

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning Linux Programming, 4th Edition
ISBN: 978-0-470-14762-7
This book introduces fundamental concepts beginning with the basics of writing Unix programs in C, and includes material on basic
system calls, file I/O, interprocess communication (for getting programs to work together), and shell programming. Parallel to this, the
book introduces the toolkits and libraries for working with user interfaces, from simpler terminal mode applications to X and GTK+
for graphical user interfaces. Advanced topics are covered in detail, such as processes, pipes, semaphores, socket programming, using
MySQL, writing applications for the GNOME or the KDE desktop, writing device drivers, POSIX Threads, and kernel programming for the
latest Linux Kernel.

Professional Linux Kernel Architecture
ISBN: 978-0-470-34343-2
Linux expert Wolfgang Mauerer focuses on version 2.6.24 (as well as summarizing changes to versions 2.6.25 and 2.6.26) of the kernel
as he walks you through the concepts, underlying structures, and implementation of the Linux kernel. Keeping a close connection with
the source code—as well as the components and subsystems of the kernel—this book reviews the VFS layer and discusses virtual filesystems
and the Extended filesystem family and examines how the page and buffer cache speed up kernel operations.

Professional Linux Programming
ISBN: 978-0-471-77613-0
Professional Linux Programming looks at the different development environments within Linux—the kernel, the desktop, and the web—and
then demonstrates best practices, tools, and techniques for integrating applications with the OS as a whole. This book is essential for
understanding the nuances that differentiate programming for Linux from programming for any other platform. After beginning with
simple shell scripts, the reader quickly moves on to the more advanced topics like software drivers and the graphical interface.

Professional Ubuntu® Mobile Development

Introduction xxv

Chapter 1: Mobile Linux ..1

Chapter 2: The Development Environment ...11

Chapter 3: Power Management ...35

Chapter 4: Application Development ...53

Chapter 5: Application Packaging ...105

Chapter 6: Application Selection ...129

Chapter 7: Theming ..147

Chapter 8: Kernel Fine-Tuning ...165

Chapter 9: Testing and Usability ..187

Chapter 10: Tips and Tricks ..207

Chapter 11: Putting It All Together ..219

Chapter 12: Mobile Directions ..243

Chapter 13: Common Problems and Possible Solutions257

Appendix A: Ubuntu’s Right ARM ..265

Appendix B: Git Usage ..277

Appendix C: Hosting Your Project on Launchpad ..287

Appendix D: Desktop Power Applet Code ...291

Appendix E: D-Bus: An Overview ..297

Index ...307

ffirs.indd iffirs.indd i 10/7/09 12:43:01 PM10/7/09 12:43:01 PM

ffirs.indd iiffirs.indd ii 10/7/09 12:43:02 PM10/7/09 12:43:02 PM

Professional

Ubuntu® Mobile Development

ffirs.indd iiiffirs.indd iii 10/7/09 12:43:02 PM10/7/09 12:43:02 PM

ffirs.indd ivffirs.indd iv 10/7/09 12:43:02 PM10/7/09 12:43:02 PM

Professional

Ubuntu® Mobile Development

Ian Lawrence
Rodrigo Cesar Lopes Belem

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 10/7/09 12:43:03 PM10/7/09 12:43:03 PM

Professional Ubuntu® Mobile Development
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-43676-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2009927341

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Ubuntu is a registered
trademark of Canonical Ltd. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd viffirs.indd vi 10/7/09 12:43:03 PM10/7/09 12:43:03 PM

 About the Authors
 Ian Robert Lawrence is a Scrum Master at the Instituto Nokia de Tecnologia. He is a founding member
of both the Ubuntu Brazil and Debian Amazonas communities and he is studying for an MBA in The
Strategic Management of Technology Innovation at UNICAMP.

 Rodrigo Cesar Lopes Belem is a free software developer and advocate who has contributed to many
open source projects such as Enlightenment and Ubuntu. He has been working with free software since
2001 and currently works as a software developer at the Instituto Nokia de Tecnologia. He is studying
for a Computer Science degree at the Federal University of Amazonas and holds an LPIC Level 2
certificate.

ffirs.indd viiffirs.indd vii 10/7/09 12:43:03 PM10/7/09 12:43:03 PM

ffirs.indd viiiffirs.indd viii 10/7/09 12:43:03 PM10/7/09 12:43:03 PM

 About the Contributors
 Brian DeLacey worked for more than 15 years with all types of computers and software languages at
companies including Lotus Development and IBM. At Harvard Business School, he spent eight years
researching and writing about innovation, startups, and information technology. His interests include
open source development, emerging mobile web solutions, and the future of operating systems. He
holds an MBA and an A.B. in Mathematics.

 Felipe Balbi has been developing Linux Kernel drivers for the last three years. He currently works for
the Nokia Corporation developing the kernel for Maemo Devices and he is also an active member of
linux - usb community and the USB OTG Working Group.

 David Cohen is a BSc Computer Science graduate who is currently finishing an MSc degree in the same
area. He ’ s been working with open source for 8 years and has been a Linux kernel developer for the last 5.
At the moment, he ’ s working for Nokia, contributing to the development of the kernel for Maemo Devices.

ffirs.indd ixffirs.indd ix 10/7/09 12:43:03 PM10/7/09 12:43:03 PM

ffirs.indd xffirs.indd x 10/7/09 12:43:03 PM10/7/09 12:43:03 PM

Credits
Executive Editor
Carol Long

Development Editor
Kenyon Brown

Production Editor
Daniel Scribner

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Marketing Manager
David Mayhew

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Nancy Carrasco

Indexer
Ron Strauss

Cover Image
© Flying Colours Ltd./Digital Vision/Jupiterimages

ffirs.indd xiffirs.indd xi 10/7/09 12:43:04 PM10/7/09 12:43:04 PM

ffirs.indd xiiffirs.indd xii 10/7/09 12:43:04 PM10/7/09 12:43:04 PM

 Acknowledgments

 Book acknowledgments are not just a list of debts the authors have racked up — many readers tend to
see such a roll call of names as a code shortcut to a book ’ s authority. As such, this book then is dedicated
simultaneously both to upstream and to the Debian and Ubuntu communities — the developers,
documentation writers, artists, business developers, Loco teams, and more who made this book possible.

 Acknowledging my debts to the following people is not necessary, but doing so feels great: My family,
especially my parents, Carolyn and Gez, who sacrificed so much to get me into a position to be able to
write these words. I live to make you proud and I am profoundly grateful for everything. My beautiful
fianc é , Jozi, who makes me laugh and smile, and my friends, who give their own opinions and make me
think. I love you all.

 Acknowledging my debts to the following people, however, is necessary. I am grateful for the complete
professionalism and understanding displayed by Carol Long, Kenyon Brown and the rest of the team at
Wiley — I really enjoyed working with you. This book would certainly not have happened without Brian
Delacey, David Cohen and Felipe Balbi. I met Brian at UDS Boston (thanks Mark!), and he is responsible
for the Mobile Linux and Mobile Directions chapters. Both David and Felipe are old work colleagues and
low - level hackers who wrote the Kernel Fine Tuning and GIT sections. Superstars one and all. At the
Instituto Nokia de Technology, I especially want to thank Ragner, Bruno and Milton for help with
testing, and Thiago, for helping out with the review.

 This section would not be complete without mentioning my co - author Rodrigo Belem. He is a gifted
programmer and “muito mal elemento,” too — thanks for the insights, for the many hours spent
hacking, and for the friendship. Finally, this book is dedicated to the people of Brazil who love, laugh,
suffer, and cry with equal passion, and to the people of Amazonas, for whom mobility is a way of life.
Finally, we are slowing down and listening to what they have to say.

— Ian Lawrence

My participation in this book would not have been possible without the love and support of my mother
and my sisters. My father gave to me love, encouragement, guidance, and the first push to learn how to
fix problems. If not for him, I probably would not have followed a technology career.

Thanks to my Mom and Dad’s families for all their love.

I surpassed many problems during the process of writing this book, and fundamental in this respect
were (and are) Adriana Almeida and Heider Cesar. Thanks also to my fiancée for her love, attention, and
encouragement in the final stages of writing this book.

In walking my path, many people appeared and were essential in influencing my hesitant steps to arrive
at where I am today. These people are Guelber Menezes, Hau Wang, Bruno Monteiro, Thiago Ibiapina,
and Frank Choit.

ffirs.indd xiiiffirs.indd xiii 10/7/09 12:43:04 PM10/7/09 12:43:04 PM

xiv

Without Ian Lawrence’s invitation, maybe I would have passed my whole life without completing a
work like this. Without his ideas and his willpower, maybe my life would not have taken this course.
I owe you a lot, Ian. I also thank Ian for his patience and support.

At INdT I would like to thank my friends and colleagues Edisson Braga, Tomaz Noleto, and Alvaro Silva
for doing my work whilst I was working on this book, and also Thiago Santos for helping us review
chapters 2 and 7.

Finally, a big thanks to all the open source and free software communities, especially the Ubuntu
Community.

Last but certainly not least - Granduncles Antonio and Andresson Medeiros de Melo, we will miss you.

— Rodrigo Cesar Lopes Belem

 Acknowledgments

ffirs.indd xivffirs.indd xiv 10/7/09 12:43:04 PM10/7/09 12:43:04 PM

Contents

Introduction xxv

Chapter 1: Mobile Linux 1

Going Mobile 1
A Short History: From Big Iron to Mighty Mouse 2
Changing Focus 3

Turning Points 4
The Generational Divide 5
Netbooks, Linux, and Ubuntu 6
A Giant’s Strength in a Dwarf’s Arm 8
Summary 9

Chapter 2: The Development Environment 11

Getting Started 12
Getting Familiar with the Ubuntu Mobile Environment 12

VirtualBox 12
KVM/QEMU 21

Using QEMU 21
ARM on QEMU 22
Using KVM 23

NETWORKING 25
Networking in VirtualBox 25
Networking in KVM/QEMU 26

Advanced Networking on VirtualBox and KVM/QEMU 26
Using the Bridge in VirtualBox 28
Using the Bridge in KVM 29
Sharing Files Between Guests and Host 29

Sharing Files Between Guests and Host with Advanced Networking 30
Building Your Own Virtual Image 31
Working with Images 31
Building Your Own Image 32
Installing Applications inside the Image 33
Increasing a Downloaded Image Size 34

Summary 34

ftoc.indd xvftoc.indd xv 10/6/09 9:14:45 AM10/6/09 9:14:45 AM

Contents

xvi

Chapter 3: Power Management 35

Introduction 35
Power Saving States 36
Power Management Packages 36

pm-utils 37
pm-suspend 37
pm-hibernate 37
pm-suspend-hybrid 37

pmi action 38
How pm-utils Works 38
Gnome-Power-Manager 40
Gnome-Power-Statistics 40

Device Kit Power 41
The Quality of Service: QoS Interface 43

Controlling Radio Transmitters 44
RFKILL 45
Bluetooth 45

Investigating Power Usage 46
Battery Testing 47

Preparing to Run the Tests 47
Phoronix Test Suite 47

Battery Comparisons 48
Comparing Like-to-Like 50

Summary 51

Chapter 4: Application Development 53

Ubuntu Mobile Releases 54
Creating a New Application 55

Application Design 55
Free Desktop Standards 56

The Desktop Entry Specification 56
The Desktop Application Autostart Specification 57
XDG Base Directory Specification 57
Desktop Menu Specification 57

Hildon: An Application Framework for Handheld Devices 58
What Is Hildon in Terms of Code? 58

Creating the Program 58
Menus 59
Toolbars 59
Window-Specific Settings 59
Program-Wide Settings 59

ftoc.indd xviftoc.indd xvi 10/6/09 9:14:45 AM10/6/09 9:14:45 AM

Contents

xvii

Hibernation 60
Putting Hildon Together 60

Hello World 60
Other Toolkits 64

Signals 65
Layout 66
Horizontal Boxes 66
Vertical Boxes 66
Glade 66
Handling the .glade File 69
Clutter 70
QT 75
EFL 79
Canola 81
Elementary 81

What Key Technologies Do I Need to Know to Develop Applications
for a Mobile Device? 82

D-Bus 82
Object Paths and Bus Names 83

Exporting Objects with D-Bus 84
Connect to a D-Bus Signal 85

Useful D-Bus Command-Line Applications 85
D-Bus Viewer 85
D-Bus Send 87
D-Bus Monitor 87
D-Bus Launch 88
D-Feet 88

D-Bus Security 89
PolicyKit 90

GConf 91
Notifications 93

Putting All the Concepts Together 94
Summary 103

Chapter 5: Application Packaging 105

Background and Important Tools 105
Packaging and Using a PPA 108
Initial Debianization 109

rules 109
changelog 112
control 112

ftoc.indd xviiftoc.indd xvii 10/6/09 9:14:46 AM10/6/09 9:14:46 AM

Contents

xviii

copyright 113
Other Debian Files 114

Building the Package 115
Uploading to a PPA 115
REVU 116
RFA Packages 117

Creating Your Own Repository 118
Simple Repository 118
Automatic Repository 118
Setting Up a Repository 118

Adding Packages to a Repository 119
Removing Packages From a Repository 119

Backporting KVM 119
PBuilder 120

Configuring PBuilder 120
Performing Actions on PBuilder 123

Creating a Distribution Environment 124
Building a Package to a Specific Release 124
Updating the PBuilder Environment 124
Using pdebuild 124
Configuring Actions 125
Additional Hook Manipulation with PBuilder 125
Hook Script Resource 126
Mount Bind a Package Repository for Use with PBuilder 126

Ubuntu Policy 126
Categories 126
Sections 127

Summary 127

Chapter 6: Application Selection 129

Business Users 129
Documents 130
A Practical Example 131

Multimedia Users 131
A Practical Example 132

Useful Keybindings in the Entertainer GUI 133
Social Network Users 134

A Practical Example 134
Set Up the Environment 136
Copy the Gadget 136
Modify It 136

ftoc.indd xviiiftoc.indd xviii 10/6/09 9:14:46 AM10/6/09 9:14:46 AM

Contents

xix

Location-Aware Users 138
A Practical Example 138

Background 138
Implementation 139
Test the Gypsy to GPS Connection 142
Interaction with the GPS Daemon 142
D-Bus and HTTP Requests 143

Summary 146

Chapter 7: Theming 147

What Is a Theme? 147
Where Are Themes Located in the Filesystem? 148
What Is a Theme Engine and Where Are They Located? 148
Theming Ubuntu MID 148

What Happens When a MID Device Boots? 149
Modifying Themes 150

A Useful Tool When Working with Themes 150
Theme Structure 151

The theme.xml File 151
The gtkrc File 152
Customizing a gtkrc File 152
Padding 153
Styles 153
Colors 153
Applying the Style 154

Theming Ubuntu MID 154
Manually Theming MID 154
Automatically Theming MID 156

Theming Ubuntu Netbook Remix 157
Boot Splash 158
Creating a gdm Theme 158
Customizing the Netbook Launcher 159

Performance Testing of Themes 160
Test the Human Metacity Theme 160

Comparisons 160
X Window Testing 162

Summary 163

Chapter 8: Kernel Fine-Tuning 165

Ubuntu MID Kernel Overview 165
Kernel-Tuning Methods 165

Create an Ubuntu Package 166
Create a Debian Package 172

ftoc.indd xixftoc.indd xix 10/6/09 9:14:47 AM10/6/09 9:14:47 AM

Contents

xx

Updating a Customized Kernel Tree 175
Updating an Ubuntu Kernel Tree 175
Update a Non-Ubuntu Kernel Tree 181

Dynamic Kernel Module Support 181
Inside the DKMS Framework 182
Basic DKMS Commands 183

Summary 186

Chapter 9: Testing and Usability 187

Why Test? 187
Ubuntu Desktop QA 188

Mago — A Desktop Testing Initiative 188
Building an Application for Testing 189

Getting Started 189
Application Creation 190
Testing with Mago 193

Adding the Browser Test to Mago 193
Linux Standards Base and Certification 196

Installing the LSB Application Testkit 196
Running the LSB Application Testkit 196

Other Testing Tools 197
Phoronix Test Suite 197
PBuilder for Automating the Testing of Packages 200
Other Useful Linux Performance Testing Tools 201

ps 201
top 201
time 201
procinfo 201
free 202
memstat 202
memcheck and Valgrind 202
Latencytop 203

Testing Strategies 203
Basic 203
Advanced 204
Compliance 204

Bug Reporting 205
If You Find a Bug . . . 205
Filing a Bug Report Automatically 206
Reporting a Bug from the Command Line 206

Summary 206

ftoc.indd xxftoc.indd xx 10/6/09 9:14:47 AM10/6/09 9:14:47 AM

Contents

xxi

Chapter 10: Tips and Tricks 207

Improving Boot Speed 207
Hard Coding Modules 207
Creating a /tmp That Is Half the Size of Physical RAM 208
Energy Tips 208

Recharging Correctly 209
Laptop Mode 209
Getting to Know the Battery on a Device 210
CPUFREQ and Governors 211
Use Power Management Settings on Disks 211
Disabling atime 212

Turning Off Background Services 212
Adobe Flash 213
Configuring the Touchscreen 214
Watching Hard Disk Activity 217
Summary 218

Chapter 11: Putting It All Together 219

Important Things to Consider 219
Check If the Device Architecture Is Supported by Ubuntu 220
Checking the Hardware 220
Fine-Tuning the Kernel 221
Defining Power Policies 221
Is It an Embedded System? 221

Customizing the User Interface 222
Boot Selector 222
Display Manager 223

GDM 224
Pre-Configuring GDM 224

Setting the Default Ubuntu, XFCE, and Hildon Behaviors 224
Fine-Tuning the Build Process 225

Setting Up a Repository 225
Caching Packages with approx 225

Creating a Default Ubuntu Image 226
Choosing Which Type of Installer to Use 226

When to Use Debian-Installer (Ubuntu Alternate Image) 226
When to Use Ubiquity (Ubuntu Desktop Image) 226

Getting Started on the Image: Preparing the Environment 226
Finally, Building the Default ISO 229

ftoc.indd xxiftoc.indd xxi 10/6/09 9:14:47 AM10/6/09 9:14:47 AM

Contents

xxii

Building a Customized Ubuntu Image 230
Inside Seed Germination 231

Germinating the Seeds 232
An Example: Germinating Ubuntu Netbook Remix 234

Packages and Repositories 235
Generating Metapackages the Ubuntu Way 235
Building the metapackage 236
Generating Metapackages the Simple Way 238

Preseeding the Installer 239
Adding Packages to the Image 240
Finally, Build the Custom ISO 240

Ubuntu Policies, Trademarks, Copyright, and Common Sense 240
So What Is a Derived Distribution? 241

When to Use the LGPL 241
Summary 242

Chapter 12: Mobile Directions 243

Choice, Change, and Opportunity 244
Evolution and Software Development 246

Darwin 247
Mendel 247
Mayr 248
Frankenstein 248

Big Ideas to Think About 249
The Politics of Technology 249
The Next Billion 249
Sensory Overload 249
Cloud Computing 250
ARM Wrestling 250
Razors and Blades 251
Free Lunch 251
Computing on the Edge 251

The Future 253
Ubuntu, Linux, and Mobile Computing 254
Summary 255

Chapter 13: Common Problems and Possible Solutions 257

The Boot Process Stops 257
Application Icon Does Not Appear 258
Performing a Dual Boot 259
Setting a Flag Automatically 259

ftoc.indd xxiiftoc.indd xxii 10/6/09 9:14:48 AM10/6/09 9:14:48 AM

Contents

xxiii

Using USB 260
Running Ubuntu on Freerunner 260
Running Ubuntu on Arima 261
Ubuntu Intrepid UMPC Project 261
Installing Ubuntu Netbook Remix on a UMPC 261
Using apt 261
Joining the Ubuntu Mobile Developers Team 262
Using KVM or QEMU 262
Graphical Corruption 262
Poor Performance 263
Summary 263

Appendix A: Ubuntu’s Right ARM 265

Appendix B: Git Usage 277

Appendix C: Hosting Your Project on Launchpad 287

Appendix D: Desktop Power Applet Code 291

Appendix E: D - Bus: An Overview 297

Index 307

ftoc.indd xxiiiftoc.indd xxiii 10/6/09 9:14:48 AM10/6/09 9:14:48 AM

ftoc.indd xxivftoc.indd xxiv 10/6/09 9:14:48 AM10/6/09 9:14:48 AM

 Introduction

 Professional Ubuntu Mobile Development is designed for all developers interested in a practical, hands - on
way of learning development on mobile devices. The book is designed to show you how to complete
real - world tasks in efficient and often, we hope, innovative ways. Our goal is that the examples in this
book will help you understand the techniques you need when working with Ubuntu Mobile. Our hope
is that you can then creatively apply them to your own real - world problems.

 As such, the book is not a “ static ” object but we as authors have tried to model this dynamism through
an emphasis on discrete, reusable units of logic — the chapters — the names of which became obvious as
we worked at customizing Ubuntu Mobile. This means the book can be approached in numerous ways.

 Whom This Book Is For
 The book is for developers with some experience working with Debian - like systems such as Ubuntu, but
it is also for developers with experience with other operating systems, who perhaps want to explore or
want to rapidly come up - to - speed with the key platform features of Ubuntu Mobile. It is well suited for
developers who are “ perfectionists with deadlines ” and, as such, is not an introduction to either
embedded development or Ubuntu. To get the most from the book, you should understand
programming principles and have a healthy dose of curiosity about how things work and how to adapt
the examples provided to your particular situation and demands.

 It is also not a book about how to install Ubuntu onto any particular mobile device (there are other
guides available on the Internet for this), but it is a book which will be useful if you would like to use
Ubuntu Mobile in its various flavors for your own customization projects.

 What This Book Covers
 On August 28, 1909, The North - China Herald published an article called “ The Moving Target Problem, ”
which concerned the growing popularity of moving targets at the expense of the bull ’ s - eye when
training riflemen. This was much to the chagrin of the military, which maintained that the best rifleman
in actual warfare would be the one who had had careful training on the bull ’ s - eye and had from his
earliest career sought to observe and then rectify his errors in marksmanship.

 Anyone who has written a book will certainly side with the military on this one. The scope of Ubuntu is
large and the mobile project so new that some things in this book might well have changed when you
read them. What this book gives is a snapshot of current best practices and the tools you need at hand to
implement them.

 The most important thing when developing for an embedded device is to have a development
environment set up. Once this is done, it is possible to develop, package, and test your application in
an environment that provides a reasonable approximation of a real device. This is then followed by

flast.indd xxvflast.indd xxv 10/6/09 5:17:35 PM10/6/09 5:17:35 PM

Introduction

xxvi

several chapters, each of which emerged from a real - world situation during the course of our work with
mobile device development and “ customixation. ” The chapters are the kinds of things we wanted to see
when deadlines were looming and we hope that together they make up the kind of book we wish we
had on hand when we were starting out.

 We immensely enjoyed writing this book and hope that you will enjoy reading it just as much.

 How This Book Is Structured
 The book covers the following topics:

 Chapter 1, Mobile Linux — discusses the possibilities and probabilities of running Linux on a
billion devices.

 Chapter 2, The Development Environment — steps you through setting up a work
environment.

 Chapter 3, Power Management — examines the greater divergence in the future between
performance - optimized and power - optimized mobile devices.

 Chapter 4, Application Development — discusses developing applications for mobile devices.

 Chapter 5, Application Packaging — illustrates preparing your applications for distribution.

 Chapter 6, Application Selection — is about choosing the right applications for your target
users.

 Chapter 7, Theming — shows you how to customize the look and feel of a mobile device.

 Chapter 8, Kernel Fine - Tuning — explains how to represent the band of software nearest to the
hardware.

 Chapter 9, Testing and Usability — discusses meeting benchmarks and standards for stability
and performance.

 Chapter 10, Tips and Tricks — suggests ways to save time with some hard won advice.

 Chapter 11, Putting It All Together — discusses the benefits and potential pitfalls of having
your own mobile distribution , and shows how to actually seed and germinate the image.

 Chapter 12, Mobile Directions — discusses the future of Linux on mobile devices.

 Chapter 13, Common Problems and Possible Solutions — identifies problems and provides
solutions.

 What You Need to Use This Book
 The book was written and the code was developed on computers running Ubuntu Jaunty and Ubuntu
Karmic.

 The code in the chapters was tested and used variously on an Acer Aspire One, Geode, Eee PC, and a
Beagleboard. An actual device or board like these is obviously nice but not essential to fully enjoy this book.

flast.indd xxviflast.indd xxvi 10/6/09 5:17:36 PM10/6/09 5:17:36 PM

Admin
Text Box
Download from www.eBookTM.com

Introduction

xxvii

 History and Background to the Ubuntu
Mobile Project

 This background comprises various conversations on IRC at #ubuntu - mobile, and it now forms the basis
of the wiki page at https://wiki.ubuntu.com/MobileTeam/Mobile/History .

 The project started with an announcement at the start of the Ubuntu Hardy release cycle by Ubuntu CTO
Matt Zimmerman to the ubuntu - devel mailing list, which said:

 It is clear that new types of device — small, handheld, graphical tablets which are Internet - enabled —
 are going to change the way we communicate and collaborate. These devices place new demands on open
source software and require innovative graphical interfaces, improved power management and better
responsiveness.

 To fulfill the aims of our mission and in response to the technical challenges that these devices pose, we
are announcing the Ubuntu Mobile and Embedded project.

 The Ubuntu Mobile and Embedded Project
 This was an extension of the GNOME Mobile and Embedded Initiative (GMAE). The naming of the
Ubuntu Mobile and Embedded Project caused some confusion at the time mainly because there existed a
previous Ubuntu Embedded Team. This team was working toward the creation of tools, documentation,
and a binary/source release for the purpose of running Ubuntu on small PC style hardware and true
embedded devices. The Ubuntu Embedded team was mainly looking at getting Ubuntu working on
ARM processor – based devices.

 The Ubuntu Mobile and Embedded Team then started work during the Ubuntu Hardy release cycle and
as time passed, most of the focus during this cycle was on getting Hildon and Moblin into Ubuntu, and
porting to the new LPIA architecture from Intel:

 Hildon is an application framework for mobile devices developed by Nokia and now a part of
GMAE, which focuses on providing a finger - friendly interface. It is primarily a set of extensions
that provide mobile - device – oriented functionality.

 Moblin is an Intel - sponsored, open - source community and application framework to create
consumer - friendly applications and user interfaces across a range of Mobile Internet Devices
(MIDs), netbooks, and embedded devices.

 LPIA (Low Power Intel Architecture) is a new processor architecture, which, while resembling
i386, uses different optimization options in the compiler and different configuration and build
options for some packages. Specifically, LPIA uses GCC - 4.2 as the system compiler (instead of
GCC - 4.1 which is used for the other Ubuntu architectures).

❑

❑

❑

flast.indd xxviiflast.indd xxvii 10/6/09 5:17:36 PM10/6/09 5:17:36 PM

Introduction

xxviii

 The Ubuntu Hardy Release
 During the Hardy cycle, then, there was work toward getting Ubuntu working on various devices, based
on both the Menlow and McCaslin platforms from Intel:

 McCaslin preceded Menlow. It contains an Intel A100/A110 processor. An example of a device
using this processor is the Samsung Q1 Ultra.

 Menlow is the name of the platform that contains an Intel Atom processor (codenamed
Silverthorne and Diamondville). It uses Poulsbo Chipset (aka System Controller Hub). An
example of a device using this processor is the Aigo MID. This work didn ’ t complete within the
Hardy cycle, and continued in a PPA.

 PPA (Personal Package Archive) is a way for developers to build and publish packages of their
code, documentation, artwork, themes, or any other contribution to free software.

 This resulted in the first release image of Ubuntu MID (which was some time after the official
Ubuntu Hardy release).

 While this release was targeted for 4 to 6 - inch screen devices, most of the testing and the work
was done on a Samsung Q1 (known as the reference device) or on somewhat awkward
development kits.

 The Ubuntu Mobile Team
 Some time after the Hardy developer alpha release there were some nomenclature cleanups within the
Ubuntu project. As a result of this, the Ubuntu Mobile and Embedded Team became the Ubuntu Mobile
Team, as the goals were increasingly divergent from those of the Ubuntu Embedded Team and of “ pure ”
embedded development itself.

 Netbook Remix
 Completely independently, a group of Canonical developers from the Original Equipment Manufacturer
(OEM) team was looking at technologies to support the new “ netbook ” devices. OEM refers to
companies that make products for others to repackage and sell.

 Using a mix of GNOME, OpenHand code, and some of the work that went into Ubuntu MID, and
additional development, they produced the “ Netbook Remix, ” based loosely on Ubuntu Hardy.

 The resulting Netbook Remix was released before the first release of Ubuntu MID. More about the
reasoning and ideas behind the Netbook Remix can be found at http://www.markshuttleworth
.com/archives/151 .

 The Netbook Remix is based on Ubuntu Long Term Support (LTS) releases such as Hardy.

❑

❑

❑

flast.indd xxviiiflast.indd xxviii 10/6/09 5:17:37 PM10/6/09 5:17:37 PM

Introduction

xxix

 UDS Intrepid
 At the UDS (Ubuntu Developer Summit) for Intrepid, there were demonstrations of preliminary versions
of both the Netbook Remix and Ubuntu MID. There were also demonstrations of additional work based
on the Ubuntu MID done by the Canonical OEM team. Along with this were further demonstrations
done of the Edubuntu CMPC image. It was decided that some consolidation was necessary.

 As a result of all of this, the Ubuntu developers decided that there would be specific Ubuntu Mobile
releases for Intrepid.

 Intrepid
 So, for Intrepid, there was work done to create Ubuntu Mobile. The Ubuntu Mobile release was
designed for larger 7 – 9 - inch screens, which work best on the Samsung Q1 (as that happened to be the
7 – 9 - inch hardware owned by the developers working on this release flavor).

 The Ubuntu Mobile releases do not have any of the hardware settings or hard - coded configurations that
were present in the Hardy - based Ubuntu MID, and so should not be nearly so tied to the specific device.
Indeed, one of the specific goals for Intrepid for Ubuntu MID particularly was to move away from
the hard coding, and so enable a wider variety of devices (perhaps including appropriately sized
hardware such as the Aigo MID or Sharp D4).

 Intrepid has an ubuntu - mid.img as well as an ubuntu - mobile.img. Images are officially built in the
Ubuntu infrastructure on cdimage.ubuntu.com, which results in daily ubuntu - mobile images. Although
the ubuntu - mobile release was a beta one, it was well reviewed on UMPCPortal (www.umpcportal.com/)
and generated some community interest.

 Jaunty
 The Jaunty Ubuntu Mobile release was based on Hildon 2.2, which was itself based on Clutter and GTK.
This brought significant improvements for Ubuntu Mobile. These include enhanced GTK+ widgets to
make finger - friendly interfaces, while staying compatible with API calls in existing code and an
optional/complementary user interface library called Clutter. Clutter, discussed in Chapter 4, is an
OpenGL ES rendering library for creating visually rich and interactive user interfaces.

Karmic
The karmic release for Ubuntu Mobile is focused on the Ubuntu Netbook Remix and ARM releases of
Ubuntu (see below). In addition, a one-off Ubuntu Moblin Remix was rolled out primarily for
demonstration and comparison purposes, but also to showcase the best of both projects.

Also during this cycle, Ubuntu MID became community-maintained in the Ubuntu Liquid Remix
project. If you would like to join this project, go to https://edge.launchpad.net/~ulr. The first
community release will be based on Ubuntu Lucid, which will be an LTS version from Ubuntu.

 Ubuntu ARM
 On November 13, 2008, Canonical, the commercial sponsor of Ubuntu, announced that in response to
demands from device manufacturers the Ubuntu operating system would be available on the ARMv7
processor architecture. This includes both the ARM Cortex - A8 and Cortex - A9 processor - based systems,
which are the highest performing, most power - efficient processors released to date from ARM.

flast.indd xxixflast.indd xxix 10/6/09 5:17:37 PM10/6/09 5:17:37 PM

Introduction

xxx

 ARM is used in a wide range of devices such as the Nokia N700/N8xx series, the Sharp Zaurus, the
Linksys NSLU2 Network Attached Storage (NAS) device, and the iPhone, which uses an older ARM v6
chip. Ubuntu ARM became officially available in April 2009.

 Conventions
 Instead of including a lot of numbered steps, instructions are provided with the code displayed in the
text, as described in the example that follows.

 To use QEMU, install the necessary packages:

$ sudo apt-get install qemu kqemu-common kqemu-source

Next, add your user name to the kqemu group. Adding your user name to the kqemu group means that
you do not need to run QEMU as the root user.

 kqemu is the name of the module that is used to accelerate QEMU.

To add your user name, run

$ sudo adduser < username > kqemu

To make these changes effective, it is necessary to log out and then log back in again.

 To test QEMU, go to the folder that contains the image that you downloaded from http://cdimage
.ubuntu.com and run

$ qemu -localtime -m 384 -boot d ubuntu-9.04-mid-lpia.img

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com . Once at the site, simply locate the book ’ s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the book ’ s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 43676 - 9.

 Once you download the code, just decompress it with your favorite decompression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

flast.indd xxxflast.indd xxx 10/6/09 5:17:37 PM10/6/09 5:17:37 PM

Introduction

xxxi

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

 To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book ’ s errata is also available at www.wrox.com/misc-pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions
of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxiflast.indd xxxi 10/6/09 5:17:37 PM10/6/09 5:17:37 PM

flast.indd xxxiiflast.indd xxxii 10/6/09 5:17:38 PM10/6/09 5:17:38 PM

Professional

Ubuntu® Mobile Development

flast.indd xxxiiiflast.indd xxxiii 10/6/09 5:17:38 PM10/6/09 5:17:38 PM

flast.indd xxxivflast.indd xxxiv 10/6/09 5:17:38 PM10/6/09 5:17:38 PM

 Mobile Linux

 This chapter introduces mobile computing in the context of the evolution of different computer
types. More important, it presents reasons why developing mobile applications with Linux and
Ubuntu makes economic and technical good sense.

 More than three - quarters of the expert respondents (77%) agreed . . . that the mobile
computing device — with more significant computing power in 2020 — will be the
primary Internet communications platform for a majority of people across the world.

 Pew Internet & American Life Project, The Future of the Internet III,
December 14, 2008

 Going Mobile
 Since the first computers were created, there has been a constant push for smaller, faster, cheaper
systems that provide more personal power. In December 2008, quarterly laptop sales outnumbered
desktop computer sales for the first time ever. Netbook computers — smaller than laptops, with a
price performance profile that took the market by storm — were the unexpected hit of 2008.
Consider the following statistics: International Data Corp (IDC) estimates 20.6 million netbooks
will ship in 2009 (compared to 137 million full - sized laptops). ABI Research says that number
could reach 35 million in 2009 and 139 million in 2013. Ultra Mobile PCs (UMPCs) seem to be
trickling along at one or two million. Mobile Internet Devices (MIDs) are projected to see a healthy
jump in sales, with some estimates placing sales at nearly 6 million in 2009 and triple that in 2010
— not yet the runaway success of netbooks, but still substantial in comparison to smartphones.As
demand for mobile solutions has grown, Linux and Ubuntu have improved. Today ’ s mobile
markets — for both end-users, and vendors who look to bundle an operating system with their
hardware — align well with Linux and Ubuntu.

 Let ’ s take a quick look at how these markets and technologies evolved, and why Linux and
Ubuntu are primed to deliver mobile solutions.

c01.indd 1c01.indd 1 10/6/09 8:50:24 AM10/6/09 8:50:24 AM

Chapter 1: Mobile Linux

2

 A Short History: From Big Iron to Mighty Mouse
 The Harvard Mark I computer that ’ s shown in Figure 1 - 1 was 51 feet long and 8 feet high. It first booted
up in 1944 in order to multiply, divide, do logarithms, and process trigonometric functions. This system
was widely viewed as the beginning of the modern computer era. Imagine, a computer that could do
only five multiplication problems and two division problems a minute! Logarithmic processing was a
good time to go out for a coffee break.

 Figure 1 - 1

 Figure 1 - 2

2,000,000,000

1,000,000,000

100,000,000

10,000,000

Tr
an

si
st

or
 c

ou
nt

1,000,000

100,000

10,000

2,300 4004 8008

8080

8088

286

386

486

Curve shows “Moore's Law”:
transistor count doubling
every two years

Pentium

K6

K5

K7

K8

Itanium 2

Core 2 Quad

Itanium 2 with 9MB cache

Dual-Core Itanium 2

CPU Transistor Counts 1971–2008 and Moore's Law

G80
POWER 6

K10

Quad-Core Itanium Tukwila
GT200
RV770

Core 2 Duo
Cell

K6–III

P4
Barton Atom

PII
PIII

1971 1980 1990

Date of introduction

2000 2008

 Since that time, there has been an incredible evolution of computing technology following the steady
path of Moore ’ s Law, which is shown in Figure 1 - 2.

c01.indd 2c01.indd 2 10/6/09 8:50:25 AM10/6/09 8:50:25 AM

Chapter 1: Mobile Linux

3

 The major eras in computer technology can be classified as follows:

 1960s — Mainframes (“ Big Iron ”) and minicomputers (multiuser, interactive)

 1970s — Personal/desktop computer: microprocessor - driven, installable applications

 1980s — Luggables: moveable computers, weighing 15 – 30 pounds

 1990s — Laptops followed by slimmed down notebooks: 14 - inch screen or larger

 2000s — Subnotebooks: 12 – 13 - inch screen, Portable Media Players (for example, iPod)

 2007 – 2010 — Netbooks: 7 – 10.2 - inch screen; Mobile Internet Devices (MIDs): 4 – 7 - inch screen

 The year 2000 marked the beginning of the cell phone and smart device era. The Nokia 9210
Communicator and RIM Blackberry hit the market with compact offerings that were phones but also
much more. They weren ’ t general purpose computers, but you might have gotten the sense that that ’ s
what they wanted to be when they grew up.

 Changing Focus
 Two of the defining characteristics in the evolution of computers have been physical and display size.
These defining attributes influence user interactions as well as developer strategies and solutions.

 Apple opened the door on the smallest consumer - oriented computing segment with its insanely
successful introduction of iPods in October 2001. The first iPod was a computer stick the size of a small
pack of gum. Consumer electronics have a tendency to get smarter through the magic of software and
soon the iPod line represented complete media devices.

 In January 2007, Apple completely blew the roof off this segment by introducing the iPhone. Later in the
year, the iPod Touch was introduced. These portable electronic devices had powerful operating systems
under the hood — variants of OS X specially made for the hardware. Elegantly packaged, with WiFi, and
high - resolution touchscreens, they now ran applications like those on notebook computers. Apple was
effectively shipping what would come to be called a Mobile Internet Device (MID).

 Loyal Apple customers stood in long lines to snap up the first shipped products. International customers
paid huge premiums for early shipments. Enthusiastic developers created thousands of new
applications . . . even though it initially seemed as though Apple didn ’ t want them to. An ecosystem of
telephone carriers, music providers, and accessory makers helped grow the market.

 Apple sold an astounding number of iPods — more than 173 million of these very mobile gadgets by
September 2008. You ’ ve seen them everywhere — on trains, planes, and buses, and in gyms, schools,
office buildings, and sports venues. (Goodness, I have one friend who owns nine of these things!)

 When Apple introduced the Macintosh in 1984, they wrote the bible of good human interface design. In
releasing the iPhone and iPod Touch, Apple rewrote the book on user interface design for small mobile
computers. The iPhone redefined what was possible for small computer packaging. Consider the specs:
3.5 - inch diagonal multi - touch display (480 � 320 pixel resolution at 163 ppi), less than 5 ounces, in slim
packaging.

c01.indd 3c01.indd 3 10/6/09 8:50:26 AM10/6/09 8:50:26 AM

Chapter 1: Mobile Linux

4

 It didn ’ t take long for thousands of developers to build creative, high - quality applications for the iPhone
and iPod Touch platform. The 2.0 generation of Apple ’ s software (and SDK) generated tremendous
developer excitement. In March 2008, Apple announced a beta program for the iPhone 2.0 SDK — the
ease of use of the development platform, and the impressive application results drove 25,000 developers
to try and get in on the beta. Apple managed to share all their SDK APIs widely across product lines —
 the iPhone SDK has great commonality across the OS X kernel. On June 9, 2008, Apple announced a
record number of 5,200 developers at their Worldwide Developer Conference — the first sellout in 25
years of the event.

 Customers bought and installed software by the millions. In the first six months of operation (from July
11, 2008 to January 18, 2009) the App Store saw 500 million downloads from its catalog of 15,000
applications. Apple created a mobile user interface that broke new ground, offering numerous examples
and lessons to Linux and Ubuntu Mobile developers.

 Turning Points
 The financial crisis that began in September 2008 tripped up economies around the world. Big software
companies, leading hardware manufacturers, and dominant component manufacturers were all affected.
At the beginning of 2009, the mobile phone business began to slow down. TechCrunch reported that the
 “ top five cell phone manufacturers (Nokia, Samsung, LG, Sony Ericsson, and Motorola) dropped 13
percent year - over - year in the fourth quarter of 2008. Unit shipments decelerated from 14 percent growth
in the second quarter to 2 percent growth in the third quarter, and then finally went into negative
territory in the fourth quarter. ” The article ’ s author asked, “ Are cell phones no longer a growth
business? ”

 Even Apple ’ s idyllic iPhone fell off the selling cliff. Apple sold 6.9 million units in the September 2008
quarter, but that fell by more than 25 percent to 4.4 million in the December quarter. At the same time,
RIM made a big - splash introduction — backed by a $100 million marketing campaign — of its highly
anticipated BlackBerry Storm. It was judged by many observers to be a relative flop compared to the
iPhone introduction: Blackberry sold a half - million units in the first month.

 Cell phones and laptops dominated tech talk in the first five years of the twenty - first century, but it
could be a very different picture over the course of the next decade. The same day those declines in cell
phone sales were being reported, a lead story in BusinessWeek rallied excitement around a promising area
of growth: “ Intel Readies Push into Mobile Internet Devices. ”

 While phones were getting put on hold, notebook (and mobile computer) sales were rising. The
December 2008 Wall Street Journal reported quarterly sales of notebook computers exceeded that of
desktop sales for the first time ever:

 World - wide shipments of notebook computers rose nearly 40% from last year to 38.6 million units as
desktop shipments fell 1.3% to 38.5 million units.

c01.indd 4c01.indd 4 10/6/09 8:50:26 AM10/6/09 8:50:26 AM

Chapter 1: Mobile Linux

5

 Another bright light in the numbers was the brand new category of netbook computers:

 In the first months of 2008, netbooks were less than two percent of laptop sales. By December, that had
shot up to 12 percent of total unit volume — and accounted for almost two - thirds of the sales increase
in the entire laptop category.

 The Financial Times put some numbers to that early in 2009 when they sized up the market:

 Netbook sales have grown from about 350,000 units in 2007, when Asustek introduced its first models,
to 10m in 2008. The CEA predicts unit sales will rise 80 percent to 18m in 2009, in spite of the global
downturn.

 Ubuntu and Linux are right in the middle of a burgeoning mobile marketplace. And there are numerous
developer opportunities ahead.

 The Generational Divide
 If you have any doubt about the promise of Ubuntu as an operating system, or the likelihood that it will
gain a significant market presence in the future, you may find this short story of interest.

 Sometimes people evaluate a computer ’ s ease of use by asking: “ Is it easy enough for your grandmother
to use? ” A better question is this: “ Is it easy enough for a 15-year-old to use? ” I love my grandmother
dearly, but even if she did have an interest in computers, I doubt big business would be wise in building
a five - year business plan around her particular usage scenarios. On the other hand, a 15-year-old
typically has the interest and the need, and presents an attractive lifetime value proposition.

 My 15 - year - old son came to me one evening carrying his Windows - powered notebook. “ Hey, Dad, can
you take a look at this and help me get WiFi working? ” I anticipated what had happened with his
sister ’ s notebook — it was time for another Windows reinstallation.

 He turned the laptop around to show me the screen and what I saw was shocking: the Ubuntu desktop.

 “ I installed Ubuntu, ” he said. “ Wow, the browser is super fast when I plug in the Ethernet. Now I
remember what the Internet was like. ” He ’ d been fighting the gradually degrading performance of his
Windows Vista installation for weeks now and finally just decided to fix it.

 His notebook was just a year old — with plenty of horsepower and a price tag that pushed it over $1,000.
It had all the latest technologies — WiFi card, hard disk, a nice screen. But it had slowed noticeably and
inexplicably. My gut reaction was to reinstall Windows for him. I made the offer despite the dread I felt
anticipating a multi - day effort to get Windows working again. Chasing down drivers for Windows is
no fun.

 “ What happened? ” I asked. “ I can reinstall Windows for you. ”

c01.indd 5c01.indd 5 10/6/09 8:50:27 AM10/6/09 8:50:27 AM

Chapter 1: Mobile Linux

6

 “ No need for Windows, ” he said. “ Ubuntu is fine. It has a word processor. I don ’ t need any of my old
files. Vista had gotten so slow I just couldn ’ t use it. Last night I was trying to use Dictionary.com and it
never worked. I had to go to the downstairs computer to look up a word. It would have been faster to
use a printed dictionary. That was the moment I decided to install Ubuntu. I used the CD you left lying
around. No problems. ”

 I was flabbergasted. I ’ m not sure what shocked me more — that he had installed Ubuntu by himself
without assistance, or that he had installed it without letting me know in advance.

 He continued, “ Vista had gotten so slow it would take like 30 minutes to start up. I had disabled all the
Vista applications that run at startup, but that didn ’ t help. I resorted to leaving the system running all
the time to avoid the delay in restarting. ”

 Just like that — he ’ d made the switch. No regrets. No remorse. No difficult separation. He just wanted a
better, quicker, more reliable system. And he knew where to find a free alternative.

 If Windows Vista were to lose the teenage marketplace, it would certainly be in real trouble. On the other
hand, if Ubuntu starts winning the 15 - year - old customer segment, it will be in really good shape.

 Netbooks, Linux, and Ubuntu
 The ASUS Eee PC shipped in September 2007. It was in instant hit. Small, light, and inexpensive (under
$300), it ran Xandros Linux as well as Windows XP. After Intel ’ s Atom processor was released in 2008,
the Eee PC switched to Atom — an energy efficient chip with a well known, powerful instruction set.

 An entirely new classification of computer had been born — the netbook. Other vendors soon followed
with their own offerings: HP Mini - Note, MSI Win, Acer Aspire One, Dell Inspiron Mini 9, and the
Lenovo IdeaPad S10 were offered in varying configurations. The Information Network estimates that
 “ 11.4 million netbooks were sold in 2008, up from 400,000 in 2007. ” For 2009, the firm estimates that
netbook sales will grow 189 percent to 21.5 million. Meanwhile, the firm estimates that 145.9 million
notebooks were sold in 2008 and projects that number will grow 21.8 percent in 2009 to 177.7 million.
Other projections suggest a day when these small form factor computers will outsell notebooks.
According to a LinuxDevices report, ABI Research predicted that “ 35 million netbooks will ship this year,
rising to 139 million in 2013.

 I watched as the Eee PC became a cult hit through December 2007 and into 2008. Eventually, I bought an
Acer Aspire running the new Intel Atom chip. (“ By 2010, Atom will be competitive in every aspect of
mobile computing, ” according to Intel ’ s Senior Vice President Pat Gelsinger.)

 This little Acer included a solid state drive in a slim, durable, nice looking package. It seemed like a
wonderfully mobile computer. In Figure 1 - 3, you can see the relative size of the Acer Aspire One
compared to a T - Mobile smartphone, iPod Touch, and Compal MID — all sitting atop a Dell Inspiron
notebook computer.

c01.indd 6c01.indd 6 10/6/09 8:50:27 AM10/6/09 8:50:27 AM

Chapter 1: Mobile Linux

7

 The Aspire One came installed with a customized operating environment built on top of Linux. Since
August 1991, when Linus Torvalds uploaded his first few modules for his new operating system to
Usenet, Linux has been evolving into a robust, state - of - the - art operating kernel.

 Most operating system distributions that are based on the Linux kernel are basically modified versions
of the GNU operating system.

 In addition to providing a strong software foundation for distributions, Linux is like the Swiss Army
Knife of software. (I ’ ve used it several times to recover files from computers that were running Windows
but had become corrupted and could no longer boot.) It ’ s been ported to a large number of hardware
platforms and increasingly, vendors are developing their hardware drivers for open source and Linux.

 Thousands of Linux - based distributions are available — but I decided to install Ubuntu. The resulting
system provides a full Internet and computing experience.

 Why Ubuntu? Quality, reliability, and widespread adoption are a few good reasons. Ubuntu and Debian
were the first two distros I began working with in 2005, and I have stuck with them.

Figure 1-3

c01.indd 7c01.indd 7 10/6/09 8:50:27 AM10/6/09 8:50:27 AM

Chapter 1: Mobile Linux

8

 Month after month Ubuntu has been at or near the top of the DistroWatch list of Linux distributions.
Moreover, there is a great developer community. The healthy (and wealthy) coordination by Canonical
provides stability and important direction. Early in 2009, the New York Times profiled Canonical ’ s
founder and Ubuntu visionary, Mark Shuttleworth:

 Created just over four years ago, Ubuntu (pronounced oo - BOON - too) has emerged as the fastest -
 growing and most celebrated version of the Linux operating system, which competes with Windows
primarily through its low, low price: $0.

 More than 10 million people are estimated to run Ubuntu today, and they represent a threat to
Microsoft ’ s hegemony in developed countries and perhaps even more so in those regions catching up to
the technology revolution.

 ‘ If we ’ re successful, we would fundamentally change the operating system market, ’
Mr. Shuttleworth said during a break at the gathering, the Ubuntu Developer Summit. ‘ Microsoft
would need to adapt, and I don ’ t think that would be unhealthy. ’

 It ’ s easy to grab and go with a netbook. And whatever I can do on a desktop PC, I can do on this device
— not as fast, but for many things it works just fine. As a result, a netbook running Ubuntu becomes an
entirely new platform to develop for, but it is a very familiar platform. Yet the range of application
possibilities is vastly greater because of all the different dimensions added by mobility.

 So why not start developing for this category of mobile computer, using Linux and Ubuntu? If you do,
you ’ ll be in good company. Consider what Linus Torvalds had to say early in 2009:

 It ’ s a huge job to do a distribution. The reason there are hundreds is it is easy to start your own, but if
you want to be a leader and introduce new code, the testing and Q & A involved is enormous. It depends
on having enough users that you get coverage and it is unreasonable to expect too many large
distributions. Ubuntu grew surprisingly quickly and maybe that can happen again

 I was doing kernel development on a netbook and it was not at all horrible. The screen was too small, but
we are getting to a stage where you can get a cheap good laptop.

 A few years ago you could get a small netbook but it would be twice the cost. The netbook market
changed the game — they are not seen as an executive toy, but a low - end laptop which is much healthier.

 With netbooks a lot of the desktops have trouble going to smaller screens. All of a sudden you can ’ t press
the okay button because it ’ s outside the screen. As screens go as small as phones, Google ’ s Android could
be a contender for netbooks so you may see Android growing up instead of desktops growing down.

 We are in the first phase of netbooks and there are some teething problems. The dumbed - down interface
was a teething problem and the first netbooks were underpowered.

 A Giant ’ s Strength in a Dwar f ’ s Arm
 During World War II, one of the greatest scientific innovations involved radar. The British had developed
crucial underlying technologies and fundamental understanding of microwave physics, far beyond what
scientists in the United States had discovered. One of the British inventions was something called a cavity

c01.indd 8c01.indd 8 10/6/09 8:50:28 AM10/6/09 8:50:28 AM

Chapter 1: Mobile Linux

9

magnetron . This device led to the successful development of a light, compact, mobile device that was
used in an airborne radar system that was 100 times more powerful than anything that had come before
it. The British shared that with the United States. When one of the American military officers saw it for
the first time, and fully comprehended what it could be used for, he described the device as having “ a
giant ’ s strength in a dwarf ’ s arm. ”

 This invention had a huge impact on tactics, strategies, and outcomes. This single piece of powerful, yet
mobile technology might even have changed the outcome of the war effort.

 Small, powerful, energy efficient processors, such as Intel ’ s Atom and now ARM, are being coupled with
versatile software environments, such as Ubuntu and Linux, to create unimagined new futures. These
highly mobile systems pack a “ giant ’ s strength in a dwarf ’ s arm ” — and they are now available to
millions of users.

 Summary
 By reading this book, you ’ re at the front lines of exciting new developments along the Mobile Linux
frontier. Your development efforts will be creating the future and a new generation of improvements.

c01.indd 9c01.indd 9 10/6/09 8:50:28 AM10/6/09 8:50:28 AM

c01.indd 10c01.indd 10 10/6/09 8:50:28 AM10/6/09 8:50:28 AM

 The Development
Environment

 The development process for a mobile device tends to be different from the normal process that
you might use when you develop on a workstation or server. Often you ’ ll need to generate a
complete OS image from scratch in a working environment, which you ’ ll then install on the
target device.

 In the case of the Ubuntu Mobile project, a complete set of built packages is available to the
developer, so many of the complexities that are typically associated with existing build - your - own -
 OS - from - scratch projects are not an issue. Various tools bridge the remaining gap between Ubuntu
Mobile development and normal Ubuntu development.

 This chapter shows different ways you can access the development environment that you ’ ll need
in order to begin development. When developing for a mobile device, which perhaps has a
different architecture from your workstation — for example, an i386 desktop and a Low Power
Intel Architecture (LPIA) device — it becomes necessary to separate the host (sometimes called the
source) from the guest (sometimes called the target) environment. The most common way today to
do this is to use virtualization.

 Virtualization completely separates an operating system from the underlying platform resources
— different technologies can be used to make this happen. For the Hardy release, Ubuntu chose to
focus virtualization efforts on KVM. Kernel Virtual Machine (KVM) is a patch to the Linux kernel
that enables guest operating systems to sit directly on the host hardware. KVM also employs
Quick Emulator (QEMU) to turn the Linux Kernel itself into a Hypervisor.

 A Hypervisor is software that allows multiple operating systems to run on a host computer
concurrently. QEMU is virtualization software that emulates hardware.

 KVM, then, is intended for systems where the processor has hardware support for virtualization
and it has the added advantage of falling back to QEMU if this is not available. By sitting on the

c02.indd 11c02.indd 11 10/6/09 8:51:16 AM10/6/09 8:51:16 AM

Chapter 2: The Development Environment

12

Linux kernel, guest OSes appear as Linux processes and can be managed just like any other Linux
application.

 KVM does not, however, currently offer a GUI that could help a developer new to Ubuntu Mobile get
quickly up - to - speed with development. VirtualBox from Sun Microsystems, Inc. is a virtualization
solution available under the GPL that has a nice front end and is simple to get up-and-running. Some
examples are described in this chapter using both VirtualBox and KVM. Finally, for maximum control of
the development environment, you learn how to create an image from scratch. This method offers more
opportunity for customization, and is the preferred choice for more experienced developers.

 Getting Star ted
 Begin by downloading the Jaunty Ubuntu MID release from
http://cdimage.ubuntu.com/releases/jaunty/release/ and save it into a folder on your hard drive.

 All of the techniques demonstrated in this chapter (apart from the section on ARM) use the Ubuntu
MID release; however, they were also tested and work with the Ubuntu Netbook Remix release.
Download this release if you are targeting a netbook.

 Getting Familiar with the Ubuntu
Mobile Environment

 This section covers the Ubuntu Mobile environment.

 VirtualBox
 Sun xVM VirtualBox is a collection of virtual machine tools that allow a developer to run multiple
operating system images at the same time. To see this in action, first install the software.

$ sudo apt-get install virtualbox-ose

 Virtualbox - ose is located in the universe repository. To enable this community - maintained software
repository, go to System Administration Software Sources and select the universe box.

 When it is installed, it is possible to convert the image that you downloaded in the “ Getting Started ”
section earlier so it can be used in VirtualBox.

 To do this, run the command (substitute the name of the .img file with the one that you downloaded):

$ vboxmanage convertdd ubuntu-9.04-mid-lpia.img ubuntu-9.04-beta-mid-lpia.vdi

This converts ubuntu - 9.04 - beta - mid - lpia.img to the .vdi format so it can be used as a “ hard disk ” in
VirtualBox (this is explained in more detail later).

c02.indd 12c02.indd 12 10/6/09 8:51:17 AM10/6/09 8:51:17 AM

Chapter 2: The Development Environment

13

 Now start VirtualBox by selecting Application Accessories VirtualBox OSE. You are presented with
the interface that ’ s shown in Figure 2 - 1.

Figure 2-1

 Click New, which starts the setup wizard. Proceed by selecting Next, which will present the VM Name
and OS Type dialog. Complete this dialog as shown in Figure 2 - 2 and then click Next.

Figure 2-2

 On the next screen, choose the maximum amount of memory allowed for your virtual machine (the Next
button cannot be clicked when the maximum amount of memory allowed by the hardware has been
exceeded). The next screen, shown in Figure 2 - 3, is for the hard disk.

c02.indd 13c02.indd 13 10/6/09 8:51:17 AM10/6/09 8:51:17 AM

Chapter 2: The Development Environment

14

 Click New and then Next. Select the Dynamically expanding storage option and click Next again. The
disk image by default will be saved in ~/.VirtualBox/HardDisks/ < name > , so in this example the hard
disk shown in Figure 2 - 4 will be saved as mid.vdi. in the /home/ian/.VirtualBox/HardDisks directory.

Figure 2-3

Figure 2-4

c02.indd 14c02.indd 14 10/6/09 8:51:18 AM10/6/09 8:51:18 AM

Chapter 2: The Development Environment

15

 Choose Next and then Finish and you should see Figure 2 - 5.

Figure 2-5

 This Primary Master hard disk has 8GB of space allowed to it. Select Next and then Finish and this will
create the new mid virtual machine shown in Figure 2 - 6.

Figure 2-6

 Now it is necessary to install Ubuntu MID onto this hard drive so that software can be developed and
tested. Click the Settings button in Figure 2 - 6 and the settings for the virtual machine appear, as shown
in Figure 2 - 7.

c02.indd 15c02.indd 15 10/6/09 8:51:18 AM10/6/09 8:51:18 AM

Chapter 2: The Development Environment

16

 Choose Hard Disks, which brings up another screen, as shown in Figure 2 - 8.

Figure 2-7

Figure 2-8

 It is necessary to add another hard disk into the virtual machine (one that contains the Ubuntu MID
operating system). To do this, select the image of the disk with an addition sign on the right hand side
and then click the folder image. This brings up the screen shown in Figure 2 - 9.

c02.indd 16c02.indd 16 10/6/09 8:51:19 AM10/6/09 8:51:19 AM

Chapter 2: The Development Environment

17

 Select Add and browse the folder that contains the converted image that was created with the command

$ vboxmanage convertdd ubuntu-9.04-mid-lpia.img ubuntu-9.04-beta-mid-lpia.vdi

from earlier in this section. Select the converted image and the screen should look like Figure 2 - 10.

Figure 2-9

Figure 2-10

 Click Select to return to the Hard Disks screen (see Figure 2 - 11). The ubuntu - 9.04 - beta - mid - lpia.vdi that
was added must be set as the IDE Primary Slave.

c02.indd 17c02.indd 17 10/6/09 8:51:19 AM10/6/09 8:51:19 AM

Chapter 2: The Development Environment

18

 Click OK and you will return to the VirtualBox management screen that you saw in Figure 2 - 6
previously.

 It is now possible to start the virtual machine by clicking the Start arrow.

Figure 2-11

You may see an error displayed, such as the one in Figure 2-12.

It means that the KVM module is installed in the host system kernel. Previously, this
meant you needed to perform a kernel recompilation. However, in Ubuntu, simply run
the following:.

sudo /etc/init.d/kvm stop
 * Unloading kvm module kvm_intel

The module will be unloaded.

Figure 2-12

c02.indd 18c02.indd 18 10/6/09 8:51:20 AM10/6/09 8:51:20 AM

Chapter 2: The Development Environment

19

 As the virtual machine boots, press the F12 key (this will allow selection of the boot device) and you will
see the screen shown in Figure 2 - 13.

Figure 2-13

 Choose option number 2, which is the primary slave (the ubuntu - 9.04 - mid - lpia.vdi hard disk), to boot.
Then choose the option to try out Ubuntu MID and it will boot into the screen shown in Figure 2 - 14.

Figure 2-14

 In the virtual machine, the top bar of the Ubuntu MID interface contains a menu that allows the user to
change the group of programs that are shown. Click the Home drop - down list and choose Preferences.
Click the Install icon to install. The system will be installed on mid.vdi, which you created earlier and
which is represented in the installer as a hard disk, as shown in Figure 2 - 15.

c02.indd 19c02.indd 19 10/6/09 8:51:21 AM10/6/09 8:51:21 AM

Chapter 2: The Development Environment

20

 When the installation has finished, it is necessary to reboot, as shown in Figure 2 - 16.

Figure 2-15

Figure 2-16

It is possible to use hardware virtualization in VirtualBox. This makes VirtualBox similar to KVM in
that the hardware is used to speed up the virtualization process. To enable this, first check that your
processor has support for this by running:

$ egrep --color=auto ‘(vmx|svm)’ /proc/cpuinfo

Something should be printed in the terminal if processor support is available. Then go to the General
Settings in the VirtualBox Management screen and choose the Advanced tab. Select the Enable
VT - x/AMD - V checkbox. Doing this boosts the speed of the virtual machine considerably.

c02.indd 20c02.indd 20 10/6/09 8:51:21 AM10/6/09 8:51:21 AM

Chapter 2: The Development Environment

21

 KVM/QEMU
 KVM (for Kernel Virtual Machine) is a full virtualization solution for Linux. It consists of a loadable
kernel module, kvm.ko, that provides the core virtualization infrastructure and a processor - specific
module, kvm - intel.ko or kvm - amd.ko. It therefore relies on Intel VT or AMD - V hardware and it is a full
virtualization for Linux.

 KVM is intended for systems where the processor has hardware support for virtualization. To check this
on a system, run the following command:

$ egrep --color=auto ‘(vmx|svm)’ /proc/cpuinfo

 If vmx or svm is displayed in the output, the hardware (CPU) will support KVM. If nothing is printed in
the terminal, it means that the CPU doesn ’ t support hardware virtualization.

 Often hardware support needs to be specifically enabled in the BIOS — as was the case on a Lenovo
Thinkpad X60s.

 If nothing is printed, KVM falls back to the slower QEMU - based software virtualization. QEMU is also
used for virtualization of other architectures such as ARM. This is explained later in this chapter.

 Using QEMU
 To use QEMU, install the necessary packages:

$ sudo apt-get install qemu kqemu-common kqemu-source

 Next, add your user name to the kqemu group. Adding your user name to the kqemu group means that
you do not need to run QEMU as the root user.

 kqemu is the name of the module that is used to accelerate QEMU.

To add your user name, run :

$ sudo adduser < username > kqemu

To make these changes effective, it is necessary to log out and then log back in again.

 To test QEMU, go to the folder that contains the image that you downloaded from http://cdimage
.ubuntu.com and run the following:

$ qemu -localtime -m 384 -boot c ubuntu-9.04-beta-mid-lpia.img

 Substitute the .img name for the one that you downloaded, if different from the one above.

 To enable the kqemu acceleration module, it is necessary to pass the parameter - kernel - kqemu like this:

$ qemu -kernel-kqemu -localtime -m 384 -boot c ubuntu-9.04-beta-mid-lpia.img

c02.indd 21c02.indd 21 10/6/09 8:51:22 AM10/6/09 8:51:22 AM

Chapter 2: The Development Environment

22

 If you get the error message “ MP BIOS BUG: MP - BIOS bug: 8254 timer not connected to IO - APIC, ”
it is necessary to boot with the noapic option enabled. To do this, choose F12 when the screen appears
and choose 2 to boot from the hard disk. Then choose F6. This will display the menu that ’ s shown in
Figure 2 - 17. Select the noapic option.

Figure 2-17

 ARM on QEMU
 Before installing Ubuntu ARM on real hardware, it is better to try it with an emulator first. Working in
this way also allows applications to be built and packaged using a native compiler rather than
cross - compiling.

 A cross compiler is a compiler that is capable of creating executable code for an architecture other than
the one on which the compiler is run. Creating ARM binaries on an i386 environment is one example.

 To do this for Ubuntu Jaunty, download the script from http://people.ubuntu.com/~ogra/arm/
build-arm-rootfs . Make it executable:

$ chmod +x build-arm-rootfs

 Note that QEMU and debootstrap need to be installed.

 Run the following script (this command takes a long time):

sudo ./build-arm-rootfs -f pumd-arm -l < user > -p < password > --notarball

Take a note of this username and password in the command above because they are
the username and password used to login into the guest machine.

c02.indd 22c02.indd 22 10/6/09 8:51:22 AM10/6/09 8:51:22 AM

Chapter 2: The Development Environment

23

 This will create an .img in the folder. Next, download a kernel that works with ARM from http://
people.ubuntu.com/~ogra/arm/qemu/kernel/vmlinuz-2.6.28-versatile and then run
qemu - system - arm, adding both the .img and the kernel as parameters:

qemu-system-arm -M versatilepb -kernel ./vmlinuz-2.6.28-versatile
-hda qemu-armel-200904291613.img -m 256 -append “root=/dev/sda mem=256M ro”

 You need to substitute the .img name for the one the script created; the build-arm-rootfs script is date -
 based, so running it will result in something like qemu-armel-YYYYMMDDHHMMSS.img.

 This will execute QEMU and allow a login with the user and password specified during the .img
creation step. The native architecture can be verified, as shown in Figure 2 - 18.

Figure 2-18

 Using KVM
 If your hardware supports KVM, the next step is to install the necessary package:

$ sudo apt-get install kvm

Next, add your user to the kvm group. Adding your user name means that you do not need to run KVM
as the root user. To do this, run the following :

$ sudo adduser < username > kvm

It is necessary to reboot the virtual machine after adding a new user. Next, run the .img in KVM using
the following:

$ kvm -localtime -m 512 -boot c ubuntu-9.04-beta-mid-lpia.img

c02.indd 23c02.indd 23 10/6/09 8:51:23 AM10/6/09 8:51:23 AM

Chapter 2: The Development Environment

24

 To install the Ubuntu MID image, a similar process to the one for the VirtualBox installation will be
followed. Set up the .img as the second hard disk so you can install on the first disk. You might think of
doing something like this:

$ kvm -localtime -m 512 -hda installed-mid.img -hdb ubuntu-9.04-beta-mid-lpia.img

However, the preceding command will not work! Besides the fact that installed-mid.img does not exist,
the Bochs BIOS that ’ s used in QEMU and KVM doesn ’ t allow for booting on the second hard disk. As a
workaround, the Ubuntu Mobile Team provides a small (less than 400KB) ISO image from which the
second hard disk can be chosen to boot. This is available at http://people.ubuntu.com/~lool/
isolinux.iso .

 The script to generate the preceding ISO is available using bzr (see Appendix A), which you can find at
 lp:~ubuntu-mobile-dev/ubuntu-mobile/mobile-scripts .

 Some of the scripts are discussed in greater detail later in the chapter.

 Boot KVM with the following:

$ kvm -m 512 -cdrom isolinux.iso -hda installed-mid.img -hdb
ubuntu-9.04-mid-lpia.img

 installed-mid.img in the command above is created using the following:

$ qemu-img create installed-mid.img 4G

Here 4G stands for 4GB of virtual hard disk space. Because the installed - mid.img is blank, it will boot
using the - cdrom option specified in the above command When it does this, isolinux.iso will offer to
boot from the second hard disk with the 2 option. Choose this option and install to the first hard disk
(where grub will be installed as well).

 The install itself is the same as the VirtualBox install; on the virtual machine, the top bar of the Ubuntu
MID interface contains a menu that allows you to change the group of programs that is shown. Click the
Home drop - down menu and choose Preferences. You ’ ll see an Install icon. Click the icon to install.

 Try to use the maximum screen resolution possible on the host because KVM shows the guest OS at the
same resolution as the host. At lower resolutions, the buttons on the install will be hidden, and you may
need to remove panels on the host to see them! This should be fixed in the final Jaunty MID release.

Reboot the virtual machine when the install process has finished and KVM will start from the now
installed hda.img.

 It is possible to drop - cdrom and - hdb flags from the KVM command line after the install:

$ kvm -localtime -m 512 -hda installed-mid.img

c02.indd 24c02.indd 24 10/6/09 8:51:23 AM10/6/09 8:51:23 AM

Chapter 2: The Development Environment

25

 NETWORKING
 The following commands are necessary for networking in both VirtualBox and KVM. First, on the guest
computer, log in with the user account created previously, open a terminal and install openssh - server:

$ sudo apt-get install openssh-server

Then add a user:

$ sudo adduser < username >

 This sets up the basic tools that are required for networking.

If you would like full networking between the host and guest, see the “Advanced Networking on
VirtualBox and KVM/QEMU” section.

 Networking in VirtualBox
 On the host computer, use the VBoxManage command to open up a TCP service port which will be used
for SSH. Then, run the following:

$ VBoxManage setextradata mid
“VBoxInternal/Devices/pcnet/0/LUN#0/Config/ssh/HostPort” 2222
$ VBoxManage setextradata mid
“VBoxInternal/Devices/pcnet/0/LUN#0/Config/ssh/GuestPort” 22
$ VBoxManage setextradata mid
“VBoxInternal/Devices/pcnet/0/LUN#0/Config/ssh/Protocol” TCP

The three commands above should be on single lines. The VBoxManage command allows you to get
more information from your virtual machine and it also allows you to perform actions and configuration
fine tuning. For example, the name of the virtual machine - mid in the above example - was obtained by
running:

$ VBoxManage list vms | grep Name

Completely shutdown the guest computer using the VirtualBox management console. On the host
computer, enter the following:

$ ssh -l < username > -p 2222 localhost

You now have SSH access to the MID guest:

$ ssh -l < username > -p 2222 localhost

 The HostPort (2222 in this case) must be greater than or equal to 1024 because listening on ports
 0 – 1023 requires root permissions.

c02.indd 25c02.indd 25 10/6/09 8:51:23 AM10/6/09 8:51:23 AM

Chapter 2: The Development Environment

26

 Networking in KVM/QEMU
 The default virtual network configuration with KVM/QEMU is usermode networking. Usermode
networking makes the virtual machine behave as if it were behind a firewall that blocks all incoming
connections (the only “ pingable ” address is the default DHCP server/firewall on 10.0.2.2). What this
means in practice is that, by default, the guest computer has access to the outside network, but you
cannot access the host machine.

 To override usermode networking in order to enable access to the host, start KVM like this:

$ kvm -hda installed-mid.img -m 1024M -redir tcp:2222::22

 On the host, enter the following :

$ ssh -l < username > -p 2222 localhost

 Advanced Networking on Vir tualBox
and KVM/QEMU

 If it is a requirement to have the virtual machine with full network support or if many virtual machines
will be running on the host, it is necessary to set up bridging and a switch to connect the host and
the guest.

 The following configuration can be used for advanced networking with both VirtualBox and
KVM/QEMU.

 First, install vde2 and dnsmasq on the host:

$ sudo apt-get install vde2 dnsmasq

 VDE is a virtual switch that can connect multiple virtual machines and dnsmasq is a small caching DNS
proxy and DHCP/TFTP server.

 Next, add the following lines to /etc/network/interfaces on the host. The name qtap0 in the following
code snippet can be called anything you like, as it is a virtual connection and does not really exist on the
hardware. Likewise, the 172.12.120.1 address has been chosen because it is uncommon and less likely to
conflict with any other network to which your computer is connected. You can choose anything here:

auto qtap0
iface qtap0 inet static
 address 172.12.120.1
 netmask 255.255.255.0
 vde2-switch -
 post-up /etc/init.d/dnsmasq start
 # Allowing access to the network
 post-up /sbin/sysctl -w net.ipv4.ip_forward=1
 # assuming that the interface on the host connected to the network is eth0
 post-up /sbin/iptables -t nat -A POSTROUTING -o wlan0 -j MASQUERADE

c02.indd 26c02.indd 26 10/6/09 8:51:24 AM10/6/09 8:51:24 AM

Chapter 2: The Development Environment

27

 # Closing access to the network
 post-down /etc/init.d/dnsmasq stop
 post-down /sbin/sysctl -w net.ipv4.ip_forward=0
 post-down /sbin/iptables -t nat -F

 Following the netmask are actions such as pre - up, which will be undertaken during the network
configuration and before the interface is enabled. To see more options that can be added into this file
look at the following:

$ man interfaces

 Next, you set up the DNS and caching server. To do this, edit the dnsmasq config file that ’ s found in
/etc/dnsmasq.conf and find the interface (line 85):

#interface=

 Change this to

interface=qtap0

or to whatever name you chose for this interface. Then look for line 147:

#dhcp-range=192.168.0.50,192.168.0.150,12h

 Change it as follows:

dhcp-range=172.12.120.100,172.12.120.150,12h

 Save the file and restart the network on the host machine:

sudo /etc/init.d/networking restart

 * Reconfiguring network interfaces...
 * Restarting DNS forwarder and DHCP server dnsmasq

 ...done.

 [OK]

 Now when you run ifconfig, you can see the new network interface:

$ ifconfig
qtap0 Link encap:Ethernet HWaddr d2:3d:a9:96:88:36
 inet addr:172.12.120.1 Bcast:172.12.120.255 Mask:255.255.255.0
 inet6 addr: fe80::d03d:a9ff:fe96:8836/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:29 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:500
 RX bytes:0 (0.0 B) TX bytes:5836 (5.8 KB)

c02.indd 27c02.indd 27 10/6/09 8:51:24 AM10/6/09 8:51:24 AM

Chapter 2: The Development Environment

28

 It is also necessary to add your user name to the host machine and to the vde2 - net group, and log out
and in again:

$ sudo adduser username vde2-net
$ logout

 Using the Bridge in VirtualBox
 In the VirtualBox management console, go to the settings for the virtual machine and choose Network.
The adapter needs to be attached to the interface qtap0, which was created previously. In the drop - down
menu, choose Host Interface and on the bottom tab select qtap0, as shown in Figure 2 - 19.

Figure 2-19

 Now when the virtual machine starts, it is using the interface qtap0. Find the IP address of the guest
machine by looking at the dnsmasq.leases file found at /var/lib/misc/dnsmasq.leases, or by opening a
terminal on the guest and running $ifconfig. After this, it is possible to ssh into the guest as seen in the
following example:

$ ssh 172.12.120.115 -l < username >

 Files can be copied from the host machine to the guest machine, as follows:

$ scp pumd.tar.gz < username > @172.12.120.115:/home/ < username > /

 The guest machine can now ping the host machine.

c02.indd 28c02.indd 28 10/6/09 8:51:25 AM10/6/09 8:51:25 AM

Chapter 2: The Development Environment

29

 Using the Bridge in KVM
 In order to use this new interface, start KVM using the command vdekvm :

$ vdekvm -localtime -m 512 -net vde,vlan=0
-net nic,model=rtl8139,vlan=0,macaddr=00:16:3e:12:34:56 -hda installed-mid.img

 The macaddr from the preceding command can be any mac address; this is just a made - up one.

 When using only one virtual machine, it is not necessary to specify the mac address. However, for
multiple virtual machines, it becomes important. Selecting an address from the range 00:16:3e:xx:xx:xx
is advisable as this range has been assigned to virtualization.

 In order to use the interface with kqemu in QEMU, use the following command:

$ vdeqemu -kernel-kqemu -hda installed-mid.img
-net vde,vlan=0,sock=/var/run/vde2/qtap0.ctl -net nic,model=rtl8139,vlan=0,macaddr=
52:54:00:12:34:56 -m 1024 -no-acpi

 On the host, enter

$ ssh 172.12.120.115 -l < username >

to ssh on the guest machine. The IP above is just an example .

 Files can be copied like this:

$ scp pumd.tar.gz < username > @172.12.120.1:/home/ < username > /

 The guest machine can now ping the host machine.

Sharing Files Between Guests and Host
If you followed the simple networking procedure in the “Networking in VirtualBox” or “Networking in
KVM/QEMU” sections, it is possible to copy files from the host computer to the guest computer by
typing the following:

$ scp -P 2222 <file> username@localhost:/home/<username>/

However, it is also possible to use sshfs to copy files. This is done by installing sshfs in the host

$ sudo apt-get install sshfs

and then by running the command on the host:

$ sshfs -p 2222 username@localhost:/home/<username>/

If you want to automatically mount the user’s home directory, add the following line to /etc/fstab

sshfs#username@localhost:/home/<username> /media/guest-home fuse user,noauto 0 0

c02.indd 29c02.indd 29 10/6/09 8:51:25 AM10/6/09 8:51:25 AM

Chapter 2: The Development Environment

30

then add the user currently logged in on the host to the fuse group:

$ adduser <host username> fuse

Logout and login again to apply the changes. Now you can mount the virtual machines home/user
directory by typing:

$ mount /media/guest-home

Now files can be copied from the host to the guest and vice versa through this mount point.

Everything mentioned so far in this section works for simple networking. If you followed the “Advanced
Networking on VirtualBox and KVM/QEMU” section’s instructions, then a slightly different procedure
is required.

Sharing Files Between Guests and Host with Advanced Networking
If you want to copy files using scp from the guest to the host you can use:

$ scp <file> username@172.12.120.1:/home/<username>/

To copy files from the host to the guest, first get the guest IP address and then run for example on the host:

$ scp <file> username@172.12.120.100:/home/<username>/

The sshfs solution presented above also works when using advanced networking. First install sshfs in
the host

$ sudo apt-get install sshfs

and then run the following command on the guest:

$ sshfs username@172.12.120.100:/home/<username>/ ~/devel

Add the currently logged in user on the host to the fuse group:

$ adduser <guest username> fuse

Logout and login again to apply the changes. Now you can mount the host’s home/user directory by
adding the following line to /etc/fstab

sshfs#username@172.12.120.1:/home/<username> /media/host-home fuse user,noauto 0 0

and mounting:

$ mount /media/host-home

If you want to mount the user’s home directory on startup, add the following line to /etc/fstab:

sshfs#username@172.12.120.1:/home/username /media/host-home fuse defaults,allow_
other 0 0

c02.indd 30c02.indd 30 10/6/09 8:51:26 AM10/6/09 8:51:26 AM

Chapter 2: The Development Environment

31

If you do not want a password prompt every time you copy files with scp or with the mount solutions
explained above you need to set up passwordless ssh keys. On the host enter:

$ ssh-keygen -t rsa

Just hit Enter when asked for a password. Then run the following on the host:

$ ssh-copy-id -i”/home/<host username>/.ssh/id_rsa.pub -p 2222 <username>@
localhost”

Now you are able to ssh, copy and mount without being asked for a password.

 Building Your Own Virtual Image
 Rather than using a pre - rolled image from cdimage.ubuntu.com, it is possible to build a virtual machine
image. To do this, install a tool called ubuntu - vm - builder:

$ sudo apt-get install ubuntu-vm-builder

 Then run it like this:

$ sudo ubuntu-vm-builder kvm jaunty --mem=512 --user <username> --pass <password>
--addpkg openssh-server

 This creates a minimal KVM virtual machine for Jaunty, adds a user with a password, and adds the
openssh - server package to the image. Creating a virtual image this way can be useful in order to provide
a clean testing environment. It can also be fast if the preceding command is combined with a local
repository mirror such as:

$ sudo ubuntu-vm-builder kvm jaunty --mem=512 --user <username> --pass <password>
--addpkg openssh-server --mirror http://localhost:9999

 This command creates a folder with two files in it: disk0.qcow2, which is the QEMU image, and a script
called run.sh. Execute the script like this:

$./run.sh

 This passes the qcow image as a parameter to QEMU.

 Working with Images
 The Ubuntu - Mobile team has made some scripts available, which you ’ ll find in the mobile - scripts
package at https://code.edge.launchpad.net/~ubuntu-mobile-dev/ubuntu-mobile
/mobile-scripts . These scripts are used by the Ubuntu Mobile developers when they ’ re working
with images. To get the scripts first, install Bazaar, which is a source code management tool that is used
by Ubuntu and many other software projects:

$ sudo apt-get install bzr

c02.indd 31c02.indd 31 10/6/09 8:51:26 AM10/6/09 8:51:26 AM

Chapter 2: The Development Environment

32

 Next, use Bazaar to check out the scripts:

$ bzr branch lp:~ubuntu-mobile-dev/ubuntu-mobile/mobile-scripts

This will create a folder called mobile - scripts with a subfolder called image - tools. The scripts that will be
used are:

 create - image.sh

 edit_squashfs.sh

 grow_image.sh

 Building Your Own Image
 Actual images like the ones downloaded from cdimage.ubuntu.com are made up of a filesystem, which
in embedded development is usually squashfs. squashfs is a compressed read - only filesystem that is
useful when working with constrained hard drives and memory systems commonly found in embedded
environments.

 For Ubuntu Mobile this squashfs filesystem will contain an install (for example, an install of Ubuntu
MID) as well as a kernel, an initramfs (a special instance of a temporary filesystem), and a syslinux
install (syslinux is a boot loader).

 To create an image then, it is necessary to first create a squashfs filesystem. To do this install
livecd - rootfs:

$ sudo apt-get install livecd-rootfs

and then run as root one of the livecd - rootfs scripts called livecd.sh:

$ sudo livecd.sh -d karmic -a lpia ubuntu-mid

 The script livecd.sh is installed into the /usr/sbin/ directory, which is in the $PATH. This means the
script can be called from any directory without the user supplying the full path to it. The command
above was run on Ubuntu karmic.

 This will download and then build the squashfs filesystem for LPIA. It can take some time to download,
however. Using a local mirror can help here:

 $ sudo livecd.sh -d karmic -a lpia -m http://localhost:9999 ubuntu-mid

Creating a local mirror is explained in Chapter 11.

 When the download is complete, the following files and folders will be created:

 chroot - livecd

 livecd.ubuntu - mid.manifest

 livecd.ubuntu - mid.manifest - desktop

❑

❑

❑

❑

❑

❑

c02.indd 32c02.indd 32 10/6/09 8:51:26 AM10/6/09 8:51:26 AM

Chapter 2: The Development Environment

33

 livecd.ubuntu - mid.sort

 livecd.ubuntu - mid.squashfs

 livecd.ubuntu - mid.initrd

 livecd.ubuntu - mid.initrd - lpia

 livecd.ubuntu - mid.kernel

 livecd.ubuntu - mid.kernel - lpia

 Now it is possible to use one of the scripts (create - image.sh) from mobile - scripts to actually create
the image.

 Make sure the script is in the same folder as the files and folders mentioned and that it has the executable
permission bit set:

 $ chmod +x create-image.sh
 $./create-image.sh ubuntu-mid 40

where ubuntu - mid (LPIA) is the distribution to be built and 40 is the extra space in MB to be allocated in
the image for installing extra packages and other customizations that may be required.

 The edit_squashfs.sh script (shown next) can also be used to alter the size of an image.

 The built image can be tested now in KVM/QEMU:

$ kvm -localtime -m 512 -hda ubuntu-mid.img

 Installing Applications inside the Image
 The script edit_squash.fs from mobile - scripts spawns a root shell inside the image that was just built in
the previous section. It is then possible to run apt - get update and install packages. On exiting the
shell with Ctrl+D or the exit command, the script will offer to re - roll the squashfs for you.

 The script is used like this:

$ sudo ./edit_squashfs.sh ubuntu-mid.img

 It is always a good idea to run apt - get clean when inside the chroot and before exiting to clean up
space in the /var/cache/apt/archives directory. Indeed the preceding script does this. This is because
space is at a premium. Another idea is also to install deborphan and/or gtkorphan in order to remove
unused programs and libraries that are taking up space (apt - get install deborphan).

 The space available to install new applications/packages is what was specified in the create - image.sh
command (40MB). If this needs to be increased, use the grow_image.sh script discussed next.

❑

❑

❑

❑

❑

❑

c02.indd 33c02.indd 33 10/6/09 8:51:27 AM10/6/09 8:51:27 AM

Chapter 2: The Development Environment

34

 Increasing a Downloaded Image Size
 To increase the size of the downloaded image (perhaps to install more applications) use the grow_image
.sh script.

 This script was created to satisfy a potential use case whereby an OEM wants to modify the applications
on a device and maybe the theme but does not want to modify the kernel or the seeds.

 Seeds are discussed in more detail in Chapter 11.

 You use the script like this:

$./grow_image.sh ubuntu-mid.img 50

 This creates a new image with the size specified (50MB) and then it is possible to run the
edit_squashfs.sh script on this to make the changes necessary and then re - roll the image.

 Summary
 Mobile development can be challenging. You need to use your workstation to develop for a device with
perhaps a different processor, as is the case with Ubuntu ARM or with a different operating system.

 Creating an image (or downloading one from the archives) and then running it in VirtualBox or KVM/
QEMU will provide an isolated environment. This environment can then be used for software
development, software testing, or application packaging.

c02.indd 34c02.indd 34 10/6/09 8:51:27 AM10/6/09 8:51:27 AM

 Power Management

 Mobile devices are now equipped with cameras, various radio transmitters, advanced multimedia,
and other features — all of which consume a lot of power. At the same time, more power - hungry
applications that utilize these features are being provided. Furthermore, user demands for battery
life seem exponential. Because a battery life of six hours is now seen as the absolute minimum
necessary when away from an energy source, it is important for you as a developer to try and
work out how to conserve energy as much as possible.

 It is also becoming increasingly important for users to control their mobile devices ’ power usage.
Not only should users be able to specify power usage, but they should also be able to override the
system defaults if they choose.

 This chapter explains the various tools and packages that are available for power management on
Ubuntu Mobile. It includes the existing ones that are based on HAL and the newer ones that are
based on DeviceKit - power. The chapter also shows the results of several power tests, and suggests
techniques for increasing battery life on mobile devices.

 Introduction
 PC - based chips already have a well - established code base in Linux, with existing hardware
interfaces such as ACPI and HAL; and as they have evolved from desktops into smaller devices
many software packages have been created to optimize power. Each of these packages can be
thought of as a power micro - policy controller for a specific subsystem on a Linux - based platform.
For instance, cpufreq manages power for the CPU subsystem and the iwconfig interface
manages device-specific power for the Network (WLAN) subsystem.

c03.indd 35c03.indd 35 10/6/09 8:56:14 AM10/6/09 8:56:14 AM

Chapter 3: Power Management

36

 It would be nice if there were a central way to manage power information. From Ubuntu Jaunty there is
a new daemon, which can be installed from the universe repositories, that provides such a service. It
moves power management and profiling to an interface that is more focused on the entire power
management system than anything that existed before. It is called DeviceKit - power and it is accessible
through the D - Bus interface org.freedesktop.DeviceKit.Power.

 For more information about D - Bus, see Chapter 4.

 Power Saving States
 The common power (saving) states are awake, standby, suspend, and hibernate:

 During the awake state all components of the device are running.

 During standby , the CPU keeps running your programs, but some components such as the hard
disk, may be turned off. When the mouse or keyboard is touched, the hard disk is accessed by
software and the device quickly wakes up.

 In both the awake and the standby states, the speed of the CPU may be throttled down if it ’ s not in use.

 During suspend , however, the CPU is always stopped. In modern devices all other components
(except the RAM memory) can be turned off. The RAM will hold the “ state ” of the device.

 During hibernation the state is written to hard disk and the whole device is turned off.

 Power Management Packages
 If the kernel is compiled with power management packages (the default in Ubuntu), both apm and acpi
will be available.

 To see the default kernel configuration, run

$ vi /boot/config-`uname -r`

 For more information about kernel compilation, see Chapter 8.

 apm provides access to battery status information and may help conserve battery power, depending on
your laptop and the implementation. It has mainly been superseded by newer power management
schemes, such as ACPI.

 For example, to use apm to put a device to sleep, run the following:

$ apm -s

 acpi is an “ interface ” specification and is provided on Ubuntu by the packages acpi and
acpi - support . acpi attempts to replace the old apm functionality, and acpi - support contains scripts
for events such as the lid closure and loss and gain of AC power.

❑

❑

❑

❑

c03.indd 36c03.indd 36 10/6/09 8:56:15 AM10/6/09 8:56:15 AM

Chapter 3: Power Management

37

 Both acpi and apm enable hardware events such as the end of battery power or the pressing of a button
to be controlled by software, and both provide the control daemons apmd and acpid , respectively.

 The control daemons run the scripts they find in their configuration directory tree under /etc/acpi , or
 /etc/apm , respectively.

 pm - utils
 Another package that comes as default with Ubuntu and which can be used to control power states is
 pm - utils . This provides the pm - action , pm - hibernate , pm - suspend , and pm - suspend - hybrid
commands. They allow the triggering of hard power management events by software.

 These commands will usually be called by the hardware abstraction daemon (hald) when triggered to
do so by a program on the desktop. Calling them from the command line is also possible, but it is not
guaranteed that all programs will keep working as expected.

 pm - suspend
 Suspend is a state in which most of the device is shut down, except for RAM. In this state, the device still
draws power.

 It is possible to use pm - suspend to enter sleep mode on a device with a command something like the
following:

 $ pm-suspend --quirk-vbestate-restore

 Testing on an actual device has revealed that this can be quite slow. The actual scripts that pm - utils
runs for sleep can be found in /usr/lib/pm - utils/sleep.d/. Many of the scripts there are solutions to
problems that are currently being fixed in the kernel.

 Always make sure the kernel is updated or alternatively roll a custom kernel. See Chapter 8 for
more details.

 pm - hibernate
 During hibernate mode, the state of the system is saved to disk, and the system is fully powered off,
except perhaps for a very low power state on — for example — an Ethernet card to enable wake - on - lan.

 pm - suspend - hybrid
 Hybrid - suspend is the process where first the state of the system is saved to disk — as with hibernate —
 but instead of power off, the device goes into a suspended state, which means it can wake up quicker
than from normal hibernation. Its advantage over suspend is that it can resume even if the device runs
out of power.

 You can also set the device to go into high - power and low - power mode; the command pm - powersave is
used with an additional parameter of true or false . It basically works the same as the suspend
framework.

c03.indd 37c03.indd 37 10/6/09 8:56:16 AM10/6/09 8:56:16 AM

Chapter 3: Power Management

38

 To do this, use the following:

$ sudo pm-powersave true

 An alternate method to suspend or hibernate an ubuntu - mobile device without requiring root access is
explained in the “ pmi action ” section that follows.

 pmi action
 Available in the universe repositories is a package called powermanagement - interface. This provides an
abstracted layer above acpi. The main advantage to using this is that it is possible to suspend or
hibernate a mobile device without requiring root access.

$ sudo apt-get install powermanagement-interface

 Call the power management interface directly via the following commands:

 hibernate :

$ /usr/sbin/pmi action hibernate

 suspend :

$ /usr/sbin/pmi action sleep

 To lock the Gnome session first (i.e., require a password on resumption), issue the following command
before issuing the pmi command:

$ gnome-screensaver-command -lock

 For example, it is possible to use these commands to create an application entry on Ubuntu Netbook
Remix that locks the screen and puts the device into sleep mode.

 First make a file containing the following:

gnome-screensaver-command -lock; pmi action suspend

Then make the file executable with this command:

$ chmod +x <file>

Go to Preferences Main Menu Preferences New Item. Type Application in Terminal in the form
and then name the file Lock and Suspend . Then choose the file that ’ s been created. Clicking the icon
locks and suspends the device.

 How pm - utils Works
 The main script (pm - action, called via symbolic links as either pm - suspend, pm - hibernate, or pm -
 suspend - hybrid) executes hook (executable) scripts in an alphabetical order, passing the parameter
 suspend (suspend to RAM) or hibernate (suspend to disk) as instructed. Once all the scripts are
finished, the device goes to sleep.

c03.indd 38c03.indd 38 10/6/09 8:56:16 AM10/6/09 8:56:16 AM

Chapter 3: Power Management

39

 After the machine has woken up, all the hook scripts are executed in reverse order with the parameter
 resume (resume from RAM) or thaw (resume from disk) as instructed.

 Note that suspend - hybrid is currently a placeholder and is not completely implemented.

 The hooks do various things such as preparing the bootloader or stopping the Bluetooth subsystem.

 The hooks for suspend are placed in the following:

/usr/lib/pm-utils/sleep.d
/etc/pm/sleep.d

 The hooks for the power state are placed in the following:

/usr/lib/pm-utils/power.d
/etc/pm/power.d

 Hooks in /etc/pm/ take precedence over those in /usr/lib/pm - utils/, so it is possible for a developer to
override the defaults.

 An example suspend/resume script for Bluetooth, called 49bluetooth, which is found in /usr/lib
/pm - utils/sleep.d/, looks like this:

. “${PM_FUNCTIONS}”

[-f /proc/acpi/ibm/bluetooth] || exit $NA

suspend_bluetooth()

{

 if grep -q enabled /proc/acpi/ibm/bluetooth; then

 savestate ibm_bluetooth enable

 echo disable > /proc/acpi/ibm/bluetooth

 else

 savestate ibm_bluetooth disable

 if

}

resume_bluetooth()

{

 state_exists ibm_bluetooth || return

 restorestate ibm_bluetooth > /proc/acpi/ibm/bluetooth

c03.indd 39c03.indd 39 10/6/09 8:56:16 AM10/6/09 8:56:16 AM

Chapter 3: Power Management

40

}

case “$1” in

 hibernate|suspend)

 suspend_bluetooth

 ;;

 thaw|resume)

 resume_bluetooth

 ;;

 *) exit $NA

 ;;

esac

 Gnome - Power - Manager
 Gnome - Power - Manager is a program with a graphical user interface that subscribes itself to power
events and acts on them. It shows you the battery status on laptops and dims the screen if running on
battery power, for example. It will also shut down or hibernate the computer after some idle time or
before the battery runs out if a user is logged in. The software suspend policy of Gnome - Power - Manager
is actually handled by the hardware abstraction layer.

 Ubuntu - MID does not show the Gnome - Power - Manager applet on the desktop (although it is running in
the background) and consequently it has no provision for a graphical shutdown. The power applet code
in Appendix D provides such functionality and can be used if this situation arises.

 Gnome - Power - Statistics
 This application is a graphical viewer which interacts with the Gnome - Power - Manager over D - Bus
using the org.gnome.PowerManager.Statistics interface.

 Figure 3 - 1 shows the effects of resuming from suspend mode on a netbook and the associated spike in
power usage.

c03.indd 40c03.indd 40 10/6/09 8:56:17 AM10/6/09 8:56:17 AM

Chapter 3: Power Management

41

 Device Kit Power
 The DeviceKit set of daemons replaces the core functionality of HAL — the Hardware Abstraction layer.
The daemons were written because applications currently need a lot of complicated code to do simple
things such as work out the remaining battery life. All of the DeviceKit daemons are system activated
and have low memory requirements.

 DeviceKit - power also implements a QoS (Quality of Service) interface for latency control (discussed
shortly). This is needed to produce a device that uses little power when idle, but at the same time doesn ’ t
feel sluggish.

 DeviceKit - power provides a D - Bus interface (for more information on D - Bus see Chapter 4) for power
sources on the device and to control device - wide power management. Any application can access the
org.freedesktop.DeviceKit.Power service on the system message bus.

 DeviceKit.Power can be installed using the following:

$ sudo apt-get install devicekit-power

 Devkit - power - daemon provides the org.freedesktop.DeviceKit.Power service on the system message
bus and devkit - power provides a handy command line tool to access the daemon. The tool can be used
like this (the following output has been edited for clarity):

$ devkit-power --monitor-detail
Monitoring activity from the power daemon. Press Ctrl+C to cancel.
device changed: /org/freedesktop/DeviceKit/Power/devices/battery_BAT0
 native-path:
/sys/devices/LNXSYSTM:00/device:00/PNP0A08:00/device:01/PNP0C09:00/PNP0C0A:00
/power_supply/BAT0
 vendor: SONY
 model: 93P5030
 serial: 1656
 power supply: yes
 updated: Tue May 5 21:16:40 2009 (0 seconds ago)

Figure 3-1

c03.indd 41c03.indd 41 10/6/09 8:56:17 AM10/6/09 8:56:17 AM

Chapter 3: Power Management

42

 has history: yes
 has statistics: yes
 battery
 present: yes

 rechargeable: yes
 state: discharging
 energy: 74.75 Wh
 energy-empty: 0 Wh
 energy-full: 74.88 Wh
 energy-full-design: 74.88 Wh
 energy-rate: 19.708 W
 voltage: 16.248 V
 time to full: 0 seconds
 time to empty: 3.3 hours
 percentage: 96.1672%
 capacity: 100%
 technology: lithium-ion
 History (charge):
 1241554960 97.035 unknown
 1241554970 96.955 discharging
 1241554980 96.888 discharging
 1241554990 96.795 discharging

 The tool shows the output while it ’ s running on battery power. Running the following

$ devkit-power --wakeups

Total wakeups per minute: 216

Wakeup sources:

userspace:1 id:16881, interrupts:95.3, cmdline:/usr/lib/firefox-3.0.10/firefox,
details:schedule_hrtimeout_range (hrtimer_wakeup)

userspace:1 id:16901, interrupts:93.2, cmdline:/usr/lib/firefox-3.0.10/firefox,
details:futex_wait (hrtimer_wakeup)

userspace:1 id:6079, interrupts:3.6, cmdline:gnome-terminal, details:schedule_
hrtimeout_range (hrtimer_wakeup)

userspace:0 id:1056, interrupts:3.6, cmdline:modprobe,
details:usb_hcd_poll_rh_status (rh_timer_func)

userspace:1 id:21543, interrupts:3.1, cmdline:xchat,
details:schedule_hrtimeout_range (hrtimer_wakeup)

c03.indd 42c03.indd 42 10/6/09 8:56:17 AM10/6/09 8:56:17 AM

Chapter 3: Power Management

43

userspace:1 id:7617, interrupts:3.1,
cmdline:/usr/lib/openoffice/program/soffice.bin,
 details:schedule_hrtimeout_range (hrtimer_wakeup)

userspace:1 id:17320, interrupts:3.1,
cmdline:/usr/lib/firefox-3.0.10/firefox,
details:schedule_hrtimeout_range (hrtimer_wakeup)

userspace:1 id:5174, interrupts:1.6,
cmdline:avahi-daemon: running [lawrence.local],
details:schedule_hrtimeout_range (hrtimer_wakeup)

userspace:1 id:5397, interrupts:1.0, cmdline:/usr/sbin/apache2,
details:schedule_hrtimeout_range (hrtimer_wakeup)

userspace:1 id:3348, interrupts:1.0, cmdline:/usr/bin/vde_switch,
details:hrtimer_start (it_real_fn)

userspace:1 id:7651, interrupts:1.0,
cmdline:/usr/lib/openoffice/program/soffice.bin,
details:schedule_hrtimeout_range (hrtimer_wakeup)

produces Userspace and kernel wakeups (again the output has been edited for clarity). Constant
wakeups will adversely affect power consumption as they force the processor to stay “ awake ” and drain
the battery very quickly.

 DeviceKit.Power is accessible through the system message D - Bus. To suspend a device, for example, run
the following:

$ dbus-send --print-reply --system --dest=org.freedesktop.DeviceKit.Power /org/
freedesktop/DeviceKit/Power org.freedesktop.DeviceKit.Power.Suspend

It returns the following

method return sender=:1.161 - > dest=:1.168 reply_serial=2

 The device enters suspend mode.

 The Quality of Service: QoS Interface
 To illustrate how you use the QoS interface, an Instant Messenger application needs to request a latency
of 200 microseconds.

 It was possible to control power from an application before the QoS interface (using the old HAL
interface); however, this meant running the application as root.

 First, to see the daemon output, run the daemon in verbose mode:

$ sudo su
/usr/lib/devicekit-power/devkit-power-daemon --verbose

c03.indd 43c03.indd 43 10/6/09 8:56:18 AM10/6/09 8:56:18 AM

Chapter 3: Power Management

44

Pass (in another shell window) the latency request of 200 microseconds (this seems reasonable for an
Instant Messenger application, for example):

$ dbus-send --print-reply --system --dest=org.freedesktop.DeviceKit.Power
/org/freedesktop/DeviceKit/Power/Policy
org.freedesktop.DeviceKit.Power.QoS.RequestLatency string:”network” int32:200
boolean:false

 The output is

TI:15:03:48 TH:0x8d4adf8 FI:dkp-qos.c FN:dkp_qos_request_latency,326

 - Received Qos from ‘:1.140’ (200:1)’ saving as #1524452718

TI:15:03:48 TH:0x8d4adf8 FI:dkp-qos.c FN:dkp_qos_latency_write,180

 When the IM application disconnects from the system bus, the latency request is automatically cleaned
up (the persistent=False setting). This can be set to True and the request is not cleaned up when the
application disconnects (the cookie value is preserved across device reboots).

 Controlling Radio Transmitters
 Constant polling for radio connections of all kinds can use a lot of power.

 To try to limit this, device manufacturers have implemented various techniques. On Nokia devices, such
as the N810, all network connections are routed through a connection tracker. This makes it possible to
disable the network interface until an application tries to access the network, when a new connection can
be established quickly. The Power Save Poll protocol (PS - Poll) was developed and helps reduce the
amount of time a radio needs to be powered.

 Rather than having the radio on all the time, PS - Poll allows the WiFi adapter to notify the access point
when it will be powered down. While the radio is powered down, the access point will hold any
network packets that would need to be sent to it.

 Network latencies increase with PS - Poll. This is generally not noticeable when browsing the Web, but
in situations where lower network latency is important (for example, online gaming, voice and media
streaming), PS - Poll may not be the best solution.

 PS - Poll functions principally with wireless cards that use the ipw2100/ipw2200 driver or the newer
iwl3945/ iwl4965 drivers. To set PS - Poll on an ipw2100/ipw2200 card do the following:

iwpriv wlan0 set_power 5

where wlan0 is the interface name for the network adapter. The number 5 in the iwpriv command is the
degree to which the power saving should be enabled:

c03.indd 44c03.indd 44 10/6/09 8:56:18 AM10/6/09 8:56:18 AM

Chapter 3: Power Management

45

 1 is the lowest number, with the least savings (but also with the lowest added latency).

 5 is the highest number.

 6 disables the power savings feature again, as in the following:

iwpriv eth1 set_power 6

 The iwl3945/iwl4965 drivers rely on the kernel for configuring the wireless subsystem. A mechanism
exists, however, for manually configuring the PS - Poll via a sysfs file attribute power_level such as

 echo 5 > /sys/bus/pci/drivers/iwl4965/*/power_level

 Substitute iwl3945 for iwl4965, depending on the adapter.

 RFKILL
 Because there are situations, such as during a flight, when the WiFi radio will not be used at all, it is
sensible to turn WiFi off altogether.

 To do this, run the following:

for i in `find /sys -name “rf_kill” ; do echo 1 > $i ; done

 To turn the radio back on, run the following in a shell:

for i in `find /sys -name “rf_kill” ; do echo 0 > $i ; done

 It would be a nice touch for an OEM to add an applet for this.

 See Chapter 4 for an example of how to write an applet.

 Bluetooth
 Like WiFi, Bluetooth has a radio transmitter, so it can take quite a bit of power. Unlike WiFi, Bluetooth is
rarely used, so it ’ s very possible that the Bluetooth device isn ’ t actually used for anything, and is just
consuming battery life.

 This is a script to turn Bluetooth on/off as required:

#!/bin/bash
if ps -A | grep -c bluetoothd
then
gksudo /etc/init.d/bluetooth stop
sudo hciconfig hci0 down
else
gksudo /etc/init.d/bluetooth start
fi

❑

❑

❑

c03.indd 45c03.indd 45 10/6/09 8:56:18 AM10/6/09 8:56:18 AM

Chapter 3: Power Management

46

 Bluetooth devices that are active on a system can be seen with the hcitool command:

hciconfig
hci0: Type: USB
 BD Address: 00:00:00:00:00:00 ACL MTU: 0:0 SCO MTU: 0:0
 DOWN
 RX bytes:0 acl:0 sco:0 events:0 errors:0
 TX bytes:0 acl:0 sco:0 commands:0 errors:0

 Investigating Power Usage
 Finding out about power consumption on Linux often involves the use of
powertop (sudo apt - get install powertop).

 Run it inside a target:

$ sudo powertop

 It will show something like this:

Wakeups-from-idle per second : 48,0
Power Usage (ACPI Estimate): 7,1 W (2,5 hours)

 Top causes for wakeups:

 21.3% (165.7) < kernel IPI > : Rescheduling interrupts

 20.9% (162.5) < interrupt > : uhci_hcd:usb1, yenta, i915@pci:0000:00:02.0

 18.1% (140.6) < interrupt > : libata

 11.4% (88.5) hildon-desktop : schedule_timeout (process_timeout)

 7.1% (55.1) < interrupt > : extra timer interrupt

 5.4% (42.3) midbrowser : futex_wait (hrtimer_wakeup)

 The Wakeups - from - idle per second ” line is an indicator for how well your device is doing in
terms of getting power savings: The lower the number the better.

 Powertop also shows some handy tips, like this:

Suggestion: increase the VM dirty writeback time from 5.00 to 15 seconds with:

 echo 1500 > /proc/sys/vm/dirty_writeback_centisecs

This wakes the disk up less frequently for background VM activity

c03.indd 46c03.indd 46 10/6/09 8:56:19 AM10/6/09 8:56:19 AM

Chapter 3: Power Management

47

 With powertop , it is easy to see that some applications have fairly heavy energy requirements. For
example, if your battery life is 5 hours, then running Gaim will consume 1 hour of that! Other notable
applications include the midbrowser (Firefox), xorg, and Skype. It should be noted that, especially with
Firefox, much work has been done recently to reduce wakeups.

 See Chapter 10 for additional power - saving advice.

 Battery Testing
 This test uses the Phoronix Test Suite, which is discussed in greater detail in Chapter 9.

 Preparing to Run the Tests
 Before you run any test, it is necessary to disable the screensaver (on Ubuntu Netbook Remix):

$ sudo killall gnome-screensaver
$ gconftool-2 --type boolean -s
/apps/gnome_settings_daemon/screensaver/start_screensaver false

Also unplug external devices (USB - mouse, keyboard, Ethernet, and so on) and then reboot the device.

 Phoronix Test Suite
 The Phoronix Test Suite supports monitoring system sensors. The Phoronix Test Suite will automatically
monitor selected sensors while each test in the chosen suite is running and at the end will provide the
low and high thresholds for each sensor as well as the average. In addition to this, the sensor results are
then plotted on line graphs.

 The sensor detection and monitoring itself is done through LM - Sensors and the ACPI interface.
LM - Sensors is a hardware health monitoring package for Linux, which allows access to information from
temperature, voltage, and fan speed sensors. It is used as the default but if LM - Sensors isn ’ t installed, the
suite will fall back to using the Advanced Configuration and Power Interface.

 To install Phoronix Test Suite and the sensor interfaces, run the following:

$ sudo apt-get install lm-sensors libsensors-dev phoronix-test-suite

 The full list of sensor options can be found by running the following:

$ phoronix-test-suite module-info system_monitor

 The sensors that are actually detected on the current system and their values can be read by running the
following:

$ MONITOR=all phoronix-test-suite test-module system_monitor

c03.indd 47c03.indd 47 10/6/09 8:56:19 AM10/6/09 8:56:19 AM

Chapter 3: Power Management

48

 The results on an Acer Aspire netbook appear like this:

====================================

Starting Module Test Process

====================================

==

Current Sensor Readings:
Battery Power Monitor 10603 Milliwatts
CPU Frequency Monitor: 800.00 Megahertz
CPU Usage Monitor: 14.81 Percent
System Memory Usage Monitor: 454 Megabytes
Swap Memory Usage Monitor: 189 Megabytes
Total Memory Usage Monitor: 644 Megabytes
Elapsed Time: 13 Seconds

==

 Selecting sensors to monitor is performed through the MONITOR environmental variable. For example, to
monitor the battery while the netbook suite runs, the following command would be used:

$ MONITOR=all.battery phoronix-test-suite benchmark netbook

 Battery Comparisons
 The device that was used in the previous example was an Acer Aspire netbook with an Intel Atom N270
1.6GHz CPU. It is expected that significant battery gains will be achieved using the Low Power Intel
Architecture (LPIA) that is based on the Ubuntu MID release. In order to confirm this, the battery was
monitored while the idle test ran for one hour:

$ MONITOR=all phoronix-test-suite benchmark idle

 On both operating systems, the battery was fully charged before beginning the test and the power
supply was unplugged before running the test.

 After the idle test was completed, the sensor statistics were printed in the standard output:

Power Battery Statistics:
Low: 10871.00 Milliwatts
High: 14233.00 Milliwatts

Average: 11779.76 Milliwatts

 The results are shown using a web browser using various images like Figure 3 - 2.

c03.indd 48c03.indd 48 10/6/09 8:56:19 AM10/6/09 8:56:19 AM

Chapter 3: Power Management

49

 On the same Acer netbook, Ubuntu MID was installed and the same test run for one hour. This is the
output for Ubuntu MID:

Power Battery Statistics:
Low: 9919.00 Milliwatts
High: 13162.00 Milliwatts
Average: 10401.40 Milliwatts

 The results are shown in Figure 3 - 3.

Figure 3-2

Figure 3-3

 The sensor graphs for the preceding test are saved to the following default location:
~/.phoronix - test - suite/module - files/system - monitor/.

 The results show that the LPIA - based Ubuntu MID is 11.7 percent more power efficient than the i386
Ubuntu Netbook Remix. The problem with relying on this test result is that it is not comparing similar
things. It would be nice to have Ubuntu Netbook Remix running on LPIA and compare that with the
i386 version.

c03.indd 49c03.indd 49 10/6/09 8:56:19 AM10/6/09 8:56:19 AM

Chapter 3: Power Management

50

 Comparing Like - to - Like
 First, Ubuntu MID was installed on the Acer and then in a terminal:

$ sudo apt-get install ubuntu-netbook-remix-default-settings ubuntu-netbook-remix

 Next, the MID settings were removed so that the Netbook Remix interface could be used:

$ sudo apt-get remove -purge ubuntu-mid-default-settings

 Finally, the test was run again. This resulted in the following:

Power Battery Statistics:

Low: 10250.00 Milliwatts

High: 13111.00 Milliwatts

Average: 10772.64 Milliwatts

 The results are shown in Figure 3 - 4.

Figure 3-4

 These results show that the LPIA version of Ubuntu Netbook Remix is 8.55 percent more power - efficient
than the i386 version.

 Another interesting point to note is that the LPIA Ubuntu MID release is 3.44 percent more power -
 efficient than the LPIA version of Ubuntu Netbook Remix. This can be attributed perhaps to the fact that
standard Firefox is used on Ubuntu Netbook Remix, whereas midbrowser (which is Firefox - compiled
using the LPIA flags) is used on the LPIA version of Ubuntu MID.

c03.indd 50c03.indd 50 10/6/09 8:56:20 AM10/6/09 8:56:20 AM

Chapter 3: Power Management

51

 Summary
 Power management is an essential job on portable computers. At the core of power management is an
understanding of how to effectively optimize energy consumption of each system component. This
entails studying the different tasks that your system performs, and configuring each component to
ensure that its performance is just right for the job.

 This is an area of considerable research and one whereby good techniques and innovative solutions can
have a direct impact on profit for an OEM. Consumers want more battery life and they are willing to pay
for it.

c03.indd 51c03.indd 51 10/6/09 8:56:20 AM10/6/09 8:56:20 AM

c03.indd 52c03.indd 52 10/6/09 8:56:20 AM10/6/09 8:56:20 AM

 Application Development

 The intention of this chapter is not to show how to program in any specific language or how to use
any particular graphical toolkit. Rather, the aim is to show, through the use of examples, how to
develop small, useful applications that demonstrate key concepts and techniques. Such an
approach is, we believe, useful for a developer when more complex applications need to be
developed.

 Like the author of the Debian New Maintainers Guide, we believe in the Latin saying Longum iter
est per preaecepta, breve et efficax per exempla! (It ’ s a long way by the rules, but short and efficient
with examples!) This chapter and the book in general follow this advice.

 Mobile Internet Devices, tablets, and netbooks need a desktop framework that can provide a way
to create applications with a very consistent look and feel, and run and interface nicely using the
restricted resources found on mobile devices. In addition, applications should be designed for
touchscreen use with finger - friendly navigation. All of these factors provide challenges to a
developer.

 This chapter begins by discussing issues related to the design and layout of applications on small
form factor devices. It then looks at GTK, which is a toolkit for building graphical applications,
and briefly discusses other toolkits that can be used in the mobile and embedded space such as
EFL. In the context of GNOME Mobile, two application frameworks are prominent; Hildon and
Clutter and example applications are provided for each of these. Next it shows the use of D-Bus, a
technology which is important for inter-process communication and which is crucial to the new
notifications system on Ubuntu.

 Finally, all the concepts presented so far in the chapter are brought together in an example
application which demonstrates the use of many of the key technologies a developer should know
in order to become productive with Ubuntu Mobile.

c04.indd 53c04.indd 53 10/6/09 5:15:19 PM10/6/09 5:15:19 PM

Chapter 4: Application Development

54

 Ubuntu Mobile Releases
 The major Jaunty releases from the Ubuntu Mobile team are Ubuntu MID and Ubuntu Netbook Remix.
For karmic, the MID release will be community maintained. There will be a remix of Moblin called
Ubuntu Moblin Remix, and there will also be an ARM release.

 There is also the port to the armel architecture http://cdimage.ubuntu.com/ports/releases/
jaunty/release/ubuntu-9.04-alternate-armel.img . This first release is based on the
Freescale I.MX515 processor, which is a chip that apparently draws very little power and generates very
little heat. This allows developers to squeeze longer battery life (up to 8 hours) out of a very thin form factor.

 Freescale, along with Pegatron, an Original Device Manufacturer originally part of ASUS, are working
with Canonical to customize Ubuntu for this architecture. The Ubuntu Port to arm is discussed further
in Appendix A.

 The Ubuntu Netbook Remix is a standard Ubuntu desktop along with some specific customizations that
enable it to work better on devices with small screens, such as netbooks.

 These are the Ubuntu Netbook Remix Launcher, which provides an alternate menu along with a Go
Home Applet, which works in conjunction with the launcher to provide access to the desktop. There is
also Maximus, which is a daemon to automatically maximize a window along with a Window Picker
Applet, which displays open windows as icons on the panel. These tools are pulled together into a new
theme (for jaunty) called the Human Netbook Theme.

 It is easy to switch between the “ classic ” and the netbook desktops by installing the desktop
switcher package:

$ sudo apt-get install desktop-switcher

Run the application and it pops up an interface to choose the desktop that ’ s shown in Figure 4 - 1.

 Figure 4 - 1

 This command changes some GConf settings for each desktop — for example:

gconftool-2 — set /desktop/gnome/session/required_components_list — list-
type=string [“filemanager”,”panel”,”windowmanager”]

c04.indd 54c04.indd 54 10/6/09 5:15:20 PM10/6/09 5:15:20 PM

Chapter 4: Application Development

55

 This shows the power of GConf to radically change both the user interface and configuration settings.
GConf is discussed later in this chapter.

 Developing an application for Ubuntu Netbook Remix is then the same as for a regular desktop. It is
with Ubuntu MID that a developer needs to be concerned about some fundamental differences —
 mainly related to the smaller screen size.

 Creating a New Application
 OEMs will want to significantly customize the interface of a device as well as the range of default
applications presented to their end users “ out - of - the - box. ” This may require applications to be
developed if the required functionality does not currently exist in the Ubuntu repositories. In addition to
following a user - driven development process and choosing the development methodology (Scrum is
highly recommended) there are some other key considerations when developing for mobile devices.

 Application Design
 The most important thing to consider when developing for mobile devices is the reduction in screen area
when compared with a regular desktop. With this in mind during the Ubuntu Developer Sprint in
Boston, the mobile team brainstormed some key points to consider when working in this environment:

 Screens and dialogs must fit onscreen. This is normally 800 � 480.

 Applications with multiple screens (such as GIMP) should present an easy, obvious way to
navigate between screens.

 The filesystem is not as visible for a user as it is on a normal desktop environment.
Consequently, users should never need to know a filename; they should only interact with
metadata (thumbnails for the image viewer, song/artist name for music, from/to/subject
headers in e - mail, and so on).

 Wherever possible, traditional open/save dialogs should be avoided — although (given the
most popular iPhone user requests) the ability to copy and paste between applications is
important.

 “ Attach File ” dialogs need to present a friendly list of objects to attach (thumbnails or metadata).

 If the user has to be presented with a list of files, the list must include only relevant files. Hidden
files and folders should always be excluded.

 The number of configuration options should be minimized. Applications should come
preconfigured with intelligent defaults. Options should be included only if they ’ re easily
understood by the computer - phobic or if they ’ re likely to be useful to a large number of users.

 Users love instant feedback. Aim for any interaction with the UI results in a visual/audio
feedback within 200ms, which is the upper limit of what ’ s necessary for the appearance of
 “ instant. ” For a tactile device like a MID, it ’ s important that widgets act like physical objects.
Delayed reactions remind the user that they ’ re on a computer.

 Battery life is a major goal for the Ubuntu Mobile platform. Applications should use the
application request latency from Device Kit, see Chapter 3.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c04.indd 55c04.indd 55 10/6/09 5:15:21 PM10/6/09 5:15:21 PM

Chapter 4: Application Development

56

 Error messages should suggest a course of action to the user in the event of a problem. The new
Jaunty Notifications system is discussed later in this chapter.

 When interacting with a touchscreen, research has shown that users will prefer to use the pad of
their finger rather than the very tip. This is important as it means interface elements should be
no smaller than 1cm (0.4 �).

 It is important to note that the minimum button size for a finger - driven UI is a function of the real pixel
density, not the screen resolution. Pixel density is a measurement of the resolution of devices in various
contexts and the program xdpyinfo can give a measure of this. Running the following on a MID machine

$ xdpyinfo | grep resolution

gives the following resolution used:

resolution: 96x96 dots per inch

 Free Desktop Standards
Files need to be placed in specific locations within the file system so that new applications can be
discovered, presented, and launched by the operating system. On Ubuntu, this placement of files
conforms to freedesktop.org standards. These are a set of specifications for the interoperability of
projects on X Window systems.

The most important standards to consider for a developer are:

The Desktop Entry Specification
This is a UTF-8 encoded file with the .desktop extension, which has a group header called Desktop
Entry and a number of Entries in Key=Value format. The REQUIRED keys in this file are:

Type – Either an Application, Link or Directory

Name – The name of the application

Exec – The application to execute

(URL) – Is required if the Type (above) is set to Link

The Exec key must contain a command to execute, with either the full path to the executable itself or
with just the name, if it can be found in the $PATH environment variable.

 The $PATH variable on Ubuntu by default is

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:

It is also possible to add special symbols on the command line, which will be expanded by the program
launcher at the time of execution. For example, to pass a URL to a binary called pumd which is in the /
usr/bin directory, the Exec key will look like:

Exec=pumd %u

❑

❑

c04.indd 56c04.indd 56 10/6/09 5:15:22 PM10/6/09 5:15:22 PM

Chapter 4: Application Development

57

The filename of the icon to be displayed, along with the name in the applications menu, if any (the Icon
key), can also be included. Here is an example of this from the Hello-World .desktop file discussed later
in this chapter:

[Desktop Entry]
Encoding=UTF-8
Name=Hello-World
Comment=Introduction to Hildon Applications
Exec=hello-world
Icon=hello.png
StartupNotify=true
Terminal=false
X-MultipleArgs=false
Type=Application
Categories=Application;Other

The Desktop Application Autostart Specification
Applications will be auto-started by a system if a .desktop file is placed in an autostart directory. The
system wide setting for this (the variable $XDG_CONFIG_DIRS) is, by default, /etc/xdg/autostart/.
The per user setting for this (the variable $XDG_CONFIG_HOME) is, by default, ~/.config/autostart/.

Applications will be started after a user logs in.

XDG Base Directory Specification
This specifies where files should be located in relation to a base directory. This base directory for a user’s
data is specified in the environment variable $XDG_DATA_HOME, and for a user’s configuration files in the
environment variable $XDG_CONFIG_HOME.

The default value for $XDG_DATA_HOME is $HOME/.local/share, and for $XDG_CONFIG_HOME it is
$HOME/.config.

Similarly, a set of preference-ordered base directories relative to which configuration files should be
searched is defined by the environment variable $XDG_CONFIG_DIRS.

This specification also defines directories relative to which data files should be searched, $XDG_DATA_
DIRS, and relative to which non essential data should be cached, $XDG_CACHE_HOME.

Desktop Menu Specification
This can conceptually be thought of as an XML configuration file with the extension .menu, which
defines the layout of menu items (.desktop files) and whether these items should be displayed in the
menu. The XML file is located by default in

$XDG_CONFIG_DIRS/menus/${XDG_MENU_PREFIX}applications.menu

with the $XDG_MENU_PREFIX variable meaning that a user’s menu can override (or rather be merged) with
a system menu. The .desktop files are located in $XDG_DATA_DIRS/applications/ by default.

This specification adds the fields Categories, OnlyShowIn and NotShowIn to the Desktop Entry
Specification discussed above. Categories is a way to group menu items, OnlyShowIn is a way to
make items only appear in specific environments, and NotShowIn the reverse.

c04.indd 57c04.indd 57 10/6/09 5:15:22 PM10/6/09 5:15:22 PM

Chapter 4: Application Development

58

In addition to knowing these specifications, it is also important to know what frameworks are available
to use when developing an application.

 Hildon: An Application Framework for Handheld Devices
 The Hildon Application Framework is designed for small devices and has been widely used on this form
factor. The framework had strong support from Nokia, is a part of GNOME Mobile, and has been
extended to better support stylus - based usage and high display pixel density.

 Basic GNOME technologies are used such as GTK as well as the GConf configuration system, and both
of these are discussed later in the chapter.

 Hildon then is an extended and modified GTK, which is referred to as the “ Hildon widget set. ” It
effectively provides a desktop environment for mobile devices.

 On Hildon, one notable deviation from traditional desktop GNOME is the replacement of bonobo and
its related technologies built around the usage of CORBA with D - Bus.

 What Is Hildon in Terms of Code?
 A HildonProgram is a Gobject representing the whole application. In this context, it is important to
note that a HildonProgram is not a GtkWidget .

 Only one HildonProgram can be created per process. It is accessed with
 hildon_program_get_instance .

 HildonWindow s are registered to the HildonProgram using hildon_program_add_window() . As the
method name suggests, several HildonWindow s are likely to be registered to a HildonProgram .

 The following C code highlights some key concepts and functionalities that are available when working
with the framework.

 Creating the Program
 Here ’ s the code:

/* Start the container and window */
HildonProgram *program;
HildonWindow *window;
/* Start up GTK */
gtk_init (& argc, & argv);
/* Make a Hildon program */
program = HILDON_PROGRAM (hildon_program_get_instance());

c04.indd 58c04.indd 58 10/6/09 5:15:22 PM10/6/09 5:15:22 PM

Chapter 4: Application Development

59

 Menus
 Menus are created externally using GtkMenu . They are then added to a HildonWindow with
 hildon_window_set_menu() .

 An example of this looks like the following:

GtkMenu *menu;
menu = gtk_menu_new ();
fill_in_menu (menu);
hildon_window_set_menu (menu);

 Toolbars
 Toolbars are created using a call to hildon_window_add_toolbar() . Consider the following example :

GtkToolbar *toolbar;
toolbar = create_toolbar ();
/* Adding the toolbar */
hildon_window_add_toolbar (window, toolbar);

 Window - Specific Settings
 Window - specific commands can be sent to the main window manager and task navigator. Applications
can tell the task navigator that some window requires the user ’ s attention. This will trigger the blinking
of the window ’ s icon in the task navigator.

 This is shown by the following:

gtk_window_set_urgency_hint (GTK_WINDOW (window), TRUE);

 Similarly, applications are able to change the icon representing each HildonWindow in the task navigator
by using the gtk_window_set _icon set of functions.

 The following code demonstrates this:

GdkPixbuf *icon = create_icon();
gtk_window_set_icon (GTK_WINDOW (window), icon);

 Also, the title can be set per window with the following:

gtk_window_set_title (GTK_WINDOW (window), “Window Title”);

 If the application name was set with g_set_application name() , it will precede the window title in
the title bar.

 Program - Wide Settings
 The HildonProgram object provides the programmer with the capability to set program - wide settings
for all the registered HildonWindow s.

c04.indd 59c04.indd 59 10/6/09 5:15:23 PM10/6/09 5:15:23 PM

Admin
Text Box
Download from www.eBookTM.com

Chapter 4: Application Development

60

 The programmer can create a common menu, which will be shared (memory and functionality - wise) by
all the windows. A window can override this common menu by having its own menu. The following
code demonstrates this:

GtkMenu *common_menu = create_common_menu ();
GtkMenu *window_specific_menu = create_window_specific_menu ();

hildon_program_set_common_menu (program, common_menu);
hildon_window_set_menu (second_window, window_specific_menu);

 Also, a common toolbar can be shared among all HildonWindow s. Windows can also add window -
 specific toolbars. The common toolbar will be displayed on the bottom of the stack of toolbars. The
following code demonstrates this:

GtkToolbar *common_toolbar = create_common_toolbar ();
GtkToolbar *window_specific_toolbar = create_window_specific_toolbar ();
hildon_program_set_common_toolbar (program, common_toolbar);
hildon_window_add_toolbar (second_window, window_specific_toolbar);

 Hibernation
 A programmer can tell the Hildon Task Navigator whether or not an application is ready to be set to
hibernation (background - killed) by calling set_can_hibernate() .

 Putting Hildon Together
 The following program will build up a program from scratch to show the composition of an application
that fits into the Hildon Framework.

 Hello World
 Hello World is, well . . . a hello world program. It is a simple C program with an application icon and a
.desktop file.

 First, create the boilerplate Hildon code.

 Source
 The source code is:

#include < hildon/hildon-program.h >
#include < hildon/hildon-window.h >
#include < gtk/gtkmain.h >

int main(int argc, char *argv[])
{
HildonProgram *program;
HildonWindow *window;
GtkWidget *label;

gtk_init(& argc, & argv);

program = hildon_program_get_instance();

c04.indd 60c04.indd 60 10/6/09 5:15:23 PM10/6/09 5:15:23 PM

Chapter 4: Application Development

61

window = HILDON_WINDOW(hildon_window_new());
hildon_program_add_window(program, window);

g_set_application_name(“Hello World”);

label = gtk_label_new(“Hello World”);
gtk_container_add(GTK_CONTAINER(window), label);
gtk_widget_show_all(GTK_WIDGET(window));

g_signal_connect(G_OBJECT(window), “delete_event”, G_CALLBACK(gtk_main_quit),
NULL);

gtk_main();

return 0;
}

 Save the code as hello - world.c and make sure you have build - essential, libgtk2.0 - dev, and libhildon - 1 -
 dev installed. Then compile the binary by using the following:

gcc -o hello-world hello-world.c $(pkg-config --cflags --libs gtk+-2.0 hildon-1)

 After compilation, run hello - world.

 Output
 The application executes and presents the interface that ’ s shown in Figure 4 - 2.

Figure 4-2

 Menu
 Now create a standard GtkMenu and attach it to the HildonWindow . To do this, create an attach_menu
function like this:

static void attach_menu(HildonWindow *window)
{
GtkWidget *menu;
GtkWidget *item_quit;
if(NULL == window)
return;
menu = gtk_menu_new();
item_quit = gtk_menu_item_new_with_label(“Quit”);

c04.indd 61c04.indd 61 10/6/09 5:15:23 PM10/6/09 5:15:23 PM

Chapter 4: Application Development

62

gtk_menu_append(menu, item_quit);
hildon_window_set_menu(window, GTK_MENU(menu));
gtk_widget_show_all(GTK_WIDGET(menu));
}

 Add this function into hello - world.c and call it in main before displaying the window:

attach_menu(window);
gtk_widget_show_all(GTK_WIDGET(window));

 The menu looks like Figure 4 - 3.

Figure 4-4

 Toolbar
 Finally, create an attach_toolbar function to attach the toolbar to the HildonWindow :

static void attach_toolbar(HildonWindow *window)
{
GtkWidget *toolbar;
GtkToolItem *item_quit;
if(NULL == window)
return;
toolbar = gtk_toolbar_new();
item_quit = gtk_tool_button_new_from_stock(GTK_STOCK_QUIT);
gtk_toolbar_insert(GTK_TOOLBAR(toolbar), item_quit, -1);
hildon_window_add_toolbar(window, GTK_TOOLBAR(toolbar));
}

 Add this to the source code and then call it after the attach_menu() function created earlier:

attach_menu(window);

attach_toolbar(window);

 The toolbar looks like Figure 4 - 4.

Figure 4-3

c04.indd 62c04.indd 62 10/6/09 5:15:23 PM10/6/09 5:15:23 PM

Chapter 4: Application Development

63

 Here ’ s the final source code:

#include < hildon/hildon-program.h >
#include < hildon/hildon-window.h >
#include < gtk/gtkmain.h >

static void attach_menu(HildonWindow *window)
{

GtkWidget *menu;
GtkWidget *item_quit;
if(NULL == window)
return;

menu = gtk_menu_new();
item_quit = gtk_menu_item_new_with_label(“Quit”);
gtk_menu_append(menu, item_quit);
hildon_window_set_menu(window, GTK_MENU(menu));
gtk_widget_show_all(GTK_WIDGET(menu));
}
static void attach_toolbar(HildonWindow *window)
{
GtkWidget *toolbar;
GtkToolItem *item_quit;
if(NULL == window)
return;
toolbar = gtk_toolbar_new();
item_quit = gtk_tool_button_new_from_stock(GTK_STOCK_QUIT);
gtk_toolbar_insert(GTK_TOOLBAR(toolbar), item_quit, -1);
hildon_window_add_toolbar(window, GTK_TOOLBAR(toolbar));
}

int main(int argc, char *argv[])
{
HildonProgram *program;
HildonWindow *window;
GtkWidget *label;
gtk_init(& argc, & argv);
program = hildon_program_get_instance();
window = HILDON_WINDOW(hildon_window_new());
hildon_program_add_window(program, window);
g_set_application_name(“Hello World”);
label = gtk_label_new(“Hello World”);
gtk_container_add(GTK_CONTAINER(window), label);
attach_menu(window);
attach_toolbar(window);
gtk_widget_show_all(GTK_WIDGET(window));
g_signal_connect(G_OBJECT(window), “delete_event”, G_CALLBACK(gtk_main_quit),
NULL);
gtk_main();
return 0;
}

 Run the compilation again:

gcc -o hello-world hello-world.c $(pkg-config --cflags --libs gtk+-2.0 hildon-1)

c04.indd 63c04.indd 63 10/6/09 5:15:24 PM10/6/09 5:15:24 PM

Chapter 4: Application Development

64

Move the binary created to /usr/bin and add the .desktop file into /usr/share/applications. The
.desktop file for the hello - world application looks like this:

[Desktop Entry]
Encoding=UTF-8
Name=Hello-World
Comment=Introduction to Hildon Applications
Exec=hello-world
Icon=hello.png
StartupNotify=true
Terminal=false
X-MultipleArgs=false
Type=Application
Categories=Application;Other

 Create an icon 48 � 48 using GIMP and save it as hello.png. Place the icon for the application into /
usr/share/icons/hicolor/ < size > / < type > (for example, /usr/share/icons/hicolor/48x48/apps/hello).

 The .desktop file and the icon must have read permissions. There must also not be another “ hello ” in
your icons directory as there will be a conflict.

 The code presents the icon on the desktop, as shown in Figure 4 - 5.

Figure 4-5

 When the icon is clicked, it executes the application.

Other Toolkits
 If the new application being written is for a device without a touchscreen or one that will run a
distribution such as Ubuntu Netbook Remix, then it is possible to use pure GTK as a framework.

 GTK+ is a toolkit designed to facilitate the development of applications using a standard graphics user
interface. It was initially created as a tool used in the production of The GIMP, a graphics design package
— GTK stands for “ GIMP ToolKit. ”

 It is useful for producing far more than just The GIMP, however, and has been applied to almost every
kind of GUI application imaginable.

 A GTK environment handles user requests by introducing an “ event loop ” , which is a stack of the
various input instructions the user provides, such as keystrokes and mouse clicks, and provides a set of
handling functions that define what action to take when that instruction is received. When the program
is run, the handling functions are set up and then the loop is started, and keeps running until a “ quit ”
event is processed (for example, when the “ Exit ” entry in a menu is pulled down and selected).

c04.indd 64c04.indd 64 10/6/09 5:15:24 PM10/6/09 5:15:24 PM

Chapter 4: Application Development

65

 This “ event loop ” is started by calling the function gtk_main(); which starts up the event loop, the
details of which are hidden from the user. GTK is an event - driven toolkit, which means it will sleep in
 gtk_main(); until an event occurs and control is passed to the appropriate function. This passing of
control is done using the idea of “ signals. ”

 Signals
 Signals are processed by attaching a “ callback ” function to a given signal for any particular object
(widget). For example, after creating a new button

button = gtk.Button()

a callback function that acts when the button is pressed can be set up by calling the following:

button.connect("clicked", self.callback, "a button")

which connects the "clicked" signal of the button to a callback.

 The use of signals can also be seen in the “Putting All the Concepts Together” section later in this
chapter. The first two lines of the code below connect to the status icon, and then signals are created
which detect drive mounting. The final three lines connect to the signals already created.

 self.connect('activate', self._on_activate_event)
 self.connect('popup-menu', self._on_popup_menu_event)

 # add a signal to detect when a cd is inserted into the drive
 gobject.signal_new('device-is-optical-disc', gtk.StatusIcon,
 gobject.SIGNAL_RUN_LAST, gobject.TYPE_NONE,
 (gobject.TYPE_STRING , gobject.TYPE_BOOLEAN))
 # add a signal to detect when a device is mounted, so an action can be
 # performed after that
 gobject.signal_new('device-mounted', gtk.StatusIcon,
 gobject.SIGNAL_RUN_LAST, gobject.TYPE_NONE, (gobject.TYPE_STRING,))
 gobject.signal_new('device-unmounted', gtk.StatusIcon,
 gobject.SIGNAL_RUN_LAST, gobject.TYPE_NONE, (gobject.TYPE_STRING,))

 self.connect('device-is-optical-disc',
 self._on_optical_disc_insert_event)
 self.connect('device-mounted', self._on_device_mounted_event)
 self.connect('device-unmounted', self._on_device_unmounted_event)

 Here are the method signatures

 def _on_optical_disc_insert_event(self, status_icon, device, status):
 ...

 def _on_device_mounted_event(self, status_icon, device):
 ...

 def _on_device_unmounted_event(self, status_icon, device):
 ...
 def _on_activate_event(self, status_icon):
 ...
 def _on_popup_menu_event(self, status_icon, button, activate_time):
 ...

c04.indd 65c04.indd 65 10/6/09 5:15:25 PM10/6/09 5:15:25 PM

Chapter 4: Application Development

66

 Layout
 Rather than explicitly designing the layout of an application, defining the specific coordinates and
dimensions of each element of the application, GTK+ uses relative positioning to indicate the placement of
objects relative to each other. “ Packing boxes ” are the main objects that are used to achieve this placement.

 These are invisible widget containers that we can pack our widgets into which come in two forms, a
horizontal box, and a vertical box. You may use any combination of boxes inside or beside other boxes to
create the desired effect.

 Horizontal Boxes
 When packing widgets into a horizontal box, the objects are inserted horizontally from left to right:

gtk_hbox_new()

 A horizontal box uses the functions gtk_box_pack_start() and gtk_box_pack() to control layout
and spacing.

 Vertical Boxes
 In a vertical box, widgets are packed from top to bottom:

gtk_vbox_new()

 A vertical box uses the functions gtk_box_pack_start() and gtk_box_pack() to control layout
and spacing.

 Glade
 In practice, laying out an application is often done using Glade. The Glade Interface Designer is a
GNOME application that allows laying out widgets visually rather than through C code. Glade can
generate C or C++ source code, which compiles to build the application; however, that method is no
longer the best way to use Glade. Instead, the Glade project file, a .glade file in XML format, is parsed by
the application at runtime using libglade. This allows you to modify/update the UI without recompiling
the entire program and allows the program to be separate from the interface.

 A Glade file is used in an application as follows:

 /* create GladeXML object and connect signals */

 gxml = glade_xml_new (GLADE_FILE, NULL, NULL);

 glade_xml_signal_autoconnect (gxml);

 The call to glade_xml_new creates a new GladeXML object, which gxml references, and it also creates all
the widgets in the Glade file, which we pass to the function as the first argument. This would be declared
somewhere in the application, as in the following:

/* this will hold the path to the glade file after the “make install” */

#define GLADE_FILE PACKAGE_DATA_DIR”/gnome3/gnome3.glade”

c04.indd 66c04.indd 66 10/6/09 5:15:25 PM10/6/09 5:15:25 PM

Chapter 4: Application Development

67

 After importing the .glade file, you can access the widgets using the names you gave them in Glade and
then use them in your program.

 It ’ s important to consider how to deal with the fact that Glade cannot create a Hildon Window when
using the Hildon Framework. It can create only a GTK Window, and indeed it requires one as a parent
for most other widgets (but not menus).

 In a C application, this process would look like the following:

 1. Manually modify the Glade file with window class from GtkWindow to HildonWindow .

 2. In your C file, add #include < glade/glade - build.h > .

 3. In your C file, add the following:

 static GtkWidget* glade_hildon_window_new(GladeXML *xml, GType
type, GladeWidgetInfo *info) {
 return hildon_window_new();
 }

 4. Before your window initialization, do the following:

 glade_register_widget(HILDON_TYPE_WINDOW,
 glade_hildon_window_new,
 glade_standard_build_children,
 NULL);

 5. Add the window to the Hildon program with

hildon_program_add_window()

 In Glade, you create the GTK Window and add widgets to it.

 Glade can be used with Python as well as C; the process for using it with Hildon is the same — you
 “ reparent ” the GTK Window ’ s child widgets to your real Hildon Window. To minimize reparenting, the
following example program has only a “ root ” window with one “ child, ” a GTK VBox widget, which in
turn contains child widgets.

 So, this VBox must be reparented from the GTK Window to a Hildon Window. The following Python
example — called pumdGlade — shows how this is done.

 Source
 This is the source code for pumdGlade.

import pygtk
import gtk
import hildon
import gtk.glade

class pumdGlade():
 “””pygtk-glade-hildon example for Professional Ubuntu Mobile Development
book”””

 def __init__(self):

c04.indd 67c04.indd 67 10/6/09 5:15:26 PM10/6/09 5:15:26 PM

Chapter 4: Application Development

68

 #make the hildon program
 self.program = hildon.Program()
 self.program.__init__()

 #make the hildon window and add to program
 self.window = hildon.Window()
 self.window.set_title(“Professional Ubuntu Mobile Development”)
 self.program.add_window(self.window)
 #receive signal to close window from framework close button

 if (self.window):
 self.window.connect(“destroy”, gtk.main_quit)

 #import the glade file and assign to self.wTree
 self.glade_file = “pygladeui.glade”
 self.wTree = gtk.glade.XML(self.glade_file)

 #reparent the vbox1 from glade to self.window
 self.vbox1 = self.wTree.get_widget(“vbox1”)
 self.reparent_loc(self.vbox1, self.window)

 #get menu from glade and reparent as common menu in hildon program
 self.menuGlade = self.wTree.get_widget(“menu1”)
 self.program.set_common_menu(self.menuGlade)

 #get quit menu item and connect signal
 self.menuItem_quit = self.wTree.get_widget(“quit1”)
 self.menuItem_quit.connect(“activate”, gtk.main_quit)

 #get hbox1 in order to modify contents based on user actions
 self.hbox1 = self.wTree.get_widget(“hbox1”)

 #get label1 for use
 self.label1 = self.wTree.get_widget(“label1”)

 #destroy the gtk window imported from glade
 self.gtkWindow = self.wTree.get_widget(“window1”)
 self.gtkWindow.destroy()

 #display everything
 self.window.show_all()

 def run(self):
 gtk.main()

signal handlers
 def menuItem_quit1_pressed(self, widget):
 gtk.main_quit

#utility
 def reparent_loc(self, widget, newParent):
 widget.reparent(newParent)

if __name__ == “__main__”:
 app = pumdGlade()
 app.run()

c04.indd 68c04.indd 68 10/6/09 5:15:26 PM10/6/09 5:15:26 PM

Chapter 4: Application Development

69

 The program has one class, pumdGlade , whose constructor creates the HildonProgram and
 HildonWindow , imports the .glade file, assigns Glade objects to local names, reparents the widget, sets
the Hildon program menu from a Glade - defined menu, and sets up signal handlers.

 The class is instantiated as an object named app , and its run() method is executed.

 Handling the .glade File
 The .glade file is imported inside pumdGlade ’ s constructor. The code looks like this:

#import the glade file and assign to self.wTree
self.glade_file = “pygladeui.glade”
self.wTree = gtk.glade.XML(self.glade_file)

 The first line defines a variable (self.glade_file) and assigns it the filename of the .glade file, in this
case pygladeui.glade .

 The second line actually imports all user interface objects from the specified .glade file into a new
variable named self.wTree .

 Now, all the objects defined in the .glade file can be retrieved from self.wTree and can be assigned
local names for programmatic use.

 The start of the Glade file looks like this:

 < ?xml version=”1.0” standalone=”no”? > < ! — *- mode: xml -* — >
 < !DOCTYPE glade-interface SYSTEM “http://glade.gnome.org/glade-2.0.dtd” >
 < glade-interface >
 < widget class=”GtkWindow” id=”window1” >
 < property name=”visible” > True < /property >
 < property name=”title” translatable=”yes” > window1 < /property >
 < property name=”type” > GTK_WINDOW_TOPLEVEL < /property >
 < property name=”window_position” > GTK_WIN_POS_NONE < /property >
 < property name=”modal” > False < /property >
 < property name=”resizable” > True < /property >
 < property name=”destroy_with_parent” > False < /property >
 < property name=”decorated” > True < /property >
 < property name=”skip_taskbar_hint” > False < /property >
 < property name=”skip_pager_hint” > False < /property >
 < property name=”type_hint” > GDK_WINDOW_TYPE_HINT_NORMAL < /property >
 < property name=”gravity” > GDK_GRAVITY_NORTH_WEST < /property >
 < property name=”focus_on_map” > True < /property >
 < property name=”urgency_hint” > False < /property >
 < child >
 < widget class=”GtkVBox” id=”vbox1” >
 < property name=”visible” > True < /property >
 < property name=”homogeneous” > False < /property >
 < property name=”spacing” > 0 < /property >

which shows the setting of some property names and the creation of the child widget.

c04.indd 69c04.indd 69 10/6/09 5:15:26 PM10/6/09 5:15:26 PM

Chapter 4: Application Development

70

 The following Python code shows the re - parenting:

#reparent the vbox1 from glade to self.window

self.vbox1 = self.wTree.get_widget(“vbox1”)
self.reparent_loc(self.vbox1, self.window)

The first line gets the specified GTK VBox and assigns it to the self.vbox1 variable. The second
reparents the VBox from the GTK window made in Glade to the Hildon Window in Python called
self.window with the reparent_loc() function defined here:

 def reparent_loc(self, widget, newParent):

 widget.reparent(newParent)

The finished application when run on Ubuntu MID looks like Figure 4 - 6.

Figure 4-6

 Another toolkit causing some excitement in mobile development communities is Clutter. This was
originally developed by some GNOME developers at OpenedHand and is now a part of the Moblin
project and developed at the Intel Open Source Technology Center.

 Clutter
 Clutter is a GObject - based library for creating animated hardware - accelerated graphical user interfaces. It
relies upon OpenGL (1.4+) or OpenGL ES (1.1 or 2.0) for rendering, can be compiled on different
platforms (Linux, Mac OS, and Win32) and has multiple bindings to other languages (including Python,
Ruby, and Vala). It also supports media playback using Gstreamer and 2D graphics rendering using Cairo.

 Clutter works by having a stage (a window) and then adding actors (widgets) to the stage and
manipulating via the actor API. Actors can contain child actors (ClutterGroup, for example) and be
manipulated as a whole.

 Animations and visual effects can be created via the use of timelines and behaviors. Timelines provide
accurate frame - based animations. Behaviors further extend this by taking a timeline and applying a
control function (clutter.Alpha) to actors to modify some property of the actor in respect to time.

c04.indd 70c04.indd 70 10/6/09 5:15:27 PM10/6/09 5:15:27 PM

Chapter 4: Application Development

71

Clutter also has support for colors, signals, and labels, allowing for the creation of compelling visual
interfaces without a developer, designer, or OEM needing to resort to proprietary and costly software
such as Flash.

 The following Python application shows the creation of three actors on a stage. This stage is embedded
inside a GTK application. In the application, one image actor circles around the other in a permanent
loop while the third (a text actor) fades in and out over time.

 At the time of this writing, the latest stable version of Python Clutter is 0.8 and is either available at
 http://www.clutter-project.org/sources/pyclutter/0.8/ or installed using apt:

$ sudo apt-get install python-clutter

 If it is installed from the source, use the following:

$./configure
$ make & & sudo make install

 Also make sure that the dependencies are installed:

sudo apt-get install python-cairo-dev libclutter-gst-0.8-dev libclutter-cairo-0.8-
dev libclutter-0.8-dev python-gtk2-dev libclutter-gtk-0.8-dev

 Next, create a Python file and import the required Clutter libraries:

import sys
import cluttergtk # must be the first to be imported
import clutter
import cluttercairo
import math
import array
import os, tempfile
import gtk
import cairo

 The order of the import directives is relevant because of the required initialization process of the
underlying C libraries. The correct order for importing the Clutter and related modules is:

 first ↑
 | import cluttergtk
 | import cluttergst
 | import clutter
 | import cluttercairo
 last ↓

 If you are importing the gst module, you must import it after the cluttergst module.

 If you are importing the gtk module, you must import it after the cluttergtk module.

 The main method first creates a GTK window and sets up a signal to quit the window. It then creates a
packing box and packs the Clutter stage in it. Notice the call to embed.realize() .

c04.indd 71c04.indd 71 10/6/09 5:15:28 PM10/6/09 5:15:28 PM

Chapter 4: Application Development

72

 To “ activate ” the widget before it can be used, do this:

def main ():
 window = gtk.Window()
 window.connect(‘destroy’, gtk.main_quit)
 window.set_title(‘Professional Ubuntu Mobile Development’)
 vbox = gtk.VBox(False, 6)
 window.add(vbox)
 embed = cluttergtk.Embed()
 vbox.pack_start(embed, True, True, 0)
 embed.set_size_request(700, 600)

 # we need to realize the widget before we get the stage
 embed.realize()
 stage = embed.get_stage()
 stage.set_color(clutter.Color(228, 204, 152, 255))

 The application then calls the class UpstreamAndDownstream() .

 This class creates actors, sets up a timeline, applies behavior to an actor, and creates an actor on - the - fly
from some text passed into the class:

group = UpstreamAndDownstream()

 The text on - the - fly is interesting to look at. A Clutter label is typically constructed and placed at the
center of a stage like this:

 #create a clutter label
 label = clutter.Label()
 #set the labels font
 label.set_font_name(‘Mono 32’)
 #add some text to the label
 label.set_text(“Mobile Linux”)
 #make the label brown
 label.set_color(color_brown)
 #put the label in the center of the stage
 (label_width, label_height) = label.get_size()
 label_x = (stage.get_width()/2) — label_width/2
 label_y = (stage.get_height()/2) — label_height/2
 label.set_position(label_x, label_y)

 This application uses cairo, which is available through the library cluttercairo to draw a
 ClutterTexture directly onto an image. This image is saved to a temporary file and then imported as
an actor into the scene.

 It is called like this:

create_text = group.render_title(‘Mobile Linux’)

 The render_title function looks like this:

def render_title(self, text, size=80):
 # Make some variables
 size = int(size) * 3

c04.indd 72c04.indd 72 10/6/09 5:15:28 PM10/6/09 5:15:28 PM

Chapter 4: Application Development

73

 font = “Meta”
 width, height = 1500, 300
 def draw(cr):
 cr.set_source_rgba(1,1,1,0)
 cr.paint()
 # Some brown text
 cr.set_source_rgba(0.8,0.5,0,1)
 cr.select_font_face(font, cairo.FONT_SLANT_NORMAL,
 cairo.FONT_WEIGHT_NORMAL)
 cr.set_font_size(size)
 # We need to adjust by the text’s offsets to center it.
 x_bearing, y_bearing, width, height = cr.text_extents(text)[:4]
 cr.move_to(-x_bearing,-y_bearing)
 # Technique to make the “thinner” parts more visible
 cr.text_path(text)
 cr.set_line_width(0.5)
 cr.stroke_preserve()
 cr.fill()
 return self.render_image(draw, width, height)

 The preceding code positions the text and sets the size. It then calls the draw() function using some
offsets to center it. Finally, it passes the draw to render_image() , which looks like this:

 def render_image(self, drawer, width, height):
 # Eeck..cairo cannot stream..render it
 filename = tempfile.mkstemp()[1]
 # generic image render
 surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, int(width), int(height))
 font_options = surface.get_font_options()
 font_options.set_antialias(cairo.ANTIALIAS_GRAY)
 context = cairo.Context(surface)
 # draw the context
 drawer(context)
 # Write the PNG data to our tempfile
 surface.write_to_png(filename)
 surface.finish()
 return filename

 This type of functionality gives a user interface designer total control over fonts, and fonts are one area,
particularly in embedded applications, that can really differentiate one application from another.

 The class UpstreamAndDownstream() also in its __init__ method sets up a timeline, loops it, and sets
up a couple of behaviors that can be used in the class:

def __init__ (self):
 clutter.Group.__init__(self)
 self.timeline = clutter.Timeline(100, 26)
 self.timeline.set_loop(True)
 self.alpha = clutter.Alpha(self.timeline, clutter.sine_func)
 self.moving = clutter.BehaviourEllipse(self.alpha, 200, 200, 400, 300, 0, 360)
 self.fade_opacity = clutter.BehaviourOpacity(opacity_start=0,
 opacity_end=255, alpha=self.alpha)

c04.indd 73c04.indd 73 10/6/09 5:15:28 PM10/6/09 5:15:28 PM

Chapter 4: Application Development

74

 Back in the main method, some buttons are added to the vbox. The main window shows the loop that is
started with gtk.main() .

 The final animated application looks like Figure 4 - 7 on Ubuntu MID.

Figure 4-7

 As this is a Python application, the .desktop file functions slightly differently. On the MID device,
create a .desktop file:

[Desktop Entry]
Encoding=UTF-8
Name=Clutter
Comment= Professional Ubuntu Mobile Development
Exec=/usr/bin/clutterit
Icon=clutter.png
StartupNotify=true
Terminal=false
X-MultipleArgs=false
Type=Application
Categories=Application;Other

 The file /usr/bin/clutterit is an executable script with

$ cd /home/ian/clutter
$ python gtk-clutter.py

c04.indd 74c04.indd 74 10/6/09 5:15:29 PM10/6/09 5:15:29 PM

Chapter 4: Application Development

75

 Part of the appeal of Clutter is that it is cross - platform. The desire to “ unite the desktops ” is currently
gaining some momentum. One toolkit which is cross - platform is QT, and the most visible use of QT is
the KDE desktop.

 GUADEC (Gnome) and Akademy (KDE) recently had a joint conference in Gran Canaria.

 The underlying technology then behind KDE is QT and Mark Shuttleworth has noted the following:

 Qt will help us deliver ever more lustful applications to users. Nokia ’ s continued investment in cross -
platform Qt libraries, and the Linux platform, is a major driver of innovation in the free software desktop and
mobile device stack.

 QT
 Nokia recently acquired Trolltech and changed the license of QT from GPL v2 to the LGPL v 2.1 license.

 OEMs can now link directly to QT libraries and not have all their linked code become automatically
available under the GPL. They now have the option to pick and choose which code they want to share.

 The following example was written in QT4 on Ubuntu Jaunty and is based on the tutorial at
http://wiki.python.org/moin/JonathanGardnerPyQtTutorial but updated for QT4. It will

 Use QT Designer to generate Qt UI files .

 Use pyuic to generate Python programs .

 Use Qt Signals in Python .

 Create a simple application to interface a system command .

 In order to start developing (in Python) with QT, make sure Python qt - dev, qt4.designer, and pyqt - tools
are installed (apt - get install python - qt - dev qt4.designer pyqt4.dev - tools). Then start
designer using:

$designer

 This command will present Qt designer. This is somewhat similar to the Glade interface that you saw
earlier, and functions in basically the same way. Drag UI elements onto the widget and right - click to
change properties.

 Create a new widget. Name it pumd and then add the following:

 QLineEdit — Name it command in the property dialog.

 QPushButton — Name it schedule in the property dialog. Change its text to “ Schedule ” .

 QDateTimeEdit — Name it time in the property dialog.

 When this is completed, save the file as pumd.ui in a new folder. The interface should look like
Figure 4 - 8.

❑

❑

❑

❑

❑

❑

❑

c04.indd 75c04.indd 75 10/6/09 5:15:29 PM10/6/09 5:15:29 PM

Chapter 4: Application Development

76

 Then, in a shell, move into the folder and run

$ pyuic4 pumd.ui

 This command will store the generated Python code that comes from the Qt UI file into pumd.py using

$ pyuic pumd.ui -o pumd.py

 The file looks like this:

-*- coding: utf-8 -*-
Form implementation generated from reading ui file ‘pumd.ui’
Created: Sun Mar 22 16:11:48 2009
by: PyQt4 UI code generator 4.4.4
#
WARNING! All changes made in this file will be lost!
from PyQt4 import QtCore, QtGui

class Ui_pumd(object):

Figure 4-8

c04.indd 76c04.indd 76 10/6/09 5:15:30 PM10/6/09 5:15:30 PM

Chapter 4: Application Development

77

 def setupUi(self, pumd):
 pumd.setObjectName(“pumd”)
 pumd.resize(407, 300)
 self.time = QtGui.QDateTimeEdit(pumd)
 self.time.setGeometry(QtCore.QRect(100, 70, 194, 34))
 self.time.setObjectName(“time”)
 self.command = QtGui.QLineEdit(pumd)
 self.command.setGeometry(QtCore.QRect(100, 20, 301, 32))
 self.command.setObjectName(“command”)
 self.schedule = QtGui.QPushButton(pumd)
 self.schedule.setGeometry(QtCore.QRect(100, 120, 181, 51))
 self.schedule.setObjectName(“schedule”)
 self.label = QtGui.QLabel(pumd)
 self.label.setGeometry(QtCore.QRect(20, 30, 71, 24))
 self.label.setObjectName(“label”)
 self.label_2 = QtGui.QLabel(pumd)
 self.label_2.setGeometry(QtCore.QRect(50, 70, 51, 24))
 self.label_2.setObjectName(“label_2”)
 self.retranslateUi(pumd)

 QtCore.QMetaObject.connectSlotsByName(pumd)

 def retranslateUi(self, pumd):
 pumd.setWindowTitle(QtGui.QApplication.translate(“pumd”, “Form”, None,
 QtGui.QApplication.UnicodeUTF8))
 self.schedule.setToolTip(QtGui.QApplication.translate(“pumd”, “Send Date”,
 None, QtGui.QApplication.UnicodeUTF8))
 self.schedule.setText(QtGui.QApplication.translate(“pumd”, “Schedule Now”,
 None, QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate(“pumd”, “Event:”, None,
 QtGui.QApplication.UnicodeUTF8))
 self.label_2.setText(QtGui.QApplication.translate(“pumd”, “On:”, None,
 QtGui.QApplication.UnicodeUTF8))

 This is the GUI layout in Python code!

 To make the development process easier, the previous command can be added into a Makefile ; if
changes are made in the UI, you only need to run make and the pumd.py will be automatically
regenerated. The Makefile looks like the following code snippet (remember that inserting a < Tab > is
important for the second line):

pumd.py: pumd.ui

 pyuic4 pumd.ui -o pumd.py

 Now run it using the following:

$ make

c04.indd 77c04.indd 77 10/6/09 5:15:30 PM10/6/09 5:15:30 PM

Chapter 4: Application Development

78

 Notice that it says something about all the files being up - to - date. Touch pumd.ui so it appears newer
than pumd.py, and then run make again.

$ touch pumd.ui
$ make

 With this in place, a GUI developer should be able to go and make changes to the GUI interface (such as
moving things around) without affecting the logic behind the GUI. This makes for a clean separation of
roles in development teams as all the designer needs to do is use Qt Designer to change the pumd.ui file,
and run make to see the changes take effect.

 So now the pumd.ui file and the pumd.py file have been created. It is now necessary to actually run the
app. To do this, create the file pumd_at.py. This file looks like the following:

from PyQt4 import QtCore, QtGui, Qt
from pumd import Ui_pumd
import sys, os
from time import localtime

class PumdAT(QtGui.QMainWindow):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_pumd()
 self.ui.setupUi(self)

 # Set the date to now
 now = Qt.QDateTime.currentDateTime()
 self.ui.time.setDateTime(now)

 # here we connect our signal on the ‘schedule’ button to the function
 #‘schedule_clicked()’

 # which writes to the ‘command’
 QtCore.QObject.connect(self.ui.schedule,QtCore.SIGNAL(“clicked()”),
 self. schedule_clicked)

 def schedule_clicked(self):
 t = str(self.ui.time.dateTime().toString(‘hh:mm MM/dd/yyyy’))
 p = os.popen(‘at -m “%s”’%t, ‘w’)
 self.ui.command.setText(‘at -m “%s”’%t)
 if p:
 Qt.QMessageBox.information(self,
 “Event Scheduled”, “Your event was scheduled with success”,
 Qt.QMessageBox.Ok)
 return

if __name__ == “__main__”:
 app = QtGui.QApplication(sys.argv)
 myapp = PumdAT()
 myapp.show()
 sys.exit(app.exec_())

c04.indd 78c04.indd 78 10/6/09 5:15:30 PM10/6/09 5:15:30 PM

Chapter 4: Application Development

79

When this file is run, it executes to present the interface that ’ s shown in Figure 4 - 9. It allows a user to
select a system command to be run.

 Another toolkit available for a mobile developer to use is the Enlightenment Foundation Libraries (EFL)
or simply “ e. ” These libraries form the basis of the Enlightenment Window Manager.

 EFL
 EFL is a toolkit that is well - suited to embedded development, as it has very low memory overheads.
According to the developers, “ Enlightenment provides the building blocks for creating beautiful
applications. ”

 EFL consists of:

 Evas

 Ecore

 Edje

 Embryo

 Eet

 The EFL libraries fit well into the embedded device context and are particularly useful for animations,
transparent components, and themeable applications. A user interacts with the window manager, which
itself shows a compiled Edje theme. Events are captured by Ecore while Evas communicates directly
with the kernel to efficiently control hardware resources such as 3D acceleration.

❑

❑

❑

❑

❑

Figure 4-9

c04.indd 79c04.indd 79 10/6/09 5:15:30 PM10/6/09 5:15:30 PM

Chapter 4: Application Development

80

 Themeable EFL applications are made using the Edje Layout engine, which sits above Evas, the X11
canvas library. Edje features a transparent, signal - based separation of interface and application logic so
that every application that uses it is “ skinnable. ”

 An Edje interface file is just a single file arranged to accommodate interface information, images, and
fonts. This file is generated by processing an Edje Data Collection file with the Edje Compiler. This
makes theming a device very easy. An example of how a theme is laid out can be seen in the main.edc
file for a window border:

#define COLOR_FG 246 151 67 255
#define COLOR_BG 245 245 245 255

fonts {
/* use the default */
}

collections {
#include “border.edc”
}

 This includes another file called border.edc , which looks like this:

group {
 name, “e/widgets/border/default/border”;

 parts {
 part {
 name, “main”;
 type, RECT;
 description {
 state, “default” 0.0;
 color, COLOR_FG;
 }
 }
 part {
 name, “main_inner”;
 type, RECT;
 description {
 state, “default” 0.0;
 color, COLOR_BG;
 rel1.offset, 1 1;
 rel2.offset, -2 -2;
 }
 }

 Note that this file is saved in the same directory as main.edc.

 Here, the main_inner part hides all of main , except for the 1 - pixel border. A key concept is the notion of
 “ parts, ” which come together to form the theme.

 A theme then can be compiled using:

$ edje_cc main.edc

c04.indd 80c04.indd 80 10/6/09 5:15:31 PM10/6/09 5:15:31 PM

Chapter 4: Application Development

81

 The resulting .edj file is then copied to the “ themes ” directory — usually /usr/share/themes.

 There is a web service for Canola (see below) which creates and then packages EFL themes for devices. It
is available at http://thememaker.openbossa.org .

 Canola
 One of the best - known applications that uses the “ e ” framework is a media center – like application called
Canola. This started life on the Nokia Internet Tablets where it has constantly been the most popular
application among users. It was recently released under the GPL and has now been packaged for
Ubuntu.

 To run Canola, add the following:

deb http://ppa.launchpad.net/canola/ppa/ubuntu jaunty main
deb-src http://ppa.launchpad.net/canola/ppa/ubuntu jaunty main

to /etc/apt/source.list:

$ sudo apt-get update
$ sudo apt-get install canola2

 For karmic and beyond, “ upstream ” for the Ubuntu MID project will be Mer and no longer Moblin.
There is talk of including Canola as the default media player in Mer. Mer is built on a thin base of
Ubuntu combined with the best open - source elements of Nokia ’ s Maemo platform.

Elementary
A widget set which is part of the Enlightenment suite is Elementary. This is well suited for embedded
devices as it has a small footprint and, although it is a small API, it is one which can be entirely themed
using the power of Edje. This makes it very attractive for device manufacturers looking to highly
customize a device.

Packages for Ubuntu are available from http://packages.enlightenment.org.

Add

deb http://packages.enlightenment.org/ubuntu jaunty main extras

to your /etc/apt/sources.list and then install elementary:

$ sudo apt-get install libelm

To get an idea about what can be done with this toolkit, run the test application

$ elementary_test

which displays the interface seen in Figure 4-10.

c04.indd 81c04.indd 81 10/6/09 5:15:32 PM10/6/09 5:15:32 PM

Chapter 4: Application Development

82

 What Key Technologies Do I Need
to Know to Develop Applications
for a Mobile Device?

 It is necessary to have a good understanding of some fundamental concepts in order to ensure the
correct configuration and smooth functioning of an application on Ubuntu Mobile devices. The first of
these is D - Bus.

 D - Bus
 D - Bus is an inter - process communication mechanism — a medium for local communication between
processes running on the same host. D - Bus is meant to be fast and lightweight, and is designed for use as
a unified middleware layer underneath the main free desktop environments.

 There are two Bus types:

 SystemBus — This is a Bus service to connect daemons that offer system services. These
services, generally, start when the machine boots.

 SessionBus — This is a Bus service to connect applications that are generally started by the user.
Rhythmbox is an example of such an application.

❑

❑

Figure 4-10

c04.indd 82c04.indd 82 10/6/09 5:15:32 PM10/6/09 5:15:32 PM

Chapter 4: Application Development

83

 Object Paths and Bus Names
 When communicating over a bus, applications obtain a “ service name ” : This is how the application
chooses to be known by other applications on the same bus. The service names are brokered by the D -
 Bus bus daemon and are used to route messages from one application to another.

 Because it is a binary protocol, D - Bus messages incur low overhead when marshaling data. Messages
consist of two sections, the header and the body. The header contains the metadata for the message.
This can include routing information and the type signature for the data. The body contains the data
being sent.

 Complex data types such as arrays and dictionaries can be encoded into a message. This allows
communication between applications written in a wide range of languages with the ability to retain a
common set of data structures.

 Messages are sent to objects, not applications. Applications themselves are free to register as many
objects as they wish. A D - Bus object can be thought of like any other object in a programming language
with the exception that they are pointed to not by memory addresses but by object paths. Object paths
take the form of a string that looks similar to UNIX filesystem paths.

 They are slash - separated labels, each consisting of letters, digits, and the underscore character
(“ _ ”). They must always start with a slash and must not end with one. Here ’ s an example:

/com/pumd/SimpleTextEditor

 D - Bus objects are invoked through both methods and signals. D - Bus methods are similarly like any other
method in an object - oriented language.

 You invoke a method on an object directly by sending a method message to an object ’ s interface on a
service. The message may contain a list of parameters you wish to send to the method. A method can
reply back both synchronously, where your program waits for a reply, or asynchronously where your
program will be notified when a reply has been received. Methods do not have to send a reply back.
Signals are simple notifications that an event has occurred. A signal is broadcast over the bus and
therefore does not require a service to send to. Anyone listening for a particular signal will be notified
when it is emitted.

An example which get properties and methods from DeviceKit D-Bus can be seen in the code from the
“Putting All the Concepts Together” section:

def _get_dev_iface(self, object_path, interface):
 bus = dbus.SystemBus()
 proxy_obj = bus.get_object('org.freedesktop.DeviceKit.Disks',
 object_path)
 iface_obj = dbus.Interface(proxy_obj, interface)

 return iface_obj

def _get_dev_prop(self, device, property):
 props_iface_obj = self._get_dev_iface(device,
 'org.freedesktop.DBus.Properties')

 try:

c04.indd 83c04.indd 83 10/6/09 5:15:32 PM10/6/09 5:15:32 PM

Chapter 4: Application Development

84

 res = props_iface_obj.Get('org.freedesktop.DeviceKit.Disks.Device',
 property)
 except dbus.DBusException:
 res = ''

 return res

def _get_dev_methods(self, device):
 device_iface_obj = self._get_dev_iface(device,
 'org.freedesktop.DeviceKit.Disks.Device')

 return device_iface_obj

Exporting Objects with D-Bus
In order to export objects (to make them available to other applications), it is necessary that an event
loop be running and that the D-Bus be connected to it. The following code from pydistcc shows a gobject
main loop and a decorator which exports the method. Also notice the call to dbus.service.Object,
which exports the method onto the Bus.

class DbusObject(threading.Thread, dbus.service.Object):
 def __init__(self, serverlist, condition):
 self.serverlist = serverlist
 self.condition = condition
 self.servicename = 'net.sourceforge.PyDistcc'
 self.objectpath = '/net/sourceforge/PyDistcc/DbusObject'

 threading.Thread.__init__(self)
 @dbus.service.method('net.sourceforge.PyDistcc', in_signature='',
 out_signature='a{ss}')
 def currentserverlist(self):
 return self.serverlist

 def run(self):
 loop = gobject.MainLoop()
 self.bus = dbus.SystemBus()
 self.busname = dbus.service.BusName(self.servicename, bus=self.bus)
 dbus.service.Object.__init__(self, self.busname, self.objectpath)

 loop.run()

c04.indd 84c04.indd 84 10/6/09 5:15:32 PM10/6/09 5:15:32 PM

Chapter 4: Application Development

85

It is also possible to use a decorator to export a signal like:

@dbus.service.signal(dbus_interface='net.sourceforge.PyDistcc',signature='')

Connect to a D-Bus Signal
A default signal receiver looks like

bus.add_signal_receiver(self.on_device_added,
 'DeviceAdded',
 'org.freedesktop.DeviceKit.Disks',
 'org.freedesktop.DeviceKit.Disks',
 '/org/freedesktop/DeviceKit/Disks')

and below is a custom receiver. Notice the extra_parameters argument which allows extra information,
which will be passed to the callback method.

bus.add_signal_receiver(
 lambda *args:self._on_device_changed(extra_parameters, *args),
 'DeviceChanged',
 'org.freedesktop.DeviceKit.Disks',
 'org.freedesktop.DeviceKit.Disks',
 '/org/freedesktop/DeviceKit/Disks',
 extra_parameters)

 Useful D - Bus Command - Line Applications
 There are some useful applications available in Ubuntu when working with DBUS.

 D - Bus Viewer
 D - Bus Viewer is a tool that lets you inspect D - Bus objects and messages. You can choose between the
system bus and the session bus.

 The application is available at http://launchpadlibrarian.net/6844344/dbus-viewer_4.2
.3-0ubuntu3_i386.deb . Install it and then run the following:

$ dbus-viewer

 There is a clone of dbus - viewer with a GTK+ interface called D - Bus Explorer.

 This displays the D - Bus services, as shown in Figure 4 - 11.

c04.indd 85c04.indd 85 10/6/09 5:15:33 PM10/6/09 5:15:33 PM

Chapter 4: Application Development

86

Figure 4-11

 In the python - dbus - doc package, there is also a script called list - system - services.py that does what the
filename suggests. This script is found in /usr/share/doc/python - dbus - doc/examples. Running it
results in output like this:

$ python list-system-services.py
com.redhat.NewPrinterNotification
com.ubuntu.SystemService
fi.epitest.hostap.WPASupplicant
org.bluez
org.freedesktop.Avahi
org.freedesktop.ConsoleKit
org.freedesktop.DBus
org.freedesktop.Hal
org.freedesktop.NetworkManager
org.freedesktop.NetworkManagerSystemSettings
org.freedesktop.NetworkManagerUserSettings
org.freedesktop.SystemToolsBackends
org.x.config.display0

 which are the current running D - Bus services.

c04.indd 86c04.indd 86 10/6/09 5:15:33 PM10/6/09 5:15:33 PM

Chapter 4: Application Development

87

 D - Bus Send
 D - Bus Send is used to send a message to a D - Bus message bus. Nearly all uses must provide the -- dest
argument, which is the name of a connection on the bus to send the message to. It can be used, for
example, on the command-line to send Rhythmbox to the next track, as follows:

dbus-send -- dest=’org.gnome.Rhythmbox’ /org/gnome/Rhythmbox/Player org.gnome.
Rhythmbox.Player.next

 D - Bus Monitor
 The dbus - monitor command is used to monitor messages going through a D - Bus message bus. It has
two different output modes, the “ classic - style ” monitoring mode and profiling mode. The profiling
format is a compact format with a single line per message and microsecond - resolution timing
information:

$ dbus-monitor -profile

 It results in the following output when the power cord on a device is disconnected:

sig 1241300183 50361 2 /org/freedesktop/DBus org.freedesktop
.DBus NameAcquired
mc 1241300183 50599 347 :1.57 /org/freedesktop/indicate
org.freedesktop.DBus.Properties Get
mc 1241300183 50634 5 :1.104 /org/freedesktop/DBus
org.freedesktop.DBus AddMatch
sig 1241300186 367806 53 /org/freedesktop/PowerManagement
org.freedesktop.PowerManagement OnBatteryChanged
sig 1241300186 369401 54 /org/freedesktop/PowerManagement
org.freedesktop.PowerManagement PowerSaveStatusChanged
mc 1241300186 375244 55 :1.32 /org/gnome/ScreenSaver
org.gnome.ScreenSaver Throttle
mr 1241300186 375301 31 55 :1.32
mc 1241300186 379997 56 :1.32 /org/gnome/ScreenSaver
org.gnome.ScreenSaver SimulateUserActivity
mc 1241300186 385501 57 :1.32 /org/freedesktop/
Notifications org.freedesktop.Notifications GetCapabilities
mr 1241300186 389415 47 57 :1.32
mc 1241300186 389463 58 :1.32 /org/freedesktop/
Notifications org.freedesktop.Notifications Notify
mr 1241300186 480567 48 58 :1.32
sig 1241300186 697351 59 /org/freedesktop/PowerManagement/
Backlight org.freedesktop.PowerManagement.Backlight BrightnessChanged
sig 1241300188 728445 49 /org/freedesktop/Notifications
org.freedesktop.Notifications NotificationClosed

c04.indd 87c04.indd 87 10/6/09 5:15:33 PM10/6/09 5:15:33 PM

Chapter 4: Application Development

88

 D - Bus Launch
 The dbus - launch command is used to start a session bus instance of dbus - daemon from a shell script
(normally on a user login to a system). It is used like this:

 ## test for an existing bus daemon
 if test -z “$DBUS_SESSION_BUS_ADDRESS”; then
 ## if not found, launch a new one
 eval ‘dbus-launch -- sh-syntax -- exit-with-session’
 echo “D-Bus per-session daemon address is: $DBUS_SESSION_BUS_ADDRESS”
 fi

 D - Feet
 D - feet (sudo apt - get install dfeet) is a D - Bus debugger written in PyGTK. It provides a GUI to
connect to the system or session bus and the ability to execute methods with parameters on the bus and
then see the return values. Figure 4 - 12 shows the effect of executing the GetOnBattery() method on the
org.freedesktop.Power Management Session Bus when the device is running on battery power.

Figure 4-12

 d_feet is highly recommended for debugging DBUS problems.

c04.indd 88c04.indd 88 10/6/09 5:15:34 PM10/6/09 5:15:34 PM

Chapter 4: Application Development

89

 D-Bus Security
 The bus daemon has multiple instances on a typical computer. The system daemon has heavy security
restrictions on what messages it will accept, and is used for system - wide communication. The other
instances are created one per user login session. These instances allow applications in the user ’ s session
to communicate with one another.

 Security is configured for these instances in a configuration file. This file lives in /etc/dbus - 1/system.d.

 To configure policies, create a file in this directory called application.conf with the policies (this file could
be called anything — the name does not matter). This file will look like:

 < !DOCTYPE busconfig PUBLIC
 “-//freedesktop//DTD D-BUS Bus Configuration 1.0//EN”
 “http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd” >
 < busconfig >
 < policy user=”root” >
 < allow own=”net.sourceforge.PyDistcc”
 send_destination=”net.sourceforge.PyDistcc”
 send_interface=”net.sourceforge.PyDistcc”/ >
 < /policy >
 < policy user=”rodrigo” >
 < allow own=”net.sourceforge.PyDistcc”
 send_destination=”net.sourceforge.PyDistcc”
 send_interface=”net.sourceforge.PyDistcc”/ >
 < /policy >
 < policy at_console=”true” >
 < allow send_destination=”net.sourceforge.PyDistcc”
 send_interface=”net.sourceforge.PyDistcc”/ >
 < /policy >
 < policy context=”default” >
 < deny own=”net.sourceforge.PyDistcc”
 send_destination=”net.sourceforge.PyDistcc”
 send_interface=”net.sourceforge.PyDistcc”/ >
 < /policy >
 < /busconfig >

 The code example shows the use of policies. The default policy of the D - Bus system bus is as follows:

 Name ownership is DENIED by default.

 Method calls are DENIED by default.

 Replies to method calls, including errors, are PERMITTED by default.

 Signals are PERMITTED by default.

 Therefore each service must , in its policy configuration, permit an appropriate user to own the name it
wishes to claim — for example:

 < policy user=”rodrigo” >
 < allow own=”net.sourceforge.PyDistcc”/ >
 < /policy >

❑

❑

❑

❑

c04.indd 89c04.indd 89 10/6/09 5:15:34 PM10/6/09 5:15:34 PM

Chapter 4: Application Development

90

 It must also allow method calls to be made on objects it exports, for particular users. This can be done by
allowing all method calls to the claimed name:

 < policy user=”rodrigo” >
 < allow own=”net.sourceforge.PyDistcc”
 send_destination=”net.sourceforge.PyDistcc”
 send_interface=”net.sourceforge.PyDistcc”/ >
 < /policy >

 It is important that send_destination be included on all allow or deny tags and omitting it is a
potential security hole. Do not do this:

 < allow send_interface=”x.y.z” / >

 It would allow any service to receive method calls of the given interface!

PolicyKit
If the D-Bus service needs privileges (something requiring sudo) then it is possible to use PolicyKit to
control this access.

PolicyKit (http://hal.freedesktop.org/docs/PolicyKit/PolicyKit.8.html) comes by default
with Ubuntu and it is divided into two parts – the first part is a 'mechanism' (which runs as privileged)
and the second part is the 'policy agent' (which runs as unprivileged) with the two parts interacting
on the system bus. The 'mechanism' uses PolicyKit to determine whether to allow access to the process
or the user which requested it. As an example the devicekit power QoS policy (which is defined in the
XML file /usr/share/PolicyKit/policy/org.freedesktop.devicekit.power.qos.policy) has an 'action'
concerning minimal latency

<action id="org.freedesktop.devicekit.power.qos.set-minimum-latency">
 <description>Set administrator settings for latency control</description>
 <message>Authentication is required to set administrator settings for latency
</message>
 <defaults>
 <allow_inactive>no</allow_inactive>
 <allow_active>auth_admin</allow_active>
 </defaults>
 </action>

sending a D-Bus message like

$ dbus-send --session --print-reply
 --dest=org.freedesktop.PolicyKit.AuthenticationAgent /
 org.freedesktop.PolicyKit.AuthenticationAgent.ObtainAuthorization
 string:org.freedesktop.devicekit.power.qos.set-minimum-latency
 uint32:0
 uint32:$PPID

pops up an interface asking for authorization. Changing

<allow_active>auth_admin</allow_active>

c04.indd 90c04.indd 90 10/6/09 5:15:35 PM10/6/09 5:15:35 PM

Chapter 4: Application Development

91

to

<allow_active>yes</allow_active>

returns the method without asking for authorization.

The allow_active tag specifies the default answer that PolicyKit will return for an active session.

 The next key technology that is necessary to understand when developing applications for a mobile
device is GConf.

 GConf
GConf is a way to store configuration settings that ships with GNOME. Conceptually it resembles the
Windows Registry, but GConf abstracts the registry concept into a library. This provides a simple
interface to applications, and an architecture that tries to make things easy for OEMs, system
administrators, and developers.

 Essentially, GConf provides a preferences database, which is like a simple filesystem. The filesystem
contains keys organized into a hierarchy. Each key is either a directory containing more keys, or has a
value. For example, key /apps/metacity/general/titlebar_font contains an integer value that gives the
size of the title bar font for the Metacity window manager.

 The following Python application shows the use of GConf. It is an application that shows the most recent
files used by a user, which it pulls from the GConf settings. The gconf-example.glade file is not
shown here, but it is included in the code download on the Wrox site.

#!/usr/bin/env python
-*- coding: utf-8 -*-
import gtk
import gtk.glade
import gconf

class GconfApp(object):
 def __init__(self):
 #setting the glade file
 self.gladefile = ‘gconf-example.glade’
 self.gconfwinfo = ‘/apps/gconf-example/winfo’
 self.gconfprefs = ‘/apps/gconf-example/prefs’
 self.wTree = gtk.glade.XML(self.gladefile, ‘window1’)

 signals = {
 ‘on_window1_delete_event’: self.on_window1_delete_event,
 #’on_window1_delete_event’: self.on_window1_destroy,
 ‘on_window1_destroy’: self.on_window1_destroy,
 }

 self.wTree.signal_autoconnect(signals)

 self.window = self.wTree.get_widget(‘window1’)

c04.indd 91c04.indd 91 10/6/09 5:15:35 PM10/6/09 5:15:35 PM

Chapter 4: Application Development

92

 cl = gconf.client_get_default()
 width = cl.get_int(self.gconfwinfo + ‘/window_width’) or 640
 height = cl.get_int(self.gconfwinfo + ‘/window_height’) or 480
 self.window.set_default_size(width, height)

 self._hpaned = self.wTree.get_widget(‘hpaned1’)
 if cl.get(self.gconfwinfo + ‘/’ + self._hpaned.name):
 paned_position = cl.get_int(self.gconfwinfo + ‘/’ + self._hpaned.name)
 self._hpaned.set_position(paned_position)
 self._hpaned.set_data(‘last_position’, self._hpaned.get_position())

 self.window.show_all()

 def saveState(self):
 ‘’’
 Save the dimensions of the main window, and the position of the panes.
 ‘’’
 cl = gconf.client_get_default()
 cl.set_int(self.gconfwinfo + ‘/window_width’, self.window.allocation.width)
 cl.set_int(self.gconfwinfo + ‘/window_height’, self.window.allocation.height)
 cl.set_int(self.gconfwinfo + ‘/%s’ % self._hpaned.name, self._hpaned.get_
position())

 def on_window1_delete_event(self, *args):
 self.saveState()

 def on_window1_destroy(self, *args):
 self.window.destroy()
 gtk.main_quit()

if __name__ == ‘__main__’:

 gconfapp = GconfApp()
 gtk.main()

 The preceding code functions in a client - server way. After first setting some signals, it gets the default
GConf client. The actual values for the recent files that are shown in the UI are obtained from a Glade file
with the call to

 < widget class=”GtkRecentChooserWidget” id=”recentchooser1” >
 < property name=”visible” > True < /property >
 < property name=”limit” > 50 < /property >
 < /widget >

 The main advantage to using GConf is that the configuration data is stored in a tree structure we used
previously, which makes it a lot easier to manage the preferences of a large application, with perhaps
many preferences and configuration options. It also enables notifications across applications. This makes
it possible for multiple applications, or multiple running instances of the same application, to
immediately react to changes to preferences, and perform the necessary work to adapt to the new
preferences.

c04.indd 92c04.indd 92 10/6/09 5:15:35 PM10/6/09 5:15:35 PM

Chapter 4: Application Development

93

 The capability to react to changes and to show system changes in a coherent manner to a user was
substantially improved during the Jaunty and karmic cycles through the use of a new notifications
framework. This is the next key technology to understand.

 Notifications
A new way to present information to a user was debuted in the Jaunty release of Ubuntu. This is a way
to generate passive pop-ups (also called “poptarts”), which notify the user of some event.

While some information requires a response from the user (a low battery for instance), a large amount of
the information generated by a system is purely informative and requires no user interaction. Notifications
(provided through the notify-osd daemon or through the org.freedesktop.Notifications Dbus
interface) provide for such a use case in that they do not provide “actions” for the user (they cannot be
clicked and appear to hover and then fade). Semantically, the bubbles are either confirmations (brightness
increased, for example) or notifications (new track playing).

Commands to the notification system can be sent manually using

$ notify-send

and also programatically using the D-Bus interface. There are four ways to manually use the
notify-send tool (which is provided by the package libnotify-bin):

Icon - Summary - Body

$ notify-send 'Hello Rodrigo' -i notification-message-IM

Icon - Summary

$ notify-send 'WiFi connection lost' -i notification-network-wireless-disconnected

Summary - Body

$ notify-send 'PUMD' 'This is some notification'

Summary - only

$ notify-send 'Summary-only'

To send a notification programmatically (this is from the “Putting All the Concepts Together” section
later in this chapter), use:

def __init__(self):
 (...)
 # saving notification system availablity status
 self._notification_available = pynotify.init('disk-applet')
 (...)

def on_device_added(self, device):

c04.indd 93c04.indd 93 10/6/09 5:15:35 PM10/6/09 5:15:35 PM

Chapter 4: Application Development

94

 if not self._get_dev_prop(device, 'device-is-drive') \
 and not self._notification_available:
 return

 if self._get_dev_prop(device, 'drive-connection-interface') == 'usb':
 notification_icon = 'notification-device-usb'
 elif self._get_dev_prop(device,
 'drive-connection-interface') == 'firewire':
 notification_icon = 'notification-device-firewire'
 else:
 notification_icon = 'notification-device'

 body_msg = '%s %s %s' % (
 self._get_dev_prop(device, 'drive-vendor'),
 self._get_dev_prop(device, 'drive-model'),
 self._get_dev_prop(device, 'drive-revision'))

 n = pynotify.Notification('New Device Added', body_msg.strip(),
 notification_icon)
 n.show()

 The notification icons are located in

/usr/share/icons/Human/scalable/status/

and:

/usr/share/notify-osd/icons/hicolor/scalable/status/

Note that Human is the default icon theme for Ubuntu. This can be seen by running:

gconftool-2 -g /desktop/gnome/interface/icon_theme

More notification examples can downloaded by getting the latest notify-osd source code:

$ bzr get http://bazaar.launchpad.net/~ubuntu-desktop/notify-osd/ubuntu notify-osd

 The notification system can be turned off on a device by doing:

sudo mv /usr/share/dbus-1/services/org.freedesktop.Notifications.service
/usr/share/dbus-1/services/org.freedesktop.Notifications.service.disabled

Appropriate use of the notification framework from your application will help create a more uniform
desktop experience for your users.

 Putting All the Concepts Together
What follows is the complete code for an applet which mounts removable media when it is attached to a
device and displays a notification of this to the user. It uses all of the key techniques that were mentioned
earlier in this chapter, including D-Bus, notifications and DeviceKit as well as demonstrating the use of
gobject, gtk and gconf.

c04.indd 94c04.indd 94 10/6/09 5:15:36 PM10/6/09 5:15:36 PM

Chapter 4: Application Development

95

It was written for the karmic release of Netbook Remix and it will not work on Jaunty. This is because
the code uses Device Kit, which in karmic replaced HAL as the default hardware abstraction layer.

#!/usr/bin/env python
-*'- coding: utf-8 -*-

Copyright (C) 2008 Rodrigo Cesar Lopes Belem

Author: Rodrigo Cesar Lopes Belem <rodrigo.belem@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

import os
import sys
import gtk
import math
import gettext
import pynotify
from gettext import gettext as _

import glob
import gobject

locale_dirs = [
 'locale',
 os.path.join(os.path.sep,'usr','share','locale'),
 os.path.join(os.path.sep,'usr','local','share','locale'),
]
DIR = None
for l in locale_dirs:
 if glob.glob(os.path.join(l,'*','*','disk-applet.mo')):
 DIR = l
 break

gettext.bindtextdomain('disk-applet', DIR)
gettext.textdomain('disk-applet')
gettext.install('disk-applet', DIR, unicode=1)

import locale
try:
 locale.setlocale(locale.LC_ALL,'')

c04.indd 95c04.indd 95 10/6/09 5:15:36 PM10/6/09 5:15:36 PM

Chapter 4: Application Development

96

except locale.Error:
 print 'Unable to properly set locale %s.%s'%(locale.getdefaultlocale())

import dbus
from dbus.mainloop.glib import DBusGMainLoop

DBusGMainLoop(set_as_default=True)

class DiscTray(gtk.StatusIcon):

 def __init__(self):
 gtk.StatusIcon.__init__(self)

 self.set_from_stock(gtk.STOCK_HARDDISK)
 self.set_tooltip('Status icon tooltip')

 self._devices = {}

 # saving notification system availablity
 self._notification_available = pynotify.init('disk-applet')

 try:
 bus = dbus.SystemBus()
 except dbus.DBusException:
 exit(1)

 try:
 bus.add_signal_receiver(self.on_device_added,
 'DeviceAdded',
 'org.freedesktop.DeviceKit.Disks',
 'org.freedesktop.DeviceKit.Disks',
 '/org/freedesktop/DeviceKit/Disks')

 bus.add_signal_receiver(self.on_device_removed,
 'DeviceRemoved',
 'org.freedesktop.DeviceKit.Disks',
 'org.freedesktop.DeviceKit.Disks',
 '/org/freedesktop/DeviceKit/Disks')

 bus.add_signal_receiver(self._on_device_changed,
 'DeviceChanged',
 'org.freedesktop.DeviceKit.Disks',
 'org.freedesktop.DeviceKit.Disks',
 '/org/freedesktop/DeviceKit/Disks')

 except dbus.DBusException:
 exit(1)

 self.connect('activate', self._on_activate_event)
 self.connect('popup-menu', self._on_popup_menu_event)

 # add a signal to detect when a cd is inserted into the drive
 gobject.signal_new('device-is-optical-disc', gtk.StatusIcon,
 gobject.SIGNAL_RUN_LAST, gobject.TYPE_NONE,
 (gobject.TYPE_STRING , gobject.TYPE_BOOLEAN))

c04.indd 96c04.indd 96 10/6/09 5:15:36 PM10/6/09 5:15:36 PM

Chapter 4: Application Development

97

 # add a signal to detect when a device is mounted, so an action can be
 # performed after that
 gobject.signal_new('device-mounted', gtk.StatusIcon,
 gobject.SIGNAL_RUN_LAST, gobject.TYPE_NONE, (gobject.TYPE_STRING,))
 gobject.signal_new('device-unmounted', gtk.StatusIcon,
 gobject.SIGNAL_RUN_LAST, gobject.TYPE_NONE, (gobject.TYPE_STRING,))

 self.connect('device-is-optical-disc',
 self._on_optical_disc_insert_event)
 self.connect('device-mounted', self._on_device_mounted_event)
 self.connect('device-unmounted', self._on_device_unmounted_event)

 self._populate_device_list()

 def _get_human_readable_size(self, bytes):
 bytes = float(bytes)

 count = int(math.log(bytes) / math.log(1000))
 if count == 1:
 bin_prefix = 'KB'
 elif count == 2:
 bin_prefix = 'MB'
 elif count == 3:
 bin_prefix = 'GB'
 elif count == 4:
 bin_prefix = 'TB'

 return '%01.1f%s' % (bytes/1000**count, bin_prefix)

 def _get_dev_iface(self, object_path, interface):
 bus = dbus.SystemBus()
 proxy_obj = bus.get_object('org.freedesktop.DeviceKit.Disks',
 object_path)
 iface_obj = dbus.Interface(proxy_obj, interface)

 return iface_obj

 def _get_dev_prop(self, device, property):
 props_iface_obj = self._get_dev_iface(device,
 'org.freedesktop.DBus.Properties')

 try:
 res = props_iface_obj.Get('org.freedesktop.DeviceKit.Disks.Device',
 property)
 except dbus.DBusException:
 res = ''

 return res

 def _get_all_dev_prop(self, device):
 props_iface_obj = self._get_dev_iface(device,
 'org.freedesktop.DBus.Properties')

 return props_iface_obj.GetAll('org.freedesktop.DeviceKit.Disks.Device')

 def _get_dev_methods(self, device):

c04.indd 97c04.indd 97 10/6/09 5:15:37 PM10/6/09 5:15:37 PM

Chapter 4: Application Development

98

 device_iface_obj = self._get_dev_iface(device,
 'org.freedesktop.DeviceKit.Disks.Device')

 return device_iface_obj

 def _populate_device_list(self):

 bus = dbus.SystemBus()
 disks_obj = bus.get_object('org.freedesktop.DeviceKit.Disks',
 '/org/freedesktop/DeviceKit/Disks')

 devices = disks_obj.EnumerateDevices()

 if devices:
 devices.sort()
 for device in devices:
 self._add_device_to_list(device)

 def _add_device_to_list(self, device):

 if self._get_dev_prop(device, 'device-is-partition') \
 or self._get_dev_prop(device, 'DriveIsMediaEjectable'):
 self._devices[device] = dict(self._get_all_dev_prop(device))

SIGNALS CALLBACKS

 def on_device_added(self, device):
 self._add_device_to_list(device)

 device_props = dict(self._get_all_dev_prop(device))

 if not device_props['DeviceIsDrive'] \
 or not device_props['DriveIsMediaEjectable'] \
 and not self._notification_available:
 return

 if device_props['DriveConnectionInterface'] == 'usb':
 notification_icon = 'notification-device-usb'
 elif device_props['DriveConnectionInterface'] == 'firewire':
 notification_icon = 'notification-device-firewire'
 else:
 notification_icon = 'notification-device'

 body_msg = '%s %s %s' % (
 device_props['DriveVendor'],
 device_props['DriveModel'],
 device_props['DriveRevision'])

 n = pynotify.Notification('New Device Added', body_msg.strip(),
 notification_icon)
 n.show()

 def on_device_removed(self, device):

c04.indd 98c04.indd 98 10/6/09 5:15:37 PM10/6/09 5:15:37 PM

Chapter 4: Application Development

99

 if device not in self._devices:
 return

 device_props = self._devices[device]

 if device_props['DriveConnectionInterface'] == 'usb':
 notification_icon = 'notification-device-usb'
 elif device_props['DriveConnectionInterface'] == 'firewire':
 notification_icon = 'notification-device-firewire'
 else:
 notification_icon = 'notification-device'

 body_msg = '%s %s %s' % (
 device_props['DriveVendor'],
 device_props['DriveModel'],
 device_props['DriveRevision'])

 n = pynotify.Notification('Device Removed', body_msg.strip(),
 notification_icon)
 n.show()

 # removing device from our list
 self._devices.pop(device)

 def _on_device_changed(self, device):
 if device not in self._devices:
 return

 cur_dev_data = self._devices[device]
 new_dev_data = self._get_all_dev_prop(device)

 if new_dev_data['DeviceIsOpticalDisc'] \
 != cur_dev_data['DeviceIsOpticalDisc']:
 self.emit('device-is-optical-disc', device,
 new_dev_data['DeviceIsOpticalDisc'])
 if new_dev_data['DeviceIsMounted'] != cur_dev_data['DeviceIsMounted']:
 if new_dev_data['DeviceIsMounted']:
 self.emit('device-mounted', device)
 else:
 self.emit('device-unmounted', device)

 # saving the new device data
 self._devices[device] = new_dev_data

 def _on_optical_disc_insert_event(self, status_icon, device, status):
 pass

 def _on_device_mounted_event(self, status_icon, device):
 pass

 def _on_device_unmounted_event(self, status_icon, device):
 pass

 def on_mount_volume(self, menuitem, device):
 if self._devices['DeviceIsMounted']:

c04.indd 99c04.indd 99 10/6/09 5:15:37 PM10/6/09 5:15:37 PM

Chapter 4: Application Development

100

 return False

 if device['IdLabel']:
 label = device['IdLabel']
 else:
 label = device['IdUuid']

 mount_path = os.path.join('/media', label)

 if self._device['IdType'] == 'vfat':
 mount_options = ['shortname=mixed', 'uid=%s' % os.getuid(),
 'gid=%s' % os.getgid(), 'shortname=lower', 'dmask=0077',
 'utf8=1', 'flush']
 else:
 mount_options = []

 try:
 device_iface_obj = self._get_dev_methods(device)
 device_iface_obj.FilesystemMount(self._device['IdType'], fs_args,
 mount_path)
 except dbus.DBusException:
 return False

 return True

 def on_umount_device(self, menuitem, device):
 try:
 device_iface_obj = self._get_dev_methods(device)
 device_iface_obj.FilesystemUnmount([])
 except dbus.DBusException:
 return False

 return True

UI CALLBACKS

 def _on_activate_event(self, status_icon):

 ui_manager = gtk.UIManager()

 ui_manager.add_ui(ui_manager.new_merge_id(), '/', 'popup', 'popup',
 gtk.UI_MANAGER_POPUP, False)

 action_list = []

 if self._devices:

 for device_obj_path in self._devices:

 device = self._devices[device_obj_path]

 if device['IdUsage'] == 'filesystem':

 if device['IdLabel']:

c04.indd 100c04.indd 100 10/6/09 5:15:37 PM10/6/09 5:15:37 PM

Chapter 4: Application Development

101

 label = device['IdLabel']
 else:
 label = '%s Filesystem' \
 % self._get_human_readable_size(
 device['DeviceSize'])

 uuid = str(device['IdUuid'])
 ui_manager.add_ui(ui_manager.new_merge_id(), '/popup',
 uuid, uuid, gtk.UI_MANAGER_MENU, False)

 action_list.append((uuid, gtk.STOCK_HARDDISK, label,
 None, label))
 # submenu goes here
 if device['DeviceIsMounted']:
 # browse the contents
 ui_manager.add_ui(ui_manager.new_merge_id(),
 '/popup/' + uuid, 'open' + uuid,
 'open' + uuid,
 gtk.UI_MANAGER_MENUITEM, False)
 action_list.append(('open' + uuid, gtk.STOCK_OPEN,
 'Browse', None, 'Browse the device contents',
 self.on_about_event))

 # unmount the device
 ui_manager.add_ui(ui_manager.new_merge_id(),
 '/popup/' + uuid, 'unmount' + uuid,
 'unmount' + uuid,
 gtk.UI_MANAGER_MENUITEM, False)
 action_list.append(('unmount' + uuid, gtk.STOCK_OPEN,
 'UnMount', None, 'UnMount the device',
 self.on_about_event))
 else:
 # unmount the device
 ui_manager.add_ui(ui_manager.new_merge_id(),
 '/popup/' + uuid, 'mount' + uuid,
 'mount' + uuid,
 gtk.UI_MANAGER_MENUITEM, False)
 action_list.append(('mount' + uuid, gtk.STOCK_APPLY,
 'Mount', None, 'Mount the device',
 self.on_about_event))

 elif device['DriveIsMediaEjectable']:
 if device['IdLabel']:
 label = device['IdLabel']
 else:
 label = '%s %s %s' % (
 device['DriveVendor'],
 device['DriveModel'],
 device['DriveRevision'])

 ui_manager.add_ui(ui_manager.new_merge_id(), '/popup',
 label, label, gtk.UI_MANAGER_MENU, False)

 action_list.append((label, gtk.STOCK_CDROM, label,

c04.indd 101c04.indd 101 10/6/09 5:15:38 PM10/6/09 5:15:38 PM

Chapter 4: Application Development

102

 None, label, self.on_about_event))

 if device['DeviceIsMounted']:
 # browse the contents
 ui_manager.add_ui(ui_manager.new_merge_id(),
 '/popup/' + label, 'open', 'open',
 gtk.UI_MANAGER_MENUITEM, False)
 action_list.append(('open', gtk.STOCK_OPEN,
 'Browse', None, 'Browse the device contents',
 self.on_about_event))

 # unmount the device
 ui_manager.add_ui(ui_manager.new_merge_id(),
 '/popup/' + label, 'unmount', 'unmount',
 gtk.UI_MANAGER_MENUITEM, False)
 action_list.append(('unmount', gtk.STOCK_OPEN,
 'UnMount', None, 'UnMount the device',
 self.on_about_event))
 else:
 # unmount the device
 ui_manager.add_ui(ui_manager.new_merge_id(),
 '/popup/' + uuid, 'mount', 'mount',
 gtk.UI_MANAGER_MENUITEM, False)
 action_list.append(('mount', gtk.STOCK_APPLY,
 'Mount', None, 'Mount the device',
 self.on_about_event))

 else:

 ui_manager.add_ui(ui_manager.new_merge_id(), '/popup',
 'WithoutDisks', 'WithoutDisks',
 gtk.UI_MANAGER_MENUITEM, False)
 action_list.append(('WithoutDisks', gtk.STOCK_DELETE,
 _('Without Disks'), None, _('Without Disks'),
 self.on_about_event))

 action_group = gtk.ActionGroup('actions1')
 action_group.add_actions(action_list)

 ui_manager.insert_action_group(action_group, 0)
 ui_manager.ensure_update()

 menu = ui_manager.get_widget('/popup')
 menu.show_all()

 menu.popup(None, None, gtk.status_icon_position_menu, 1,
 gtk.get_current_event_time(), status_icon)

 def _on_popup_menu_event(self, status_icon, button, activate_time):

 action_group = gtk.ActionGroup('actions2')
 action_group.add_actions(

c04.indd 102c04.indd 102 10/6/09 5:15:38 PM10/6/09 5:15:38 PM

Chapter 4: Application Development

103

 [
 ('Preferences', gtk.STOCK_PREFERENCES, 'Preferences', None,
 'Preferences', self.on_preferences_event),
 ('About', gtk.STOCK_ABOUT, 'About', None, 'About',
 self.on_about_event)
])

 ui_string = \
 """<ui>
 <popup>
 <menuitem name="Preferences" action="Preferences"/>
 <separator/>
 <menuitem name="About" action="About"/>
 </popup>
 </ui>
 """

 ui_manager = gtk.UIManager()
 ui_manager.add_ui_from_string(ui_string)
 ui_manager.insert_action_group(action_group, 0)

 menu = ui_manager.get_widget('/popup')
 menu.show_all()
 menu.popup(None, None, gtk.status_icon_position_menu, button,
 activate_time, status_icon)

 def on_preferences_event(self, *args):
 pass

 def on_help_event(self, *args):
 pass

 def on_about_event(self, *args):
 pass

 def run(self):
 try:
 gtk.main()
 except KeyboardInterrupt:
 print 'Exiting...'
 exit(0)

if __name__ == '__main__':

 tray_icon = DiscTray()
 tray_icon.run()

 Summary
 A fifth of the world ’ s population will soon have a mobile device and access to the Internet. With that
many potential users, an explosion of mobile applications is inevitable and is already happening. This
chapter helped you understand the types of technologies that will lead this development.

c04.indd 103c04.indd 103 10/6/09 5:15:38 PM10/6/09 5:15:38 PM

c04.indd 104c04.indd 104 10/6/09 5:15:38 PM10/6/09 5:15:38 PM

 Application Packaging

 There are several reasons why you might want to learn how to package for Ubuntu. First, building
and fixing Ubuntu packages is a great way to contribute to the Ubuntu community. It is also a
good way to learn how Ubuntu and the applications you have installed work. It is also useful if
you need to package an application that is not yet in the archive.

 Finally, it is obviously important if you intend to highly customize the default set of applications
that come with Ubuntu Mobile.

 Background and Impor tant Tools
 One of the things that makes Ubuntu such a well respected Linux distribution is its packaging
system, which is based on Debian which is seen as one of the most elegant methods of installing,
upgrading, and removing software available in the Free Software world.

 To become a good packager some familiarity with the following tools is necessary (this list is not
exhaustive, but rather a snapshot of some of the applications which we use):

 ./configure

 Software is generally developed to be used on multiple platforms. Because each of these
platforms has different compilers and different include files, there is a need to write
Makefiles (see the next entry) and build scripts so that they can work on a variety of
platforms. The GNU Project, faced with this problem, devised a set of tools to help with
this task. The configure script runs a series of tests to determine important information
about your machine.

 make

 Make is a tool that controls the generation of executables and other non - source files of a
program from the program ’ s source files.

c05.indd 105c05.indd 105 10/6/09 8:57:49 AM10/6/09 8:57:49 AM

Chapter 5: Application Packaging

106

 Make gets its knowledge of how to build your program from a file called a Makefile . A
makefile is a special file containing shell commands, that you create and name Makefile, and
which is executed by typing the command make while in the same directory as the Makefile .
When you write a program, you should write a makefile for it, so that it is possible to use make
to build and install the program.

 apt

 apt is an acronym for the Advanced Package Tool. This tool has been used extensively
throughout the book. The following apt commands are useful for packaging:

 apt - cache dump — Shows every package in the cache. This command is useful in combination
with the grep pipe such as apt - cache dump | grep bar to search for packages whose names
or dependencies include bar.

 apt - cache policy — Lists the repositories (main/restricted/universe/multiverse) in which a
package exists.

 apt - cache show — Shows information about a binary package.

 apt - cache showsrc — Shows information about a source package.

 apt - cache rdepends — Shows reverse dependencies for a package (which packages require the
queried one).

 apt-rdepends — Recursively lists package dependencies as well as forward build-dependencies.

 dpkg

 dpkg is a Debian packaging tool that can be used to install, query, and uninstall packages. The
following commands are useful for packaging:

 dpkg - S — Shows the binary package to which a particular file belongs.

 dpkg - l — Shows currently installed packages. This is similar to apt - cache dump but for
installed packages.

 dpkg - c — Shows the contents of a binary package. It is useful for ensuring that files are
installed to the right places.

 dpkg - f — Shows the control file for a binary package. It is useful for ensuring that the
dependencies are correct.

 dpkg - L — Lists files “ owned ” by package(s) .

 dpkg - s — Displays package status details.

 dpkg - source

 A very useful command when working with source packages is:

 $ dpkg-source -x filename.dsc [output-directory]

 This extracts a source package. One non - option argument must be supplied, the name of the
Debian source control file (.dsc). An optional second non - option argument may be supplied to
specify the directory to extract the source package to — this must not exist.

c05.indd 106c05.indd 106 10/6/09 8:57:50 AM10/6/09 8:57:50 AM

Chapter 5: Application Packaging

107

 If no output directory is specified, the source package is extracted into a directory named
source - version under the current working directory.

 dpkg - scanpackages

 dpkg - scanpackages sorts through a tree of Debian binary packages and creates a Packages.gz
file, which can be used by a device ’ s software update tool.

 dpkg - scansources

 dpkg - scanpackages sorts through a tree of Debian source packages and creates a Packages.gz
file, which can be used by a device ’ s software update tool.

 To use the two preceding commands and to make your custom Debian packages apt - gettable,
you need the following files all in the same directory:

 The binary packages (.deb)

 The source packages (.orig.tar.gz, .diff.gz, and .dsc)

 An optional override file

 diff

 The diff program can be used to compare two files and to make patches. A typical example
might be diff - ruN file.old file.new > file.diff . This command will create a diff
(recursively if directories are used) that shows the changes, or “ delta ” between the two files.

 patch

 The patch program is used to apply a patch (usually created by diff) to a file or directory. To
apply the patch created previously, use patch - p0 < file.diff . The -p<num> parameter
strips leading slashes from each file found in the patch. For example, if the file name was /src
/ui/list.c, setting p0 gives the complete path whereas setting p1 gives src/ui/list.c.

 build - essential

 This package contains a list of required tools that are considered essential when building
software from source.

 If you have this build - essential software installed, you only need to install whatever a package
specifies as its build - time dependencies to build that package.

 devscripts

 devscripts contains many scripts that make the package work easier, including debclean,
debdiff, and dget.

 debclean is used to purge a Debian source tree, debdiff is used to compare two versions of a
Debian package to check for added or removed files, and dget downloads Debian source and
binary packages.

 gnupg

 gnupg is a complete and free replacement for PGP used to digitally sign files (including
packages).

❑

❑

❑

c05.indd 107c05.indd 107 10/6/09 8:57:51 AM10/6/09 8:57:51 AM

Chapter 5: Application Packaging

108

 fakeroot

 Gives a fake root environment and enables the running of a command like this (notice the user $
and not the root #):

$ dpkg-buildpackage -rfakeroot

 It is useful for building packages as a normal user.

 lintian

 lintian contains automated checks for many aspects of Debian policy as well as some checks for
common packaging errors.

 lintian uses an archive directory (called a laboratory), which defaults to /tmp and in this
directory it stores information about the packages it examines. It can keep this information
between multiple invocations in order to avoid repeating expensive data - collection operations.

 pbuilder

 Using pbuilder as a package builder enables you to build the package from within a chroot
environment. You can build binary packages without using builder, but you must have all the
build dependencies installed on your system first. PBuilder customization is covered in more
detail later in this chapter. .

 Packaging and Using a PPA
 With Launchpad ’ s Personal Package Archives (PPA) it is possible to build and then publish binary
packages for multiple architectures by uploading source code to the web service. Currently, the limit on
the size of a personal archive is 1GB per PPA. If you have multiple PPA's, it is 1GB per PPA. To use the
service, your PGP key needs to be uploaded and you also need to have signed the Ubuntu Code of
Conduct.

 To show packaging in a real - world situation, we will package the ubuntu - golden theme, which will be
created in Chapter 7. This will be uploaded to a Launchpad PPA.

 For more information on Launchpad see Appendix C.

 Create a folder called ubuntu - golden and inside this folder create two other folders called debian and
gtk - 2.0. Inside the gtk - 2.0 folder, place the gtkrc file we created in the theming chapter.

 The debian directory is where all the packaging information is stored and it allows us to separate the
packaging files from the application source files. Inside this folder, we now need to create the essential
files for any Ubuntu source package: changelog, control, copyright, and rules. These are the files needed
to create the binary packages (.deb files) from the original source code. We will look at each file in turn.

 This is just a quick demonstration of some of the files that can make up an Ubuntu package. As such, there is
a lot of information about packaging that is missing. For additional information, please read the Packaging
Guide at http://wiki.ubuntu.com/. Packaging is an art form and if you find after going through this
chapter that you have a natural ability or interest in this area, then this guide is the best place to start.

c05.indd 108c05.indd 108 10/6/09 8:57:51 AM10/6/09 8:57:51 AM

Chapter 5: Application Packaging

109

Initial Debianization
If dh_make is not installed, run

$ sudo apt-get install dh-make

and then run this tool:

$ ln -s ubuntu-golden ubuntu-golden-0.1
$ dh_make –createorig –indep
$ ls debian/
changelog dirs init.d.ex menu.ex README.Debian
compat docs init.d.lsb.ex postinst.ex rules
control emacsen-install.ex manpage.1.ex postrm.ex teste.default.ex
copyright emacsen-remove.ex manpage.sgml.ex preinst.ex teste.doc-base.EX
cron.d.ex emacsen-startup.ex manpage.xml.ex prerm.ex watch.ex

 rules
 The rules file is an executable Makefile that has rules for building the binary package from the source
packages. A full explanation of a rules file can be found at https://wiki.ubuntu.com
/PackagingGuide/Complete#rules .

A default rules file created by dh_make looks like:

#!/usr/bin/make -f
-*- makefile -*-
Sample debian/rules that uses debhelper.
This file was originally written by Joey Hess and Craig Small.
As a special exception, when this file is copied by dh-make into a
dh-make output file, you may use that output file without restriction.
This special exception was added by Craig Small in version 0.37 of dh-make.
Uncomment this to turn on verbose mode.
#export DH_VERBOSE=1
configure: configure-stamp
configure-stamp:
 dh_testdir
 # Add here commands to configure the package.

 touch configure-stamp

build: build-stamp

build-stamp: configure-stamp
 dh_testdir

 # Add here commands to compile the package.
 $(MAKE)
 #docbook-to-man debian/teste.sgml > teste.1

 touch $@

c05.indd 109c05.indd 109 10/6/09 8:57:51 AM10/6/09 8:57:51 AM

Chapter 5: Application Packaging

110

clean:
 dh_testdir
 dh_testroot
 rm -f build-stamp configure-stamp

 # Add here commands to clean up after the build process.
 $(MAKE) clean

 dh_clean

install: build
 dh_testdir
 dh_testroot
 dh_prep
 dh_installdirs

 # Add here commands to install the package into debian/teste.
 $(MAKE) DESTDIR=$(CURDIR)/debian/teste install

Build architecture-independent files here.
binary-indep: install
 dh_testdir
 dh_testroot
 dh_installchangelogs
 dh_installdocs
 dh_installexamples
dh_install
dh_installmenu
dh_installdebconf
dh_installlogrotate
dh_installemacsen
dh_installpam
dh_installmime
dh_installinit
dh_installcron
dh_installinfo
dh_installwm
dh_installudev
dh_lintian
dh_undocumented
 dh_installman
 dh_link
 dh_compress
 dh_fixperms
dh_perl
dh_python
 dh_installdeb
 dh_gencontrol
 dh_md5sums
 dh_builddeb

Build architecture-dependent files here.
binary-arch: install

c05.indd 110c05.indd 110 10/6/09 8:57:51 AM10/6/09 8:57:51 AM

Chapter 5: Application Packaging

111

binary: binary-indep binary-arch
.PHONY: build clean binary-indep binary-arch binary install configure

 The main thing to notice in our modified rules file is the code in the following block:

install -d $(CURDIR)/debian/xfce4-theme-ubuntu-golden/usr/share/themes/
UbuntuGolden/gtk-2.0/
 for file in $(CURDIR)/gtk-2.0/*; do \
 install -c -m 644 $$file $(CURDIR)/debian/xfce4-theme-ubuntu-golden/usr/share/
themes/UbuntuGolden/gtk-2.0/; \
 done

 It takes our theme and installs it in /usr/share/UbuntuGolden and then changes the permissions to
read - only for everyone apart from the owner of the theme. We removed from the default rules file all of
the dh_ commands which were commented out along with dh_installexamples, dh_installman and dh_
link, which are not necessary in this case. We also removed the configure-stamp stanza and the Make
calls. The full rules file looks like this and notice the various dh_ commands

#!/usr/bin/make -f
-*- makefile -*-
Uncomment this to turn on verbose mode.
#export DH_VERBOSE=1
build: build-stamp
build-stamp:
 dh_testdir
 touch build-stamp
clean:
 dh_testdir
 dh_testroot
 rm -f build-stamp
 dh_clean
install: build
 dh_testdir
 dh_testroot
 dh_clean -k
 dh_installdirs
 # install the Gtk+ theme
 install -d $(CURDIR)/debian/xfce4-theme-ubuntu-golden/usr/share/themes/
UbuntuGolden/gtk-2.0/
 for file in $(CURDIR)/gtk-2.0/*; do \
 install -c -m 644 $$file $(CURDIR)/debian/xfce4-theme-ubuntu-golden/usr/share/
themes/UbuntuGolden/gtk-2.0/; \
 done
Build architecture-independent files here.
binary-indep: build install
 dh_testdir
 dh_testroot
 dh_installchangelogs
 dh_installdocs
 dh_strip
 dh_compress
 dh_fixperms
 dh_installdeb

c05.indd 111c05.indd 111 10/6/09 8:57:52 AM10/6/09 8:57:52 AM

Chapter 5: Application Packaging

112

 dh_gencontrol
 dh_md5sums
 dh_builddeb

Build architecture-dependent files here.
binary-arch: install
binary: binary-indep binary-arch
.PHONY: build clean binary-indep binary-arch binary install configure

 The dh_ commands mentioned earlier are part of the debhelper suite of tools. These help with
repetitive tasks when writing a rules file. For example, the command dh_testdir tries to make sure
that you are in the correct directory when building a debian package. For more information on all of the
tools available in the suite look at the debhelper manpages.

There are other ways to make rules files, such as by using debhelper 7 and cdbs. For more information
on these tools, look at http://manpages.ubuntu.com/manpages/karmic/man7/debhelper
.7.html and http://build-common.alioth.debian.org/cdbs-doc.html.

 changelog
 The changelog file is a listing of the changes made in each version. It has a specific format that gives the
package name, version, distribution, changes, and who made the changes at a given time. If you have a
GPG key, make sure to use the same name and e - mail address in changelog as you have on the key.
Create a changelog of

xfce4-theme-ubuntu-golden (0.1jaunty1) jaunty; urgency=low
 * Initial Release.
 — Ian Lawrence < debs@ianlawrence.info > Sat, 28 Feb 2009 19:45:07 +0000

A changelog can be edited using a tool called dch. In the root source directory, type $ dch -e to edit the
changelog in your preferred editor. To increment the changelog for example when making a new release
run $ dch -i. To append a new comment to the current version entry, run $ dch -a.

To set a default editor run:

$ update-alternatives --config-editor

 control
Control data is stored in a control file and it is used for both source and binary packages.

The control file shown below is the control file from our source package. We can tell that this is for a
source package because it is separated into two paragraphs, the first of which always refers to the
source package itself and the second and subsequent paragraphs to the binary package(s) created from
our source.

c05.indd 112c05.indd 112 10/6/09 8:57:52 AM10/6/09 8:57:52 AM

Chapter 5: Application Packaging

113

Source: xfce4-theme-ubuntu-golden
Section: graphics
Priority: optional
Maintainer: Ian Lawrence < debs@ianlawrence.info >
Build-Depends: debhelper (> = 7.0.0)
Standards-Version: 3.8.0
Homepage: http://ianlawrence.info

Package: xfce4-theme-ubuntu-golden
Architecture: all
Depends: gtk2-engines-murrine
Description: A golden theme for Gtk+ 2.0
This package contains the Ubuntu Golden package for gtk2.

Packages can state that they have relationships to other packages in the control file. In the example above
the Depends stanza shows a binary dependency on gtk2-engines-murrine, which means that the
xfce4-theme-ubuntu-golden package will not be configured unless gtk2-engines-murrine has
already been correctly configured on the system.

After the changelog has been written, it is time to think about which copyright will cover the package.
This will most often be decided upstream but if you have written the software then this choice is yours.

 copyright
 Your copyright file must contain the following information:

 The author(s) name

 The year(s) of the copyright

 The package license(s)(optional)

 The URL to the upstream source

 Every file that contains a different license from the main license must be mentioned along with the
license itself. If licensing under the GPL, in the source package there needs to be a section with a header
which looks like:

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

 Make sure that there is a reference to distribute the program under a certain license (whether GPL or
not) – simply including a reference to the GPL (as shown below) means that in reality no copyright license
has been granted. Be careful.

❑

❑

❑

❑

c05.indd 113c05.indd 113 10/6/09 8:57:52 AM10/6/09 8:57:52 AM

Chapter 5: Application Packaging

114

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

 A template (which was discussed on the debian - legal mailing list) for a copyright file looks like

Authors: Ian Robert Lawrence, Rodrigo Cesar Lopes Belem
 Copyright 2007,2008 Rodrigo Cesar Lopes Belem
 2009 Ian Robert Lawrence

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License with
 the Debian GNU/Linux distribution in file /usr/share/common-licenses/GPL;
 if not, write to the Free Software Foundation, Inc., 59 Temple Place,
 Suite 330, Boston, MA 02111-1307 USA

 On Debian systems, the complete text of the GNU General Public
 License, version 2, can be found in /usr/share/common-licenses/GPL-2.

 Other Debian Files
 compat — Just a version number for the debhelper scripts

 install — This file is used to install files in the package

 dirs — This file lists which directories will be created in the package

 docs — Lists which documentation files or directories will be installed

 watch — Monitors upstream for new version releases of the source package

 init — init script

 pam — pam files that can be installed in /etc/pam.d

 links — create links to files inside the package

 examples — install examples to the package

c05.indd 114c05.indd 114 10/6/09 8:57:53 AM10/6/09 8:57:53 AM

Chapter 5: Application Packaging

115

 Building the Package
 Now, with the files in place it is possible to actually build the package. Move into the ubuntu - golden
folder and issue the command

$ debuild -S -sa

 This will build and sign the deb. We run the debuild command because our theme is a brand new
package with no existing version in Ubuntu ’ s repositories and so dput (covered later) will upload the
.orig.tar.gz file to the PPA.

 For more information about debuild and PPAs, look at https://help.launchpad.net/
Packaging/PPA .

 Uploading to a PPA
 To upload the new xfce4 - theme - ubuntu - golden Debian package to a PPA begin by installing dput:

$ sudo apt-get install dput

 dput is the tool you use to upload your source package to Launchpad. It uploads the following files:

 .dsc

 .changes

 .diff.gz

 And optionally,.orig.tar.gz (if you used debuild - S - sa to build the package)

 To upload to a PPA, use:

$ dput ppa:ianlawrence/ppa < changesfile >

This, in the case of our package, will be:</Para>

$ ppa:ianlawrence/ppa xfce4-theme-ubuntu-golden_0.1jaunty1_source.changes

 This outputs :

Checking Signature on .changes
gpg: Signature made Sat 28 Feb 2009 20:41:45 GMT using DSA key ID 1C1EABFF
gpg: Good signature from “Ian Lawrence < debs@ianlawrence.info > ”
gpg: aka “Ian Lawrence < root@ianlawrence.info > ”
Checking Signature on .dsc
gpg: Signature made Sat 28 Feb 2009 20:41:37 GMT using DSA key ID 1C1EABFF
gpg: Good signature from “Ian Lawrence < debs@ianlawrence.info > ”
gpg: aka “Ian Lawrence < root@ianlawrence.info > ”
Good signature on xfce4-theme-ubuntu-golden_0.1jaunty1.dsc.
Uploading to my-ppa (via ftp to ppa.launchpad.net):
 gxfce4-theme-ubuntu-golden_0.1jaunty1.dsc: done.
Successfully uploaded packages.
Not running dinstall.

❑

❑

❑

❑

c05.indd 115c05.indd 115 10/6/09 8:57:53 AM10/6/09 8:57:53 AM

Chapter 5: Application Packaging

116

 When the package has been built by the autobuilders, an e - mail is sent to inform the user of this fact.
This is an e - mail from an upload of a GPS daemon called gypsy, which was packaged as an example for
REVU (see below) for possible inclusion into the Ubuntu Mobile distribution

Accepted:
 OK: gypsy_0.5.orig.tar.gz
 OK: gypsy_0.5-2jaunty1.diff.gz
 OK: gypsy_0.5-2jaunty1.dsc
 - > Component: universe Section: devel

Format: 1.8
Date: Sat, 28 Feb 2009 19:45:07 +0000
Source: gypsy
Binary: gypsy gypsy-dbg libgypsy0 libgypsy0-dbg libgypsy-dev libgypsy-doc
Architecture: source
Version: 0.5-2jaunty1
Distribution: jaunty
Urgency: low
Maintainer: Ross Burton < ross@debian.org >
Changed-By: Ian Lawrence < debs@ianlawrence.info >
Description:
 gypsy — GPS multiplexing daemon
 gypsy-dbg — GPS multiplexing daemon (debug files)
 libgypsy-dev — GPS daemon client library (development files)
 libgypsy-doc — GPS multiplexing daemon (documentation)
 libgypsy0 — GPS multiplexing daemon client library
 libgypsy0-dbg — GPS multiplexing daemon client library (debug files)
Changes:
 gypsy (0.5-2jaunty1) jaunty; urgency=low
 .
 * PPA Rebuild

 Users will now be able to add the PPA to their sources list by doing

deb http://ppa.launchpad.net/ianlawrence/ppa/ubuntu jaunty main
deb-src http://ppa.launchpad.net/ianlawrence/ppa/ubuntu jaunty main

and they can then install the packages which are available in the PPA using apt.

If you added another PPA to your launchpad account or team account, you must add the following to
~/.dput.cf :

[<ppa alias name>]
fqdn = upload.launchpad.net
method = ftp
incoming = ~<launchpad username>/ubuntu/<other ppa name>
login = anonymous
$ dput <ppa alias name> <changes file>

 REVU
 As mentioned previously, it is a good idea to submit any packages for review. REVU (http://revu
.ubuntuwire.com) is a web - based tool that gives people who have worked on packages a chance to
show them to Ubuntu Developers so that these more experienced developers can review them for
potential inclusion into Ubuntu.

c05.indd 116c05.indd 116 10/6/09 8:57:53 AM10/6/09 8:57:53 AM

Chapter 5: Application Packaging

117

Upload to REVU as follows:

$ dput revu gypsy_0.5-2jaunty1_source.changes

which gives the acceptance e - mail with information about the package:

A new package has been accepted into REVU: gypsy

Package uploaded at: 2009-02-28, 22:42
Package was uploaded by: ianlawrence
REVU URL: http://revu.ubuntuwire.com/details.py?upid=5306

Subsequent e - mails may arrive from experienced developers — often with some hints about how to
improve the package itself. For example

Comment for package gypsy (not advocating)
Number of Advocates: 0
Package uploaded at: 2009-02-28, 22:42
Package uploaded by: ianlawrence
REVU URL: http://revu.ubuntuwire.com/details.py?upid=5306
persia wrote:
1) Sections are a mess
2) Why restrict the architecture
3) /etc/dbus-1/event.d/ is deprecated: use LSB init headers
4) changelog is traditionally truncated for initial upload (and version is odd)
5) Upstream has a newer version available

 This is a good way to get feedback on package work and a great way to gain experience with packaging.

 RFA Packages
 There may be packages which the current maintainer has put up for adoption (Request For Adoption).
With the devscripts package (mentioned earlier in the chapter) installed, run:

$ wnpp-alert

 This command will print out a list of all packages on the device that are orphaned. The list of orphaned
packages will look something like the following:

RFH 479951 kvm — Full virtualization on x86 hardware (Need help with ia64, ppc and
s390)

 If a package is listed that is important to you, send an e - mail to the current maintainer asking if they are
willing to let you maintain it. To find the current maintainer, run the following:

$ apt-cache show kvm

which shows the Original - Maintainer field.

c05.indd 117c05.indd 117 10/6/09 8:57:54 AM10/6/09 8:57:54 AM

Chapter 5: Application Packaging

118

 Creating Your Own Repository
 In some cases, using a PPA is not satisfactory and it is more convenient to have the packages available
locally. This is particularly true when building a remix or customization of Ubuntu. If this is the case,
there are two ways to create a local repository. The first is the “ simple ” approach; the second uses a tool
called reprepro, which helps automate the process.

 Simple Repository
 Simple repositories do not organize packages in subdirectories. They only create a list of packages, called
Packages.gz, by scanning the directory.

 The commands that are used to build this type of repository are dpkg - scanpackages and
 dpkg - scansource . The following is an example of the use of these commands:

dpkg-scanpackages binary /dev/null | gzip -9c > Packages.gz
dpkg-scansorces binary /dev/null | gzip -9c > Sources.gz

 Automatic Repository
 The automatic repository is the way that large repositories, such as Debian and Ubuntu, are built. This
repository format allows access from clients from many platforms in a way in which files will not be
duplicated. Such a structure is called a pool.

 There are several tools that can be used to build this type of repository. One tool is called reprepro. It
manages .deb packages and their related files such as .dsc, .diff, .tar.gz, and .udeb.

 Setting Up a Repository
 First of all, you will need to create the initial directory structure. It should look like this:

$ mkdir /path/to/your/repository/ubuntu
$ mkdir /path/to/your/repository/ubuntu/conf
$ mkdir /path/to/your/repository/ubuntu/incoming

 This creates the reprepro config file. Your distributions file should look like this:

Codename: karmic
Suite: karmic
Components: main
Architectures: i386 source
Description: Repo for book

 This file should go to /path/to/your/repository/ubuntu/conf .

c05.indd 118c05.indd 118 10/6/09 8:57:54 AM10/6/09 8:57:54 AM

Chapter 5: Application Packaging

119

 Adding Packages to a Repository
 To add packages to a repository, use the following:

$ reprepro -Vb . include jaunty name_of_file.changes

Packages can also be added by doing:

reprepro -b includedeb karmic some-package.deb

 When working on an older distribution (for example, hardy) you may find that some application
functionality from a more recent distribution (for example, intrepid) would be useful. In this case it is
necessary to “ backport ” the application to the older distribution.

Removing Packages From a Repository
Packages can be removed with:

$ reprepro -Vb /path/to/repository/ubuntu remove karmic some-package.deb

 Backporting KVM
 Add the sources for intrepid to sources.list,like this:

deb-src http://archive.ubuntu.com/ubuntu/ intrepid main universe restricted
multiverse

 Comment out temporarily the other deb - src lines in the sources.list. Next, run the following:

$ apt-get source kvm

 Move into the unpacked folder (in this case, kvm - 72+dfsg) and run the following:

$ debuild

 If this gives build dependencies such as the following:

dpkg-checkbuilddeps: Unmet build dependencies: quilt (> = 0.40) uuid-dev libsdl1.2-
dev libasound2-dev libgnutls-dev nasm texi2html bcc iasl
dpkg-buildpackage: warning: Build dependencies/conflicts unsatisfied; aborting.

you need to add this:

$ sudo apt-get build-dep kvm

 Then run debuild again. This will create the .deb in the parent folder.

c05.indd 119c05.indd 119 10/6/09 8:57:54 AM10/6/09 8:57:54 AM

Chapter 5: Application Packaging

120

 PBuilder
 While it is possible to build packages the way we have shown earlier, you must already have all the
build dependencies of the package that you are building installed on your running system.

 A tool called pbuilder can help with this. pbuilder checks the build dependencies automatically and it
does this because the package is built within a minimal Ubuntu installation with the build dependencies
downloaded according to the Debian/control file.

 The primary aim of pbuilder is different from other auto - building systems in Debian in that it does not
try to build as many packages as possible. It does not try to guess what a package needs, and in most
cases it tries the worst choice of all if there is a choice to be made.

 Configuring PBuilder
 It can be a good idea to configure pbuilder . There are many ways to do this. In the /etc directory is the
main configuration file for pbuilder called pbuilderrc .

 Edit this file to look as follows.

BASETGZ=/var/cache/pbuilder/base.tgz
#EXTRAPACKAGES=gcc3.0-athlon-builder
#export DEBIAN_BUILDARCH=athlon
BUILDPLACE=/var/cache/pbuilder/build/
MIRRORSITE=http://archive.ubuntu.com/ubuntu
USEPROC=yes
USEDEVPTS=yes
USEDEVFS=no
BUILDRESULT=/var/cache/pbuilder/result/
specifying the distribution forces the distribution on “pbuilder update”
DISTRIBUTION=jaunty
specifying the components of the distribution (default is “main”)
#COMPONENTS=”main restricted universe multiverse”
#specify the cache for APT
APTCACHE=”/var/cache/pbuilder/aptcache/”
APTCACHEHARDLINK=”yes”
REMOVEPACKAGES=””
#HOOKDIR=”/usr/lib/pbuilder/hooks”
HOOKDIR=””
make debconf not interact with user
export DEBIAN_FRONTEND=”noninteractive”
DEBEMAIL=””
for pbuilder debuild (sudo -E keeps the environment as-is)
BUILDSOURCEROOTCMD=”fakeroot”
PBUILDERROOTCMD=”sudo -E”
command to satisfy build-dependencies; the default is an internal shell
implementation which is relatively slow; there are two alternate
implementations, the “experimental” implementation,
“pbuilder-satisfydepends-experimental”, which might be useful to pull
packages from experimental or from repositories with a low APT Pin Priority,
and the “aptitude” implementation, which will resolve build-dependencies and
build-conflicts with aptitude which helps dealing with complex cases but does

c05.indd 120c05.indd 120 10/6/09 8:57:54 AM10/6/09 8:57:54 AM

Chapter 5: Application Packaging

121

not support unsigned APT repositories
PBUILDERSATISFYDEPENDSCMD=”/usr/lib/pbuilder/pbuilder-satisfydepends”
#Command-line option passed on to dpkg-buildpackage.
#DEBBUILDOPTS=”-IXXX -iXXX”
DEBBUILDOPTS=””
#APT configuration files directory
APTCONFDIR=””
the username and ID used by pbuilder, inside chroot. Needs fakeroot, really
BUILDUSERID=1234
BUILDUSERNAME=pbuilder
BINDMOUNTS is a space separated list of things to mount
inside the chroot.
BINDMOUNTS=””
Set the debootstrap variant to ‘buildd’ type.
DEBOOTSTRAPOPTS[0]=’ — variant=buildd’
or unset it to make it not a buildd type.

unset DEBOOTSTRAPOPTS
Set the PATH I am going to use inside pbuilder: default is “/usr/sbin:/usr/bin:/
sbin:/bin:/usr/X11R6/bin”
export PATH=”/usr/sbin:/usr/bin:/sbin:/bin:/usr/X11R6/bin”
SHELL variable is used inside pbuilder by commands like ‘su’; and they need sane
values
export SHELL=/bin/bash
The name of debootstrap command.
DEBOOTSTRAP=”debootstrap”
default file extension for pkgname-logfile
PKGNAME_LOGFILE_EXTENTION=”_$(dpkg — print-architecture).build”
default PKGNAME_LOGFILE
PKGNAME_LOGFILE=””

 This provides some sane configuration defaults for pbuilder .

 It is now possible to script pbuilder using a bash script. The following script allows a Debian package to
be created for any Ubuntu distribution (the name is passed as a command line parameter to pbuilder).
Change the /home/ < user > /.pbuilderrc file to look like the code below. This code is for illustration only.
Please download this file from our code bundle on the Wrox site.

#USE_SYSTEM_DIST=1
#DEFAULT_DIST=”hardy”
#OTHERMIRROR=”deb http://localhost:8000/test/ ./|deb http://localhost:8000/extra/
hardy main|”
UBUNTU_UPDATES=1
UBUNTU_SECURITY=1
UBUNTU_BACKPORTS=1
UBUNTU_PROPOSED=0
DEBIAN_SECURITY=1
UBUNTULIST=”jaunty intrepid hardy karmic”
DEBIANLIST=”stable testing unstable sid experimental etch lenny”
UBUNTU_MIRROR=”http://br.archive.ubuntu.com/ubuntu/”
DEBIAN_MIRROR=”http://ftp.br.debian.org/debian/”
if [-z “${DIST}”]; then

c05.indd 121c05.indd 121 10/6/09 8:57:55 AM10/6/09 8:57:55 AM

Chapter 5: Application Packaging

122

 if [-n “${DEFAULT_DIST}”]; then
 DIST=”${DEFAULT_DIST}”
 elif [“${USE_SYSTEM_DIST}”]; then

 : ${DIST:=”$(lsb_release — short — codename)”}
 else

 if [-r “debian/changelog”]; then
 DIST=$(dpkg-parsechangelog | awk ‘/^Distribution: / {print $2}’)
 # Use the unstable suite for debian experimental packages.
 if [“${DIST}” == “experimental”]; then
 DIST=”unstable”
 fi
 fi
 fi

fi

if [-n “$(echo ${UBUNTULIST[@]} | grep ${DIST})”]; then

 COMPONENTS=”main restricted universe multiverse”

 MIRRORSITE=”${UBUNTU_MIRROR}”

 # Defining which repositories we will use in ubuntu

 if [“${UBUNTU_UPDATES}”]; then

 OTHERMIRROR=”${OTHERMIRROR}deb ${UBUNTU_MIRROR} ${DIST}-updates
${COMPONENTS}|”

 fi

 if [“${UBUNTU_SECURITY}”]; then

 OTHERMIRROR=”${OTHERMIRROR}deb ${UBUNTU_MIRROR} ${DIST}-security
${COMPONENTS}|”

 fi

 if [“${UBUNTU_BACKPORTS}”]; then

 OTHERMIRROR=”${OTHERMIRROR}deb ${UBUNTU_MIRROR} ${DIST}-backports
${COMPONENTS}|”

 fi
 if [“${UBUNTU_PROPOSED}”]; then

 OTHERMIRROR=”${OTHERMIRROR}deb ${UBUNTU_MIRROR} ${DIST}-proposed
${COMPONENTS}|”

 fi

c05.indd 122c05.indd 122 10/6/09 8:57:55 AM10/6/09 8:57:55 AM

Chapter 5: Application Packaging

123

elif [-n “$(echo ${DEBIANLIST[@]} | grep ${DIST})”]; then

 echo “Using a debian pbuilder environment because DIST is ${DIST}”

 COMPONENTS=”main contrib non-free”

 MIRRORSITE=”${DEBIAN_MIRROR}”

 # Defining which repositories we will use in debian

 if [“${DEBIAN_SECURITY}”]; then

 OTHERMIRROR=”${OTHERMIRROR}deb ${DEBIAN_MIRROR} ${DIST}-security
${COMPONENTS}|”

 fi

fi

BASETGZ=”`dirname ${BASETGZ}`/${DIST}-base.tgz”

#BASETGZ=”/var/cache/pbuilder/${DIST}-base.tgz”

DISTRIBUTION=”${DIST}”

BUILDRESULT=”/var/cache/pbuilder/${DIST}/result/”

APTCACHE=”/var/cache/pbuilder/${DIST}/aptcache/”

 By configuring your pbuilder this way, you have the capability to build packages for different release
versions, distributions, and architectures.

 To do this, first create the pbuilder:

$ sudo DIST=karmic pbuilder create

 and then pass the release you wish to build for along with the .dsc of the package to the pbuilder
like this

$ sudo DIST=karmic pbuilder build package_version.dsc

 So to build the first Hardy version of the Ubuntu Mobile guide (which is available at https://edge
.launchpad.net/~ianlawrence/+archive/ppa) for the Jaunty release, run the following:

$ sudo DIST=jaunty pbuilder build mobileguide_0.1-2.dsc

 Performing Actions on PBuilder
 Along with the create command shown previously, there are several other simple commands for
operation such as pbuilder update and pbuilder build .

c05.indd 123c05.indd 123 10/6/09 8:57:55 AM10/6/09 8:57:55 AM

Chapter 5: Application Packaging

124

 These commands are covered in a little more detail next.

 Creating a Distribution Environment
 The command pbuilder create will create a base chroot image tar - ball (base.tgz). All other
commands will operate on the resulting base.tgz . The distribution code - name needs to be specified
with the distribution command - line option.

 debootstrap is used to create the bare minimum Debian installation, and then build - essential
packages are installed on top of the minimum installation using apt - get inside the chroot.

 Use pbuilder to create a package like this:

$ sudo DIST=karmic pbuilder create

 Building a Package to a Specific Release
 To build a package inside the chroot, use the following:

$ sudo DIST=karmic pbuilder build whatever.dsc

 pbuilder will extract base.tgz to a temporary working directory, enter the directory with chroot, satisfy
the build - dependencies inside chroot, and build the package. The built packages will be moved to a
directory specified with the buildresult command - line option.

 Updating the PBuilder Environment
 Add the following code:

$ pbuilder update

 It will update the base.tgz file. It will extract the chroot, invoke apt - get update and
apt - get dist - upgrade inside the chroot, and recreate base.tgz (the base tar - ball).

 Using pdebuild
 Common packaging workflow is the one shown in the “ Backporting KVM ” section. A developer may try
to do debuild and build a package inside a Debian source directory:

 pdebuild allows a similar workflow with packages built inside the chroot with checks that the
current source tree will build happily.

 pdebuild calls dpkg - source to build the source packages, and then invokes pbuilder on the
resulting source package. However, unlike debuild , the resulting deb files will be found in the
 buildresult directory.

 A slightly different mode of operation is available in pdebuild since version 0.97. pdebuild usually
runs Debian/rules clean outside of the chroot; however, it is possible to change the behavior to run
it inside the chroot with — use - pdebuild - internal . It will try to bind mount the working directory
inside chroot, and run dpkg - buildpackage inside this.

 You use pdebuild like this:

❑

❑

c05.indd 124c05.indd 124 10/6/09 8:57:56 AM10/6/09 8:57:56 AM

Admin
Text Box
Download from www.eBookTM.com

Chapter 5: Application Packaging

125

sudo pdebuild — use-pdebuild-internal

 Configuring Actions
 Hook scripts are used when you want to perform some action at a determined moment during
 pbuilder execution. These actions can be scripted, too.

 A hook directory can be defined by the variable HOOKDIR . This can be set in the command line as
follows:

$ sudo HOOKDIR=/path/to/hookdir pbuilder -build file.dsc

 You can also set it as follows:

$ sudo pbuilder -hookdir /path/to/hookdir -build file.dsc

 The hook script names must be in the form X < digit > < digit > < whatever - else - you - want > much like
boot scripts. Here is the example c10shell hook script, which will invoke a shell if the build fails.

#!/bin/bash
invoke shell if build fails.
apt-get install -y — force-yes vim less
cd /tmp/buildd/*/debian/.
/bin/bash < /dev/tty > /dev/tty 2 > /dev/tty

 Additional Hook Manipulation with PBuilder
 Some of the most useful hook manipulation commands we have found are as follows. They start with
letters, the first of which is A .

A < digit > < digit > < whatever-else-you-want >

 This is executed before a build starts — after unpacking the build system, and unpacking the source,
and satisfying the build - dependency.

 B is used like this:

B < digit > < digit > < whatever-else-you-want >

 This is executed after the build system finishes building successfully and before copying back the
build result.

 C is used like this:

C < digit > < digit > < whatever-else-you-want >

 This is executed after build failure and before cleanup.

 D is used like this:

D < digit > < digit > < whatever-else-you-want >

c05.indd 125c05.indd 125 10/6/09 8:57:56 AM10/6/09 8:57:56 AM

Chapter 5: Application Packaging

126

 This is executed before unpacking the source inside the chroot and after setting up the chroot
environment.

 Hook Script Resource
 With Bazaar installed (sudo apt - get install bzr), check out the following:

bzr branch lp:~kubuntu-members/pbuilder/pbuilder-hooks

 This contains some useful example scripts. These include the useful D10aptupdate , which runs apt - get
update before proceeding further, and B10list - missing , which lists missing files.

 Mount Bind a Package Repository for Use with PBuilder
 Bind mounting directories is useful for many tasks. One of the most useful things is to mount bind a
directory which is a package repository:

BINDMOUNTS=”/var/cache/pbuilder/result”
cat /var/cache/pbuilder/hooks/D70results
#!/bin/sh
cd /var/cache/pbuilder/result/
/usr/bin/dpkg-scanpackages . /dev/null > /var/cache/pbuilder/result/Packages
/usr/bin/apt-get update

 This way, you can use deb file:/var/cache/pbuilder/result in the OTHERREPOSITORIES variable.

 Ubuntu Policy
 The Ubuntu policy document available at http://people.canonical.com/~cjwatson//
ubuntu-policy/policy.html/ describes “ the policy requirements for the Ubuntu distribution. ” It also
discusses policy issues that relate to packages, such as the technical requirements that each package must
satisfy to be included in the Ubuntu distribution. It is modeled closely on the Debian policy document.

 This document is extremely important. Please read it. One important thing to know is how the archive of
packages in Ubuntu is divided up into categories.

 Categories
 The categories are main, restricted, universe, and multiverse, and each has different requirements in
order for a package to be included in them.

 Main — Packages in main must not require a package outside of main for compilation or
execution (thus, the package must not declare a “ Depends, ” “ Recommends, ” or
“ Build - Depends ” relationship on a non - main package).

 Restricted — Source code may not be available for packages in restricted and modifications may
also not be permitted.

 Universe — Packages in this category are not supported either by Ubuntu Developers or
Canonical. Furthermore, packages must not require a package outside of main and universe for
compilation or execution (thus, the package must not declare a “ Depends, ” “ Recommends, ” or
 “ Build - Depends ” relationship on a non - main and non - universe package).

❑

❑

❑

c05.indd 126c05.indd 126 10/6/09 8:57:56 AM10/6/09 8:57:56 AM

Chapter 5: Application Packaging

127

 Multiverse — Packages must be placed in multiverse if source code is not available,
modifications are not permitted, or if they are encumbered by patents or other legal issues that
make their distribution problematic.

 Every package must also provide a copyright file and distribution license in the file /usr/share/
doc/package/copyright.

 Sections
 The preceding categories are further broken down into sections. These sections are specified in the
control file of the Debian package. They are useful for organizing packages into logical blocks. The
sections that are available include admin, graphics, web, X11, and metapackages. The full list is available
in the policy document itself. The use of metapackages is covered in Chapter 11, “ Putting It All
Together. ”

 The maintainers of the Ubuntu archive may override the section value to ensure the consistency of the
Ubuntu distribution. Consequently, it is important to include this information in the package.

 Summary
 This chapter shows some basic tools used when packaging and covers how to create a simple archive
with the files necessary to create a Debian package. It then shows you how to set up a local repository for
packages. You also see how to use and customize pbuilder along with other custom scripts, which can be
run before, during, or after a pbuilder run. Finally, we discussed the Ubuntu policy document and how
software is categorized in the repositories.

❑

c05.indd 127c05.indd 127 10/6/09 8:57:57 AM10/6/09 8:57:57 AM

c05.indd 128c05.indd 128 10/6/09 8:57:57 AM10/6/09 8:57:57 AM

 Application Selection

 According to some observers, the Mobile Internet Device category is rapidly emerging. A recent
study by ABI Research shows that this category will appeal both as tools and toys to a “ wide
variety of people. ” The report also forecasts that these products will see a dramatic growth in
popularity over the next five years, with worldwide shipments rising from under 3.5 million
in 2008 to nearly 90 million in 2012.

 According to Strategy Analytics, another research firm, sales of Mobile Internet Devices are
expected to exceed $17 billion worldwide annually by 2014.

 More about the business potential of mobile devices can be found in Chapter 12.

 It may benefit OEMs to try to identify “ categories of users ” within this “ wide variety of people ”
category in order to tailor the applications that they offer on devices for each targeted market
segment. This will mean selecting applications and device settings that make the best use of a
mobile device for particular groups of users.

 Business Users
 This is a large and profitable market segment that many OEMs target. Although it may be true that
the line between business users and consumers is becoming less differentiated, application
providers seem to be focusing on how to integrate their software with MIDs and netbooks to
deliver a consistent experience to enterprise users.

 Many firms are facing budgetary pressures and need to both become more efficient and cut
spending. Solutions such as hosting office applications and documents in the cloud with the device
running a highly customized version of Ubuntu Mobile are increasingly attractive to companies.
Even so, having a mobile device used in this way does raise more security concerns than if the
employee were, for example, tethered to a workstation at the office.

c06.indd 129c06.indd 129 10/6/09 9:01:14 AM10/6/09 9:01:14 AM

Chapter 6: Application Selection

130

 A factor therefore driving the adoption of mobile devices in corporate settings is security. Password
protection, remote wipe capability, and physical device tracking are the top three factors cited by many
companies that are contemplating equipping employees with mobile devices .

 Ubuntu comes with a feature to create an encrypted private directory for the default user. You can set
this up on a device as follows:

$ sudo apt-get install ecryptfs-utils

 Then run the following:

$ ecryptfs-setup-private

 sudo , which allows temporary superuser privileges, should not be used for this operation.

 Enter a login passphrase, which is the password used to log in to the device.

 Choose a mount passphrase.

Enter the mount passphrase (again).

 The ecryptfs - setup - private script creates the /home/ user /Private directory and tests that the encrypted
mount works as expected.

 After rebooting the device, there will be an encrypted directory in /home/ user /Private where all
confidential company information can be stored .

 Automatic, password - less logins such as the one on Ubuntu MID mean that the ~/Private directory is
not mounted by default. This is by design and means that a password needs to be entered when clicking
on the file “ Access Your Private Data ” in the ~/Private directory. After this is done, the encrypted data
is available to the user.

 A different passphrase should be used to encrypt the mount; this is only needed if it is necessary to
manually recover data.

 Documents
 Business needs word processing software to create letters and documents, spreadsheet software
for business analysis, and calculation and presentation software for important meetings.

 OpenOffice, is a free cross - platform office application suite and is compatible with Microsoft Office, so it
is easy to exchange documents with friends and colleagues who use Windows and Microsoft Office.

c06.indd 130c06.indd 130 10/6/09 9:01:15 AM10/6/09 9:01:15 AM

Chapter 6: Application Selection

131

 A Practical Example
 OpenOffice can, however, be fairly resource - intensive, which can be a problem on a mobile device.
Because of this, the Ubuntu MID team wrote an application called Trebuchet (treb) which is a file handler
for displaying office files .

 treb is an interface that reads documents created by Microsoft Office applications. It does this by using
OpenOffice as a filter to convert the file to PDF and launching Evince to see the result. After Evince is
closed, the temporary PDF file is deleted and treb itself is closed.

 treb comes as part of the MID install, but it can also be installed using apt - get; it can be run from the
command line to present the GUI shown in Figure 6 - 1.

Figure 6-1

$ apt-get install treb
$ treb

 Multimedia Users
 Vendors offering devices for the Multimedia Users group have a preexistent and ready - made market
growing out of the current market for smart phones. Although multimedia is most often associated with
images, text, and music, it can also mean application programs that integrate data from a broad
spectrum of independent sources. Probably the best known and most popular application that does this
for mobile devices is Canola. It is built using Python and the Enlightenment Foundation Libraries (EFL),
and it uses a plug - in system to enable YouTube, Flicker, and more. There are Google Summer of Code
2009 projects approved to create plug - ins for Twitter, Remember the Milk, and even an IM client.

 EFL is covered in more detail in Chapter 4.

 Another available solution is a media center called Entertainer. This aims to be a simple and easy - to -
 use application for the Gnome and XFCE desktop environments. Entertainer is written completely in
Python and it uses GStreamer ’ s multimedia framework for multimedia playback. The user interface is
implemented with the Clutter library.

 Clutter is covered in more detail in Chapter 4.

c06.indd 131c06.indd 131 10/6/09 9:01:16 AM10/6/09 9:01:16 AM

Chapter 6: Application Selection

132

 A Practical Example
 Entertainer also includes a private video recorder, which means that it can be used to watch Live TV, and
it records shows for later viewing. To install entertainer, add the entertainer PPA to /etc/apt/sources.list

deb http://ppa.launchpad.net/entertainer-releases/ppa/ubuntu jaunty main
deb-src http://ppa.launchpad.net/entertainer-releases/ppa/ubuntu jaunty main

and then do:

$ sudo apt-get update && sudo apt-get install entertainer

Also add the GPG key to your software sources authentication (System Administration Software
Sources Authentication). Select “Import Key File . . .” and add the key found on the entertainer page.

 Then run the content manager application and choose some media folders on the device or feed URLs:

$ entertainer-content-manager

 The interface to the content manager looks like Figure 6 - 2.

Figure 6-2

c06.indd 132c06.indd 132 10/6/09 9:01:16 AM10/6/09 9:01:16 AM

Chapter 6: Application Selection

133

 Next, run the front end:

$ entertainer

 Entertainer on the Ubuntu Netbook Remix looks like Figure 6 - 3.

Figure 6-3

 To exit Entertainer, press the Q key. Other useful key commands are explained next.

 Useful Keybindings in the Entertainer GUI
 Entertainer is controlled with the keyboard, as follows:

 F — Toggle full - screen on/off.

 P — Toggle pause/play when video or audio is playing.

 S — Stop playback.

 H — Navigate to home screen; press this anywhere and main menu will be displayed.

 I — Toggle information view when watching photograph in full - screen mode.

 1, 2, 3, 4 — Change video playback aspect ratio.

 Arrow keys — Navigate menus.

 Enter — Select current menu item.

 Backspace — Navigate to previous screen.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c06.indd 133c06.indd 133 10/6/09 9:01:17 AM10/6/09 9:01:17 AM

Chapter 6: Application Selection

134

 Social Network Users
 This market segment is sometimes referred to by marketers as Generation Y (Gen Y) (this is a succession
from the term Generation X, which was made popular by the novel of the same name) and it is generally
understood to refer to people born in the early 1980s and 1990s.

 This is evidently a large market and is consequently of considerable interest to device manufacturers
and ISVs.

 People in this segment are comfortable with the Internet, particularly within social networks such as
Facebook, Twitter, and MySpace. A survey of 7,705 college students in the United States, undertaken by
Reynol Junco and Jeanna Mastrodicasa for their book Connecting to the Net.Generation: What higher
education professionals need to know about today ’ s students), has shown that a key motivator is peer
recognition. Other interesting points from this survey are that:

 97% own a computer.

 97% have downloaded music and other media using peer - to - peer file sharing.

 94% own a mobile phone.

 76% use IM and social networking sites.

 75% of college students have a Facebook account.

 60% own some type of portable music and/or video device such as an iPod.

 49% regularly download music and other media using peer - to - peer file sharing.

 34% use websites as their primary source of news.

 28% author a blog and 44% read blogs.

 15% of IM users are logged on 24 hours a day, 7 days a week.

 Consequently, areas considered important for this market segment are branding, content, and device
design.

 A Practical Example
 An interesting example of a complete operating system targeting this niche is gOS 3 Gadgets, found at
 http://thinkgos.com/index.php . gOS 3 Gadgets is a full desktop operating system for desktops and
notebooks.

 This is based on Ubuntu 8.04 and it launches Google Gadgets for Linux on startup, introducing over
100,000 possible iGoogle and Google Gadgets to the desktop. Google Gadgets are lightweight XML
programs that allow you to place interactive data inside widgets, and iGoogle is a customizable AJAX -
 based start page to access these widgets.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c06.indd 134c06.indd 134 10/6/09 9:01:18 AM10/6/09 9:01:18 AM

Chapter 6: Application Selection

135

 AJAX is a set of programming techniques that enable you to seamlessly update a web page or a section
of a web application with input from the server, but without the need for an immediate page refresh.

 gOS applications that launch in Mozilla Prism windows closely resemble the functionality of a desktop
application. Mozilla Prism also supports WINE 1.0, giving users access to Windows software.

 Mozilla Prism enables applications to run in their own window rather than in a browser. It allows a
developer access to operating system features that are common to most desktop applications.

 Google Gadgets can be installed using apt:

$ sudo apt-get install google-gadgets-gtk

 There is also a QT version available in the repositories google - gadgets - qt.

 To run the application, open a terminal and run:

$ ggl-gtk

 To start the application at system boot on Ubuntu Netbook Remix, go to Preferences Startup
Applications and click Add. In the name field, type Gadgets and in the command line, put the following:

ggl-gtk

 Now each time the device starts, Google Gadgets will autostart and present the desktop shown in
Figure 6 - 4.

Figure 6-4

c06.indd 135c06.indd 135 10/6/09 9:01:18 AM10/6/09 9:01:18 AM

Chapter 6: Application Selection

136

 A good way to learn about the gadget API is to modify an existing gadget. The following sections will
show how to create a modified hello - world gadget.

 Set Up the Environment
 Make sure that Google Desktop (http://desktop.google.com) and the latest version of SDK
(http://desktop.google.com/downloadsdksubmit) are installed.

 Copy the Gadget
 Copy the api/samples/gadgets/HelloWorld folder and name it UbuntuMobile.

 Modify It
 Inside the folder are the strings that are used in the application. Change the file to look like this:

 < strings >
 < GADGET_NAME > Professional Ubuntu Mobile Development Gadget < /GADGET_NAME >
 < GADGET_DESCRIPTION > Demonstrates how to write a Gadget < /GADGET_DESCRIPTION >
 < GADGET_COPYRIGHT > Copyright (c) 2007 Google Inc.
All Rights Reserved < /GADGET_COPYRIGHT >
 < GADGET_WEBSITE > http://desktop.google.com/ < /GADGET_WEBSITE >
 < GADGET_ABOUT > Professional Ubuntu Mobile Development Gadget
Original Copyright (c) 2007 Google Inc. All Rights Reserved
Modified by Ian Lawrence under the Apache License, Version 2.0
http://www.apache.org/licenses/LICENSE-2.0 for the book

Professional Ubuntu Mobile Development
This gadget displays the text ‘Professional Ubuntu Mobile Development’
on top of a picture using the main.xml design file.
If the text is clicked on, a message box will show up as
 an event. < /GADGET_ABOUT >
 < PUMD > Professional UME Dev < /PUMD >
 < /strings >

 Change main.xml to look like this:

 < view width=”250” height=”150” >
 < script src=”main.js” / >
 < img src=”background.png” / >
 < label x=”125” y=”70” align=”center” width=”250” size=”15” enabled=”true”
 name=”mylabel” pinX=”125” pinY=”8”
 onclick=”onTextClick();” > & PUMD; < /label >
 < /view >

 Add animation into main.js:

function onTextClick() {
 view.beginAnimation(doRotation, 0, 360, 500);
}
function doRotation() {
 mylabel.rotation = event.value;
}

c06.indd 136c06.indd 136 10/6/09 9:01:18 AM10/6/09 9:01:18 AM

Chapter 6: Application Selection

137

 Now it is possible to run the application.

 Double - click on gadget.gmanifest and install using the gadgets application that was installed earlier.
This will present the install message shown in Figure 6 - 5.

Figure 6-5

 You ’ ll also see the gadget with a nice animation, which is shown in Figure 6 - 6.

Figure 6-6

 Also update the metadata in gadget.manifest to reflect the changes in strings.xml.

 To distribute the gadget, create a Zip file (right - click on the UbuntuMobile folder and choose Create
Archive), and then change the extension from .zip to .gg and users can click the .gg file to install the
application to their netbook.

c06.indd 137c06.indd 137 10/6/09 9:01:19 AM10/6/09 9:01:19 AM

Chapter 6: Application Selection

138

 Location - Aware Users
 Users with aging parents and young children find the concept of location important to them. This user
group also has a relatively high disposable income as they have spent some years working and so
present an attractive market to an OEM. Features that users generally expect from a location - aware
mobile device include the following:

 The capability to automatically reconfigure itself, such that it always uses the right network
settings (for firewall proxies and VPN), and prints on the right printer (i.e., use the home printer
when at home, the work printer when at work)

 Security, allowing access only from designated physical locations

 Help to find it if it is misplaced, or stolen

 The ability to easily share a paper or presentation with everyone else in a room, without having
to e - mail it or set up a folder on a common server

 Some of this functionality could be presented to the user using a simple web interface running locally on
the device.

 A Practical Example
 In this section, you learn how to create a GPS - enabled standalone web application for a MID device. It
embeds a web server and database inside a Python application, which receives information from the
D - Bus interface using XML - RPC. It uses the Django web application framework.

 D - Bus is covered in more detail in Chapter 4.

 Background
 Traditionally, GPS was provided on Debian - like systems using a daemon called gpsd
(apt - get install gpsd). There are, however, some problems using gpsd in resource - constrained
environments, most notably that gpsd is designed to be run at system start, and stopped when the
system is shut down (or a USB/Bluetooth hotplug device started when that device is plugged-in or
removed). Therefore, if a client is started before gpsd is running (for example, a GPS applet is started
before the Bluetooth device is connected), then the only way for it to know about gpsd is for it to attempt
to connect to the gpsd socket and keep trying every so often until it succeeds.

 This makes gpsd client programs very busy, always having to wake up to check to see if they can
connect. On a system that runs on batteries, having processes that can ’ t sleep very often is a bad thing.
Also there is a problem with the granularity of the info that gpsd provides, as running clients get notified
about everything, even if they don ’ t care about it. GPS emits a new fix on every NMEA sentence
received, which for most GPS devices is about five a second, and each time the clients are all woken up
even if they don ’ t care about the data that has changed.

❑

❑

❑

❑

c06.indd 138c06.indd 138 10/6/09 9:01:19 AM10/6/09 9:01:19 AM

Chapter 6: Application Selection

139

 gpsd has no way for clients to say that they are only interested in position data, or only in whether the
device has a fix or not. Even if the GPS unit is stationary, satellite data is constantly changing, and
the clients will be woken up on every message. Because of these problems Iain Holmes at o - hand wrote
gypsy. This is a GPS multiplexing daemon that gives finer control of GPS info and allows programs to
call the following objects:

 Gypsy Position — For location information

 Gypsy Course — For course information

 Gypsy Accuracy — For accuracy information

 Gypsy Satellite — For satellite information

 Implementation
 First, install Django:

$ sudo apt-get install python-django

 In the Home directory, create a directory called “ Web ” and move into it like this:

$ mkdir Web;cd Web

 Next, create a directory:

$ mkdir django_projects

 Move into the Django projects directory and start a new project called “ locate ” using Django ’ s command
line utility. This will create a basic directory structure and the necessary configuration files:

$ cd ~/Web/django_projects
$ django-admin.py startproject locate

 Do not set up apache, postgresql, or mysql. (These applications are not suitable for an embedded device.)
The application will use the Cherry Py standalone WSGI server and SQLite.

 Edit settings.py so that it looks like this:

DATABASE_ENGINE = ‘sqlite3’
DATABASE_NAME = os.path.join(os.path.dirname(__file__), ‘data’, ‘locate.db’)
DATABASE_USER = ‘’ # Not used with sqlite3.
DATABASE_PASSWORD = ‘’ # Not used with sqlite3.

 The code DATABASE_NAME = os.path.join(os.path.dirname(__file__), ’ data’, ‘ locate
.db’) is a trick that enables the SQLite filesystem database to be stored in the project inside the folder

❑

❑

❑

❑

c06.indd 139c06.indd 139 10/6/09 9:01:19 AM10/6/09 9:01:19 AM

Chapter 6: Application Selection

140

called data. This is an advantage when using revision control systems in that all code can be stored in a
branch. A similar trick works for the site media — create a folder called media in the project root and
then in settings.py add the following:

import os,sys
path = os.path.dirname(sys.argv[0])
full_path = os.path.abspath(os.path.join(path, ‘../media’))

 Then set a STATIC_ROOT variable equal to full_path:

STATIC_ROOT = full_path

 Finally, in urls.py import the Django settings from django.conf. Set the static.serve to

 (r’^media/(?P < path > .*)$’, ‘django.views.static.serve’,
{‘document_root’: settings.STATIC_ROOT, ‘show_indexes’: True}),

 Also create a folder in the project root called “ server. ” Inside this folder, check out a copy of the
standalone server:

$ wget http://svn.cherrypy.org/trunk/cherrypy/wsgiserver/__init__.py -O
wsgiserver.py

 Create a file called run.py with the following in it:

import wsgiserver
#This can be from cherrypy import wsgiserver if you’re not running it standalone.
import os
import django.core.handlers.wsgi

if __name__ == “__main__”:
 os.environ[‘DJANGO_SETTINGS_MODULE’] = ‘locate.settings’
 server = wsgiserver.CherryPyWSGIServer(
 (‘127.0.0.1’, 8000),
 django.core.handlers.wsgi.WSGIHandler(),
 server_name=’Lowkate’,
 numthreads = 20,
)
 try:
 server.start()
 except KeyboardInterrupt:
 server.stop()

 Create a desktop file in /usr/share/applications that will call a script to start the server and the
midbrowser (a customized version of Firefox).

c06.indd 140c06.indd 140 10/6/09 9:01:20 AM10/6/09 9:01:20 AM

Chapter 6: Application Selection

141

[Desktop Entry]
Encoding=UTF-8
Version=1.0
Type=Application
Name=Locate
Comment=Professional Ubuntu Mobile Development
Icon=locate
Categories=Application;Utility;
Exec=/usr/bin/locateit

 Also place an image in /usr/share/icons/hicolor/48x48/apps. The locateit script looks like this:

export PYTHONPATH=”/home/ubuntu/Web/django_projects/locate/:$PYTHONPATH”
export PYTHONPATH=”/home/ubuntu/Web/django_projects/:$PYTHONPATH”
export DJANGO_SETTINGS_MODULE=locate.settings
python /home/ubuntu/Web/django_projects/locate/server/run.py &
midbrowser http://127.0.0.1:8000/geoapp/

 Clicking the icon shown in Figure 6 - 7 executes the script and starts the geo app.

Figure 6-7

 The locate project should now look like this:

$ ls
data media server __init__.py manage.py settings.py urls.py

 It is a completely self - contained project environment.

c06.indd 141c06.indd 141 10/6/09 9:01:20 AM10/6/09 9:01:20 AM

Chapter 6: Application Selection

142

 Test the Gypsy to GPS Connection
 Install the gypsy daemon and library by adding the following:

deb http://ppa.launchpad.net/ianlawrence/ppa/ubuntu jaunty main
deb-src http://ppa.launchpad.net/ianlawrence/ppa/ubuntu jaunty main

to /etc/apt/sources.list and then do the following:

$ sudo apt-get update & & sudo apt-get install gypsy

 The .debs (for 5.1) are also available at http://ianlawrence.info/downloads/debian/
gypsy-lpia/gypsy_0.5-1_lpia.deb and http://ianlawrence.info/downloads/
debian/gypsy-lpia/libgypsy0_0.5-1_lpia.deb .

 The bluetooth GPS device that was used was the Nokia Wireless GPS Module LD - 3W. To communicate
with it, you need to find out its address. Make sure bluetooth is enabled:

$ sudo apt-get install bluetooth bluez-utils bluez-gnome gnome-bluetooth
libbluetooth2 libbtctl4 libgnomebt0 nautilus-sendto

 Run the following:

user@host:~$ hcitool scan
Scanning ...

00:19:B7:8C:A7:F7 IansPhone
00:02:76:C5:58:B2 Nokia LD-3W

 This returns the address of the GPS device: 00:02:76:C5:58:B2.

 Interaction with the GPS Daemon
 The code to interact with the gypsy daemon (gypsy.py) and to show its status (status.py) was written by
Ross Burton and released LGPL and GPL respectively. It can be checked out by running the following:

$ bzr branch http://burtonini.com/bzr/gypsy-status/

 Add the bluetooth address into gypsy.py:

 dbus.mainloop.glib.DBusGMainLoop(set_as_default=True)
 gps = GPS(“00:02:76:C5:58:B2”)
 gps.Start()

 Then, inside a target terminal, add the following:

export DISPLAY=:2
python status.py

c06.indd 142c06.indd 142 10/6/09 9:01:20 AM10/6/09 9:01:20 AM

Chapter 6: Application Selection

143

 The status of the GPS is displayed, as shown in Figure 6 - 8, along with a small map of the location pulled
from a mapping API.

Figure 6-8

 D - Bus and HTTP Requests
 It is not possible to query D - Bus without starting some sort of a loop — such as the call to
 DBusGMainLoop .

 You can see it in status.py. This loop condition will not happen in a locally running web application, so
some alternative solution is necessary.

 XML - RPC is a way of allowing software running on disparate operating systems and running in
different environments to make procedure calls over the Internet. Its remote procedure calls using HTTP
as the transport and XML as the encoding. Django has an XML - RPC server already available, so install
the code that you ’ ll find at http://code.google.com/p/django-xmlrpc/ inside the application.
Make a method in settings.py like this:

XMLRPC_METHODS = (
List methods to be exposed in the form (, ,)
(‘locate.django_xmlrpc.views.handle_xmlrpc’, ‘handle_xmlrpc’,),
(‘locate.django_xmlrpc.views.handle_gypsy’, ‘handle_gypsy’,),

 In django_xmlrc/views.py, create a method signature like this:

@xmlrpc_func(returns=’string’, args=[‘string’, ‘int’, ‘int’, ‘int’,])
def handle_gypsy(timestamp, latitude, longitude, altitude):
 “””Take the values we need from the the gypsy XML object and store them in a
 database (or file system) “””
 data = Raw(time=timestamp, lat=latitude, long=longitude, alt=altitude)
 data.save()
 # This returns the values passed in (useful for debugging)
 return “The timestamp is %s, the latitude is %i, the longitude is %i, and the
altitude is %i.” % (timestamp, latitude, longitude, altitude)

 The XML - RPC client needs to pass the GPS XML object to the handle_gypsy function that is shown
in the Django Administration dialog box in Figure 6 - 9.

c06.indd 143c06.indd 143 10/6/09 9:01:21 AM10/6/09 9:01:21 AM

Chapter 6: Application Selection

144

 Also create a models.py file inside the django_xmlrpc application to store the GPS data from django.db
import models:

class Raw(models.Model):
 time = models.CharField(max_length=200)
 lat = models.FloatField()
 long = models.FloatField()
 alt = models.FloatField()

def __unicode__(self):
 return self.time

 In gypsy.py, add the following:

import xmlrpclib

 Next, add the following:

 gps.Start()

 server = xmlrpclib.ServerProxy(‘http://127.0.0.1:8000/xmlrpc/’)

 def position_changed(fields, timestamp, latitude, longitude, altitude):
 server.handle_gypsy(timestamp, latitude, longitude, altitude)

 The code passes the GPS data into the Django web application.

 All that remains to do is to query the database for the last GPS position so that it can be used in the web
interface. Create an application called geoapp with a views.py file like this:

 # Create your views here.

 from django.http import HttpResponse
 from locate.django_xmlrpc.models import Raw
 from django.shortcuts import render_to_response

Figure 6-9

c06.indd 144c06.indd 144 10/6/09 9:01:21 AM10/6/09 9:01:21 AM

Chapter 6: Application Selection

145

 def get_position(request):
 latest_GPS = Raw.objects.all().order_by(‘-id’)[:1]

 return render_to_response(‘location_list.html’, {‘latest_GPS’: latest_GPS})

 Next, create a template:

 < html >
 < head > < /head >
 < body >
{% if latest_GPS %}
 < ul >
 {% for co in latest_GPS %}
 < li >
 I am located at < a href=”http://geohash.org/?q={{co.lat}},{{co.long}}” >
this < /a > URL. < /li >
 {% endfor %}
 < /ul >
{% else %}
 No coordinates
{% endif %}
 < /body >
 < /html >

 This uses geohash.org, which is a latitude/longitude geocode system invented by Gustavo Niemeyer
when writing the web service at geohash.org, and put into the public domain. It offers short URLs to
uniquely identify positions on the Earth, so that referencing them in e - mails, forums, and websites is
more convenient.

 Figure 6 - 10 shows where we were when writing this code (and also when writing this book).

Figure 6-10

c06.indd 145c06.indd 145 10/6/09 9:01:22 AM10/6/09 9:01:22 AM

Chapter 6: Application Selection

146

 Summary
 This chapter highlighted some of the potential groups of users that an OEM can target when thinking
about the “ look and feel ” of a device. This is not an inclusive list, and there are other important groups.
For example, one type of user that was identified by members of the Ubuntu Mobile team was in Asia,
particularly in Japan, where many people use a device solely for reading e - books while taking public
transportation. Determining how to target such groups is left to you. Such a challenge requires an OEM
to think creatively about how to differentiate its offering from others on the market. We hope this chapter
has provided some insight into this process.

c06.indd 146c06.indd 146 10/6/09 9:01:22 AM10/6/09 9:01:22 AM

 Theming

 Theming allows a user or device manufacturer to customize the look and, to some extent, the feel
of the operating system, window manager, or widget set.

 This chapter begins by showing the theme structure on Ubuntu MID and Ubuntu Netbook Remix
through the gtkrc file and GConf. This is followed by a fully customized Ubuntu MID theme.
Finally, theme performance and optimization are covered along with some suggestions for further
investigation.

 What Is a Theme?
 A GTK+ theme consists of three things:

 A theme engine (sapwood in the case of Ubuntu MID), which is a shared object and
includes code to draw the graphical elements

 A configuration file to set the operation of the theme engine and the core parts of GTK+2

 Extra data files for the theme engine, such as images

 Not included in the context of themes are:

 Icons

 Backgrounds

 Fonts

 Sounds

 Not all themes have extra images and data.

❑

❑

❑

❑

❑

❑

❑

c07.indd 147c07.indd 147 10/6/09 9:01:49 AM10/6/09 9:01:49 AM

Chapter 7: Theming

148

 On Ubuntu MID, these elements are usually installed or configured by the distributor or OEM per their
preferences, and there are currently no packages and management tools available to integrate these
elements into a theme.

 Where Are Themes Located in the Filesystem?
 Themes are located in /usr/share/themes or in the user ’ s home .themes directory.

 What Is a Theme Engine and Where Are They Located?
 GTK engines are built to render buttons and everything that is “ inside ” a GTK window. That ’ s why
they ’ re called GTK engines. There are several GTK engines and they are located in: /usr/lib/gtk - 2.0/
2.10.0/engines/

 Of these, the Ubuntu MID software release uses the sapwood engine (libsapwood.so). Others included in
the package gtk2 - engines include:

 Clearlooks, the default GNOME theme, based on Bluecurve

 Crux, formerly known as the Eazel engine

 High contrast, which is used by some accessibility themes

 Industrial, the famous engine from Novell (formerly Ximian)

 LighthouseBlue, another engine based on Bluecurve

 Metal, which gives a metallic look

 Mist, a flat and high performance engine

 Redmond95, which provides a look similar to that of Windows

 ThinIce

 Theming Ubuntu MID
 Sapwood provides a server and client library for accessing theme images. The server is responsible for
loading the theme - related images and distributing them to clients. Sapwood saves memory compared to,
for example, the Pixbuf engine as it shares images between applications using a cache.

 Sapwood is also much faster because it tiles the 16 - bit images using the X Server.

 It is possible to observe this in the following location:

$ /usr/share/ubuntu-mid-default-settings/mid-gui-start

 After first checking that Compiz is not enabled, the script tells the Matchbox Window Manager to use
the mobilebasic theme:

❑

❑

❑

❑

❑

❑

❑

❑

❑

c07.indd 148c07.indd 148 10/6/09 9:01:50 AM10/6/09 9:01:50 AM

Chapter 7: Theming

149

/usr/bin/matchbox-window-manager \
 -theme /usr/share/themes/mobilebasic/matchbox/theme.xml \

 Compiz is a compositing window manager for the X Window System, which uses 3D Graphics
hardware to create desktop effects for window management.

 What Happens When a MID Device Boots?
 On boot, upstart will execute /etc/event.d/session, which will launch the X Window System using
the following command:

exec openvt -e -s - su -l ubuntu -c “env -u XDG_SESSION_COOKIE startx -- -br”

 Once X starts, it parses the session scripts in /etc/X11/Xsession.d/, including the /etc/X11/Xsession
.d/25midstartup file, which has a call

MID_GUI=/usr/share/ubuntu-mid-default-settings/mid-gui-start

 On older versions of Ubuntu Mobile there was an export of the GTK2_RC_FILES environment variables
for GTK+2 widget themes in this file, as in the following:

export GTK2_RC_FILES=/usr/share/themes/mobilebasic/gtk-
2.0/gtkrc:/usr/share/themes/mobilebasic/gtk-2.0/gtkrc.maemo_af_desktop

 These files define all the GTK+2 styles and bindings that will create the look and feel of all the widgets in
the applications and in the Hildon desktop.

 On Ubuntu Jaunty, the GTK theme changes are now made by setting the following GConf key to the
name of a theme directory: /desktop/gnome/interface/gtk_theme . For example, this could be set to
 mobiletheme or any other valid theme in the theme directory by using the following:

gconftool-2 --set --type string /desktop/gnome/interface/gtk_theme mobiletheme

 When that key changes, the change is propagated to xsettings and, through this, all GTK apps are
notified of the new theme, and they immediately redraw themselves. GTK applications launched later
than the key change will automatically start using the new theme.

 GConf, which was discussed in depth in Chapter 4, is a system for storing application preferences. It
exists so that application preferences can be more easily managed. It is also process transparent. This
means that a setting changed in one application will instantly update in all other applications that are
interested in that setting. This technology is vital for the application of coherent user interfaces on mobile
devices.

 The easiest way to manage GConf settings is to use gconf - editor :

$ sudo apt-get install gconf-editor
$ gconf-editor

c07.indd 149c07.indd 149 10/6/09 9:01:50 AM10/6/09 9:01:50 AM

Chapter 7: Theming

150

 This displays an interface according to the settings that are available. In addition to using the front - end
gconf - editor, settings can be inspected using gconftool . Run the following command:

$ gconftool-2 -R /desktop/gnome

 This displays the Ubuntu Mobile Desktop settings. Run the following command:

$ gconftool-2 --get-default-source

 This shows the location of the XML backend, which GConf uses as a database.

 Modifying Themes
 It is often necessary to customize themes, particularly when working with an OEM. Before doing this,
you might want to read “ Visual Design of the GNOME Human Interface Guidelines, ” at
 http://library.gnome.org/devel/hig-book/stable/ , which starts as follows:

 Visual design is not just about making your application look pretty. Good visual design is about
communication. A well - designed application will make it easy for the user to understand the
information that is being presented, and show them clearly how they can interact with that information.

 Substitute the word “ application ” for “ theme ” in the preceding quote and you should have a good idea
about the objective of theming.

 A Useful Tool When Working with Themes
 This following bash script displays information on the current theme. It is useful to use when working
with themes and GConf.

 First, install zenity, which is a handy suite of GTK widgets:

$ sudo apt-get install zenity

 Call the script that follows get_theme_info.sh and execute it like ./get_theme_info.sh (after
making it executable):

#!/bin/bash
icons=$(gconftool-2 -g /desktop/gnome/interface/icon_theme)
theme_gtk=$(gconftool-2 -g /desktop/gnome/interface/gtk_theme)
theme_metacity=$(gconftool-2 -g /apps/metacity/general/theme)
font_gtk=$(gconftool-2 -g /desktop/gnome/interface/font_name)
font_meta=$(gconftool-2 -g /apps/metacity/general/titlebar_font)
zenity --info --text “
icons: $icons
GTK theme: $theme_gtk
metacity theme: $theme_metacity
gtk font: $font_gtk
metacity font: $font_meta
Professional Ubuntu Mobile Development”

c07.indd 150c07.indd 150 10/6/09 9:01:51 AM10/6/09 9:01:51 AM

Chapter 7: Theming

151

 The result displays the information that ’ s shown in Figure 7 - 1.

Figure 7-1

 Theme Structure
 This section explores the mobile theme on Ubuntu MID. This theme is based on the structure of themes
in Hildon, which Ubuntu inherited from upstream. The layout (from /usr/share/themes/mobilebasic)
looks like:

/usr/share/themes/mobiletheme/gtk-20/
 index.theme
 gtkrc
 gtkrc.cache
images/
 *.png
matchbox/
 theme.xml

 The two main files within this structure are theme.xml and gtkrc.

 The theme.xml File
 Some simple window decoration customization can be achieved by modifying things within the theme.
xml file. It defines things such as the Main title bar decoration and some dialog decorations as well.

 The three basic resources in a theme.xml file are:

 Colors

 Fonts

 Images

 Before using them, declare them all in the format:

id :definition

❑

❑

❑

c07.indd 151c07.indd 151 10/6/09 9:01:51 AM10/6/09 9:01:51 AM

Chapter 7: Theming

152

For example

<type id=”object name” definition=”data” />

where the type is the color, font, pixmap, etc, id is the object’s unique name, and definition is the
metadata to be set.

 A color is defined as follows:

 < color id=”osso-DialogTitleTextColor” def=”#ffffff” / >

 A font is defined as follows:

 < font id=”osso-TitleFont” def=”Nokia Sans-17.85” / >

 An image is defined as follows:

 < pixmap id=”dialoguptile” filename=”../images/qgn_plat_dialog_frame_tile_top.png” / >

 The gtkrc File
 More complex customizations involve changing the gtkrc file. This file is common to theming on both
Ubuntu Netbook Remix and Ubuntu MID; conceptually, it is useful to think that the GTK theme “ lives ”
inside the gtkrc file. The file format is case - sensitive, comments are marked with a # (hash). Multi - line
comments are also possible with comments similar to the C language such as /* */ .

 A gtkrc file is a text file composed of a sequence of declarations. Hash (#) characters delimit comments
and the portion of a line after a # is ignored when parsing a gtkrc file.

 This file gtkrc is not very tolerant to typos and errors so be careful when changing the code.

 Customizing a gtkrc File
 The following gtkrc file applies a theme to all widgets (buttons, scrollbars, edit boxes).

 Technically, every widget is derived from GtkWidget . This means, changes to the properties of
 GtkWidget will affect all widgets and the concept of inheritance applies. Properties of GtkButton will
also be applied to GtkCheckButton and so on unless it is explicitly stated otherwise. The complete GTK
Class hierarchy is available at http://library.gnome.org/devel/gtk/stable/ch01.html.

 It does this by specifying a style . A style can either be applied to the actual GTK theming system itself
such as in the following code or to the specific theme “ engine ” that ’ s used by the theme (in the case of
Ubuntu Netbook Remix, Murrine, and with Ubuntu MID, sapwood) as follows:

style “default-style”
{
 # modify the x/y thickness to determine padding between text and border of
 # widgets.
 xthickness = 2
 ythickness = 2

 # style on a slider
 GtkRange::slider-width = 15

c07.indd 152c07.indd 152 10/6/09 9:01:52 AM10/6/09 9:01:52 AM

Chapter 7: Theming

153

 # set the background to a light grey
 bg[NORMAL] = “#f6f6f6”
 # and the forground to black
 fg[NORMAL] = “#000000”
}

class “GtkWidget” style “default-style”

 The code creates a style called default - style and then sets some padding on the widgets, styles a slider,
sets some colors, and applies the style using the class GtkWidget . These are explained in the following
sections.

 Padding
 This sets the padding using an x,y coordinate system.

 Styles
 Style properties are in the form

WidgetName::style-property-name = VALUE

 The preceding slider looks like this:

GtkRange::slider-width = 15

 The global picture theming style for the mobilebasic theme on MID looks like this:

 # global picture theming.
 GtkWidget::hildon-focus-handling = 1
 GtkWidget::focus-line-width = 0
 GtkWidget::focus-padding = 0

 Colors
 It is possible to change some sections of the gtkrc file to match our theme ’ s colors. In the preceding code,
color takes the following format:

bg[NORMAL] = “#f6f6f6”

 bg stands for background. The following table describes the four valid categories:

 Category Usage

 fg Foreground color. Used for text on buttons. Also used for the button borders in
some engines.

 bg Background color. This is the background color of windows and buttons.

 text Text color for text input widgets and lists .

 base Background color of text widgets and lists .

c07.indd 153c07.indd 153 10/6/09 9:01:52 AM10/6/09 9:01:52 AM

Chapter 7: Theming

154

 Applying the Style
 In GTK, there are three ways to apply styles — the class , widget_class , and widget statements, of
which the class and widget are the most important.

 In the preceding code, the style was applied by this call:

class “GtkWidget” style “default-style”

 When finding styles that are relevant to the current widget, a widget hierarchy applies so that the style
will be applied to whichever widget class name matches the one in the code. The hierarchy looks
something like this (in order of importance):

 GtkWidget

 GtkContainer

 GtkBin

 GtkButton

 GtkToggleButton

 In the preceding example, styles are applied to the top - level widget (GtkWidget) and then cascaded
down.

 The use of widget_class to apply styles is not covered here. widget matches work on the names
of the widgets. This is very useful if there is a specific widget in an application that needs to be modified.

 GTK applies the different “ styles ” in the preceding order. Styles that merged later on override the
settings of the earlier ones. This makes sense, as the class matches are very broad while the widget
matches are very specific and often pick out just a single widget.

 Theming Ubuntu MID
 You can theme two ways: manually and automatically.

 Manually Theming MID
 To create a theme from scratch that ’ s based on the existing mobilebasic theme on Ubuntu MID, copy the
default mobilebasic theme to a new directory called pumd - theme and then move it into the Matchbox
directory.

 It is also possible to use hildon - theme - tools and the command hildon - theme - bootstrap to
create and then package a new theme. This is explained in the section “ Automatically Theming MID. ”

$ cd /usr/share/themes/
$ sudo mkdir pumdtheme
$ sudo cp -r mobilebasic/* pumdtheme
$ cd pumdtheme/matchbox

❑

❑

❑

❑

❑

c07.indd 154c07.indd 154 10/6/09 9:01:52 AM10/6/09 9:01:52 AM

Chapter 7: Theming

155

 Open the file theme.xml in this folder and change the metadata first line to

 < theme name=”pumdtheme” author=”Ian Lawrence” desc=”A theme created for the book
Professional Ubuntu Mobile Development, published by Wiley” version=”0.1”
engine_version=”1” cache=”false” >

 Next, change the following:

 < color id=”osso-TitleTextColor” def=”#eec73e” / >
 < color id=”osso-DialogTitleTextColor” def=”#403008” /

 For the new MID theme, change the color definitions in the gtkrc file in the gtk - 20 folder to the
following:

color[“DefaultTextColor”] = “#eec73e”
color[“EmpTextColor”] = “#204a87”
color[“PaintedDefaultTextColor”] = “#ffffff”
color[“DisabledTextColor”] = “#babdb6”
color[“ProgressTextColor1”] = “#000000”
color[“ProgressTextColor2”] = “#000000”
color[“SecondaryTextColor”] = “#5a5a5a”
color[“TitleTextColor”] = “#000000”
color[“DialogTitleTextColor”] = “#403008”

 These steps change the color of the fonts in the menus.

 Now open the file index.theme in the main directory and change it to the following:

[Desktop Entry]
Type=X-Hildon-Metatheme
Name=PUMDTheme
Icon=/usr/share/themes/pumdtheme/images/qgn_plat_theme_thumbnail.png
Encoding=UTF-8
[X-Hildon-Metatheme]
GtkTheme=pumdtheme
IconTheme=gnome
X-MatchboxTheme=pumdtheme
X-OperaSkin=default.zip

 Also modify the appropriate images in the images folder. A tool that ’ s useful when working with images
is called xmag . It is provided by the package x11 - apps:

apt-get install x11-apps

 x11 - apps provides a miscellaneous assortment of X applications that ships with the X Window System,
including xmag , x11perf, and x11perfcomp, which are tools for benchmarking graphical operations
under the X Window System (see the section “ Performance Testing of Themes ”).

Making all the changes above and changing the appropriate images will create a new theme. For
example, the theme that’s shown in Figure 7 - 2 is based on the Intrepid release of Ubuntu MID. If you
do not have new images to add it is possible to clearly see the changes made by opening a terminal (the
terminal color changes).

c07.indd 155c07.indd 155 10/6/09 9:01:53 AM10/6/09 9:01:53 AM

Chapter 7: Theming

156

Figure 7-2

 It is possible to include the .gtkrc - 2.0 file in the default user home directory that loads the theme (this
works because it loads the XSETTINGS for the icons).

 XSETTINGS is a mechanism on Linux that allows the configuration of settings and then allows these
settings to be propagated across all applications at runtime.

A simple gtkrc-2.0 file in a user’s home directory can just be an include file, as shown below:

$ cat ~/.gtkrc-2.0
include “/usr/share/themes/pumdtheme/gtk-2.0/gtkrc”

 Automatically Theming MID
In the previous section, we manually themed Ubuntu MID. It is possible to automate this process
through the use of the hildon-theme-tools package. This is installed using apt:

$ sudo apt-get install hildon-theme-tools

 The package contains various tools that can be used for theming on Ubuntu MID. Begin by installing the
subversion package

$ sudo apt-get install subversion

and then run the following:

$ hildon-theme-boostrap

 This will download a skeleton theme into the specified directory. Move into the template directory and
edit the template.svg as required using an image editor such as GIMP.

Make sure you select the second option, 2) hildon-theme-layout-4, since layout-3 is not supported by MID.

 Next, to build a debian package of the theme, it is necessary to change a couple of things in the debian
folder. In the control file, remove the dependency on the hildon - theme - cacher. In the postinst file,
remove the line above DEBHELPER , which calls the theme cacher utility:

 hildon - theme - cacher caches the gtkrc files — it is not used on Ubuntu MID.

c07.indd 156c07.indd 156 10/6/09 9:01:53 AM10/6/09 9:01:53 AM

Chapter 7: Theming

157

 Next, install the dependencies that are required to build the theme package:

$ sudo apt-get install fakeroot hildon-theme-layout-4 cdbs debhelper dpkg-dev

 Build the package by running the following:

$ dpkg-buildpackage -tc -rfakeroot

 This will create both a .tar.gz and the .deb — for example, hildon - theme - pumd_4.2.0 - 1_all.deb.

 The Makefile.am in the data directory calls hildon - theme - subst (another tool in the hildon - theme - tools
package), which makes substitutions in gtkrc files.

 The resulting .deb can then be uploaded to a PPA or installed locally using the following:

$ dpkg -i hildon-theme-pumd_4.2.0-1_all.deb

 Theming Ubuntu Netbook Remix
 Theming Ubuntu Netbook Remix is done in the same way as theming the main Ubuntu distribution itself.

 Actually, the theme that is referred to in this section is an XFCE theme, but because XFCE uses the
Murrine engine, it also works nicely on UNR.

 The theme itself is based on an existing theme called MurrinaSegPhault v0.02, which is itself composed
of two engines — Murrine and Clearlooks. This is a nice innovative technique; it uses the Clearlooks
rendering engine for specific widgets and Murrine for everything else (a big nod to Ryan Paul at
arstechnica for this discovery).

 In order for this to work, the engine that will override the default needs to be specified inside a style
block in a gtkrc file like this:

style “theme-notebook” = “theme-wide”
{
 base[SELECTED] = “#e3bd3b” # Tab selection color
 bg[ACTIVE] = “#e4d79e” # Unselected tabs
 engine “clearlooks” {
 style = GLOSSY
 }

 The “ engine ” keyword is used to specify the desired theme engine for rendering the specific element,
and the braces that follow can be used to set specific options for that theme engine.

 The creation of the actual package, xfce4 - theme - ubuntu - golden.deb, is covered in Chapter 5.

To see the actual gtkrc file for the theme, add

deb http://ppa.launchpad.net/ianlawrence/ppa/ubuntu jaunty main
deb-src http://ppa.launchpad.net/ianlawrence/ppa/ubuntu jaunty main

c07.indd 157c07.indd 157 10/6/09 9:01:54 AM10/6/09 9:01:54 AM

Chapter 7: Theming

158

to /etc/apt/sources.list and then do

sudo apt-get update && apt-get source xfce4-theme-ubuntu-golden

Other parts of the UNR system can be customized, as explained below.

 Boot Splash
 Usplash is an application that draws a splash screen at boot with a throbber to show the boot process.

 To customize this, download the source of a usplash theme (here usplash - theme - ubuntu) using the
following code:

$ sudo apt-get source usplash-theme-ubuntu

and move into the folder and customize the images. Optionally, create new images (with a maximum
depth of 256 colors) and also customize usplash - theme - ubuntu.c. When the changes have been made,
run the following:

$ sudo dpkg-buildpackage -d

which will create the new usplash package.

Karmic usplash will only be used in situations where the boot process needs to be delayed for some
reason – for example, to fsck a filesystem or to ask for an encryption password. usplash is being replaced
by xsplash (https://edge.launchpad.net/xsplash), which is a new tool written by Canonical to
bring the X Server up as quickly as possible to help speed up the boot process.

 Creating a gdm Theme
 A custom gdm theme can be made for UNR — an example is shown in Figure 7 - 3.

Figure 7-3

 This theme consists of some images — the background, a screenshot, and some icons — and a
GdmGreeterTheme.desktop file, along with an XML file, which contains information about the theme layout.

c07.indd 158c07.indd 158 10/6/09 9:01:54 AM10/6/09 9:01:54 AM

Chapter 7: Theming

159

 A good way to learn how to theme the Gnome Display Manager is to get the source of an existing theme
in the repositories — for example, apt - get source ubuntustudio - gdm - theme .

 A good way to test a gdm theme during its creation is to make a .tar.gz of all the files mentioned and
then to install it to System Administration Login Window and select the Local tab. Click Add
and select the .tar.gz file (the file chooser shows the roots home folder by default so browse to the
directory where the tar.gz was saved) and then select the radio button next to the theme. After doing
this, make sure xnest is installed (apt - get install xnest) and then run the following:

$ gdmflexiserver --xnest

 The new gdm theme will be displayed in a window. This method can also be used to take the screenshot
for the package itself. When finished, roll a new debian package using dpkg - buildpackage :

$ sudo dpkg-buildpackage -d

 Customizing the Netbook Launcher
 It is possible to customize the launcher on Ubuntu Netbook Remix. The files are located in /usr/share/
netbook - launcher .

 When installed on UNR, xfce4 - theme - ubuntu - golden looks like Figure 7 -4 .

Figure 7-4

Figure 7-5

 After the netbook - launcher is customized, the device looks like Figure 7 -5 .

 Ubuntu Netbook Remix is now customized from the initial boot splash to the desktop.

c07.indd 159c07.indd 159 10/6/09 9:01:54 AM10/6/09 9:01:54 AM

Chapter 7: Theming

160

 Per formance Testing of Themes
 It is possible to run a range of performance tests on themes. The simplest test to run is one using the
metacity - theme - viewer.

 Metacity is a compositing window manager that is used by default in GNOME.

 Run the following command on UNR:

$ metacity-theme-viewer Human

 It outputs the following results:

Loaded theme “Human” in 0.02 seconds
Drew 100 frames in 0.61 client-side seconds (16.1 milliseconds per frame) and
3.4817 seconds wall clock time including X server resources (34.817 milliseconds
per frame)

 Test the Human Metacity Theme
 The theme should render properly in all the tabs. There ’ s also a Benchmark tab that can be used to
compare rendering speeds with other themes. For example, the Human theme on Ubuntu Netbook
Remix takes 34.817 milliseconds to draw one window frame, whereas the Simple theme takes 8.84145
milliseconds.

 Another benchmarking tool for GTK+ themes is called GtkPerf. It is available through apt (sudo apt - get
install gtkperf). This tool works also on Ubuntu MID.

 It can be run like this:

gtkperf -a -c 1000

 Comparisons
 Here are the results of the test for the theme and netbook launcher in the previous section. It is for
Ubuntu Netbook Remix running on an LPIA base. The device is an Acer Aspire One:

GtkPerf 0.40 - Starting testing: Sun Jun 7 21:00:07 2009
GtkEntry - time: 1.31
GtkComboBox - time: 53.03
GtkComboBoxEntry - time: 35.79
GtkSpinButton - time: 7.05
GtkProgressBar - time: 15.15
GtkToggleButton - time: 9.06
GtkCheckButton - time: 7.59
GtkRadioButton - time: 11.90
GtkTextView - Add text - time: 170.83
GtkTextView - Scroll - time: 17.47
GtkDrawingArea - Lines - time: 25.75

c07.indd 160c07.indd 160 10/6/09 9:01:55 AM10/6/09 9:01:55 AM

Chapter 7: Theming

161

GtkDrawingArea - Circles - time: 34.02
GtkDrawingArea - Text - time: 31.43
GtkDrawingArea - Pixbufs - time: 3.89

Total time: 424.30

 The following is the result of the same test on the same xfce - ubuntu - golden theme and customized
launcher but with an XFCE base:

GtkPerf 0.40 - Starting testing: Sun Jun 14 11:36:52 2009
GtkEntry - time: 1.16
GtkComboBox - time: 27.28
GtkComboBoxEntry - time: 20.25
GtkSpinButton - time: 2.94
GtkProgressBar - time: 2.19
GtkToggleButton - time: 2.77
GtkCheckButton - time: 2.25
GtkRadioButton - time: 3.02
GtkTextView - Add text - time: 160.87
GtkTextView - Scroll - time: 12.03
GtkDrawingArea - Lines - time: 32.52
GtkDrawingArea - Circles - time: 33.27
GtkDrawingArea - Text - time: 39.06
GtkDrawingArea - Pixbufs - time: 5.12

Total time: 344.76

 The following is the out - of - the - box standard Ubuntu Netbook Remix i386, default theme, and launcher:

GtkPerf 0.40 - Starting testing: Sun Jun 14 22:36:05 2009
GtkEntry - time: 1,09
GtkComboBox - time: 31,86
GtkComboBoxEntry - time: 17,61
GtkSpinButton - time: 5,84
GtkProgressBar - time: 16,18
GtkToggleButton - time: 4,71
GtkCheckButton - time: 4,38
GtkRadioButton - time: 8,00
GtkTextView - Add text - time: 152,51
GtkTextView - Scroll - time: 12,92
GtkDrawingArea - Lines - time: 31,97
GtkDrawingArea - Circles - time: 29,94
GtkDrawingArea - Text - time: 22,76
GtkDrawingArea - Pixbufs - time: 4,73

Total time: 344,51

 The most obvious difference to note from these results is that the performance on an LPIA base is much
worse than on the default Ubuntu Netbook Remix base. Also, there is very little difference between the
default netbook remix and the XFCE version — only really in GtkTextView.

c07.indd 161c07.indd 161 10/6/09 9:01:55 AM10/6/09 9:01:55 AM

Chapter 7: Theming

162

 Setting Option “ RenderAccel ” “ true ” in the xorg configuration gives a performance boost,
particularly with GtkTextView. To do this, back up the current /etc/X11/xorg.conf . A good way to do
this is to run the following:

$ sudo dpkg-reconfigure xserver-xorg

 Accept the defaults. Make the device section of the new xorg.conf look like this:

Section “Device”
 Identifier “Configured Video Device”
 Option “UseFBDev” “true”
 Option “RenderAccel” “true”
EndSection

 Setting RenderAccel to true can give some unexpected results such as screen lockups (it ’ s for this reason
that it is not enabled by default by the Ubuntu developers). Test this on a device thoroughly.

 Setting this on the XFCE base running Ubuntu Netbook Remix and restarting gave a GtkTextView time
of 150.95, a 10 second improvement on the original.

 It is also possible to get some performance improvements by using the latest version of the Murrine
engine from the GNOME repositories. Murrine Engine is a “shiny” and popular GTK2 engine.

 To get this benefit, compile the theme engine itself inside a MID image by adding the multiverse and
universe repositories to sources.list, and install the dependencies:

$ sudo apt-get install linux-headers-`uname -r` build-essential checkinstall
libgtk2.0-dev imagemagick libtool

 Download the latest svn:

$ svn co http://svn.gnome.org/svn/murrine/trunk/

 Move inside the source code directory and run the following:

$./autogen.sh
$./configure --prefix=/usr --enable-animation
$ make
$ sudo checkinstall

This will pop up some questions. Answer yes to create the default docs and choose a new package
description. Then choose a new package version number for the debian policy, and then Enter. This will
create a debian file which can be installed using dpkg -i.

 X Window Testing
 If there is an expensive routine in your theme that cannot be explained through some theme
modification, it is possible to test the relative performance of the X Window graphics adapter itself to see
if the problem lies there. This is done through the use of x11perf, which attempts to run through most of
the X drawing operations and then characterizes how many of these operations the X Server can perform
in a given period of time.

c07.indd 162c07.indd 162 10/6/09 9:01:56 AM10/6/09 9:01:56 AM

Chapter 7: Theming

163

 To show this working, tests were run on an eeePC and Acer Aspire One using the following (this can also
be run on MID):

$ x11perf -all

 Both netbook operating systems were fully up - to - date. They were then compared using x11perfcomp,
which merges the output of several runs into a nice tabular format.

 Overall, the Acer Aspire One performed much better, as you can see in the following results, which is a
cherry pick of the operations in which the Aspire One was much quicker than the Eee PC. This is shown
by the figure in parentheses. For example, on the operation Fill 100x100 stippled trapezoid
(17x15 stipple) , the Aspire One in column 1 was 2.73 times quicker than the Eee PC in column 2.

 1 2 Operation
-------- ----------------- -----------------

 897.0 2450.0 (2.73) Fill 100x100 stippled trapezoid (17x15 stipple)
 1060.0 3230.0 (3.05) Fill 100x100 opaque stippled trapezoid (17x15 stipple)
 171.0 452.0 (2.64) Fill 300x300 opaque stippled trapezoid (17x15 stipple)
 1510.0 3870.0 (2.56) Fill 100x100 stippled trapezoid (161x145 stipple)
 301.0 552.0 (1.83) Fill 300x300 stippled trapezoid (161x145 stipple)
 2320.0 4920.0 (2.12) Fill 100x100 equivalent complex polygons

 Summary
 A good way to learn theming is to examine other people ’ s themes. This chapter has shown the make - up
of a theme and how theming works on both Ubuntu MID and on Ubuntu Netbook Remix. It also
discussed basic theme customization and how this can be performance tested. Part of the appeal of
Ubuntu for an OEM is that it is fully customizable and that a device can be configured to look exactly as
the manufacturer wishes. This is a powerful feature as more and more device manufactures become
involved in the mobile device market.

c07.indd 163c07.indd 163 10/6/09 9:01:56 AM10/6/09 9:01:56 AM

c07.indd 164c07.indd 164 10/6/09 9:01:56 AM10/6/09 9:01:56 AM

 Kernel Fine - Tuning

 The kernel is the portion of software that ’ s closest to the hardware. It is responsible for the device
management and the system ’ s basic functionality as well as ensuring that the system will be secure
and robust enough to run all the applications.

 The Linux kernel is fully configurable. It was designed to support a large number of different
platforms and for each platform can be set up in many different ways. Ubuntu Mobile has some
stable and generic kernel configurations, which support various platforms with a few kernel
packages. A consequence of this is that probably an end user will not have to do any extra work to
get Ubuntu Mobile running properly on supported hardware. However, this generalization can
mean decreased system performance, which is one area of specific interest to OEMs and device
manufacturers.

 This chapter demonstrates kernel - tuning methods that enable you to create kernel packages. The
results are more specific to the target hardware and more optimized for the hardware ’ s usage
patterns.

 Ubuntu MID Kernel Overview
 The Ubuntu MID kernel is based on the LPIA architecture. This architecture was designed to
support i386 devices, but uses a different set of configurations from all previous i386 - based
Ubuntu kernels. LPIA ’ s build options are mainly focused on power management.

 Kernel - Tuning Methods
 The user can approach kernel optimization using one of two methods .

 The first method creates an Ubuntu package. This is a better choice in a situation that has at least
one of the following requirements:

c08.indd 165c08.indd 165 10/6/09 9:02:29 AM10/6/09 9:02:29 AM

Chapter 8: Kernel Fine - Tuning

166

 A standard Ubuntu kernel package needs to be created.

 The latest development Ubuntu kernel version needs to be used.

 The optimization should be based on an existing Ubuntu kernel package flavor.

 The generated package should be integrated with Ubuntu as much as possible.

 The second method results in a Debian package. This is a better choice in a situation that has at least one
of the following requirements:

 A Debian package is wanted or at least is enough to start with.

 It is not a requirement to use an Ubuntu kernel.

 The developer thinks it ’ s a simpler method.

 If both methods are applicable, then the first one would be a better solution. Although it seems obvious,
it ’ s important to mention here that an OEM or user should know the hardware specifications in order to
create the customized kernel package capable of running correctly on a target device.

 Create an Ubuntu Package
 As mentioned earlier, this method creates an Ubuntu kernel package. The kernel source from Ubuntu
has plenty of scripts capable of generating various kernel packages in an automated way. Consequently,
as a prerequisite to this method, the user should get the source from Ubuntu.

 There are two choices when downloading the kernel source. You can obtain it from either a deb or a
git repository. In order to have the latest stable Ubuntu kernel source, you have to get it from the
Ubuntu git repository. In general, the source from a deb repository won ’ t be as up - to - date as a git
repository. So, first we demonstrate the method of getting the source from git and then we cover the use
of a deb repository. However, before starting the process, it is necessary to install some dependencies:

$ sudo apt-get update
$ sudo apt-get install git-core fakeroot makedumpfile kernel-wedge
$ sudo apt-get install libncurses5-dev build-essential
$ sudo apt-get build-dep linux

 Now, clone the Ubuntu kernel tree:

$ git clone git://kernel.ubuntu.com/ubuntu/ubuntu-jaunty.git \
 ubuntu-jaunty.git
$ cd ubuntu-jaunty.git/

 The first step is to add the new flavor to the build scripts. Add it to the lpia architecture in both files
shown here:

❑

❑

❑

❑

❑

❑

❑

c08.indd 166c08.indd 166 10/6/09 9:02:30 AM10/6/09 9:02:30 AM

Chapter 8: Kernel Fine - Tuning

167

$ cd debian/
$ cd scripts/misc
$ sed -e s/getall\ lpia\ lpia/getall\ lpia\ lpia\ lpiacustom/ -i getabis
$ cd ../../
$ cd rules.d/
$ sed -e s/lpia/lpia\ lpiacustom/ -i lpia.mk
$ cd ../

 Now enter the config directory. This is where all of the specified architecture configuration settings can
be modified:

$ cd config/lpia/

 As you can see in this directory, there are two config files. One is the common configuration file config
for all flavors. Another is config.lpia , which is the particular configuration for the lpia flavor. As the
new flavor is based on the current lpia flavor, you can copy the particular configuration file, as follows:

$ cp config.lpia config.lpiacustom

 Now append the config file for all flavors. This will make it possible to remove the common config file
later on, as every flavor will have the configuration.

$ cat config > > config.lpia
$ cat config > > config.lpiacustom

 The next step is to edit the lpiacustom configuration file. This can be done manually through the
following command:

$ vim config.lpiacustom

 It can also be done by using an ncurses front - end configuration tool for the kernel.

 Ncurses is a toolkit for developing GUI - like applications that run under a terminal. Its header files must
be installed prior to proceeding.

 First go back to the parent directory:

$ cd ../../../

 Now prepare the kernel and then configure it using the front end:

$ debian/rules prepare-lpiacustom
$ make O=debian/build/build-lpiacustom menuconfig

 At this point, a screen that looks like Figure 8 - 1 should appear.

c08.indd 167c08.indd 167 10/6/09 9:02:30 AM10/6/09 9:02:30 AM

Chapter 8: Kernel Fine - Tuning

168

 In the new flavor, you will change only some processors that are related options, and all the rest will be
kept the same as in the previous “ lpia ” flavor. So, select the highlighted Processor type and features
option that ’ s shown in Figure 8 - 2.

 Figure 8 - 2

 Figure 8 - 1

 Two specific options are going to be customized: Symmetric multi - processing support and Processor
family. As the target device is a single processor machine, the first option can be disabled in order to
avoid a small overhead generated to deal with multiprocessor machines. In the second case, choosing the
correct processor and not the generic one allows for optimization.

 The configurations demonstrated here might not be the best for your device. Please refer to your device ’ s
technical reference to figure out what options should be selected. When working with an OEM, this
should also be specified in an agreement called a “ term of work. ”

 So, after those changes are made, the screen will appear as in Figure 8 - 3.

c08.indd 168c08.indd 168 10/6/09 9:02:31 AM10/6/09 9:02:31 AM

Chapter 8: Kernel Fine - Tuning

169

 Of course, it ’ s also possible to customize any other configuration in this step. Make sure the changes are
saved before leaving this front end by selecting Yes, as shown in Figure 8 - 4.

 Figure 8 - 4

 Figure 8 - 3

 Now there is a new customized configuration file. That new file should replace the previous
config.lpiacustom :

$ cp debian/build/build-lpiacustom/.config \
 debian/config/lpia/config.lpiacustom

 The next two commands will finish this customization stage. As you already have the particular (and
optimized) configuration, and the generic config files were already appended to all the other
configuration files in a previous step, you can delete this common file in order to generate a another up -
 to - date one:

$ rm debian/config/lpia/config

c08.indd 169c08.indd 169 10/6/09 9:02:32 AM10/6/09 9:02:32 AM

Chapter 8: Kernel Fine - Tuning

170

 Before generating the new common config file, there ’ s an observation to be made depending on how the
customization was done. If it ’ s done by the ncurses front end, the following command will run without
any interaction from the user. However if it ’ s edited manually, it is possible that some questions will be
asked and you should proceed only if you are absolutely sure what is being done. For this reason, we
recommend that you don ’ t do it manually. Use the ncurses front end instead:

$ debian/scripts/misc/oldconfig lpia

 The next step is to add the new kernel packages. It is necessary to create the following files:

debian/control
debian/control.stub

 In both files, it ’ s necessary to edit and create three new packages based on the current lpia package. The
package entries that are going to be copied are: linux - image - 2.6.28 - 8 - lpia, linux - headers - 2.6.28 - 8 - lpia,
and linux - image - debug - 2.6.28 - 8 - lpia. After copying the files, it ’ s necessary to edit them in order to write
the correct descriptions. Afterwards, the user should have three new entries.

 The first one is:

Package: linux-image-2.6.28-8-lpiacustom
Architecture: lpia
Section: base
Priority: optional
Pre-Depends: dpkg (> = 1.10.24)
Provides: linux-image, linux-image-2.6, fuse-module, kvm-api-4,
redhat-cluster-modules
Depends: initramfs-tools (> = 0.36ubuntu6), coreutils | fileutils (> = 4.0),
module-init-tools (> = 3.3-pre11-4ubuntu3), wireless-crda
Conflicts: hotplug (< < 0.0.20040105-1)
Recommends: lilo (> = 19.1) | grub
Suggests: fdutils, linux-doc-2.6.28 | linux-source-2.6.28
Description: Customized Linux kernel image for version 2.6.28
 This package contains a customized Linux kernel image for version 2.6.28.
 .
 Also includes the corresponding System.map file, the modules built by the
 packager, and scripts that try to ensure that the system is not left in an
 unbootable state after an update.

 The second new entry is:

Package: linux-headers-2.6.28-8-lpiacustom
Architecture: lpia
Section: devel
Priority: optional
Depends: coreutils | fileutils (> = 4.0), linux-headers-2.6.28-8, ${shlibs:Depends}
Provides: linux-headers, linux-headers-2.6
Description: Linux kernel headers for version 2.6.28
 This package provides kernel header files for version 2.6.28.
 .
 This is for sites that want the latest kernel headers. Please read
 /usr/share/doc/linux-headers-2.6.28-8/debian.README.gz for details.

c08.indd 170c08.indd 170 10/6/09 9:02:33 AM10/6/09 9:02:33 AM

Chapter 8: Kernel Fine - Tuning

171

 The third new entry is:

Package: linux-image-debug-2.6.28-8-lpiacustom
Architecture: lpia
Section: devel
Priority: optional
Provides: linux-debug
Description: Linux kernel debug image for version 2.6.28
 This package provides a customized kernel debug image for version 2.6.28.
 .
 This is for sites that wish to debug the kernel.
 .
 The kernel image contained in this package is NOT meant to boot from. It
 is uncompressed, and unstripped. This package also includes the
 unstripped modules.

 Now that all dependencies and steps are completed, the next step is to compile the kernel and generate
the new customized kernel packages. Type the command that follows:

$ AUTOBUILD=1 NOEXTRAS=1 fakeroot debian/rules binary-lpiacustom

 At this point, getting a cup of coffee is a nice idea while you wait for the end of the compilation. When
this step is finished, it will be possible to find the packages that were created in the parent directory. Go
there and analyze all the new files:

$ cd ../
$ ls *.deb

 Now it is completed. All that is left is to install the kernel package files using the following command:

$ sudo deb -i < put right files > .deb

 As mentioned earlier, it is necessary to explain how to get the kernel source code without the need for
git version control. As it is not much more simple than when using git, and the downloaded source is
almost always an out - of - date Ubuntu kernel version, this is not the better choice. Do this only if you
really don ’ t need an up - to - date kernel, or if you just prefer to do it this way.

 Before proceeding, deb - src entries must be added to the source.list file.

 Next, synchronize the package index file by typing the command:

$ sudo apt-get source linux-image-`uname -r`

 Now it ’ s possible to get the kernel source directly from deb repositories:

$ sudo apt-get source linux-image-`uname -r`

 The directory created is pretty much the same as was created through the git tool, and the steps to
customize the kernel are identical as well.

c08.indd 171c08.indd 171 10/6/09 9:02:33 AM10/6/09 9:02:33 AM

Chapter 8: Kernel Fine - Tuning

172

 Create a Debian Package
 If the OEM or user aims to build a non - Ubuntu kernel source or would like to generate a Debian
package, this is probably the right method to choose because you want to use the latest official 2.6 kernel
tree. Of course, it will also work with any other official and non - official compilable kernel tree.

 This method offers two primary ways to get the kernel source code. As in the previous Ubuntu method,
it ’ s possible to get it either from git or from the debian repositories. Let ’ s first look at the git repository
and then the deb source repositories.

 The non - Ubuntu git repository used here is the latest official linux - 2.6 kernel tree from kernel.org.
However, the source repository could be changed. The same logic applies to the deb repository as well.
Only the initial steps will be different — i.e. the kernel configuration, compilation, and installation steps
are all kept equal.

 The first step in this method is to ensure the user has all dependencies already installed on the device:

$ sudo apt-get update
$ sudo apt-get install git-core fakeroot makedumpfile
$ sudo apt-get install libncurses5-dev build-essential
$ sudo apt-get install kernel-package
$ sudo apt-get build-dep linux

 Now get the linux tree:

$ git clone \
 git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git \
 linux-2.6.git

 It ’ s important to mention that this tree is intended for development purposes and may not be stable. So,
if anything during the compilation goes wrong, it is possible to change to any previous workable version
using the git tool.

 This step can last some time depending on the connection speed. After it ’ s completed, a directory called
linux - 2.6.git will be created. This is the place where all the work will be done. Change to:

$ cd linux-2.6.git/

 Unlike the first method, there is no pre - built workable configuration file. In order to avoid wasting time
looking for an initial workable one, just copy the configuration file used by the current kernel. This
should decrease the customizing time:

$ cp /boot/config-`uname -r` .config

 Now the kernel source is downloaded and there is an initial configuration file. It is time to start the
configuration stage. There are many ways to do this and the ncurses front end will be shown here.

 The configuration steps through the ncurses front end will look like Figures 8 - 1, 8 - 2, and 8 - 3, respectively.
It can be started by typing the following command:

$ make menuconfig

c08.indd 172c08.indd 172 10/6/09 9:02:33 AM10/6/09 9:02:33 AM

Chapter 8: Kernel Fine - Tuning

173

 Before leaving the front end, make sure that everything is saved properly by choosing Yes in the screen
that ’ s shown in Figure 8 - 4.

 If the user did not use any front end, before proceeding to the next step, it ’ s interesting to run an extra
command to update the configuration file edited:

$ make oldconfig

 Now compile and create the Debian package. We should define two parameters here:
- - append - to - version name and - - revision number . The first parameter is a short description of
the target ’ s customized kernel. The second one is useful if you want to inform the Debian package
manager which is the newer compilation when there are various compiled packages in the future. So, the
first compilation will start with 1, and every new package built will have a revision increased by 1.

 To make the kernel compile and to ensure that the package is properly built, type the following
command:

$ fakeroot make-kpkg --initrd --append-to-version -cuustom --revision 1 \
 kernel_image kernel_headers

 By adding kernel_image and kernel_headers, the kernel image package and its headers are built as well.
The - - initrd is needed to create an initial RAM disk and to make the boot happen in two stages. In the
first stage, the initial RAM disk is mounted as a temporary root filesystem, which will help the system ’ s
root filesystem to be mounted properly. Thanks to this first stage, the configured kernel could compile as
a module (and not as a built in) almost everything in the kernel. These required modules will be loaded
before the real filesystem is mounted.

 When that compilation step is finished, the kernel packages are ready to be installed. To ensure that this
completed correctly, look for the following files in the parent directory:

$ cd ../
$ ls linux-image- < kernel’s version > -1-custom.deb
$ ls linux-headers- < kernel’s version > -1-custom.deb

 If, for any reason, any problem occurred in the compilation step, go back to any known workable version
of the kernel — for example, v2.6.29 - rc6 at the time of this writing. Each official version has a tag in the
git tree.

 Git is explained in further detail in Appendix B but it will be covered here briefly, too. Enter the kernel
directory again:

$ cd linux-2.6.git/

 Now type the command that follows to see all tags created in the kernel git tree. Then choose the latest
one or any other older one.

c08.indd 173c08.indd 173 10/6/09 9:02:33 AM10/6/09 9:02:33 AM

Chapter 8: Kernel Fine - Tuning

174

$ git tag

(...)
v2.6.28
v2.6.28-rc1
v2.6.28-rc2
v2.6.28-rc3
v2.6.28-rc4
v2.6.28-rc5
v2.6.28-rc6
v2.6.28-rc7
v2.6.28-rc8
v2.6.28-rc9
v2.6.29-rc1
v2.6.29-rc2
v2.6.29-rc3
v2.6.29-rc4
v2.6.29-rc5
v2.6.29-rc6 latest

 As the official version is the newest one, make the git tree go back to it by executing the command
shown here:

$ git checkout v2.6.29-rc6

 Before proceeding, it ’ s necessary to update the kernel ’ s configuration file again. It might not be necessary
to run any front end now so just type the command:

$ make oldconfig

 For every possible question, just hit Enter and choose the default option. Now, the kernel is ready to be
compiled again. Run the following instructions to restart the compilation:

$ make-kpkg clean
$ fakeroot make-kpkg --initrd --append-to-version -custom --revision 1 \
 kernel_image kernel_headers

 If everything is fine this time, it ’ s possible to see the built packages by running the commands
demonstrated earlier.

 Now, the last step is just to install those packages. Go to the parent directory:

$ cd ../

 The packages can be installed by typing the following:

$ sudo dpkg -i linux-image- < kernel’s version > -1-custom.deb
$ sudo dpkg -i linux-headers- < kernel’s version > -1-custom.deb

c08.indd 174c08.indd 174 10/6/09 9:02:34 AM10/6/09 9:02:34 AM

Chapter 8: Kernel Fine - Tuning

175

 The alternative way to download the kernel source is via the dpkg tool. Unfortunately, using this method
will almost always mean an out - of - date kernel version will be downloaded. The first action here then is
to figure out which version is available:

$ sudo apt-get install linux-image-2.6

 The message printed will be similar to this one:

Reading package lists... Done
Building dependency tree
Reading state information... Done
Package linux-source-2.6 is a virtual package provided by:
 linux-source-2.6.26 2.6.26-13
 linux-source-2.6.28 2.6.28-1
You should explicitly select one to install.
E: Package linux-source-2.6 has no installation candidate

 The latest one should be selected:

$ sudo apt-get install linux-source-2.6.28

 When the package is installed, it has to be extracted to any workable directory by the following
command:

$ cd < user’s directory >
$ tar xjf /usr/src/linux-source-2.6.28.tar.bz2
$ cd linux-source-2.6.28

 The source is now ready.

 Updating a Customized Kernel Tree
 The kernel will continuously evolve. Newer versions are going to be released after the customized kernel
packages created earlier were made. Fortunately, the git control version tool supports updating a
modified kernel tree (at least with less effort than reapplying all the changes shown previously).

 We will demonstrate two scenarios for updating a kernel tree — the choice depends on whether an
Ubuntu Linux kernel tree is being used or not. It is important to have a good understanding of the git
tool in order to proceed in this section, particularly if the first method is chosen. Please refer to Appendix
B, which covers git usage, if you need clarification for any step.

 Updating an Ubuntu Kernel Tree
 If you choose the first method, one of the main advantages is that the latest Ubuntu kernel version can be
used. If new changes are released in that git tree, it ’ s possible to update the downloaded kernel tree and
apply it without having to redo the modifications.

c08.indd 175c08.indd 175 10/6/09 9:02:34 AM10/6/09 9:02:34 AM

Chapter 8: Kernel Fine - Tuning

176

 The first step when doing this is to verify the modified files and the current branch in the git tree. Before
doing anything go to the kernel tree directory. Then start by typing the following command to get the
current branch:

$ git branch

 The result should be like this:

$ * master

 This means the “ master ” branch is selected. Now, get the list of all modified files:

$ git status

On branch master

Changed but not updated:

(use “git add < file > ...” to update what will be committed)

modified: debian/config/lpia/config

modified: debian/config/lpia/config.lpia

modified: debian/control

modified: debian/control.stub

modified: debian/rules.d/lpia.mk

modified: debian/scripts/misc/getabis

Untracked files:

(use “git add < file > ...” to include in what will be committed)

build/

debian/config/lpia/config.lpiacustom

 There are two lists in the result: “ Changed but not updated ” and “ Untracked files. ” The first one refers to
all files that already exist but are modified. The second one refers to the new files (either created by the
user or not). It ’ s possible more untracked files could be found than those shown in the preceding code.
That should not be a problem. However if the exact steps were followed from Creating An Ubuntu
Package, the first list should be as shown. If not, redo this section.

 To save the new customized configuration, a new branch needs to be created in the user ’ s git tree — and
then the “ master ” branch should be reset to its locally unmodified state. Let ’ s create the new branch
called “ custom ” and check it out:

c08.indd 176c08.indd 176 10/6/09 9:02:34 AM10/6/09 9:02:34 AM

Chapter 8: Kernel Fine - Tuning

177

$ git checkout -b custom

M debian/config/lpia/config

M debian/config/lpia/config.lpia

M debian/control

M debian/control.stub

M debian/rules.d/lpia.mk

M debian/scripts/misc/getabis

Switched to a new branch “custom”

 The new branch is now created. The modified files need to be added prior to storing their modifications:

$ git add debian/config/lpia/config debian/config/lpia/config.lpia
$ git add debian/control debian/control.stub debian/rules.d/lpia.mk
$ git add debian/scripts/misc/getabis

 Then, the untracked file called config.lpiacustom, which was created previously, needs to be added using
the following command:

$ git add debian/config/lpia/config.lpiacustom

 All modifications are now marked to be saved. It ’ s possible to check this by typing the following
command:

$ git status

 And the result should be:

On branch custom

Changes to be committed:

(use “git reset HEAD < file > ...” to unstage)

modified: debian/config/lpia/config

modified: debian/config/lpia/config.lpia

new file: debian/config/lpia/config.lpiacustom

modified: debian/control

modified: debian/control.stub

modified: debian/rules.d/lpia.mk

c08.indd 177c08.indd 177 10/6/09 9:02:34 AM10/6/09 9:02:34 AM

Chapter 8: Kernel Fine - Tuning

178

modified: debian/scripts/misc/getabis

Untracked files:

(use “git add < file > ...” to include in what will be committed)

build

 Unlike the previous “ git status, ” this time there ’ s a new list called “ Changes to be committed. ” Every
modification that ’ s included in this list will be committed using the following command:

$ git commit

 A text editor appears. The command will complete after the file is saved and the editor is exited. If the
editor is exited without saving, the commit command is aborted. Before saving the file, the user needs to
write some short description for the commit, as shown in the following code:

lpia: custom: Customized configuration for lpia

This patch adds the custom flavour
 in lpia arch

Signed-off by: User Name < user@email.com >
Please enter the commit message for your changes. Lines starting
with ‘#’ will be ignored, and an empty message aborts the commit.
Committer: root < root@esdhcp03540.(none) >
On branch custom
Changes to be committed:
(use “git reset HEAD < file > ...” to unstage)
modified: debian/config/lpia/config
modified: debian/config/lpia/config.lpia
new file: debian/config/lpia/config.lpiacustom
modified: debian/control
modified: debian/control.stub
modified: debian/rules.d/lpia.mk
modified: debian/scripts/misc/getabis
Untracked files:
(use “git add < file > ...” to include in what will be committed)
build/

 This message is similar to an e - mail but with some additional rules. The first one is that all lines starting
with # will be ignored. The first line is the subject. Its description should be short and direct. Then, after
an empty line, is the patch ’ s description as the e - mail ’ s body. It needs to be longer and more complete
and can have more than one line. After one more empty line is the patch ’ s sign - off. The person who signs
the “ patch - off ” guarantees that it really works. After saving the file and exiting the editor, all
modifications are applied to the local working branch. By typing the next command, it ’ s possible to
confirm that the patch is really saved:

$ git log

c08.indd 178c08.indd 178 10/6/09 9:02:35 AM10/6/09 9:02:35 AM

Chapter 8: Kernel Fine - Tuning

179

 The resulting screen looks as follows:

commit 6d6ef0fca469453cc64a6bcfca31e15a1c8a002f

Author: root < root@esdhcp03540.(none) >

Date: Sun Mar 22 14:57:59 2009 +0000
 lpia: custom: Customized configuration
 This patch adds the custom flavour in lpia arch
 Signed-off by: User Name < user@email.com >
commit 75d2d4cd02f92e7c7d9fce28bef556c79bdbed92
Author: Amit Kucheria < amit.kucheria@ubuntu.com >
Date: Thu Feb 26 12:00:37 2009 +0200
 UBUNTU: Updating configs (arm:ixp4xx)
 Beeper is compiled in to beep helpfully during installs
 Signed-off-by: Amit Kucheria < amit.kucheria@ubuntu.com >
commit 68a81f84a1361bc016209dfadd1f0ad1371dedf3
Author: Tim Gardner < tim.gardner@canonical.com >
Date: Wed Feb 25 14:25:05 2009 -0700
 UBUNTU: Start new release
 Ignore: yes

 Signed-off-by: Tim Gardner < tim.gardner@canonical.com >
(More commits...)

 There ’ s no need for it to be exactly the same as just shown. Probably the last two entries will not be the
same and the first one could have some differences as well. The main issue here is that the first
description must be the same as what was entered previously. If it is, then it is done. The new branch ’ s
status can be obtained from git as a confirmation that there ’ s no pending modification:

$ git status

root@esdhcp03540:~/ubuntu-jaunty.git# git status

On branch custom

Untracked files:

(use “git add < file > ...” to include in what will be committed)

build/

 All files added prior to the commit are not listed anymore. This means that their modification is now
part of the local branch. So, as the next step, let ’ s check out the “ master ” branch again to be able to
update it and get the latest Ubuntu kernel version.

$ git checkout master

c08.indd 179c08.indd 179 10/6/09 9:02:35 AM10/6/09 9:02:35 AM

Chapter 8: Kernel Fine - Tuning

180

 Before proceeding with the kernel update, it ’ s necessary to make sure there are no pending modifications
in the working branch. You can once again use the git status command:

$ git status

 If there is a “ Changed but not updated ” list, then the working branch is not clean. It ’ s possible to reset
the working branch and lose all modification with the following command:

$ git reset -hard HEAD

 Now the working branch does not have any pending modifications. The next step is to update the
 “ master ” branch:

$ git pull

 A lot of messages will be printed out now. It is only necessary to be worried if an error message is
shown. If it is, the best action is to try and reset, and pull again. This branch is a copy of the official
Ubuntu branch, so the patch is only applied against the “ custom ” one. To achieve the target of this
section and get the “ custom ” branch up - to - date, let ’ s check out the “ custom ” branch again:

$ git checkout custom

 The next git command will update the “ custom ” branch and then try to reapply the user ’ s patch on top
of that:

$ git rebase master

 The result now is unpredictable and there are many ways to solve any possible conflicts or problems. If
everything is fine, just proceed to the next step; if a conflict occurs, a solid knowledge of git is
fundamental. Please refer to Appendix B. If a conflict occurs that you can ’ t solve, the best solution is to
reset the file to the “ master ” branch and then redo the changes afterwards.

 To figure out if there ’ s a conflict, see if a message like this one (containing the error entries) is printed out
after the rebase operation:

First, rewinding head to replay your work on top of it...
Applying: l
error: patch failed: debian/control:285
error: debian/control: patch does not apply
error: patch failed: debian/control.stub:285
error: debian/control.stub: patch does not apply
error: patch failed: debian/scripts/misc/getabis:77
error: debian/scripts/misc/getabis: patch does not apply

 Then, for each file with an error, just type the following:

$ git checkout master < error file >
$ git add < error file >

 In the case of conflicts, the following command will continue the rebase operation:

$ git rebase --continue

c08.indd 180c08.indd 180 10/6/09 9:02:35 AM10/6/09 9:02:35 AM

Chapter 8: Kernel Fine - Tuning

181

 If a file were reset to the “ master ” branch, then is should be modified again. After it ’ s done, or if no
conflict occurred, then the kernel is now up - to - date.

 Update a Non - Ubuntu Kernel Tree
 The second update method is really simple to execute. It is best used if the second method was utilized
to create a kernel package. There are two main steps: updating the kernel tree and updating the kernel
configuration.

 First update the kernel tree by typing the following command:

$ git pull

 After the command is done, the next step is to update the kernel configuration in the existing .config file
in the kernel ’ s directory. As demonstrated, it ’ s possible to configure the kernel either using an ncurses
front end or using the very simple text interface. The ncurses front end is selected with the following
command:

$ make menuconfig

 It ’ s possible now to configure the kernel. Another alternative configuring method is as follows:

$ make oldconfig

 This one is a bit more complicated as a query pops up for each new configuration added to the kernel.
The front end will automatically choose the default value for every new item, but the same can be done
in the simple text interface by simply pressing Enter for all the questions.

 Dynamic Kernel Module Suppor t
 Refer to the Dynamic Kernel Module Support (DKMS) official page for more information, which you ’ ll
find at http://linux.dell.com/dkms/ .

 As shown previously, it is possible to tune a Linux kernel to make the configuration closer to the actual
device hardware being used, rather than sticking with a more generic solution provided by the
distribution. According to the methods shown previously, the entire kernel needs to be compiled and
installed. This means that the tuned kernel could be quite different from the generic one and could
behave quite differently, too. Of course, it might not be a problem if the source comes from a stable
release.

 But what if the OEM just needs to update a driver version or just use a drive that is not present in
the current kernel? Is it necessary to change the whole kernel to a new (or old) version that contains the
required driver? The answer is no, thanks to the Linux kernel ’ s ability to add new functionalities at
runtime by loading a kernel module. It is possible to compile and load a new driver without having to
touch the already configured and compiled kernel image.

 There are many reasons for the OEM not to want to change the current kernel when trying to use a new
or up - to - date driver version:

c08.indd 181c08.indd 181 10/6/09 9:02:36 AM10/6/09 9:02:36 AM

Chapter 8: Kernel Fine - Tuning

182

 It ’ s much easier and quicker to compile and install the driver only.

 The OEM may need to stick with the current kernel for compatibility reasons.

 In some situations, it might be forbidden to use a non - tested kernel for reliability reasons. This
means that a new kernel version would result in more enforced validation and increased costs
before being pushed to an end user.

 The required driver (or driver version) is not currently present in the kernel tree.

 There are a plenty of different ways to deliver a driver that resides outside the kernel tree or a new
version that is currently either not applied or not available in the current kernel yet. If it ’ s not well
standardized, it can mean a lot of work for driver developers to make each delivered driver version
compatible with the many kernel versions and/or Linux distributions that exist and also a lot of work
for the final users to get, build, and install the driver.

 In order to help developers and users, a framework that ’ s called Dynamic Kernel Modules Support was
created. It provides a very easy mechanism to deliver and install new (or up - to - date) drivers by using
few and simple commands and configurations. The following section demonstrates how to use this
framework and how users can get the most out of it.

 Inside the DKMS Framework
 The DKMS has some commands to export its usability to the userland . But before we demonstrate them,
it ’ s important to show how this framework works internally.

 “ Userland ” refers to any code that ’ s located outside the kernel.

 DKMS has its own modules tree. Every module needs to be added to that tree prior to being built and
properly installed. The four valid states a module can be in are as follows:

 Out of DKMS tree

 Added to DKMS tree

 Built

 Installed

 The desired module needs to reside in the /usr/src path inside the < module > - < version > / directory.
That is the place where the framework will look for the drivers. The module must have a dkms.conf file
properly configured. This configuration file should be provided by whoever is delivering the driver with
DKMS framework support.

 In order to better understand DKMS usage, imagine the following scenario. There is a module package
called openafs, which uses DKMS and comes natively with Ubuntu. This is a distributed, cross - platform,
open source filesystem for sharing of files between remote computers. Currently, the version provided

❑

❑

❑

❑

❑

❑

❑

❑

c08.indd 182c08.indd 182 10/6/09 9:02:36 AM10/6/09 9:02:36 AM

Chapter 8: Kernel Fine - Tuning

183

by Ubuntu is 1.4.9, but the latest stable version is 1.4.10. We ’ ll use DKMS to demonstrate how to install
the up - to - date version in a pre - installed tuned kernel, while at the same time keeping the openafs
Ubuntu version installed in the generic kernel provided by the distribution. Consequently, both versions
will be installed at the same time and both managed by the DKMS framework.

 Basic DKMS Commands
 There will be two kernels installed: linux - image - 2.6.28 - 11 - generic (Ubuntu) and linux - image - 6 - 29 - custom
(Tuned).

 It ’ s important to note that the headers must also be installed on the kernel images.

 The kernel from Ubuntu will be the active kernel. The first step is to install the openafs - 1.4.9 already
provided by Ubuntu. Notice that everything should be done as root.

apt-get install openafs-modules-dkms

 As you can see, the openafs module is automatically compiled and installed. This happens because the
 dkms commands are already encapsulated in the .deb installation scripts. Now that the 1.4.9 version has
been installed , it is necessary to download the newer version (1.4.10) so that this can be installed
alongside the 1.4.9 version. The more recent version is already present in the Debian repositories, so the
next step is to get it:

wget -c http://ftp.debian.org/debian/pool/main/o/openafs/openafs-modules-dkms_
1.4.10+dfsg1-2_i386.deb

 It is not advisable to install the driver as a regular deb file. If this were to happen, it would overwrite the
Ubuntu package and consequently overwrite the older version. The goal is to keep the Ubuntu version
with the Ubuntu kernel and install the newest version in the tuned kernel.

 Inside the deb file is a directory called openafs - 1.4.10 which is what is needed. Extract it from the deb file
and copy it to the correct path in order to use it with DKMS:

ar vx openafs-modules-dkms_1.4.10+dfsg1-2_i386.deb
tar xzvf openafs-modules-dkms_1.4.10+dfsg1-2_i386.deb
cp -fr usr/src/openafs-1.4.10 /usr/src

 After running these commands, the newest driver is copied to the /usr/src path. At this point the driver
is out of the DKMS tree. Now it is possible to start to use the dkms commands. The first task is to verify
the current status of all the drivers in the tree. At least the openafs v1.4.9 (which is already installed) will
be shown:

dkms status
openafs, 1.4.9, 2.6.28-11-generic, i686: installed

 If nothing is shown after the status command, then no openafs module is installed. Something might
be wrong with the openafs - modules - dkms package installation. That step must be redone.

 Now it is possible to add the up - to - date driver to the tree and change its state to Added to the DKMS tree:

c08.indd 183c08.indd 183 10/6/09 9:02:37 AM10/6/09 9:02:37 AM

Chapter 8: Kernel Fine - Tuning

184

dkms add -m openafs -v 1.4.10 -k 2.6.29-custom

 Like status , add is the command that tells what you ’ re doing.

 Three options can be used in the command:

dkms < command > OPTIONS:

 - m : Refers to module name

 - v : Refers to the module ’ s version

 - k : Refers to the kernel version

 Now it is possible to repeat the previous step to see what is different:

dkms status
openafs, 1.4.10: added
openafs, 1.4.9, 2.6.28-11-generic, i686: installed

 As the driver is now added to the tree, it is possible to build the driver with the command:

dkms build -m openafs -v 1.4.10 -k 2.6.29-custom

 And the dkms status is now:

dkms status
openafs, 1.4.10, 2.6.29-custom, i686: built
openafs, 1.4.9, 2.6.28-11-generic, i686: installed

 With the driver already built, the last step is to install it:

dkms install -m openafs -v 1.4.10 -k 2.6.29-custom

 Then, the dkms status prints it in the Installed state:

dkms status
openafs, 1.4.10, 2.6.29-custom, i686: installed
openafs, 1.4.9, 2.6.28-11-generic, i686: installed

 This means the two driver versions are both installed; each one is installed in a different kernel following
the initial plan.

 Because it ’ s possible to build/install modules by using simple DKMS commands, it ’ s also possible to
remove/uninstall them. The uninstall command changes an installed driver to the Built state. The driver
is not present in the system anymore but it can be installed again without having to rebuild it:

❑

❑

❑

c08.indd 184c08.indd 184 10/6/09 9:02:37 AM10/6/09 9:02:37 AM

Chapter 8: Kernel Fine - Tuning

185

dkms uninstall -m openafs -v 1.4.10 -k 2.6.29-custom
dkms status
openafs, 1.4.10, 2.6.29-custom, i686: build
openafs, 1.4.9, 2.6.28-11-generic, i686: installed

 The dkms remove command results in changing the driver state to Out of the DKMS tree. After that, it ’ s
necessary to add/build/install the driver once more:

dkms remove -m openafs -v 1.4.10 -k 2.6.29-custom
dkms status
openafs, 1.4.9, 2.6.28-11-generic, i686: installed

 It is very simple to use the DKMS framework as it ’ s shown here. However, this is not all that the
framework can do. In order to demonstrate this, let ’ s extend the example scenario. What if the OEM has
its custom kernel installed in many devices and it ’ s necessary to install the up - to - date driver in all of
them? This would be a considerable job doing each device separately. However, DKMS can create
a tarball file from the built driver and load it again from another device that has the same installed
kernel. The package goes directly to the Build state and can be installed without the compilation step. It
means the extra devices do not need to have the linux - header package (this is necessary only for the
compilation step).

 The driver should be at least in the Build state. So, for the following tests, the openafs - 1.4.10 driver must
be at least compiled with the dkms build command. The OEM can redo the steps if it ’ s necessary. Then,
the tarball file can be created by typing the following:

dkms mktarball -m openafs -v 1.4.10 -k 2.6.29-custom
Marking modules for 2.6.29-custom (i686) for archiving...
Marking /var/lib/dkms/openafs/1.4.10/source for archiving
Tarball location:
/var/lib/dkms/openafs/1.4.10/tarball/openafs-1.4.10-kernel2.6.29-custom-i686.dkms.
tar.gz
cp /var/lib/dkms/openafs/1.4.10/tarball/openafs-1.4.10-kernel2.6.29-custom-i686.
dkms.tar.gz.

 The file created can be copied and can be used on any other device that has the custom kernel installed.
If the device does not have the custom kernel installed but the OEM wants to test the functionality, it can
be simulated by removing the driver with the dkms remove command, which deletes the /usr/src/
openafs - 1.4.10 directory. Consequently, there won ’ t be any trace of the module in the current machine.
The tarball loading action can be done by typing the following:

dkms ldtarball --archive openafs-1.4.10-kernel2.6.29-custom-i686.dkms.tar.gz
dkms status
openafs, 1.4.10, 2.6.29-custom, i686: built
openafs, 1.4.9, 2.6.28-11-generic, i686: installed

 As you can see by the dkms status , the driver is already loaded in the Build state. It ’ s necessary just to
install it again to get it usable in the current custom kernel.

c08.indd 185c08.indd 185 10/6/09 9:02:37 AM10/6/09 9:02:37 AM

Chapter 8: Kernel Fine - Tuning

186

 Summary
 In a generic kernel package, it ’ s very hard to provide everything that an OEM needs to provide if it is
targeting a large, worldwide user base. Even if this were possible, the optimizations come at a cost. This
chapter has shown methods for making a kernel closer to a device by getting a generic kernel and
optimizing it.

 Of course, it is not possible to say exactly what should be done for each device as each device needs a
different optimization. Instead, this chapter demonstrated how optimization can be achieved through
simple steps. By using a well - tuned kernel, an OEM and, more importantly, an end user can get much
more use and pleasure out of a device.

c08.indd 186c08.indd 186 10/6/09 9:02:38 AM10/6/09 9:02:38 AM

 Testing and Usability

 Ubuntu Mobile has been developed in a highly decentralized manner. However, in order for it to
be attractive to both the ISV and OEM communities, it must provide better or equivalent levels of
reliability than that provided by proprietary platforms.

 Independent software vendor (ISV) is a business term for companies specializing in making or
selling software that is designed for mass markets or for niche markets.

 This chapter first focuses on the Mago that the Ubuntu QA team is using to test automate the
desktop and which can be used to test devices using the accessibility framework. Next, it shows
how to create and test an example application and how to verify its compatibility with the Linux
Standard Base (LSB) Testing Toolkit.

 The chapter discusses other testing tools — specifically those tools for package testing — and then
it shows some tools that are useful for general performance and usability. Finally, the chapter
concludes with a discussion about possible strategies for testing. It also shows how to submit a
bug report correctly to the Ubuntu developers if errors are discovered.

 Why Test?
 Testing can never completely establish the correctness of software. Instead, it provides a
comparison that measures the state and behavior of the software or hardware against some known
or expected benchmarks. These may include specifications, comparable products, past versions of
the same product, user or customer expectations, or relevant standards. The need for high quality
testing is obvious — it has been estimated that software bugs cost the US economy alone more
than $59.5 billion in 2002 (http://www.nist.gov/public_affairs/releases/n02-10.htm). It
has also been estimated that more than a third of this cost could have been avoided if better
software testing was performed .

c09.indd 187c09.indd 187 10/6/09 9:03:04 AM10/6/09 9:03:04 AM

Chapter 9: Testing and Usability

188

 Ubuntu Desktop QA
 Currently, testing the functionality of the GNOME desktop on Ubuntu means using the accessibility
libraries to trigger the user interface widgets of the application under test. A prerequisite to this
happening is that the Assistive Technology Service Provider Interface (AT - SPI) be enabled.

 AT - SPI technologies are currently migrating to D - Bus. See Chapter 4 and Appendix E for more on D - Bus.

 To do this on Ubuntu Netbook Remix, go to Preferences Assistive Technologies and select the Enable
assistive technologies checkbox. This can be seen in Figure 9-1

Figure 9-1

 The interface is enabled at login using gdm, so restart the GNOME session (log out and log in again).
Also, if Compiz is enabled for the desktop then accessibility will not work. In this case, choose the plain
gnome session in gdm.

 Next, install the Python packages python - ldtp, python - distutils - extra, and python - setuptools (as well as
Bazaar if it is not already installed):

$ sudo apt-get install python-ldtp, python-distutils-extra python-setuptools bzr

 Mago — A Desktop Testing Initiative
 To use Mago, check out this branch:

$ bzr branch lp:mago

c09.indd 188c09.indd 188 10/6/09 9:03:05 AM10/6/09 9:03:05 AM

Chapter 9: Testing and Usability

189

 Move into the newly created folder and run one of the tests:

$ cd mago
$ PYTHONPATH=. ./bin/mago -a notify-osd

 This runs the notify - osd test, which verifies the functionality of the new messaging daemon (for more on
this new messaging system in Ubuntu, see Chapter 4). The results of the test are stored in the .mago
folder in the home directory, and the HTML file can be displayed in a browser.

 Building an Application for Testing
 To set up a hypothetical test scenario, an example application will be built and then tested. This
application is an embedded web browser, built using the Mozilla libraries. This application will be tested
for both functionality and for its compliance with established Linux standards.

 Such an embedded browser could be useful for kiosk applications where perhaps the full functionality of
a browser is not required.

 For the purposes of this chapter, the focus is on keeping the browser simple; some of the GTK widgets in
the actual application, such as Refresh and Stop, are not hooked up to anything in terms of code.
However, the location bar is functional so that URLs can be entered and URI resources can be accessed.

 A URI (Uniform Resource Identifier) consists of a string of characters used to identify or name a
resource on the Internet.

 Getting Started
 In a terminal window, make sure that the required libraries can be imported:

$ python
Python 2.5.2 (r252:60911, May 7 2008, 15:19:09)
[GCC 4.2.3 (Ubuntu 4.2.3-2ubuntu7)] on linux2
Type “help”, “copyright”, “credits” or “license” for more information.
 > > > import gtk
 > > > import gnome.ui
 > > > import gtk.glade
 > > > import gtkmozembed
location: /usr/lib/xulrunner-1.9.0.1/libxpcom.so
before 3
 > > >

 gtkmozembed is available in the python - gnome2 - extras package.

c09.indd 189c09.indd 189 10/6/09 9:03:05 AM10/6/09 9:03:05 AM

Chapter 9: Testing and Usability

190

 Application Creation
 Start Glade and create an interface with a window, a vertical box, and a toolbar. For each item,
set the accessibility name and description. This allows Mago to test the user interface using the AT - SPI
accessibility layer bindings.

 The Glade widget tree is shown as well as the accessibility properties for the main window in Figure 9 - 2.

Figure 9-2

 The URL entry box needs to be made active. To do this, click on the text entry to make it active in the
properties window. Then select the Signals tab and select Activate. A text entry emits the Activate signal
when the Enter key is pressed. This will make a default handler of on_entry1_activate , which is fine.

 The following code snippet displays the beginning of the Glade file. It shows some of the main structures
such as GtkWindow and GtkVBox enabled for accessibility and, therefore, for automated testing:

 < ?xml version=”1.0” standalone=”no”? > < !--*- mode: xml -*-- >
 < !DOCTYPE glade-interface SYSTEM “http://glade.gnome.org/glade-2.0.dtd” >
 < glade-interface >
 < widget class=”GtkWindow” id=”PUMD” >
 < property name=”visible” > True < /property >
 < property name=”title” translatable=”yes” > Embedded Browser < /property >
 < property name=”type” > GTK_WINDOW_TOPLEVEL < /property >
 < property name=”window_position” > GTK_WIN_POS_NONE < /property >
 < property name=”modal” > False < /property >
 < property name=”resizable” > True < /property >
 < property name=”destroy_with_parent” > False < /property >
 < property name=”icon” > pixmaps/hello-world-48x48.png < /property >
 < property name=”decorated” > True < /property >

c09.indd 190c09.indd 190 10/6/09 9:03:06 AM10/6/09 9:03:06 AM

Chapter 9: Testing and Usability

191

 < property name=”skip_taskbar_hint” > False < /property >
 < property name=”skip_pager_hint” > False < /property >
 < property name=”type_hint” > GDK_WINDOW_TYPE_HINT_NORMAL < /property >
 < property name=”gravity” > GDK_GRAVITY_NORTH_WEST < /property >
 < property name=”focus_on_map” > True < /property >
 < property name=”urgency_hint” > False < /property >
 < accessibility >
 < atkproperty name=”AtkObject::accessible_description” translatable=”yes” >
An embedded browser < /atkproperty >
 < /accessibility >
 < child >
 < widget class=”GtkVBox” id=”vbox1” >
 < property name=”visible” > True < /property >
 < property name=”homogeneous” > False < /property >
 < property name=”spacing” > 0 < /property >
 < accessibility >
 < atkproperty name=”AtkObject::accessible_name” translatable=”yes” > vbox1
 < /atkproperty >
 < atkproperty name=”AtkObject::accessible_description” translatable=”yes” >
 The main box < /atkproperty >
 < /accessibility >
 < child >

 Note the accessibility node in the preceding code, which is represented by the following:

 < accessibility >
 < atkproperty name=”AtkObject::accessible_name”
translatable=”yes” >
 vbox1 < /atkproperty >
 < atkproperty name=”AtkObject::accessible_description”
translatable=”yes” >
 The main box < /atkproperty >
 < /accessibility >

 The browser itself is a wrapper that will initialize the GNOME application and load all of the
widgets through a call to self.widgets = gtk.glade.XML(“ pumd.glade “) . The following is
the code for the browser:

#!/usr/bin/env python
import gtk
import gnome.ui
import gtk.glade
import gtkmozembed
APPNAME=”PUMD”
APPVERSION=”0.1”

class BrowserWrapper:

 def __init__(self):
 # register as a Gnome application.

c09.indd 191c09.indd 191 10/6/09 9:03:06 AM10/6/09 9:03:06 AM

Chapter 9: Testing and Usability

192

 gnome.init(APPNAME, APPVERSION)
 # load up the glade file
 self.widgets = gtk.glade.XML(“pumd.glade”)
 # create a widget to hold the browser
 self.mozillaWidget = gtkmozembed.MozEmbed()
 # add the widget to the program
 self.widgets.get_widget(“screen”).add(self.mozillaWidget)
 self.mozillaWidget.set_size_request(800,600)
 # show the widget
 self.mozillaWidget.show()
 self.mozillaWidget.load_url(“wiki.ubuntu.com/MobileAndEmbedded”)

 signalDic = {“on_entry1_activate” : self.on_entry1_activate}
 self.widgets.signal_autoconnect(signalDic)

 def on_entry1_activate(self, widget):
 self.mozillaWidget.load_url(widget.get_text())
if __name__ magic if this is the first module called
if __name__ == “__main__”:
 widgets = BrowserWrapper()
 gtk.main()

 This example program will not exit correctly. You can kill the window easily enough, but you still need
to use Ctrl+C to kill the program.

 Put this file in a folder and then create a subfolder called pixmaps with the icon for the application; the
icon can be changed in the Glade file with the following line:

 < property name=”icon” > pixmaps/hello.png < /property >

 Run the browser by making the Python file executable and calling it with the interpreter:

$ chmod +x pumd.py

$ python pumd.py

 It is not really necessary to call the Python interpreter here. The preceding command could just as easily
be replaced by ./pumd.py.

 Now that the browser is working, it is possible to test it. To do this, the browser will be tested
for functionality with Mago and for compatibility with the Linux Standard Base. The reason that
compatibility is important is that it links development more closely to certification with the result
being reduced development costs and a tighter integration between applications and the LSB
standard.

c09.indd 192c09.indd 192 10/6/09 9:03:07 AM10/6/09 9:03:07 AM

Chapter 9: Testing and Usability

193

 Testing with Mago
 Make sure that Mago has been branched from Launchpad (see the preceding text)

 Adding the Browser Test to Mago
 From the root folder of the Launchpad Mago checkout, edit the file mago/test_suite/ubuntu.py and add
the following:

class PumdTestSuite(SingleApplicationTestSuite):

 APPLICATION_FACTORY = PUMD

 This registers the new PUMD class as a new suite. Next, add the code for this PUMD class, which will
initialize the application and provide some utility functions. The code is added to mago/application/
ubuntu.py. First import some libraries:

from time import sleep

import tempfile

and then add the class. Notice that this is a child of the Application class and the full path to the
browser executable.

class PUMD(Application):

 MNU_ITEM = “mnuEmbeddedBrowser”
 WINDOW = “frmEmbeddedBrowser”
 LAUNCHER = “/home/ian/Dev/Book/testing/mago/pumd/browser/pumd.py”

 def __init__(self):

 “””
 Embedded Browser class init method
 “””
 self.screenshots = []
 Application.__init__(self)

 def open(self):

 “””
 This opens the Embedded Browser application and raises an error if the
 application didn’t start properly.
 “””
 try:
 Application.open(self)
 except ldtp.LdtpExecutionError:

c09.indd 193c09.indd 193 10/6/09 9:03:07 AM10/6/09 9:03:07 AM

Chapter 9: Testing and Usability

194

 raise ldtp.LdtpExecutionError, “The application did not start
correctly.”

 def grab_image_and_wait(self):
 sleep(1)
 screenshot = \
 ldtputils.imagecapture(outFile=tempfile.mktemp(‘.png’, ‘pumd_’))
 self.screenshots.append(screenshot)
 return (screenshot)

 With the test suite registered and the class written, it is now possible to actually use it to write a test for
the browser. This is done by creating a folder in the root of the Mago checkout (named after the
application to be tested) and by adding a Python and an XML file to this folder. The Python file looks
like this:

from mago.test_suite.ubuntu import PumdTestSuite
from time import sleep

class PUMD(PumdTestSuite):
 def testOpenMenu(self, menuitem=None, windowname=None, closetype=None,
closename=None, oracle=None):
 self.application.set_name(windowname)
 self.application.open()
 sleep(20)
 screeny = self.application.grab_image_and_wait()
 try:
 screeny
 except Exception, e:
 print “No screenshot returned”
 raise e
if __name__ == “__main__”:
 pumd_test = PUMD()
 pumd_test.run()

 It is important to notice the import of the PumdTestSuite ; the run() method, which calls the test
runner in the suite; and the sleep() method, which gives the page time to load. The call to
 grab_image_and_wait() drops a screenshot — shown in Figure 9 - 3 — into the temp folder.

Figure 9-3

c09.indd 194c09.indd 194 10/6/09 9:03:07 AM10/6/09 9:03:07 AM

Chapter 9: Testing and Usability

195

 The XML file looks as follows:

 < ?xml version=”1.0”? >
 < suite name=”pumd” >
 < class > pumd.PUMD < /class >
 < description >
 Test which verifys that the browser starts correctly.
 < /description >
 < case name=”Open Embedded Browser” >
 < method > testOpenMenu < /method >
 < description > It opens the Embedded Browser < /description >
 < args >
 < menuitem > mnuEmbeddedBrowser < /menuitem >
 < windowname > frm*EmbeddedBrowser < /windowname >
 < /args >
 < /case >
 < /suite >

 Also notice that the < class > tag contains the module name of the .py file and the SuiteClass class.
Run the test by using the following:

PYTHONPATH=. ./bin/mago -a pumd

 The results — shown in Figure 9 - 4 — will be placed in the ~/.mago/pumd folder.

Figure 9-4

 This shows that the browser open test passed, and it shows the time it took to run the test. If the test
fails, then a screenshot is taken and placed in the ~/.mago/pumd/screenshots folder and the error is
logged into the ~/.mago/pumd/pumd.log file — both of which help when debugging.

c09.indd 195c09.indd 195 10/6/09 9:03:08 AM10/6/09 9:03:08 AM

Chapter 9: Testing and Usability

196

 Linux Standards Base and Certification
 The LSB Application Testkit (ATK) contains tools for analyzing dependencies (libraries and interfaces
that are required externally) of application packages. In particular, ATK helps developers test their
applications for LSB compliance, and enables easy steps for LSB certification.

 Installing the LSB Application Testkit
 First, download the toolkit from http://www.linuxfoundation.org/en/Downloads . Next, run the
install.sh script in the unpacked directory. The script asks a couple of questions, and installs the packages
using dpkg:

This system appears to be a variant of Debian GNU/Linux, such as
Debian itself, Ubuntu, MEPIS, Xandros, Linspire, etc.
Is this correct? yes
In order to install these packages, you need administrator
privileges. You are currently running this script as an unprivileged
user.
You have sudo available. Should I use it? yes
Using the command “sudo /bin/sh -c” to gain root access. Please type the
appropriate password if prompted.
Installing packages...

 Running the LSB Application Testkit
 The toolkit installs into /opt/lsb/app - testkit/manager; to start the web interface, run /opt/lsb/
app - testkit/manager/bin/lsb - atk - start.pl 8080 and then browse to http://127.0.0.1:8080/ .

 This will display the test suite that ’ s shown in Figure 9 - 5.

Figure 9-5

c09.indd 196c09.indd 196 10/6/09 9:03:08 AM10/6/09 9:03:08 AM

Chapter 9: Testing and Usability

197

 Open the Application Check page, and specify the name of the application and the file to test pumd.py.

 Next, select the LSB version and profile (the Architecture field cannot be changed currently), and
press the Run the Test button.

 The test will be executed, displaying the Test Report page. It contains a lot of information about the
test run.

 From this page, you can start the LSB certification process for the application you have just tested.

 In the test, the toolkit recommended changing the embedded browser

#!/usr/bin/env python

to

#!/usr/bin/python

This recommendation was made in order to increase the portability of the application across different
platforms. It can be seen then that the LSB aims to maintain compliance across architectures and, as such,
it is an emerging standard in the open source ecosystem. Having an application certified by the LSB is
highly recommended and indeed perhaps becoming mandatory for most ISV ’ s.

 Other Testing Tools
 In addition to Mago and LSB, the open source community has developed a range of other testing
applications. These include Phoronix Test Suite, which is a testing and benchmarking platform; pbuilder,
which is used for package testing; and a range of other tools (such as ps and top), which come standard
with the Ubuntu operating system.

 Using pbuilder is explained in Chapter 5.

 Phoronix Test Suite
 The Phoronix Test Suite is designed to carry out both qualitative and quantitative benchmark testing of a
Linux operating system. It consists of a processing core (pts - core) and benchmarks that are XML - based
profiles with related resource scripts. You can find the application in the universe repositories. You can
install it using apt:

$ sudo apt-get install phoronix-test-suite

c09.indd 197c09.indd 197 10/6/09 9:03:09 AM10/6/09 9:03:09 AM

Chapter 9: Testing and Usability

198

 To see all available tests, run the following:

$ phoronix-test-suite list-tests

 To run a test, use the following:

$ phoronix-test-suite benchmark < test >

 To run the netbook test, for example, use

$ phoronix-test-suite benchmark netbook

 The application will automatically download all the necessary test files, and will prompt for test options
and whether the test results should be saved.

 The suite also supports monitoring system sensors while the test is running. At the end of the test, it will
provide the low and high thresholds for each sensor as well as the average. The sensor detection and
monitoring is done through lm - sensors and the ACPI interface:

$ sudo apt-get install lm-sensors

 lm - sensors can be enabled by running the following:

$ sudo sensors-detect

 For a practical example of the use of sensors, see Chapter 3.

 The suite was used to benchmark the released i386 version of Ubuntu Netbook Remix for Ubuntu Jaunty
against an LPIA version, which was made for this book by installing the Netbook Remix desktop over a
MID base.

 The benchmark that was run on both was the netbook suite, and the command that was used in both
tests was:

$ MONITOR=all phoronix-test-suite benchmark netbook

 The hardware under test was an Acer Aspire with the following specifications:

Processor: Intel Atom CPU N270 @ 1.60GHz (Total Cores: 2), Motherboard:
Acer AOA110, Chipset: Intel Mobile 945GME Express Hub + ICH7-M,
System Memory: 485MB, Disk: 8GB SSDPAMM0008G1,
Graphics: Intel Mobile 945GME Express IGP (rev 03)

 The software installed was:

OS: Ubuntu 9.04, Desktop: GNOME 2.26.1, Display Server: X.Org Server 1.6.0,
Display Driver: intel 2.6.3

c09.indd 198c09.indd 198 10/6/09 9:03:09 AM10/6/09 9:03:09 AM

Chapter 9: Testing and Usability

199

 The difference between the two systems under test can be seen in the kernel:

Kernel: 2.6.28-11-generic (i686)

which is the default on the released version of the Ubuntu Netbook Remix and

Kernel: 2.6.28-11-lpia (i686)

which is the default on the LPIA version. The test results are presented in the following table.

 Test Detail UNR Default UNR LPIA % Difference

 LAME MP3 Encoding
(encode an mp3 file)

 163.21 175.22 UNR Default better
by 7.35%

 OGG Encoding
(encode an ogg file)

 102.05 105.79 UNR Default better
by 3.66%

 Timed ImageMagick Compilation
(Time taken to compile Image Magick)

 906.16 912.02 UNR Default better
by 0.64%

 512MB Write Performance 5.40 5.31 LPIA better by 1.69%

 512MB Read Performance 33.00 33.08 UNR Default better by
0.24%

 1GB Write Performance 5.58 5.48 LPIA better by 1.82%

 OpenSSL RSA 4096 - bit Performance
(Encryption test on SSL)

 4.50 4.30 LPIA better by 4.65%

 GnuPG 2GB File Encryption (Encrypt
a 2GB file with GnuPG)

 206.17 158.72 LPIA better by 29.89%

 RAM speed (Writes Integers to RAM) 1834.82 1708.05 UNR Default better by
7.42%

 The most obvious difference is that file encryption on LPIA is nearly one - third faster than on the default
i386. Of the nine tests that were run, the default Ubuntu Netbook Remix is better in five tests with disk
reading, encoding, and RAM speed all notably better. LPIA Ubuntu Netbook Remix appears better with
write performance and encryption. It ’ s not clear, given the test results for LPIA, whether the architecture
has an advantage for end users (apart from the power advantage — see Chapter 3), and it ’ s questionable
if the results are sufficient evidence to continue maintaining support of LPIA by the Ubuntu Mobile
team. Having said this, however, LPIA was never meant to be run with Ubuntu Netbook Remix so these
results are in no way conclusive.

c09.indd 199c09.indd 199 10/6/09 9:03:09 AM10/6/09 9:03:09 AM

Chapter 9: Testing and Usability

200

 At UDS Karmic in Barcelona, it was decided to drop official support for the LPIA architecture. Ubuntu
MID will now be based on Mer upstream. Mer is a Linux operating system that ’ s built on a thin base of
Ubuntu Jaunty combined with the best open source elements of Nokia ’ s Maemo platform. LPIA will be
maintained by the Ubuntu community.

 PBuilder for Automating the Testing of Packages
 You can use pbuilder (see Chapter 5) to automate the testing of packages. It has a feature that allows
hooks to be used; these hooks can try to install packages inside the chroot, run them, and even try to
uninstall them. Some known tests include:

 An automatic install - remove - upgrade - remove - install - purge - upgrade - purge test - suite
(distributed as an example called B91dpkg - i and found in the /usr/share/doc/pbuilder/
examples directory). There is also a check that everything installs called execute_installtest.sh
found in the same directory.

 Automatically running lintian (distributed as an example in /usr/share/doc/pbuilder/
examples/B90lintian)

 To use this test suite, hooks need to be created. Create a directory, as follows:

/var/cache/pbuilder/hooks

Add, for example, the B91dpkg - i script to this directory.

 It is also possible to specify on the command line - - hookdir /usr/share/doc/pbuilder/
examples to include all the example hooks.

 Once these hooks are established, test scripts can be run. These test scripts are placed in the source code
for the package being tested, in the folder debian/pbuilder - test/NN_name (where NN is a number),
following the run - parts standard for filenames.

 Run - parts (from the debianutils package) is used to execute a number of scripts or programs that
are found in one directory. The “ run - parts ” program requires these script filenames to consist entirely of
letters, digits, underscores, or hyphens.

 Example scripts that are used with pbuilder - test can be found in /usr/share/doc/
pbuilder/examples/pbuilder - test.

 An example of such a test script is test 004_ldd:

 #!/bin/bash
 # simple test to see that the program is installed in the correct
 # place and looks sane through ldd.
 ldd /usr/bin/program

 The command ldd lists the dynamic dependencies of executable files or shared objects.

❑

❑

c09.indd 200c09.indd 200 10/6/09 9:03:09 AM10/6/09 9:03:09 AM

Chapter 9: Testing and Usability

201

 Other Useful Linux Performance Testing Tools
 Various tools already exist on Ubuntu which can help to optimize performance.

 ps
 This is a tool that allows you to view the processes that are running on the mobile device. If you want to
search for a specific process, the following is a useful command:

ps aux | grep < something >

 top
 Top is a tool that enables you to keep track of processes; it lists processes that are ordered by CPU or
memory usage. When put together with the at command, it is possible to schedule top to run at a
particular time. You can achieve this by writing a bash script that runs top one minute later like this:

$ cat ./app-test.at
TERM=linux top -b -n 1 > /tmp/top-report.txt
$ at -f ./app-test.at now+1minutes

 The application under test can then be started and its resource usage observed.

 time
 This tool measures execution times. It takes a command as an argument. It executes and then shows a
brief statistic about the amount of time that the process spends. This can help you to find out if a
command takes more time than expected. Of course, this is especially useful if you are dealing with a
program that you have developed because you can modify the sources and then compile them again to
compare results.

 Time is used this way:

$ time ./pumd.py
real 1m41.365s
user 0m0.000s
sys 0m0.004s

 procinfo
 The load average is a measurement of the active processes running at any time. It is the sum of the run
queue length and the number of jobs that are currently running on the CPU. The results are calculated
using a program called procinfo. Here ’ s an example:

$ sudo apt-get install procinfo
$ procinfo
Memory: Total Used Free Buffers
RAM: 1017380 966680 50700 11980
Swap: 3071992 118784 2953208

Bootup: Mon Jun 1 20:15:21 2009 Load average: 0.53 0.54 0.41 2/274 1186

c09.indd 201c09.indd 201 10/6/09 9:03:10 AM10/6/09 9:03:10 AM

Chapter 9: Testing and Usability

202

 free
 This application displays the amount of free memory and the amount of memory that is used by
a system:

$ free
 total used free shared buffers cached
Mem: 1017380 983448 33932 0 13084 207020
-/+ buffers/cache: 763344 254036
Swap: 3071992 120572 2951420

 memstat
 This application lists all the processes, executables, and shared libraries that are using up virtual
memory:

$ memstat

which gives output like the following:

 1032k: PID 5166 (/usr/lib/libindicate.so.1.0.0)
 272k: PID 5178 (/lib/tls/i686/cmov/libnss_files-2.9.so)
 736k: PID 5249 (/usr/lib/libltdl.so.7.2.0)
 709848k: PID 5251 (/usr/share/fonts/truetype/ttf-dejavu/DejaVuSans.ttf)
 43176k: PID 5256 (/usr/lib/libgvfscommon.so.0.0.0)

 Look at the memory usage by the DejaVuSans font!

 memcheck and Valgrind
 Valgrind is a suite of tools which is used for debugging and profiling programs. It can be installed by
using apt:

$ sudo apt-get install valgrind

 Next, start the program to verify that the system is under the control of memcheck:

$ G_SLICE=always-malloc G_DEBUG=gc-friendly valgrind -v --tool=memcheck
--leak-check=full --num-callers=40 --log-file=valgrind.log < application_name >

 This command can take a while to run.

 The resulting valgrind.log file displays an error summary :

==2753== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 323 from 4)

as well as a leak summary:

==2753== LEAK SUMMARY:
==2753== definitely lost: 13,891 bytes in 43 blocks.
==2753== indirectly lost: 24,510 bytes in 1,216 blocks.
==2753== possibly lost: 1,128 bytes in 31 blocks.
==2753== still reachable: 9,878,411 bytes in 56,308 blocks.
==2753== suppressed: 0 bytes in 0 blocks.

c09.indd 202c09.indd 202 10/6/09 9:03:10 AM10/6/09 9:03:10 AM

Chapter 9: Testing and Usability

203

 Valgrind is an excellent development tool for creating highly efficient software.

 Latencytop
 The Intel Open Source Technology Center released Latencytop, a tool aimed at identifying where in the
system latency is happening. It is available in the Ubuntu Universe repository and can be installed
using apt:

$ sudo apt-get install latencytop

 First, run the following:

$ sudo latencytop

 The results appear in a table with the Firefox process selected:

Cause Maximum Percentage
Scheduler: waiting for cpu 12.7 msec 5.2 %
Waiting for event (poll) 5.0 msec 64.4 %
Userspace lock contention 5.0 msec 29.1 %
Waiting for event (select) 4.6 msec 0.3 %
Reading from a pipe 2.7 msec 0.0 %
Waiting for a process to die 2.1 msec 0.0 %
opening cdrom device 1.5 msec 0.4 %
Executing raw SCSI command 1.1 msec 0.4 %
acpi_ec_wait acpi_ec_transaction_unlocked acpi_ec_ 1.0 msec 0.0 %

Process firefox (6030) Total: 294.5 msec
Scheduler: waiting for cpu 9.1 msec 52.3 %
Userspace lock contention 5.0 msec 25.5 %
Waiting for event (poll) 4.8 msec 22.2 %

 evolution-data- evolution-excha firefox gnome-terminal gnome-pty-helper

 Latencytop reads from the /proc/latency_stats file, and displays the largest latencies during the last
30 seconds. In this case, finding the Userspace lock contention seems a good place to try improving
performance.

 Testing Strategies
 With many tools available for testing, the question of creating a testing strategy becomes important. For
the Ubuntu MID distribution itself, quality assurance tests are divided into three groups: Basic,
Advanced, and Compliance.

 Basic
 Basic feature testing covers the features that the end user of the software will see on a daily basis. Defects
in this area of functionality will be noticed immediately by the user. It is vital that this area of testing be

c09.indd 203c09.indd 203 10/6/09 9:03:10 AM10/6/09 9:03:10 AM

Chapter 9: Testing and Usability

204

performed as often as possible; as such, it is a good candidate for automation. Applications that fit into
this category include:

 Midbrowser

 RSS reader

 Clock

 Calculator

 PIM

 Remote desktop client

 E - book reader

 Notepad

 Advanced
 Advanced cases require either more system knowledge, or access to resources that not everyone will
have, such as proprietary codecs.

 Compliance
 Compliance cases cover the agreed upon statistics for the system. There are some checklists that serve as
a guide in this category (The following checklists are shown as examples only; the actual targets will
vary according to a term of work and will be specific to each OEM):

 Performance Tests (Excludes BIOS Times)

 With platform in Hibernate state, the time from the user pressing the Power On button to the
desktop UI being fully responsive � 16 sec

 Time from the user pressing the Sleep button to the platform going to S3 state (not just display
going blank) � 7 sec

 With platform in S3 state, time from the user pressing the Wake - Up button to the desktop UI
being fully responsive� 7 sec

 When the platform is cold booted, the time from the user pressing the Power On button to the
desktop UI being fully responsive� 37 sec

 Footprint

 Platform memory 192MB

 Use a maximum of 2000MB

 Localization

 Support English (US)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 204c09.indd 204 10/6/09 9:03:11 AM10/6/09 9:03:11 AM

Chapter 9: Testing and Usability

205

 Documentation

 Deliver updated documentation

 Licensing terms for all documentation

 List of any proprietary documentation that cannot be made public

 Licensing terms for all components

 List of known non – open source components that will be included

 Bug Repor ting
 It is always important to file bug reports immediately when something does not go as planned.

 If You Find a Bug . . .
 It is always a good practice to submit bug reports. Bug reports should be submitted to https://bugs
.edge.launchpad.net/ubuntu-mobile/ .

 When submitting bug reports, there is a template to follow, which gives developers the best chance of
being able to reproduce — and hopefully — squash the bug.

 The template looks like this:

Build Version/Date:
Environment used for testing:
Summary:
Steps to Reproduce:
Expected result:
Actual result:

 The following is an example of a good bug report (which you ’ ll find at https://bugs.launchpad
.net/ubuntu-mobile/+bug/218850):

 < Build: UME Daily 20081404 >
 < Environment: Xephry >
Summary:
When opening an office document the “Choose the file to Visualize” dialogue remains
persistent over the top of the document after it is loaded. Blocks all document
content.
Steps to Reproduce:
1) Launch Document Viewer
2) Select document (ppt, doc, pdf, etc.)
3) Open
Expected result:
Document is opened and content is displayed without error or corruption
Actual result:
 Viewer selection dialogue remains in foreground after document is opened

❑

❑

❑

❑

❑

c09.indd 205c09.indd 205 10/6/09 9:03:11 AM10/6/09 9:03:11 AM

Chapter 9: Testing and Usability

206

 Filing a Bug Report Automatically
 The easiest way to report a bug is to use the Apport ’ s application. When an application crashes, Apport
starts automatically and opens an appropriate bug report for you to complete in Launchpad.

 If you want to report a bug for an application that is running and responding, you can access the same
Apport functionality from the Help menu via Help Report a problem. This method is preferable to
filing a bug report directly at the Launchpad website because of the debugging information it attaches
(including user interface bugs).

 Reporting a Bug from the Command Line
 To report a bug from the command line, use the following:

$ubuntu-bug < PACKAGE_NAME >

 To file a bug report against a known package, and automatically include all the useful debug
information, use the following:

ubuntu-bug PID

 To file a bug report against a running program with a known Process ID (PID) (see System
 Administration System Monitor), use the following:

ubuntu-bug linux

 This will file a bug report on the Linux kernel.

 Summary
 One advantage that Linux has over proprietary systems is the number of people who are prepared to
help test and submit bug reports. Everyone can help make Ubuntu better by submitting bug reports.
Setting up a good testing strategy increases the chances of finding bugs and contributing to the
improvement of Ubuntu, and in turn, contributing to the wider open source ecosystem that surrounds it .

c09.indd 206c09.indd 206 10/6/09 9:03:11 AM10/6/09 9:03:11 AM

 Tips and Tricks

 This chapter contains a number of scripts, tips, and hints for using and enhancing a device running
Ubuntu Mobile.

 Improving Boot Speed
 This section describes how to improve and increase boot speed on an Ubuntu Jaunty device. This
is an area which is under very heavy development as the ambitious target boot speed for Ubuntu
10.04 (karmic+1) is 10 seconds.

 karmic+1 refers to the release of Ubuntu after the karmic 9.10 release. The adjective which
describes this release is, at the time of writing, undecided.

 For the karmic release, the target boot speed is expected to be somewhere between the current
speed (28s on Jaunty) and the ambitious new target. A consequence of this (which was discussed at
UDS Barcelona) is that both the initramfs and the X Server are likely to see a lot of work in the
coming months, so the techniques described below may not be the best ways to reduce boot speed.
Please refer to the ubuntu - boot mailing list for the latest information.

 Hard Coding Modules
 It is possible to list modules so that they are called when the initramfs is called. Doing this means
that only the modules that the specific device needs to boot are loaded.

 initramfs is a small ram - based initial root filesystem which the kernel runs as its first program as
the device boots .

c10.indd 207c10.indd 207 10/6/09 9:03:36 AM10/6/09 9:03:36 AM

Chapter 10: Tips and Tricks

208

 To do this, put the necessary modules into

$ /etc/initramfs-tools/modules

and run

$ sudo update-initramfs -u

 It is not necessary to change the /etc/initramfs - tools/initramfs.conf file (for example, if the modules
option still has the value most in the .conf script) because this is concerned with which modules are
copied into the initramfs, not with which modules are probed.

 An example list might look like this:

loop
squashfs

 The file

$ /etc/initramfs-tools/modules

is looped by the load_modules function from

$ /usr/share/initramfs-tools/init

 Creating a /tmp That Is Half the Size of
Physical RAM

 You can add the following to /etc/fstab:

 tmpfs /tmp tmpfs nodev,nosuid 0 0

 This creates a /tmp that is half the size of physical RAM, and anything stored in /tmp goes to RAM. In
practice, much of it ends up being committed to swap, but it means that it gets written to disk only when
the space in /tmp exceeds the cache buffers (instead of immediately). This can speed up operations on
temporary files for machines with slower access to secondary storage (not, however, on SSD).

 In reality, this can improve the performance of most hard drives with speeds of 7200, 5400, or even slower.

 Of course, the downside is that you want to clean up /tmp when hibernating the device, especially if the
device is short on RAM anyway. Be careful!

 Energy Tips
 For product designers, an understanding of the factors affecting battery life is vitally important for
managing product performance. End users need as much battery life as you can give them.

c10.indd 208c10.indd 208 10/6/09 9:03:36 AM10/6/09 9:03:36 AM

Chapter 10: Tips and Tricks

209

 Recharging Correctly
 As a user, try to recharge the device without interruptions. Also, when you first use the device, run the
battery down to zero and then fully recharge. This calibrates the battery.

 Laptop Mode
 When laptop mode is enabled, the kernel will try to be smart about when to do writes in order to give
the disk as much time as possible in a low power state.

 Laptop - mode - tools are installed by running the following:

$ sudo apt-get install laptop-mode-tools

 To start laptop mode, run sudo laptop_mode start , which shows the following:

Laptop Mode Tools 1.45
Laptop mode enabled, active
/dev/sda:
 setting Advanced Power Management level to 0xfe (254)
/dev/sda:
 setting standby to 12 (1 minutes)

 Running laptop_mode increases dirty_expire_centisecs and dirty_writeback_centisecs in /proc/sys/vm,
which means pages will not be written to disk as often. It also changes the ratio of dirty background
writebacks, which taken together, result in rapid bursts of disk activity and longer dormant states.

 The configuration file for laptop - mode is

 /etc/laptop-mode/laptop-mode.conf

 A tool (which comes with laptop - mode - tools) called lm - profiler will monitor the device disk usage and
running network services and it will suggest disabling unneeded services. Running it gives an output
like the following:

$ sudo lm-profiler

Write accesses at 445/600 in lm-profiler run: gconfd-2

Read accesses at 465/600 in lm-profiler run: hald-addon-stor

Read accesses at 526/600 in lm-profiler run: gconfd-2

Read accesses at 535/600 in lm-profiler run: chrome

Profiling run completed.

Program: “anacron”

c10.indd 209c10.indd 209 10/6/09 9:03:37 AM10/6/09 9:03:37 AM

Chapter 10: Tips and Tricks

210

Reason: standard recommendation (program may not be running)

Init script: /etc/init.d/anacron (GUESSED)

Do you want to disable this service in battery mode? [y/N]: Y
Program: “cron”

Reason: standard recommendation (program may not be running)

Init script: /etc/init.d/cron (GUESSED)

Do you want to disable this service in battery mode? [y/N]:Y

Program: “atd”

Reason: standard recommendation (program may not be running)

Init script: /etc/init.d/atd (GUESSED)

Do you want to disable this service in battery mode? [y/N]: y

and so on as the application “ guesses ” at services to disable. Choosing to disable some services when in
laptop mode has a very positive effect on battery life.

 Getting to Know the Battery on a Device
 Run the following:

$ cat /proc/acpi/battery/BAT0/info

 The result shows the design capacity (and the last full capacity of the battery). This command can be
very useful when identifying battery errors:

present: yes
design capacity: 28800 mWh
last full capacity: 22240 mWh
battery technology: rechargeable
design voltage: 14400 mV
design capacity warning: 1112 mWh
design capacity low: 200 mWh
capacity granularity 1: 1 mWh
capacity granularity 2: 1 mWh
model number: 92P1163
serial number: 2335
battery type: LION
OEM info: SANYO

 The battery is a SANYO LION, which is starting to show some signs of deterioration (look at the
difference between the design and the last full capacity).

If you have compiled your own kernel for a device, then there is a chance that the /proc interface will not
be available. In this case, you can use the command:

$ ls /sys/class/power_supply/BAT0/

c10.indd 210c10.indd 210 10/6/09 9:03:37 AM10/6/09 9:03:37 AM

Chapter 10: Tips and Tricks

211

 CPUFREQ and Governors
 The power that is consumed by a processor is related to the speed at which it is running — it ’ s a
performance versus battery life trade - off. A way to manage this is to enable CPUFREQ in the running
kernel, along with the different controlling algorithms — that is, the governors that control its use.

 Most cpu frequency scaling algorithms or drivers only allow the CPU to be set to one frequency. In
order to offer dynamic frequency scaling, the cpufreq core must be able to tell these drivers of a “ target
frequency. ” This is done by using cpufreq governors.

 Available governors can be listed by using this command:

$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors
The output looks like:
userspace ondemand powersave conservative performance

 The governor currently in use is shown by:

$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

which outputs:

ondemand

 The chosen governor is loaded automatically from the init script /etc/init.d/powernowd. You can add
options by modifying the file /etc/default/powernowd; for example, you can add the option - m 3 ,
which puts powernowd into LEAPS mode, causing it to jump immediately to the highest frequency if
usage is above 80 percent or to the lowest frequency if usage is below 20 percent.

 Use Power Management Settings on Disks
 To see if your disks support the setting of power management, you can run the following (substituting
your device mount point):

$ sudo hdparm -i /dev/mapper/lawrence-root

 If your hard drive supports AdvancedPM, you can use hdparm to tell the disk to go into power savings
mode after an elapsed period of idle time. The relevant options for hdparm are:

 - B — Sets the Advanced Power Management setting (1 – 255)

 - S — Sets standby (spindown) timeout

 - y — Puts the IDE drive in standby mode

 - Y — Puts the IDE drive to sleep

c10.indd 211c10.indd 211 10/6/09 9:03:37 AM10/6/09 9:03:37 AM

Chapter 10: Tips and Tricks

212

 For example, to put the disk into the most aggressive power savings mode after 60 seconds of idle time,
you could use the following:

$ hdparm -B 1 -S 12 /dev/mapper/lawrence-root

 Disabling atime
 A significant downside to atime (a timestamp of file access required under the POSIX standard) is that
every time a file is accessed, the kernel has to write a new timestamp to the disk. These disk writes will
keep the disk as well as the link to the disk busy, and that costs both performance and power. atime can
be disabled with the following:

$ sudo mount -o remount,noatime /

 Another approach that was added in the 2.6.20 kernel is to use the relatime mount option. If this flag is
set, access times are updated only if they are earlier than the modification time. This change allows
utilities to see if the current version of a file has been read, but still cuts down significantly on atime
updates. relatime can be enabled with the following:

$ sudo mount -o remount,relatime /

 Turning Of f Background Services
 Background services are listed by default in xdg. xdg defines a method for automatically starting
applications during the startup of a desktop environment and after mounting a removable medium.
For example:

cd /etc/xdg/autostart/
ls -la
total 76
drwxr-xr-x 2 root root 4096 2008-07-06 20:30 .
drwxr-xr-x 6 root root 4096 2008-07-06 20:27 ..
-rw-r-r- 1 root root 2676 2008-03-28 07:07 bluetooth-applet.desktop
-rw-r-r- 1 root root 289 2008-04-21 12:23 evolution-alarm-notify.desktop
-rw-r-r- 1 root root 5040 2008-04-15 11:42 gnome-at-session.desktop
-rw-r-r- 1 root root 6079 2008-04-10 14:12 gnome-power-manager.desktop
-rw-r-r- 1 root root 7214 2008-04-15 05:39 gnome-volume-manager.desktop
-rw-r-r- 1 root root 293 2008-04-08 22:06 jockey-gtk.desktop
-rw-r-r- 1 root root 374 2008-04-18 17:27 nm-applet.desktop
-rw-r-r- 1 root root 219 2008-04-06 22:24 pulseaudio-module-xsmp.desktop
-rw-r-r- 1 root root 5002 2008-04-21 12:44 redhat-print-applet.desktop
-rw-r-r- 1 root root 2204 2008-04-02 17:11 tracker-applet.desktop
-rw-r-r- 1 root root 1791 2008-04-02 17:11 trackerd.desktop
-rw-r-r- 1 root root 236 2008-04-04 18:34 update-notifier.desktop
-rw-r-r- 1 root root 2783 2008-02-13 07:51 user-dirs-update-gtk.desktop

 If, for example, you do not wish to have tracker running, you can move it into another folder with
the following:

c10.indd 212c10.indd 212 10/6/09 9:03:38 AM10/6/09 9:03:38 AM

Chapter 10: Tips and Tricks

213

mkdir ../old
mv tracker-applet.desktop trackerd.desktop ../old

 The next time the desktop starts, tracker will not be started.

 Adobe Flash
 Using Flash on a battery powered, mobile device can be somewhat challenging. This is unfortunate as
Flash is a popular software application and, indeed, was once used as a “ proof - of - concept ” Home area
for the Ubuntu Hardy MID, as shown in Figure 10 - 1.

 Figure 10 - 1

 According to Adobe, Flash will always maximize the CPU if there are the cycles to spare. It does this
because, for users to perceive animation as playing smoothly, it is important that each frame be
displayed at the proper time. Even small inconsistencies in frame - to - frame timing can make animation
appear jerky.

 The problem with this is that a new model of scheduling called “ dynamic tick ” was introduced in
version 2.6.21 of the Linux kernel, which allows the processor to be almost entirely shut down until the
next time the user interacts with the computer. Such constant polling by Flash does not allow this to
happen, which has a devastating effect upon power consumption.

c10.indd 213c10.indd 213 10/6/09 9:03:38 AM10/6/09 9:03:38 AM

Admin
Text Box
Download from www.eBookTM.com

Chapter 10: Tips and Tricks

214

 CPU usage can be monitored using top or graphically using gnome - system - monitor , which is
available through apt.

 Although the CPU problem cannot be eliminated entirely without code updates from Adobe, some
improvements were noticed during experiments running the Linux .tar.gz version from Adobe (not the
Flash version packaged in the Ubuntu repositories):

$ cd /tmp
$ wget
http://fpdownload.macromedia.com/get/flashplayer/current/install_flash_player_10_
linux.tar.gz
$ tar -xvf install_flash_player_10_linux.tar.gz
$ cd install_flash_player_10
$ sudo ../flashplayer-installer

 This suggests that work is ongoing in this area.

 There are persistent rumors of a Flash iPhone version, so this is definitely something to watch.

 Configuring the Touchscreen
 Touchscreens are more and more common in all kinds of devices, from Notebooks to MIDs to all - in - one
PCs. For Ubuntu Jaunty, evtouch will go on to be maintained as the solution for the mobile team as it
covers the broadest set of touchscreens.

 Evtouch is a touchscreen driver for X. The driver is actually an evdev - driver, which supports events for
moving in absolute coordinates, relative coordinates, and mouse buttons.

 The graphical touchscreen calibration tool on Ubuntu MID is accessed through Preferences Calibrate
Touchscreen. If this does not work as expected on a device, it is possible to manually run the calibrate
script. Run:

$ lshal | grep evtouch

 This ensures that the device is using the evtouch driver rather than, say for example, the evdev one. If
this command returns empty, do the following:

sudo apt-get install xserver-xorg-input-evtouch

 Stop and then start the X Server, or reboot.

 Then run the calibration touchscreen program:

/usr/lib/xf86-input-evtouch/calibrate.sh

 When this is completed, look in /etc/evtouch/config and note the answers.

c10.indd 214c10.indd 214 10/6/09 9:03:39 AM10/6/09 9:03:39 AM

Chapter 10: Tips and Tricks

215

 On some devices, the results seem to be inverted. In this case, it is good to know that x0,y0 should be the
bottom left of the screen. You might have to tweak these coordinates. Increase numbers to move the
cursor to the right, or up, relative to the stylus. It is likely that if you have values over 20 or below – 20
they are likely to be wrong.

 Once these values have been worked out correctly, put them into a new hal configuration file /etc/hal/
fdi/policy/touchscreen.fdi

 A hardware abstraction layer (hal) is an abstraction layer, implemented in software, between the
physical hardware of a device and the software that runs on the device.

 This file looks like

 < ?xml version=”1.0” encoding=”UTF-8”? > < !-- -*- SGML -*- -- >
 < deviceinfo version=”0.2” >
 < device >
 < match key=”info.product” contains=”TouchScreen” >
 < match key=”info.capabilities” contains=”input” >
 < merge key=”input.x11_driver” type=”string” > evtouch < /merge >
 < merge key=”input.x11_options.minx” type=”string” > 59 < /merge >
 < merge key=”input.x11_options.miny” type=”string” > 82 < /merge >
 < merge key=”input.x11_options.maxx” type=”string” > 963 < /merge >
 < merge key=”input.x11_options.maxy” type=”string” > 989 < /merge >

 < !--bottom, left to right-- >
 < merge key=”input.x11_options.x0” type=”string” > -3 < /merge >
 < merge key=”input.x11_options.x1” type=”string” > 7 < /merge >
 < merge key=”input.x11_options.x2” type=”string” > 0 < /merge >

 < !--mid, left to right-- >
 < merge key=”input.x11_options.x3” type=”string” > -9 < /merge >
 < merge key=”input.x11_options.x4” type=”string” > 3 < /merge >
 < merge key=”input.x11_options.x5” type=”string” > 14 < /merge >

 < !--top, left to right-- >
 < merge key=”input.x11_options.x6” type=”string” > -15 < /merge >
 < merge key=”input.x11_options.x7” type=”string” > 2 < /merge >
 < merge key=”input.x11_options.x8” type=”string” > 21 < /merge >

 < !--bottom, left to right-- >
 < merge key=”input.x11_options.y0” type=”string” > 5 < /merge >
 < merge key=”input.x11_options.y1” type=”string” > 0 < /merge >
 < merge key=”input.x11_options.y2” type=”string” > 0 < /merge >

 < !--mid, left to right-- >
 < merge key=”input.x11_options.y3” type=”string” > 4 < /merge >
 < merge key=”input.x11_options.y4” type=”string” > 6 < /merge >
 < merge key=”input.x11_options.y5” type=”string” > 4 < /merge >

 < !--top, left to right-- >
 < merge key=”input.x11_options.y6” type=”string” > -2 < /merge >
 < merge key=”input.x11_options.y7” type=”string” > -3 < /merge >
 < merge key=”input.x11_options.y8” type=”string” > -4 < /merge >

c10.indd 215c10.indd 215 10/6/09 9:03:39 AM10/6/09 9:03:39 AM

Chapter 10: Tips and Tricks

216

 < merge key=”input.x11_options.taptimer” type=”string” > 30 < /merge >
 < merge key=”input.x11_options.longtouchtimer” type=”string” > 750 < /merge >
 < merge key=”input.x11_options.longtouched_action” type=”string” > click < /
merge >
 < merge key=”input.x11_options.longtouched_button” type=”string” > 3 < /merge >
 < merge key=”input.x11_options.oneandhalftap_button” type=”string” > 2 < /merge >
 < merge key=”input.x11_options.movelimit” type=”string” > 1 < /merge >
 < merge key=”input.x11_options.touched_drag” type=”string” > 1 < /merge >
 < merge key=”input.x11_options.maybetapped_action” type=”string” > click < /
merge >
 < merge key=”input.x11_options.maybetapped_button” type=”string” > 1 < /merge >
 < /match >
 < /match >
 < /device >
 < /deviceinfo >

 If the touchscreen calibrates but is not very accurate (examples of this might be dragging the finger or
stylus across the screen and the cursor jumping about ¼ to ½ inch at a time), then try adding a value for
the movelimit parameter (make it 5 or 10). This defines the step size the evtouch driver uses, which
defaults to 30 pixels and this might be too large a value for the device.

 Have a look at the /usr/share/hal/fdi/policy/10osvendor/50 - * files for help with this and to create your
own .fdi file.

 Restart hal:

service hal restart

 Next, restart X. Your touchscreen should now be working. If not, you need to make sure that your custom
.fdi file (if you made one) is being used.

 It is important to remember that the files in /etc/hal/fdi/* will have a higher priority than those from
/usr/share/hal/fdi/; you may also need to check that X is picking up your changes. To do this, run the
following:

$ UDI=$(hal-find-by-capability --capability input.mouse)
$ lshal -u $UDI

 This gives you something like this:

udi = ‘/org/freedesktop/Hal/devices/usb_device_eef_1_noserial_if0_logicaldev_input’
 info.capabilities = {‘input’, ‘input.mouse’} (string list)
 info.category = ‘input’ (string)
 info.parent =
‘/org/freedesktop/Hal/devices/usb_device_eef_1_noserial_if0’ (string)
 info.product = ‘eGalax Inc. Touch’ (string)
 info.subsystem = ‘input’ (string)

c10.indd 216c10.indd 216 10/6/09 9:03:39 AM10/6/09 9:03:39 AM

Chapter 10: Tips and Tricks

217

 info.udi =
‘/org/freedesktop/Hal/devices/usb_device_eef_1_noserial_if0_logicaldev_input’
 (string)
 input.device = ‘/dev/input/event1’ (string)
 input.originating_device =
‘/org/freedesktop/Hal/devices/usb_device_eef_1_noserial_if0’ (string)
 input.product = ‘eGalax Inc. Touch’ (string)
 input.x11_driver = ‘evtouch’ (string)
 input.x11_options.longtouched_action = ‘click’ (string)
 input.x11_options.longtouched_button = ‘3’ (string)
 input.x11_options.longtouchtimer = ‘750’ (string)
 input.x11_options.maxx = ‘1912’ (string)
 input.x11_options.maxy = ‘1989’ (string)
 input.x11_options.maybetapped_action = ‘click’ (string)
 input.x11_options.maybetapped_button = ‘1’ (string)
 input.x11_options.minx = ‘112’ (string)
 input.x11_options.miny = ‘76’ (string)
 input.x11_options.movelimit = ‘10’ (string)
 input.x11_options.oneandhalftap_button = ‘2’ (string)
 input.x11_options.rotate = ‘ccw’ (string)
 input.x11_options.swapy = true (bool)
 input.x11_options.taptimer = ‘30’ (string)
 input.x11_options.touched_drag = ‘1’ (string)
 linux.device_file = ‘/dev/input/event1’ (string)
 linux.hotplug_type = 2 (0x2) (int)
 linux.subsystem = ‘input’ (string)
 linux.sysfs_path = ‘/sys/class/input/input1/event1’ (string)

 Now you can see the options that hal has for the device. You need to be sure there is not a configuration
for “ Input Device ” on the xorg.conf file in order to let hal configure the X file.

 Watching Hard Disk Activity
 An application called iotop watches I/O usage information output by the Linux kernel (it requires 2.6.20
or later) and displays a table of current I/O usage by processes or threads on the system.

 The CONFIG_TASKSTATS and CONFIG_TASK_IO_ACCOUNTING options need to be enabled in
your Linux kernel build configuration.

 iotop displays columns for the I/O bandwidth that is read and written by each process/thread during
the sampling period. It also displays the percentage of time the thread/process spent while swapping in
and while waiting on I/O. In addition, the total I/O bandwidth that is read and written during the
sampling period is displayed at the top of the interface.

c10.indd 217c10.indd 217 10/6/09 9:03:39 AM10/6/09 9:03:39 AM

Chapter 10: Tips and Tricks

218

 First, install the following:

sudo apt get install iotop

 Next, run the following:

$ iotop

 To watch a specific process, pass the PID to the application like this:

$ iotop -p 7279

 Summary
 The tips and tricks come from the Ubuntu Mobile team, IRC discussions, and e - mails from users. If you
discover something useful that is not covered here, add it directly to the FAQ on the Ubuntu Mobile
wiki. Thanks in advance for sharing!

c10.indd 218c10.indd 218 10/6/09 9:03:40 AM10/6/09 9:03:40 AM

 Putting It All Together

 This chapter walks you through the process of creating a custom distribution of Ubuntu Mobile,
which could potentially be used by an OEM to go to market. It could just as easily be used by a
 “ homebrewer ” who wishes to resurrect an old, unused mobile device that ’ s gathering dust.

 Like beer making, no special equipment (apart from a laptop and Internet connection) is needed to
create your image. Choosing a good beer recipe and following good brewing procedures can give
you top quality beer even with basic equipment. The same principles apply to creating a custom
image.

 We draw from the previous chapters and show you how to use the techniques and skills that you
learned in those chapters in order to undertake an example project — creating a customized
Ubuntu Mobile image for Ubuntu karmic that can be installed on a target device.

 Impor tant Things to Consider
 When creating an image for release, there are some key questions to ask — the answers to which
will influence the content of the image and the default settings on the device.

 Ubuntu is updated on a six - month schedule. Within this six - month release cycle there are
standard, Long Term Support (LTS) desktop, LTS server, and point releases.

 If what is required is the bleeding edge software, the latest point release should be used. However,
it can make more sense (especially for OEMs) to build on an LTS release. A new LTS version is
released every two years.

 With the Long Term Support (LTS) versions, commercial support is available from Canonical. This
is available for three years on the desktop and five years on the server. (24/7 commercial support
for Ubuntu Mobile is available through Canonical ’ s global support team and partners. See
 http://www.ubuntu.com/support/paid for more details.)

c11.indd 219c11.indd 219 10/6/09 9:06:02 AM10/6/09 9:06:02 AM

Chapter 11: Putting It All Together

220

 Check If the Device Architecture Is Supported by Ubuntu
 The appropriate Ubuntu architecture must be chosen based on the hardware architecture. The current
ports, at the time of this writing, are armel, hppa, ia64, lpia, powerpc, and sparc. The main supported
architectures are i386 and amd64.

 Checking the Hardware
 Hardware support can be an area of some concern. It is a good idea to always check with the bios
supplier if it is up - to - date and that there is support for Linux.

 A useful program is hwinfo:

$ sudo apt-get install hwinfo

 It provides a detailed report of all hardware on the device.

 The lshw program provides a subset of the information hwinfo presents. Also, the lspci program is
handy when working with hardware as it prints detailed information about all the PCI buses.

 Other useful resources include the Hardware Compatibility Lists, or HCL. These list the hardware
components, parts, and add - ons that are used in netbooks, MIDs, PDAs, mobile phones, media players,
GPS devices, and “ wearables. ” For example, to check webcam support for a device, go to http://
tuxmobil.org/laptop_webcams_linux.html . Choose the target device if listed. Clicking the Acer
Aspire One ZG5 link gives all types of information about the hardware on the device.

 For example, this is the information given on the webcam:

uvcvideo: Found UVC 1.00 device Acer Crystal Eye webcam (064e:d101)
usbcore: registered new interface driver uvcvideo

filename: /lib/modules/2.6.23.9lw/usb/media/uvcvideo.ko
version: SVN r215
license: GPL
description: USB Video Class driver
author: Laurent Pinchart
srcversion: 9F1EDDCB5114CB7A45B4A74
..
depends: videodev,v4l2-common,v4l1-compat,compat_ioctl32
vermagic: 2.6.23.9lw SMP preempt mod_unload CORE2
parm: quirks:Forced device quirks (uint)
parm: trace:Trace level bitmask (uint)

 This device is supported out - of - the - box by Ubuntu. An apt - cache search shows that the following
applications are available in the repositories:

 luvcview — USB Video Class grabber

 uvccapture — USB UVC Video Class snapshot software

so these could perhaps be added to the seed.

❑

❑

c11.indd 220c11.indd 220 10/6/09 9:06:03 AM10/6/09 9:06:03 AM

Chapter 11: Putting It All Together

221

 Fine - Tuning the Kernel
 It may be necessary on a low – disk space device to remove all unnecessary drivers and modules from the
kernel. It is also obviously a good idea to optimize processors (such as by enabling hyperthreading),
manage memory in a coherent manner, and ensure that network parameters are correct.

 The Atom processor on the target device is a new architecture, but based on older technologies. It ’ s the
first in - order x86 from Intel since the Pentium.

 A processor receives instructions one by one and puts them in a pipeline and then executes them. In an
in - order architecture, the instructions are executed in the order in which they arrive, whereas an
out - of - order architecture is capable of changing the order in the pipeline.

 On the Atom, there is a long pipeline coupled to an in - order architecture — consequently hyperthreading
can be effective and significantly increases performance. This needs to be enabled in both the kernel and
the BIOS of the device itself.

 CPU performance can be measured with htop and sysstat, which are available in repositories.

 To find out how to actually make such changes, read Chapter 8, “ Kernel Fine - Tuning. ”

 Defining Power Policies
 DeviceKit - Power (see Chapter 3, “ Power Management ”) is now integrated into the new Gnome - Power -
 Manager for karmic.

 It is important to note that since Ubuntu Jaunty, powernow - k8 and acpi - cpufreq are no longer available
as modules but are compiled into the kernel. This is important as these modules are used by projects
such as Linux - PHC to undervolt a CPU to expand battery time and to reduce the CPU ’ s temperature
while not affecting performance.

 As a result, to enable undervolting it is necessary to either compile a kernel with the stand - alone
modules (this is at the expense of boot time) or to use the kernel from the Linux PHC PPA at
 https://launchpad.net/~linux-phc/+archive/ppa .

 Linux - PHC utilizes the production tolerance of a CPU. CPUs have different production qualities so the
vendor defines voltages for every CPU – so even those of low quality can be undervolted. Actual power
performance results for undervolting on the Atom processor are mixed at present, so it is recommended
to also optimize the system as fully as possible for power savings, suspending devices when possible
(WLAN, USB, LAN).

 Is It an Embedded System?
 Depending on its hardware type, the filesystem may need to be compacted. When creating embedded
systems, every byte of the storage on the device is important, so compression is used everywhere
possible.

c11.indd 221c11.indd 221 10/6/09 9:06:04 AM10/6/09 9:06:04 AM

Chapter 11: Putting It All Together

222

 SquashFS is a read - only filesystem that compresses whole filesystems or single directories and then
writes them to other devices/partitions or to ordinary files. These can then be mounted directly (if a
device) or using a loopback device (if it is a file).

 There is a trick to enable optimizations on a Solid State Drive (SSD) filesystem. Add elevator=noop to
/boot/grub/menu.lst if using the original Grub, or add it to the configuration file in Grub2. See the
following section for more information about Grub.

 elevator=noop helps speed I/O reorder requests to the disk. This means that when the head moves
across the disk, it can service those requests in an orderly, sequential manner, rather than going back
and forth.

 Now that some basic questions have been answered, it is possible to think about what customizations
will be required in the image. When working with an OEM, this will likely be agreed upon beforehand
in a Terms of Work agreement. If you are “ homebrewing, ” you will know what customizations that you
want to make.

 Customizing the User Inter face
 The default Ubuntu behavior can be heavily modified. Everything from the boot selector to the desktop
theme can de changed. This section discusses some of the relevant customizations that can be made.

 Boot Selector
 For karmic, the default boot selector is Grub2. Grub2 is an improvement on the original Grub boot loader
as it can be more easily customized. With the new design, other architectures are also supported. For
now, however, it cannot be used as a bootloader for the ARM architecture. In this case. u - boot is used
instead.

 Grub2 now comes with a configuration file in /etc/default/grub, which contains information formerly
contained in the old Grub menu.lst. The file looks like this:

This file is sourced by update-grub, and its variables are propagated
to its children in /etc/grub.d/

GRUB_DEFAULT=0
GRUB_TIMEOUT=4
GRUB_DISTRIBUTOR=`lsb_release -i -s 2 > /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT=”quiet splash”

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console

Uncomment if you don’t want GRUB to pass “root=UUID=xxx” parameter to Linux
#GRUB_DISABLE_LINUX_UUID=true

 In addition to the file /etc/default/grub, the folder /etc/grub.d/ contains other files that are read
during the execution of update - grub or update - grub2 commands. The contents are then imported
into /boot/grub/grub.cfg.

c11.indd 222c11.indd 222 10/6/09 9:06:04 AM10/6/09 9:06:04 AM

Chapter 11: Putting It All Together

223

 These files are:

 00_header

 05_debian_theme — Set background and text colors, themes.

 10_hurd

 10_linux

 20_memtest86+ — If the /boot/memtest86+.bin file exists, it is included as a menu item.

 30_os - prober — Searches for other OSs and includes them in the menu.

 40_custom — A template for adding custom menu entries, which will be inserted into grub.cfg
upon execution of the update - grub2 command. This file, as well as any other custom file, must
be made executable to allow importation into grub.cfg.

 The 05_debian_theme file can then be edited to set a different background image, as shown in the
following code:

check for usable backgrounds
use_bg=false
if [“$GRUB_TERMINAL” = “gfxterm”]; then
 for i in {/boot/grub,/usr/share/images/desktop-base}/Windbuchencom.{png,tga}; do
 if bg=`convert_system_path_to_grub_path $i`; then
 case ${bg} in
 *.png) reader=png;;
 *.tga) reader=tga;;
 .jpg|.jpeg) reader=jpeg;;
 Esac
 if test -e /boot/grub/${reader}.mod; then
 echo “Found Debian background: `basename ${bg}`” > & 2
 use_bg=true
 break
 fi
 fi
 done
fi

 After changing the Windbuchencom image for the custom one, run the grub - install command to
write the changes to the Grub2 configuration.

 Display Manager
 Display Manager is a program that can manage several X displays/sessions. The X display/session can
be started by an X Server on a local or remote host. If the X Server is on a remote host, it requests a
session to the Display Manager through the XDMCP, X Display Manager Control Protocol.

 The Display Manager provides a service that prompts for login name and password, authenticating the
user and running a session. The session may contain several programs, but mainly from a user ’ s point of
view, this will be a window manager.

 Several Display Managers are available to choose from, but for this distribution, GDM is the choice.

❑

❑

❑

❑

❑

❑

❑

c11.indd 223c11.indd 223 10/6/09 9:06:04 AM10/6/09 9:06:04 AM

Chapter 11: Putting It All Together

224

 GDM
 GDM is the Display Manager from the GNOME project. It is highly customizable and has an easy
configuration and pre - configuration system.

 Pre - Configuring GDM
 The default gdm behavior can be changed. The config file follows the ini file format. The configuration
includes several sections: daemon , security , xdmcp , gui , greeter , chooser , debug , and servers . The
configuration file is found in /etc/gdm/gdm.conf - custom.

 The following code shows how to enable the onscreen keyboard:

gdm.conf-custom
gdm
[daemon]
AddGtkModules=true
GtkModulesList=gail:atk-bridge:/usr/lib/gtk-
2.0/modules/libdwellmouselistener:/usr/lib/gtk-2.0/modules/libkeymouselistener
[security]
[xdmcp]
[gui]
[greeter]
SoundOnLogin=false
[chooser]
[debug]
[servers]

 GDM can also be themed. This is explained in Chapter 7, “ Theming. ”

 Setting the Default Ubuntu, XFCE, and Hildon Behaviors
 Gtk - based desktops use GConf as the default database for configurations. The following file is an
example of how to set a default configuration for gconf . This file is usually included in a src/debian
directory of a configuration package:

< package-name > .gconf-defaults
/desktop/gnome/interface/gtk_theme brdesktop
/desktop/gnome/background/picture_filename /usr/share/wallpapers/brdesktop03.jpg
/desktop/gnome/volume_manager/autophoto_command “gthumb — import-photos %h”
/desktop/gnome/volume_manager/autoburn_data_cd_command brasero -d
/apps/gnome-session/options/show_splash_screen true
/apps/nautilus/preferences/always_use_browser true
/apps/gksu/sudo-mode false
/desktop/gnome/applications/main-menu/file-area/user_specified_apps
[iceweasel.desktop,ooo-writer.desktop,listen.desktop,gthumb.desktop,nautilus-
home.desktop]
/apps/nautilus/preferences/preview_sound never
/desktop/gnome/applications/main-menu/system_monitor baobab.desktop

c11.indd 224c11.indd 224 10/6/09 9:06:04 AM10/6/09 9:06:04 AM

Chapter 11: Putting It All Together

225

 Fine - Tuning the Build Process
 The following two sections are included here because both help considerably with the time it takes to
build a final CD. It is better to play around with configurations and seeds than it is to be waiting for
packages.

 Setting Up a Repository
 Setting up a Debian repository was covered in Chapter 5. To summarize, adding a debian package to a
local repository is done as follows

$ reprepro includedeb < some-debian-package >

 There may also be instances when a developer needs to add debian packages to a remote server (a PPA
can also be used for this but, as mentioned previously, a PPA can take a long time to make packages
available). To add a debian package to a remote server, install dupload:

$ sudo apt-get install dupload

 Add a configuration in /etc/dupload.conf:

$cfg{‘pumd} = {
 fqdn = > “professional-ubuntu-mobile-development.com”,
 incoming = > “/pub/UploadQueue/”,

};

This sets the fully qualified domain name to professional - ubuntu - mobile - development.com and the
incoming folder on the server as /pub/UploadQueue/. Now it is possible to upload to this server using

$ dupload -- to pumd < some-debian-package > .changes

 Now with reprepro installed on the server, the package can be added to the repository. This
can be scripted and the script added to a cron job. For more on this approach, go to www
.debian-administration.org/articles/286 .

 Caching Packages with approx
 If the Internet connection is limited, a caching system is very helpful. A number of tools can be used to
cache packages such as approx, apt - cacher, apt - cacher - ng, and apt - proxy. Choosing one is a matter of
preference but we have had good results from approx.

 This is installed by running the following:

$ sudo apt-get install approx

 A configuration file is located in /etc/approx/approx.conf. You can add the repository to it. Here is
an example:

packages http://professional-ubuntu-mobile-development.com/

c11.indd 225c11.indd 225 10/6/09 9:06:05 AM10/6/09 9:06:05 AM

Chapter 11: Putting It All Together

226

 In /etc/apt/source.list, add a line such as the following:

deb http://professional-ubuntu-mobile-development.com/packages/ubuntu karmic main

 Creating a Default Ubuntu Image
 Now is the time to think about actually creating the image. This image should be installable on a device
and to accomplish this, an installer is necessary.

 The techniques that are demonstrated in the rest of the chapter are useful not only when working with
mobile devices, but also can be easily adapted to create installation images for desktops and servers.

 Choosing Which Type of Installer to Use
 There are two different types of installer; determining which one to use will depend to some degree on
the target audience for the device and what type of image that you want to create.

 When to Use Debian -I nstaller (Ubuntu Alternate Image)
 The alternate installer is often used for more advanced installations as it provides options that are not
available with the regular desktop image. This might include passing options to kernel modules or
forcing a static network configuration. Let ’ s consider another example: In Chapter 6 a user ’ s home
directory was encrypted. If this needs to be extended to encrypting a whole drive on a device, then this
option is available only in the alternate image.

 The alternate should also be used if the installation needs to be automated across a number of devices or
if the device itself has a low memory footprint (less than 256MB RAM).

 When to Use Ubiquity (Ubuntu Desktop Image)
 Ubiquity is a graphical installer for Ubuntu, written in Python, which uses the debian - installer (d - i) as a
backend for many of its functions. Ubiquity was built because the original interface to d - i was seen by
some as fairly crude. This is because d - i uses a system called debconf to build its user interface, and
because this interface depends on responses to questions it can lack a certain flexibility. Ubiquity is
different as its primary focus is on ease of use for new users, and so it uses a filter called debconffilter,
which sits between d - i code and the debconf front end, intercepting the debconf protocol, and
transforming relevant debconf protocol messages into events that can be handled in much the same way
as UI events from widget libraries like GTK+ or Qt.

 More info about the debian - installer can be found at http://d-i.alioth.debian.org/doc/
talks/debconf6/paper/ .

 Getting Started on the Image: Preparing the Environment
 There are many ways to build Ubuntu images. A variety of existing tools attempt to automate this task —
 such as remastersys, uck (Ubuntu Customization Kit), and methods that manually edit the default
Ubuntu images. This section will describe the official Ubuntu way to create images.

c11.indd 226c11.indd 226 10/6/09 9:06:05 AM10/6/09 9:06:05 AM

Chapter 11: Putting It All Together

227

 Creating an image from scratch involves four projects:

 cdimage

 debian - cd

 germinate

 britney

 Each of these is explained in this section.

 cdimage is the set of scripts that drives the whole process and handles synchronization with a local
repository. It generates the debian - cd task lists from seeds and calls debian - cd to burn the finished ISO.

 The first step for creating an ISO is to lay out a sane directory structure:

$ mkdir -p /home/ < username > /devel/ubuntu

 Change into the recently created directory. Next, make a branch of our ubuntu - cdimage scripts:

$ bzr branch bzr+ssh://bazaar.launchpad.net/~rclbelem/ubuntu-cdimage/mainline/
ubuntu-cdimage

 Also make a branch of the debian - cd with changes for Ubuntu:

$ bzr branch bzr+ssh://bazaar.launchpad.net/%7Eubuntu-cdimage/debian-cd/ubuntu/
debian-cd

 Create a symbolic link between the two:

$ ln -s debian-cd ubuntu-cdimage/

 Britney is an updater script that intelligently moves packages (originally in Debian from the unstable
repositories to the testing repositories), and the intelligent part comes from the fact that the destination
for the packages should always be fully installable and close to being a release candidate. Branch this:

$ bzr branch http://people.ubuntu.com/%7Ecjwatson/bzr/britney/cdimage/ britney

 Make a symbolic link from britney to ubuntu - cdimage:

$ ln -s britney ubuntu-cdimage/

 Branch germinate, as follows:

$ bzr branch bzr+ssh://bazaar.launchpad.net/%7Ecjwatson/germinate/mainline/
germinate

 Link it to ubuntu - cdimage:

$ ln -s germinate ubuntu-cdimage/

❑

❑

❑

❑

c11.indd 227c11.indd 227 10/6/09 9:06:05 AM10/6/09 9:06:05 AM

Chapter 11: Putting It All Together

228

 Now install debian - cd, debmirror, and procmail. We will not use debian - cd itself, but installing it (and
the other packages mentioned) means that all the necessary dependencies are satisfied.

$ sudo apt-get install debian-cd debmirror procmail zsync

 Install germinate to install its dependencies, too.

$ sudo apt-get install germinate

 Next, install a package on which britney depends:

$ sudo apt-get install libapt-pkg-dev

 Create the base directory where the gpg files will be placed:

$ mkdir -p /home/ < username > /devel/ubuntu/ubuntu-cdimage/secret/dot-gnupg

 Now create a new gpg key. Answer the questions as they are asked during creation but make sure that
the password field is empty (just hit Enter at the password prompt). The scripts in cdimage run in batch
mode and so will fail if a password is set:

$ gpg — homedir /home/ < username > /devel/ubuntu/ubuntu-cdimage/secret/dot-gnupg —
 gen-key — force-v4-certs

 Edit the recently created key and set it as the main key:

$ gpg -- homedir /home/ < username > /devel/ubuntu/ubuntu-cdimage/secret/dot-gnupg —
 edit-key < keyid >

 This is done by doing the following

Command > 1
Command > primary

 Now import the Ubuntu keyring – this adds all the developer keys:

$ gpg — no-default-keyring — keyring /home/ < username > /devel/ubuntu/ubuntu-cdimage/
secret/dot-gnupg/pubring.gpg — import /usr/share/keyrings/ubuntu-archive-keyring.gpg

If the mirror will be hosting “ feisty ” repositories, the following step is needed
(otherwise, skip it):

 gpg-no-default-keyring-keyring /home/ < username > /devel/ubuntu/
mirror-keyring/trustedkeys.gpg-import /usr/share/keyrings/
ubuntu-archive-keyring.gpg

 Pick a mirror from the list at https://launchpad.net/ubuntu/+archivemirrors that is close to
your physical location and that also has rsync available, and then run the following command to create
the local mirror:

c11.indd 228c11.indd 228 10/6/09 9:06:06 AM10/6/09 9:06:06 AM

Chapter 11: Putting It All Together

229

$ GNUPGHOME=/home/ < username > /devel/ubuntu/ubuntu-cdimage/secret/dot-gnupg debmirror
-a i386 -s main,restricted,main/debian-installer -e rsync -r:ubuntu -h archive.
ubuntu.com -d karmic /home/ < username > /devel/ubuntu/ubuntu-cdimage/ftp

 The preceding command will take around 15GB of the disk space and will take a long time to download!

 After following the steps, the environment is ready. It is time to build a default Ubuntu image.

 Finally, Building the Default ISO
 Now everything is ready to build the image. To do this, create a directory called seeds and download the
seed file required:

$ mkdir seeds
$ cd seeds
$ bzr branch http://bazaar.launchpad.net/~ubuntu-core-dev/ubuntu-seeds/platform
.karmic/
$ bzr branch http://bazaar.launchpad.net/~ubuntu-core-dev/ubuntu-seeds/ubuntu.karmic/

 Edit the config file in ubuntu - cdimage/etc:

$ cd ./ubuntu-cdimage/etc/

$ vi config

The finished file looks like this:

#! /bin/sh
Settings for building Ubuntu CD images. The build procedure also involves
syncing a local Ubuntu mirror; see etc/anonftpsync for settings affecting what
is mirrored and where.
export LC_ALL=C
export CDIMAGE_ROOT=”${CDIMAGE_ROOT:-/home/ < username > /devel/ubuntu/ubuntu-cdimage}”
if [-z $PROJECT]; then
 PROJECT=”${PROJECT:-ubuntu}”
fi
if [-z $CAPPROJECT]; then
 CAPPROJECT=”${CAPPROJECT:-Ubuntu}”
fi
if [-z $DIST]; then
 DIST=”${DIST:-karmic}”
fi
if [-z $ARCHES]; then

 case $DIST in
 warty|hoary|breezy|dapper|edgy)
 ARCHES=”${ARCHES:-amd64 i386 powerpc}”
 ;;
 feisty|gutsy|hardy|intrepid|jaunty|karmic)
 ARCHES=”${ARCHES:-i386}”
 ;;
 esac
fi

c11.indd 229c11.indd 229 10/6/09 9:06:06 AM10/6/09 9:06:06 AM

Chapter 11: Putting It All Together

230

Do not update the local mirror
CDIMAGE_NOSYNC=1
LOCAL_SEEDS=file:///home/ < username > /devel/ubuntu/seeds/ CDIMAGE_ROOT=`pwd`
CDIMAGE_INSTALL=1
CPUARCHES=”$(echo “$ARCHES” | xargs -n1 | sed ‘s/+.*//’ | sort -u | xargs)”
GNUPG_DIR=”$CDIMAGE_ROOT/secret/dot-gnupg”
SIGNING_KEYID=1421BE56
Mirror info
MIRROR=

MIRRORDIR=
Hosts that need to be notified when the build is done. Third-party users
will want to keep this variable empty.
The “async” mirrors will be notified asynchronously, i.e. we won’t wait for
them to respond.
TRIGGER_MIRRORS=
TRIGGER_MIRRORS_ASYNC=
export TRIGGER_MIRRORS
export TRIGGER_MIRRORS_ASYNC

Some older versions of debootstrap must *think* they’re running as root,
even though that’s not really needed here. If you have that problem, make
sure you have fakeroot installed and uncomment this variable.
DEBOOTSTRAPROOT=fakeroot
export DEBOOTSTRAPROOT
PATH=”$CDIMAGE_ROOT/bin:$PATH”
export PATH
umask 002

 Set the $PATH to the ubuntu - cdimage bin directory:

$ export PATH=/home/ < username > /devel/ubuntu/ubuntu-cdimage/bin/:$PATH

and build the .iso:

$ CDIMAGE_ROOT=/home/ < username > /devel/ubuntu/ubuntu-cdimage CDIMAGE_NOSOURCE=1
DIST=karmic ARCHES=i386 CDIMAGE_NOSYNC=1 for-project ubuntu cron.daily

 This will then build the image.

 Building a Customized Ubuntu Image
 It is now possible to build a customized Ubuntu image (with whatever selection of packages and
configuration is appropriate to your target users). The only limits to what can be achieved with this are
your imagination and the time required to try out the different combinations of applications and
configurations. For this, it is necessary to understand how seeds and the germinate program work.

 There are many packages in the Ubuntu archive, and Canonical needs to support the ones it selects to
enter into a release for at least 18 months. Keeping track of all these packages would become
unmanageable eventually, and this is important as Canonical is offering commercial support for some
but not all of these packages. Because of this, the Ubuntu developers created a system of seeds that are

c11.indd 230c11.indd 230 10/6/09 9:06:06 AM10/6/09 9:06:06 AM

Chapter 11: Putting It All Together

231

 “ germinated ” into a full list of packages required for a specific task. Everything built from the Ubuntu
archive has a corresponding set of seeds listing the packages it contains — so, for example, the base seed
will contain a minimum set of packages needed to get a minimal command shell on a device.

 The seeds expand into a list of packages that are then built using some automated scripts to create CD
and DVD images. These images are then published daily on cdimage.ubuntu.com and eventually as
releases on releases.ubuntu.com. The types of images that are created are

 .iso images — Ubiquity (desktop) and the alternate installer

 .img images — Used for ARM and for LPIA images.

 Inside Seed Germination
 Germinate is a program that constructs lists of packages by reading seed files. Seed files are files that
contain raw lists of packages. These raw lists are processed by the germinate program to generate
another list, which contains all of the dependencies of the packages in the raw list (Germinate also
creates separate lists of suggests and recommends in its output). An example germinate output illustrated
in Figure 11 - 1 shows this — which is from the “ minimal ” seed output.

❑

❑

Figure 11-1

 In the preceding table, aptitude is included because tasksel depends on it, and busybox - initramfs is
included because initramfs - tools depends on it.

 The raw seed file sometimes begins with headers at the top of the file, in “ key: value ” format. These are
not parsed by germinate but are used by the program germinate - update - metapackage when generating
its output. The packages in the raw seed lists should be listed in bullet form with each package preceded
by an asterisk. The raw seed file itself can be written in wiki format (as seen below) because everything
that does not start with an asterisk will be ignored.

== Development ==

These packages are needed in order to build Ubuntu packages.

 * build-essential
 * fakeroot

== Hardware & Network Access ==

 * pptp-linux # client for Microsoft-compatible VPN’s, needed for some ISPs
 * sl-modem-daemon # needed for some Winmodems (see OutoftheboxWinmodem)
 * bpalogin
 * ndiswrapper-utils-1.9 [amd64 i386]
 * ndisgtk

c11.indd 231c11.indd 231 10/6/09 9:06:06 AM10/6/09 9:06:06 AM

Chapter 11: Putting It All Together

232

 In the preceding example, pptp - linux is a dependency. If it were in brackets, it would indicate that the
package is recommended and not depends. For instance, the Online Services example that follows is a
recommends:

Online Services:
 * (ubuntuone-client-gnome)

 A leading exclamation mark in a seed file indicates a per - seed blacklist. An exclamation mark means to
never include this package in the seed or in any of its inner seeds. An example of this follows:

== Blacklist ==
libavcodec cannot be shipped on CDs (c.f. Ubuntu technical board resolution
2007-01-02).
!libavcodec*

 The asterisk at the end of libavcodec is used for regular expression matching in the germinate code to
place everything that starts with libavcodec into the per seed blacklist.

 Other things to notice in seed files are process substitution variables. A package containing substitution
variables will be expanded into one package for each possible combination of the values of those
variables. An example is:

* Kernel-Stem: linux linux-image

== i386 ==

* ${Kernel-Stem}-generic-pae [i386]
* linux-headers-generic-pae [i386]
* ${Kernel-Stem}-virtual [i386]
* linux-headers-virtual [i386]

 Seed entries can also be followed by square brackets. An example is:

* language-support-${Languages} [!powerpc]

which indicates that the language - support package should not be used on the powerpc architecture. The
converse is also true, of course, in that seed entries followed by [lpia i386] (without the exclamation
mark) indicate that they should only be used on LPIA and i386 architectures.

 Finally, if the package name in the seed starts with % then germinate expands to all binaries from the
given source package.

 Germinating the Seeds
 As mentioned previously, the raw seed files are germinated into a full list of packages using the
germinate program. The germinate program requires some default seed files to be present in order to
work. The most important of these seed files (which are mandatory) are STRUCTURE, supported, and
blacklist.

 These mandatory files do not necessarily need to contain anything but they must be present for
germinate to work.

c11.indd 232c11.indd 232 10/6/09 9:06:07 AM10/6/09 9:06:07 AM

Chapter 11: Putting It All Together

233

 STRUCTURE is a special file that lists the seeds and how they depend on each other. The STRUCTURE
file for karmic netbook looks like this:

include platform.karmic
netbook-remix: desktop-common
live: netbook-remix
ship-live: live
supported: netbook-remix ship-live supported-common

 The name of the seed file is followed by a colon. After the colon is a space and a space - separated list of
seeds on which the first seed on the line depends. It is possible to see graphically how the seeds relate to
each other by looking at the structure.dot file in the germinate output. Figure 11 - 2 shows the
graphical germinate output for Ubuntu Netbook Remix, which is available from http://people
.ubuntu.com/~ubuntu-archive/germinate-output/unr.karmic/structure.dot .

Supported-sysadmin-
common

Supported-misc-
servers

Supported-
server

Supported-
desktop

Supported-
common

Supported-
hardware-desktop

Supported-
installer-desktop

Supported-
sysadmin-desktop

language-
packs

Netbook-
remix

Live

Ship-live

Supported

Supported-network-
common

Supported-installer-
common

Supported-hardware-
common

Supported-
development

Standard d-i-requirements

Minimal

Required Installer

Installer-gtk

Build-
essential

Desktop-
common

Supported-
kernel

Figure 11-2

 A STRUCTURE file then lists the inheritance relationships between seeds. It is an ordered sequence of
lines like the following:

SEED:[INHERITED]

c11.indd 233c11.indd 233 10/6/09 9:06:07 AM10/6/09 9:06:07 AM

Chapter 11: Putting It All Together

234

 INHERITED is a space - separated list of seeds from which SEED inherits. For example,
netbook - remix: desktop - common in the preceding STRUCTURE file indicates that packages in
the netbook - remix seed may depend on packages in the desktop - common seed without requiring that
those packages appear in the netbook - remix output. Any line like the following:

include BRANCH

which is seen in the section below, causes another seed branch to be included.

 The supported seed lists all the packages that are necessary to build the distribution (but which do not
necessarily need to be included on the final image for space reasons). germinate, therefore, does not add
all the packages that result from following build - dependencies of seed packages and of their
dependencies to every output, unless they are also in the seed list. These packages are added to
supported. Like any other seed, the supported seed may contain its own list of packages.

 The blacklist file does not define a list of packages to include but lists packages that will never be
included in the output of germinate.

 The other seeds that were listed in the STRUCTURE file in the Ubuntu Netbook Remix example, such as
netbook - remix, desktop - common, live, ship - live, and so on, can be called anything but they need to exist,
and they need to be listed as such in the STRUCTURE file.

 An Example: Germinating Ubuntu Netbook Remix
 Begin by branching the Ubuntu Netbook Remix seed. Make a seeds directory:

$ mkdir seeds; cd seeds
$ bzr branch lp:~ubuntu-core-dev/ubuntu-seeds/unr.karmic

move into the unr.remix folder, and in the STRUCTURE file there is a line like the following:

include platform.karmic

which means that the platform karmic seed is required. Move back to the seeds folder and branch
platform.karmic:

$ cd ..
$ bzr branch lp:~ubuntu-core-dev/ubuntu-seeds/platform.karmic

 Next make an output folder and move into it the following:

$ mkdir output; cd output

 Make sure that the germinate tool is installed (sudo apt - get install germinate) and then invoke it:

$ germinate -S file:///home/ < user > /Dev/Book/test/seeds/ -s unr.karmic -m
http://172.16.50.131:9999/ubuntu -d karmic -a i386 -c main,restricted
,universe,multiverse

 172.16.50.131:9999 is our local mirror — use archive.ubuntu.com if you do not have a local mirror set up.

c11.indd 234c11.indd 234 10/6/09 9:06:08 AM10/6/09 9:06:08 AM

Chapter 11: Putting It All Together

235

 Using seeds and germinate creates a final package list with all the other packages that are required,
including all of their dependencies.

 Packages and Repositories
 This section deals with creating meta packages and creating a local repository for your content.

 Generating Metapackages the Ubuntu Way
 To create a metapackage the Ubuntu way, get the source of the ubuntu - netbook - remix for Ubuntu Karmic:

$ apt-get source unr-meta

 Do not forget to add karmic deb - src repository to your sources.list.

 Make sure that the germinate tool is installed:

$ sudo apt-get install germinate

 Move into the unr - meta directory, which was created when we checked out the source of unr - meta, and
remove metapackage - map and all the netbook - remix - * files

$ rm metapackage-map netbook-remix-*

 Edit the update script and remove the - - bzr parameter from the last line:

 After the changes, the last line looks like this:

$ exec germinate-update-metapackage

 This is important only when the seeds are on a local machine and not in a Bazaar repository. If the seeds
are in Bazaar this parameter can be added again.

 The - - bzr parameter forces the germinate - update - metapackage to download the seeds files from a Bazaar
repository. If this is not given, it will fall back to the ubuntu seed repository.

 Next, edit the file update.cfg. This is the configuration file for germinate - update - metapackage and, by
default, the file looks like this:

 [DEFAULT]
dist: karmic

[karmic]
seeds: netbook-remix
architectures: i386 amd64 powerpc ia64 sparc lpia armel
seed_base: http://people.ubuntu.com/~ubuntu-archive/seeds/
archive_base/default: http://archive.ubuntu.com/ubuntu/

c11.indd 235c11.indd 235 10/6/09 9:06:08 AM10/6/09 9:06:08 AM

Chapter 11: Putting It All Together

236

archive_base/ports: http://ports.ubuntu.com/ubuntu-ports/
archive_base/hppa: %(archive_base/ports)s
archive_base/ia64: %(archive_base/ports)s
archive_base/lpia: %(archive_base/ports)s
archive_base/powerpc: %(archive_base/ports)s
archive_base/sparc: %(archive_base/ports)s
archive_base/armel: %(archive_base/ports)s
components: main restricted

[karmic/bzr]
seed_base: bzr+ssh://bazaar.launchpad.net/~ubuntu-core-dev/ubuntu-seeds/
seed_dist: unr.%(dist)s

 After the changes, the file should look like this (read the comments):

[DEFAULT]
dist: karmic

[karmic]
seeds: netbook-test
architectures: i386
put here the path to your seed files. In this path there should be platform
.karmic and netbook.karmic.
seed_base: file:///home/user/devel/path/to/seeds/
Here we have the repositories separated by commas. The first repository is a
caching
debian repository and the second is a local repository that will contain the
modified packages.
archive_base/default: http://localhost:9999/ubuntu/, file:/home/user/devel/path/to/
repos
Here will be set the name of the dir that contains the seed files
seed_dist: netbook.%(dist)s

 Then run the update script:

$./update

 This script calls germinate - update - metapackage, which constructs the metapackage.

 germinate - update - metapackage renames the current directory, updates the debian/control to reflect the
current contents of the seeds, and updates debian/changelog with a description of the changes it made.
The package can now be manually rebuilt using dpkg.

 Building the metapackage
 Rename the unr - meta directory to a new name. This will be the new name for the source package. An
example might be renaming unr - meta - 1.157 to netbook - meta - 1.157.

 This is renaming the source package. It is not the name of the new metapackage. This is named in the
second stanza of the debian control file.

c11.indd 236c11.indd 236 10/6/09 9:06:08 AM10/6/09 9:06:08 AM

Chapter 11: Putting It All Together

237

 Next, move into the netbook - meta - 1.157 directory and then into the debian subdirectory. Edit the control
file and replace the old package name (for example, ubuntu - netbook - remix) with the new metapackage
name (for example, ubuntu - netbook - example). An example control file looks like the following:

Source: netbook-meta
Section: metapackages
Priority: optional
Maintainer: Ubuntu Mobile Developers < ubuntu-mobile@lists.ubuntu.com >
Standards-Version: 3.7.3
Build-Depends: debhelper (> = 4), germinate (> = 0.42)

Package: ubuntu-netbook-example
Architecture: any
Depends: ${ubuntu-netbook-example:Depends}
Recommends: ${ubuntu-netbook-example:Recommends}
Description: The Ubuntu Netbook Example system
This package depends on all of the packages in the Ubuntu Netbook Remix
System
.
It is also used to help ensure proper upgrades, so it is recommended that
it not be removed.

 Save this file and then edit the debian/rules file. If you changed the main seed filename in the
STRUCTURE file in the section “ Germinating the Seeds ” (for example, from netbook - remix to netbook -
 example), you should replace this, too. Here is an example rules file:

#!/usr/bin/make -f

clean:
dh_testdir
dh_clean
rm -rf build-stamp *.old debootstrap-dir

DEB_BUILD_ARCH ?= $(shell dpkg-architecture -qDEB_BUILD_ARCH)

build: build-stamp
build-stamp: netbook-example-$(DEB_BUILD_ARCH)
dh_clean
for seed in netbook-example; do \
package=ubuntu-$$seed; \
(printf “$$package:Depends=”; perl -pe ‘s/\n/, /g’ $$seed-$(DEB_BUILD_ARCH); echo) \
 > > debian/$$package.substvars; \
(printf “$$package:Recommends=”; perl -pe ‘s/\n/, /g’ $$seed-recommends-
$(DEB_BUILD_ARCH); echo) \
 > > debian/$$package.substvars; \
Done
touch $@

install: build-stamp

binary-arch: install
dh_testdir -a

c11.indd 237c11.indd 237 10/6/09 9:06:08 AM10/6/09 9:06:08 AM

Chapter 11: Putting It All Together

238

dh_testroot -a
dh_installdocs -a
dh_installchangelogs -a
dh_compress -a
dh_fixperms -a
dh_installdeb -a
dh_gencontrol -a
dh_md5sums -a
dh_builddeb -a

binary-indep:
dh_testdir -i
dh_testroot -i
dh_installdocs -i
dh_installchangelogs -i
dh_compress -i
dh_fixperms -i
dh_installdeb -i
dh_gencontrol -i
dh_md5sums -i
dh_builddeb -i

binary: binary-indep binary-arch

.PHONY: binary binary-arch binary-indep clean checkroot build

 Finally, describe the changes made to debian/changelog using the dch tool. From the root directory of
the metapackage type the following:

$ dch -i

 This will open the debian/changelog using your default editor. Update the debian/changelog with a
description of the changes made. An example changelog looks like this:

mobile-example (1.104) karmic; urgency=low
 * Fork ubuntu-meta source as mobile-example.
 * Cleanup rules.
 * Set Maintainer to Mobile Developer < developer@mobile.org > .
 * Switch seed_base to ~ubuntu-mobile/ubuntu-seeds and seed_dist to
 mobile.%(dist)s

 The package can now be manually rebuilt using debuild .

 Generating Metapackages the Simple Way
 It is possible to run the following command on a device whose installed software packages you wish to
copy. This type of thing is known in Brazil as a gambiarra.

$ dpkg-query -W -f=’${Package}, ‘ | sed ‘s/\, $//’ > metapackage-list.txt

c11.indd 238c11.indd 238 10/6/09 9:06:09 AM10/6/09 9:06:09 AM

Chapter 11: Putting It All Together

239

Here is a snippet from running this command on an Acer Aspire device running karmic:

acpi-support, acpid, adduser, alacarte, alsa-base, alsa-utils, anacron, apmd, app-
install-data, app-install-data-commercial, apparmor, apparmor-utils, apport,
apport-gtk, apt, apt-transport-https, apt-utils, apt-xapian-index, aptitude,
apturl, aspell, aspell-en, at, at-spi, avahi-autoipd, avahi-daemon, avahi-utils,
base-files, base-passwd, bash, bash-completion, bc, bind9-host, binfmt-support,
binutils, bluetooth, bluez, bluez-alsa, bluez-cups, bluez-gnome, bluez-gstreamer,
bluez-utils, bogofilter, bogofilter-bdb, bogofilter-common, brltty, brltty-x11,
bsdmainutils,

 The preceding command will query the dpkg database and return a comma - delimited list of all packages
that can be added into the Depends portion of a control file.

 Once the control file is written (a metapackage just needs to have a control file), the metapackage can be
built using the following:

$ dpkg-deb -b meta-package-name.deb

 Preseeding the Installer
 This sections explains what it means to pre seed an installer.

 As explained previously, two installer types are available on Ubuntu — the first is the debian - installer
and the second is Ubiquity. With the debian - installer, a full - featured preseed is available, whereas with
Ubiquity there are some restrictions on what can be done with preseeding.

 If no preconfiguration is necessary, all that is needed is to change the name of the main package, so, for
example, changing the following preseed file found at ubuntu - cdimage/debian - cd/data/karmic/
preseed/ubuntu - netbook - remix/netbook - remix.seed

tasksel tasksel/first multiselect ubuntu-netbook-remix
d-i preseed/early_command string . /usr/share/debconf/confmodule; db_get
debconf/priority; case $RET in low|medium) db_fset tasksel/first seen false ;; esac
d-i passwd/auto-login boolean true

to the new file found at ubuntu - cdimage/debian - cd/data/karmic/preseed/ubuntu - netbook - example/
netbook - example.seed, looks like this:

tasksel tasksel/first multiselect ubuntu-netbook-example
d-i preseed/early_command string . /usr/share/debconf/confmodule; db_get
debconf/priority; case $RET in low|medium) db_fset tasksel/first seen false ;; esac
d-i passwd/auto-login boolean true

If preconfiguration is necessary, then options can be added into this file. An example preconfiguration
file that you can use as the basis for your own is available from http://d-i.alioth.debian.org/
manual/example-preseed.txt.

Various options are available. Examples include setting a default locale for the installation

d-i debian-installer/locale string pt_BR

c11.indd 239c11.indd 239 10/6/09 9:06:09 AM10/6/09 9:06:09 AM

Chapter 11: Putting It All Together

240

installing non-free firmware

d-i hw-detect/load_firmware boolean true

or even reporting back the most popular software on a device:

popularity-contest popularity-contest/participate boolean true

It is also possible to create your own example preseed file by using debconf-get-selections. This will
output a list of all debconf options you’ve chosen throughout the install on a device.

$ sudo apt-get install debconf-utils
$ sudo debconf-get-selections --installer > netbook-example.seed
$ sudo debconf-get-selections >> netbook-example.seed

Adding Packages to the Image
Copy the packages you wish to add to the image to

LOCALDEBS=$CDIMAGE_ROOT/local/packages

and then add to your build image command below the parameters:

LOCAL=1 LOCALDEBS=$CDIMAGE_ROOT/local/packages

 Finally, Build the Custom ISO
 With the new seed list, everything is ready to build the final custom image:

$ LOCAL=1 LOCALDEBS=$CDIMAGE_ROOT/local/packages PROJECT=ubuntu CAPPROJECT=Ubuntu
DIST=karmic ARCHES=i386 CDIMAGE_NOSYNC=1 IMAGE_TYPE=daily build-image-set daily

 This can then be distributed and installed on the target device.

 Ubuntu Policies, Trademarks, Copyright,
and Common Sense

 It is important to note that Ubuntu mirrors are open and accessible to everyone who wishes to download
the data they hold. As such, they are a public service for anyone to use. Having said this, however, there
are some things that should be done out of courtesy when creating a derived distribution.

 What follows should be considered only an outline of what is expected when creating a derivative
distribution. It is always a good idea to consult with Canonical Ltd. before releasing anything into the
wild that you are unsure about. The following things are important:

c11.indd 240c11.indd 240 10/6/09 9:06:09 AM10/6/09 9:06:09 AM

Chapter 11: Putting It All Together

241

 You should change the DISTRIB_RELEASE variable in the file /etc/lsb - release to something
compatible with the derived distributions naming scheme.

 You should change the Ubuntu logo in Ubiquity. This could also include changing the new Ubiquity
slideshow if this is included in the distribution (bzr branch lp:ubiquity - slideshow - ubuntu).

 You should state publicly that the distribution is based on Ubuntu.

 You should Give feedback to Ubuntu. Provide bug reports, although patches and
documentation are even better!

 So What Is a Derived Distribution?
 Confusion exists over the exact definition of the term “ derivative ” or derived distribution. Deriving some
new software from some original implies that some sort of change has taken place in the original — if
this were not the case, then it would just be a simple gcc compile of the original source code (something
called a compilation in copyright law). Obviously, if the original source code is changed, then the
upstream author has the right to insist that the new work be licensed under the same provisions as the
original code. This is clear — however the confusion comes with the definition of a new work .

 Copyright law also allows for a situation where if the original source code is “ annotated, ” “ elaborated, ”
or “ modified ” it can be considered, on the whole a new work. This new work is then subject to the same
license terms as the original source code mentioned earlier.

 The problem is with the phrase “ on the phrase ” — “ on the whole, ” in English, is used most frequently to
mean “ generally ” which seems awfully vague for a legal clause in a copyright contract. As a
consequence of this, a new work might be seen as a derived work if creative expression is added to the
original work, even if there are no actual changes to the original source code.

 Some people think that this doubt has led to more interest in using other licenses (such as the LGPL),
which explicitly allow for derivative works rather than relying on the GPL.

When to Use the LGPL
The original name for this library was “ The Library General Public Licence, ” because this license covers
the linking of libraries between applications. Today it is more commonly referred to as “ The Lesser
General Public License. ”

Imagine that there are two applications. When both applications are licensed under the GPL, the source
code must be made available — full stop. However, the situation is complicated when one is GPL and
the other a proprietary application, and even more so when the proprietary application makes use of
some library from the GPL one. The LGPL license specifically allows for the linking of a proprietary
application to GPL ’ d libraries without requiring that the proprietary application make its source code
available. If the proprietary application changes some of the source code in the GPL ’ d library (perhaps
to make the application bind better), then only those changes need to be published. In practice and as a
matter of courtesy, companies should do their utmost to make sure that this code is accepted upstream
as quickly as possible. It is far easier to maintain this way, ensures future application compatibility, and
makes community relationships stronger.

❑

❑

❑

❑

c11.indd 241c11.indd 241 10/6/09 9:06:10 AM10/6/09 9:06:10 AM

Chapter 11: Putting It All Together

242

Some people believe the fact that proprietary applications (as well as GPL ’ d ones, of course) can be
derived from LGPL ’ d code increases the developer base and business ecosystem around the library.
This strategy is being followed by both Intel with its Clutter library (see Chapter 4, “ Application
Development ”) and Nokia, who recently purchased Trolltech (the makers of QT) and then LPGL ’ d the
whole QT library.

Other people are not so convinced about the community building benefits, hence the common name of
“ Lesser. ” Once the copyright has been correctly assigned, it is possible to go on and actually build the
package.

 The ISO image (the distribution) we made in the section “ Building a Customized Ubuntu Image ” is
copyrighted by the authors and not GPL. The reason for this is that this distribution constitutes an
aggregated or collective work, with all the individual applications included in our custom distribution
licensed under their respective licenses (proprietary, GPL, or whatever) and the actual seed selections
themselves under our copyright.

 Summary
 In this chapter, we built a custom Ubuntu image that is based on Ubuntu Karmic.

 It was made possible through the work of countless Debian and Ubuntu developers, community
members, and technical writers. The fact that this can be done at all is a tribute to the distributed nature
of open source development and a credit to everyone everywhere who has in some way contributed to
free software development.

c11.indd 242c11.indd 242 10/6/09 9:06:10 AM10/6/09 9:06:10 AM

 Mobile Directions

 Architecture: A fundamental underlying design of computer hardware, software,
or both.

 www.dictionary.com

 The marketplace has opened up a great number of developer opportunities across the mobile
landscape. Linux and Ubuntu are in a great position to be widely used in mobile applications. The
precise confluence of hardware, software, and mobile/network technologies is unpredictable, so it
pays to be prepared with the skills and capabilities to move in various directions as future
scenarios unfold. Working through this book is a great part of that preparation. Cutting through
some of the market chaos could also help.

 As you plan your own mobile activities, a roadmap may prove useful. The architectural block
diagram shown in Figure 12 - 1 offers one possibility of what a mobile computing platform might
look like.

c12.indd 243c12.indd 243 10/6/09 9:06:42 AM10/6/09 9:06:42 AM

Chapter 12: Mobile Directions

244

User Applications

Mobile Computing Architecture

System Applications

Platform Specific User Interface

Application Framework/Language Bindings

Software Foundations Core (e.g. Moblin)
UI Services - 2D/3D interface, GUI toolkit

Application Services - Audio, Video, Media, Networks,
Location, Message Bus, Content, Power, Web

MiddleWare
Security/Messaging/Database/System Libraries

Linux Kernel and Drivers

Files Rich Media/Data Archives

Hardware: Processors/RAM/I-O/Media/Touch

Figure 12-1

 The subsystems are moving targets — and under the control of far-flung, independent individuals,
groups, and foundations. Development is not always guided by market incentives, nor marked by a
corporate calendar of release cycles. The existing components need to be maintained, and new
components will be invented. New hardware will keep driving change through the software stack.
Virtually all of open source is built with a common mission of sharing and improvement. As a member
of the open source community, you can directly impact virtually any one of these key subsystems.

 Choice, Change, and Oppor tunity
 Norbert Wiener was a world - renowned mathematician. A child prodigy, he graduated from college at
age 14 and earned a PhD from Harvard at 18. He spent most of his career teaching at MIT and so he
knew the halls of that institution pretty well. He wrote Invention: The Care and Feeding of Ideas in the
1950s. Wiener described four key stages of invention: intellectual climate, technical climate, social
climate, and economic climate.

 Wiener emphasized the need to encourage and recognize invention and the creation of ideas. He also
recognized the burden and responsibility of carrying these inventions forward in trusting stewardship

c12.indd 244c12.indd 244 10/6/09 9:06:42 AM10/6/09 9:06:42 AM

Chapter 12: Mobile Directions

245

for a community. In many ways, Wiener ’ s writing foresaw the open source revolution and the role of
Linux distributions.

 By Wiener ’ s account, the risks are great in the early inventive stages and simply cannot be calculated.
The inventive mind can do nothing more than follow instinct, work with knowledge, and act.

 Moving beyond that difficult first step, Wiener doesn ’ t hide the fact that really big developments often
take a long time to mature. All of us have witnessed enormous technological changes that the Internet,
the World Wide Web, and computers have brought during the last three decades.

 When contemplating your next steps — choice, change, and opportunity — think of these words from
Weiner for inspiration around Ubuntu, Linux, Mobile computing, and open source:

 The profi t motive may be important, but it must be supplemented by other motives. The community must cultivate
a group which is neither subservient to the profi t motive in the external community nor internally governed by this
motive whatever benefi ts are awarded for scientifi c creation should have the good of the community as their purpose
even more than the good of the individual. As such, they should be contingent on a full and free publication of the new
ideas of the discoverer. The truth can make us free only when it is a freely obtainable truth.

 The Ubuntu Developer Community that appears in Figures 12 - 2 and 12 - 3, gathers at different locations
around the world to plan out each new release. Keep an eye on the schedule for the next Ubuntu
Developer Summit near you and participate!

Figure 12-2

c12.indd 245c12.indd 245 10/6/09 9:06:43 AM10/6/09 9:06:43 AM

Chapter 12: Mobile Directions

246

 Evolution and Software Development
 Linus Torvalds defines this kind of inventive and creative spirit. If you want an excellent read and a
detailed look at how invention works, check out Just for Fun: The Story of an Accidental Revolutionary by
Linus Torvalds and David Diamond. The book begins in the early days, before Linus became Linux, and
it ’ s a page turner. By the time you ’ re done, you ’ ll have one of the best narratives on how technology
development really happens. The hardware equivalent of a story like this would be Tracy Kidder ’ s
Pulitzer Prize winning “ Soul of a New Machine. ”

 Torvalds ’ book is fun to read, but it ’ s also a learning lab look at how great open source technologies
evolve. In the case of Linux, the project started out small, with few expectations. It quickly grew beyond
something that the imagination (and even big corporations) could comprehend.

 There ’ s a good chance that somewhere in the world, another young software genius or engineer is
working on something that will have at least as much an impact on the computer industry in the next
decade or two.

Figure 12-3

c12.indd 246c12.indd 246 10/6/09 9:06:44 AM10/6/09 9:06:44 AM

Chapter 12: Mobile Directions

247

 While Torvalds was working on his first lines of Linux code, Richard Stallman was marching on Lotus
Development and protesting for Free Software. That was around 1990, when I worked for Lotus
Development. I looked out my office window one day and saw Stallman and others in front of Lotus ’ s
main office building. I distinctly remember one protestor who held a sign with something improbable
written on it: To paraphrase, it said “ All Software Should Be Free. ”

 At the time, it was difficult to comprehend how any rational individual could expect that complex and
high quality software such as Lotus 1 - 2 - 3 could be developed for free. (Of the more than 100 people
working on Lotus 1 - 2 - 3, at least some had to pay room and board. Richard Stallman, on the other hand,
describing himself as a “ squatter, ” seemed to manage a rent - free office and free overnight sleeping
accommodation at MIT, in addition to commanding his $260/hour consulting fee!)

 Over the next ten years, a great deal of tiny, gradual change swept through the tech industry. All around
the world, business models and environments changed — usually gradually but then explosively in the
fall of 2008. Technology today is in a very different place than it was ten years ago, and even more
evolved from where it was 20 years ago. As a method for explaining how some of this evolution might
be discussed, I offer four evolutionary software development models for your consideration. All of the
models are inspired by various works of natural philosophers. I call these models Darwin, Mendel,
Mayr, and Frankenstein.

 Darwin
 The Darwin Model of Software Development is named for Charles Robert Darwin, famous for his
publication of “ On the Origin of Species. ” Darwin published his breakthrough book at the wise age of
51. Darwin ’ s book documents his lifetime of research and formulation of theories on “ Natural Selection. ”
Wikipedia provides a nice concise description of this research and discoveries: “ Natural Selection is the
process by which favorable heritable traits become more common in successive generations of a
population of reproducing organisms, and unfavorable heritable traits become less common, due to
differential reproduction. ”

 Applying the Darwin Model helps explain why more people use Windows than DOS, why Linux has
become more prevalent than UNIX, and why notebooks replaced laptops (which previously supplanted
luggables). The Darwin Model explains why computers don ’ t need to be 50 feet long and 8 feet tall. As
DeMoivre wrote in his seminal statistics book, “ The Probability of an Event is greater or less, according
to the number of Chances by which it may happen, compared with the whole number of Chances by
which it may either happen or fail. ” Because there has been a recent rush of mobile technologies —
 hardware and software — and open source offers virtually infinite combinations, there is a high
probability some wonderful mobile developments will “ happen. ”

 Mendel
 The Mendel Model of software development is named after the person considered the Father of Modern
Genetics, Gregor Johann Mendel. In a paper written by Mendel, “ Experiments on Plant Hybridization, ”
people caught the first glimpse of how dominant and recessive genes worked. Mendel was a clever part -
 time scientist and learned how to create “ best of breed ” outcomes. Wikipedia describes Mendelian
inheritance as “ a set of primary tenets relating to the transmission of hereditary characteristics from
parent organisms to their children. ”

c12.indd 247c12.indd 247 10/6/09 9:06:45 AM10/6/09 9:06:45 AM

Chapter 12: Mobile Directions

248

 Linux - based distributions are careful, selective, scientific, and personalized works of many people
individually “ breeding ” their own distributions. Creating a distribution is essentially a work of
Mendelian selection. The individual programs, packages, and customizations in a distro are tailored to
the preferences and needs of the people who are creating the distribution.

 Mendel could certainly trace back the inherited traits of Ubuntu from Debian. Mark Shuttleworth got
involved with the Internet as a student. He became a Debian developer by 1994, after he created the first
package for Apache. From that point forward, Debian became an anchor and foundation for his work.
Shuttleworth was the first “ Master of the Universe ” for Ubuntu — the group of individuals who edit,
maintain, include, exclude, and identify interdependencies in the components of a new Ubuntu release.

 Mayr
 The Mayr Model of software development is named after Ernst Mayr. Mayr came to be known as the
leading evolutionary biologist. His great work revealed the intricacies of adaptation and multiplication
of species. Mayr ’ s work harmonized and connected the work of Darwin and Mendel, bringing together
previously warring camps of scientists. Mayr ’ s theories built bridges rather than walls. Mayr was well
known for the way in which he recruited and mentored other interested scientists through bird watching
societies.

 The Mayr Model explains the co - existence of diverse Linux distributions. In many ways, Mayr ’ s
methodology mirrored that of open source development. Through collaboration and knowledge sharing,
Mayr brought together individuals from very different areas with common interests. There is another
similarity to Mayr worth noting. Eric Raymond memorably wrote that “ Every good work of software
starts by scratching a developer ’ s personal itch. ” Echoing that refrain, Mayr was known to encourage his
students to take up their own personal research projects: “ Everyone should have a problem. ”

 Frankenstein
 Finally, there ’ s the Frankenstein Model of software development. As you might guess, this is based on the
work of Mary Shelly ’ s Frankenstein or The Modern Prometheus, which is her 1818 novel that was inspired
in part by discussions she had about the work of Erasmus Darwin, grandfather of Charles Darwin. The
plot of the story is simple — a scientist named Frankenstein discovers he has the ability to animate life
during his college days. (A typical college awakening perhaps after too many nips at the pub?)
Frankenstein then brings to life, from a patchwork of body parts, a new being. Does this quote from the
book sound familiar to any open source developers?

 I had worked hard for nearly two years, for the sole purpose of infusing life into an inanimate body. For this I had
deprived myself of rest and health. I had desired it with an ardor that far exceeded moderation; but now that I had
fi nished, the beauty of the dream vanished, and breathless horror and disgust fi led my heart.

 The Frankenstein Model is descriptive of how outcomes sometimes — despite the best of intentions —
 come up short of original expectations. These are the projects that don ’ t end well for anyone. Yet, the
code still lives on. If there is a lesson to be learned, Frankenstein the scientist puts it this way: “ Peace!
Peace! Learn my miseries, and do not seek to increase your own. ”

 There is no fooling the future; it is what it will become. However, these different models might help you
understand the past, and make some well - informed guesses about the future.

c12.indd 248c12.indd 248 10/6/09 9:06:45 AM10/6/09 9:06:45 AM

Chapter 12: Mobile Directions

249

 Big Ideas to Think About
 All of us live in a dynamic time that is influenced by global cultures, politics, economics, and
technologies. The only sure thing is that we must expect the unexpected. Here are some big ideas to
think about, where you can be sure to expect some unexpected influences on mobile computing, Linux,
and Ubuntu.

 The Politics of Technology
 President Barack Obama leveraged the Internet during his campaign in ways that certainly helped him
win the election. (He has more than 4.5 million friends on Facebook!) During his first month in office, the
new administration requested a report on the use of open source in government. As the New York Times
described it, he “ has been all but addicted to his BlackBerry. ” Obama is the most tech savvy president the
United States has ever had, and that is bound to influence policy.

 At the same time, across the pond, the UK educational system is discussing open source. From the BBC
on January 26, 2009:

 With Open Source Software (OSS) freely available, covering almost every requirement in the national curriculum, a
question has to be asked why schools do not back it more fully, possibly saving millions of pounds.

 As the name suggests, OSS is community - driven software with its source code open to all. Anyone can modify the
software according to their needs and then share these modifi cations with everyone else.

 How will the politics of technology shape our mobile future? What impact will government decisions
and policies have on the production of open source and the use of Ubuntu?

 The Next Billion
 MIT ’ s Media Lab has an initiative known as The Next Billion Network. It presents a rather startling
scenario related to mobile computing:

 Within the next three years, another billion people will begin to make regular use of cell phones, continuing the fastest
adoption of a new technology in history. Soon, this next billion will make its voice heard — and connect to the global
information network.

 http://nextbillion.mit.edu/

 With certainty, this will have an impact on Ubuntu, Linux, and mobile computing.

 Sensory Overload
 GPS information, WiFi/cell phone positioning, and other means of geographically aware technology can
certainly help make mobile computers more location aware. Will new technologies be developed to fill in
the gaps of GPS and WiFi/cell phone positioning? What privacy issues will we face?

c12.indd 249c12.indd 249 10/6/09 9:06:46 AM10/6/09 9:06:46 AM

Chapter 12: Mobile Directions

250

 Cloud Computing
 We are seeing cloud computing reach out to consumers and corporations. People now routinely use the
Cloud to store e - mail as webmail. Google has a full range of office applications available online. Twitter,
FriendFeed, Facebook, and other social network tools maintain sensitive personal data on the Web.
Cloud computing can eliminate or reduce the step of data synchronization and massive file copying
between mobile and fixed location computer systems. Will this drive faster adoption to handheld mobile
devices such as MIDs? With so much private data on the Web, are there new security measures and
standards that must be considered and incorporated into software stacks?

 ARM Wrestling
 It looks like a battlefield is forming along the lines between x86 and ARM architectures. The puns seem
endless, like “ ARM Wrestling ” or “ A shot in the ARM for Intel. ” In the long - run, this should be good for
the consumer/user, and prove healthy for the industry. Competition creates innovation and accelerates
improvement. However, the threat to Intel ’ s x86 processor dominance is quite real. From The New York
Times on June 30, 2008:

 In addition to Qualcomm and Nvidia, there are more than 200 licensees of the ARM processor design, including major
chip makers like Marvell and Texas Instruments. Together, they supply the more than 1.1 billion cellphones, many of
which use multiple ARM chips. The chips are also used in a growing array of special purpose consumer electronics like
G.P.S. navigators and set - top TV boxes.

 There are a lot of ARMs out there! Here ’ s another data point, from the ARM Wikipedia entry:

 As of January 2008, over 10 billion ARM cores have been built, and iSuppli predicts that 5 billion a year will
ship in 2011.

 I ’ ve installed Ubuntu on both ARM - based systems and Atom - powered systems. I like the processing
power of the Atom, but I like the low - power consumption of the ARM. This will be an exciting battle to
participate in.

 At the same time, an important new technology foundation to mobile solutions is being developed. The
Moblin initiative, for example, has growing support from hardware and software companies after it
received initial funding from Intel. In April 2007, Intel first introduced the concept of a “ MID ” computer
at its Developer Conference in China. In July 2007, Intel formalized a software development initiative
under the name of Moblin and launched a website at Moblin.org. (The name Moblin is a contraction of
mobile and Linux.)

 In October 2007, I attended the Ubuntu Developer conference for several days of sessions on mobile
computing. Canonical staff and Intel participants mainly led those sessions, with a number of other open
source contributors also in attendance. After an initial release of Moblin V1 based on Ubuntu, Intel
directed further explorations to Fedora distributions. That provided another fruitful source of innovation
and code. Intel pressed on and late in 2008 announced plans for the Moblin V2 release. Just about a year
later, October 30, 2008, Intel issued a press release on its plans to support and accelerate growth of
mobile device makers in Asia. Intel announced joint plans with Taiwan ’ s Ministry of Economic Affairs to
create a Moblin laboratory for development, training, and support of hardware manufacturers.

c12.indd 250c12.indd 250 10/6/09 9:06:46 AM10/6/09 9:06:46 AM

Chapter 12: Mobile Directions

251

 As Ars Technica wrote at the time:

 Intel is putting a lot of resources into advancing mobile Linux adoption and making Moblin a solid platform for device
makers. If Moblin can resolve some of the problems that have affl icted Linux device makers and offer a more cohesive
platform specifi cally for Atom - based devices, it could be a big win for the open source operating system.

 In January 2009, Intel released the first Alpha of its Moblin V2 Core release targeted at netbooks. A
follow - up release appeared in March. One of the widely commented on features is “ Fastboot, ” which
gets netbooks up and running fast!

 In the future, there will be multiple processor platforms (e.g., ARM, x86) and several distribution
pathways (e.g., Ubuntu, Moblin, and others) competing for developer attention.

 Razors and Blades
 What would happen if microprocessor chips and their packaging fell to a price point where it was
practical for them to be modular and disposable? If computer components were modular enough, they
might be routinely swapped, exchanged, or updated.

 Rather than selling entirely new computers (a transaction that is neither cheap nor environmentally
friendly or time efficient), companies might consider business models around manufacturing that could
support modular “ razors and blades ” markets. For instance, a company might sell you an attractively
designed razor at a subsidized discount, knowing you ’ d be locked into buying its brand of blades.
Computer printers and inks may follow a similar business model. Why not microprocessors?

 Free Lunch
 One of the original tenets of open source software, according to gnu.org , was this: “ Free software is a
matter of liberty, not price. To understand the concept, you should think of free as in free speech, not as
in free beer. ”

 In the early days of open source, “ free speech ” was an easier argument to make in the face of commercial
developers who were more apt to get jumpy when discussing free beer. However, now “ free beer ” may
be the more appealing argument to make. The global economy is forcing cost considerations in
everything people do.

 With the vast inventory of open source software that now exists, there is a much better chance that the
exact “ itch ” you have will already have been “ scratched ” by another very talented developer!

 Thus, the freedoms of open source are still necessitated by the need to change/maintain underlying
code, but there is heightened urgency to benefit from the free price as well.

 Computing on the Edge
 Today there are more network - connected points than ever before. These connections may be close by or
distant. Linking remote corners of the earth creates tremendous opportunity for meaningful global
conversations. Network growth could explode as netbooks, smartphones, and other highly mobile
devices living “ at the edge ” are connected. At the same time, we ’ ll see a vast increase in the number of

c12.indd 251c12.indd 251 10/6/09 9:06:46 AM10/6/09 9:06:46 AM

Chapter 12: Mobile Directions

252

connections any device can make on an ad hoc basis. Connections to local and distant computers will
skyrocket as this kind of computing becomes cheaper and more powerful to deploy.

 Here is one example of an innovative new product that could redefine where the edges are. In March
2009, Marvell introduced the SheevaPlug shown in Figure 12 - 4 — a $99 ARM - compliant little
powerhouse with a developer toolkit. With this product, Marvell could capture the interest of hobbyists
and developers, while encouraging innovative applications that might someday drive demand for
Marvell ’ s embedded processors and wireless chips. The SheevaPlug uses a standard wall socket to run at
1.2GHz, with 512MB Flash, 512MB DDR2, USB 2.0, and Gigabit Ethernet. It all fits into a package about
the size of a wallet (though a bit thicker than mine!) The whole package operates on less than 5 watts,
supports Ubuntu, and provides a developer toolkit. It ’ s very easy to move around and repurpose.

Figure 12-4

 Initially, the SheevaPlug was designed for applications such as media servers and backup machines,
both of which could tie into cloud computing.

 With SheevaPlug, Marvell is taking an open source approach — making its designs available as open
source and encouraging development activity at websites such as http://plugcomputer.org . Third -
 party developers have already incorporated these designs into their own products and systems, such as
 http://pogoplug.com .

c12.indd 252c12.indd 252 10/6/09 9:06:47 AM10/6/09 9:06:47 AM

Chapter 12: Mobile Directions

253

 The Future
 According to the December 2008 Pew Internet & American Life study, “ More than three - quarters of the
expert respondents (77%) agreed . . . that the mobile computing device — with more significant
computing power in 2020 — will be the primary Internet communications platform for a majority of
people across the world. ” Does that projection ring true with you?

 I conducted my own informal poll of friends and college students. In particular, I wanted to learn their
thoughts on the future of Linux. While my survey isn ’ t statistically significant, it ’ s a start.

 It quickly becomes clear that Linux faces hurdles to wider adoption. One friend put it this way:

 There is a term used in economics called “ focal points. ” It refers to the tendency for development in a given area to clus-
ter around a few points (from among a multitude of equally likely points). It ’ s why “ things happen ” on Mac OS and
Windows. Things happen on the Mac because all the cool kids hang out there and things happen on Windows because
everyone else is there. Actually, it ’ s even simpler than that — “ things happen there because they happen there. ” The
main people on Linux are developers.

 Another hurdle is the preponderance of named distribution (choice is good but too much is confusing):

 It ’ s the opposite of the problem I confronted when coming to New England (where no intersections have street signs).
With Linux, there are too many signs! “ I thought you said this was Linux (or SUSE, or Ubuntu, or Red Hat, or De-
bian, or BSD, or Gentoo, or Knoppix, or whatever. Life ’ s too short). ”

 Another friend, who is a long - time Windows and Mac user, knows what goes into his computing gear:

 Yes, of course I knew that OS X uses the BSD kernel. But it ’ s not Linux. It ’ s OS X.

 Can you run Mac software on Linux? No. Why? Because it ’ s not Linux. Is Mac software part of the powerful Apple
ecosystem? Yes. Can Linux take advantage of this powerful ecosystem? No.

 I am not using UNIX on my Touch. I am using OS X. A derivative of UNIX yes, but neither Linux or UNIX. A friend
of mine in college had an Avanti. This was a Studerbaker fi berglass body with a Corvette engine. Was it a Corvette?
No, it was an Avanti.

 Once upon a time, the great innovations might have come from corporate think tanks such as Xerox
PARC (the Macintosh User Interface), but today these ideas come more often from a college campus.
Consider these success stories, which grew out of college activities: Netscape, Google, Microsoft, and
Linux. Slackware, the oldest Linux distro still under active development, was created by Patrick
Volkerding as an outgrowth of a college project.

 What happens on campuses will dictate what happens in future markets. I asked around MIT to get a
sense of how students use mobile technology.

 Even though WiFi is freely available for all MIT students, and virtually everyone has a notebook with
WiFi, one student estimated that about 40 percent of students also have a phone with a dataplan:

 There are a lot of iPhone owners around campus. Texting, e - mail, and calling, in probably about that order. Music and
media if you have an iPhone or something that ’ s specifi cally targeted at mobile media. I think that here people are tech -
 savvy enough that they probably use their mobile device for all of those things at least occasionally.

c12.indd 253c12.indd 253 10/6/09 9:06:48 AM10/6/09 9:06:48 AM

Chapter 12: Mobile Directions

254

 For students who do adopt Linux, varying combinations of these four reasons seem to explain why:

 1. Free, as in Freedom (ability to modify/contribute)

 2. Free, as in Free lunch (money saver)

 3. Power/capabilities (including customization and development)

 4. Reliability/security, and so on

 A recent grad from Princeton shared his perspective: “ All I know about Linux is that it was developed
by a guy named Linus. I have no idea what kind of OS is running my iPhone, but I know I LOVE it! ” His
estimate was that 5 percent of students would know what a Linux distribution is.

 At Olin school of Engineering, students are issued a notebook computer running Windows XP. As one
engineering student observed, “ A lot of non - techies are afraid of the (god - forsaken) terminal and the
general lack of in - person support for Ubuntu/Fedora. ”

 Taken to the extreme, the fear of a terminal program can be incapacitating! One Wisconsin student
dropped out of college after her computer was configured with Ubuntu rather than Windows. She
ordered a Dell laptop, expecting to receive a familiar Windows system. Instead, it arrived with Ubuntu
installed. She called customer support to complain it wasn ’ t what she ordered: “ The person I was talking
to said Ubuntu was great, college students loved it, it was compatible with everything I needed. ” She
stuck with Ubuntu and floundered. Unable to connect to the Internet, or process required documents,
she dropped out of the online program.

 We can carry a number of lessons into the future:

 There ’ s a good chance the next big breakthrough in mobile computing software will come from
a college campus. Projects such as Google ’ s Summer of Code encourage this. It will still take a
special student (like Torvalds) to make it happen.

 If your grandma says she ’ d like a phone with bigger buttons, you ’ d better buy it for her!
Appropriate technology is the best answer if the desire is to have people get things done.

 Linux, Ubuntu, and related distributions will only succeed in mobile devices on a large
consumer scale if they are easy to use and well suited to the use - case scenarios.

 Ubuntu, Linux, and Mobile Computing
 How will Ubuntu Mobile evolve? One expert who would have a good idea is Mark Shuttleworth. He
shared his thoughts on this topic at the Argentina Debconf8 in August 2008. A recorded interview,
conducted by Barton George, then with Sun, offers quite a few insights.

 With respect to netbooks, Shuttleworth sees part of their success in how they have been used:

 Built into the use case (of netbooks) is an implicit assumption that you ’ re not going to try to use it in all the ways that
people have traditionally tried to use their PCs. That makes (people) more willing to consider alternatives . . . So it ’ s
a very exciting development for the Linux community . . . the real willingness of people to buy a machine that doesn ’ t
have Windows on it but that delivers the things that Linux delivers really well . . . great web experience, good security,
effi cient performance, lightweight hardware, and great economics.

❑

❑

❑

c12.indd 254c12.indd 254 10/6/09 9:06:49 AM10/6/09 9:06:49 AM

Chapter 12: Mobile Directions

255

 Shuttleworth also shared his thoughts on where the mobile industry is headed:

 I think the mobile space is enormously productive for Linux. We ’ re already seeing companies like Motorola quoting
fi gures like 60% of their device market share going to Linux At the distro level and at the
 app - stack - framework level, the picture is much less clear.

 We ’ re quite strongly aligned with Intel around their Moblin initiative for mobile because they have proven open to par-
ticipation. I think the key is fi guring out how to bring together operators, bring together handset manufacturers, bring
together chip manufacturers. I ’ m very hopeful Moblin will achieve that.

 At this stage, I don ’ t think anybody has defi nitively gained a level of critical mass. There ’ s still a certain amount of
alignment of the platforms to vendors. In the case of Moblin, it ’ s strongly aligned with Intel. I think it would be very
healthy to see broader adoption of that. You have Android from Google. For them to be successful they ’ ll need to dem-
onstrate broad participation. LIMO is very strongly aligned with Motorola, but increasingly an open environment as
well.

 The things I ’ d be looking for are an emerging consensus across chip manufacturers, handset manufacturers, and opera-
tors on how they want this thing (mobile) to work.

 Open source or free software really is the right way to bring together an industry that is particularly fractious. I ’ m very
hopeful that Linux will play out well but exactly how that will play I ’ m not sure.

 Linus Torvalds made this observation:

 It ’ s a huge job to do a distribution. The reason there are hundreds is it is easy to start your own, but if you want to be
a leader and introduce new code, the testing and Q & A involved is enormous. It depends on having enough users that
you get coverage and it is unreasonable to expect too many large distributions. Ubuntu grew surprisingly quickly
and maybe that can happen again. Your working knowledge of Ubuntu, Linux, and mobile technologies should be
durable experience you can carry with you no matter how this change takes place. As the PC shrinks in size, it is on
a collision course with the multifunction cellphone. Many expect the resulting impact to transform both devices and
all the companies that make them. The new smartphones, always - on portable Internet devices that are part cellphone,
part computer, change the rules of the game in computing because computing speed — at which Intel excelled — is no
longer the most important factor. For a cellphone relying on a small battery, how effi ciently a chip uses power becomes
more important Cellphones outsell PCs by about fi ve to one.

 Summary
 A good piece of advice is to “ Expect the unexpected. ” An avalanche of exciting (and mostly unexpected)
developments in hardware and software hit the market in 2007 and 2008. This was welcomed by a nearly
overwhelming demand for small, powerful, mobile computing devices. The combination of avalanche
and demand resulted in record revenues despite tough economic times. Demand for “ Professional
Ubuntu Mobile Development ” should keep growing for many years into the future

c12.indd 255c12.indd 255 10/6/09 9:06:49 AM10/6/09 9:06:49 AM

c12.indd 256c12.indd 256 10/6/09 9:06:50 AM10/6/09 9:06:50 AM

 Common Problems and
Possible Solutions

 This chapter attempts to gather several of the most common problems that have been posted to the
ubuntu - mobile mailing lists as well as solutions that have been offered around the Internet.

 The Boot Process Stops
 Q: I downloaded Ubuntu MID, I extracted the files in the image, and I prepared a USB stick for
booting with this image.

 After the USB boots, I press Enter to start the installation and, after several OS messages, the boot
process stops. The last message I receive is

will mount root from /dev/sdb

 That ’ s all.

 A: This can be caused by improperly writing to the USB stick.

 To copy the image to the USB stick (assuming /dev/sdb for the stick), use the following

$ sudo bs=1024 if= < image file > of=/dev/sdb

 dd is a program used for low - level copying and conversion of raw data.

c13.indd 257c13.indd 257 10/6/09 9:07:21 AM10/6/09 9:07:21 AM

Chapter 13: Common Problems and Possible Solutions

258

 Writing an image to a USB stick is like filling out a grid on a checkerboard. If you don ’ t give it the
1,024 block size parameter, it writes one way (row-by-row), but with bs=1024, it writes column-
by-column. When testing this, there was an approximate 40 percent success rate with just dd
if= < image > of= < drive > , but with bs=1024, this was boosted to nearly 99 percent.

 Application Icon Does Not Appear
 Q: My application icon does not show up on the desktop.

 A: To have an icon appear on the desktop, follow these steps:

 1. Install a .desktop file into /usr/share/applications.

 2. Install an icon into /usr/share/icons/hicolor/ < size > / < type >

 (for example, /usr/share/icons/hicolor/64x64/apps/myapp).

 If Step 1 is done correctly, the application should show up in the UI.

 If Steps 1 and 2 are done, it will also have the right icon.

 If the icon is still not appearing, try adding the following:

OnlyShowIn=GNOME;Mobile;

to the desktop file and the icon will appear on the desktop.

 For example, cheese does not have OnlyShowIn , but it appears in Hildon desktop.

H hildon desktop is the primary UI component of of the Hildon Application Framework for mobile devices.

 Others also do not have OnlyShowIn but do not appear. There is a special implementation for Ubuntu
Mobile, which is seen in the GConf keys:

/desktop/hildon/htmlhomeplugin/onlyshowin_filter

 Check the OnlyShowIn value in .desktop. If it is _False_ , every desktop is shown. This command:

/onlyshowin_ignore

always shows these apps, even if they don ’ t have OnlyShowIn .

 For example, cheese is in this list and is always shown.

 Apparently this key should go away when every application is a good citizen and complies with the
freedesktop.org standards.

c13.indd 258c13.indd 258 10/6/09 9:07:22 AM10/6/09 9:07:22 AM

Chapter 13: Common Problems and Possible Solutions

259

 In addition, some utilities are available when dealing with .desktop files in the package desktop - file -
 utils. They are:

 update - desktop - database — Update the desktop - MIME mapping.

 desktop - file - validate — Validate a desktop file.

 desktop - file - install — Install a desktop file

 Use them like this:

$ desktop-file-validate hello-world.desktop

 Per forming a Dual Boot
 Q: Would it be possible to dual boot Ubuntu Netbook Remix on a Windows Mobile device?

 A: This very much depends on the device hardware. A fair number of existing models support some
form of alternate booting, either directly from some physical device, or through an application that
replaces the currently running operating system with that from a physical device or selected file.

 The majority of current devices supported by Ubuntu Mobile fall into the first category, and allow
booting from alternate physical devices (most commonly USB keys, as used when testing).

 It is entirely possible, if the hardware is sufficient, to support dual booting. Many devices are targeted for
the low cost market, and to meet that, they incorporate a small SSD for data storage (4 – 16GB). Systems
such as the Eee PC from Asus are capable of running both Windows and Linux, but not from the same
drive because of space. It is possible to install Linux on a USB drive and run it “ Live ” from USB, and use
the SSD for XP.

 A useful application for this is GNU Haret, which you can find at http://handhelds.org/
~koconnor/haret/ or http://handhelds.org/moin/moin.cgi/HaRET .

 Setting a Flag Automatically
 Q: Is there a way to set up configure.ac so that it automatically sets the USE_HILDON flag if building for
the LPIA architecture?

 A: It is possible to add the following rule to debian/rules:

ifeq ($(DEB_BUILD_ARCH), lpia):

DEB_CONFIGURE_EXTRA_FLAGS = --enable-hildon

endif

 This causes configure to be called with an extra - - enable - hildon argument when building on the
LPIA architecture.

❑

❑

❑

c13.indd 259c13.indd 259 10/6/09 9:07:23 AM10/6/09 9:07:23 AM

Chapter 13: Common Problems and Possible Solutions

260

 It is also possible to add into configure.ac or configure.in , as follows:

hildon=false

HILDON_CFLAGS=””

HILDON_LIBS=””

AC_ARG_ENABLE(hildon,AS_HELP_STRING([--enable-hildon],[Turn on hildon

support]),[

 if test “x$enableval” = “xyes”; then

 hildon=true

 PKG_CHECK_MODULES(HILDON,[hildon-1],

 HAVE_HILDON=yes,HAVE_HILDON=no)

 HILDON_CFLAGS=”$HILDON_CFLAGS -DWITH_HILDON=1”

 PACKAGE_CFLAGS=”$PACKAGE_CFLAGS $HILDON_CFLAGS”

 PACKAGE_LIBS=”$PACKAGE_LIBS $HILDON_LIBS”

 fi

])

 This will enable a HAVE_HILDON flag you can test at build time to enable or disable changes for the
LPIA architecture.

 Using USB
 Q: I use Windows Vista and I want to prepare a USB stick to install ubuntu - mobile.img on my Samsung
Q1 Ultra. What is the best way to do this?

 A: The best way to do this is to use dd for Windows, which is available at http://uranus.it.swin
.edu.au/~jn/linux/rawwrite/dd-old.htm .

 Running Ubuntu on Freerunner
 Q: Any chance that Ubuntu MID will ever be running on something like the Neo Freerunner? The
Freerunner already has a Debian port so it might be possible?

 A: There is nothing to prevent this, but it ’ s not currently a target of the Ubuntu Mobile team to support
phones: Ubuntu MID is about “ MIDs, ” and mostly about an Internet experience. However, it ’ s true that
some recent MIDS are getting SIM cards and phone capabilities.

c13.indd 260c13.indd 260 10/6/09 9:07:23 AM10/6/09 9:07:23 AM

Chapter 13: Common Problems and Possible Solutions

261

 Running Ubuntu on Arima
 Q: As a related question, what would be the difficulties of getting Ubuntu MID running on, for example,
the Arima UM650? Is Ubuntu Mobile hardware - specific?

 A: Ubuntu Mobile with the Jaunty release has Arima support. Getting Ubuntu Mobile to work on other
hardware is just a matter of getting the right kernel working. The linux - lpiacompat kernel ought to work
on i586+ machines. The C7 - M, for example, is one of the processors for which testing has been limited,
but is of some interest as it has been deployed in a wide number of devices.

 Ubuntu Intrepid UMPC Project
 Q: I tried the Ubuntu Intrepid UMPC image on a 10 - inch tablet PC and I really liked it. However, I can ’ t
seem to find enough official documentation about this project, so I was wondering if the project is still
ongoing?

 A: After the initial excitement about the release, few people have actually been committing their changes
to the repositories; at least, the UMPC image is not listed as a target release with 9.04. That being said,
there ’ s no good reason why someone couldn ’ t adjust the Intrepid ubuntu - mobile - default - settings
package to work with 9.04, or continue development. The changes are mostly adjusting settings, such as
GConf or something theme - related.

 Installing Ubuntu Netbook Remix
on a UMPC

 Q: I just bought a device called a UMPC, can Ubuntu Netbook Remix be installed on UMPCs?

 A: Yes, it can be installed and works well. It helps if you increase the panel size for touch and there ’ s also
a GConf key that increases the button/widget sizing in the launcher. It ’ s easier to use with touchscreens
(needs a restart of the launcher):

$ gconftool-2 --set /apps/netbook-launcher/tablet_mode --type BOOL true

 Another useful tip is to change $your_fav_gtk_theme ’ s gtkrc to increase the xpadding and
 ypadding attributes for scrollbars, checkboxes, and radio buttons to make GNOME a bit more
touch - friendly.

 Using apt
 Q: I tried to install a package using apt but I got a message that it was not possible to install as a result of
broken dependencies.

c13.indd 261c13.indd 261 10/6/09 9:07:23 AM10/6/09 9:07:23 AM

Chapter 13: Common Problems and Possible Solutions

262

 A: Try changing the source of your apt repositories. It can happen sometimes that they become out
of sync and changing the location of the apt repositories and running an apt - get update can solve
this problem.

 Joining the Ubuntu Mobile Developers Team
 Q: How can I join the Ubuntu Mobile Developers team?

 A: If you need write access to the ubuntu - mobile repositories, join the Ubuntu Mobile and Embedded
developers team on launchpad.net. This is a moderated group. However, a “ sustained ” contribution to
the team should be enough to get you accepted. This can be anything from code, documentation, and
artwork to advocacy work.

 Using KVM or QEMU
 Q: I cannot get either KVM or QEMU to work. What can I do?

 A: If this happens to you, make sure that you have the KVM and QEMU packages installed. Next,
download an older hardy release of MID from http://cdimage.ubuntu.com/mobile/releases/
hardy/mid-8.04.1-kvm.tar.gz .

 This package includes both a virtual image called root.qcow2 (qcow2 is a QEMU disk image format) and
a launching script called ubuntu.kvm:

#!/bin/sh

kvm -soundhw all -m 128 -hda root.qcow2 “$@”

Extract the downloaded package

$ tar -xzvf mid-8.04.1-kvm.tar.gz

and then move into the new directory and execute the script

$ cd ume-8.04-kvm

$ sudo ./ubuntu.kvm

 Graphical Corruption
 Q: When I install on a device I see the status bar and the installation seems fine, but when the desktop
should appear, it looks like the device has crashed — all I see is graphical corruption.

 A: Start Ubuntu in Safe Graphics mode. This will start Ubuntu using Vesa graphics drivers, which are
compatible with practically every graphics card made within the last ten years.

c13.indd 262c13.indd 262 10/6/09 9:07:24 AM10/6/09 9:07:24 AM

Chapter 13: Common Problems and Possible Solutions

263

 Poor Per formance
 Q: I installed Ubuntu Netbook Remix on an Eee PC and the performance is very poor. I installed the
default Ubuntu Jaunty to test and performance was much improved .

 A: This is due to a video driver bug, which means that tiling is not enabled by default (this is essential
for Ubuntu Netbook Remix as the launcher is based on GL). A fix has been made and can be found at
 http://people.ubuntu.com/~apw/lp349314-jaunty/ .

 The files to install are linux - headers - 2.6.28 - 11 - generic_2.6.28 - 11.43~lp349314apw5_i386.deb and
linux - image - 2.6.28 - 11 - generic_2.6.28 - 11.43~lp349314apw5_i386.deb. Download both of them into a
folder and install them by running the following:

$ sudo dpkg -i *.deb

This information may well be wrong by the time this book is published. Please check on the mailing list
for the latest details.

 Summary
 These are common problems and questions relating to Ubuntu Mobile that pop up frequently on the IRC
channels and the mailing list. If you have questions, you can always ask on irc.freenode.net in the
channel #ubuntu - mobile or send an e - mail to the mailing list.

c13.indd 263c13.indd 263 10/6/09 9:07:24 AM10/6/09 9:07:24 AM

c13.indd 264c13.indd 264 10/6/09 9:07:24 AM10/6/09 9:07:24 AM

 Ubuntu ’ s Right ARM

 Now that Ubuntu has been released for the ARM (Advanced RISC Machines) platform, there are
many intriguing new application possibilities. An entire class of solutions is available in the realm
of power - efficient computing.

 One example is the SheevaPlug. In February 2009, Marvell brought to market a new device called
the SheevaPlug, based on its ARM processor. Marvell provided an open architectural blueprint for
 “ plugs ” reminiscent of the early, standards - based component designs that laid the foundation of
the PC industry. Marvell ’ s combination of technology and product vision has popularized an
entirely new market segment: plug computing. (Go to http://plugcomputer.org/
for more details.)

 The Wall Street Journal reported on the launch of this new product and segment with an article on
February 23, 2009. The coverage hinted at a new mini - industry:

 “ There are multiple pain points we think we can solve here, ” said Simon Milner, a Marvell vice
president and general manager of its enterprise - business unit.

 One big problem is consumers ’ growing hoards of digital photographs, music and videos —
 increasingly stored on laptop computers that could be lost or stolen. Companies already sell
devices to safeguard such information, including devices that combine disk drives and
networking features.

 Marvell says it believes plug computers can make those products more useful, a concept some
companies first discussed at the Consumer Electronics Show in January without disclosing
Marvell ’ s involvement. The devices connect with an Ethernet cable to a home router and to
storage devices using the widely employed technology called USB.

 The Wall Street Journal picked up on the power savings potential — less than five watts for
a SheevaPlug compared to the electrically thirsty alternatives. In addition, the Wall Street Journal
mentioned $49 as an eventual price point for some models.

bapp01.indd 265bapp01.indd 265 10/6/09 8:46:58 AM10/6/09 8:46:58 AM

Appendix A: Ubuntu’s Right ARM

266

 Rob Enderle, a principal analyst and President for the Enderle Group, described the significance of this
event: “ Plug Computing is one of the most revolutionary technologies to come to market this decade. It
represents a future where processing power is inexpensive and energy efficient founding an age where
computing is something you don ’ t worry about because it just works. ”

 I ’ d Give My Right ARM for a SheevaPlug
 I was one of the lucky ones to get my hands on a SheevaPlug soon after the initial announcement. Within
the first week, they were sold out and units were on backorder. The initial demand far exceeded what
Marvell had anticipated. It was one of the clear signs that this segment has “ legs to run with. ” This is
what you received (and didn ’ t receive) with the initial $99 Developer Kit:

 Marvell Sheeva ARM CPU at 1.2 GHz

 512MB DDR2 @ 400 MHz

 512MB NAND Flash (direct boot from Flash)

 Gigabit Ethernet/RJ45

 USB 2.0 (direct boot from USB)

 SDIO

 JTAG/UART serial interface

 No fan. No drive. No noise.

 Elegant packaging/Built - in AC power supply

 Ubuntu pre - installed

 No license fees (“ open ” reference design)

 No graphics/VGA support

 No built - in WiFi

 The power consumption varies depending on the tasks that are run, but it won ’ t exceed 7 watts as you
can see from the following power profiles:

 With cpuidle in C1, 2.5W

 With cpuidle in C0, 3.0W

 3.3W at idle with gigabit ethernet

 5.0W idle with gigabit+HDD USB+serial

 7.0W + 100% cpu

 Figure A - 1 shows what a SheevaPlug looks like inside.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp01.indd 266bapp01.indd 266 10/6/09 8:47:00 AM10/6/09 8:47:00 AM

Appendix A: Ubuntu’s Right ARM

267

 Application Ideas
 My initial goals for the SheevaPlug included several energy efficient, 24/7 applications: a backup server,
a media server, as well as a home automation and information system. For software, I was looking
forward to using the tools we are familiar with in Ubuntu: Python, Django, networking databases, a fully
stocked application repository and more.

 The SheevaPlug proved easy to work with for someone with basic Linux familiarity and prior experience
working with Ubuntu. Although there is no graphics or VGA support, it was easy to SSH into the device
or manage it via the JTAG serial connection. (MIMO Monitors is shipping 7 - inch screens that work
across a USB connection. Its USB to LCD controller makes it possible to display visuals without the need
for VGA or video support. Key technology has recently been released as open source and Ubuntu
support is possible.)

 In the first days of experimenting with the SheevaPlug, I was able to successfully attach wireless USB
802.11g radios (from Edimax). I had the same success attaching a USB webcam to the SheevaPlug. Before
I knew it, I had all the core ingredients of a home control/surveillance system powered by the
SheevaPlug.

 I was both thrilled, and a little startled, when I discovered I could easily run simple OpenCV
applications on the SheevaPlug.

Figure A-1

bapp01.indd 267bapp01.indd 267 10/6/09 8:47:00 AM10/6/09 8:47:00 AM

Appendix A: Ubuntu’s Right ARM

268

 OpenCV (Open Source Computer Vision) is a library of programming functions that are aimed mainly
at real - time computer vision.

 Although OpenCV has been in open source for a long time, its website doesn ’ t claim support for the
ARM platform. There are dozens of dependencies required to make OpenCV work with Python. Plus,
there is typically heavy dependence on floating point hardware for graphics processing (this version of
the SheevaPlug lacks floating point hardware). Even these early days of running Ubuntu on ARM are
proving productive: OpenCV ran fine on the SheevaPlug.

 Relocatables
 Another application area of interest is in a market segment I call “ Relocatables ” — as a short form of
 “ Relocatable Computing. ” The essence of Relocatables is that you can move your computer
infrastructure easily from place to place with minimal setup.

 Relocatables would be useful if your network moves, such as to cover outdoor sporting events or
disaster recovery locations. Anywhere network infrastructure runs the risk of being damaged or
destroyed, Relocatables could be a useful solution.

 One simple example of this is municipal WiFi, where wireless devices might need to be moved in
support of community events. It turns out that one of the toughest problems with “ Municipal WiFi ” is
finding electricity to run even low - powered radios and computers. Often, building owners will provide
access to a roof for placing antennas, but power is absent. Thus, we turned to solar as a workable
solution for providing power. The SheevaPlug is low power, and now well within reach of being
powered by solar.

 As a result, the challenge was to step it up a notch. So, a challenge goal was put forward to build a
cluster of SheevaPlugs into a solar - powered super computer. This is what came to be known as SWARM.

 What ’ s the Buzz on SWARM?
 SWARM is an acronym that stands for:

 S — Sheeva/Solar - powered

 W — Wired/Wireless/Watt - Friendly/Web - Server

 A — Advanced/Application

 R — Running/Racing

 M — Memcached/Machines

 My goal was to gather the needed parts and assemble a SWARM on June 17, 2009, for the fifteenth
anniversary of the Boston Linux User (BLU) Group. As you can see from the following photos, which
recap the highlights in our construction of the SWARM, everything worked as planned.

bapp01.indd 268bapp01.indd 268 10/6/09 8:47:01 AM10/6/09 8:47:01 AM

Appendix A: Ubuntu’s Right ARM

269

 Marvell generously contributed ten SheevaPlugs in support of this early, open innovation project. Our
original hardware design for SWARM was inspired by the battle cry, “ Stack it, don ’ t rack it! ”
(See Figure A - 2.)

Figure A-2

 On June 16, 2009, we spent a day configuring and testing a dozen SheevaPlugs. We installed the latest
version of the Ubuntu operating system. Rabeeh Khoury, a Linux and SheevaPlug expert from Marvell,
contributed his expert knowledge and assistance. (Rabeeh is the author of the SheevaPlug installer. He
helped configure the SheevaPlugs so that the Linux kernel was stored on the NAND Flash and the rest of
the Ubuntu system was installed on fast 8GB SDIO cards.) Our initial configuration was more horizontal
than vertical, with a simple table layout of devices, as shown in Figure A - 3.

bapp01.indd 269bapp01.indd 269 10/6/09 8:47:02 AM10/6/09 8:47:02 AM

Appendix A: Ubuntu’s Right ARM

270

 For unit testing of each plug, we exercised basic Ubuntu software (e.g., Python). We then installed a
variety of additional Ubuntu packages (such as OpenCV and MEMCACHED.) We planned to use
MEMCACHED to build a super web cluster. There are vast quantities of web servers burning up
enormous amounts of electricity on a 24/7 basis. A device similar to the SheevaPlug, or a cluster such as
SWARM, could potentially save considerable energy while providing acceptable web server
performance.

 We initially connected our SheevaPlugs together using two GigaBit switches. (The D - Link DGS - 2208
10/100/1000 Mbps 8 - Port Desktop Green Ethernet Switch is smart about how it consumes electricity —
 it lowers electrical consumption when ports are inactive, thereby saving power and reducing heat.)
We would later scale up to a bigger switch.

 A Solar - Powered Barn Raising
 Kurt, a grad student at MIT and a guru in solar, municipal wireless, and cluster computing provided
inspiration for this project work. As he once observed, “ More of cheap trumps fewer of better. ” With his
help, we evaluated some of the ideas in FAWN (“ Fast Array of Wimpy Nodes ”) and also considered a
number of other energy efficient platforms (such as OpenWRT and the WGT - 634U from Netgear).

 Then we needed to figure out how to build this — after all, a cluster required a number of technical
skills. We turned to history for an organizational model.

 In North America during the eighteenth and nineteenth centuries, communities came together to help
families build barns. Virtually every farming family needed a barn, yet it would take too long and was

Figure A-3

bapp01.indd 270bapp01.indd 270 10/6/09 8:47:02 AM10/6/09 8:47:02 AM

Appendix A: Ubuntu’s Right ARM

271

impossibly difficult for any one family to do this alone. Barn raising required planning and preparation
and organization of various skills and materials — with participants volunteering their time and skills
for free. The barn raising was usually carried out with a sense of urgency — families needed to use their
barns! We took a barn raising approach in building our SWARM.

 We gave advance notice at the May BLU meeting and set the date for June 17. I brought along a bin full
of ready - made SheevaPlugs. So you might translate this into a “ bin raising, ” as shown in Figure A - 4.

Figure A-4

 About ten people met at the MIT building by 1:30 P.M. Jerry Feldman, a long time leader of the BLU
group (along with John Abreau) marshaled the assembled resources into a team that is shown in
Figure A - 5.

bapp01.indd 271bapp01.indd 271 10/6/09 8:47:04 AM10/6/09 8:47:04 AM

Appendix A: Ubuntu’s Right ARM

272

 Sage Radachowsky brought his solar panel, charge controllers, battery, and pliers. Within an hour, he
had everything wired up, providing sufficient solar power to keep our ten SheevaPlugs and the power
hungry switch running smoothly.

 Bill Bogstad, a Boston Linux User Group attendee, took responsibility to network the SheevaPlugs with a
gigantic gigabit switch. The team made sure the WAAV (packed inside a standard backpack, with the
pole sticking out) was working. This wireless/cellular adaptor was quickly operational, plugged into the
Gigabit switch, and acted as a DHCP server to provide network addresses for each of the SheevaPlugs
(see Figure A - 6).

Figure A-5

bapp01.indd 272bapp01.indd 272 10/6/09 8:47:05 AM10/6/09 8:47:05 AM

Appendix A: Ubuntu’s Right ARM

273

 Dave ducked inside MIT with an Acer Aspire netbook running Ubuntu to tune the SWARM
(see Figure A - 7).

Figure A-6

Figure A-7

bapp01.indd 273bapp01.indd 273 10/6/09 8:47:06 AM10/6/09 8:47:06 AM

Appendix A: Ubuntu’s Right ARM

274

 Soon Dave had logged in and was administering the SWARM while running primitive performance
tests. All of his system management was done wirelessly from an inexpensive Acer Aspire netbook.
Remarkably, the SWARM was connected to the world without the aid of network or power wires.

 The collective “ bin raising ” team brought the SWARM to life and connected it to the Internet and MIT ’ s
internal network in about three hours. Jerry and others watched in the sunshine. Figure A - 8 shows how
the SWARM electrically and logically came to life.

Figure A-8

 The magic of the afternoon could rival the best illusions of David Copperfield in Las Vegas. But every bit
of this was real.

 What Did We Learn?
 Later that evening, we “ relocated ” the system indoors. Lacking solar power, we just plugged it into
MIT ’ s wall plugs. The entire ten - node system, including switch, consumed a mere 70 watts. Yet it had
enough power and network cables for us to make the obvious comparison to spaghetti code — this was
a “ spaghetti cluster! ” (See Figure A - 9.)

bapp01.indd 274bapp01.indd 274 10/6/09 8:47:09 AM10/6/09 8:47:09 AM

Appendix A: Ubuntu’s Right ARM

275

 The BLU meeting that evening was attended by some 60 people. As one prominent developer in the
software industry entered the meeting room, he pulled out his pocket computer and commented to me
 “ I ’ m already connected to the cluster. What ’ s it do? ”

 Everyone saw the demonstration and asked plenty of questions. (Can you run it on USB power?) Bill
Bogstad played a key role in assembling the SWARM that afternoon and he also sat through the
presentations we delivered that night. He agreed to share what he took away as lessons learned:

 Low - power Linux - based computer devices can really push bits (and likely compute
them as well)!

 Low power can really mean low power (< 100 watts for a cluster)!

 By implication, low - end cluster computing can do real work.

 With this meeting, we demonstrated the potential for low - power ARM computing in “R elocatable ”
scenarios.

 The versatility of Ubuntu — both the vast archive of software and the comprehensive coverage of
platforms — underscores how truly valuable this platform is for developers and end users. Ubuntu is a
superb platform for experimenting, exploring, and doing real work at the cutting edge of technology.
With the ARM release, energy efficient computing has arrived. One new solution segment is plug
computing and another segment worth considering is “ Relocatables. ”

❑

❑

❑

Figure A-9

bapp01.indd 275bapp01.indd 275 10/6/09 8:47:11 AM10/6/09 8:47:11 AM

Appendix A: Ubuntu’s Right ARM

276

 A handful of meeting attendees, some of whom helped build the SWARM and others who have
participated in the discussion — the barn raisers and barn stormers — gathered for a photo that ’ s shown in
Figure A - 10.

Figure A-10

 I ’ ve now worked with Ubuntu and ARM for about four months. It seems clear to me that the
combination of power, ease of use, and compatibility makes Ubuntu right for ARM.

bapp01.indd 276bapp01.indd 276 10/6/09 8:47:13 AM10/6/09 8:47:13 AM

 Git Usage

 Git is a distributed SCM (Source Code Management) System that was written by Linus Torvalds in
2005 to follow the development of the Linux kernel. Since then, it has been developed by a rather
large group of hackers around the world.

 Intended to be used in a distributed environment, git is really good for sharing work in a group
of developers no matter what the group ’ s size or geographical location. It ’ s optimized for merging
code from other developers into your repository.

 So that you can understand git as quickly as possible, we have organized this appendix according
to the kind of project for which it might be used. In each section, basic git commands are used,
which are necessary for a developer to play a role in the project.

 First, the basic repository commands from git — clone , init , fsck , and gc — are used, and then
commands that are necessary to work with git as an individual developer in a standalone project
are shown. Finally, commands that are useful for a multi - person project are demonstrated with
different roles: contributor, maintainer, and integrator.

 How Git Works
 Git has three different objects that it uses to describe the whole project: blob , tree , and
 changeset . Each one of these objects is used for a different purpose, but all are involved in
tracking the content modifications in your project.

 Blob Object
 A blob object is just a binary blob of data and doesn ’ t refer to anything. The only data verification
done in the blob object is that it is indexed by its SHA1 hash and, besides that, has no other
attributes — no name associations, no permissions. It ’ s a pure blob of data that can be translated
into file contents .

bapp02.indd 277bapp02.indd 277 10/6/09 8:47:51 AM10/6/09 8:47:51 AM

Appendix B: Git Usage

278

 Tree Object
 The tree object is defined by a list of permission, name, and blob data sorted by name. This means that
two identical but separate tree objects will share (or point) to the same blob s. This gives you a really
interesting feature in git for tracking file renames. We don ’ t really mess with the data anyhow, just point
to it via a different path — or a different tree object.

 Changeset Object
 The changeset object introduces the notion of history into a git repository. It doesn ’ t merely give you
the physical state of the tree , but also describes why and how you got to that particular state. A
 changeset is defined by the tree that it results in, its parent changeset s (zero or more) that took the
source code up to that point, and a human readable comment on what happened.

 How Git Objects Relate to Each Other
 It ’ s simple to understand git if you understand how these three types of objects relate to one another.
Figure B - 1 shows how git works and how it tracks the contents of your source code.

 Figure B - 1

BBBBBBBBBBBB

T

C C C C C C

T T T T T

 Basic Repository Commands
 Before you can actually start using git, you need to have a repository to work with. If you ’ re starting a
standalone project, you will initialize an empty repository and add source code to it as you develop; but
on the other hand, if you ’ re working on a pre - existing repository, you need to clone that in order to have
a local copy to work with.

bapp02.indd 278bapp02.indd 278 10/6/09 8:47:52 AM10/6/09 8:47:52 AM

Appendix B: Git Usage

279

 Also, it ’ s important to keep your repository clean and free of errors so you don ’ t lose data while working
on it. The last two commands in this section are useful for housekeeping your git repository.

 Creating a New Repository
 If you want to start a new project from scratch, you use the git command init . This command creates a
 .git directory in the directory you are in. That will be the start of a project.

$ mkdir -p projects/my_first_project
$ cd projects/my_first_project
$ git init
Initialized empty Git repository in /home/user/projects/my_first_project/.git/

 If you take a look at the .git directory, you will see a bunch of directories and files that git uses to actually
track the content of your project. Yes, that ’ s right, git tracks content only, not files. This means that when
you move or rename a file, for git it doesn ’ t really matter — it points to the same content via a different
path and that ’ s it, or, in other words, the tree object has a different way to reach the blob object.

 Cloning an Existing Repository
 You might be trying to collaborate with an existing project. In that case, you would have to clone the
main tree of that project and start working on top of that. In that situation you could use the following:

$ mkdir -p projects/
$ cd projects
$ git clone git:// < url > /path/to/project.git

 For a real - life example, you could clone the Linux kernel tree from Linus Torvalds with the following
command:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

 Cloning will literally make a local copy of the remote repository, meaning you will have the complete
history of that project available for you. You can work completely offline, commit to your local copy,
generate diffs , check out older code, create branches, anything.

 Because git ’ s goal is to be a distributed SCM, it ’ s just natural that you can do all that work on a local
copy of the mainline remote repository. Without this freedom , it would be impossible to have a real
distributed SCM.

 Checking Repository for Errors
 It seems almost inevitable that filesystems get corrupted. You can try to avoid such corruption by
checking your repository ’ s health with the following:

$ git fsck

bapp02.indd 279bapp02.indd 279 10/6/09 8:47:53 AM10/6/09 8:47:53 AM

Appendix B: Git Usage

280

 This is a rather slow operation as it has to check whether you have unreachable objects, dangling objects
amongst other common errors. Upon running this command, you might see something like the
following:

dangling tree b47648f75aa0ae2a0c9508bdd6efe00bb2da17c6
dangling tree 2eedf3560f4d0d403b0047f5c8ebc5f163841e53

 This means that if you have two tree objects dangling (or existing objects that aren ’ t used) they could be
removed from your repository. Remember that dangling objects are not a problem; they often appear in a
repository, especially if you rebase your commits frequently.

 Housekeeping a Repository
 It ’ s important to keep your repository clean; this will help git do its job faster. Here you look at how to
remove loose objects, re - create git ’ s packs, and remove the unnecessary ones. Start by running the
following:

$ git gc

 gc does its best to repack your repository, and remove loose objects and unused old packs. However, it ’ s
for sanity housekeeping only. gc doesn ’ t try to be too aggressive by itself. That ’ s when you might want
to use the following three commands:

$ git repack

 With proper options, you can tell git repack to get all your objects and, instead of creating an
incremental pack with the delta, create only one pack with all our objects. This will save a considerable
amount of disk space and help git work a bit faster. To achieve this, you can use git repack - a - f - d .

 The command git - prune will prune (remove) all unused loose objects from your repository. In other
words, all loose objects already contained in a pack will be purged.

$ git prune

 Similar to git prune , the command git prune - packed will remove unused packs from your git
repository.

$ git prune-packed

 There ’ s not much to say about this command. You can use - n to just check the packs that will be
removed and - q to suppress the progress indicator.

 Individual Developer
 Now that you have your set of basic commands, you can start doing some real work with git. At first,
let ’ s see what a developer working alone in a standalone project would have to know in order to track
his project ’ s history with git. To achieve that, first check which branch you are working on with the
following command:

bapp02.indd 280bapp02.indd 280 10/6/09 8:47:53 AM10/6/09 8:47:53 AM

Appendix B: Git Usage

281

$ git show-branch

 This command will basically show you where you are. In other words, it will print the branch and
commit names where you are currently located. In a multi - branch repository, it will show a tree of how
the branches are related. For example, it could show something like the following:

* [master] commit name 1
 ! [topic] commit name 2

 ! [topic2] commit name 3

*++ [master] commit name 1

$ git-log

 The preceding code will show the complete log of the repository, generally using a pager such as less , so
that you can take a look at the project ’ s history changeset by changeset .

commit 172ee4898de698d164e902c96efce3e0981707c0

Author: Felipe Balbi < my_email@mydomain.com >

Date: Fri Feb 27 22:02:33 2009 +0200

 commit 1

 Long commit description

 Signed-off-by: Felipe Balbi < my_email@mydomain.com >

commit 09e9f2e9b5335489f1a1c46a846ad3f649bd7c3c

Author: Felipe Balbi < my_email@mydomain.com >

Date: Fri Feb 27 01:22:45 2009 +0200

 commit 2

 Long commit description

 Signed-off-by: Felipe Balbi < my_email@mydomain.com >

commit 4aed4f88d233df05adf6ed3135a0bdbbccf5f21b

Author: Felipe Balbi < my_email@mydomain.com >

Date: Wed Feb 25 21:50:39 2009 +0200

bapp02.indd 281bapp02.indd 281 10/6/09 8:47:54 AM10/6/09 8:47:54 AM

Appendix B: Git Usage

282

 commit 3

 Long commit description

 Signed-off-by: Felipe Balbi < my_email@mydomain.com >

$ git branch

 This command can be used to see the current branch you ’ re in, to create a new branch, to delete a branch,
and to rename a branch. Let ’ s see how.

 $ git branch without any arguments will show the branch listing. The branch marked with * is the
one you ’ re working in right now:

$ git branch

* master

 topic1
 topic2

 $ git branch branch_name will create a new branch called branch_name :

$ git branch topic3

 The results are as follows:

$ git branch

* master

 topic1

 topic2
 topic3

 $ git branch - m new_name will rename your current branch to new_name :

$ git branch -m master_old

$ git branch

* master_old

 topic1

 topic2

 topic3

bapp02.indd 282bapp02.indd 282 10/6/09 8:47:54 AM10/6/09 8:47:54 AM

Appendix B: Git Usage

283

 $ git branch - D branch_name will delete branch_name :

$ git branch -D topic3

Deleted branch topic3 (172ee48).

$ git branch

* master

 topic1

 topic2

 The main purpose for $ git checkout is to switch between branches. For example,
git checkout topic1 will move your current working tree to topic1 :

$ git checkout topic1

Switched to branch “topic1”

$ git branch

 master

* topic1

 topic2

 Using these commands gives results listed:

 $ git add allows you to add new files or modified files to the index and, thus, to the
next commit.

 $ git diff generates a diff between any two valid git objects, generally two commit IDs. Also
used to see the diff between the current working tree and the index.

 $ git status shows you what ’ s different in your repository — new files, deleted files,
modified files — but only before you commit those changes to the index.

 $ git commit advances the current branch with the changes added to the index.

 $ git reset is used to undo changes. In a modified repository, you can use
git reset - hard to lose all uncommitted changes.

 git reset will literally forget any uncommitted changes and you will be unable to get those back. Be
careful when using it.

 $ git merge merges two or more local branches based on a desired strategy, or the default one.

 $ git rebase is used to maintain topic branches, meaning that when you move master
forward, you can keep changes to topic current .

❑

❑

❑

❑

❑

❑

❑

bapp02.indd 283bapp02.indd 283 10/6/09 8:47:54 AM10/6/09 8:47:54 AM

Appendix B: Git Usage

284

 $ git rebase master topic is used to let Git re - apply topic on top of the current master ,
updating all of the topic history.

 $ git tag marks a known point in history. Generally used to make a release out of the current
state of the tree .

 Contributor
 A contributor — a developer who contributes to somebody else ’ s project — will need a different set of
commands in order to get her work integrated in the upstream project. It ’ s important here to know how
to work with a shared repository, when to rebase, when to merge, and so on:

 $ git pull pulls new code from upstream.

 $ git push publishes code to the central repository if you have permission.

 $ git format - patch generates an mbox patch file that can be mailed using git send - email .

 $ git send - email sends the patches generated with git format - patch .

 Integrator
 The main developer of a shared project will generally play the role of integrator. When playing that role,
you might have to integrate (from now on called push) another developer ’ s work. It ’ s important to
remember that on a shared repository you should not rewrite the history of the repository. Otherwise,
everybody working downstream will not be able to pull again from your shared tree , forcing them to
clone the tree again.

 $ git am is used to apply patches in mbox format mailed to you by your contributors.

 $ git pull will fetch and merge code from your trusted contributors.

 $ git revert is used to undo broken or unneeded commits.u .

 $ git push is used to publish code to a central and shared repository.

 Maintainer
 Being a maintainer is generally the same as being an integrator. On a few projects, however, that might
become a completely different role. Imagine the maintainer being the main developer on a project and
the integrator being the person doing some packaging work, for instance. In those cases, you have to
play a different role with a different set of commands:

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp02.indd 284bapp02.indd 284 10/6/09 8:47:55 AM10/6/09 8:47:55 AM

Appendix B: Git Usage

285

 $ git pull - request generates a pull request for the main developer of your project if you are
maintaining only part of a big repository.

 $ git merge merges upstream code into your branch so you can keep your development
going.

 $ git mergetool calls your preferred merge tool to help you solve the issues in case of
merge conflicts.

 Repository Configuration
 In order to make the repository work more comfortable, it is possible to add some configuration
variables, which can help you avoid some repetitive work. The following are the most common and
necessary ones:

$ git config -global user.name “My Name”
$ git config -global user.email “my_mail@mydomain.com”
$ git config -global color.ui auto
$ git config -global merge.tool kdiff3
$ git config -global sendemail.smtpserver smtp.domain.com

 Repository Administration
 If you are the repository administrator, you will need to be sure git daemon is running and your users
have access only to the necessary resources on your server:

 $ git daemon is the daemon that is used to allow anonymous download from your repository.

 $ git shell is used as a restricted login shell for shared repository users. It will not allow
access to the console, but it will allow developers to push and pull from the central repository.

❑

❑

❑

❑

❑

bapp02.indd 285bapp02.indd 285 10/6/09 8:47:55 AM10/6/09 8:47:55 AM

bapp02.indd 286bapp02.indd 286 10/6/09 8:47:55 AM10/6/09 8:47:55 AM

 Hosting Your Project
on Launchpad

 Launchpad is a hosting and collaboration platform for software development projects. It offers bug
tracking, code hosting, translation services, and a Q & A service. It will host your project ’ s source
code using the Bazaar version control system.

 To do this, register the branch at https://code.launchpad.net/people/+me/+addbranch
(you need to be registered with Launchpad for this). Fill out the web form which registers the new
branch to Launchpad.

 It can also import CVS and SVN so existing projects have this resource available to them.
Launchpad provides this free service and then keeps that trunk branch up - to - date. This allows you
to make your own Bazaar branches from the project trunk, and keep them up - to - date by merging
from trunk over time as you develop your features.

 To request an import, make sure the project is registered on Launchpad, or register it yourself.
Then visit the request page at https://code.edge.launchpad.net/+code-imports/+new and
fill out the details.

 This will do the following:

 Create an empty branch to contain the imported code.

 Subscribe you to it so that you will be notified both when the initial import completes and
subsequent updates import new revisions.

 Notify the import operators who will check the import location and approve the import.

 The initial import can take a long time — up to several days, depending on the number of
revisions that need to be converted. Once the import is established it will be updated from the CVS
or Subversion branch every 6 – 12 hours, although an import can be requested at any time by
clicking the Import Now button on the import page.

❑

❑

❑

bapp03.indd 287bapp03.indd 287 10/6/09 8:48:32 AM10/6/09 8:48:32 AM

Appendix C: Hosting Your Project on Launchpad

288

 At the moment, the service is restricted to tracking only the main branch of each project.

 If you are having trouble using the service, ask on IRC in the channel #launchpad on the network
Freenode.

 Internet Relay Chat (IRC) is a form of real - time messaging or synchronous conferencing. It is provided
by clients such as Xchat (sudo apt - get install xchat).

 Using Bazaar and Launchpad
 This requires that Launchpad know about your SSH key. A quick way to find out your ssh key is to run
the following command:

$ cat ~/.ssh/id_rsa.pub

 It outputs something like this:

ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA8gqBwjpIQ/FI2sxh7J4VOSuSKoIvdaIWsLA9o4YOBA/
8UFN4FOM4cSrUiOq0zT71hpGPo9980B5zXbgGg6b4H5nXx0MIctfGt0yQeTY4aGYhj97/W34r/ExculubXL
ACEZzZv1NZJfG3SnSEwFFlE90tAu1waltK+paiIli/ONWS2VVLHUBhEXDTpZk8RdVNqixaj08NTjJ
AoqNSG99FJxx0AGQQp7ZDih/9Y+ip+nhHVYyGHf3Z7JPccEuS/m15wg1OOHHv6nzgbxtQlVtFj
ZHPObRKbSm3Nk3cnrD/urfFYKYkCoLDdlzYnOA7NyHcUb9TkPVHS+SdElXZ5B2Wiw== ian@lawrence

This can be pasted into the Update SSH keys section of Launchpad.

 If you do not have an SSH key, run the following command to create one:

$ ssh-keygen -t dsa

 Bazaar itself is installed with the following command to create one:

$ sudo apt-get install bzr

 The code that will be hosted in the following example will be the first version of the Ubuntu
Mobile Guide — Ubuntu 7.10 (Gutsy Gibbon) Developer Alpha — which is available on
http://umeguide.net/ .

 Start off by telling Bazaar about yourself:

$ bzr whoami ‘Ian Lawrence root@ianlawrence.info’

 Next, move into the folder with the code and initialize the local repository:

$ cd mobileguide
$ bzr init

 Look at the “ status ” of Bazaar:

$ bzr status

bapp03.indd 288bapp03.indd 288 10/6/09 8:48:33 AM10/6/09 8:48:33 AM

Appendix C: Hosting Your Project on Launchpad

289

 It shows something like this:

unknown:
 C/
 README
 images/
 mobileguide.pot
 validate.sh

 Next, add these to the directory by running the following:

$ bzr add

 The command recursively adds everything to the directory. Things can also be added individually by
specifying the file after the add command. They can also be removed by specifying the file after the
 remove command:

$ bzr add README
$ bzr remove README

 When the code is in a reasonable state for upload, the changes first need to be committed to the local
repository before they can be uploaded to a remote server (in this case Launchpad). This can be
confusing to new users.

$ bzr commit -m “Example repository for the Ubuntu Mobile Book”

 Now the code can be uploaded. It is possible to tell Launchpad about yourself by doing something
like this:

$ bzr launchpad-login ianlawrence

 Run the following:

$ bzr push --use-existing-dir sftp://ianlawrence@bazaar.launchpad.
net/~ianlawrence/+junk/mobileguide

 In the URL, ianlawrence is my Launchpad user name. After the ~ you can then include either your
Launchpad user name or a team name; project is the name of the project in the Launchpad URL (in this
case +junk as the project does not exist on Launchpad) and branch is what you would like to call the
branch — in this case mobileguide .

 The code is available at http://bazaar.launchpad.net/~ianlawrence/+junk/
mobileguide/changes .

 Checking Out the Branch and Working on It
 If you want to contribute to the developer alpha version of the guide, you can check out the code at
$ bzr branch http://bazaar.launchpad.net/~ianlawrence/+junk/mobileguide/ .

bapp03.indd 289bapp03.indd 289 10/6/09 8:48:33 AM10/6/09 8:48:33 AM

bapp03.indd 290bapp03.indd 290 10/6/09 8:48:33 AM10/6/09 8:48:33 AM

 Desktop Power Applet Code

 The following desktop power applet is written in Python. It is dependent on the python - gnome2 -
 extras package. Therefore, it needs to be installed using apt.

 First, import the necessary libraries:

import os
import sys
import gtk
from gettext import gettext as _
from egg.trayicon import TrayIcon

 Note that the native way to display an icon is to use gtk.StatusIcon (new in PyGTK 2.10) rather
then TrayIcon . Next, create a class called PowerTray with a call to super so that methods in the
parent class (TrayIcon) are available:

class PowerTray(TrayIcon):
 def __init__(self):
 super(PowerTray, self).__init__(‘power’)
 self.icon_theme = gtk.IconTheme()

 The main power management code for a logout on a MID device is as follows:

if result == gtk.RESPONSE_YES:
 os.system(‘pkill hildon-desktop’)
 dialog.destroy()

 The main power management code for a shutdown on a MID device is as follows:

if result == gtk.RESPONSE_YES:
 os.system(‘gdm-signal -h’)
 os.system(‘pkill hildon-desktop’)
 dialog.destroy()

bapp04.indd 291bapp04.indd 291 10/6/09 8:48:58 AM10/6/09 8:48:58 AM

Appendix D: Desktop Power Applet Code

292

 The main power management code for a reboot on a MID device is as follows:

if result == gtk.RESPONSE_YES:
 os.system(‘gdm-signal -r’)
 os.system(‘pkill hildon-desktop’)
 dialog.destroy()

 Here is the full source code:

#!/usr/bin/env python
-*- coding: utf-8 -*-
Copyright (C) 2008 Rodrigo Cesar Lopes Belem
Author: Rodrigo Cesar Lopes Belem < rodrigo.belem@gmail.com >
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
depends python-gnome2-extras,
import os
import sys
import gtk
from gettext import gettext as _
from egg.trayicon import TrayIcon

class PowerTray(TrayIcon):
 def __init__(self):
 super(PowerTray, self).__init__(‘power’)
 self.icon_theme = gtk.IconTheme()
 self.icon_theme.set_custom_theme(‘Human’)

 self.eventbox = gtk.EventBox()
 self.eventbox.connect(‘button_press_event’, self.on_button_press_event)
 pixbuf = self.icon_theme.load_icon(‘gnome-session-halt’, 32, 0)
 self.tray_image = gtk.image_new_from_pixbuf(pixbuf)
 self.eventbox.add(self.tray_image)

 menu_ui = \
“””
 < ui >
 < popup name=”TrayIconMenu” >
 < menuitem name=”lock” action=”lock”/ >
 < separator/ >
 < menuitem name=”reboot” action=”reboot”/ >
 < menuitem name=”shutdown” action=”shutdown”/ >

bapp04.indd 292bapp04.indd 292 10/6/09 8:48:58 AM10/6/09 8:48:58 AM

Appendix D: Desktop Power Applet Code

293

 < separator/ >
 < menuitem name=”logout” action=”logout”/ >
 < /popup >
 < /ui >
“””
 self.uimanager = gtk.UIManager()
 self.uimanager.add_ui_from_string(menu_ui)
 accelgroup = self.uimanager.get_accel_group()
 actiongroup = gtk.ActionGroup(‘Power’)
 actiongroup.add_actions(
 [
 (‘lock’, gtk.STOCK_DIALOG_AUTHENTICATION , _(‘_Travar’), None,
 _(‘Travar’), self.on_lock),
 (‘reboot’, gtk.STOCK_MISSING_IMAGE , _(‘_Reiniciar’), None,
 _(‘Reiniciar’), self.on_reboot),
 (‘shutdown’, gtk.STOCK_MISSING_IMAGE , _(‘_Desligar’), None,
 _(‘Desligar’), self.on_shutdown),
 (‘logout’, gtk.STOCK_MISSING_IMAGE , _(‘_Fechar sess ã o’), None,
 _(‘Fechar sess ã o’), self.on_logout),
])

 self.uimanager.insert_action_group(actiongroup, 1)
 self.menu = self.uimanager.get_widget(“/TrayIconMenu”)
 self.reboot = self.uimanager.get_widget(“/TrayIconMenu/reboot”)
 pixbuf = self.icon_theme.load_icon(‘gnome-session-reboot’, 0, 0)
 self.reboot.set_image(gtk.image_new_from_pixbuf(pixbuf))
 self.shutdown = self.uimanager.get_widget(“/TrayIconMenu/shutdown”)
 pixbuf = self.icon_theme.load_icon(‘gnome-session-halt’, 0, 0)
 self.shutdown.set_image(gtk.image_new_from_pixbuf(pixbuf))
 self.logout = self.uimanager.get_widget(“/TrayIconMenu/logout”)
 pixbuf = self.icon_theme.load_icon(‘gnome-session-logout’, 0, 0)
 self.logout.set_image(gtk.image_new_from_pixbuf(pixbuf))
 self.add(self.eventbox)

 def position_menu(self,menu):
 #Grab from deskbar applet
 align_to = self.eventbox
 direction = self.eventbox.get_direction()
 screen = menu.get_screen()
 monitor_num = screen.get_monitor_at_window(align_to.window)
 if monitor_num < 0:
 monitor_num = 0
 monitor = screen.get_monitor_geometry (monitor_num)
 menu.set_monitor (monitor_num)
 tx, ty = align_to.window.get_origin()
 twidth, theight = menu.get_child_requisition()
 tx += align_to.allocation.x
 ty += align_to.allocation.y
 if direction == gtk.TEXT_DIR_RTL:
 tx += align_to.allocation.width - twidth

bapp04.indd 293bapp04.indd 293 10/6/09 8:48:59 AM10/6/09 8:48:59 AM

Appendix D: Desktop Power Applet Code

294

 if (ty + align_to.allocation.height + theight) < = monitor.y + monitor.height:
 ty += align_to.allocation.height
 elif (ty - theight) > = monitor.y:
 ty -= theight
 elif monitor.y + monitor.height - (ty + align_to.allocation.height) > ty:
 ty += align_to.allocation.height
 else:
 ty -= theight
 if tx < monitor.x:
 x = monitor.x
 elif tx > max(monitor.x, monitor.x + monitor.width - twidth):
 x = max(monitor.x, monitor.x + monitor.width - twidth)
 else:
 x = tx
 y = ty
 return (x, y, False)
 def on_button_press_event(self, item, event, data=None):
 self.menu.popup(None, None, self.position_menu, event.button, event.time)
 def on_lock(self, *args):
 os.system(‘xlock & ’)
 def on_shutdown(self, *args):
 dialog = gtk.MessageDialog(
 parent=None,
 flags=0,
 type=gtk.MESSAGE_WARNING,
 buttons=gtk.BUTTONS_YES_NO)
 dialog.set_resizable(False)
 dialog.set_title(“”)
 message_format = ‘Voc ê est á prestes a desligar o computador’
 secondary_text = ‘Voc ê deseja continuar?’
 dialog.set_markup(“ < span weight=’bold’size=’larger’ > %s < /span > ” \
 % message_format)
 dialog.format_secondary_markup(secondary_text)
 result = dialog.run()
 if result == gtk.RESPONSE_YES:
 os.system(‘gdm-signal -h’)
 os.system(‘pkill hildon-desktop’)
 dialog.destroy()

 def on_logout(self, *args):
 dialog = gtk.MessageDialog(
 parent=None,
 flags=0,
 type=gtk.MESSAGE_WARNING,
 buttons=gtk.BUTTONS_YES_NO)
 dialog.set_resizable(False)
 dialog.set_title(“”)
 message_format = ‘Voc ê est á prestes a deslogar do seu usu á rio’
 secondary_text = ‘Voc ê deseja continuar?’
 dialog.set_markup(“ < span weight=’bold’size=’larger’ > %s < /span > ” \
 % message_format)
 dialog.format_secondary_markup(secondary_text)

bapp04.indd 294bapp04.indd 294 10/6/09 8:48:59 AM10/6/09 8:48:59 AM

Appendix D: Desktop Power Applet Code

295

 result = dialog.run()
 if result == gtk.RESPONSE_YES:
 os.system(‘pkill hildon-desktop’)
 dialog.destroy()

 def on_reboot(self, *args):
 dialog = gtk.MessageDialog(
 parent=None,
 flags=0,
 type=gtk.MESSAGE_WARNING,
 buttons=gtk.BUTTONS_YES_NO)
 dialog.set_resizable(False)
 dialog.set_title(“”)
 message_format = ‘Voc ê est á prestes a reiniciar o computador’
 secondary_text = ‘Voc ê deseja continuar?’
 dialog.set_markup(“ < span weight=’bold’size=’larger’ > %s < /span > ” \
 % message_format)
 dialog.format_secondary_markup(secondary_text)
 result = dialog.run()
 if result == gtk.RESPONSE_YES:
 os.system(‘gdm-signal -r’)
 os.system(‘pkill hildon-desktop’)
 dialog.destroy()

if __name__ == ‘__main__’:
 icon = PowerTray()
 icon.show_all()
 try:
 gtk.main()
 except KeyboardInterrupt:
 print ‘Exiting...’
 sys.exit(0)

bapp04.indd 295bapp04.indd 295 10/6/09 8:48:59 AM10/6/09 8:48:59 AM

Admin
Text Box
Download from www.eBookTM.com

bapp04.indd 296bapp04.indd 296 10/6/09 8:49:00 AM10/6/09 8:49:00 AM

 D - Bus: An Overview

This is a condensed version of the canonical D-Bus tutorial found at http://dbus.freedesktop
.org/doc/dbus-tutorial.html, which was written by Havoc Pennington, David Wheeler,
John Palmieri and Colin Walters.

 D - Bus is a system for interprocess communication (IPC). Architecturally, it has several layers:

 A library, libdbus , that allows two applications to connect to each other and exchange
messages.

 A message bus daemon executable, built on libdbus that multiple applications can connect
to. The daemon can route messages from one application to zero or more other
applications.

 Wrapper libraries or bindings based on particular application frameworks — for example,
 libdbus - glib and libdbus - qt . There are also bindings to languages such as Python.
These wrapper libraries are the API most people should use, as they simplify the details of
D - Bus programming. libdbus is intended to be a low - level backend for the higher level
bindings. Much of the libdbus API is useful only for binding implementation.

 libdbus supports only one - to - one connections, just like a raw network socket. However, rather
than sending byte streams over the connection, you send messages . Messages have a header
identifying the kind of message, and a body containing a data payload. libdbus also abstracts the
exact transport used (sockets versus whatever else), and handles details such as authentication.

 The message bus daemon forms the hub of a wheel. Each spoke of the wheel is a one - to - one
connection to an application using libdbus . An application sends a message to the bus daemon
over its spoke, and the bus daemon forwards the message to other connected applications as
appropriate. Think of the daemon as a router.

 The bus daemon has multiple instances on a typical computer. The first instance is a machine -
 global singleton, that is, a system daemon similar to sendmail or Apache. This instance has heavy
security restrictions on what messages it will accept, and is used for system - wide communication.

❑

❑

❑

bapp05.indd 297bapp05.indd 297 10/6/09 8:49:22 AM10/6/09 8:49:22 AM

Appendix E: D - Bus: An Overview

298

The other instances are created one per user login session. These instances allow applications in the
user ’ s session to communicate with one another.

 The system - wide and per - user daemons are separate. Normal within - session IPC does not involve the
system - wide message bus process and vice versa.

 D - Bus Applications
 D - Bus is designed for two specific cases:

 Communication between desktop applications in the same desktop session; to allow integration
of the desktop session as a whole, and address issues of process lifecycle (When do desktop
components start and stop running?)

 Communication between the desktop session and the operating system, where the operating
system would typically include the kernel and any system daemons or processes

 For the within - desktop - session use case, the GNOME and KDE desktops have significant previous
experience with different IPC solutions such as CORBA and DCOP. D - Bus is built on that experience and
tailored to meet the needs of these desktop projects.

 The problem solved by the system - wide or communication - with - the - OS case is best explained by the
following text from the Linux Hotplug project:

 A gap in current Linux support is that policies with any sort of dynamic “ interact with user ” component
aren ’ t currently supported. For example, that ’ s often needed the first time a network adapter or printer is
connected, and to determine appropriate places to mount disk drives. It would seem that such actions could
be supported for any case where a responsible human can be identified: single user workstations, or any
system which is remotely administered.

 This is a classic “ remote sysadmin ” problem, where in this case hotplugging needs to deliver an event
from one security domain (operating system kernel, in this case) to another (desktop for a logged - in user,
or remote sysadmin). Any effective response must go the other way: the remote domain taking some
action that lets the kernel expose the desired device capabilities. (The action can often be taken
asynchronously — for example, letting new hardware be idle until a meeting finishes.) At this writing,
Linux doesn ’ t have widely adopted solutions to such problems. However, the new D - Bus work may
begin to solve that problem.

 D - Bus might be useful for purposes other than the one for which it was designed (see Figure E - 1).
General properties that distinguish it from other forms of IPC are:

 Binary protocol designed to be used asynchronously (similar in spirit to the X Window System
protocol).

 Stateful, reliable connections held open over time.

 The message bus is a daemon, not a “ swarm ” or distributed architecture.

 Many implementation and deployment issues are specified rather than left ambiguous/
configurable/pluggable.

❑

❑

❑

❑

❑

❑

bapp05.indd 298bapp05.indd 298 10/6/09 8:49:23 AM10/6/09 8:49:23 AM

Appendix E: D - Bus: An Overview

299

 Figure E - 1

DBusConnection
Instance

DBusConnection
Instance

Socket
(Bidirectional
Message Stream)

Socket
(Bidirectional
Message Stream)

Message Dispatcher

if (message is signal)
broadcast else

find destination named by message

Destination Table

Bus Daemon Process

Connection 1
Connection 2
“The Session Manager”
“The Window Manager”
“The Screensaver”
“The Text Editor”
“The Hardware Directory”
“The Address Book”
“The Dictionary”

DBusConnection
Instance

Outgoing
Call

Incoming
Call

Marshal Method
Call to Message

Application Code

Bindings Marshal
to Method Call

Locate Object
via Object Path

(Obect Instance Has
1 or More Interfaces)

Application Process 1

Bindings Proxy
Object Instance

C/C++/Python/etc.
Object Instance

DBusConnection
Instance

Same Stuff as in
Process 1

Application Process 2

 Semantics are similar to the existing DCOP system, allowing KDE to adopt it more easily.

 Security features to support the system - wide mode of the message bus.

❑

❑

bapp05.indd 299bapp05.indd 299 10/6/09 8:49:24 AM10/6/09 8:49:24 AM

Appendix E: D - Bus: An Overview

300

 Native Objects and Object Paths
 Your programming framework defines what an “ object ” is like, usually with a base class — for example:
 java.lang.Object , GObject , QObject , Python ’ s base Object, or whatever. Let ’ s call this a native object .

 The low - level D - Bus protocol, and corresponding libdbus API, does not care about native objects.
However, it provides a concept called an object path . The idea of an object path is that higher - level
bindings can name native object instances, and allow remote applications to refer to them.

 The object path looks like a filesystem path — for example, an object could be named /org/kde/
kspread/sheets/3/cells/4/5. Human - readable paths are nice, but you are free to create an object named
/com/ubuntu/c5yo817y0c1y1c5b if it makes sense for your application.

 Namespacing object paths by starting them with the components of a domain name you own
(e.g., /org/kde) is nice as it keeps different code modules in the same process from stepping on one
another ’ s toes.

 Methods and Signals
 Each object has members ; the two kinds of members are methods and signals . Methods are operations that
can be invoked on an object, with optional input (aka arguments or “ in parameters “) and output (aka
return values or “ out parameters “). Signals are broadcast from the object to any interested observers of
the object; signals may contain a data payload.

 Both methods and signals are referred to by name, such as PUMD or OnClicked .

 Inter faces
 Each object supports one or more interfaces . Think of an interface as a named group of methods and
signals, just as it is in GLib or Qt or Java. Interfaces define the type of an object instance.

 D - Bus identifies interfaces with a simple namespaced string, something like org.freedesktop
.Introspectable. Most bindings will map these interface names directly to the appropriate programming
language construct — for example, to Java interfaces or C++ pure virtual classes.

 Proxies
 A proxy object is a convenient native object created to represent a remote object in another process. The
low - level D - Bus API involves manually creating a method call message, sending it, and then manually
receiving and processing the method reply message. Higher - level bindings provide proxies as an
alternative. Proxies look like a normal native object, but when you invoke a method on the proxy object,
the binding converts it into a D - Bus method call message, waits for the reply message, unpacks the
return value, and returns it from the native method.

bapp05.indd 300bapp05.indd 300 10/6/09 8:49:24 AM10/6/09 8:49:24 AM

Appendix E: D - Bus: An Overview

301

 In pseudocode, programming without proxies might look like this:

 Message message = new Message(“/remote/object/path”, “MethodName”, arg1,
arg2);
 Connection connection = getBusConnection();
 connection.send(message);
 Message reply = connection.waitForReply(message);
 if (reply.isError()) {

 } else {
 Object returnValue = reply.getReturnValue();
 }

 However, programming with proxies might look like this:

 Proxy proxy = new Proxy(getBusConnection(), “/remote/object/path”);
 Object returnValue = proxy.MethodName(arg1, arg2);

 Bus Names
 When each application connects to the bus daemon, the daemon immediately assigns it a name, called
the unique connection name . A unique name begins with a colon (:) character. These names are never
reused during the lifetime of the bus daemon — that is, you know a given name will always refer to the
same application. An example of a unique name might be :34 - 907 . The numbers after the colon have no
meaning other than their uniqueness.

 When a name is mapped to a particular application connection, that application is said to own
that name.

 Applications may ask to own additional well - known names . For example, you could write a specification
to define a name called com.ubuntu.TextEditor . Your definition could specify that to own this name,
an application should have an object at the path /com/ubuntu/TextFileManager supporting the
interface org.freedesktop.FileHandler.

 Applications could then send messages to this bus name, object, and interface to execute method calls.

 You could think of the unique names as IP addresses, and the well - known names as domain names. So
com.ubuntu.TextEditor might map to something like :34 - 907 just as ubuntu.com maps to something
like 91.189.94.250 .

 Names have a second important use, other than routing messages. They are used to track lifecycle. When
an application exits (or crashes), its connection to the message bus will be closed by the operating system
kernel. The message bus then sends out notification messages telling the remaining applications that the
application ’ s names have lost their owner. By tracking these notifications, your application can reliably
monitor the lifetime of other applications.

 Bus names can also be used to coordinate single - instance applications. If you want to be sure only one
com.mycompany.TextEditor application is running, for example, have the text editor application exit if
the bus name already has an owner.

bapp05.indd 301bapp05.indd 301 10/6/09 8:49:24 AM10/6/09 8:49:24 AM

Appendix E: D - Bus: An Overview

302

 Addresses
 Applications using D - Bus are either servers or clients. A server listens for incoming connections; a client
connects to a server. Once the connection is established, it is a symmetric flow of messages; the client -
 server distinction only matters when setting up the connection.

 If you ’ re using the bus daemon, as you probably are, your application will be a client of the bus daemon.
That is, the bus daemon listens for connections and your application initiates a connection to the bus
daemon.

 A D - Bus address specifies where a server will listen, and where a client will connect. For example, the
address unix:path=/tmp/abcdef specifies that the server will listen on a UNIX domain socket at the
path /tmp/abcdef and the client will connect to that socket. An address can also specify TCP/IP sockets,
or any other transport defined in future iterations of the D - Bus specification.

 When using D - Bus with a message bus daemon, libdbus automatically discovers the address of the
per - session bus daemon by reading an environment variable. It discovers the system - wide bus daemon
by checking a well - known UNIX domain socket path (although you can override this address with an
environment variable).

 If you ’ re using D - Bus without a bus daemon, it ’ s up to you to define which application will be the server
and which will be the client, and specify a mechanism for them to agree on the server ’ s address. This is
an unusual case.

 Big Conceptual Picture
 To specify a particular method call on a particular object instance, a number of nested components have
to be named:

 Address - > [Bus Name] - > Path - > Interface - > Method

 The bus name is in brackets to indicate that it ’ s optional — you only provide a name to route the method
call to the right application when using the bus daemon. If you have a direct connection to another
application, bus names aren ’ t used; there ’ s no bus daemon.

 The interface is also optional, primarily for historical reasons; DCOP does not require that you
specify the interface; instead, it simply forbids duplicate method names on the same object instance.
D - Bus will thus let you omit the interface, but if your method name is ambiguous, it is undefined which
method will be invoked.

 Messages: Behind the Scenes
 D - Bus works by sending messages between processes. If you ’ re using a sufficiently high - level binding,
you may never work with messages directly.

bapp05.indd 302bapp05.indd 302 10/6/09 8:49:25 AM10/6/09 8:49:25 AM

Appendix E: D - Bus: An Overview

303

 There are four message types:

 Method call messages ask to invoke a method on an object.

 Method return messages return the results of invoking a method.

 Error messages return an exception caused by invoking a method.

 Signal messages are notifications that a given signal has been emitted (that an event has
occurred). You could also think of these as “ event ” messages.

 A method call maps very simply to messages: You send a method call message, and receive either a
method return message or an error message in reply.

 Each message has a header , including fields , and a body , including arguments . You can think of the header
as the routing information for the message, and the body as the payload. Header fields might include the
sender bus name, destination bus name, method or signal name, and so forth. One of the header fields is
a type signature describing the values found in the body. For example, the letter “ i ” means “ 32 - bit
integer ” so the signature “ ii ” means the payload has two 32 - bit integers.

 Calling a Method: Behind the Scenes
 A method call in D - Bus consists of two messages: a method call message sent from process A to process
B, and a matching method reply message sent from process B to process A. Both the call and the reply
messages are routed through the bus daemon. The caller includes a different serial number in each call
message, and the reply message includes this number to allow the caller to match replies to calls.

 The call message will contain any arguments to the method. The reply message may indicate an error, or
may contain data returned by the method.

 The steps of a method invocation in D - Bus are as follows:

 1. The language binding may provide a proxy, such that invoking a method on an in - process object
invokes a method on a remote object in another process. If so, the application calls a method on
the proxy, and the proxy constructs a method call message to send to the remote process.

 2. For more low - level APIs, the application may construct a method call message itself, without
using a proxy.

 3. In either case, the method call message contains: a bus name belonging to the remote process;
the name of the method; the arguments to the method; an object path inside the remote process;
and, optionally, the name of the interface that specifies the method.

 4. The method call message is sent to the bus daemon.

 5. The bus daemon looks at the destination bus name. If a process owns that name, the bus
daemon forwards the method call to that process. Otherwise, the bus daemon creates an error
message and sends it back as the reply to the method call message.

 6. The receiving process unpacks the method call message. In a simple low - level API situation, it
may immediately run the method and send a method reply message to the bus daemon. When
using a high - level binding API, the binding might examine the object path, interface, and

❑

❑

❑

❑

bapp05.indd 303bapp05.indd 303 10/6/09 8:49:25 AM10/6/09 8:49:25 AM

Appendix E: D - Bus: An Overview

304

method name, and convert the method call message into an invocation of a method on a native
object (GObject , java.lang.Object , QObject , and so on), and then convert the return value
from the native method into a method reply message.

 7. The bus daemon receives the method reply message and sends it to the process that made the
method call.

 8. The process that made the method call looks at the method reply and makes use of any return
values included in the reply. The reply may also indicate that an error occurred. When using a
binding, the method reply message may be converted into the return value of a proxy method,
or into an exception.

 9. The bus daemon never reorders messages. That is, if you send two method call messages to the
same recipient, they will be received in the order they were sent. The recipient is not required to
reply to the calls in order, however; for example, it may process each method call in a separate
thread, and return reply messages in an undefined order depending on when the threads
complete. Method calls have a unique serial number used by the method caller to match reply
messages to call messages.

 Emitting a Signal: Behind the Scenes
 A signal in D - Bus consists of a single message, sent by one process to any number of other processes.
That is, a signal is a unidirectional broadcast. The signal may contain arguments (a data payload), but
because it is a broadcast, it never has a “ return value. ” Contrast this with a method call where the
method call message has a matching method reply message.

 The emitter (aka sender) of a signal has no knowledge of the signal recipients. Recipients register with
the bus daemon to receive signals based on “ match rules “ — these rules would typically include the
sender and the signal name. The bus daemon sends each signal only to recipients who have expressed
interest in that signal.

 The process of emitting a signal in D - Bus occurs in the following manner:

 1. A signal message is created and sent to the bus daemon. When using the low - level API this may
be done manually; with certain bindings it may be done for you by the binding when a native
object emits a native signal or event.

 2. The signal message contains the name of the interface that specifies the signal, the name of the
signal, the bus name of the process sending the signal, and any arguments.

 3. Any process on the message bus can register “ match rules ” indicating which signals it is
interested in. The bus has a list of registered match rules.

 4. The bus daemon examines the signal and determines which processes are interested in it. It
sends the signal message to these processes.

 Each process receiving the signal decides what to do with it; if using a binding, the binding may choose
to emit a native signal on a proxy object. If using the low - level API, the process may just look at the
signal sender and name, and decide what to do based on what it sees.

bapp05.indd 304bapp05.indd 304 10/6/09 8:49:25 AM10/6/09 8:49:25 AM

Appendix E: D - Bus: An Overview

305

 Introspection
 D - Bus objects may support the interface org.freedesktop.DBus.Introspectable. This interface has one
method, Introspect , which takes no arguments and returns an XML string. The XML string describes
the interfaces, methods, and signals of the object.

 Python and D - Bus
 There are two bus daemons of interest. Each user login session should have a session bus , which is local
to that session. It is used to communicate between desktop applications. Connect to the session bus by
creating a SessionBus object:

import dbus

session_bus = dbus.SessionBus()

 The system bus is global and usually started during boot; it ’ s used to communicate with system services
such as udev, Network Manager, and HAL. To connect to the system bus, create a SystemBus object:

import dbus

system_bus = dbus.SystemBus()

 Of course, you can connect to both in the same application.

 Method Calls
 D - Bus applications can export objects for other applications ’ use. To start working with an object in
another application, you need to know the following:

 The bus name — This identifies the application that you want to communicate with. You ’ ll
usually identify applications by a well - known name, which is a dot - separated string starting
with a reversed domain name, such as org.freedesktop.NetworkManager or com.example.
WordProcessor.

 The object path — Applications can export many objects. For instance, example.com ’ s word
processor might provide an object representing the word processor application itself and also an
object for each document window that is opened, or it might also provide an object for each
paragraph that ’ s within a document.

 To identify which one you want to interact with, you use an object path, a slash - separated string
resembling a filename. For instance, example.com ’ s word processor might provide an object at /
representing the word processor itself, and objects at /documents/123 and /documents/345
representing opened document windows.

 As you ’ d expect, one of the main things you can do with remote objects is to call their methods. As in
Python, methods may have parameters, and they may return one or more values.

❑

❑

bapp05.indd 305bapp05.indd 305 10/6/09 8:49:26 AM10/6/09 8:49:26 AM

Appendix E: D - Bus: An Overview

306

 Proxy Objects
 To interact with a remote object, you use a proxy object . This is a Python object that acts as a proxy or
 “ stand - in ” for the remote object. When you call a method on a proxy object, this causes dbus -P ython to
make a method call on the remote object, passing back any return values from the remote object ’ s
method as the return values of the proxy method call.

 To obtain a proxy object, call the get_object method on the Bus . For example, NetworkManager has the
well - known name org.freedesktop.NetworkManager and exports an object whose object path is
/org/freedesktop/NetworkManager, plus an object per network interface at object paths such as /org/
freedesktop/NetworkManager/Devices/eth0. You can get a proxy for the object representing eth0 like this:

import dbus
bus = dbus.SystemBus()
proxy = bus.get_object(‘org.freedesktop.NetworkManager’,
 ‘/org/freedesktop/NetworkManager/Devices/eth0’)
proxy is a dbus.proxies.ProxyObject

 Inter faces and Methods
 D - Bus uses interfaces to provide a namespacing mechanism for methods. An interface is a group of
related methods and signals (more on signals later), identified by a name that is a series of dot - separated
components starting with a reversed domain name. For instance, each NetworkManager object
representing a network interface implements the interface org.freedesktop.NetworkManager.Devices,
which has methods such as getProperties .

 To call a method, call the method of the same name on the proxy object, passing in the interface name via
the dbus_interface keyword argument:

import dbus
bus = dbus.SystemBus()
eth0 = bus.get_object(‘org.freedesktop.NetworkManager’,
 ‘/org/freedesktop/NetworkManager/Devices/eth0’)
props = eth0.getProperties(dbus_interface=’org.freedesktop.NetworkManager.Devices’)
props is a tuple of properties, the first of which is the object path

 As a short cut, if you ’ re going to be calling many methods with the same interface, you can construct a
 dbus.Interface object and call methods on that, without needing to specify the interface again:

import dbus
bus = dbus.SystemBus()
eth0 = bus.get_object(‘org.freedesktop.NetworkManager’,
 ‘/org/freedesktop/NetworkManager/Devices/eth0’)
eth0_dev_iface = dbus.Interface(eth0,
 dbus_interface=’org.freedesktop.NetworkManager.Devices’)
props = eth0_dev_iface.getProperties()
props is the same as before

bapp05.indd 306bapp05.indd 306 10/6/09 8:49:26 AM10/6/09 8:49:26 AM

Part XX

Part Title
Index

bindex.indd 307bindex.indd 307 10/6/09 11:25:20 AM10/6/09 11:25:20 AM

bindex.indd 308bindex.indd 308 10/6/09 11:25:21 AM10/6/09 11:25:21 AM

Index

In
de

x

! (exclamation marks), seed files and, 232
* (asterisks), packages in raw seed lists and, 231

application selection
business users, 129–131
location-aware users, 138. See also

GPS-enabled standalone web
application (MID devices)

multimedia users, 131–133
social network users, 133–137

applications
D-Bus, 306–307
installing inside of images, 33
troubleshooting icon not appearing, 258–259

applications, creating
design, 55–56
free desktop standards, 56–58
GTK. See GTK (Gimp Toolkit)
Hildon Application Framework, 58–60

Apport’s application, 206
approx tool, 225–226
apt (Advanced Package Tool), 106

installing packages on, 261–262
architecture

ARM architectures, 250–251
checking support of, 220
defined, 243
fine-tuning the kernel and, 221
mobile computing platform, 243–244

archive of packages (Ubuntu), 126
Arima, running Ubuntu on, 261
ARM (Advanced RISC Machines) platform

ARM architectures, 250–251
installing on QEMU, 22–23
overview, xxv
SheevaPlug and, 265–276

Assistive Technology Service Provider
Interface (AT-SPI), 188

Index

A
Abreau, John, 271
Acer Aspire One test results, 162–163
actions, configuring (pbuilder), 125
addresses (D-Bus), 310
administration, repository (Git), 285
Adobe Flash, 213–214
Alternate Image, 226
animation

Clutter and, 70–74
gadget with, 136–137

Apple, history of
history of, 3–4

applet for mounting removable media
(example), 94–103

application autostart specification,
desktop, 57

application development
applet example, 94–103
applications, creating. See applications,

creating
D-Bus. See D-Bus
GConf, 89–91
notifications, 93–94
overview, 53
Ubuntu mobile releases, 54–55
Ubuntu Netbook Remix, 54

application packaging
pbuilder. See pbuilder tool
Personal Package Archives (PPA)

and, 108
PPA. See PPA (Personal Package

Archives)
repositories, creating, 118–119
tools for, 105–108

bindex.indd 309bindex.indd 309 10/6/09 11:25:21 AM10/6/09 11:25:21 AM

310

atime, disabling, 212
ATK. See LSB Application Testkit (ATK)
AT-SPI (Assistive Technology Service

Provider Interface), 188
automatic repositories, creating, 118
automatic setting of flags, 259–260
automatic theming (MID), 156–157
autostart specification (desktop

application), 57
awake state (power), 36

B
background services, turning off, 212–213
backporting KVM, 119
Barton, George, 254
batteries

basics, 210
comparing, 48–50
recharging, 209
testing, 47–50

Bazaar
Launchpad and, 288–289
to obtain scripts, 30–31

bind mounting directories (pbuilder), 126
bindings (D-Bus), 305
blacklist files, 233–234
blob object (Git), 277
Bluetooth

GPS application and, 138, 142
turning on/off, 45–46

Bogstad, Bill, 272
booting

boot selector, 222–224
boot speed, 207
dual boots, 259
MID devices and theming, 149
troubleshooting, 257–258

branch command (Git), 282–283
browsers, testing with Mago, 193–195
bugs, reporting, 205–206
build process, fine-tuning, 225–226
build-essential package (dpkg), 107
Burton, Ross, 142
bus names (D-Bus), 309

business
MIDs as opportunity, 129
mobile market unpredictability, 243
users of MIDs and, 129–131

C
caching packages, 225–226
callback functions, signals and, 66
Canola (application), 81, 131
cellphones. See also iPhones

ARM architectures and, 250
history of, 4
vs. PCs, 255

certification, LSB and, 196–197
changelog file, 112, 238
changeset object, (Git), 278
checkout command (Git), 283
Clearlooks, theming and, 157
cloning existing repositories (Git), 279
Cloud computing, 250
Clutter library, xxv, 70–75
colors, theming and, 153, 155
command line, reporting bugs from,

205–206
commands

apt, listed, 106
DKMS, 183–185
dpkg, listed, 106–107

compilation, defined, 241
compliance, 204–205
./configure application, 105
configuring

actions (pbuilder), 125
default configuration for Ubuntu/xfce/

Hildon behaviors, 224
GConf (default), 224
pbuilder, 120–123
pre-configuring GDM, 224
repository configuration (Git), 285
touchscreens, 214–217

Connecting to the Net.Generation: What
higher education professionals need to
know about today’s students, 134

contributor, commands for (Git), 284

atime, disabling

bindex.indd 310bindex.indd 310 10/6/09 11:25:22 AM10/6/09 11:25:22 AM

311

In
de

x

control file (PPA), 112–113
copying gadgets, 136
copyright

copyright file (PPA), 113–114
Ubuntu, 240–242

CPUFREQ and governors, 211
CPUs

CPUFREQ and, 211
Flash and, 213–214

cross compiler, defined, 22
custom distribution of Ubuntu Mobile. See

Ubuntu Mobile image example

D
Darwin, Charles, 247
Darwin Model of Software

Development, 247
D-Bus

addresses, 310
applications, 306–307
basics, 305–306
bus names, 83–84, 309
D-Bus Send, 87
D-Bus Viewer, 85–86
dbus-launch command, 88
dbus-monitor command, 87
D-feet debugger, 88
exporting objects with, 84–85
GPS application and, 138, 143–145
interfaces, 308
interfaces and, 314
Introspect method, 313
messages and, 310–311
method calls in, 311–312, 313
methods and signals, 308
native objects/object paths, 308
nested components, naming, 310
object paths, 83–84
overview, 82
proxy objects, 308–309, 314
Python and, 313
security, 89–91
signals, connecting to, 85
signals in, 312

dch tool, 238
dd for Windows, 260
debhelper suite of tools, 112
Debian

debian-installers, 226, 239
kernel packages, creating, 172–175
repositories, setting up, 225

Debian files, 114
debugging. See also troubleshooting

D-feet debugger, 88
derived distribution, 240–241
design, application, 55–56
desktop

application autostart specification, 57
entry specification, 56–57
free desktop standards, 56–58
menu specification, 57–58
XDG base directory specification, 57

.desktop files in Python, 74
Desktop Image, 226
desktop power applet code (Python),

299–303
DeviceKit-power, 41–44
devscripts tool, 107
D-feet debugger, 88
dh_ commands, 111–112
d-i (debian-installer), 226
Diamond, David, 246
diff program (dpkg), 107
directories, XDG base specification, 57
Display Manager, 223–224
distribution, derived, 240–241
distribution environments, creating

(pbuilder), 124
Django web application framework, 138,

139, 143–144
DKMS (dynamic kernel module support).

See dynamic kernel module support
(DKMS)

DKMS (Dynamic Kernel Modules Support).
See dynamic kernel module support
(DKMS)

DNS and caching server, setting up, 27
documents, OpenOffice and, 130
downloading kernel source, 166

downloading kernel source

bindex.indd 311bindex.indd 311 10/6/09 11:25:22 AM10/6/09 11:25:22 AM

312

dpkg tools
for downloading kernel source, 175
dpkg-scanpackages, 107
dpkg-scansources, 107
for packaging, 106–107

dput tool, 115
drivers, updating (DKMS), 181–185
dual boots, 259
dynamic kernel module support (DKMS)

commands, 183–185
framework, internal workings of, 182–183
overview, 181–182

E
Eee PC test results, 162–163
EFL (Enlightenment Foundation Libraries),

79–81
Elementary widget set (Enlightenment

suite), 81–82
embedded systems, 221–222
encryption, setting up, 130
Enderle, Rob, 266
energy tips, 208–212
engines, theme, 148, 157
Enlightenment Foundation Libraries.

See EFL (Enlightenment Foundation
Libraries)

Entertainer media center example, 131–133
entry specification, desktop, 56–57
event loops (GTK), 64–65
exporting objects with D-Bus, 84–85

F
fakeroot tool, 108
Feldman, Jerry, 271
file systems

embedded, 221–222
location of themes, 148

files
office files. See treb (Trebuchet)

application
raw seed files, 231–232
seed files, 231
sharing between guests and hosts, 29–31

fixing problems. See problems and solutions
flags (USE_HILDON), setting automatically,

259–260
Flash, Adobe, 213–214
Frankenstein Model of software

development, 248
free (memory) application, 202
free desktop standards, 56–58
free software, 247, 251
Freerunner, running Ubuntu on, 260
fsck command (Git), 279–280
future

of Linux, 245, 253, 255
of mobile industry, 253–254

G
gadgets

Google Gadgets, 134, 135–137
gOS 3 Gadgets, 134–138

gc command (Git), 280
GConf

booting MID devices and, 149
default configuration, setting, 224
overview, 91–94
user interface and, 54–55

GDM display manager
pre-configuring, 224
themes, creating, 158–159

Generation Y (Gen Y), 134
geohash.org, 145
Germinate program, 231–235
germinate tool, 234, 235
Git

contributor commands, 284
individual developer commands,

280–284
integrator role, 284
maintainer role, 284–285
objects, 277–278
overview, 277
repository administration, 285
repository commands, 278–280
repository configuration, 285
tool, 171–175
tree, 173

dpkg tools

bindex.indd 312bindex.indd 312 10/6/09 11:25:23 AM10/6/09 11:25:23 AM

313

In
de

x

Glade, 190–191
.glade file (pumdGlade class), 69–70
Interface Designer, 66–70

GNOME. See also GConf; Glade
Gnome-Power-Manager, 40
Gnome-Power-Statistics application, 40–41
Hildon Application Framework and, 57

GNU Haret, 259
gnupg tool, 107
Google Gadgets, 134, 135–137
gOS 3 Gadgets, 134–137
governors, CPUFREQ and, 211
gpsd daemon, 138
GPS-enabled standalone web application

(MID devices), 138–145
background, 138–139
D-Bus and HTTP requests, 143–145
implementation, 139–141
interaction with GPS daemon, 142–143
testing gypsy to GPS connection, 142

graphical corruption, preventing, 262
graphics, Vesa drivers, 262
Grub2 boot selector, 222–223
GTK (Gimp Toolkit)

Glade Interface Designer and, 66–70
GTK engines, theming and, 148
GTK+, 64, 147
gtkrc file, customizing, 152–153
GtkWidget, theming and, 154
horizontal boxes, 65–66
layout and, 65
overview, 64–65
signals, 65
vertical/horizontal boxes, 66

gypsy daemon
basics, 139–140
testing connection to GPS, 142

H
hard coding modules, 207–208
hard disks

adding in VirtualBox, 16–17
watching activity of, 217–218

hardware
architectures, 220

checking support of, 220
dual boots and, 259
hardware abstraction layer (hal),

defined, 215
Hardware Compatibility Lists (HCL), 220

hdparm, 211
Hello World application (Hildon), 60–64
hibernate power mode, 36–40
hibernation power mode (Hildon), 60
Hildon Application Framework

overview, xxiii, 58
themes and, 155, 156–157
user interface, default behaviors, 224

Holmes, Iain, 139
hook commands/scripts, 125–126
horizontal boxes, GTK and, 66
hosting projects on Launchpad, 287–289
HTTP requests, GPS application and,

143–145
Human metacity theme, 160–163
Human Netbook Theme, 54
hwinfo program, 220
hybrid-suspend power mode, 37–38
Hypervisor software, 11

I
icons, application, 258–259
images. See also multimedia users

building customized, 32–33, 230–235
creating, 226–230
default Ubuntu image, creating, 226–230
.img images, 231
increasing downloaded size of, 34
installing applications inside of, 33
modifying when theming, 155–156
scripts for working with, 31–32
theme images, sapwood and, 148–149
writing to USB sticks, 257–258

Independent software vendor (ISV),
defined, 187

init command (Git), 279
initramfs, 207
installers

pre-seeding, 239–240
selecting, 226

installers

bindex.indd 313bindex.indd 313 10/6/09 11:25:23 AM10/6/09 11:25:23 AM

314

installing
applications inside of images, 33
ARM on QEMU, 22–23
KVM, 23–24
LSB Application Testkit (ATK), 196
Ubuntu MID image, 24
Ubuntu Netbook Remix on UMPCs, 261
VirtualBox, 12

integrator role (Git), 284
interfaces

changes to GUI, 78
D-Bus, 308, 314

Internet Relay Chat (IRC), defined, 288
interprocess communication (IPC), 305
Intrepid, xxv
Introspect method (D-Bus), 313
invention

Invention: The Care and Feeding
of Ideas, 244

stages of, 244–245
Torvalds and, 246

iotop application, 217
iPhones

on campus, 253, 254
history of, 3–4, 4

iPods, history of, 3–4
ISO images

building custom, 240
building default, 229–231

ISV, defined, 187

J
Jaunty Ubuntu Mobile

defined, xxv
MID release, downloading, 12

Junco, Reynol, 134
Just for Fun: The Story of an Accidental

Revolutionary, 246

K
Karmic, Ubuntu. See Ubuntu Mobile

image example
kernel fine-tuning

Debian package, creating, 172–175

dynamic kernel module support. See
dynamic kernel module support (DKMS)

kernels defined, 165
Linux kernels, 165
non-Ubuntu kernel tree, updating, 181
overview, 165–166
reasons for, 165
Ubuntu Karmic example and, 221
Ubuntu kernel tree, updating, 175–181
Ubuntu package, creating, 166–171

keyboards
Entertainer controls on, 133
onscreen, enabling, 224

Khoury, Rabeeh, 269
Kidder, Tracy, 246
KVM (Kernel Virtual Machine)

backporting, 119
basics, 21–24
KVM/QEMU, networking in, 26–34
troubleshooting, 262
using bridge in, 29

L
laptop mode, 209–210
Latencytop tool, 203
launcher. See Ubuntu Netbook Remix
Launchpad. See also PPA (Personal

Package Archives)
hosting projects on, 287–289

layouts, GTK+ and, 65
LDTP (Linux Desktop Testing Project), 187
LGPL (Library General Public License),

241–242
libraries, libdbus (D-Bus), 305
lintian tool, 108
Linux. See also Moblin initiative

future of, 245, 253, 255
Hotplug project, 306
Linux Desktop Testing Project

(LDTP), 187
LSB Application Testkit (ATK), 196–197
mobile computing and, 254–255
performance testing tools, 201–203
story of, 246
student use of, 254

installing

bindex.indd 314bindex.indd 314 10/6/09 11:25:24 AM10/6/09 11:25:24 AM

315

In
de

x

Linux Standard Base (LSB) Testing
Toolkit, 187

location-aware users, 138. See also
GPS-enabled standalone web
application (MID devices)

Long Term Support (LTS) releases, 219
Lotus Development, 247
LPIA (Low Power Intel Architecture)

flags, setting automatically, 259
LPIA Ubuntu MID release, 50
overview, xxiii
Ubuntu MID kernel and, 165

LSB Application Testkit (ATK), 196–197
lshw program, 220
luvcview application, 220

M
Mago, testing with, 188–189, 193–195
main package category (Ubuntu), 126
maintainer role (Git), 284–285
make tool, 105–106
manual theming of MID, 154–156
marketplace (mobile devices)

growth in popularity of, 243
razors and blades pricing, 251
unpredictability of, 243

Mastrodicasa, Jeanna, 134
Maximus daemon, 54
Mayr, Ernst, 248
Mayr Model of software development, 248
McCaslin platform, xxiv
memcheck, 202
memstat application, 202
Mendel, Gregor Johann, 247
Mendel Model of software development,

247–248
Menlow platform, xxiv
menu specification, desktop, 57–58
menus, creating externally (Hildon), 59
menus, creating (Hello World), 61–62
messages

message bus daemons (D-Bus), 305
sending (D-Bus), 310–311

metacity-theme-viewer, 160–163
metapackages

building, 236–238
generating, 235–236, 238–239

methods
interfaces and (D-Bus), 314
method calls (D-Bus), 311–313
and signals (D-Bus), 308

MID, Ubuntu, 54–55
mobile computing

architecture, 243–244
devices, 253–255

mobile technology
history of, 2–5
market unpredictability, 243
Mobile Developers team, joining, 262
mobile environment. See Ubuntu mobile

environment
Mobile Internet Devices (MIDs), 1, 129
Obama and, 249
overview, 1
politics of, 249
Shuttleworth on, 254–255

Moblin initiative, xxiii, 250–251, 255,
modules. See also dynamic kernel module

support (DKMS)
hard coding, 207–208

MONITOR environmental variable, 48
mount binding package repositories

(pbuilder), 126
“The Moving Target Problem”, xxi
Mozilla Prism, 135
multimedia users, 131–133
multiverse package category

(Ubuntu), 127
Murrine engine, theming and, 157

N
naming

bus names, 83
bus names (D-Bus), 309

native objects/object paths
(D-Bus), 308

Neo Freerunner, 260
netbooks

history of, 6
Linux, Ubuntu and, 6–8

netbooks

bindex.indd 315bindex.indd 315 10/6/09 11:25:25 AM10/6/09 11:25:25 AM

316

networking
connections, 251–252
in KVM/QEMU, 26–34
in VirtualBox, 25–34

The Next Billion Network, 249
Niemeyer, Gustavo, 145
Nokia Wireless GPS Module LD-3W, 142
notifications (D-Bus), 93–94

O
objects

exporting with D-Bus, 84–85
Git, 277–278
object paths, D-Bus, 83

On the Origin of Species, 247
Open Source Software (OSS), 249, 251–252
OpenCV (Open Source Computer Vision),

267–268
OpenOffice, 130–131

P
P2P forums, xxvii
packages

adding to/removing from repositories, 119
building (PPA), 115
building inside chroot (pbuilder), 124
caching with approx, 225–226
categories of, 126–127
germinating seeds and, 234
installing on apt, 261–262
metapackages, building, 236–238
metapackages, generating, 235–236,

238–239
Packages.gz, 118
pbuilder tool for testing, 200
power management, 36–41
sections of (Ubuntu), 127

packaging applications. See application
packaging

padding, defined, 153
Palmieri, John, 305
passwords, 130
patch program (dpkg), 107
Paul, Ryan, 157

PBuilder
hook manipulation with, 125–126
mount binding package repositories

for use with, 126
pbuilder tool

configuring, 120–123
overview, 120
as package builder, 108
performing actions on, 123–126
for testing packages, 200

pdebuild, 124–125
Pennington, Havoc, 305
performance testing themes, 160–163
Phoronix Test Suite, 47–50, 197–200
plug computing, 265–266
pmi (powermanagement-interface), 38
pm-utils power package, 37–40
policies

Ubuntu, 240–242
Ubuntu on packaging, 126–127

PolicyKit (D-Bus), 90–91
politics of technology, 249
Port to arm (Ubuntu), 54
power management. See also batteries

DeviceKit-power, 41–44
on disks, 211–212
Gnome-Power-Manager, 40
Gnome-Power-Statistics application,

40–41
investigating power usage, 46–47
overview, 35–36
packages, 36–41
pmi, 38
policies, defining, 221
Power Save Poll protocol (PS-Poll), 44
power saving states, 36
powertop, 46–47
radio transmitters, controlling, 44–46

PPA (Personal Package Archives)
changelog file, 112
control file, 112–113
copyright file, 113
defined, xxiv
overview, 108
packages, building, 115
REVU tool, 116–117

networking

bindex.indd 316bindex.indd 316 10/6/09 11:25:26 AM10/6/09 11:25:26 AM

317

In
de

x

RFA packages, 117
rules, 108–112
uploading to, 115–116

pre-seeding installers, 239–240
Primary Master hard disk (VirtualBox), 15
problems and solutions

application icon not appearing, 258–259
boot process stopping, 257–258
graphical corruption, 262
installing packages on apt, 261–262
KVM, 262
poor performance, 262
QEMU, 262

Procinfo tool, 201
program-wide settings (Hildon), 59–60
proxy objects (D-Bus), 308–309, 314
prune command (Git), 280
ps tool, 201
pumdGlade class, 67–69
Python

D-Bus and, 313
packages, installing, 188

Q
QEMU (QuickEmulator)

basics, 21–24
installing, xxvi
installing ARM on, 22–23
networking in, 26–34
troubleshooting, 262

QoS interface (DeviceKit-power), 43–44
QT overview, 75–79

R
Radachowsky, Sage, 272
radio transmitters, controlling, 44–46
RAM, /tmp and, 208
raw seed files, 231–233
Raymond, Eric, 248
razors and blades markets, 251
recharging devices, 209
releases, Ubuntu, 219
Relocatable Computing, 268
reporting bugs, 205–206

repositories
creating automatic, 118
creating local, 118
repository administration (Git), 285
repository commands (Git), 278–280
repository configuration (Git), 285
setting up Debian, 225

reprepro tool, 118
restricted package category (Ubuntu), 126
REVU tool, 116–117
RFA (Request For Adoption) packages, 117
RFKILL (WiFi), 45
rules file (PPA), 109–112

S
sapwood engine, 148
SCM (Source Code Management), 277
screen size in application design, 55
scripts for images, 30–31
sections of package categories (Ubuntu), 127
security

business users and, 130
D-Bus, 89–91

seed germination, 231–235
Sensory Overload, 249
services (background), turning off, 212–213
session bus (D-Bus), 313
SessionBus Bus type, 82
SheevaPlug

application ideas for, 267–268
background, 252
background of, 265–266
components of initial kit, 265–266
Relocatable Computing, 268
solar-powered cluster, building, 270–276
SWARM, 268–276

Shelly, Mary, 248
show-branch command (Git), 281
Shuttleworth, Mark, 8, 75, 248, 254–255
signals (D-Bus), 308, 312
signals, connecting to D-Bus, 85
social network users, 133–137
software

evolution and development of, 246–248
open source, 251

software

bindex.indd 317bindex.indd 317 10/6/09 11:25:26 AM10/6/09 11:25:26 AM

318

solar-powered cluster, building (SWARM),
270–276

“Soul of a New Machine” (Kidder), 246
source code, where to find, xxvi
squashfs filesystem, 32
Stallman, Richard, 247
standby state (power), 36
states, power saving, 36
STRUCTURE files, 232–234, 237
styles, theming and, 153–154
suspend state (power), 36–40
SWARM, 268–276
SystemBus Bus type, 82, 313
systems, embedded, 221–222

T
technology world

changes in, 247
Obama and, 249
politics and, 249

templates for copyright files, 114
testing

accessibility libraries for, 188
application for, building. See testing

application, building (example)
batteries, 47–50
bug reporting, 205–206
compliance, 204–205
free application for, 202
gypsy connection to GPS, 142
Latencytop tool, 203
memcheck, 202
memstat application, 202
pbuilder for package testing, 200
Phoronix Test Suite, 197–200
Procinfo tool, 201
ps tool, 201
reasons for, 187
strategies for, 203–205
theming performance, 160–163
time tool, 201
top tool, 201
Valgrind tools suite, 202–203

testing application, building (example)
creating application, 190–192

LSB Application Testkit (ATK), 196–197
overview, 189
testing with Mago, 193–195

themes
defined, 147
structure, 151–154
theme engines, 148
theme.xml file, 151–152
tool for modifying, 150–151

theming
objective of, 150
overview, 147–150
testing performance, 160–163
Ubuntu MID, 148–150
Ubuntu MID automatically, 156–157
Ubuntu MID manually, 154–156
Ubuntu Netbook Remix, 157–159

time. See also atime, disabling
time tool, 201
timelines (Clutter), 70

/tmp, size of, 208
toolbars, creating (Hello World), 62–64
toolbars, creating (Hildon), 59
toolkits. See also GTK (Gimp Toolkit)

EFL, 79–81
Glade, 66–70
QT, 75–79

tools. See also pbuilder tool
for application packaging, 105–108
for automating image building, 226
for benchmarking graphical

operations, 156
for caching packages, 225
Linux performance testing tools, 201–203
LSB Application Testkit, 196
for modifying themes, 150–151
Phoronix Test Suite, 197–200
for testing, 197–203

top tool, 201
Torvalds, Linus, 7, 246–247, 255, 277
touchscreens, configuring, 214–217
trademarks, Ubuntu, 240–242
treb (Trebuchet) application, 131
tree object, (Git), 278
troubleshooting. See debugging; problems

and solutions

solar-powered cluster, building (SWARM)

bindex.indd 318bindex.indd 318 10/6/09 11:25:26 AM10/6/09 11:25:26 AM

319

In
de

x

U
Ubiquity graphical installer, 226, 239
Ubuntu

Alternate Image, 226
ARM, xxv
Desktop Image, 226
Developer Community, 245–246
Hardy release, xxiii, xxiv
Intrepid UMPC Project, 261
Mark Shuttleworth and, 248
Mobile and Embedded Project, xxiii
mobile computing and, 254–255
Mobile Developers team, joining, 262
mobile project, xxiii
Mobile Team, xxiv
netbooks and, 6–8
running on Arima, 261
running on Freerunner, 260
ubuntu-vm-builder tool, 30
user interface, default behaviors, 224

Ubuntu MID, 54–55
theming, 154–157
theming and, 148–150
Ubuntu kernel package, creating, 166–171
Ubuntu kernel tree, updating, 175–181

Ubuntu mobile environment
background, 11–12
Jaunty Ubuntu MID release,

downloading, 12
KVM, 21–24
networking in KVM/QEMU, 26–34
networking in VirtualBox, 25–34
QEMU, 21–24
VirtualBox, 12–20

Ubuntu Mobile image example
architectural support, 220
build process, fine-tuning, 225–226
building customized Ubuntu image,

230–235
checking hardware, 220
default Ubuntu image, creating, 226–230
embedded systems and, 221–222
Hildon default behavior, setting, 224
important considerations, 219
kernel fine-tuning, 221

packages and repositories, 235–240
policies/trademarks/copyright, 240–242
power policies, defining, 221
Ubuntu default behavior, setting, 224
user interface, customizing, 222–224
xfce default behavior, setting, 224

Ubuntu Netbook Remix
germinating example, 234–235
installing on UMPCs, 261
Launcher, 54, 159
overview, xxiv, 54–55
poor performance and, 263
theming and, 157–159

Ubuntu policy on packaging, 126–127
UDS (Ubuntu Developer Summit) for

Intrepid, xxv
UMPCs (Ultra Mobile PCs), installing

Netbook Remix on, 261
undervolting, 221
unique connection names (D-Bus), 309
universe package category (Ubuntu), 126
updating pbuilder environments, 124
uploading to PPA, 115–116
URI (Uniform Resource Identifier),

defined, 189
USB (Universal Serial Bus)

sticks, 257–260
using, 260

USE_HILDON flags, 259–260
users

business users, 129–131
location-aware users, 138. See also

GPS-enabled standalone web application
(MID devices)

multimedia users, 131–133
social network users, 133–137
user interface, customizing, 222–224
usermode networking, 26

Usplash application, 158
uvccapture application, 220

V
Valgrind tools suite, 202–203
VDE virtual switch, 26
vertical boxes, GTK and, 66

vertical boxes, GTK and

bindex.indd 319bindex.indd 319 10/6/09 11:25:27 AM10/6/09 11:25:27 AM

320

Vesa graphics drivers, 262
video recorder (Entertainer), 132
virtual images, building custom, 31
VirtualBox

installing and running, 12–20
networking in, 25–34
using bridge in, 28

virtualization
CPU support for, 21
defined, 11

“Visual Design of the GNOME Human
Interface Guidelines”, 150

W
Walters, Colin, 305
websites, for downloading

dd for Windows, 260
fix for Netbook Remix, 263
GNU Haret, 259
gOS 3 Gadgets, 134–138
graphical germinate output for Ubuntu

Netbook remix, 233
Jaunty Ubuntu MID release, 12
LSB Application Testkit, 196
Marvell software, 252
MID, old versions, 262
PolicyKit (D-Bus), 90–91
source code, xxvi

websites, for further information
debuild command, 115
DKMS, 181
Netbook Remix, xxiv

plug computing, 265
port to armel architecture, 54
PPAs, 115
QT4 example, 75
REVU tool, 116
rules file (PPA), 109
Ubuntu Mobile commercial support, 219
Ubuntu mobile project, xxiii
Ubuntu policy document, 126
ubuntu-mobile release, xxv
“Visual Design of the GNOME Human

Interface Guidelines”, 150
webcam support, 220

Wheeler, David, 305
Wiener, Norbert, 244–245
window-specific settings (Hildon), 59
wrapper libraries (D-Bus), 305

X
X Window graphics adapter, testing,

162–163
x86 architecture, 250
XDG base directory specification,

desktop, 57
xfce default behavior, setting, 224
xmag tool (images), 155
XSETTINGS (Linux), 156

Z
zenity suite (GTK widgets), 150
Zimmerman, Matt, xxiii

Vesa graphics drivers

bindex.indd 320bindex.indd 320 10/6/09 11:25:27 AM10/6/09 11:25:27 AM

badvert.indd 325badvert.indd 325 10/6/09 8:46:09 AM10/6/09 8:46:09 AM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 326badvert.indd 326 10/6/09 8:46:09 AM10/6/09 8:46:09 AM

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning Linux Programming, 4th Edition
ISBN: 978-0-470-14762-7
This book introduces fundamental concepts beginning with the basics of writing Unix programs in C, and includes material on basic
system calls, file I/O, interprocess communication (for getting programs to work together), and shell programming. Parallel to this, the
book introduces the toolkits and libraries for working with user interfaces, from simpler terminal mode applications to X and GTK+
for graphical user interfaces. Advanced topics are covered in detail, such as processes, pipes, semaphores, socket programming, using
MySQL, writing applications for the GNOME or the KDE desktop, writing device drivers, POSIX Threads, and kernel programming for the
latest Linux Kernel.

Professional Linux Kernel Architecture
ISBN: 978-0-470-34343-2
Linux expert Wolfgang Mauerer focuses on version 2.6.24 (as well as summarizing changes to versions 2.6.25 and 2.6.26) of the kernel
as he walks you through the concepts, underlying structures, and implementation of the Linux kernel. Keeping a close connection with
the source code—as well as the components and subsystems of the kernel—this book reviews the VFS layer and discusses virtual filesystems
and the Extended filesystem family and examines how the page and buffer cache speed up kernel operations.

Professional Linux Programming
ISBN: 978-0-471-77613-0
Professional Linux Programming looks at the different development environments within Linux—the kernel, the desktop, and the web—and
then demonstrates best practices, tools, and techniques for integrating applications with the OS as a whole. This book is essential for
understanding the nuances that differentiate programming for Linux from programming for any other platform. After beginning with
simple shell scripts, the reader quickly moves on to the more advanced topics like software drivers and the graphical interface.

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.comEssential reading for open
source software developers

Ian Robert Lawrence and Rodrigo Cesar Lopes Belem $59.99 USA
 $71.99 CAN

As the most popular open source operating system in use today,
Ubuntu Linux has recently released versions that are aimed at device
manufacturers who build Internet-ready handheld devices based on
both the Atom and ARMEL processors. This exciting book provides an
overview of the tools and techniques you need to understand when
customizing a mobile Internet device, and offers you step-by-step
tutorials which walk you through some common tasks. Written by
Ubuntu Mobile community developers, the book begins with an
overview of the Mobile Linux landscape and then moves through
setting up, developing, packaging and building a distribution for a
mobile device.

• Discusses why the look and feel of a device is so important

• Reviews how to choose the right applications

• Shows how to develop applications for a mobile device

• Explains ways to prepare your application for distribution

• Offers techniques for fine-tuning the kernel

• Walks you through “customizing” and building your own distribution

• Discusses how to test for standards of stability and performance

• Reveals tips for handling common problems and executing solutionss

Ian Robert Lawrence is a Scrum Master at the Instituto Nokia de Tecnologia. He is
a founding member of both the Ubuntu Brazil and Debian Amazonas communities.

Rodrigo Cesar Lopes Belem is a freelance software developer and advocate who has
contributed to many open source projects such as Enlightenment and Ubuntu.
He currently works as a software developer at the Instituto Nokia de Tecnologia.

Wrox Professional guides are planned and written by working programmers to
meet the real-world needs of programmers, developers, and IT professionals. Focused
and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all
designed to help programmers do a better job.

Operating Systems / Linux

Professional

Ubuntu®

Mobile Development

U
buntu

® M
obile D

evelopm
ent

Lawrence,
Belem

Professional

	Professional Ubuntu Mobile Development
	About the Authors
	About the Contributors
	Acknowledgments
	Contents
	Introduction
	Whom This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	History and Background to the Ubuntu Mobile Project
	The Ubuntu Mobile and Embedded Project
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Mobile Linux
	Going Mobile
	Turning Points
	The Generational Divide
	Netbooks, Linux, and Ubuntu
	A Giant’s Strength in a Dwarf’s Arm
	Summary

	Chapter 2: The Development Environment
	Getting Started
	Getting Familiar with the Ubuntu Mobile Environment
	NETWORKING
	Advanced Networking on VirtualBox and KVM/QEMU
	Summary

	Chapter 3: Power Management
	Introduction
	Power Saving States
	Power Management Packages
	Device Kit Power
	Controlling Radio Transmitters
	Investigating Power Usage
	Battery Testing
	Summary

	Chapter 4: Application Development
	Ubuntu Mobile Releases
	Creating a New Application
	What Key Technologies Do I Need to Know to Develop Applications for a Mobile Device?
	GConf
	Putting All the Concepts Together
	Summary

	Chapter 5: Application Packaging
	Background and Important Tools
	Packaging and Using a PPA
	Initial Debianization
	Creating Your Own Repository
	PBuilder
	Summary

	Chapter 6: Application Selection
	Business Users
	Multimedia Users
	Social Network Users
	Location-Aware Users
	Summary

	Chapter 7: Theming
	What Is a Theme?
	Modifying Themes
	Performance Testing of Themes
	Summary

	Chapter 8: Kernel Fine-Tuning
	Ubuntu MID Kernel Overview
	Kernel-Tuning Methods
	Updating a Customized Kernel Tree
	Dynamic Kernel Module Support
	Summary

	Chapter 9: Testing and Usability
	Why Test?
	Ubuntu Desktop QA
	Building an Application for Testing
	Other Testing Tools
	Testing Strategies
	Bug Reporting
	Summary

	Chapter 10: Tips and Tricks
	Improving Boot Speed
	Hard Coding Modules
	Creating a /tmp That Is Half the Size of Physical RAM
	Energy Tips
	Turning Off Background Services
	Adobe Flash
	Configuring the Touchscreen
	Watching Hard Disk Activity
	Summary

	Chapter 11: Putting It All Together
	Important Things to Consider
	Customizing the User Interface
	Fine-Tuning the Build Process
	Creating a Default Ubuntu Image
	Building a Customized Ubuntu Image
	Packages and Repositories
	Ubuntu Policies, Trademarks, Copyright, and Common Sense
	Summary

	Chapter 12: Mobile Directions
	Choice, Change, and Opportunity
	Evolution and Software Development
	Big Ideas to Think About
	The Future
	Ubuntu, Linux, and Mobile Computing
	Summary

	Chapter 13: Common Problems and Possible Solutions
	The Boot Process Stops
	Application Icon Does Not Appear
	Performing a Dual Boot
	Setting a Flag Automatically
	Using USB
	Running Ubuntu on Freerunner
	Running Ubuntu on Arima
	Ubuntu Intrepid UMPC Project
	Installing Ubuntu Netbook Remix on a UMPC
	Using apt
	Joining the Ubuntu Mobile Developers Team
	Using KVM or QEMU
	Graphical Corruption
	Poor Performance
	Summary

	Appendix A: Ubuntu’s Right ARM
	I’d Give My Right ARM for a SheevaPlug

	Appendix B: Git Usage
	How Git Works
	Basic Repository Commands
	Individual Developer
	Contributor
	Integrator
	Maintainer
	Repository Configuration
	Repository Administration

	Appendix C: Hosting Your Project on Launchpad
	Using Bazaar and Launchpad
	Checking Out the Branch and Working on It

	Appendix D: Desktop Power Applet Code
	Appendix E: D-Bus: An Overview
	D-Bus Applications
	Native Objects and Object Paths
	Methods and Signals
	Interfaces
	Proxies
	Bus Names
	Addresses
	Big Conceptual Picture
	Messages: Behind the Scenes
	Calling a Method: Behind the Scenes
	Emitting a Signal: Behind the Scenes
	Introspection
	Python and D-Bus
	Method Calls
	Proxy Objects
	Interfaces and Methods

	Index

