export/exec directory contains a set of directories specific to a release of the operating
system, and processor architecture. For example, a Solaris 7 SPARC client would look for a
directory called /export/exec/Solaris_2.7_sparc.all/usr. If all clients have the same processor
architecture as the server, then /export/exec/<os-release-name>_<processor_name>.all will
contain symbolic links to the server's /usr filesystem.

To configure a server with many disks and many clients, create several directories for root
and swap filesystems and distribute them over several disks. For example, on a server with
two disks, split the /export/root and /export/swap filesystems, as shown in Table 8-2.

Managing NFS and NIS

136

Table 8-2. Diskless client filesystems on two disks
Disk Root Filesystems Swap Filesystems
0 /export/root1 /export/swap1
1 /export/root2 /export/swap2

Some implementations (not the AdminSuitesoftware) of the client installation tools do not
allow you to specify a root or swap filesystem directory other than /export/root or
/export/swap. Perform the installation using the tools' defaults, and after the client has been
installed, move its root and swap filesystems. After moving the client's filesystems, be sure to
update the bootparams file and NIS map with the new filesystem locations.

As an alternative to performing an installation and then juggling directories, use symbolic
links to point the /export subdirectories to the desired disk for this client. To force an
installation on /export/root2 and /export/swap2, for example, create the following symbolic
links on the diskless client server:

server# cd /export
server# ln -s root2 root
server# ln -s swap2 swap

Verify that the bootparams entries for the client reflect the actual location of its root and swap
filesystems, and also check the client's /etc/vfstab file to be sure it mounts its filesystems from
/export/root2 and /export/swap2. If the client's /etc/vfstab file contains the generic /export/root
or /export/swap pathnames, the client won't be able to boot if these symbolic links point to the
wrong subdirectories.

8.3 Diskless client boot process

Debugging any sort of diskless client problems requires some knowledge of the boot process.
When a diskless client is powered on, it knows almost nothing about its configuration. It
doesn't know its hostname, since that's established in the boot scripts that it hasn't run yet. It
has no concept of IP addresses, because it has no hosts file or hosts NIS map to read. The only
piece of information it knows for certain is its 48-bit Ethernet address, which is in the
hardware on the CPU (or Ethernet interface) board. To be able to boot, a diskless client must
convert the 48-bit Ethernet address into more useful information such as a boot server name, a
hostname, an IP address, and the location of its root and swap filesystems.

8.3.1 Reverse ARP requests

The heart of the boot process is mapping 48-bit Ethernet addresses to IP addresses. The
Address Resolution Protocol (ARP) is used to locate a 48-bit Ethernet address for a known IP
address. Its inverse, Reverse ARP (or RARP), is used by diskless clients to find their IP
addresses given their Ethernet addresses. Servers run the rarpd daemon to accept and process
RARP requests, which are broadcast on the network by diskless clients attempting to boot.

IP addresses are calculated in two steps. The 48-bit Ethernet address received in the RARP is
used as a key in the /etc/ethers file or ethers NIS map. rarpd locates the hostname associated
with the Ethernet address from the ethers database and uses that name as a key into the hosts
map to find the appropriate IP address.

Managing NFS and NIS

137

For the rarpd daemon to operate correctly, it must be able to get packets from the raw
network interface. RARP packets are not passed up through the TCP or UDP layers of the
protocol stack, so rarpd listens directly on each network interface (e.g., hme0) device node
for RARP requests. Make sure that all boot servers are running rarpd before examining other
possible points of failure. The best way to check is with ps, which should show the rarpd
process:

% ps -eaf | grep rarpd
 root 274 1 0 Apr 16 ? 0:00 /usr/sbin/in.rarpd -a

Some implementations of rarpd are multithreaded, and some will fork child processes. Solaris
rarpd implementations will create a process or thread for each network interface the server
has, plus one extra process or thread. The purpose of the extra thread or child process is to act
as a delayed responder. Sometimes, rarpd gets a request but decides to delay its response by
passing the request to the delayed responder, which waits a few seconds before sending the
response. A per-interface rarpd thread/process chooses to send a delayed response if it
decides it is not the best candidate to answer the request. To understand how this decision is
made, we need to look at the process of converting Ethernet addresses into IP addresses in
more detail.

The client broadcasts a RARP request containing its 48-bit Ethernet address and waits for a
reply. Using the ethers and hosts maps, any RARP server receiving the request attempts to
match it to an IP address for the client. Before sending the reply to the client, the server
verifies that it is the best candidate to boot the client by checking the /tftpboot directory (more
on this soon). If the server has the client's boot parameters but might not be able to boot the
client, it delays sending a reply (by giving the request to the delayed responder daemon) so
that the correct server replies first. Because RARP requests are broadcast, they are received
and processed in somewhat random order by all boot servers on the network. The reply delay
compensates for the time skew in reply generation. The server that thinks it can boot the
diskless client immediately sends its reply to the client; other machines may also send their
replies a short time later.

You may ask "Why should a host other than the client's boot server answer its RARP
request?" After all, if the boot server is down, the diskless client won't be able to boot even if
it does have a hostname and IP address. The primary reason is that the "real" boot server may
be very loaded, and it may not respond to the RARP request before the diskless client times
out. Allowing other hosts to answer the broadcast prevents the client from getting locked into
a cycle of sending a RARP request, timing out, and sending the request again. A related
reason for having multiple RARP replies is that the RARP packet may be missed by the
client's boot server. This is functionally equivalent to the server not replying to the RARP
request promptly: if some host does not provide the correct answer, the client continues to
broadcast RARP packets until its boot server is less heavily loaded. Finally, RARP is used for
other network services as well as for booting diskless clients, so RARP servers must be able
to reply to RARP requests whether they are diskless client boot servers or not.

After receiving any one of the RARP replies, the client knows its IP address, as well as the IP
address of a boot server (found by looking in the packet returned by the server). In some
implementations, a diskless client announces its IP addresses with a message of the form:

Using IP address 192.9.200.1 = C009C801

Managing NFS and NIS

138

A valid IP address is only the first step in booting; the client needs to be able to load the boot
code if it wants to eventually get a Unix kernel running.

8.3.2 Getting a boot block

A local and remote IP address are all that are needed to download the boot block using a
simple file transfer program called tftp (for trivial ftp). This minimal file transfer utility does
no user or password checking and is small enough to fit in the boot PROM. Downloading a
boot block to the client is done from the server's /tftpboot directory.

The server has no specific knowledge of the architecture of the client issuing a RARP or tftp
request. It also needs a mechanism for determining if it can boot the client, using only its IP
address — the first piece of information the client can discern. The server's /tftpboot directory
contains boot blocks for each architecture of client support, and a set of symbolic links that
point to these boot blocks:

[wahoo]% ls -l /tftpboot
total 282
lrwxrwxrwx 1 root root 26 Feb 17 12:43 828D0E09 ->
inetboot.sun4u.Solaris_2.7
lrwxrwxrwx 1 root root 26 Feb 17 12:43 828D0E09.SUN4U ->
inetboot.sun4u.Solaris_2.7
lrwxrwxrwx 1 root root 26 Apr 27 18:14 828D0E0A ->
inetboot.sun4u.Solaris_2.7
lrwxrwxrwx 1 root root 26 Apr 27 18:14 828D0E0A.SUN4U ->
inetboot.sun4u.Solaris_2.7
-rw-r--r-- 1 root root 129632 Feb 17 12:21 inetboot.sun4u.Solaris_2.7
lrwxrwxrwx 1 root root 1 Feb 17 12:17 tftpboot -> .

The link names are the IP addresses of the clients in hexadecimal. The first client link —
828D0E09 — corresponds to IP address 130.141.14.9:

828D0E09
Insert dots to put in IP address format:

82.8D.0E.09
Convert back to decimal:

130.141.14.9

Two links exist for each client — one with the IP address in hexadecimal, and one with the IP
address and the machine architecture. The second link is used by some versions of tftpboot
that specify their architecture when asking for a boot block. It doesn't hurt to have both, as
long as they point to the correct boot block for the client.

The previous section stated that a server delays its response to a RARP request if it doesn't
think it's the best candidate to boot the requesting client. The server makes this determination
by matching the client IP address to a link in /tftpboot. If the link exists, the server is the best
candidate to boot the client; if the link is missing, the server delays its response to allow
another server to reply first.

The client gets its boot block via tftp, sending its request to the server that answered its RARP
request. When the inetd daemon on the server receives the tftp request, it starts an in.tftpd
daemon that locates the right boot file by following the symbolic link representing the client's

Managing NFS and NIS

139

IP address. The tftpd daemon downloads the boot file to the client. In some implementations,
when the client gets a valid boot file, it reports the address of its boot server:

Booting from tftp server at 130.141.14.2 = 828D0E02

It's possible that the first host to reply to the client's RARP request can't boot it — it may have
had valid ethers and hosts map entries for the machine but not a boot file. If the first server
chosen by the diskless client does not answer the tftp request, the client broadcasts this same
request. If no server responds, the machine complains that it cannot find a tftp server.

The tftpd daemon should be run in secure mode using the -s option. This is usually the default
configuration in its /etc/inetd.conf entry:

tftp dgram udp wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot

The argument after the -s is the directory that tftp uses as its root — it does a chdir() into this
directory and then a chroot() to make it the root of the filesystem visible to the tftp process.
This measure prevents tftp from being used to take any file other than a boot block in tftpboot.

The last directory entry in /tftpboot is a symbolic link to itself, using the current directory
entry (.) instead of its full pathname. This symbolic link is used for compatibility with older
systems that passed a full pathname to tftp, such as /tftpboot/C009C801.SUN4U. Following
the symbolic link effectively removes the /tftpboot component and allows a secure tftp to find
the request file in its root directory. Do not remove this symbolic link, or older diskless clients
will not be able to download their boot files.

8.3.3 Booting a kernel

Once the boot file is loaded, the diskless client jumps out of its PROM monitor and into the
boot code. To do anything useful, boot needs a root and swap filesystem, preferably with a
bootable kernel on the root device. To get this information, boot broadcasts a request for boot
parameters. The bootparamd RPC server listens for these requests and returns a gift pack
filled with the location of the root filesystem, the client's hostname, and the name of the boot
server. The filesystem information is kept in /etc/bootparams or in the NIS bootparams map.

The diskless client mounts its root filesystem from the named boot server and boots the kernel
image found there. After configuring root and swap devices, the client begins single user
startup and sets its hostname, IP addresses, and NIS domain name from information in its /etc
files. It is imperative that the names and addresses returned by bootparamd match those in the
client's configuration files, which must also match the contents of the NIS maps.

As part of the single user boot, the client mounts its /usr filesystem from the server listed in its
/etc/vfstab file. At this point, the client has root and swap filesystems, and looks (to the Unix
kernel) no different than a system booting from a local disk. The diskless client executes its
boot script files, and eventually enters multi-user mode and displays a login prompt. Any
breakdowns that occur after the /usr filesystem is mounted are caused by problems in the boot
scripts, not in the diskless client boot process itself.

Managing NFS and NIS

140

8.3.4 Managing boot parameters

Every diskless client boot server has an /etc/bootparams file and/or uses a bootparams NIS
map. On Solaris, the /etc/nsswitch.conf file's bootparams entry controls whether the
information is read from /etc/bootparams, NIS, or both, and in what order.

Here are some suggestions for managing diskless client boot parameters:

• Keep the boot parameters in the bootparams map if you are using NIS. Obviously, if
your NIS master server is also a diskless client server, it will contain a complete
/etc/bootparams file.

• If you have diskless clients in more than one NIS domain, make sure you have a
separate NIS bootparams map for each domain.

• On networks with diskless clients from different vendors, make sure that the format of
the boot parameter information used by each vendor is the same. If one system's
bootparamd daemon returns a boot parameter packet that cannot be understood by
another system, you will not be able to use the NIS bootparams map. We'll look at the
problems caused by differing boot parameter packet formats in Section 15.3.

Eliminating copies of the boot parameter information on the other servers reduces the chances
that you'll have out-of-date information on boot servers after you've made a configuration
change.

8.4 Managing client swap space

Once a client is running, it may need more swap space. Generally, allocating swap space
equal to the physical memory on the client is a good start. Power users, or those who open
many windows, run many processes in the background, or execute large compute-intensive
jobs, may need to have their initial swap allocation increased.

You can increase the swap space on a diskless client, without shutting down the client,
provided you have sufficient space on the server to hold both the client's old swap file, the
server's new swap file, and a temporary swap file equal in size to the old swap file. Here is the
procedure:

1. Create a temporary swap file on the boot server, using mkfile :

 wahoo# cd /export/swap
 wahoo# mkfile 64M honeymoon.tmp wahoo# ls -l honeymoon.tmp
 -rw------T 1 root root 67108864 Jan 9 00:38 honeymoon.tmp

wahoo# share -o root=honeymoon /export/swap/honeymoon.tmp

Make sure you do not use the -n option to mkfile, since this causes the swap file to be
incompletely allocated. If the client tries to find a swap block that should have been
pre-allocated by mkfile, but doesn't exist, the client usually panics and reboots.

2. On the client, mount the temporary swap file:

 honeymoon# mkdir /tmp/swap.tmp
 honeymoon# mount wahoo:/export/swap/honeymoon.tmp /tmp/swap.tmp

honeymoon# swap -a /tmp/swap.tmp

Managing NFS and NIS

141

What is interesting about this is that a regular file, and not a directory, is exported, and
yet it is mounted on top of a directory mount point. Even more interesting is what
happens when you do an ls -l on it:

honeymoon# ls -l /tmp/swap.tmp
-rw------T 1 root root 67108864 Jan 9 00:38
swap.tmp

The /tmp/swap.tmp directory point has become a regular file after the mount.

3. On the client, add the new swap file to the swap system:

honeymoon# swap -a /tmp/swap.tmp

4. Now remove the old swap file from the swap system:

honeymoon# swap -d /dev/swap

5. Unmount the old swap file:

honeymoon# umount /dev/swap

At this point the diskless client is swapping to wahoo:/export/swap/honeymoon.tmp. It is now
safe to construct a bigger wahoo:/export/swap/honeymoon.

6. Remove the old swap file from the server and create a bigger one to replace it:

 wahoo# cd /export/swap
 wahoo# unshare /export/swap/honeymoon
 wahoo# rm /export/swap/honeymoon
 wahoo# mkfile 256M honeymoon

wahoo# share -o root=honeymoon /export/swap/honeymoon

7. On the client, remount the expanded swap file, add it to the swap system, remove the
temporary swap file from the swap system, unmount the temporary swap file, and
remove its mount point:

 honeymoon# mount
 wahoo:/export/swap/honeymoon /dev/swap
 honeymoon# swap -a /dev/swap
 honeymoon# swap -d /tmp/swap.tmp
 honeymoon# umount /tmp/swap.tmp

honeymoon# rmdir /tmp/swap.tmp

8. Remove the temporary swap file from the server:

 wahoo# unshare/export/swap/honeymoon
wahoo# rm /export/swap/honeymoon

Of course, that is a lot of steps. If you don't mind rebooting the client, it is far simpler to do:

Shutdown client honeymoon
wahoo# cd /export/swap
wahoo# rm honeymoon

Managing NFS and NIS

142

wahoo# mkfile 256M honeymoon
wahoo# shareall
Boot client honeymoon

Note that the last bit in the world permission field of a swap file is T, indicating that "sticky-
bit" access is set even though the file has no execute permissions. The mkfile utility sets these
permissions by default. Enabling the sticky bit on a non-executable file has two effects:

• The virtual memory system does not perform read-ahead of this file's data blocks.
• The filesystem code does not write out inode information or indirect blocks each time

the file is modified.

Unlike regular files, no read-ahead should be done for swap files. The virtual memory
management system brings in exactly those pages it needs to satisfy page fault conditions, and
performing read-ahead for swap files only consumes disk bandwidth on the server.

Eliminating the write operations needed to maintain inode and indirect block information does
not present a problem because the diskless client cannot extend its swap filesystem. Only the
file modification time field in the inode will change, so this approach trades off an incorrect
modification time (on the swap file) for fewer write operations.

8.5 Changing a client's name

If you have not changed the default diskless client configuration, it's easiest to shut down the
client, remove its root and swap filesystems, and then create a new client, with the new name,
using the AdminSuite software. However, if you have made a large number of local changes
— modifying configuration files, setting up a name service, and creating mount points — then
it may be easier to change the client's name using the existing root and swap filesystems.

Before making any changes, shut down the client system so that you can work on its root
filesystem and change NIS maps that affect it. On the NIS master server, you need to make
several changes:

1. Update /etc/bootparams to reflect the new client's name and root and swap filesystem
pathnames.

2. Add the new hostname to the hosts map in place of the old client name. If any mail
aliases include the old hostname, or if the host is embedded in a list of local
hostnames, update these files as well.

3. Modify the ethers NIS map if all hosts are listed in it.
4. Rebuild the bootparams, ethers, and hosts maps.

On the client's boot server, complete the renaming process:

1. Rename the root and swap filesystems for the client:

 # cd /export/root
 # mv oldname newname
 # cd /export/swap

mv oldname newname

Managing NFS and NIS

143

2. Update the server's list of exported NFS filesystems with the new root and swap
pathnames. Also change the rw= and root options in /etc/dfs/dfstab. After modifying
the file, share the newly named filesystems, or shareall filesystems, so that the client
will be able to find them when it reboots.

3. In the client's root filesystem, modify its hosts file and boot scripts to reflect the new
hostname:

 # cd /export/root/newname/etc
 # vi hosts
 # vi hostname.*[0-9]*
 # vi nodename

vi /etc/net/*/hosts

In Solaris, the hostname is set in a configuration file with the network interface as an
extension; for example: hostname.hme0. It is essential that the host's name and IP
address in its own hosts file agree with its entries in the NIS map, or the machine
either boots with the wrong IP address or doesn't boot at all.

Aside from shutting the client down, the remainder of this operation could be automated using
a script that takes the old and new client names as arguments. The number of changes that
were made to NIS maps should indicate a clear benefit of using NIS: without the centralized
administration, you would have had to change the /etc/ethers and /etc/bootparams files on
every server, and update /etc/hosts on every machine on the network.

8.6 Troubleshooting

When diskless clients refuse to boot, they do so rather emphatically. Shuffling machines and
hostnames to accommodate changes in personnel increases the likelihood that a diskless
machine will refuse to boot. Start debugging by verifying that hostnames, IP addresses, and
Ethernet addresses are all properly registered on boot and NIS servers. The point at which the
boot fails usually indicates where to look next for the problem: machines that cannot even
locate a boot block may be getting the wrong boot information, while machines that boot but
cannot enter single-user mode may be missing their /usr filesystems.

8.6.1 Missing and inconsistent client information

There are a few pieces of missing host information that are easily tracked down. If a client
tries to boot but gets no RARP response, check that the NIS ethers map or the /etc/ethers files
on the boot servers contain an entry for the client with the proper MAC address. A client
reports RARP failures by complaining that it cannot get its IP address.

Diskless clients that boot part-way but hang after mounting their root filesystems may have
/etc/hosts files that do not agree with the NIS ethers or hosts maps. It's also possible that the
client booted using one name and IP address combination, but chose to use a different name
while going through the single-user boot process. Check the boot scripts to be sure that the
client is using the proper hostname, and also check that its local /etc/hosts file agrees with the
NIS maps.

Other less obvious failures may be due to confusion with the bootparams map and the
bootparamd daemon. Since the diskless client broadcasts a request for boot parameters, any

Managing NFS and NIS

144

host running bootparamd can answer it, and that server may have an incorrect
/etc/bootparams file, or it may have bound to an NIS server with an out-of-date map.

Sometimes when you correct information, things still do not work. The culprit could be
caching. Solaris has a name service cached daemon, /usr/sbin/nscd, which, if running, acts as
a frontend for some databases maintained in /etc or NIS. The nscd daemon could return stale
information and also stale negative information, such as a failed lookup of an IP address in the
hosts file or map. You can re-invoke nscd with the -i option to invalidate the cache. See the
manpage for more details.

8.6.2 Checking boot parameters

The bootparamd daemon returns a fairly large bundle of values to a diskless client. In
addition to the pathnames used for root and swap filesystems, the diskless client gets the name
of its boot server and a default route. Depending on how the /etc/nsswitch.conf is set up, the
boot server takes values from a local /etc/bootparams, so ensure that local file copies match
NIS maps if they are used. Changing the map on the NIS master server will not help a diskless
client if its boot server uses only a local copy of the boot parameters file.

8.6.3 Debugging rarpd and bootparamd

You can debug boot parameter problems by enabling debugging on the boot server. Both
rarpd and bootparamd accept a debug option.

By enabling debugging in rarpd on the server, you can see what requests for what Ethernet
address the client is making, and if rarpd can map it to an IP address. You can turn on rarpd
debugging by killing it on the server and starting it again with the -d option:

ps -eaf | grep rarpd
 root 274 1 0 Apr 16 ? 0:00 /usr/sbin/in.rarpd -a
 root 5890 5825 0 01:02:18 pts/0 0:00 grep rarpd
kill 274
/usr/sbin/in.rarpd -d -a
/usr/sbin/in.rarpd:[1] device hme0 ethernetaddress 8:0:20:a0:16:63
/usr/sbin/in.rarpd:[1] device hme0 address 130.141.14.8
/usr/sbin/in.rarpd:[1] device hme0 subnet mask 255.255.255.0
/usr/sbin/in.rarpd:[5] starting rarp service on device hme0 address
8:0:20:a0:16:63
/usr/sbin/in.rarpd:[5] RARP_REQUEST for 8:0:20:a0:65:8f
/usr/sbin/in.rarpd:[5] trying physical netnum 130.141.14.0 mask ffffff00
/usr/sbin/in.rarpd:[5] good lookup, maps to 130.141.14.9
/usr/sbin/in.rarpd:[5] immediate reply sent

Keep in mind that when starting a daemon with the -d option, it usually stays in the
foreground, so you won't get a shell prompt unless you explicitly place it in the background
by appending an ampersand (&) to command invocation.

The two things to look out for when debugging rarpd are:

• Does rarpd register a RARP_REQUEST? If it doesn't, this could indicate a physical
network problem, or the server is not on the same physical network as the client.

Managing NFS and NIS

145

• Can rarpd map the client's Ethernet address back to an IP address? If not, this could
indicate a bad ethers map, a bad /etc/ethers file, or an /etc/nsswitch.conf file that is not
pointing at the right place.

By enabling debug mode in bootparamd on the server, you can see the hostname, addresses,
and pathnames given to the diskless client. You can turn on bootparamd debugging by killing
it on the server and starting it again with the -d option:

ps -eaf | grep bootparamd
 root 276 1 0 Apr 16 ? 0:00 /usr/sbin/rpc.bootparamd
 root 5878 5825 0 00:33:27 pts/0 0:00 grep bootparamd

kill 276
rpc.bootparamd -d
in debug mode.
msg 1: group = 260 mib_id = 0 length = 128
msg 2: group = 261 mib_id = 0 length = 132
msg 3: group = 1025 mib_id = 0 length = 36
msg 4: group = 1026 mib_id = 0 length = 64
msg 5: group = 260 mib_id = 20 length = 144
msg 6: group = 260 mib_id = 100 length = 88
msg 7: group = 1026 mib_id = 1 length = 0
msg 8: group = 1026 mib_id = 2 length = 0
msg 9: group = 260 mib_id = 21 length = 2464
msg 10: group = 260 mib_id = 22 length = 360
mibget getmsg() 11 returned EOD (level 0, name 0)
interface_addr = 130.141.14.8.
interface_mask = 255.255.255.0
22 records for ipRouteEntryTable
Whoami returning name = honeymoon, router address = 130.141.14.253
getfile_1: file is "honeymoon" 130.141.14.8 "/export/root/honeymoon"

The messages that start with msg are the results of asking the IP layer for Simple Network
Management Protocol (SNMP) Management Information Base (MIB) information. The
bootparamd daemon makes this inquiry to find the IP address of the best router for the
diskless client. The messages that say group = 260 are the ones of interest for this purpose. Of
those messages, the ones with a mib_id of 0 or 20 are of interest. Normally both kinds of
messages will appear. If not, that may indicate a problem with the server's network
configuration. But if there are no problems, we can expect the debug output to show a router
address for the client.

The getfile_1 message is simply reporting that it knows where the client's root filesystem is.
Note the IP address is the same as the server's interface, which means that the NFS server for
the client is the same as the bootparamd server.

If the server shows strange boot parameters passed to the client, check that the server's
/etc/bootparams file is correct, and that the boot server's NIS server has up-to-date maps.

If the boot parameters received by the client are incorrect, check that the server answering the
request for them has current information. Because requests are broadcast to bootparamd, the
server that can reply in the shortest time supplies the information. If the client refuses to boot
at all, complaining of:

null domain name
invalid domain name

Managing NFS and NIS

146

invalid boot parameters

or similar problems, verify that the host answering its broadcasts is using the same boot
protocol and configuration files. See Section 15.3 for an example of invalid boot parameters.

Also ensure that the boot server exports the client's root and swap filesystems with the proper
root mapping and access restrictions. In /etc/dfs/dfstab, both the root and swap filesystems
should have the options:

rw=client,root=client

to limit access to the diskless client and to allow the superuser to write to the filesystems. If
the swap filesystem is not exported so that root can write to it, the diskless client will not be
able to start the init process to begin the single-user boot.

8.6.4 Missing /usr

After setting the host and domain names and configuring network interfaces in the boot
process, a machine mounts its /usr filesystem. If there are problems with /usr, the boot
process either hangs or fails at the first reference to the /usr filesystem. The two most
common problems are not being able to locate the NFS server for /usr and attempting to
mount the wrong /usr.

NIS cannot be started until after /usr is mounted, since client-side daemons like ypbind live in
/usr. Generally, /usr is mounted from the boot server, so a diskless client needs its own name
and its server's hostname in its /etc/hosts. If /usr is not mounted from the root/swap filesystem
server, the /usr server's hostname must appear in the local hosts file as well. You may need as
many as four different entries in the "runt" /etc/hosts file on a diskless client: its hostname, a
localhost entry, the boot server's name, and the name of the /usr server.

Heterogeneous client/server environments create another set of problems. Clients of different
architectures need their own /usr filesystems with executables built for the client's CPU, not
the server's. The most obvious problem is when the client mounts the wrong /usr. If the
executables on it were built for a different CPU, then the first attempt to invoke one of them
produces a fairly descriptive error. However, if the /usr/platform directory is for the correct
CPU architecture but doesn't contain the right kernel architecture (for example, Sun's sun4u
and sun4m variants), then the client boots, but certain Unix utilities will not work. Processes
that read the kernel or user address spaces, such as crash, are the most likely to break.

If you suspect that you're mounting the wrong /usr, first check the client's /etc/vfstab file to
see where it gets /usr :

wahoo:/export/root/honeymoon - / nfs - - rw
wahoo:/export/swap/honeymoon - /dev/swap nfs - - -
wahoo:/export/exec/Solaris_2.7_sparc.all/usr - /usr nfs - - ro

In this example, we would check /export/exec/Solaris_2.7_sparc.all/usr on the server wahoo.
The directories in /export/exec have names with this format:
Solaris_<release>_<architecture>. If the client and the server are of the same CPU
architecture and are running the same release of the operating system, the usr subdirectory in

Managing NFS and NIS

147

/export/exec/Solaris_<release>_<architecture> is a symbolic link to the server's /usr
directory.

If the client and server do not have the same release and CPU architectures, the directories in
/export/exec contain complete operating system releases.

Three things can go wrong with this link-and-directory scheme:

• The links /export/exec/*/usr point to the wrong place. This is possible if you changed
the architecture of the server but restored /export from a backup tape. Make sure that
Solaris_2.7_sparc.all/usr links point to /usr only if the server is a SPARC running
Solaris 7. You'll get "exec format" errors if you mount a /usr of the wrong architecture
on the client.

• The /export/exec/* directories referenced by the clients don't exist. This is possible if
you added a client of a new, different CPU architecture but did not install the
appropriate operating system software for it. If you try to mount a directory that
doesn't exist, you should see "cannot mount root" errors on the client.

• The client may have the wrong mount point listed in its /etc/vfstab file. If you did not
specify the architecture of the client correctly when using the AdminSuite software,
the client's vfstab file is likely to contain the wrong mount information.

If you are unsure of how a mount and link combination will work, experiment on another
diskless client having the same architecture. For example, mount
/export/exec/Solaris_2.7_sparc.all/usr on /mnt, and then try a sample command to be sure
you've mounted the right one:

client# mount wahoo:/export/exec/Solaris_2.7_sparc.all/usr /mnt
client# cd /var
client# /mnt/bin/ls
4lib dict krb5 oasys sbin ucblib
5bin dist kvm old share vmsys
X dt lib openwin snadm xpg4
adm games lost+found platform spool
aset include mail preserve src
bin java man proc tmp
ccs java1.1 net pub ucb
demo kernel news sadm ucbinclude

If commands are executed properly, then you should be able to mount /usr safely on the
diskless client in question.

8.7 Configuration options

Adding disks to local clients opens two configuration options. You can use the local disk for
swap space, or you can build an entire bootable system on it and put the root and swap
filesystems on the local disk. This latter configuration is called a dataless client, and makes
sense if the client does not need most of the local disk for a very large swap space. If the
client has a large swap partition and uses it frequently, adding a local disk may improve
performance by reducing the client's traffic to its boot server. In other instances, the local disk
provides private storage for sensitive files.

Managing NFS and NIS

148

Dataless clients contain no user or data files on their local disks. Everything on the local disk
can be reconstructed from operating system release tapes or from system installation scripts.
The local disks are used for the root and swap filesystems, while /usr and all other filesystems
are NFS-mounted. The dataless architecture provides some performance advantages from
both the client and server perspective, particularly when the client has a large swap space.

A significant portion — usually more than 50% and sometimes 90% — of a diskless client's
network traffic is caused by reading and writing the root and swap filesystems. Clients with
local disks place less of a load on the network and on the boot server by sending their swap
traffic to this disk.

8.7.1 Dataless clients

You may choose to use the dataless client configuration if you have to support a few
machines of a new client architecture and would have to carve the disk space out of the
server's /export partition. Adding a local disk keeps the server configuration simple and puts
all files specific to the new client architecture on the local disks.

The best network architecture for dataless clients is one in which desktop machines run
application sets with large, randomly accessed virtual address spaces. If the machine has a
reasonably high level of paging activity, depending on the speed of the network and capacity
of the NFS servers, using a local disk improves performance. Dataless clients may appear to
be more expensive per seat than diskless clients, since the diskless machines get root and
swap space at "bulk" prices from the server. On the other hand, in a pure diskless client
environment, you must purchase additional disk space to hold the clients' root and swap
filesystems. If you allocate some portion of the server's cost as the cost of replacing local
disks, the dataless and diskless architectures have much less of a price differential. Be careful
when analyzing client/server cost projections. You'll get the fairest numbers when you
compare the total cost of the desktop workstation, any local disk, and the desktop's share of
the cost of servers providing root, swap, and user filesystems.

When you do add local disks, it's important to choose your disk size carefully. If larger local
disks are attached to dataless clients, they become inviting homes for user files that may not
be backed up regularly. If you plan to configure dataless clients, use the smallest disk possible
to contain the root and swap filesystems, with enough room on the local disk's root partition
to contain a very large /var directory. Applications that use enough virtual memory to justify a
local disk probably create huge temporary files on /var/tmp as well.

Management of dataless nodes is slightly more complex than that of diskless nodes. Even
though the local disks contain no user files or tools, they may still have host-specific
configuration information in the /etc directory, such as software password files. Use care
when modifying the private parts of a dataless node so that the entire node can be recreated
from a boot tape or archive tape if the local disk must be replaced. You will probably want to
create a script that creates spool directories, copies printer configuration files, and creates
NFS mount points on the client; you can use this script on dataless or new diskless clients as
well. If possible, mount the dataless client spool directories from an NFS server so that the
dataless client's disk contains no host-specific information. Ideally, you should not have to do
backups of a dataless client.

Managing NFS and NIS

149

After Solaris 2.5.1, the AdminSuite product stopped supporting the dataless configuration
option. This is a bit of an inconvenience to you, but it is surmountable. Consider that a
dataless client is like a disk-full client except that /usr is mounted from an NFS server instead
of from a local disk. The steps for doing this are:

1. Install the operating system on a disk-full client. If possible (depending on how many
disks you have and how big they are), install all the software without specify a /usr
partition. If you have to, specify a separate /var partition if that is what it takes to
prevent a /usr partition from being created. It's OK to have the /usr partition created,
but once you mount /usr from the NFS server, the question then is what do you do
with the redundant local disk space? You can always mount it as another partition, say
/spare, and have it around for future additional needs such as more swap, or more /var
space.

2. Edit /etc/vfstab on the client to mount /usr from an NFS server that has been set up for
diskless client support. If there was an entry for /usr in /etc/vfstab, comment it out. For
example you might comment out /usr 's vfstab:

/dev/dsk/c0t0d0s6 /dev/rdsk/c0t0d0s6 /usr ufs 1 no
-

and add:

wahoo:/export/exec/Solaris_2.7_sparc.all/usr - /usr nfs - -
ro

3. Edit /etc/hosts and add the IP address of the NFS server. Both dataless and diskless
clients require this, because while the system is booting, without /usr available, the
software needed to access NIS or DNS won't be around, so /etc/hosts is needed to
resolve the name of the NFS server to an IP address:

130.141.14.2 wahoo

4. Test this by rebooting the client. If you run into any problems, you can always shut the
system down, and boot the system as single user.

There is a drawback to this scheme. Applying some patches and packages will be less
straightforward, because patches and packages can contain both /usr and root files, but the
dataless client's /usr partition won't be writable by the utilities used to add patches and
packages. The workaround for this is very dependent on the patch and packaging scheme used
by the operating system. In case of Solaris, the patchadd utility has a -R pathname option,
which is normally used to apply patches to a diskless client's root partitions. In that case,
patchadd is run on the NFS server. In the case of a dataless client, you would invoke
patchadd as:

client # patchadd -R / -M . 107460-03

For a package that contains both root and /usr files, you could invoke the Solaris pkgadd
command to install the package in a temporary place, and then copy the non-usr files to the
dataless client's root:

client # mkdir /tmp/scratch
client # pkgadd -d . -R /tmp/scratch SUNWxxxx

Managing NFS and NIS

150

client # cd /tmp/scratch
client # rm -rf usr
client # find . -print | cpio -dump /

8.7.2 Swapping on a local disk

In this configuration option, the client's root and /usr filesystems are NFS-mounted, but swap
is from a local disk. The AdminSuite software doesn't provide an option for diskless client
accessing local swap, but again it is surmountable. The steps are:

1. If not already done, add the diskless client to the boot server via the AdminSuite
software. Go ahead and define a swap partition on the server so that you don't run the
risk of confusing the AdminSuite software.

2. Boot the client from the boot server.
3. Identify and create the swap partition from the local disk. In Solaris, the easiest way to

this is via the format command. When you invoke the format command, it will display
the list of disks attached to the client. You then select one of the local disks and then
use the "partition" command from inside format to find an existing partition and resize
it, or create a partition with the desired size.

4. Edit /etc/vfstab on the client to mount swap from the partition you identified in the
previous step. For example you might change the two NFS-related swap vfstab entries
from:

 wahoo:/export/swap/honeymoon - /dev/swap nfs - - -
/dev/swap - - swap - - -

to:

/dev/dsk/c0t0d0s7 - - swap - no -

5. Reboot the client via diskless boot.

In general, the swap partition should cover most, if not all, of the local disk.

Of course, if you followed the example in Section 8.4, then you know you ought to be able to
switch from NFS swap to local swap without a client reboot. This is only possible if the local
swap partition is at least as big as the NFS-mounted swap file. Instead of rebooting the client
in step 5, you would do:

honeymoon# swap -a /dev/dsk/c0t0d0s7
honeymoon# swap -d /dev/swap

8.8 Brief introduction to JumpStart administration

Diskless NFS was conceived in the mid-1980s during a time when disks for desktops were
bulky, small in capacity, and expensive. Much has changed since then. Because so much disk
space comes with desktop systems today, you may want to utilize it, despite most of the
advantages of diskless operation. One advantage of diskless—ease of administration—is still
quite critical. If you decide that aside from ease of administration, you'd prefer to have your
clients be disk-full or even dataless, you can still leverage the inherent diskless support in
your desktops to centralize many administration tasks, including:

Managing NFS and NIS

151

• Upgrading and patching the desktop operating systems
• Modifying configuration files

Consider that you can install the operating system on your desktop's local disk by booting
from the network interface instead of a disk, i.e., a netinstall. On a SPARC system, at the boot
prompt you would do:

ok boot net - install

Solaris NFS servers have a feature known as JumpStart installation that lets you customize
the configuration of your desktops. The difference between JumpStart-driven configuration
and diskless driver configuration is that with the former, the onus is on the user to shut down
and boot the desktop over the network to let JumpStart configuration take effect. With
diskless configuration, the system administrator can make changes on the server and have the
changes take immediate effect. However, as discussed earlier in this chapter, often such
changes on the NFS server have to be coordinated with the desktop user. Thus, you can argue
that in terms of ease of administration, there's no qualitative difference between JumpStart
and diskless operation.

It is beyond the scope of this book to describe the JumpStart feature in detail. The Solaris
documentation and the book Automating Solaris Installations, by Paul Anthony Kasper and
Alan L. McClellan (Prentice Hall PTR/Sun Microsystems Press, 1995), are extensive
treatments of the subject. Once you've grasped the theory of JumpStart installation, of
particular interest will be the section "Bypassing the Installation Software" in Chapter 10 of
Kasper's and McClellan's book. This section describes how you can use "begin" and "finish"
scripts to modify the state of a system, without being forced to reinstall the operating system.
Thus configuration tasks can be done quickly and efficiently, with no unnecessary user
interaction.

8.9 Client/server ratios

The number of clients that can be supported from a single server depends on many variables:
the type of work done on each client, the type of disks and network interfaces on the server,
the number of clients on the network, and the configuration of the clients. Diskless clients
used in a software engineering shop do not have the same server requirements as diskless
machines used to run the documentation group. Similarly, when dozens of diskless clients are
put onto the same physical network, the network itself becomes a bottleneck before the server
does. Instead of adopting a somewhat arbitrary client-server ratio, use the following steps to
calculate a rough client-server distribution:

1. Set up a diskless or dataless client on a network with its own server. Put home
directories, applications, tools, and other NFS-mounted filesystems on another server,
so that the server under test does nothing but handle root and swap filesystem requests
from the client. Use only one client for this test so that the server does not become a
bottleneck: you want to measure the load imposed by a single client in an
unconstrained environment.

2. Run a normal workload on the client, using scripts or a live user to produce a typical
traffic pattern. On the server, measure the average traffic generated (over the course of
several hours) and also try to measure the peak request rates produced by the client.

Managing NFS and NIS

152

Use the nfsstat utility on the server to determine the number of NFS requests per
second that the server handles. nfsstat is described in more detail in Chapter 14.

3. Repeat the first two steps for each "type" of client or user: diskless client, dataless
client, development engineer, testing/quality assurance lab, documentation writer, and
so on. Blend these figures together based on the percentage of each client type to
determine the average NFS load imposed by all of the clients.

4. Tune and benchmark the server using the methodologies described in Chapter 17. The
benchmarks should produce an expected upper bound on the number of NFS
operations that the server can provide.

5. Divide the server's capacity by the weighted average of the client request rates to
determine a coarse client-server ratio. Conversely, you can multiply the weighted
number of NFS operations performed by each client by the number of clients to set a
goal for the server tuning process.

The ratio produced in this manner should be used as a coarse estimate only. The client-server
ratio will be overstated because each diskless client server may handle other responsibilities,
such as serving other NFS filesystems or driving printers. It may also be understated, because
it is rare to find an environment in which the average load produced by N hosts is N times the
load produced by a single host. Desktop users simply aren't that synchronized. We'll take
closer looks at server and client tuning, NFS benchmarking, and performance optimization in
later chapters.

Managing NFS and NIS

153

Chapter 9. The Automounter
The automounter is a tool that automatically mounts NFS filesystems when they are
referenced and unmounts them when they are no longer needed. It applies NIS management to
NFS configuration files so that you can edit a single NIS map and have it affect client mount
information throughout the network. Using the automounter, you don't have to keep
/etc/vfstab files up-to-date by hand.[1] Mount information, including the server's name,
filesystem pathname on the server, local mount point and mount options, is contained in
automounter maps, which are usually maintained in NIS maps.

[1] The automounter is included in Solaris, Compaq's Tru64 Unix, SGI's IRIX, IBM's AIX, and other commercial Unix operating systems. A public
domain version called amd is available on http://www.cs.columbia.edu/~ezk/am-utils/ and amd runs on almost any Unix system. Because it is kernel-
and server-independent, the amd automounter is easily migrated to other NFS client platforms.

Why would you want to bother with another administrative tool? What's wrong with putting
all of the remote filesystem information in each hosts' /etc/vfstab file? There are many
motivations for using the automounter:

• /etc/vfstab files on every host become much less complex as the automounter handles
the common entries in this file.

• The automounter maps may be maintained using NIS, streamlining the administration
of mount tables for all hosts in the network the same way NIS streamlines user
account information.

• Your exposure to hanging a process when an NFS server crashes is greatly reduced.
The automounter unmounts all filesystems that are not in use, removing dependencies
on fileservers that are not currently referenced by the client.

• The automounter extends the basic NFS mount protocol to find the "nearest server" for
replicated, read-only filesystems. The NFS server that is closest to the client — going
through the fewest number of bridges and routers — will handle the mount request.
Distributing client load in this manner reduces the load on the more heavily used
network hardware.

In a large and dynamic NFS environment, it is difficult to keep the vfstab file on each
machine up-to-date. Doing so requires creating mount points and usually hand-editing
configuration files; automatic distribution of vfstab files is made difficult by the large number
of host-specific entries in each. As you add new software packages or filesystems on the
network, you usually have to edit every vfstab file. Using the automounter, you change one
NIS map and allow the automounter to provide the new mount point information on all NIS
clients.

Adding NFS servers is usually accompanied by a juggling of directories. It is likely that every
client will be required to mount filesystems from the new server. As new NFS servers add
filesystems to the network, the clients develop new dependencies on these servers, and their
vfstab files grow in complexity.

Users cannot simply mount filesystems at their whim without root privileges. The
automounter handles this problem by performing the mount as the filesystems are referenced,
which is usually the point at which users decide they need to perform the mount themselves.
Some users request that their machines mount only those filesystems of interest to them to
eliminate the possibility that their machines will hang if a server containing "uninteresting"
files hangs. The automounter eliminates dependencies on these unrelated NFS servers by

Managing NFS and NIS

154

imposing a working-set notion on the set of mounted filesystems. When a filesystem is first
referenced, the automounter mounts it at the appropriate place in the local filesystem. After
several minutes (ten by default), the automounter attempts to unmount all filesystems that it
previously mounted. If the filesystem is quiescent, and therefore probably uninteresting to the
client, then the automounter's umount() system call succeeds, and the client is relieved of the
server dependency. If the filesystem is busy, the automounter ignores the error returned by
umount().

Using the automounter also adds another level of transparency to the network. Once a client's
/etc/vfstab file is created, the client has a static idea of where each remote filesystem is
located. It becomes difficult for the system administrator to move tools, users, or any other
directory without going to each host and changing the /etc/vfstab files to reflect the change.
The automounter makes the location of NFS filesystems even more transparent to NFS clients
by removing hardcoded server names and pathnames from the clients' /etc/vfstab files.

Placing NFS filesystems in automounter maps greatly simplifies the administrative overhead
of adding or reconfiguring NFS servers. Because the maps may be maintained using NIS, a
single file is propagated to all NFS clients. Editing the individual /etc/vfstab files is not
required. The automounter is also conducive to simpler mounting schemes. For example,
mounting 50 directories of tools and utilities under /tools produces an unwieldy vfstab file. In
addition, the tools mount point becomes a bottleneck, since any directory stat() or getwd()
call that touches it also touches all NFS servers with filesystems mounted in /tools. More
frequently, tools and utilities are mounted haphazardly, creating administrative problems.
Simply remembering where things are is difficult, as users become confused by irregular
naming schemes.

Managing /tools with the automounter offers several advantages. All of the individual mount
points are replaced by a single map that creates the appropriate mount points as needed. The
automounter mount point contains only the handful of entries corresponding to the working
set of tools that the user employs at any one time. It's also much simpler to add a new tool:
instead of having to create the mount point and edit /etc/vfstab on every host in the network,
you simply update the NIS-managed automounter map.

Finally, the automounter looks for a filesystem on one of several servers. Manual pages, read-
only libraries, and other replicated filesystems will be mounted from the first server in a set to
respond to the mount request. In addition to providing a simple load-balancing scheme similar
to that of NIS, the automounter removes single-host dependencies that would make a diskless
or dataless workstation unusable in the event of a server crash.

9.1 Automounter maps

The behavior of the automounter is governed by its maps. An indirect map is useful when you
are mounting several filesystems with common pathname prefixes (as seen on the clients, not
necessarily on the servers). A good example is the /tools directory described previously,
although home directories also fit the indirect map model well. A direct map is used for
irregularly named filesystems, where each mount point does not have a common prefix with
other mount points. Some good examples of mounts requiring direct maps are /usr/local and
/usr/man.

Managing NFS and NIS

155

Direct and indirect maps vary in how the automounter emulates the underlying mount point.
For a direct map, the automounter looks like a symbolic link at each mount point in the map.
With an indirect map, the automounter emulates a directory of symbolic links, where the
directory is the common pathname prefix shared by all of the automounter-managed mount
points. This is confusing and is best explained by the examples that follow.

The master map is a meta-map (a map describing other maps). It contains a list of indirect
maps and direct mount points and tells the automounter where to look for all of its map
information. We'll look at a typical master map after seeing how the indirect and direct maps
are used to mount NFS filesystems.

9.1.1 Indirect maps

Indirect maps are the simplest and most useful automounter convention. They correspond
directly to regularly named filesystems, such as home directories, desktop tools, and system
utility software. While tools directories may not be consistently named across fileservers, for
example, you can use NFS mounts to make them appear consistent on a client machine. The
automounter replaces all of the /etc/vfstab entries that would be required to effect this naming
scheme on the clients.

Each indirect map has a directory associated with it that is specified on the command line or
in the master map (see Section 9.2.1 later in this chapter). The map itself contains a key,
which is the name of the mount point in the directory, optional NFS mount options, and the
server:pathname pair identifying the source of the filesystem. Automounter maps are usually
named auto_contents, where contents describes the map. The map name does not have to
correspond to its mount point — it can be anything that indicates the map's function. Maps are
placed in /etc or maintained via NIS.

The best way to understand how an indirect map works is to look at an example. We'll look at
an automounter map and equivalent vfstab file for a directory structure like this:

/tools/deskset
/tools/sting
/tools/news
/tools/bugview

Here is an indirect automounter map for the /tools directory, called auto_tools:

deskset -ro mahimahi:/tools2/deskset
sting mahimahi:/tools2/sting
news thud:/tools3/news
bugview jetstar:/usr/bugview

The first field is called the map key and is the final component of the mount point. The map
name suffix and the mount point do not have to share the same name, but adopting this
convention makes it easy to associate map names and mount points. This four-entry map is
functionally equivalent to the /etc/vfstab excerpt:

mahimahi:/tools2/desket - /tools/deskset nfs - - ro
mahimahi:/tools2/string - /tools/sting nfs - -
thud:/tools3/news - /tools/news nfs - -
jetstar:/usr/bugview - /tools/bugview nfs - -

Managing NFS and NIS

156

Notice that the server-side mount points have no common pathname prefixes, but that the
client's vfstab and automounter map establish a regularly named view of filesystems.

There are basically two kinds of automounters: older ones that use symbolic links and newer
ones that don't. Using the auto_tools map, older implementations of the automounter emulate
tools in a directory of symbolic links. When any process on the client makes a reference to
something in /tools, the automounter completes the appropriate NFS mount and makes a
symbolic link in /tools pointing to the actual mount point for the filesystem. Suppose you go
to execute /tools/news/bin/rn. Using the automounter effectively breaks this pathname up into
three components:

• The prefix /tools picks an automounter map. (We will see in the section Section 9.2.1
just how /tools refers to the auto_tools map.) In this case, the map for the /tools
directory is the auto_tools map.

• The next pathname component is the key within this map. news selects the server
filesystem thud:/tools3/news ; the automounter mounts this filesystem and makes a
link to it in /tools on the client.

• The remainder of the path, bin/rn, is passed to the NFS server thud since it is relative
to the directory from which the news toolset is mounted.

Keep in mind that this list applies to older automounters that use symbolic link map entries to
NFS mount points. There are problems with using symbolic links, and newer automounters
solve them. The newer automounters don't use symbolic links and effectively put the NFS
mounts "in place." The next section will explain in more detail.

Note that the automounter map doesn't contain any information about the /tools directory
itself, only about the subdirectories in it that are used for mount points. This makes it
extremely easy to relocate a set of mount points — you simply change the master map that
associates the directory /tools with the map auto_tools. We'll come back to the master map
later on.

9.1.2 Inside the automounter

At this point, it's useful to take a look under the hood of the automounter. This background
makes the operation of indirect maps a little clearer and will make direct maps much easier to
understand.

As mentioned before, automounter implementations come in two designs. The first one is a
purely user-level approach that relies heavily on symbolic links. The second is a hybrid user-
level and kernel-level approach called the autofs automounter, which eschews symbolic links.

9.1.2.1 User-level automounters

The original automounters were strictly user-level daemons that required no support in the
kernel. SunOS 4.x automounters were all user-level, as were the automounters in Solaris 2.0
through Solaris 2.3. As many automounters were derived from SunOS 4.x or Solaris code,
you'll find that several non-Solaris implementations are still user-level.

Before walking through the sequence of automounter operations in detail, some knowledge of
mount information is necessary. The mount() system call takes the filesystem type (ufs, nfs,

Managing NFS and NIS

157

hsfs, etc.) and mount point from the /etc/vfstab table, and a packet of parameters that are type-
specific. For NFS mounts, the argument vector passed to mount() includes the server's
hostname and a socket address (IP host address and port number pair) to be used for sending
requests to that server. For normal NFS mounts, the remote server's hostname and IP address
are used, and the IP port number is the well-known NFS port number 2049. The kernel uses
this information to put together an RPC client handle for calling the remote NFS server.

User-level automounters capitalize on this architecture by creating a set of mount arguments
that points to itself, a process on the local host, with a different port number than 2049. In
effect, a system running the automounter has mounted a daemon on each mount point, instead
of a remote filesystem. NFS requests for these mount points are intercepted by the
automounter, since it appears to be a regular, remote NFS server to the kernel. No kernel
modifications are necessary to run the automounter, and the automounter's functions are
transparent to user processes.

We'll take a look at how the user-level automounter works using the indirect auto_tools map
discussed earlier. The NFS client host is named wahoo. From boot time, the complete
sequence of events is:

1. The user-level automounter advertises the /tools mount point in /etc/mnttab, making it
look like any other NFS-mounted filesystem except for the more verbose information
about the server's IP address and port:

/etc/mnttab excerpt

thud:/export/home/thud /tmp_mnt/home/thud nfs rw,dev=218980f
929944999
wahoo:(pid161) /tools nfs ro,ignore,map=/etc/auto_
tools,indirect,dev=2180009 920935886

The first mnttab entry is for a normal NFS mount point listed in the vfstab file. The
second is for an indirect map and was added when the automounter was started.
Instead of a server:directory pair, the automounter entry contains its process ID and
the local host's name. The device numbers for NFS-mounted filesystems are simply
unique values assigned by the kernel on each mount operation. This entry is added to
mnttab when the automounter starts up and reads its maps.

2. A user goes to execute /tools/news/bin/rn. The kernel performs a lookup of the
executable's pathname and finds that the tools component is a mount point. An NFS
lookup request for the next component, news, is sent to the listed process — the
automounter — via a loopback RPC mechanism.

3. The user-level automounter emulates a directory of symbolic links under the indirect
map mount point. The lookup request on the news component is received by the
automounter daemon, and it returns information identical to that received when
performing a lookup on a symbolic link on a remote NFS server. The automounter
looks up the appropriate filesystem in /etc/auto_tools and mounts it in its staging area,
/tmp_mnt. This operation uses the mount() system call, which places a new entry in
the mnttab file.

4. Now that the automounted filesystem has been referenced, the user-level automounter
adds a symbolic link to its emulated directory. The new link in /tools points to the
newly mounted filesystem. The equivalent command-line operations are:

Managing NFS and NIS

158

 # mount thud:/tools3/news /tmp_mnt/tools/news
ln -s /tmp_mnt/tools/news /tools/news

5. The client-side process receives the reply from its lookup request and goes to read the
link. This time, the automounter returns the contents of the symbolic link, which
points to the automounter staging area. Note that the automounter fabricates a
response to the client's readlink request; it looks like there's a symbolic link on the
disk but it's really an artifact of the automounter. The client process follows the link's
target pathname to the appropriate subdirectory of /tmp_mnt.

6. The client process can now trace every pathname in /tools/news to a subdirectory of
/tmp_mnt/tools/news, through the new entry in /etc/mnttab and the symbolic link
emulation provided by the automounter. A client process pathname lookup finds /tools
in the mount table and sends its query to the automounter. The automounter's link
points to /tmp_mnt/news, which is also listed in the mount table. To the client, the
automounter looks exactly like a directory and a symbolic link.

If this seems to be a convoluted mechanism for mounting a single filesystem, it is. However,
this approach is taken to minimize the number of NFS mounts performed and to thereby
improve performance by keeping /etc/mnttab as small as possible. When you mount several
subdirectories of the same remote filesystem, only one NFS mount is required. The various
subdirectories of this common mount point are referenced by symbolic links, not by
individual mounts. In the sample indirect map earlier, mahimahi:/tools2 contains several
utilities. /tools2 will be mounted on the NFS client when the first utility in it is referenced, and
references to other subdirectories of /tools2 simply contain links back to the existing mount in
/tmp_mnt.

The staging area /tmp_mnt is a key to the indirect map mechanism. If the staging area concept
is eliminated, then the indirect map mount point becomes another directory filled with direct
mounts. The primary advantage of indirect maps is that they allow the mount points in a
directory to be managed independently — the mounts occur when a process references the
mount point, and not the parent directory itself. We'll look at some problems with direct
mounts shortly.

As a result of linking /tools to the actual NFS mount point, a user would encounter the
following:

% cd /tools/bin
% /usr/bin/pwd
/tmp_mnt/tools/bin

In other words, instead of pwd displaying /tools/bin, it gets /tmp_mnt/tools/bin. This behavior
breaks lots of software. For example, a program might record the current working directory,
and cache it in a file. A subsequent invocation of the program might read the cache, and
attempt to access /tmp_mnt/tools/bin, and find that it isn't there. This is because a user-level
automounter responds to attempts to access /tools, not /tmp_mnt/tools. For the remainder of
this chapter, we will refer to this issue as the "pwd problem."

There are other side-effects of the user-level automounter that may catch the user off-guard.
The automounter creates and controls the indirect map mount point. It emulates the entire
directory, so that no user, even the superuser, can create entries in it. This has an important
implication for creating indirect maps: they cannot be mounted over an existing directory,

Managing NFS and NIS

159

because the automounter hides the underlying files. If a directory must contain a mixture of
automounter mount points and "normal" directory entries, a direct map must be used.

This is an important but subtle point: when you poke at a user-level automounter mount point
with ls, it appears that there is a directory filled with symbolic links. In reality, this directory
and the links in it do not exist on any disk. If this hurts to think about, it's really no different
than the way NFS itself works: there may be no filesystem called /tools/news on your local
disk, but NFS makes it look like it's there. The user-level automounter speaks to the NFS
protocol, allowing it to fabricate replies to NFS RPC calls that are indistinguishable from the
real thing.

Because the user-level automounter controls the contents of a readdir NFS RPC reply, ls
behaves strangely. The user-level automounter displays only currently mounted links in the
directory it emulates. If no reference is made to a subdirectory of the indirect map directory, it
appears empty:

% cd /tools
% ls
% ls /tools/news
bin lib spool
% cd /tools
% ls -l
total 1
lrwxrwxrwx 1 root 19 Aug 31 12:59 news -> /tmp_mnt/tools/news

Why not display potential mounts as well? Doing so could result in a great deal of unintended
mounting activity — a mount storm — when ls -l is executed in this directory. A newer
automounter described in the next section allows you to browse potential mounts, as well as
fix the pwd problem described earlier. Another approach is to use hierarchical mounts, as
described later in this chapter.

9.1.2.2 The autofs automounter

The pwd problem described in the previous section was solved in Solaris 2.4 with the
introduction of a hybrid user-level and kernel-level automounter, which retained a user-level
automounter daemon, but introduced a new filesystem known as autofs. The autofs filesystem
is a pseudo-filesystem that allows you to mount automounter points like /tools/news as
directory objects directly underneath /tools, instead of as symbolic links. The automounter
daemon is no longer an NFS server, but instead responds to requests from the in-kernel autofs
filesystem to mount NFS filesystems on the mount points that autofs creates.

Let's take a look at how adding autofs changes how the automounter works using the example
of the indirect auto_tools map. The NFS client host is still named wahoo. From boot time, the
complete sequence of events is:

1. The autofs automounter advertises the /tools mount point in /etc/mnttab, making it
look like any other NFS-mounted filesystem except for the more verbose information
about the server's IP address and port:

/etc/mnttab excerpt

thud:/export/home/thud /home/thud nfs nosuid,dev=218980f 929944999

Managing NFS and NIS

160

auto_tools /tools autofs
ignore,indirect,nosuid,dev=2b40002 922482272

The first mnttab entry is for a normal NFS mount point listed in the vfstab file. Note
that the mount point is /home/thud and not /tmp_mnt/home/thud. The second is for an
indirect map and was added when the automounter was started. Instead of a process ID
and the local host's name, the entry simply has the map name and a filesystem type of
autofs. The device numbers for autofs-mounted filesystems are assigned by the kernel
on each mount operation. This entry is added to mnttab when the automounter starts
up and reads its maps.

2. A user goes to execute /tools/news/bin/rn. The kernel performs a lookup of the
executable's pathname, and finds that the tools component is a mount point. The
kernel invokes the lookup entry point of the autofs filesystem request for tools. The
kernel then proceeds to the next component in the pathname, news, and again invokes
the lookup entry point of autofs. The autofs filesystem sends a request to the
automounter daemon (automountd) — via a loopback RPC mechanism — to mount
news.

3. The automounter daemon receives the request from autofs. The request includes the
name of the map (auto_tools), the entry in the map autofs is interested in (news), and
the mount point the client wants to mount news onto (/tools/news). The automounter
daemon examines the tools indirect map looking for the entry:

news thud:/tools3/news

The automounter daemon checks if /tools/news exists, and if not, creates the news
directory under /tools. Because /tools is an autofs filesystem, the result of the mkdir()
system call from the daemon is a call to the mkdir entry point in the autofs filesystem.

The automounter daemon then determines that the news map entry is to be satisfied by
NFS, and so does the equivalent of:

mount -F nfs thud:/tools3 /tools/news

The results of the mount are returned — again, via a loopback RPC mechanism — to
autofs.

4. The autofs filesystem receives the reply from the automounter daemon, and now the
kernel can proceed with the next components in the pathname, bin and rn. Because the
automounter daemon mounted an NFS filesystem onto /tools/news, the automounter is
not involved in the processing of bin and rn.

As with the user-level automounter, the original autofs automounter didn't display potential
mounts of indirect maps like auto_tools. The next section describes an enhanced autofs
automounter that supports the ability to browse the potential mounts under a mount point such
as /tools.

Managing NFS and NIS

161

9.1.2.3 The enhanced autofs automounter: Browsing indirect maps

In Solaris 2.6, the autofs automounter was modified so that displaying directories of the
mount points of indirect maps shows every entry; in other words, it allows a user to browse
the map:

% cd /tools
% ls -l
total 4
dr-xr-xr-x 1 root root 19 Aug 31 12:59 bugview
dr-xr-xr-x 1 root root 19 Aug 31 12:59 deskset
dr-xr-xr-x 1 root root 19 Aug 31 12:59 news
dr-xr-xr-x 1 root root 19 Aug 31 12:59 sting

When the readdir entry point in the autofs filesystem is called on /tools for the first time,
there are no autofs directories underneath it, and so, autofs makes an RPC call to the
automounter daemon to read the auto_tools map to return the list of map entries. The map
entries are used to construct a directory listing for the ls command. Note that the attributes of
the directories are faked. This is because we want to avoid mount storms, as described in
Section 9.1.2.1.

Now see what happens we start to populate /tools with real entries:

% ls /tools/news
bin lib spool
% cd /tools
% ls -l
total 1
dr-xr-xr-x 1 root root 19 Aug 31 12:59 bugview
dr-xr-xr-x 1 root root 19 Aug 31 12:59 deskset
drwxrwxr-x 5 root other 512 Jun 10 17:03 news
dr-xr-xr-x 1 root root 19 Aug 31 12:59 sting

Invoking the ls command on /tools/news causes /tools/news to be NFS-mounted from
thud:/tools3/news. When the readdir entry point in the autofs filesystem is called on /tools for
the second time, there is now an NFS directory, news, underneath it. Thus, autofs combines
the list of map entries with the list of NFS-mounted directories.

By default, indirect maps can be browsed, but browsing can be turned off with the -nobrowse
option to an indirect map.

9.1.3 Direct maps

Direct maps define point-specific, nonuniform mount points. The best example of the need for
a direct map entry is /usr/man. The /usr directory contains numerous other entries, so it cannot
be an indirect mount point. Building an indirect map for /usr/man that uses /usr as a mount
point will "cover up" /usr/bin and /usr/etc. A direct map allows the automounter to complete
mounts on a single directory entry.

The key in a direct map is a full pathname, instead of the last component found in the indirect
map. Direct maps also follow the /etc/auto_contents naming scheme. Here is a sample
/etc/auto_direct:

Managing NFS and NIS

162

/usr/man wahoo:/usr/share/man
/usr/local/bin mahimahi:/usr/local/bin.sun4

The automounter registers the entire direct mount point pathname in the mnttab file, instead of
the parent directory of all of the mount points:

auto_direct /usr/local/bin autofs ignore,direct,intr,ro,dev=2cc000a
933723158

The mnttab entry's map type is listed as direct. Operation of the automounter on a direct
mount point is similar to the handling of an indirect mount. The autofs automounter is passed
the entire direct mount point pathname in the RPC from autofs, since the mount point is the
key in the map. See Table 9-1 for automounter map entry formats.

A major difference in behavior is that the real direct mount points are always visible to ls and
other tools that read directory structures. The automounter treats direct mounts as individual
directory entries, not as a complete directory, so the automounter gets queried whenever the
directory containing the mount point is read. Client performance is affected in a marked
fashion if direct mount points are used in several well-traveled directories. When a user reads
a directory containing a number of direct mounts, the automounter initiates a flurry of
mounting activity in response to the directory read requests. Section 9.5.3 describes a trick
that lets you use indirect maps instead of direct maps. By using this trick, you can avoid
mount storms caused by multiple direct mount points.

Table 9-1. Automounter map entry formats
Key Mount options Server:directory pair
indirect map: deskset mahimahi:/tools2/deskset
direct map: /usr/man -ro thud:/usr/man

9.2 Invocation and the master map

Now that we've seen how the automounter manages NFS mount information in various maps,
we'll look at how it chooses which maps to use and how it gets started. The key file that tells
the automounter about map files and mount points is the master map, which is the default map
read by the automounter if no other command-line options are specified. This covers the
format and use of the master map, some command-line options, and some timeout tuning
techniques.

9.2.1 The master map

The master map is the map of maps. When the automounter is started, it reads the master map
from where the /etc/nsswitch.conf configuration file says to read it, as determined by the
nsswitch.conf entry named automount:. Thedefault nsswitch.conf — whether files, or NIS is
used — has files listed first. The master map file, /etc/auto_master, lists all direct and indirect
maps and their associated directories. It consists of triplets of directory name, map name, and
mount options to be used with that map. Suppose your /etc/auto_master file contains:

Directory Map NFS Mount Options
/tools /etc/auto_tools -ro
/- /etc/auto_direct

Managing NFS and NIS

163

The first entry is for the indirect map /etc/auto_tools; entries in this map are mounted read-
only (due to the -ro option) under the /tools directory. The second line of the master file is for
a direct map; because there is no directory for the automounter to manage, the place holder /-
is used. Note that the master map format is different from other automounter maps in the
following ways:

• With the master maps, the mount options are in the third column, whereas regular
automounter maps place the options in the second column.

• The first column in a master map is always an absolute pathname that starts with a
leading slash (/) and can have one or more additional slashes, whereas with indirect
maps the first column is a map key that must not contain a slash.

The earlier example is somewhat limiting in that changes to the auto_tools or auto_direct map
must be made by editing each /etc/auto_tools or /etc/auto_direct file on each NFS client.
Instead, if we drop the /etc/ prefix, we can allow the maps to be maintained in NIS or files:

Directory Map NFS Mount Options
/tools auto_tools -ro
/- auto_direct

In this example, we observe three things:

• Two map names — auto_direct and auto_tools — are used in place of the files pulled
from /etc in the previous example.

• The system decides to use NIS or files for auto_direct and auto_tools based on
whether files or nis (or both) are specified in nsswitch.conf.

• Even though the corresponding map names in NIS are auto_direct and auto_tools, the
auto_master file uses a canonical name form, which uses underscores and not periods
to separate the prefix auto from the unique suffix (direct or tools). The reason is that in
some directory systems, such as NIS+, a period is a reserved character.

There is no requirement that the master map be maintained as a local file. Indeed you might
find it easier if you configure your network's clients' nfsswitch.conf file to read all the maps,
including the master map from NIS by setting automount: line in nsswitch.conf as:

automount: nis

This way you can exercise control over each client's namespace without having to reconfigure
every client each time you want to add or delete a map from the master map. We will cover
how the automounter maps are integrated into NIS later, in Section 9.3.

The default master map is not going to appear as in the examples presented so far. The default
Solaris /etc/auto_master file looks something like this:

+auto_master
/net -hosts -nosuid,nobrowse
/home auto_home -nobrowse
/xfn -xfn

We will discuss the first entry, +auto_master in Section 9.3.1. The second entry, /net, will be
covered in Section 9.5.2.1. The third entry, /home, will be covered in Section 9.4.1.

Managing NFS and NIS

164

The last entry, /xfn, is for the X/Open Federated Naming Standard (XFN), which is a now-
deprecated standard for federating directory systems. Recall from Section 2.2 that there are
lots of directory services. XFN represented an attempt to allow them all to seamlessly co-exist
in a global namespace. The idea was to allow users in one DNS domain to browse or access
information (such as files, printers, or calendars) from another domain, even if the naming
system that organized the information did not easily support cross-domain operations (as is
the case with NIS). Because it appears that the world will be unifying under LDAP, and
because nsswitch.conf meets most of the requirements for directory service switching, XFN
has been deprecated. While the /xfn entry persists to allow you to browse any NIS or files data
represented in XFN, expect XFN and /xfn to disappear from future Solaris releases.

9.2.2 Command-line options

The autofs automounter is started during the boot sequence from the /etc/init.d/autofs script.
The automounter consists of two programs:

automount

Used to initialize the automounter's mount points after it reads the master map.

automountd

A daemon that handles requests from the in-kernel autofs filesystem to mount and
unmount filesystems.

Each program has several command-line options.

9.2.2.1 Automount command-line options

-t time

This is the time, in seconds, to wait before attempting to unmount a quiescent
filesystem. The default is 600 seconds, but this value may need to be adjusted to
accommodate various client usage patterns as described in Section 9.2.4.

-v

If set, this option prints out any new autofs mounts or unmounts. The automount
command will perform a mount for each new direct and indirect map, and will
perform an unmount for each map no longer listed in the master map or any of its
submaps.

9.2.2.2 Automountd command-line options

-T

Turns on NFS call tracing, so the user sees the expansion of NFS calls handled by the
automounter. If this option is used for debugging, then the standard output and
standard error of the automounter daemon should be redirected to a file from its
invocation in /etc/init/autofs:

Managing NFS and NIS

165

/usr/lib/autofs/automountd -T > /tmp/auto_nfscalls
2&1
Excerpt from /tmp/auto_nfscalls

t8 LOOKUP REQUEST: Tue Sep 28 10:39:36 1999
t8 name=news[] map=auto.tools opts=intr,nosuid path=/tools
direct=0
t8 LOOKUP REPLY : status=0
t1 MOUNT REQUEST: Tue Sep 28 10:39:36 1999
t1 name=news[] map=auto.tools opts=intr,nosuid path=/tools
direct=0
t1 MOUNT REPLY : status=0, AUTOFS_DONE

In this example, the automounter daemon was asked by autofs to look up the directory
news. It returned a status structure indicating that the daemon is requesting an NFS
mount. The autofs filesystem then asked the daemon to perform the NFS mount, and
the automounter returned a successful status. The prefixes t8 and t1 indicate the thread
in the automounter daemon that did the operation.

-v

Turns on a verbose mode that logs status messages to the console.

-n

Turns off browsing of indirect maps.

-D var=value

Assigns the value to the variable var within the automounter's environment. Section
9.4.2 contains more information on variable substitutions within automounter maps.

9.2.3 The null map

The automounter also has a map "white-out" feature, via the -null special map. It is used after
a directory to effectively delete any map entry affecting that directory from the automounter's
set of maps. It must precede the map entry being deleted. For example:

/tools -null

This feature is used to override auto_master or direct map entries that may have been
inherited from an NIS map. If you need to make per-machine changes to the automounter
maps, or if you need local control over a mount point managed by the automounter, white-out
the conflicting map entry with the -null map.

9.2.4 Tuning timeout values

When a filesystem has remained quiescent for some time, it is a candidate for unmounting. If
the filesystem is busy, the attempts to unmount it will fail until the last open files and
directories are closed. If an unmount attempt fails, the automounter tries it again later.
However, it is difficult for the automounter to know if the filesystem is in fact in use. The
simplest way to find out is to attempt to unmount it. So every ten minutes (or the period

Managing NFS and NIS

166

specified with the -t flag to automount) the automounter attempts to unmount every mounted
filesystem.

There are two situations in which increasing the default unmount timeout period improves
performance of the automounter:

• When client processes keep files open for more than ten minutes
• When one or more processes requiring automounted filesystems run regularly, with

periods greater than the default timeout

When the automounter attempts to unmount a filesystem, it either succeeds, or the one or
more open files from one or more processes cause the umount() call to return EBUSY. If
there are several filesystems used by processes that behave in this fashion, then the
automounter wastes numerous umount() system calls. The cost isn't just the overhead of
checking to see if a filesystem is in use. There are several caches that hold references on the
filesystem that must be flushed. All this activity consumes CPU time, which can impact the
performance of a system that is already under high load. Increasing the default unmount
timeout period (using the -t option) to match the average filehandle lifetime reduces the
overhead of using the automounter:

automount -t 3600

The timeout period is specified in seconds. The reduced number of mount operations comes at
a cost of a longer binding to the NFS server. If the filesystem is mounted when the NFS server
crashes, you will have lost the "working set" advantage of using the automounter — your
system hangs until the server recovers.

As mentioned earlier, regularly scheduled processes may require longer automounter timeout
periods. Regularly scheduled processes include those run by cron and repetitive operations
performed by interactive users, such as make runs done several times an hour during bug-
fixing cycles. Each regularly scheduled process begins by causing a filesystem mount; a
corresponding unmount is done sometime before its next invocation if the default timeout
period is shorter than the time between invocations.

If the time between process instances is long, the overhead of these repetitive mount
operations is negligible. However, a job that is run every ten minutes initiates a sequence of
mount and unmount operations, adding to the overhead incurred by running the automounter.
For interactive processes that run to completion in a minute or less, the time to complete the
mount increases the response time of the system, and it is sure to elicit complaints. In both
cases, system performance is improved by reducing the overhead of the automounter through
a longer default unmount timeout period.

You may not want to use the automounter for filesystems that are mounted or accessed nearly
constantly through the day. The mail spool, for example, might be better placed in each
client's /etc/vfstab file because it will be in near-constant use on the client. Most other
filesystems benefit from the streamlined NFS administration provided by the automounter.
Using the automounter is simplified even further by managing the maps themselves with NIS.

Managing NFS and NIS

167

9.3 Integration with NIS

If maps are maintained on each client machine, then the administrative benefits of using the
automounter are lost; the burden of maintenance is shifted away from the vfstab file and onto
the new map files. To solve the administrative problem, all three types of maps may be
distributed using NIS.

To add an automounter map to the NIS database, insert a set of clauses for it in the NIS
master server's Makefile in /var/yp:

In definition of target all:

all: passwd hosts auto.tools

auto.tools: auto.tools.time

auto.tools.time: $(DIR)/auto_tools
 -@if [-f $(DIR)/auto_tools]; then \
 sed -e "/^#/d" -e s/#.*$$// $(DIR)/auto_tools | \
 $(MAKEDBM) - /var/yp/$(DOM)/auto.tools;\
 touch auto.tools.time; \
 echo "updated auto.tools"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) auto.tools; \
 echo "pushed auto.tools"; \
 fi \
 else \
 echo "couldn't find $(DIR)/auto_tools"; \
 fi

The new map name must be added to the list of targets built by default when make is issued
with no arguments. A dependency linking the map name auto.tools to the timestamp file
auto.tools.time is added, and the large section defines how to rebuild the map and the
timestamp file from the map source file. The makefile actions strip out all lines beginning
with a comment (#) marker, and strip comments from the ends of lines. The makedbm
program builds an NIS map from the input file. The input file should not have blank lines in
it.

The key in an automounter map becomes the NIS map key, and the mount options and server
and directory names are the data values. Dumping a map with ypcat requires the -k option to
match up map keys and server information:

% ypcat auto.tools
-ro,intr thud:/epubs/deskset
jetstar:/usr/Bugview
-ro,intr mahimahi:/tools2/deskset1.0

% ypcat -k auto.tools
sundesk -ro,intr thud:/epubs/deskset
bugview jetstar:/usr/Bugview
deskset -ro,intr mahimahi:/tools2/deskset1.0

NIS-managed maps are specified by map name rather than by absolute pathname:

Managing NFS and NIS

168

Master map
/tools auto_tools -ro
/source auto_source -rw

9.3.1 Mixing NIS and files in the same map

As with the password NIS map, it is sometimes necessary to have variations in the
configuration on a per-machine basis. Using the notation +mapname, it is possible to include
an NIS map in a local automounter map. For example, as mentioned earlier in this chapter,
/etc/auto_master file can have an entry in it like:

+auto_master

This is useful if you want more control over the order with which map information from the
/etc/auto_master file versus the name service gets processed. The appearance of this entry
causes map information from the NIS auto.master map to read in as if it were where the
+auto_master entry was. For example, let's say nsswtch.conf has an automount: entry that
specifies files to be processed before nis. The auto.master map in NIS might contain:

/docs auto_temporary -ro

The /etc/auto_master file might contain:

/tools auto_tools -ro
+auto_master
/docs auto_docs
/src auto_source
/- auto_direct

The effect is that the accesses to /docs/XXX are satisfied from the auto_temporary map and
not from the auto_docs map.

The use of entries with leading plus signs is not limited to auto_master entries. Any of the
maps that auto_master refers to can contain +mapname entries if they are local files.
Suppose, for example, that client machines on your network share a common set of source
trees, but some clients are allowed to access operating system source code as well. On those
machines without source code rights, the /etc/auto_source map contains a single reference to
the NIS map:

+auto_source

However, on clients that have more privileges, the operating system source code mount points
can be included with the NIS map:

sunos5.7 -ro srcserv:/source/sunos5.7
sunos5.8 -ro srcserv:/source/sunos5.8
nfs -ro bigguy:/source/nfs_internals
+auto_source

Managing NFS and NIS

169

9.3.2 Updating NIS-managed automount maps

The automounter reads indirect NIS maps for each mount request it must handle. A change in
one of these maps is reflected as soon as the map is built and pushed to the NIS servers. New
tools get installed in /tools by inserting a new map entry in auto_tools rather than editing the
/etc/vfstab files on each client machine. The automounter sees map updates the next time it
has to perform a mount.

The only way to change the mount parameters for a currently mounted filesystem is to
unmount the filesystem manually. Some automounters will also require that you send the
automounter daemon a SIGHUP (kill -1). When the automounter receives this signal, it parses
the mnttab file and notices that some of its mounted filesystems were unmounted by someone
else. It invalidates the links for those mount points; the next reference through the same entry
remounts the filesystem with the new parameters.

Direct maps are subject to an update restriction. While the maps may be updated with the
automounter running, changes are not made visible through the automounter until it is
restarted. Under Solaris, re-running the automount command suffices. The automounter
creates a mount table entry for each direct mount point, so they cannot be added or removed
without the automounter's intervention. If a direct mount point is removed from a direct map
maintained by NIS, attempts to reference the mount point return "file not found" errors: the
mount point is still listed in the mnttab file but the automounter's direct map no longer has a
corresponding entry for it.

Using NIS to manage the automounter maps makes administration of a large number of NFS
clients much simpler: all of the work that formerly went into /etc/vfstab file maintenance is
eliminated. In a large environment with hundreds of users, the task of map management can
become quite complex as well. If new users are added to the system, or filesystems are
shuffled to meet performance goals, then the automounter maps must be modified to reflect
the new configurations. The benefits of using the automounter are significantly increased
when the maps are simplified using key and variable substitutions.

9.4 Key and variable substitutions

There are two forms of substitutions that are performed in automounter maps: variable
substitution and key substitution. Variables are useful for hiding architecture or operating
system dependencies when maintaining a uniform naming scheme, while key substitutions
impress a degree of regularity on the automounter maps.

9.4.1 Key substitutions

The ampersand (&) expands to the matched key value in a map; it is used in the
server:directory path pair to copy key values into directory path component names. Let's say
you have a map that lists all the exported directories on your network that exist for the
purpose storing users' home directories. Let's call this map auto_home_exports. Initially, this
map looks like:

thud -rw thud:/export/home/thud
wahoo -rw wahoo:/export/home/wahoo
mahimahi -rw mahimahi:/export/home/mahimahi

Managing NFS and NIS

170

We can rewrite it using key substitution:

thud -rw &:/export/home/&
wahoo -rw &:/export/home/&
mahimahi -rw &:/export/home/&

With the right-hand side rewritten, the map's regular form can be further condensed using the
asterisk (*) wildcard:

* -rw &:/export/home/&

The asterisk is a default case. Nothing after it will ever be matched, so it should be the last (or
only) entry in the map. It matches all keys, providing a value for the & substitutions that fill in
the right-hand side of the map information.

For example, assume that the clients are using the auto_home_exports map for the
/home_exports mount point. Every reference through /home_exports matches the wildcard
map entry. When a lookup of /home_exports/thud/jan is performed, the automounter gets an
RPC request to look up thud in the /home_exports directory. Referring to the indirect map, the
automounter finds the wildcard, which matches the key thud. The automounter makes thud
the default key, and expands the server:directory component as:

thud:/export/home/thud

This entry is equivalent to a thud-specific entry:

thud -rw thud:/export/home/thud

Special case mappings may be added ahead of the wildcard map entry:

mahimahi2 -rw mahimahi:/export/home/mahimahi2
* -rw &:/export/home/&

Of course, wildcards can get you into trouble as well. Assume that you are using the
following simple indirect map for auto_home_exports:

* -rw &:/export/home/&

and a user tries to access /home_exports/foo. The automounter then tries to mount
foo:/export/home/foo, but it's probable that no host named foo exists. In this case, the user will
get a somewhat puzzling "No such host" error message when the automounter cannot find the
server's name in the NIS hosts map.

The concise wildcard-based naming scheme is useful for machines exporting a single home
directory, but when multiple home directories are exported from several disks on a server, the
one-to-one mapping of home directory names to server names breaks down. If naming
conventions permit, you can create hostname aliases in the NIS hosts map that match the
additional home directory names, allowing the wildcard map to be used.

To see how this works, let's simplify the following auto_home_exports map for the three
servers mahimahi, thud, and wahoo:

Managing NFS and NIS

171

mahimahi -rw mahimahi:/export/home/mahimahi
mahimahi2 -rw mahimahi:/export/home/mahimahi2
thud -rw thud:/export/home/thud
thud2 -rw thud:/export/home/thud2
thud3 -rw thud:/export/home/thud3
wahoo -rw wahoo:/export/home/wahoo

Applying wildcard key matching substitution to the regularly named directories shortens the
auto_home_exports map so that only the secondary and tertiary home directories are listed:

mahimahi2 -rw mahimahi:/export/home/mahimahi2
thud2 -rw thud:/export/home/thud2
thud3 -rw thud:/export/home/thud3
* -rw &:/export/home/&

Adding hostname aliases for mahimahi and thud to the hosts map condenses the
auto_home_servers map even further:

NIS hosts map

192.9.201.5 mahimahi mahimahi2
192.9.201.6 thud thud2 thud3
192.9.201.7 wahoo

auto_home_servers map

* -rw &:/export/home/&

When a reference to /home_exports/thud2/jan is seen by the automounter, the wildcard map
turns it into the server:directory pair:

thud2:/export/home/thud2

Because thud2 is a hosts database alias for thud, the mount request is sent to the right server.

This trick simply perpetuates the existing naming scheme but it does not help subsume all
home directories under a single mount point. Users tend to like the C shell's tilde expansion
mechanism, which locates a user's home directory from the NIS or local password files. Using
a tilde reference such as ~jan causes the correct mount to be completed as long as the
/etc/passwd file or passwd NIS map contains an entry like:

jan:K8pLWWc.J4XIY:999:99:Jan Smith:/home_servers/thud2/jan:/bin/csh:

But there is no obvious, consistent absolute path to every user's home directory, because the
paths contain a hostname-specific component.

To make a completely uniform naming scheme, you need to build a fairly verbose map that
hides the hostname dependencies in the home directory paths. Given the set of home
directories:

/export/home/thud/stern
/export/home/thud2/jan
/export/home/mahimahi/johnc
/export/home/wahoo/kenney

Managing NFS and NIS

172

an indirect auto_home map that mounts all users' home directories under /home looks like
this:

stern -rw thud:/export/home/thud/stern
jan -rw thud:/export/home/thud2/jan
johnc -rw mahimahi:/export/home/mahimahi/johnc
kenney -rw wahoo:/export/home/wahoo/kenney

Users can find any user through the /home switchboard, without having to know their home
directory server. This scheme is useful where hard coded, absolute pathnames are required.
You can juggle user's home directories to distribute free disk space without having to search
for all occurrences of absolute pathnames; changing the automounter map effects the change.

To make this switchboard available, the following would appear in the auto_master map:

/home auto_home -nobrowse

The nobrowse option is there because there is one entry in auto_home for every home
directory, and unless your organization is quite small, you'll find that users that do the
following:

% ls /home

generate lots of unnecessary network traffic.

9.4.2 Variable substitutions

If you are managing automounter maps through NIS, you may end up using the same map on
machines running different releases of the operation system or having different CPU
architectures. Directories with utilities or source code frequently need to be distinguished
based on operating system release and machine architecture. Presenting these directories with
a uniform naming scheme eliminates ugly pathnames, user confusion, and potentially
dangerous actions, for example, a user building an object tree in the wrong subdirectory for
that operating system release.

The automounter allows variables to be substituted into the right-hand components of map
entries. The following example shows how to mount /usr/local/bin from a set of architecture-
specific directories:

Automounter daemon invocation

/usr/lib/autofs/automountd -D MACHTYPE=`/usr/bin/uname -m'

auto_direct map

/usr/local/bin -ro mahimahi:/local/bin.$MACHTYPE

Variable substitutions apply equally well to indirect maps. The following example shows how
source code for a project is mapped out based on operating system release:

/usr/lib/autofs/automountd -D OPSYS="SunOS5.6"

notes -rw srcserv:/source/notes.$OPSYS

Managing NFS and NIS

173

news -rw srcserv:/source/news.$OPSYS
chem -rw srcserv:/source/chem.$OPSYS

Variable and key substitution combine to collapse the map in the previous example to another
one-liner:

* -rw srcserv:/source/&.$OPSYS

A source code automounter map is useful when there are one or more levels of dependencies
in the source tree, or when the source trees themselves live on several different servers. The
automounter ensures that the developers mount only those servers containing source code that
they are currently using.

9.4.2.1 Builtin variables

Some automounters have builtin variables. The builtin variables for Solaris are shown in
Table 9-2.

Table 9-2. Solaris automounter variables
Variable Meaning
ARCH output of uname -m
CPU output of uname -p
HOST output of uname -n
OSNAME output of uname -s
OSREL output of uname -r
OSVERS output of uname -v
NATISA output of isainfo -n

If you can use builtin variables, then you should use them instead of specifying the value of
variables with the -D option to automountd. The reason is that editing the script that starts the
automountd process is going to be very tedious as your site grows. So in the previous section,
we had the example:

Automounter daemon invocation

/usr/lib/autofs/automountd -D MACHTYPE=`/usr/bin/uname -m'

Don't do that! Leave the automountd parameters alone, and instead have the map use the
$ARCH builtin, instead of the custom $MACHTYPE variable:

auto_direct map

/usr/local/bin -ro mahimahi:/local/bin.$ARCH

9.5 Advanced map tricks

The automounter has several features that complement the "normal" NFS mount options. It
can mount replicated filesystems from one of several potential servers, and it can perform
hierarchical mounts of all of a server's directories when any one of them is referenced. This
section starts with a discussion of these advanced automounter features, then explains how to

Managing NFS and NIS

174

get better performance out of the automounter by converting direct map entries into indirect
maps and by using the automounter's subdirectory mount feature.

9.5.1 Replicated servers

Multiple location support in the automounter implements a simple network load-balancing
scheme for replicated filesystems. At first glance, this seems to be a bit of overkill; after all,
you don't need or want replication for read-write filesystems. However, serving large, read-
only filesystems such as the manpages may add to an NFS server's request load. Having
multiple servers share this load improves performance by reducing the total load placed on the
most heavily used servers. Ideally, you want clients that are "close" to each server to mount
its filesystems, reducing the amount of traffic that must go through bridges or routers.

For example, if you have four NFS servers that each export the manpages, the best client
mounting scheme is probably not to have one-quarter of the clients mount /usr/man from each
server. Instead, clients should mount the manpages from the server that is closest to them.
Replicated filesystems are included in automounter maps simply by listing all possible servers
in the map:

/usr/man -ro wahoo:/usr/man mahimahi:/usr/man \
 thud:/usr/man onaga:/usr/man

The backslash at the end of the first line continues this indirect map entry onto the next line. If
more than one server:directory pair is listed in an automounter map, the automounter pings all
servers by sending a request to the null procedure of all NFS servers. From the set that
responds, the automounter picks one that is "closest" by comparing the address of the servers
with that of the clients. Ties are broken by using the server that responded to the ping first.
The selected server is used by the automounter to serve the mount point.

There is also an element of load balancing at work here: if one of the /usr/man servers is so
heavily loaded with other NFS traffic that it cannot reply to the ping before another server on
the same net, then the client will choose the other server to handle its mount request. Solaris
2.6 introduced the feature of client-side failover, which was discussed in Section 6.5. While it
doesn't explicitly implement load balancing, if, after the mount, one server becomes
overloaded enough, a client will find the server to be unresponsive and will dynamically
switch to another server. Keep in mind the following:

• If the ro mount option is not present, or if the soft option is present, client-side failover
is not enabled, and in that situation, once a client performs a mount from a server, it
continues to use that server until it unmounts the filesystem.

• If the list of servers providing the filesystem changes, once the filesystem is mounted,
with or without failover, the client cannot choose a different server before unmounting
its first choice.

You can use the first-answer feature of replicated map entries to solve the multihomed host
problem presented in Section 16.5.7. Let's say that you have an NFS server on four networks,
with hostnames boris, boris-bb2, boris-bb3, and boris-bb4 on those networks. Mounting all
filesystems from boris makes the multihomed host perform loopback packet routing, but
using the "right" hostname requires knowing which name is on your network. Building an

Managing NFS and NIS

175

automounter map with replicated entries solves this problem by letting the automounter find
the fastest route to boris:

natasha -rw,hard boris:/export/home/boris \
 boris-bb2:/export/home/boris \
 boris-bb3:/export/home/boris \
 boris-bb4:/export/home/boris

This would be an entry in the auto_home map. Since the server pathnames are the same, you
can use a shorter form of the replicated map entry, putting all of the server names in a comma-
separated list:

natasha -rw,hard boris,boris-bb2,boris-bb3,boris-bb4:/home/boris

The network interface on boris that is closest to the client will respond first, and each NFS
client of boris will mount /home/natasha from the best network interface. Note that the
replicated mount points don't refer to multiple filesystems, but rather multiple names for the
same filesystem. The automounter just provides a neat way of managing all of them in a
single place. Because /export/home/natasha is mounted read-write, client-side failover is not
enabled. This is somewhat unfortunate since this is the one situation where client-side failover
of a writable filesystem is safe: the filesystem is the same, because the physical host is the
same. But the client has no way of knowing that.

When the automounter pings the remote servers, it's performing the equivalent of:

rpcinfo -u hostname nfs

for each listed server. If you see a larger number of null procedure calls than usual in the
output of nfsstat on the NFS server, it might indicate that your automounter mounts of
replicated filesystems are being performed repeatedly. The null calls do not require any disk
accesses to service, but they can consume network bandwidth on the server; if the number of
null calls becomes excessive it may be due to client machines continually mounting and
unmounting replicated filesystems. Changing the value of the -t option to automount (as
discussed previously in Section 9.2.4) reduces the frequency of mounting and unmounting.

You can also examine the /etc/rmtab file on the server to see how frequently its clients are
mounting and unmounting automounted filesystems. When a filesystem is mounted, an entry
is added to the /etc/rmtab file. When it gets unmounted, the entry isn't deleted from the file —
it is commented out by making the first character in the line a pound sign (#):

#epeche:/usr/share/man
#haos:/usr/share/man
#epeche:/usr/share/man
depeche:/usr/share/man
chaos:/usr/share/man

In this example, client depeche has mounted /usr/share/man three times, and client chaos has
mounted that filesystem twice. This gives you client information to go along with the null
NFS RPC counts provided by nfsstat — you can tell which clients have been repeatedly
mounting and unmounting a filesystem. Watch the size of the /etc/rmtab file over time; if it
grows regularly and contains multiple entries for the same clients and filesystems, then you
may want to change the automounter timeout value on those clients.

Managing NFS and NIS

176

9.5.2 Hierarchical mounts

In addition to handling multiple servers for the same filesystem, the automounter can mount
multiple trees from the same server in a hierarchy of mount points. Hierarchical mounts are
simply a special form of indirect maps.

9.5.2.1 The -hosts map

The most widely used hierarchical mount is the builtin -hosts map, which mounts all exported
filesystems from a named host.

The -hosts map references only the hosts database; the map semantics are built into the
automounter. It is usually mounted on /net indicating that it contains filesystems from the
entire network. The following line would appear in the master map:

/net -hosts -nobrowse

Except when using the enhanced autofs automounter, a user can then force mounts of all
filesystems from a server by referencing the server's name as a subdirectory of /net:

% showmount -e wahoo
/export1 (everyone)
/export2 honeymoon
/export3 honeymoon
% cd /net/wahoo
% ls -l
total 3
drwxrwxr-x 22 root staff 512 Aug 12 16:02 export1
drwxrwxr-x 8 root staff 512 Feb 18 1999 export2
drwxrwxr-x 9 root staff 512 Sep 8 16:19 export3

When the automounter has to mount a filesystem on /net, it sends a request to the server
asking for all exported filesystems. The automounter sorts the filesystems by pathname
length, ensuring that subdirectories of exported filesystems appear later in the list than their
parents.[2] The original automounter would then mount each item in the sorted list.

[2] If a directory pathname has a length of x characters, then any of its subdirectory's pathnames have length > x. Sorting by pathname length puts a
parent directory ahead of all paths to its subdirectories.

The enhanced autofs automounter will lazily mount each exported filesystem as soon as a
process does something significant such as changing its current working directory to an
exported filesystem:

% cd /net/wahoo
% ls -l
total 3
dr-xr-xr-x 1 root root 1 Sep 28 14:54 export1
dr-xr-xr-x 1 root root 1 Sep 28 14:54 export2
dr-xr-xr-x 1 root root 1 Sep 28 14:54 export3
% cd export1
% cd ..
% ls -l
total 3
drwxrwxr-x 22 root root 512 Aug 12 16:02 export1
dr-xr-xr-x 1 root root 1 Sep 28 14:54 export2

Managing NFS and NIS

177

dr-xr-xr-x 1 root root 1 Sep 28 14:54 export3

The act of doing the cd export1causes the automounter to perform an NFS mount over the
/net/wahoo/export1 autofs vnode. Thus, users cannot casually force the client to mount each
filesystem unless they do something like:

% ls /net/wahoo/*

This command invocation tells ls to read each directory of each exported filesystem of wahoo.
The autofs filesystem considers an invocation of its readdir entry point to be a significant
operation worthy of triggering an NFS mount.

There are a number of caveats for using the -hosts map with automounters that don't support
lazy mounting of hierarchies:

• By including the entire hosts database, the hosts map references servers that are both
local and on remote networks; a casual reference to a remote server causes an NFS
mount to occur through a router or gateway.

• If the server itself is slow, or has a large number of filesystems (diskless client
servers), then the -hosts map has a definite performance impact.

• Unmounts of the filesystems are done from the bottom up, in the reverse order of the
mounts. If a higher-level mount point is busy, then an unmount of the entire hierarchy
fails. When the automounter fails to unmount a higher-level mount point, it must
remount the filesystems it just unmounted. It walks back down the hierarchy from the
busy mount point, mounting each filesystem. The remote server's filesystems are
mounted on an all-or-nothing basis.

• Earlier in this section, we said that the "most widely used hierarchical mount is the
builtin -hosts map." If you are not careful, it can be the most widely used map, period.
The reason why this is not good is that -hosts is location-dependent. Once your users
get used to accessing resources like /net/wahoo/tools, instead of accessing /tools, it
becomes difficult to move the resource to a different physical location. It is best to
discourage use of /net. One way to do so is to respond rapidly to requests to modify
existing maps, or add new maps, and also, bury the physical location several
directories deep on the server that holds the resource. Users will prefer pathnames like
/tools/debugger over /net/wahoo/export/software/tools/debugger.

These caveats don't apply to the enhanced autofs automounter. However, by default it does
support browsing. Thus a new caveat is that if a network has lots of hosts, then users that do:

% ls /net

will trigger lots of network traffic as the automounter gets the list of hosts from NIS. Thus,
you should use the -nobrowse option on the -hosts map.

Managing NFS and NIS

178

Users sometimes complain that they cannot see a new filesystem
exported from a server. This is because a /net mount from the server was
in effect before the filesystem was exported, and the automounter has to
timeout the mount before unmounting and remounting. Rather than
waiting for that to happen, a simple workaround is to tell your users to
access the server under /net with a name that differs by capitalizing one
letter of the hostname. This works because hostnames are case-
insensitive, yet Unix pathnames are case-sensitive. So, for example, if
/net/wahoo was in effect before wahoo:/export4 was exported, then
simply accessing /net/Wahoo will allow you to access export4 as well as
the pre-existing export1, export2, and export3.

9.5.2.2 Hierarchical mounts in non -hosts maps

Let's return to our /tools example. Recall that /tools has:

/tools/deskset
/tools/sting
/tools/news
/tools/bugview

and is an indirect automounter map for the /tools directory, called auto_tools:

deskset -ro,intr mahimahi:/tools2/deskset
sting mahimahi:/tools2/sting
news thud:/tools3/news
bugview jetstar:/usr/bugview

/tools/deskset contains several subdirectories, one of which is wonderworks-v1.0. You
recently get a Version 2.0 of Wonderworks, and you find that it requires more disk space than
what mahimahi:/tools2/deskset has available. You have several choices here:

• Create a new map entry into auto_tools called deskset2 for the new version of
wonderworks. The problem with this is that your users expect to look in /tools/deskset,
and not /tools/deskset2 for the desktop productivity tools.

• Move the deskset directory from mahimahi to a server with a large partition. The
problem is that this will impact existing users that have mahimahi:/tools2/deskset
mounted.

• Create a hierarchical mount for the deskset map entry such that
/tools/deskset/wonderworks-v2.0 is mounted from somewhere else. This solution has
none of the disadvantages of the previous choices.

To do the last choice requires the following steps:

1. Create a mount point for wonderworks-v2.0 on server mahimahi:

 On mahimahi:
mkdir /tools/deskset/wonderworks-v2.0

2. Create a directory on another server (e.g., wahoo:/export/tools/deskset/wonderworks-
v2.0) with sufficient disk space, and copy the wonderworks-v2.0 package to it.

Managing NFS and NIS

179

If necessary, export the directory via a new entry in /etc/dfs/dfstab and the shareall
command.

3. Change the deskset entry in the auto_tools map to:

 deskset / -ro,intr mahimahi:/tools2/deskset \
 /wonderworks-v2.0 -ro,intr mahimahi:/tools2/deskset

Now when the user accesses /tools/deskset, he or she will be able reference both
/tools/wonderworks-v1.0 and /tools/wonderworks-v1.0.

As the example suggests, the syntax of a hierarchical mount's map entry is:

key-name subdirectory1 [-mount-options] server-filesystem-1 [
subdirectory2 [-mount-options] server-filesystem-2] ...

where a server-filesystem is one of:

• server_name:pathname
• server_name-i:pathname-i,server_name-ii:pathname-ii [,...]
• server_name-i,server_name-ii [,...]:pathname

9.5.3 Conversion of direct maps

Direct mounts are useful for handling nonuniform naming schemes, but they may cause a
number of performance problems if several direct mount points are included in a directory
that is frequently searched. You can usually get better performance out of the automounter by
converting direct maps into indirect maps. Instead of putting direct map mount points in the
client filesystem, create symbolic links that point to a staging area managed by an indirect
map.

Again, an example helps to explain the conversion process. Consider replacing a direct map
for /usr/local with an indirect map auto_stage. To convert the direct map into an indirect map,
we first create a symbolic link /usr/local that points to a staging area that we'll let the
automounter manage:

 Original direct map
/usr/local mahimahi:/local/$ARCH
ln -s /stage/local /usr/local

 New entry in auto_master map
/stage auto_stage -ro

 New indirect map auto_stage containing
local -ro mahimahi:/local/$ARCH

Note that /usr/local didn't exist before we made the link, since it was managed by the
automounter. Also, we don't have to create the /stage staging directory, since it is an indirect
map mount point.

The symbolic link points to a subdirectory of the mount point managed by the indirect map
auto_stage. With the direct map, any reference to /usr/local is directed to the /stage mount

Managing NFS and NIS

180

point, which causes the automounter to mount the appropriate architecture-specific directory.
This makes /usr/local look like a link to the mount.

Let's say a user now accesses /usr/local/bin/emacs. The client kernel follows /usr/local down
to the symbolic link, which points to the /stage/local automounter mount point. The
automounter picks up the reference to /stage as a reference to the auto_stage map, and it uses
the next component — local — as a key in the map. This causes mahimahi:/local/$ARCH to
be automounted. If you have several direct mount points, they can all be converted into links
sharing a single auto_stage map.

9.5.4 Multiple indirection

So far the only map we've seen that refers to other maps is the auto_master map. Let's collect
all of the indirect maps we've added to auto_master in this chapter:

Directory Map Mount Options
/home auto_home -nobrowse
/net -hosts -nobrowse
/tools auto_tools -ro
/source auto_source -rw
/stage auto_stage -ro

One problem with this approach is that the top-level root (/) directory is beginning to get
cluttered. Of course, one could simply add another component to the mount directory. If we
want to put everything under /auto, then we could change indirect map entries of the master
map to:

Directory Map Mount Options
/auto/home auto_home -nobrowse
/auto/net -hosts -nobrowse
/auto/tools auto_tools -ro
/auto/source auto_source -rw
/auto/stage auto_stage -ro

If you are using the autofs automounter, then there is a more elegant approach: simply treat
each indirect map as a map entry in new indirect map called auto_auto. To do this, the master
map would look like:

Directory Map Mount Options
/auto auto_auto
/- auto_direct

The auto_auto map is an indirect map. Like all other indirect maps, its first field has to be a
directory relative to /auto, its second field has to be a set of mount options, and its third field
has to be the name of the thing we are mounting. Here is what auto_auto looks like:

Directory Options Map being mounted
home -fstype=autofs,nobrowse auto_home
net -fstype=autofs,nobrowse -hosts
tools -fstype=autofs,ro auto_tools
source -fstype=autofs,rw auto_source
stage -fstype=autofs,ro auto_stage

Managing NFS and NIS

181

The second and third fields in auto_auto are basically swapped from what they would be in
auto_master. The difference is the presence of the fstype option. This option is needed to
unambiguously tell the autofs automounter that this is not map entry referring to an NFS-
mounted filesystem.

There is no limit on multiple indirection. This fact allows you to create sensible hierarchies
that can be extended ad infinitum. Let's return to the auto_source example, which contains:

sunos5.6 -ro srcserv:/source/sunos5.6
sunos5.7 -ro srcserv:/source/sunos5.7
nfs -ro bigguy:/source/nfs_internals

You've decided to add Linux, BSD, FreeBSD, and System V sources to this map, and you
have multiple versions of each. Rather than having a map of contain entries called sunos5.6,
sunos5.7, linux1.0, linux2.0, bsd4.3, bsd4.4, sysVr3, sysVr4, etc., you decide that you want a
hierarchy that branches first on the name of the operating system and then on the release. So
you change auto_source to:

bsd -fstype=autofs auto_bsd
linux -fstype=autofs auto_linux
nfs -ro bigguy:/source/nfs_internals
sunos -fstype=atofs auto_sunos
sysv -fstype=atofs auto_sysv

The auto_bsd map might contain:

4.1c -ro ancient:/export/source/bsd4.1c
4.2 -ro ancient:/export/source/bsd4.2
4.3 -ro ancient:/export/source/bsd4.3
4.4 -ro srcsrv:/source/bsd4.4

This should be enough to get the idea; for brevity, we won't expand on what the other maps
might look like.

Note that the auto_source map example contains both entries with fstype=autofs, and an nfs
entry referring to bigguy:/source/nfs_internals.

By the way, you probably will want to leave the -hosts and auto_home maps at /net and
/home. The reason is that lots of software assumes these mount points exist. So you would
want auto_master to look like:

Directory Map Mount Options
/auto auto_auto
/home auto_home -nobrowse
/net -hosts -nobrowse
/- auto_direct

9.5.5 Executable indirect maps

The autofs automounter contains another feature known as executable maps. If permissions on
an indirect map file are marked as executable, then the autofs automounter assumes it is an
executable program or shell script, and executes it, passing the key as the first and only

Managing NFS and NIS

182

argument to the program or script. The program or script must then display an indirect map
entry, which can be hierarchal. For example, suppose /etc/auto_master has:

Directory Map Mount Options
/auto auto_auto
/home auto_home -nobrowse
/net -hosts -nobrowse
/net2 /etc/auto_exec
/- auto_direct

Examine /etc/auto_exec:

% ls -l /etc/auto_exec
-rwxr-xr-x 1 root sys 76 Oct 26 09:58 /etc/auto_exec
% cat /etc/auto_exec
#!/bin/sh
/usr/sbin/showmount -e $1 | \
awk 'NR > 1 {print $1 "'$1':"$1 " \\"}' | sort

This script takes the key value as if it is a hostname, and asks the NFS server, via the
showmount command, which filesystems are exported. The output of showmount is then
formatted by the awk command to produce a hierarchical map entry. You can test the script
manually by doing:

% /etc/auto_exec foo
/export1 foo:/export1 \
/export2 foo:/export2 \

Thus, the script implements functionality similar to /net, with one difference. Note that the -
nobrowse mount option isn't included in the /net2 entry of auto_master. This is because
executable maps can't be browsed. There doesn't seem to be any reason why the enhanced
autofs automounter couldn't have been implemented to support it, perhaps by having a
browse= option that referred to yet another program or script to do the browsing.

If, for some reason, the executable program or script cannot resolve the key to a map entry,
then it should display zero bytes of output to standard output. Any output displayed to
standard error will be logged by the automounter onto the system console.

Make sure that if you have an automounter map file with the executable
permission bit set that you actually want it to be executed.

9.6 Side effects

The automounter has several side effects that cause confusion in both processes and users that
encounter its emulated directories. This section uncovers some utilities that are disturbed by
the automounter.

9.6.1 Long search paths

If you have many directories listed in your search path, logging into a system using the
automounter for some of these directories increases your login time significantly. Instead of

Managing NFS and NIS

183

listing the directories in your search path, create "wrappers" for the utilities of interest and put
them in /usr/local/bin. The wrappers can set environment variables and execute the
appropriate utility, causing the automounter to mount the necessary filesystem when you use
it instead of when you log in.

For example, you can include Frame 6.0 in your search path in your .cshrc file:

set path = (/tools/deskset/frame6.0/bin $path)

If /tools is managed by the automounter, your shell causes /tools/deskset to be mounted when
it builds the command hash table after setting your search path. Instead of listing all
directories in /tools, create a wrapper in /usr/local/bin for the maker utility in
/tools/deskset/frame6.0/bin so that you don't have to list any subdirectory of /tools in your
search path:

Wrapper for maker

#!/bin/sh
PATH=/tools/deskset/frame6.0/bin:$PATH
exec /tools/deskset/frame6.0/bin/maker

This wrapper sets the search path as well, so that any executables invoked by maker will be
able to find related utilities in its executable directory. By putting this wrapper in
/usr/local/bin, you avoid having to automount /tools/frame6.0 when you log in. For just a few
directories, the automounter overhead isn't that large, but with ten or more software packages
loaded, logging in becomes a slow process. Furthermore, not mounting all of these
filesystems when you log in shields you from server crashes: your workstation will only hang
if one of the servers you're using crashes.

9.6.2 Avoiding automounted filesystems

Utilities run out of cron, such as nightly find jobs, are easily overworked by the automounter.
The solution is to modify cron jobs to avoid remote filesystems:

• Confine cron jobs to run find on local filesystems.
• Use an option to find like -xdev or -mount to force find to not cross mount points.

This uses the above constraints to implement a script to search for core files:

mount | grep -v remote | awk ' { print $1 } ' | xargs -i find {} -name
'core*' -
mount | /usr/bin/mailx -s"core file report" joe@eng

The mount invocation shows what is currently mounted, grep filters out anything that isn't
local, awk prints the first argument (the mount points), xargs passes each mount point to a
separate invocation of find, and find searches for files starting with the name core within the
mount point's filesystem.

Managing NFS and NIS

184

Chapter 10. PC/NFS Clients
PC/NFS refers to an implementation of the NFS protocol for IBM-compatible personal
computers running the Windows or NT operating systems. Originally, NFS implementations
for the IBM-compatible PC were confined to the client-side of NFS. Today, most vendors of
PC/NFS offer both a client and server, though they are often packaged and sold separately.
This chapter is confined to PC/NFS clients, and where it uses the term "PC/NFS" the term
"PC/NFS client" is meant.

Using PC/NFS, PC machines can mount NFS filesystems as logical disks and use them as
large virtual disks. Note that a client-only implementation does not limit the direction or types
of file transfer operations that are possible within PC/NFS. It simply means that the PC is
always the active entity in the Windows-NFS server relationship; the user must mount an NFS
filesystem on the PC and then copy files between it and the local disk. In this chapter, we'll
look at why you would want to use PC/NFS, alternatives to PC/NFS, setting up PC/NFS, and
PC/NFS usage issues.

10.1 PC/NFS today

The first NFS client for Microsoft DOS or Windows operating systems was developed by Sun
Microsystems in the mid-1980s and was called "PC/NFS." The PC/NFS brand name has
become a generic term to refer to any product that provides an NFS client feature on
Microsoft operating systems. Today, Sun Microsystems has abandoned the PC/NFS business,
leaving a fairly competitive field of several vendors of commercial PC/NFS products. There
are also some freeware or shareware clients if you look hard enough, but there does not
appear to be much development activity around them.

It is beyond the scope of this book to provide a detailed survey of PC/NFS implementations,
since they each have unique features, and new releases for each arrive all the time. You can
use Internet search engines, Usenet archives from sources like google.com, and as a last
resort, queries to Usenet's comp.protocols.nfs newsgroup to get feedback on what products
people prefer. You can also look at http://www.connectathon.org/ to see which companies test
products at the annual Connectathon interoperability testing event. While the Connnectathon
web site won't tell you which companies test NFS and which of those have PC/NFS clients,
the list of companies is not too long, so you could go to the web site of each and see which
have PC/NFS implementations.

When selecting a PC/NFS implementation, your minimum set of required features should
include all of the following:

• NFS Versions 2 and 3
• NFS over UDP and TCP
• Some integration with Unix authorization

The last feature amounts to allowing users of PC/NFS clients to use the same password to
access the NFS server as they would if they were logging into the system the NFS server
resides on. Some PC/NFS clients accomplish this by acting as an NIS client to access the
password database from NIS. Most will also integrate by the use of the PCNFSD protocol.
This was a protocol invented by Sun Microsystems to facilitate access to Unix password
database authorization, as well as printers connected to Unix systems. Note that while support

Managing NFS and NIS

185

for this protocol is common among PC/NFS implementations, finding a PCNFSD server is
not always easy. Ironically, even as of Solaris 8, Solaris doesn't include one. You should
expect that the vendor of your selected PC/NFS client can provide a PCNFSD server for the
Unix server platform you have deployed. If you have trouble, you might poke around the
PC/NFS vendors websites. For example, Hummingbird's ftp://ftp.hcl.com/ FTP server has
source and binaries for its HCLNFSD protocol. Note that the HCLNFSD protocol is similar in
functionality to the PCNFSD protocol, but has been enhanced to work better with the
Hummingbird PC/NFS product. HCLNFSD is not compatible with the PCNFSD protocol.
While several non-Hummingbird PC/NFS implementations support HCLNFSD in addition to
Hummingbird, if you have a PC/NFS client that supports only the PCNFSD protocol,
Hummingbird's HCLNFSD implementation will be of no use. If you are in this predicament,
try using a search engine to find PCNFSD source code or binaries. For example, typing this
query into http://www.google.com/:

source code for pcnfsd

turned up this URL:

http://www.sunfreeware.com/programlist.html

which had both source and binaries (Solaris 2.6, SPARC) for PCNFSD. Obviously, URLs
come and go, so don't be surprised if you find PCNFSD somewhere else.

Advanced and interesting features of some PC/NFS implementations include:

• Kerberos V5 security for NFS mounts. This allows clients to access NFS servers that
share filesystems via Kerberos V5 security only.

• RPC/DH security for NFS mounts. This allows clients to access NFS servers that
share filesystems via RPC/DH security only.

• Integration with NIS+.

You should expect that future PC/NFS implementations will add features like NFS Version 4
and integration with LDAP (so that the Unix authentication database in LDAP can be
accessed).

10.2 Limitations of PC/NFS

The NFS protocol is the lingua franca of file-sharing protocols in that it is implemented on the
widest variety of operating system environments, both client and server. These environments
include Unix (nearly all of them), Windows, NT, MacOS, MVS, OS/400, OS/2, VMS, many
real-time operating systems, and systems designed for network-attached storage, such as the
ONTAP system for Network Appliance's hardware. One reason why NFS has been so
successful is that it is very simple. This simplicity has a price; NFS does not take the approach
of supporting every arcane, operating-specific file semantic for all the environments it
supports. Using NFS on non-Unix platforms, especially as a client, can limit you. This is very
noticeable with PC/NFS. For example, the Windows and NT worlds have notions of enforced
locking, which NFS, even via the NFS Lock Manager, does not provide. While PC/NFS
implementations do their best to emulate this semantic and others, you will find that some
applications work in unexpected ways over NFS.

Managing NFS and NIS

186

These limitations apply to NFS Versions 2 and 3. NFS Version 4 goes a long way toward
supporting Windows and NT file semantics. At the time of this writing, there were no known
generally available NFS Version 4 implementations.

10.2.1 NFS versus SMB (CIFS)

SMB stands for Server Message Block and is the file access protocol that is native to
Windows and NT. In 1996, Microsoft, the owner of the SMB protocol, renamed SMB to
CIFS: the Common Internet File System. However, at the time of this writing, CIFS was not
as common as NFS when it came to came to the variety of client implementations. CIFS is,
however, growing in the number of server implementations. When you consider the plethora
of low-end, network-attached storage boxes aimed at consumers and small office
environments, that often support CIFS but not NFS, it is arguable that CIFS has surpassed
NFS in the number of unique server implementations. The installed base of Windows and NT
desktop computers as compared to non-Windows, non-NT desktops is a big reason for this
trend.

Unix is becoming a popular platform for CIFS servers. This is likely due to the popularity of
the open source package called Samba, which is a CIFS server for Unix platforms. Samba is
developed and maintained by a world-wide community of programmers dedicated to
producing a server as compatible with Microsoft's clients as possible. This is no mean task; at
the time of this writing, the shared opinion of many in the CIFS server industry was that
published CIFS specifications were inadequate to build a compatible server. The Samba
developers, and no doubt other non-Microsoft implementors, have often resorted to using
packet sniffers between existing Windows and NT clients and servers to deduce the protocol
formats and semantics.

The emergence of Samba has led to a massive shift from deploying PC/NFS to deploying
Samba instead. This is for at least three reasons:

• Samba is free of charge under Free Software Foundation's GNU Public License.
• It is easier for system administrators to install and maintain Samba on a few server

hosts than to install and maintain PC/NFS on many client hosts.
• It is perceived that SMB has better security than NFS. This is false. Nor is it quite true

to say that NFS has better security. You can have Kerberos V5 (see Section 12.5.5.1)
security for your collection of PC/SMB clients if all your SMB servers run Windows
2000.[1] You can have Kerberos V5 security for certain PC/NFS clients if all your
servers support NFS secured with Kerberos V5.[2]

[1] At the time this book was written, only SMB servers on Windows 2000 supported Kerberos V5 security, partly because the
Windows 2000 Kerberos V5 is incompatible with Kerberos V5 specification in RFC 1510. See the article, "Microsoft
"embraces and extends" Kerberos V5," by Theodore Ts'o (USENIX ;login, November, 1997).

[2] See Section 12.5.4.10 for the set of known NFS servers and PC/NFS clients that support Kerberos V5.

However, when comparing a situation where you cannot run Windows on all your
SMB servers with a situation where you cannot run NFS servers that support Kerberos
V5 or NFS/dh, (see Section 12.5.4), then the SMB environment is more secure.

Managing NFS and NIS

187

10.2.2 Why PC/NFS?

With the ubiquity of CIFS servers on Unix platforms, it begs the question, why run NFS on a
Windows or NT client? This question was asked of the comp.protocols.smb and
comp.protocols.nfs Usenet newsgroups in the summer of 2000. The responses can be
summarized as follows:

Speed

Some respondents claimed that NFS was faster. An article by Jeff Ballard for Network
Computing magazine's web site ("Increasing File Access Through SMB," March 6,
2000, http://www.nwc.com/) compared three Unix-based SMB servers. An interesting
quotation from the article is:

If it's speed you want, NFS is probably a better solution [than SMB] for you.

Some direct research was done to investigate such claims. A 256 MB file was created
in the /tmp directory of a Solaris 8 file server. The server was an Ultra 10, with a 440
Mhz Ultra Sparc II processor and 512 MB of primary memory. A Windows 98 client
(a Sony Vaio Z505HS, with a 500 Mhz Pentium III processor and 128 MB of primary
memory) was used to copy (via Windows Explorer) the file between the file server
and client. Using Samba as the SMB server, and native SMB client in the client,
copying the file from the server to the client's My Documents folder took about one
minute. However copying the file from the My Documents folder to the SMB server
took about ten minutes. When using a free evaluation copy of an NFS client on the
client, and the native NFS server on the Solaris 8 system, the respective file transfer
times were about 45 seconds each. The quoted times are qualified with "about,"
because Windows Explorer did not display file transfer times, leaving the tester timing
the results with the second hand of a timepiece.

The informal results were obtained without any tuning of the Solaris NFS server or the
Samba server. It is quite possible that tuning the Samba server would have improved
performance. Also, single stream file transfer speed is only one part of performance.
About the only conclusion you should make is that you need to consider performance
when making the decision to use NFS or SMB on Windows or NT clients.

Administrative complexity

Administering an SMB server is much different than administering an NFS server.
Even if you are primarily a Unix shop with some Windows or NT clients, running an
SMB server is still going to require at least as much expertise as running an NFS
server.

One respondent said if you have few (ten or less) potential SMB clients, then you
should strongly consider the trade-off of purchasing and installing commercial
PC/NFS products on Windows and NT systems, versus devoting administration
resources to SMB.

It required most of a day to install and configure the precompiled Samba binaries on
the Solaris 8 server, plus lots of fiddling on the Windows 98 client, before the

Managing NFS and NIS

188

Network Neighborhood folder would recognize the Solaris 8 server. One unexpected
result was that the passwords for SMB users apparently have to be managed separately
from the corresponding Unix passwords, due to absence of an NTLM server on the
network. This is because the Windows 98 client in the testbed was apparently sending
encrypted passwords. Since the password database in NIS or files encrypts the
passwords with a different scheme than Windows 98, Samba provides the option to
maintain a separate database.

Software compatibility

One respondent claimed that there are Windows- or NT-based applications that work
only over NFS. Rational's Clearcase, a software configuration management (source
code control) system, was found to be an example.

There is one more consideration: reliability. The SMB protocol is based on TCP/IP and is
very stateful, like the NFS lock manager. State recovery is very simplistic; when the TCP
connection between an SMB client and server is lost, the SMB server removes all state that
belongs to the SMB client. There is no mechanism to allow a client to reestablish state. In
contrast to the NFS environment, the filing protocol has no state to recover. The NFS
environment's locking protocol is stateful, but there is a state recovery mechanism: clients are
given a grace period to re-establish state. The consequence of the SMB approach is that a
client has a higher opportunity to lose its locks and other valuable state after a server restart
than with the NFS environment. Andy Watson and Paul Benn, in a white paper from Network
Appliance ("Multiprotocol Data Access: NFS, CIFS, and HTTP," TR3014, Revision 3, May
1999, http://www.netapp.com/), wrote:

If a CIFS client attempts file access on an established connection while the server is
unavailable (down or not yet finished rebooting), this is effectively the equivalent of a failed
disk from the perspective of the application software. In many cases, the application will
report an error and allow the user to retry, but some applications will simply hang or exit.

At the time this book was written, this statement was true for both Windows ME and
Windows 2000. However, there are rumors that future versions of Windows will address this
recovery issue.

10.3 Configuring PC/NFS

The steps for installing and using a PC/NFS client will vary from vendor to vendor. You can
expect that they will offer simple GUI-based installation that is compatible with Windows and
NT norms, such as Installshield installation technology. The installer will walk you through
most, if not all, of the necessary configuration. At install time or connect time, you should be
asked to state how you will be authenticated, via NIS or PCNFSD, and you might be asked if
you want to cache your username and password.

10.3.1 Server-side PC/NFS configuration

There should not be any additional configuration for a PC/NFS client other than that needed
for a Unix-based NFS client, unless the client requires the use of the PCNFSD protocol (either
because you do not run NIS, or because you want to give your PCs access to Unix-connected
printers). You may find that the PC/NFS client does not use reserved source ports (IP address

Managing NFS and NIS

189

port values less than 1024), and if so, you may have to disable "port monitoring" on the server
as we'll discuss in Section 12.4.6.

If you need to run a PCNFSD daemon on the server, you will want to add it to the rc scripts
that get started when the Unix server boots up. For Solaris, you would add a script to
/etc/init.d:

#!/bin/sh
PCNFSD_NAME=hclnfsd # in /opt/pcnfs/bin
PATH=/opt/pcnfsd/bin:$PATH
export PATH

case "$1" in
start)

 # The named directory is used as a temporary area for print spool files.

 $PCNFSD -A /var/run
 ;;
stop)
 pkill $PCNFSD
 ;;
esac
exit 0

and then link this script to a hard or soft link in /etc/rc3.d to start it before the NFS server.

10.4 Common PC/NFS usage issues

We'll conclude this chapter with a look at a few practical issues that come up in PC/NFS
installations.

10.4.1 Mounting filesystems

Some PC/NFS clients will require an explicit step to connect to an NFS server. This step will
be performed by a GUI application, where the user identifies the NFS server host and the
server's filesystem to mount. The mount occurs on a drive letter rather than an arbitrary mount
point.

Other PC/NFS clients will be tightly integrated with the Windows Network Neighborhood.
You would then click on the Network Neighborhood icon on the desktop screen, and see a list
of hosts advertising filesystems available to NFS or SMB clients.

In either case, to complete the connection to the server, you may be prompted with a
password, unless you decide to connect as nobody. As nobody, you'll have access only to files
with world read, write, or execute permissions.

If using AUTH_SYS, the client takes your password and sends it to the PCNFSD daemon
server, or checks with the NIS or NIS+ server's passwd map to see if you are authorized to
assume that AUTH_SYS identity. Thus, it is the client, and not the NFS server, that is
performing the authentication.[3] However, if the connection uses NFS/dh (see Section 12.5.4)

Managing NFS and NIS

190

or Kerberized NFS (see Section 12.5.5.3), then the server performs the authentication without
sending a password to the server, encrypted or not.

[3] The same is true when using a Unix NFS client with AUTH_SYS.

10.4.2 Checking file permissions

Windows/NT and Unix have different file permissions conventions. By default, users on PCs
are given the permissions of the anonymous user nobody, which generally means that PC
users can access files with the appropriate world permissions. As we'll discuss in Section
12.4.2, being mapped to nobody is very restrictive and may prevent users from accessing their
home directories on Unix file servers.

With NFS Version 2, there is no mechanism for Windows or NT to perform Unix file
permission checking. File permissions exist only on the Unix server side, not on the PC/NFS
side. This problem is solved by calling on the PCNFSD server. The first time the PC/NFS
user accesses the server, the PC/NFS client mounts the filesystem and contacts the PCNFSD
server to get user identifiers, group identifiers, and supplementary group identifiers for the
authenticated user. The PC/NFS client can then compare the identifiers with the attributes
(user and group ownership and permissions) of files accessed to see if the user should have
access or not.

If the NFS mount uses NFS Version 3, which has an ACCESS procedure, contacting the
PCNFSD server for the user's identifiers for the purpose of permission is not necessary. Of
course, if AUTH_SYS is being used, the user's identifiers are still necessary.

10.4.3 Unix to Windows/NT text file conversion

Windows/NT and Unix differ in their end-of-line and end-of-file conventions on text files.
PC/NFS includes the dos2unix and unix2dos utilities to convert between the two formats (the
text editor you use on Windows might have the capability to convert between the two text
formats as well). When converting to Windows format, Unix end-of-line characters (\n) are
converted to newlines and carriage returns, and an end-of-file character (CTRL-Z) is added.
Going the other way, extra carriage returns and the end-of-file marker are stripped out of the
file.

If you look at a Unix text file on a PC without doing the end-of-line conversion, you'll find
that consecutive lines of text fall into a stepped arrangement instead of starting on the left
margin:

C> type h:\test.txt
This is a line
 of text without carriage returns

In this example, you need to convert file test to Windows format before reading it on the
PC/NFS client. The conversion entails the addition of carriage returns (CTRL-M characters)
to the end of each line and adding an end-of-file marker (CTRL-Z) to the end of the file.

You can put Windows files of any sort — executable, binary, or text — on a Unix fileserver
and access them using normal Windows mechanisms. PC/NFS doesn't care about the content
of the files. The file format conversion problem exists only for text files that were created on

Managing NFS and NIS

191

one system that must be read on another. If you put a Windows binary on a Unix NFS server,
it will not require any format conversion to be read and executed by the PC/NFS client.

Text file conversion utilities are available on Unix as well. Solaris has unix2dos and dos2unix.
Linux has mcopy.

10.5 Printer services

PC/NFS lets you access a printer attached to a Unix host by redirecting printer output to a file
on the PC/NFS print host. It's up to the server to spool the file to the printer, using the
standard Unix lpr or lp mechanism. There's no requirement that the Unix printer be directly
attached to the print host; if the server has to print remotely, it does so transparently to the
PC/NFS client.

The PC/NFS print and authentication functions are performed by the same machine: both
services are handled by the PCNFSD daemon that runs on the authentication server. You may
choose to run PCNFSD daemons on several NFS servers to separate the authentication and
printing services. PC/NFS clients will send requests to PCNFSD daemons used for printing if
the PC printer definitions explicitly name the print host.

Note that some PC/NFS implementations support printing via the LPR protocol, thus
obviating the need to run the PCNFSD daemon if it is not needed for authentication and
permissions checking purposes.

Managing NFS and NIS

192

Chapter 11. File Locking
In Section 7.5, we introduced the concept of file locking and the two primary components: the
RPC lock daemon and the status monitor. This chapter will delve more deeply into file
locking and will examine the administrative aspects.

11.1 What is file locking?

File locking is the act of ensuring that when you access a file, usually via a software
application, no one can change the file until you are done examining it. If you want to modify
the file, then file locking ensures that no one else can examine or modify the file until you are
done modifying it.

The earliest versions of Unix had no way to lock files except to create lock files. The idea is
that two or more processes would more or less simultaneously try to create a lock file in
exclusive mode, via the O_EXCL flag of the open() system call. The operating system would
return success to the process that won the race, and a "file exists" error to losing processes.
One problem with this scheme is that it relies on the winning process to remove the lock file
before it exits. If the process is running buggy software, this might not happen. Some
applications mitigate this problem by recording the process ID of the winner into the contents
of the lock file. A process that finds that it gets a "file exists" error can then read the lock file
to see if the owning process is still running.

Still, lock files can be clumsy. In the 1980s, Unix versions were released with file locking
support built into the operating system. The System V branch of Unix offered file locking via
the fcntl() system call, whereas the BSD branch provided the flock() system call. In both
cases, when the process that creates the lock dies, the lock will be automatically released.

11.1.1 Exclusive and shared locks

Both fcntl and flock give the choice of either an exclusive lock, where only one process could
hold the lock, or a shared lock, where multiple holders could simultaneously exist, to the
exclusion of holders of the exclusive lock. The exclusive lock is sometimes called a "single
writer" lock, because its exclusive nature lends itself to allowing safe writes to a file. The
shared lock is sometimes called a "multiple readers" lock because its shared nature lends itself
to allowing multiple safe reads of a file.

11.1.2 Record locks

The fcntl system call also has the feature of byte range record locking. This means that the
application can partition a file into as many arbitrarily sized segments or records that it wants,
and by specifying a file offset and length, lock them. Thus, it is possible to have both an
exclusive lock and a shared lock on a file, provided the file offsets and lengths of each record
lock do not overlap.

11.1.3 Mandatory versus advisory locking

Both fcntl and flock offer advisory locking. Advisory locking is locking that requires the
cooperation of participating processes. Suppose process A acquires an exclusive lock on the

Managing NFS and NIS

193

file, with the intent to write it. Suppose process B opens the file with the intent to write it. If
process B fails to acquire a lock, there is nothing to prevent it from issuing a write system call
and corrupting the process that A is writing. For this reason, advisory locking is sometimes
called unenforced locking.

System V (and therefore Solaris) offers mandatory or enforced locking as an option. This
option is enabled if mandatory lock permissions are set on a file. Mandatory lock permissions
are an overload of the set group ID execution bit (02000 in octal). If the set group ID
execution bit is set, and if the group execution bit is not set, then all reads and writes to the
file will use enforced locking. So, for example:

% chmod 2644 example
% ls -l example
-rw-r-lr-- 1 mre staff 9 Dec 28 10:52 example

This makes file example readable and writable by the file's owner, and readable by everyone
else. The appearance of the l in the first field of the output of the ls command tells you that
mandatory locking is enabled. Of course, you can use any combination of read or write
permissions for the file's owner, group, and world.

If the mandatory lock permissions are set on a file, then every write() or read() system call
results in an implicit sequence of:

fcntl(...); /* lock the file at the range we are reading or writing */
read(...); /* or */ write(...);
fcntl(...); /* unlock the file at the range locked above */

What if the process has already acquired a lock by an explicit fcntl call? If the range locked is
equal to or encompasses the range the read or write is done on, then no implicit pair of fcntl
calls are done. If the range explicitly locked partly overlaps the range read or write will do,
then implicit fcntl calls are done on the unlocked portion of the range.

Mandatory locking seems very useful, but it is open to denial of service attacks. Suppose
mandatory lock permissions are set on a file. An attacker named Mallet decides to issue an
fcntl call to get an exclusive lock on the entire file. Bob now tries to read the file and finds
that his application hangs. A proponent of mandatory locking might point out that the mistake
was in allowing the file to be accessible by Mallet (if Mallet can't open the file, he can't lock
it). The counter argument is that if you are going to rely on permissions to avoid a denial of
service (and restricted permissions are a good thing to have for critical applications), then the
set of users who can access the file is limited to those with a vested interest in avoiding denial
of service. In that case, mandatory locking is no more useful than advisory locking.

11.1.4 Windows/NT locking scheme

The discussion so far has been about Unix locking paradigms. The Windows world has a
different paradigm. There are two major differences between Unix and Windows locking:

• The first difference is that the Windows world supports a share reservation
programming interface. Share reservations apply to the entire file and are specified at
the time a file is created or opened. A share reservation consists of a pair of modes.
The first is the access mode, which is how the application will access the file: read,

Managing NFS and NIS

194

write, or read/write. The second is the access that the application will deny to other
applications: none, read, write, or read/write. When the application attempts to open a
file, the operating system checks to see if there are any other open requests on the file.
If so, it first compares the application's access mode with the deny mode of the other
openers. If there is a match, then the open is denied. If not, then the operating system
compares the application's deny mode with the access mode of the other openers.
Again, if there is a match, the open is denied.

• The second difference is that there is no advisory locking. Whole file locking, byte
range locking, and share reservation locking are all mandatory or enforced.[1]

[1] As it turns out, very few Windows programs rely on byte range mandatory locking.

Share reservations in the Windows world do not interact at all with
Windows byte range or whole file locking.

11.2 NFS and file locking

The NFS (Versions 2 and 3) protocol does not support file locking, but the NFS environment
supports an ancillary protocol called NLM, which originally stood for "Network Lock
Manager." When an NFS filesystem on an NFS client gets a request to lock a file, instead of
an NFS remote procedure call, it generates an NLM remote procedure call.

11.2.1 The NLM protocol

The NLM protocol consists of remote procedure calls that pattern fcntl arguments and results.
Because blocking locks are supported (a process blocks waiting for a lock that conflicts with
another holder), the NLM protocol has the notion of callbacks, from the file server to the
NLM client to notify that a lock is available. In this way, the NLM client sometimes acts as an
RPC server in order to receive delayed results from lock calls.

11.2.2 NLM recovery

The NFS protocol is stateless, but because file locking is inherently stateful, NLM is stateful.
This results in a more complex scheme to recover from failures. There are three types of
recovery scenarios to consider:

• Server crash
• Client crash
• Network partition

11.2.2.1 Server crash

When the NLM server crashes, NLM clients that are holding locks must reestablish them on
the server when it restarts. The NLM protocol deals with this by having the status monitor on
the server send a notification message to the status monitor of each NLM client that was
holding locks. The initial period after a server restart is called the grace period. During the
grace period, only requests to reestablish locks are granted. Thus, clients that reestablish locks
during the grace period are guaranteed to not lose their locks.

Managing NFS and NIS

195

11.2.2.2 Client crash

When an NLM client crashes, it is desirable that any locks it was holding at the time be
removed from all the NLM servers it had locks on. The NLM protocol deals with this by
having the status monitor on the client send a message to each server's status monitor once the
client reboots. The client reboot indication tells the server that the client no longer needs its
locks.

Of course, if the client crashes and never comes back to life, the client's locks will persist
indefinitely. This is not good for two reasons:

• Resources are indefinitely leaked.
• Eventually another client will want to get a conflicting lock on at least one of the files

the crashed client had locked. Thus the other client is postponed indefinitely.

This is one of the administrative issues you will need to deal with, which we will cover later
in this chapter.

11.2.2.3 Network partition

Suppose an NLM client is holding a lock, but the network route between it and the NLM
server goes down: a network partition. At this point, from the perspective of the server, the
situation is indistinguishable from a client that crashes but never comes back. Again, this is a
situation you will need to handle.

11.2.3 Mandatory locking and NFS

NLM supports only advisory whole file and byte range locking, and until NFS Version 4 is
deployed, this means that the NFS environment cannot support mandatory whole file and byte
range locking. The reason goes back to how mandatory locking interacts with advisory fcntl
calls.

Let's suppose a process with ID 1867 issues an fcntl exclusive lock call on the entire range of
a local file that has mandatory lock permissions set. This fcntl call is an advisory lock. Now
the process attempts to write the file. The operating system can tell that process 1867 holds an
advisory lock, and so, it allows the write to proceed, rather than attempting to acquire the
advisory lock on behalf of the process 1867 for the duration of the write. Now suppose
process 1867 does the same sequence on another file with mandatory lock permissions, but
this file is on an NFS filesystem. Process 1867 issues an fcntl exclusive lock call on the entire
range of a file that has mandatory lock permissions set. Now process 1867 attempts to write
the file. While the NLM protocol has fields in its lock requests to uniquely identify the
process on the client that locked the file, the NFS protocol has no fields to identify the
processes that are doing writes or reads. The file is advisory locked, and it has the mandatory
lock permissions set, yet the NFS server has no way of knowing if the process that sent the
write request is the same one that obtained the lock. Thus, the NFS server cannot lock the file
on behalf of the NFS client. For this reason, some NFS servers, including Solaris servers,
refuse any read or write to a file with the mandatory lock permissions set.

Managing NFS and NIS

196

11.2.4 NFS and Windows lock semantics

The NLM protocol supports byte range locking and share reservations.

While Windows byte range locking is mandatory, on Unix servers it will be advisory. To the
dismay of Windows software developers, this means that non-PC/NFS clients might step on
PC/NFS clients, because the non-PC/NFS client does not try to acquire a lock. It also means
that servers that support both NFS/NLM and SMB might not correctly handle cases where an
NFS client is doing a read or write to a file that an SMB client has established a mandatory
lock on.

PC/NFS clients will emulate share reservation semantics by issuing the share reservation
remote procedure calls to the NLM server. However, most non-PC/NFS clients, or even local
processes on Unix NLM servers will not honor the deny semantics of the share reservation of
the PC/NFS client. Another problem with the emulation is that Windows semantics expect the
share reservation and exclusive file creation to be atomic. The share reservation and file
creation go out as separate operations, hence no atomicity, allowing a window of
vulnerability, where a client can succeed in its exclusive create, but not get the share
reservation.

11.3 Troubleshooting locking problems

Lock problems will be evident when an NFS client tries to lock a file, and it fails because
someone has it locked. For applications that share access to files, the expectation is that locks
will be short-lived. Thus, the pattern your users will notice when something is awry is that
yesterday an application started up quite quickly, but today it hangs. Usually it is because an
NFS/NLM client holds a lock on a file that your application needs to lock, and the holding
client has crashed.

11.3.1 Diagnosing NFS lock hangs

On Solaris, you can use tools like pstack and truss to verify that processes are hanging in a
lock request:

client1% ps -eaf | grep SuperApp
 mre 23796 10031 0 11:13:22 pts/6 0:00 SuperApp
client1% pstack 23796
23796: SuperApp
 ff313134 fcntl (1, 7, ffbef9dc)
 ff30de48 fcntl (1, 7, ffbef9dc, 0, 0, 0) + 1c8
 ff30e254 lockf (1, 1, 0, 2, ff332584, ff2a0140) + 98
 0001086c main (1, ffbefac4, ffbefacc, 20800, 0, 0) + 1c
 00010824 _start (0, 0, 0, 0, 0, 0) + dc
client1% truss -p 23796
fcntl(1, F_SETLKW, 0xFFBEF9DC) (sleeping...)

This verifies that the application is stuck in a lock request. We can use pfiles to see what is
going on with the files of process 23796:

client1% pfiles 23796
pfiles 23796
23796: SuperApp
 Current rlimit: 256 file descriptors

Managing NFS and NIS

197

 0: S_IFCHR mode:0620 dev:136,0 ino:37990 uid:466 gid:7 rdev:24,37
 O_RDWR
 1: S_IFREG mode:0644 dev:208,1823 ino:5516985 uid:466 gid:300 size:0
 O_WRONLY|O_LARGEFILE
 advisory write lock set by process 3242
 2: S_IFCHR mode:0620 dev:136,0 ino:37990 uid:466 gid:7 rdev:24,37
 O_RDWR

That we are told that there is an advisory lock set on file descriptor 1 that is set by another
process, process ID 3242, is useful, but unfortunately it doesn't tell us if 3242 is a local
process or a process on another NFS client or NFS server. We also aren't told if the file
mapped to file descriptor 1 is a local file, or an NFS file. We are, however, told that the major
and minor device numbers of the filesystem are 208 and 1823 respectively. If you run the
mount command without any arguments, this dumps the list of mounted file systems. You
should see a display similar to:

/ on /dev/dsk/c0t0d0s0
read/write/setuid/intr/largefiles/onerror=panic/dev=2200000
on Thu Dec 21 11:13:33 2000
/usr on /dev/dsk/c0t0d0s6 read/write/setuid/intr/largefiles/onerror=panic/
dev=2200006 on Thu Dec 21 11:13:34 2000
/proc on /proc read/write/setuid/dev=31c0000 on Thu Dec 21 11:13:29 2000
/dev/fd on fd read/write/setuid/dev=32c0000 on Thu Dec 21 11:13:34 2000
/etc/mnttab on mnttab read/write/setuid/dev=3380000 on Thu Dec 21 11:13:35
2000
/var on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles/onerror=panic/
dev=2200007 on Thu Dec 21 11:13:40 2000
/home/mre on spike:/export/home/mre
remote/read/write/setuid/intr/dev=340071f on
Thu Dec 28 08:51:30 2000

The numbers after dev= are in hexadecimal. Device numbers are constructed by taking the
major number, shifting it left several bits, and then adding the minor number. Convert the
minor number 1823 to hexadecimal, and look for it in the mount table:

client1% printf "%x\n" 1823
71f
client1% mount | grep 'dev=.*71f'
/home/mre on spike:/export/home/mre
remote/read/write/setuid/intr/dev=340071f on
Thu Dec 28 08:51:30 2000

We now know four things:

• This is an NFS file we are blocking on.
• The NFS server name is spike.
• The filesystem on the server is /export/home/mre.
• The inode number of the file is 5516985.

One obvious cause you should first eliminate is whether the NFS server spike has crashed or
not. If it hasn't crashed, then the next step is to examine the server.

Managing NFS and NIS

198

11.3.2 Examining lock state on NFS/NLM servers

Solaris and other System V-derived systems have a useful tool called crash for analyzing
system state. Crash actually reads the Unix kernel's memory and formats its data structures in
a more human readable form. Continuing with the example from Section 11.3.1, assuming
/export/home/mre is a directory on a UFS filesystem, which can be verified by doing:

spike# df -F ufs | grep /export
/export (/dev/dsk/c0t0d0s7): 503804 blocks 436848 files

then you can use crash to get more lock state.

The crash command is like a shell, but with internal commands for examining kernel state.
The internal command we will be using is lck :

spike# crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> lck
Active and Sleep Locks:
INO TYP START END PROC PID FLAGS STATE PREV NEXT
LOCK
30000c3ee18 w 0 0 13 136 0021 3 48bf0f8 ae9008
6878d00
30000dd8710 w 0 MAXEND 17 212 0001 3 8f1a48 8f02d8
8f0e18
30001cce1c0 w 193 MAXEND -1 3242 2021 3 6878850 c43a08
2338a38

Summary From List:
 TOTAL ACTIVE SLEEP
 3 3 0
>

An important field is PROC. PROC is the "slot" number of the process. If it is -1, that
indicates that the lock is being held by a nonlocal (i.e., an NFS client) process, and the PID
field thus indicates the process ID, relative to the NFS client. In the sample display, we see
one such entry:

30001cce1c0 w 193 MAXEND -1 3242 2021 3 6878850 c43a08
2338a38

Note that the process id, 3242, is equal to that which the pfiles command displayed earlier in
this example. We can confirm that this lock is for the file in question via crash's uinode
command:

> uinode 30001cce1c0
UFS INODE MAX TABLE SIZE = 34020
ADDR MAJ/MIN INUMB RCNT LINK UID GID SIZE MODE FLAGS
30001cce1c0 136, 7 5516985 2 1 466 300 403 f---644 mt rf
>

The inode numbers match what pfiles earlier displayed on the NFS client. However, inode
numbers are unique per local filesystem. We can make doubly sure this is the file by
comparing the major and minor device numbers from the uinode command, 136 and 7, with
that of the filesystem that is mounted on /export :

Managing NFS and NIS

199

spike# ls -lL /dev/dsk/c0t0d0s7
brw------- 1 root sys 136, 7 May 6 2000 /dev/dsk/c0t0d0s7
spike#

11.3.3 Clearing lock state

Continuing with our example from Section 11.3.2, at this point we know that the file is locked
by another NFS client. Unfortunately, we don't know which client it is, as crash won't give us
that information. We do however have a potential list of clients in the server's /var/statmon/sm
directory:

spike# cd /var/statmon/sm
spike# ls
client1 ipv4.10.1.0.25 ipv4.10.1.0.26 gonzo java

The entries prefixed with ipv4 are just symbolic links to other entries. The non-symbolic link
entries identify the hosts we want to check for.

The most likely cause of the lock not getting released is that the holding NFS client has
crashed. You can take the list of hosts from the /var/statmon/sm directory and check if any are
dead, or not responding due to a network partition. Once you determine which are dead, you
can use Solaris's clear_locks command to clear lock state. Let's suppose you determine that
gonzo is dead. Then you would do:

spike# clear_locks gonzo

If clearing the lock state of dead clients doesn't fix the problem, then perhaps a now-live client
crashed, but for some reason after it rebooted, its status monitor did not send a notification to
the NLM server's status monitor. You can log onto the live clients and check if they are
currently mounting the filesystem from the server (in our example, spike:/export). If they are
not, then you should consider using clear_locks to clear any residual lock state those clients
might have had.

Ultimately, you may be forced to reboot your server. Short of that there are other things you
could do. Since you know the inode number and filesystem of file in question, you can
determine the file's name:

spike# cd /export
find . -inum 5516985 -print
./home/mre/database

You could rename file database to something else, and copy it back to a file named database.
Then kill and restart the SuperApp application on client1. Of course, such an approach
requires intimate knowledge or experience with the application to know if this will be safe.

Managing NFS and NIS

200

Chapter 12. Network Security
The simplicity and transparency provided by NFS and NIS must be weighed against security
concerns. Providing access to all files to all users may not be in the best interests of security,
particularly if the files contain sensitive or proprietary data. Not all hosts may be considered
equally secure or "open," so access may be restricted to certain users. Transparency must be
limited when dealing with secured hosts: if you have taken precautions to prevent
unauthorized access to a machine, you don't want someone to be able to sit down and use an
open window or logged-in terminal to access the secured machine. To enforce access
restrictions, you always want password verification for users, which means eliminating some
of the network transparency provided by NIS.

This chapter describes mechanisms for tightening access restrictions to machines and
filesystems. It is not intended to be a complete list of security loopholes and their fixes. The
facilities and administrative techniques covered are meant to complement the network
transparency provided by NFS and NIS while still enforcing local security measures. For a
more detailed treatment of security issues, refer to Practical Unix Security, by Garfinkel and
Spafford (O'Reilly & Associates, 1996).

12.1 User-oriented network security

One area of concern is user access to hosts on the network. Figure 12-1 shows several classes
of permissions to consider, reflecting the ways in which a user might access a host from
another host on the network.

Figure 12-1. Client-server remote logins

Remote logins are not the only concern; remote execution of commands using rsh should be
considered in the same context. This section covers only login restrictions; we'll look at
protecting data in NFS filesystems later in this chapter. Local login restrictions are defined by
the local host's password file, NIS password maps, and the use of netgroups. Across the
network, access is determined by the notion of trusted hosts and trusted users.

12.1.1 Trusted hosts and trusted users

Defining a trusted host requires two machines: one that will be trusted and one that is
extending the trust to it. The local host lh trusts remote host rh if users can log into lh from rh

Managing NFS and NIS

201

without supplying their passwords. Similarly, a user is trusted if he or she can log into a host
from some remote machine without supplying a password. Trust is defined only for the local
host; users and machines may be trusted on some systems but not on others.

The relationships between hosts often define the realm of trusted users and trusted hosts. Two
NIS or NFS clients, for example, may trust all users and all other client hosts. On the NFS
server, only other servers may be trusted hosts and only the system administration staff may
be trusted users.

The following trusted user and trusted host descriptions apply in an
environment in which you do not have to be wary of users or outsiders
who will attempt to compromise security. These are basic security
measures that fit in with the other network management strategies
discussed in this book. If you need to secure your systems against all
attacks, then you must consider the effects of having security
compromised on any machine in your network. Again, these extensive
security mechanisms are discussed in Practical Unix Security.

Some of the common patterns of trusting hosts and users are:

Server-Server

Generally, servers trust each other. A few users can be trusted in server-to-server
relationships if each server has a password file that contains a subset of the NIS
password map, or a password file with no NIS references. To emphasize the previous
warning, extending trust between servers means that if one server is compromised,
then they all are.

Server-Client

Most clients should trust the servers and users on the servers. A system administrator
may need to run performance monitoring daemons on the client from the server and
require transparent access to the client. Similarly, the server may be used to distribute
files to the clients on a regular basis.

Client-Server

This is probably the most restrictive relationship. Only users with a need to use a
service are generally given transparent access to the servers. Remote access to the
server for access to a server's printer can be controlled via the -u option to the lpadmin
command, instead of by trusting client machines on the server.

Client-Client

Client-client relationships depend upon how you have centralized your disk resources.
If all files live on one or more fileservers, then client-to-client relationships are
generally relaxed. However, if you are using the clients as isolated systems, with some
per-client storage containing private data, then client-client relationships look more
like those between clients and servers. The scope of the client-client relationships

Managing NFS and NIS

202

depends upon the sensitivity of the data on the clients: if you don't want other users to
see the private data, then you must treat the client machine like a server.

The /etc/hosts.equiv and .rhosts files (in each user's home directory) define the set of trusted
hosts, users, and user-host pairs for each system. Again, trust and transparent access are
granted by the machine being accessed remotely, so these configuration files vary from host
to host. The .rhosts file is maintained by each user and specifies a list of hosts or user-host
pairs that are also parsed for determining if a host or user is trusted.

12.1.2 Enabling transparent access

Both rlogin and rsh use the ruserok() library routine to bypass the normal login and password
security mechanism. The ruserok() routine is invoked on the server side of a connection to
see if the remote user gets transparent (i.e., no password prompt) access. To understand the
semantics, let's look at its function prototype:

int ruserok(const char *rhost, int suser, const char *ruser,
 const char *luser);

The rhost parameter is the name of the remote host from where the remote user is. The ruser
parameter is the login name of the remote user. The luser parameter is the name of local login
name that the remote user wants transparent access to. Often luser and ruser are the same, but
not always. The suser parameter is set to 1 if the UID of luser is 0, i.e., superuser. Otherwise,
suser is set to 0.

ruserok() checks first if luser exists; i.e., does getpwnam() return success for luser ? It then
determines if the remote user and hostname given are trusted on the local host; it is usually
called by the remote daemon for these utilities during its startup. If the user or host are not
trusted, then the user must supply a password to log in or get "Permission denied" errors when
attempting to use rsh. If the remote host trusts the user and host, execution (or login) proceeds
without any other verification of the user's identity.

The hosts.equiv file contains either hostnames or host-user pairs:

hostname [username]

If a username follows the hostname, only that combination of user and hostnames is trusted.
Netgroup names, in the form +@group, may be substituted for either hostnames or
usernames. As with the password file, using a plus sign (+) for an entry includes the
appropriate NIS map: in the first column, the hosts map is included, and in the second
column, the password map is included. Entries that grant permission contain the hostname, a
host and username, or a netgroup inclusion.

The following is /etc/hosts.equiv on host mahimahi:

wahoo
bitatron +
corvette johnc
+@source-hosts
+@sysadm-hosts +@sysadm-users

Managing NFS and NIS

203

The first example trusts all users on host wahoo. Users on wahoo can rlogin to mahimahi
without a password, but only if the ruser and luser strings are equal.The second example is
similar to the first, except that any remote user from bitatron can claim to be any local user
and get access as the local user; i.e., luser and ruser do not have to be equal. This is certainly
useful to the users who have access to bitatron, but it is very relaxed (or lax) security on
mahimahi. The third example is the most restrictive. Only user johnc is trusted on host
corvette, and of course luser and ruser (both "johnc") must be the same. Other users on host
corvette are not trusted and must supply a password when logging in to mahimahi.

The last two entries use netgroups to define lists of hosts and users. The +@source-hosts
entry trusts all hosts whose names appear in the source-hosts netgroup. If usernames are given
as part of the netgroup triples, they are ignored. This means that hostname wildcards grant
overly generous permissions. If the source-hosts netgroup contained (,stern,), then using this
netgroup in the first column of hosts.equiv effectively opens up the machine to all hosts on the
network. If you need to restrict logins to specific users from specific machines, you must use
either explicit names or netgroups in both the first and second column of hosts.equiv.

The last example does exactly this. Instead of trusting one host-username combination, it
trusts all combinations of hostnames in sysadm-hosts and the usernames in sysadm-users.
Note that the usernames in the sysadm-hosts netgroup and the hostnames in the sysadm-users
netgroup are completely ignored.

Permission may be revoked by preceding the host or user specification with a minus sign (-):

-wahoo
+ -@dangerous-users

The first entry denies permission to all users on host wahoo. The second example negates all
users in the netgroup dangerous-users regardless of what machine they originate from (the
plus sign (+) makes the remote machine irrelevant in this entry).

If you want to deny permission to everything in both the hosts and password NIS maps, leave
hosts.equiv empty.

The .rhosts file uses the same syntax as the hosts.equiv file, but it is parsed after hosts.equiv.
The sole exception to this rule is when granting remote permission to root. When the
superuser attempts to access a remote host, the hosts.equiv file is ignored and only the /.rhosts
file is read. For all other users, the ruserok() routine first reads hosts.equiv. If it finds a
positive match, then transparent access is granted. If it finds a negative match, and there is no
.rhosts file for luser, then transparent access is denied. Otherwise, the luser 's .rhosts file is
parsed until a match, either positive or negative, is found. If an entry in either file denies
permission to a remote user, the file parsing stops at that point, even if an entry further down
in the file grants permission to that user and host combination.

Usernames that are not the same on all systems are handled through the user's .rhosts file. If
you are user julie on your desktop machine vacation, but have username juliec on host starter,
you can still get to that remote host transparently by adding a line to your .rhosts file on
starter. Assuming a standard home directory scheme, your .rhosts file would be
/home/juliec/.rhosts and should contain the name of the machine you are logging in from and
your username on the originating machine:

Managing NFS and NIS

204

vacation julie

From vacation, you can execute commands on starter using:

% rsh starter -l juliec "ls -l"

or:

% rlogin starter -l juliec

On starter, the ruserok() routine looks for a .rhosts file for user juliec, your username on that
system. If no entry in hosts.equiv grants you permission (probably the case because you have
a different username on that system), then your .rhosts file entry maps your local username
into its remote equivalent. You can also use netgroups in .rhosts files, with the same warnings
that apply to using them in /etc/hosts.equiv.

As a network manager, watch for overly permissive .rhosts files. Users may accidentally grant
password-free access to any user on the network, or map a foreign username to their own
Unix username. If you have many password files with private, non-NIS managed entries,
watch the use of .rhosts files. Merging password files to eliminate non-uniform usernames
may be easier than maintaining a constant lookout for unrestricted access granted through a
.rhosts file.

12.1.3 Using netgroups

Netgroups have been used in several examples already to show how triples of host, user, and
domain names are used in granting access across the network. The best use of netgroups is for
the definition of splinter groups of a large NIS domain, where creating a separate NIS domain
would not justify the administrative effort required to keep the two domains synchronized.

Because of the variety of ways in which netgroups are applied, their use and administration
are sometimes counterintuitive. Perhaps the most common mistake is defining a netgroup with
host or usernames not present in the NIS maps or local host and password files. Consider a
netgroup that includes a hostname in another NIS domain:

remote-hosts (poi,-,-), (muban,-,-)

When a user attempts to rlogin from host poi, the local server-side daemon attempts to find
the hostname corresponding to the IP address of the originating host. If poi cannot be found in
the NIS hosts.byaddr map, then an IP address, instead of a hostname, is passed to ruserok().
The verification process fails to match the hostname, even though it appears in the netgroup.
Any time information is shared between NIS domains, the appropriate entries must appear in
both NIS maps for the netgroup construction to function as expected.

Even though netgroups are specified as host and user pairs, no utility uses both names
together. There is no difference between the following two netgroups:

group-a (los, mikel,) (bitatron, stern,)
group-b (los, -,) (bitatron, -,) (-, mikel,) (-, stern,)

Managing NFS and NIS

205

Things that need hostnames — the first column of hosts.equiv or NFS export lists — produce
the set of hosts {los, bitatron} from both netgroups. Similarly, anything that takes a username,
such as the password file or the second column of hosts.equiv, always finds the set {mikel,
stern}. You can even mix-and-match these two groups in hosts.equiv. All four of the
combinations of the two netgroups, when used in both columns of hosts.equiv, produce the
same net effect: users stern and mikel are trusted on hosts bitatron and los.

The triple-based format of the netgroups map clouds the real function of the netgroups.
Because all utilities parse either host or usernames, you will find it helpful to define netgroups
that contain only host or usernames. It's easier to remember what each group is supposed to
do, and the time required to administer a few extra netgroups will be more than made up by
time not wasted chasing down strange permission problems that arise from the way the
netgroups map is used.

An example here helps to show how the netgroup map can produce unexpected results. We'll
build a netgroup containing a list of users and hosts that we trust on a server named gate.
Users in the netgroup will be able to log in to gate, and hosts in the netgroup will be able to
mount filesystems from it. The netgroup definition looks like this:

gate-group (,stern,), (,johnc,), (bitatron, -,), (corvette, -,)

In the /etc/dfs/dfstab file on gate, we'll add a host access restriction:

share -o rw=gate-group /export/home/gate

No at-sign (@) is needed to include the netgroup name in the /etc/dfs/dfstab file. The netgroup
map is searched first for the names in the rw= list, followed by the hosts map.

In /etc/hosts.equiv on gate, we'll include the gate-group netgroup:

+ +@gate-group

To test our access controls, we go to a machine not in the netgroup — NFS client vacation —
and attempt to mount /export/home/gate. We expect that the mount will fail with a
"Permission denied" error:

vacation# mount gate:/home/gate/home/gate /mnt
vacation#

The mount completes without any errors. Why doesn't this netgroup work as expected?

The answer is in the wildcards left in the host fields in the netgroup entries for users stern and
johnc. Because a wildcard was used in the host field of the netgroup, all hosts in the NIS map
became part of gate-group and were added to the access list for /export/home/gate. When
creating this netgroup, our intention was probably to allow users stern and johnc to log in to
gate from any host on the network, but instead we gave away access rights.

A better way to manage this problem is to define two netgroups, one for the users and one for
the hosts, so that wildcards in one definition do not have strange effects on the other. The
modified /etc/netgroup file looks like this:

Managing NFS and NIS

206

gate-users: (,stern,), (,johnc,)
gate-hosts: (bitatron,,), (corvette,,)

In the /etc/dfs/dfstab file on gate, we use the gate-hosts netgroup:

share -o rw=gate-hosts /export/home/gate

and in /etc/hosts.equiv, we use the netgroup gate-users. When host information is used, the
gate-hosts group explicitly defines those hosts in the group; when usernames are needed, the
gate-users map lists just those users. Even though there are wildcards in each group, those
wildcards are in fields that are not referenced when the maps are used in these function-
specific ways.

12.2 How secure are NIS and NFS?

NFS and NIS have bad reputations for security. NFS earned its reputation because of its
default RPC security flavor AUTH_SYS (see Section 12.4.1 later in this chapter) is very
weak. There are better security flavors available for NFS on Solaris and other systems.
However, the better security flavors are not available for all, or even most NFS
implementations, resulting in a practical dilemma for you. The stronger the NFS security you
insist on, the more homogenous your computing environment will become. Assuming that
secure file access across the network is a requirement, another option to consider is to not run
NFS and switch to another file access system. Today there are but two practical choices:

SMB (also known as CIFS)

This limits your desktop environment to Windows. However, as discussed in Section
10.2.1, if you want strong security, you'll have to have systems capable of it, which
means running Windows clients and servers throughout.

DCE/DFS

At the time this book was written, DCE/DFS was available as an add-on product
developed by IBM's Pittsburgh Laboratory (also known as Transarc) unit for Solaris,
IBM's AIX, and Windows. Other vendors offer DCE/DFS for their own operating
systems (for example, HP offers DCE/DFS). So DCE/DFS offers the file access
solution that is both heterogeneous and very secure.

NIS has earned its reputation because it has no authentication at all. The risk of this is that a
successful attacker could provide a bogus NIS map to your users by having a host he controls
masquerade as an NIS server. So the attacker could use a bogus host map to redirect the user
to a host he controls (of course DNS has the same issue).[1] Even more insidious, the attacker
could gain root access when logging into a system, simply by providing a bogus passwd map.
Another risk is that the encrypted password field from the passwd map in NIS is available to
everyone, thus permitting attackers to perform faster password guessing than if they manually
tried passwords via login attempts.

[1] An enhancement to DNS, DNSSEC has been standardized but it is not widely deployed.

These issues are corrected by NIS+. If you are uncomfortable with NIS security then you
ought to consider NIS+. In addition to Solaris, NIS+ is supported by AIX and HP/UX, and a

Managing NFS and NIS

207

client implementation is available for Linux. By default NIS+ uses the RPC/dh security
discussed in Section 12.5.4. As discussed in Section 12.5.4.10, RPC/dh security is not state of
the art. Solaris offers an enhanced Diffie-Hellman security for NIS+, but so far, other systems
have not added it to their NIS+ implementations.

Ultimately, the future of directory services is LDAP, but at the time this book was written, the
common security story for LDAP on Solaris, AIX, HP/UX, and Linux was not as strong as
that of NIS+. You can get very secure LDAP out of Windows 2000, but then your clients and
servers will be limited to running Windows 2000.

12.3 Password and NIS security

Several volumes could be written about password aging, password guessing programs, and
the usual poor choices made for passwords. Again, this book won't describe a complete
password security strategy, but here are some common-sense guidelines for password
security:

• Watch out for easily guessed passwords. Some obvious bad password choices are:
your first name, your last name, your spouse or a sibling's name, the name of your
favorite sport, and the kind of car you drive. Unfortunately, enforcing any sort of
password approval requires modifying or replacing the standard NIS password
management tools.

• Define and repeatedly stress local password requirements to the user community. This
is a good first-line defense against someone guessing passwords, or using a password
cracking program (a program that tries to guess user passwords using a long list of
words). For example, you could state that all passwords had to contain at least six
letters, one capital and one non-alphabetic character.

• Remind users that almost any word in the dictionary can be found by a thorough
password cracker.

• Use any available password guessing programs that you find, such as Alec Muffet's
crack. Having the same weapons as a potential intruder at least levels the playing
field.

In this section, we'll look at ways to manage the root password using NIS and to enforce some
simple workstation security.

12.3.1 Managing the root password with NIS

NIS can be used to solve a common dilemma at sites with advanced, semi-trusted users. Many
companies allow users of desktop machines to have the root password on their local hosts to
install software, make small modifications, and power down/boot the system without the
presence of a system administrator. With a different, user-specific root password on every
system, the job of the system administrator quickly becomes a nightmare. Similarly, using the
same root password on all systems defeats the purpose of having one.

Root privileges on servers should be guarded much more carefully, since too many hands
touching host configurations inevitably creates untraceable problems. It is important to stress
to semi-trusted users that their lack of root privileges on servers does not reflect a lack of
expertise or trust, but merely a desire to exert full control over those machines for which you
have full and total responsibility. Any change to a server that impacts the entire network

Managing NFS and NIS

208

becomes your immediate problem, so you should have jurisdiction over those hosts. One way
to discourage would-be part-time superusers is to require anyone with a server root password
to carry the 24-hour emergency beeper at least part of each month.

Some approach is required that allows users to gain superuser access to their own hosts, but
not to servers. At the same time, the system administrator must be able to become root on any
system at any time to perform day-to-day maintenance. To solve the second problem, a
common superuser password can be managed by NIS. Add an entry to the NIS password
maps that has a UID of 0, but login name that is something other than root. For example, you
might use a login name of netroot. Make sure the /etc/nsswitch.conf file on each host lists nis
on the passwd: entry:

passwd: files nis

Users are granted access to their own host via the root entry in the /etc/passwd file.

Instead of creating an additional root user, some sites use a modified version of su that
consults a "personal" password file. The additional password file has one entry for each user
that is allowed to become root, and each user has a unique root password.[2] With either
system, users are able to manage their own systems but will not know the root passwords on
any other hosts. The NIS-managed netroot password ensures that the system administration
staff can still gain superuser access to every host.

[2] An su-like utility is contained in Unix System Administration Handbook, by Evi Nemeth, Scott Seebass, and Garth Snyder (Prentice-Hall, 1990).

12.3.2 Making NIS more secure

Aside from the caveats about trivial passwords, there are a few precautions that can be taken
to make NIS more secure:

• If you are trying to keep your NIS maps private to hide hostnames or usernames
within your network, do not make any host that is on two or more networks an NIS
server. Users on the external networks can forcibly bind to your NIS domain and
dump the NIS maps from a server that is also performing routing duties. While the
same trick may be performed if the NIS server is inside the router, it can be defeated
by disabling IP packet forwarding on the router. Appendix A covers this material in
more detail.

• On the master NIS server, separate the server's password file and the NIS password
file so that all users in the NIS password file do not automatically gain access to the
NIS master server. A set of changes for building a distinct password file was presented
in Section 4.2.6.

• Periodically check for null passwords using the following awk script:

 #! /bin/sh
 # (cat /etc/shadow; ypcat passwd) | awk

-F':' '{if ($2 == "") print $1 ;}'

• The subshell concatenates the local password file and the NIS passwd map; the awk
script prints any username that does not have an entry in the password field of the
password map.

Managing NFS and NIS

209

• Consider configuring the system so that it cannot be booted single-user without
supplying the root password. On Solaris 8, this is the default behavior, and can be
overridden by adding this entry to /etc/default/sulogin:

PASSREQ=NO

When the system is booted in single-user mode, the single-user shell will not be
started until the user supplies the root password.

• Configure the system so that superuser can only log into the console, i.e., superuser
cannot rlogin into the system. On Solaris 8, you do this by setting the CONSOLE
variable in /etc/default/login:

CONSOLE=/dev/console

• On Sun systems, the boot PROM itself can be used to enforce security. To enforce
PROM security, change the security-mode parameter in the PROM to full:

eeprom security-mode=full

No PROM commands can be entered without supplying the PROM password; when
you change from security-mode=none to security-mode=full you will be prompted for
the new PROM password. This is not the same as the root password, and serves as a
redundant security check for systems that can be halted and booted by any user with
access to the break or reset switches.

There is no mechanism for removing the PROM security without
supplying the PROM password. If you forget the PROM password after
installing it, there is no software method for recovery, and you'll have to
rely on Sun's customer service organization to recover!

12.3.2.1 The secure nets file

If the file /var/yp/securenets is present, then ypserv and ypxfrd will respond only to requests
from hosts listed in the file. Hosts can be listed individually by IP address or by a combination
of network mask and network. Consult your system's manual pages for details.

The point of this feature is to keep your NIS domain secure from access outside the domain.
The more information an attacker knows about your domain, the more effective he or she can
be at engineering an attack. The securenets file makes it harder to gather information.

Because ypserv and ypxfrd only read the securenets file at startup time, in order for changes to
take effect, you must restart NIS services via:

/usr/lib/netsvc/yp/ypstop

/usr/lib/netsvc/yp/ypstart

Managing NFS and NIS

210

12.3.3 Unknown password entries

If a user's UID changes while he or she is logged in, many utilities break in esoteric ways.
Simple editing mistakes, such as deleting a digit in the UID field of the password file and then
distributing the "broken" map file, are the most common source of this problem. Another
error that causes a UID mismatch is the replacement of an NIS password file entry with a
local password file entry where the two UIDs are not identical. The next time the password
file is searched by UID, the user's password file entry will not be found if it no longer
contains the correct UID. Similarly, a search by username may turn up a UID that is different
than the real or effective user ID of the process performing the search.

The whoami command replies with "no login associated with uid" if the effective UID of its
process cannot be found in the password file. Other utilities that check the validity of UIDs
are rcp, rlogin, and rsh, all of which generate "can not find password entry for user id"
messages if the user's UID cannot be found in the password map. These messages appear on
the terminal or window in which the command was typed.

12.4 NFS security

Filesystem security has two aspects: controlling access to and operations on files, and limiting
exposure of the contents of the files. Controlling access to remote files involves mapping
Unix file operation semantics into the NFS system, so that certain operations are disallowed if
the remote user fails to provide the proper credentials. To avoid giving superuser permissions
across the network, additional constraints are put in place for access to files by root. Even
more stringent NFS security requires proving that the Unix-style credentials contained in each
NFS request are valid; that is, the server must know that the NFS client's request was made by
a valid user and not an imposter on the network.

Limiting disclosure of data in a file is more difficult, as it usually involves encrypting the
contents of the file. The client application may choose to enforce its own data encryption and
store the file on the server in encrypted form. In this case, the client's NFS requests going over
the network contain blocks of encrypted data. However, if the file is stored and used in clear
text form, NFS requests to read or write the file will contain clear text as well. Sending parts
of files over a network is subject to some data exposure concerns. In general, if security
would be compromised by any part of a file being disclosed, then either the file should not be
placed on an NFS-mounted filesystem, or you should use a security mechanism for RPC that
encrypts NFS remote procedure calls and responses over the network. We will cover one such
mechanism later in this section.

You can prevent damage to files by restricting write permissions and enforcing user
authentication. With NFS you have the choice of deploying some simple security mechanisms
and more complex, but stronger RPC security mechanisms. The latter will ensure that user
authentication is made secure as well, and will be described later in this section. This section
presents ways of restricting access based on the user credentials presented in NFS requests,
and then looks at validating the credentials themselves using stronger RPC security.

12.4.1 RPC security

Under the default RPC security mechanism, AUTH_SYS, every NFS request, including
mount requests, contains a set of user credentials with a UID and a list of group IDs (GIDs) to

Managing NFS and NIS

211

which the UID belongs. NFS credentials are the same as those used for accessing local files,
that is, if you belong to five groups, your NFS credentials contain your UID and five GIDs.
On the NFS server, these credentials are used to perform the permission checks that are part
of Unix file accesses — verifying write permission to remove a file, or execute permission to
search directories. There are three areas in which NFS credentials may not match the user's
local credential structure: the user is the superuser, the user is in too many groups, or no
credentials were supplied (an "anonymous" request). Mapping of root and anonymous users is
covered in the next section.

Problems with too many groups depend upon the implementation of NFS used by the client
and the server, and may be an issue only if they are different (including different revisions of
the same operating system). Every NFS implementation has a limit on the number of groups
that can be passed in a credentials structure for an NFS RPC. This number usually agrees with
the maximum number of groups to which a user may belong, but it may be smaller. On
Solaris 8 the default and maximum number of groups is 16 and 32, respectively. However,
under the AUTH_SYS RPC security mechanism, the maximum is 16. If the client's group
limit is larger than the server's, and a user is in more groups than the server allows, then the
server's attempt to parse and verify the credential structure will fail, yielding error messages
like:

RPC: Authentication error

Authentication errors may occur when trying to mount a filesystem, in which case the
superuser is in too many groups. Errors may also occur when a particular user tries to access
files on the NFS server; these errors result from any NFS RPC operation. Pay particular
attention to the group file in a heterogeneous environment, where the NIS-managed group
map may be appended to a local file with several entries for common users like root and bin.
The only solution is to restrict the number of groups to the smallest value allowed by all
systems that are running NFS.

12.4.2 Superuser mapping

The superuser is not given normal file access permissions to NFS-mounted files. The
motivation behind this restriction is that root access should be granted on a per-machine basis.
A user who is capable of becoming root on one machine should not necessarily have
permission to modify files on a file server. Similarly, a setuid program that assumes root
privileges may not function properly or as expected if it is allowed to operate on remote files.

To enforce restrictions on superuser access, the root's UID is mapped to the anonymous user
nobody in the NFS RPC credential structure. The superuser frequently has fewer permissions
than a nonprivileged user for NFS-mounted filesystems, since nobody 's group usually
includes no other users. In the password file, nobody has a UID of 60001, and the group
nobody also has a GID of 60001. When an executable, that is owned by root with the setuid
bit set on the permissions, runs, its effective user ID is root, which gets mapped to nobody.
The executable still has permissions on the local system, but it cannot get to remote files
unless they have been explicitly exported with root access enabled.

Most implementations of NFS allow the root UID mapping to be defeated. Some do this by
letting you change the UID used for nobody in the server's kernel. Others do this by letting

Managing NFS and NIS

212

you specify the UID for the anonymous user at the time you export the filesystem. For
example, in this line in /etc/dfs/dfstab:

share -o ro,anon=0 /export/home/stuff

Changing the UID for nobody from 60001 to 0 allows the superuser to access all files
exported from the server, which may be less restrictive than desired.

Most NFS servers let you grant root permission on an exported filesystem on a per-host basis
using the root= export option. The server exporting a filesystem grants root access to a host or
list of hosts by including them in the /etc/dfs/dfstab file:

share -o rw,root=bitatron:corvette /export/home/work

The superuser on hosts bitatron and corvette is given normal root filesystem privileges on the
server's /export/home/work directory. The name of a netgroup may be substituted for a
hostname; all of the hosts in the netgroup are granted root access.

Root permissions on a remote filesystem should be extended only when absolutely necessary.
While privileged users may find it annoying to have to log into the server owning a filesystem
in order to modify something owned by root, this restriction also eliminates many common
mistakes. If a system administrator wants to purge /usr/local on one host (to rebuild it, for
example), executing rm -rf * will have disastrous consequences if there is an NFS-mounted
filesystem with root permission under /usr/local. If /usr/local/bin is NFS-mounted, then it is
possible to wipe out the server's copy of this directory from a client when root permissions are
extended over the network.

One clear-cut case where root permissions should be extended on an NFS filesystem is for the
root and swap partitions of a diskless client, where they are mandatory. One other possible
scenario in which root permissions are useful is for cross-server mounted filesystems.
Assuming that only the system administration staff is given superuser privileges on the file
servers, extending these permissions across NFS mounts may make software distribution and
maintenance a little easier. Again, the pitfalls await, but hopefully the community with
networked root permissions is small and experienced enough to use these sharp instruments
safely.

On the client side, you may want to protect the NFS client from foreign setuid executables of
unknown origin. NFS-mounted setuid executables should not be trusted unless you control
superuser access to the server from which they are mounted. If security on the NFS server is
compromised, it's possible for the attacker to create setuid executables which will be found —
and executed — by users who NFS mount the filesystem. The setuid process will have root
permission on the host on which it is running, which means it can damage files on the local
host. Execution of NFS-mounted setuid executables can be disabled with the nosuid mount
option. This option may be specified as a suboption to the -o command-line flag, the
automounter map entry, or in the /etc/vfstab entry:

automounter auto_local entry:

bin -ro,nosuid toolbox:/usr/local/bin
vfstab entry:
toolbox:/usr/local/bin - /usr/local/bin nfs - no ro,nosuid

Managing NFS and NIS

213

A bonus is that on many systems, such as Solaris, the nosuid option also disables access to
block and character device nodes (if not, check your system's documentation for a nodev
option). NFS is a file access protocol and it doesn't allow remote device access. However it
allows device nodes to be stored on file servers, and they are interpreted by the NFS client's
operating system. So here is another problem with mounting without nosuid. Suppose under
your NFS client's /dev directory you have a device node with permissions restricted to root or
a select group of users. The device node might be protecting a sensitive resource, like an
unmounted disk partition containing, say, personal information of every employee. Let's say
the major device number is 100, and the minor is 0. If you mount an NFS filesystem without
nosuid, and if that filesystem has a device node with wide open permissions, a major number
of 100, and a minor number of 0, then there is nothing stopping unauthorized users from using
the remote device node to access your sensitive local device.

The only clear-cut case where NFS filesystems should be mounted without the nosuid option
is when the filesystem is a root partition of a diskless client. Here you have no choice, since
diskless operation requires setuid execution and device access.

We've discussed problems with setuid and device nodes from the NFS client's perspective.
There is also a server perspective. Solaris and other NFS server implementations have a
nosuid option that applies to the exported filesystem:

share -o rw,nosuid /export/home/stuff

This option is highly recommended. Otherwise, malicious or careless users on your NFS
clients could create setuid executables and device nodes that would allow a careless or
cooperating user logged into the server to commit a security breach, such as gaining superuser
access. Once again, the only clear-cut case where NFS filesystems should be exported without
the nosuid (and nodev if your system supports it, and decouples nosuid from nodev semantics)
option is when the filesystem is a root partition of a diskless client, because there is no choice
if diskless operation is desired. You should ensure that any users logged into the diskless NFS
server can't access the root partitions, lest the superuser on the diskless client is careless. Let's
say the root partitions are all under /export/root. Then you should change the permissions of
directory /export/root so that no one but superuser can access:

chown root /export/root
chmod 700 /export/root

12.4.3 Unknown user mapping

NFS handles requests that do not have valid credentials in them by mapping them to the
anonymous user. There are several cases in which an NFS request has no valid credential
structure in it:

• The NFS client and server are using a more secure form of RPC like RPC/DH, but the
user on the client has not provided the proper authentication information. RPC/DH
will be discussed later in this chapter.

• The client is a PC running PC/NFS, but the PC user has not supplied a valid username
and password. The PC/NFS mechanisms used to establish user credentials are
described in Section 10.3.

• The client is not a Unix machine and cannot produce Unix-style credentials.

Managing NFS and NIS

214

• The request was fabricated (not sent by a real NFS client), and is simply missing the
credentials structure.

Note that this is somewhat different behavior from Solaris 8 NFS servers. In Solaris 8 the
default is that invalid credentials are rejected. The philosophy is that allowing an NFS user
with an invalid credential is no different then allowing a user to log in as user nobody if he has
forgotten his password. However, there is a way to override the default behavior:

share -o sec=sys:none,rw /export/home/engin

This says to export the filesystem, permitting AUTH_SYS credentials. However if a user's
NFS request comes in with invalid credentials or non-AUTH_SYS security, treat and accept
the user as anonymous. You can also map all users to anonymous, whether they have valid
credentials or not:

share -o sec=none,rw /export/home/engin

By default, the anonymous user is nobody, so unknown users (making the credential-less
requests) and superuser can access only files with world permissions set. The anon export
option allows a server to change the mapping of anonymous requests. By setting the
anonymous user ID in /etc/dfs/dfstab, the unknown user in an anonymous request is mapped
to a well-known local user:

share -o rw,anon=100 /export/home/engin

In this example, any request that arrives without user credentials will be executed with UID
100. If /export/home/engin is owned by UID 100, this ensures that unknown users can access
the directory once it is mounted. The user ID mapping does not affect the real or effective
user ID of the process accessing the NFS-mounted file. The anonymous user mapping just
changes the user credentials used by the NFS server for determining file access permissions.

The anonymous user mapping is valid only for the filesystem that is exported with the anon
option. It is possible to set up different mappings for each filesystem exported by specifying a
different anonymous user ID value in each line of the /etc/dfs/dfstab file:

share -o rw,anon=100 /export/home/engin
share -o rw,anon=200 /export/home/admin
share -o rw,anon=300 /export/home/marketing

Anonymous users should almost never be mapped to root, as this would grant superuser
access to filesystems to any user without a valid password file entry on the server. An
exception would be when you are exporting read-only, and the data is not sensitive. One
application of this is exporting directories containing the operating system installation. Since
operating systems like Solaris are often installed over the network, and superuser on the client
drives the installation, it would be tedious to list every possible client that you want to install
the operating system on.

Anonymous users should be thought of as transient or even unwanted users, and should be
given as few file access permissions as possible. RPC calls with missing UIDs in the
credential structures are rejected out of hand on the server if the server exports its filesystems

Managing NFS and NIS

215

with anon=-1. Rather than mapping anonymous users to nobody, filesystems that specify
anon=-1 return authentication errors for RPC calls with no credentials in them.

Normally, with the anonymous user mapped to nobody, anonymous requests are accepted but
have few, if any, permissions to access files on the server. Mapping unknown users is a risky
venture. Requests that are missing UIDs in their credentials may be appearing from outside
the local network, or they may originate from machines on which security has been
compromised. Thus, if you must export filesystems with the anonymous user mapped to a
UID other than nobody, you should limit it to a smaller set of hosts:

share -o rw=engineering,anon=100 /export/home/engin # a nergroup
share -o rw=admin1:admin2,anon=200 /export/home/admin # a pair of hosts
share -o rw=.marketing.widget.com,anon=300 /export/home/marketing # a
domain

We discuss limiting exports to certain hosts in the next section.

12.4.4 Access to filesystems

In addition to being protected from root access, some filesystems require protection from
certain hosts. A machine containing source code is a good example; the source code may be
made available only to a selected set of machines and not to the network at large. The list of
hosts to which access is restricted is included in the server's /etc/dfs/dfstab file with the rw=
option:

share -o rw=noreast,root=noreast /export/root/noreast

This specification is typical of that for the root filesystem of a diskless client. The client
machine is given root access to the filesystem, and access is further restricted to host noreast
only. No user can look at noreast 's root filesystem unless he or she can log into noreast and
look locally. The hosts listed in a rw= list can be individual hostnames or netgroup names,
separated by colons. On Solaris 8, the hosts can also be DNS domain names, if prefixed by a
leading dot (.), or a network number if preceded by a leading at sign (@). Solaris 8 also has
the capability to deny specific hosts (individual hostnames, netgroups, domains, or network
numbers) access. For example:

share -o rw=-marketing /source

Restricting host access ensures that NFS is not used to circumvent login restrictions. If a user
cannot log into a host to restrict access to one or more filesystems, the user should not be able
to recreate that host's environment by mounting all of its NFS-mounted filesystems on another
system.

12.4.5 Read-only access

By default, NFS filesystems are exported with write access enabled for any host that mounts
them. Using the ro or ro= option in the /etc/dfs/dfstab file, you can specify whether the
filesystem is exported read-only, and to what hosts:

share -o ro=system-engineering /source

Managing NFS and NIS

216

In this example, the machines in system-engineering netgroup are authorized to only browse
the source code; they get read-only access. Of course, this prevents users on machines
authorized to modify the source from doing their job. So you might instead use:

share -o rw=source-group,ro=system-engineering /source

In this example, the machines in source-group are authorized to modify the source code get
read and write access, whereas the machines in the system-engineering netgroup, which are
authorized to only browse the source code, get read-only access.

12.4.6 Port monitoring

Port monitoring is used to frustrate "spoofing" — hand-crafted imitations of valid NFS
requests that are sent from unauthorized user processes. A clever user could build an NFS
request and send it to the nfsd daemon port on a server, hoping to grab all or part of a file on
the server. If the request came from a valid NFS client kernel, it would originate from a
privileged UDP or TCP port (a port less than 1024) on the client. Because all UDP and TCP
packets contain both source and destination port numbers, the NFS server can check the
originating port number to be sure it came from a privileged port.

NFS port monitoring may or may not be enabled by default. It is usually governed by a kernel
variable that is modified at boot time. Solaris 8 lets you modify this via the /etc/system file,
which is read-only at boot time. You would add this entry to /etc/system to enable port
monitoring:

set nfssrv:nfs_portmon = 1

In addition, if you don't want to reboot your server for this to take effect, then, you can change
it on the fly by doing:

echo "nfs_portmon/W1" | adb -k -w

This script sets the value of nfs_ portmon to 1 in the kernel's memory image, enabling port
monitoring. Any request that is received from a nonprivileged port is rejected.

By default, some mountd daemons perform port checking, to be sure that mount requests are
coming from processes running with root privileges. It rejects requests that are received from
nonprivileged ports. To turn off port monitoring in the mount daemon, add the -n flag to its
invocation in the boot script:

mountd -n

Not all NFS clients send requests from privileged ports; in particular, some PC
implementations of the NFS client code will not work with port monitoring enabled. In
addition, some older NFS implementations on Unix workstations use nonprivileged ports and
require port monitoring to be disabled. This is one reason why, by default, the Solaris 8 nfs_
portmon tunable is set to zero. Another reason is that on operating systems like Windows,
with no concept of privileged users, anyone can write a program that binds to a port less than
1024. The Solaris 8 mountd also does not monitor ports, nor is there any way to turn on mount
request port monitoring. The reason is that as of Solaris 2.6 and onward, each NFS request is
checked against the rw=, ro=, and root= lists. With that much checking, filehandles given out

Managing NFS and NIS

217

a mount time are longer magic keys granting access to an exported filesystem as they were in
previous versions of Solaris and in other, current and past, NFS server implementations.

Check your system's documentation and boot scripts to determine under what conditions, if
any, port monitoring is enabled.

12.4.7 Using NFS through firewalls

If you are behind a firewall that has the purpose of keeping intruders out of your network, you
may find your firewall also prevents you from accessing services on the greater Internet. One
of these services is NFS. It is true there aren't nearly as many public NFS servers on the
Internet as FTP or HTTP servers. This is a pity, because for downloading large files over wide
area networks, NFS is the best of the three protocols, since it copes with dropped connections.
It is very annoying to have an FTP or HTTP connection time-out halfway into a 10 MB
download. From a security risk perspective, there is no difference between surfing NFS
servers and surfing Web servers.

You, or an organization that is collaborating with you, might have an NFS server outside your
firewall that you wish to access. Configuring a firewall to allow this can be daunting if you
consider what an NFS client does to access an NFS server:

• The NFS client first contacts the NFS server's portmapper or rpcbind daemon to find
the port of the mount daemon. While the portmapper and rpcbind daemons listen on a
well-known port, mountd typically does not. Since:

o Firewalls typically filter based on ports.
o Firewalls typically block all incoming UDP traffic except for some DNS traffic

to specific DNS servers.
o Portmapper requests and responses often use UDP.

mountd alone can frustrate your aim.

• The NFS client then contacts the mountd daemon to get the root filehandle for the
mounted filesystem.

• The NFS client then contacts the portmapper or rpcbind daemon to find the port that
the NFS server typically listens on. The NFS server is all but certainly listening on
port 2049, so changing the firewall filters to allow requests to 2049 is not hard to do.
But again we have the issue of the portmapper requests themselves going over UDP.

• After the NFS client mounts the filesystem, if it does any file or record locking, the
lock requests will require a consultation with the portmapper or rpcbind daemon to
find the lock manager's port. Some lock managers listen on a fixed port, so this would
seem to be a surmountable issue. However, the lock manager makes callbacks to the
client's lock manager, and the source port of the callbacks is not fixed.

• Then there is the status monitor, which is also not on a fixed port. The status monitor
is needed every time a client makes first contact with a lock manager, and also for
recovery.

To deal with this, you can pass the following options to the mount command, the automounter
map entry, or the vfstab:

Managing NFS and NIS

218

 mount commmand:
mount -o proto=tcp ,public nfs.eisler.com:/export/home/mre /mre

 automounter auto_home entry:
mre -proto=tcp ,public nfs.eisler.com:/export/home/&

 vfstab entry:
nfs.eisler.com:/export/home/mre - /mre nfs - no proto=tcp ,public

The proto=tcp option forces the mount to use the TCP/IP protocol. Firewalls prefer to deal
with TCP because it establishes state that the firewall can use to know if a TCP segment from
the outside is a response from an external server, or a call from an external client. The former
is not usually deemed risky, whereas the latter usually is.

The public option does the following:

• Bypasses the portmapper entirely and always contacts the NFS server on port 2049 (or
a different port if the port= option is specified to the mount command). It sends a
NULL ping to the NFS Version 3 server first, and if that fails, tries the NFS Version 2
server next.

• Makes the NFS client contact the NFS server directory to get the initial filehandle.
How is this possible? The NFS client sends a LOOKUP request using a null filehandle
(the public filehandle) and a pathname to the server (in the preceding example, the
pathname would be /export/home). Null filehandles are extremely unlikely to map to a
real file or directory, so this tells the server that understands public filehandles that this
is really a mount request. The name is interpreted as a multicomponent place-name,
with each component separated by slashes (/). A filehandle is returned from
LOOKUP.

• Marks the NFS mounts with the llock option. This is an undocumented mount option
that says to handle all locking requests for file on the NFS filesystem locally. This is
somewhat dangerous in that if there is real contention for the filesystem from multiple
NFS clients, file corruption can result. But as long as you know what you are doing
(and you can share the filesystem to a single host, or share it read-only to be sure), this
is safe to do.

If your firewall uses Network Address Translation, which translates private IP addresses
behind the firewall to public IP addresses in front of the firewall, you shouldn't have
problems. However, if you are using any of the security schemes discussed in the section
Section 12.5, be advised that they are designed for Intranets, and require collateral network
services like a directory service (NIS for example), or a key service (a Kerberos Key
Distribution Center for example). So it is not likely you'll be able to use these schemes
through a firewall until the LIPKEY scheme, discussed in Section 12.5.7, becomes available.

Some NFS servers require the public option in the dfstab or the equivalent when exporting the
filesystem in order for the server to accept the public filehandle. This is not the case for
Solaris 8 NFS servers.

What about allowing NFS clients from the greater Internet to access NFS servers located
behind your firewall? This a reasonable thing to do as well, provided you take some care. The
NFS clients will be required to mount the servers' filesystems with the public option. You will
then configure your firewall to allow TCP connections to originate from outside your Intranet

Managing NFS and NIS

219

to a specific list of NFS servers behind the firewall. Unless Network Address Translation gets
in the way, you'll want to use the rw= or ro= options to export the filesystems only to specific
NFS clients outside your Intranet. Of course, you should export with the nosuid option, too.

If you are going to use NFS firewalls to access critical data, be sure to read Section 12.5.3
later in this chapter.

12.4.8 Access control lists

Some NFS servers exist in an operating environment that supports Access Control Lists
(ACLs). An ACL extends the basic set of read, write, execute permissions beyond those of
file owner, group owner, and other. Let's say we have a set of users called linus, charlie, lucy,
and sally, and these users comprise the group peanuts. Suppose lucy owns a file called
blockhead, with group ownership assigned to peanuts. The permissions of this file are 0660
(in octal). Thus lucy can read and write to the file, as can all the members of her group.
However, lucy decides she doesn't want charlie to read the file, but still wants to allow the
other peanuts group members to access the file. What lucy can do is change the permissions to
0600, and then create an ACL that explicitly lists only linus and sally as being authorized to
read and write the file, in addition to herself. Most Unix systems, including Solaris 2.5 and
higher, support a draft standard of ACLs from the POSIX standards body. Under Solaris, lucy
would prevent charlie from accessing her file by doing:

% chmod 0600 blockhead
% setfacl -m mask:rw-,user:linus:rw-,user:sally:rw- blockhead

To understand what setfacl did, let's read back the ACL for blockhead:

% getfacl blockhead

file: blockhead
owner: lucy
group: peanuts
user::rw-
user:linus:rw- #effective:rw-
user:sally:rw- #effective:rw-
group::--- #effective:---
mask:rw-
other:---

The user: entries for sally and linus correspond to the rw permissions lucy requested. The
user:: entry simply points out that the owner of the file, lucy has rw permissions. The group::
entry simply says that the group owner, peanuts, has no access. The mask: entry says what the
maximum permissions are for any users (other than the file owner) and groups. If lucy had not
included mask permissions in the setfacl command, then linus and sally would be denied
access. The getfacl command would instead have shown:

% getfacl blockhead

file: blockhead
owner: lucy
group: peanuts
user::rw-
user:linus:rw- #effective:---
user:sally:rw- #effective:---

Managing NFS and NIS

220

group::--- #effective:---
mask:---
other:---

Note the difference from the two sets of getfacl output: the effective permissions granted to
linus and sally.

Once you have the ACL on a file the way you want it, you can take the output of getfacl on
one file and apply it to another file:

% touch patty
% getfacl blockhead | setfacl -f /dev/stdin patty
% getfacl patty
file: patty
owner: lucy
group: peanuts
user::rw-
user:linus:rw- #effective:rw-
user:sally:rw- #effective:rw-
group::--- #effective:---
mask:rw-
other:---

It would be hard to disagree if you think this is a pretty arcane way to accomplish something
that should be fairly simple. Nonetheless, ACLs can be leveraged to solve the "too many
groups" problem described earlier in this chapter in Section 12.4.1. Rather than put users into
lots of groups, you can put lots of users into ACLs. The previous example showed how to
copy an ACL from one file to another. You can also set a default ACL on a directory, such
that any files or directories created under the top-level directory are inherited. Any files or
directories created in a subdirectory inherit the default ACL. It is easier to hand edit a file
containing the ACL description than to create one on the command line. User lucy creates the
following file:

user::rwx
user:linus:rwx
user:sally:rwx
group::---
mask:rwx
other:---
default:user::rwx
default:user:linus:rwx
default:user:sally:rwx
default:group::---
default:mask:rwx
default:other:---

It is the default: entries that result in inherited ACLs. The reason why we add execution
permissions is so that directories have search permissions, i.e., so lucy and her cohorts can
change their current working directories to her protected directories.

Once you've got default ACLs set up for various groups of users, you then apply it to each
top-level directory that you create:

% mkdir lucystuff
% setfacl -f /home/lucy/acl.default lucystuff

Managing NFS and NIS

221

Note that you cannot apply an ACL file with default: entries in it to nondirectories. You'll
have to create another file without the default: entries to use setfacl -f on nondirectories:

% grep -v '^default:' | /home/lucy/acl.default > /home/lucy/acl.files

The preceding example strips out the default: entries. However it leaves the executable bit on
in the entries:

% cat /home/lucy/acl.files
user::rwx
user:linus:rwx
user:sally:rwx
group::---
mask:rwx
other:---

This might not be desirable for setting an ACL on existing regular files that don't have the
executable bit. So we create a third ACL file:

% sed 's/x$/-/' /home/lucy/acl.files | sed 's/^mask.*$/mask:rwx/' \
 > /home/lucy/acl.noxfiles

This first turns off every execute permission bit, but then sets the mask to allow execute
permission should we later decide to enable execute permission on a file:

% cat /home/lucy/acl.noxfiles
user::rw-
user:linus:rw-
user:sally:rw-
group::---
mask:rwx
other:---

With an ACL file with default: entries, and the two ACL files without default: entries, lucy
can add protection to existing trees of files. In the following example, oldstuff is an existing
directory containing a hierarchy of files and subdirectories:

fix the directories:

% find oldstuff -type d -exec setfacl -f /home/lucy/acl.default {} \;

fix the nonexecutable files:

% find oldstuff ! -type d ! (-perm -u=x -o -perm -g=x -o -perm -o=x) \
 -exec setfacl -f /home/lucy/acl.noxfiles {} \;

fix the executable files:

% find oldstuff ! -type d (-perm -u=x -o -perm -g=x -o -perm -o=x) \
 -exec setfacl -f /home/lucy/acl.noxfiles {} \;

In addition to solving the "too many groups in NFS" problem, another advantage of ACLs
versus groups is potential decentralization. As the system administrator, you are called on
constantly to add groups, or to modify existing groups (add or delete users from groups). With
ACLs, users can effectively administer their own groups. It is a shame that constructing ACLs

Managing NFS and NIS

222

is so arcane, because it effectively eliminates a way to decentralize a security access control
for logical groups of users. You might want to create template ACL files and scripts for
setting them to make it easier for your users to use them as a way to wean them off of groups.
If you succeed, you'll reduce your workload and deal with fewer issues of "too many groups
in NFS."

In Solaris, ACLs are not preserved when copying a file from the local ufs
filesystem to a file in the tmpfs (/tmp) filesystem. This can be a problem
if you later copy the file back from /tmp to a ufs filesystem. Also, in
Solaris, ACLs are not, by default, preserved when generating tar or cpio
archives. You need to use the -p option to tar to preserve ACLs when
creating and restoring a tar archive. You need to use the -P option to
cpio when creating and restoring cpio archives. Be aware that non-
Solaris systems probably will not be able to read archives with ACLs in
them.

12.4.8.1 ACLs that deny access

We showed how we can prevent charlie from getting access to lucy's files by creating an ACL
that included only linus and sally. Another way lucy could have denied charlie files is to set a
deny entry for charlie:

% setfacl -m user:charlie:--- blockhead

No matter what the group ownership of blockhead is, and no matter what the other
permissions on blockhead are, charlie will not be able read or write the file.

12.4.8.2 ACLs and NFS

ACLs are ultimately enforced by the local filesystem on the NFS server. However, the NFS
protocol has no way to pass ACLs back to the client. This is a problem for NFS Version 2
clients, because they use the nine basic permissions bits (read, write, execute for user, group,
and other) and the file owner and group to decide if a user should have access to the file. For
this reason, the Solaris NFS Version 2 server reports the minimum possible permissions in the
nine permission bits whenever an ACL is set on a file. For example, let's suppose the
permissions on a file are 0666 or rw-rw-rw-. Now let's say an ACL is added for user charlie
that gives him permissions of —-, i.e., he is denied access. When an ACL is set on a file, the
Solaris NFS Version 2 server will see that there is a user that has no access to the file. As a
result, it will report to most NFS Version 2 clients permissions of 0600, thereby denying
nearly everyone (those accessing from NFS clients) but lucy access to the file. If it did not,
then what would happen is that the NFS client would see permissions of 0666 and allow
charlie to access the file. Usually charlie's application would succeed in opening the file, but
attempts to read or write the file would fail in odd ways. This isn't desirable. Even less
desirable is that if the file were cached on the NFS client, charlie would be allowed to read
the file.[3]

[3] A similar security issue occurs when the superuser accesses a file owned by a user with permissions 0600. If the superuser is mapped to nobody on
the server, then the superuser shouldn't be allowed to access the file. But if the file is cached, the superuser can read it. This is an issue only with NFS
Version 2, not Version 3.

Managing NFS and NIS

223

This is not the case for the NFS Version 3 server though. With the NFS Version 3 protocol,
there is an ACCESS operation that the client sends to the server to see if the indicated user has
access to the file. Thus the exact, unmapped permissions are rendered back to the NFS
Version 3 client.

We said that the Solaris NFS server will report to most NFS Version 2 clients permissions of
0600. However, starting with Solaris 2.5 and higher, a side band protocol to NFS was added,
such that if the protocol exists, the client can not only get the exact permissions, but also use
the sideband protocol's ACCESS procedure for allowing the server to permissions the access
checks. This then prevents charlie or the superuser from gaining unauthorized access to files.

What if you have NFS clients that are not running Solaris 2.5 or higher, or are not running
Solaris at all? In that situation you have two choices: live with the fact that some users will be
denied access due to the minimal permissions behavior, or you can use the aclok option of the
Solaris share command to allow maximal access. If the filesystem is shared with aclok, then if
anyone has read access to the files, then everyone does. So, charlie would then be allowed to
access file blockhead.

Another issue with NFS and ACLs is that the NFS protocol has no way to set or retrieve
ACLs, i.e., there is no protocol support for the setfacl or getfacl command. Once again, the
sideband protocol in Solaris 2.5 and higher comes to the rescue. The sideband protocol allows
ACLs to be set and retrieved, so setfacl and getfacl work across NFS.

IBM's AIX and Compaq's Tru64 Unix have sideband ACL protocols for
manipulating ACLs over NFS. Unfortunately, none of the three protocols
are compatible with each other.

12.4.8.3 Are ACLs worth it?

With all the arcane details, caveats, and limitations we've seen, you as the system
administrator may decide that ACLs are more pain than benefit. Nonetheless, ACLs are a
feature that are available to users. Even if you don't want to actively support them, your users
might attempt to use them, so it is a good idea to become familiar with ACLs.

12.5 Stronger security for NFS

The security mechanisms described so far in this chapter are essentially refinements of the
standard Unix login/password and file permission constraints, extended to handle distributed
environments. Some additional care is taken to restrict superuser access over the network, but
nothing in RPC's AUTH_SYS authentication protocol ensures that the user specified by the
UID in the credential structure is permitted to use the RPC service, and nothing verifies that
the user (or user running the application sending RPC requests) is really who the UID
professes to be.

Simply checking user credentials is like giving out employee badges: the badge holder is
given certain access rights. Someone who is not an employee could steal a badge and gain
those same rights. Validating the user credentials in an NFS request is similar to making
employees wear badges with their photographs on them: the badge grants certain access rights
to its holder, and the photograph on the badge ensures that the badge holder is the "right"

Managing NFS and NIS

224

person. Stronger RPC security mechanisms than AUTH_SYS exist, which add credential
validation to the standard RPC system. These stronger mechanisms can be used with NFS.
We will discuss two of the stronger RPC security mechanisms available with Solaris 8,
AUTH_DH, and RPCSEC_GSS. Both mechanisms rely on cryptographic techniques to
achieve stronger security.

12.5.1 Security services

Before we describe AUTH_DH and RPCSEC_GSS, we will explain the notion of security
services, and which services RPC provides. Security isn't a monolithic concept, but among
others, includes notions like authorization, auditing, and compartmentalization. RPC security
is concerned with four services: identification, authentication, integrity, and privacy.
Identification is merely the name RPC gives to the client and the server. The client's name
usually corresponds to the UID. The server's name usually corresponds to the hostname.
Authentication is the service that proves that the client and server are who they identify
themselves to be. Integrity is the service that ensures the messages are not tampered with, or
at least ensures that the receiver knows they have been tampered with. Privacy is the service
that prevents eavesdropping.

12.5.2 Brief introduction to cryptography

Before we describe how the AUTH_DH and RPCSEC_GSS mechanisms work, we will
explain some of the general principles of cryptography that apply to both mechanisms. A
complete treatment of the topic can be found in the book Applied Cryptography, by Bruce
Schneier (John Wiley and Sons, Inc., 1996).

There are four general cryptographic techniques that are pertinent: symmetric key encryption,
asymmetric key encryption, public key exchange, and one way hash functions.

12.5.2.1 Symmetric key encryption

In a symmetric encryption scheme, the user knows some secret value (such as a password),
which is used to encrypt a value such as a timestamp. The secret value is known as a secret
key. The problem with symmetric encryption is that to get another host to validate your
encrypted timestamp, you need to get your secret key (password) onto that host. Think of this
problem as a password checking exercise: normally your password is verified on the local
machine. If you were required to get your password validated on an NFS server, you or the
system administrator would somehow have to get your password on that machine for it to
perform the validation. An example of a symmetric key encryption scheme is the Data
Encryption Standard (DES).

12.5.2.2 Asymmetric key encryption

Asymmetric key encryption involves the use of a public key to encrypt a secret value, such as
a symmetric key, and, a private key to decrypt the same value. A public key and private key
are associated as a pair. One half of the pair gets generated from the other via a series of
arithmetic operations. The private key is never equal to the public key, hence the term
asymmetric. As the names suggest, the public key is well-known to everyone, whereas the
private key is known only to its owner. This helps solve the problem of getting a secret key on
both hosts. You choose a symmetric secret key, encrypt it with the server's public key, send

Managing NFS and NIS

225

the result to the server and the server decrypts the secret key with its own private key. The
secret key can then be used to encrypt a value like a timestamp, which the server validates by
decrypting with the shared secret key. Alternatively, we could have encrypted the timestamp
value with the server's public key, sent it to the server, and let the server decrypt it with the
server's private key. However, asymmetric key encryption is usually much slower than
symmetric key encryption. So, typically software that uses asymmetric key encryption uses
symmetric key encryption once the shared secret key is established

The public key is published so that it is available for authentication services. The encryption
mechanism used for asymmetric schemes typically uses a variety of exponentiation and other
arithmetic operators that have nice commutative properties. The encryption algorithm is
complex enough, and the keys themselves should be big enough (at least 1024 bits), to
guarantee that a public key can't be decoded to discover its corresponding private key.
Asymmetric key encryption is also called public key encryption. An example of an
asymmetric key encryption is RSA.

12.5.2.3 Public key exchange

Public key exchange is similar to asymmetric key encryption in all ways but one: it does not
encrypt a shared secret key with either public or private key. Instead, two agents, say a user
and a server, generate a shared symmetric secret key that uniquely identifies one to the other
but cannot be reproduced by a third agent, even if the initial agents' public keys are grabbed
and analyzed by some attacker.

Here is how the shared secret key, also called a common key, is computed. The user sends to
the server the user's public key, and the server sends to the user the server's public key. The
user creates a common key by applying a set of arithmetic operations onto the server's public
key and the user's private key. The server generates the same key by applying the same
arithmetic onto the user's public key and the server's private key. Because the algorithm uses
commutative operations, the operation order does not matter — both schemes generate the
same key, but only those two agents can recreate the key because it requires knowing at least
one private key. An example of a public key exchange algorithm is Diffie-Hellman or DH for
short.

12.5.2.4 One-way hash functions and MACs

A one-way hash function takes a string of octets of any length and produces a fixed width
value called the hash. The function is designed such that given the hash, it is hard to find the
string used as input to the one-way hash function, or for that matter, any string that produces
the same hash result.

Let's say you and the server have established a common symmetric secret key using one of the
three previously mentioned techniques. You now want to send a message to the server, but
want to make sure an attacker in the middle cannot tamper with the message without the
server knowing. What you can do is first combine your message with the secret key (you don't
have to encrypt your message with the secret key), and then take this combination and apply
the one way hash function to it.[4] This computation is called a message authentication code or
MAC. Then send both the MAC and the message (not the combination with the secret key) to
the server. The server can then verify that you sent the message, and not someone who
intercepted it by taking the message, combining it with the shared secret key in the same way

Managing NFS and NIS

226

you did, and computing the MAC. If the server's computed MAC is the same as the MAC you
sent, the server has verified that you sent it.

[4] For brevity, we don't describe how a secret key and a message are combined, nor how the one-way hash function is applied. Unless you are a skilled
cryptographer, you should not attempt to invent your own scheme. Instead, use the algorithm described in RFC2104.

Even though your message and MAC are sent in the clear to the server, an attacker in the
middle cannot change the message without the server knowing it because this would change
the result of the MAC computation on the server. The attacker can't change the MAC to
match a tampered message because he doesn't know the secret key that only the server and
you know. An example of a one-way hash function is MD5. An example of a MAC algorithm
is HMAC-MD5.

Note that when you add a MAC to a message you are enabling the security service of
integrity.

12.5.3 NFS and IPSec

IPSec is the standard protocol for security at the IP network level. With IPSec you can beef up
your trusted host relationships with strong cryptography. IPSec was invented by the Internet
Engineering Task Force (IETF) to deal with three issues:

• Attackers are becoming quite adept at spoofing IP addresses. The attacker targets a
host to victimize. The victim shares some resources (such as NFS exports) to only a
specific set of clients and uses the source IP address of the client to check access
rights. The attacker selects the IP address of one of these clients to masquerade as.
Sometimes the attacker is lucky, and the client is down, so this is not too difficult. Or
the attacker has to take some steps such as disabling a router or loading the targeted
client. If the attacker fails, you might see messages like:

IP: Hardware address '%s' trying to be our address %s!

or:

IP: Proxy ARP problem? Hardware address '%s' thinks it is %s

on the legitimate client's console.

Once the legitimate client is disabled, the attacker then changes the IP address on a
machine that he controls to that of the legitimate client and can then access the victim.

• An attacker that controls a gateway can easily engineer attacks where he tampers with
the IP packets.

• Finally, if the Internet is to be a tool enabling more collaboration between
organizations, then there needs to be a way to add privacy protections to sensitive
traffic.

Here is what IPSec can do:

• Via per-host keys, allows hosts to authenticate each other. This frustrates IP spoofing
attacks.

Managing NFS and NIS

227

• Using a session key derived from per-host keys as input to a MAC, protects the
integrity of IP traffic to frustrate packet tampering.

• Using a session key, encrypts all the data in the IP packet to frustrate eavesdropping.

The first two capabilities are provided by the AH (Authentication Header) feature of IPSec.
The all three capabilities are provided by the ESP (Encapsulating Security Payload) feature of
IPSec.

Many systems, including Solaris 8, have IPSec support. We won't go into the details of how
to set up IPSec. However, we will point out that IPSec can be a useful tool to improve the
security of your NFS environment:

• If you use the AH feature, then all NIS lookups are safe from tampering on the NIS
server, or the NIS traffic. So the attacker cannot fool your NFS server into believing
that client gonzo has IP address 192.4.5.6, instead of 10.1.2.3.

• Enabling AH on NFS clients and servers prevents attackers from spoofing the clients
you list on servers' rw=, ro=, and root= lists.

• ESP used on the NFS client and server makes operating through firewalls safer when
accessing sensitive data.

While IPSec is useful for securing NFS, because its security is host based, it does not protect
your network from attackers that log onto your IPSec-protected hosts and assume the identity
of other users. The discussions of AUTH_DH and RPCSEC_GSS that follow address this
issue.

12.5.4 AUTH_DH: Diffie-Hellman authentication

AUTH_DH is an RPC security flavor that uses encryption techniques to improve on
AUTH_SYS.

12.5.4.1 Old terms: AUTH_DES, secure RPC, and, secure NFS

AUTH_DH was originally called AUTH_DES, and indeed, you'll find that most
documentation of AUTH_DH still calls it AUTH_DES. However, the _DES part of the name
is a misnomer. While the DES algorithm is used in AUTH_DH, as we will see later, it is the
Diffie-Hellman algorithm that is central to the workings of the AUTH_DH. We will not refer
to AUTH_DES again.

When AUTH_DH is combined with RPC, the combination is often referred to as "Secure
RPC." When RPC, and AUTH_DH are combined with NFS, the result is often referred to as
"Secure NFS." However, in the 13 years since AUTH_DH was invented, two things have
occurred:

• AUTH_DH is no longer considered secure by many security experts. After you read
the material on AUTH_DH, you might concur.

• RPCSEC_GSS, a stronger, more secure security flavor for RPC is now available with
Solaris 8 and other NFS implementations.

Managing NFS and NIS

228

We will not use the terms "Secure RPC" or "Secure NFS" again, since they are confusing.
Instead, we will use RPC/DH and NFS/dh to refer to RPC secured with AUTH_DH, and NFS
secured with RPC/DH, respectively.

12.5.4.2 Diffie-Hellman key exchange

AUTH_DH uses Diffie-Hellman public key exchange. Using this encryption scheme, RPC
can be made more secure by requiring each client to establish a valid common key before
making RPC requests to the server. Diffie-Hellman key exchange relies on each agent that
wants to establish a common key to agree on two pieces of information beforehand. For
AUTH_DH these pieces are:

• A base for the exponentiation part of the calculation. AUTH_DH uses a base of 3.
• A modulus used for the remainder part of the calculation. AUTH_DH uses a modulus

of 0xd4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b88b. Let's label this
constant as AUTH_DH_MOD.

Let PRIV_C be the private key of the client. Then the public key of the client is:

(1) PUBLIC_C = (3 PRIV_C) mod AUTH_DH_MOD

Let PRIV_S be the private key of the server. Then the public key of the server is:

(2) PUBLIC_S = (3 PRIV_S) mod AUTH_DH_MOD

The client computes a common key between the client and server as:

(3) COMMON_C_S = (PUBLIC_S PRIV_C) mod AUTH_DH_MOD

The server computes the common key between the server and client as:

(4) COMMON_S_C = (PUBLIC_C PRIV_S) mod AUTH_DH_MOD

To prove that COMMON_C_S equals COMMON_S_C, we replace PUBLIC_S in statement
(3) with the expression it was derived from in statement (2) and drop the MOD part of the
expression. We do the same for PUBLIC_C in statement (4) with the expression from
statement (2):

(3.1) COMMON_C_S_PRIME = (3 PRIV_S)PRIV_C = 3 PRIV_S * PRIV_C
(4.1) COMMON_S_C_PRIME = (3 PRIV_C)PRIV_S = 3 PRIV_C * PRIV_S

Because multiplication is a commutative operation, it is obvious that
COMMON_C_S_PRIME equals COMMON_S_C_PRIME. Therefore, COMMON_C_S
equals COMMON_S_C.

12.5.4.3 How RPC/DH works

RPC/DH uses a combination of Diffie-Hellman key exchange and DES encryption. User
validation is performed by the server, based on information in the RPC request.

Managing NFS and NIS

229

The client and server decide on the common key via the Diffie-Hellman algorithm discussed
previously in Section 12.5.4.2. The common key will be used to construct a shared secret DES
key. Note that because AUTH_DH_MOD is 192 bits, the common key will be 192 bits.
However, DES uses 64 bit keys, such that the low order bit of each octet is a parity bit,
making DES effectively a 56-bit symmetric key algorithm. AUTH_DH deals with this by
selecting the middle 64 bits of the common key. These 64 bits are split into eight octets. Parity
is added to the low order bit of each octet. In addition the high order bit of each octet is
unused, making this effectively a 48-bit shared secret key.

The first time the client contacts the server, it generates a random session key, and encrypts it
with the shared secret DES key. The session key is also a DES key. The client also generates
a time-to-live value (in seconds) called the window, and a window value that is one second
less than the first window value. The two window values are encrypted with the session key.
The encrypted session key and the encrypted window values are sent to the server. The server
can decrypt the encrypted session key because it knows the common key, and therefore the
shared secret DES key. With the session key, it can decrypt the window values. If the second
window value is not one less than the first, the server knows something odd is going on, and it
rejects the client's request.

The first time, and on every subsequent contact to the server, the client encrypts the current
time using the session key. It sends its RPC request to the server.

The server decrypts the timestamp, using the same session key, and verifies that it is accurate.
If the decrypted timestamp falls outside of the time to live window, the server rejects the
request.

So far we've described how RPC/DH does authentication. We will now look at how identity
works in RPC/DH. Recall that AUTH_SYS sends a UID, GID, and a list of supplementary
GIDs. The first time RPC/DH contacts the server to establish the session key, it sends no
UIDs or GIDs. Instead it sends a string, called a netname, which identifies two items:

• The user (albeit, the username is a UID expressed in ASCII-decimal)
• The domain name of the user (usually this is an NIS domain name)

The server does three things with the netname:

• Locates an NIS server serving the specified domain that knows about the user.
• Looks up the user's netname in the NIS netid map for the user's UID, GID, and list of

supplementary groups.
• Looks up the user's netname in the NIS publickey map for the user's Diffie-Hellman

public key. With that, and the server's private key, the server can determine the
common key, then the shared secret key, then decrypt the session key, and use that to
verify that the request came from a user corresponding to the netname.

By the way, notice that AUTH_DH doesn't have the "too many groups" problem of
AUTH_SYS that was discussed in Section 12.4.1, since no GID list is sent on the wire.

Managing NFS and NIS

230

12.5.4.4 RPC/DH state and NFS statelessness

The title of the section says it all. How can we reconcile the fact that NFS is stateless, and yet
RPC/DH clearly establishes state in the form of a session key, with a time to live? This state
has to be kept on the server. The answer is that this is not state that has to be recovered in the
event of a server crash, which is in stark contrast to file locking state. If the server reboots, or
if it even decides to throw away an RPC/DH session, it is not a disaster. The client simply
gets an error indicating that the server has no knowledge of the session, and the client
establishes a new session key as if it was the first contact between the client and server.

We'll now look at how NFS/dh works by first seeing how to add the security features to NFS,
and then seeing how the public and private keys are managed within this system.

12.5.4.5 Enabling NFS/dh

Enabling NFS/dh on a filesystem is quite simple: export and mount the filesystem with the
sec=dh option. On the NFS server, the /etc/dfs/dfstab entry looks like this:

share -o sec=dh,rw /export/home/thud

When a filesystem is exported with the sec=dh option, clients using NFS Version 2 must
mount it with the sec=dh option if they are to enjoy normal user access privileges in the
filesystem. On the NFS client, add the sec=dh option in the automounter map entry, or the
/etc/vfstab entry for the filesystem:

automounter auto_home entry:

thud -sec=dh bonk:/export/home/thud

vfstab entry:

bonk:/export/home/thud - /thud nfs - no sec=dh,rw

If the client is using NFS Version 3, it will use Version 3 of the MOUNT protocol. MOUNT
Version 3 will return the RPC security flavor that the directory is exported with, along with
the filehandle of the directory. Thus, with NFS Version 3, the sec=dh mountoption is not
necessary.

If a user accessing the filesystem can generate a session key with the NFS server, it is used to
encrypt the timestamps sent with that user's NFS requests. If the server decrypts the
timestamps successfully, the netname presented by the user is trusted and is used to derive
normal Unix-style credentials for the purpose of file access.

It's possible, though, that the user can't exchange a session key with the server. This will be
the case if the user doesn't have a public key defined, or if the user cannot supply the proper
private key to generate a common key using Diffie-Hellman key exchange. When there is no
valid common key, some NFS servers remap the user to nobody. However, by default, Solaris
8 rejects such users. If you want to give such users anonymous access you can export the
filesystem with the following line in /etc/dfs/dfstab :

share -o sec=dh:none,rw /export/home/thud

Managing NFS and NIS

231

Within the NFS/dh system, a user without a valid public/private key pair becomes an
anonymous user on the NFS server and is subject to the same access restrictions (discussed
earlier in this chapter) that apply to the anonymous user nobody. To utilize NFS/dh without
impairing a user's ability to do work, you must define public and private key pairs for trusted
users and trusted hosts.

12.5.4.6 Public and private keys

Public and private keys are maintained in the publickey.byname NIS map, which is built from
/etc/publickey on the master NIS server.[5] The only key that is defined by default is one for
nobody, which is required for the anonymous user mapping. Public and encrypted secrets keys
are contained in the /etc/publickey file, along with a unique identifier for the machine or user
owning these keys.

[5] If you are not running NIS or NIS+, you can still create keys, and use NFS/dh with the publickey entry in nsswitch.conf set to files. You will need to
set up an NIS domain name on each NFS client and server (see Section 3.2.4 for how to set up a domain name on a host). You will also have to devise
a means for keeping all the /etc/publickey files on each client and server synchronized, since the encrypted private key field must change every time
the user's password changes.

unix.10461@nesales publickey:privatekey

The keys are long strings of hexadecimal digits, representing the encrypted key values.
Obviously, the NIS map cannot contain the actual private keys, or the entire encryption
mechanism would be baseless. Instead, the /etc/publickey file's private key field contains the
user's private key, encrypted with the user's login password. For host entries, the private key is
encrypted using the root password. The private keys themselves are large random numbers,
just like the session key that is used by RPC/DH.

Identifiers in /etc/publickey are called netnames and take one of two forms:

unix.uid@NISdomain
unix.host@NISdomain

The first form is used for user keys; it defines a key valid in the current NIS domain. The host
key is used to create a RPC/DH key for the superuser on the named host. No user key is
required for root — only a host key.

The /etc/publickey file is changed by the RPC/DH utilities that create and manage key values.
Because it contains encrypted key strings, it is not easily edited by the superuser, just as the
password fields in /etc/passwd cannot be hand-edited. The publickey file should exist only on
the NIS master server, or else users' private keys will become out of date when they change
their passwords (and therefore change the encryption key used to store their private keys).

12.5.4.7 Creating keys

The superuser can add user keys (on the NIS master server) using newkey -u user. As root,
run newkey with the user's login name:

nismaster# newkey -u stern
Adding new key for unix.1461@nesales.East.Sun.COM.
Enter stern's login password:

Managing NFS and NIS

232

The password is used to encrypt the private key so that it can be safely placed in the publickey
maps. Unfortunately, the user's existing password in the NIS passwd maps must be supplied,
requiring you to know the user's password. This is fine if you are adding the user to passwd
map anyway; he is therefore a new user. However, it is very inconvenient if you are adding
NFS/dh security and have a large pool of existing users because:

• You could change every user's login password to the same value. The problem with
that is that for a period of time every user has the same password, and you can expect
that some of your users will take malicious advantage of that.

• You could change every user's login password to a unique value. The problem with
that is you have to somehow securely get the new passwords to each user. Unless you
have a secure email system like PGP or S/MIME installed that pretty much leaves you
to walk to every user's office or telephone them. That you are considering NFS/dh
suggests that you have a large user base. This is simply not practical.

Hopefully, a future version of Solaris will fix this so that you can supply any password to
newkey. The way it would work is that you'd use the same RPC/DH password to encrypt
every private key via newkey. You'd tell your users what the RPC/DH password is, and they
would each use chkey -p (more on chkey later) to change the RPC/DH password to match
their login password. Once all the users had done the chkey, you'd then start exporting NFS
filesystems with NFS/dh.

You cannot achieve the ideal, but you can come close. What you can do is create a template
user login, with a unique UID (let's use 66666 for this example) and GID, and assign it a
password that you intend to publish to all your users. Make sure that template has a shell of
/dev/null in the passwd map, so that no one can log in as template. Now create keys for
template :

nismaster# newkey -u template
Adding new key for unix.66666@nesales.East.Sun.COM.
Enter template's login password:

If you look at the /etc/publickey on host nismaster you should see something like:

unix.66666@nesales.East.Sun.COM
74365f4e03701cf96de938a59baa39f1039ada407b4ab3a3:9b7130a3f38c6e86f431f81ce1
cf64b5e59991d3d5d1ce0596fd5167cb878b51

The netname of template is unix.66666@nesales.East.Sun.COM. Each of your users will have
a similar netname, except for the number between the unix prefix, and the
@nesale.East.Sun.COM suffix. The last long hexadecimal number after the colon (:) is user
template 's private key, encrypted with template 's login password.

Now for each user, make a copy of template 's entry in the /etc/publickey file, but change the
netname to match the user. Let's say that your set of users is stern, labiaga, and mre, with
UIDs of 1461, 15124, and 23154, respectively. You then edit the /etc/publickey file to look
like:

unix.66666@nesales.East.Sun.COM
74365f4e03701cf96de938a59baa39f1039ada407b4ab3a3:9b7130a3f38c6e86f431f81ce1
cf64b5e59991d3d5d1ce0596fd5167cb878b51

Managing NFS and NIS

233

unix.1461@nesales.East.Sun.COM
74365f4e03701cf96de938a59baa39f1039ada407b4ab3a3:9b7130a3f38c6e86f431f81ce1
cf64b5e59991d3d5d1ce0596fd5167cb878b51
unix.15124@nesales.East.Sun.COM
74365f4e03701cf96de938a59baa39f1039ada407b4ab3a3:9b7130a3f38c6e86f431f81ce1
cf64b5e59991d3d5d1ce0596fd5167cb878b51
unix.23514@nesales.East.Sun.COM
74365f4e03701cf96de938a59baa39f1039ada407b4ab3a3:9b7130a3f38c6e86f431f81ce1
cf64b5e59991d3d5d1ce0596fd5167cb878b51

You now want to push the publickey file changes into the publickey NIS maps:

nismaster# cd /var/yp
nismaster# make publickey
updated publickey
pushed publickey

You have now almost effortlessly fully populated the publickey maps, but each entry has the
same public key, same private key, and the same password. This is not what you want for the
long term. So now you tell your users to expend some effort. Each user should be told to:

• Change his or her RPC/DH password that the private key is encrypted with (changing
the password to the user's login password is recommended).

• Change his or her public and private key.

Here are the instructions we give to each user:

client% chkey -p
Updating nis publickey database.
Reencrypting key for 'unix.1461@nesales.East.Sun.COM'.
Please enter the Secure-RPC password for stern:
Please enter the login password for stern:
Sending key change request to nismaster ...

client% chkey
Updating nis publickey database.
Generating new key for 'unix.1461@nesales.East.Sun.COM'.
Please enter the Secure-RPC password for stern:
Sending key change request to nismaster ...

The first chkey command invocation reencrypts his private key with his login password. The
second chkey invocation generates a brand new and unique private key and public key pair.

If the user supplies an invalid password, no password or key will be created. If the user's
password is valid, and the NIS master server is receiving key updates, the key will be added
to, or modified in, the NIS publickey maps. Both the chkey and newkey utilities update the
/etc/publickey file on the NIS master server.

To ensure that your users are following the chkey instructions, you can check the
publickey.byname map to see if both the private key and the public key fields of each user
have changed, by comparing them to that of the user template.

The only way to create host keys (for superuser verification) is to use newkey -h as root :

newkey -h bitatron

Managing NFS and NIS

234

Adding new key for unix.bitatron@nesales.East.Sun.COM.
New password:

You must create a host key for every NFS client (so that the client can mount filesystems
shared with sec=dh) and NFS server (so that the server can generate the common key).

To receive NIS map updates from newkey or chkey, the master NIS server must be able to run
rpc.ypupdated. On Solaris 8, this daemon is started as part of the /usr/lib/netsvc/yp/ypstart
script, which in turn is started by the /etc/init.d/rpc boot script.

On every machine that will be using NFS/dh, make sure you are running the keyserv daemon.
This process is used to cache private and common keys, and is also started out of
/etc/init.d/rpc with lines of the form:

if [-x /usr/sbin/keyserv -a \
 -n "'/usr/bin/domainname 2>/dev/null'"]; then
 /usr/sbin/keyserv >/dev/msglog 2>&1
 echo " keyserv\c"
fi

As you can see, keyserv will not start if there is no domain name established. Make sure
keyserv can start, or you will not be able to create session keys, even if you have a valid
public and private key pair in the publickey NIS maps.

12.5.4.8 Establishing a session key

When you log into a machine that is running NFS/dh, the password you supply to login is
used to attempt to decrypt your encrypted private key (in the publickey map). If the login and
RPC/DH passwords do not match you get errors like:

Password does not decrypt secret key (type = 192-0) for
'unix.23514@nesales.East.Sun.COM'.
Password does not decrypt any secret keys for
unix.23514@nesales.East.Sun.COM.

The private key is given to the keyserv daemon, which caches it for generating common keys.
The common keys are used to exchange session keys with NFS servers, as described earlier in
this section. Therefore, the entire session key generation procedure goes like this:

1. You define a public and private key pair, using newkey or chkey. The private key is a
large, random number; it is stored in the publickey map by encrypting it with your
password.

2. When you log into a machine, your password is used to decrypt your private key. The
private key is given to the keyserv daemon, where it is cached until you log out.

3. To access an NFS filesystem mounted with the sec=dh option, you must establish a
common key with the NFS server. You form a common key using your private key
and the public key for the NFS server. This is done automatically by the RPC/DH
system.

4. From the common key, you derive a shared secret key by taking a subset of the bits of
the common key. This secret key is used to encrypt a randomly generated session key,
which is passed to the NFS server. All of your NFS requests to that server contain a

Managing NFS and NIS

235

timestamp encrypted with the session key. The server decrypts this timestamp to
validate your NFS requests.

Note that you must supply your login password for the keyserv daemon to be given your
private key. If you don't supply a password when you log into a machine — for example, you
rlogin to another machine — then there is no way for the keyserv daemon to automatically
receive your decrypted private key. To establish a session key in this situation, use the
keylogin utility, which accepts your login password and uses it to decrypt your private key:

remote% keylogin
Password:

Note that if your login and RPC/DH passwords are different, whether you use rlogin or not,
you must use keylogin to allow keyserv to see your private key. Or else you can use chkey -p
to change your RPC/DH password to your login password.

Keys that are decrypted via keylogin are also passed to keyserv, where they remain until the
user executes a keylogout. If you are going to be logging into nontrusted hosts, use keylogin to
decrypt your key, and add keylogout to your .logout file (in your home directory) so that your
key is destroyed when you log out.

You must reference the NIS passwd map in order for the automatic private key caching to
occur. For proper operation of NFS/dh, do not put users in the local file /etc/passwd, or their
encrypted private keys may become out-of-date when they change their local passwords but
do not change the NIS-managed password used to encrypt the private key in the publickey
map. On the NIS master server, make sure you use an alternate password source file, instead
of the default /etc/passwd.

There's one thing missing: how does the root, or host, private key get decrypted? You
establish a session key using the host key for the NFS server. In order for the server to
exchange keys with you, it must be able to decrypt the host's private key, and this requires the
root password or a "hidden" copy of the root key. One obvious approach is to force someone
to supply the root password when the machine boots, so that the host private key in the
publickey map can be decrypted and given to the keyserv daemon. However, this is often too
restrictive: if an NFS server boots and no system administrator is present to supply the root
password, no NFS/dh services will be available.

You can solve this dilemma by using the -r option to keylogin to store the host's private key in
the protected /etc/.rootkey file of the NFS server. Note that this is not the root password; it's
the large, random number used as the host's private key. When the keyserv daemon starts up,
it reads the host's key out of this file so that clients of the host can establish session keys with
it.

A similar issue applies to the NFS client when you are using the automounter to access NFS
mounted filesystems. Unless the superuser has logged into the system, and thus manually
established his private key into keyserv, users will not be able use the automounter to access
filesystems exported with sec=dh. Once again, you use keylogin -r, this time running it on the
NFS client. When the keyserv daemon starts up, it reads the host's key out of this file so that
the automounter can establish session keys on NFS servers.

Managing NFS and NIS

236

12.5.4.9 NFS/dh checklist

This list summarizes what you need to do to create the various daemons and files that must be
in place for proper operation of NFS/dh:

1. Create keys for users with chkey or newkey -u. Create a host key for each machine on
which you need secure root access using newkey -h.

2. Make sure the NIS master server is running rpc.ypupdated.
3. Push the publickey map to all NIS slaves after making any changes to it, so that

NFS/dh is operating before the next NIS map transfer.
4. Establish a /etc/.rootkey file on every NFS server and client via keylogin -r.
5. If you are using NFS/dh on trusted hosts, make sure that users perform a keylogin to

produce a temporary private key. If users do not supply a password when they log into
a host, the local keyserv process on that host must be given the user's private key
explicitly. Also, have users add keylogout to their .logout files to remove the
temporary keys given to keyserv.

6. Ensure that each client that is using NFS/dh is running the keyserv daemon.
7. To export a filesystem using NFS/dh, add the sec=dh option to its entry in

/etc/dfs/dfstab. On NFS Version 2 clients, mount the filesystem with the sec=dh
option in the mount options field of the automounter map or /etc/vfstab.

Finally, make sure that your client and server clocks remain well-synchronized (see Section
14.7 for a simple scheme). Since NFS/dh uses encrypted timestamps for validation, drifting
client clocks may cause the server to reject otherwise valid NFS/dh requests because they
appear to be replays of out-of-date requests. The NFS server code has a small window for
checking client timestamps, and if the clock drift falls within this window, the RPC call is
executed.

On Solaris 8, the default window size is five minutes (300 seconds). If you are serious about
using NFS/dh, you will probably want to leave this window unchanged. However, you can
change it to a different value, by modifying the authdes_win tunable parameter in the
/etc/system file:

* 10 minutes
set rpcsec:authdes_win = 600

You can also set it on a live system without rebooting by:

echo authdes_win/W 0t600 | adb -k -w
authdes_win: 0x12c = 0x258

The shorter the window, the less time a would-be network spoofer has to attempt to replay
any request, but on the other hand, the less clock drift you can tolerate.

12.5.4.10 How secure is RPC/DH?

RPC/DH is flawed for several reasons:

• It uses a 192-bit modulus for its public and private keys. In 1987, 192 bits was
appropriate because for larger sizes, it was found that common key generation took
several minutes to complete on Motorola 68010 processors, which were still used in a

Managing NFS and NIS

237

significant number of Sun's installed base of systems. However, by 1990, advances in
RISC processors produced workstation machines that could, by brute force, derive the
private key from any public key in under a day.

• It uses only a 48-bit shared secret key for encrypting the session key. This can be brute
forced in less than a day as well.

• Recall the discussion about requiring users to do a keylogin if they are using rlogin
between trusted hosts. The point of rlogin with trusted hosts is to avoid constant
password challenges. Also, the more times the same password is entered, the more
opportunity for someone to look over your shoulder (or to eavesdrop on the network)
to see it.

• RPC/DH does a better job of authentication than AUTH_SYS, but there is no support
for integrity or privacy. It is obvious why privacy is desirable, but why is integrity so
important to NFS? Say we are using NFS/dh, and our attacker in the middle intercepts
a request to read a particular file. He prevents the read from proceeding. However, he
takes the RPC/DH header, and concatenates it with a new NFS request to write the
same file (this is known as a splicing attack). As we discussed earlier in Section
12.5.2.4, this would not be possible if RPC/DH had integrity services.

• It's impossible to extend RPC/DH to fix the above issues.

For these reasons, many security experts will tell you that NFS/dh is waste of time to deploy,
even though the successful attacks on NFS/dh require the attacker to have much more
sophistication than that needed to attack NFS over AUTH_SYS. If you understand the risks
and you are comfortable with the security offered by one more of:

• NIS
• DNS (that is, DNS without DNSSEC)
• NFS over AUTH_SYS
• Transparent security discussed earlier in Section 12.1
• Password-based security such as what imap, telnet, and ftp offer

then you ought to be comfortable with RPC/DH. If you aren't comfortable with any of the
above, including RPC/DH, then you should be running a very secure combination of directory
service and file service. One combination would be NIS+ with enhanced DH security, as
mentioned in Section 12.2 earlier in this chapter, and Kerberized NFS as described in the next
section.

12.5.5 RPCSEC_GSS: Generic security services for RPC

The previous section described a complete security system for NFS and RPC, and the
subsection Section 12.5.4.10 discusses its flaws. Sun decided to develop a new RPC security
flavor that would address the problems, with one added feature: it would be infinitely
extendable, so that key size limitations, and problems with cryptographic algorithms
(cryptographers are constantly finding problems with various algorithms) would not slow
development of new security mechanisms.

The new security flavor is called RPCSEC_GSS. Note that it does not have the AUTH_ prefix
like AUTH_SYS and AUTH_DH. This is because it provides integrity and privacy services in
addition to authentication.

Managing NFS and NIS

238

RPCSEC_GSS is based on the Generic Security Services API (GSS-API). GSS-API provides
the ability to write applications that can authenticate clients and servers, integrity protect the
messages they exchange, and also privacy protect the messages they exchange. GSS-API also
permits one to "plug in" different security mechanisms or providers without changing the
application that uses GSS-API. Figure 12-2 depicts the GSS-API multiplex applications that
are consumers of GSS-API, and mechanisms that are providers for GSS-API.

Figure 12-2. GSS-API architecture

RPCSEC_GSS leverages GSS-API capabilities to provide authentication, integrity, and
privacy if the security mechanism provider supports those services. Currently Kerberos V5 is
the mostly widely deployed GSS-API security provider, and it does support all three services.
NFS over RPCSEC_GSS can use Kerberos V5's capabilities. At the time this book was
written:

• Solaris (2.6, 7, and 8) was the only known Unix operating system offering an NFS
implementation that supported Kerberos V5 security.

• At least two PC/NFS implementations—Hummingbird's Maestro, and Netmanage's
Interdrive—supported Kerberos V5 security.

12.5.5.1 Kerberos V5

The Kerberos V5 system was developed at the Massachusetts Institute of Technology. It is
another mechanism for enforcing security within a service, but it differs from RPC/DH in
several ways:

• Kerberos uses multiple levels of DES encryption to exchange keys and passwords. No
public key encryption is used.

• A Key Distribution Center (KDC) is required to maintain Kerberos V5 service
passwords; this server must be kept safe from attack to preserve the integrity of the
Kerberos system. RPC/DH uses the publickey map, which is available to all NIS
clients. The data in the publickey map is encrypted using user's login passwords, not
an additional RPC/DH password.

• Kerberos V5 authentication is built into the entire service, or application, not just into
the session layer. For example, you can use Kerberos to make the line printer spooling
daemon secure. Doing so, however, requires the source code to the line printer
software.

• Kerberos V5 has the notion of forwardable credentials. Think back to earlier in this
chapter (see Section 12.5.4.8) when we talked about rlogin, transparent access, and the

Managing NFS and NIS

239

fact that when using NFS/dh, you still had to provide a password to keylogin even
though (or rather, because) rlogin didn't prompt for one. Kerberos V5 has
replacements for programs like rlogin and telnet that work like that which they
replace, but also support some extra features:

o Kerberos V5 is used to authenticate the user, not passwords.
o Traffic between the client and server is optionally encrypted as a way to

provide privacy protection.
o Credentials can be forwarded from the client to the server. This feature, known

as a forwardable ticket granting ticket, allows the following sequence of
events:

1. The user logs into his desktop machine. He is prompted for his Unix
login password, which also happens to be his Kerberos V5 password.
This results in a ticket granting ticket (TGT) being sent from the KDC
to his desktop. His home directory is NFS-mounted but exported with
Kerberos V5 security (sec=krb5).

2. The NFS filesystem uses the TGT to get an NFS service ticket from the
KDC, which allows the user to be authenticated to the NFS server. The
service ticket is encrypted with the NFS server's key, which both the
KDC and the NFS server know about. The NFS server can decrypt the
service ticket from the client because the server stores the server's key
in its /etc/krb5/krb5.keytab file, which is analogous to RPC/DH's
/etc/.rootkey file.

3. The user now wishes to log onto a remote system. He uses a Kerberized
version of rlogin to do so, passing a command-line option that indicates
that he wants his TGT to be forwarded.

4. The NFS filesystem on the remote system must do an NFS mount of
the user's home directory, which is still exported with sec=krb5. It
needs an NFS service ticket to authenticate the user to the NFS server.
Because the TGT has been forwarded, no password prompt to the user
is necessary.

Thus the user, having authenticated himself once when he logged into
his desktop, can roam freely and securely among the network, as he did
in the days when the network was using simple host-based trust for
rlogin and NFS.

12.5.5.2 SEAM: Kerberos V5 for Solaris

Sun's Kerberos V5 implementation is called Sun Enterprise Authentication Mechanism
(SEAM).

For this chapter to completely explain how to set up SEAM for running Kerberos V5 and NFS
secured with Kerberos V5, it would have to include as much material as was written in this
chapter about NIS and NFS/dh, and all the chapters leading up to it. In other words, the title of
this book would be Managing NIS, Kerberos V5, and NFS. Fortunately, the SEAM
documentation is well-written, and the installation fairly turnkey.[6] Thus it is not clear that
much value could be added in this book to explain minutiae of SEAM.

[6] This appraisal is the opinion of one of the co-authors of this book, Mike Eisler, who was the project lead for SEAM while employed by Sun
Microsystems, Inc.

Managing NFS and NIS

240

However, the rest of this section collects some practical overview information on SEAM that
you might find useful as you approach the issue of deploying Kerberos V5.

SEAM 1.0 is available for Solaris 2.6 and Solaris 7, and is packaged with the Solaris Easy
Access Server (SEAS) 3.0 product, which is unbundled from Solaris 2.6 and Solaris 7. If you
bought a server from Sun, you might find SEAS 3.0 preinstalled. At the time this book was
written, SEAM 1.0.1 was available for Solaris 8 as a free download from Sun's website. Look
for the product called Solaris 8 Admin Pack. Do not attempt to run SEAM 1.0 on Solaris 8. If
you upgrade to Solaris 8 from a Solaris 2.6 or Solaris 7 system that has SEAM 1.0 installed,
then you should immediately install SEAM 1.0.1.

SEAM 1.0 and SEAM 1.0.1 rely on a GUI-based installation technology that is similar to
Installshield for Windows systems. What you do not want to do is go ahead and install SEAM
without reading the documentation. A couple of notes:

• SEAM 1.0 comes on the SEAS 3.0 CD-ROM. Install the SEAS 3.0 documentation
first, and read through the SEAM 1.0 documentation.

• SEAM 1.0.1 is part of the Solaris 8 Admin Pack, and at the time this book was
written, the only way to get SEAM 1.0.1 was to download it. You can download
SEAM 1.0.1 separately from the rest of the Admin Pack. However, be warned that it
comes in a self-extracting shell script, otherwise known as a shar file; the term shar
stands for shell archive. The shar file proceeds to run the GUI installer, and the
installer does not let you install the documentation first, because it doesn't have the
documentation. Instead, you first need to download the documentation separately
(which includes all the documentation of the Admin Pack, so it is a large download).
Once you've downloaded the documentation, start reading it.

There is also documentation on SEAM in the Solaris 8 administration documents. It is
worth reading this as well.

Note that the SEAS 3.0 and Admin Pack documentation are packaged in the form of web
pages.

As you read the SEAM documentation, it should be clear that SEAM and NIS plus RPC/DH
share some parallels, including:

• Both have master servers (SEAM has a master KDC, and NIS has a master NIS
server).

• Both recommend one or more slave servers.
• Both have a distinct client component.
• Both have a client-side daemon for managing session keys (SEAM has gssd, RPC/DH

has keyserv).

If you read the SEAM 1.0 documentation from the SEAS 3.0 product, the SEAM 1.0.1
documentation from the Admin Pack, and the SEAM documentation in Solaris 8, you see that
progressive releases of Solaris, from 2.6 onward, integrate more and more components of
SEAM. Table 12-1 describes the progression so far.

Managing NFS and NIS

241

Table 12-1. SEAM progression
Solaris
Release

Unbundled
Product

SEAM
Version

Features Integrated with
Solaris

Features Integrated in Unbundled
Product

Solaris
2.6 SEAS 3.0 SEAM

1.0 RPCSEC_GSS hooks

KDC, Remote KDC administration,
Kerberized networking utilities, Kerberos
client utilities, RPCSEC_GSS, GSS-API,
Kerberos V5 GSS provider, Kerberos V5
PAM module

Solaris 7 SEAS 3.0 SEAM
1.0 RPCSEC_GSS, GSS-API

KDC, Remote KDC administration,
Kerberized networking utilities, Kerberos
client utilities, Kerberos V5 GSS provider,
Kerberos V5 PAM module

Solaris 8 Solaris 8
Admin Pack

SEAM
1.0.1

RPCSEC_GSS, GSS-API,
Kerberos client utilities,
Kerberos V5 GSS provider,
Kerberos V5 PAM module

KDC, Remote KDC administration,
Kerberized networking utilities

Presumably the progression in Table 12-1 will continue with future versions of Solaris and
other operating systems.

The fifth column of Table 12-1 consistently lists "Kerberized networking utilities." These are
utilities like rlogin, rsh, rcp, ftp, and telnet (and their server daemons) that have been
modified to understand Kerberos V5 security. The reason they are there is that they facilitate
the deployment of an Intranet that sends no passwords in the clear over the wire, and indeed,
via forwardable TGTs, enables you to send no passwords at all. Without these utilities, there
would be less point in having strong NFS security, since passwords would often appear on
your network. This is another drawback of RPC/DH: it does not add strong security to the
basic networking utilities.

By now, we've mentioned PAM several times without explaining it. Recall that your RPC/DH
password is used to decrypt your private key. If your RPC/DH password is the same as your
Unix login password, then you don't need to provide your RPC/DH password separately. How
does this happen? The Solaris login command has code in it to try to decrypt the user's private
key with the Unix login password. Now suppose you've installed Kerberos V5 and would like
the system to attempt to use the Unix login password as the key that decrypts your TGT from
the KDC. One way would be for your operating system vendor to change the login command
to do so. But then, you decide you'd like the su command and the desktop lock screen feature
to do the same. After a while, it gets to be a lot of utilities to maintain. A better way is to have
pluggable framework that calls security mechanism specific code in shared objects and has
them take care of acquiring credentials. This is what PAM does. SEAM provides a Kerberos
V5 PAM module. Check out your system's documentation for information on PAM; PAM is
common to many Unix systems.

Here are some final recommendations for and observations about SEAM installation:

• SEAM allows you to use it without DNS running. Don't do that. If you ever change
your mind, you'll have to repopulate the entire principal (analogous to an RPC/DH
netname) database in the KDC.

• It is better to install SEAM clients (which can be NFS clients or NFS servers) by
utilizing the preconfiguration steps that the documentation talks about, and the GUI
installer tries to walk you through. Keep in mind that the preconfiguration information
need only, and should only, be established once, on an NFS server. You then run the

Managing NFS and NIS

242

SEAM installer on each host, pointing it at the preconfigured information on an NFS
mounted or automounted filesystem (usually same filesystem where the installer
lives). This reduces per-host installation tedium.

• The SEAM documentation is very task-oriented, and hence very practical. Even if you
ultimately want to do things differently, practice first, and follow the documentation
examples as close to verbatim as possible before you try something complex or a little
bit different.

• Do not skip any steps. SEAM is rather unforgiving if a small, but critical step is
missed. You'll find that you can cut and paste from the web-based documentation into
your command shell, and if you make that a habit, you'll stay out of trouble.

12.5.5.3 Enabling Kerberized NFS

This section assumes that you've gone through the installation and configuration that the
SEAM documentation describes.

Enabling Kerberized NFS on a filesystem is quite simple: export and mount the filesystem
with the sec=krb5 option. On the NFS server, the /etc/dfs/dfstab entry looks like this:

share -o sec=krb5,rw /export/home/thud

When a filesystem is exported with the sec=krb5 option, clients using NFS Version 2 must
mount it with the sec=krb5 option if they are to enjoy normal user access privileges in the
filesystem. On the NFS client, add the sec=krb5 option in the automounter map entry or the
/etc/vfstab entry for the filesystem:

automounter auto_home entry:

thud -sec=krb5 bonk:/export/home/thud

vfstab entry:

bonk:/export/home/thud - /thud nfs - no sec=krb5

As was the case for enabling NFS/dh (see Section 12.5.4.5) with NFS Version 3, the
sec=krb5 option is not necessary in the automounter map or vfstab entries.

The krb5 option uses a combination of DES symmetric key encryption and the MD5 one-way
hash function to produce the RPC credentials that are sent to, and authenticated by, the NFS
server.

Not only is there a krb5 option to sec=, but there are krbi and krbp as well.

Like the krb5 option, krb5i uses Kerberos V5 to authenticate users to NFS servers when the
filesystem is exported with sec=krb5i. Unlike krb5, it also computes an MD5-based MAC on
every remote procedure call request to the server, and every response to the client. The MAC
is computed on an entire message: RPC header, plus NFS arguments or results. Thus krb5i
provides integrity protection, hence the trailing i in krb5i.

Like krb5 and krb5i, krb5p uses Kerberos V5 to authenticate. Like krb5i it uses Kerberos V5
to provide integrity. Unlike krb5 and krb5i, krb5p uses Kerberos V5's DES encryption to
provide privacy. Note that only the NFS arguments and results are encrypted; the RPC

Managing NFS and NIS

243

headers go in the clear. So an attacker could deduce which NFS operation is being performed,
but not on what file, nor what the file or directory content is.

12.5.5.4 Security and performance

So, why wouldn't a client want to always mount with krb5p ? It is, after all, the most secure of
sec= options we've seen in this book. The reason is that as soon as you involve cryptography
in data processing, you slow down the processing. This is because cryptography tends to be a
highly CPU-bound function. Consider the performance results in Table 12-2. The NFS client
and server were each running Solaris 8 with SEAM. Both the systems were Sun Ultra 5
systems, each with 128 megabytes of RAM, and one 270 Mhz CPU. A 200 megabyte file was
written from the client to the server to the server's /tmp file system, via the mkfile utility. NFS
Version 3 over TCP was used. As we can see from Table 12-2, the krb5 option does not cost
much to use relative to sys. But krb5i and krb5p added increasingly significant overhead.
Some people have the reasonable perspective that drop off in throughput is not as important as
the increased CPU utilization.

Table 12-2. Kerberized NFS performance
sec=
value

Throughput in
MB/sec

Throughput Degradation Relative to
sec=sys

Percent CPU Utilization on
Server

sys 5.40 N/A 69%
krb5 5.26 2.6% 70%
krb5i 4.44 17.7% 77%
krb5p 1.45 73.1% 99%

12.5.5.5 Combining krb5, krb5i, krb5p

You can combine the krb5 * options with each other.

Let's suppose /export/home on server labrador contains the home directories of security
conscious folks, though some are less paranoid than others. You can accommodate everyone
by adding the following to /etc/dfs/dfstab:

share -o sec=krb5p:krb5i:krb5,rw /export/home

This means the clients pick any of the three flavors of krb5 when they mount the NFS
filesystem. Note that this is one instance where even if the client is using NFS Version 3, that
the administrator on the client may want to specify a sec= option in their automounter maps
or vfstab or on their mount command line. The reason is that the client (at least the Solaris 8
client) will pick from the array of security flavors that mountd returns the first security flavor
that the client supports. So if a client prefers krb5 but krb5p is first, sec= is needed for the
mount command to override the automatic choice.

Given the results in Table 12-2, you might want to be careful about exporting filesystems with
krb5i or krb5p security enabled. If you have data that can go in the clear on the network, then
never export it with krb5p. If your users are writing data over the network, and very bad
things could happen if an attacker spliced the RPC header from a sec=krb5 NFS request onto
a forged set of destructive arguments, then enable krb5i. Otherwise krb5 should be sufficient.
Indeed, for certain kinds of read-only data, sec=sys or sec=none are fine.

Managing NFS and NIS

244

12.5.5.6 IPSec versus krb5i and krb5p

As discussed earlier in Section 12.5.3, IPSec can provide integrity (AH) and privacy (ESP)
services. If you are enabling AH and ESP then do you need to use krb5i or krb5p ? Note that
the session keys for AH and ESP are derived from per-host keys, whereas the session keys for
krb5i and krb5p are derived from per user keys. If you are paranoid about attacks on hosts to
find the IPSec keys, then you'll want to run krb5i and krb5p in addition to AH and ESP.
However, it will cost you double in CPU utilization to do so. In general, it is not necessary to
use krb5i if AH is used, and not necessary to use krb5p is ESP is used. However, even if AH
or ESP is used to protect NFS traffic, it still makes sense to use krb5 protection on your NFS
traffic if you want strong authentication.

12.5.6 Planning a transition from NFS/sys to stronger NFS security

Perhaps you've been exporting filesystems with sec=sys (the default if sec= is not specified)
for some time, and now decide to start using better NFS security, such as NFS/dh or
Kerberized NFS. One issue is that it takes less time to reconfigure servers to use stronger NFS
security than to reconfigure clients, because there are more client machines, and more user ids
than host ids to add to the various tables that RPC/DH and Kerberos V5 require. Also, some
NFS client implementations may not be running Solaris 8, and may support the stronger NFS
security that you decide to switch to. So even after you get your servers reconfigured to use
Kerberos V5 security, it won't be practical to simply change:

share -o rw /export/home

to:

share -o sec=krb5,rw /export/home

and not expect some chaos. That you can combine any two or more sec= options on the same
dfstab entry allows you to stage some graceful transitions.

For example, suppose you've decided to use NFS/dh. You may have some legacy software
running on some NFS clients that is stuck on older systems. Thus you can't upgrade the client
systems to an operating system that can support stronger NFS security. You can do the
following:

share -o sec=sys,rw=legacy-group,sec=dh,rw=upgrade-group /export/home

such that the legacy machines and upgrade machines are each placed in their own netgroup.

12.5.7 NFS security futures

In Section 12.5.2.2, we mentioned the RSA public key algorithm, but did not talk about any
NFS security that uses RSA. RSA is arguably the best asymmetric key encryption algorithm
known to us. It is the foundation of most Public Key Infrastructure (PKI) products, as well as
networking protocols like SSL/TLS and S/MIME. So why doesn't NFS use it? The main issue
with RSA is that it was patented and so royalties were due to its rights holders. Now that the
patent has expired, expect to see the following features in the future:

Managing NFS and NIS

245

• Asymmetric key technology integrated with Kerberos V5. Without asymmetric key
technology, a physical compromise of the KDC effectively compromises all of the
principals listed in KDC, as it stores each user's symmetric key. With asymmetric key
technology, only the public key needs to be stored in the KDC.

• The NFS Version 4 protocol specifies an SSL-like GSS-API mechanism provider
called LIPKEY as one of the two required security providers to RPCSEC_GSS
(Kerberos V5 being the other). LIPKEY uses asymmetric key algorithms. So when
NFS Version 4 is deployed widely, expect to see RSA used to secure it. Like SSL,
LIPKEY can be easily used through a firewall.

The poor performance of krb5p (Table 12-2) is due largely to the fact that DES is a very slow
algorithm. There are faster, not to mention more secure, algorithms, but many of them are
proprietary, subject to royalties. The royalty free Advanced Encryption Standard (AES) has
been selected to replace DES. AES is faster and more secure than DES. Expect to see future
versions of NFS run over Kerberos V5 and LIPKEY using AES as the encryption algorithm.

12.6 Viruses

A computer virus is a piece of code that modifies the operating system or system utilities with
harmful or annoying side effects. Like human viruses, a computer virus reproduces itself and
spreads through a vector, or carrier. Once one computer is infected, the virus attempts to copy
itself onto floppies or other removable media that will be taken to other systems. When an
infected disk is inserted into a healthy system, the virus loads itself into the uninfected system.
Entire networks of computers may be infected from a single disk that infects a system that
later infects a file server, for example.

Effects of viruses vary greatly. Some simply render the machine useless, echoing annoying
messages back to the user but preventing any "real" command execution. Others are
destructive in nature, scribbling on critical filesystem information on hard disks or removing
key files.

Viruses are virtually unknown in time-sharing operating systems such as Unix that enforce
kernel protection. The operating system cannot be modified without superuser permission, so
random user applications cannot inject viruses into the system. The Windows operating
system, on the other hand, does not protect its kernel code or disk files, so an executable can
overwrite parts of the kernel, the DOS image on disk, or various system utilities. Once the
disk image is infected, the system remains infected, even through reboots or power cycles.
Note that viruses are not the same as worms, rabbits, or other user-level processes that
consume resources or reproduce rapidly enough to bring a system to a halt. A computer virus
specifically damages the operating system.

Enforcing basic security around the root password and superuser access to machines should
be sufficient to deter deliberate planting of viruses in the Unix kernel. In addition to securing
access from the local area network, verify that your systems are safe from attacks from
external networks such as the Internet. If you can prevent unauthorized superuser access, then
you must only worry about things that you or your system administrators do as root.

Watch what you put into cron entries. Any script that gets run by cron should be owned by
root and either not writable or writable only by root. If a user asks for a shell script to be

Managing NFS and NIS

246

added to root 's crontab, install the script so that the user cannot modify it once it has been
added to the crontab file.

Similarly, avoid any package that requires an executable to be run as root as part of its
installation process, unless you can vouch for the integrity of the package's provider. In
general, vendors stand behind the safety of their software, and you should not worry about
"branding" utilities that write serial number information into executable images or packages.
It is becoming the norm for vendors to include a strong cryptographic checksum like MD5, or
a verifiable digital signature with software on removable media or web sites. Such practices
are a good sign that your vendor is taking care to secure its software from viruses, but such
practices do you the most good when you take the time to verify the checksum or signature
before installing the software.

The same guidelines that apply to Windows users also apply to Unix system administrators: if
you don't know where an executable came from, don't run it as root. This is especially true for
executables taken from public domain sources. If you can't get the source code, don't
experiment with it unless you are willing to perform a post-installation check for damage.
Above all else, use common sense. If you feel uncomfortable loaning your car keys to a
complete stranger, you should feel equally queasy about installing strange software on your
system as root.

Managing NFS and NIS

247

Chapter 13. Network Diagnostic and Administrative
Tools
Distributed computing architectures rely on a well-conditioned network and properly
configured servers for their adequate performance and operation. NFS and NIS client
performance degrades if your network is congested or your servers are unreliable.
Retransmitted requests add to the noise level on the network or to the request backlog on the
server, generally exacerbating any performance problems.

Whenever you make a change, you run the risk of affecting more than just one machine. If
you add a new NFS client, for example, you should consider all possible impacts on the
computing environment: network bandwidth consumed by traffic to and from this node, or the
incremental workload imposed on any servers used by the client. Similarly, when upgrading
server resources you must identify those areas that are the tightest constraints: CPU speed,
disk speed, or aggregate disk space. Adding another server to a network may not be as
economical or beneficial as upgrading to faster disks, adding CPUs to an expandable server or
offloading other tasks, such as web service to another host.

This portion of the book focuses on network analysis, debugging, and performance tuning. Its
goal is to present the tools, procedures, and evaluation criteria used for analyzing network,
NFS, or NIS problems. In addition to tuning and administration, these techniques can be used
to evaluate proposals for expanding an existing network with additional clients or servers.
Symptoms and causes of common problems will be examined in detail, but the overall focus
is on developing techniques to be used on complex problems peculiar to your specific
combination of hardware and software.

In this chapter, we present tools for examining the configuration and performance of
individual network components, starting at the lowest level of basic point-to-point
connectivity and working up to the RPC layer where the NFS- and NIS-specific issues come
into play. The chapter includes examples relevant to problem diagnosis to define the methods
for collecting and interpreting data about the network and its components. A healthy network
is essential to the proper behavior of NFS and NIS. Developing network diagnostic skills is
necessary for resolving problems that may only be apparent at the application level. NFS may
behave poorly because of a saturated network or due to an overloaded server; a thorough
examination of the problem requires checking each component involved. If you fail to
understand the low-level operation of a facility, you are more likely to misinterpret
performance or usage statistics provided for that facility. We cover the lower layers of the
network protocols in detail so that you can see how they affect the performance and behavior
of the application layer protocols like NFS and NIS.

As explained in Section 2.3, NIS and DNS can be used concurrently to resolve hostnames on
the same system, although throughout the remainder of this book, we assume that NIS is the
only name service running. In some cases, we refer to local files that are used without NIS.
However, examples and discussions refer to the most common NIS maps, as shown in Table
13-1.

Managing NFS and NIS

248

Table 13-1. Common NIS maps and their nicknames
Map Name Nickname Local File
passwd.byname passwd /etc/passwd
group.byname group /etc/group
hosts.byname hosts /etc/inet/hosts
ipnodes.byname ipnodes /etc/inet/ipnodes
rpc.bynumber rpc /etc/rpc
services.byname services /etc/inet/services
netmasks.byaddr netmasks /etc/inet/netmasks

The /etc/inet/ipnodes file and ipnodes NIS map form a database that associates the names of
nodes with their IP addresses. The IP addresses can be either IPv4 or IPv6 addresses. The
ipnodes database was introduced in Solaris 8 to support IPv6-aware[1] and IPv6-enabled[2]
applications that need to obtain IPv6 addresses. When these applications need IPv4 addresses,
they first consult the ipnodes database. If the address is not found, they then consult the
traditional hosts database. IPv6-unaware[3] applications simply consult the hosts database, as
they are unaware of IPv6 extensions. Although not a requirement, IPv4 addresses defined in
the hosts database should be copied to the ipnodes database in order to prevent delays in name
resolution, and to keep the ipnodes and hosts database in sync.

[1] IPv6-aware applications can communicate with nodes that do not have an IPv4 address. This means that the application can handle the larger IPv6
addresses.

[2] IPv6-enabled applications take advantage of some IPv6-specific feature. The enabled applications can still operate over IPv4, though in a degraded
mode. IPv6-enabled applications are also IPv6-aware.

[3] IPv6-unaware applications cannot handle IPv6 addresses; therefore, they cannot communicate with nodes that do not have an IPv4 address.

Throughout this chapter we assume that your system is capable of using both IPv4 and IPv6,
and uses the ipnodes database to obtain IP address mappings. If your system does not support
IPv6 yet, then replace references to the ipnodes database with the hosts database. To reiterate,
an unsuccessful lookup of an IPv4 address in the ipnodes database implies a subsequent
lookup of the same address in the hosts database.

13.1 Broadcast addresses

Many network problems stem from confusion or inconsistency in the way hosts form their IP
broadcast addresses. Broadcast addresses are used when a packet must be sent to all machines
on the local area network. For example, if your host needs to send a packet to another
machine, it must know the remote machine's IP address and Ethernet address. It can determine
the remote IP address by looking up the remote hostname in the NIS ipnodes map, but it may
not have the corresponding Ethernet address. If this is the first time your machine is talking to
this particular remote host, it won't have had an opportunity to locate or save the remote
Ethernet address. The way to determine the remote machine's Ethernet address is to ask all of
the hosts on the network if they have the information, using the Address Resolution Protocol
(ARP). To broadcast this request to all hosts on the network, your host uses a special kind of
destination address called a broadcast address. A normal (or unicast) address identifies only
one host; a broadcast address identifies all hosts on the network.

To be an effective broadcast, the packet must reach all nodes on the local area network and be
recognized as a broadcast packet by them. An improperly formed broadcast address, or one

Managing NFS and NIS

249

that other systems do not recognize as such, can be responsible for failures ranging from NIS
clients that cannot find servers to storms of broadcast packets initiated by a single packet sent
with the wrong broadcast address.

Like host addresses, broadcast addresses exist in both the MAC and IPv4 layers of the
protocol stack. There are no broadcast addresses in IPv6; their function is superseded by
multicast addresses.[4] An IPv4 broadcast address is converted into a MAC broadcast address,
just as a host-specific IP address is converted into a 48-bit Ethernet address. At the MAC
layer, there is exactly one broadcast address; for Ethernet it is:

[4] Multicast addresses are used to define subgroups of recipients of data. If a sender needs to contact a large number of hosts simultaneously, the
sender can multicast a single message to all hosts listening on the given multicast address, instead of issuing multiple copies of the same message to
every single host. The hosts listening on the multicast address do not need to be part of the same subnetwork as the sender.

ff:ff:ff:ff:ff:ff

Every node on the local network receives a packet having this destination MAC address. A
host may ignore a broadcast if the request is for a service that it does not provide. A host
processes every broadcast packet, at the very least deciding to discard it. Therefore, a high
level of broadcast traffic hurts the performance of each host on the network.

While the MAC layer broadcast address is very clearly defined, there is some variation in the
form of IPv4 broadcast addresses. There are two distinct popular forms, mostly due to
evolution of the networking code in Berkeley-based Unix systems.[5] Examples of broadcast
addresses of each form are shown for each IPv4 address class in Table 13-2. IPv4 address
classes are described in Section 1.3.3.

[5] The 4.2 BSD release of Unix introduced TCP/IP and required use of the zeros form of broadcast addresses. All derivatives of 4.2 BSD, including
SunOS 3.x and early versions of Ultrix, retained this broadcast address requirement. In 4.3 BSD, the ones form of broadcast addresses was adopted,
although the zeros form was still supported. Unix operating systems that are descendants of 4.3 BSD — SunOS 4.x included — support both one- and
zero-filled broadcast addresses. Solaris supports only the ones form.

Table 13-2. Broadcast address forms
Address Class Example Ones Form Zeros Form
Class A 89. 89.255.255.255 89.0.0.0
Class B 129.7. 129.7.255.255 129.7.0.0
Class C 192.6.4. 192.6.4.255 192.6.4.0
Classless 192.1.2. /23 192.1.3.255 192.1.3.0

The ones form is the most widely accepted and is used in all examples in this book. Octets of
the IPv4 address that specify the host number are filled in with 1-valued bits. A variation on
the ones form is the zeros form, in which the host number is expressed as zero-valued octets.
The all-ones form:

255.255.255.255

is a variation of the proper ones form address where the 255-valued octets occupy only the
host number portion of the address.

Confusion regarding the "proper" broadcast address stems from the interpretation of octet
values 0 and 255 in IPv4 addresses. Zero-valued octets should be used as place holders when
specifying a network number and imply "this" network, without any real implication for host

Managing NFS and NIS

250

numbers. For example, 129.7.0.0 means network number 129.7., but it does not necessarily
name any hosts on the network.

Conversely, the one-filled octets are treated like wildcards and imply "any" host on the
network. The network number is specified but the host number matches all hosts on that
network. Using these connotations for octet values 0 and 255, the ones form of the broadcast
address is "correct." There are cases in which the zeros form must be used for backwards
compatibility with older operating system releases. Many systems were built using the zeros
form of broadcast addresses.

The sole requirement in adopting a broadcast address form is to make the choice consistent
across all machines on the network and compatible with your vendor's supported convention.
Machines that expect a zeros-form broadcast address interpret a one-filled octet as part of a
host number rather than a wildcard. Mixing broadcast address forms on the same network is
the most common cause of broadcast storms, in which every confused node on the network
transmits and retransmits replies to a broadcast address of a form complementary to the one it
is using.

Broadcast addresses, muticast addresses, IP addresses, and other characteristics of the
Ethernet interface are set with the ifconfig utility. Because ifconfig governs the lowest level
interface of a node to the network, it is the logical place to begin the discussion of network
tools.

13.2 MAC and IP layer tools

The tools covered in this section operate at the MAC and IP layers of the network protocol
stack. Problems that manifest themselves as NFS or NIS failures may be due to an improper
host or network configuration problem. The tools described in this section are used to
ascertain that the basic network connectivity is sound. Issues that will be covered include
setting network addresses, testing connectivity, and burst traffic handling.

13.2.1 ifconfig: interface configuration

ifconfig sets or examines the characteristics of a network interface, such as its IP address or
availability. At boot time, ifconfig is used to initialize network interfaces, possibly doing this
in stages since some information may be available on the network itself through NIS. You can
also use ifconfig to examine the current state of an interface and compare its address
assignments with NIS map information. Interfaces may be physical devices, logical devices
associated with a physical network interface, IP tunnels, or pseudo-devices such as the
loopback device. Examples of physical devices include Ethernet interfaces or packet drivers
stacked on top of low-level synchronous line drivers. IP tunnels are point-to-point interfaces
that enable an IP packet to be encapsulated within another IP packet, appearing as a physical
interface. For example, an IPv6-in-IPv4 tunnel allows IPv6 packets to be encapsulated within
IPv4 packets, allowing IPv6 traffic to cross routers that understand only IPv4.

Managing NFS and NIS

251

13.2.1.1 Examining interfaces

To list all available network interfaces, invoke ifconfig with the -a option:[6]

[6] The protocols listed will depend on the contents of inet_type(4). Both IPv6 and IPv4 will be listed if /etc/default/inet_type does not exist, or if it
defines DEFAULT_IP=BOTH. Only IPv4 will be listed if DEFAULT_IP=IP_VERSION4. The network interface Ethernet address will also be
reported when ifconfig is invoked as root.

% ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 131.40.52.126 netmask ffffff00 broadcast 131.40.52.255
lo0: flags=2000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6> mtu 8252 index 1
 inet6 ::1/128
hme0: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2
 inet6 fe80::a00:20ff:fe81:23f1/10
hme0:1: flags=2080841<UP,RUNNING,MULTICAST,ADDRCONF,IPv6> mtu 1500 index 2
 inet6 fec0::56:a00:20ff:fe81:23f1/64
hme0:2: flags=2080841<UP,RUNNING,MULTICAST,ADDRCONF,IPv6> mtu 1500 index 2
 inet6 2100::56:a00:20ff:fe81:23f1/64

In this example, ifconfig lists four different interfaces, lo0, hme0, hme0:1, and hme0:2. lo0 is
the loopback pseudo-device used by IP to communicate between network applications that
specify the local host on both end-points. hme0 is the actual physical Ethernet device
configured on the host. Note that lo0 is listed in two different lines: the first line reports the
loopback configuration in use by IPv4, and the third line reports the loopback configuration in
use by IPv6. IPv4 specifies 127.0.0.1 as the loopback address; IPv6 specifies ::1/128.
Similarly, the second line reports the IPv4 address used by the hme0 device (131.40.52.126),
and the fourth line reports the device's IPv6 link-local address (fe80::a00:20ff:fe81:23f1/10).

Solaris supports multiple logical interfaces associated with a single physical network
interface. This allows a host to be assigned multiple IP addresses (even if the host only has a
single network interface). This is particularly useful when a host communicates over various
IPv6 addresses. In this example, hme0:1 and hme0:2 are logical interfaces associated with the
physical network interface hme0. hme0:1 uses the site-local IPv6 address
fec0::56:a00:20ff:fe81:23f1/64, and hme0:2 uses the global IPv6 address
2100::56:a00:20ff:fe81:23f1/64.

To examine a particular network interface, invoke ifconfig with its name as an argument. By
default, the IPv4 interface configuration is reported, unless you specify the address family you
are interested in, as in the third example:

% ifconfig hme0
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 131.40.52.126 netmask ffffff00 broadcast 131.40.52.255

% ifconfig lo0
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000

% ifconfig hme0 inet6
hme0: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2
 inet6 fe80::a00:20ff:fe81:23f1/10

Managing NFS and NIS

252

If the specified interface does not exist on the system or is not configured into the kernel,
ifconfig reports the error "No such device."

The flags field is a bitmap that describes the state of the interface. Values for the flags may be
found in /usr/include/net/if.h. The most common settings are:

UP

The network interface has been marked up and is enabled to send or receive packets.

RUNNING

Kernel resources, such as device driver buffers, have been allocated to the interface to
allow it to handle packets. An interface can be marked UP but not be running if the
kernel is having trouble getting resources assigned to the interface. This is usually
never a problem for Ethernet interfaces, but may surface when synchronous serial
lines or fiber optic links are used. Note that Solaris hosts always have this flag set,
regardless of the state of the interface.

BROADCAST

A valid broadcast address has been assigned to this interface. The interface reports its
broadcast address when queried, and broadcast packets can be sent from the interface.
There are no broadcast addresses in IPv6—their function is superseded by multicast
addresses

LOOPBACK

The interface is a loopback device: packets sent out on the device are immediately
placed on a receive queue for other processes on the local host. Although the loopback
device is implemented entirely in software, you must configure it as though it were a
physical network interface.

MULTICAST

A valid multicast address has been assigned to this interface. Listening on a multicast
address is analogous to listening to a particular band of the radio dial. The packet is
not addressed to a particular interface, instead, it is addressed to all interfaces listening
on that multicast address.

IPV4 / IPV6

Indicates the version of the Internet Protocol in use. The same interface can be
configured to use both versions, although ifconfig prints the respective configuration
on separate lines.

The mtu specifies the maximum transmission unit of the interface. IP uses path MTU
discovery to determine the maximum transmission unit size across the link. On point-to-point
links, the MTU is negotiated by the applications setting up the connection on both sides.

Managing NFS and NIS

253

Every configured physical device is assigned a unique index number. The kernel associates
the configuration values (IP address, MTU, etc.) with the index number for internal
bookkeeping. It provides a useful means for network programming APIs to identify network
interfaces.

The second line of ifconfig 's output shows the Internet (IP) address assigned to this interface,
the broadcast (IPv4 only) address, and the network mask that is applied to the IPv4 address to
derive the broadcast address. The previous example shows the ones form of the broadcast
address. When invoked by root, ifconfig also displays the interface's Ethernet address where
applicable.

The output of ifconfig resembles the first example for almost all Ethernet interfaces
configured to use IPv4, and the third example for almost all Ethernet interfaces configured to
use IPv6. ifconfig reports different state information if the interface is for a synchronous serial
line, the underlying data link for point-to-point IP networks. Point-to-point links are one
foundation of a wide-area network, since they allow IP packets to be run over long-haul serial
lines. When configuring a point-to-point link, the broadcast address is replaced with a
destination address for the other end of the point-to-point link, and the BROADCAST flag is
replaced by the POINTTOPOINT flag:

this-side% ifconfig ipdptp0
ipdptp0: flags=10088d1<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST,PRIVATE,IPv4>
mtu 8232 index 3
 inet 131.40.46.1 --> 131.40.1.12 netmask ffffff00

This interface is a serial line that connects networks 131.40.46.0 and 131.40.1.0; the machine
on the other end of the line has a similar point-to-point interface configuration with the local
and destination IP addresses reversed:

that-side% ifconfig ipdptp0
ipdptp0: flags=10088d1<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST,PRIVATE,IPv4>
mtu 8232 index 5
 inet 131.40.1.12 --> 131.40.46.1 netmask ffffff00

Marking the line PRIVATE means that the host-to-host connection will not be advertised to
routers on the network. Note also that the Address Resolution Protocol (ARP) is not used over
point-to-point links.

13.2.1.2 Initializing an interface

In addition to displaying the status of a network interface, ifconfig is used to configure the
interface. During the boot process, Solaris identifies the network interfaces to be configured
by searching for /etc/hostname.*[0-9] and /etc/hostname6.*[0-9] files. For example the
presence of /etc/hostname.hme0 and /etc/hostname.hme1 indicate that the two network
interfaces hme0 and hme1 need to be assigned an IPv4 address at boot time. Similarly, the
presence of /etc/hostname6.hme0 indicates that hme0 needs to be configured to use IPv6. You
can statically assign an IP address to the interface by specifying the corresponding hostname
in the /etc/hostname.*[0-9] or /etc/hostname6.*[0-9] file. Hostnames and their corresponding
IP addresses may be managed through NIS, which requires a functioning network to retrieve
map values. This chicken-and-egg problem is solved by invoking ifconfig twice during the
four steps required to bring a host up on the network:

Managing NFS and NIS

254

1. Early in the boot sequence, /etc/init.d/network executes ifconfig to set the IP address of
the interface. ypbind has not yet been started, so NIS is not running at this point.
ifconfig matches the hostname in the local /etc/inet/ipnodes file, and assigns the IP
address found there to the interface. The network mask is obtained by matching the
longest possible mask in /etc/inet/netmasks. If it is not specified, then it is based on the
class of the IPv4 address, as shown in Table 13-3 later in this chapter. The default
broadcast address is the address with a host part of all ones. ifconfig also sets up the
streams plumbing and the link-local IPv6 addresses.

2. IP routing is started by /etc/init.d/inetinit when the machine comes up to multiuser
mode. The host obtains its site-local, global, and multicast addresses from the network
IPv6 routers that advertise prefix information. Critical network daemons, such as
ypbind and the portmapper, are started next by /etc/init.d/rpc.

3. ifconfig is invoked again, out of /etc/init.d/inetsvc, to reset the broadcast address and
network mask of the IPv4 interfaces. Now that NIS is running, maps that override the
default values may be referenced. If you must override the NIS network masks, it is
recommended to use the /etc/inet/netmasks file with the appropriate mask instead of
hand-tailoring the values directly onto the ifconfig command in the boot script.

For example, add the desired netmask entry to /etc/inet/netmasks:

131.40.0.0 255.255.255.0

The boot script updates all IPv4 up and configured network devices by invoking:

/usr/sbin/ifconfig -au4 netmask + broadcast +

The netmask argument tells ifconfig which parts of the IP address form the network
number, and which form the host number. Any bit represented by a one in the netmask
becomes part of the network number. The broadcast argument specifies the broadcast
address to be used by this host. The plus signs in the example cause ifconfig to read
the appropriate NIS map for the required information. For the netmask, ifconfig reads
the netmasks map, and for the broadcast address, it performs a logical and of the
netmask and host IP address read from the NIS ipnodes map.

4. inetd-based services and RPC services such as NFS, the automounter and the lock
manager are started once the network interface has been fully configured. Applications
that require a fully functional network interface, such as network database servers,
should be started after the last ifconfig is issued in the boot sequence.

Do not specify the hostname in /etc/hostname*.[0-9] if you plan to use DHCP to obtain your
IPv4 addresses. DHCP enables your host to dynamically obtain IPv4 addresses, as well as
other client configuration information over the network. By default, IPv6 address
configuration is performed automatically as well. Hosts obtain their addresses and
configuration information from IPv6 routers which advertise the prefix information used by
the hosts to generate site-local and global addresses. Note that the host still invokes ifconfig to
plumb the device and establish its link-local IPv6 address (in /etc/init.d/network), the router
discovery daemon in.ndpd is later invoked in /etc/init.d/inetinit to acquire the additional site-
local and global addresses.

Managing NFS and NIS

255

13.2.1.3 Multiple interfaces

You can place a system on more than one network by either installing multiple physical
network interfaces, or by configuring multiple logical interfaces associated with a physical
network interface. In the first case, each network uses separate physical media, in the second
case the networks are on the same physical media. A host that acts as a gateway between two
networks is a good example of a system connected to physically separate networks. A host
configured to run over both IPv4 and IPv6 is an example of a system with multiple logical
interfaces and a single physical network.

ifconfig can configure the interfaces one at a time, or in groups. For example, if a host has
several interfaces, they can be enabled individually by using ifconfig:

...
ifconfig hme0 acadia up netmask + broadcast +
...
ifconfig hme1 acadia-gw up broadcast 192.254.1.255 netmask +

As in the previous example, the plus signs (+) make ifconfig read the netmasks database for its
data. In both examples, the interfaces are marked up and configured with a single command.

ifconfig can also configure multiple interfaces at once using the -a option:

ifconfig -auD4 netmask + broadcast +

The -auD4 set of options instructs ifconfig to update the netmask and broadcast configuration
for all IPv4 up devices that are not under DHCP control.

Each network interface has a distinct hostname and IP address. One convention for two-
network systems is to append -gw to the "primary" hostname. In this configuration, each
network interface is on a separate IP network. Host acadia from the previous example appears
in the NIS ipnodes map on network 192.254.1.0 and 131.40.52.0:

192.254.1.1 acadia
131.40.52.20 acadia-gw

To hosts on the 131.40.52 network, the machine is acadia-gw, but on the 192.254.1 network,
the same host is called acadia.

Systems with more than two network interfaces can use any convenient host naming scheme.
For example, in a campus with four backbone Ethernet segments, machine names can reflect
both the "given" name and the network name. A host sitting on all four IP networks is given
four hostnames and four IP addresses:

ipnodes file:

128.44.1.1 boris-bb1
128.44.2.1 boris-bb2
128.44.3.1 boris-bb3
128.44.4.1 boris-bb4

If the additional interfaces are configured after NIS is started, then the NIS ipnodes map is
relied upon to provide the IP address for each interface. To configure an interface early in the

Managing NFS and NIS

256

boot process — before NIS is started — the appropriate hostname and IP address must be in
/etc/inet/ipnodes on the local machine.

Note that you can configure the multiple physical network interfaces to be on separate IP
networks. You can turn on IP interface groups on the host, such that it can have more than one
IP address on the same subnet, and use the outbound networks for multiplexing traffic. You
can also enable interface trunking on the host to use the multiple physical network interfaces
as a single IP address. Trunking offers a measure of fault tolerance, since the trunked interface
keeps working even if one of the network interfaces fails. It also scales as you add more
network interfaces to the host, providing additional network bandwidth. We revisit IP
interface groups and trunking in Section 17.3.

13.2.1.4 Mismatched host information

If you have inconsistent hostname and IP address information in the NIS hosts map and the
local hosts file, or the NIS ipnodes map and the local ipnodes file, major confusion will result.
The host may not be able to start all of its services if its host IP address changes during the
boot process, and other machines will not know how to map the host's name to an IP address
that is represented on the network.

You will find that some network activity works fine, where others fail. For example, you will
be able to telnet into other systems from your misconfigured host, but the other systems will
not be able to telnet into your misconfigured host. This is because the other hosts are using a
different IP address than the one ifconfig used to configure your network interface. You will
be able to mount NFS filesystems exported without restrictions, but will not be able to mount
filesystems that are exported to your specific host (either explicitly or via netgroups) since the
NFS server sees your request as coming from a different host.

This kind of failure indicates that the local host's IP address has changed between the early
boot phase and the last ifconfig. You may find that the local /etc/inet/hosts file disagrees with
the NIS hosts map or the local /etc/inet/ipnodes file disagrees with the NIS ipnodes map.

Mismatched IPv4 addresses between the hosts and ipnodes maps will lead to inconsistent
behavior between IPv6-aware or -enabled applications and IPv6-unaware applications,
because they obtain their address information from different sources. If the hosts database
contains the correct information but the ipnodes database is corrupted, then IPv6-unaware
applications will work correctly, while the IPv6-aware and -enabled applications will
experience problems. The reverse is true when the corrupted information is in the hosts
database.

13.2.2 Subnetwork masks

The second ifconfig in the boot process installs proper masks and broadcast addresses if
subnetting is used to divide a larger IP address space. Default subnetwork masks and
broadcast addresses are assigned based on IP address class, as shown in Table 13-3.

Managing NFS and NIS

257

Table 13-3. Default broadcast addresses
Address Class Network Address Network Mask Broadcast Address
Class A x.0.0.0 255.0.0.0 x.255.255.255
Class B x.y.0.0 255.255.0.0 x.y.255.255
Class C x.y.z.0 255.255.255.0 x.y.z.255

The NIS netmasks map contains an association of network numbers and subnetwork masks
and is used to override the default network masks corresponding to each class of IP address. A
simple example is the division of a Class B network into Class C-like subnetworks, so that
each subnetwork number can be assigned to a distinct physical network. To effect such a
scheme, the netmasks NIS map contains a single entry for the Class B address:

131.40.0.0 255.255.255.0

Broadcast addresses are derived from the network mask and host IP address by performing a
logical and of the two. Any bits that are not masked out by the netmask become part of the
broadcast address, while those that are masked out are set to all ones in Solaris (other systems
may set them to all zeros).

Network numbers are matched based on the number of octets normally used for an address of
that class. IP address 131.40.52.28 has a Class B network number, so the first two octets in
the IP address are used as an index into the netmasks map. Similarly, IP address 89.4.1.3 is a
Class A address; therefore, only the first octet is used as a key into netmasks. This scheme
simplifies the management of netmasks. By listing the network number to be partitioned, you
do not have to itemize all subnetworks in the netmasks file.

Continuing the previous example, consider this ifconfig:

 ipnodes excerpt:
131.40.52.28 mahimahi

 netmasks map:
131.40.0.0 255.255.255.0

 ifconfig line:
ifconfig hme0 mahimahi netmask +

 Resulting interface configuration:
% ifconfig hme0
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 131.40.52.28 netmask ffffff00 broadcast 131.40.52.255

Using a plus sign (+) as the netmask instead of an explicit network mask forces the second
ifconfig to read the NIS netmasks map for the correct mask. The four-octet mask is logically
and-ed with the IP address, producing the broadcast network number. In the preceding
example, the broadcast address is in the ones form. Note that the network mask is actually
displayed as a hexadecimal mask value, and not as an IP address.

A more complex example involves dividing the Class C network 192.6.4 into four
subnetworks. To get four subnetworks, we need an additional two bits of network number,
which are taken from the two most significant bits of the host number. The netmask is

Managing NFS and NIS

258

therefore extended into the next two bits, making it 26 bits instead of the default 24-bit Class
C netmask:

Partitioning requires:

24 bits of Class C network number
2 additional bits of subnetwork number
6 bits left for host number

Last octet has 2 bits of netmask, 6 of host number:
11000000 binary = 192 decimal

Resulting netmasks file entry:

192.6.4.0 255.255.255.192

Again, only one entry in netmasks is needed, and the key for the entry matches the Class C
network number that is being divided.

You use variable length subnetting when using Classless IP addressing. You specify how
many bits of the IP address to use for the network, and how many to use for the host by
setting the appropriate netmask entry. The format of the netmask entry is the same as before,
however, there should be an entry for each subnet defined. ifconfig uses the longest possible
matching mask. Say your engineering organization has been given control of the 131.40.86.0
network (addresses 131.40.86.0 -> 131.40.86.255). You decide to partition it into four
separate subnetworks that map the four groups in your organization: Systems Engineering,
Applications Engineering, Graphics Engineering, and Customer Support. You plan to use a
single system to serve as your gateway between the four separate subnets and the enterprise
network. Your enterprise network address is 131.40.7.22, and is therefore connected to the
131.40.7.0 enterprise network. In order to partition the 131.40.86 address space into four
separate subnets, you need to use the two upper bits of the last octet to identify the network.
Table 13-4 shows the distribution of the IP addresses to the different networks.

Table 13-4. Network assignment
Organization Address Range Subnetwork
Systems Eng 131.40.86.0 -> 131.40.86.63 131.40.86.0
Applications Eng 131.40.86.64 -> 131.40.86.127 131.40.86.64
Graphics Eng 131.40.86.128 -> 131.40.86.191 131.40.86.128
Customer Support 131.40.86.192 -> 131.40.86.255 131.40.86.192

The last octet of the address will have two bits of netmask and six of host number:

11000000 binary = 192 decimal
The resulting netmask: 255.255.255.192

The resulting netmasks file is:

131.40.0.0 255.255.255.0
131.40.86.0 255.255.255.192
131.40.86.64 255.255.255.192
131.40.86.128 255.255.255.192
131.40.86.192 255.255.255.192

Managing NFS and NIS

259

The first entry indicates that the Class B network 131.40.0.0 is subnetted. The next four
entries represent the four variable-length subnets for the classless addresses for the different
groups. Addresses 131.40.86.0 through 131.40.86.255 have a subnet mask with 26 bits in the
subnet fields and 6 bits in the host field. All other addresses in the range 131.40.0.0 through
131.40.255.255 have a 24 bit subnet field. The IP address assignments for the five network
interfaces are shown in Table 13-5.

Table 13-5. Assigning addresses to interfaces
Interface Subnetwork Range Broadcast Sample IP Address
hme0 131.40.7.0 Backbone 131.40.7.255 131.40.7.22
hme1 131.40.86.0 -> 131.40.86.63 131.40.86.63 131.40.86.1
hme2 131.40.86.64 -> 131.40.86.127 131.40.86.63 131.40.86.65
hme3 131.40.86.128 -> 131.40.86.191 131.40.86.63 131.40.86.129
hme4 131.40.86.192 -> 131.40.86.255 131.40.86.63 131.40.86.193

For example, the server would direct network traffic to the hme0 interface when
communicating with IP address 131.40.7.78, since it is part of the 131.40.7.0 subnet; hme1
when communicating with 131.40.86.32, since it is part of the 131.40.86.0 subnet; hme2 when
communicating with 131.40.7.78, and so on.

ifconfig only governs the local machine's interface to the network. If a host cannot exchange
packets with a peer host on the same network, then it is necessary to verify that a datagram
circuit to the remote host exists and that the remote node is properly advertising itself on the
network. Tools that perform these tests are arp and ping.

13.2.3 IP to MAC address mappings

Applications use IP addresses and hostnames to identify remote nodes, but packets sent on the
Ethernet identify their destinations via a 48-bit MAC-layer address. The Ethernet interface on
each host only receives packets that have its MAC address of a broadcast address in the
destination field. IP addresses are completely independent of the 48-bit MAC-level address;
several disjoint networks may use the same sets of IP addresses although the 48-bit addresses
to which they map are unique worldwide.

You can tell who makes an Ethernet interface by looking at the first three octets of its address.
Some of the most popular prefixes are shown in Table 13-6. Fortunately, newer diagnostic
tools such as ethereal know how to map the prefix number to the vendor of the interface.
ethereal is introduced later in this chapter in Section 13.5.2.

Managing NFS and NIS

260

Table 13-6. Ethernet address prefixes
Prefix Vendor Prefix Vendor Prefix Vendor
00:00:0c Cisco 00:20:85 3Com 00:e0:34 Cisco
00:00:3c Auspex 00:20:af 3Com 00:e0:4f Cisco
00:00:63 Hewlett-Packard 00:60:08 3Com 00:e0:a3 Cisco
00:00:65 Network General 00:60:09 Cisco 00:e0:f7 Cisco
00:00:69 Silicon Graphics 00:60:2f Cisco 00:e0:f9 Cisco
00:00:f8 DEC 00:60:3e Cisco 00:e0:fe Cisco
00:01:fa Compaq 00:60:47 Cisco 02:60:60 3Com
00:04:ac IBM 00:60:5c Cisco 02:60:8c 3Com
00:06:0d Hewlett-Packard 00:60:70 Cisco 08:00:02 3Com
00:06:29 IBM 00:60:83 Cisco 08:00:09 Hewlett-Packard
00:06:7c Cisco 00:60:8c 3Com 08:00:1a Data General
00:06:c1 Cisco 00:60:97 3Com 08:00:1b Data General
00:07:01 Cisco 00:60:b0 Hewlett-Packard 08:00:20 Sun Microsystems
00:07:0d Cisco 00:80:1c Cisco 08:00:2b DEC
00:08:c7 Compaq 00:80:5f Compaq 08:00:5a IBM
00:10:11 Cisco 00:90:27 Intel 08:00:69 Silicon Graphics
00:10:1f Cisco 00:90:b1 Cisco 08:00:79 Silicon Graphics
00:10:2f Cisco 00:a0:24 3Com 10:00:5a IBM
00:10:4b 3Com 00:aa:00 Intel 10:00:90 Hewlett-Packard
00:10:79 Cisco 00:c0:4f Dell 10:00:d4 DEC
00:10:7b Cisco 00:c0:95 Network Appliance 3C:00:00 3Com
00:10:f6 Cisco 00:e0:14 Cisco aa:00:03 DEC
00:20:35 IBM 00:e0:1e Cisco aa:00:04 DEC

ARP, the Address Resolution Protocol, is used to maintain tables of 32- to 48-bit address
translations. The ARP table is a dynamic collection of MAC-to-IPv4 address mappings. To
fill in the MAC-level Ethernet packet headers, the sending host must resolve the destination
IPv4 address into a 48-bit address. The host first checks its ARP table for an entry keyed by
the IPv4 address, and if none is found, the host broadcasts an ARP request containing the
recipient's IPv4 address. Any machine supporting ARP address resolution responds to an ARP
request with a packet containing its MAC address. The requester updates its ARP table, fills
in the MAC address in the Ethernet packet header, and transmits the packet.

If no reply is received for the ARP request, the transmitting host sends the request again.
Typically, a delay of a second or more is inserted between consecutive ARP requests to
prevent a series of ARP packets from saturating the network. Flurries of ARP requests
sometimes occur when a malformed packet is sent on the network; some hosts interpret it as a
broadcast packet and attempt to get the Ethernet address of the sender via an ARP request. If
many machines are affected, the ensuing flood of network activity can consume a
considerable amount of the available bandwidth. This behavior is referred to as an ARP storm,
and is most frequently caused by an electrical problem in a transceiver that damages packets
after the host has cleanly written them over its network interface.

To examine the current ARP table entries, use arp -a:

% arp -a
Net to Media Table: IPv4

Managing NFS and NIS

261

Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
hme0 caramba 255.255.255.255 08:00:20:b9:2b:f6
hme1 socks 255.255.255.255 08:00:20:e7:91:5d
hme0 copper 255.255.255.255 00:20:af:9d:7c:92
hme0 roger 255.255.255.255 SP 08:00:20:a0:33:90
hme0 universo 255.255.255.255 U
hme0 peggy 255.255.255.255 SP 08:00:20:81:23:f1
hme1 duke 255.255.255.255 00:04:00:20:56:d7
hme0 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00
hme1 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00
hme1 daisy 255.255.255.255 08:00:20:b5:3d:d7

The arp -a output listing reports the interface over which the ARP notification arrived, the IP
address (or hostname) and its Ethernet address mapping. The unresolved entry (denoted by
the U flag) is for a host that did not respond to an ARP request; after several minutes the entry
is removed from the table. Complete entries in the ARP table may be static or dynamic,
indicating how the address mappings were added and the length of their expected lifetimes.

Solaris identifies static entries with the S flag. The host's own Ethernet address as well as all
multicast address entries (identified by the M flag) will always be static.The previous example
was run on the host roger, therefore the static nature of the entry for its own Ethernet address
and multicast entries. The absence of the S flag identifies a dynamic or learned entry.

Dynamic entries are added on demand during the course of normal IP traffic handling.
Infrequently used mappings added in this fashion have a short lifetime; after five minutes
without a reference to the entry, the ARP table management routines remove it. This ongoing
table pruning is necessary to minimize the overhead of ARP table lookups. The ARP table is
accessed using a hash table; a smaller, sparser table has fewer hash key collisions. A host that
communicates regularly with many other hosts may have an ARP table that is fairly large,
while a host that is quiescent or exchanging packets with only a few peers has a small ARP
table.

The difference between dynamic and permanent entries is how they are added to the ARP
table. Dynamic entries are added on the fly, as a result of replies to ARP requests. Permanent
entries are loaded into the ARP table once at boot time, and are useful if a host must
communicate with a node that cannot respond to an ARP request during some part of its
startup procedure. For example, a diskless client may not have ARP support embedded in the
boot PROM, requiring its boot server to have a permanent ARP table entry for it. Once the
diskless node is running the Unix kernel, it should be able to respond to ARP requests to
complete dynamic ARP table entries on other hosts.

The arp -a output reports a mask for every entry. This mask is used during lookup of an entry
in the ARP table. The lookup function in the kernel applies the mask to the address being
queried and compares it with the one in the table. If the resulting addresses match, the lookup
is successful. A mask of 255.255.255.255 (all ones) means that the two addresses need to be
exactly the same in order to be considered equivalent. A mask of 240.0.0.0 means that only
the upper four bits of the address are used to find a matching address. In the previous
example, all multicast addresses use the Ethernet address corresponding to the 240.0.0.0
entry. The ARP mask does not provide much useful information to the regular user. Be sure
not to confuse this ARP mask with the netmask specified by the ifconfig command. The ARP
mask is generated and used only by the internal kernel routines to reduce the number of

Managing NFS and NIS

262

entries that need to be stored in the table. The netmask specified by the ifconfig command is
used for IP routing.

A variation of the permanent ARP table entry is a published mapping. Published mappings are
denoted by the P flag. Published entries include the IP address for the current host, and the
addresses that have been explicitly added by the -s or -f options (explained later in this
chapter).

Publishing ARP table entries turns a host into an ARP server. Normally, a host replies only to
requests for its own IP address, but if it has published entries then it replies for multiple IP
addresses. If an ARP request is broadcast requesting the IP address of a published entry, the
host publishing that entry returns an ARP reply to the sender, even though the IP address in
the ARP request does not match its own.

This mechanism is used to cope with machines that cannot respond to ARP requests due to
lack of ARP support or because they are isolated from broadcast packets by a piece of
network partitioning hardware that filters out broadcast packets. This mechanism is also
useful in SLIP or PPP configurations. When any of these situations exist, a machine is
designated as an ARP server and is loaded with ARP entries from a file containing hostnames,
Ethernet addresses, and the pub qualifier. For example, to publish the ARP entries for hosts
relax and stress on server irie, we put the ARP information into a configuration file
/etc/arptable and then load it using arp -f:

irie# cat /etc/arptable
relax 08:00:20:73:3e:ec pub
stress 08:00:20:b9:18:3d pub
irie# arp -f /etc/arptable

The -f option forces arp to read the named file for entries, alternatively the -s option can be
used to add a single mapping from the command line:

irie# arp -s relax 08:00:20:73:3e:ec pub

As a diagnostic tool, arp is useful for resolving esoteric point-to-point connectivity problems.
If a host's ARP table contains an incorrect entry, the machine using it will not be reachable,
since outgoing packets will contain the wrong Ethernet address. ARP table entries may
contain incorrect Ethernet addresses for several reasons:

• Another host on the network is answering ARP requests for the same IP address, or all
IP addresses, emulating a duplicate IP address on the network.

• A host with a published ARP entry contains the wrong Ethernet address in its ARP
table.

• Either of the above situations exist, and the incorrect ARP reply arrives at the
requesting host after the correct reply. When ARP table entries are updated
dynamically, the last response received is the one that "wins." If the correct ARP
response is received from a host that is physically close to the requester, and a
duplicate ARP response arrives from a host that is located across several Ethernet
bridges, then the later — and probably incorrect — response is the one that the
machine uses for future packet transmissions.

Managing NFS and NIS

263

Inspection of the ARP table can reveal some obvious problems; for example, the three-octet
prefix of the machine's Ethernet address does not agree with the vendor's label on the front of
the machine. If you believe you are suffering from intermittent ARP failures, you can delete
specific ARP table entries and monitor the table as it is repopulated dynamically. ARP table
entries are deleted with arp -d, and only the superuser can delete entries. In the following
example, we delete the ARP table entry for fenwick, then force the local host to send an ARP
request for fenwick by attempting to connect to it using telnet. By examining the ARP table
after the connection attempt, we can see if some other host has responded incorrectly to the
ARP request:

arp -d fenwick
fenwick (131.40.52.44) deleted
telnet fenwick
 ...Telnet times out...
arp -a | grep fenwick
hme0 fenwick 255.255.255.255 08:00:20:79:61:eb

An example involving intermittent ARP failures is presented in Chapter 15.

IPv6 nodes use the neighbor discovery mechanism to learn the link layer address (MAC in the
case of Ethernet) of the other nodes connected to the link. The IPv6 neighbor discovery
mechanism delivers the functionality previously provided by the combination of ARP, ICMP
router discovery, and ICMP redirect mechanisms. This is done by defining special ICMP6
message types: neighbor solicitation and neighbor advertisement. A node issues neighbor
solicitations when it needs to request the link-layer (MAC) address of a neighbor. Nodes will
also issue neighbor advertisement messages in response to neighbor solicitation messages, as
well as when their link-layer address changes.

13.2.4 Using ping to check network connectivity

ping is similar to arp in that it provides information about hosts on a network rather than
information about data that is sent on the network. arp provides a low-level look at the MAC
addressing used by a host, but it is not that powerful for diagnosing connectivity problems.
ping is a more general purpose tool for investigating point-to-point connectivity problems and
areas of questionable physical network topology.

ping uses the Internetwork Control Message Protocol (ICMP) echo facility to ask a remote
machine for a reply. ICMP is another component of the network protocol stack that is a peer
of IP and ARP. The returned packet contains a timestamp added by the remote host which is
used to compute the round trip packet transit time. In its simplest form, ping is given a
hostname or IP address and returns a verdict on connectivity to that host:

% ping shamrock
shamrock is alive
% ping 131.40.1.15
131.40.1.15 is alive

The -s option puts ping into continuous-send mode, and displays the sequence numbers and
transit times for packets as they are returned. Optionally, the packet size and packet count
may be specified on the command line:

ping [-s] host [packet-size] [packet-count]

Managing NFS and NIS

264

For example:

% ping -s mahimahi
PING mahimahi: 56 data bytes
64 bytes from mahimahi (131.40.52.28): icmp_seq=0. time=3. ms
64 bytes from mahimahi (131.40.52.28): icmp_seq=1. time=2. ms
64 bytes from mahimahi (131.40.52.28): icmp_seq=2. time=2. ms
64 bytes from mahimahi (131.40.52.28): icmp_seq=3. time=3. ms
64 bytes from mahimahi (131.40.52.28): icmp_seq=4. time=2. ms
^C
----mahimahi PING Statistics----
5 packets transmitted, 5 packets received, 0% packet loss
round-trip (ms) min/avg/max = 2/2/3

and:

% ping -s mahimahi 100 3
PING mahimahi: 100 data bytes
108 bytes from mahimahi (131.40.52.28): icmp_seq=0. time=3. ms
108 bytes from mahimahi (131.40.52.28): icmp_seq=1. time=3. ms
108 bytes from mahimahi (131.40.52.28): icmp_seq=2. time=3. ms

----mahimahi PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss
round-trip (ms) min/avg/max = 3/3/3

The eight bytes added to each ICMP echo request in the corresponding reply are the
timestamp information added by the remote host. If no explicit count on the number of
packets is specified, then ping continues transmitting until interrupted. By default, ping uses a
56-byte packet, which is the smallest IP packet, complete with headers and checksums, that
will be transmitted on the Ethernet.

The ping utility is good for answering questions about whether the remote host is attached to
the network and whether the network between the hosts is reliable. Additionally, ping can
indicate that a hostname and IP address are not consistent across several machines. The
replies received when the host is specified by name may contain an incorrect IP address.
Conversely, if pinging the remote host by name does not produce a reply, try the IP address of
the host. If a reply is received when the host is specified by address, but not by name, then the
local machine has an incorrect view of the remote host's IP address. These kinds of problems
are generally machine specific, so intermittent ping failures can be a hint of IP address
confusion: machines that do not agree on the IP addresses they have been assigned.

If NIS is used, this could indicate that the NIS ipnodes map was corrupted or changed
(incorrectly) since the remote host last booted. The NIS ipnodes map supersedes the local
/etc/inet/ipnodes file,[7] so a disparity between the two values for a remote machine is ignored;
the NIS ipnodes map takes precedence. However, in the absence of NIS, the failure of a
remote node to answer a ping to its hostname indicates the /etc/inet/ipnodes files are out of
synchronization.

[7] You can change the search order for hosts and ipnodes in /etc/nsswitch.conf in order to reverse the precedence order.

Larger packet sizes may be used to test connectivity through network components that are
suspected of damaging large packets or trains of packets. ping only sends one packet at a
time, so it won't test the capacity of a network interface. However, it tells you whether packets

Managing NFS and NIS

265

close to the network's MTU can make it from point to point intact, through all of the network
hardware between the two hosts.

Using the packet count indicators and transit times, ping can be used to examine connectivity,
network segment length, and potential termination problems. Electrical problems, including
poor or missing cable termination, are among the most difficult problems to diagnose and
pinpoint without repeatedly splitting the network in half and testing the smaller segments. If
ping shows that packets are dropped out of sequence, or that return packets are received in
bursts, it is likely that either a network cable segment has an electrical fault or that the
network is not terminated properly. These problems are more common in older 10Base-5 and
10Base-2 networks than in newer CAT5 twisted pair networks.

For example, the following output from ping indicates that the network is intermittently
dropping packets; this behavior is usually caused by improper termination and is quite random
in nature:

% ping -s mahimahi
PING mahimahi: 56 data bytes
64 bytes from mahimahi (131.40.52.28): icmp_seq=0. time=3. ms
64 bytes from mahimahi (131.40.52.28): icmp_seq=1. time=2. ms
64 bytes from mahimahi (131.40.52.28): icmp_seq=16. time=1295. ms
64 bytes from mahimahi (131.40.52.28): icmp_seq=17. time=3. ms
64 bytes from mahimahi (131.40.52.28): icmp_seq=18. time=2. ms

The gap between packets 1 and 16, along with the exceptionally long packet delay, indicates
that a low-level network problem is consuming packets.

13.2.5 Gauging Ethernet interface capacity

Even with a well-conditioned network and proper host configuration information, a server
may have trouble communicating with its clients because its network interface is overloaded.
If an NFS server is hit with more packets than it can receive through its network interface,
some client requests will be lost and eventually retransmitted. To the NFS clients, the server
appears painfully slow, when it's really the server's network interface that is the problem.

The spray utility provides a very coarse estimate of network interface capacity, both on
individual hosts and through network hardware between hosts. spray showers a target host
with consecutive packets of a fixed length by making remote procedure calls to the rpc.sprayd
daemon on the remote host. After the last packet is sent, the rpc.sprayd daemon is queried for
a count of the packets received; this value is compared to the number of packets sent to
determine the percentage dropped between client and server.

On its own, spray is of limited usefulness as a measure of the packet handling capability of a
machine. The packet containing the RPC call may be lost by the client, due to other activity
on its network interface; it may be consumed by a collision on the network; or it may be
incident to the server but not copied from the network by the server's network interface due to
a lack of buffer space or excessive server CPU loading. Many packets are lost on the sending
host, and spray has no knowledge of where the packets vanish once they get pass the
application layer. Due to these factors, spray is best used to gauge the relative packet-
handling speeds of two or more machines.

Managing NFS and NIS

266

Here are some examples of using spray to test various network constraints. spray requires a
hostname and takes a packet count, delay value, and packet length as optional arguments:

spray [-c count] [-d delay] [-l length] host

For example:

% spray wahoo
sending 1162 packets of length 86 to wahoo ...
 675 packets (58.090%) dropped by wahoo
 1197 packets/sec, 103007 bytes/sec

spray reports the number of packets received, as well as the transfer rate. The packet drop
rates are only meaningful when used to compare the relative network input and output rates of
the two machines under test.

It's important to note that network interface speed depends upon much more than CPU speed.
A faster CPU helps a host process network protocols faster, but the network interface and bus
hardware usually determine how quickly the host can pull packets from the network. A fast
network interface may be separated from the CPU by a bus that has a high latency. Even a
high-throughput I/O system may exhibit poor network performance if there is a large time
overhead required to set up each packet transfer from the network interface to the CPU.
Similar hosts stress each other fairly, since their network interfaces have the same input
capacity.

Even on a well-conditioned, little-used network, a client machine that has a significantly
faster CPU than its server may perform worse under the stress of spray than the same two
machines with the client and server roles reversed. With increased CPU speed comes
increased packet handling speed, so a faster machine can transmit packets quickly enough to
outpace a slower server. If the disparity between client and server is great, then the client is
forced to retransmit requests and the server is additionally burdened with the duplicate
requests. Use spray to exercise combinations of client and server with varying packet sizes to
identify cases in which a client may race ahead of its server. When a fast NFS client is teamed
with a slower server, the NFS mount parameters require tuning as described in Section 18.1.

Send various sized packets to an NFS server to see how it handles "large" and "small" NFS
requests. Disk write operations are "large," usually filling several full-size IP packets. Other
operations, such as getting the attributes of a file, fit into a packet of 150 bytes or less. Small
packets are more easily handled by all hosts, since there is less data to move around, but NFS
servers may be subject to bursts of large packets during intense periods of client write
operations. If no explicit arguments are given, spray sends 1162 packets of 86 bytes. In most
implementations of spray, if either a packet count or packet length are given, the other
argument is chosen so that 100 kbytes of data are transferred between client and server. Try
using spray with packet sizes of 1500 bytes to judge how well an NFS server or the network
handle write requests.

Normally, no delay is inserted between packets sent by spray, although the -d option may be
used to specify a delay in microseconds. Insert delays between the packets to simulate
realistic packet arrival rates, under "normal" conditions. Client requests may be separated by
several tens of microseconds, so including a delay between packets may give you a more
accurate picture of packet handling rates.

Managing NFS and NIS

267

In Figure 13-1, baxter and arches are identical machines and acadia is a faster machine with a
faster network interface. spray produces the following output:

 Fast machine to slow machine:
[acadia]% spray baxter -c 100 -l 1160
sending 100 packets of length 1162 to baxter ...
 39 packets (39.000%) dropped by baxter
 520 packets/sec, 605037 bytes/sec

 Fast machine to slow machine, with delay:
[acadia]% spray baxter -c 100 -l 1160 -d 1
sending 100 packets of length 1162 to baxter ...
 no packets dropped by baxter
 99 packets/sec, 115680 bytes/sec

 Slow machine to fast machine:
[baxter]% spray acadia -c 100 -l 1160
sending 100 packets of length 1162 to acadia ...
 no packets dropped by acadia
 769 packets/sec, 893846 bytes/sec

 Slow machine to identical machine:
[baxter]% spray arches -c 100 -l 1160
sending 100 packets of length 1162 to arches ...
 no packets dropped by arches
 769 packets/sec, 893846 bytes/sec

Figure 13-1. Testing relative packet handling rates

When the fast machine sprays the slower one, a significant number of packets are dropped;
but adding a one-microsecond delay between the packets allows the slow machine to keep
pace and receive all incident packets. The slow machine to fast machine test produces the
same packet handling rate as the slow machine showering an identical peer; if the slow
machine sprays the fast one, the network bandwidth used is more than 30% greater than when
the fast machine hammers the slow one. Note that you couldn't get NFS to insert delays like
this, but performing the test with delays may indicate the location of a bottleneck. Knowing
your constraints, you can change other configuration parameters, such as NFS client behavior,
to avoid the bottleneck. We'll look at these tuning procedures more in Chapter 18.

The four tools discussed to this point — ifconfig, arp, ping, and spray — focus on the issues
of packet addressing and routing. If they indicate a problem, all network services, such as
telnet and rlogin, will be affected. We now move up through the network and transport layers

Managing NFS and NIS

268

in the network protocol stack, leaving the MAC and IP layers for the session and application
layers.

13.3 Remote procedure call tools

Network failures on a grand scale are generally caused by problems at the MAC or IP level,
and are immediately noticed by users. Problems involving higher layers of the network
protocol stack manifest themselves in more subtle ways, affecting only a few machines or
particular pairs of clients and servers. The utilities discussed in the following sections analyze
functionality from the remote procedure call (RPC) layer up through the NFS or NIS
application layer. The next section contains a detailed examination of the RPC mechanism at
the heart of NFS and NIS.

13.3.1 RPC mechanics

The Remote Procedure Call (RPC) mechanism imposes a client/server relationship on
machines in a network. A server is a host that physically owns some shared resource, such as
a disk exported for NFS service or an NIS map. Clients operate on resources owned by
servers by making RPC requests; these operations appear (to the client) to have been executed
locally. For example, when performing a read RPC on an NFS-mounted disk, the reading
application has no knowledge of where the read is actually executed. Many client-server
relationships may be defined for each machine on a network; a server for one resource is often
a client for many others in the same network.

13.3.1.1 Identifying RPC services

Services available through RPC are identified by four values:

• Program number
• Version number
• Procedure number
• Protocol (UDP or TCP)

The program number uniquely identifies the RPC service. Each RPC service, such as the
mountd or NIS server daemons, is assigned a program number. The file /etc/rpc and the rpc
NIS map contain an enumeration of RPC program numbers, formal names, and nicknames for
each service:

Excerpt from /etc/rpc:

nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007

Note that program 100005, mountd, has two names, reflecting the fact that the mountd
daemon services both mount requests and the showmount utility.

Program numbers can also be expressed in hexadecimal. Well-known RPC services such as
NFS and NIS are assigned reserved program numbers in the range 0x0 to 0x199999. Numbers

Managing NFS and NIS

269

above this range may be assigned to local applications such as license servers. The well-
known programs are commonly expressed in decimal, though.

A version number is used to differentiate between various flavors of the same service, and is
mostly utilized to evolve the service over time, while providing backwards compatibility if so
desired. For example, there are two versions of the NFS service: Versions 2 and 3 (there is no
Version 1). Each version of the program may be composed of many procedures. Each version
of the NFS service, program number 100003, consists of several procedures, each of which is
assigned a procedure number. These procedures perform client requests on the NFS server.
For example: read a directory, create a file, read a block from a file, write to a file, get the
file's attributes, or get statistics about a filesystem. The procedure number is passed in an RPC
request as an "op code" for the RPC server. Procedure numbers start with 1; procedure 0 is
reserved for a "null" function. While RPC program numbers are well-advertised, version and
procedure numbers are particular to the service and often are contained in a header file that
gets compiled into the client program. NFS procedure numbers, for example, are defined in
the header files /usr/include/nfs/nfs.h.

RPC clients and servers deal exclusively with RPC program numbers. At the session layer in
the protocol stack, the code doesn't really care what protocols are used to provide the session
services. The UDP and TCP transport protocols need port numbers to identify the local and
remote ends of a connection. The portmapper is used to perform translation between the RPC
program number-based view of the world and the TCP/UDP port numbers.

13.3.1.2 RPC portmapper — rpcbind

The rpcbind daemon (also known as the portmapper),[8] exists to register RPC services and to
provide their IP port numbers when given an RPC program number. rpcbind itself is an RPC
service, but it resides at a well-known IP port (port 111) so that it may be contacted directly
by remote hosts. For example, if host fred needs to mount a filesystem from host barney, it
must send an RPC request to the mountd daemon on barney. The mechanics of making the
RPC request are as follows:

[8] The rpcbind daemon and the old portmapper provide the same RPC service. The portmapper implements Version 2 of the portmap protocol (RPC
program number 100000), where the rpcbind daemon implements Versions 3 and 4 of the protocol, in addition to Version 2. This means that the
rpcbind daemon already implements the functionality provided by the old portmapper. Due to this overlap in functionality and to add to the confusion,
many people refer to the rpcbind daemon as the portmapper.

• fred gets the IP address for barney, using the ipnodes NIS map. fred also looks up the
RPC program number for mountd in the rpc NIS map. The RPC program number for
mountd is 100005.

• Knowing that the portmapper lives at port 111, fred sends an RPC request to the
portmapper on barney, asking for the IP port (on barney) of RPC program 100005.
fred also specifies the particular protocol and version number for the RPC service.
barney 's portmapper responds to the request with port 704, the IP port at which
mountd is listening for incoming mount RPC requests over the specified protocol.
Note that it is possible for the portmapper to return an error, if the specified program
does not exist or if it hasn't been registered on the remote host. barney, for example,
might not be an NFS server and would therefore have no reason to run the mountd
daemon.

• fred sends a mount RPC request to barney, using the IP port number returned by the
portmapper. This RPC request contains an RPC procedure number, which tells the
mountd daemon what to do with the request. The RPC request also contains the

Managing NFS and NIS

270

parameters for the procedure, in this case, the name of the filesystem fred needs to
mount.

The portmapper is also used to handle an RPC broadcast. Recall that a network broadcast is a
packet that is sent to all hosts on the network; an RPC broadcast is a request that is sent to all
servers for a particular RPC service. For example, the NIS client ypbind daemon uses an RPC
broadcast to locate an NIS server for its domain. There's one small problem with RPC
broadcasts: to send a broadcast packet, a host must fill in the remote port number, so all hosts
receiving the packet know where to deliver the broadcast packet. RPC doesn't have any
knowledge of port numbers, and the RPC server daemons on some hosts may be registered at
different port numbers. This problem is resolved by sending RPC broadcasts to the
portmapper, and asking the portmapper to make the RPC call indirectly on behalf of the
sender. In the case of the ypbind daemon, it sends a broadcast to all rpcbind daemons; they in
turn call the ypserv RPC server on each host.

13.3.1.3 RPC version numbers

As mentioned before, each new implementation of an RPC server has its own version number.
Different version numbers are used to coordinate multiple implementations of the same
service, each of which may have a different interface. As an RPC service matures, the
service's author may find it necessary to add new procedures or add arguments to existing
procedures. Changing the interface in this way requires incrementing the version number. The
first (and earliest) version of an RPC program is version 1; subsequent releases of the server
should use consecutive version numbers. For example, the mount service has several versions,
each one supporting more options than its predecessors.

Multiple versions are implemented in a single server process; there doesn't need to be a
separate instance of the RPC server daemon for each version supported. Each RPC server
daemon registers its RPC program number and all versions it supports with the portmapper. It
is helpful to think of dispatching a request through an RPC server as a two-level switch: the
first level discriminates on the version number, and chooses a set of procedure routines
comprising that version of the RPC service. The second level dispatch invokes one of the
routines in that set based on the program number in the RPC request.

When contacting the portmapper on a remote host, the local and remote sides must agree on
the version number of the RPC service that will be used. The rule of thumb is to use the
highest-numbered version that both parties understand. In cases where version numbers are
not consecutively numbered, or no mutually agreeable version number can be found, the
portmapper returns a version mismatch error looking like:

mount: RPC: Program version mismatch

Even though Solaris supports Transport-Independent RPC (TI-RPC), in reality most RPC
services use the TCP, UDP and loopback transport protocols. Servers may register themselves
for any of the protocols, depending upon the varieties of connections they need to support.
UDP packets are unreliable and unsequenced and are often used for broadcast or stateless
services. The RPC server for the spray utility, which "catches" packets thrown at the remote
host, uses the UDP protocol to accept as many requests as it can without requiring
retransmission of any missed packets. In contrast to UDP, TCP packets are reliably delivered
and are presented in the order in which they were transmitted, making them a requirement

Managing NFS and NIS

271

when requests must be processed by the server in the order in which they were transmitted by
the client. The loopback transports are used for communication within the local host and can
be connection-less or connection-oriented. For example, the automounter daemon uses RPC
over a connection-oriented loopback transport to communicate with the local kernel.

RPC servers listen on the ports they have registered with the portmapper, and are used
repeatedly for short-lived sessions. Connections to an RPC server may exist for the duration
of the RPC call only, or may remain across calls. They do not usually fork new processes for
each request, since the overhead of doing so would significantly impair the performance of
RPC-intensive services such as NFS. Many RPC servers are multithreaded, such as NFS in
Solaris, which allows the server to have multiple NFS requests being processed in parallel. A
multithreaded NFS server can take advantage of multiple disks and disk controllers, it also
allows "fast" NFS requests such as attribute or name lookups to not get trapped behind slower
disk requests.

13.3.2 RPC registration

Making RPC calls is a reasonably complex affair because there are several places for the
procedure to break down. The rpcinfo utility is an analog of ping that queries RPC servers and
their registration with the portmapper. Like ping, rpcinfo provides a measure of basic
connectivity, albeit at the session layer in the network protocol stack. Pinging a remote
machine ensures that the underlying physical network and IP address handling are correct;
using rpcinfo to perform a similar test verifies that the remote machine is capable of accepting
and replying to an RPC request.

rpcinfo can be used to detect and debug a variety of failures:

• "Dead" or hung servers caused by improper configuration or a failed daemon
• RPC program version number mismatches between client and server
• Bogus or renegade RPC servers, such as an NIS server that does not have valid maps

for the domain it pretends to serve
• Broadcast-related problems

In its simplest usage, rpcinfo -p takes a remote hostname (or uses the local hostname if none
is specified) and queries the portmapper on that host for all registered RPC services:

% rpcinfo -p corvette
 program vers proto port service
 100000 4 tcp 111 portmapper
 100000 3 tcp 111 portmapper
 100000 2 tcp 111 portmapper
 100000 4 udp 111 portmapper
 100000 3 udp 111 portmapper
 100000 2 udp 111 portmapper
 100024 1 udp 32781 status
 100024 1 tcp 32775 status
 100011 1 udp 32787 rquotad
 100002 2 udp 32789 rusersd
 100002 3 udp 32789 rusersd
 100002 2 tcp 32777 rusersd
 100002 3 tcp 32777 rusersd
 100021 1 udp 4045 nlockmgr
 100021 2 udp 4045 nlockmgr

Managing NFS and NIS

272

 100021 3 udp 4045 nlockmgr
 100021 4 udp 4045 nlockmgr
 100021 1 tcp 4045 nlockmgr
 100021 2 tcp 4045 nlockmgr
 100021 3 tcp 4045 nlockmgr
 100021 4 tcp 4045 nlockmgr
 100012 1 udp 32791 sprayd
 100008 1 udp 32793 walld
 100001 2 udp 32795 rstatd
 100001 3 udp 32795 rstatd
 100001 4 udp 32795 rstatd
 100068 2 udp 32796 cmsd
 100068 3 udp 32796 cmsd
 100068 4 udp 32796 cmsd
 100068 5 udp 32796 cmsd
 100005 1 udp 32810 mountd
 100005 2 udp 32810 mountd
 100005 3 udp 32810 mountd
 100005 1 tcp 32795 mountd
 100005 2 tcp 32795 mountd
 100005 3 tcp 32795 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100227 2 udp 2049
 100227 3 udp 2049
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs
 100227 2 tcp 2049
 100227 3 tcp 2049

The output from rpcinfo shows the RPC program and version numbers, the protocols
supported, the IP port used by the RPC server, and the name of the RPC service. Service
names come from the rpc.bynumber NIS map; if no name is printed next to the registration
information then the RPC program number does not appear in the map. This may be expected
for third-party packages that run RPC server daemons, since the hardware vendor creating the
/etc/rpc file doesn't necessarily list all of the software vendors' RPC numbers. However, a
well-known RPC service should be listed properly. Missing RPC service names could indicate
a corrupted or incomplete rpc.bynumber NIS map. One exception is the NFS ACL service,
defined as RPC program 100227. Solaris does not list it in /etc/rpc, and therefore its name is
not printed in the previous output. The NFS ACL service implements the protocol used
between Solaris hosts to exchange ACL (Access Control List) information, though it is
currently only interoperable between Solaris hosts. If the client or server do not implement the
service, then traditional Unix file access control based on permission bits is used.

If the portmapper on the remote machine has died or is not accepting connections for some
reason, rpcinfo times out attempting to reach it and reports the error. This is a good first step
toward diagnosing any RPC-related problem: verify that the remote portmapper is alive and
returning valid RPC service registrations.

rpcinfo can also be used like ping for a particular RPC server:

rpcinfo -u host program version UDP-based services
rpcinfo -t host program version TCP-based services

The -u or -t parameter specifies the transport protocol to be used — UDP or TCP,
respectively. The hostname must be specified, even if the local host is being queried. Finally,

Managing NFS and NIS

273

the RPC program and version number are given; the program may be supplied by name (one
reported by rpcinfo -p) or by explicit numerical value.

As a practical example, consider trying to mount an NFS filesystem from server mahimahi.
You can mount it successfully, but attempts to operate on its files hang the client. You can use
rpcinfo to check on the status of the NFS RPC daemons on mahimahi:

% rpcinfo -u mahimahi nfs 2
program 100003 version 2 ready and waiting

In this example, the NFS v2 RPC service is queried on remote host mahimahi. Since the
service is specified by name, rpcinfo looks it up in the rpc NIS map. The -u flag tells rpcinfo
to use the UDP protocol. If the -t option had been specified instead, rpcinfo would have
reported the status of the NFS over TCP service. At the time of this writing, a handful of
vendors still do not support NFS over TCP, therefore a -t query to one of their servers would
report that rpcinfo could not find a registration for the service using such a protocol.

rpcinfo -u and rpcinfo -t call the null procedure (procedure 0) of the RPC server. The null
procedure normally does nothing more than return a zero-length reply. If you cannot contact
the null procedure of a server, then the health of the server daemon process is suspect. If the
daemon never started running, rpcinfo would have reported that it couldn't find the server
daemon at all. If rpcinfo finds the RPC server daemon but can't get a null procedure reply
from it, then the daemon is probably hung.

13.3.3 Debugging RPC problems

In the previous examples, we used rpcinfo to see if a particular service was registered or not.
If the RPC service is not registered, or if you can't reach the RPC server daemon, it's likely
there is a low-level problem in the network. However, sometimes you reach an RPC server,
but you find the wrong one or it gives you the wrong answer. If you have a heterogeneous
environment and are running multiple versions of each RPC service, it's possible to get RPC
version number mismatch errors.

These problems affect NIS and diskless client booting; they are best sorted out by using
rpcinfo to emulate an RPC call and by observing server responses. Networks with multiple,
heterogeneous servers may produce multiple, conflicting responses to the same broadcast
request. Debugging problems that arise from this behavior often require knowing the order in
which the responses are received.

Here's an example: we'll perform a broadcast and then watch the order in which responses are
received. When a diskless client boots, it may receive several replies to a request for boot
parameters. The boot fails if the first reply contains incorrect or invalid boot parameter
information. rpcinfo -b sends a broadcast request to the specified RPC program and version
number. The RPC program can either be specified in numeric (100026) form, or in its name
equivalent (bootparam):

% rpcinfo -b bootparam 1
fe80::a00:20ff:feb5:1fba.128.67 unknown
fe80::a00:20ff:feb9:2ad1.128.78 unknown
131.40.52.238.128.67 mora
131.40.52.81.128.68 kanawha
131.40.52.221.128.79 holydev

Managing NFS and NIS

274

 Next Broadcast
% rpcinfo -b bootparam 1
131.40.52.81.128.68 kanawha
fe80::a00:20ff:feb5:1fba.128.67 unknown
131.40.52.238.128.67 mora
fe80::a00:20ff:feb9:2ad1.128.78 unknown

131.40.52.221.128.79 holydev
 Next Broadcast

In this example, a broadcast packet is sent to the boot parameter server (bootparam). rpcinfo
obtains the RPC program number (100026) from /etc/rpc or the rpc.bynumber NIS map
(depending on /etc/nsswitch.conf). Any host that is running the boot parameter server replies
to the broadcast with the standard null procedure "empty" reply. The universal address for the
RPC service is printed by the requesting host in the order in which replies are received from
these hosts (see the sidebar). After a short interval, another broadcast is sent.

Universal addresses
A universal address identifies the location of a transport endpoint. For UDP and
TCP, it is composed of the dotted IP address with the port number of the service
appended. In this example, the host kanawha has a universal address of
131.40.52.81.128.68.

The first four elements in the dotted string form the IP address of the server
kanawha:

% ypmatch 131.40.52.81
hosts.byaddr
131.40.52.81 kanawha

The last two elements, "128.68", are the high and low octets of the port on which the
service is registered (32836). This number is obtained by multiplying the high octet
value by 2^8 and adding it to the low octet value:

128 * 2^8 = 32768
(high
octet)

+ 68
(low octet)

32836
(decimal representation of port)

rpcinfo helps us verify that bootparam is indeed registered on port 32836:

% rpcinfo -p kanawha | grep
bootparam
100026 1 udp 32836 bootparam

Server loading may cause the order of replies between successive broadcasts to vary
significantly. A busy server takes longer to schedule the RPC server and process the request.

Managing NFS and NIS

275

Differing reply sequences from RPC servers are not themselves indicative of a problem, if the
servers all return the correct information. If one or more servers has incorrect information,
though, you will see irregular failures. A machine returning correct information may not
always be the first to deliver a response to a client broadcast, so sometimes the client gets the
wrong response.

In the last example (diskless client booting), a client that gets the wrong response won't boot.
The boot failures may be very intermittent due to variations in server loading: when the server
returning an invalid reply is heavily loaded, the client will boot without problem. However,
when the servers with the correct information are loaded, then the client gets an invalid set of
boot parameters and cannot start booting a kernel.

Binding to the wrong NIS server causes another kind of problem. A renegade NIS server may
be the first to answer a ypbind broadcast for NIS service, and its lack of information about the
domain makes the client machine unusable. Sometimes, just looking at the list of servers that
respond to a request may flag a problem, if you notice that one of the servers should not be
answering the broadcast:

% rpcinfo -b ypserv 1
131.40.52.138.3.255 poi
131.40.52.27.3.166 onaga
131.40.52.28.3.163 mahimahi

In this example, all NIS servers on the local network answer the rpcinfo broadcast request to
the null procedure of the ypserv daemon. If poi should not be an NIS server, then the network
will be prone to periods of intermittent failure if clients bind to it. Failure to fully
decommission a host as an NIS server — leaving empty NIS map directories, for example —
may cause this problem.

There's another possibility for NIS failure that rpcinfo cannot detect: there may be NIS servers
on the network, but no servers for the client's NIS domain. In the previous example, poi may
be a valid NIS server in another domain, in which case it is operating properly by responding
to the rpcinfo broadcast. You might not be able to get ypbind started on an NIS client because
all of the servers are in the wrong domain, and therefore the client's broadcasts are not
answered. The rpcinfo -b test is a little misleading because it doesn't ask the NIS RPC
daemons what domains they are serving, although the client's requests will be domain-
specific. Check the servers that reply to an rpcinfo -b and ensure that they serve the NIS
domain used by the clients experiencing NIS failures.

If a client cannot find an NIS server, ypbind hangs the boot sequence with errors of the form:

WARNING: Timed out waiting for NIS to come up

Using rpcinfo as shown helps to determine why a particular client cannot start the NIS
service: if no host replies to the rpcinfo request, then the broadcast packet is failing to reach
any NIS servers. If the NIS domain name and the broadcast address are correct, then it may be
necessary to override the broadcast-based search and hand ypbind the name and address of a
valid NIS server. Tools for examining and altering NIS bindings are the subject of the next
section.

Managing NFS and NIS

276

13.4 NIS tools

Tools discussed to this point help to dissect the session and transport layers under an
application such as NIS. The application and the utilities that analyze its behavior and
performance all rely on a well-behaved network. Assuming that the lower layers are in place,
NIS-oriented tools fine-tune the NIS system and help resolve problems that are caused by
information in the NIS maps, rather than the way in which the maps are accessed. The tools
described in this section alter client-server bindings, locate NIS servers and information for a
particular map, and look up keys in maps.

13.4.1 Key lookup

ypmatch is a grep-like command for NIS maps. ypmatch finds a single key in an NIS map and
prints the data associated with that key:

% ypmatch help-request aliases
john.goodman

% ypmatch onaga hosts
131.40.52.27 onaga

This procedure differs from using grep on the ASCII source file that produced the map in two
ways:

• ypmatch can be run from any client, while the NIS map source files may only exist on
a server with limited user access. Therefore, users who need to parse maps such as the
password, ipnodes, or hosts files must use NIS-oriented tools to gather their data.

• The client may be bound to an NIS server with a corrupted map set or one that is out-
of-date with the NIS master server. In this case, the output of ypmatch will not agree
with the output of grep run on the ASCII source file.

Associated with ypmatch is ypcat, which is the equivalent of cat for NIS files. It writes the
entire map file to the standard output:

% ypcat hosts
131.40.52.121 vineyard
131.40.52.54 hannah
131.40.52.132 positive

NIS maps are stored as DBM databases, indexed files with fast access provided through a
hash table. Standard utilities such as grep do not produce meaningful results when used on
DBM data files. To peek into the contents of an NIS map, you must use ypmatch or ypcat.
Output from NIS tools is colored by the underlying DBM index file organization, and presents
several avenues of confusion:

• By default, only the value paired with the key in the map is displayed, and not the key
itself. Some maps retain the key as part of the data value because it is needed by
applications that retrieve the map entry. Library routines that locate a password file
entry based on UID, for example, return the user's login name as part of the password
file structure. Other maps such as aliases simply store the value associated with the
key, when applications (such as mail) that reference the NIS map already have the key

Managing NFS and NIS

277

value. The following excerpt from ypcat aliases is of little value because there are no
alias names associated with the alias expansions:

 % ypcat aliases
 dan, lauri, paul, harry, bob
 dave, michael

michael, jan, stewart, tom

Both ypcat and ypmatch use the -k option to print the data value with its associated
key:

% ypcat -k aliases
south-sales dan, lauri, paul, harry, bob
engin-managers dave, michael
north-engin michael, jan, stewart, tom

• Some maps do not associate a data value with a key. The most common map of this
variety is the ypservers map, which simply contains hostnames of NIS servers without
any additional information. When using ypcat or ypmatch with value-less maps, blank
lines are produced as output:

% ypcat ypservers

unless the -k option is specified:

% ypcat -k ypservers
>mahimahi
wahoo
thud

• An NIS server implements separate procedures to get the "first" and each successive
key in a map. ypcat uses the "get first key" and "get next key" procedures to locate the
first key in the DBM file and to walk through all keys. The ordering of the keys is
determined by a linear scan through the DBM index file, rather than the order in which
the records appear in the plain text file. Because keys are encountered in the order in
which they are hash chained together, ypcat produces a seemingly random ordering of
the keys. In the hosts file example earlier, the original /etc/inet/hosts file was sorted by
increasing host number in the IP addresses; but the process of hashing the keys into
the DBM file produced the ordering seen with ypcat.

As a diagnostic tool, ypmatch can be used to identify NIS maps that are out of
synchronization even after a map transfer has been requested or scheduled. It is often used to
see if a change has taken place. After a new map is built, it is generally pushed to other
servers using yppush. However, NIS map changes may not propagate as quickly as desired. A
slave server may be down when a map transfer occurs, in which case it will not get an updated
map until the next ypxfr transfer.

13.4.2 Displaying and analyzing client bindings

ypwhich provides information about a client's NIS domain binding, and the availability of
master servers for various maps in the domain. With no arguments, it returns the name of the
NIS server to which the client is currently bound by ypbind:

Managing NFS and NIS

278

% ypwhich
mahimahi

If a hostname is passed as a parameter, then ypwhich queries the named host for its current
binding. If ypwhich cannot resolve the hostname into an IP address, it reports an error:

% ypwhich gonzo
ypwhich: clnt_create error: RPC: Unknown host

An IP address may be used in place of a hostname if you are debugging NIS problems, since
NIS itself is used to map the hostname into an IP address. If NIS operation is not reliable, then
explicit IP addresses should be used with all of the NIS-oriented debugging tools. For
example:

% ypwhich 131.40.52.34
wahoo

Querying client bindings individually is useful for debugging client problems, but it doesn't
provide much useful information about the use of NIS on the network. ypwhich is better
suited for answering questions about NIS servers: Are there enough servers? Are the clients
evenly distributed among the NIS servers? There is no client binding information kept by an
NIS server — the binding is something created by the client and known only to the client. The
server simply answers requests that are sent to it. To determine the distribution of NIS clients
to servers, you must poll the clients.

ypwhich, embedded in a shell script, collects NIS client demographics to perform a "census"
of server usage:

#! /bin/sh
ypcensus - poll for ypservers
(for h in `ypcat hosts | awk '{print $2}'`
 do
 ypwhich $h
 done) | grep -v 'not running' | sort | uniq -c

The for expression dumps the hosts NIS file, and awk extracts the second field — the
hostname — from each entry. The loop then queries each host for its NIS server, and then the
output from the loop is sorted. The entire loop is executed in a subshell so that its output is
treated as a single stream by the next stage of the command pipeline. The grep command
filters out errors from ypwhich, produced when an NIS client has not found a server for its
domain. At the end of the pipe, uniq -c counts the occurrences of each line, producing the
census of NIS servers. Sample output from the script is:

% ypcensus
 26 onaga
 7 mahimahi
 8 thud

You may find that the total number of bindings recorded is less than the number of clients —
some clients may not have formed a server binding when the script was run. Executing
ypwhich causes the client to bind to a server, so if you "miss" some hosts on the first attempt,
execute the script again after all clients have been forced to find servers.

Managing NFS and NIS

279

What does the output indicate? With multiple NIS servers, it is possible for the client
distribution to load one server more heavily than the others. In the previous example, the large
number of clients bound to server onaga could be caused by several things:

• The NIS server onaga is significantly faster than the other NIS servers, so it always
replies to ypbind requests before other servers.

• The servers have about the same CPU speed, so the lopsided binding indicates that
onaga has the lightest CPU load. It generates replies faster than the other servers.

• onaga may be "closer" to more NIS clients on the network, counting delays in network
hardware. Network topology favors NIS servers that are physically close to the client
if bridges or repeaters separate clients and potential NIS servers, adding packet
transmission delays that can overshadow CPU scheduling delays on loaded servers.

The few clients bound to mahimahi and thud may experience NIS timeouts if these NIS
servers are heavily loaded. The relatively small number of clients bound to these servers may
indicate that they aren't the best candidates for NIS service because they have a higher CPU
load.

Results of the binding poll should be compared to desired goals for balancing NIS server
usage. If one NIS server is much faster than the others, you may improve the NIS binding
distribution by shifting the fast machine's NIS service to one or two machines that are more
similar to the other NIS servers.

To see if you have enough NIS servers, or if your choice of servers provides adequate NIS
service, watch for broadcasts from NIS clients to the yserv port. You can observe network
broadcasts using a tool like snoop or ethereal, both of which watch every packet on the
network and print those that meet a defined criteria. ethereal and snoop are introduced in
Section 13.5. To find all ypbind broadcasts, use the following snoop command line:

snoop broadcast port sunrpc
 aqua -> 131.40.52.255 NIS C DOMAIN_NONACK mydomain.com
 semaphore -> 131.40.52.255 NIS C DOMAIN_NONACK mydomain.com

ypbind sends its RPC broadcast to the portmapper on the sunrpc port (port 111), and the
portmapper calls the ypserv process indirectly. If you see a large number of broadcast calls
being made to the portmapper, then your NIS clients are rebinding frequently and you should
add more NIS servers or choose servers that have a lighter load.

13.4.3 Other NIS map information

In addition to providing NIS server binding information, ypwhich examines the NIS map
information: the master server for a map, the list of all maps, and map nickname translations.
Map nicknames are more mnemonic forms of map names used in place of the actual DBM
filenames in NIS-related utilities; the nickname usually has the .byaddr or .byname suffix
removed. Nicknames exist only within the ypmatch, ypcat, and ypwhich utilities; they are not
part of the maps and are not part of the NIS servers. No application will ever perform a key
lookup in map passwd; it has to use passwd.byname or passwd.byuid.

ypwhich -x prints the table of nicknames:

Managing NFS and NIS

280

% ypwhich -x
Use "passwd" for map "passwd.byname"
Use "group" for map "group.byname"
Use "networks" for map "networks.byaddr"
Use "hosts" for map "hosts.byname"
Use "protocols" for map "protocols.bynumber"
Use "services" for map "services.byname"
Use "aliases" for map "mail.aliases"
Use "ethers" for map "ethers.byname"
Use "ipnodes" for map "ipnodes.byname"
Use "project" for map "project.byname"

While map nicknames provide a shorter command-line option for tools that take a map name
as a parameter, they can also create name conflicts with non-standard maps that share
commonly used map names. For example, a daemon that maps popular internal resource
server names to IP ports might create an NIS map called services advertising its default
mappings. This map name will not conflict with the NIS map created from /etc/inet/services
because the latter is converted into the map services.byname. Users of ypcat and ypmatch may
be surprised by output that appears to confuse the map names.

The following example doesn't work at first because the ypmatch utility turns the map name
services into services.byname, using the standard nickname translation. NIS completely
ignores the map you want. If you use ypmatch -t, nickname translation is suppressed and you
locate the desired map:

% ypmatch cullinet services
Can't match key cullinet in map services.byname. Reason: no such key in
map.
% ypmatch -t cullinet services
cullinet 6667

If you create your own maps, it's best to pick names that do not conflict with the standard map
nicknames. Finally, ypwhich finds the master server for a map, or prints the list of all known
maps if passed the -m option:

% ypwhich -m passwd
mahimahi
% ypwhich -m
 excerpt follows
protocols.byname mahimahi
passwd.byuid mahimahi
passwd.byname mahimahi
hosts.byname mahimahi
rpc.bynumber mahimahi
group.bygid mahimahi
netmasks.byaddr mahimahi
hosts.byaddr mahimahi
netgroup mahimahi
group.byname mahimahi
mail.aliases mahimahi
services.byname mahimahi
netgroup.byhost mahimahi
protocols.bynumber mahimahi
ethers.byname mahimahi
bootparams mahimahi
ypservers mahimahi

Managing NFS and NIS

281

ypwhich -m examines the NIS master server name embedded in the NIS map DBM file.

You can also explode an NIS map using makedbm -u, which "undoes" a DBM file. You see
the data records as well as the two additional records added by DBM containing the NIS
master name and the map's timestamp. If you have concerns about data disappearing from
NIS maps, dump the entire map (including keys) using makedbm -u:

[wahoo]% cd /var/yp/nesales
[wahoo]% /usr/etc/yp/makedbm -u ypservers
YP_LAST_MODIFIED 0649548751
YP_MASTER_NAME wahoo
wahoo wahoo
redsox redsox
thud thud

The map master information is useful if you have changed NIS master servers and need to
verify that client maps are built correctly and synchronized with the new master server.

13.4.4 Setting initial client bindings

The ypinit command is used to preconfigure a list of NIS servers to contact at startup time.
ypinit stores the list of NIS servers in the file /var/yp/binding/domainname/ypservers, where
domainname resolves to your NIS domain name. Normally, ypinit is run only once after
installing the system, though it may also be run whenever a new NIS server is added to the
network or an existing one is decommissioned:

ypinit -c

In order for NIS to operate sucessfully, we have to construct a list of the
NIS servers. Please continue to add the names for YP servers in order of
preference, one per line. When you are done with the list, type a <control
D>
or a return on a line by itself.
 next host to add: onaga
 next host to add: mahimahi
 next host to add: 131.40.52.126
 next host to add: ^D
The current list of yp servers looks like this:

onaga
mahimahi
131.40.52.126

Is this correct? [y/n: y] y

Make sure to include the necessary hostname to IP address mappings in /etc/inet/ipnodes or
/etc/inet/hosts before running the ypinit command, otherwise ypinit will fail. The resulting
ypservers file:

% cat ypservers
onaga
mahimahi
131.40.52.126

Managing NFS and NIS

282

Note that it is not necessary to preconfigure an initial list of NIS servers, since ypbind will
broadcast a request on the network to find the available servers if the initial list does not exist.
ypbind is started by /usr/lib/netsvc/yp/ypstart which in turn is invoked by the /etc/init.d/rpc
startup script:

Excerpt from /usr/lib/netsvc/yp/ypstart:

if [-d /var/yp/binding/$domain -a -f /var/yp/binding/$domain/ypservers];
then
 /usr/lib/netsvc/yp/ypbind > /dev/null 2>&1
 echo " ypbind\c"
elif [-d /var/yp/binding/$domain]; then
 /usr/lib/netsvc/yp/ypbind -broadcast > /dev/null 2>&1
 echo " ypbind\c"
fi

The next section will explain in more detail when and why you may want to bind to specific
NIS servers, and how you can modify the binding once ypbind has been started.

13.4.5 Modifying client bindings

The ypset utility forcefully changes the server binding. It is mostly used to dissect tangles of
intertwined NIS servers and to point a client at a server that is not hearing its broadcasts. The
normal NIS server search is conducted by ypbind through a broadcast request. The first server
answering the request is bound to the domain, and is probably the most lightly loaded or
closest server to the requesting host. As shown in the previous rpcinfo examples, a server's
response time, relative to other NIS servers, varies over time as its load fluctuates.

If the server's load increases so that NIS requests are not serviced before the RPC call times
out on the client machine, then the client's ypbind daemon dissolves the current binding and
rebroadcasts a request for NIS service. With varying server loads and local network traffic
conditions, the timeout/rebroadcast system effects a dynamic load balancing scheme between
NIS clients and servers.

Neither ypset nor ypinit should be used to implement a static load balancing scheme for two
reasons:

• The initial ypinit or ypset may implement your chosen server allocation, but poor
response time from this server causes the client to break the binding and perform a
broadcast-based search. This dynamic rebinding will undo the attempts to effect a
preferred binding.

• Extreme disparity in NIS server usage is indicative of other network problems or of
excessive server loading imposed by NFS service, interactive use, or print spooling.

There are four valid uses of ypinit and ypset:

• Point a client at an NIS server that is isolated from it by a router or gateway that does
not forward broadcast packets.

• Test the services provided by a particular server, if you have recently installed or
rebuilt the maps on that server.

• Force servers to rebind to themselves instead of cross-binding.

Managing NFS and NIS

283

• Point a client to use a known and trusted server for security reasons, instead of using
any NIS server on the network.

Again, ypinit is used to set the initial static binding at boot time, ypset is used to change this
binding after boot time. It is recommended to use an IP address as the argument to ypset to
avoid using the very same NIS service that ypbind is having trouble starting.

ypset 131.40.52.28
ypwhich
mahimahi

Alternatively, you can verify that the /etc/inet/ipnodes or /etc/inet/hosts file lists the IP
address for the new NIS server, and that /etc/nsswitch.conf is configured to use files before it
uses NIS.

In some NIS implementations (Solaris and others), ypbind no longer allows ypset to change its
binding unless this functionality is explicitly enabled. If the -ypset option is used when ypbind
is started, then ypbind accepts requests from any remote machine to rebind to a specified
server:

ypbind -ypset

The use of -ypset is a security risk as it allows a third party to change the binding to a
potentially hostile server. Without the -ypset parameter, attempts to change the server binding
will fail:

wahoo# ypset thud
ypset: Sorry, ypbind on host localhost has rejected your request.

A more restrictive form is:

ypbind -ypsetme

which only allows root on the local machine to invoke ypset to alter the binding. To
discourage manually changing the binding, the startup script does not specify either of these
options when it invokes ypbind.

13.5 Network analyzers

Network analyzers are ultimately the most useful tools available when it comes to debugging
network problems. They are powerful tools that allow you to inspect network traffic at every
level of the network stack in various degrees of detail. Good network analyzers provide
powerful filters that reduce the amount of information to what is relevant for the task at hand.
Snoop, ethereal, and tcpdump are three of the most popular network analyzers available
today. Snoop and ethereal provide excellent support for RPC protocols and we use them
throughout the rest of this book. The snoop network analyzer is bundled with Solaris, it
provides powerful filters for analysis of problems related to NFS, RPC and NIS. ethereal is a
GUI-based network analyzer program available free of charge. It is available for various types
of operating systems, including many flavors of Unix. These utilities require superuser
privileges in order to open the network interface device.

Managing NFS and NIS

284

13.5.1 snoop

The snoop network analyzer bundled with Solaris captures packets from the network and
displays them in various forms according to the set of filters specified. Snoop can capture
network traffic and display it on the fly, or save it into a file for future analysis. Being able to
save the network traffic into a file allows you to display the same data set under various
filters, presenting different views of the same information.

In its simplest form, snoop captures and displays all packets present on the network interface:

snoop
Using device /dev/hme (promiscuous mode)
 narwhal -> 192.32.99.10 UDP D=7204 S=32823 LEN=252
2100::56:a00:20ff:fe8f:ba43 -> ff02::1:ffb6:12ac ICMPv6 Neighbor
solicitation
 caramba -> schooner NFS C GETATTR3 FH=0CAE
 schooner -> caramba NFS R GETATTR3 OK
 caramba -> schooner TCP D=2049 S=1023 Ack=341433529
Seq=2752257980 Len=0 Win=24820
 caramba -> schooner NFS C GETATTR3 FH=B083
 schooner -> caramba NFS R GETATTR3 OK
 mp-broadcast -> 224.12.23.34 UDP D=7204 S=32852 LEN=177
 caramba -> schooner TCP D=2049 S=1023 Ack=341433645
Seq=2752258092 Len=0 Win=24820
...

By default snoop displays only a summary of the data pertaining to the highest level protocol.
The first column displays the source and destination of the network packet in the form "source
-> destination". Snoop maps the IP address to the hostname when possible, otherwise it
displays the IP address. The second column lists the highest level protocol type. The first line
of the example shows the host narwhal sending a request to the address 192.32.99.10 over
UDP. The second line shows a neighbor solicitation request initiated by the host with global
IPv6 address 2100::56:a00:20ff:fe8f:ba43. The destination is a link-local multicast address
(prefix FF02:). The contents of the third column depend on the protocol. For example, the 252
byte-long UDP packet in the first line has a destination port = 7204 and a source port= 32823.
NFS packets use a C to denote a call, and an R to denote a reply, listing the procedure being
invoked.

The fourth packet in the example is the reply from the NFS server schooner to the client
caramba. It reports that the NFS GETATTR (get attributes) call returned success, but it
doesn't display the contents of the attributes. Snoop simply displays the summary of the
packet before disposing of it. You can not obtain more details about this particular packet
since the packet was not saved. To avoid this limitation, snoop should be instructed to save
the captured network packets in a file for later processing and display by using the -o option:

snoop -o /tmp/capture -c 100
Using device /dev/hme (promiscuous mode)
100 100 packets captured

The -o option instructs snoop to save the captured packets in the /tmp/capture file. The
capture file mode bits are set using root 's file mode creation mask. Non-privileged users may
be able to invoke snoop and process the captured file if given read access to the capture file.

Managing NFS and NIS

285

The -c option instructs snoop to capture only 100 packets. Alternatively, you can interrupt
snoop when you believe you have captured enough packets.

The captured packets can then be analyzed as many times as necessary under different filters,
each presenting a different view of data. Use the -i option to instruct snoop where to read the
captured packets from:

snoop -i /tmp/capture -c 5
 1 0.00000 caramba -> mickey PORTMAP C GETPORT prog=100003
(NFS)
 vers=3 proto=UDP
 2 0.00072 mickey -> caramba PORTMAP R GETPORT port=2049
 3 0.00077 caramba -> mickey NFS C NULL3
 4 0.00041 mickey -> caramba NFS R NULL3
 5 0.00195 caramba -> mickey PORTMAP C GETPORT prog=100003
(NFS)
 vers=3 proto=UDP
5 packets captured

The -i option instructs snoop to read the packets from the /tmp/capture capture file instead of
capturing new packets from the network device. Note that two new columns are added to the
display. The first column displays the packet number, and the second column displays the
time delta between one packet and the next in seconds. For example, the second packet's time
delta indicates that the host caramba received a reply to its original portmap request 720
microseconds after the request was first sent.

By default, snoop displays summary information for the top-most protocol in the network
stack for every packet. Use the -V option to instruct snoop to display information about every
level in the network stack. You can also specify packets or a range of them with the -p option:

snoop -i /tmp/capture -V -p 3,4
_______________________________ _
 3 0.00000 caramba -> mickey ETHER Type=0800 (IP), size = 82
bytes
 3 0.00000 caramba -> mickey IP D=131.40.52.27 S=131.40.52.223
LEN=68,
 ID=35462
 3 0.00000 caramba -> mickey UDP D=2049 S=55559 LEN=48
 3 0.00000 caramba -> mickey RPC C XID=969440111 PROG=100003
(NFS)
 VERS=3 PROC=0
 3 0.00000 caramba -> mickey NFS C NULL3
_______________________________ _
 4 0.00041 mickey -> caramba ETHER Type=0800 (IP), size = 66
bytes
 4 0.00041 mickey -> caramba IP D=131.40.52.223 S=131.40.52.27
LEN=52,
 ID=26344
 4 0.00041 mickey -> caramba UDP D=55559 S=2049 LEN=32
 4 0.00041 mickey -> caramba RPC R (#3) XID=969440111 Success
 4 0.00041 mickey -> caramba NFS R NULL3

The -V option instructs snoop to display a summary line for each protocol layer in the packet.
In the previous example, packet 3 shows the Ethernet, IP, UDP, and RPC summary
information, in addition to the NFS NULL request. The -p option is used to specify what
packets are to be displayed, in this case snoop displays packets 3 and 4.

Managing NFS and NIS

286

Every layer of the network stack contains a wealth of information that is not displayed with
the -V option. Use the -v option when you're interested in analyzing the full details of any of
the network layers:

snoop -i /tmp/capture -v -p 3
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 3 arrived at 15:08:43.35
ETHER: Packet size = 82 bytes
ETHER: Destination = 0:0:c:7:ac:56, Cisco
ETHER: Source = 8:0:20:b9:2b:f6, Sun
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 68 bytes
IP: Identification = 35462
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = 4503
IP: Source address = 131.40.52.223, caramba
IP: Destination address = 131.40.52.27, mickey
IP: No options
IP:
UDP: ----- UDP Header -----
UDP:
UDP: Source port = 55559
UDP: Destination port = 2049 (Sun RPC)
UDP: Length = 48
UDP: Checksum = 3685
UDP:
RPC: ----- SUN RPC Header -----
RPC:
RPC: Transaction id = 969440111
RPC: Type = 0 (Call)
RPC: RPC version = 2
RPC: Program = 100003 (NFS), version = 3, procedure = 0
RPC: Credentials: Flavor = 0 (None), len = 0 bytes
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:
NFS: ----- Sun NFS -----
NFS:
NFS: Proc = 0 (Null procedure)
NFS:

The Ethernet header displays the source and destination addresses as well as the type of
information embedded in the packet. The IP layer displays the IP version number, flags,
options, and address of the sender and recipient of the packet. The UDP header displays the

Managing NFS and NIS

287

source and destination ports, along with the length and checksum of the UDP portion of the
packet. Embedded in the UDP frame is the RPC data. Every RPC packet has a transaction ID
used by the sender to identify replies to its requests, and by the server to identify duplicate
calls. The previous example shows a request from the host caramba to the server mickey. The
RPC version = 2 refers to the version of the RPC protocol itself, the program number 100003
and Version 3 apply to the NFS service. NFS procedure 0 is always the NULL procedure, and
is most commonly invoked with no authentication information. The NFS NULL procedure
does not take any arguments, therefore none are listed in the NFS portion of the packet.

The amount of traffic on a busy network can be overwhelming, containing many irrelevant
packets to the problem at hand. The use of filters reduces the amount of noise captured and
displayed, allowing you to focus on relevant data. A filter can be applied at the time the data
is captured, or at the time the data is displayed. Applying the filter at capture time reduces the
amount of data that needs to be stored and processed during display. Applying the filter at
display time allows you to further refine the previously captured information. You will find
yourself applying different display filters to the same data set as you narrow the problem
down, and isolate the network packets of interest.

Snoop uses the same syntax for capture and display filters. For example, the host filter
instructs snoop to only capture packets with source or destination address matching the
specified host:

snoop host caramba
Using device /dev/hme (promiscuous mode)
 caramba -> schooner NFS C GETATTR3 FH=B083
 schooner -> caramba NFS R GETATTR3 OK
 caramba -> schooner TCP D=2049 S=1023 Ack=3647506101
Seq=2611574902 Len=0 Win=24820

In this example the host filter instructs snoop to capture packets originating at or addressed to
the host caramba. You can specify the IP address or the hostname, and snoop will use the
name service switch to do the conversion. Snoop assumes that the hostname specified is an
IPv4 address. You can specify an IPv6 address by using the inet6 qualifier in front of the host
filter:

snoop inet6 host caramba
Using device /dev/hme (promiscuous mode)
 caramba -> 2100::56:a00:20ff:fea0:3390 ICMPv6 Neighbor
advertisement
2100::56:a00:20ff:fea0:3390 -> caramba ICMPv6 Echo request (ID:
1294 Sequence number: 0)
 caramba -> 2100::56:a00:20ff:fea0:3390 ICMPv6 Echo reply (ID: 1294
Sequence number: 0)

You can restrict capture of traffic addressed to the specified host by using the to or dst
qualifier in front of the host filter:

snoop to host caramba
Using device /dev/hme (promiscuous mode)
 schooner -> caramba RPC R XID=1493500696 Success
 schooner -> caramba RPC R XID=1493500697 Success
 schooner -> caramba RPC R XID=1493500698 Success

Managing NFS and NIS

288

Similarly you can restrict captured traffic to only packets originating from the specified host
by using the from or src qualifier:

snoop from host caramba
Using device /dev/hme (promiscuous mode)
 caramba -> schooner NFS C GETATTR3 FH=B083
 caramba -> schooner TCP D=2049 S=1023 Ack=3647527137
Seq=2611841034 Len=0 Win=24820

Note that the host keyword is not required when the specified hostname does not conflict with
the name of another snoop primitive.The previous snoop from host caramba command could
have been invoked without the host keyword and it would have generated the same output:

snoop from caramba
Using device /dev/hme (promiscuous mode)
 caramba -> schooner NFS C GETATTR3 FH=B083
 caramba -> schooner TCP D=2049 S=1023 Ack=3647527137
Seq=2611841034 Len=0 Win=24820

For clarity, we use the host keyword throughout this book. Two or more filters can be
combined by using the logical operators and and or :

snoop -o /tmp/capture -c 20 from host caramba and rpc nfs 3
Using device /dev/hme (promiscuous mode)
20 20 packets captured

Snoop captures all NFS Version 3 packets originating at the host caramba. Here, snoop is
invoked with the -c and -o options to save 20 filtered packets into the /tmp/capture file. We
can later apply other filters during display time to further analyze the captured information.
For example, you may want to narrow the previous search even further by only listing TCP
traffic by using the proto filter:

snoop -i /tmp/capture proto tcp
Using device /dev/hme (promiscuous mode)
 1 0.00000 caramba -> schooner NFS C GETATTR3 FH=B083
 2 2.91969 caramba -> schooner NFS C GETATTR3 FH=0CAE
 9 0.37944 caramba -> rea NFS C FSINFO3 FH=0156
 10 0.00430 caramba -> rea NFS C GETATTR3 FH=0156
 11 0.00365 caramba -> rea NFS C ACCESS3 FH=0156 (lookup)
 14 0.00256 caramba -> rea NFS C LOOKUP3 FH=F244 libc.so.1
 15 0.00411 caramba -> rea NFS C ACCESS3 FH=772D (lookup)

Snoop reads the previously filtered data from /tmp/capture, and applies the new filter to only
display TCP traffic. The resulting output is NFS traffic originating at the host caramba over
the TCP protocol. We can apply a UDP filter to the same NFS traffic in the /tmp/capture file
and obtain the NFS Version 3 traffic over UDP from host caramba without affecting the
information in the /tmp/capture file:

snoop -i /tmp/capture proto udp
Using device /dev/hme (promiscuous mode)
 1 0.00000 caramba -> rea NFS C NULL3

So far, we've presented filters that let you specify the information you are interested in. Use
the not operator to specify the criteria of packets that you wish to have excluded during

Managing NFS and NIS

289

capture. For example, you can use the not operator to capture all network traffic, except that
generated by the remote shell:

snoop not port login
Using device /dev/hme (promiscuous mode)
 rt-086 -> BROADCAST RIP R (25 destinations)
 rt-086 -> BROADCAST RIP R (10 destinations)
 caramba -> schooner NFS C GETATTR3 FH=B083
 schooner -> caramba NFS R GETATTR3 OK
 caramba -> donald NFS C GETATTR3 FH=00BD
 jamboree -> donald NFS R GETATTR3 OK
 caramba -> donald TCP D=2049 S=657 Ack=3855205229
Seq=2331839250 Len=0 Win=24820
 caramba -> schooner TCP D=2049 S=1023 Ack=3647569565
Seq=2612134974 Len=0 Win=24820
 narwhal -> 224.2.127.254 UDP D=9875 S=32825 LEN=368

On multihomed hosts (systems with more than one network interface device), use the -d
option to specify the particular network interface to snoop on:

snoop -d hme2

You can snoop on multiple network interfaces concurrently by invoking separate instances of
snoop on each device. This is particularly useful when you don't know what interface the host
will use to generate or receive the requests. The -d option can be used in conjunction with any
of the other options and filters previously described:

snoop -o /tmp/capture-hme0 -d hme0 not port login &
snoop -o /tmp/capture-hme1 -d hme1 not port login &

Filters help refine the search for relevant packets. Once the packets of interest have been
found, use the -V or -v options to display the packets in more detail. You will see how this
top-down technique is used to debug NFS-related problems in Chapter 14. Often you can use
more than one filter to achieve the same result. Refer to the documentation shipped with your
OS for a complete list of available filters.

13.5.2 ethereal / tethereal

ethereal is an open source free network analyzer for Unix and Windows. It allows you to
examine data from a live network or from a capture file on disk. You can interactively browse
the capture data, viewing summary and detail information for each packet. It is very similar in
functionality to snoop, although perhaps providing more powerful and diversified filters. At
the time of this writing, ethereal is beta software and its developers indicate that it is far from
complete. Although new features are continuously being added, it already has enough
functionality to be useful. We use version 0.8.4 of ethereal in this book. Some of the
functionality, as well as look-and-feel may have changed by the time you read these pages.

In addition to providing powerful display filters, ethereal provides a very nice Graphical User
Interface (GUI) which allows you to interactively browse the captured data, viewing summary
and detailed information for each packet. The official home of the ethereal software is
http://www.zing.org/. You can download the source and documentation from this site and
build it yourself, or follow the links to download precompiled binary packages for your
environment. You can download precompiled Solaris packages from

Managing NFS and NIS

290

http://www.sunfreeware.com/. In either case, you will need to install the GTK+ Open Source
Free Software GUI Toolkit as well as the libpcap packet capture library. Both are available on
the ethereal website.

tethereal is the text-only functional equivalent of ethereal. They both share a large amount of
the source code in order to provide the same level of data capture, filtering, and packet
decoding. The main difference is the user interface: tethereal does not provide the nice GUI
provided by ethereal. Due to its textual output, tethereal is used throughout this book.[9]
Examples and discussions concerning tethereal also apply to ethereal. Many of the concepts
will overlap those presented in the snoop discussion, though the syntax will be different.

[9] In our examples, we reformat the output that tethereal generates by adding or removing white spaces to make it easier to read.

In its simplest form, tethereal captures and displays all packets present on the network
interface:

tethereal
Capturing on hme0
 caramba -> schooner NFS V3 GETATTR Call XID 0x59048f4a
 schooner -> caramba NFS V3 GETATTR Reply XID 0x59048f4a
 caramba -> schooner TCP 1023 > nfsd [ACK] Seq=2139539358
Ack=1772042332
 Win=24820 Len=0
 concam -> 224.12.23.34 UDP Source port: 32939 Destination port: 7204
mp-broadcast -> 224.12.23.34 UDP Source port: 32852 Destination port: 7204
 narwhal -> 224.12.23.34 UDP Source port: 32823 Destination port: 7204
 vm-086 -> 224.0.0.2 HSRP Hello (state Active)
 caramba -> mickey YPSERV V2 MATCH Call XID 0x39c4533d
 mickey -> caramba YPSERV V2 MATCH Reply XID 0x39c4533d

By default tethereal displays only a summary of the highest level protocol. The first column
displays the source and destination of the network packet. tethereal maps the IP address to the
hostname when possible, otherwise it displays the IP address. You can use the -n option to
disable network object name resolution and have the IP addresses displayed instead. Each line
displays the packet type, and the protocol-specific parameters. For example, the first line
displays an NFS Version 3 GETATTR (get attributes) request from client caramba to server
schooner with RPC transaction ID 0x59048f4a. The second line reports schooner 's reply to
the GETATTR request. You know that this is a reply to the previous request because of the
matching transaction IDs.

Use the -w option to have tethereal write the packets to a data file for later display. As with
snoop, this allows you to apply powerful filters to the data set to reduce the amount of noise
reported. Use the -c option to set the number of packets to read when capturing data:

tethereal -w /tmp/capture -c 5
Capturing on hme0
10

Use the -r option to read packets from a capture file:

tethereal -r /tmp/capture -t d
 1 0.000000 caramba -> mickey PORTMAP V2 GETPORT Call XID 0x39c87b6e
 2 0.000728 mickey -> caramba PORTMAP V2 GETPORT Reply XID 0x39c87b6e
 3 0.00077 caramba -> mickey NFS V3 NULL Call XID 0x39c87b6f

Managing NFS and NIS

291

 4 0.000416 mickey -> caramba NFS V3 NULL Reply XID 0x39c87b6f
 5 0.001957 caramba -> mickey PORTMAP V2 GETPORT Call XID 0x39c848db

tethereal reads the packets from the /tmp/capture file specified by the -r option. Note that two
new columns are added to the display. The first column displays the packet number, and the
second column displays the time delta between one packet and the next in seconds. The -t d
option instructs tethereal to use delta timestamps, if not specified, tethereal reports
timestamps relative to the time elapsed between the first packet and the current packet. Use
the -t a option to display the actual date and time the packet was captured. tethereal can also
read capture files generated by other network analyzers, including snoop's capture files.

As mentioned in the snoop discussion, network analyzers are most useful when you have the
ability to filter the information you need. One of tethereal 's strongest attributes is its rich
filter set. Unlike snoop, tethereal uses different syntax for capture and display filters. Display
filters are called read filters in tethereal, therefore we will use the tethereal terminology
during this discussion. Note that a read filter can also be specified during packet capturing,
causing only packets that pass the read filter to be displayed or saved to the output file.
Capture filters are much more efficient than read filters. It may be more difficult for tethereal
to keep up with a busy network if a read filter is specified during a live capture.

13.5.3 Capture filters

Packet capture and filtering is performed by the Packet Capture Library (libpcap). Use the -f
option to set the capture filter expression:

tethereal -f "dst host donald"
Capturing on hme0
 schooner -> donald TCP nfsd > 1023 [PSH, ACK] Seq=1773285388
Ack=2152316770
 Win=49640 Len=116
 mickey -> donald UDP Source port: 934 Destination port: 61638
 mickey -> donald UDP Source port: 934 Destination port: 61638
 mickey -> donald UDP Source port: 934 Destination port: 61638
 schooner -> donald TCP nfsd > 1023 [PSH, ACK] Seq=1773285504
Ack=2152316882
 Win=49640 Len=116

The dst host filter instructs tethereal to only capture packets with a destination address equal
to donald. You can specify the IP address or the hostname, and tethereal will use the name
service switch to do the conversion. Substitute dst with src and tethereal captures packets
with a source address equal to donald. Simply specifying host donald captures packets with
either source or destination addresses equal to donald.

Use protocol capture filters to instruct tethereal to capture all network packets using the
specified protocol, regardless of origin, destination, packet length, etc:

tethereal -f "arp"
Sun_a0:33:90 -> ff:ff:ff:ff:ff:ff ARP Who has 131.40.51.7?
Tell 131.40.51.125
Sun_b9:2b:f6 -> Sun_a0:33:90 ARP 131.40.51.223 is at
08:00:20:b9:2b:f6
00:90:2b:71:e0:00 -> ff:ff:ff:ff:ff:ff ARP Who has 131.40.51.77? Tell
131.40.51.17

Managing NFS and NIS

292

The arp filter instructs tethereal to capture all of the ARP packets on the network. Notice that
tethereal replaces the Ethernet address prefix with the Sun_ identifier (08:00:20). The list of
prefixes known to tethereal can be found in /etc/manuf file located in the tethereal installation
directory.

Use the and, or, and not logical operators to build complex and powerful filters:

tethereal -w /tmp/capture -f "host 131.40.51.7 and arp"
tethereal -r /tmp/capture
Sun_a0:33:90 -> ff:ff:ff:ff:ff:ff ARP Who has 131.40.51.7?
Tell 131.40.51.125
Sun_b9:2b:f6 -> Sun_a0:33:90 ARP 131.40.51.7 is at
08:00:20:b9:2b:f6

tethereal captures all ARP requests for the 131.40.51.7 address and writes the packets to the
/tmp/capture file. We should point out that the source address of the first packet is not
131.40.51.7, and highlight the fact that the destination address is the Ethernet broadcast
address. You may ask then, why is this packet captured by tethereal if neither the source nor
destination address match the requested host? You can use the -V option to analyze the
contents of the captured packet to answer this question:

tethereal -r /tmp/ether -V
Frame 1 (60 on wire, 60 captured)
 Arrival Time: Sep 25, 2000 13:34:08.2305
 Time delta from previous packet: 0.000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II
 Destination: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
 Source: 08:00:20:a0:33:90 (Sun_a0:33:90)
 Type: ARP (0x0806)
Address Resolution Protocol (request)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: request (0x0001)
 Sender hardware address: 08:00:20:a0:33:90
 Sender protocol address: 131.40.51.125
 Target hardware address: ff:ff:ff:ff:ff:ff
 Target protocol address: 131.40.51.7
...
(Contents of second packet have been omitted)

The -V option displays the full protocol tree. Each layer of the packet is printed in detail (for
clarity, we omit printing the contents of the second packet). The frame information is added
by tethereal to identify the network packet. Note that the frame information is not part of the
actual network packet, and is therefore not transmitted over the wire.

The Ethernet frame displays the broadcast destination address, and the source MAC address.
Notice how the 08:00:20 prefix is replaced by the Sun_ identifier. The Address Resolution
Protocol (ARP) part of the frame, indicates that this is a request asking for the hardware
address of 131.40.51.7. This explains why tethereal captures the packet when the host
131.40.51.7 and arp filter is specified.

Managing NFS and NIS

293

Use the not operator to specify the criteria of packets that you wish to have excluded during
capture. For example, use the not operator to capture all network packets, except ARP related
network traffic:

tethereal -f "not arp"
Capturing on hme0
 concam -> 224.12.23.34 UDP Source port: 32939 Destination port: 7204
 donald -> schooner TCP 1023 > nfsd [ACK] Seq=2153618946
Ack=1773368360 Win=24820 Len=0
 narwhal -> 224.12.23.34 UDP Source port: 32823 Destination port: 7204
 donald -> schooner NFS V3 GETATTR Call XID 0x5904b03e
schooner -> caramba NFS V3 GETATTR Reply XID 0x5904b03e

This section discussed how to restrict the amount of information captured by tethereal. In the
next section, you see how to apply the more powerful read filters to find the exact information
you need. Refer to tethereal 's documentation for a complete set of capture filters.

13.5.4 Read filters

Capture filters provide limited means of refining the amount of information gathered. To
complement them, tethereal provides a rich read (display) filter language used to build
powerful filters. Read filters further remove the noise from a packet trace to let you see
packets of interest. A packet is displayed if it meets the requirements expressed in the filter.
Read filters let you compare the fields within a protocol against a specific value, compare
fields against fields, or simply check the existence of specified fields and protocols.

Use the -R option to specify a read filter. The simplest read filter allows you to check for the
existence of a protocol or field:

tethereal -r /tmp/capture -R "nfs"
 3 0.001500 caramba -> mickey NFS V3 NULL Call XID 0x39c87b6f
 4 0.001916 mickey -> caramba NFS V3 NULL Reply XID 0x39c87b6f
 54 2.307132 caramba -> schooner NFS V3 GETATTR Call XID 0x590289e7
 55 2.308824 schooner -> caramba NFS V3 GETATTR Reply XID 0x590289e7
 56 2.309622 caramba -> mickey NFS V3 LOOKUP Call XID 0x590289e8
 57 2.310400 mickey -> caramba NFS V3 LOOKUP Reply XID 0x590289e8

tethereal reads the capture file /tmp/capture and displays all packets that contain the NFS
protocol.

You can specify a filter that matches the existence of a given field in the network packet. For
example, use the nfs.name filter to instruct tethereal to display all packets containing the NFS
name field in either requests or replies:

tethereal -r /tmp/capture -R "nfs.name"
 56 2.309622 caramba -> mickey NFS V3 LOOKUP Call XID 0x590289e8
 57 2.310400 mickey -> caramba NFS V3 LOOKUP Reply XID 0x590289e8

You can also specify the value of the field. For example use the frame.number == 56 filter, to
display packet number 56:

tethereal -r /tmp/capture -R "frame.number == 56"
 56 2.309622 caramba -> mickey NFS V3 LOOKUP Call XID 0x590289e8

Managing NFS and NIS

294

This is equivalent to snoop's -p option. You can also specify ranges of values of a field. For
example, you can print the first three packets in the capture file by specifying a range for
frame.number:

tethereal -r /tmp/capture -R "frame.number <= 3"
 1 0.000000 caramba -> mickey PORTMAP V2 GETPORT Call XID 0x39c87b6e
 2 0.000728 mickey -> caramba PORTMAP V2 GETPORT Reply XID
0x39c87b6e
 3 0.001500 caramba -> mickey NFS V3 NULL Call XID 0x39c87b6f

You can combine basic filter expressions and field values by using logical operators to build
more powerful filters. For example, say you want to list all NFS Version 3 Lookup and
Getattr operations. You know that NFS is an RPC program, therefore you first need to
determine the procedure number for the NFS operations by finding their definition in the nfs.h
include file:

$ grep NFSPROC3_LOOKUP /usr/include/nfs/nfs.h
#define NFSPROC3_LOOKUP ((rpcproc_t)3)
$ grep NFSPROC3_GETATTR /usr/include/nfs/nfs.h
#define NFSPROC3_GETATTR ((rpcproc_t)1)

The two grep operations help you determine that the NFS Lookup operation is RPC procedure
number 3 of the NFS Version 3 protocol, and the NFS Getattr operation is procedure number
1. You can then use this information to build a filter that specifies your interest in protocol
NFS with RPC program Version 3, and RPC procedures 1 or 3. You can represent this with
the filter expression:

nfs and rpc.programversion == 3 and(rpc.procedure == 1 or rpc.procedure ==
3)

The tethereal invocation follows:

tethereal -r /tmp/capture -R "nfs and rpc.programversion == 3 and \
 (rpc.procedure == 1 or rpc.procedure == 3)"
 54 2.307132 caramba -> schooner NFS V3 GETATTR Call XID 0x590289e7
 55 2.308824 schooner -> caramba NFS V3 GETATTR Reply XID 0x590289e7
 56 2.309622 caramba -> mickey NFS V3 LOOKUP Call XID 0x590289e8
 57 2.310400 mickey -> caramba NFS V3 LOOKUP Reply XID 0x590289e8

The filter displays all NFS Version 3 Getattr and all NFS Version 3 Lookup operations. Refer
to tethereal 's documentation for a complete description of the rich filters provided. In
Chapter 14, you will see how to use tethereal to debug NFS- related problems.

Managing NFS and NIS

295

Chapter 14. NFS Diagnostic Tools
The previous chapter described diagnostic tools used to trace and resolve network and name
service problems. In this chapter, we present tools for examining the configuration and
performance of NFS, tools that monitor NFS network traffic, and tools that provide various
statistics on the NFS client and server.

14.1 NFS administration tools

NFS administration problems can be of different types. You can experience problems
mounting a filesystem from a server due to export misconfiguration, problems with file
permissions, missing information, out-of-date information, or severe performance constraints.
The output of the NFS tools described in this chapter will serve as input for the performance
analysis and tuning procedures in Chapter 17.

Mount information is maintained in three files, as shown in Table 14-1.

Table 14-1. Mount information files
File Host Contents
/etc/dfs/sharetab server Currently exported filesystems
/etc/rmtab server host:directory name pairs for clients of this server
/etc/mnttab client Currently mounted filesystems

An NFS server is interested in the filesystems (and directories within those filesystem) it has
exported and what clients have mounted filesystems from it. The /etc/dfs/sharetab file
contains a list of the current exported filesystems and under normal conditions, it reflects the
contents of the /etc/dfs/dfstab file line-for-line.

The existence of /etc/dfs/dfstab usually determines whether a machine becomes an NFS server
and runs the mountd and nfsd daemons. During the boot process, the server checks for this file
and executes the shareall script which, in turn, exports all filesystems specified in
/etc/dfs/dfstab. The mountd and nfsd daemons will be started if at least one filesystem was
successfully exported via NFS. An excerpt of the /etc/init.d/nfs.server boot script is shown
here:

startnfsd=0
if [-f /etc/dfs/dfstab]; then
 /usr/sbin/shareall -F nfs
 if /usr/bin/grep -s nfs /etc/dfs/sharetab >/dev/null; then
 startnfsd=1
 fi
fi

if [$startnfsd -ne 0]; then
 /usr/lib/nfs/mountd
 /usr/lib/nfs/nfsd -a 16
fi

The dynamically managed file of exported filesystems, /etc/dfs/sharetab, is truncated to zero
length during the boot process. This takes place in the nfs.server boot script, although the

Managing NFS and NIS

296

truncation code is not shown in this example. Once mountd is running, the contents of
/etc/dfs/sharetab determine the mount operations that will be permitted by mountd.

/etc/dfs/sharetab is maintained by the share utility, so the modification time of
/etc/dfs/sharetab indicates the last time filesystem export information was updated. If a client
is unable to mount a filesystem even though the filesystem is named in the server's
/etc/dfs/dfstab file, verify that the filesystem appears in the server's /etc/dfs/sharetab file by
using share with no arguments:

server% share
- /export/home1 rw "Cool folks"
- /export/home2 root=mahimahi:thud ""

If the sharetab file is out-of-date, then re-running share on the server should make the
filesystem available. Note that there's really no difference between cat /etc/dfs/sharetab and
share with no arguments. Except for formatting differences, the output is the same.

When mountd accepts a mount request from a client, it notes the directory name passed in the
mount request and the client hostname in /etc/rmtab. Entries in rmtab are long-lived; they
remain in the file until the client performs an explicit umount of the filesystem. This file is not
purged when a server reboots because the NFS mounts themselves are persistent across server
failures.

Before an NFS client shuts down, it should try to unmount its remote filesystems. Clients that
mount NFS filesystems, but never unmount them before shutting down, leave stale
information in the server's rmtab file.

In an extreme case, changing a hostname without performing a umountall before taking the
host down makes permanent entries in the server's rmtab file. Old information in /etc/rmtab
has an annoying effect on shutdown, which uses the remote mount table to warn clients of the
host that it is about to be rebooted. shutdown actually asks the mountd daemon for the current
version of the remote mount table, but mountd loads its initial version of the table from the
/etc/rmtab file. If the rmtab file is not accurate, then uninterested clients may be notified, or
shutdown may attempt to find hosts that are no longer on the network. The out-of-date rmtab
file won't cause the shutdown procedure to hang, but it will produce confusing messages. The
contents of the rmtab file should only be used as a hint; mission-critical processing should
never depend on its contents. For instance, it would be a very bad idea for a server to skip
backups of filesystems listed in rmtab on the simple assumption that they are currently in use
by NFS clients. There are multiple reasons why this file can be out-of-date.

The showmount command is used to review server-side mount information. It has three
invocations:

showmount -a [server]
Prints client:directory pairs for server's clients.

showmount -d [server]
Simply prints directory names mounted by server's clients.

showmount -e [server]
 Prints the list of shared filesystems.

Managing NFS and NIS

297

For example:

% showmount -a
bears:/export/home1
bears:/export/home2/wahoo
honeymoon:/export/home2/wahoo
131.40.52.44:/export/home1
131.40.52.44:/export/home2

% showmount -d mahimahi
/export/home1
/export/home2

% showmount -e mahimahi
/export/home1 (everyone)
/export/home2 (everyone)

In the first example, an unknown host, indicated by the presence of an IP address instead of a
hostname, has mounted filesystems from the local host. If the IP address is valid on the local
network, then the host's name and IP address are mismatched in the name service hosts file or
in the client's /etc/hosts file. However, this could also indicate a breach of security,
particularly if the host is on another network or the host number is known to be unallocated.

Finally, the client can review its currently mounted filesystems using df, getting a brief look at
the mount points and corresponding remote filesystem information:

df
Shows current mount information.

df -F fstype
Looks at filesystems of type fstype only.

df directory
 Locates mount point for directory.

For example:

% df -k -F nfs
filesystem kbytes used avail capacity Mounted on
onaga:/export/onaga 585325 483295 43497 92% /home/onaga
thud:/export/thu 427520 364635 20133 95% /home/thud
mahimahi:/export/mahimahi
 371967 265490 69280 79% /home/mahimahi

The -k option is used to report the total space allocated in the filesystem in kilobytes. When df
is used to locate the mount point for a directory, it resolves symbolic links and determines the
filesystem mounted at the link's target:

% ls -l /usr/local/bin
lrwxrwxrwx 1 root 16 Jun 8 14:51 /usr/local/bin ->
/tools/local/bin
% df -k /usr/local/bin
filesystem kbytes used avail capacity Mounted on
mahimahi:/tools/local 217871 153022 43061 78% /tools/local

Managing NFS and NIS

298

df may produce confusing or conflicting results in heterogeneous environments. Not all
systems agree on what the bytes used and bytes available fields should represent; in most
cases they are the number of usable bytes available to the user left on the filesystem. Other
systems may include the 10% space buffer included in the filesystem and overstate the
amount of free space on the filesystem.

Detailed mount information is maintained in the /etc/mnttab file on the local host. Along with
host (or device) names and mount points, mnttab lists the mount options used on the
filesystem. mnttab shows the current state of the system, while /etc/vfstab only shows the
filesystems to be mounted "by default." Invoking mount with no options prints the contents of
mnttab ; supplying the -p option produces a listing that is suitable for inclusion in the
/etc/vfstab file:

% mount
/proc on /proc read/write/setuid on Wed Jul 26 01:33:02 2000
/ on /dev/dsk/c0t0d0s0 read/write/setuid/largefiles on Wed Jul 26 01:33:02
2000
/usr on /dev/dsk/c0t0d0s6 read/write/setuid/largefiles on Wed Jul 26
01:33:02 2000
/dev/fd on fd read/write/setuid on Wed Jul 26 01:33:02 2000
/export/home on /dev/dsk/c0t0d0s7 setuid/read/write/largefiles on Wed Jul
26 01:33:04 2000
/tmp on swap read/write on Wed Jul 26 01:33:04 2000
/home/labiaga on berlin:/export/home11/labiaga intr/nosuid/noquota/remote
on Thu Jul 27 17:39:59 2000
/mnt on paris:/export/home/rome read/write/remote on Thu Jul 27 17:41:07
2000

% mount -p
/proc - /proc proc - no rw,suid
/dev/dsk/c0t0d0s0 - / ufs - no rw,suid,largefiles
/dev/dsk/c0t0d0s6 - /usr ufs - no rw,suid,largefiles
fd - /dev/fd fd - no rw,suid
/dev/dsk/c0t0d0s7 - /export/home ufs - no suid,rw,largefiles
swap - /tmp tmpfs - no rw
berlin:/export/home11/labiaga - /home/labiaga nfs - no intr,nosuid,noquota
paris:/export/home/rome - /mnt nfs - no rw

Although you can take the output of the mount -p command and include the NFS mounts in
the client's /etc/vfstab file, it is not recommended. Chapter 9 describes the many reasons why
dynamic mounts are preferred. However, if static cross-mounting is required, use the
background (bg) option to avoid deadlock during server reboots when two servers cross-
mount filesystems from each other and reboot at the same time.

14.2 NFS statistics

The client- and server-side implementations of NFS compile per-call statistics of NFS service
usage at both the RPC and application layers. nfsstat -c displays the client-side statistics while
nfsstat -s shows the server tallies. With no arguments, nfsstat prints out both sets of statistics:

% nfsstat -s
Server rpc:
Connection oriented:
calls badcalls nullrecv badlen xdrcall dupchecks
10733943 0 0 0 0 1935861

Managing NFS and NIS

299

dupreqs
0
Connectionless:
calls badcalls nullrecv badlen xdrcall dupchecks
136499 0 0 0 0 0
dupreqs
0

Server nfs:
calls badcalls
10870161 14
Version 2: (1716 calls)
null getattr setattr root lookup readlink
48 2% 0 0% 0 0% 0 0% 1537 89% 13 0%
read wrcache write create remove rename
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
link symlink mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0% 111 6% 7 0%
Version 3: (10856042 calls)
null getattr setattr lookup access readlink
136447 1% 4245200 39% 95412 0% 1430880 13% 2436623 22% 74093 0%
read write create mkdir symlink mknod
376522 3% 277812 2% 165838 1% 25497 0% 24480 0% 0 0%
remove rmdir rename link readdir readdirplus
359460 3% 33293 0% 8211 0% 69484 0% 69898 0% 876367 8%
fsstat fsinfo pathconf commit
1579 0% 7698 0% 4253 0% 136995 1%
Server nfs_acl:
Version 2: (2357 calls)
null getacl setacl getattr access
0 0% 5 0% 0 0% 2170 92% 182 7%
Version 3: (10046 calls)
null getacl setacl
0 0% 10039 99% 7 0%

The server-side RPC fields indicate if there are problems removing the packets from the NFS
service end point. The kernel reports statistics on connection-oriented RPC and
connectionless RPC separately. The fields detail each kind of problem:

calls

The NFS calls value represents the total number of NFS Version 2, NFS Version 3,
NFS ACL Version 2 and NFS ACL Version 3 RPC calls made to this server from all
clients. The RPC calls value represents the total number of NFS, NFS ACL, and NLM
RPC calls made to this server from all clients. RPC calls made for other services, such
as NIS, are not included in this count.

badcalls

These are RPC requests that were rejected out of hand by the server's RPC
mechanism, before the request was passed to the NFS service routines in the kernel.
An RPC call will be rejected if there is an authentication failure, where the calling
client does not present valid credentials.

Managing NFS and NIS

300

nullrecv

Not used in Solaris. Its value is always 0.

badlen/xdrcall

The RPC request received by the server was too short (badlen) or the XDR headers in
the packet are malformed (xdrcall). Most likely this is due to a malfunctioning client.
It is rare, but possible, that the packet could have been truncated or damaged by a
network problem. On a local area network, it's rare to have XDR headers damaged,
but running NFS over a wide-area network could result in malformed requests. We'll
look at ways of detecting and correcting packet damage on wide-area networks in
Section 18.4.

dupchecks/dupreqs

The dupchecksfield indicates the number of RPC calls that were looked up in the
duplicate request cache. The dupreqs field indicates the number of RPC calls that were
actually found to be duplicates. Duplicate requests occur as a result of client
retransmissions. A large number of dupreqs usually indicates that the server is not
replying fast enough to its clients. Idempotent requests can be replayed without ill
effects, therefore not all RPCs have to be looked up on the duplicate request cache.
This explains why the dupchecks field does not match the calls field.

The statistics for each NFS version are reported independently, showing the total number of
NFS calls made to this server using each version of the protocol. A version-specific
breakdown by procedure of the calls handled is also provided. Each of the call types
corresponds to a procedure within the NFS RPC and NFS_ACL RPC services.

The null procedure is included in every RPC program for pinging the RPC server. The null
procedure returns no value, but a successful return from a call to null ensures that the network
is operational and that the server host is alive. rpcinfo calls the null procedure to check RPC
server health. The automounter (see Chapter 9) calls the null procedure of all NFS servers in
parallel when multiple machines are listed for a single mount point. The automounter and
rpcinfo should account for the total null calls reported by nfsstat.

Client-side RPC statistics include the number of calls of each type made to all servers, while
the client NFS statistics indicate how successful the client machine is in reaching NFS
servers:

% nfsstat -c
Client rpc:
Connection oriented:
calls badcalls badxids timeouts newcreds badverfs
1753584 1412 18 64 0 0
timers cantconn nomem interrupts
0 1317 0 18
Connectionless:
calls badcalls retrans badxids timeouts newcreds
12443 41 334 80 166 0
badverfs timers nomem cantsend
0 4321 0 206

Managing NFS and NIS

301

Client nfs:
calls badcalls clgets cltoomany
1661217 23 1661217 3521
Version 2: (234258 calls)
null getattr setattr root lookup readlink
0 0% 37 0% 0 0% 0 0% 184504 78% 811 0%
read wrcache write create remove rename
49 0% 0 0% 24301 10% 3 0% 2 0% 0 0%
link symlink mkdir rmdir readdir statfs
0 0% 0 0% 12 0% 12 0% 24500 10% 27 0%
Version 3: (1011525 calls)
null getattr setattr lookup access readlink
0 0% 417691 41% 14598 1% 223609 22% 47438 4% 695 0%
read write create mkdir symlink mknod
56347 5% 221334 21% 1565 0% 106 0% 48 0% 0 0%
remove rmdir rename link readdir readdirplus
807 0% 14 0% 676 0% 24 0% 475 0% 5204 0%
fsstat fsinfo pathconf commit
8 0% 10612 1% 95 0% 10179 1%

Client nfs_acl:
Version 2: (411477 calls)
null getacl setacl getattr access
0 0% 181399 44% 0 0% 185858 45% 44220 10%
Version 3: (3957 calls)
null getacl setacl
0 0% 3957 100% 0 0%

In addition to the total number of NFS calls made and the number of rejected NFS calls
(badcalls), the client-side statistics indicate if NFS calls are being delayed due to a lack of
client RPC handles. Client RPC handles are opaque pointers used by the kernel to hold server
connection information. In SunOS 4.x, the number of client handles was fixed, causing the
NFS call to block until client handles became available. In Solaris, client handles are allocated
dynamically. The kernel maintains a cache of up to 16 client handles, which are reused to
speed up communication with the server. The clgets count indicates the number of times a
client handle has been requested. If the NFS call cannot find an unused client handle in the
cache, it will not block until one frees up. Instead, it will create a brand new client handle and
proceed. This count is reflected by cltoomany. The client handle is destroyed when the reply
to the NFS call arrives. This count is of little use to system administrators since nothing can
be done to increase the cache size and reduce the number of misses.

Included in the client RPC statistics are counts for various failures experienced while trying to
send NFS requests to a server:

calls

Total number of calls made to all NFS servers.

badcalls

Number of RPC calls that returned an error. The two most common RPC failures are
timeouts and interruptions, both of which increment the badcalls counter. The
connection-oriented RPC statistics also increment the interrupts counter. There is no
equivalent counter for connectionless RPC statistics. If a server reply is not received

Managing NFS and NIS

302

within the RPC timeout period, an RPC error occurs. If the RPC call is interrupted, as
it may be if a filesystem is mounted with the intr option, then an RPC interrupt code is
returned to the caller. nfsstat also reports the badcalls count in the NFS statistics. NFS
call failures do not include RPC timeouts or interruptions, but do include other RPC
failures such as authentication errors (which will be counted in both the NFS and RPC
level statistics).

badxids

The number of bad XIDs. The XID in an NFS request is a serial number that uniquely
identifies the request. When a request is retransmitted, it retains the same XID through
the entire timeout and retransmission cycle. With the Solaris multithreaded kernel, it is
possible for the NFS client to have several RPC requests outstanding at any time, to
any number of NFS servers. When a response is received from an NFS server, the
client matches the XID in the response to an RPC call in progress. If an XID is seen
for which there is no active RPC call — because the client already received a response
for that XID — then the client increments badxid. A high badxid count, therefore,
indicates that the server is receiving some retransmitted requests, but is taking a long
time to reply to all NFS requests. This scenario is explored in Section 18.1.

timeouts

Number of calls that timed out waiting for a server's response. For hard-mounted
filesystems, calls that time out are retransmitted, with a new timeout period that may
be longer than the previous one. However, calls made on soft-mounted filesystems
may eventually fail if the retransmission count is exceeded, so that the call counts
obey the relationship:

timeout + badcalls >= retrans

The final retransmission of a request on a soft-mounted filesystem increments badcalls (as
previously explained). For example, if a filesystem is mounted with retrans=5, the client
reissues the same request five times before noting an RPC failure. All five requests are
counted in timeout, since no replies are received. Of the failed attempts, four are counted in
the retrans statistic and the last shows up in badcalls.

newcreds

Number of times client authentication information had to be refreshed. This statistic
only applies if a secure RPC mechanism has been integrated with the NFS service.

badverfs

Number of times server replies could not be authenticated. The number of times the
client could not guarantee that the server was who it says it was. These are likely due
to packet retransmissions more than security breaches, as explained later in this
section.

Managing NFS and NIS

303

timers

Number of times the starting RPC call timeout value was greater than or equal to the
minimum specified timeout value for the call. Solaris attempts to dynamically tune the
initial timeout based on the history of calls to the specific server. If the server has been
sluggish in its reponse to this type of RPC call, the timeout will be greater than if the
server had been replying normally. It makes sense to wait longer before retransmitting
for the first time, since history indicates that this server is slow to reply. Most client
implementations use an exponential back-off strategy that doubles or quadruples the
timeout after each retransmission up to an implementation-specific limit.

cantconn

Number of times a connection-oriented RPC call failed due to a failure to establish a
connection to the server. The reasons why connections cannot be created are varied;
one example is the server may not be running the nfsd daemon.

nomem

Number of times a call failed due to lack of resources. The host is low in memory and
cannot allocate enough temporary memory to handle the request.

interrupts

Number of times a connection-oriented RPC call was interrupted by a signal before
completing. This counter applies to connection-oriented RPC calls only. Interrupted
connection and connectionless RPC calls also increment badcalls.

retrans

Number of calls that were retransmitted because no response was received from the
NFS server within the timeout period. This is only reported for RPC over
connectionless transports. An NFS client that is experiencing poor server response will
have a large number of retransmitted calls.

cantsend

Number of times a request could not be sent. This counter is incremented when
network plumbing problems occur. This will mostly occur when no memory is
available to allocate buffers in the various network layer modules, or the request is
interrupted while the client is waiting to queue the request downstream. The nomem
and interrupts counters report statistics encountered in the RPC software layer, while
the cantsend counter reports statistics gathered in the kernel TLI layer.

The statistics shown by nfsstat are cumulative from the time the machine was booted, or the
last time they were zeroed using nfsstat -z:

nfsstat -z
Resets all counters.

nfsstat -sz

Managing NFS and NIS

304

Zeros server-side RPC and NFS statistics.

nfsstat -cz
Zeros client-side RPC and NFS statistics.

nfsstat -crz
Zeros client-side RPC statistics only.

Only the superuser can reset the counters.

nfsstat provides a very coarse look at NFS activity and is limited in its usefulness for
resolving performance problems. Server statistics are collected for all clients, while in many
cases it is important to know the distribution of calls from each client. Similarly, client-side
statistics are aggregated for all NFS servers.

However, you can still glean useful information from nfsstat. Consider the case where a client
reports a high number of bad verifiers. The high badverfs count is most likely an indication
that the client is having to retransmit its secure RPC requests. As explained in Section 12.1,
every secure RPC call has a unique credential and verifier with a unique timestamp (in the
case of AUTH_DES) or a unique sequence number (in the case of RPCSEC_GSS). The client
expects the server to include this verifier (or some form of it) in its reply, so that the client can
verify that it is indeed obtaining the reply from the server it called.

Consider the scenario where the client makes a secure RPC call using AUTH_DES, using
timestamp T1 to generate its verifier. If no reply is received within the timeout period, the
client retransmits the request, using timestamp T1+delta to generate its verifier (bumping up
the retrans count). In the meantime, the server replies to the original request using timestamp
T1 to generate its verifier:

RPC call (T1) --->
 ** time out **
RPC call (retry: T1+delta) --->
 <--- Server reply to first RPC call (T1
verifier)

The reply to the client's original request will cause the verifier check to fail because the client
now expects T1+delta in the verifier, not T1. This consequently bumps up the badverf count.
Fortunately, the Solaris client will wait for more replies to its retransmissions and, if the reply
passes the verifier test, an NFS authentication error will be avoided. Bad verifiers are not a
big problem, unless the count gets too high, especially when the system starts experiencing
NFS authentication errors. Increasing the NFS timeo on the mount or automounter map may
help alleviate this problem. Note also that this is less of a problem with TCP than UDP.
Analysis of situations such as this will be the focus of Section 16.1, Chapter 17, and
Chapter 18.

For completeness, we should mention that verifier failures can also be caused when the
security content expires before the response is received. This is rare but possible. It usually
occurs when you have a network partition that is longer than the lifetime of the security
context. Another cause might be a significant time skew between the client and server, as well
as a router with a ghost packet stored, that fires after being delayed for a very long time. Note
that this is not a problem with TCP.

Managing NFS and NIS

305

14.2.1 I/O statistics

Solaris' iostat utility has been extended to report I/O statistics on NFS mounted filesystems, in
addition to its traditional reports on disk, tape I/O, terminal activity, and CPU utilization. The
iostat utility helps you measure and monitor performance by providing disk and network I/O
throughput, utilization, queue lengths and response time.

The -xn directives instruct iostat to report extended disk statistics in tabular form, as well as
display the names of the devices in descriptive format (for example, server:/export/path). The
following example shows the output of iostat -xn 20 during NFS activity on the client, while
it concurrently reads from two separate NFS filesystems. The server assisi is connected to the
same hub to which the client is connected, while the test server paris is on the other side of
the hub and other side of the building network switches. The two servers are identical; they
have the same memory, CPU, and OS configuration:

% iostat -xn 20
 ...
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.0 0.1 0.0 0.4 0.0 0.0 0.0 3.6 0 0 c0t0d0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 fd0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
rome:vold(pid239)
 9.7 0.0 310.4 0.0 0.0 3.3 0.2 336.7 0 100 paris:/export
 34.1 0.0 1092.4 0.0 0.0 3.2 0.2 93.2 0 99 assisi:/export

The iostat utility iteratively reports the disk statistics every 20 seconds and calculates its
statistics based on a delta from the previous values. The first set of statistics is usually
uninteresting, since it reports the cumulative values since boot time. You should focus your
attention on the following set of values reporting the current disk and network activity. Note
that the previous example does not show the cumulative statistics. The output shown
represents the second set of values, which report the I/O statistics within the last 20 seconds.
The first two lines represent the header, then every disk and NFS filesystem on the system is
presented in separate lines. The first line reports statistics for the local hard disk c0t0d0. The
second line reports statistics for the local floppy disk fd0. The third line reports statistics for
the volume manager vold. In Solaris, the volume manager is implemented as an NFS user-
level server. The fourth and fifth lines report statistics for the NFS filesystems mounted on
this host. Included in the statistics are various values that will help you analyze the
performance of the NFS activity:

r/s

Represents the number of read operations per second during the time interval
specified. For NFS filesystems, this value represents the number of times the remote
server was called to read data from a file, or read the contents of a directory. This
quantity accounts for the number of read, readdir, and readdir+ RPCs performed
during this interval. In the previous example, the client contacted the server assisi an
average of 34.1 times per second to either read the contents of a file, or list the
contents of directories.

Managing NFS and NIS

306

w/s

Represents the number of write operations per second during the time interval
specified. For NFS filesystems, this value represents the number of times the remote
server was called to write data to a file. It does not include directory operations such as
mkdir, rmdir, etc. This quantity accounts for the number of write RPCs performed
during this interval.

kr/s

Represents the number of kilobytes per second read during this interval. In the
preceding example, the client is reading data at an average of 1,092.4 KB/s from the
NFS server assisi. The optional -M directive would instruct iostat to display data
throughput in MB/sec instead of KB/sec.

kw/s

Represents the number of kilobytes written per second during this interval. The
optional -M directive would instruct iostat to display data throughput in MB/sec.

wait

Reports the average number of requests waiting to be processed. For NFS filesystems,
this value gets incremented when a request is placed on the asynchronous request
queue, and gets decreased when the request is taken off the queue and handed off to an
NFS async thread to perform the RPC call. The length of the wait queue indicates the
number of requests waiting to be sent to the NFS server.

actv

Reports the number of requests actively being processed (i.e., the length of the run
queue). For NFS filesystems, this number represents the number of active NFS async
threads waiting for the NFS server to respond (i.e., the number of outstanding requests
being serviced by the NFS server). In the preceding example, the client has on average
3.2 outstanding RPCs pending for a reply by the server assisi at all times during the
interval specified. This number is controlled by the maximum number of NFS async
threads configured on the system. Chapter 18 will explain this in more detail.

wsvc_t

Reports the time spent in the wait queue in milliseconds. For NFS filesystems, this is
the time the request waited before it could be sent out to the server.

asvc_t

Reports the time spent in the run queue in milliseconds. For NFS filesystems, this
represents the average amount of time the client waits for the reply to its RPC
requests, after they have been sent to the NFS server. In the preceding example, the
server assisi takes on average 93.2 milliseconds to reply to the client's requests, where
the server paris takes 336.7 milliseconds. Recall that the server assisi and the client

Managing NFS and NIS

307

are physically connected to the same hub, whereas packets to and from the server
paris have to traverse multiple switches to communicate with the client. Analysis of
nfsstat -s on paris indicated a large amount of NFS traffic directed at this server at the
same time. This, added to server load, accounts for the slow response time.

%w

Reports the percentage of time that transactions are present in the wait queue ready to
be processed. A large number for an NFS filesytem does not necessarily indicate a
problem, given that there are multiple NFS async threads that perform the work.

%b

Reports the percentage of time that actv is non-zero (at least one request is being
processsed). For NFS filesystems, it represents the activity level of the server mount
point. 100% busy does not indicate a problem since the NFS server has multiple nfsd
threads that can handle concurrent RPC requests. It simply indicates that the client has
had requests continuously processed by the server during the measurement time.

14.3 snoop

Network analyzers are ultimately the most useful tools available when it comes to debugging
NFS problems. The snoop network analyzer bundled with Solaris was introduced in Section
13.5. This section presents an example of how to use snoop to resolve NFS-related problems.

Consider the case where the NFS client rome attempts to access the contents of the
filesystems exported by the server zeus through the /net automounter path:

rome% ls -la /net/zeus/export
total 5
dr-xr-xr-x 3 root root 3 Jul 31 22:51 .
dr-xr-xr-x 2 root root 2 Jul 31 22:40 ..
drwxr-xr-x 3 root other 512 Jul 28 16:48 eng
dr-xr-xr-x 1 root root 1 Jul 31 22:51 home
rome% ls /net/zeus/export/home
/net/zeus/export/home: Permission denied

The client is not able to open the contents of the directory /net/zeus/export/home, although the
directory gives read and execute permissions to all users:

rome% df -k /net/zeus/export/home
filesystem kbytes used avail capacity Mounted on
-hosts 0 0 0 0%
/net/zeus/export/home

The df command shows the -hosts automap mounted on the path of interest. This means that
the NFS filesystem rome:/export/home has not yet been mounted. To investigate the problem
further, snoop is invoked while the problematic ls command is rerun:

Managing NFS and NIS

308

 rome# snoop -i /tmp/snoop.cap rome zeus
 1 0.00000 rome -> zeus PORTMAP C GETPORT prog=100003 (NFS)
vers=3
proto=UDP
 2 0.00314 zeus -> rome PORTMAP R GETPORT port=2049
 3 0.00019 rome -> zeus NFS C NULL3
 4 0.00110 zeus -> rome NFS R NULL3
 5 0.00124 rome -> zeus PORTMAP C GETPORT prog=100005 (MOUNT)
vers=1
proto=TCP
 6 0.00283 zeus -> rome PORTMAP R GETPORT port=33168
 7 0.00094 rome -> zeus TCP D=33168 S=49659 Syn Seq=1331963017
Len=0
Win=24820 Options=<nop,nop,sackOK,mss 1460>
 8 0.00142 zeus -> rome TCP D=49659 S=33168 Syn Ack=1331963018
Seq=4025012052 Len=0 Win=24820 Options=<nop,nop,sackOK,mss 1460>
 9 0.00003 rome -> zeus TCP D=33168 S=49659 Ack=4025012053
Seq=1331963018 Len=0 Win=24820
 10 0.00024 rome -> zeus MOUNT1 C Get export list
 11 0.00073 zeus -> rome TCP D=49659 S=33168 Ack=1331963062
Seq=4025012053 Len=0 Win=24776
 12 0.00602 zeus -> rome MOUNT1 R Get export list 2 entries
 13 0.00003 rome -> zeus TCP D=33168 S=49659 Ack=4025012173
Seq=1331963062 Len=0 Win=24820
 14 0.00026 rome -> zeus TCP D=33168 S=49659 Fin Ack=4025012173
Seq=1331963062 Len=0 Win=24820
 15 0.00065 zeus -> rome TCP D=49659 S=33168 Ack=1331963063
Seq=4025012173 Len=0 Win=24820
 16 0.00079 zeus -> rome TCP D=49659 S=33168 Fin Ack=1331963063
Seq=4025012173 Len=0 Win=24820
 17 0.00004 rome -> zeus TCP D=33168 S=49659 Ack=4025012174
Seq=1331963063 Len=0 Win=24820
 18 0.00058 rome -> zeus PORTMAP C GETPORT prog=100005 (MOUNT)
vers=3
proto=UDP
 19 0.00412 zeus -> rome PORTMAP R GETPORT port=34582
 20 0.00018 rome -> zeus MOUNT3 C Null
 21 0.00134 zeus -> rome MOUNT3 R Null
 22 0.00056 rome -> zeus MOUNT3 C Mount /export/home
 23 0.23112 zeus -> rome MOUNT3 R Mount Permission denied

Packet 1 shows the client rome requesting the port number of the NFS service (RPC program
number 100003, Version 3, over the UDP protocol) from the server's rpcbind (portmapper).
Packet 2 shows the server's reply indicating nfsd is running on port 2049. Packet 3 shows the
automounter's call to the server's nfsd daemon to verify that it is indeed running. The server's
successful reply is shown in packet 4. Packet 5 shows the client's request for the port number
for RPC program number 100005, Version 1, over TCP (the RPC MOUNT program). The
server replies with packet 6 with port=33168. Packets 7 through 9 are TCP hand shaking
between our NFS client and the server's mountd. Packet 10 shows the client's call to the
server's mountd daemon (which implements the MOUNT program) currently running on port
33168. The client is requesting the list of exported entries. The server replies with packet 12
including the names of the two entries exported. Packets 18 and 19 are similar to packets 5
and 6, except that this time the client is asking for the port number of the MOUNT program
version 3 running over UDP. Packet 20 and 21 show the client verifying that version 3 of the
MOUNT service is up and running on the server. Finally, the client issues the Mount
/export/home request to the server in packet 22, requesting the filehandle of the /export/home

Managing NFS and NIS

309

path. The server's mountd daemon checks its export list, and determines that the host rome is
not present in it and replies to the client with a "Permission Denied" error in packet 23.

The analysis indicates that the "Permission Denied" error returned to the ls command came
from the MOUNT request made to the server, not from problems with directory mode bits on
the client. Having gathered this information, we study the exported list on the server and
quickly notice that the filesystem /export/home is exported only to the host verona:

rome$ showmount -e zeus
export list for zeus:
/export/eng (everyone)
/export/home verona

We could have obtained the same information by inspecting the contents of packet 12, which
contains the export list requested during the transaction:

rome# snoop -i /tmp/cap -v -p 10,12
...
 Packet 10 arrived at 3:32:47.73
RPC: ----- SUN RPC Header -----
RPC:
RPC: Record Mark: last fragment, length = 40
RPC: Transaction id = 965581102
RPC: Type = 0 (Call)
RPC: RPC version = 2
RPC: Program = 100005 (MOUNT), version = 1, procedure = 5
RPC: Credentials: Flavor = 0 (None), len = 0 bytes
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:
MOUNT:----- NFS MOUNT -----
MOUNT:
MOUNT:Proc = 5 (Return export list)
MOUNT:
...
 Packet 12 arrived at 3:32:47.74
RPC: ----- SUN RPC Header -----
RPC:
RPC: Record Mark: last fragment, length = 92
RPC: Transaction id = 965581102
RPC: Type = 1 (Reply)
RPC: This is a reply to frame 10
RPC: Status = 0 (Accepted)
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC: Accept status = 0 (Success)
RPC:
MOUNT:----- NFS MOUNT -----
MOUNT:
MOUNT:Proc = 5 (Return export list)
MOUNT:Directory = /export/eng
MOUNT:Directory = /export/home
MOUNT: Group = verona
MOUNT:

For simplicity, only the RPC and NFS Mount portions of the packets are shown. Packet 10 is
the request for the export list, packet 12 is the reply. Notice that every RPC packet contains
the transaction ID (XID), the message type (call or reply), the status of the call, and the
credentials. Notice that the RPC header includes the string "This is a reply to frame 10". This

Managing NFS and NIS

310

is not part of the network packet. Snoop keeps track of the XIDs it has processed and attempts
to match calls with replies and retransmissions. This feature comes in very handy during
debugging. The Mount portion of packet 12 shows the list of directories exported and the
group of hosts to which they are exported. In this case, we can see that /export/home was only
exported with access rights to the host verona. The problem can be fixed by adding the host
rome to the export list on the server.

14.3.1 Useful filters

Information is most useful when it can be organized into categories and noise can be filtered
and ignored. snoop provides powerful capture filters that allow you to collect only the kind of
information you are interested in. The following list of snoop filters is useful when capturing
NFS-related traffic. snoop provides very nice NFS and RPC level debugging features. The
logical and, or, and not operators can be used on filters to build more powerful composite
filters. You are encouraged to review the snoop documentation to learn more about the
multiple filters available.

host

Captures all traffic directed to or originating from the host specified. The following
example captures all traffic destined to or coming from the host rome :

snoop host rome

Note that the host keyword is not required when the specified hostname does not
conflict with the name of another snoop primitive. The previous snoop host rome
command could have been invoked without the host keyword, and it would have
generated the same output.

port nfs

Captures NFS traffic regardless of the version. Note that MOUNT, NLM and
Portmapper traffic is not captured. Useful once the mount has already occurred. The
following two examples capture all NFS protocol traffic involving the host rome. A
logical AND operation is implied by the juxtaposition of two boolean expressions. The
two filters are equivalent:

snoop host rome port nfs
snoop host rome and port nfs

port 111

Captures rpcbind and portmapper traffic. Useful during filesystem mount negotiation.
This example captures all rpcbind traffic on the network:

snoop port 111
rpc prog [,vers [,proc]]

Use rpc 100005 to capture MOUNT protocol related traffic. Useful during the mount
process. The following example displays all MOUNT protocol traffic between the
hosts zeus and rome:

Managing NFS and NIS

311

snoop rpc 100005 host zeus rome

Use rpc 100021 to capture NLM traffic. Useful for tracking lock manager related
traffic. The following example captures all NFS Version 3 Network Lock Manager
traffic between hosts zeus and rome. Note that NLM v4 is used for NFS Version 3:

snoop host zeus host rome rpc 100021,4

14.4 Publicly available diagnostics

Only a handful of publicly available NFS diagnostic tools exist at the time of this writing. The
ethereal/tethereal network analyzer introduced in Chapter 13 provides detailed information
for diagnosis of NFS problems at the protocol level. The NFSWATCH utility is mainly used to
monitor NFS traffic over the network. The nfsbug and SATAN utilities are used to report
potential security problems on NFS servers.

14.4.1 ethereal / tethereal

As described in Chapter 13, ethereal/tethereal can be used to capture network traffic and
decode it to a great level of detail. Since ethereal/tethereal can decode NFS Version 2 and
NFS Version 3 packets, it can be used to debug NFS communication, permissions,
performance, and data corruption problems. It is very similar in functionality to snoop. It
provides powerful filtering and is available for a diverse set of platforms where snoop is not.

Consider the example presented in the previous snoop section, where the NFS client rome
attempts to access the contents of the filesystems exported by the server zeus through the /net
automounter path:

rome% ls -la /net/zeus/export
total 5
dr-xr-xr-x 3 root root 3 Jul 31 22:51 .
dr-xr-xr-x 2 root root 2 Jul 31 22:40 ..
drwxr-xr-x 3 root other 512 Jul 28 16:48 eng
dr-xr-xr-x 1 root root 1 Jul 31 22:51 home
rome% ls /net/zeus/export/home
/net/zeus/export/home: Permission denied

The network traffic is captured into the /tmp/ethereal.cap file concurrently with the operation.
Note that only traffic between rome and zeus is captured:

rome# tethereal -w /tmp/ethereal.cap host rome and host zeus
46 ^C
rome# tethereal -r /tmp/ethereal.cap
 1 0.000000 rome -> zeus PORTMAP V2 GETPORT Call XID 0x398fd3ea
 2 0.003138 zeus -> rome PORTMAP V2 GETPORT Reply XID
0x398fd3ea
 3 0.003328 rome -> zeus NFS V3 NULL Call XID 0x398fd3eb
 4 0.004613 zeus -> rome NFS V3 NULL Reply XID 0x398fd3eb
 5 0.005823 rome -> zeus PORTMAP V2 GETPORT Call XID 0x398fca35
 6 0.008871 zeus -> rome PORTMAP V2 GETPORT Reply XID
0x398fca35
 7 0.009823 rome -> zeus TCP 49699 > 33168 [SYN] Seq=1251769928
Ack=0
Win=24820 Len=0

Managing NFS and NIS

312

 8 0.011067 zeus -> rome TCP 33168 > 49699 [SYN, ACK]
Seq=3939269366
Ack=1251769929 Win=24820 Len=0
 9 0.011100 rome -> zeus TCP 49699 > 33168 [ACK] Seq=1251769929
Ack=3939269367 Win=24820 Len=0
 10 0.011339 rome -> zeus MOUNT V1 EXPORT Call XID 0x398f20d9
 11 0.012102 zeus -> rome TCP 33168 > 49699 [ACK] Seq=3939269367
Ack=1251769973 Win=24776 Len=0
 12 0.018302 zeus -> rome MOUNT V1 EXPORT Reply XID 0x398f20d9
 13 0.018332 rome -> zeus TCP 49699 > 33168 [ACK] Seq=1251769973
Ack=3939269463 Win=24820 Len=0
 14 0.018588 rome -> zeus TCP 49699 > 33168 [FIN, ACK]
Seq=1251769973
Ack=3939269463 Win=24820 Len=0
 15 0.019245 zeus -> rome TCP 33168 > 49699 [ACK] Seq=3939269463
Ack=1251769974 Win=24820 Len=0
 16 0.020104 zeus -> rome TCP 33168 > 49699 [FIN, ACK]
Seq=3939269463
Ack=1251769974 Win=24820 Len=0
 17 0.020143 rome -> zeus TCP 49699 > 33168 [ACK]
Seq=1251769974
Ack=3939269464 Win=24820 Len=0
 18 0.020661 rome -> zeus PORTMAP V2 GETPORT Call XID
0x398f0440
 19 0.024550 zeus -> rome PORTMAP V2 GETPORT Reply XID
0x398f0440
 20 0.024731 rome -> zeus MOUNT V3 NULL Call XID 0x398f0441
 21 0.026323 zeus -> rome MOUNT V3 NULL Reply XID 0x398f0441
 22 0.026881 rome -> zeus MOUNT V3 MNT Call XID 0x398f0442
 23 0.179757 zeus -> rome MOUNT V3 MNT Reply XID 0x398f0442

The explanation given in the snoop section describing each packet applies to the tethereal
capture file as well. The main difference is that listing the XID next to the operation type is
less intuitive than expanding the arguments to the call as performed by snoop. We suspect this
will be addressed in the future. You can see that the reason for failure is not obvious by just
looking at this output format.

Fortunately, tethereal has extensive filtering capabilities and we can request all mount
operations that failed. Using the mount.status filter, we determine that packet 23 returned a
failure. We can then print the protocol tree for packet 23 alone and verify that indeed it failed
with ERR_ACCESS:

rome# tethereal -r /tmp/ethereal.cap -R "mount.status != 0"
 23 0.179757 zeus -> rome MOUNT V3 MNT Reply XID 0x398f0442
rome# tethereal -r /tmp/ethereal.cap -V -R "frame.number == 23"
...
Remote Procedure Call
 XID: 0x398f0442 (965674050)
 Message Type: Reply (1)
 Program: MOUNT (100005)
 Program Version: 3
 Procedure: MNT (1)
 Reply State: accepted (0)
 Verifier
 Flavor: AUTH_NULL (0)
 Length: 0
 Accept State: RPC executed successfully (0)
Mount Service
 Program Version: 3

Managing NFS and NIS

313

 Procedure: MNT (1)
 Status: ERR_ACCESS (13)

For simplicity, only the RPC and Mount portions of the packet are shown. The RPC header
decodes the transaction ID, message type indicating this to be a reply, program, and version
number as well as the procedure invoked. The credential verifier is also decoded indicating
that the server used no verifier in its reply (since the call did not specify it to begin with). A
nice feature of snoop, that tethereal does not yet have, is the ability to indicate the frame for
which this is a reply.

As expected, the status field of the mount service reply reports an error. Packet 12 contains
the results of the export information request:

rome# tethereal -r /tmp/ethereal.cap -V -R "frame.number == 12"
...
Remote Procedure Call
 Last Fragment: Yes
 Fragment Length: 92
 XID: 0x398f20d9 (965681369)
 Message Type: Reply (1)
 Program: MOUNT (100005)
 Program Version: 1
 Procedure: EXPORT (5)
 Reply State: accepted (0)
 Verifier
 Flavor: AUTH_NULL (0)
 Length: 0
 Accept State: RPC executed successfully (0)
Mount Service
 Program Version: 1
 Procedure: EXPORT (5)
 Data (68 bytes)

 0 0000 0001 0000 000b 2f65 7870 6f72 742f /export/
 10 656e 6700 0000 0000 0000 0001 0000 000c eng.............
 20 2f65 7870 6f72 742f 686f 6d65 0000 0001 /export/home....
 30 0000 0006 7665 726f 6e61 0000 0000 0000 verona......
 40 0000 0000

The Data field of the Mount packet shows a hex dump of the export list. The interpreted text
value is in the far right column. We can see how the export list is encoded into the packet as a
set of exported directories , each followed by the list of hosts (or group of hosts) that they give
access to.

14.4.2 Useful filters

Read filters help you remove the noise from a packet trace and let you see only the packets
that interest you. If a packet meets the requirements expressed in the read filter, then it is
printed. Read filters let you compare the fields within a protocol against a specific value,
compare fields against other fields, and check the existence of specified fields or protocols
altogether. One of the main strengths of tethereal is its powerful filters. You are encouraged
to learn more about them from the tethereal documentation. The following list includes some
of the read filters you are most likely to use when analyzing NFS-related traffic:

Managing NFS and NIS

314

nfs

Displays NFS traffic regardless of the version. Note that MOUNT, NLM, and
Portmapper traffic is not captured. Useful once the mount has already occurred. The
following example displays all NFS protocol traffic involving the host rome:

tethereal -R "nfs and ip.addr == rome"
nfs.status

Displays all replies to successful NFS calls when nfs.status == 0 or the replies to
unsuccessful NFS calls otherwise. The originating call can be obtained using the
rpc.xid filter. The following example displays all NFS failures:

tethereal -R "nfs.status != 0"
rpc

Displays all RPC traffic regardless of the program number. The following example
displays all RPC traffic on the wire:

tethereal -R "rpc"
rpc.xid

Displays the RPC call or reply matching a given Transaction ID. This is useful when
the call packet is available and the matching reply is needed, or viceversa. The
following example finds the RPC call and reply with transaction ID equal to
0x398f0441:

tethereal -R "rpc.xid == 0x398f0441"
tcp.port == 111 or udp.port == 111

Displays rpcbind and portmapper traffic. Useful during filesystem mount negotiation.
The following example displays all rpcbind traffic on the network:

tethereal -R "tcp.port == 111 or udp.port == 111"
rpc.program, rpc.programversion, rpc.procedure

Use rpc.program == 100005 to capture MOUNT protocol related traffic. Useful
during the mount process. The following example displays all MOUNT protocol
traffic between the hosts zeus and rome:

tethereal -R "rpc.program == 100005 and ip.addr == zeus \
and ip.addr ==
rome"

Use rpc.program == 100021 to capture NLM traffic. Useful for tracking lock
manager-related traffic. The following example displays all NFS Version 3 Network
Lock Manager traffic between hosts zeus and rome. Note that NLM v4 is used for
NFS Version 3:

tethereal -R "rpc.program == 100021 and rpc.programversion == 4 \
and ip.addr == rome and ip.addr == zeus"

Managing NFS and NIS

315

14.4.3 NFSWATCH

NFSWATCH was developed by David Curry of Purdue University in the late 1980s, with
some improvements to the basic framework provided by Jeff Mogul of Digital Equipment
Corporation (now Compaq). It is mainly used to monitor NFS activity on a given server, or
NFS activity on the local network. NFSWATCH gathers its data by monitoring the network
interface of the system where it is invoked.

NFSWATCH 4.3 is the most recent version at the time of this writing, and only supports NFS
Version 2 over UDP. You should be aware that at the time of this writing, a bug in the tool
causes NFS Version 3 traffic to the server to incorrectly increment the NFS Version 2
counters. This is due to the fact that the tool does not check the NFS version number of the
packet received.

Regardless of its current limitations, NFSWATCH is still a very useful tool whose main
features are worth mentioning:

1. The tool categorizes the incoming network traffic and continuously updates the
statistics on the display. You can also instruct the tool to create a more detailed log file
of the network traffic.

2. It allows you to log statistics for every NFS operation, for every exported filesystem,
for files for which you specify particular interest, or for NFS clients that access your
server.

3. It reports usage of NFS clients and users of the filesystems.
4. It can be run interactively or remotely (via rsh), or it can be scheduled to run from

cron.
5. Total runtime can be specified for unsupervised traffic monitoring.

NFSWATCH is available at ftp://gatekeeper.dec.com/pub/net/ip/nfs/nfswatch4.3.tar.gz. The
following example shows a sample log file of an NFSWATCH run on server zeus for a period
of five seconds:

NFSwatch log file
Packets from: all hosts
Packets to: zeus

begin

Date: Tue Aug 1 16:31:22 2000
Cycle Time: 5
Elapsed Time:

total packets network to host dropped

Interval Packets: 2371 2371 0
Total Packets: 2371 2371 0

packet counters int pct total

ND Read: 0 0% 0
ND Write: 0 0% 0
NFS Read: 166 7% 166
NFS Write: 346 15% 346
NFS Mount: 0 0% 0

Managing NFS and NIS

316

YP/NIS/NIS+: 0 0% 0
RPC Authorization: 0 0% 0
Other RPC Packets: 1844 78% 1844
TCP Packets: 2 0% 2
UDP Packets: 2358 99% 2358
ICMP Packets: 1 0% 1
Routing Control: 2 0% 2
Address Resolution: 10 0% 10
Reverse Addr Resol: 0 0% 0
Ethernet/FDDI Bdcst: 13 1% 13
Other Packets: 0 0% 0

nfs counters int pct total

/export/home: 512 100% 512
(0/0/5/0/12/0/154/0/
335/2/0/0/0/0/3/1/0/0)

file counters int pct total

nfs procs

 Procedure int pct total completed ave.resp var.resp
max.resp
 CREATE 2 0% 2
 GETATTR 0 0% 0
 GETROOT 0 0% 0
 LINK 0 0% 0
 LOOKUP 12 2% 12
 MKDIR 3 1% 3
 NULLPROC 0 0% 0
 READ 154 30% 154
 READDIR 0 0% 0
 READLINK 0 0% 0
 REMOVE 0 0% 0
 RENAME 0 0% 0
 RMDIR 1 0% 1
 SETATTR 5 1% 5
 STATFS 0 0% 0
 SYMLINK 0 0% 0
 WCACHE 0 0% 0
 WRITE 335 65% 335

The NFSWATCH log shows the distribution of NFS READ, NFS WRITE, NFS MOUNT,
NIS, and RPC AUTHORIZATION packets among others. The NFS counters section indicates
the total number NFS operations per filesystem exported (one in this case) during the interval.
The operation distribution denoted by (0/0/5/0/12/0/154/0/335/2/0/0/0/0/3/1/0/0) indicates
that the majority of the operations occurred in the middle of the interval. The packet counters
and nfs procs indicate that there were close to twice as many writes as reads. The low lookup
count leads us to believe that most writes occurred to the same file.

14.4.4 nfsbug

The nfsbug utility was written by Leendert van Doorn in the mid-1990s to test hosts for well-
known NFS problems and bugs. nfsbug is available at http://www.cs.vu.nl/~leendert. Use it to
identify (and consequently correct) the following problems:

Managing NFS and NIS

317

• Find worldwide exportable filesystems. This is a common occurrence in large
organizations with hundreds or thousands of NFS clients. System administrators
choose to export filesystems to all clients instead of grouping the hosts into netgroups
and exporting the filesystems only to the netgroups that really need access to the
filesystems.

• Determine the effectiveness of the export list.
• Determine if filesystems can be mounted through the portmapper.
• Attempt to guess filehandles and obtain access to filesystems not exported to the test

client.
• Exercise the system for well-known bugs.[1]

[1] According to Leendert's web page, the tool has not been updated in recent years, although he still plans to get to it at some
point.

14.4.5 SATAN

SATAN is a tool used to find well-known security holes in Unix systems. SATAN stands for
Security Administrator's Tool for Analyzing Networks. At the time of this writing, none of the
problems SATAN probes for are new. Each one has already been discussed in CERT bulletins
and each can be countered either by installing the appropriate patch or fixing a system
configuration flaw. SATAN is available at http://www.fish.com/satan.

SATAN was written by Dan Farmer and Wietse Venema and first released for general
availability in April of 1995. The tool is intended to help system administrators identify
several common network-related security problems, hopefully before someone else has a
chance to exploit them. The tool provides a description of the problem, explains the
consequences if no action is taken, and indicates how to correct the problem. Note that the
tool itself will not exploit the security hole. At the time of this writing, SATAN can identify
and fix the following problems related to NFS and NIS:

• NFS filesystems exported to arbitrary hosts
• NFS filesystems exported to unprivileged programs
• NFS filesystems exported via the portmapper
• NIS password file access from arbitrary hosts

An extensive discussion of SATAN and its features can be found in Martin Freiss' book titled
Protecting Networks with SATAN (O'Reilly & Associates).

14.5 Version 2 and Version 3 differences

NFS Version 2 and NFS Version 3 are entirely separate protocols and should be treated as
such. The two protocols define different over-the-wire operations. For example, a single over-
the-wire NFS Version 3 operation may correspond to several over-the-wire NFS Version 2
operations. Consider the case of a long list (ls -l) of an NFS-mounted directory that generates
a series of readdir/lookup/getattr NFS Version 2 calls. The same operation generates one or
more readdir+ NFS Version 3 calls instead.

In general, NFS Version 3 attempts to reduce the number of over-the-wire requests by placing
more information into each RPC. This makes NFS Version 3 more efficient under certain
circumstances but less under others. The important point here is to understand that it is not
possible to compare many of the NFS operations between the two protocols.

Managing NFS and NIS

318

For example, writing a several megabyte file over NFS Version 3 will generate far fewer RPC
write operations than the same file written over NFS Version 2. This is because NFS Version
3 writes generated by current Solaris clients are 32 KB in length.[2] In contrast, NFS Version 2
writes can only be up to 8 KB. You should be careful not to assume that NFS Version 2 writes
are faster only because nfsstat -c reports that the server handles more of them.

[2] The NFS Version 3 protocol does not impose a size limit on the write request. The fact that many NFSVersion 3 clients use 32 KB is an
implementation detail.

You may also notice that NFS Version 3 generates fewer lookup and getattr operations than
NFS Version 2. The reduction in lookups in NFS Version 3 is partly due to the use of
readdir+, which includes the filehandle of the directory entries along with the directory
names. The reduction of getattrs is mostly due to the fact that NFS Version 3 operations
include post-operation attributes in all replies.

14.6 NFS server logging

Solaris 8 introduces the new NFS Server Logging utility. This utility enables the system to log
file transfer operations between an NFS server and any of its clients. This utility was created
to provide logging facilities to sites that publish their archives via NFS within the intranet,
and via WebNFS over the Internet.

The NFS Server Logging utility provides the system administrator with the tools to track file
downloads and uploads, as well as directory modification operations on NFS exported
filesystems. Be careful not to confuse this functionality with UFS Logging.[3]

[3] UFS logging is the process of storing transactions (changes that make up a complete UFS operation) in a log before the transactions are applied to
the filesystem. Once a transaction is stored, it can be later applied to the filesystem. This prevents filesystems from becoming inconsistent, eliminating
the need to run fsck.

The NFS Server Logging utility is not intended to serve as a debugging tool that can be turned
on to peek at filesystem traffic during a short period of time and then be turned back off. NFS
Server Logging is most useful when it is enabled before the filesystem is shared for the first
time, and remains enabled the entire time the filesystem is exported. It needs to run
continuously in order to monitor all NFS filesystem activity on the server, otherwise,
important path mapping information may not be obtained. This is discussed in more detail in
Section 14.6.5.

This utility provides functionality different from that provided by the public domain tools
previously discussed. These tools generate records of individual RPC transactions, whereas
NFS Server Logging generates records of conceptual file operations. Network sniffer tools
like Ethereal and snoop report a file copy as a sequence of distinct NFS read operations of
certain length and offset performed by the client. In contrast, the NFS Server Logging utility
generates a single record specifying the total transfer size and the duration of the transfer. The
NFS Server Logging utility reports accesses at the conceptual level (file uploads or
downloads), where network sniffers report the details of the RPC and NFS operations.
Consequently, the logs generated by the NFS Server Logging utility are orders of magnitude
smaller and more manageable than sniffer output. The NFS Server logs can be useful to
determine the frequency with which files in the archives are accessed or to determine what
NFS clients have accessed the files. These logs can be used to manually or programmatically
track access to objects within the exported filesystem in the same way that FTP logs are used.

Managing NFS and NIS

319

As previously pointed out, the information recorded in the NFS log is not intended to serve as
a debugging tool. The network sniffer tools previously described are a better choice for that.

Consider the case where the server zeus exports a filesystem with NFS logging enabled. The
client rome then copies the file /net/zeus/export/foo.tar.Z to its local disk. The NFS Server
Logging utility records the access with a single record of the form:

Fri Jul 28 09:27:12 2000 0 rome 136663 /export/foo.tar.Z b _ o r 32721 nfs
0 *

This entry indicates that on Fri Jul 28 2000 at 09:27:12 in the morning, a file was downloaded
by the host rome. The file was 136663 bytes in length and was located on the server at
/export/foo.tar.Z. The file was downloaded by userID 32721 using nfs. The meaning of each
field is explained in detail later in this section.

In contrast, the snoop utility generates multiple transactions:

 1 0.00000 rome -> zeus NFS C LOOKUP3 FH=0222 foo.tar.Z
 2 0.00176 zeus -> rome NFS R LOOKUP3 OK FH=EEAB
 3 0.00026 rome -> zeus NFS C ACCESS3 FH=0222 (lookup)
 4 0.00125 zeus -> rome NFS R ACCESS3 OK (lookup)
 5 0.00018 rome -> zeus NFS_ACL C GETACL3 FH=EEAB mask=10
 6 0.00139 zeus -> rome NFS_ACL R GETACL3 OK
 7 0.00026 rome -> zeus NFS C ACCESS3 FH=EEAB (read)
 8 0.00119 zeus -> rome NFS R ACCESS3 OK (read)
 9 0.00091 rome -> zeus NFS C READ3 FH=EEAB at 0 for 32768
 10 0.00020 rome -> zeus NFS C READ3 FH=EEAB at 32768 for 32768
 11 0.00399 zeus -> rome UDP IP fragment ID=56047 Offset=0
MF=1
 12 0.02736 zeus -> rome UDP IP fragment ID=56048 Offset=0
MF=1
 13 0.00009 rome -> zeus NFS C READ3 FH=EEAB at 65536 for 32768
 14 0.00020 rome -> zeus NFS C READ3 FH=EEAB at 98304 for 32768
 15 0.00017 rome -> zeus NFS C READ3 FH=EEAB at 131072 for 8192
 16 0.03482 zeus -> rome UDP IP fragment ID=56049 Offset=0
MF=1
 17 0.02740 zeus -> rome UDP IP fragment ID=56050 Offset=0
MF=1
 18 0.02739 zeus -> rome UDP IP fragment ID=56051 Offset=0
MF=1

A single user-level copy command translates into multiple NFS operations. The NFS client
must first find the object via the LOOKUP3 operation, determine access rights to the object
via the ACCESS3 and GETACL3 operations and then finally read the information from the
server via multiple READ3 operations.

The NFS Server Logging mechanism was designed to emulate the FTP logging mechanism
found in many FTP public domain implementations. The log generated is specifically
compatible with the log format generated by the popular Washington University's FTP
daemon (WU-ftpd). WU-ftpd log format was chosen because of the popularity of this
particular FTP service, as well as the availability of a number of public domain and home-
grown utilities that already consume WU-ftpd logs.

Each NFS log record contains the following space-separated fields:

Managing NFS and NIS

320

Date

The timestamp from the start of the operation. It is represented in local time in the
form of a 26-character string. The fields are constant width. The timestamp is
formatted with ctime(3C). In the previous example, this was Fri Jul 28 09:27:12 2000.

ElapsedTime

For reads and writes, this is the approximate elapsed time from the first to last
operation. It is truncated to whole seconds. In the previous example it is 0, meaning it
took less than one second.

ClientName

Name of the system accessing the object. The name service switch is used on the
server to generate the client name. This means that hostnames will be printed for those
machines known within the name service. IP addresses will be printed for hostnames
that are outside the name service control. In the previous example, this is rome.

TransferSize

Total number of bytes read or written. It is always 0 for operations other than read or
write (mkdir, rmdir, etc). In the previous example, this is 136663.

PathName

Absolute pathname of the object accessed on the server. This pathname is always
reported from the server's namespace point of view. It is possible for the server to be
unable to map NFS filehandles to pathnames. In such a case, the NFS filehandle is
printed instead of the component name. See Section 14.6.5 for details. In the previous
example, the PathName is /export/foo. The client may have mounted the pathname on
/mnt or /net/zeus, but the pathname reported is always the server's absolute pathname.

DataType

Indicates the type of data transfer, ASCII transfers are denoted with a and binary
transfers are denoted with b. NFS transfers are always binary; therefore, this field will
always have a value of b.

TransferOption

Indicates any special processing performed by the service. For FTP logs, it indicates if
the WU-ftpd daemon performed any kind of compression (denoted with C), or if the
file was tarred (denoted by T), or if the file was uncompressed (denoted with U). For
NFS transfers this field will always have a value of `_', since no special action is
performed by the NFS server.

Managing NFS and NIS

321

Operation

The operation performed by the server, by default this is either i for incoming (upload)
or o for outgoing (download). Note that this is always relative to the server. If the
extended log format is in use, the operation is reported in extended format (i.e., read,
write, create, setattr, mkdir, etc.). Note that this is incompatible with the WU-ftpd log
format and existing unmodified tools that process these type of logs will not be able to
process the extended NFS log. In the previous example the client read the file, which
means it was downloaded from the server, therefore the log denotes this with an o.

AccessMode

Indicates the type of the user accessing the file. For FTP transfers, a guest user is
denoted as g, an anonymous user is denoted as a and the real user is denoted as r. All
NFS transfers report the real user identifier contained in the RPC; therefore, this field
will alway be r.

UserID

User identifier (UID) used for the NFS operations. Note that the logging utility makes
no attempt to map the uid to the user name. Doing this could lead to incorrect
mappings when the request arrives from a different name service domain than the one
the server belongs to. Different name service domains do not necessarily share the
same user name space. UID 32721 on the Eng domain may map to a very different
user on the Corp domain. In the previous example it is 32721.

Service

Type of service accessed by the client. The basic log format entry reports nfs. The
extended log format entry reports the NFS version and protocol as well. NFS Version
3 over TCP is reported as nfs3-tcp in the extended log format, and as nfs in the basic
log format.

Authenticated

Indicates whether the user is authenticated or not. A value of 0 indicates that the user
is not authenticated, or using the AUTH_SYS RPC authentication. A value of 1 means
that the user is authenticated via extended methods (such as AUTH_DES) and the next
field will include the user's principle name. In the previous example the client is using
AUTH_SYS, therefore the field is 0.

PrincipleName

The user's principle name if authenticated; otherwise, the field will be `*'.

14.6.1 NFS server logging mechanics

There are three main components involved in the logging process. First, the share command
is used to enable NFS Logging on the filesystem. Second, the kernel stores enough
information about each RPC operation in a temporary work buffer file. Third, the nfslogd

Managing NFS and NIS

322

daemon processes the RPC information stored in the temporary work buffer file, consolidates
the operations into file transfer operations and generates the final NFS log file.

Table 14-2 lists the various files involved in the logging process, the information contained in
them, who or what program creates and modifies them and who consumes their contents. The
/var/nfs/nfslog file contains the actual NFS transaction log records. The /etc/nfs/nfslog.conf
and /etc/default/nfslogd files specify various logging configuration values. The /var/nfs/fhpath
file contains the path mapping information. The remaining two files are temporary and only
needed to help construct the NFS transaction log records. Each file will be discussed in more
detail throughout this chapter.

Table 14-2. NFS server logging files

File Contents Creator/
Modifier Consumer

/etc/nfs/nfslog.conf Logging configuration Administrator share, nfslogd
/etc/default/nfslogd nfslogd-specific configuration Administrator nfslogd

/etc/nfs/nfslogtab Information on location of the work buffer files share, unshare
nfslogd nfslogd

/var/nfs/nfslog NFS transaction log records nfslogd Administrator

/var/nfs/nfslog_workbuffer RPC operations recorded by the kernel and
consumed by the nfslogd daemon Unix kernel nfslogd

/var/nfs/fhpath filehandle to path mapping nfslogd nfslogd

14.6.2 Enabling NFS server logging

Before enabling logging on a filesystem, make sure to first define the default directory where
the NFS log and working files are to be created. Solaris ships with the default directory set to
/var/nfs. Make sure you have enough disk space available in /var/nfs or set the default
directory to a different partition. Instructions on how to change the default directory and how
to spread the logs and files across multiple partitions are provided in Section 14.6.3.

Once the location of the files has been specified, logging NFS traffic on a filesystem is
simple. First, export the filesystem using the -o log directive. Second, start the nfslogd
daemon if it is not yet running. The NFS log file will be created a few minutes later in the
directory previously specified, after the kernel has gathered enough information to generate
the NFS transaction records. Note that setting the -o log directive in the /etc/dfs/dfstab file
will cause the nfslogd daemon to be started automatically the next time the machine is booted.
The daemon will automatically detect when other filesystems are shared with logging
enabled.

The rest of the chapter explains the specifics of how the NFS Server Logging mechanism
works, its main components, and configuration parameters. Enabling logging is
straightforward, unfortunately cleaning up working files after logging has been disabled
requires some manual work. We will explain this in Section 14.6.9.

To enable NFS Server Logging on a filesystem, the filesystem must first be exported with the
-o log [=<tag>] directive:

share -o log /export

Managing NFS and NIS

323

When no tag is specified, the kernel will record the temporary RPC information in the default
work buffer file /var/nfs/nfslog_workbuffer_in_process. Again, this temporary file does not
contain any information useful to the user, instead it's used by the NFS Logging mechanism
as a temporary buffer. It is the nfslogd daemon that reads this work buffer, processes its
information, and generates the NFS log file. By default, the NFS log file is stored in
/var/nfs/nfslog.

The nfslogd daemon must be running in order to generate the NFS log file. Note that the
daemon is started at boot time only when one or more filesystems in /etc/dfs/dfstab have the -
o log directive specified. If you share a filesystem manually with logging enabled and the
nfslogd daemon had not previously been started, you must invoke it manually:

/usr/lib/nfs/nfslogd

To assure that the nfslogd daemon is started after a reboot, make sure to specify the -o log
directive in /etc/dfs/dfstab.

14.6.3 NFS server logging configuration

By default, the NFS log file, the temporary work buffer files, and the filehandle mapping
tables are created in the /var/nfs directory. These defaults can be overridden by sharing the
filesystem with specific logging parameters associated with a logging tag. Logging tags are
defined in the /etc/nfs/nfslog.conf file. Each entry in the file consists of a mandatory tag
identifier and one or more logging parameters.

The following is a sample /etc/nfs/nfslog.conf configuration file:

NFS server log configuration file.

<tag> [defaultdir=<dir_path>] \
[log=<logfile_path>] [fhtable=<table_path>] \
[buffer=<bufferfile_path>] [logformat=basic|extended]

global defaultdir=/var/nfs \
 log=logs/nfslog \
 fhtable=workfiles/fhtable buffer=workfiles/nfslog_workbuffer
eng log=/export/eng/logs/nfslog
corp defaultdir=/export/corp/logging
extended logformat=extended log=extended_logs/nfslog

The global tag specifies the default set of values to be used when no tag is specified in the
share command. Note that the eng, corp, and extended tags do not specify all possible
parameters. The global values are used, unless they are specifically replaced in the tag. Take
for example:

share -o log=eng /export/eng

where the NFS log file will be named nfslog and located in the /export/eng/logs directory. The
work buffer file and filehandle table (explained later) remain under /var/nfs/workfiles. Any of
the global values can be overridden by specific tags.

The following describes each parameter in the configuration file:

Managing NFS and NIS

324

defaultdir=<path>

Specifies the default directory where all logging files are placed. Every tag can specify
its defaultdir and override the value specified by the global tag. This path is prepended
to all relative paths specified by the other parameters. defaultdir must be an absolute
path, or an error is reported by the share command. In the previous sample
configuration, filesystems shared with the global tag will place their work files and
NFS log file in /var/nfs. Filesystems shared with the corp tag place their work files in
/export/corp/logging.

log=<path><file>

Specifies the name and location of the NFS log file. This is the file that actually
contains the log of file transfers and the file that the system administrator will be most
interested in. defaultdir is prepended to log to determine the full path, except in the
case when log already identifies an absolute path. Using the previous sample
configuration, filesystems shared with the global tag place the NFS log file in
/var/nfs/logs/nfslog.

fhtable=<path><file>

Specifies the name and location of the filehandle to path mapping database. NFS
operations use filehandles and not filenames to identify the file being worked on. The
nfslogd daemon builds a mapping of filehandles and stores it in the location specified
by fhtable. This is explained in detail in Section 14.6.5. The path concatenation rules
described earlier apply.

buffer=<path><file>

Specifies the name and location of the temporary work buffer file, where the kernel
will store the raw RPC information to later be consumed by the nfslogd daemon. This
file is intended for internal consumption of the nfslogd daemon. The nfslogd daemon
wakes up periodically to consume the information stored in this file. The file is backed
by permanent storage, to prevent loss of RPC operation information on reboot. The
nfslogd daemon will remove the work buffer file once it has processed the
information. The path concatenation rules described earlier apply.

logformat=basic|extended

Specifies the format of the NFS log file. Two values are valid: basic and extended.
The basic format is compatible with the log format generated by the Washington
University's FTPd utility. The extended format provides more detailed information.
Under basic format, only reads and writes are recorded. Under extended format, reads,
writes, and directory modification operations (mkdir, rmdir, and remove) are reported,
as well as the NFS version and protocol used in the operation. The basic format is
assumed when no logformat is specified. Note that the extended format is not
compatible with Washington University's FTPd log format. Using the previous sample
configuration, filesystems shared with the extended tag will log extended filesystem
activity in the /var/nfs/extended_logs/nfslog file.

Managing NFS and NIS

325

Table 14-3 defines the values for the logging files when filesystems are shared with the
various tags.

Table 14-3. Logging files under different tags
Tag Log fhtable Buffer

global /var/nfs/logs/nfslog /var/nfs/workfiles/fhtable /var/nfs/workfiles/
nfslog_workbuffer

eng /export/eng/logs/nfslog /var/nfs/workfiles/fhtable /var/nfs/workfiles/
nfslog_workbuffer

corp /export/corp/logging/logs/nfslog /export/corp/logging/workfiles/fhtable /export/corp/logging/
workfiles/nfslog_workbuffer

extended /var/nfs/extended_logs/nfslog /var/nfs/workfiles/fhtable /var/nfs/workfiles/
nfslog_workbfuffer

The temporary work buffers can grow large in a hurry, therefore it may not be a good idea to
keep them in the default directory /var/nfs, especially when /var is fairly small. It is
recommended to either spread them out among the filesystems they monitor, or place them in
a dedicated partition. This will allow space in your /var partition to be used for other
administration tasks, such as storing core files, printer spool directories, and other system
logs.

14.6.3.1 Basic versus extended log format

Logging using the basic format only reports file uploads and downloads. On the other hand,
logging using the extended format provides more detailed information of filesystem activity,
but may be incompatible with existing tools that process WU-Ftpd logs. Tools that expect a
single character identifier in the operation field will not understand the multicharacter
description of the extended format. Home-grown scripts can be easily modified to understand
the richer format. Logging using the extended format reports directory creation, directory
removal, and file removal, as well as file reads (downloads) and file writes (uploads). Each
record indicates the NFS version and protocol used during access.

Let us explore the differences between the two logs by comparing the logged information that
results from executing the same sequence of commands against the NFS server zeus. First, the
server exports the filesystem using the extended tag previously defined in the
/etc/nfs/nfslog.conf file:

zeus# share -o log=extended /export/home

Next, the client executes the following sequence of commands:

rome% cd /net/zeus/export/home
rome% mkdir test
rome% mkfile 64k 64k-file
rome% mv 64k-file test
rome% rm test/64k-file
rome% rmdir test
rome% dd if=128k-file of=/dev/null
256+0 records in
256+0 records out

The resulting extended format log on the server reflects corresponding NFS operations:

Managing NFS and NIS

326

zeus# cat /var/nfs/extended_logs/nfslog
Mon Jul 31 11:00:05 2000 0 rome 0 /export/home/test b _ mkdir r 19069 nfs3-
tcp 0 *
Mon Jul 31 11:00:33 2000 0 rome 0 /export/home/64k-file b _ create r 19069
nfs3-
tcp 0 *
Mon Jul 31 11:00:33 2000 0 rome 65536 /export/home/64k-file b _ write r
19069
nfs3-tcp 0 *
Mon Jul 31 11:00:49 2000 0 rome 0 /export/home/64k-file-
>/export/home/test/64k-
file b _ rename r 19069 nfs3-tcp 0 *
Mon Jul 31 11:00:59 2000 0 rome 0 /export/home/test/64k-file b _ remove r
19069
nfs3-tcp 0 *
Mon Jul 31 11:01:01 2000 0 rome 0 /export/home/test b _ rmdir r 19069 nfs3-
tcp 0 *
Mon Jul 31 11:01:47 2000 0 rome 131072 /export/home/128k-file b _ read r
19069
nfs3-tcp 0 *

Notice that the mkfile operation generated two log entries, a 0-byte file, create, followed by a
64K write. The rename operation lists the original name followed by an arrow pointing to the
new name. File and directory deletions are also logged. The nfs3-tcp field indicates the
protocol and version used: NFS Version 3 over TCP.

Now let us compare against the basic log generated by the same sequence of client
commands. First, let us reshare the filesystem with the basic log format. It is highly
recommended to never mix extended and basic log records in the same file. This will make
post-processing of the log file much easier. Our example places extended logs in
/var/nfs/extended_logs/nfslog and basic logs in /var/nfs/logs/nfslog:

zeus# share -o log /export/home

Next, the client executes the same sequence of commands listed earlier. The resulting basic
format log on the server only shows the file upload (incoming operation denoted by i) and the
file download (outgoing operation denoted by o). The directory creation, directory removal,
and file rename are not logged in the basic format. Notice that the NFS version and protocol
type are not specified either:

zeus# cat /var/nfs/logs/nfslog
Mon Jul 31 11:35:08 2000 0 rome 65536 /export/home/64k-file b _ i r 19069
nfs 0 *
Mon Jul 31 11:35:25 2000 0 rome 131072 /export/home/128k-file b _ o r 19069
nfs 0 *

14.6.4 The nfslogd daemon

It is the nfslogd daemon that generates the ultimate NFS log file. The daemon periodically
wakes up to process the contents of the work buffer file created by the kernel, performs
hostname and pathname mappings, and generates the file transfer log record. Since the
filesystem can be reshared with logging disabled, or simply be unshared, the nfslogd daemon
cannot rely on the list of exported filesystems to locate the work buffer files. So how exactly
does the nfslogd daemon locate the work buffer files?

Managing NFS and NIS

327

When a filesystem is exported with logging enabled, the share command adds a record to the
/etc/nfs/nfslogtab file indicating the location of the work buffer file, the filesystem shared, the
tag used to share the filesystem, and a 1 to indicate that the filesystem is currently exported
with logging enabled. This system table is used to keep track of the location of the work
buffer files so they can be processed at a later time, even after the filesystem is unshared, or
the server is rebooted. The nfslogd daemon uses this system file to find the location of the
next work buffer file that needs to be processed. The daemon removes the /etc/nfs/nfslogtab
entry for the work buffer file after processing if the corresponding filesystem is no longer
exported. The entry will not be removed if the filesystem remains exported.

The nfslogd daemon removes the work buffer file once it has processed the information. The
kernel creates a new work buffer file when more RPC requests arrive. To be exact, the work
buffer file currently accessed by the kernel has the _in_process string appended to its name
(name specified by the buffer parameter in /etc/nfs/nfslog.conf). The daemon, asks the kernel
to rename the buffer to the name specified in the configuration file once it is ready to process
it. At this point the kernel will again create a new buffer file with the string appended and start
writing to the new file. This means that the kernel and the nfslogd daemon are always working
on their own work buffer file, without stepping on each others' toes. The nfslogd daemon will
remove the work buffer file once it has processed the information.

You will notice that log records do not show up immediately on the log after a client accesses
the file or directory on the server. This occurs because the nfslogd daemon waits for enough
RPC information to gather in the work buffer before it can process it. By default it will wait
five minutes. This time can be shortened or lengthened by tuning the value of IDLE_TIME in
/etc/default/nfslogd.

14.6.4.1 Consolidating file transfer information

The NFS protocol was not designed to be a file transfer protocol, instead it was designed to be
a file access protocol. NFS file operations map nicely to Unix filesystem calls and as such, its
file data access and modification mechanisms operate on regions of files. This enables NFS to
minimize the amount of data transfer required between server and client, when only small
portions of the file are needed. The NFS protocol enables reads and writes of arbitrary number
of bytes at any given offset, in any given order. NFS clients are not required to read a file on
an NFS server in any given order, they may start in the middle and read an arbitrary number
of bytes at any given offset.

The random byte access, added to the fact that NFS Versions 2 and 3 do not define an open or
close operation, make it hard to determine when an NFS client is done reading or writing a
file. Despite this limitation, the nfslogd daemon does a decent job identifying file transfers by
using various heuristics to determine when to generate the file transfer record.

14.6.5 Filehandle to path mapping

Most NFS operations take a filehandle as an argument, or return a filehandle as a result of the
operation. In the NFS protocol, a filehandle serves to identify a file or a directory. Filehandles
contain all the information the server needs to distinguish an individual file or directory. To
the client, the filehandle is opaque. The client stores the filehandles for use in a later request.
It is the server that generates the filehandle:

Managing NFS and NIS

328

 1 0.00000 rome -> zeus NFS C LOOKUP3 FH=0222 foo.tar.Z
 2 0.00176 zeus -> rome NFS R LOOKUP3 OK FH=EEAB
...
 9 0.00091 rome -> zeus NFS C READ3 FH=EEAB at 0 for 32768
...

Consider packets 1, 2, and 9 from the snoop trace presented earlier in this chapter. The client
must first obtain the filehandle for the file foo.tar.Z, before it can request to read its contents.
This is because the NFS READ procedure takes the filehandle as an argument and not the
filename. The client obtains the filehandle by first invoking the LOOKUP procedure, which
takes as arguments the name of the file requested and the filehandle of the directory where it
is located. Note that the directory filehandle must itself first be obtained by a previous
LOOKUP or MOUNT operation.

Unfortunately, NFS server implementations today do not provide a mechanism to obtain a
filename given a filehandle. This would require the kernel to be able to obtain a path given a
vnode, which is not possible today in Solaris. To overcome this limitation, the nfslogd
daemon builds a mapping table of filehandle to pathnames by monitoring all NFS operations
that generate or modify filehandles. It is from this table that it obtains the pathname for the
file transfer log record. This filehandle to pathname mapping table is by default stored in the
file /var/nfs/fhtable. This can be overridden by specifying a new value for fhtable in
/etc/nfs/nfslog.conf.

In order to successfully resolve all filehandles, the filesystem must be shared with logging
enabled from the start. The nfslogd daemon will not be able to resolve all mappings when
logging is enabled on a previously shared filesystem for which clients have already obtained
filehandles. The filehandle mapping information can only be built from the RPC information
captured while logging is enabled on the filesystem. This means that if logging is temporarily
disabled, a potentially large number of filehandle transactions will not be captured and the
nfslogd daemon will not be able to reconstruct the pathname for all filehandles. If a filehandle
can not be resolved, it will be printed on the NFS log transaction record instead of printing the
corresponding (but unknown) pathname.

The filehandle mapping table needs to be backed by permanent storage since it has to survive
server reboots. There is no limit for the amount of time that NFS clients hold on to
filehandles. A client may obtain a filehandle for a file, read it today and read it again five days
from now without having to reacquire the filehandle (not encountered often in practice).
Filehandles are even valid across server reboots.

Ideally the filehandle mapping table would only go away when the filesystem is destroyed.
The problem is that the table can get pretty large since it could potentially contain a mapping
for every entry in the filesystem. Not all installations can afford reserving this much storage
space for a utility table. Therefore, in order to preserve disk space, the nfslogd daemon will
periodically prune the oldest contents of the mapping table. It removes filehandle entries that
have not been accessed since the last time the pruning process was performed. This process is
automatic, the nfslogd daemon will prune the table every seven days by default. This can be
overridden by setting PRUNE_TIMEOUT in /etc/default/nfslogd. This value specifies the
number of hours between prunings. Making this value too small can increase the risk that a
client may have held on to a filehandle longer than the PRUNE_TIMEOUT and perform an
NFS operation after the filehandle has been removed from the table. In such a case, the
nfslogd daemon will not be able to resolve the pathname and the NFS log will include the

Managing NFS and NIS

329

filehandle instead of the pathname. Pruning of the table can effectively be disabled by setting
the PRUNE_TIMEOUT to INT_MAX. Be aware that this may lead to very large tables,
potentially causing problems exceeding the database maximum values. This is therefore
highly discouraged, since in practice the chance of NFS clients holding on to filehandles for
more than a few days without using them is extremely small. The nfslogd daemon uses ndbm[4]
to manage the filehandle mapping table.

[4] See dbm_clearerr(3C).

14.6.6 NFS log cycling

The nfslogd daemon periodically cycles the logs to prevent an individual file from becoming
extremely large. By default, the ten most current NFS log files are located in /var/nfs and
named nfslog, nfslog.0, through nfslog.9. The file nfslog being the most recent, followed by
nfslog.1 and nfslog.9 being the oldest. The log files are cycled every 24 hours, saving up to 10
days worth of logs. The number of logs saved can be increased by setting
MAX_LOGS_PRESERVE in /etc/default/nfslogd. The cycle frequency can be modified by
setting CYCLE_FREQUENCY in the same file.

14.6.7 Manipulating NFS log files

Sometimes it may be desirable to have the nfslogd daemon close the current file, and log to a
fresh new file. The daemon holds an open file descriptor to the log file, so renaming it or
copying it somewhere else may not achieve the desired effect. Make sure to first shut down
the daemon before manipulating the log files. To shut down the daemon, send it a SIGHUP
signal. This will give the daemon enough time to flush pending transactions to the log file.
You can use the Solaris pkill command to send the signal to the daemon. Note that the
daemon can take a few seconds to flush the information:

pkill -HUP -x -u 0 nfslogd

Sending it a SIGTERM signal will simply close the buffer files, but pending transactions will
not be logged to the file and will be discarded.

14.6.8 Other configuration parameters

The configuration parameters in the /etc/default/nfslogd tune the behavior of the nfslogd
daemon. The nfslogd daemon reads the configuration parameters when it starts, therefore any
changes to the parameters will take effect the next time the daemon is started. Here is a list of
the parameters:

UMASK

Used to set the file mode used to create the log files, work buffer files, and filehandle
mapping tables. Needless to say one has to be extremely careful setting this value, as it
could open the doors for unathorized access to the log and work files. The default is
0x137, which gives read/write access to root, read access to the group that started the
nfslogd daemon, and no access to other.

Managing NFS and NIS

330

MIN_PROCESSING_SIZE

The nfslogd daemon waits until MIN_PROCESSING_SIZE bytes are gathered in the
work buffer file before it starts processing any information. The idea is to wait long
enough for information to gather to make the processing worth while. Note that the
nfslogd daemon will process the work buffer regardless of the size after an
implementation timer fires indicating that the work buffer has been ignored for too
long. The default value is 512 Kb.

IDLE_TIME

The nfslogd daemon sleeps up to IDLE_TIME seconds waiting for information to be
gathered in the work buffer files. This value indirectly affects the frequency with
which the nfslogd daemon checks updates of the file /etc/nfs/nfslog.conf. Increasing
this value too much will cause the temporary work buffer files to become large,
potentially using more disk space than desired. Making this value too short will cause
the nfslogd daemon to wake up frequently and potentially have nothing to do since the
MIN_PROCESSING_SIZE of its buffers may not have been reached.

MAX_LOGS_PRESERVE

The nfslogd daemon periodically cycles the logs in order to keep their size
manageable. This value specifies the maximum number of logs to save in the log
directory. When this value is reached, the oldest log is discarded to make room for a
new log. The logs are saved with a numbered extension, beginning with .0 through
.MAX_LOGS_PRESERVE-1. The oldest log will be the one with the highest
numbered extension.

Consider the following three tags:

Excerpt from /etc/nfs/nfslog.conf:

sales log=/export/logs/nfslog fhtable=sales-table
corp log=/export/logs/nfslog fhtable=corp-table
eng log=/export/logs/eng/englog

Excerpt from /etc/default/nfslogd:

MAX_LOGS_PRESERVE=10

Both the sales and corp tags send the final log records to /export/logs/nfslog. The eng
tag sends the log records to /export/logs/eng/nfslog. You will have a total of up to 10
log files named nfslog, nfslog.0, ..., nfslog.9 in /export/logs. Similarly, you will have a
total of up to ten log files named englog, englog.0, ..., englog.9 in /export/logs/eng.
Notice that the fact that two tags use the same log file does not affect the total number
of logs preserved.

CYCLE_FREQUENCY

Specifies the frequency with which log files are cycled (see
MAX_LOGS_PRESERVE). The value is specified in hours. This helps keep the log
file size manageable. The default is to cycle every 24 hours.

Managing NFS and NIS

331

MAPPING_UPDATE_INTERVAL

Specifies the time interval, in seconds, between updates of the records in the filehandle
mapping table. Ideally the access time of entries queried in the mapping table should
be updated on every access. In practice, updates of this table are much more expensive
than queries. Instead of updating the access time of a record each time the record is
accessed, the access time is updated only when the last update is older than
MAPPING_UPDATE_INTERVAL seconds. By default updates are performed once
per day. Make sure this value is always less than the value specified by
PRUNE_TIMEOUT, otherwise all of the entries in the filehandle mapping tables will
be considered timed out.

PRUNE_TIMEOUT

Specifies how frequent the pruning of the filehandle mapping tables is invoked. This
value represents the minimum number of hours that a record is guaranteed to remain
in the mapping table. The default value of seven days (168 hours) instructs the nfslogd
daemon to perform the database pruning every seven days and remove the records that
are older than seven days. Note that filehandles can remain in the database for up to 14
days. This can occur when a record is created immediately after the pruning process
has finished. Seven days later the record will not be pruned because it is only six days
and hours old. The record will be removed until the next pruning cycle, assuming no
client accesses the filehandle within that time. The
MAPPING_UPDATE_INTERVAL may need to be updated accordingly.

14.6.9 Disabling NFS server logging

Unfortunately, disabling logging requires some manual cleanup. Unsharing or resharing a
filesystem without the -o log directive stops the kernel from storing information into the work
buffer file. You must allow the nfslogd daemon enough time to process the work buffer file
before shutting it down. The daemon will notice that it needs to process the work buffer file
once it wakes up after its IDLE_TIME has been exceeded.

Once the work buffer file has been processed and removed by the nfslogd daemon, the
nfslogd daemon can manually be shutdown by sending it a SIGHUP signal. This allows the
daemon to flush the pending NFS log information before it is stopped. Sending any other type
of signal may cause the daemon to be unable to flush the last few records to the log.

There is no way to distinguish between a graceful server shutdown and the case when logging
is being completely disabled. For this reason, the mapping tables are not removed when the
filesystem is unshared, or the daemon is stopped. The system administrator needs to remove
the filehandle mapping tables manually when he/she wants to reclaim the filesystem space
and knows that logging is being permanently disabled for this filesystem.[5]

[5] Keep in mind that if logging is later reenabled, there will be some filehandles that the nfslogd daemon will not be able to resolve since they were
obtained by clients while logging was not enabled. If the filehandle mapping table is removed, then the problem is aggravated.

14.7 Time synchronization

Distributing files across several servers introduces a dependency on synchronized time of day
clocks on these machines and their clients. Consider the following sequence of events:

Managing NFS and NIS

332

caramba % date
Mon Sep 25 18:11:24 PDT 2000
caramba % pwd
/home/labiaga
caramba % touch foo
caramba % ls -l foo
-rw-r--r-- 1 labiaga staff 0 Sep 25 18:18 foo

aqua % date
Mon Sep 25 17:00:01 PDT 2000
aqua % pwd
/home/labiaga
aqua % ls -l foo
-rw-r--r-- 1 labiaga staff 0 Sep 25 2000 foo
aqua % su
aqua # rdate caramba
Mon Sep 25 18:16:51 2000
aqua % ls -l foo
-rw-r--r-- 1 labiaga staff 0 Sep 25 18:18 foo

On host caramba, a file is created that is stamped with the current time. Over on host aqua,
the time of day clock is over an hour behind, and file foo is listed with the month-day-year
date format normally reserved for files that are more than six months old. The problem stems
from the time skew between caramba and aqua: when the ls process on aqua tries to
determine the age of file foo, it subtracts the file modification time from the current time.
Under normal circumstances, this produces a positive integer, but with caramba 's clock an
hour ahead of the local clock, the difference between modification time and current time is a
negative number. This makes file foo a veritable Unix artifact, created before the dawn of
Unix time. As such, its modification time is shown with the "old file" format.[6]

[6] Some Unix utilities have been modified to handle small time skews in a graceful manner. For example, ls tolerates clock drifts of a few minutes and
correctly displays file modification times that are slightly in the future.

Time of day clock drift can be caused by repeated bursts of high priority interrupts that
interfere with the system's hardware clock or by powering off (and subsequently booting) a
system that does not have a battery-operated time of day clock.[7]

[7] The hardware clock, or "hardclock" is a regular, crystal-driven timer that provides the system heartbeat. In kernel parlance, the hardclock timer
interval is a "tick," a basic unit of time-slicing that governs CPU scheduling, process priority calculation, and software timers. The software time of
day clock is driven by the hardclock. If the hardclock interrupts at 100 Hz, then every 100 hardclock interrupts bump the current time of day clock by
one second. When a hardclock interrupt is missed, the software clock begins to lose time. If there is a hardware time of day clock available, the kernel
can compensate for missed hardclock interrupts by checking the system time against the hardware time of day clock and adjusting for any drift. If
there is no time of day clock, missed hardware clock interrupts translate into a tardy system clock.

In addition to confusing users, time skew wreaks havoc with the timestamps used by make,
jobs run out of cron that depend on cron-started processes on other hosts, and the transfer of
NIS maps to slave servers, which fail if the slave server's time is far enough ahead of the
master server. It is essential to keep all hosts sharing filesystems or NIS maps synchronized to
within a few seconds.

rdate synchronizes the time of day clocks on two hosts to within a one-second granularity.
Because it changes the local time and date, rdate can only be used by the superuser, just as the
date utility can only be used by root to explicitly set the local time. rdate takes the name of
the remote time source as an argument:

% rdate mahimahi
couldn't set time of day: Not owner

Managing NFS and NIS

333

% su
rdate mahimahi
Mon Sep 25 18:16:51 2000

One host is usually selected as the master timekeeper, and all other hosts synchronize to its
time at regular intervals. The ideal choice for a timekeeping host is one that has the minimum
amount of time drift, or that is connected to a network providing time services. If the time
host's clock loses a few seconds each day, the entire network will fall behind the real wall
clock time. All hosts agree on the current time, but this time slowly drifts further and further
behind the real time.

While the remote host may be explicitly specified, it is more convenient to create the
hostname alias timehost in the NIS hosts file and to use the alias in all invocations of rdate:

131.40.52.28 mahimahi timehost
131.40.52.26 wahoo
131.40.52.150 kfir

Some systems check for the existence of the hostname timehost during the boot sequence, and
perform an rdate timehost if timehost is found.

This convention is particularly useful if you are establishing a new timekeeping host and you
need to change its definition if your initial choice proves to be a poor time standard. It is far
simpler to change the definition of timehost in the NIS hosts map than it is to modify the
invocations of rdate on all hosts.

Time synchronization may be performed during the boot sequence, and at regular intervals
using cron. The interval chosen for time synchronization depends on how badly each system's
clock drifts: once-a-day updates may be sufficient if the drift is only a few seconds a day, but
hourly synchronization is required if a system loses time each hour. To run rdate from cron,
add a line like the following to each host's crontab file:

Hourly update:

52 * * * * rdate timehost > /dev/null 2>&1

Daily update:

52 1 * * * rdate timehost > /dev/null 2>&1

The redirection of the standard output and standard error forces rdate 's output to /dev/null,
suppressing the normal echo of the updated time. If a cron-driven command writes to standard
output or standard error, cron will mail the output to root.

To avoid swamping the timehost with dozens of simultaneous rdate requests, the previous
example performs its rdate at a random offset into the hour. A common convention is to use
the last octet of the machine's IP address (mod 60) as the offset into the hour, effectively
scattering the rdate requests throughout each hour.

The use of rdate ensures a gross synchronization accurate to within a second or two on the
network. The resolution of this approach is limited by the rdate and cron utilities, both of
which are accurate to one second. This is sufficient for many activities, but finer

Managing NFS and NIS

334

synchronization with a higher resolution may be needed. The Network Time Protocol (NTP)
provides fine-grain time synchronization and also keeps wide-area networks in lock step. NTP
is outside the scope of this book.

Managing NFS and NIS

335

Chapter 15. Debugging Network Problems
This chapter consists of case studies in network problem analysis and debugging, ranging
from Ethernet addressing problems to a machine posing as an NIS server in the wrong
domain. This chapter is a bridge between the formal discussion of NFS and NIS tools and
their use in performance analysis and tuning. The case studies presented here walk through
debugging scenarios, but they should also give you an idea of how the various tools work
together.

When debugging a network problem, it's important to think about the potential cause of a
problem, and then use that to start ruling out other factors. For example, if your attempts to
bind to an NIS server are failing, you should know that you could try testing the network
using ping, the health of ypserv processes using rpcinfo, and finally the binding itself with
ypset. Working your way through the protocol layers ensures that you don't miss a low-level
problem that is posing as a higher-level failure. Keeping with that advice, we'll start by
looking at a network layer problem.

15.1 Duplicate ARP replies

ARP misinformation was briefly mentioned in Section 13.2.3, and this story showcases some
of the baffling effects it creates. A network of two servers and ten clients suddenly began to
run very slowly, with the following symptoms:

• Some users attempting to start a document-processing application were waiting ten to
30 minutes for the application's window to appear, while those on well-behaved
machines waited a few seconds. The executables resided on a fileserver and were NFS
mounted on each client. Every machine in the group experienced these delays over a
period of a few days, although not all at the same time.

• Machines would suddenly "go away" for several minutes. Clients would stop seeing
their NFS and NIS servers, producing streams of messages like:

NFS server muskrat not responding still trying

or:

ypbind: NIS server not responding for domain "techpubs"; still trying

The local area network with the problems was joined to the campus-wide backbone via a
bridge. An identical network of machines, running the same applications with nearly the same
configuration, was operating without problems on the far side of the bridge. We were assured
of the health of the physical network by two engineers who had verified physical connections
and cable routing.

The very sporadic nature of the problem — and the fact that it resolved itself over time —
pointed toward a problem with ARP request and reply mismatches. This hypothesis neatly
explained the extraordinarily slow loading of the application: a client machine trying to read
the application executable would do so by issuing NFS Version 2 requests over UDP. To send
the UDP packets, the client would ARP the server, randomly get the wrong reply, and then be
unable to use that entry for several minutes. When the ARP table entry had aged and was
deleted, the client would again ARP the server; if the correct ARP response was received then

Managing NFS and NIS

336

the client could continue reading pages of the executable. Every wrong reply received by the
client would add a few minutes to the loading time.

There were several possible sources of the ARP confusion, so to isolate the problem, we
forced a client to ARP the server and watched what happened to the ARP table:

arp -d muskrat
muskrat (139.50.2.1) deleted
ping -s muskrat
PING muskrat: 56 data bytes
 No further output from ping

By deleting the ARP table entry and then directing the client to send packets to muskrat, we
forced an ARP of muskrat from the client. ping timed out without receiving any ICMP echo
replies, so we examined the ARP table and found a surprise:

arp -a | fgrep muskrat
le0 muskrat 255.255.255.255 08:00:49:05:02:a9

Since muskrat was a Sun workstation, we expected its Ethernet address to begin with
08:00:20 (the prefix assigned to Sun Microsystems), not the 08:00:49 prefix used by Kinetics
gateway boxes. The next step was to figure out how the wrong Ethernet address was ending
up in the ARP table: was muskrat lying in its ARP replies, or had we found a network
imposter?

Using a network analyzer, we repeated the ARP experiment and watched ARP replies
returned. We saw two distinct replies: the correct one from muskrat, followed by an invalid
reply from the Kinetics FastPath gateway. The root of this problem was that the Kinetics box
had been configured using the IP broadcast address 0.0.0.0, allowing it to answer all ARP
requests. Reconfiguring the Kinetics box with a non-broadcast IP address solved the problem.

The last update to the ARP table is the one that "sticks," so the wrong Ethernet address was
overwriting the correct ARP table entry. The Kinetics FastPath was located on the other side
of the bridge, virtually guaranteeing that its replies would be the last to arrive, delayed by
their transit over the bridge. When muskrat was heavily loaded, it was slow to reply to the
ARP request and its ARP response would be the last to arrive. Reconfiguring the Kinetics
FastPath to use a proper IP address and network mask cured the problem.

ARP servers that have out-of-date information create similar problems. This situation arises if
an IP address is changed without a corresponding update of the server's published ARP table
initialization, or if the IP address in question is re-assigned to a machine that implements the
ARP protocol. If an ARP server was employed because muskrat could not answer ARP
requests, then we should have seen exactly one ARP reply, coming from the ARP server.
However, an ARP server with a published ARP table entry for a machine capable of
answering its own ARP requests produces exactly the same duplicate response symptoms
described above. With both machines on the same local network, the failures tend to be more
intermittent, since there is no obvious time-ordering of the replies.

There's a moral to this story: you should rarely need to know the Ethernet address of a
workstation, but it does help to have them recorded in a file or NIS map. This problem was
solved with a bit of luck, because the machine generating incorrect replies had a different

Managing NFS and NIS

337

manufacturer, and therefore a different Ethernet address prefix. If the incorrectly configured
machine had been from the same vendor, we would have had to compare the Ethernet
addresses in the ARP table with what we believed to be the correct addresses for the machine
in question.

15.2 Renegade NIS server

A user on our network reported that he could not log into his workstation. He supplied his
username and the same password he'd been using for the past six months, and he consistently
was told "Login incorrect." Out of frustration, he rebooted his machine. When attempting to
mount NFS filesystems, the workstation was not able to find any of the NFS server hosts in
the hosts NIS map, producing errors of the form:

nfs mount: wahoo: : RPC: Unknown host

There were no error messages from ypbind, so it appeared that the workstation had found an
NIS server. The culprit looked like the NIS server itself: our guess was that it was a machine
masquerading as a valid NIS server, or that it was an NIS server whose maps had been
destroyed. Because nobody could log into the machine, we rebooted it in single-user mode,
and manually started NIS to see where it bound:

 Single-user boot
/etc/init.d/inetinit start
NIS domainname is nesales
Starting IPv4 router discovery.
Starting IPv6 neighbor discovery.
Setting default IPv6 interface for multicast: add net ff00::/8: gateway
fe80::a00:20ff:fea0:3390
/etc/init.d/rpc start
starting rpc services: rpcbind keyserv ypbind done.
ypwhich
131.40.52.25

We manually invoked the /etc/init.d/inetinit startup script to initialize the domain name and
configure the routing. We then invoked the /etc/init.d/rpc script to start ypbind. Notice that
ypwhich was not able to match the IP address of the NIS server in the hosts NIS map, so it
printed the IP address. The IP address belonged to a gateway machine that was not supposed
to be a NIS server. It made sense that clients were binding to it, if it was posing as an NIS
server, since the gateway was very lightly loaded and was probably the first NIS server to
respond to ypbind requests.

We logged into that machine, and verified that it was running ypserv. The domain name used
by the gateway was nesales — it had been brought up in the wrong domain. Removing the
/var/yp/nesales subdirectory containing the NIS maps and restarting the NIS daemons took
the machine out of service:

cd /var/yp
rm -rf nesales
/usr/lib/netsvc/yp/ypstop
/usr/lib/netsvc/yp/ypstart

We contacted the person responsible for the gateway and had him put the gateway in its own
NIS domain (his original intention). Machines in nesales that had bound to the renegade

Managing NFS and NIS

338

server eventually noticed that their NIS server had gone away, and they rebound to valid
servers.

As a variation on this problem, consider an NIS server that has damaged or incomplete maps.
Symptoms of this problem are nearly identical to those previously described, but the IP
address printed by ypwhich will be that of a familiar NIS server. There may be just a few
maps that are damaged, possibly corrupted during an NIS transfer operation, or all of the
server's maps may be corrupted or lost. The latter is most probable when someone
accidentally removes directories in /var/yp.

To check the consistency of various maps, use ypcat to dump all of the keys known to the
server. A few damaged maps can be replaced with explicit yppush operations on the master
server. If all of the server's maps are damaged, it is easiest to reinitialize the server. Slave
servers are easily rebuilt from a valid master server, but if the master server has lost the DBM
files containing the maps, initializing the machine as an NIS master server regenerates only
the default set of maps. Before rebuilding the NIS master, save the NIS Makefile, in /var/yp or
/etc/yp, if you have made local changes to it. The initialization process builds the default
maps, after which you can replace your hand-crafted Makefile and build all site-specific NIS
maps.

15.3 Boot parameter confusion

Different vendors do not always agree on the format of responses to various broadcast
requests. Great variation exists in the bootparam RPC service, which supplies diskless nodes
with the name of their boot server, and pathname for their root partition. If a diskless client's
request for boot parameters returns a packet that it cannot understand, the client produces a
rather cryptic error message and then aborts the boot process.

As an example, we saw the following strange behavior when a diskless Sun workstation
attempted to boot. The machine would request its Internet address using RARP, and receive
the correct reply from its boot server. It then downloaded the boot code using tftp, and sent
out a request for boot parameters. At this point, the boot sequence would abort with one of the
errors:

null domain name
invalid reply

Emulating the request for boot parameters using rpcinfo located the source of the invalid reply
quickly. Using a machine close to the diskless node, we sent out a request similar to that
broadcast during the boot sequence, looking for bootparam servers:

% rpcinfo -b bootparam 1
192.9.200.14.128.67 clover
192.9.200.1.128.68 lucy
192.9.200.4.128.79 bugs

lucy and bugs were boot and root/swap servers for diskless clients, but clover was a machine
from a different vendor. It should not have been interested in the request for boot parameters.
However, clover was running rpc.bootparamd, which made it listen for boot parameter
requests, and it used the NIS bootparams map to glean the boot information. Unfortunately,
the format of its reply was not digestible by the diskless Sun node, but its reply was the first to

Managing NFS and NIS

339

arrive. In this case, the solution merely involved turning off rpc.bootparamd by commenting
it out of the startup script on clover.

If clover supported diskless clients of its own, turning off rpc.bootparamd would not have
been an acceptable solution. To continue running rpc.bootparamd on clover, we would have
had to ensure that it never sent a reply to diskless clients other than its own. The easiest way
to do this is to give clover a short list of clients to serve, and to keep clover from using the
bootparams NIS map.[1]

[1] Solaris uses the name switch to specify the name service used by rpc.bootparamd. Remove NIS from the bootparams entry in /etc/nsswitch.conf
and remove the "+" entry from /etc/bootparams to avoid using NIS. Once bootparamd is restarted, it will no longer use the bootparams NIS map.

15.4 Incorrect directory content caching

A user of a Solaris NFS client reported having intermittent problems accessing files mounted
from a non-Unix NFS server. The Solaris NFS client tarsus was apparently able to list files
that had previously been removed by another NFS client, but was unable to access the
contents of the files. The files would eventually disappear. The NFS client that initially
removed the files did not experience any problems and the user reported that the files had
indeed been removed from the server's directory. He verified this by logging into the NFS
server and listing the contents of the exported directory.

We suspected the client tarsus was not invalidating its cached information, and proceeded to
try to reproduce the problem while capturing the NFS packets to analyze the network traffic:

[1] tarsus$ ls -l /net/inchun/export/folder
total 8
-rw-rw-rw- 1 labiaga staff 2883 Apr 10 20:03 data1
-rw-rw-rw- 1 root other 12 Apr 10 20:01 data2

[1] protium$ rm /net/inchun/export/folder/data2

[2] tarsus$ ls /net/inchun/export/folder
data1 data2
[3] tarsus$ ls -l /net/inchun/export/folder
/net/inchun/export/folder/data2: Stale NFS file handle
total 6
-rw-rw-rw- 1 labiaga staff 2883 Apr 10 20:03 data1

The first directory listing on tarsus correctly displayed the contents of the NFS directory
/net/inchun/export/folder before anything was removed. The problems began after the NFS
client protium removed the file data2. The second directory listing on tarsus continued
showing the recently removed data2 file as part of the directory, although the extended
directory listing reported a "Stale NFS filehandle" for data2.

This was a typical case of inconsistent caching of information by an NFS client. Solaris NFS
clients cache the directory content and attribute information in memory at the time the
directory contents are first read from the NFS server. Subsequent client accesses to the
directory first validate the cached information, comparing the directory's cached modification
time to the modification time reported by the server. A match in modification times indicates
that the directory has not been modified since the last time the client read it, therefore it can
safely use the cached data. On the other hand, if the modification times are different, the NFS
client purges its cache, and issues a new NFS Readdir request to the server to obtain the

Managing NFS and NIS

340

updated directory contents and attributes. Some non-Unix NFS servers are known for not
updating the modification time of directories when files are removed, leading to directory
caching problems. We used snoop to capture the NFS packets between our client and server
while the problem was being reproduced. The analysis of the snoop output should help us
determine if we're running into this caching problem.

To facilitate the discussion, we list the snoop packets preceded by the commands that
generated them. This shows the correlation between the NFS traffic and the Unix commands
that generate the traffic:

[1] tarsus $ ls -l /net/inchun/export/folder
total 8
-rw-rw-rw- 1 labiaga staff 2883 Apr 10 20:03 data1
-rw-rw-rw- 1 root other 12 Apr 10 20:01 data2

 7 0.00039 tarsus -> inchun NFS C GETATTR2 FH=FA14
 8 0.00198 inchun -> tarsus NFS R GETATTR2 OK
 9 0.00031 tarsus -> inchun NFS C READDIR2 FH=FA14 Cookie=0
10 0.00220 inchun -> tarsus NFS R READDIR2 OK 4 entries (No more)
11 0.00033 tarsus -> inchun NFS C LOOKUP2 FH=FA14 data2
12 0.00000 inchun -> tarsus NFS R LOOKUP2 OK FH=F8CD
13 0.00000 tarsus -> inchun NFS C GETATTR2 FH=F8CD
14 0.00000 inchun -> tarsus NFS R GETATTR2 OK
15 0.00035 tarsus -> inchun NFS C LOOKUP2 FH=FA14 data1
16 0.00211 inchun -> tarsus NFS R LOOKUP2 OK FH=F66F
17 0.00032 tarsus -> inchun NFS C GETATTR2 FH=F66F
18 0.00191 inchun -> tarsus NFS R GETATTR2 OK

Packets 7 and 8 contain the request and reply for attributes for the /net/inchun/export/folder
directory. The attributes can be displayed by using the -v directive:

Excerpt from:
 snoop -i /tmp/capture -p 7,8 -v
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 8 arrived at 20:45:9.75
...
NFS: ----- Sun NFS -----
NFS:
NFS: Proc = 1 (Get file attributes)
NFS: Status = 0 (OK)
NFS: File type = 2 (Directory)
NFS: Mode = 040777
NFS: Type = Directory
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: Other's permissions = rwx
NFS: Link count = 2, UID = 0, GID = -2, Rdev = 0x0
NFS: File size = 512, Block size = 512, No. of blocks = 1
NFS: File system id = 7111, File id = 161
NFS: Access time = 11-Apr-00 12:50:18.000000 GMT
NFS: Modification time = 11-Apr-00 12:50:18.000000 GMT
NFS: Inode change time = 31-Jul-96 09:40:56.000000 GMT

Packet 8 shows the /net/inchun/export/folder directory was last modified on April 11, 2000 at
12:50:18.000000 GMT. tarsus caches this timestamp to later determine when the cached

Managing NFS and NIS

341

directory contents need to be updated. Packet 9 contains the request made by tarsus for the
directory listing from inchun. Packet 10 contains inchun's reply with four entries in the
directory. A detailed view of the packets shows the four directory entries: ".", "..", "data1",
and "data2". The EOF indicator notifies the client that all existing directory entries have been
listed, and there is no need to make another NFS Readdir call:

Excerpt from:
 snoop -i /tmp/capture -p 9,10 -v
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 10 arrived at 20:45:9.74
...
NFS: ----- Sun NFS -----
NFS:
NFS: Proc = 16 (Read from directory)
NFS: Status = 0 (OK)
NFS: File id Cookie Name
NFS: 137 50171 .
NFS: 95 50496 ..
NFS: 199 51032 data1
NFS: 201 51706 data2
NFS: 4 entries
NFS: EOF = 1
NFS:

The directory contents are cached by tarsus, so that they may be reused in a future directory
listing. The NFS Lookup and NFS Getattr requests, along with their corresponding replies in
packets 11 thru 18, result from the long listing of the directory requested by ls -l. An NFS
Lookup obtains the filehandle of a directory component. The NFS Getattr requests the file
attributes of the file identified by the previously obtained filehandle.

NFS Version 2 filehandles are 32 bytes long. Instead of displaying a long and cryptic 32-byte
number, snoop generates a shorthand version of the filehandle and displays it when invoked in
summary mode. This helps you associate filehandles with file objects more easily. You can
obtain the exact filehandle by displaying the network packet in verbose mode by using the -v
option. The packet 7 filehandle FH=FA14 is really:

Excerpt from:
 snoop -i /tmp/capture -p 7 -v
NFS: ----- Sun NFS -----
NFS:
NFS: Proc = 1 (Get file attributes)
NFS: File handle = [FA14]
NFS: 0204564F4C32000000000000000000000000A10000001C4DFF20A00000000000

Next, protium, a different NFS client comes into the picture, and removes one file from the
directory previously cached by tarsus:

[1] protium $ rm /net/inchun/export/folder/data2

22 0.00000 protium -> inchun NFS C GETATTR2 FH=FA14
23 0.00000 inchun -> protium NFS R GETATTR2 OK
24 0.00000 protium -> inchun NFS C REMOVE2 FH=FA14 data2
25 0.00182 inchun -> protium NFS R REMOVE2 OK

Managing NFS and NIS

342

Packets 22 and 23 update the cached attributes of the /net/inchun/export/folder directory on
protium. Packet 24 contains the actual NFS Remove request sent to inchun, which in turn
acknowledges the successful removal of the file in packet 25.

tarsus then lists the directory in question, but fails to detect that the contents of the directory
have changed:

[2] tarsus $ ls /net/inchun/export/folder
data1 data2

39 0.00000 tarsus -> inchun NFS C GETATTR2 FH=FA14
40 0.00101 inchun -> tarsus NFS R GETATTR2 OK

This is where the problem begins. Notice that two NFS Getattr network packets are generated
as a result of the directory listing but no Readdir request. In this case, the client issues the
NFS Getattr operation to request the directory's modification time:

Excerpt from:
 snoop -i /tmp/capture -p 39,40 -v
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 40 arrived at 20:45:10.88
...
NFS: ----- Sun NFS -----
NFS:
NFS: Proc = 1 (Get file attributes)
NFS: Status = 0 (OK)
NFS: File type = 2 (Directory)
NFS: Mode = 040777
NFS: Type = Directory
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: Other's permissions = rwx
NFS: Link count = 2, UID = 0, GID = -2, Rdev = 0x0
NFS: File size = 512, Block size = 512, No. of blocks = 1
NFS: File system id = 7111, File id = 161
NFS: Access time = 11-Apr-00 12:50:18.000000 GMT
NFS: Modification time = 11-Apr-00 12:50:18.000000 GMT
NFS: Inode change time = 31-Jul-96 09:40:56.000000 GMT

The modification time of the directory is the same as the modification time before the removal
of the file! tarsus compares the cached modification time of the directory with the
modification time just obtained from the server, and determines that the cached directory
contents are still valid since the modification times are the same. The directory listing is
therefore satisfied from the cache instead of forcing the NFS client to read the updated
directory contents from the server. This explains why the removed file continues to show up
in the directory listing:

[3] tarsus $ ls -l /net/inchun/export/folder
/net/inchun/export/folder/data2: Stale NFS file handle
total 6
-rw-rw-rw- 1 labiaga staff 2883 Apr 10 20:03 data1

44 0.00000 tarsus -> inchun NFS C GETATTR2 FH=FA14
45 0.00101 inchun -> tarsus NFS R GETATTR2 OK
46 0.00032 tarsus -> inchun NFS C GETATTR2 FH=F66F

Managing NFS and NIS

343

47 0.00191 inchun -> tarsus NFS R GETATTR2 OK
48 0.00032 tarsus -> inchun NFS C GETATTR2 FH=F8CD
49 0.00214 inchun -> tarsus NFS R GETATTR2 Stale NFS file handle

The directory attributes reported in packet 45 are the same as those seen in packet 40,
therefore tarsus assumes that it can safely use the cached filehandles associated with the
cached entries of this directory. In packet 46, tarsus requests the attributes of filehandle F66F,
corresponding to the data1 file. The server replies with the attributes in packet 47. tarsus then
proceeds to request the attributes of filehandle F8CD, which corresponds to the data2 file.
The server replies with a "Stale NFS filehandle" error because there is no file on the server
associated with the given filehandle. This problem would never have occurred had the server
updated the modification time after removing the file causing tarsus to detect that the
directory had been changed.

Directory caching works nicely when the NFS server obeys Unix directory semantics. Many
non-Unix NFS servers provide such semantics even if they have to submit themselves to
interesting contortions. Having said this, there is nothing in the NFS protocol specification
that requires the modification time of a directory to be updated when a file is removed. You
may therefore need to disable Solaris NFS directory caching if you're running into problems
interacting with non-Unix servers. To permanently disable NFS directory caching, add this
line to /etc/system:

set nfs:nfs_disable_rddir_cache = 0x1

The Solaris kernel reads /etc/system at startup and sets the value of nfs_disable_rddir_cache
to 0x1 in the nfs kernel module. The change takes effect only after reboot. Use adb to disable
caching during the current session, postponing the need to reboot. You still need to set the
tunable in /etc/system to make the change permanent through reboots:

aqua# adb -w -k /dev/ksyms /dev/mem
physmem 3ac8
nfs_disable_rddir_cache/W1
nfs_disable_rddir_cache: 0x0 = 0x1

adb is an interactive assembly level debugger that enables you to consult and modify the
kernel's memory contents. The -k directive instructs adb to perform kernel memory mapping
accessing the kernel's memory via /dev/mem, and obtaining the kernel's symbol table from
/dev/ksyms. The -w directive allows you to modify the kernel memory contents. A word of
caution: adb is a power tool that will cause serious data corruption and potential system
panics when misused.

15.5 Incorrect mount point permissions

Not all problems involving NFS filesystems originate on the network or other fileservers.
NFS filesystems closely resemble local filesystems, consequently common local system
administration concepts and problem solving techniques apply to NFS mounted filesystems as
well. A user reported problems resolving the "current directory" when inside an NFS mounted
filesystem. The filesystem was automounted using the following direct map:

Excerpt from /etc/auto_direct:

/packages -ro aqua:/export

Managing NFS and NIS

344

The user was able to cd into the directory and list the directory contents except for the ".."
entry. He was not able to execute the pwd command when inside the NFS directory either:

$ cd /packages
$ ls -la
./..: Permission denied
total 6
drwxr-xr-x 4 root sys 512 Oct 1 12:16 ./
drwxr-xr-x 2 root other 512 Oct 1 12:16 pkg1/
drwxr-xr-x 2 root other 512 Oct 1 12:16 pkg2/
$ pwd
pwd: cannot determine current directory!

He performed the same procedure as superuser and noticed that it worked correctly:

cd /packages
ls -la
total 8
drwxr-xr-x 4 root sys 512 Oct 1 12:16 .
drwxr-xr-x 38 root root 1024 Oct 1 12:14 ..
drwxr-xr-x 2 root other 512 Oct 1 12:16 pkg1
drwxr-xr-x 2 root other 512 Oct 1 12:16 pkg2
pwd
/packages
ls -ld /packages
drwxr-xr-x 4 root sys 512 Oct 1 12:16 /packages

Note that the directory permission bits for /packages are 0755, giving read and execute
permission to everyone, in addition to write permission to root, its owner. Since the filesystem
permissions were not the problem, he proceeded to analyze the network traffic, suspecting
that the NFS server could be returning the "Permission denied" error. snoop reported two
network packets when a regular user executed the pwd command:

1 0.00000 caramba -> aqua NFS C GETATTR3 FH=0222
2 0.00050 aqua -> caramba NFS R GETATTR3 OK

Packet 1 contains caramba 's request for attributes for the current directory having filehandle
FH=0222. Packet 2 contains the reply from the NFS server aqua:

Excerpt of packet 2:

IP: Source address = 131.40.52.125, aqua
IP: Destination address = 131.40.52.223, caramba
IP: No options
IP:

...

NFS: ----- Sun NFS -----
NFS:
NFS: Proc = 1 (Get file attributes)
NFS: Status = 0 (OK)
NFS: File type = 2 (Directory)
NFS: Mode = 0755
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = r-x

Managing NFS and NIS

345

NFS: Other's permissions = r-x
NFS: Link count = 4, User ID = 0, Group ID = 3
NFS: File size = 512, Used = 1024
NFS: Special: Major = 0, Minor = 0
NFS: File system id = 584115552256, File id = 74979
NFS: Last access time = 03-Oct-00 00:41:55.160003000 GMT
NFS: Modification time = 01-Oct-00 19:16:32.399997000 GMT
NFS: Attribute change time = 01-Oct-00 19:16:32.399997000 GMT
NFS:
NFS:

Along with other file attributes, the NFS portion of the packet contains the mode bits for
owner, group and other. These mode bits were the same as those reported by the ls -la
command, so the problem was not caused by the NFS server either.

Because this was an automounted filesystem, we suggested rebooting caramba in single-user
mode to look at the mount point itself, before the automounter had a chance to cover it with
an autofs filesystem. At this point, we were able to uncover the source of the problem:

 Single-user boot:
ls -ld /packages
drwx------ 2 root staff 512 Oct 1 12:14 /packages

The mount point had been created with 0700 permissions, refusing access to anyone but the
superuser. The 0755 directory permission bits previously reported in multi-user mode were
those of the NFS filesystem mounted on the /packages mount point. The NFS filesystem
mount was literally covering up the problem.

In Solaris, a lookup of ".." in the root of a filesystem results in a lookup of ".." in the mount
point sitting under the filesystem. This explains why users other than the superuser were
unable to access the ".." directory—they did not have permission to open the directory to read
and traverse it. The pwd command failed as well when it tried to open the ".." directory in
order to read the contents of the parent directory on its way to the top of the root filesystem.
The misconstrued permissions of the mount point were the cause of the problem, not the
permissions of the NFS filesystem covering the mount point. Changing the permissions of the
mount point to 0755 fixed the problem.

15.6 Asynchronous NFS error messages

This final section provides an in-depth look at how an NFS client does write-behind, and what
happens if one of the write operations fails on the remote server. It is intended as an
introduction to the more complex issues of performance analysis and tuning, many of which
revolve around similar subtleties in the implementation of NFS.

When an application calls read() or write() on a local or Unix filesystem (UFS) file, the
kernel uses inode and indirect block pointers to translate the offset in the file into a physical
block number on the disk. A low-level physical I/O operation, such as "write this buffer of
1024 bytes to physical blocks 5678 and 5679" is then passed to the disk device driver. The
actual disk operation is scheduled, and when the disk interrupts, the driver interrupt routine
notes the completion of the current operation and schedules the next. The block device driver
queues the requests for the disk, possibly reordering them to minimize disk head movement.

Managing NFS and NIS

346

Once the disk device driver has a read or write request, only a media failure causes the
operation to return an error status. Any other failures, such as a permission problem, or the
filesystem running out of space, are detected by the filesystem management routines before
the disk driver gets the request. From the point of view of the read() and write() system calls,
everything from the filesystem write routine down is a black box: the application isn't
necessarily concerned with how the data makes it to or from the disk, as long as it does so
reliably. The actual write operation occurs asynchronously to the application calling write().
If a media error occurs — for example, the disk has a bad sector brewing — then the media-
level error will be reported back to the application during the next write() call or during the
close() of the file containing the bad block. When the driver notices the error returned by the
disk controller, it prints a media failure message on the console.

A similar mechanism is used by NFS to report errors on the "virtual media" of the remote
fileserver. When write() is called on an NFS-mounted file, the data buffer and offset into the
file are handed to the NFS write routine, just as a UFS write calls the lower-level disk driver
write routine. Like the disk device driver, NFS has a driver routine for scheduling write
requests: each new request is put into the page cache. When a full page has been written, it is
handed to an NFS async thread that performs the RPC call to the remote server and returns a
result code. Once the request has been written into the local page cache, the write() system
call returns to the application — just as if the application was writing to a local disk. The
actual NFS write is synchronous to the NFS async thread, allowing these threads to perform
write-behind. A similar process occurs for reads, where the NFS async thread performs some
read-ahead by fetching NFS buffers in anticipation of future read() system calls. See Section
7.3.2 for details on the operation of the NFS async threads.

Occasionally, an NFS async thread detects an error when attempting to write to a remote
server, and the error is printed (by the NFS async thread) on the client's console. The scenario
is identical to that of a failing disk: the write() system call has already returned, so the error
must be reported on the console in the next similar system call.

The format of these error messages is:

NFS write error on host mahimahi: No space left on device.
(file handle: 800006 2 a0000 3ef 12e09b14 a0000 2 4beac395)

The number of potential failures when writing to an NFS-mounted disk exceeds the few
media-related errors that would cause a UFS write to fail. Table 15-1 gives some examples.

Table 15-1. NFS-related errors
Error Typical Cause
Permission denied Superuser cannot write to remote filesystem.
No space left on device Remote disk is full.
Stale filehandle File or directory has been removed on the server without the client's knowledge.

Both the "Permission denied" and the "No space left on device" errors would have been
detected on a local filesystem, but the NFS client has no way to determine if a write operation
will succeed at some future time (when the NFS async thread eventually sends it to the
server). For example, if a client writes out 1KB buffers, then its NFS async threads write out
8KB buffers to the server on every 8th call to write(). Several seconds may go by between the
time the first write() system call returns to the application and the time that the eighth call

Managing NFS and NIS

347

forces the NFS async thread to perform an RPC to the NFS server. In this interval, another
process may have filled up the server's disk with some huge write requests, so the NFS async
thread's attempt to write its 8-KB buffer will fail.

If you are consistently seeing NFS writes fail due to full filesystems or permission problems,
you can usually chase down the user or process that is performing the writes by identifying
the file being written. Unfortunately, Solaris does not provide any utility to correlate the
filehandles printed in the error messages with the pathname of the file on the remote server.
Filehandles are generated by the NFS server and handed opaquely to the NFS client. The NFS
client cannot make any assumptions as to the structure or contents of the filehandle, enabling
servers to change the way they generate the filehandle at any time. In practice, the structure of
a Solaris NFS filehandle has changed little over time. The following script takes as input the
filehandle printed by the NFS client and generates the corresponding server filename:[2]

[2] Thanks to Brent Callaghan for providing the basis for this script.

#!/bin/sh

 if [$# -ne 8]; then
 echo "Usage: fhfind <filehandle> e.g."
 echo
 echo "fhfind 1540002 2 a0000 4d 48df4455 a0000 2 25d1121d"
 exit 1
fi

FSID=$1
INUMHEX='echo $4 | tr [a-z] [A-Z]'

ENTRY='grep ${FSID} /etc/mnttab | grep -v lofs'
if ["${ENTRY}" = ""] ; then
 echo "Cannot find filesystem for devid ${FSID}"
 exit 1
fi
set - ${ENTRY}
 MNTPNT=$2

INUM='echo "ibase=16;${INUMHEX}" | bc'

echo "Searching ${MNTPNT} for inode number ${INUM} ..."
echo

find ${MNTPNT} -mount -inum ${INUM} -print 2>/dev/null

The script takes the expanded filehandle string from the NFS write error and maps it to the
full pathname of the file on the server. The script is to be executed on the NFS server:

mahimahi# fhfind 800006 2 a0000 3ef 12e09b14 a0000 2 4beac395
Searching /spare for inode number 1007 ...

/spare/test/info/data

The eight values on the command line are the eight hex digits in the filehandle reported in the
NFS error message. The script makes strict assumptions about the contents of the Solaris
server filehandle. As mentioned before, the OS vendor is free to change the structure of the
filehandle at any time, so there's no guarantee this script will work on your particular
configuration. The script takes advantage of the fact that the filehandle contains the inode

Managing NFS and NIS

348

number of the file in question, as well as the device id of the filesystem in which the file
resides. The script uses the device id in the filehandle (FSID in line 10) to obtain the
filesystem entry from /etc/mnttab (line 13). In line 11, the script obtains the inode number of
the file (in hex) from the filehandle, and applies the tr utility to convert all lowercase
characters into uppercase characters for use with the bc calculator. Line 18 and 19 extract the
mount point from the filesystem entry, to later use it as the starting point of the search. Line
21 takes the hexadecimal inode number obtained from the filehandle, and converts it to its
decimal equivalent for use by find. In line 26, we finally begin the search for the file matching
the inode number. Although find uses the mount point as the starting point of the search, a
scan of a large filesystem may take a long time. Since there's no way to terminate the find
upon finding the file, you may want to kill the process after it prints the path.

Throughout this chapter, we used tools presented in previous chapters to debug network and
local problems. Once you determine the source of the problem, you should be able to take
steps to correct and avoid it. For example, you can avoid delayed client write problems by
having a good idea of what your clients are doing and how heavily loaded your NFS servers
are. Determining your NFS workload and optimizing your clients and servers to make the best
use of available resources requires tuning the network, the clients, and the servers. The next
few chapters present NFS tuning and benchmarking techniques.

Managing NFS and NIS

349

Chapter 16. Server-Side Performance Tuning
Performance analysis and tuning, particularly when it involves NFS and NIS, is a topic
subject to heated debate. The focus of the next three chapters is on the analysis techniques and
configuration options used to identify performance bottlenecks and improve overall system
response time. Tuning a network and its servers is similar to optimizing a piece of user-
written code. Finding the obvious flaws and correcting poor programming habits generally
leads to marked improvements in performance. Similarly, there is a definite and noticeable
difference between networked systems with abysmal performance and those that run
reasonably well; those with poor response generally suffer from "poor habits" in network
resource use or configuration. It's easy to justify spending the time to eliminate major flaws
when the return on your time investment is so large.

However, all tuning processes are subject to a law of diminishing returns. Getting the last 5-
10% out of an application usually means hand-rolling loops or reading assembly language
listings. Fine-tuning a network server to an "optimum" configuration may yield that last bit of
performance, but the next network change or new client added to the system may make
performance of the finely tuned system worse than that of an untuned system. If other aspects
of the computing environment are neglected as a result of the incremental server tuning, then
the benefits of fine-tuning certainly do not justify its costs.

Our approach will be to make things "close enough for jazz." Folklore has it that jazz
musicians take their instruments from their cases, and if all of the keys, strings, and valves
look functional, they start playing music. Fine-tuning instruments is frowned upon, especially
when the ambient street noise masks its effects. Simply ensuring that network and server
performance are acceptable — and remain consistently acceptable in the face of network
changes — is often a realistic goal for the tuning process.

As a network manager, you are also faced with the task of balancing the demands of
individual users against the global constraints of the network and its resources. Users have a
local view: they always want their machines to run faster, but the global view of the system
administrator must be to tune the network to meet the aggregate demands of all users. There
are no constraints in NFS or NIS that keep a client from using more than its fair share of
network resources, so NFS and NIS tuning requires that you optimize both the servers and the
ways in which the clients use these servers.[1]

[1] Add-on products such as the Solaris Bandwidth Manager allow you to specify the amount of network bandwidth on specified ports, allowing you to
restrict the amount of network resources used by NFS. The Sun BluePrints Resource Management book published by Sun Microsystems Press
provides good information on the Solaris Bandwidth Manager.

16.1 Characterization of NFS behavior

You must be able to characterize the demands placed on your servers as well as available
configuration options before starting the tuning process. You'll need to know the quantities
that you can adjust, and the mechanisms used to measure the success of any particular change.
Above all else, it helps to understand the general behavior of a facility before you begin to
measure it. In the first part of this book, we have examined individual NFS and NIS requests,
but haven't really looked at how they are generated in "live" environments.

NFS requests exhibit randomness in two ways: they are typically generated in bursts, and the
types of requests in each burst usually don't have anything to do with each other. It is very

Managing NFS and NIS

350

rare to have a steady, equally spaced stream of requests arriving at any server. The typical
NFS request generation pattern involves a burst of requests as a user loads an application from
an NFS server into memory or when the application reads or writes a file. These bursts are
followed by quiet periods when the user is editing, thinking, or eating lunch. In addition, the
requests from one client are rarely coordinated with those from another; one user may be
reading mail while another is building software. Consecutive NFS requests received by a
server are likely to perform different functions on different parts of one or more disks.

NFS traffic volumes also vary somewhat predictably over the course of a day. In the early
morning, many users read their mail, placing a heavier load on a central mail server; at the
end of the day most file servers will be loaded as users wrap up their work for the day and
write out modified files. Perhaps the most obvious case of time-dependent server usage is a
student lab. The hours after class and after dinner are likely to be the busiest for the lab
servers, since that's when most people gravitate toward the lab.

Simply knowing the sheer volume of requests won't help you characterize your NFS work
load. It's easy to provide "tremendous" NFS performance if only a few requests require disk
accesses. Requests vary greatly in the server resources they need to be completed. "Big" RPC
requests force the server to read or write from disk. In addition to the obvious NFS read and
write requests, some symbolic link resolutions require reading information from disk. "Small"
NFS RPC requests simply touch file attribute information, or the directory name look-up
cache, and can usually be satisfied without a disk access if the server has previously cached
the attribute information.

The average percentage of all RPC calls of each type is the "NFS RPC mixture," and it
defines the kind of work the server is being asked to do, as opposed to simply the volume of
work presented to it. The RPC mixture indicates possible areas of improvement, or flags
obvious bottlenecks. It is important to determine if your environment is data- or attribute-
intensive, since this will likely dictate the network utilization and the type of tuning required
on the client and server.

A data-intensive environment is one in which large file transfers dominate the NFS traffic.
Transfers are considered large if the size of the files is over 100 MB. Examples of these
environments include computer aided design and image processing. An attribute-intensive
environment, on the other hand, is dominated by small file and meta-data access. The NFS
clients mostly generate traffic to obtain directory contents, file attributes, and the data
contents of small files. For example, in a software development environment, engineers edit
relatively small source files, header files, and makefiles. The compilation and linkage process
involves a large number of attribute checks that verify the modification time of the files to
decide when new object files need to be rebuilt, resulting in multiple frequent small file reads
and writes. Because of their nature, attribute-intensive environments will benefit greatly from
aggressive caching of name-lookup information on the server, and a reduced network
collision rate. On the other hand, a high-bandwidth network and a fast server with fast disks
will most benefit data-intensive applications due to their dependence on data access. Studies
have shown that most environments are attribute intensive. Once you have characterized your
NFS workload, you will need to know how to measure server performance as seen by NFS
clients.

Managing NFS and NIS

351

16.2 Measuring performance

The NFS RPC mixture is useful for tuning the server to handle the load placed on it, but the
real measure of success is whether the clients see a faster server or not. Users may still get
"server not responding" messages after some bottlenecks are eliminated because you haven't
removed all of the constraints, or because something other than the server is causing
performance problems.

Measuring the success of a tuning effort requires you to measure the average response time as
seen by an average client. There are two schools of thought on how to determine this
threshold for this value:

• Use an absolute value for the "threshold of pain" in average server response time. The
system begins to appear sluggish as response time approaches 40 milliseconds. As of
this writing, typical NFS servers are capable of providing response times well below
this threshold, in the range of one to ten milliseconds, and they keep getting faster.

• Base the threshold on the performance of the server with a minimal load, such as only
one client. When the server's performance exceeds twice this "ideal" response time,
the server has become loaded.

It's easy to measure the average server response time on a client by dividing the number of
NFS RPC calls made by the time in which they were completed. Use the nfsstat utility to
track the number of NFS calls, and a clock or the Unix time command to measure the elapsed
time in a benchmark or network observation. Obviously, this must be done over a short, well-
monitored period of time when the client is generating NFS requests nearly continuously. Any
gap in the NFS requests will increase the average server response time. You can also use NFS
benchmark traffic generators such as the SPEC [2] SFS97 RPC-generating benchmark, or
review the smoothed response times recorded by some versions of nfsstat -m.

[2] The Standard Performance Evaluation Corporation (http://www.spec.org) mission is to "establish, maintain, and endorse a standardized set of
relevant benchmarks and metrics for performance evaluation of modern computer systems."

You'll get different average response times for different RPC mixtures, since disk-intensive
client activity is likely to raise the average response time. However, it is the average response
that matters most. The first request may always take a little longer, as caches get flushed and
the server begins fetching data from a new part of the disk. Over time, these initial bumps
may be smoothed out, although applications with very poor locality of reference may suffer
more of them. You must take the average over the full range of RPC operations, and measure
response over a long enough period of time to iron out any short-term fluctuations.

Users are most sensitive to the sum of response times for all requests in an operation. One or
two slow responses may not be noticed in the sequence of an operation with several hundred
NFS requests, but a train of requests with long response times will produce complaints of
system sluggishness.

An NFS server must be able to handle the traffic bursts without a prolonged increase in
response time. The randomness of the NFS requests modulates the server's response time
curve, subject to various constraints on the server. Disk bandwidth and CPU scheduling
constraints can increase the time required for the server's response time to return to its average
value.

Managing NFS and NIS

352

Ideally, the average response time curve should remain relatively "flat" as the number of NFS
requests increases. During bursts of NFS activity, the server's response time may increase, but
it should return to the average level quickly. If a server requires a relatively long time to
recover from the burst, then its average response time will remain inflated even when the
level of activity subsides. During this period of increased response time, some clients may
experience RPC timeouts, and retransmit their requests. This additional load increases the
server's response time again, increasing the total burst recovery time.

NFS performance does not scale linearly above the point at which a system constraint is hit.
The NFS retransmission algorithm introduces positive feedback when the server just can't
keep up with the request arrival rate. As the average response time increases, the server
becomes even more loaded from retransmitted requests. A slow server removes some of the
random elements from the network: the server's clients that are retransmitting requests
generate them with a fairly uniform distribution; the clients fall into lock step waiting for the
server, and the server itself becomes saturated. Tuning a server and its clients should move the
"knee" of the performance curve out as far as possible, as shown in Figure 16-1.

Figure 16-1. Ideal versus actual server response

Knowing what to measure and how to measure it lets you evaluate the relative success of your
tuning efforts, and provides valuable data for evaluating NFS server benchmarks.

16.3 Benchmarking

Benchmarks of NFS performance should be judged in terms of their realistic reproduction of
the NFS call arrival rates and RPC distribution. A benchmark that sends out a steady,
regularly spaced stream of NFS requests tests only how well a server operates under ideal
conditions. If you can't run actual client workloads on a network, there are a few conditions to
be aware of:

• Ensure that the RPC mixture of the benchmark matches that of your NFS clients.
Running a benchmark that does a large percentage of write operations tells you little
about how NFS servers perform if your clients mostly read files. Conversely, if you
have a large percentage of write operations, the wrong benchmark RPC mixture
overstates expected server performance. Use the nfsstat tool to determine accurate

Managing NFS and NIS

353

RPC mixtures for your servers. You may want to run several benchmarks, testing
performance with client loads simulating normal and heavy conditions. The SPEC
website, http://www.spec.org/, contains information about the SFS97 RPC-generating
benchmark, which is widely used by NFS vendors to compare their servers to one
another.

• Watch out for cache effects. Clients cache parts of files that have been recently read
and not modified. Repeatedly reading the same file may only generate a fraction of the
desired number of read RPC requests.

• When gauging a particular limit, such as the maximum number of short RPCs or the
maximum NFS disk transfer rate, try to isolate the quantity under test as much as
possible. Stress testing is often useful for determining a server's behavior under severe
loads, but it helps to stress only one component at a time.

The last point rings of Heisenberg's Uncertainty Principle. In short, Heisenberg stated that the
process of observing something changes it. A goal of NFS performance measurement should
be to change the actual performance being measured as little as possible. Using networked
measurement tools that add to the traffic level on a congested network, or running suites of
utilities that drain the server's CPU, color the results of any benchmarks.

When benchmarking a network router or gateway, ensure that you are measuring the desired
capacity and not another constraint. To determine maximum IP packet forwarding rates, for
example, you should put a packet generator on one side of the router and a packet counting
device such as a LAN analyzer on the other. Timing rpc transfers of large files through the
router gives a fair indication of maximum disk transfer rates or maximum network data
transfer rates, but tells you little about the router's network interface because the packets
forwarded are not "typical" in size.

The goal of the next section is to indicate the common areas in which performance
bottlenecks are created. The remainder of this chapter covers techniques for relaxing these
constraints on the server as much as possible. The majority of the following discussion
concerns NFS, although NIS-specific topics will be introduced where applicable.

16.4 Identifying NFS performance bottlenecks

The stateless design of NFS makes crash recovery simple, but it also makes it impossible for a
client to distinguish between a server that is slow and one that has crashed. In either case, the
client does not receive an RPC reply before the RPC timeout period expires. Clients can't tell
why a server appears slow, either: packets could be dropped by the network and never reach
the server, or the server could simply be overloaded. Using NFS performance figures alone, it
is hard to distinguish a slow server from an unreliable network. Users complain that "the
system is slow," but there are several areas that contribute to system sluggishness.

An overloaded server responds to all packets that it enqueues for its nfsd daemons, perhaps
dropping some incoming packets due to the high load. Those requests that are received
generate a response, albeit a response that arrives sometime after the client has retransmitted
the request. If the network itself is to blame, then packets may not make it from the client or
server onto the wire, or they may vanish in transit between the two hosts.

Managing NFS and NIS

354

16.4.1 Problem areas

The potential bottlenecks in the client-server relationship are:

Client network interface

The client may not be able to transmit or receive packets due to hardware or
configuration problems at its network interface. We will explore client-side
bottlenecks in Chapter 18.

Network bandwidth

An overly congested network slows down both client transmissions and server replies.
Network partitioning hardware installed to reduce network saturation adds delays to
roundtrip times, increasing the effective time required to complete an RPC call. If the
delays caused by network congestion are serious, they contribute to RPC timeouts. We
explore network bottlenecks in detail in Chapter 17.

Server network interface

A busy server may be so flooded with packets that it cannot receive all of them, or it
cannot queue the incoming requests in a protocol-specific structure once the network
interface receives the packet. Interrupt handling limitations can also impact the ability
of the server to pull packets in from the network.

Server CPU loading

NFS is rarely CPU-constrained. Once a server has an NFS request, it has to schedule
an nfsd thread to have the appropriate operation performed. If the server has adequate
CPU cycles, then the CPU does not affect server performance. However, if the server
has few free CPU cycles, then scheduling latencies may limit NFS performance;
conversely a system that is providing its maximum NFS service will not make a good
CPU server. CPU loading also affects NIS performance, since a heavily loaded system
is slower to perform NIS map lookups in response to client requests.

Server memory usage

NFS performance is somewhat related to the size of the server's memory, if the server
is doing nothing but NFS. NFS will use either the local disk buffer cache (in systems
that do not have a page-mapped VM system) or free memory to cache disk pages that
have recently been read from disk. Running large processes on an NFS server hurts
NFS performance. As a server runs out of memory and begins paging, its performance
as either an NIS or NFS server suffers. Disk bandwidth is wasted in a system that is
paging local applications, consumed by page fault handling rather than NFS requests.

Server disk bandwidth

This area is the most common bottleneck: the server simply cannot get data to or from
the disks quickly enough. NFS requests tend to be random in nature, exhibiting little
locality of reference for a particular disk. Many clients mounting filesystems from a

Managing NFS and NIS

355

server increase the degree of randomness in the system. Furthermore, NFS is stateless,
so NFS Version 2 write operations on the server must be committed to disk before the
client is notified that the RPC call completed. This synchronous nature of NFS write
operations further impairs performance, since caching and disk controller ordering will
not be utilized to their fullest extent. NFS Version 3 eases this constraint with the use
of safe asynchronous writes, which are described in detail in the next section.

Configuration effects

Loosely grouped in this category are constrictive server kernel configurations, poor
disk balancing, and inefficient mount point naming schemes. With poor
configurations, all services operate properly but inefficiently.

16.4.2 Throughput

The next two sections summarize NFS throughput issues.

16.4.2.1 NFS writes (NFS Version 2 versus NFS Version 3)

Write operations over NFS Version 2 are synchronous, forcing servers to flush data to disk[3]
before a reply to the NFS client can be generated. This severely limits the speed at which
synchronous write requests can be generated by the NFS client, since it has to wait for
acknowledgment from the server before it can generate the next request. NFS Version 3
overcomes this limitation by introducing a two-phased commit write operation. The NFS
Version 3 client generates asynchronous write requests, allowing the server to acknowledge
the requests without requiring it to flush the data to disk. This results in a reduction of the
round-trip time between the client and server, allowing requests to be sent more quickly.
Since the server no longer flushes the data to disk before it replies, the data may be lost if the
server crashes or reboots unexpectedly. The NFS Version 3 client assumes the responsibility
of recovering from these conditions by caching a copy of the data. The client must first issue a
commit operation for the data to the server before it can flush its cached copy of the data. In
response to the commit request, the server either ensures the data has been written to disk and
responds affirmatively, or in the case of a crash, responds with an error causing the client to
synchronously retransmit the cached copy of the data to the server. In short, the client is still
responsible for holding on to the data until it receives acknowledgment from the server
indicating that the data has been flushed to disk.

[3] The effect of NVRAM is discussed in Section 16.5.4.2 later in this chapter.

For all practical purposes, the NFS Version 3 protocol removes any limitations on the size of
the data block that can be transmitted, although the data block size may still be limited by the
underlying transport. Most NFS Version 3 implementations use a 32 KB data block size. The
larger NFS writes reduce protocol overhead and disk seek time, resulting in much higher
sequential file access.

16.4.2.2 NFS/TCP versus NFS/UDP

TCP handles retransmissions and flow control for NFS, requiring only individual packets to
be retransmitted in case of loss, and making NFS practical over lossy and wide area network
practical. In contrast, UDP requires the whole NFS operation to be retransmitted if one or
more packets is lost, making it impractical over lossy networks. TCP allows read and write

Managing NFS and NIS

356

operations to be increased from 8 KB to 32 KB. By default, Solaris clients will attempt to
mount NFS filesystems using NFS Version 3 over TCP when supported by the server. Note
that workloads that mainly access attributes or consist of short reads will benefit less from the
larger transfer size, and as such you may want to reduce the default read size block by using
the rsize=n option of the mount command. This is explored in more detail in Chapter 18.

16.4.3 Locating bottlenecks

Given all of the areas in which NFS can break down, it is hard to pick a starting point for
performance analysis. Inspecting server behavior, for example, may not tell you anything if
the network is overly congested or dropping packets. One approach is to start with a typical
NFS client, and evaluate its view of the network's services. Tools that examine the local
network interface, the network load perceived by the client, and NFS timeout and
retransmission statistics indicate whether the bulk of your performance problems are due to
the network or the NFS servers.

In this and the next two chapters, we look at performance problems from excessive server
loading to network congestion, and offer suggestions for easing constraints at each of the
problem areas outlined above. However, you may want to get a rough idea of whether your
NFS servers or your network is the biggest contributor to performance problems before
walking through all diagnostic steps. On a typical NFS client, use the nfsstat tool to compare
the retransmission and duplicate reply rates:

% nfsstat -rc
Client rpc:
Connection oriented:
calls badcalls badxids timeouts newcreds badverfs
1753584 1412 18 64 0 0
timers cantconn nomem interrupts
0 1317 0 18
Connectionless:
calls badcalls retrans badxids timeouts newcreds
12443 41 334 80 166 0
badverfs timers nomem cantsend
0 4321 0 206

The timeout value indicates the number of NFS RPC calls that did not complete within the
RPC timeout period. Divide timeout by calls to determine the retransmission rate for this
client. We'll look at an equation for calculating the maximum allowable retransmission rate on
each client in Section 18.1.3.

If the client-side RPC counts for timeout and badxid are close in value, the network is healthy.
Requests are making it to the server but the server cannot handle them and generate replies
before the client's RPC call times out. The server eventually works its way through the
backlog of requests, generating duplicate replies that increment the badxid count. In this case,
the emphasis should be on improving server response time.

Alternatively, nfsstat may show that timeout is large while badxid is zero or negligible. In this
case, packets are never making it to the server, and the network interfaces of client and server,
as well as the network itself, should be examined. NFS does not query the lower protocol
layers to determine where packets are being consumed; to NFS the entire RPC and transport
mechanisms are a black box. Note that NFS is like spray in this regard — it doesn't matter

Managing NFS and NIS

357

whether it's the local host's interface, network congestion, or the remote host's interface that
dropped the packet — the packets are simply lost. To eliminate all network-related effects,
you must examine each of these areas.

16.5 Server tuning

If the server is not able to field new requests or efficiently schedule and handle those that it
does receive, then overall performance suffers. In some cases, the only way to rectify the
problem is to add a new server or upgrade existing hardware. However, identification of the
problem areas should be a prerequisite for any hardware changes, and some analyses may
point to software configuration changes that provide sufficient relief. The first area to
examine is the server's CPU utilization.

16.5.1 CPU loading

The CPU speed of a pure NFS server is rarely a constraining factor. Once the nfsd thread gets
scheduled, and has read and decoded an RPC request, it doesn't do much more within the NFS
protocol that requires CPU cycles. Other parts of the system, such as the Unix filesystem and
cache management code, may use CPU cycles to perform work given to them by NFS
requests. NFS usually poses a light load on a server that is providing pure NFS service.
However, very few servers are used solely for NFS service. More common is a central server
that performs mail spool and delivery functions, serves telnet, and provides NFS file service.

There are two aspects to CPU loading: increased nfsd thread scheduling latency, and
decreased performance of server-resident, CPU-bound processes. Normally, the nfsd threads
will run as soon as a request arrives, because they are running with a kernel process priority
that is higher than that of all user processes. However, if there are other processes doing I/O,
or running in the kernel (doing system calls) the latency to schedule the nfsd threads is
increased. Instead of getting the CPU as soon as a request arrives, the nfsd thread must wait
until the next context switch, when the process with the CPU uses up its time slice or goes to
sleep. Running an excessive number of interactive processes on an NFS server will generate
enough I/O activity to impact NFS performance. These loads affect a server's ability to
schedule its nfsd threads; latency in scheduling the threads translates into decreased NFS
request handling capacity since the nfsd threads cannot accept incoming requests as quickly.
Systems with more than one CPU have additional horse-power to schedule and run its
applications and nfsd threads. Many SMP NFS servers scale very well as CPUs are added to
the configuration. In many cases doubling the number of CPUs nearly doubles the maximum
throughput provided by the NFS server.

The other aspect of CPU loading is the effect of nfsd threads on other user-level processes.
The nfsd threads run entirely in the kernel, and therefore they run at a higher priority than
other user-level processes. nfsd threads take priority over other user-level processes, so CPU
cycles spent on NFS activity are taken away from user processes. If you are running CPU-
bound (computational) processes on your NFS servers, they will not impact NFS
performance. Instead, handling NFS requests cripples the performance of the CPU-bound
processes, since the nfsd threads always get the CPU before they do.

CPU loading is easy to gauge using any number of utilities that read the CPU utilization
figures from the kernel. vmstat is one of the simplest tools that breaks CPU usage into user,
system, and idle time components:

Managing NFS and NIS

358

% vmstat 10
 procs memory page disk faults cpu
 r b w swap free re mf pi po fr de sr dd f0 s0 -- in sy cs us sy
id
 ...Ignore first line of output
 0 0 34 667928 295816 0 0 0 0 0 0 0 1 0 0 0 174 126 73 0 1
99

The last three columns show where the CPU cycles are expended. If the server is CPU bound,
the idle time decreases to zero. When nfsd threads are waiting for disk operations to complete,
and there is no other system activity, the CPU is idle, not accumulating cycles in system
mode. The system column shows the amount of time spent executing system code, exclusive
of time waiting for disks or other devices. If the NFS server has very little (less than 10%)
CPU idle time, consider adding CPUs, upgrading to a faster server, or moving some CPU-
bound processes off of the NFS server.

The "pureness" of NFS service provided by a machine and the type of other work done by the
CPU determines how much of an impact CPU loading has on its NFS response time. A
machine used for print spooling, hardwire terminal server, or modem line connections, for
example, is forced to handle large numbers of high-priority interrupts from the serial line
controllers. If there is a sufficient level of high-priority activity, the server may miss incoming
network traffic. Use iostat, vmstat, or similar tools to watch for large numbers of interrupts.
Every interrupt requires CPU time to service it, and takes away from the CPU availability for
NFS.

If an NFS server must be used as a home for terminals, consider using a networked terminal
server instead of hardwired terminals.[4] The largest advantage of terminal servers is that they
can accept terminal output in large buffers. Instead of writing a screenful of output a character
at a time over a serial line, a host writing to a terminal on a terminal server sends it one or two
packets containing all of the output. Streamlining the terminal and NFS input and output
sources places an additional load on the server's network interface and on the network itself.
These factors must be considered when planning or expanding the base of terminal service.

[4] A terminal server has RS-232 ports for terminal connections and runs a simple ROM monitor that connects terminal ports to servers over telnet
sessions. Terminal servers vary significantly: some use RS-232 DB-25 connectors, while others have RJ-11 phone jacks with a variable number of
ports.

Along these lines, NFS servers do not necessarily make the best gateway hosts. Each fraction
of its network bandwidth that is devoted to forwarding packets or converting protocols is
taken away from NFS service. If an NFS server is used as a router between two or more
networks, it is possible that the non-NFS traffic occludes the NFS packets. The actual
performance effects, if any, will be determined by the bandwidth of the server's network
interfaces and other CPU loading factors.

16.5.2 NFS server threads

The default number of nfsd threads is chosen empirically by the system vendor, and provides
average performance under average conditions. The number of threads is specified as an
argument to the nfsd daemon when it is started from the boot scripts:

/usr/lib/nfs/nfsd -a 16

This example starts 16 kernel nfsd threads.

Managing NFS and NIS

359

In Solaris, the nfsd daemon creates multiple kernel threads that perform the actual filesystem
operations. It exists as a user-level process in order to establish new connections to clients,
allowing a server to accept more NFS requests while other nfsd threads are waiting for a disk
operation to complete. Increasing the number of server-side threads improves NFS
performance by allowing the server to grab incoming requests more quickly. Increasing nfsd
threads without bound can adversely affect other system resources by dedicating excessive
compute resources to NFS, making the optimal choice an exercise in observation and tuning.

16.5.2.1 Context switching overhead

All nfsd threads run in the kernel and do not context switch in the same way as user-level
processes do. The two major costs associated with a context switch are loading the address
translation cache and resuming the newly scheduled task on the CPU. In the case of NFS
server threads, both of these costs are near zero. All of the NFS server code lives in the kernel,
and therefore has no user-level address translations loaded in the memory management unit.
In addition, the task-to-task switch code in most kernels is on the order of a few hundred
instructions. Systems can context switch much faster than the network can deliver NFS
requests.

NFS server threads don't impose the "usual" context switching load on a system because all of
the NFS server code is in the kernel. Instead of using a per-process context descriptor or a
user-level process "slot" in the memory management unit, the nfsd threads use the kernel's
address space mappings. This eliminates the address translation loading cost of a context
switch.

16.5.2.2 Choosing the number of server threads

The maximum number of server threads can be specified as a parameter to the nfsd daemon:

/usr/lib/nfs/nfsd -a 16

The -a directive indicates that the daemon should listen on all available transports. In this
example the daemon allows a maximum of 16 NFS requests to be serviced concurrently. The
nfsd threads are created on demand, so you are only setting a high water mark, not the actual
number of threads. If you configure too many threads, the unused threads will not be created.
You can throttle NFS server usage by limiting the maximum number of nfsd threads, allowing
the NFS server to concentrate on performing other tasks.

It is hard to come up with a magic formula to compute the ideal number of nfsd threads, since
hardware and NFS implementations vary considerably between vendors. For example, at the
time of this writing, Sun servers are recommended[5] to use the maximum of:

[5] Refer to the Solaris 8 NFS Server Performance and Tuning Guide for Sun Hardware (February 2000).

• 2 nfsd threads for each active client process
• 16 to 32 nfsd threads for each CPU
• 16 nfsd threads per 10Mb network or 160 per 100Mb network

Managing NFS and NIS

360

16.5.3 Memory usage

NFS uses the server's page cache (in SunOS 4.x, Solaris and System V Release 4) for file
blocks read in NFS read requests. Because these systems implement page mapping, the NFS
server will use available page frames to cache file pages, and use the buffer cache[6] to store
UFS inode and file metadata (direct and indirect blocks).

[6] In Solaris, SunOS 4.x, and SVR4, the buffer cache stores only UFS metadata. This in contrast to the "traditional" buffer cache used by other Unix
systems, where file data is also stored in the buffer cache. The Solaris buffer cache consists of disk blocks full of inodes, indirect blocks, and cylinder
group information only.

In Solaris, you can view the buffer cache statistics by using sar -b. This will show you the
number of data transfers per second between system buffers and disk (bread/s & bwrite/s), the
number of accesses to the system buffers (logical reads and writes identified by lread/s &
lwrit/s), the cache hit ratios (%rcache & %wcache), and the number of physical reads and
writes using the raw device mechanism (pread/s & pwrit/s):

sar -b 20 5
SunOS bunker 5.8 Generic sun4u 12/06/2000

10:39:01 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
10:39:22 19 252 93 34 103 67 0 0
10:39:43 21 612 97 46 314 85 0 0
10:40:03 20 430 95 35 219 84 0 0
10:40:24 35 737 95 49 323 85 0 0
10:40:45 21 701 97 60 389 85 0 0

Average 23 546 96 45 270 83 0 0

In practice, a cache hit ratio of 100% is hard to achieve due to lack of access locality by the
NFS clients, consequently a cache hit ratio of around 90% is considered acceptable. By
default, Solaris grows the dynamically sized buffer cache, as needed, until it reaches a high
watermark specified by the bufhwm kernel parameter. By default, Solaris limits this value to
2% of physical memory in the system. In most cases, this 2%[7] ceiling is more than enough
since the buffer cache is only used to cache inode and metadata information. You can use the
sysdef command to view its value:

[7] 2% of total memory can be too much buffer cache for some systems, such as the Sun Sparc Center 2000 with very large memory configurations.
You may need to reduce the size of the buffer cache to avoid starving the kernel of memory resources, since the kernel address space is limited on
Super Sparc-based systems. The newer Ultra Sparc-based systems do not suffer from this limitation.

sysdef
...
*
* Tunable Parameters
*
41385984 maximum memory allowed in buffer cache (bufhwm)
...

If you need to modify the default value of bufhwm, set its new value in /etc/system, or use adb
as described in Chapter 15.

The actual file contents are cached in the page cache, and by default the filesystem will cache
as many pages as possible. There is no high watermark, potentially causing the page cache to
grow and consume all available memory. This means that all process memory that has not

Managing NFS and NIS

361

been used recently by local applications may be reclaimed for use by the filesystem page
cache, possibly causing local processes to page excessively.

If the server is used for non-NFS purposes, enable priority paging to ensure that it has enough
memory to run all of its processes without paging. Priority paging prevents the filesystem
from consuming excessive memory by limiting the file cache so that filesystem I/O does not
cause unnecessary paging of applications. The filesystem can still grow to use free memory,
but cannot take memory from other applications on the system. Enable priority paging by
adding the following line to /etc/system and reboot:

*
* Enable Priority Paging
*
set priority_paging=1

Priority paging can also be enabled on a live system. Refer to the excellent Solaris Internals
book written by Mauro and McDougall and published by Sun Microsystems Press for an in-
depth explanation of Priority Paging and File System Caching in Solaris. The following
procedure for enabling priority paging on a live 64-bit system originally appeared on their
book:

adb -kw /dev/ksyms /dev/mem
physmem 3ac8
lotsfree/E
lotsfree:
lotsfree: 234 /* value of lotsfree is printed */
cachefree/Z 0t468 /* set to twice the value of lotsfree */
cachefree: ea = 1d4
dyncachefree/Z 0t468 /* set to twice the value of lotsfree */
dyncachefree: ea = 1d4
cachefree/E
cachefree:
cachefree: 468
dyncachefree/E
dyncachefree:
dyncachefree: 468

Setting priority_ paging=1 in /etc/system causes a new memory tunable, cachefree, to be set
to twice the old paging high watermark, lotsfree, when the system boots. The previous adb
procedure does the equivalent work on a live system. cachefree scales proportionally to other
memory parameters used by the Solaris Virtual Memory System. Again, refer to the Solaris
Internals book for an in-depth explanation. The same adb procedure can be performed on a
32-bit system by replacing the /E directives with /D to print the value of a 32-bit quantity and
/Z with /W to set the value of the 32-bit quantity.

16.5.4 Disk and filesystem throughput

For NFS requests requiring disk access, the constraining performance factor can often be the
server's ability to turn around disk requests. A well-conditioned network feels sluggish if the
file server is not capable of handling the load placed on it. While there are both network and
client-side NFS parameters that may be tuned, optimizing the server's use of its disks and
filesystems can deliver large benefit. Efficiency in accessing the disks, adequate kernel table
sizes, and an equitable distribution of requests over all disks providing NFS service determine
the round-trip filesystem delay.

Managing NFS and NIS

362

A basic argument about NFS performance centers on the overhead imposed by the network
when reading or writing to a remote disk. If identical disks are available on a remote server
and on the local host, total disk throughput will be better with the local disk. This is not
grounds for an out-of-hand rejection of NFS for two reasons: NFS provides a measure of
transparency and ease of system administration that is lost with multiple local disks, and
centralized disk resources on a server take advantage of economies of scale. A large, fast disk
or disk array on a server provides better throughput, with the network overhead, than a slower
local disk if the decrease in disk access time outweighs the cost of the network data transfer.

16.5.4.1 Unix filesystem effects

NFS Version 2 write operations are not often able to take advantage of disk controller
optimizations or caching when multiple clients write to different areas on the same disk.
Many controllers use an elevator-seek algorithm to schedule disk operations according to the
disk track number accessed, minimizing seek time. These optimizations are of little value if
the disk request queue is never more than one or two operations deep. Read operations suffer
from similar problems because read-ahead caching done by the controller is wasted if
consecutive read operations are from different clients using different parts of the disk. NFS
Version 3 enables the server to take better advantage of controller optimizations through the
use of the two-phase commit write.

Writing large files multiplies the number of NFS write operations that must be performed. As
a file grows beyond the number of blocks described in its inode, indirect and double indirect
blocks are used to point to additional arrays of data blocks. A file that has grown to several
megabytes, for example, requires three write operations to update its indirect, double indirect,
and data blocks on each write operation. The design of the Unix filesystem is ideal for small
files, but imposes a penalty on large files.

Large directories also adversely impact NFS performance. Directories are searched linearly
during an NFS lookup operation; the time to locate a named directory component is directly
proportional to the size of the directory and the position of a name in the directory. Doubling
the number of entries in a directory will, on average, double the time required to locate any
given entry. Furthermore, reading a large directory from a remote host may require the server
to respond with several packets instead of a single packet containing the entire directory
structure.

16.5.4.2 Disk array caching and Prestoserve

As described in Section 16.4.2.1, synchronous NFS Version 2 writes are slow because the
server needs to flush the data to disk before an acknowledgment to the client can be
generated. One way of speeding up the disk access is by using host-based fast nonvolatile
memory. This battery-backed nonvolatile memory serves as temporary cache for the data
before it is written to the disk. The server can acknowledge the write request as soon as the
request is placed in the cache, since the cache is considered permanent storage (since it's
memory-backed and it can survive reboots). Examples of host-based accelerators include the
Sun StorEdge Fast Write Cache product from Sun Microsystems, Inc., and the Prestoserve
board from Legato Systems, Inc. They both intercept the synchronous filesystem write
operations to later flush the data to the disk drive; significantly improving synchronous
filesystem write performance.

Managing NFS and NIS

363

Newer disk array systems provide similar benefits by placing the data written in the disk
array's NVRAM before the data is written to the actual disk platters. In addition, disk arrays
provide extra features that increase data availability through the use of mirroring and parity
bits, and increased throughput through the use of striping. There are many good books
describing the Berkeley RAID[8] concepts. Refer to Brian Wong's Configuration and Capacity
Planning for Solaris Servers book, published by Sun Microsystems Press, for a thorough
description of disk array caching and Prestoserve boards in the Sun architecture.

[8] RAID stands for Redundant Array of Inexpensive Disks. Researchers at Berkeley defined different types of RAID configurations, where lots of
small disks are used in place of a very large disk. The various configurations provide the means of combining disks to distribute data among many
disks (striping), provide higher data availability (mirroring), and provide partial data loss recovery (with parity computation).

16.5.4.3 Disk load balancing

If you have one or more "hot" disks that receive an unequal share of requests, your NFS
performance suffers. To keep requests in fairly even queues, you must balance your NFS load
across your disks.

Server response time is improved by balancing the load among all disks and minimizing the
average waiting time for disk service. Disk balancing entails putting heavily used filesystems
on separate disks so that requests for them may be serviced in parallel. This division of labor
is particularly important for diskless client servers. If all clients have their root and swap
filesystems on a single disk, requests using that disk may far outnumber those using any other
on the server. Performance of each diskless client is degraded, as the single path to the target
disk is a bottleneck. Dividing client partitions among several disks improves the overall
throughput of the client root and swap filesystem requests.

The average waiting time endured by each request is a function of the random disk transfer
rate and of the backlog of requests for that disk. Use the iostat -D utility to check the
utilization of each disk, and look for imbalance in the disk queues. The rps and wps values are
the number of read and write operations, per second, performed on each disk device, and the
util column shows the utilization of the disk's bandwidth:

% iostat -D 5
 md10 md11 md12 md13
rps wps util rps wps util rps wps util rps wps util
 17 45 33.7 5 4 10.5 3 3 7.5 5 5 11.6
 1 5 6.1 17 20 43.7 1 1 2.0 1 0 1.1
 2 7 10.4 14 22 42.0 0 0 0.7 0 1 2.3

If the disk queues are grossly uneven, consider shuffling data on the filesystems to spread the
load across more disks. Most medium to large servers take advantage of their disk storage
array volume managers to provide some flavor of RAID to stripe data among multiple disks.

If all of your disks are more than 75-80% utilized, you are disk bound and either need faster
disks, more disks, or an environment that makes fewer disk requests. Tuning kernel and client
configurations usually helps to reduce the number of disk requests made by NFS clients.

16.5.5 Kernel configuration

A significant amount of NFS requests require only information in the underlying inode for a
file, rather than access to the data blocks composing the file. A bottleneck can be introduced

Managing NFS and NIS

364

in the inode table, which serves as a cache for recently opened files. If file references from
NFS clients frequently require reloading entries in the inode table, then the file server is
forced to perform expensive linear searches through disk-based directory structures for the
new file pathname requiring an inode table entry.

Recently read directory entries are cached on the NFS server in the directory name lookup
cache, better known as the DNLC. A sufficiently large cache speeds NFS lookup operations
by eliminating the need to read directories from disk. Taking a directory cache miss is a fairly
expensive operation, since the directory must be read from disk and searched linearly for the
named component. For simplicity and storage, many implementations only cache pathnames
under 30 characters long. Solaris removes this limitation by caching all pathnames regardless
of their length. You can check your directory name lookup cache hit rate by running vmstat -s
on your NFS server:

% vmstat -s
 ...Page and swap info...
 621833654 total name lookups (cache hits 96%)
 ...CPU info...

If you are hitting the cache less than 90% of the time, increase ncsize on the NFS server. The
ncsize kernel tunable specifies the number of entries cached by the DNLC.

In Solaris, every file currently opened holds an inode cache entry active, making the inode
readily available without the need to access the disk. To improve performance, inodes for files
recently opened are kept in this cache, anticipating that they may be accessed again in the not
too distant future. Furthermore, inodes of files recently closed are maintained in an inactive
inode cache, in anticipation that the same files may be reopened again soon. Since NFS does
not define an open operation, NFS clients accessing files on the server will not hold the file
open during access, causing the inodes for these files to only be cached in the inactive inode
cache. This caching greatly improves future accesses by NFS clients, allowing them to benefit
from the cached inode information instead of having to go to disk to satisfy the operation. The
size of the inactive inode table is determined by the ufs_ninode kernel tunable and is set to the
value of ncsize during boot. If you update ncsize during runtime, make sure to also update the
value of ufs_ninode accordingly. The default value for ncsize is (maxusers * 68) + 360.
Maxusers can be defined as the number of simultaneous users, plus some margin for
daemons, and be set to about one user per megabyte of RAM in the system, with a default
limit of 4096 in Solaris.

16.5.6 Cross-mounting filesystems

An NFS client may find many of its processes in a high-priority wait state when an NFS
server on which it relies stops responding for any reason. If two servers mount filesystems
from each other, and the filesystems are hard-mounted, it is possible for processes on each
server to wait on NFS responses from the other. To avoid a deadlock, in which processes on
two NFS servers go to sleep waiting on each other, cross-mounting of servers should be
avoided. This is particularly important in a network that uses hard-mounted NFS filesystems
with fairly large timeout and retransmission count parameters, making it hard to interrupt the
processes that are waiting on the NFS server.

If filesystem access requires cross-mounted filesystem, they should be mounted with the
background (bg) option.[9] This ensures that servers will not go into a deadly embrace after a

Managing NFS and NIS

365

power failure or other reboot. During the boot process, a machine attempts to mount its NFS
filesystems before it accepts any incoming NFS requests. If two file servers request each
other's services, and boot at about the same time, it is likely that they will attempt to cross-
mount their filesystems before either server is ready to provide NFS service. With the bg
option, each NFS mount will time out and be put into the background. Eventually the servers
will complete their boot processes, and when the network services are started the
backgrounded mounts complete.

[9] There are no adverse effects of using the background option, so you can use it for all your NFS-mounted filesystems.

This deadlock problem goes away when your NFS clients use the automounter in place of
hard-mounts. Most systems today heavily rely on the automounter to administer NFS mounts.
Also note that the bg mount option is for use by the mount command only. It is not needed
when the mounts are administered with the automounter.

16.5.7 Multihomed servers

When a server exports NFS filesystems on more than one network interface, it may expend a
measurable number of CPU cycles forwarding packets between interfaces. Consider host
boris on four networks:

138.1.148.1 boris-bb4
138.1.147.1 boris-bb3
138.1.146.1 boris-bb2
138.1.145.1 boris-bb1 boris

Hosts on network 138.1.148.0 are able to "see" boris because boris forwards packets from any
one of its network interfaces to the other. Hosts on the 138.1.148.0 network may mount
filesystems from either hostname:

boris:/export/boris
boris-bb4:/export/boris

Figure 16-2. A multihomed host

The second form is preferable on network 138.1.148.0 because it does not require boris to
forward packets to its other interface's input queue. Likewise, on network 138.1.145.0, the
boris:/export/boris form is preferable. Even though the requests are going to the same
physical machine, requests that are addressed to the "wrong" server must be forwarded, as
shown in Figure 16-2. This adds to the IP protocol processing overhead. If the packet

Managing NFS and NIS

366

forwarding must be done for every NFS RPC request, then boris uses more CPU cycles to
provide NFS service.

Fortunately, the automounter handles this automatically. It is able to determine what
addresses are local to its subnetwork and give strong preference to them. If the server reply is
not received within a given timeout, the automounter will use an alternate server address, as
explained in Section 9.5.1.

Managing NFS and NIS

367

Chapter 17. Network Performance Analysis
This chapter explores network diagnostics and partitioning schemes aimed at reducing
congestion and improving the local host's interface to the network.

17.1 Network congestion and network interfaces

A network that was designed to ensure transparent access to filesystems and to provide "plug-
and-play" services for new clients is a prime candidate for regular expansion. Joining several
independent networks with routers, switches, hubs, bridges, or repeaters may add to the traffic
level on one or more of the networks. However, a network cannot grow indefinitely without
eventually experiencing congestion problems. Therefore, don't grow a network without
planning its physical topology (cable routing and limitations) as well as its logical design.
After several spurts of growth, performance on the network may suffer due to excessive
loading.

The problems discussed in this section affect NIS as well as NFS service. Adding network
partitioning hardware affects the transmission of broadcast packets, and poorly placed
bridges, switches, or routers can create new bottlenecks in frequently used network "virtual
circuits." Throughout this chapter, the emphasis will be on planning and capacity evaluation,
rather than on low-level electrical details.

17.1.1 Local network interface

Ethernet cabling problems, such as incorrect or poorly made Category-5 cabling, affect all of
the machines on the network. Conversely, a local interface problem is visible only to the
machine suffering from it. An Ethernet interface device driver that cannot handle the packet
traffic is an example of such a local interface problem.

The netstat tool gives a good indication of the reliability of the local physical network
interface:

% netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis
Queue
lo0 8232 127.0.0.0 127.0.0.1 7188 0 7188 0 0 0
hme0 1500 129.144.8.0 129.144.8.3 139478 11 102155 0 3055 0

The first three columns show the network interface, the maximum transmission unit (MTU)
for that interface, and the network to which the interface is connected. The Address column
shows the local IP address (the hostname would have been shown had we not specified -n).
The last five columns contain counts of the total number of packets sent and received, as well
as errors encountered while handling packets. The collision count indicates the number of
times a collision occurred when this host was transmitting.

Input errors can be caused by:

• Malformed or runt packets, damaged on the network by electrical problems.
• Bad CRC checksums, which may indicate that another host has a network interface

problem and is sending corrupted packets. Alternatively, the cable connecting this

Managing NFS and NIS

368

workstation to the network may be damaged and corrupting frames as they are
received.

• The device driver's inability to receive the packet due to insufficient buffer space.

A high output error rate indicates a fault in the local host's connection to the network or
prolonged periods of collisions (a jammed network). Errors included in this count are
exclusive of packet collisions.

Ideally, both the input and output error rates should be as close to zero as possible, although
some short bursts of errors may occur as cables are unplugged and reconnected, or during
periods of intense network traffic. After a power failure, for example, the flood of packets
from every diskless client that automatically reboots may generate input errors on the servers
that attempt to boot all of them in parallel. During normal operation, an error rate of more
than a fraction of 1% deserves investigation. This rate seems incredibly small, but consider
the data rates on a Fast Ethernet: at 100 Mb/sec, the maximum bandwidth of a network is
about 150,000 minimum-sized packets each second. An error rate of 0.01% means that fifteen
of those 150,000 packets get damaged each second. Diagnosis and resolution of low-level
electrical problems such as CRC errors is beyond the scope of this book, although such an
effort should be undertaken if high error rates are persistent.

17.1.2 Collisions and network saturation

Ethernet is similar to an old party-line telephone: everybody listens at once, everybody talks
at once, and sometimes two talkers start at the same time. In a well-conditioned network, with
only two hosts on it, it's possible to use close to the maximum network's bandwidth. However,
NFS clients and servers live in a burst-filled environment, where many machines try to use
the network at the same time. When you remove the well-behaved conditions, usable network
bandwidth decreases rapidly.

On the Ethernet, a host first checks for a transmission in progress on the network before
attempting one of its own. This process is known as carrier sense. When two or more hosts
transmit packets at exactly the same time, neither can sense a carrier, and a collision results.
Each host recognizes that a collision has occurred, and backs off for a period of time, t, before
attempting to transmit again. For each successive retransmission attempt that results in a
collision, t is increased exponentially, with a small random variation. The variation in back-
off periods ensures that machines generating collisions do not fall into lock step and seize the
network.

As machines are added to the network, the probability of a collision increases. Network
utilization is measured as a percentage of the ideal bandwidth consumed by the traffic on the
cable at the point of measurement. Various levels of utilization are usually compared on a
logarithmic scale. The relative decrease in usable bandwidth going from 5% utilization to
10% utilization, is about the same as going from 10% all the way to 30% utilization.

Measuring network utilization requires a LAN analyzer or similar device. Instead of
measuring the traffic load directly, you can use the average collision rate as seen by all hosts
on the network as a good indication of whether the network is overloaded or not. The collision
rate, as a percentage of output packets, is one of the best measures of network utilization. The
Collis field in the output of netstat -in shows the number of collisions:

Managing NFS and NIS

369

% netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis
Queue
lo0 8232 127.0.0.0 127.0.0.1 7188 0 7188 0 0 0
hme0 1500 129.144.8.0 129.144.8.3 139478 11 102155 0 3055 0

The collision rate for a host is the number of collisions seen by that host divided by the
number of packets it writes, as shown in Figure 17-1.

Figure 17-1. Collision rate calculation

Collisions are counted only when the local host is transmitting; the collision rate experienced
by the host is dependent on its network usage. Because network transmissions are random
events, it's possible to see small numbers of collisions even on the most lightly loaded
networks. A collision rate upwards of 5% is the first sign of network loading, and it's an
indication that partitioning the network may be advisable.

17.2 Network partitioning hardware

Network partitioning involves dividing a single backbone into multiple segments, joined by
some piece of hardware that forwards packets. There are multiple types of these devices:
repeaters, hubs, bridges, switches, routers, and gateways. These terms are sometimes used
interchangeably although each device has a specific set of policies regarding packet
forwarding, protocol filtering, and transparency on the network:

Repeaters

A repeater joins two segments at the physical layer. It is a purely electrical connection,
providing signal amplification and pulse "clean up" functions without regard for the
semantics of the signals. Repeaters are primarily used to exceed the single-cable
length limitation in networks based on bus topologies, such as 10Base5 and 10Base2.
There is a maximum to the number of repeaters that can exist between any two nodes
on the same network, keeping the minimum end-to-end transit time for a packet well
within the Ethernet specified maximum time-to-live. Because repeaters do not look at
the contents of packets (or packet fragments), they pass collisions on one segment
through to the other, making them of little use to relieve network congestion.

Hubs

A hub joins multiple hosts by acting as a wiring concentrator in networks based on star
topologies, such as 10BaseT. A hub has the same function as a repeater, although in a
different kind of network topology. Each computer is connected, typically over
copper, to the hub, which is usually located in a wiring closet. The hub is purely a
repeater: it regenerates the signal from one set of wires to the others, but does not
process or manage the signal in any way. All traffic is forwarded to all machines
connected to the hub.

Managing NFS and NIS

370

Bridges

Bridges function at the data link layer, and perform selective forwarding of packets
based on their destination MAC addresses. Some delay is introduced into the network
by the bridge, as it must receive entire packets and decipher their MAC-layer headers.
Broadcast packets are always passed through, although some bridge hardware can be
configured to forward only ARP broadcasts and to suppress IP broadcasts such as
those emanating from ypbind.

Intelligent or learning bridges glean the MAC addresses of machines through
observation of traffic on each interface. "Dumb" bridges must be loaded with the
Ethernet addresses of machines on each network and impose an administrative burden
each time the network topology is modified. With either type of bridge, each new
segment is likely to be less heavily loaded than the original network, provided that the
most popular inter-host virtual circuits do not run through the bridge.

Switches

You can think of a switch as an intelligent hub having the functionality of a bridge.
The switch also functions at the data link layer, and performs selective forwarding of
packets based on their destination MAC address. The switch forwards packets only to
the intended port of the intended recipient. The switch "learns" the location of the
various MAC addresses by observing the traffic on each port. When a switch port
receives data packets, it forwards those packets only to the appropriate port for the
intended recipient. A hub would instead forward the packet to all other ports on the
hub, leaving it to the host connected to the port to determine its interest in the packet.
Because the switch only forwards the packet to its destination, it helps reduce
competition for bandwidth between the hosts connected to each port.

Routers

Repeaters, hubs, bridges, and switches divide the network into multiple distinct
physical pieces, but the collection of backbones is still a single logical network. That
is, the IP network number of all hosts on all segments will be the same. It is often
necessary to divide a network logically into multiple IP networks, either due to
physical constraints (i.e., two offices that are separated by several miles) or because a
single IP network has run out of host numbers for new machines.

Multiple IP networks are joined by routers that forward packets based on their source
and destination IP addresses rather than 48-bit Ethernet addresses. One interface of the
router is considered "inside" the network, and the router forwards packets to the
"outside" interface. A router usually corrals broadcast traffic to the inside network,
although some can be configured to forward broadcast packets to the "outside"
network. The networks joined by a router need not be of the same type or physical
media, and routers are commonly used to join local area networks to point-to-point
long-haul internetwork connections. Routers can also help ensure that packets travel
the most efficient paths to their destination. If a link between two routers fails, the
sending router can determine an alternate route to keep traffic moving. You can install
a dedicated router, or install multiple network interfaces in a host and allow it to route

Managing NFS and NIS

371

packets in addition to its other duties. Appendix A contains a detailed description of
how IP packets are forwarded and how routes are defined to Unix systems.

Gateways

At the top-most level in the network protocol stack, a gateway performs forwarding
functions at the application level, and frequently must perform protocol conversion to
forward the traffic. A gateway need not be on more than one network; however,
gateways are most commonly used to join multiple networks with different sets of
native protocols, and to enforce tighter control over access to and from each of the
networks.

Replacing an Ethernet hub with a Fast Ethernet hub is like increasing the speed limit of a
highway. Replacing a hub with a switch is similar to adding new lanes to the highway.
Replacing an Ethernet hub with a Fast Ethernet switch is the equivalent of both
improvements, although with a higher cost.

17.3 Network infrastructure

Partitioning a low-bandwidth network should ease the constraints imposed by the network on
attribute-intensive applications, but may not necessarily address the limitations encountered
by data-intensive applications. Data-intensive applications require high bandwidth, and may
require the hosts to be migrated onto higher bandwidth networks, such as Fast Ethernet,
FDDI, ATM, or Gigabit Ethernet. Recent advances in networking as well as economies of
scale have made high bandwidth and switched networks more accessible. We explore their
effects on NIS and NFS in the remaining sections of this chapter.

17.3.1 Switched networks

Switched Ethernets have become affordable and extremely popular in the last few years, with
configurations ranging from enterprise-class switching networks with hundreds of ports, to
the small 8- and 16-port Fast Ethernet switched networks used in small businesses. Switched
Ethernets are commonly found in configurations that use a high-bandwidth interface into the
server (such as Gigabit Ethernet) and a switching hub that distributes the single fast network
into a large number of slower branches (such as Fast Ethernet ports). This topology isolates a
client's traffic to the server from the other clients on the network, since each client is on a
different branch of the network. This reduces the collision rate, allowing each client to utilize
higher bandwidth when communicating to the server.

Although switched networks alleviate the impact of collisions, you still have to watch for
"impedance mismatches" between an excessive number of client network segments and only a
few server segments. A typical problem in a switched network environment occurs when an
excessive number of NFS clients capable of saturating their own network segments overload
the server's "narrow" network segment.

Consider the case where 100 NFS clients and a single NFS server are all connected to a
switched Fast Ethernet. The server and each of its clients have their own 100 Mbit/sec port on
the switch. In this configuration, the server can easily become bandwidth starved when
multiple concurrent requests from the NFS clients arrive over its single network segment. To
address this problem, you should provide multiple network interfaces to the server, each

Managing NFS and NIS

372

connected to its own 100 Mb/sec port on the switch. You can either turn on IP interface
groups on the server, such that the server can have more than one IP address on the same
subnet, or use the outbound networks for multiplexing out the NFS read replies. The clients
should use all of the hosts' IP addresses in order for the inbound requests to arrive over the
various network interfaces. You can configure BIND round-robin[1] if you don't want to
hardcode the destination addresses. You can alternatively enable interface trunking on the
server to use the multiple network interfaces as a single IP address avoiding the need to mess
with IP addressing and client naming conventions. Trunking also offers a measure of fault
tolerance, since the trunked interface keeps working even if one of the network interfaces
fails. Finally, trunking scales as you add more network interfaces to the server, providing
additional network bandwidth. Many switches provide a combination of Fast Ethernet and
Gigabit Ethernet channels as well. They can also support the aggregation of these channels to
provide high bandwidth to either data center servers or to the backbone network.

[1] When BIND's round-robin feature is enabled, the order of the server's addresses returned is shifted on each query to the name server. This allows a
different address to be used by each client's request.

Heavily used NFS servers will benefit from their own "fast" branch, but try to keep NFS
clients and servers logically close in the network topology. Try to minimize the number of
switches and routers that traffic must cross. A good rule of thumb is to try to keep 80% of the
traffic within the network and only 20% of the traffic from accessing the backbone.

17.3.2 ATM and FDDI networks

ATM (Asynchronous Transfer Mode) and FDDI (Fiber Distributed Data Interface) networks
are two other forms of high-bandwidth networks that can sustain multiple high-speed
concurrent data exchanges with minimal degradation. ATM and FDDI are somewhat more
efficient than Fast Ethernet in data-intensive environments because they use a larger MTU
(Maximum Transfer Unit), therefore requiring less packets than Fast Ethernet to transmit the
same amount of information. Note that this does not necessarily present an advantage to
attribute-intensive environments where the requests are small and always fit in a Fast Ethernet
packet.

Although ATM promises scalable and seamless bandwidth, guaranteed QoS (Quality of
Service), integrated services (voice, video, and data), and virtual networking, Ethernet
technologies are not likely to be displaced. Today, ATM has not been widely deployed
outside backbone networks. Many network administrators prefer to deploy Fast Ethernet and
Gigabit Ethernet because of their familiarity with the protocol, and because it requires no
changes to the packet format. This means that existing analysis and network management
tools and software that operate at the network and transport layers, and higher, continue to
work as before. It is unlikely that ATM will experience a significant amount of deployment
outside the backbone.

17.4 Impact of partitioning

Although partitioning is a solution to many network problems, it's not entirely transparent.
When you partition a network, you must think about the effect of partitioning on NIS, and the
locations of diskless nodes and their boot servers.

Managing NFS and NIS

373

17.4.1 NIS in a partitioned network

NIS is a point-to-point protocol once a server binding has been established. However, when
ypbind searches for a server, it broadcasts an RPC request. Switches and bridges do not affect
ypbind, because switches and bridges forward broadcast packets to the other physical
network. Routers don't forward broadcast packets to other IP networks, so you must make
configuration exceptions if you have NIS clients but no NIS server on one side of a router.

It is not uncommon to attach multiple clients to a hub, and multiple hubs to a switch. Each
switch branch acts as its own segment in the same way that bridges create separate "collision
domains." Unequal distribution of NIS servers on opposite sides of a switch branch (or
bridge) can lead to server victimization. The typical bridge adds a small delay to the transit
time of each packet, so ypbind requests will almost always be answered by a server on the
client's side of the switch branch or bridge. The relative delays in NIS server response time
are shown in Figure 17-2.

Figure 17-2. Bridge effects on NIS

If there is only one server on bridge network A, but several on bridge network B, then the "A"
network server handles all NIS requests on its network segment until it becomes so heavily
loaded that servers on the "B" network reply to ypbind faster, including the bridge-related
packet delay. An equitable distribution of NIS servers across switch branch (or bridge)
boundaries eliminates this excessive loading problem.

Routers and gateways present a more serious problem for NIS. NIS servers and clients must
be on the same IP network because a router or gateway will not forward the client's ypbind
broadcast outside the local IP network. If there are no NIS servers on the "inside" of a router,
use ypinit at configuration time as discussed in Section 13.4.4.

17.4.2 Effects on diskless nodes

Diskless nodes should be kept on the same logical network as their servers unless tight
constraints require their separation. If a router is placed between a diskless client and its
server, every disk operation on the client, including swap device operations, has to go through
the router. The volume of traffic generated by a diskless client is usually much larger —
sometimes twice as much — than that of an NFS client getting user files from a server, so it

Managing NFS and NIS

374

greatly reduces the load on the router if clients and servers are kept on the same side of the
router.[2]

[2] Although not directly related to network topology, one of the best things you can do for your diskless clients is to load them with an adequate
amount of memory so that they can perform aggressive caching and reduce the number of round trips to the server.

Booting a client through a router is less than ideal, since the diskless client's root and swap
partition traffic unnecessarily load the packet forwarding bandwidth of the router. However, if
necessary, a diskless client can be booted through a router as follows:

• Some machine on the client's local network must be able to answer Reverse ARP
(RARP) requests from the machine. This can be accomplished by publishing an ARP
entry for the client and running in.rarpd on some host on the same network:

in.rarpd hme 0

In Solaris, in.rarpd takes the network device name and the instance number as
arguments. In this example we start in.rarpd on /dev/hme0, the network interface
attached to the diskless client's network. in.rarpd uses the ethers, hosts, and ipnodes
databases[3] to map the requested Ethernet address into the corresponding IP address.
The IP address is then returned to the diskless client in a RARP reply message. The
diskless client must be listed in both databases for in.rarpd to locate its IP address.

[3] The ethers database is stored in the local file /etc/ethers or the corresponding NIS map. The hosts and ipnodes database is
located in the local files /etc/inet/hosts and /etc/inet/ipnodes, or DNS and NIS maps. The search order depends on the contents
of the name switch configuration file /etc/nsswitch.conf.

• A host on the local network must be able to tftp the boot code to the client, so that it
can start the boot sequence. This usually involves adding client information to
/tftpboot on another diskless client server on the local network.

• Once the client has loaded the boot code, it looks for boot parameters. Some server on
the client's network must be able to answer the bootparams request for the client. This
entails adding the client's root and swap partition information to the local bootparams
file or NIS map. The machine that supplies the bootparam information may not have
anything to do with actually booting the system, but it must give the diskless client
enough information for it to reach its root and swap filesystem servers through IP
routing. Therefore, if the proxy bootparam server has a default route defined, that
route must point to the network with the client's NFS server on it.

• If the NIS server is located across the router, the diskless client will need to be
configured at installation time, or later on with the use of the ypinit command, in order
to boot from the explicit NIS server. This is necessary because ypbind will be unable
to find an NIS server in its subnetwork through a broadcast.

17.5 Protocol filtering

If you have a large volume of non-IP traffic on your network, isolating it from your NFS and
NIS traffic may improve overall system performance by reducing the load on your network
and servers. You can determine the relative percentages of IP and non-IP packets on your
network using a LAN analyzer or a traffic filtering program. The best way to isolate your NFS
and NIS network from non-IP traffic is to install a switch, bridge, or other device that
performs selective filtering based on protocol. Any packet that does not meet the selection
criteria is not forwarded across the device.

Managing NFS and NIS

375

Devices that monitor traffic at the IP protocol level, such as routers, filter any non-IP traffic,
such as IPX and DECnet packets. If two segments of a local area network must exchange IP
and non-IP traffic, a switch, bridge, or router capable of selective forwarding must be
installed. The converse is also an important network planning factor: to insulate a network
using only TCP/IP-based protocols from volumes of irrelevant traffic — IPX packets
generated by a PC network, for example — a routing device filtering at the IP level is the
simplest solution.

Partitioning a network and increasing the available bandwidth should ease the constraints
imposed by the network, and spur an increase in NFS performance. However, the network
itself is not always the sole or primary cause of poor performance. Server- and client-side
tuning should be performed in concert with changes in network topology. Chapter 16 has
already covered server-side tuning; Section 18.1 will cover the client-side tuning issues.

Managing NFS and NIS

376

Chapter 18. Client-Side Performance Tuning
The performance measurement and tuning techniques we've discussed so far have only dealt
with making the NFS server go faster. Part of tuning an NFS network is ensuring that clients
are well-behaved so that they do not flood the servers with requests and upset any tuning you
may have performed. Server performance is usually limited by disk or network bandwidth,
but there is no throttle on the rate at which clients generate requests unless you put one in
place. Add-on products, such as the Solaris Bandwidth Manager, allow you to specify the
amount of network bandwidth on specified ports, enabling you to restrict the amount of
network resources used by NFS on either the server or the client. In addition, if you cannot
make your servers or network any faster, you have to tune the clients to handle the network
"as is."

18.1 Slow server compensation

The RPC retransmission algorithm cannot distinguish between a slow server and a congested
network. If a reply is not received from the server within the RPC timeout period, the request
is retransmitted subject to the timeout and retransmission parameters for that mount point. It is
immaterial to the RPC mechanism whether the original request is still enqueued on the server
or if it was lost on the network. Excessive RPC retransmissions place an additional strain on
the server, further degrading response time.

18.1.1 Identifying NFS retransmissions

Inspection of the load average and disk activity on the servers may indicate that the servers
are heavily loaded and imposing the tightest constraint. The NFS client-side statistics provide
the most concrete evidence that one or more slow servers are to blame:

% nfsstat -rc
Client rpc:
Connection-oriented:
calls badcalls badxids timeouts newcreds badverfs
1753584 1412 18 64 0 0
timers cantconn nomem interrupts
0 1317 0 18
Connectionless:
calls badcalls retrans badxids timeouts newcreds
12443 41 334 80 166 0
badverfs timers nomem cantsend
0 4321 0 206

The -rc option is given to nfsstat to look at the RPC statistics only, for client-side NFS
operations. The call type demographics contained in the NFS-specific statistics are not of
value in this analysis. The test for a slow server is having badxid and timeout of the same
magnitude. In the previous example, badxid is nearly a third the value of timeout for
connection-oriented RPC, and nearly half the value of timeout for connectionless RPC.
Connection-oriented transports use a higher timeout than connectionless transports, therefore
the number of timeouts will generally be less for connection-oriented transports. The high
badxid count implies that requests are reaching the various NFS servers, but the servers are
too loaded to send replies before the local host's RPC calls time out and are retransmitted.
badxid is incremented each time a duplicate reply is received for a retransmitted request (an
RPC request retains its XID through all retransmission cycles). In this case, the server is

Managing NFS and NIS

377

replying to all requests, including the retransmitted ones. The client is simply not patient
enough to wait for replies from the slow server. If there is more than one NFS server, the
client may be outpacing all of them or just one particularly sluggish node.

If the server has a duplicate request cache, retransmitted requests that match a non-idempotent
NFS call currently in progress are ignored. Only those requests in progress are recognized and
filtered, so it is still possible for a sufficiently loaded server to generate duplicate replies that
show up in the badxid counts of its clients. Without a duplicate request cache, badxid and
timeout may be nearly equal, while the cache will reduce the number of duplicate replies.
With or without a duplicate request cache, if the badxid and timeout statistics reported by
nfsstat (on the client) are of the same magnitude, then server performance is an issue
deserving further investigation.

A mixture of network and server-related problems can make interpretation of the nfsstat
figures difficult. A client served by four hosts may find that two of the hosts are particularly
slow while a third is located across a network router that is digesting streams of large write
packets. One slow server can be masked by other, faster servers: a retransmission rate of 10%
(calculated as timeout/calls) would indicate short periods of server sluggishness or network
congestion if the retransmissions were evenly distributed among all servers. However, if all
timeouts occurred while talking to just one server, the retransmission rate for that server could
be 50% or higher.

A simple method for finding the distribution of retransmitted requests is to perform the same
set of disk operations on each server, measuring the incremental number of RPC timeouts that
occur when loading each server in turn. This experiment may point to a server that is
noticeably slower than its peers, if a large percentage of the RPC timeouts are attributed to
that host. Alternatively, you may shift your focus away from server performance if timeouts
are fairly evenly distributed or if no timeouts occur during the server loading experiment.
Fluctuations in server performance may vary by the time of day, so that more timeouts occur
during periods of peak server usage in the morning and after lunch, for example.

Server response time may be clamped at some minimum value due to fixed-cost delays of
sending packets through routers, or due to static configurations that cannot be changed for
political or historical reasons. If server response cannot be improved, then the clients of that
server must adjust their mount parameters to avoid further loading it with retransmitted
requests. The relative patience of the client is determined by the timeout, retransmission
count, and hard-mount variables.

18.1.2 Timeout period calculation

The timeout period is specified by the mount parameter timeo and is expressed in tenths of a
second. For NFS over UDP, it specifies the value of a minor timeout, which occurs when the
client RPC call over UDP does not receive a reply within the timeo period. In this case, the
timeout period is doubled, and the RPC request is sent again. The process is repeated until the
retransmission count specified by the retrans mount parameter is reached. A major timeout
occurs when no reply is received after the retransmission threshold is reached. The default
value for the minor timeout is vendor-specific; it can range from 5 to 13 tenths of a second.
By default, clients are configured to retransmit from three to five times, although this value is
also vendor-specific.

Managing NFS and NIS

378

When using NFS over TCP, the retrans parameter has no effect, and it is up to the TCP
transport to generate the necessary retransmissions on behalf of NFS until the value specified
by the timeo parameter is reached. In contrast to NFS over UDP, the mount parameter timeo
in NFS over TCP specifies the value of a major timeout, and is typically in the range of
hundreds of a tenth of a second (for example, Solaris has a major timeout of 600 tenths of a
second). The minor timeout value is internally controlled by the underlying TCP transport,
and all you have to worry about is the value of the major timeout specified by timeo.

After a major timeout, the message:

NFS server host not responding still trying

is printed on the client's console. If a reply is eventually received, the "not responding"
message is followed with the message:

NFS server host ok

Hard-mounting a filesystem guarantees that the sequence of retransmissions continues until
the server replies. After a major timeout on a hard-mounted filesystem, the initial timeout
period is doubled, beginning a new major cycle. Hard mounts are the default option. For
example, a filesystem mounted via:[1]

[1] We specifically use proto=udp to force the Solaris client to use the UDP protocol when communicating with the server, since the client by default
will attempt to first communicate over TCP. Linux, on the other hand, uses UDP as the default transport for NFS.

mount -o proto=udp,retrans=3,timeo=10 wahoo:/export/home/wahoo /mnt

has the retransmission sequence shown in Table 18-1.

Table 18-1. NFS timeout sequence for NFS over UDP
Absolute Time Current Timeout New Timeout Event
1.0 1.0 2.0 Minor
3.0 2.0 4.0 Minor
7.0 4.0 2.0 Major, double initial timeout
...NFS server wahoo not responding...
9.0 2.0 4.0 Minor
13.0 4.0 8.0 Minor
21.0 8.0 4.0 Major, double initial timeout

Timeout periods are not increased without bound, for instance, the timeout period never
exceeds 20 seconds (timeo=200) for Solaris clients using UDP, and 60 seconds for Linux. The
system may also impose a minimum timeout period in order to avoid retransmitting too
aggressively. Because certain NFS operations take longer to complete than others, Solaris
uses three different values for the minimum (and initial) timeout of the various NFS
operations. NFS write operations typically take the longest, therefore a minimum timeout of
1,250 msecs is used. NFS read operations have a minimum timeout of 875 msecs, and
operations that act on metadata (such as getattr, lookup, access, etc.) usually take the least
time, therefore they have the smaller minimum timeout of 750 msecs.

To accommodate slower servers, increase the timeo parameter used in the automounter maps
or /etc/vfstab. Increasing retrans for UDP increases the length of the major timeout period,

Managing NFS and NIS

379

but it does so at the expense of sending more requests to the NFS server. These duplicate
requests further load the server, particularly when they require repeating disk operations. In
many cases, the client receives a reply after sending the second or third retransmission, so
doubling the initial timeout period eliminates about half of the NFS calls sent to the slow
server. In general, increasing the NFS RPC timeout is more helpful than increasing the
retransmission count for hard-mounted filesystems accessed over UDP. If the server does not
respond to the first few RPC requests, it is likely it will not respond for a "long" time,
compared to the RPC timeout period. It's best to let the client sit back, double its timeout
period on major timeouts, and wait for the server to recover. Increasing the retransmission
count simply increases the noise level on the network while the client is waiting for the server
to respond.

Note that Solaris clients only use the timeo mount parameter as a starting value. The Solaris
client constantly adjusts the actual timeout according to the smoothed average round-trip time
experienced during NFS operations to the server. This allows the client to dynamically adjust
the amount of time it is willing to wait for NFS responses given the recent past responsiveness
of the NFS server.

Use the nfsstat -m command to review the kernel's observed response times over the UDP
transport for all NFS mounts:

% nfsstat -m
/mnt from mahimahi:/export
 Flags:
vers=3,proto=udp,sec=sys,hard,intr,link,symlink,acl,rsize=32768,
 wsize=32768,retrans=2,timeo=15
 Attr cache: acregmin=3,acregmax=60,acdirmin=30,acdirmax=60
 Lookups: srtt=13 (32ms), dev=6 (30ms), cur=4 (80ms)
 Reads: srtt=24 (60ms), dev=14 (70ms), cur=10 (200ms)
 Writes: srtt=46 (115ms), dev=27 (135ms), cur=19 (380ms)
 All: srtt=20 (50ms), dev=11 (55ms), cur=8 (160ms)

The smoothed, average round-trip (srtt) times are reported in milliseconds, as well as the
average deviation (dev) and the current "expected" response time (cur). The numbers in
parentheses are the actual times in milliseconds; the other values are unscaled values kept by
the kernel and can be ignored. Response times are shown for read and write operations, which
are "big" RPCs, and for lookups, which typify "small" RPC requests. The response time
numbers are only shown for filesystems mounted using the UDP transport. Retransmission
handling is the responsibility of the TCP transport when using NFS over TCP.

Without the kernel's values as a baseline, choosing a new timeout value is best done
empirically. Doubling the initial value is a good baseline; after changing the timeout value
observe the RPC timeout rate and badxid rate using nfsstat. At first glance, it does not appear
that there is any harm in immediately going to timeo=200, the maximum initial timeout value
used in the retransmission algorithm. If server performance is the sole constraint, then this is a
fair assumption. However, even a well-tuned network endures bursts of traffic that can cause
packets to be lost at congested network hardware interfaces or dropped by the server. In this
case, the excessively long timeout will have a dramatic impact on client performance. With
timeo=200, RPC retransmissions "avoid" network congestion by waiting for minutes while
the actual traffic peak may have been only a few milliseconds in duration.

Managing NFS and NIS

380

18.1.3 Retransmission rate thresholds

There is little agreement among system administrators about acceptable retransmission rate
thresholds. Some people claim that any request retransmission indicates a performance
problem, while others chose an arbitrary percentage as a "goal." Determining the
retransmission rate threshold for your NFS clients depends upon your choice of the timeo
mount parameter and your expected response time variations. The equation in Figure 18-1
expresses the expected retransmission rate as a function of the allowable response time
variation and the timeo parameter.[2]

[2] This retransmission threshold equation was originally presented in the Prestoserve User's Manual, March 1991 edition. The Manual and the
Prestoserve NFS write accelerator are produced by Legato Systems.

Figure 18-1. NFS retransmission threshold

If you allow a response time fluctuation of five milliseconds, or about 20% of a 25
millisecond average response time, and use a 1.1 second (1100 millisecond) timeout period
for metadata operations, then your expected retransmission rate is (5/1100) = .45%.

If you increase your timeout value, this equation dictates that you should decrease your
retransmission rate threshold. This makes sense: if you make the clients more tolerant of a
slow NFS server, they shouldn't be sending as many NFS RPC retransmissions. Similarly, if
you want less variation in NFS client performance, and decide to reduce your allowable
response time variation, you also need to reduce your retransmission threshold.

18.1.4 NFS over TCP is your friend

You can alternatively use NFS over TCP to ensure that data is not retransmitted excessively.
This, of course, requires that both, the client and server support NFS over TCP. At the time of
this writing, many NFS implementations already support NFS over TCP. The added TCP
functionality comes at a price: TCP is a heavier weight protocol that uses more CPU cycles to
perform extra checks per packet. Because of this, LAN environments have traditionally used
NFS over UDP. Improvements in hardware, as well as better TCP implementations have
narrowed the performance gap between the two.

A Solaris client by default uses NFS Version 3 over TCP. If the server does not support it,
then the client automatically falls back to NFS Version 3 over UDP or NFS Version 2 over
one of the supported transports. Use the proto=tcp option to force a Solaris client to mount
the filesystem using TCP only. In this case, the mount will fail instead of falling back to UDP
if the server does not support TCP:

mount -o proto=tcp wahoo:/export /mnt

Use the tcp option to force a Linux client to mount the filesystem using TCP instead of its
default of UDP. Again, if the server does not support TCP, the mount attempt will fail:

mount -o tcp wahoo:/export /mnt

Managing NFS and NIS

381

TCP partitions the payload into segments equivalent to the size of an Ethernet packet. If one
of the segments gets lost, NFS does not need to retransmit the entire operation because TCP
itself handles the retransmissions of the segments. In addition to retransmitting only the lost
segment when necessary, TCP also controls the transmission rate in order to utilize the
network resources more adequately, taking into account the ability of the receiver to consume
the packets. This is accomplished through a simple flow control mechanism, where the
receiver indicates to the sender how much data it can receive.

TCP is extremely useful in error-prone or lossy networks, such as many WAN environments,
which we discuss later in this chapter.

18.2 Soft mount issues

Repeated retransmission cycles only occur for hard-mounted filesystems. When the soft
option is supplied in a mount, the RPC retransmission sequence ends at the first major
timeout, producing messages like:

NFS write failed for server wahoo: error 5 (RPC: Timed out)
NFS write error on host wahoo: error 145.
(file handle: 800000 2 a0000 114c9 55f29948 a0000 11494 5cf03971)

The NFS operation that failed is indicated, the server that failed to respond before the major
timeout, and the filehandle of the file affected. RPC timeouts may be caused by extremely
slow servers, or they can occur if a server crashes and is down or rebooting while an RPC
retransmission cycle is in progress.

With soft-mounted filesystems, you have to worry about damaging data due to incomplete
writes, losing access to the text segment of a swapped process, and making soft-mounted
filesystems more tolerant of variances in server response time. If a client does not give the
server enough latitude in its response time, the first two problems impair both the
performance and correct operation of the client. If write operations fail, data consistency on
the server cannot be guaranteed. The write error is reported to the application during some
later call to write() or close(), which is consistent with the behavior of a local filesystem
residing on a failing or overflowing disk. When the actual write to disk is attempted by the
kernel device driver, the failure is reported to the application as an error during the next
similar or related system call.

A well-conditioned application should exit abnormally after a failed write, or retry the write if
possible. If the application ignores the return code from write() or close(), then it is possible
to corrupt data on a soft-mounted filesystem. Some write operations may fail and never be
retried, leaving holes in the open file.

To guarantee data integrity, all filesystems mounted read-write should be hard-mounted.
Server performance as well as server reliability determine whether a request eventually
succeeds on a soft-mounted filesystem, and neither can be guaranteed. Furthermore, any
operating system that maps executable images directly into memory (such as Solaris) should
hard-mount filesystems containing executables. If the filesystem is soft-mounted, and the NFS
server crashes while the client is paging in an executable (during the initial load of the text
segment or to refill a page frame that was paged out), an RPC timeout will cause the paging to
fail. What happens next is system-dependent; the application may be terminated or the system
may panic with unrecoverable swap errors.

Managing NFS and NIS

382

A common objection to hard-mounting filesystems is that NFS clients remain catatonic until a
crashed server recovers, due to the infinite loop of RPC retransmissions and timeouts. By
default, Solaris clients allow interrupts to break the retransmission loop. Use the intr mount
option if your client doesn't specify interrupts by default. Unfortunately, some older
implementations of NFS do not process keyboard interrupts until a major timeout has
occurred: with even a small timeout period and retransmission count, the time required to
recognize an interrupt can be quite large.

If you choose to ignore this advice, and choose to use soft-mounted NFS filesystems, you
should at least make NFS clients more tolerant of soft-mounted NFS fileservers by increasing
the retrans mount option. Increasing the number of attempts to reach the server makes the
client less likely to produce an RPC error during brief periods of server loading.

18.3 Adjusting for network reliability problems

Even a lightly loaded network can suffer from reliability problems if older bridges or routers
joining the network segments routinely drop parts of long packet trains. Older bridges and
routers are most likely to affect NFS performance if their network interfaces cannot keep up
with the packet arrival rates generated by the NFS clients and servers on each side.

Some NFS experts believe it is a bad idea to micro-manage NFS to compensate for network
problems, arguing instead that these problems should be handled by the transport layer. We
encourage you to use NFS over TCP, and allow the TCP implementation to dynamically adapt
to network glitches and unreliable networks. TCP does a much better job of adjusting transfer
sizes, handling congestion, and generating retransmissions to compensate for network
problems.

Having said this, there may still be times when you choose to use UDP instead of TCP to
handle your NFS traffic.[3] In such cases, you will need to determine the impact that an old
bridge or router is having on your network. This requires another look at the client-side RPC
statistics:

[3] One example is the lack of NFS over TCP support for your client or server.

% nfsstat -rc
Client rpc:
Connection-oriented:
calls badcalls badxids timeouts newcreds badverfs
1753569 1412 3 64 0 0
timers cantconn nomem interrupts
0 1317 0 18
Connectionless:
calls badcalls retrans badxids timeouts newcreds
12252 41 334 5 166 0
badverfs timers nomem cantsend
0 4321 0 206

When timeouts is high and badxid is close to zero, it implies that the network or one of the
network interfaces on the client, server, or any intermediate routing hardware is dropping
packets. Some older host Ethernet interfaces are tuned to handle page-sized packets and do
not reliably handle larger packets; similarly, many older Ethernet bridges cannot forward long
bursts of packets. Older routers or hosts acting as IP routers may have limited forwarding

Managing NFS and NIS

383

capacity, so reducing the number of packets sent for any request reduces the probability that
these routers will drop packets that build up behind their network interfaces.

The NFS buffer size determines how many packets are required to send a single, large read or
write request. The Solaris default buffer size is 8KB for NFS Version 2 and 32KB for NFS
Version 3. Linux[4] uses a default buffer size of 1KB. The buffer size can be negotiated down,
at mount time, if the client determines that the server prefers a smaller transfer size.

[4] This refers to Version 2.2.14-5 of the Linux kernel.

Compensating for unreliable networks involves changing the NFS buffer size, controlled by
the rsize and wsize mount options. rsize determines how many bytes are requested in each
NFS read, and wsize gauges the number of bytes sent in each NFS write operation. Reducing
rsize and wsize eases the peak loads on the network by sending shorter packet trains for each
NFS request. By spacing the requests out, and increasing the probability that the entire request
reaches the server or client intact on the first transmission, the overall load on the network and
server is smoothed out over time.

The read and write buffer sizes are specified in bytes. They are generally made multiples of
512 bytes, based on the size of a disk block. There is no requirement that either size be an
integer multiple of 512, although using an arbitrary size can make the disk operations on the
remote host less efficient. Write operations performed on non-disk block aligned buffers
require the NFS server to read the block, modify the block, and rewrite it. The read-modify-
write cycle is invisible to the client, but adds to the overhead of each write() performed on the
server.

These values are used by the NFS async threads and are completely independent of buffer
sizes internal to any client-side processes. An application that writes 400-byte buffers, writing
to a filesystem mounted with wsize=4096, does not cause an NFS write request to be sent to
the server until the 11th write is performed.

Here is an example of mounting an NFS filesystem with the read and write buffer sizes
reduced to 2048 bytes:

mount -o rsize=2048,wsize=2048 wahoo:/export/home /mnt

Decreasing the NFS buffer size has the undesirable effect of increasing the load on the server
and sending more packets on the network to read or write a given buffer. The size of the
actual packets on the network does not change, but the number of IP packets composing a
single NFS buffer decreases as the rsize and wsize are decreased. For example, an 8KB NFS
buffer is divided into five IP packets of about 1500 bytes, and a sixth packet with the
remaining data bytes. If the write size is set to 2048 bytes, only two IP packets are needed.

The problem lies in the number of packets required to transfer the same amount of data. Table
18-2 shows the number of IP packets required to copy a file for various NFS read buffer sizes.

Managing NFS and NIS

384

Table 18-2. IP packets, RPC requests as function of NFS buffer size
File Size IP Packets/RPC Calls
 rsize rsize rsize rsize
(kbytes) 1024 2048 4096 8192
1 1/1 1/1 1/1 1/1
2 2/2 2/1 2/1 2/1
4 4/4 4/2 3/1 3/1
8 8/8 8/4 6/2 6/1

As the file size increases, transfers with smaller NFS buffer sizes send more IP packets to the
server. The number of packets will be the same for 4096- and 8192-byte buffers, but for file
sizes over 4K, setting rsize=4096 always requires twice as many RPC calls to the server. The
increased network traffic adds to the very problem for which the buffer size change was
compensating, and the additional RPC calls further load the server. Due to the increased
server load, it is sometimes necessary to increase the RPC timeout parameter when decreasing
NFS buffer sizes. Again, we encourage you to use NFS over TCP when possible and avoid
having to worry about the NFS buffer sizes.

18.4 NFS over wide-area networks

NFS over wide-area networks (WANs) greatly benefits when it is run over the TCP transport.
NFS over TCP is preferred when the traffic runs over error-prone or lossy networks. In
addition, the reliable nature of TCP allows NFS to transmit larger packets over this type of
network with fewer retransmissions.

Although NFS over TCP is recommended for use over WANs, you may have to run NFS over
UDP across the WAN if either your client or server does not support NFS over TCP. When
running NFS over UDP across WANs, you must adjust the buffer sizes and timeouts
manually to account for the differences between the wide-area and the local-area network.
Decrease the rsize and wsize to match the MTU of the slowest wide-area link you traverse
with the mount. While this greatly increases the number of RPC requests that are needed to
move a given part of a file, it is the most social approach to running NFS over a WAN.

If you use the default 32KB NFS Version 3 buffer, you send long trains of maximum sized
packets over the wide-area link. Your NFS requests will be competing for bandwidth with
other, interactive users' packets, and the NFS packet trains are likely to crowd the rlogin and
telnet packets. Sending a 32 KB buffer over a 128 kbps ISDN line takes about two seconds.
Writing a small file ties up the WAN link for several seconds, potentially infuriating
interactive users who do not get keyboard echo during that time. Reducing the NFS buffer
size forces your NFS client to wait for replies after each short burst of packets, giving
bandwidth back to other WAN users.

In addition to decreasing the buffer size, increase the RPC timeout values to account for the
significant increase in packet transmission time. Over a wide-area network, the network
transmission delay will be comparable (if not larger) to the RPC service time on the NFS
server. Set your timeout values based on the average time required to send or receive a
complete NFS buffer. Increase your NFS RPC timeout to at least several seconds to avoid
retransmitting requests and further loading the wide-area network link.

Managing NFS and NIS

385

You can also reduce NFS traffic by increasing the attribute timeout (actimeo) specified at
mount time. As explained in Section 7.4.1, NFS clients cache file attributes to avoid having to
go to the NFS server for information that does not change frequently. These attributes are
aged to ensure the client will obtain refreshed attributes from the server in order to detect
when files change. These "attribute checks" can cause a significant amount of traffic on a
WAN. If you know that your files do not change frequently, or you are the only one accessing
them (they are only changed from your side of the WAN), then you can increase the attribute
timeout in order to reduce the number of "attribute refreshes."

Over a long-haul network, particularly one that is run over modem or ISDN lines, you will
want to make sure that UDP checksums are enabled. Solaris has UDP checksums enabled by
default, but not all operating systems use them because they add to the cost of sending and
receiving a packet. However, if packets are damaged in transit over the modem line, UDP
checksums allow you to reject bad data in NFS requests. NFS requests containing UDP
checksum errors are rejected on the server, and will be retransmitted by the client. Without the
checksums, it's possible to corrupt data.

You need to enable the checksums on both the client and server, so that the client generates
the checksums and the server verifies them. Check your vendor's documentation to be sure
that UDP checksums are supported; the checksum generation is not always available in older
releases of some operating systems.

18.5 NFS async thread tuning

Early NFS client implementations provided biod user-level daemons in order to add
concurrency to NFS operations. In such implementations, a client process performing an I/O
operation on a file hands the request to the biod daemon, and proceeds with its work without
blocking. The process doesn't have to wait for the I/O request to be sent and acknowledged by
the server, because the biod daemon is responsible for issuing the appropriate NFS operation
request to the server and to wait for its response. When the response is received, the biod
daemon is free to handle a new I/O request. The idea is to have as many concurrent
outstanding NFS operations as the server can handle at once, in order to accelerate I/O
handling. Once all biod daemons are busy handling I/O requests, the client-side process
generating the requests has to directly contact the NFS server and block awaiting its response.

For example, a file read request generated by the client-side process is handed to one biod
daemon, and the rest of the biod daemons are asked to perform read-ahead operations on the
same file. The idea is to anticipate the next move of the client-side application, by assuming
that it is interested in sequentially reading the file. The NFS client hopes to avoid having to
contact the NFS server on the next I/O request by the application, by having the next chunk of
data already available.

Solaris, as well as other modern Unix kernels support multiple threads of execution without
the need of a user context. Solaris has no biod daemons, instead it uses kernel threads to
implement read-ahead and write-behind, achieving the same increased read and write
throughput.

The number of read-aheads performed once the Solaris client detects a sequential read pattern
is specified by the kernel tunable variables nfs_nra for NFS Version 2 and nfs3_nra for NFS
Version 3. Solaris sets both values to four read-aheads by default. Depending on your file

Managing NFS and NIS

386

access patterns, network bandwidth, and hardware capabilities, you may need to modify the
number of read-aheads to achieve optimal use of your resources. For example, you may find
that this value needs to be increased on Gigabit Ethernet, but decreased over ISDN. To reduce
the number of read-aheads over a low bandwidth connection, you can add the following lines
to /etc/system on the NFS client and reboot the system:

set nfs:nfs_nra=2
set nfs:nfs3_nra=1

When running over a high bandwidth network, make sure not to set these values too high
above their default, not only will sequential read performance not improve, but the increased
memory used by the NFS async threads will ultimately degrade overall performance of the
system.

If nfs3_nra is set to four, and if you have two processes reading two separate files
concurrently over NFSVersion 3, the system by default will generate four read-aheads
triggered by the read request of the first process, and four more read-aheads triggered by the
read request of the second process for a total of eight concurrent read-aheads. The maximum
number of concurrent read-aheads for the entire system is limited by the number of NFS
async threads available. The kernel tunables nfs_max_threads and nfs3_max_threads control
the maximum number of active NFS async threads active at once per filesystem.

By default, a Solaris client uses eight NFS async threads per NFS filesystem. To drop the
number of NFS async threads to two, add the following lines to /etc/system on the NFS client
and reboot the system:

set nfs:nfs_max_threads=2
set nfs:nfs3_max_threads=2

After rebooting, you will have reduced the amount of NFS read-ahead and write-behind
performed by the client. Note that simply decreasing the number of kernel threads may
produce an effect similar to that of eliminating them completely, so be conservative.

Be careful when server performance is a problem, since increasing NFS async threads on the
client machines beyond their default usually makes the server performance problems worse.
The NFS async threads impose an implicit limit on the number of NFS requests requiring disk
I/O that may be outstanding from any client at any time. Each NFS async thread has at most
one NFS request outstanding at any time, and if you increase the number of NFS async
threads, you allow each client to send more disk-bound requests at once, further loading the
network and the servers.

Decreasing the number of NFS async threads doesn't always improve performance either, and
usually reduces NFS filesystem throughput. You must have some small degree of NFS
request multithreading on the NFS client to maintain the illusion of having filesystem on local
disks. Reducing or eliminating the number of NFS async threads effectively throttles the
filesystem throughput of the NFS client — diminishing or eliminating the amount of read-
ahead and write-behind done.

In some cases, you may want to reduce write-behind client requests because the network
interface of the NFS server cannot handle that many NFS write requests at once, such as when
you have the NFS client and NFS server on opposite sides of a 56-kbs connection. In these

Managing NFS and NIS

387

radical cases, adequate performance can be achieved by reducing the number of NFS async
threads. Normally, an NFS async thread does write-behind caching to improve NFS
performance, and running multiple NFS async threads allows a single process to have several
write requests outstanding at once. If you are running eight NFS async threads on an NFS
client, then the client will generate eight NFS write requests at once when it is performing a
sequential write to a large file. The eight requests are handled by the NFS async threads. In
contrast to the biod mechanism, when a Solaris process issues a new write requests while all
the NFS async threads are blocked waiting for a reply from the server, the write request is
queued in the kernel and the requesting process returns successfully without blocking. The
requesting process does not issue an RPC to the NFS server itself, only the NFS async threads
do. When an NFS async thread RPC call completes, it proceeds to grab the next request from
the queue and sends a new RPC to the server.

It may be necessary to reduce the number of NFS requests if a server cannot keep pace with
the incoming NFS write requests. Reducing the number of NFS async threads accomplishes
this; the kernel RPC mechanism continues to work without the async threads, albeit less
efficiently.

18.6 Attribute caching

NFS clients cache file attributes such as the modification time and owner to avoid having to
go to the NFS server for information that does not change frequently. The motivations for an
attribute caching scheme are explained in Section 7.4.1. Once a getattr for a filehandle has
been completed, the information is cached for use by other requests. Cached data is updated in
subsequent write operations; the cache is flushed when the lifetime of the data expires.
Repeated attribute changes caused by write operations can be handled entirely on the client
side, with the net result written back to the server in a single setattr. Note that explicit setattr
operations, generated by a chmod command on the client, are not cached at all on the client.
Only file size and modification time changes are cached.

The lifetime of the cached data is determined by four mount parameters shown in Table 18-3.

Table 18-3. Attribute cache parameters
Parameter Default (seconds) Cache Limit
acregmin 3 Minimum lifetime for file attributes
acregmax 60 Maximum lifetime for file attributes
acdirmin 30 Minimum lifetime for directory attributes
acdirmax 60 Maximum lifetime for directory attributes

The default values again vary by vendor, as does the accessibility of the attribute cache
parameters. The minimum lifetimes set the time period for which a size/modification time
update will be cached locally on the client. Attribute changes are written out at the end of the
maximum period to avoid having the client and server views of the files drift too far apart. In
addition, changing the file attributes on the server makes those changes visible to other clients
referencing the same file (when their attribute caches time out).

Attribute caching can be turned off with the noac mount option:

mount -o noac mahimahi:/export/tools /mnt

Managing NFS and NIS

388

Without caching enabled, every operation requiring access to the file attributes must make a
call to the server. This won't disable read caching (in either NFS async threads or the VM
system), but it adds to the cost of maintaining cache consistency. The NFS async threads and
the VM system still perform regular cache consistency checks by requesting file attributes,
but each consistency check now requires a getattr RPC on the NFS server. When many clients
have attribute caching disabled, the server's getattr count skyrockets:

% nfsstat -ns
Server nfs:
calls badcalls
221628 769
Version 2: (774 calls)
null getattr setattr root lookup readlink
8 1% 0 0% 0 0% 0 0% 762 98% 0 0%
read wrcache write create remove rename
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
link symlink mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0% 0 0% 4 0%
Version 3: (219984 calls)
null getattr setattr lookup access readlink
1173 0% 119692 54% 4283 1% 31493 14% 26622 12% 103 0%
read write create mkdir symlink mknod
11606 5% 7618 3% 1892 0% 64 0% 37 0% 0 0%
remove rmdir rename link readdir readdirplus
3183 1% 2 0% 458 0% 1295 0% 156 0% 1138 0%
fsstat fsinfo pathconf commit
7076 3% 311 0% 78 0% 1704 0%

Upwards of 60% of the NFS calls handled by the server may be requests to return file or
directory attributes.

If changes made by one client need to be reflected on other clients with finer granularity, the
attribute cache lifetime can be reduced to one second using the actimeo option, which sets
both the regular file and directory minimum and maximum lifetimes to the same value:

mount -o actimeo=1 mahimahi:/export/tools /mnt

This has the same effect as:

mount -o acregmin=1,acregmax=1,acdirmin=1,acdirmax=1 \
 mahimahi:/export/tools /mnt

18.7 Mount point constructions

The choice of a mount point naming scheme can have a significant impact on NFS server
usage. Two common but inefficient constructions are stepping-stone mounts and server-
resident symbolic links. In each case, the client must first query the NFS server owning the
intermediate mount point (or symbolic link) before directing a request to the correct target
server.

A stepping-stone mount exists when you mount one NFS filesystem on top of another
directory, which is itself part of an NFS-mounted filesystem from a different server. For
example:

Managing NFS and NIS

389

mount mahimahi:/usr /usr
mount wahoo:/usr/local /usr/local
mount poi:/usr/local/bin /usr/local/bin

To perform a name lookup on /usr/local/bin/emacs, the NFS client performs directory
searches and file attribute queries on all three NFS servers, when the only "interesting" server
is poi. It's best to mount all of the subdirectories of /usr and /usr/local from a single fileserver,
so that you don't send RPC requests to other fileservers simply because they own the
intermediate components in the pathname. Stepping-stone mounts are frequently created for
consistent naming schemes, but they add to the load of "small" RPC calls handled by all NFS
servers.

Symbolic links are also useful for imposing symmetric naming conventions across multiple
filesystems but they impose an unnecessary load on an NFS server that is regularly called
upon to resolve the links (if the NFS client does not perform symbolic link caching). NFS
pathnames are resolved a component at a time, so any symbolic links encountered in a
pathname must be resolved by the host owning them.

For example, consider a /usr/local that is composed of links to various subdirectories on other
servers:

mount wahoo:/usr/local /usr/local
cd /usr/local
ls -l
lrwxrwxrwx 1 root 16 May 17 19:12 bin -> /net/poi/bin
lrwxrwxrwx 1 root 16 May 17 19:12 lib -> /net/mahimahi/lib
lrwxrwxrwx 1 root 16 May 17 19:12 man -> /net/irie/man

Each reference to any file in /usr/local must first go through the server wahoo to get the
appropriate symbolic link resolved. Once the link is read, the client machine can then look up
the directory entry in the correct subdirectory of /net. Every request that requires looking up a
pathname now requires two server requests instead of just one. Solaris, as well as other
modern NFS implementations reduce this penalty by caching symbolic links. This helps the
client avoid unnecessary trips to the intermediate server to resolve readlink requests.

Use nfsstat -s to examine the number of symbolic link resolutions performed on each server:

% nfsstat -ns
Server nfs:
calls badcalls
221628 769
Version 2: (774 calls)
null getattr setattr root lookup readlink
8 1% 0 0% 0 0% 0 0% 762 98% 0 0%
read wrcache write create remove rename
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
link symlink mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0% 0 0% 4 0%
Version 3: (219984 calls)
null getattr setattr lookup access readlink
1023 0% 73495 33% 4383 1% 31493 14% 26672 12% 46299 21%
read write create mkdir symlink mknod
11606 5% 7618 3% 1892 0% 64 0% 37 0% 0 0%
remove rmdir rename link readdir readdirplus
3183 1% 5 0% 308 0% 1145 0% 456 0% 1138 0%

Managing NFS and NIS

390

fsstat fsinfo pathconf commit
7076 3% 109 0% 178 0% 1804 0%

If the total percentage of readlink calls is more than 10% of the total number of lookup calls
on all NFS servers, there is a symbolic link fairly high up in a frequently traversed path
component. You should look at the total number of lookup and readlink calls on all servers,
since the readlink is counted by the server that owns the link while the lookup is directed to
the target of the symbolic link.

If you have one or more symbolic links that are creating a pathname lookup bottleneck on the
server, remove the links (on the server) and replace them with a client-side NFS mount of the
link's target. In the previous example, mounting the /net subdirectories directly in /usr/local
would cut the number of /usr/local-related operations in half. The performance improvement
derived from this change may be substantial when symbolic links are not cached, since every
readlink call requires the server to read the link from disk. Stepping-stone mounts, although
far from ideal, are faster than an equivalent configuration built from symbolic links when the
clients do not cache symbolic link lookups.

Most filesystem naming problems can be resolved more easily and with far fewer
performance penalties by using the automounter, as described in Chapter 9.

18.8 Stale filehandles

A filehandle becomes stale whenever the file or directory referenced by the handle is removed
by another host, while your client still holds an active reference to the object. A typical
example occurs when the current directory of a process, running on your client, is removed on
the server (either by a process running on the server or on another client). For example, the
following sequence of operations produces a stale filehandle error for the current directory of
the process running on client1:

client1 client2 or server
% cd /shared/mod1
 % cd /shared
 % rm -rf mod1
% ls
.: Stale File Handle

It is important to note that recreating the removed directory before client1 lists the directory
would not have prevented the stale filehandle problem:

client1 client2 or server
% cd /shared/mod1
 % cd /shared
 % rm -rf mod1
 % mkdir mod1
% ls
.: Stale File Handle

This occurs because the client filehandle is tied to the inode number and generation count of
the file or directory. Removing and recreating the directory mod1 results in the creation of a
new directory entry with the same name as before but with a different inode number and
generation count (and consequently a different filehandle). This explains why clients get stale
filehandle errors when files or directories on the server are moved to a different filesystem. Be

Managing NFS and NIS

391

careful when you perform filesystem maintenance on the NFS server. Unfortunately you
cannot bring a server down, move files to a new filesystem (perhaps to a larger disk), and
reshare the new filesystem without risking your clients getting stale filehandles. Moving the
files to a new filesystem on the server results in new inode numbers and generation counts for
the files since inode numbers are not preserved across filesystem moves. If your client gets
stale filehandles, then you may need to terminate all processes accessing the filesystem on the
client, and unmount the NFS filesystem in order to clear the large number of stale filehandles.
Unfortunately, identifying all the processes that hold a filesystem busy is not always feasible,
in which case you may have to resort to forcibly unmounting the filesystem:

 # umount -f /shared

Specify the -f option to the umount [5] command to forcibly unmount a filesystem. This should
be done only as a last resort, since using this option can cause data loss for open files.

[5] The ability to forcibly unmount a filesystem was introduced in Solaris 8. This feature is supported by the Linux kernel 2.1.116 or later. Previously,
you would have had to reboot the NFS client to clear the stale filehandles.

You will also get stale filehandle errors when the server or another client removes a file that
your client currently has open:

Process A on client1 client2 or server
...
fd = open("/shared/foo", O_RDONLY);
 % rm /shared/foo
read(fd, &buffer, buffer_len);
Read fails! Stale File Handle

If you consistently suffer from stale filehandle errors, you should look at the way in which
users share files using NFS. Even though users see the same set of files, they do not
necessarily have to do their work in the same directories. Watch out for users who share
directories or copies of code. Use a source code control system that lets them make private
copies of source files in their own directories. NFS provides an excellent mechanism for
allowing all users to see the common source tree, but nobody should be doing development in
it. Similarly, users who share scratch space may decide to clean it out periodically. Any user
who had a scratch file open when another user on another NFS client purged the scratch
directory will receive stale filehandle errors on the next reference to the (now removed)
scratch file.

As with most things, it helps to have an understanding of how your users are using the
filesystems presented to them by NFS. In many cases, users want access to a wide variety of
filesystems, but they do not want all of them mounted at all times (for fear of server crashes),
nor do they want to keep track of where all filesystems are exported from and where they
should be mounted. The NFS automounter solves all of these problems by applying NIS
management to NFS mount information. As part of your client tuning, consider using the
automounter to make client NFS administration easier. Chapter 9 describes the automounter
in detail.

Managing NFS and NIS

392

Appendix A. IP Packet Routing
Routers and gateways join multiple IP networks, forwarding packets between the networks. A
single organization may have multiple IP networks because it has multiple buildings, multiple
sites, or multiple subgroups that require their own networks. For example, the history and
math departments at a university are likely to each have their own IP networks, just as an
engineering and manufacturing facility separated by several miles will have independent
networks. Section 17.2 discussed network partitioning using routers, and some of the
performance considerations when running NFS and NIS in an internetworked environment.
This appendix explores the mechanics of IP packet routing in greater detail.

A.1 Routers and their routing tables

A router has a unique IP address on each network interface; associated with each IP address is
also a unique hostname. A common convention is to add a suffix associated with the network
number to the name of the host used on the each network interface as shown in this /etc/hosts
fragment:[A]

[A] Of course, identifying a host's interfaces in /etc/hosts is not sufficient if you are using DNS. An excellent treatment of how to set up multiple
interfaces for a host in DNS is discussed on the Web in the document "Frequently Asked Questions about Kerberos" by Ken Hornstein, available (at
the time this book was written) at http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html. Look for the section entitled "How should I configure
my DNS for Kerberos?" Even if you are not using Kerberos, Hornstein's recommendation for "multiple address records per host" is a logical way to
configure multiple interfaces in DNS, because his choice associates a single name, such as fred.widget.com, with multiple interface specific names,
such as fred-200.widget.com and fred-201.widget.com.

local network hosts

192.9.200.1 fred fred-200
192.9.200.2 barney
192.9.200.3 wilma

remote network gateway
192.9.201.1 fred-201

Host fred is on both the 192.9.200.0 and 192.9.201.0 networks, and has a distinct name and
address on each. netstat -i shows both interfaces and their associated networks and hostnames:

% netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis
Queue
hem0 1500 192.9.200.0 fred 349175 104 542039 363 816 0
hme1 1500 192.9.201.0 fred-201 108635 1 4020 22 301 0
lo0 8232 loopback localhost 74347 0 74347 0 0 0

To send a packet to another network, the local host needs some picture of the network and its
connections to other networks. Ideally, this picture presents other networks as a "black box"
outside of some local gateway, rather than an itemization of a route to every host on every
attached network. This paradigm is how we view the U.S. Post Office. Once you drop a letter
in the mailbox, the route it takes may involve trucks, planes, or people, and the decisions
about routing vehicles are left up to the people doing the delivery.

A host's picture of the local network's connections to other IP networks is contained in the
kernel's routing table. This table may be modified in three ways:

Managing NFS and NIS

393

• Dynamic routing information is sent periodically by routers that advertise themselves
using some well-known protocols, and daemons such as in.routed send and interpret
route announcements and update the routing table.[B]

[B] The protocol used by in.routed is called RIP, for Routing Information Protocol. There are other routing protocols that send
less information or that allow hosts to perform preferential routing when multiple gateways are present, but a discussion of
these protocols is beyond the scope of this book.

• Static routing involves hand-crafting a route table. Static routing is typically used
when there is only one router on a network, so a single route suffices for all outbound
traffic. Client machines often set up static routing to avoid having to listen to the
regular route information broadcasts (see Section A.2 later in this appendix).

• Route redirection requests are sent by routers that are asked to forward packets to
networks for which the chosen router is not the best choice. These route table updates
are sent in ICMP redirect messages.

The routing table determines how to get to foreign IP networks. You can examine the current
routing table using netstat -r :

% netstat -r
Routing tables
Destination Gateway Flags Refcnt Use
Interface
131.40.191.1 gatehost UGH 0 0 hme0
131.40.56.0 gatehost UG 0 0 hme0
131.40.208.0 gatehost2 UGD 0 0 hme0
131.40.52.0 wahoo U 60 80770 hme0
localhost localhost UH 4 4767 lo0
default gatehost UG 0 0 hme0

The term "gateway" is used somewhat improperly in both netstat -r and the following
discussion. A gateway performs services at the application layer in the protocol stack, while a
router is concerned only with the IP layer. The routing tables show IP routes, and titling the
Gateway column Router instead would be more correct. However, many people associate
Router with a dedicated IP router, so the less specific term Gateway is used.

The information in the routing table determines how to get to a particular remote host or
network, and shows the usage statistics for each route. The destination column shows the
remote address; if it is a remote network, the address has a .0 suffix to indicate that it is a
network number.[C] Note that you can get to multiple networks through a single gateway. The
gateway listed in the routing tables is just the first step that must be taken to reach the remote
network; additional routing information on the first gateway directs a packet to another
gateway if required.

[C] Of course, if you are using classless IP addressing (see Section 1.3.4), network numbers are likely to not fall in discrete 8-bit widths. Thus in a
classless environment, it would be more precise to say that if the destination is a remote network, the last N bits of the address will be zeroes to
indicate that the first 32 - N bits of the address are a network number.

The Flags column describes the gateway:

U

The gateway is up. If this flag appears in netstat -r, the gateway is probably up.

Managing NFS and NIS

394

G

To get to the destination address, packets must go through a gateway. The gateway's
name is in the second column.

H

The gateway is a "host gateway" and is directly connected to the network listed as the
destination. In the first line of the routing table in the previous example, destination
131.40.191.1 is the IP address of gatehost, the gateway referenced in several other
route table entries. Host gateways are always listed with their full IP addresses as the
destination and are generally at the far end of a point-to-point link.

D

The route was added after receiving an ICMP redirect message. The local host
probably sent a packet to some other router, such as gatehost, with a destination
network of 131.40.208.0. gatehost consulted its routing tables and found that the
router to this network was gatehost2, and to get to gatehost2 it had to send the packet
back out on the same network interface on which it was received. The IP routing
algorithm realizes that it should never have been handed a packet for this network in
the first place, so it sends an ICMP redirect message to the originator informing it of a
better route to network 131.40.208.0. Using static routes in a network with multiple
gateways can lead to a steady stream of ICMP redirect requests unless the transmitting
hosts update their route tables. Figure A-1 shows the generation of an ICMP redirect
message.

Figure A-1. ICMP redirect generation

The last column in the output of netstat -r shows the physical or pseudo device used to reach
the gateway. The last three routes deserve some additional explanation. The route with wahoo
as the gateway describes the local host's connection to the local network. This is known as the

Managing NFS and NIS

395

interface route of the machine. The next entry shows the loopback device, which is listed as a
host gateway. The last line is a default routing entry, which is used as a catchall if the
destination IP network cannot be matched to any explicit route in the table.

The combination of the flags U, G, and H implies "This host is the gateway to this network":
the U flag means the gateway is up, the G flag means the packets must go through a gateway,
and the H flag indicates that the remote network is connected to the host listed in the route
table. The gateway host has at least one network interface and one or more point-to-point
links. A gateway listed with flags U and G has two or more network interfaces and is acting as
a routing host. The lack of the H flag means that the remote network isn't attached directly to
the gateway; the gateway host listed in the routing table is merely a stepping stone on the way
to that remote network.

Armed with the route tables, we can locate the host on our local network that can forward our
packets to any destination host. Since we need the MAC address of the destination to send a
packet, this presents a problem for the transmitter when the receiver is on another network.
How do packets actually get to the remote network?

Let's assume that wahoo, at IP address 131.40.52.15, has mounted a filesystem through one or
more gateways from the NFS server bigguy at IP address 131.40.208.10. To send a packet to
bigguy, wahoo looks for its IP address in its routing table. It finds it, with gatehost2 named as
the gateway to this network. If the remote IP network was not matched to a destination in the
routing tables, the default route, which uses gatehost, would be used. wahoo sends its packet
to gatehost2, filling in the MAC address for gatehost2 but the IP address for bigguy.

When gatehost2 receives the packet, it realizes that the IP network in the destination field is
not its own. It forwards the packet, using its own routing information to locate a gateway to
network 131.40.208.0. gatehost2 sends the packet to the next gateway, putting in the remote
gateway's MAC address but leaving the destination IP address of bigguy intact. Eventually,
the packet is received by a gateway that is on network 131.40.208.0; this gateway recognizes
that its IP network and the destination IP network in the packet are the same, and it sends it
along the local area network to bigguy. The last gateway to forward the packet is the one that
inserts bigguy's MAC address in the packet.

By default, hosts on more than one network are configured as routers in order to forward
packets from one interface to another. In some cases, it's desirable to disable automatic IP
forwarding, so that the host may communicate on multiple networks but it will not act as a
transparent conduit between them. Refer back to the NIS security issues raised in Section
12.3.2. If an NIS client can bind to an NIS server, it can dump the password map from the
server. To protect the contents of your password file map, you may want to make it
impossible for clients outside the local network to bind to a local NIS server. With IP
forwarding enabled, any client can use ypset to get to any NIS server, but if IP forwarding is
disabled on the host that connects the local network to other networks, ypset never makes it
beyond this router host. It's also a good idea to disable IP forwarding on machines that join
your company network to a larger network such as the Internet. This creates a firewall
between your internal networks and the outside world: hosts outside the router cannot get
packets into your company networks.

How you disable IP forwarding depends on your system. In Solaris, this is done by creating a
special file:

Managing NFS and NIS

396

touch /etc/notrouter

If the /etc/notrouter file is present when the system boots, then the system will not perform IP
forwarding. If you want to turn off IP forwarding immediately, then do the following:

/usr/sbin/ndd -set /dev/ip ip_forwarding 0

A.2 Static routing

In an IPv4 network, hosts can dynamically discover the presence of routers by using the
ICMP router discovery protocol. Router hosts can run in.rdisc in order to advertise themselves
through the ICMP router discovery protocol. When a host invokes in.rdisc at boot time, it
listens on the 224.0.0.1 (ALL_HOSTS) multicast address for router advertisement messages
from routers on the network. In turn, router hosts send out advertisement messages to the
224.0.0.1 multicast address advertising all of their IP addresses. Multiple initial advertisement
messages are sent out during the first few seconds after the router boots, backing off to
transmit advertisement messages approximately once every ten minutes. Optionally, a host
can avoid waiting for routers to announce themselves by sending out a few router solicitation
messages to the 224.0.0.2 (ALL_ROUTERS) multicast address where routers listen for
requests.

If the host does not find a default router, it may choose to start in.routed in quiet mode to
listen for Router Information Protocol (RIP) advertisements broadcast by router hosts. Router
hosts invoke in.routed at boot time in order to publish their routing tables using RIP. The
route information is broadcast every 30 seconds.

In a small IPv4 network, or one in which there is only one router connecting it to other
networks, static routing is preferable to the previously described dynamic routing requiring
rdisc or routed. In a single-outlet network, every route goes through the solitary router, so the
entire routing table can be compressed into a default route entry:

route add default 131.40.52.14 1

The destination is given as default, and the gateway address is the IP address or hostname of
the router. In Solaris, you can effectively define static routes at boot time by simply creating
the /etc/defaultrouter file on each machine, and putting the name of the default router in this
file. If this file exists, the /etc/init.d/inetinit boot script will read the router name from this file
and set up a default route. Furthermore, if a default route has been established, the
/etc/init.d/inetinit script skips the invocation of routed and rdisc. You can specify either the IP
address or the hostname of the router in /etc/defaultrouter. If you use the hostname, make sure
to also include its IP address mapping in the /etc/hosts or /etc/inet/ipnodes file, because no
name services are running at the time that the boot script is run.

Note that the IPv6 protocol is designed to be dynamic in nature, therefore IPv6 heavily relies
on router discovery. For Solaris hosts, in.ndpd is the only mechanism available to discover
IPv6 routers. in.ndpd sends router solicitation messages and uses the router advertisement
messages it receives to autoconfigure the IPv6 host. Although nothing in the IPv6 protocol
precludes static routes from being defined, Solaris has chosen not to implement a mechanism
to define static routes for IPv6.

Managing NFS and NIS

397

Appendix B. NFS Problem Diagnosis

Throughout this book, we've used the output of nfsstat on both NFS clients and servers to
locate performance bottlenecks or inefficient NFS architectures. The first two sections in this
appendix summarize symptoms of problems identified from the output of nfsstat. The last list
contains typical values for the error variable errno that may be returned by file operations on
NFS-mounted filesystems.

B.1 NFS server problems

Check the output of nfsstat -s for the following problems:

badcalls > 0

RPC requests are being rejected out of hand by the NFS server. This could indicate
authentication problems caused by having a user in too many groups, attempts to
access exported filesystems as root, or an improper Secure RPC configuration.

badlen > 0 or xdrcall > 0

This indicates a malformed NFS request, detected by RPC or XDR protocol decoding
on the server. This can be caused by bugs in the client or server, or by physical
network problems.

dupreqs > 0

The duplicate request cache keeps a record of previously executed NFS requests. The
dupchecks counter tracks the number of times this cache was consulted, or checked.
The dupreqs counter tracks the number of times a check of the cache had a "hit." In
other words, dupreqs counts the number of times the NFS server received a previously
executed request. For connection-oriented (TCP) requests, a high ratio of dupreqs to
dupchecks is 0.01%. For connectionless (UDP) requests, a high ratio of dupreqs to
dupchecks is one percent. High ratios indicate one of three problems:

• The timeout set on one or more clients' NFS mounts is too low. Adjust the
timeo option in the automounter map or the NFS mount command upward.

• The server is not responding quickly enough. There could be lots of reasons for
this having to do with physical capabilities of the server: processor speed,
numbers of processors (if it is a multiprocessor), not enough primary memory
(check if the percentage of reads is high, say over 5%; this would indicate lots
of reads that would be best served from cache if there was enough memory),
numbers of disk drives on the system (spreading more data accesses across
more spindles reduces response time; if you've eliminated primary memory as
a cause, check if the percentage of writes is high, say over 5%), etc. Other
possibilities extend to artificial limits, such as the number of server threads set
via nfsd.

• There is a routing problem impeding replies from the server to one or more
clients.

Managing NFS and NIS

398

readlink > 10%

Clients are making excessive use of symbolic links that are on filesystems exported by
the server. If the link is to a directory, replace the symbolic link with a directory, and
mount both the underlying filesystem and the link's target on the client. If the link is to
a file, replace the symbolic link with a hard link.

getattr > 60%

Check for possible non-default attribute cache values on NFS clients. A very high
percentage of getattr requests may indicate that the attribute cache window has been
reduced or set to zero with the actimeo or noac mount option. It can also indicate that
the NFS filesystem implementation is doing a poor job of attribute caching.

null > 1%

The automounter has been configured to mount replicated filesystems, but the timeout
values for the mount are too short. The null procedure calls are made by the
automounter to locate a server for the filesystem; too many null calls indicates that the
automounter is retrying the mount frequently. Increase the mount timeout parameter
on the automounter command line.

fsinfo > 1%

This is typically used only on mounts. Lots of fsinfo calls suggests that the
automounter is frequently mounting and unmounting the same filesystems. If so, tune
the automounter to hold mounts longer via the -t option to automount. This will
improve the response time on clients.

Keep in mind that the percentages of each operation type used are only general rules of
thumb. Your site may have legitimate reasons for percentages that go outside the rule of
thumb.

B.2 NFS client problems

Using the output of nfsstat -c, look for the following symptoms:

timeout > 5%

The client's RPC requests are timing out before the server can answer them, or the
requests are not reaching the server. Check badxids to determine the cause of the
timeouts.

badxids ~ timeout

RPC requests that have been retransmitted are being handled by the server, and the
client is receiving duplicate replies. Increase the timeo parameter for this NFS mount
to alleviate the request retransmission, or tune the server to reduce the average request
service time.

Managing NFS and NIS

399

badxids ~ 0

With a large timeout count, this indicates that the network is dropping parts of NFS
requests or replies in between the NFS client and server. Reduce the NFS buffer size
using the rsize and wsize mount parameters to increase the probability that NFS
buffers will transit the network intact.

badcalls > 0

RPC calls on soft-mounted filesystems are timing out. If a server has crashed, then
badcalls can be expected to increase. But if badcalls grows during "normal" operation
then soft-mounted filesystems should use a larger timeo or retrans value to prevent
RPC failures. Better yet, mount the filesystem without the soft option.

cantconn > 1%

This indicates that the NFS client is having trouble making a TCP connection to the
NFS server. Often this is because the NFS server has been or is down. It can also
indicate that the connection queue length in the NFS server is too small, or that an
attacker is attempting a denial of service attack on the server by clogging the
connection queue. If you cannot eliminate connection queue length as a problem, then
use the -l parameter to nfsd to increase the queue length.

B.3 NFS errno values

The following system call errno values are the result of various NFS call failures:

EINTR

A system call was interrupted when the intr option was used on a hard-mounted
filesystem.

EACCES

A user attempted to access a file without proper credentials. This error is usually
caused by mapping root or anonymous users to nobody, a user that has almost no
permissions on files in the exported filesystem.

EBUSY

The superuser attempted to unmount a filesystem that was in use on the NFS client.

ENOSPC

The fileserver has run out of room on the disk to which the client is attempting an NFS
write operation.

Managing NFS and NIS

400

ESTALE

An NFS client has asked the server to reference a file that has either been freed or
reused by another client.

EREMOTE

An attempt was made to NFS-mount a filesystem that is itself NFS-mounted on the
server. Multihop NFS-mounts are not allowed. This error is reported by mount on the
NFS client.

Managing NFS and NIS

401

Appendix C. Tunable Parameters
NFS client and server implementations tend to have lots of tunable parameters. This appendix
summarizes some of the more important ones. Except as noted, the parameters are tuned by
changing a parameter in the kernel, which requires setting a value in a file like /etc/system on
Solaris 8. Note that while many NFS implementations share many of these parameters, the
names of the parameters and the methods for setting them will vary between implementations.
Table C-1 and Table C-2 summarize client and server tunables.

Table C-1. Client parameters
Parameter Description Caveats
clnt_max_conns This parameter controls the number

of connections the client will create
between the client and a given server.
In Solaris, the default is one. The
rationale is that a single TCP
connection ought to be sufficient to
use the available bandwidth of
network channel between the client
and server. You may find this to not
be the case for network media faster
than the traditional 10Base T (10Mb
per second).

Note that this parameter is not in the
Solaris nfs module, but it is in the
kernel RPC module rpcmod.

At the time of this writing, the algorithm
used to assign traffic to each connection
was a simple round robin approach. You
may find diminishing returns if you set
this parameter higher than 2. This
parameter is highly experimental.

clnt_idle_timeout This parameter sets the number of
milliseconds the NFS client will let a
connection go idle before closing it.

This parameter applies to NFS/TCP
connections and is set in the Solaris
kernel RPC module called rpcmod.

Normally this parameter should be a
minute below the lowest server-side idle
timeout among all the servers that you
connect your client to. Otherwise, you
may observe clients sending requests
simultaneous with the server tearing down
connections. This will result in an
unnecessary sequence of connection tear
down, followed immediately by
connection setup.

nfs_max_threads
(NFS Version 2)

nfs3_max_threads
 (NFS Version 3)

Sets the number of background read-
ahead and write-behind threads on a
per NFS-mounted filesystem basis,
for NFS Version 2 and Version 3.

Read-ahead is a performance win
when applications do mostly
sequential reads. The NFS filesystem
can thus anticipate what the
application wants, and so when it
performs the next read() system call,
the required data will already be in
the client's cache.

Write-behind is a performance win,
because the NFS client must
synchronize dirty data to the server
before the application closes the file.
A sequential write pattern is not

Setting too many of these threads has the
following risks:

• If there are lots of mounted
filesystems, consuming kernel
memory for lots of threads could
degrade system performance.

• If the network link or the NFS
server is slow, the network can
become saturated.

Managing NFS and NIS

402

necessary to leverage the benefits of
multiple write-behind threads.

nfs3_max_transfer_size Controls the default I/O transfer size
for NFS Version 3 mounts.

Given that UDP datagrams are limited to a
maximum of 64 KB, adjusting this value
beyond its default is dangerous. If you do
raise it from its default (32 KB for Solaris,
at the time of this writing), make sure that
you specify the use of the TCP protocol
for all NFS mounts.

nfs_nra
(NFS Version 2)

nfs3_nra
(NFS Version 3)

Controls the number of blocks the
NFS filesystem will read ahead at a
time once it detects a sequential read
pattern.

This is a parameter that can have
diminishing returns if set too high. Not
only will sequential read performance not
improve, but the increased memory use by
the client will ultimately degrade overall
performance of the system.

If the read pattern is dominated by random
and not sequential reads (as might be the
case when reading indexed files), setting
this tunable to 0 (zero) might be a win.

nfs_shrinkreaddir This is a parameter that is for
enhancing interoperability. Many
NFS implementations were based on
early source code from Sun
Microsystems. This code reads
directories in buffers that were much
smaller (1038 bytes) than the
maximum transfer size. Later, when
Sun changed Solaris NFS clients to
read directories using maximum
transfer sizes, it was found that some
servers could not cope.

Set this parameter to 1 to force 1038-
byte directory read transfers.

nfs_write_error_to_cons_only Controls whether NFS write errors
are logged to the system console
only, or to the console and syslog. By
default, errors are logged to both the
console and syslog.

This is a security issue. The syslog setup
usually logs errors to a file that is globally
readable in /var/adm directory. Write
errors often include the file handle of the
file on which the error was encountered. If
the file handle can be easily obtained, it is
easier for attackers to attack the NFS
server, since they can bypass the NFS
filesystem to mount such attacks.

rsize

wsize

These are suboptions to the NFS
mount command that change read and
write transfer block sizes,
respectively.

For NFS Version 2 mounts, the maximum
is limited to 8KB, per the NFS Version 2
protocol definition.

For NFS Version 3 mounts, the same
caveats for the nfs3_max_transfer_size
parameter apply.

-t timeout This is an option to the automount
command that sets the number of
seconds the automounter will wait
before attempting to unmount a
filesystem. Since unmounting a
filesystem often forces the premature
flushing of buffers and release of

Lowering the timeout from its default
value is almost always a bad idea, except
when you have lots of unreliable servers
or networks. In that case, more frequent
unmounting of automounted filesystems
might be a net win.

Managing NFS and NIS

403

performance enhancing caches,
higher values of this parameter can
have very beneficial effects.

If your NFS server performs
additional functions, like electronic
mail, or it allows users to login to run
applications, then it is likely your
NFS server will be a heavy client of
the automounter, even if the
filesystems are local to the NFS
server. While you are better off
making your NFS servers do only
NFS service, if you must allow the
NFS server to do non-NFS things,
you are strongly encouraged to
increase the automounter timeout.

Table C-2. Server Parameters

Parameter Description Caveats
nfs_portmon This parameter controls whether the NFS

server will allow requests with a source port
less than 1024.

Many operating systems use the nonstandard
notion of privileged port numbers, which
says that only the superuser can create
network endpoints bound to a port less than
1024. Many NFS client implementations
will bind to ports less than 1024, and many
NFS server implementations will refuse NFS
accesses if the port is greater than or equal to
1024.

By default, Solaris NFS servers do not care
if the client's source port is less than 1024.
This is because the security benefits are
minimal (given that it is trivial to bind to
ports less than 1024 on many non-Unix
operating systems).

If you set this parameter to 1 to enable NFS port
checking, you may find that some NFS clients
cannot access your server.

svc_idle_timeout This parameter sets the number of
milliseconds the NFS server will let a
connection go idle before closing it.

This parameter applies to NFS/TCP
connections and is set in the Solaris kernel
RPC module called rpcmod.

Normally this parameter should be a minute
beyond the highest client-side idle timeout
among all the clients that connect to your server.
Otherwise, you may observe clients sending
requests simultaneous with the server tearing
down connections. This will result in an
unnecessary sequence of connection teardown,
followed immediately by connection setup.

nservers This is an integer argument to the nfsd
command. It defines the number of NFS
server threads or processes that will be
available to service NFS requests.

On some non-Solaris implementations, setting
nservers too high can result in bad performance
due to three effects:

• The number of server threads or
processes is allocated up front, taking
up lots of precious kernel memory that
might not be needed if the server load is
minimal. This is not a problem on
Solaris since threads are allocated on

Managing NFS and NIS

404

demand and released when demand
ebbs.

• The thundering herd problem exists,
which results when there are lots of
threads, and every time a request
arrives, all the idle threads, instead of
just one idle thread, are dispatched. If
the load is moderate, many CPU cycles
can be wasted, as the majority of the
threads wake up, find there is nothing
to do, and then go back to sleep. This is
not a problem under Solaris because
only one thread at a time is dispatched
when a request arrives.

• The Robinson Factor[A] is the final
effect. Consider the situation when
there are threads doing NFS work, but
some are idle. By the time an idle
thread is dispatched, an active thread
has picked up the request, thus wasting
a dispatch of the idle thread. This is not
a problem with Solaris.

[A] The Robinson Factor is named after David Robinson, the engineer at Sun Microsystems who observed the issue in Sun's NFS server, and fixed it.

Managing NFS and NIS

405

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animals on the cover of Managing NFS and NIS, Second Edition, are tree porcupines, a
name meaning "pig with spines." Like the guinea pig, the porcupine is not a pig at all, but a
rodent. The tree porcupine is native to the eastern United States and northern Canada. In
summer, it feeds on green vegetation and the leaves and twigs of deciduous trees; in winter it
eats the bark of evergreens. It will frequently chew away a complete ring of bark from around
the tree, thereby killing it. As a result of such behavior, the porcupine does millions of dollars
of damage annually to the timber industries.

The spines of the tree porcupine are about two inches long, barbed, and tend to be concealed
by the animal's long, coarse fur. Contrary to popular belief, the porcupine does not shoot these
spines. The spines are loosely attached to the skin, so when the barb on the spine catches on
an attacker, the spine will pull loose from the porcupine. Once embedded, spines will tend to
work their way further in and have been known to cause death when they puncture internal
organs.

Nicole Arigo was the production editor and the copyeditor for Managing NFS and NIS,
Second Edition. Clairemarie Fisher O'Leary proofread the book. Ann Schirmer, Mary Brady,
and Jane Ellin provided quality control. Johnna VanHoose Dinse wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century engraving
from the Dover Pictorial Archive. Emma Colby produced the cover layout with
Quark™XPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest. Anne-
Marie Vaduva converted the files from Microsoft Word to FrameMaker 5.5.6 using tools
created by Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond
Book; the code font is Constant Willison. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6.

	Cover
	Table of Contents
	Preface
	Who this book is for
	Versions
	Organization
	Conventions used in this book
	Differences between the first edition and second edition
	Comments and questions
	Hal's acknowledgments from the first edition
	Acknowledgments for the second edition

	1. Networking Fundamentals
	1.1 Networking overview
	1.2 Physical and data link layers
	1.3 Network layer
	1.4 Transport layer
	1.5 The session and presentation layers

	2. Introduction to Directory Services
	2.1 Purpose of directory services
	2.2 Brief survey of common directory services
	2.3 Name service switch
	2.4 Which directory service to use

	3. Network Information Service Operation
	3.1 Masters, slaves, and clients
	3.2 Basics of NIS management
	3.3 Files managed under NIS
	3.4 Trace of a key match

	4. System Management Using NIS
	4.1 NIS network design
	4.2 Managing map files
	4.3 Advanced NIS server administration
	4.4 Managing multiple domains

	5. Living with Multiple Directory Servers
	5.1 Domain name servers
	5.2 Implementation
	5.3 Fully qualified and unqualified hostnames
	5.4 Centralized versus distributed management
	5.5 Migrating from NIS to DNS for host naming
	5.6 What next?

	6. System Administration Using the Network File System
	6.1 Setting up NFS
	6.2 Exporting filesystems
	6.3 Mounting filesystems
	6.4 Symbolic links
	6.5 Replication
	6.6 Naming schemes

	7. Network File System Design and Operation
	7.1 Virtual filesystems and virtual nodes
	7.2 NFS protocol and implementation
	7.3 NFS components
	7.4 Caching
	7.5 File locking
	7.6 NFS futures

	8. Diskless Clients
	8.1 NFS support for diskless clients
	8.2 Setting up a diskless client
	8.3 Diskless client boot process
	8.4 Managing client swap space
	8.5 Changing a client's name
	8.6 Troubleshooting
	8.7 Configuration options
	8.8 Brief introduction to JumpStart administration
	8.9 Client/server ratios

	9. The Automounter
	9.1 Automounter maps
	9.2 Invocation and the master map
	9.3 Integration with NIS
	9.4 Key and variable substitutions
	9.5 Advanced map tricks
	9.6 Side effects

	10. PC/NFS Clients
	10.1 PC/NFS today
	10.2 Limitations of PC/NFS
	10.3 Configuring PC/NFS
	10.4 Common PC/NFS usage issues
	10.5 Printer services

	11. File Locking
	11.1 What is file locking?
	11.2 NFS and file locking
	11.3 Troubleshooting locking problems

	12. Network Security
	12.1 User-oriented network security
	12.2 How secure are NIS and NFS?
	12.3 Password and NIS security
	12.4 NFS security
	12.5 Stronger security for NFS
	12.6 Viruses

	13. Network Diagnostic and Administrative Tools
	13.1 Broadcast addresses
	13.2 MAC and IP layer tools
	13.3 Remote procedure call tools
	13.4 NIS tools
	13.5 Network analyzers

	14. NFS Diagnostic Tools
	14.1 NFS administration tools
	14.2 NFS statistics
	14.3 snoop
	14.4 Publicly available diagnostics
	14.5 Version 2 and Version 3 differences
	14.6 NFS server logging
	14.7 Time synchronization

	15. Debugging Network Problems
	15.1 Duplicate ARP replies
	15.2 Renegade NIS server
	15.3 Boot parameter confusion
	15.4 Incorrect directory content caching
	15.5 Incorrect mount point permissions
	15.6 Asynchronous NFS error messages

	16. Server-Side Performance Tuning
	16.1 Characterization of NFS behavior
	16.2 Measuring performance
	16.3 Benchmarking
	16.4 Identifying NFS performance bottlenecks
	16.5 Server tuning

	17. Network Performance Analysis
	17.1 Network congestion and network interfaces
	17.2 Network partitioning hardware
	17.3 Network infrastructure
	17.4 Impact of partitioning
	17.5 Protocol filtering

	18. Client-Side Performance Tuning
	18.1 Slow server compensation
	18.2 Soft mount issues
	18.3 Adjusting for network reliability problems
	18.4 NFS over wide-area networks
	18.5 NFS async thread tuning
	18.6 Attribute caching
	18.7 Mount point constructions
	18.8 Stale filehandles

	A. IP Packet Routing
	A.1 Routers and their routing tables
	A.2 Static routing

	B. NFS Problem Diagnosis
	B.1 NFS server problems
	B.2 NFS client problems
	B.3 NFS errno values

	C. Tunable Parameters
	Colophon

