
Sair Linux and GNU
Certification®

Level II: Apache and Web Servers

Sair Development Team

Wiley Computer Publishing

John Wiley & Sons, Inc.
NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Publisher: Robert Ipsen
Editor: Cary Sullivan
Assistant Editor: Christina Berry
Managing Editor: Marnie Wielage
Text Design & Composition: Benchmark Productions, Inc.

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the prod-
uct names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and
registration.

Copyright © 2001 by Sair Development Team. All rights reserved.

Published by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authoriza-
tion through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to
the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212)
850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard
to the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

This title is also available in print as ISBN 0-471-40537-X. Some content that appears in the
print version of this book may not be available in this electronic edition.

iii

Acknowledgments xi

Introduction xiii

Part One Knowledge Matrix 1

Chapter 1 Installation and Configuration 3
Objectives 3
Theory of Operations 3

History of Apache 4
Apache Today 5
How Does Apache Work? 5
How to Obtain Apache 10
Overview of Content Negotiation 11

Base Systems 18
Preparing Linux 18
Introduction to Packages 21
Installation 29

System Utilities 34
The httpd Daemon 34
Setting Up Apache 45

Chapter 2 System Administration 55
Objectives 55

Contents

Theory of Operation 56
Being a Webmaster 56
Preparing Apache 58
Introduction to Virtual Hosting 63
Introduction to Apache Modules 64
Introduction to the Apache API 76
Introduction to Logging 83

Base Systems 84
Multiple Daemons 84
Configuration 85
Number of httpd Processes 88
Alias 89
CGI Scripts 89
How to Configure CGI 90
Apache Initialization 91
Log Files 93
Log File Formats 95

Shells and Commands 98
Benchmarking 98

System Utilities 100
Creating CGI Scripts 100
Performance Monitoring 107
Some Good Log Analysis Tools 109

Chapter 3 Networking 111
Objectives 111
Theory of Operation 111

What Is TCP/IP and How Does Apache Use It? 112
What Is HTTP? 113
Multiple Hosts 115

Base Systems 116
Virtual Hosting 117
Directing the Request to a Virtual Host 118
Single Daemon/Virtual Hosting 118
IP-Based Virtual Hosting 119
Name-Based Virtual Hosting 122

Shells and Commands 125
URL Rewriting mod_rewrite 125

Chapter 4 Security 133
Objectives 133
Theory of Operation 133

Security Concerns 134

iv Contents

Contents v

Security Policies 134
Authentication 136
Securing Apache 137
Vulnerabilities 138
Hostile Programs 139
Security Issues with CGI 142
The Apache Proxy Server 143
Firewalls 146
Password Protection 153

Base Systems 154
Apache, Users, and Groups 154
Permissions 155
Access Control 156
Setting Up the Apache Proxy 159
Security Fundamentals 164
User Access Control 167
Enabling Content from Home Directories 170
Access Directives 172
Defining within httpd.conf 173

Shells and Commands 174
Checksums 174
Password Authentication 176

System Utilities 177
Server-Side Includes 177
XSSI 179
ModSSL versus Apache+SSL 183

Chapter 5 Troubleshooting 187
Objectives 187
Online Troubleshooting Resources 187
Tracking Down an Apache Core Dump 188
Some Useful Sites 189
Configuration Issues 190
Logging Problems 190

Part Two Labs and Exercises 193

Lab I Installation 195
Purpose 195
Theory 195
Lab Exercises 196

Downloading Modules 196
Preinstallation Query 197
Package Installation 198
Basic Server Setup 198

Questions 199
Answers 200
Advanced Questions 200

Lab II Install Apache+SSL 201
Purpose 201
Theory 201
Lab Exercises 202

Downloading the Apache server 202
Compile Apache with mod_ssl Support 203
Verify That Apache Was Compiled with mod_ssl 204
Test the Sample Page in a Web Browser 205

Questions 205
Answers 206
Advanced Questions 206

Lab III Configuring Apache to Perform Common Tasks 207
Purpose 207
Theory 207
Lab Exercises 210
Questions 210
Answers 211
Advanced Questions 211

Lab IV Create a Simple CGI Script 213
Purpose 213
Theory 213
Lab Exercises 214

Create a Basic CGI Script 214
Questions 215
Answers 216
Advanced Questions 216

Lab V Configure and Run mod_auth_mysql 217
Purpose 217
Theory 217

Setting Up the MySQL Database 218
Setting Up Apache 218

Lab Exercises 218

vi Contents

Contents vii

Student Resources 221
Questions 221
Answers 221
Advanced Questions 221

Lab VI Apache and Tomcat 223
Purpose 223
Theory 223
Lab Exercises 224
Questions 225
Answers 225
Advanced Questions 225

Lab VII Configuration of a Proxy 227
Purpose 227
Theory 227

Installing mod_proxy 228
Configuring httpd 228
Configuring the Client 229

Lab Exercises 229
Installing mod_proxy 229
Configuring httpd 229
Configuring the Client 230

Questions 230
Answers 231
Advanced Questions 231

Lab VIII URL Rewriting 233
Purpose 233
Theory 233
Lab Exercises 236
Questions 237
Answers 237
Advanced Questions 237

Lab IX Create a Custom Log for Apache 239
Purpose 239
Theory 239
Lab Exercises 241
Questions 242
Answers 242
Advanced Questions 242

Lab X Benchmark Your Server 243
Purpose 243
Theory 243
Lab Exercises 245
Questions 247
Answers 247
Advanced Questions 247

Part Three Practice Questions and Answers 249

Practice Questions 251

Answers 273

Glossary 281

Index 290

viii Contents

ix

With the growing body of certificate holders and with the development of
Level II, the team effort required to implement the Sair Linux and GNU cur-
ricula has been amazing. As a result, our acknowledgment list continues to
grow to reflect the greater involvement in the open source community:

Bill Patton, Steering Committee Chair, Compaq; Cheryl Foiles, Produc-
tivity Point International; Mark Muth, Prometric; Dan Kusnetzky, Interna-
tional Data Corporation; Kevin Whittier, MSC Software; Timothy Ney, Free
Software Foundation; Eric S. Raymond, Consultant and Open Source Soft-
ware Author; Richard Stallman, Founder of the GNU GPL and Free Soft-
ware Movement; Tim Angle, University of Mississippi; Cary Sullivan, John
Wiley and Sons Inc.; Jon “Maddog” Hall, Linux International; Bill Noyes,
Magellan Group, Inc.; Evan Blomquist, Technical Trainer; Doug Dickerson,
Compaq; Stephen Solomon, Course Technology; Bruce Perens, Hewlett-
Packard; Stuart Trusty, Linux Labs; Bill Arvidson, Mission Critical Linux;
Dan Greening, Motorola Computer Group; Bryan Ochs, New Horizons
Computer Learning Centers; Mark Langston, The SysAdmin Company;
Deb Murray, Uniforum; Kit Cosper, VA Linux Systems; Ken Kousky, Wave
Technologies; Dr. James Stanger, ProSoft Training.com; Steven Wright,
Caldera Systems; Paul Wildrick, CyberstateU.com; Tina Bush, Element K;
Don Corbet, Team Linux Corporation; Harald Bertram, AG. Abt. Training;
SuSE Linux Solutions; John Terpstra, Caldera; Jeremy Siadal, Intel Corpo-
ration; Kerry Hodgins, Corel Corporation; Karen Letain, Wave Canada;
and Jim Lacey, Linuxcare.

Continuing the process of shaping mountains of trivia into some sem-
blance of organization and developing that information so that it can be
communicated quickly and effectively is the task of the Sair Development
Team. These are the people who assisted with the production of the
Apache material:

C H A P T E R

Acknowledgments

President and CEO: Dr. Tobin Maginnis
Managers: Ross Brunson, Trish W. Kemerly, Carlos Pruitt, and Paul Tate
Assistant manager: Albert Phillips
Contractors: Ancilla Allsman, Joseph Cheek, Mike Hartley, Tony Inson,

Alex Larson, Rasmus Lerdorf, Shawn McKenzie, Martin Pool, Ed Riddle,
Andrew Scott, Troy Vitullo, and Susan Wood

Technical contributors: Stephen Agar, David Austin, Tim Bauer, Jerald
Jones, and Omar Wilson

Technical editor: Wesley Duffee-Braun
Editors: Annie Current, Summer Hill, Jamie Murphey, and Samantha

Rayburn
Quality assurance: Jenna Johnson and Nikki Andersen
Graphics: Wesley Duffee-Braun and Leah Riley

The Sair Development Team would also like to thank the rest of the
employees at Sair Linux and GNU for their support—albeit technical, pro-
motional, or otherwise—and for contributing to the Linux community
through their efforts:

Managers: Bob Buntyn, Les Driggers, Hollis Green, Leigh Jennings, Alex
Lundy, and Lenny Sawyer

Assistant managers: Jimmy Palmer and Elizabeth Bonney
Technical contributors: Eric Blankenship, Beau Bourgeous, Jeff Britt, Brett

Brown, Jayaprakash Chilumula, Joann Chong, John Furr, Stephen
Goertzen, Scott Hicks, Jacob Jenkins, David Kearns, Rebecca Love, Chris
Mavromihalis, Michael McGuire, Damir Mehmedic, Chance Mobley, Ken
Montgomery, Rufus Peoples, Ben Pharr, Evan Rouse, Tyler A. Simon,
Robert Thompson, Sunder Upadhyay, William Vaughan, Sudharshan
Vazhkudai, James Walker, James Webster, and Dana Wilson

Test development: Tammy Betts, Michael McGuire, and Richard Swinney
Programmers: Michael Broadwater, Michael Calvi, Chris Mavromihalis,

Rufus Peoples, William Vaughn, and Jeremy Webster
Web and database: Shafi Al-meher, Steve DeVries, Nileshwar Dosooye,

Janakiram Govindaraju, Mark Ketcham, Arlene Pereira, Kubenthiran
Ramanathan, Errol Sayre, and Julie Seay

Systems: Patrick Hood, Ross Reed, and William Taylor
Production: Brandi Bailey and Scott Rains
Sales and marketing: Wendy Chambers, Scott Thompson, Shellie Ross,

Karan Mullen, Haley Teague, Beth Odum, Shelley Robbins, Elise Knapp,
Ashly Ray, and Lori Redding

Again, thanks to John Wiley & Sons Computer Publishing, especially
Cary Sullivan, for their foresight, effort, and belief in the future of free,
open source software.

x Acknowledgments

xi

C H A P T E R

Introduction

Welcome to the Level II study guide series for the Sair Linux and GNU Cer-
tified Engineer. This is the Apache study guide for Sair Linux and GNU
Certification, Exam 3X0-202. The Apache study guide is one of the optional
or elective subjects for the Sair Linux and GNU Certified Engineer (LCE)
certificate.

Requirements for the Sair Linux and GNU Certified Engineer (LCE)
include passing the Core Concepts and Practices exam, 3X0-201, plus three
additional exams from other elective subjects. In addition to this study
guide, other possible elective areas include Sendmail and mail system com-
ponents, Samba and resource-sharing components, and PHP and scripting.
See www.linuxcertification.com for a complete listing of available courses.
Each course consists of a minimum of 32 classroom contact hours, making
the LCE equivalent to an additional 128 hours of classroom contact beyond
the LCA. We see achievement of the LCE to be evidence of the ability to per-
form as an advanced Linux systems specialist, as a system administrator
supervisor, or in some other form of Linux system management.

Exams are offered at Prometric and VUE testing centers. Prometric offers
the Sair exams at any one of its 3,500 testing centers in 141 countries. To take
a test, simply call the Prometric registration line at 1-888-895-6717. Ask the
customer service representatives about the 3X0 series of exams, and they will
answer any test-taking questions related to the test, describe available local
testing centers, and, if requested, schedule an exam. It is also possible to reg-
ister for tests online at www.prometric.com. VUE also offers the Sair exams
at any one of its 2,500 testing centers in 110 countries. To take a test, call the
VUE registration line at 1-952-995-8800. Ask the customer service represen-
tatives about the 3X0 series of exams, and they will answer any test-taking
questions related to the test, describe available local testing centers, and, if
requested, schedule an exam. It is also possible to register for tests online at
www.vue.com/sairlinux.

Preparing for test content is paramount in criteria-based certification
tests, and Sair takes pride in the coordination of test topics from the Knowl-
edge Matrix, objectives, competencies, study guides, and exams. These
topics specify exact criteria that the candidate must meet. The tests directly
measure these topics, and results are reported with a detailed summary for
each of these six areas: theory of operation, base system, shells and com-
mands, system utilities, applications, and troubleshooting.

Each exam consists of 50 questions that can be answered, reviewed, and
changed for up to 60 minutes. Typical test takers use about 45 minutes to com-
plete the exam. Successful completion of each test requires 74 percent correct,
or 37 correct answers. Unlike tests that assign a rank to a test taker relative to
all other test takers, Sair emphasizes mastery of material. Results of the test
directly inform the candidate of the mastery level in each area, allowing each
student to focus future studies on areas of relative weakness. Prospective
employers can also use the detailed summary to evaluate job applicants’ or
employees’ areas of strength. Sair is unique in this regard. Some other certifi-
cation examinations supply the test taker with only a relative score of some
type, without a raw score, percentage correct, or other measure for evaluating
his or her performance. The effect of this practice is to leave the test taker who
fails without guidance as to how to prepare for reexamination.

Minimum Candidate Requirements

The Sair Linux and GNU tests were not designed for the novice computer
user. It is assumed that the candidate has approximately two years of com-
puter experience and has experience in the configuration of one or more
operating systems. For example, the candidate should be familiar with
basic hardware concepts, such as CPU, cache, memory, interface adapters,
hard disks, and networks. The candidate should also be familiar with basic
operating system concepts, such as booting, file access, and device drivers.
Finally, the candidate should know basic commands and the use of a Unix-
type editor, such as Joe, Pico, Vi, or Emacs.

Knowledge Matrix

The test is based on the Apache Knowledge Matrix shown at www.linux-
certification.com. Examination topics are listed here. Note that while the
major topics listed in the Knowledge Matrix will not change, some
subtopics may be added as needed to update the material. Please check the
Sair Web site for any additions to this list.

xii Introduction

Introduction xiii

Apache and Installation and Configuration
Theory of Operation

1.1.10 History of Apache

1.1.20 Apache Today

1.1.30 How Does Apache Work?
A. Web server concepts
B. Apache conventions
C. Directives
D. Handlers
E. Logging
F. Modules
G. Lynx

1.1.40 How to Obtain Apache

1.1.50 Overview of Content Negotiation
A. Type
B. Encoding
C. Language
D. Multiviews
E. Browsers and HTTP
F. Style sheets
G. Java
H. JavaScript

Base Systems

1.2.10 Preparing Linux
A. RAM
B. Hardware
C. Hard drive
D. Kernel
E. File handles and inodes

1.2.20 Introduction to Packages
A. RPM security tasks
B. Locate security updates
C. Add modules via RPMs
D. Start Apache
E. Verify functionality locally
F. Verify functionality over a network
G. Source RPMs

1.2.30 Installation
A. Compiling
B. Dynamic shared objects
C. Installing
D. Testing before installing

System Utilities

1.4.10 The httpd Daemon
A. Defaults
B. Customization
C. Modules and SSL
D. Module performance and functionality
E. Enabling modules
F. Configuration files
G. Configuring Apache logs
H. Alias
I. Modules
J. Configuration methods
K. Starting httpd at boot

1.4.20 Setting Up Apache
A. Starting and stopping Apache
B. Default index
C. Basic configuration
D. Port 80
E. ServerType stand-alone
F. StartServers 5
G. MinSpareServers 5 and MaxSpareServers 10
H. MaxClients 150
I. MaxRequestPerChild 0
J. Basic configuration
K. Document directory configuration
L. Options directive

Apache and System Administration
Theory of Operation

2.1.10 Being a Webmaster
A. Tuning

2.1.20 Network Access Installation
A. Allow and Deny

xiv Introduction

Introduction xv

B. Max Clients
C. TCP/IP version
D. Hostname lookups
E. FollowSymLinks and SymLinksIfOwnerMatch
F. AllowOverride
G. Content negotiation
H. Process creation
I. Process death
J. KeepAlive

2.1.30 Introduction to Virtual Hosting
A. Directories
B. Network addresses

2.1.40 Introduction to Apache Modules
A. What is CGI?
B. When to use CGI
C. PHP – mod_php4
D. MySQL
E. mod_perl

2.1.50 Introduction to the Apache API
A. Modules
B. Introduction to phases
C. Phases in detail
D. The future: Apache 2.0

2.1.60 Introduction to Logging

Base Systems

2.2.10 Multiple Daemons

2.2.20 Configuration
A. Running multiple daemons
B. Multiple daemon verification

2.2.30 Number of httpd Processes

2.2.40 Alias

2.2.50 CGI Scripts
A. ScriptAlias directive
B. AddHandler directive

2.2.60 How to Configure CGI
A. Enable within certain directories

2.2.70 Apache Initialization

2.2.80 Log Files
A. /var/apache/logs/access_log
B. host
C. ident
D. authuser
E. date
F. request
G. status
H. bytes

2.2.90 Log File Formats
A. Design your own log files format

Shells and Commands

2.3.10 Benchmarking
A. ab

System Utilities

2.4.10 Creating a CGI script
A. Content of CGI output
B. Server environment
C. Form handler
D. Basic redirect

2.4.20 Performance Monitoring
A. mod_status
B. ExtendedStatus
C. server-info

2.4.30 Some Good Log Analysis Tools
A. Webalizer
B. Analog
C. Wusage
D. Summary
E. Logresolve

Apache and Networking
Theory of Operation]

3.1.10 What Is TCP/IP and How Does Apache Use It?
A. HTTP
B. Headers

xvi Introduction

Introduction xvii

3.1.20 What Is HTTP?
A. HTTP/1.1

3.1.30 Multiple Hosts

Base Systems

3.2.10 Virtual Hosting
A. Configuring separate daemons

3.2.20 Directing the Request to a Virtual Host

3.2.30 Single Daemon/Virtual Hosting

3.2.40 IP-Based Virtual Hosting
A. device
B. aliasnumber
C. address

3.2.50 Name-Based Virtual Hosting
A. Virtual hosting with one IP address
B. Virtual hosting using mixed methods

Shells and Commands

3.3.10 URL Rewriting mod_rewrite
A. CondPattern TestString

Apache and Security
Theory of Operation

4.1.10 Security Concerns

4.1.20 Security Policies
A. hosts.allow and hosts.deny
B. motd and issue files
C. U.S. encryption export laws

4.1.30 Authentication

4.1.40 Securing Apache
A. Apache user

4.1.50 Vulnerabilities
A. Trojan horses
B. Viruses
C. Worms
D. Spoofing
E. Buffer overruns

4.1.60 Security Issues with CGI
A. System calls
B. Buffer overruns

4.1.70 The Apache Proxy Server
A. Advantages of the Apache proxy
B. Obtaining the Apache proxy
C. Obtaining documentation
D. mod_proxy

4.1.80 Firewalls
A. Types of firewalls
B. Proxy server firewalls
C. IP masquerading proxy servers
D. Firewalls and network architecture
E. Securing the firewall machine
F. What to do if attacked

4.1.90 Password Protection

Base Systems

4.2.10 Apache, Users, and Groups

4.2.20 Permissions

4.2.30 Access Control
A. AllowOverride
B. Order, Allow, and Deny
C. Testing
D. Anonymous access

4.2.40 Setting Up the Apache Proxy
A. Proxy-specific directives
B. Server-side configuration

4.2.50 Security Fundamentals
A. Permissions
B. Scripting
C. SuExec
D. Matrix of ideal permissions

4.2.60 User Access Control
A. Common access controls

4.2.70 Enabling Content from Home Directories
A. UserDir html

xviii Introduction

Introduction xix

4.2.80 Access Directives
A. AuthType
B. AuthName
C. AuthName “Private Documents”

4.2.90 Defining within httpd.conf
A. Defining within control files

Shells and Commands

4.3.10 Checksums
A. PGP and checksums

4.3.20 Password Authentication
A. User
B. Group

System Utilities

4.4.10 Server-side Includes
A. Basic commands
B. Variables

4.4.20 XSSI
A. Shell commands
B. Including files
C. Executing scripts
D. Embedding XSSIs
E. Conditional statements

4.4.30 ModSSL vs. Apache+SSL
A. SSL—mod_ssl
B. SSL—Secure Sockets Layer (SSL)
C. Implementing SLL in Apache
D. Legal issues

Apache and Troubleshooting
5.1.10 Online Troubleshooting Resources

5.1.20 Tracking Down an Apache Core Dump

5.1.30 Some Useful Sites

5.1.40 Configuration Issues

5.1.50 Logging Problems

Knowledge Matrix

One

PA R T

3

Objectives

■■ Define the evolution of Apache.
■■ List the Apache levels of configuration.
■■ Define Apache configuration options and methods.

Theory of Operations

Almost two-thirds of the Web servers on the Internet use Apache (see Figure
1.1). Apache is common for the same reason that screwdrivers and crescent
wrenches are common—doing a job right takes the proper tool. Apache is an
excellent tool for World Wide Web hosting.

Although Apache may not perform well in some benchmark tests, it per-
forms extremely well in the field. It is a fully capable, industrial-strength
Web server that is able to compete with other servers that are much more
costly to purchase or license. It is extremely stable and has been heavily
tested over the years in many different environments and platforms. The

Installation and Configuration

C H A P T E R

1

developers of Apache emphasize performance above all else. Webmasters
will appreciate the richness of features that can be implemented on a site
served by Apache.

History of Apache
Apache is based on NCSA’s httpd, a daemon that was first used in the
early years of the Internet. Rob McCool was the creator of the NCSA Web
server and continued his work on it until 1994. No single programmer took
his place, but the server continued to grow in popularity. After his depar-
ture from the project, incompatibilities between versions began to develop.
Web administrators had to make changes on their own if they wanted to fix
bugs or add features. Eventually, a group of administrators began working
together to regain control of the project. Their efforts created a single path
through which patches and enhancements to httpd could be submitted.
The name of the project is derived from its origins: a series of patches
applied to the original httpd daemon. The project came to be known as “a
patchy server,” and from there, Apache server.

4 Chapter 1

Figure 1.1 Survey of Web server prevalence on the Internet.
www.netcraft.com/survey

Installation and Configuration 5

Apache Today
Apache possesses a level of complexity that easily surpasses some operat-
ing systems. Although it is not necessary to learn every feature to gain a
functional understanding of Apache, an introduction to the overall design
of the environment and methods used is a good start.

The purpose of this section is to describe some of the configuration styles
that Apache uses and to provide an overview of some commonly encoun-
tered server features. Later in the course, when topics are described in
more detail, a context is developed on which to base further learning. Ulti-
mately, the goal of this book is to teach the user to set up an Apache server.

The user can also go to the Apache Web site, www.apache.org/docs/,
and study the full documentation in depth. The online user documentation
for Apache is one of the most well-written and accessible sources of infor-
mation for any project.

How Does Apache Work?
Apache is a monolithic Web server. It looks to centralized configuration
files for all parameters that are not compiled. Apache works much like the
Linux kernel. It forks off child processes, accepts loadable modules, and
operates via user-specified configurations.

Web Server Concepts

On a system functioning as a Web server, the server process listens for
incoming requests on a specified port of the network interface and
responds to them appropriately. Originally, a Web site consisted of a direc-
tory tree of static documents, which would be served on request. Special
functions could be handled by CGI scripts that are executed on request.

Over the years, people have developed variations of this basic function,
requiring a rethinking and retooling of the original Web server definition
to the point that today’s Web users and authors expect a certain amount of
active participation by the server. Dynamic content is everywhere now;
today’s server must not only provide a Web page, it must create it on user
demand. Although the basic process is the same, expected enhancements
place much more demand on a server than what was required when static
content was the only possibility.

Apache Child Processes

Apache works by splitting itself and having the Apache copy handle the
process. Child processes are the processes that actually dole out content.
When Apache receives a request, it chooses one of its idle child processes to
handle the request. When the child is done, it returns to an idle state, ready
for more work.

Every child completes its list of requests before dying. Killing a child
process after it completes its list of requests also kills any side effects of
those processed requests, such as memory leaks. The user can determine
the number of children Apache spawns at one time, as well as their life
span. By default, each child handles an unlimited number of requests.

Apache Conventions

A good way to learn how Apache functions is through its configuration.
The first level of configuration occurs when Apache is compiled. RPM- and
Debian-based installations decide many things by default, but when com-
piling from source these options can be set:

■■ Whether Apache uses Dynamic Stored Objects or statically linked mod-
ules (modules will be described in further detail later in the chapter)

■■ If static modules are chosen, tell Apache which modules to compile
into the server at this point

■■ Default location
■■ Layout of Apache’s files and directories

The next level of configuration occurs in httpd.conf after the installa-
tion. The httpd.conf is a global preferences file that controls all aspects
of the server, including the following:

■■ Who can access the Web server
■■ What dynamic modules the server loads
■■ Where certain functions occur
■■ What kind of information Apache will log
■■ The location of the virtual Web sites Apache controls
■■ What content is allowed

6 Chapter 1

Installation and Configuration 7

The last level of configuration may occur in .htaccess files, depending
on what is stated in httpd.conf. These are small, local files that contain
specific orders that apply to the directories in which they reside.

The httpd.conf file contains more than three-fourths of the Apache con-
figuration options. It allows administrators to configure Apache to an opti-
mal level at performance. This is possible because, based on users’ needs,
Apache offers many levels of control through the httpd.conf file. These
levels are called scopes. A scope can apply to an entire system, a virtual host,
an absolute directory path, or even a single file. Wild cards can be used with
scopes to give greater freedom. Containers are used to define each scope.

The following are the four main containers:

<Directory /path>

This container applies to the filesystem location of a directory.

For example, /home/user/public_html would point to user's public_html directory.

Directive

</Directory>

<Location /~*>

Location applies to a url. For example ~/user would point to user's public_html

directory.

Directives

</Location>

<VirtualHost host_name>

VirtualHost applies to a virtual web site you are hosting, such as mysite.com

Directives

</VirtualHost>

<Files file_name>

Applies to a file name, no matter where it is located. If file_name were

index.html, then all instances of index.html (no matter what their location) would be

affected by your directives.

Directives

</Files>

Directives

A directive is a command given to Apache that controls its behavior. Direc-
tives are a single line of text with the following format:

Directive [option [option]]

As shown, there is more than one option for your key word. Although there
can be more than one directive in a given scope, each directive must occur on
its own line. Directives that do not reside in any container apply to all scopes.

Handlers

When a user requests a file, Apache decides what to do with it. For exam-
ple, if the user accesses a file called hiccup.cgi, Apache must know to
execute that file as a CGI script and not try to display it as an HTML file.
Handlers help you direct Apache to the correct helper application. For
example, add a handler called cgi-script and apply it to all files with an
extension of .cgi at the end.

Logging

Apache logs almost everything that happens to it, from errors to http trans-
actions and even cookies. The user can set the level of logging and what is
logged in the httpd.conf file.

Modules

Modules are chunks of software (usually written in Perl or C) that allow
customization of Apache. For instance, for Apache to use Server Side
Includes, the user must install that module.

Even though Apache was originally developed with this concept in mind,
it was not available when the first versions of Apache were being devel-
oped. Still, because it was already being planned at that time, integration of
dynamic module loading into the Apache server came relatively easily.

In early versions of Apache, modules were statically linked into the
httpd application during compilation. The specific configuration of a
server was defined during the configure process before compilation. Using
this method, many helpful modules were developed over the years, mak-
ing a tremendous amount of customization available for the Apache server.
Since the release of Apache version 1.3, it is possible to compile the server
and the modules to support dynamic loading. With this option compiled,
the configuration of the server can be changed by simply restarting the
server after editing the configuration file (rather than recompiling the
server). Different instances of the server, with different features, can be
started at separate times or simultaneously by using different configura-
tion files running the same base installation.

8 Chapter 1

Installation and Configuration 9

Today, only two modules absolutely must be compiled into the server:
http_core.c, which provides the core functionality of the server, and
mod_so.c, the module that supports Dynamic Shared Objects (DSO).

Static Module Advantages

On occasion, it may be desirable to compile other modules into the server
so that they are always available, giving a slightly faster response and
guaranteeing that a specific version of the module is present at all times.

Static Module Disadvantages

One disadvantage to compiling a module statically into the server is that it
continues to take up space within the server, even if its features are not
used. Another disadvantage is that upgrading the static module requires
the user to recompile the server.

DSO Advantages

For the most part, the benefit of being able to add or remove a feature or
update a feature to a newer version without having to recompile the server
is tremendously helpful.

DSO Disadvantages

When using DSO files to configure Apache, the server is approximately 20
percent slower at startup because the module loader must find all of the
modules, load them, and resolve relocation symbols. This is not a serious
problem, though, because startup is an infrequent event.

On some platforms, the server may run about 5 percent slower because
relative addressing of position-independent code is more complicated and
slower than absolute addressing.

There are a few other potential problems with implementing DSO mod-
ules, but these mainly apply to platforms other than Linux. See the Apache
Web site for further details.

DSO Files

Since the advent of DSO files, it is much more common for distributions to
include the Apache server with binaries already installed and to make
installation of the source code optional. This means that the full set of files
necessary to compile a new module acquired from another source is not
initially present on the system. So that this would not be a problem, the
authors developed the APache eXtenSion (APXS) product. This is a Perl
program created at installation that gives access to all Apache header files,

as well as platform-dependent compiler and linker flags. The user is then
able to compile Apache modules without the Apache source tree and with-
out struggling with platform-dependent linker and compiler flags.

APXS Usage

The following code gives a generic example of APXS usage, which builds a
module that can be dynamically loaded into the Apache server:

$ cd /path/to/the_module

$ apxs -c mod_new_module.c

$ apxs -i -a -n foo mod_new_module.so

Browsers

There will be labs during this course in which you need to simulate what a
client sees. To aid in this simulation, you will need an X Window system
install, as well as a few extra Web browsers, namely Netscape 4.7x, Mozilla,
and a recent beta of Opera. Installation of these browsers, in addition to the
X Window system, is recommended for this course.

It is highly unlikely that a Web server would ever need a graphical inter-
face or graphically enhanced browsers because they tend to make use of
valuable resources. They will be used throughout this course, however, for
testing, examples, and labs. In addition, graphical interfaces will be recom-
mended, if not required.

NOTE Throughout the course we use Lynx as a test tool. We recommend
this program over Netscape due to the resource overhead that Netscape adds
to your machine. If you prefer a GUI tool, use Netscape instead of Lynx.

To download Lynx go to www.slcc.edu/lynx/realease. For more Lynx
information go to:

www.lynx-browser.org
www.trill-home.com/lynx.html
www.slcc.edu/lynx/release2-8-2/lynx2-8-2/lynx_help/

lynx_help_main.html

How to Obtain Apache
First, obtain the latest source code from http://httpd.apache.org/dist/.

10 Chapter 1

Installation and Configuration 11

At the time of publication, the latest stable release was in the tarball
apache_1.3.19.tar.gz. Of course, the rpm or deb file provided by the
distribution can be used as well, but those installation methods are not cov-
ered here. We recommend removing any previously installed packages
prior to installing from source. For example, use rpm -e on the packages
identified with rpm -qa |grep apache (or apt-get --purge
remove apache for Debian-based installs). Be sure to remove the depen-
dencies as well. If not installing from source, use the packages relevant to
the distribution and perform an upgrade. The remainder of this chapter
will be based on the source installation described. Therefore, paths and file
locations must be translated for each particular installation.

Installing from source is an option for any distribution, and this method
will be discussed in this text. Once all previous installations are removed,
unpack the tarball. Do not worry about the remaining configuration files;
however, they may need to be moved because the source installation may
not overwrite some of them. We use /usr/src as our point of origin, but
any directory may be used for the following steps.

Overview of Content Negotiation
Modern browsers allow their users to indicate many preferences for files
that they will receive from a Web server. This includes content type (for
example, a preference of tar.gz over .zip files for compressed files),
preferred image formats, and preferred language.

To handle these preferences, each document has its own set of variants.
The way in which these variants differ is called the document’s dimensions.
Apache can negotiate along the dimensions of type, encoding, and language.

Type

Every document has a type. An example type is text/html. If a Web
browser tells Apache that it can accept only a given type of document,
Apache will serve only that type to the browser.

Encoding

If a resource is compressed or otherwise not in its final, usable format, it is
encoded. The Web transport standard recognizes only the compress and
gzip encodings currently. There are other, experimental encodings that the

standard can handle now. Their encoding is preceded with x-, as in x-
stuffit for Stuffit archives.

AddEncoding x-stuffit

Language

For once, when referring to language in computer terms, we really mean
human spoken and written languages. The language of a file is designated
by adding a file extension to it, then using Apache’s AddLanguage direc-
tive, AddLanguage MIME extension [extension].

An example of a file or document name using language extensions is:

index.html.fi

dummy.en.zip

The httpd.conf file that defines the file types specified by the file syn-
tax would look like the following:

Addlanguage en.en

Addlanguage fi.fi

These two directives specify that any file with the en or fi language tag
located at the end of a file name will be classified as English or Finnish,
respectively. They also show that the tag may be one dot before the last sec-
tion of the file name.

Choosing Document Parameters

A Web server can handle multiple variable dimensions, as can any given
client. The client preferences are listed in order of quality. Values for qual-
ity range from 0.000 (never show the given dimension) to 1.000 (the most
preferable dimension).

For example, a browser might send the following in its header:

Accept-Language: en; q=1.0, no; q=0.7

This means the browser accepts English first and Norwegian second.

12 Chapter 1

Installation and Configuration 13

The server can also have quality values on multiple variants. When it has
to make a decision between multiple variants that are equally acceptable to
the client, the server uses its own quality preferences.

MultiViews

MultiViews instruct Apache to look for a document that is the best match
for a client’s preferences. For example, if a client requests http://
www.linux.org/index and no file exactly matches that request, Apache
scans the directory involved for variants of index. Apache finds all files
with similar names, then checks the client’s content preferences (Type,
Encoding, and Language) to find a suitable match.

NOTE Scanning greatly increases disk I/O activity, slowing down the Web
server.

Because of the high I/O bandwidth inherent with MultiViews, when
specifying Options All, MultiViews are off. To turn MultiViews on,
one must specify:

Options +MultiViews

for a given scope. This adds MultiViews to the existing options.

For more information about content negotiation, visit the following two
sites:

http://httpd.apache.org/docs/content-negotiation.html
http://httpd.apache.org/docs/mod/mod_negotiation.html

Browsers and HTTP

Throughout the tutorial the use of clients and agents is noted, often avoid-
ing the mention of Web browsers. The reason is that there is more than one
way to use HTTP to connect to a Web site. In fact, nearly anything done in
a Web browser can be done from the command line.

View the Web page “I sit in Siberia” for more information on how to use
the CLI in conjunction with HTTP to access Web sites (http://www
.pfuca.com/products/products.html), or, from a Telnet window, type the
following:

www.pfuca.com 80

Press Enter, then type:

GET /products/products.html HTTP/1.0

Or, the following may also be typed:

GET /products/products.html HTTP/1.1

Host: stud1.tuwien.ac.at

Then press Enter twice and wait for output, which will be something like
the following:

Bash$ wget yahoo.com

--15:29:43-- http://yahoo.com:80/

=> 'index.html'

Connecting to yahoo.com:80... connected!

HTTP request sent, awaiting response... 302 RD

Location: http://www.yahoo.com/ [following]

--15:29:44-- http://www.yahoo.com:80/

=> 'index.html'

Connecting to www.yahoo.com:80... connected!

HTTP request sent, awaiting response... 200 OK

Length: 16,512 [text/html]

0K -> [100%]

15:29:45 (143.97 KB/s) - 'index.html' saved [16512/16512]

Style Sheets

Web developers use style sheets to control aspects of a Web site’s style
(such as fonts, background colors, or table attributes) from a central place.

Even though there has been a standard since at least 1997, style sheets
are still a rare thing. This is attributed to the fact that multiple versions of
Web browsers on various platforms have different levels of support for
the technology. Figures 1.2 through 1.4 are examples of style sheets for
various applications.

Despite the apparent attempts of the main browser makers to degrade
the style sheet standard, style sheets are useful. Additionally, dedicated
developers use workarounds to get each browser to display content in a
similar way.

14 Chapter 1

Installation and Configuration 15

Java

One can use Java to create dynamic content for Web pages. There are two
ways to go about it. One is to embed a premade Java applet in a Web page,
and another is to write a custom Java application. Java is likened to C++ in
its complexity, which is daunting to many developers.

While writing Java can be difficult for those not familiar with object-
oriented programming, embedding Java applets is something most Web
developers can master easily.

Figure 1.2 Screenshot of a Web page using the style sheet displayed in Netscape 4.7.3
for Linux.

Generally the code for embedding an applet looks something like the
following:

<applet codebase="../LED" code="LED.class" width=500 height=48 align=center>

<param name="script" value="../scripts/tutorial.led">

<param name="border" value="2">

<param name="bordercolor" value="100,130,130">

<param name="spacewidth" value="43">

<param name="wth" value="122">

<param name="ht" value="9">

<param name="font" value="../fonts/default.font">

<param name="ledsize" value="3">

<hr>

<hr>

</applet>

16 Chapter 1

Figure 1.3 Same Web page/style sheet combination from Figure 1.2 rendered by Internet
Explorer 5.0 on a Macintosh.

Installation and Configuration 17

A Java-enabled Web browser would display a scrolling LED sign.

JavaScript

JavaScript and Java are unrelated except for some object-oriented princi-
ples and similar sounding names. JavaScript is compiled by the Web
browser with the rest of an html file. Java is served compiled already, just
like any binary file. JavaScript code is generally embedded directly in an
html page. Java applets are called using the <applet> tag and can exist
anywhere on a server or network.

Like Java, JavaScript serves dynamic content. Unlike Java, content is
read and compiled by the browser. This should come to your attention
immediately if you read the section on style sheets; multiple versions of

Figure 1.4 Screenshot of style sheet output in Mozilla 0.8 for Linux.

various browsers on various platforms can behave differently when they
encounter different versions of JavaScript. Most browsers try to be back-
ward compatible with older versions of scripting language, but that com-
patibility can be difficult.

Base Systems

Running a multiserver setup on any machine requires a more advanced
base system than running a single application machine (see Figure 1.5).
Each base system must be able to support the demands of all possibly run-
ning servers. The following sections will describe the details of the base
system requirements needed by Apache. This will give administrators an
idea of the factors to consider when adding Apache.

Preparing Linux
Before any server is created, one should optimize the hardware for that
server. The following sections outline general steps that can be taken to
prepare a Linux machine before any installation begins.

18 Chapter 1

Figure 1.5 Typical multiple server setup preparing Linux.

Installation and Configuration 19

RAM

System memory is by far the most necessary resource for a server that
handles a high volume of Web requests. Once the physical memory has
been exhausted, the server machine will begin to utilize its swap memory,
which will slow it down. Frequently monitor the memory usage of the
server. If a large amount of swap space is used, increase the amount of
RAM on the machine.

If possible, go to the top of the directory that will serve all of the Web
pages, and use the du -s command to see how much RAM it would take
to hold them all. There must be enough memory to hold all of the Web
pages plus an extra 50MB to hold the operating system and the applica-
tions that are running.

Hardware

For high loads, faster is better. For reference, an old Pentium-based
machine with adequate memory can use most of a 10MB connection. This
varies widely, depending on factors such as the type of content and net-
work conditions. Hardware has become much faster since the original Pen-
tium, so a modest machine by modern standards should still be usable for
many applications.

Again, monitor the machine’s performance. Use top or another pro-
gram to determine the load on the server. If the load average is frequently
high, consider upgrading to a faster system. The following shows the out-
put of top:

11:56am up 11 days, 3:52, 1 user, load average: 0.67, 0.21, 0.07

115 processes: 112 sleeping, 3 running, 0 zombie, 0 stopped

CPU states: 45.7% user, 54.2% system, 0.0% nice, 0.0% idle

Mem: 196000K av, 173480K used, 22520K free, 0K shrd, 4948K buff

Swap: 249440K av, 28456K used, 220984K free 51196K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND

6247 apache 11 0 4580 4504 4288 S 9.6 2.2 0:00 httpd

6251 apache 11 0 4580 4504 4288 S 9.6 2.2 0:00 httpd

6249 apache 11 0 4580 4504 4288 S 9.0 2.2 0:00 httpd

6252 apache 11 0 4580 4504 4288 S 9.0 2.2 0:00 httpd

6248 apache 11 0 4580 4504 4288 S 8.5 2.2 0:00 httpd

6250 apache 11 0 4580 4504 4288 S 8.5 2.2 0:00 httpd

6253 apache 11 0 4580 4504 4288 S 6.2 2.2 0:00 httpd

6254 apache 11 0 4580 4504 4288 S 3.4 2.2 0:00 httpd

6255 apache 11 0 4580 4504 4288 S 1.7 2.2 0:00 httpd

6257 apache 11 0 4580 4504 4288 S 1.7 2.2 0:00 httpd

6259 apache 11 0 4580 4504 4288 S 1.7 2.2 0:00 httpd

6256 apache 11 0 4580 4504 4288 S 1.1 2.2 0:00 httpd

6258 apache 11 0 4580 4504 4288 S 1.1 2.2 0:00 httpd

6260 apache 11 0 4584 4508 4288 R 1.1 2.3 0:00 httpd

Hard Drive

Loading and running a Web site from RAM offers the fastest delivery of Web
pages. Unfortunately, this configuration may not be possible; therefore, the
hard drive must be accessed. Accessing the hard drive is significantly slower
than RAM. To offset this performance lapse, use faster hard drives.

SCSI drives are generally faster than IDE drives because they put less of
a load on the system. If a Web server is already taxing the CPU, it is a good
idea to remain with the SCSI drive.

To optimize hard drive performance, take the following into account:

Swap space. People often forget to put swap space on a different parti-
tion from the rest of the data. Not doing this can greatly slow down the
Web server. If possible, put it on a completely different disk. Putting
the swap partition on the first partition of the disk can actually
increase transfer rates for some data by a factor of 2.

Multiple drives and logs. Apache logs every request that hits it. All this
logging means much writing to disk. If multiple drives are available,
put the Apache logs (as well as any other logs) on the fastest drive of
the bunch.

Logging. If you are not planning to use logging, turn it off. While doing
this, the speed enhancement will be substantial. This could be danger-
ous, though, because Apache will not write every request and error to
a disk. If logging is desired, define the levels that work best with the
system. There will be a difference in the error log when LogLevel is
changed from debug to emerg.

Kernel

If performance is a major issue, do not run a stock kernel. Linux distribu-
tions tend to have a large kernel to accommodate the variety of potential
hardware types that might be used with it. As a consequence, it can be
slower than a kernel that has been configured by hand and pared down.

20 Chapter 1

Installation and Configuration 21

For maximum performance, recompile the kernel with the bare mini-
mum that is required for the machine’s needs. It will be more efficient and
will also allow more of it to fit in the CPU cache. Use /sbin/lsmod to see
what modules have been loaded with the stock install. The following
shows a list of loaded modules:

/sbin/lsmod

Module Size Used by

nls_cp437 3952 1 (autoclean)

soundcore 2800 0 (autoclean) (unused)

lockd 32208 1 (autoclean)

sunrpc 54640 1 (autoclean) [lockd]

irda 80304 1

autofs 9456 2 (autoclean)

usb-uhci 19184 0 (unused)

usbcore 43632 1 [usb-uhci]

serial_cs 5456 0 (unused)

3c574_cs 10240 1

ds 6448 2 [serial_cs 3c574_cs]

i82365 22928 2

pcmcia_core 45984 0 [serial_cs 3c574_cs ds i82365]

The Linux kernel is always changing. There are some changes with every
release, including the TCP/IP stack, which is important for Apache. It is an
especially good idea to watch for changes in the networking code because
they may be beneficial to users who want more performance out of their
Web servers. Newer versions of Apache may be better optimized as well.
For production systems, wait a few weeks before using a new version to
ensure that it is stable.

File Handles and Inodes

Each file that is opened on the system must have an associated file handle,
or inode, that the kernel uses to keep track of it. The latest Linux kernels
have a default limit of 4,096 file handles. If the server will have many files
open at once, the limit may be exceeded. This is important when running
multiple virtual hosts with separate log files.

Introduction to Packages
Linux software is generally distributed in a format called a package. A
package is a collection of files combined into a single file to simplify distri-
bution and installation. A good package system will also contain depen-
dencies. A package can list all of the prerequisite packages that must be

installed before it can run. The role of a system administrator is to maintain
packages by installing, upgrading, removing, and verifying them.

The three most common packaging formats are RPMs, DEBs, and tar-
balls. RPMs are used in Red Hat, Caldera, and most other distributions.
DEBs are used in Debian and Corel Linux. Tarballs are used by Slackware
and in source packages.

RPM Security Tasks

The following is a list of suggestions for security procedures for software
that has been acquired from the Internet. To maintain a high level of secu-
rity, practice these on a regular basis.

Issues with Stock Vendor Builds

If the user installs the packaged Apache that comes with the distribution,
he or she should rely heavily on the documentation that comes with the
package. Paths, server defaults, module options, and any number of things
follow a style that is unique and limited to that particular distribution.

If your location has specific needs with respect to modules or will rely on
Apache for many aspects, obtain the sources and build it yourself. Keep in
mind that the prepackaged distributions are built in a way that will accom-
modate a varying range of needs. If your needs stray outside of this range,
you will have to do this work anyway. This process will be easier the ear-
lier it is started.

Security Updates

Prepackaged distributions are designed to run on most systems. They
include many services that the user and the system administrator need to
either update or remove from the system. For example, the “Ramen worm”
currently infects only Red Hat servers that have not had all of the security
updates applied, as per the CNETNews.com story dated January 17, 2001
(http://news.cnet.com//news/0-1003-200-4508359.html).

Validating Packages

Verifying a package compares information about files with the same infor-
mation from the original package. Verifying compares the size, MD5 sum,
permissions, type, owner, and group of each file.

The command rpm -V verifies a package.

22 Chapter 1

Installation and Configuration 23

For example, to verify a package containing a particular file:

rpm -Vf /bin/vi

To verify all installed packages:

rpm -Va

To verify an installed package against an RPM package file:

rpm -Vp foo-1.0-1.i386.rpm

This verification can be useful if the user suspects that the RPM data-
bases are corrupt.

If everything is verified properly, there will be no output. Any discrepan-
cies will be displayed. The format of the output is a string of eight charac-
ters, a possible c denoting a configuration file, and then the file name. Each
of the eight characters denotes the result of a comparison of one attribute of
the file to the value of that attribute recorded in the RPM database.

Test Results

A single period (.) means the test passed. The following characters denote
failure of certain tests:

5 MD5 checksum.

S File size.

L Symbolic link.

T File modification time.

D Device.

U User.

G Group.

M Mode (includes permissions and file type).

Verify the Update Prior to Use

To ensure the integrity of the downloaded package, use this command:

rpm --checksig package.rpm

RPM Installation

Installing an RPM-based distribution is a matter of invoking rpm to extract
and install the contents:

rpm -i apache-x.x.x.rpm

When the install finishes, Apache should be ready to run.

Starting, configuring, and maintaining are roughly the same as with a
source install. One caveat with using an Apache RPM is that there are
many Linux distributions that implement RPM for managing packages but
little consensus as to where certain files belong. If the user cannot find a
central Apache or http directory and the install seems to have completed
properly, the distribution probably has spread the Apache files across sev-
eral directories. Use this command to list all installed files:

rpm -ql apache | less

The user should be able to find the configuration and content directories
in this list.

Some of the important files are placed here using the Apache package
included with Red Hat 6.2:

httpd.conf: /etc/httpd/conf

HTML content: /home/httpd/html

httpd binary: /usr/sbin

NOTE apachectl is not included with this RPM, but there is a startup script
in /etc/rc.d/ init.d called httpd.

The mileage may vary depending on the distribution. The source is
always available if an RPM install does not meet the needs of your location.
A source installation also provides the user with the opportunity to select
the features that he or she wishes to enable.

NOTE Apache may be split into multiple packages in some distributions. For
example, Red Hat has split out some of the files into a package called apache-
devel. This package contains files required to build third-party modules.

24 Chapter 1

Installation and Configuration 25

Locate Security Updates

To locate the latest versions of a vendor’s security updates, go to the ven-
dor’s home page or one of its mirrors and type the following search string
in the Search box:

RH 6.2 + security

The following is an abridged screen dump of the security updates avail-
able for t 6.2 as of January 2001:

From - Sun Jan 7 22:42:06 2001

ftp://rpmfind.net/linux/redhat/updates/6.2/i386/

Directory of /linux/redhat/updates/6.2/i386

Current directory is /linux/redhat/updates/6.2/i386

Up to higher level directory

SysVinit-2.78-5.i386.rpm 80 Kb Thu Nov 9 20:45:00 2000

apache-1.3.14-2.6.2.i386.rpm 420 Kb Mon Oct 23 20:35:00 2000

apache-devel-1.3.14-2.6.2.i386.rpm 108 Kb Mon Oct 23 20:36:00 2000

apache-manual-1.3.14-2.6.2.i386.rpm 462 Kb Mon Oct 23 20:36:00 2000

auth_ldap-1.4.0-3.i386.rpm 26 Kb Mon Oct 23 20:36:00 2000

imap-2000-2.6.i386.rpm 1034 Kb Fri Nov 10 16:45:00 2000

imap-devel-2000-2.6.i386.rpm 1118 Kb Fri Nov 10 16:48:00 2000

kernel-2.2.16-3.i386.rpm 5818 Kb Mon Jun 26 00:00:00 2000

kernel-BOOT-2.2.16-3.i386.rpm 3351 Kb Mon Jun 26 00:00:00 2000

kernel-doc-2.2.16-3.i386.rpm 953 Kb Mon Jun 26 00:00:00 2000

kernel-headers-2.2.16-3.i386.rpm 1128 Kb Mon Jun 26 00:00:00 2000

mod_perl-1.23-3.i386.rpm 746 Kb Mon Oct 23 20:37:00 2000

netscape-common-4.76-0.6.2.i386.rpm 8326 Kb Fri Nov 17 19:50:00 2000

netscape-communicator-4.76-0.6.2.i386.rpm 5909 Kb Fri Nov 17 19:51:00 2000

netscape-navigator-4.76-0.6.2.i386.rpm 3143 Kb Fri Nov 17 19:45:00 2000

nss_ldap-122-1.6.i386.rpm 96 Kb Fri Oct 27 19:05:00 2000

openldap-1.2.9-6.i386.rpm 1326 Kb Fri Nov 10 17:00:00 2000

openldap-devel-1.2.9-6.i386.rpm 128 Kb Fri Nov 10 17:00:00 2000

openssl-0.9.5a-2.6.x.i386.rpm 1170 Kb Fri Nov 10 16:46:00 2000

openssl-devel-0.9.5a-2.6.x.i386.rpm 894 Kb Fri Nov 10 16:46:00 2000

openssl-perl-0.9.5a-2.6.x.i386.rpm 8 Kb Fri Nov 10 16:46:00 2000

openssl-python-0.9.5a-2.6.x.i386.rpm 123 Kb Fri Nov 10 16:46:00 2000

perl-5.00503-12.i386.rpm 4923 Kb Fri Aug 18 22:45:00 2000

php-3.0.17-1.6.2.i386.rp 306 Kb Mon Oct 23 20:37:00 2000

php-imap-3.0.17-1.6.2.i386.rpm 352 Kb Mon Oct 23 20:35:00 2000

php-ldap-3.0.17-1.6.2.i386.rpm 14 Kb Mon Oct 23 20:36:00 2000

php-manual-3.0.17-1.6.2.i386.rpm 968 Kb Mon Oct 23 20:37:00 2000

php-pgsql-3.0.17-1.6.2.i386.rpm 16 Kb Mon Oct 23 20:36:00 2000

python-1.5.2-27.6.x.i386.rpm 1805 Kb Thu Dec 21 21:32:00 2000

python-xmlrpc-1.2.1-0.6.x.i386.rpm 35 Kb Thu Dec 21 21:32:00 2000

Add Modules via RPMs

Adding new modules to an RPM-based distribution is a matter of invoking
RPM to upgrade/install the new module:

rpm -Uvh apache-x.x.x.rpm

When the upgrade finishes, Apache should be ready to run.

Start Apache

Red Hat uses httpd to start the server.

httpd

httpd is a script that can start Apache’s daemon (located in /usr/sbin).
The script is located at /etc/rc.d/init.d/httpd. To see the command
line options, type:

Usage: ./httpd {start|stop|restart|reload|status}

When the user types httpd -- help, the httpd command-line
options will be visible, as shown in Table 1.1.

Verify Functionality Locally

The final step of upgrading Apache involves testing the server. When the
daemon is running, Apache should be listening on the loopback device at
port 80. Typically the loopback device resides on 127.0.0.1 and can be
accessed using localhost as the target address. Any Web browser can
perform this test. Lynx is a good choice because it can usually be found on
any Linux distribution. Test the server by invoking Lynx or a preferred
browser with the desired server address:

lynx localhost

The Apache test page should load with the following screen:

It Worked! The Apache Web Server is Installed on this Web Site!

If you can see this page, then the people who own this domain have just installed the

Apache Web server software successfully. They now have to add content to this directory

and replace this placeholder page, or else point the server at their real content.

__

26 Chapter 1

Installation and Configuration 27

If you are seeing this page instead of the site you expected, please contact the

administrator of the site involved. Although this site is running the Apache software

it almost certainly has no other connection to the Apache Group, so please do not

send mail about this site or its contents to the Apache authors. If you do, your

message will be ignored.

The Apache documentation has been included with this distribution.

The Webmaster of this site is free to use the image below on an Apache-powered Web

server.

Thanks for using Apache!

If there is an error, verify that the command was entered correctly and
try again. If the test page still does not load, return to the installation sec-
tion and perform the configuration and compilation steps again.

Verify Functionality over a Network

Once Apache is functioning correctly on the local system, the user can per-
form a network test. If there are nearby machines on a local network, the
user can go to any of those machines and use a browser. Access the server
with the IP address of the machine’s network interface to eliminate any
problems that DNS may cause.

Table 1.1 Options for httpd Help

-D name Define a name for use in <IfDefine name> directives

-d directive Specify an alternate initial ServerRoot

-f file Specify an alternate ServerConfigFile

-C Ðdirective" Process directive before reading config files

-c Ðdirective" Process directive after reading config files

-v Show version number

-V Show compile settings

-h List available command-line options

-l List compiled-in modules

-L List available configuration directives

-S Show parsed settings (currently only vhost settings)

-t Run syntax check for config files (with docroot check)

-T Run syntax check for config files (without docroot check)

A listing of all available network interfaces on the system can be found
by invoking ifconfig without any options:

ifconfig

eth0 Link encap:Ethernet HWaddr 00:80:C8:14:73:77

inet addr:10.168.1.2 Mask:255.255.255.0

UP BROADCAST RUNNING MTU:1500 Metric:1

RX packets:20477 errors:0 dropped:0

TX packets:20895 errors:0 dropped:0

collisions:0 txqueuelen:100

Interrupt:5 Base address:0x340

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:3924 Metric:1

RX packets:3993 errors:0 dropped:0

TX packets:3993 errors:0 dropped:0

collisions:0 txqueuelen:0

The inet addr:10.168.1.2 portion indicates the local IP address of
the system.

Lynx or any other browser can be used for this test:

lynx 10.168.1.2

(Use your actual IP address here.)

If all is configured properly, the Apache test page should load in the
browser. If the user does not have a browser, use telnet to connect.

Next, test the page using a name instead of an IP address.

Two Ways to Map a Domain Name
to an IP Address

The simplest way is to put an entry in the /etc/hosts file of the client.
The entry will have a format like this:

10.168.1.1 alias1 alias2.domain.com alias3.xyz.cx

The format is the IP address followed by all of the names that map to it.

The alternative is to use a DNS. DNS is beyond the scope of this course,
but if a server has already been added to an IP network, adding a DNS
entry should not be a problem.

28 Chapter 1

Installation and Configuration 29

Source RPMs

Software development using RPM proceeds in strict stages from sources
with local patches applied, through configuration, compilation, and instal-
lation. The final output of a build typically consists of a source package and
one or more binary packages that can be installed. The entire build process
is described in something called a spec file.

The focus on encapsulating all components necessary to produce a
binary package in RPM prevents reuse of common code. The encapsulation
is called a source RPM and consists of the sources, local patches, and the
spec file describing the build process. The spec file is augmented with cer-
tain configuration information such as the compiler flags to use and the
architecture on which the package is being built. The other information is
of little use in preparing a package.

The example that follows describes the structure of SRPMS. It assumes
the user has a Red Hat CD-ROM RPM for the Apache program:

ls

COPYING README SRPMS TRANS.TBL

cd SRPMS

ls apache*

apache-x.x.x.x.src.rpm

rpm -i apache-x.x.x.x.src.rpm

cd /usr/src/redhat/SPECS

ls

apache.spec

ls /usr/src/redhat/SOURCES/

The rpm -i apache* command installed the patches in the
/usr/src/redhat/SOURCES directory. The specs file describes the
architecture-specific compilation procedure.

Installation
Before unpacking a tarball, examine the contents. To do this, run the fol-
lowing command:

tar -tzvf apache_1.3.19.tar.gz

To unpack a tarball, first change to the directory where it will be
unpacked. Then, execute the following command:

tar -xzvf apache_1.3.19.tar.gz

This will usually create a subdirectory and expand the package into it.

Compiling

To compile a program from the source, first change to the directory where
the package was unpacked. This is called the top-level directory of the
package. It is usually named something similar to apache_1.3.14.

:/usr/src$ cd apache_1.3.19

After unpacking the tarball and entering the resulting subdirectory, per-
form a step that is common to most source code installations, a screen
dump of ./configure --help.

:/usr/src/apache_1.3.14$./configure --help | less

--activate-module=scr/modules/auth_mysql/libauth_myslq.a

auth_mysql modules.

Add the following line to the Configuration file before compiling the
server:

AddModule modules/standard/mod_rewrite.o

--activate-module=scr/modules/auth_mysql/libauth_myslq.a

./configure --enable-module=so --enable-rule=EAPI

mod_status, mod_update

Usage: configure [options]

Options: [defaults in brackets after descriptions]

General options:

--quiet, --silent do not print messages

--verbose, -v print even more messages

--shadow[=DIR] switch to a shadow tree (under DIR) for building

Stand-alone options:

--help, -h print this message

--show-layout print installation path layout (check and debug)

Installation layout options:

--with-layout=[F:]ID use installation path layout ID (from file F)

--target=TARGET install name-associated files using basename TARGET

--prefix=PREFIX install architecture-independent files in PREFIX

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

--bindir=DIR install user executables in DIR

--sbindir=DIR install sysadmin executables in DIR

--libexecdir=DIR install program executables in DIR

30 Chapter 1

Installation and Configuration 31

--mandir=DIR install manual pages in DIR

--sysconfdir=DIR install configuration files in DIR

--datadir=DIR install read-only data files in DIR

--iconsdir=DIR install read-only icon files in DIR

--htdocsdir=DIR install read-only document files in DIR

--cgidir=DIR install read-only cgi files in DIR

--includedir=DIR install includes files in DIR

--localstatedir=DIR install modifiable data files in DIR

--runtimedir=DIR install runtime data in DIR

--logfiledir=DIR install logfile data in DIR

--proxycachedir=DIR install proxy cache data in DIR

Configuration options:

--enable-rule=NAME enable a particular Rule named ÔNAME'

--disable-rule=NAME disable a particular Rule named ÔNAME'

[DEV_RANDOM=default EXPAT=default IRIXN32=yes]

[IRIXNIS=no PARANOID=no SHARED_CHAIN=de]

[SHARED_CORE=default SOCKS4=no SOCKS5=no]

[WANTHSREGEX=default]

--add-module=FILE on-the-fly copy & activate a 3rd-party Module

--activate-module=FILE on-the-fly activate existing 3rd-party Module

--permute-module=N1:N2 on-the-fly permute module ÔN1' with module ÔN2'

--enable-module=NAME enable a particular Module named ÔNAME'

--disable-module=NAME disable a particular Module named ÔNAME'

[access=yes actions=yes alias=yes]

[asis=yes auth_anon=no auth_dbm=no]

[auth_db=no auth_digest=no auth=yes]

[autoindex=yes cern_meta=no cgi=yes]

[digest=no dir=yes env=yes]

[example=no expires=no headers=no]

[imap=yes include=yes info=no]

[log_agent=no log_config=yes log_referer=no]

[mime_magic=no mime=yes mmap_static=no]

[negotiation=yes proxy=no rewrite=no]

[setenvif=yes so=no speling=no]

[status=yes unique_id=no userdir=yes]

[usertrack=no vhost_alias=no]

--enable-shared=NAME enable build of Module named ÔNAME' as a DSO

--disable-shared=NAME disable build of Module named ÔNAME' as a DSO

--with-perl=FILE path to the optional Perl interpreter

--with-port=PORT set the port number for httpd.conf

--without-support disable the build and installation of support tools

--without-confadjust disable the user/situation adjustments in config

--without-execstrip disable the stripping of executables on installation

--server-uid=UID set the user ID the web server should run as [nobody]

--server-gid=GID set the group ID the web server UID is a member of [#-1]

suEXEC options:

--enable-suexec enable the suEXEC feature

--suexec-caller=NAME set the suEXEC username of the allowed caller [www]

--suexec-docroot=DIR set the suEXEC root directory [PREFIX/share/htdocs]

--suexec-logfile=FILE set the suEXEC logfile [PREFIX/var/log/suexec_log]

--suexec-userdir=DIR set the suEXEC user subdirectory [public_html]

--suexec-uidmin=UID set the suEXEC minimal allowed UID [100]

--suexec-gidmin=GID set the suEXEC minimal allowed GID [100]

--suexec-safepath=PATH set the suEXEC safe PATH [/usr/local/bin:/usr/bin:/bin]

--suexec-umask=UMASK set the umask for the suEXEC'd script [server's umask]

Deprecated options:

--layout backward compat only: use --show-layout

--compat backward compat only: use --with-layout=Apache

Most packages that a user wants to compile will probably contain ade-
quate documentation that explains how to configure and build the soft-
ware. The first step is to read through that information. The primary place
to search for that information is in the README file that came with the source
code. This will often provide a quick overview of the program and either
will tell how to compile it or will list where to look to find that information.

Most GNU software and recently released free software use the auto-
conf system. This means that the configure script can be run to let the
software determine what features are available on your system.

This will list all of the options to the configure script. The ones at the top
are standard options that are generally used to tell the script where to
install all of the files. The most important of these is the --prefix option.
It usually defaults to the /usr/local directory.

To configure a package that installs the /opt/program directory
instead, run configure with the following command:

./configure --prefix=/opt/program

The options near the bottom of the help screen usually differ from pack-
age to package. Read the included documentation to determine which fea-
tures should be enabled. The defaults are sufficient in most cases.

As the list is quite extensive, we will discuss only the options we are
using and recommend. The --with-layout option allows specification
of the directory structure for installation. These layouts are the same as
those provided by the different distribution packages. For more informa-
tion, check the config.layout file. Users can also add their own layouts
to the config.layout or pass the appropriate configuration options dur-
ing the ./configure step.

32 Chapter 1

Installation and Configuration 33

Binary distributions usually include all options as shared object mod-
ules, probably to provide choices for users. The shared object modules that
come with Apache by default are usually desirable. Therefore, compile
them and allow for additional modules to be loaded as needed. The default
is to compile all the default modules.

—with-layout=RedHat

This will configure your Apache files to conform to Red Hat’s file layout.
The following is a ./configure line:

:/usr/src/apache_1.3.14$./configure \

--with-layout=RedHat --enable-module=so

Dynamic Shared Objects

The --enable-module=so option gives the ability to add other modules
at a later time or at run time. These are analogous to loadable modules and
the Linux kernel. For example, to add php to the server, simply add
mod_php without recompiling Apache.

Once the configure script has run and determined the features available
on a system, the software can be built.

Installing

Once the source is compiled into an executable, it can be installed. To install
a program, write access is required for the directories in which the files will
be installed. In most cases, this means logging in to the root account.

NOTE Only the installation phase requires root access. The compilation
phase does not require root access, so it should be done as a nonprivileged
user to prevent problems. If you do not have root access, it may be possible to
install the package into a directory in which you have write access. This is
generally specified using the --prefix option in the configuration phase.

Testing before Installing

On many packages, there is a command to test the program and ensure
that it compiled correctly. This command takes one of two forms:

:/usr/src/apache_1.3.14$ make check

:/usr/src/apache_1.3.14$ make test

If one of these is available, it will run a series of tests and report whether
the program will run correctly. It may be possible to run the program to test
it before it is installed. Be sure to specify that the program should run from
the current directory:

:/usr/src/apache_1.3.14$./program

Many programs cannot run until installed. Assuming there are no errors,
continue with the installation:

:/usr/src/apache_1.3.14$ make

:/usr/src/apache_1.3.14$ make install

This will copy all of the programs and all of the associated files to their
proper locations. Once the installation process is complete, log out of the
root account and try the program.

This process will often take quite a while, depending on the size of the
package and the memory and speed of the computer. When the process is
complete, the user should be returned to the command prompt with no
error messages displayed. If there is an error, the cause must be deter-
mined. The most common cause is a missing package.

System Utilities

System utilities ease the installation and maintenance of Apache. They also
shorten update times and narrow the margin of installation error. Utilities
are normally used for average Web server installations, thus eliminating
source downloads and source compilations. Most users will use utilities to
update and maintain software because utilities provide a basis of opera-
tion, maintenance, and configuration for the Apache Web server.

The httpd Daemon
The httpd daemon is used by Web servers to talk to clients (such as
Netscape) via the HTTP protocol. The httpd daemon is usually run on port
80. It offers users many options for Apache configuration and customization.

Defaults

Use the defaults if running a single daemon; there is no special content that
must be provided. Making no changes prior to compiling should result in

34 Chapter 1

Installation and Configuration 35

a basic Web server that is ready immediately after compiling. Some of the
defaults are covered in this section.

Apache’s home directory will be /usr/local/apache for Red Hat.
(Default in Debian is /etc/apache and /var/lib/apache in Slack-
ware.) All supporting files and directories will be based from this location.

The server will listen on all network interfaces that exist on the host. This
may or may not be desired, but for a default install it ensures that Apache
will be listening on an active interface and be accessible for testing.

Paths, startup configurations, and a test page are all provided.

Configuring with defaults is just a matter of invoking the following com-
mand in the source directory:

$./configure

This is fairly simple. A lot of work has gone into providing this clean and
easy installation process, available since the release of Apache 1.3.

Customization

As mentioned previously, Apache uses something similar to the GNU con-
figure script to prepare everything for compiling. One aspect of Apache’s
script is a wide variety of options that configure can take as arguments.
For a general install, there is no need to learn them all.

Another important configuration option involves steps to include mod-
ules, which will be discussed briefly to prepare for later chapters where
they will be needed for things like CGI scripting.

It is often desirable to have additional functionality with a Web server,
such as scripting or database integration. Additionally, an administrator
may not want to have Apache in the default directory of /usr/
local/apache. For specifying changes to the default, they can be added
at the command line as options to configure. Invoking configure with
command-line options will generally take the following form:

$./configure --some_option=argument_forthatoption

]

so that a real-world option is similar to the following:

$./configure --prefix=/www

The prefix option tells the configure scripts where the server will be
installed on the system. Looking at the preceding example, we see that
Apache will have all of its files reside within the /www directory. The argu-
ments to --prefix are free form, so to use --prefix=/missouri, the
install scripts would use missouri for Apache’s home directory.

Another option is the --with-layout=GNU option. This will cause files
to be installed in locations compliant with the GNU standards. This is how
most distributions install their Apache packages.

Modules and SSL

This module uses a rule-based rewriting engine to rewrite requested
URLs. This feature exists in Apache 1.2 and later. With its powerful URL
manipulation mechanism, the Web server can examine every URL that
arrives to see if it matches any patterns specified by the rewrite rules. If it
makes a match, Apache internally rewrites a URL using that rule. Here the
module operates on full URLs in both a per-server context (httpd.conf)
and a per-directory context (htaccess). To include mod_rewrite, add
the following line to the Configuration file before compiling the server:

AddModule modules/standard/mod_rewrite.o

Another use of mod_rewrite is with proxy servers to make sure people
can use the proxy only if they come from a given URL, in this case
.linux.org:

RewriteRule !^proxy:http://[^/]*\.linux\.org/ - \ [forbidden]

The Apache 1.3 HTTP server is now successfully built and installed. To
verify that Apache actually works correctly, first check the initially created
or preserved configuration files /etc/httpd/conf/ httpd.conf; then
Apache can be started for the first time by running:

Bash$ /usr/sbin/apachectl start

Thanks for using Apache.

The Apache Group

http://www.apache.org/ ********************

36 Chapter 1

Installation and Configuration 37

Module Performance and Functionality

Apache implements a high-performance Web server with high yields in
stability. The combination of Apache and Linux provides the modular
design, speed, and stability that is essential for a great Web server. With its
modular architecture, users may either add or remove modules to adapt its
functionality for individual needs. Modules make Apache the best choice
for a Web server in a scalable environment. A wide variety of modules is
available to cover most needs.

Users can compile Apache with dynamic modules and add or remove
them as needed. For example, to increase security, search the Internet and
download mod_ssl and turn an existing Apache server into a secure
server with 128-bit encryption.

Apache is the most flexible and extensible Web server available today.
Internet polls have shown it to be the most prevalent server as well.

On top of Apache’s SSL capabilities and its modular design, users can
also run Common Gateway Interface (CGI) programs. CGI is a standard
that allows programs to communicate with the Web server, as well as trans-
fer information to and from the World Wide Web. Any program can run as
a CGI as long as Apache is configured properly. CGI allows the program to
communicate with the Web browser and run the user as a protected
process. Under Linux, CGI programs run the user as Apache. This allows
users to forget about some of the security concerns associated with the
scripts running as root. CGI scripts are a very important part of the Apache
Web server; however, Apache’s resources are not limited to SSL, CGI, and
modules. Apache also provides great documentation on all of its features
available on its Web site.

Enabling Modules

The Apache server implements modules to enhance the functionality of the
httpd daemon. The modules contain source code that provides the many
different functions of Apache. Users can explicitly choose which modules
to use at compile time by specifying them in the configure stage. Inserting
modules one at a time at the command prompt allows specification of the
modules to compile. Be careful; the more modules added, the higher the
binary size, and there may be a slight degradation in performance as well.
There is another way to specify modules in Apache. Inside the src direc-

tory of the Apache source tree, there is a file named Configuration.
Toward the bottom of the file are module definition lines that reflect the
default configuration. Specify which modules to use by uncommenting or
by deleting the number (#) symbol on the lines. To add new lines or to
modify existing lines, use the following format:

AddModule /path/to/module/module_name

The following example is taken from an active Apache install and repre-
sents a logging facility that has been enabled by default:

AddModule modules/standard/mod_log_config.o

Adding Modules

Other options that are frequently used with configure are those that
relate to modules. Apache comes with a number of modules that increase
its functionality. Some of the modules are installed and enabled by default;
others need to be selected at compile time. As mentioned earlier, there are
three methods that can be used to enable modules. How a module is imple-
mented is determined by how it is enabled with configure.

One module that comes with Apache but is not enabled by default is the
mod_info module. This module allows access to detailed information
about the server through a convenient Web interface. To enable it as a sta-
tic module, invoke configure as follows:

$./configure --enable-module=info

Here are the options to enable the same module with DSO support:

$./configure --enable-module=info \

--enable-shared=info

If there is more than one option, using the line break escape character (\)
will allow everything to fit on the command line in a coherent manner.

To simply experiment with the available options without having to spec-
ify every feature, include most modules as DSO modules with the follow-
ing options:

$./configure --enable-module=most \

--enable-shared=max

38 Chapter 1

Installation and Configuration 39

For details about the many available arguments for use with config-
ure, read the INSTALL file in the main source directory.

Configuration Files

There are several configuration files within the Apache source tree. It is
strongly recommended that these not be altered. Users may want to read
some of them to see how the install works, but altering them could have
unpredictable results on how things are installed. For reliable compiles and
installs, customization should be done strictly with configure options.
After invoking configure with or without options, there will be some
text output as the scripts prepare the sources. Most systems that have been
installed with a developer option should have everything needed to
compile. Otherwise, the configure script will stop with an error that pro-
vides hints as to what might be wrong. Use the error message to determine
what additional components should be installed.

CGI Scripts

Turning on cgi scripts for the entire server poses a security threat. Someone
can create a .cgi file in a location other than the Web directory or another
specified location; he or she can execute the script at a later date unbe-
knownst to the Webmaster. In short, it is better to allow .cgi files in only
one directory. It is much easier to monitor one directory than an entire server.

The following subsections outline a few directives for enabling CGI
scripts with which you should become familiar.

ScriptAlias Directive

The ScriptAlias directive defines a directory where CGI scripts are
expected to be. Any script placed here, with proper permissions, will be
available to any directory:

ScriptAlias /cgi-bin/ Ò/usr/local/share/apache/cgi-bin/"

AddHandler Directive

The AddHandler directive tells Apache the extension to look for on CGI
scripts.

Processing of Requests

Requests from the network proceed through a series of stages inside
Apache. At each stage, modules may deal with the request. Each hook can

succeed, defer to another module, or return an HTTP error response. In
addition, they can modify the request object as it is seen by later stages.

In order, these stages are as follows:

1. URI to file name translation
2. Authentication
3. Authentication access checking
4. Nonauthentication access checking
5. Determining MIME type
6. Fixups
7. Sending the response
8. Logging the request

These stages match the Apache documentation phases.

Modules may start subrequests, in which Apache asks itself what would
happen in response to a client request. For example, the module that pro-
duces directory indices (mod_autoindex) performs a subrequest to find
information about each of the files in a directory.

Separate from subrequests, Apache can redirect the request to a different
location. Apache does this either as an internal redirect, in which it gener-
ates the content that would have been produced by the new request, or by
an external redirect, in which Apache sends a response code to the client
identifying a different location to use.

Installation Summary

The steps for installing Apache are similar to those used for other applica-
tions and servers. Apache configuration will be discussed in greater detail
later in this chapter. Following are the general steps for installing Apache:

■■ If it is in source form, verify the file.
■■ Extract the archive to a temporary directory.
■■ Configure it.
■■ Compile it.
■■ Verify the install on the local system and then the network.
■■ Add content.

40 Chapter 1

Installation and Configuration 41

After installing any new product, it is a good idea to stay informed about
improvements to the product and about any issues that might arise. The
Apache organization publishes a mailing list for just that purpose. Send a
message (subject and content will be ignored) to announce-subscribe
@apache.org. You will receive a confirmation message with instructions on
how to validate your subscription. This mailing list is one-way, for
announcements only, and messages will be received directly from Apache.
One aspect of any extremely popular product is that many people are con-
stantly working to find ways to attack it and a comparable number are work-
ing to defend against such attacks. The Apache organization has one of the
best track records in the software industry for notifying users about prob-
lems and their solutions.

Configuring Apache Logs

Apache logs are in the Common Log Format (CLF) by default. The fields
Apache tracks in the CLF are host, ident, authuser, date, request, status,
and byte.

host

This is the IP address from which the request came.

Identity Check

Apache can query the client’s identd (see RFC 1413) on the incoming http
connection. To turn on this feature, edit the httpd.conf file and add:

IdentityCheck On

NOTE identd checks can be extremely slow, so this feature should not be
used on a busy Web server. identd checks can also be faked, so the information
should not be completely trusted.

authuser

If the requested document requires access authentication, the authenti-
cated user id is placed in this field.

date

This field contains the date and time that the request was initiated. The
proper format is: 05/May/2000:12:08:19 -0700.

request

This is the actual HTTP request that was received from the client, enclosed
in quotes.

status

This is the three-digit HTTP status code returned to the client from Apache.
Of these, the most common are 200, 202, 301, 302, 400, 403, and 404. Com-
mon status codes are shown in Table 1.2.

bytes

This is the number of bytes in the response sent back to the client, not
including the response headers.

Alias

The Alias directive is a way of creating the equivalent of symlinks for our
URLs.

Authentication—mod_access and mod_auth

The Alias command allows modification of the response to a request. A
commonly used reference can be placed at an actual location, which is dif-
ferent from where the server seems to be getting it.

To format the alias command, use:

Alias fakename realname

Alias /icons/ Ò/usr/local/share/apache/icons/"

Alias /gifs/ /web/ncsa/gifs

Alias /gif/ /web/ncsa/htdocs/gif/

42 Chapter 1

Table 1.2 Status Codes and Their Meanings

CODE MEANING

200 Everything is working great

202 Accepted

301 Moved permanently

302 Moved temporarily

400 Bad request

403 Forbidden

404 Not found

Installation and Configuration 43

The mod_access and mod_auth modules provide the authentication
functions of Apache. The way Apache authentication works is really quite
simple. First, the client sends a name with a password to Apache. Then,
Apache decides whether the host is allowed access to the resource. If so,
Apache checks to see if the client has access by verifying the name and
password. For instance, to prevent access to a /programs/ names.html
file from anyone that is outside hello.com, simply type the following in
httpd.conf:

<Location /programs/names.html>

Order deny, allow

Deny from all

Allow from .hello.com

</Location>

In recent versions of Apache, the file names are relative to the server
root, or the file name is considered absolute. If the file name begins with /,
it is said to be absolute.

Modules

The ability to add modules to Apache is key to its flexibility. Some modules
are part of the basic functionality of the standard installation. About
another 50 modules are included with the distribution that allow further
customization. Some of these extra modules are enabled by default so that
the server has more than the minimum functionality when first installed.

If one of the included modules does not meet a particular need, many
authors have written additional modules that can be downloaded from the
Internet. An organized listing of modules can be found at Apache’s site:

www.modules.apache.org/
www.apache.org/dist/contrib/modules/
http://modules.apache.org/search

If using a module from the Internet, read the module’s documentation
very carefully! Some require Apache to be configured in a way that is spe-
cific and unique to that module.

Configuration Methods

When Apache is installed, configuration files are placed into the /con-
figuration directory, whose location is defined at compile time.

Compile-time settings use the -V command-line flag. Use httpd -V to
see compile-time settings of your installation:

Server version: Apache/1.3.14 (Unix) (Red Hat/Linux)

Server built: Mar 1 2000 13:37:34

Server's Module Magic Number: 19990320:7

Server compiled with....

-D EAPI

-D HAVE_MMAP

-D HAVE_SHMGET

-D USE_SHMGET_SCOREBOARD

-D USE_MMAP_FILES

-D USE_FCNTL_SERIALIZED_ACCEPT

-D HTTPD_ROOT="/usr"

-D SUEXEC_BIN="/usr/sbin/suexec"

-D DEFAULT_PIDLOG="/var/run/httpd.pid"

-D DEFAULT_SCOREBOARD="/var/run/httpd.scoreboard"

-D DEFAULT_LOCKFILE="/var/run/httpd.lock"

-D DEFAULT_XFERLOG="/var/log/httpd/access_log"

-D DEFAULT_ERRORLOG="/var/log/httpd/error_log"

-D TYPES_CONFIG_FILE="/etc/httpd/conf/mime.types

-D SERVER_CONFIG_FILE="/etc/httpd/conf/httpd.conf"

-D ACCESS_CONFIG_FILE="/etc/httpd/conf/access.conf"

-D RESOURCE_CONFIG_FILE="/etc/httpd/conf/srm.conf"

Apache finds its settings in the configuration file httpd.conf (defined
by the compile-time variable SERVER_CONFIG_FILE). Override the loca-
tion of the configuration file with the -f command-line flag:

httpd -f /etc/httpd/conf/httpd_alternate.conf

NOTE These flags are particular to Apache 1. and will change with future
releases of Apache. Please visit www.apache.org for updates.

Other httpd runtime flags include the following:

httpd -h

Usage: httpd [-D name] [-d directory] [-f file]

[-C "directive"] [-c "directive"]

[-v] [-V] [-h] [-l] [-L] [-S] [-t] [-T]

44 Chapter 1

Installation and Configuration 45

Starting httpd at Boot

Most users want Apache to start automatically when the system boots.
Each Linux distribution has a different method of doing this; try to follow
the conventions if possible. Some of the RPM and DEB packages may auto-
matically add Apache to the startup scripts; others may not.

On a Red Hat 6.2 system, the RPM will probably not set Apache to start
unless it was installed at the same time as the OS. To enable it at startup,
use the ntsysv program. This program allows the user to determine which
system services should be started at boot time.

If the proper way to start Apache at boot time cannot be determined, try
adding it to the local startup script. Usually this will be found in
/etc/rc.d/rc.local. Assuming Apache has been installed in /www,
add the following entry:

/www/apachectl start

Setting Up Apache
The majority of the Apache setup is done via the httpd.conf file. If
Apache is running during configuration changes, certain steps must be
taken for the configurations to take place. These steps are outlined in the
sections that follow.

Starting and Stopping Apache

Whenever the user alters the server, such as modifications in httpd.conf,
Apache should be restarted for the changes to take effect. Apache comes
with a script called apachectl that can be used for this purpose.
apachectl works much like the service initialization scripts that most
distributions have in the /etc/ rc.d/init.d directory. Specify stop,
start, and restart to start or stop the Apache server.

Starting httpd Manually

To use apachectl, provide the path to the script. Adjust the search path
to make apachectl more convenient to use. Use a command-line option
to tell the script what to do. With no options, apachectl will display the
help screen as shown:

usage: /usr/sbin/apachectl (start|stop|restart|fullstatus|status|graceful|

configtest|help)

start start httpd

stop stop httpd

restart restart httpd if running by sending a SIGHUP or start if not running

fullstatus dump a full status screen; requires lynx and mod_status enabled

status dump a short status screen; requires lynx and mod_status enabled

graceful do a graceful restart by sending a SIGUSR1 or start if not running

configtest do a configuration syntax test

help Show this screen

fullstatus

Lynx and the mod_status module are required for fullstatus to pro-
vide a detailed description of the server status.

The result of the apachectl fullstatus command is as follows:

apachectl fullstatus

Apache Server Status for localhost.localdomain

Server Version: Apache/1.3.14 (Unix) PHP/3.0

Server Built: Dec 4 2000 09:46:50

__

Current Time: Thursday, 28-Dec-2000 19:34:56 PST

Restart Time: Thursday, 28-Dec-2000 19:34:18 PST

Parent Server Generation: 0

Server uptime: 38 seconds

Total accesses: 1 - Total Traffic: 2 kB

CPU Usage: u.01 s0 cu0 cs0 - .0263% CPU load

.0263 requests/sec - 53 B/second - 2048 B/request

1 requests currently being processed, 4 idle servers

_W___...

..

..

..

Scoreboard Key:

"_" Waiting for Connection, "S" Starting up, "R" Reading Request,

"W" Sending Reply, "K" Keepalive (read), "D" DNS Lookup,

"L" Logging, "G" Gracefully finishing, "." Open slot with no current process

Srv PID Acc M CPU SS Req Conn Child Slot Client VHost Request

0-0 9886 0/1/1 _ 0.01 38 88 0.0 0.00 0.00 127.0.0.1

localhost.localdomain GET /server-status HTTP/1.0

1-0 9887 0/0/0 W 0.00 38 1191647253 0.0 0.00 0.00 127.0.0.1

localhost.localdomain GET /server-status HTTP/1.0

46 Chapter 1

Installation and Configuration 47

Srv Child Server number - generation

PID OS process ID

Acc Number of accesses this connection / this child / this slot

M Mode of operation

CPU CPU usage, number of seconds

SS Seconds since beginning of most recent request

Req Milliseconds required to process most recent request

Conn Kilobytes transferred this connection

Child Megabytes transferred this child

Slot Total megabytes transferred this slot

__

Apache/1.3.14 Server at localhost.localdomain Port 80

configtest

Use configtest to have the httpd configuration files parsed without
restarting the server:

apachectl configtest

Syntax [OK]

Checking configuration sanity for httpd: [ok]

graceful

Use graceful to gracefully restart Apache. When the user restarts with
graceful, Apache will wait until it has served all pending requests before
restarting, avoiding any annoying hard-stop interruptions users would
experience with apachectl stop.

Default Index

When the Indexes option is enabled (Options Indexes), a directory
with no default page displays as a directory listing. These commands allow
considerable customizing of the directory’s appearance, including choice
of icons and a short description after each file.

The format to enable the indexing options is as shown here:

IndexOptions FancyIndexing

AddIconByEncoding (CMP,/icons/compressed.gif) \ x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*

AddIconByType (IMG,/icons/image2.gif) image/*

AddIconByType (SND,/icons/sound2.gif) audio/*

AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe

AddIcon /icons/binhex.gif .hqx

AddIcon /icons/tar.gif .tar

AddIcon /icons/folder.gif ^^DIRECTORY^^

AddIcon /icons/blank.gif ^^BLANKICON^^

DefaultIcon /icons/unknown.gif

A directory listing can include more meaningful descriptions of file
types, based on file extensions, as shown in the following example:

AddDescription "GZIP compressed document" .gz

AddDescription "tar archive" .tar

AddDescription "GZIP compressed tar archive" .tgz

Presence of a README file or README.html (and equivalent HEADER
files) will cause Apache to display these files in a directory listing situation,
allowing further customization of a plain directory listing.

The format used to display either a README file or README.html in a
directory listing is as follows:

ReadmeName README

HeaderName HEADER

The following is the format for the directory listing to exclude certain file
name patterns by inclusion in an IndexIgnore list (note that encoding
types can be attached to files):

IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

AddEncoding x-compress Z

AddEncoding x-gzip gz

IndexOptions FancyIndexing

Basic Configuration

Some errors may have appeared when Apache was installed in Module 3.
If errors did arise, they will be addressed in the following pages. If there
were no errors, the user may notice the default index when visiting
http://localhost.

48 Chapter 1

Installation and Configuration 49

The default index has a link to the official Apache documentation. We
will be referring to the local copy throughout this chapter, but it can also be
found on the apache.org Web site.

Different distributions perform different functions. The default install is
similar to the following:

:/etc/httpd/conf# ls

access.conf httpd.conf.default mime.types

srm.conf.default access.conf.default magic mime.types.default httpd.conf

magic.default srm.conf

These are the vanilla configuration files. In the past, Apache used a
three-configuration file style where all general options were in
httpd.conf. All resource-dependent configurations such as virtual
servers, directories, document root, and all the directives and options that
specify where files are in the file system as they relate to Apache were in
srm.conf. Anything relating to access of these resources, such as blocking
people from certain directories and turning on authentication, goes into
access.conf. Three configuration files were confusing; all Apache con-
figurations could go into any one of the files.

This outdated version of configuration filing was completely arbitrary.
The system could have a zero length httpd.conf and srm.conf with all
configurations in access.conf, and the system would perform the iden-
tical function. The main reason for this was for compatibility with the
NCSA 1.3 Web server. Since the release of version 1.3.4, configuration filing
has moved away from this; now the default uses only the httpd.conf. If
the user needs a distributions’ package, the configurations in the
httpd.conf file should be checked. These lines, which are commented
out by our default installation, are the ones to look for on the system to
determine if Apache is using srm.conf and access.conf:

#ResourceConfig conf/srm.conf

#AccessConfig conf/access.conf

As of version 1.3, the files can simply be deleted; however, you may want
to explicitly set them to zero by doing something similar to the following:

ResourceConfig /dev/null

AccessConfig /dev/null

For purposes of this course, it is important to understand that these files
may or may not exist, and they may or may not be used. The user can start
Apache with the -f option to specify the configuration file; therefore, the
rc scripts should be checked as well to verify which httpd.conf file is
being called. We will use only the httpd.conf in /etc/httpd/conf.

Usually, the default installation will work without any problems. If it
does not, check the error log for a hint to the problem areas. To find the
error log, search the httpd.conf file for ErrorLog (grep -i error-
log httpd.conf). In our installation it is located in /var/log/httpd.
We do not recommend leaving the server configured with the defaults,
especially without understanding some of the consequences. Therefore, we
will cover a few aspects to monitor.

Basic configuration of Apache is accomplished by modifying the direc-
tives in the httpd.conf file.

For a list of these directives, see www.apache.org/docs/mod/direc-
tives.html or start the server and follow the documentation link from
http://localhost to the Run-Time configuration directives, found at
http://localhost/../manual/mod/directives.html. Only a few of them
will be mentioned here. Start by editing the httpd.conf file. Some of the
first variations to explore are listed next with the default entries from our
source installation.

Port 80

We noticed in our tests that sometimes the Port directive was incorrect or
set to port 8080. This setting could cause problems, so double-check this
first. If problems still occur, set the Listen directive to 127.0.0.1:80; how-
ever, this should not be necessary.

ServerType stand-alone

The stand-alone option is the default method and typically the only
one that is used anymore. In stand-alone mode, servers are ready and
waiting for connections. Not only will the user probably want to run the
server this way, but it is also recommended for busy sites. From here, the
number of servers that Apache starts and keeps running can be config-
ured. This number will allow fine-tuning of configurations to meet spe-
cific requirements.

50 Chapter 1

Installation and Configuration 51

The inetd option is another ServerType option, but it is not commonly
used anymore. The Apache documentation notes that the inetd option
does not always work properly, but it does remain as an option. Using
inetd will cause a decrease in performance because the httpd server will
launch when the user receives a request on port 80 (or whatever port is set
in inetd.conf) and then shut down after it serves the connection.

StartServers 5

This directive sets the number of servers that start when the httpd server
launches. The default is 5, but for busier sites, increase StartServers to
approximately 40. In the default case, httpd starts five server processes
immediately ready to serve requests. The following directives will help
fine-tune the way Apache manages these server processes.

MinSpareServers 5 and
MaxSpareServers 10

These two directives allow the user to dynamically regulate the amount of
server processes that are running at any given time. The directives are rel-
atively straightforward. With the default configuration shown previously,
we can be sure that there will always be at least 5 server processes avail-
able. When those are exhausted, the root httpd process will start more
servers to maintain 10 idle server processes. These 2 directives work
together to keep the operating ranges adequate for the server environment;
however, this does not go totally unregulated.

MaxClients 150

The MaxClients directive is used to prevent the server from becoming
overloaded. If there are more requests than a server can handle, it can even-
tually crash. This directive lets the user set a limit to the number of clients
that can simultaneously connect. Once MaxClients is reached, Apache
locks out additional requests.

MaxRequestPerChild 0

This directive appears to default to 0 despite other documentation. The
user may want to change this to something other than 0, which means
unlimited. This directive limits the number of requests that a server
process handles before it dies. If there are any unknown memory leaks,

allowing a process to handle unlimited requests can obviously cause prob-
lems. If a module has no memory leaks, then MaxRequestPerChild can
remain at 0. If the user is using experimental modules that do have mem-
ory leaks, a limit could be beneficial. Something between 100 and 500
(depending on how busy the server is) should be sufficient.

With the default configuration, the number of server processes can fluc-
tuate between 5 (MinSpareServers) and 150 (MaxClients), while
using the MaxSpareServers to determine how many of the idle
processes should be killed.

How does the user determine how to set these directives? If mod_status
is installed or compiled in, do the following to help determine operating
ranges. The mod_status module should be loaded if the user followed the
./configure options we used. To determine this, use the -l option with
the httpd binary. Here is a sample of what may be included with a default
installation:

COMPILED-IN MODULES

http_core.c

mod_env.c

mod_log_config.c

mod_mime.c

mod_negotiation.c

mod_status.c

mod_include.c

mod_autoindex.c

mod_dir.c

mod_cgi.c

mod_asis.c

mod_imap.c

mod_actions.c

mod_userdir.c

mod_alias.c

mod_access.c

mod_auth.c

mod_so.c

mod_setenvif.c

suexec: disabled; invalid wrapper /usr/sbin/suexec

ServerAdmin root@yourhostname.yourdomain.com

This configuration should have been set at compile time to root. Most Web
sites change this to something similar to webmaster@yourdomain.com to

52 Chapter 1

Installation and Configuration 53

help identify the source of the e-mail. Modify the ServerAdmin to meet
your needs.

ServerName yourhostname.yourdomain.com

This configuration is commented out by default, but the user may want to
specify ServerName to obtain more reliable results with redirection. Use a
valid DNS name for your domain.

UserDir public_html

Set the user directories here. This is relative to a system’s $HOME environ-
ment variable. To set the absolute path, use the preceding /. There is a great
deal that can be done with the UserDir directive. Please consult the online
documentation for additional configuration options. Explicitly disable
UserDir for the root user: UserDir disabled root.

Document Directory Configuration

DocumentRoot /home/httpd/html

This code is the default document root from our source installation
based on the Red Hat layout. DocumentRoot is basically the root direc-
tory of a Web site or Web-space and is designated as such that its includes
are used for a number of virtual domains. Every directory is controlled by
a directory block that applies to its parent directory.

Therefore, the default for the root is strict:

<Directory />

Options FollowSymLinks

AllowOverride None

</Directory>

Options Directive

There are several options that can be set to determine the server features
that are available on a per-directory basis. They are ExecCGI, Fol-
lowSymlinks, Includes, IncludesNOEXEC, Indexes, MultiViews,
and SymLinksIfOwnerMatch. If the user does not set any options, the
default is All.

NOTE MultiViews is not included as part of All.

Using the + and – will allow modification of options previously set on
parent directories. A few are discussed here:

All Everything except MultiViews is set if the user employs the All.

ExecCGI ExecCGI allows the execution of CGI scripts.

FollowSymlinks This allows the server to follow symlinks. Be careful when this is on. For
example, if the user has a symlink to / or /etc with FollowSymlinks
set, Apache will serve these directories to the clients.

Once Apache has been installed, it must be properly operated and main-
tained. The responsibilities of running an Apache server will be discussed
in the next chapter.

54 Chapter 1

55

Objectives

■■ State the common responsibility of a Webmaster.
■■ List basic steps to Web server security.
■■ Describe the functionality of MySQL.
■■ State the advantages of keeping logs.
■■ Compare/contrast the use of Addhandler and ScriptAlias.
■■ Compare/contrast static and dynamic modules.
■■ Describe ab’s benchmarking method.
■■ List the reasons to use a redirect script.
■■ Describe the methods used to run multiple sites from one machine.
■■ List the steps that httpd takes when accepting a connection.
■■ List the reasons why aliases are useful.

System Administration

C H A P T E R

2

Theory of Operation

Now that Apache is installed, the administration of the Apache server and
modules, as well as the hardware and operating system that is running the
Apache server, must be continued. This section will discuss the various
roles and responsibilities a system administrator or Webmaster will have
while configuring and running the Apache server.

Being a Webmaster
The title of Webmaster carries many different duties, all of which will be
the responsibility of one person at some of the smaller Web installations. In
a larger installation, different parts of the task are likely to be divided
among several different people. The main groups of duties are these:

System administrator. Having total authority over the system.
Configuration management. Configuring the Web server.
Content management. Controlling design and deployment of the Web

pages.

The system administrator has responsibility for the integrity of the sys-
tem itself. This person is suspicious of changes to the system and is ever
vigilant against intrusions from outside or from ordinary users exceeding
their boundaries. The system administrator is in charge of the base operat-
ing system and usually the hardware as well.

Within the Web server’s space, there are settings specific to each Web
server, the domain of the Webmaster. This Webmaster is interested in pro-
tecting the server more than the system, and yet changes made to the server
configuration files can cause problems for the system administrator. This
manager must have awareness of the consequences at this level specific to
Web operation and beyond the knowledge of a general Unix system admin-
istrator. Though the Web server daemon must be started by someone with
root privilege, this person has no other needs for root privilege. Integrity of
the Web server configuration files is the highest priority of this task.

There is yet another Webmaster—one who trades in content and process
more than configuration. This person works with the artists who create the
Web pages and directs the structure of the Web site. This person depends
on the configuration being correct and makes requests based on the needs
of the site. The tree of the Web site is built by this person. Direct contact

56 Chapter 2

System Administration 57

with building the Web server and setting the configurations is not central
to this job, though this person will need to request changes when new fea-
tures or new revisions become available.

In an individual’s site or a moderately sized corporate site, these three
conflicting personalities can be embodied in a single individual, or all duties
can be shared by several people. In a larger site, they can be handled by two,
three, or more persons, with the root user possibly being a different person
than the Webmaster. The lines that separate the responsibilities can vary
from one installation to another. At an Internet Service Provider (ISP), the
provider could perform the first job or the first and second jobs (the third job
will fall mainly with the end client). With modern virtual system methods,
an ISP could give control of an entire “virtual system” to a client or just the
configuration and content files or content files alone. If you are in charge of a
system that is shared by many users, you will have to decide where the
responsibilities lie and what powers to give to each level of Webmaster.

When the system is controlled by a single organization, the lines of divi-
sion are much less critical. At a corporate site, the system administrator
might give up root privileges to the Web managers, either temporarily or
for a specific system dedicated to Web use.

When a system is shared among unrelated users, decisions at this level
have more impact on system security. You will have to decide how much
freedom to give to the Webmasters at your site and how much personal
freedom to give up in order to maintain control. If you keep control over
server configuration, you will have to be available to perform configura-
tion changes. If you give up that control, you will want to do it in a way
that doesn’t give up the security of your other clients.

Specific commands can be opened up to the Webmaster or to the end
user with tools like the following:

sudo (superuser-do or pseudo-su). Allows a user to run selected com-
mands as superuser. Visit www.courtesan.com/sudo.

chroot (change root). Restricts access to another user’s directory tree by
changing the root directory that the user sees as the system root to a por-
tion of the actual system root (probably just the user’s personal direc-
tory). Visit http://hoohoo.ncsa.uiuc.edu/docs/tutorials/chroot.html.

suexec. Switches the effective user of a CGI script to that of the user
account. Visit www.apache.org/docs/suexec.html.

When a group of Web sites is shared by the same organization, or per-
haps different divisions or departments of the same corporation, the group
of sites will probably be managed by the same person or group of people.
There is no concern about information being shared between them or one
of the sites being sabotaged by a partisan of another site. In another instal-
lation, perhaps in a public Web site hosting service, the adjacent Web site
may be occupied by a total stranger. In this latter instance, there is a need
for separation between users of each site. Control of the Web server config-
uration file becomes a sensitive issue.

Of course, there are several solutions. A separate Web server daemon for
each site could allow each Web client to manage its own configuration file
and not have access to its neighbor’s. Restricting management of the con-
figuration file to the site administrator is another alternative.

Tuning

Running Apache on Linux works quite well, even under high server loads.
There are a number of settings and directives that can be adjusted to fur-
ther enhance performance. Apache 1.3 introduced a number of perfor-
mance-enhancing changes to the code and default configuration. As a
result, not much needs to be modified, compared to previous releases. A
few things still remain that can enhance performance further, including
optimizing Linux for increased speed and process capacity.

Before optimizing, think about what the server needs to do. Will other
services, such as mail, FTP, and databases, be running on the same box?
Will enough images be served to require a separate server?

Many large Apache installations separate the data server from the HTTP
server. If planning a database-driven Web site, it pays to look at that
option. Freeing the Web server from working with a database helps it focus
on delivering static html content.

Preparing Apache
The Apache developers have increased the performance of the server with
the release of 1.3.14. As a result, performance is nearly optimal. Some addi-
tional adjustments that can increase performance have not been included
by default because their optimal settings can be determined only by the
administrator at a given location.

58 Chapter 2

System Administration 59

Allow and Deny

The Allow and Deny directives can slow things down, depending on how
they are used. If the target location is an IP address, there is not a problem.
If the target is a domain name, it will take some time to resolve the domain
name into an IP address. Apache incorporates spoofing protection with
these directives, so a reverse look-up also occurs. Use IP addresses with
these directives to avoid the look-up penalty. Deny access starting at the
system root directory, and allow access selectively where needed. This way
access permissions will not have to be checked with each request.

MaxClients

This directive controls how many visitors Apache will handle at once. If
the number of requests exceeds this value, clients will be locked out. This
is a safety feature to keep Apache from taking the entire machine along as
it absorbs all available system resources. Check to see if swapping is taking
place when MaxClients is reached, and adjust the value accordingly. If
there is no swapping at this point, the value can be increased. Decreasing it
can reduce swapping. Adding RAM can also reduce swapping and allow
increasing MaxClients, resulting in more simultaneous connections.

The upper limit of 256 is hard-coded at compile time. Increasing beyond
the current limit will require a recompile, after putting the desired value in
the HARD_SERVER_LIMIT variable that is defined in httpd.h.

TCP/IP Version

Be sure to have the latest version of the system kernel. The serving of HTTP
invalidates many assumptions built into Unix kernels from as recently as
1994 or 1995.

Host Name Look-Ups

Before Apache 1.3, host name look-ups defaulted to On. This required a
completed DNS look-up before Apache could finish a request. With
Apache 1.3, the feature is defaulted to Off. Now, when the allow from
domain or deny from domain features are used, a double reverse DNS
look-up will be performed (a reverse followed by a forward to ensure that
the reverse is not being spoofed). If an IP address is used instead of a
domain name, this penalty will not occur.

NOTE These directives can be scoped so that look-ups are performed only
on requests that match specific criteria. The following example code disables
look-ups, except for .html and .cgi files:

HostnameLookups off

<Files ~ "\.(html|cgi)$">

HostnameLookups on

</Files>

There is another alternative available within CGIs. Consider using the
gethostbyname call within the specific CGI that requires a DNS look-up.

FollowSymLinks and
SymLinksIfOwnerMatch

Within the Web directory tree, any place that does not have Options
FollowSymLinks or does have SymLinksIfOwnerMatch, Apache will
have to issue extra system calls (one extra call per file name component).
For example:

DocumentRoot /etc/apache/htdocs

<Directory />

Options SymLinksIfOwnerMatch

</Directory>

If a request is made for /index.html, Apache will have to perform an
lstat(2) on /etc, /etc/ apache, /etc/apache/htdocs, and
/etc/apache/htdocs/index.html. These requests are never cached,
so they will occur on every request. If not using symlinks security check-
ing, the following configuration will provide a faster performance:

DocumentRoot /etc/apache/htdocs

<Directory />

Options FollowSymLinks

</Directory>

<Directory /etc/apache/htdocs>

Options -FollowSymLinks +SymLinksIfOwnerMatch

</Directory>

Any Alias or RewriteRule sections outside the Web directory tree
will require similar treatment. For best performance (but no symlink pro-
tection), set FollowSymLinks everywhere, and do not use SymLinksI-
fOwnerMatch.

60 Chapter 2

System Administration 61

AllowOverride

Wherever override is allowed, Apache will attempt to open an htaccess
file. For example:

DocumentRoot /etc/apache/htdocs

<Directory />

AllowOverride All

</Directory>

Every time an attempt is made to open /index.html, Apache will try
to find and open /.htaccess, / etc/.htaccess, /etc/apache/
.htaccess, and /etc/apache/htdocs/.htaccess, whether they
exist or not.

NOTE These directives can be scoped so that look-ups are performed only
on requests that match specific criteria. The following example code disables
look-ups, except for .html and .cgi files:

HostnameLookups off

<Files ~ "\.(html|cgi)$">

HostnameLookups on

</Files>

Another alternative is available within CGIs. Consider using the get-
hostbyname call within the specific CGI that requires a DNS look-up, as
in the following example:

FollowSymLinks and SymLinksIfOwnerMatch

Content Negotiation

One opportunity for a measurable speed increase is in the DirectoryIndex
directive. Instead of the convenient wild card, give a complete list of options
with the most commonly found choice first (or with the preferred one first, if
several are present). Instead of:

DirectoryIndex index

use:

DirectoryIndex index.shtml index.html index.htm index.php

Within the Web directory tree, for any place that does not have Options
FollowSymLinks or does have SymLinksIfOwnerMatch, Apache will
have to issue extra system calls (one extra call per file name component).
For example:

DocumentRoot /etc/apache/htdocs

<Directory />

Options SymLinksIfOwnerMatch

</Directory>

Process Creation

Before Apache 1.3 was released, the MinSpareServers, MaxSpare-
Servers, and StartServers directives had drastic effects on bench-
mark performance. This results from the difference between the way
benchmarks are run and the way real-life requests are issued. In a bench-
mark run, an attempt at 100 simultaneous requests would begin the run.
Before Apache 1.3, if there were more requests than servers, an additional
server would be spawned each second until enough were present (this was
to avoid swamping the server with spawning new processes). Starting
with the default StartServers of 5, it would take approximately 95 sec-
onds before enough servers were present to handle the test load. In a real
situation, the ramp-up is gradual, and this technique is good enough; in a
benchmark that might run 10 minutes, results can be misleading.

In Apache 1.3, the daemon will spawn one child process, wait a second,
spawn two children, wait another second, spawn four, and so on, until it is
spawning 32 new child processes per second. New child processes con-
tinue to be spawned at this high rate until MinSpareServers is satisfied
or MaxClients is reached. Whenever more than four child processes are
spawned per second, an entry will be made in the error log. If many such
entries occur, consider tuning these settings. Use mod_status as a guide.

Process Death

By default, the MaxRequestsPerChild setting is 0, meaning that a child
process will continue running as long as there is a load to justify it. Con-
sider increasing very low numbers, such as 50. If running SunOS or an old
version of Solaris, limit it to 10,000 because of memory leaks.

62 Chapter 2

System Administration 63

KeepAlive

When KeepAlive is in effect, children will spend time waiting for
requests on an open connection. The default value of 15 seconds attempts
to minimize the effect. There is a trade-off here between network band-
width and server resources.

NOTE Do not ever increase the KeepAlive value above 60 seconds, or most
benefits will be lost.

For more detailed discussions of performance issues, visit the following
Web sites:

www.apache.org/docs/misc/perf-tuning.html
http://linuxperf.nl.linux.org/webserving/
www.kegel.com/c10k.html
www.kegel.com/mindcraft_redux.html
www.zabbo.net//phhttpd/

Introduction to Virtual Hosting
Name-based hosts require that the NameVirtualHost directive be placed
above the host sections, and the directive must contain a valid network
address.

IP-based or non-name-based hosts in httpd.conf need to be placed
between an opening and closing VirtualHost tag pair, like the following:

<VirtualHost 192.168.1.3 >

...

</VirtualHost>

Each section encloses configuration information for a virtual host. Any
configuration information unique to that host will be enclosed within this
section. A name, instead of an IP address, could be used here but is not rec-
ommended for a number of reasons, including performance, reliability,
and possible security risks.

Directories

Create a directory for each host that contains everything that is specific to
that host. For single daemon configurations, a few directories contain the
Web content itself and space for logs; add others as needed. Multiple dae-
mon configurations require a complete Apache install for each host. This
install means a complete Apache directory tree and configuration files.

Network Addresses

For some of the methods, you will need to create and configure additional
IP addresses. This can be done with IP aliasing. For IP-based hosting,
obtain valid Internet addresses. Name-based hosts share a single network
address. Name-based hosts need to have the names registered.

Introduction to Apache Modules
As previously stated, Apache administrators have the option of installing
module capability in Apache and deciding which modules to install. There
are a wide variety of modules, some of which will be covered in this sec-
tion. These include CGI, PHP, MySQL, and Perl. It is important to realize
the capabilities and dangers of each module in order to be an effective
Apache administrator.

What Is CGI?

According to the World Wide Web Consortium, the Common Gateway
Interface (CGI) is a “standard for external gateway programs to interface
with information servers such as HTTP servers.” In practice, this means
CGI is a method of allowing the execution of programs on Web servers and
then passing data back to the Web client to be viewed.

When a Web browser requests a page from a Web server, the server must
know whether that page is a CGI page. If it is, the server must execute it and
then pass the returned content back to the Web browser. Although commonly
called CGI scripts, these programs can be any type of valid program recog-
nized by the Web server. This recognition process is shown in Figure 2.1.

When to Use CGI

Typical Web pages are static, meaning the content shown when a page is
viewed does not change from time to time or based on environment. CGI

64 Chapter 2

System Administration 65

allows for interfacing (gatewaying) between the Web server and some
other entity, such as a database, and allows the content returned to the
browser to be dynamic based on certain conditions.

CGI was one of the first methods implemented to achieve dynamic Web
pages and, because of its flexibility, is in wide use today. Other methods of
creating dynamic pages include Java, JavaScript, VBScript, SSI, and inline
scripting languages, such as PHP and ASP.

The flexibility of CGI comes from its ability to execute any program that
the system itself can execute. A CGI script can be a shell or Perl script, a
compiled C program, a python or tcl script, or almost any other language.
It can also be tested outside of the Web environment because it is a pro-
gram native to the operating system. For example, CGI programs can be
executed directly from a shell.

The major drawback of CGI is also based on its nature as a program.
Because it is a program, it must execute as one, which incurs the (some-
times severe) overhead of loading a new process into memory and execut-
ing it. The slight pause that occurs between executing a program on the
command line and seeing its output, multiplied by thousands of hits per
minute, can add up to significant slowdown in the responsiveness of a Web

Figure 2.1 The Web browser, Apache, and CGI.

site. While the script is processing, the impatient user browsing the site is
staring at a blank browser window.

PHP—mod_php4

Although the PHP language can be used to write CGI scripts, it is more
commonly installed as a module, substantially improving performance.
The PHP language is tightly integrated with HTML. This integration
allows insertion of common programming constructs into HTML code. It
also enables sophisticated programs to be written in an HTML environ-
ment. One of the more interesting features of PHP is the ability to integrate
closely with common database systems and embed SQL code within PHP.

PHP Mailing Lists and More

For more information about the PHP Development Team and PHP project
please see www.php.net.

MySQL

MySQL is a database management system, which contains files that
Apache can access through modules. This allows for Apache-driven Web
sites to provide database-driven, dynamic, and user-specific Web pages.

Database Concepts

One of a computer’s most powerful tools is the ability to store and retrieve
data. Many techniques for retrieving data have been tried over the years,
from linear search of plain-text files to Indexed Sequential Access Method
(ISAM) tables. This search for effective retrieval methods has led to the
development of database management systems (DBMS). Different classes
of DBMS have been developed, including hierarchical, network, relational,
and object. The relational model, formally described by E. F. Codd in the
late 1960s (published in 1970), has been extremely successful and is the
type of database that will be examined here.

A database consists of a set of data organized for easy retrieval and spe-
cial software that is designed to retrieve it. In a relational database, the
underlying concept is that everything is stored in tables. Although there
are special technical terms for the components of a database, the more
familiar common terms will be used in this discussion, with some reference
to classical programming terms. A table consists of rows (records), which
are divided into columns (fields). Each row in a table can be accessed and
manipulated separately from all other rows, possibly using one or more
key columns or even using keys built up from multiple columns. In classi-

66 Chapter 2

System Administration 67

cal programming, files are made up of records; in database programming,
tables are made up of rows.

Besides this basic organization, which could describe common file for-
mats used in programming, there is a set of rules that distinguishes the
structure of a database system from a classical programming application.
Among the rules is the concept that all characteristics of the data structure,
as well as any changes to the data structure or content, are controlled
through the DBMS and are reflected in tables. Values entered into a field can
be constrained by rules enforced by the DBMS, not by the application. Any
applications that access the data are kept separate from the data itself and
go through the DBMS to reach the data. As a result, data integrity is in the
domain of the DBMS, not the domain of the application. Any data item is
referenced uniquely by its table, key, and column values. In this way, any
redesign of the data structure will have no effect on the application. By
defining a relationship between fields in different tables, it is possible to link
tables together. Another important feature of a DBMS is that a single com-
mand can be issued through the DBMS interface that will affect all rows of
a table, without the need for record-by-record processing. The abilities to
relate data and to isolate the internal workings of the database from the
application are two of the things that give a relational database its power.

Normalization of Tables

Normalization of tables in a relational database is the process of organizing
the database into tables in such a way that the results of using the database
are always unambiguous and predictable. Normalization consists of
reducing the duplication of data items within the database according to a
set of rules, often with the creation of additional tables. Normalization will
ensure that a particular item is stored in a single location. If you update an
item, any references to that item will show the update by logical design,
not by any special action.

A database can be described in terms of its level of normalization,
according to how many of the five rules of normalization the database’s
design follows (Boyce-Codd Normal Form, or BCNF, is a variation of third
normal form, or 3NF). Typically, the optimum balance of speed and com-
plexity occurs at 3NF or BCNF. Normalization beyond this level results in
an increase in the number of tables, with an associated increase in com-
plexity and a possible decrease in speed. Normalization is typically a
refinement process after the initial exercise of identifying the data objects
that should be in the database, identifying their relationships, and defining
the tables required and the columns within each table.

SQL Databases

SQL (often pronounced sequel) stands for Structured Query Language. It is
the best-known database language. It has been widely implemented and is
available in almost every commercial relational database management
(RDBM) system and many open source systems as well. SQL provides the
abilities to create and maintain the database and to query the database.
SQL is recognized by the American National Standards Institute (ANSI) as
the standard language for relational database management systems. SQL is
a comprehensive database language, with statements for data definition,
query, and update. Although most database systems use SQL, many of
them also have their own proprietary extensions that are available only on
their system. A good RDBMS can perform all standard operations without
having to call on the proprietary extensions.

Selecting a Database

Several database systems exist for Linux. While some are commercial pack-
ages, others are free (open source). Considerations when choosing a data-
base include the amount of data to be stored, the type and frequency of
transactions, security features, multi-user support, access method, speed,
and accuracy. MySQL will be used for this lesson because of its ease of use
and also because of the extensive selection of third-party tools available
freely on the Web. As of June 2000, MySQL was released under the GNU
GPL-license, which makes it free for use in commercial systems.

The main feature of MySQL is that it is multithreaded, optimized for
speed and for use with large tables. MySQL gains its speed advantage at
the cost of such desirable SQL features as triggers, subselect, and transac-
tion processing. Developers, though, will gradually roll certain desirable
features into the product over time. The intended use of the product is as a
quick, fast implementation of simple applications.

For more information on MySQL, visit the Web site at www.mysql.com.

Several other database systems are available for Linux. Commercial
packages include Oracle 8i, IBM DB2, and Informix SE.

The mSQL package is available as freeware at prices comparable to those
for MySQL at www.hughes.com.au/ products/msql/. It is free for non-
commercial use.

68 Chapter 2

System Administration 69

PostgreSQL is derived from the Postgres research database. It is a full-
featured object-relational database system. It supports declarative queries
in SQL, query optimization, concurrency control, and transactions. It is
completely Open Source and released under GPL. PostgreSQL comes stan-
dard with many distributions and is quite powerful. It can be found at
www.postgresql.org.

Database Design Considerations

Before beginning to implement a database system, users must analyze
their needs by examining how many records of what size and kind will be
generated over the life of the project and what kinds of operations are
expected to be performed on the data. Also, they examine how the data
will be accessed and how fast the connection will be. Transaction process-
ing is a special task and places extra demands on a database system. After
determining what system needs will be, users should examine different
database packages and see which ones match the application.

After settling on a specific platform, design the database using whatever
tools are available on that system to assist in the design work. Remember
that part of the design is a security profile, a plan for which users will have
access to which portions of the database.

After these steps, the database should be ready for data entry.

MySQL Architecture

MySQL uses a client/server architecture. In very simplified terms, a
client/server architecture means that the data and all of the software nec-
essary to manage the data (the server) is kept separate from the software
that is requesting and using the data (the client). Also, a typical server is
able to handle multiple clients. The MySQL distribution package includes
both server and client components.

Because the client and server are not required to be on the same physical
machine, it is common to have a variety of client systems accessing the
same server and sharing the same data. There is no limit on where the sys-
tems can be located; either client or server could be anywhere in the world.
This fact does not imply that anyone in the world can access data on a
server without consent. The MySQL administration section covers how to
secure a database, allowing access to the server from specific hosts and
assigning specific access levels to different users. Finally, the multi-user
nature of the client/server system requires concurrency control so that two
users are not able to modify the same record at the same time.

MySQL System Administration

Once the database server is running and the database is in use, paying peri-
odic attention to a few critical details can ensure that the data remains avail-
able to those who need it and closed to those who do not. Scheduling frequent
backups and keeping transaction logs can help users recover quickly from
disasters, either man-made or natural. A properly configured security profile
can help control who can see the data and what they can do with it.

Starting and Shutting Down the Server

The safe_mysqld script will start the server safely with standard settings
and can restart it after a system restart or a crash. To start a server with
individual options, a user can employ the mysqld program directly, edit
options into the safe_mysqld script, or use the safe_mysqld script as
a model for building a customized startup script. The mysqld program is
usually stored under the libexec directory of the MySQL base install
directory. The general usage is:

Usage: mysql [OPTIONS] [database]

To start mysql, type:

[root@sair.linuxcare.com Apache]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 7 to server version: 3.23.23-beta-log

Type 'help;' or '\h' for help.

mysql>

By typing \h at the mysql> prompt, the following general commands
are displayed:

MySQL commands:

Note that all text commands must be first on line and end with the ';'.

Help (\h) Display this text

? (\?) Synonym for "help"

clear (\c) Clear command

connect (\r) Reconnect to the server. Optional arguments are db and host

edit (\e) Edit command with $EDITOR

exit (\q) Exit mysql. Same as quit

go (\g) Send command to mysql server

ego (\G) Send command to mysql server; display result vertically

print (\p) Print current command

quit (\q) Quit mysql

rehash (\#) Rebuild completion hash

source (\.) Execute a SQL script file. Takes a file name as an argument

status (\s) Get status information from the server

70 Chapter 2

System Administration 71

use (\u) Use another database. Takes database name as argument

Connection id: 7 Can be used with mysqladmin kill

mysql>

Type mysql -h to view available options for the mysql command. The
MySQL command syntax is as follows:

mysqld <options>

where options can be any of the previously listed values.

To shut down the MySQL server, use the mysqladmin command with
the shutdown parameter:

mysqladmin shutdown –p

Making Backups of Your Data

Backing up data is one of the first principles of survival when using a com-
puter. A backup (if done properly) can protect data from a range of prob-
lems, from a system crash (is the power cord where someone might trip
over it?) to an act of vandalism (is there a government building anywhere
nearby that might be subject to a terrorist attack?) to a weather problem
(how much snow did you say the roof can support?). All of these events
have occurred in recent years; even the most reliable system might not be
able to continue operating under extreme conditions. Backing up data and
keeping the backup at a different location can make a world of difference
in how long a system is down if something unexpected happens.

There are two ways to make a backup. Because MySQL uses common
data files in the Linux file system (unlike some optional configurations on
large commercial databases), a backup can be performed by copying all
table files (*.frm, *.MYD, and *.MYI) at a time when the server is not
updating anything. Updates can be prevented during the file system-level
backup by doing a LOCK TABLES/UNLOCK TABLES set of commands. A
read lock will allow queries to continue during the backup, while disal-
lowing updates.

Backing up with the mysqldump command will allow updates to take
place during the backup. To be able to capture the updates, first stop
mysqld and then start it with the --log-update option. This example
assumes that log-update is not already turned on:

mysqladmin shutdown -p

mysqld <Other Options> --log-update

mysqldump --tab=/path/to/the/dir --opt --all-databases

mysqladmin shutdown -

mysqld <Other Options>

The mysqldump command will create a set of files in the directory
pointed to by the --tab= switch for each table. --opt will cause the
dump to create an optimized set of commands to rebuild the data. --all-
databases backs up each database in the system to its own set of files.
The log-update option will create log files with names like host-
name.n, where n is a number that is incremented each time mysqladmin
refresh or mysqladmin flush-logs is executed, the FLUSH LOGS
statement is executed, or the server is restarted. These log files have the
information that will allow replication of the changes to the database,
which are made after the mysqldump process began. Be sure to study the
documentation at www.mysql.org or one of its mirrors so that you are
familiar with what goes on when any of these commands is issued.

If the database is lost, first try to recover with myisamchk -r. This should
work in almost all cases. If myisamchk fails, try the following procedure:

Restore the original mysqldump backup.

Rerun the updates in the update logs by executing this command:

ls -1 -t -r hostname.[0-9]* | xargs cat | mysql

The ls/xargs command will access the log files in the correct order, if
there is more than one.

The example illustrates a full database backup. The mysqldump com-
mand will also allow a dump of a specific table from the database:

mysqldump contact > backupfile

This line creates a file that will be able to rebuild the database. The file
contains the SQL commands to create the tables and insert statements that
insert the data into the tables. To add a drop table command to the SQL
dump (SQL statements to drop the table before creating a fresh copy), spec-
ify the drop-table option:

mysqldump --add-drop-table contact > backupfile

72 Chapter 2

System Administration 73

To get the specific options available on each copy of mysqldump, issue
the following command:

mysqldump --help

Table 2.1 shows some typical mysqldump command options.

To retrieve a database, read the backup file into the MySQL client pro-
gram:

mysql contact -p < backupfile

]

Table 2.1 mysqldump Command Options

OPTION COMPLETE OPTION DESCRIPTION

-a --all Includes all MySQL create options

-# --debug=file Outputs debug log; often this is d:t:o file
name

-? --help Displays the help message and exits

-c --complete-insert Uses complete insert statements

-C --compress Uses compression in server/client
protocol

-e --extended-insert Allows utilization of the new, much
faster INSERT syntax

--add-drop-table Adds a drop table before each create

--add-locks Adds locks around insert statements

--allow-keywords Allows creation of column names that
are keywords

--delayed Inserts rows with INSERT DELAYED

-F --flush-logs Flushes logs file in server before starting
dump

-f --force Continues even if you get a SQL error

-h --host=hostname Connects to a specified host

-l --lock-table Locks all tables for read

This will create a new copy of the database and insert the data state-
ments from the incoming file into the new database. In the preceding
example, contact is the database name.

To back up (or transfer) specific records from a database, do a selective
backup with a select statement:

mysql>SELECT * INTO OUTFILE 'file_name' FROM tbl_name

Restore the table with this:

mysql>LOAD DATA INFILE 'file_name' REPLACE ...

There is a risk of duplicate records unless a PRIMARY KEY or a UNIQUE key
is set in the table. Use of the REPLACE keyword allows new records to replace
old ones, when a new record has the same key value as an older record.

Managing User Accounts and Security Privileges

It is standard business practice that certain transactions must be available
to some users and not to others. For example, the user who enters invoices
may be a different person from the one who pays invoices. Another user
can enter payroll data, while someone else can only look at it (although
most are not permitted to look, either). The business rules of a task are
reflected in the design of the corresponding database. Users of a database
are granted privileges based on what type of operations they need to per-
form and what portions of the database they are permitted to access. Priv-
ileges can be granted to users either by directly manipulating the user table
or by the preferred method of using the grant command.

Syntax for the grant command is:

GRANT privileges

on the user identified by password with grant option.

PRIVILEGES AND OPERATIONS ALLOWED

ALTER Alter tables and indexes

CREATE Create databases and tables

DELETE Delete existing records from tables

DROP Drop databases and tables

74 Chapter 2

System Administration 75

INDEX Create or drop indexes

INSERT Insert new record into tables

SELECT Retrieve existing records from table

UPDATE Modify existing table records

FILE Read and write files on the server

PROCESS View information about threads running

RELOAD Reload the grant tables or flush logs

SHUTDOWN Shut down the server

ALL All privileges

USAGE No privileges

The more powerful privileges should be restricted to a short list of
administrators.

Keeping Logs of All Transactions

Every transaction that occurs on the MySQL server retrieval can be logged
at a later time. When starting the MySQL server daemon, specify the --log
and --log-update parameters to tell the server to save a log. The --log
option will turn on general logging; the --log-update option enables log-
ging of changes on the database.

mysqld --log --log-update

As transactions are sent to the server, the log files fill up, eventually to
the point where they take all available space on that file system. With a
busy server, this could happen quickly; with a less busy server, it will take
more time. All the same, if the old transactions are not purged, the file sys-
tem will eventually fill up.

One way to deal with the situation is to write a script that rotates the log
files. Each time the MySQL server restarts, it creates a fresh log file. If a
script (invoked by cron) is created that restarts the MySQL server, then
deletes the oldest log file (or any log file over a certain age), the file system
will fill up much more slowly.

Log files by using the mysqladmin command with the flush-logs
parameter:

mysqladmin flush-logs -p

This will clean out all of the log files. Be sure that any log files necessary
for a restore have been backed up before running this command.

mod_perl

Perl is a high-level programming language written by Larry Wall. It is
derived from the C language and contains lots of functions and tools for
numerous tasks, such as system administration, database access, string
manipulation, networking, and, most importantly, Web programming. The
newest version of Perl is freely available at www.perl.com.

Perl has its own module system. Perl modules are similar to libraries in
other programming languages. A module is a set of functions that provide
additional functionality to the Perl language and can be included and used
easily in Perl programs. Perl modules are stored in files with an extension
of .pm, so CGI.pm would be a Perl module, while files without an exten-
sion, or those ending in .pl, are Perl programs. All Perl modules can be
downloaded from the Comprehensive Perl Archive Network (CPAN),
which contains all known Perl material and modules. CPAN can be found
at the www.perl.com site and many mirror sites.

Apache’s mod_perl module integrates a Perl interpreter with the
Apache Web server. It contains Perl code that provides for an object-ori-
ented interface to the new Perl-enabled Apache server. The mod_perl
module contains lots of functions and classes that add great functionality
to the Apache server. With mod_perl, it is possible to write Apache mod-
ules entirely in Perl. The major advantages of mod_perl are speed and the
ability to deal with the inner workings of the Apache Web server. CGI
scripts can also be run under mod_perl. Installation of mod_perl is fairly
complex. Please do not try to do this without reading the README files that
come with the module installation files. The simplest way to install is to
use the Makefile.pl script with the right parameters.

mod_perl mailing lists and more are located at http://perl.apache.org.

Introduction to the Apache API
The Apache Application Programming Interface (API) is the method by
which new pieces of code (i.e., Apache modules) integrate their handlers into
the main flow of operation in Apache. Knowing the steps Apache follows
when handling a request can help you to understand how Apache works.

76 Chapter 2

System Administration 77

This chapter will introduce the Apache API with a general overview. It
will give information about how Apache handles Web requests (i.e., what
is going on under the hood).

Modules

Modules are the first critical component of the Apache API. A module is a
bit of code written to handle a specific task, such as logging, authentica-
tion, directory and alias handling, access control, content negotiation, and
CGI and Server-Side Includes. Most of Apache is implemented as a mod-
ule—the Apache core handles some pieces of the server but generally
hands processing off to a module.

Each module can be compiled into Apache, similar to a statically linked
library, or compiled as a dynamically shared object (DSO), similar to a
shared library. Static modules become part of the httpd binary and are
automatically recognized by the Apache core. DSOs each have a file on the
file system and must be loaded by a LoadModule command in Apache’s
httpd.conf file in order to be initialized. The flow of operations is shown
in Figure 2.2.

Figure 2.2 Apache flow of operations.

Phases

Phases are one of the three critical components of the Apache API. The
Apache flow of operation goes through eight phases each time Apache
receives a request to serve a Web page. A request flows from Phase 1 to
Phase 8 in sequential order. When Apache receives a request for a docu-
ment, it starts by passing it through Phase 1; by the time the request
reaches Phase 8, the response has been sent and Apache waits for a new
request. The eight phases of Apache are illustrated in Figure 2.3.

Handlers

A handler is a set of C functions that a module uses to perform a task.
Inside the code of each module is a structure identifying what type of
processes it can perform, as well as the code to actually perform it; this is a
handler. Each module can have one or more handlers defined in it.

The handler is the part of the module that performs actions. If a module
is written to process CGI scripts, the module will have a structure telling
Apache which handler function to call when it sees a request for a CGI

78 Chapter 2

Figure 2.3 Apache phases.

System Administration 79

script. Apache keeps a list of which handlers perform which functions and
which modules are associated with each handler.

When each module is initialized, Apache looks at the module’s handler
structure(s) to determine what that module does. These structures tell
Apache each phase for which they are appropriate, as well as how to call
the handler when needed. Each handler has the option of declining the
request or attempting to handle the request when called.

If the request is declined, Apache tries the next handler registered for that
phase. If the request returns a success, the next phase is attempted. If it returns
a failure, the request goes straight to the last phase: logging the request.

There are exceptions to this flow of operations. For instance, when a han-
dler returns a success after handling a request, the request moves to the
next phase, except for the Non-authentication Access Checking, Fixup and
Logging the Request phases. In these phases, all handlers run as long as no
failures are returned by previous handlers. Apache handlers are shown in
Figure 2.4.

Figure 2.4 Apache handler processing.

Phases in Detail

To give you a better understanding of how Apache works, the next section
will explain each of the eight phases in more detail.

Phase 1: URI to File Name Translation

Requests come in with a URI, which is a subset of the URL that identifies the
path to the Web page. If you were to open the URL http://www.linuxcertifi-
cation.com/index.epl in a Web browser, the browser would connect to the
host named www.linuxcertification.com and send it the following request:

GET /index.epl

The path name /index.epl is the URI. Apache needs to find out the file
on the file system to which this corresponds. It starts at the document root,
which is the root of all the server’s Web documents, and walks the tree
down to the requested file. In this case, if the document root was
/home/httpd/html, the corresponding file would be /home/httpd/
html/index.epl.

Sometimes the translation is not as simple as it seems, as Apache has com-
mand directives that can be placed in its configuration files that alter the way
URI-to-file-name translation works. One of the most common is with the
ScriptAlias command, used to specify both the URI prefix and the file
system location of CGI files. AScriptAlias command looks like this:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/

If Apache received the request for /cgi-bin/index.epl, it would
have to look in /home/httpd/ cgi-bin for the proper index.epl file.

Phase 2: Authentication

Authentication is the process of checking the user’s credentials (username
and password, typically) with one or more lists of credentials Apache keeps.
Different modules authenticate in different ways; the module mod_auth
looks up usernames and passwords in text files, while mod_auth_db and
mod_auth_dbm look them up in database files.

This phase does not actually check to see if the user is authorized to view
the requested resource; it just checks to see if the user is who he says he is.
In other words, do the username and password presented match the list of
known usernames and password combinations?

80 Chapter 2

System Administration 81

Phase 3: Authentication Access Checking

It is at this point that Apache compares the authentication information
from the previous phase with access rights to the particular resource. The
way Apache handles authentication access checking is also tied to the par-
ticular module in use; standard practice is to check the .htaccess files
inside of a particular directory (and all of its parent directories) for this
information, but it also can come from database servers or the
httpd.conf file itself.

Phase 4: Non-Authentication Access Checking

After Apache checks access based on the user’s credentials, it checks access
based on other factors, such as the requesting IP address. In the httpd.conf
file, access to certain directories can be denied based on IP address.

Because multiple restrictions can be placed on access checking, all han-
dlers registered for this phase should run.

Phase 5: Determining Mime Type

MIME types let the Web browser know what type of file it is receiving—a
plain text file, an HTML file, a JPEG, and so on. The standard modules
mod_mime and mod_mime_magic are used to find out the particular
MIME type of a file.

Apache uses the two modules to figure out MIME types in two different
ways. mod_mime checks for the extension of a file. To mod_mime, .txt is
a text/plain file, .html is a text/html file, and so on.

mod_mime_magic checks the contents of a file, typically the header, to
determine file type. mod_mime_magic uses the same “magic number”
database that many Linux programs use, including the file command. This
type of checking can be more reliable, but it takes more time to perform.

Phase 6: Fixups

Fixups are generic tweaks that Apache makes to a response before sending
it to the client. This is a catch-all phase that typically includes parsing
server-side Includes, manipulating HTML headers, rewriting URIs, and
handling Server-Side Redirects.

The process of the Fixup phase is fairly simple. Typically it is anything
that needs to alter the response before it gets sent back to the client.

The Fixup phase runs all of the available handlers registered for it, so
that if multiple fixups are needed, all will be processed.

Phase 7: Sending the Response

Sending the response means taking the referenced file, reading it from the
file system, optionally processing it (such as by running a PHP script),
attaching a header, and sending it back to the client.

Phase 8: Logging the Request

Logging needs to happen whether the response was sent or not. If the
request was successful and a response was sent, the log will show an HTTP
status of 200 (OK). Otherwise, it will show a request with an error code,
such as 404 (Not Found) or 500 (Server Error).

This phase always runs because all requests need to be logged. Addi-
tionally, all handlers registered for this phase will run so that Apache can
log the request and response in multiple places, if necessary.

The Future: Apache 2.0

As of this writing, Apache 2.0 is in the beta stage. While not yet suitable for
stable Web serving, the beta version hints at what will be offered.

Apache 2.0 still has many of the same features you are used to with 1.3.x,
including a very familiar configuration file. Most of the changes are under
the hood, with a radically improved API, new and improved modules, and
IPv6 support.

New Modules

Following is a list of a few recently-developed modules, and descriptions
for each:

mod_dav. Supports the HTTP Distributed Authoring and Versioning
specification for posting and editing Web content. This module will
use Apache to tie Web development and Web serving to HTTP. See
www.webdav.org for more information.

mod_charset_lite.Currently an experimental module, mod_charset
_lite allows for character set translation or recoding.

mod_file_cache. As the file name hints, mod_file_cache caches
frequently used static files. The module does its work at server startup,
opening the file and saving it into memory. mod_file_cache does
not work on dynamic content, such as CGI files.

82 Chapter 2

System Administration 83

Improved Modules

With Apache 2.0, there will be a number of improved modules for the
Apache server. A brief description of three of these, mod_auth_db,
mod_auth_digest, and Filtering, is presented in this section.

mod_auth_db. Currently mod_auth_db supports the Berkeley DB
versions 1.85 and 1.86, with possible extension to DB version 2.0 if you
enable compatibility mode. In Apache 2.0 mod_auth_db will support
DB version 3.0.

mod_auth_digest. In Apache 1.3.8 and above, mod_auth_digest is
an experimental module that uses MD5 Digest Authentication for user
authentication. In 2.0, mod_auth_digest uses shared memory to
offer more support for session caching across processes.

Filtering. It is nearly impossible now to parse content with both server-
side includes and CGI scripts. 2.0 will introduce the ability to write
Apache modules as filters that will act on the stream of content as it
travels to or from the server. Manipulating the stream of content will
allow you to massage the data multiple times with different modules.

WARN I NG Apache 2.0 makes significant changes to the API. Third-party
modules that work with version 1.3 will not work with 2.0.

To find out more about Apache 2.0, visit http://httpd.apache.org/
docs-2.0/.

Introduction to Logging
Apache has a logging mechanism that allows tracking of what goes right
and what goes wrong in Apache’s interactions with Web clients. A different
log or set of logs can be set for every virtual domain on a system. Each log
can be configured to track different aspects of client interaction.

Log formats can be custom configured and named for reuse. Having a
set of named log formats allows different virtual servers or different con-
figurations based on the same build to have different log file formats.

The following are examples of some custom logs and their names:

HostnameLookups On

ErrorLog /var/apache/logs/error_log

LogLevel warn

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \ \"%{User-Agent}i\"" combined

LogFormat "%h %l %u %t \"%r\" %>s %b" common

LogFormat "%{Referer}i -> %U" referer

LogFormat "%{User-agent}i" agent

The following is an example of the use of the previously named logs:

CustomLog /var/apache/log/access_log common

CustomLog /var/apache/log/referer_log referer

CustomLog /var/apache/log/agent_log agent

CustomLog /var/apache/log/access_log combined

Activate ServerSignature to add a line to all Apache logs with the
server version number and the ServerName of the virtual host that gener-
ated the line. The default is Off.

ServerSignature Off

The Alias command allows for a link from a decoy location to a real
location.

Base Systems

Configuring Apache’s multiple options can take time, effort, and some
frustration. This section, which covers running multiple daemons, easy
(and not-so-easy) configuration of Apache, configuration of CGI, and
more, will provide a roadmap for Apache administrators who feel the need
(or responsibility) to change and tune their Apache installation.

Multiple Daemons
The single daemon method may not always be possible, depending on the
needs of the host clients. Multiple daemons can still provide the services
needed with a different configuration strategy that spreads across multiple
Apache installs. A notable configuration parameter is the httpd.conf
Listen directive, which defines the IP address for each httpd daemon.

When several different daemons start, only the configuration files (and
the log and pid files they point to) need to be different. The same binary

84 Chapter 2

System Administration 85

could be used to start each one with an -f directive to specify the config-
uration file.

Take the following considerations into account before running more
than one daemon.

Additional resources will be necessary for each site the user hosts as
each will have a separate httpd daemon that requires system
resources. Minimize the impact by using the same binary file for all
daemons and specifying different httpd.conf files with the -f com-
mand-line option.

Complexity will increase as each daemon requires a complete Apache
directory tree for its hosted site, including httpd.conf and possi-
bly other configuration files. Set-up also involves making sure all
path references point to the proper trees for each daemon that will run.

Using multiple daemons is preferable when sites require a more
secure implementation because the administrator can give each
httpd process and directory tree access rights that are specific to a
hosted site. For example, the single daemon method requires that all
Webmasters share a common httpd.conf file; the multiple daemon
method gives each hosted site its own files. Use of the Include direc-
tive to bring a different virtual host container for each site into
httpd.conf could provide similar protection.

Configuration
With the single daemon method, the user can control almost everything
within one file, httpd.conf. httpd.conf is still going to be the focus of
the major settings; however, now there is one for each daemon.

The only new ground to cover is the Listen directive. Every host that
will have its own daemon will require an IP address. The address can be an
IP alias or any valid Internet address. Assuming the paths are set correctly
(they will be if you installed from source), the rest is essentially the same as
a stand-alone server. Table 2.2 is a quick review of the important directives
that each host needs.

As with a stand-alone server, Apache must be started with a script that is
provided within the Apache directory tree. Each host should have its script
invoked before it can serve content. Provide the path to the startup script
with the desired option (start, stop, restart). The following has been

taken from a session where both example hosts have been started on our
test server:

/www/host1/bin/apachectl start

/www/host1/bin/apachectl start: httpd started

/www/host2/bin/apachectl start

/www/host2/bin/apachectl start: httpd started

Start each host manually as outlined previously or direct the hosts to
start at system boot by placing the preceding commands in the preferred
startup script. For example, with Red Hat 6.2, the /etc/rc.d/rc.local
file would be a suitable place.

Running Multiple Daemons

Adding a daemon will require a certain configuration overhead beyond
that required for adding a virtual server. Running multiple daemons
requires a complete set of directories for each host (including Web pages,
logs, and configuration files). All directories could be placed in a site adja-
cent to each other in the same Apache directory; they could end up in the

86 Chapter 2

Table 2.2 Configuration Directives

Listen Regular or aliased IP address for the host

ServerRoot Base directory of each host’s Apache tree, including
configuration files and such

ServerAdmin Admin-email@address.com (Error messages from the server
and visitor questions/comments will be directed to the
specified mailbox.)

ServerName Defines the domain name of the host

DocumentRoot Location for the content of each host

ErrorLog Directory for the error logs

CustomLog The day-to-day logs regarding files served and clients who
access the host

System Administration 87

home directory of the site’s owner. Log files and configuration files could
be in the same directories and distinguished by file names. Consider using
a separate partition for each user’s log files, data files, and content directo-
ries so that one user cannot fill up all available space and frustrate the other
users. Choice of configuration depends on the needs of the site and the
relationship between site owners.

To create the file structure necessary to run multiple daemons, start with
the directory tree from an initial Apache installation; duplicate the config-
uration directory and the initial documents directory, creating a distinctive
name for the new server. Use cp -Rp to perform the copy recursively and
preserve file ownership and attributes. At this point, change ownership of
the directories to a different user if necessary. Edit httpd.conf, defining
different values for items that need to be different. Be sure that the Pid-
File directive and log locations are different and that the log directory
exists (multiple daemons can share the same log directory if they have dif-
ferent log file names). Do not forget to set the ServerName directive to the
name of the new server. Usually, there should be different locations for the
document directories. Any read-only directories can be shared if appropri-
ate, such as the icons location and possibly cgi-bin, depending on how
closely related the sites are. Certainly, at least one of the BindAddress (or
Listen) or Port directives will have to be edited to differentiate the sites.
Read the entire httpd.conf file for detailed descriptions of each direc-
tive. This will help discover other settings that need to be changed or kept
the same on the site.

Set permissions for the contents of each Apache directory tree that suit
the needs specific to a given site. This may mean creating specific users and
groups for each host or any number of configurations that will be very spe-
cific for a given location. The important thing is to determine who needs
access to each part of a host’s directory tree and then create users, groups,
and permissions that reflect those needs. Remember to distinguish
between the limited user/group that owns the server process and the real
users who will be editing the Web directory tree.

Multiple Daemon Verification

Each daemon can be accessed via its IP address, so the verification method
is identical to that which was used for IP-based hosting.

All daemons need to be running; this requires that a startup script be
invoked for each daemon.

If problems are encountered, do the following:

■■ Check if there is an alias for each host.
■■ Invoke ifconfig -a and see if the correct interfaces are present.
■■ Check that the BindAddress directive has been defined and corre-

sponds to an alias.

Number of httpd Processes
A server process can be run in one of two modes. Many servers are man-
aged by inetd, a server process (or daemon) that listens for incoming
requests and then starts a new server to match the request. This is the com-
mon way to start such lightweight servers as Telnet and FTP.

inetd is not practical for larger servers, such as Apache, because they
take too much time to start and are called too many times on an active sys-
tem for inetd to be practical. Instead, they run as stand-alone processes
(set option ServerType in httpd.conf to standalone rather than
inetd). This means that a daemon for httpd is started and spawns new
copies of itself (servers), which actually handle the incoming requests.
Each request is handled individually by one copy. So that it will be ready
immediately, the daemon spawns several copies initially (Start-
Servers). Each child process can be set to self-destruct after handling a
certain number of requests (MaxRequestsPerChild) to compensate for
memory leaks in some systems, or the child process can be allowed to run
indefinitely. If the load increases, the daemon spawns more child processes
so that several spares (MinSpareServers) stay in reserve. If the load
decreases and the number of idle child processes exceeds MaxSpare-
Servers, the excess child processes are killed off to free resources. If the
load increases a great deal, the excess clients above MaxClients are
ignored, in order to place a limit on how much of a load Apache places on
the system. Monitor the system load and determine if the number of clients
is anywhere near MaxClients. Be careful that the MaxClients number
is not too low. If anticipating high initial loads, increase StartServers
and the other values.

TI P Use apachect1 fullstatus to help monitor usage.

88 Chapter 2

System Administration 89

Alias
The Alias directive is a way of creating the equivalent of symlinks for our
URLs. The syntax is:

Alias fakename "realname"

If fakename is /graphics/ the server will require the trailing slash
before it can be found.

For example, http://localhost/graphics will return an error.

CGI Scripts
CGI is a stand-alone process that is forked by Apache. CGI can do what-
ever the server operating system will let it do. It is launched by the user
that Apache runs under, but if it has the suid or sgid set, it will give
those permissions, too; therefore, CGI can be a dangerous process.

The worst-case scenario is that .cgi is activated for the whole server, and
someone creates a .cgi file somewhere in the home directory or the Web
directory. That person can then pull up that URL in a Web browser and exe-
cute the script. But, if the user can create a .cgi file in the home directory,
then the user can probably create one in the main cgi-bin directory as
well, and there is the original problem. Regardless, by the time the errant
.cgi file is found, it is likely that the script will have already run. In the
end, limiting .cgi to just one directory does not help security significantly,
but it may make it easier for the administrator to discover breaches.

The following are a couple of directives for enabling CGI scripts.

ScriptAlias Directive

ScriptAlias works just like Alias, only it marks the target directory as
containing CGI scripts. So, if assuming the following:

ScriptAlias /cgi-bin/ /usr/local/my_dir/cgi-bin/

then the URL http://localhost/cgi-bin/my_cgi.cgi will execute my_cgi
.cgi if it exists in:

/usr/local/my_dir/cgi-bin

AddHandler Directive

AddHandler maps a file extension to a given handler. To apply the
AddHandler CGI script to the extension .cgi, type:

AddHandler cgi-script .cgi

How to Configure CGI
Apache can be asked to enable CGI in two different ways:

■■ All Web pages referenced within a certain directory are scripts, i.e.
/cgi-bin/.

■■ All Web pages with a certain extension are scripts, i.e. .cgi.

These two means can be mixed and matched to a fine degree within dif-
ferent directories, but each level of detail adds processing overhead to the
Apache server.

Regardless of Apache’s configuration, CGI scripts must be executables
and properly marked as such (i.e., chmod +x). Apache must also be told
to reread its configuration file (with the HUP signal) for these changes to
take effect.

Enable within Certain Directories

The first and perhaps most common method of enabling CGI is to turn it
on for all files in a certain directory. Apache can be told, for example, that
all files in the /home/httpd/cgi-bin directory are CGI scripts and that
these can be executed by calling them with a /cgi-bin/ prefix. The fol-
lowing line, added to Apache’s httpd.conf file, accomplishes this:

ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

<Directory /usr/local/apache/cgi-bin>

AllowOverride None

Options None

Order allow,deny

Allow from all

</Directory>

90 Chapter 2

System Administration 91

Enable within Document Root
for Certain Mime Types

A single line added to httpd.conf tells Apache that all scripts with a
.cgi extension are CGI scripts.

AddHandler cgi-script .cgi

Apache Initialization
When Apache starts up, it begins as root reading the
/etc/apache/httpd.conf file. It opens up the log files and then
launches a number of child processes, as defined by the StartServers
directive in the httpd.conf file. These child processes run as the user and
group defined by the User and Group directives in the httpd.conf file.
This can be seen by starting the Apache server and typing:

root@foo apache $ ps -ef | grep httpd

This script returns the following:

Owner PID PPID

root10185 1 0 09:31:14 ? 0:01 /usr/apache/bin/httpd

www-data 10189 10185 0 09:31:15 ? 0:00 /usr/apache/bin/httpd

www-data 10186 10185 0 09:31:15 ? 0:00 /usr/apache/bin/httpd

www-data 10196 10185 0 09:31:45 ? 0:00 /usr/apache/bin/httpd

www-data 10188 10185 0 09:31:15 ? 0:00 /usr/apache/bin/httpd

www-data 10190 10185 0 09:31:15 ? 0:00 /usr/apache/bin/httpd

Process ID 10185 is running as root; this is known as the Apache parent
process. The StartServers directive is set to 5 in the httpd.conf file,
and thus we see five other httpd processes running as www-data. Their
parent process ID is 10185, the Apache parent process.

Changing the httpd.conf file makes it necessary to tell Apache to
reread it by stopping and restarting the server. This is accomplished by
sending Apache a signal asking it to do so. There are two methods for
doing this:

restart. Restarts every process immediately.
graceful. Allows current requests to complete before restarting the

server.

A graceful restart is generally preferred, as it avoids disrupting users.
You can use the /usr/apache/ bin/apachectl tool to do this, as
shown here:

root@foo apache $ bin/apachectl graceful

Following is the returned process listing:

Owner PID PPID

root10185 1 2 09:31:14 ? 0:01 /usr/apache/bin/httpd

www-data 10230 10185 1 09:41:27 ? 0:00 /usr/apache/bin/httpd

www-data 10233 10185 1 09:41:27 ? 0:00 /usr/apache/bin/httpd

www-data 10231 10185 1 09:41:27 ? 0:00 /usr/apache/bin/httpd

www-data 10232 10185 1 09:41:27 ? 0:00 /usr/apache/bin/httpd

www-data 10229 10185 1 09:41:27 ? 0:00 /usr/apache/bin/httpd

The previous child processes have gone away, and the parent process
has launched a new set of children.

Modules are called once to initialize themselves and then again for each
configuration directive. All of their configuration is built into memory at
startup and never changed again. Modules attach their configurations to a
tree of directories and locations held in memory, mirroring the <Direc-
tory> and <Location> entries in the configuration file. Modules are
also called back as each child process starts and stops.

There are four command-line options to bin/httpd that are particu-
larly useful when dealing with modules.

The first is -t, which asks Apache to check that the configuration is all right.

root@foo apache $ bin/httpd -t

Syntax OK

root@foo apache $

This will catch syntax errors and contradictions in the file. The
apachectl script runs this before trying to restart the Web server, and
ensures that it will not shut down the server and be unable to restart it.

The second option, -l, will show a list of modules currently compiled
into the server.

92 Chapter 2

System Administration 93

root@foo apache $ bin/httpd -l

Compiled-in modules:

http_core.c

mod_env.c

mod_log_config.c

mod_mime.c

mod_negotiation.c

mod_status.c

mod_include.c

mod_autoindex.c

mod_dir.c

mod_cgi.c

mod_asis.c

mod_imap.c

mod_actions.c

mod_userdir.c

mod_alias.c

mod_access.c

mod_auth.c

mod_so.c

mod_setenvif.c

root@foo apache $

NOTE The -l argument shows only the compiled modules and not the
dynamically loaded modules.

The -L option shows the configuration directives they define; the -h
option shows a short summary of available command-line options.

Log Files
There are a number of different log files ready when Apache starts, as well
as ways to configure new log files for an individual Apache install. Utiliz-
ing log files, which may seem daunting at first, will provide invaluable
information to the log-savvy administrator, whenever anything goes
wrong (or right) with an Apache install, configuration, and use.

/var/apache/logs/access_log

Apache adds a line to this log file for every request it receives. By default,
entries are similar to the following:

192.168.1.1 - - [05/May/2000:12:32:52 -0700] "GET / HTTP/1.0" 200 1622

This is known as Common Log Format (CLF).

The fields are as follows:

host ident authuser date request status bytes.

If no information exists, the log shows a hyphen (-) in its place.

host

This is the IP address the request came from. Apache can automatically do
a reverse look-up on each IP and fill in the actual host name here. To enable
this, edit the httpd.conf file and turn on the HostnameLookups direc-
tive. Type:

HostnameLookups On

DNS look-ups tend to be very slow, so this feature should not be acti-
vated. If actual host names must be tracked for traffic analysis purposes, do
the DNS look-ups at log analysis time. Most popular log analysis tools
have an option to resolve IP addresses.

ident

Apache can do an identd check (see RFC 1413) on the incoming HTTP
connection. An identd check is an attempt to determine the identity of a
user of a particular TCP connection. To turn on this feature, edit the
httpd.conf file, and add:

IdentityCheck On

IdentityCheck requires that the client machine run identd if it is to
work.

NOTE identd checks can be extremely slow, so do not use this feature on a
busy Web server. identd checks can also be faked, so the information should
not be explicitly trusted.

authuser

If the requested document requires access authentication, then the authen-
ticated user ID is placed in this field.

94 Chapter 2

System Administration 95

date

This field contains the date and time the request was initiated. The format
is as follows:

05/May/2000:12:08:19 -0700

request

The actual HTTP request that the client sent is enclosed in quotes.

status

This field contains the three-digit HTTP status code returned to the client
from Apache. The most common codes are 200, 202, 301, 302, 400, 403, and
404.

bytes

This is the number of bytes in the response sent back to the client, not
including the response headers.

Log File Formats
The actual log file format can be changed. Most log analysis tools under-
stand the default CLF format, but they may also support other formats.
Apache allows customization of log file formats using the LogFormat and
CustomLog httpd.conf directives.

To use the CLF format, type the following in the httpd.conf file:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /var/apache/logs/access_log common

The LogFormat directive defines a format and assigns it a name. In this
case, it is named common. Then the CustomLog directive tells Apache that
the /var/apache/logs/access_log file is in the common format.

Another popular format is the combined log format, which includes the
referring URL and the browser type in each request.

To use the combined log format, modify the LogFormat line:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

Design Your Own Log Files Format

Table 2.3 shows log format modifiers. The listed commands can be used to
customize log format files.

http://httpd.apache.org/docs/mod/mod_log_config.html

The '...' portion in each of these arguments can be nothing, as in %a,
or it can be a list of response HTTP status codes on which this modifier
should be invoked. For example:

%400,501{User-agent}i

This would log the type of browser that sent a strange HTTP request. If
the HTTP status code for the request is not 400 or 501, a hyphen (-) is placed
in the log file in this modifier’s position.

/var/apache/logs/error_log

This file contains a log of Apache errors. A typical line that is always logged
on server startup is this one:

[Fri May 5 12:08:08 2000] [notice] Apache/1.3.14 (Unix) mod_perl/1.21 configured --

resuming normal operations

Once the server restarts, the configured logging level takes effect. This
logging level is set using the LogLevel directive in the httpd.conf file:

LogLevel warn

Table 2.4 gives the meaning of various log levels.

For example, when the log level is set to warn, all message types from
the warn level and above are shown. Setting the log level to warn means
that emerg, alert, crit, and error messages are also sent.

96 Chapter 2

System Administration 97

Table 2.3 Available Log Format Modifiers

COMMAND DESCRIPTION

%ºa Remote IP address.

%ºA Local IP address.

%ºB Bytes sent excluding HTTP headers.

%ºb Bytes sent excluding HTTP headers. This modifier is in CLF format,
which means you see a “-“ rather than a 0 when no bytes are sent

%º{FOOBAR}e The value of the environment variable named FOOBAR.

%ºf File name.

%ºh Remote host.

%ºH Request protocol.

%º{foobar}i The contents of Foobar’s header line(s) in the request sent to the
server.

%ºl Remote logname from identd if supplied.

%ºm Request method.

%º{Foobar}n The contents of note “Foobar” from another Apache module.

%º{Foobar}o Contents of Foobar: header line(s) in the server’s reply.

%ºp Canonical port of the server serving the request.

%ºP Process ID of the child that serviced the request.

%ºq The query string (prepended with a ? if a query string exists;
otherwise, an empty string).

%ºr First line of request.

%ºs Status. For requests that got internally redirected, this is the status
of the original request – use %…>s for the last request.

%ºt Time in common log format time, which is standard English format.

%º{format}t Time in the form given by format, which should be in strftime(3)
format; potentially localized.

%ºT The time taken to serve the request in seconds.

%ºu Remote user (from auth); note it may be bogus if return status
(%s) is 401.

%ºU URL path the client requested.

%ºv Canonical ServerName of the server serving the request.

%ºV The server name according to the UseCanonicalName setting.

http://httpd.apache.org/docs/mod/mod_log_config.html

Shells and Commands

Almost any complex program has smaller programs that will run along-
side it to provide information about how well (or poorly) the program is
running, which resources the program is using, who is using the program,
and so forth. The following sections will discuss a few programs to help the
Apache administrator with tuning their Apache install.

Benchmarking
Benchmarking is the art of running a program and testing the program for
faults, bugs, speed, efficiency, and more. In this section, benchmarking pro-
grams will be discussed, and some examples will be given of useful bench-
marking scenarios and programs.

98 Chapter 2

Table 2.4 Logging Levels––Meanings and Examples

LOG LEVEL DESCRIPTION MESSAGE DISPLAYED

emerg Emergencies—system “Child cannot open lock file. Exiting.”
is unusable

alert Action must be taken “getpwuid: couldn’t determine user name
immediately from uid”

crit Critical conditions “socket: Failed to get a socket exiting child”

error Error conditions “Premature end of script headers”

warn Warning conditions “(child process 1234 did not exit) sending
another SIGHUP”

notice Normal but significant “httpd: caught SIGBUS attempting to dump
conditions core in…”

info Informational “Server seems busy (you may need to
increase StartServersor
Min/MaxSpareServer)…”

debug Debug-level messages “Opening config file…”

http://apache.org/docs/mod/core.html

System Administration 99

ab

Apache comes with a benchmarking program called ab (Apache bench). It
will be in bin within the main Apache directory if it has been installed
from source. Although it is difficult to simulate a real-world situation, ab
can put a heavy load on Apache and the underlying Linux system.

The following is the syntax for ab:

ab options http://hostname:port/path

It ends up looking something like this in operation:

ab -n1000 -c100 http://192.168.1.1:80/htdocs

A number of options allow benchmarks to be tailored to run in various
ways. Some of the main options for use with ab are:

-n (number of requests). This specifies how many times the specified
page should be accessed. It can provide information about the speed
of the server machine and the responsiveness of Apache.

-c (concurrency). This option simulates a number of simultaneous con-
nections. It defaults to 1, but 1,000 or more can be defined. Setting the
-c and the -n options to high numbers can give an approximation of
how the server works under a high load.

-v (verbose). This option prints more troubleshooting information.

Running a benchmark with ab involves starting a server, determining
what page to test, and then invoking the benchmark with the desired
options.

The following example is one of the larger pages in the Apache docu-
mentation that comes with the server:

ab -n1000 -c100 \ http://192.168.1.1/htdocs/manual/directives.html

Server Hostname: 192.168.0.2

Server Port: 80

Document Path: /manual/directives.html

Document Length: 12098 bytes

Concurrency Level: 100

Time taken for tests: 21.435 seconds

Complete requests: 1000

Failed requests: 0

Total transferred: 12346000 bytes

HTML transferred: 12098000 bytes

Requests per second: 46.65

Transfer rate: 575.97 kb/s received

This benchmark was run on a 486 DX2/80 with 64MB of RAM. That
would be an impressive performance if it were actually serving content at
that rate on the Internet. The test was performed locally without any of the
overhead that might occur when running over a slow connection. The
results are further skewed by the fact that ab itself can consume a chunk
of the system resources as it tests the server.

Remember these are rough approximations of what happens in a real-
world situation.

With the benchmark, it may be useful to find out how many connections it
takes before the machine starts swapping. Then add more RAM accordingly.
If a user is running dynamic content and needs to check how well a new
script performs under load, this may indicate if it could become a bottleneck.

System Utilities

Some system utilities will help the Apache administrator perform his or
her job well, with a minimum of headaches and complications. Utilities
exist for helping a user (or administrator) write CGI scripts, analyze logs,
and test Apache performance. This section presents an array of different
utilities available for the Apache administrator.

Creating CGI Scripts
After configuring for CGI and reloading, Apache is ready to start serving
CGI scripts. Several standard CGI scripts come with Apache, usually con-
tained in the /home/httpd/cgi-bin directory.

Content of CGI Output

One of the most important things to remember when writing CGI scripts is
that they must produce not only the content of the Web page, but the head-
ers as well. Although a Web page can be as simple as the following:

<html><head>

<title>My Web Page</title></head>

<body><h1>My Web Page</h1></body>

</html>

100 Chapter 2

System Administration 101

the Web client really receives this:

HTTP/1.1 200 OK Date: Wed, 20 Dec 2000 23:41:38 GMT Server: Apache/1.3.14 (Unix)

mod_perl/1.21 PHP/4.0.11 X-Powered-By: PHP/4.0.11 Connection: close Content-Type:

text/html

<html><head>

<title>My Web Page</title></head>

<body><h1>My Web Page</h1></body>

</html>

Apache typically adds the header, which consists of all the lines of text
before the HTML, when it serves a static Web page. CGI scripts must pro-
vide their own headers. At minimum, they must provide a Content-
Type line. A CGI script that wants to produce a simple Hello World! must
actually produce:

Content-type: text/plain

Hello World!

Failure to add proper headers is a common mistake of new CGI pro-
grammers. Also, there absolutely must be a blank line between the Con-
tent-Type line and the Hello World! line.

Example CGI Scripts

The following scripts demonstrate some of the basics of CGI program-
ming. They progress from extremely simple to mildly involved. Although
they use the bash shell to serve their content, they could be written in any
language that Linux executes, as long as the scripts produce exactly the
same output.

Hello World!

The following shell script produces a simple Hello World! on the
screen:

#!/bin/sh

helloworld.txt.sh -- write Hello World as a CGI script, in text.

echo Content-type: text/plain

echo

echo Hello, World!

Because the Content-Type was text/plain, the script was produced in
plain text, as shown in Figure 2.5. A common scripting mistake is to forget
to leave NO space after the end of the text/plain line and have the second
echo on a separate line.

Here is the same script, changed to HTML and with markup added (see
Figure 2.6):

#!/bin/sh

helloworld.html.sh -- write Hello World as a CGI script, in HTML.

echo content-type: text/html

echo '<head><title>Hello, World!</title></head>'

echo '<body bgcolor="#FFFFFF"><h1>Hello, World!</h1></body></html>'

NOTE The quotes around the text in this example are there for a reason: the
comma (,) and exclamation point (!) characters are reserved characters in shell
parlance and would cause confusion if they were not quoted.

Server Environment

Just as a normal process inherits the environment from its parent, a shell
script inherits the environment from Apache. It also receives several other
variables. Use the set command to show this:

#!/bin/sh

set.sh - show the environment in a CGI script.

echo Content-type: text/plain

echo

set

102 Chapter 2

Figure 2.5 A simple, plain-text “Hello, World!” CGI script in plain text.

System Administration 103

Many of these variables are useful in determining what kind of output is
sent back to the browser. This information is also very useful for a cracker
trying to break into a Web server; consequently, this is not a script to leave
on a Web server once it goes into production.

Form Handler

Many times a CGI script needs input data from the browser to determine
what type of information to send back; for instance, a Web mail client
would need to know the username of the person for which it displays mail.

Two common methods of passing data to CGI forms exist: the GET
method and the POST method.

The GET method sends data after a question mark on the request URI,
such as www.test.com/cgi-bin/test?abcd. The script named test, in the
cgi-bin directory of www.test.com was given the data abcd.

The GET method is used in HTML input forms, when the type is not
specified or when the type is GET. Because the information is passed in the
URL, it can be keyed into a browser by hand, without accessing a Web page
with an <INPUT> tag. The GET method also typically has a limit of 1,024
characters, and the data is URL encoded (spaces are changed to pluses,

Figure 2.6 A simple, HTML “Hello, World!” CGI script in HTML.

some characters are changed to their hexadecimal representation, and so
on). The data is entered in the variable QUERY_STRING, which becomes
part of the CGI script’s environment.

The POST method, on the other hand, gives data directly to the Web server.
The URL requested by the browser does not have a question mark (?)
appended to it, nor is the data sent limited to 1,024 characters. The data is
encoded in URL form, but Apache decodes it before sending it to the CGI pro-
gram. The CGI script must read the CONTENT_LENGTH environment variable
to determine the length of the incoming data, as no EOF is sent on this stream.

Consider the following CGI script:

#!/bin/sh

hi.sh - say hi to the CGI script

echo Content-type: text/plain

echo

if ["$QUERY_STRING" = "hi"]; then

echo You said hi!

else

echo You did not say hi!

echo Please say hi.

fi

When called with a $QUERY_STRING of "hi", it will respond with You
said hi!(See Figure 2.7.) Otherwise, it will respond with You did not
say hi. Please say hi. (See Figure 2.8.)

104 Chapter 2

Figure 2.7 Screenshot of CGI script.

System Administration 105

Basic Redirect

Because a CGI script controls the header, it is able to do some things that
are more difficult or impossible to do with just HTML. One common use of
a CGI script is to redirect a user to a different page on a Web server using
the Location header.

The Location header can be used to give the client a different page to
view. It can be either another document on the same server or a different
URL (referencing a different server) altogether.

In the first example, a Web browser requests an old URL. A CGI script
gives the new, moved page back to the client. The server acts as if the client
had requested the new script, and the client never knows the difference
because it still holds the old URL in its window.

#!/bin/sh

old2new.sh - redirect from old CGI script to new CGI script

redirect to http://my.server.com/cgi-bin/new.sh

echo Location: /cgi-bin/new.sh

echo

Figure 2.8 Screenshot of CGI script without a $QUERY_STRING of “hi”.

The second example is a redirect to another server. In this case, the Web
browser does get a response from the original server but is told to immedi-
ately view a page on a different server:

#!/bin/sh

old2new2.sh - redirect from old server to new server via CGI

redirect to http://someone.elses.server.com/cgi-bin/new.sh

echo Location: http://someone.elses.server.com/cgi-bin/new.sh

echo

A blank echo command is necessary even when the header contains a
simple location directive.

While Apache’s CGI implementation knows the difference between a
local and remote redirect, the client browser does not. When working in a
non-CGI environment, such as PHP, or with a different Web server, how-
ever, do not rely on the server passing the right header.

The basic redirect shown previously does not give the user anything in the
browser window while the redirect is taking place. It is possible to return a
page, give the user a few seconds to read it, and then redirect the user to a
new page. This is through a Netscape Refresh HTTP header extension.

As a Netscape extension, this method is widely used but not accepted by
the World Wide Web Consortium. Although most Web browsers will
behave properly when seeing the Netscape Refresh HTTP header, some
may not redirect but will stay on the original page.

A Refresh tag is similar to the following:

Refresh: 5;URL=http://my.new.server.com/

In this case, the Web browser loads http://my.new.server.com/ after
five seconds. The length can be any number of seconds desired. Here is an
example:

#!/bin/sh

redirect.sh - redirect via CGI script a new server

echo Content-type: text/plain

echo "Refresh: 5;URL=http://my.new.server.com/"

echo

echo redirecting in 5 seconds...

106 Chapter 2

System Administration 107

NOTE Refresh line was quoted to avoid letting the shell use the semicolon
as a command separator.

Performance Monitoring
Apache comes with a pair of tools in module form that can keep track of
the server’s performance and show the server’s configuration.

mod_status

The first tool, called mod_status, can provide a Web-accessible method
for seeing what the server is doing.

To enable mod_status, load the module and give it scope in
httpd.conf:

LoadModule status_module modules/mod_status.so

...

AddModule mod_status.c

...

ExtendedStatus On

<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from localhost

</Location>

This set of directives creates a Web page (at the location specified by the
Location tag) that contains information about the server. It may be a
good idea to make this password protected to prevent the rest of the world
from monitoring the server’s status. In the preceding directives, access is
allowed only to the server status from local machines. The following is the
output of mod_status generated during a benchmarking test:

Apache Server Status for localhost.localdomain

Server Version: Apache/1.3.14 (Unix)

Server Built: Dec 17 2000 21:48:11

Current Time: Wednesday, 26-Dec-2000 11:44:46 CST

Restart Time: Wednesday, 26-Dec-2000 11:39:41 CST

Parent Server Generation: 1

Server uptime: 5 minutes 5 seconds

Total accesses: 2993 - Total Traffic: 35.0 MB

CPU Usage: u20 s40.79 cu0 cs0 - 19.9% CPU load

9.81 requests/sec - 117.5 kB/second - 12.0 kB/request

131 requests currently being processed, 7 idle servers

NOTE ExtendedStatus adds more load to Apache, so unless you are very
curious about performance, it is best to leave ExtendedStatus off.

Using mod_status is a convenient way to monitor server performance,
especially if there are several that need to be watched. Bookmark them, and
check as needed.

NOTE If mod_status is loaded (or compiled into the server), these directives
can be issued from any directory through an .htaccess file.

Because the output of mod_status may contain information that
should not be available to the public, its location should be protected. One
possible way is as follows:

<Location /server-status>

SetHandler server-status

AuthType Basic

AuthUserFile /etc/.htpasswd-status

Require Valid-user

</Location>

This configuration would restrict the page from being seen by anyone
who does not have a valid username and password, as is defined in the
/etc/.htpassed-status file.

Getting the Most Out of mod_status with
ExtendedStatus

When using mod_status and server status, more information can be
obtained by using the ExtendedStatus directive. This directive takes a
value of either On or Off. Having ExtendedStatus turned on results in
a degradation in performance because the server is using resources for cap-
turing the data. Unless actively examining the server’s performance and
capacity, the user should leave this option off.

108 Chapter 2

System Administration 109

server-info

For real-time updates on how a server is configured, the server-info han-
dler supplied in mod_info generates a page that reports on the server’s
configuration. Instead of showing performance data, the page displays
information about how the server is configured: what the loaded modules
are, what directives they support, and the actual settings of the directives
(under some circumstances). Like the information from server-status, this
report should be secured from the public eye.

Add these directives to http.conf:

LoadModule info_module modules/mod_info.so

...

AddModule mod_info.c

...

<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from localhost

</Location>

Similar to mod_status, mod_info creates a Web page (at the location
specified by the Location tag) that shows a detailed listing of the instal-
lation, including all installed modules and configuration file directives.
Because this module reads server information at run time, any changes
made to the configuration files since the last server restart will not show.

Disable modules that will not be used. This will make your computer
much faster.

TI P It is a good idea to restrict access to the server-info page for security
reasons. Remember that if mod_info is compiled into the server, it can be used
from any configuration file, including the per-directory .htaccess files. You may
want to load the module dynamically, making it available only when it is needed.

Some Good Log Analysis Tools
Once the logs are configured, the user may wonder how to read them.
There are several tools available to help view and interpret Apache logs.

Webalizer

Webalizer (www.mrunix.net/webalizer) is a quick, free, multilingual ana-
lyzer. It supports CLF, as well as variations of Combined Logfile Format,
wu-ftp xferlog, and squid log formats. Configuration happens from the
command line or from configuration files.

Analog

Analog (www.analog.cx) is a free, Web-configurable logfile analyzer that is
available on many platforms and in many languages. Analog has many
supporting tools available to affect output, including Report Magic for
Analog (www.reportmagic.com).

Wusage

Wusage (www.boutell.com/wusage) is a shareware log analyzer available
for many platforms. It exhibits optional Web-based administration, among
other features.

Summary

Summary (http://summary.net) is another piece of shareware. It is avail-
able on multiple platforms and supports multiple log file formats.

logresolve

There is also a simple script that comes with Apache called logresolve.
To turn IP addresses in an access_log file into resolved host names, sim-
ply run it as shown:

logresolve <access_log >access_log.new

Understanding how networks function is important for optimizing your
Apache server. The next chapter will discuss Apache’s relationship with
network protocols.

110 Chapter 2

111

Objectives

■■ Define Apache’s network protocols.
■■ List and define Apache’s Internet-related features.
■■ List the Apache Web site hosting methods.
■■ Define virtual hosting.
■■ Define the mod_rewrite module.
■■ List the mod_rewrite associated variables.

Theory of Operation

In this section of the networking chapter, Apache’s use of TCP/IP, HTTP,
and other protocols will be discussed. These are important for any Apache
administrator to understand because of the inherent purpose of Apache: to
serve data over a network.

Networking

C H A P T E R

3

What Is TCP/IP and How Does
Apache Use It?
In a Transmission Control Protocol/Internet Protocol (TCP/IP) network,
every computer gets a unique IP address. TCP/IP is the main protocol
suite that allows all the computers on the Internet to communicate.

Rather than remembering the number of every computer you want to
connect to on the Internet, an easy-to-remember name is used to connect to
Web sites. This name-to-number translation is possible with the Domain
Name System (DNS), a group of distributed servers that exist to translate
the string of numbers (such as IP address 64.208.42.41) into names (such as
www.apache.org). Every time the name of a Web site is entered, the name
must be resolved to an IP address through a look-up on a DNS server to
determine where to send the request.

Apache relies on TCP/IP for many things, not the least of which is to
communicate with Internet browsers. Web browsers and servers use a dif-
ferent language that primarily depends on TCP/IP as a transport.
Although other transport protocols can be used, TCP/IP port 80 is typi-
cally used for Internet Web servers to carry the request/response protocol
known as HTTP.

HTTP

Hyper Text Transfer Protocol (HTTP) is the protocol that browsers and
servers use to submit and serve requests. Uniform Resource Identifier
(URI), Uniform Resource Location (URL), and Uniform Resource Name
(URN) are all part of the communication between clients and servers using
HTTP to communicate. Each request/response is preceded by a bit of
information about the request/response that is contained in a header.

Headers

The client and the server know they are actually dealing with hypertext
when they transfer information back and forth because, when they send
data, they start their transmissions with headers.

A header is a piece of information that tells the client or the server what
kind of information it is receiving. Thanks to headers, the Web browser
usually knows the difference between text files, HTML files, JPEG images,
and so forth.

112 Chapter 3

Networking 113

Apache makes significant use of headers for everything from file trans-
lation to Web browser redirection. Because headers indicate what kind of
Web browser is hitting the Web site, Apache can do specific things based on
the browser information contained in the header. Headers will be dis-
cussed in greater detail later in this book.

What Is HTTP?
Hyper Text Transfer Protocol (HTTP) is an acronym that makes more sense
when broken down into its components. Hypertext is the format of the
content viewed in a Web browser. The following is an example of a hyper-
text document.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

<html lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">

<title>Untitled</title>

</head>

<body bgcolor="#FFFFFF">

<h2 align="center">

Welcome to hypertext. Enjoy your stay.

</h2>

</body>

</html>

The transfer protocol is the means by which Web servers and clients
share hypertext. There is currently a revolution developing in HTTP.
HTTP/1.1 is the version that is slowly taking over the Web; it will be dis-
cussed in further detail in the next section.

When a Web browser (a client) is directed at a Web site (a server), it
makes a request for information. The server receives that request and
through a series of phases decides what to do with it. If the server feels
inclined, it will send a response back to the client, which the client then ren-
ders as content.

HTTP/1.1

HTTP/1.1 has many features above the 1.0 standard. Web browsers are
beginning to support the new protocol. Apache is in full compliance with

HTTP/1.1, although it does not implement all features. Luckily there are
modules to make up for many HTTP/1.1 features that Apache does not
support at its core.

BrowserMatch

Depending on the Web browser hitting a site, Apache can react in different
ways, using the BrowserMatch directive. BrowserMatch goes beyond
clients like Netscape and Opera to include clients such as RealPlayer.
For example:

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

BrowserMatch "RealPlayer 4\.0" force-response-1.0

BrowserMatch "Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

Expirations

mod_expires is a module that allows Apache to dictate when it should
refresh a cached document. Expirations are useful to make sure the client is
not viewing cached data when there is a more recent version available.
Expirations also serve the purpose of caching information that will not
change for a long time, such as images. mod_expires controls the setting
of the Expires header in server responses to control a client’s use of cached
files.

Keep-Alive

Keep-Alive is actually an HTTP/1.0 term for what is called persistent con-
nections in 1.1. Persistent connections create the possibility of multiple
requests to occur over one TCP connection. Persistent connections can
reduce latency in serving HTML documents quite substantially, especially
on Web sites with many images. Some Web browsers support Keep-Alive,
and others (like Internet Explorer 4.0b2) have a broken implementation.

To support Keep-Alive, turn it on in httpd.conf with the following
command:

KeepAlive On

For more information visit http://httpd.apache.org/docs/mod/core
.html#keepalive.

114 Chapter 3

Networking 115

Host Header Request

Unlike HTTP/1.0, HTTP/1.1 requires a host header in the client’s request,
even if it is blank. The following is an example of a 1.1 header that includes
the host header:

GET /~e8926506/siberia.htm HTTP/1.1

Host: stud1.tuwien.ac.at

Chunking

HTTP/1.1 chunks data as it sends it back to the client who requested it.
According to HTTP/1.1’s RFC, chunking means the following:

The...encoding modifies the body of a message in order to transfer it as a series of
chunks, each with its own size indicator, followed by an OPTIONAL trailer con-
taining entity-header fields.

Further, chunking “allows dynamically produced content to be trans-
ferred along with the information necessary for the recipient to verify that
it has received the full message.”

So what does that mean? Chunking came about as a way to get around
the need for a server to know the size of a response it is sending. If a Web
server is to use persistent connections with HTTP/1.1, it must know the
Content-Length of a response it sends back to a client. Because of the
dynamic content created by CGIs and the like, Content-Length of a given
page became variable and impossible to know before hand. Chunking was
the answer. The server grabs a small bit of the dynamic output, determines
its length, and sends it out to the client. Then it goes back for more.

As an additional advantage, once the server has sent all of a chunk-
encoded document, it has the option to send additional response headers.
Because the server is chunking all the data anyway, these headers can be
dynamic, just like the content.

Multiple Hosts
Apache has three separate ways to host many sites on a single machine:

■■ Run multiple instances of the httpd daemon.
■■ Use Apache’s IP-based virtual hosting.
■■ Use Apache’s name-based virtual hosting.

These three methods can be used in any combination, but they are sub-
ject to limitations of the operating system. We will examine each method
and offer some insight that will assist in choosing what will work best to
fulfill a location’s hosting requirements. The choice of methods may be lim-
ited by facilities provided by the operating system and hardware of the
host machine. In the instance of name-based virtual hosting, the methods
may be limited depending on whether the intended audience is expected
to be using earlier browsers.

The term virtual hosting refers to the process of running more than one
Web site from a single instance of the Apache Web server daemon. One
machine can appear to be many from the perspective of the Internet; hence,
the hosts contained within are virtual. The virtual host area is a character-
istic of Apache, independent of the host operating system.

At the other end of the spectrum is the extremely busy Web site that
requires several machines to handle its load; many machines appear to be
one site. This is beyond the scope of the course, as it entails more than just
Apache. For most sites that require multiple Web servers, it is best to divide
the pages into different sections. Each section should be on a different server,
each with a different host name such as www.apache.org, dev.apache.org,
and java.apache.org.

The obvious way to run a Web site is to have one machine for each
server. This arrangement is easy to describe and relatively simple to imple-
ment. The first few machines are not difficult. The limited range of sizes of
machines available for any given Web site and any given machine causes
the machine to be too large and sometimes even too small for the Web site.
For moderately sized Web sites, a typical computer could be several times
too large. The benefit of sharing the cost of a computer (including hard-
ware costs, rack space rent, and maintenance costs) among several Web
sites becomes obvious. Allocation of excess capacity on a shared server can
provide a comfortable safety margin for all Web sites hosted from the
server; they are not all likely to have peak usage at the same time.

Base Systems

There are many configuration options for the networking end of Apache.
Whether to use multiple instances of Apache for multiple domains, how
many Apache daemons should be running, and how to employ IP-based or
name-based configurations are decisions that many Apache administrators

116 Chapter 3

Networking 117

will encounter when running Apache. This section will provide informa-
tion and background that is sure to help administrators as they decide how
to use their Apache installation.

Virtual Hosting
When hosting multiple Web sites, users have the option to run a single
stand-alone daemon that will handle all of the hosted sites as virtual sites
or to have a separate daemon for each site. A combination of these methods
will work as well (multiple stand-alone daemons with multiple virtual
servers on each one). The single daemon method consumes fewer system
resources because there is only one master process running.

When a separate daemon is used for each hosted site, each one will con-
sume a share of system resources, but maintenance will be easier. Moving
one of the daemons to a different machine involves only copying it, shut-
ting it down on the first machine, then bringing up the new copy on the
new machine.

Running multiple daemons allows each one to run under a separate
(restricted) user ID, simplifying security management. This eliminates the
need for suExec and secures scripts that cannot use suExec, such as
scripts running under mod_perl and mod_php.

Running multiple daemons on a machine requires additional resources.
Multiple daemons, such as HTTPD, would require more memory, more
CPU time, and additional IP addresses for each daemon. If the machine
does not have the resources to support such demands, consider some of the
other virtual hosting options instead.

Configuring Separate Daemons

To run separate instances of Apache on the same server, a different IP
address is required for each server. Then tell Apache which IP addresses to
listen to with the Listen directive. The following is the syntax for Listen:

Listen <IP Address>:<port>

The Listen directive tells Apache which IP addresses and port number
to listen to for HTTP requests. Each instance of the server should listen to a
different IP address:

Listen 123.456.789.10:11

If a server configuration does not specify which IP address to listen to,
Apache listens to all valid addresses. Hence, when running multiple dae-
mons on the same machine, it is important to specify which address each
daemon should listen to.

Directing the Request to
a Virtual Host
The first step in sharing a machine among multiple Web sites is finding a
means of attaching the Web server to a unique address, which enables a
Web browser and the Web server to find each other. With a system using
Ethernet, this involves plugging another Ethernet card into an expansion
slot and assigning a unique IP address to this new interface. Start another
Web server daemon, and configure it to respond to this new IP address.
This setup works well and has few limitations.

Although adding more Ethernet cards is not overly expensive, the cost of
adding a card for each site may not be justified. The bandwidth of a single
card exceeds the needs of most Web sites by such a margin that the first
card would have been able to handle several Web sites if only there was a
way to share among them. As the user adds more sites to a system, the
number of expansion slots could be depleted before the machine’s capabil-
ities to run additional Web server daemons are exceeded.

Even though there may be times when the user finds the need to add
cards to a machine, obtaining a Web server daemon to distinguish between
requests for several different Web sites could allow several different sites to
be served through a single card on a single machine.

There are two ways to distinguish between requests, IP-based virtual
hosting and name-based virtual hosting.

Single Daemon/Virtual Hosting
This method uses a single instance of the httpd daemon in conjunction
with IP- or name-based hosting to manage things. Consider the basic char-
acteristics of the single daemon method to determine if it is suitable for a
location’s needs:

Using the single-daemon httpd method has the advantage of consum-
ing fewer system resources because there is only one httpd daemon run-
ning. On a busy site, this can make a difference in system load.

118 Chapter 3

Networking 119

Settings may be easier to maintain because some of the configurations
are shared, such as having only one httpd.conf file to edit when making
changes to the daemon’s behavior. The user can add new hosts quickly by
adding a small section in httpd.conf with host-specific information. All
other major settings will be inherited from the directives outside of the
VirtualHost sections. Using the Include directive can allow creation of
separate configuration files for each virtual host.

A potential security/privacy problem arises when using a single dae-
mon. The httpd daemon runs with user permissions that have been
assigned to it. If Webmasters are to be able to access certain content or tai-
lor the server’s behavior to their needs, they must have the permissions to
implement them. Permissions also give them the ability to see or even
change parameters that control the other hosts.

IP-Based Virtual Hosting
If there are many available IP addresses, IP-based virtual hosting is one
option for hosting multiple Web sites. Each host has a unique network
address that allows it to be found on the network. IP-based virtual hosting
is operating system dependent and requires IP aliasing, the assignment of
multiple IP addresses to the same interface.

To set a single NIC up with multiple IP addresses with IP aliases, enable
the feature in the kernel.

IP aliasing should be enabled by default with most distributions. If IP
aliasing has not been enabled, the user will need to recompile the kernel to
enable support for this feature. IP aliasing can be found under Network
Options in the kernel configuration menus.

Use the ifconfig (interface configuration) command to control which
IP addresses are attached to the interfaces on a system. Initially an interface
has a single IP address, determined when the system is first configured.

Issuing the ifconfig command with no arguments displays the cur-
rent status of all interfaces on the system:

ifconfig

eth0 Link encap:Ethernet HWaddr 00:80:C8:14:73:77

inet addr:192.168.1.1 Bcast:192.168.0.255 \ Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 \ Metric:1

RX packets:1849 errors:0 dropped:0 \ overruns:0 frame:0

TX packets:1359 errors:0 dropped:0 \ overruns:0 carrier:0

collisions:0 txqueuelen:100

Interrupt:5 Base address:0x340

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:3924 Metric:1

RX packets:1984 errors:0 dropped:0 \ overruns:0 frame:0

TX packets:1984 errors:0 dropped:0 \ overruns:0 carrier:0

collisions:0 txqueuelen:0

In this example, eth0 is the only Ethernet interface, and it has no
aliases associated with it. (The loopback interface, lo, is not of interest in
this discussion.)

To create an alias, issue the ifconfig command with arguments
describing which interface to alias and the new address:

ifconfig device:aliasnumber address

device

The name of the interface to alias is device.

aliasnumber

Assign an aliasnumber as each new IP address is created.

address

The new IP address is defined when address is entered.

Here is an example of creating a new alias:

ifconfig eth0:0 192.168.1.3

Along with displaying the current configuration with statistics and creat-
ing aliases with new IP addresses, the ifconfig command has a number of
options, including the ability to delete the aliases the user has created. The
user can view a detailed explanation on the man pages. For more detailed
information, see the kernel source Documentation/networking/
alias.txt and the IP-Alias mini-HOWTO.

120 Chapter 3

Networking 121

Each IP address could belong to a different instance of the Web server
daemon, or the Web server could send requests to a different virtual host
based on the IP address.

IP-based hosting does not require a full directory tree for each host, but
the user will want to have directories that contain content, logs, and other
information specific to each host. Creating these directories in an orderly
fashion with names that correspond to their relevant hosts will save time
later, when performing tasks specific to each site.

With the examples that follow, we create a hosts/ directory within the
main Apache tree and branch off from there. At a bare minimum, make a
single directory for DocumentRoot. The user might want to create addi-
tional directories that contain logs for errors and user accesses.

As with name-based hosts, add a section within httpd.conf, which
contains all of the settings that control the behavior of each host. Both types
of virtual hosting can use most directives available for a stand-alone server,
but a minimal configuration requires only a few.

The following section has been added near the bottom of the existing
httpd.conf file and defines two IP-based hosts:

<VirtualHost 192.168.0.3 >

DocumentRoot /www/hosts/ipbased1/htdocs

ServerName www.iptest1.com

</VirtualHost>

<VirtualHost 192.168.0.4 >

DocumentRoot /www/hosts/ipbased2/htdocs

ServerName www.iptest2.com

</VirtualHost>

A set of basic hosts running with the IP method requires just a few para-
meters for each host. Here is a breakdown of the directives that have been
used with the first host in the example configuration.

<VirtualHost 192.168.0.3 >

Each host requires a section within http.conf that contains the configu-
rations specific to that host. The VirtualHost statement is followed by
the IP address that has been aliased for the host. The host will be accessible
at this IP address.

DocumentRoot /www/hosts/ipbased1/htdocs

Within each section, a DocumentRoot needs to be assigned that tells
Apache where the base directory for a host’s html content resides. In these
examples we have branched off from the /www directory and have created
a directory for each host. The user can place them anywhere, as long as
they are defined in each DocumentRoot.

ServerName www.iptest.com

If a host is to have its own domain name associated with its IP address, it
needs to be defined here. We recommend having both an IP address and a
DNS name for each host; without them, unnecessary lookups and reverse
lookups may be done for each connection.

</VirtualHost>

Finally close each section with the virtual host closing statement. This state-
ment is the same for each host. Any directive is permissible in a Virtual-
Host section except those that affect low-level server operations.

Examples of such prohibited directives include the following:

ServerType

User

Group

StartServers

MaxSpareServers

MinSpareServers

MaxRequestsPerChild

BindAddress

PidFile

TypesConfig

ServerRoot

Besides the standard directives, there are two special directives specific
to the VirtualHost section: ServerAlias and ServerPath.

Also, be sure to include configuration for separate log files for each vir-
tual server.

Name-Based Virtual Hosting
Another way to do virtual hosting does not require multiple IPs but uses
the NameVirtualHost directive. Apache listens on one IP address and
serves the Web site based on the Host Header sent by the browser.

122 Chapter 3

Networking 123

The ServerName and ServerAlias directives are critical to identify-
ing the server that the client requests and are necessary for this method.

Name-based virtual hosting requires the Web browser to send a Host
field in the HTTP request header (part of HTTP/1.1, supported by version
2.0 browsers and later). Browsers older than 2.0 should be long retired.

IP addresses are a scarce resource; using the name-based method allows
multiple Web sites to share a single IP address assignment. In the near
future, many sites will be required to renumber their networks to make
more efficient use of limited address space. When that time comes, having
fewer IP addresses to reassign will be much appreciated. We will examine
the IP-based virtual hosting mechanism primarily for historical purposes.

One thing to be aware of with name-based virtual hosts is that if the client
does not send the host header, it will get the first virtual host for that IP
address. There is a workaround available for supporting older browsers that
does not send the host header that uses the ServerPath directive. See the
Apache Virtual Host documentation for more information. This should be
available from the source installation at http://localhost/manual/hosts/
name-based.html.

Example of Virtual Hosting with
One IP Address

The following is a code excerpt from the httpd.conf file used to set up
virtual hosting:

User webuser

Group webgroup

NameVirtualHost 12.34.56.7

Include /etc/httpd/conf/firstwebsite.comf

#firstwebsite.conf file in /etc/httpd/conf

<VirtualHost 12.34.56.7>

ServerName www.firstwebsite.com

ServerAdmin webmaster@firstwebsite.com

DocumentRoot /home/httpd/firstwebsite/

ErrorLog /var/log/httpd/firstwebsite-error_log

CustomLog /var/log/httpd/firstwebsite-access_log common

</VirtualHost>

#secondwebsite.conf file in /etc/httpd/conf

<VirtualHost 12.34.56.7>

ServerName www.secondwebsite.com

ServerAdmin webmaster@secondwebsite.com

DocumentRoot /home/httpd/secondwebsite/

ErrorLog /var/log/httpd/secondwebsite-error_log

CustomLog /var/log/httpd/secondwebsite-access_log common

</VirtualHost>

NOTE The IP addresses of the VirtualHosts need to match that in the
NameVirtualHost directive.

The user can also mix these methods and use port-based virtual hosting
all on the same server. Running multiple instances of the Web server dae-
mon requires each instance to have its own unique IP address.

Examples of Virtual Hosting
Using Mixed Methods

The IP addresses and comments for each of the conf files are as follows:

User nobody

Group nobody

Listen 80

Listen 8080

NameVirtualHost 12.34.56.7

Include /etc/httpd/conf/firstwebsite.conf

Include /etc/httpd/conf/secondwebsite.conf

Include /etc/httpd/conf/thirdwebsite.conf

Include /etc/httpd/conf/fourthwebsite.conf

#firstwebsite.conf file in /etc/httpd/conf

#Since the IP matches that in the NameVirtualHost, this

will use the name-based method

<VirtualHost 12.34.56.7>

ServerName www.firstwebsite.com

ServerAdmin webmaster@firstwebsite.com

DocumentRoot /home/httpd/firstwebsite/

ErrorLog /var/log/httpd/firstwebsite-error_log

CustomLog /var/log/httpd/firstwebsite-access_log common

</VirtualHost>

secondwebsite.conf file in /etc/httpd/conf

Since the IP matches that in the NameVirtualHost, this

will use the name-based method

<VirtualHost 12.34.56.7>

ServerName www.secondwebsite.com

ServerAdmin webmaster@secondwebsite.com

DocumentRoot /home/httpd/secondwebsite/

ErrorLog /var/log/httpd/secondwebsite-error_log

CustomLog /var/log/httpd/secondwebsite-access_log common

</VirtualHost>

124 Chapter 3

Networking 125

thirdwebsite.conf file in /etc/httpd/conf

Since this does not match the NameVirtualHost IP it will

use the IP based method.

<VirtualHost 12.34.56.78>

ServerName www.thirdwebsite.com

ServerAdmin webmaster@thirdwebsite.com

DocumentRoot /home/httpd/thirdwebsite/

ErrorLog /var/log/httpd/thirdwebsite-error_log

CustomLog /var/log/httpd/thirdwebsite-access_log common

</VirtualHost>

fourthwebsite.conf file in /etc/httpd/conf

Since this does not match the NameVirtualHost IP it will

use the IP based method. Furthermore, this server will only serve

the requests that come in on port 8080.

<VirtualHost 12.34.56.78:8080>

ServerName www.fourthwebsite.com

ServerAdmin webmaster@fourthwebsite.com

DocumentRoot /home/httpd/fourthwebsite/

ErrorLog /var/log/httpd/fourthwebsite-error_log

CustomLog /var/log/httpd/fourthwebsite-access_log common

</VirtualHost>

NOTE All the virtual servers are listening on both ports except for the fourth
one that is explicitly set to listen only to port 8080. Unfortunately, any port
other than the default (port 80) needs to be explicitly requested by the browser,
so this may have limited usefulness. Having a valid, matching DNS setup is
obviously important, too, but that can be modified by /etc/hosts file to test the
setup without modifying the DNS servers.

Shells and Commands

Sometimes Apache will employ outside programs or modules when con-
fronted with data over a network. These programs can configure incoming
requests and data into formats that Apache understands and can process
efficiently. Several of these programs are presented in this section.

URL Rewriting mod_rewrite
Apache comes with a rule-based rewriting engine that allows changing
URLs after receiving the request; this engine is mod_rewrite. As with
most powerful tools, a complete understanding is required before using it.

mod_rewrite analyzes the URLs it changes in a non-intuitive way.
Studying the API will help users understand Apache’s approach and how

to develop for it correctly. A description of the API is on Apache’s reference
for mod_rewrite.

The Apache mod_rewrite module is very complex, but once a user
understands it, almost any URL can be transformed into another one. The
module uses a rule-based rewriting engine to rewrite requested URLs. This
feature may be found in Apache 1.2 and later. With its powerful URL
manipulation mechanism, the Web server can examine every URL that
arrives to see if it matches any patterns specified by the rewrite rules. If it
finds a match, Apache internally rewrites the URL using the matching rule.
Here, the module operates on full URLs in both a per-server context
(httpd.conf) and a per-directory context (.htaccess). To use
mod_rewrite, add the following line to the configuration file before com-
piling the server:

AddModule modules/standard/mod_rewrite.o

Some examples of mod_rewrite in action follow.

With a proxy, users can make sure it is used only by those desired. A403
Forbidden page can be shown to unwanted users. For instance, users
may want to use the proxy server only for URLs with a host name ending
in .anu.edu.au:

RewriteRule !^proxy:http://[^/]*\.anu\.edu\.au/ - \ [forbidden]

Because mod_rewrite has access to many server variables, it can be
used instead of a CGI or JavaScript to redirect Web browsers based on their
type and version. The following example was adapted from Apache’s URL
Rewriting Guide (the link is provided at the end of this section):

RewriteCond %{HTTP_USER_AGENT} ^Mozilla/3.*

RewriteRule ^/index\.html$ /index.NS.html [L]

RewriteCond %{HTTP_USER_AGENT} ^Lynx/.* [OR]

RewriteCond %{HTTP_USER_AGENT} ^Mozilla/[12].*

RewriteRule ^/index\.html$ /index.20.html [L]

RewriteRule ^/index\.html$ /index.32.html [L]

NOTE The use of RewriteCond is one of the most important directives of
mod_rewrite.

126 Chapter 3

Networking 127

Following is the syntax:

RewriteCond TestString CondPattern [flag]

CondPattern TestString

CondPattern is an extended regular expression that has some additions.
<, >, and = When combined with CondPattern, treat it as a plain string and compare it lex-

ically to TestString.

< Returns true if CondPattern is lexically lower than TestString.

> Returns true if CondPattern is lexically greater than TestString.

= Returns true if CondPattern is lexically equal to TestString.

Put the operator at the beginning of CondPattern, like so:

<CondPattern

Table 3.1 shows some of the options available when using CondPattern.

Table 3.1 Options for CondPattern

OPTION DESCRIPTION

-d Treats TestString as a path name; it tests that TestString exists and
that it is a directory.

-f Treats TestString as a path name; it tests that it exists and that it is a
regular file.

-s Treats TestString as a path name; it makes sure TestString exists and
that its size is greater than zero.

-l Treats TestString as a path name; it tests that it exists and is a
symbolic link.

-F Does not deal with path names but checks if TestString is a valid file.
Checks to see if the file is accessible via all the server’s access
controls for that path.
Uses an internal subrequest for this check; server performance
degrades accordingly.

-U Makes sure TestString is a valid URL and is accessible via the server’s
access controls for that path.
Uses an internal subrequest; server performance lags the more
it is used.

To negate the meaning for any of these tests, prefix them with an excla-
mation mark (!).

CondPattern has two possible sets of flags: nocase | NC and ornext
| OR. The first, nocase | NC, makes the test case-insensitive. TestString,
teststring, and tEStsTrinG all become the same. ornext | OR combines rule
conditions, which allows a user to not rewrite the conditions.

Without OR, the following code:

RewriteCond %{HTTP_USER_AGENT} ^Lynx/.* [OR]

RewriteCond %{HTTP_USER_AGENT} ^Mozilla/[12].*

RewriteRule ^/index\.html$ /index.20.html [L]

would become:

RewriteCond %{HTTP_USER_AGENT} ^Lynx/.*

RewriteRule ^/index\.html$ /index.20.html [L]

RewriteCond %{HTTP_USER_AGENT} ^Mozilla/[12].*

RewriteRule ^/index\.html$ /index.20.html [L]

Other Server Variables

Following is a list of other server variables that can be used with
mod_rewrite.

HTTP HEADERS

HTTP_USER_AGENT

HTTP_REFERER

HTTP_COOKIE

HTTP_FORWARDED

HTTP_HOST

HTTP_PROXY_CONNECTION

HTTP_ACCEPT

CONNECTION AND REQUEST

REMOTE_ADDR

REMOTE_HOST

REMOTE_USER

REMOTE_IDENT

128 Chapter 3

Networking 129

REQUEST_METHOD

SCRIPT_FILENAME

PATH_INFO

QUERY_STRING

AUTH_TYPE

SERVER INTERNALS

DOCUMENT_ROOT

SERVER_ADMIN

SERVER_NAME

SERVER_ADDR

SERVER_PORT

SERVER_PROTOCOL

SERVER_SOFTWARE

SYSTEM VARIABLES

TIME_YEAR

TIME_MON

TIME_DAY

TIME_HOUR

TIME_MIN

TIME_SEC

TIME_WDAY

TIME

SPECIAL VARIABLES

API_VERSION

THE_REQUEST

REQUEST_URI

REQUEST_FILENAME

IS_SUBREQ

To access any environmental variable, use the following syntax:

%{ENV:variable}

where variable is the environmental variable.

Apache looks up the variable through internal structures. If it does not
find it there, it uses getenv() from the Apache server process.

%{HTTP:header}

Use %{HTTP:header} where header is any HTTP MIME-header name
to find the value of that header.

%{LA-U:variable}

If you want to determine the value of a variable that is actually set later in
an API phase, use %{LA-U:variable}. It performs an internal (URL-
based) subrequest and determines the final value of the variable.

%{LA-F:variable}

A synonym of %{LA-U:variable} is %{LA-F:variable}. Rather than
performing a URL-based subrequest, it performs an internal, file name-
based subrequest.

RewriteRule

RewriteRule is the directive that completes the tasks in the preceding
example, and it is used often with mod_rewrite.

The syntax is as follows:

RewriteRule Pattern Substitution [flag]

where Pattern is a POSIX regular expression in Apache versions 1.2.x
and later. The RewriteRule can be applied more than once. Pattern
applies to the URL as it stands when it reaches Rewrite
Rule, not the URL originally requested. So if there are problems getting
RewriteRule to work properly, look at what has been done to the URL
already to see if it has been changed to something unrecognizable. As with
RewriteCond, (!) can be used as a Pattern prefix.

Substitution

Substitution is the string that replaces the URL pattern matched. Table 3.2
gives a list of substitution flags and their respective actions.

RewriteRule uses the original URL and URI in two special variables
called SCRIPT_URL and SCRIPT_URI.

130 Chapter 3

Networking 131

Any server on a network faces security risks. The next chapter will dis-
cuss methods of tightening security on your Apache server.

Table 3.2 Substitution Flags

FLAG ACTION

Redirect|R [=code] Prefixes Substitution with http://currenthost[:port]/,
which forces an external redirection. If code blank is left,
the HTTP response 302 (MOVED TEMPORARILY) is
given. “code” can be any number in the range of 300
to 400.

Forbidden|F Immediately sends back an HTTP response of 403
(FORBIDDEN).

gone|G Immediately sends back an HTTP response of 410 (GONE).

proxy|P Forces Substitution to become a proxy request and
redirects it through the proxy module. All rewriting rule
processing stops here. If you do not have the proxy
module compiled, this flag will fail.

last|L Stops the rewriting process at the flag.

next|N Reruns the rewriting process from the first rewriting rule.
It does not use the original URL, however, but the URL
as it stands after processing. An infinite loop can be
created with this flag, so be careful.

chain|C Groups the current rule with the next rule. The effect
becomes apparent if a rule does not match because
rewriting skips all following chained rules.

type|T=MIME-type Changes the MIME-type of the target file to MIME-type.

nosubreq|NS Forces the rewriting engine to skip a rewriting rule if the
current request is an internal subrequest.

nocase|NC Makes pattern case-insensitive when matching pattern
against the current URL.

qsappend|QSA Instead of replacing the current string, it appends a
query string part in Substitution to the existing string.

passthrough|PT Looks at the internal request_rec structure and sets the
URI field to the value of file name.

skip|S=num Skips the next num rules when the current rule matches.

env|E=VAR:VAL Gets an environmental variable named VAR that has the
value of VAL, which can contain regexp backreferences
$N and %N. Use this flag as often as you wish to set
variables.

133

Objectives

■■ List Apache’s authentication methods.
■■ List common Web server security issues.
■■ List common programs used to attack Web servers.
■■ Define Apache as a proxy server.
■■ Describe the role of a firewall.
■■ Describe basic configuration options regarding security.
■■ Describe how Apache incorporates SSL.
■■ Describe Apache’s user-level security.

Theory of Operation

Because Apache is a program designed to be connected and to be used over
a network, an administrator must be prepared for many security hazards.
This section will introduce a number of normal security concerns, common

Security

C H A P T E R

4

policies, and a general introduction to steps that can, when implemented,
keep an Apache server safe from being hacked.

Security Concerns
You should be very sensible when using cryptography software because
simply running a Secure Socket Layer (SSL) server does not guarantee that
your system is secure!

SSL itself may not be secure. Some think it is, but do you? Here are some
situations to consider:

■■ Have the authors of the various components put in back doors?
■■ Does the code take appropriate measures to keep private keys private?
■■ To what extent is your cooperation in this process required?
■■ Is your system physically secure?
■■ Is your system appropriately secured from intrusion over the network?
■■ Whom do you trust?
■■ Do you understand the trust relationship involved in SSL certificates?
■■ Do your system administrators?
■■ Are your keys generated carefully enough to avoid reverse engineer-

ing of the private keys?
■■ How do you obtain certificates, keys, and the like securely?
■■ Can you trust your users to safeguard their private keys?
■■ Can you trust your browser to safeguard its generated private key?

If you cannot answer these questions to your personal satisfaction, then
you usually have a problem. Even if you can, you may still not be secure.
Do not blame the authors if the security fails. SSL should be used at your
own risk.

Security Policies
System attacks are possible on any network system. Absolute security is
impossible, so policies specific to handling these issues as they happen
must be in place. A security breach within a large company could affect
thousands of users. How quickly the potential chaos can be resolved
depends greatly on the preparation and coordination of analysts, man-
agers, and others. Aspects of the policy should also have preventive mea-

134 Chapter 4

Security 135

sures, such as company-wide standards regarding secure configurations
and timely methods of conveying security-related information.

hosts.allow and hosts.deny

One measure you take to lock down a system from remote intruders is con-
trolling TCP wrappers. Two files determine who can utilize the services
that are under control of TCP wrappers: /etc/hosts.allow and
/etc/hosts.deny. Using two lists gives flexibility in how to structure
security. For tight security or for a system that does not need to offer many
services to outsiders, a user can deny access to all clients and then follow
through with the hosts.allow file to permit only a narrow range of
clients to get through. An open configuration can allow all clients and then
limit certain clients from accessing services. A user has the option of using
both methods. Connections that have not been specifically denied are
accepted by default.

TCP wrappers have a set of wildcards that allow matching services and
clients. One important wildcard needed to get a basic configuration
together is ALL. It matches everything in the daemon or client fields such
that the following:

ALL:ALL

will match all services and all clients.

A configuration line can contain multiple entries for each field, which
must be separated by a space or a comma. What follows is an example with
multiple entries for hosts.allow that grants Telnet and FTP services to
everyone from within the local domain and everyone from
trusted.domain.com:

#/etc/hosts.allow

in.ftpd, in.telnet.d: LOCAL, trusted.domain.com

Clients can be denied or allowed in either file as long as it is specified
with the DENY or ALLOW flag at the end of the configuration line. The fol-
lowing demonstrates a denial in the allow file:

#/etc/hosts.allow

ALL : untrusted.domain.com DENY

What you decide to allow and deny depends on the function of your
machine. A dial-up box that does not need to serve any clients might deny
everything and then let a few friends through. Systems that serve clients on
the Internet or other networks require a more proactive approach because
denying everyone is not an option.

motd and issue Files

These files reside in the /etc/ directory and can be used to alert system
users to security issues and to prepare them for changes in the system. The
issue file contains the text that appears over the login prompt, and the motd
file contains text that will be presented to each user after login. Configuring
is simple; add the desired message in /etc/motd or /etc/issue.

U.S. Encryption Export Laws

Encryption is a method to secure data. It is crucial to any type of network
security. Unfortunately, encryption is not built into the IP protocol; there-
fore, it is good to use some type of add-on encryption protocol for any sen-
sitive information that travels over a network, especially the Internet.
Protocols to consider are PGP, SSL, and IPsec.

At the time of this writing, the regulations pertaining to encryption are
undergoing change. Currently, any use of strong encryption (key lengths
greater than 40 bits for the RC4 method and 512 bits for RSA) is limited in
regard to how it is used or distributed to places outside the United States.
There is much controversy over this law, and some changes are occurring
that may allow stronger exportable encryption in the future. Until then, the
safest approach is to use weak encryption for any aspect of an implemen-
tation that could cross U.S. borders.

Authentication
Apache has, by default, multiple authentication methods available. There is
a handy password authentication method, an access file authentication
method, an anonymous access method, and an as-yet unused digest
authentication method. The digest authorization method implements the
MD5 specification of digest authentication and is not currently supported
by many browsers. For more information on digest authentication, please
read the mod_digest module information in the Apache Reference Man-
ual that generally comes with the installation. This is usually located in the
/usr/local/apache/htdocs/ manual/mod/mod_digest.html file.

136 Chapter 4

Security 137

The methods of authentication discussed in this chapter are as follows:

■■ Password authentication
■■ .htaccess file authentication
■■ Anonymous access

Unless combined with Apache+SSL or Apache using mod_ssl, all the
passwords sent to the server are in clear text. This is why we recommend
using only the previously listed types of authentication on trusted net-
works or when combined with another type of encryption scheme.

Securing Apache
A Web server in normal use is exposed to the world. Millions of people visit
Apache-hosted sites on a given day, and of all those people, a certain percent-
age will want to do more than just view the content provided by the server.

While no system connected to a network can be totally secure, the combi-
nation of Apache and Linux is quite distinguished in terms of security. The
fact that Apache has a good security record may be surprising, given that it
is freely available. Still, even some expensive commercial Web servers can-
not come close to Apache’s security record. Of course, server management
will make a big difference in how easy it is to defeat security measures.

Security is not just about configuration and hardware. When running any
system, especially one exposed to the Internet, you must diligently keep
yourself up to date on the latest security exploits and take precautionary mea-
sures. One of the best ways to help maintain a secure system is to be proac-
tive, read product updates and security alerts, perform security audits on
your system, and make sure that employees follow their security protocols.

This section focuses on guidelines that will help keep Apache secure and
points out some issues, such as CGI scripts, that could lead to problems if
not watched closely.

Apache User

It is not the best practice to run the Web server as nobody, the installation
default, because it is important that Apache is protected from other tasks
running as nobody.

The recommended approach is to create a new, relatively unprivileged
user, say www-data, and run Apache as that user.

Many people think nobody means no user, but that is not true: It is one
specific user named nobody. Some people make files owned by nobody,
assuming that no user is allowed to access them. This is an inaccurate idea,
and this practice is not recommended.

Vulnerabilities
The first thing to do when securing a system is to assess its vulnerabilities.
Things to check include password policies, hostile programs, spoofing,
and buffer overruns.

Passwords

An ideal password would contain at least eight characters and be a random
mix of letters and numbers, with the characters being both uppercase and
lowercase. There are not many efficient ways to crack a good password.
Unfortunately, the best passwords are also the hardest to remember. Most
people have more than one password that they use on a regular basis, and
they choose things they will not forget. Common passwords are typically
the name of a spouse or relative or other words to which a person is fre-
quently exposed. The trouble with passwords like these is their vulnerabil-
ity to dictionary attacks or even to someone trying educated guesses at the
password prompt.

For the /etc/passwd file to be world-readable is common because
many non-privileged programs have relied on being able to read that file.
As a result, someone can grab the file and do a brute-force attack on the
encoded passwords.

The passwords people tend to choose, though, amount to only a small
percentage of the possible combinations. This allows a malicious system
hacker to simply use a dictionary instead of a random character generator,
and you might be surprised by the success rate.

The Shadow Suite

The Shadow Suite is a replacement for utilities used to create and maintain
security settings about the users of the system. The Shadow Suite
addresses several vulnerabilities that existed in previous password utili-

138 Chapter 4

Security 139

ties, such as the /etc/passwd file being world-readable. The Shadow
Suite also provides enhanced functionality for password management.

Some of the Shadow Suite’s features include the following:

■■ Encoded passwords are accessible only by root.
■■ Account information can be aged, meaning that users are automati-

cally prompted to change passwords from time to time, or temporary
accounts can be created.

■■ Users are required to create good passwords.
■■ Utilities for account/password management have been improved.
■■ A configuration file to set login defaults (/etc/login.defs) is

included.

The format for entries in /etc/shadow follows:

<user name>:<password>:<last change>:<allow changes>:<require

changes>:<warning>:<expiry:days> <disabled:reserved>

User name The username that corresponds to the username in /etc/passwd.

Password The account’s encrypted or encoded password.

Last Change Starting from January 1, 1970, the number of days since the password
was last changed.

Allow Changes The number of days before the user can change the password. A setting
of -1 allows the user to change the password at any time.

Require Change The number of days before the user must change the password. By set-
ting the value to a large number, such as 60,000, you can essentially dis-
able this feature.

Warning The system’s indication of a number of days during which the user needs
to update the password before it expires.

Expiry If the user has not changed his or her password, the number of days after
the <require change> date has passed until the account is disabled.

Disabled The number of days the account has been disabled since January 1, 1970.

Reserved Reserved for use by the Shadow password software.

Hostile Programs
Hostile programs are programs that can do harm to your system. They
include Trojan horses, viruses, and worms.

Trojan Horses

Trojan horses are named after the method the Greeks employed to circum-
vent the security of Troy. According to myth, after a futile 10-year siege, the
Greeks built a large wooden horse and presented it to the Trojans as a peace
offering. The Trojans accepted the horse and brought it into their heretofore
impenetrable city. The Trojans did not know that the wooden horse had a
belly full of Greek soldiers who, in the dead of night, killed the city guards
and opened Troy to the rest of the invading force.

Like the story, a Trojan horse program looks harmless and claims to do
something useful or entertaining for the user. When the program runs, it
appears to do this certain task, but its primary, hidden function is to per-
form another, possibly malicious, task.

A widely used Trojan horse replaces the login program. The Trojan horse
program appears to perform the login command. In reality, the program
captures the password of the user that logged into the system, mails the
password to another account, logs the user in (or gives an error message
and surrenders to the real login program), and removes itself from the sys-
tem. This type of Trojan horse is typically installed by an intruder, and its
presence is not immediately known to the user.

Another example might display an amusing animation or offer to play a
game. While the user is being entertained, the program goes about its task
of exploring the system, sending contact information to its master, or van-
dalizing the host system.

Viruses

Viruses are another form of attack. A virus is a piece of code that might
enter a system as part of a program. Once in the system, it may hide itself
in memory and attach itself to every program that runs or every program
file it finds on disk. Some viruses are deliberately destructive in nature,
destroying the master boot record on your hard drive, erasing programs,
or simply rendering programs inoperable. Other viruses may not intend to
cause damage but merely annoy by, for example, displaying a message or
animation on your monitor. Frequently, due to poor coding technique, this
class of virus can consume excessive resources and inadvertently cause
downtime or data loss, sometimes because of simple user panic.

140 Chapter 4

Security 141

Worms

Worms are yet another form of attack. Unlike a virus, a worm enters a com-
puter system as a stand-alone program not attached to other pieces of code.
Once in the system, the worm goes about its business. Like a virus, a worm
may be intentionally destructive, or it may be benign. Sometimes a benign
worm, like a benign virus, will go out of control and cause unintentional
damage or resource depletion.

Spoofing

There are different types of spoofing attacks that prompt software into an
inappropriate action by presenting misleading information to that soft-
ware. In TCP spoofing, Internet packets are sent with forged return
addresses, and in DNS spoofing, the attacker forges information about
machine names and network addresses. In addition to these two spoofing
attacks, there is Web spoofing, or the “man in the middle attack.” It allows
an attacker to “shadow copy” the World Wide Web, which lets the attacker
monitor all the victim’s activities, including account numbers or pass-
words. While this attack mainly affects end users, you should still know
what it is and how it works to protect your Web site from being spoofed.

Buffer Overruns

Buffer overruns are the source of most attacks to Linux systems. Their vul-
nerability comes from certain coding errors that are difficult for program-
mers to avoid, causing many programs to contain these errors. A buffer
overrun occurs when certain variables receive more data than the program-
mer anticipated. If that variable happens to be responsible for storing input
that someone can modify, a skilled attacker can induce the error condition
at will, causing the program to crash or to function in ways that weren’t part
of its original design. When an important and/or high-availability program
contains one of these errors, it can be used as a path of attack.

Attackers seek certain types of programs when looking for buffer-over-
run candidates. Programs that have setuid privileges are favored by
attackers. Setuid programs have root-level access, but although they use
the privilege only to perform small tasks, they have the ability to do almost
anything nonetheless. When an attacker induces a buffer overrun within a
setuid program, the program can crash in a way that leaves a root shell for
the attacker. Another possibility is acceptance of errant behavior finessed
from the program, as if it originated from root.

Buffer overflow problems have recently been exploited in such popular
network daemons as qpopper, named, wu-ftpd, and many others. Candi-
dates for the buffer overrun exploit can include older versions of ProFTPD
andwu-ftp. Due to insufficient bounds checking in these programs, it is pos-
sible to subvert an FTP server by corrupting its internal stack space. By sup-
plying carefully designed commands to the FTP server, intruders could force
the server to execute arbitrary commands using root privilege. Thus, intrud-
ers who are able to exploit this vulnerability can ultimately gain interactive
access with root privilege to the remote FTP server. The most vulnerable sys-
tems were the ones with the ftpd software installed and enabled by default.

One temporary solution to this attack is to disable any world-writable
directories to which the user may have access by making them read-only.
This action will prevent an attacker from building an unusually large path,
which is required to execute these particular attacks. The other preferred
solution is to upgrade the programs with patches that address the potential
buffer overruns.

Of even more interest, CERT reported a buffer overrun in early 1998 in
<cfg_getline()> that possibly allowed malicious users to gain access,
not as root, but as the user of Apache. This is all the more reason to run
Apache as any non-privileged user, other than nobody.

Those using pre-1.2.5 versions of Apache are susceptible to this buffer
overflow in <cfg_getline()>. <cfg_getline()> is a function that
the Apache core and several Apache modules use to read certain types of
files from disk. Some examples of the type of files that read with this are
htaccess, htpasswd, and mod_imap files.

It is possible to create a sequence of data such that a buffer overflow occurs
while <cfg_getline()> is reading from a file. If someone has access to cre-
ate any of these types of files on the server, that hole is generally exploitable
to gain full access to the user that Apache runs as. On most systems, this is of
little consequence because many users already have such access. If, however,
the server is secured so that the user has no access to the server other than to
create and modify files (for example, an “FTP only” account with no ability to
create CGI scripts), this could allow increased access to the server.

Security Issues with CGI
Because CGI scripts are executables, they are subject to the same security
vulnerabilities as normal programs. What makes CGI scripts especially

142 Chapter 4

Security 143

dangerous is that anyone in the world with a Web browser and Internet
connection can execute programs on any public Web server.

The first step in securing CGIs is to secure the server; Apache should be
run as a non-trusted user with secure permissions on key files. The real key
to keeping CGI scripts safe is to eliminate vulnerabilities in them.

System Calls

Most CGI programs perform system calls, such as reading from or writing
to a disk file, or perhaps executing other programs. If any of the variables
passed to the CGI are used in formulating the parameters to these system
calls, malicious users can manipulate them to do undesirable things.

Certain commands are very dangerous; the eval command is one of
them. eval lets a script execute an arbitrary command given in a variable.
A CGI script could take the name of the command to run as a parameter,
execute it, and show the output. This could give a system cracker all the
ammunition necessary to break into a system.

Buffer Overruns

C programs suffer from vulnerability to buffer overruns. When C pro-
grams read data, they must allocate enough room in memory to hold it.
When more data is read in than room is available, the excess data can be
executed as code. If writing scripts in C, ensure they are free from buffer
overruns by checking the amount of data that comes into the program.
Although this is relatively difficult to exploit, it is worth watching.

The Apache Proxy Server
There is much confusion over the role of a proxy on a network. Proxies are
often associated with a firewall and network security policy. The proxy is
not usually the firewall itself, but it is often used with a firewall. In some
implementations, such as SOCKS, though, it can be used as the firewall
itself. The main purposes of proxies are to enhance performance of Inter-
net requests by caching files commonly accessed and to play a role in
allowing/denying access to other network resources on either side of a
firewall. The proxy will often sit on the firewall itself. Much like a firewall,
the proxy will have access to the outside. When the user configures a
client to use a proxy, it may seem as if there is a direct connection with the
outside network. With a proxy this is not really the case. When a request is

made to the outside network, the client is actually giving the request to the
proxy. If the proxy has the information requested, it serves it back to the
client. If not, the proxy makes the formal request to the specified server
and receives the information. At this point, the proxy provides the data to
the requesting client. Even though the original request to the proxy is via
HTTP, the proxy may use any protocol to actually retrieve the requested
document(s).

An HTTP proxy cache accepts requests for objects that people want to
download and handles their requests. If the user wants to download a
Web page, he or she asks the proxy server to retrieve the page. The proxy
then connects to the remote server and requests the page. It then trans-
parently streams the data through itself to the client machine, but at the
same time it keeps a copy. The next time someone wants that page, the
proxy simply reads it off disk, transferring the data to the client machine
almost immediately.

The following are some common uses for a Web proxy:

■■ Permit and restrict client access to an Internet based on the client IP
address

■■ Cache documents to increase internal network efficiency
■■ Control access to the network based on the requested URL
■■ Provide network access for networks using firewalls for separate net-

works
■■ Provide a gateway for services other than HTTP and networks with-

out DNS

Figure 4.1 depicts a proxy-firewall combination, which can be used to
provide network access.

Advantages of the Apache Proxy

Why should a user employ the Apache proxy server? First, the Apache proxy
server is free. Many Web sites across the Internet already use the Apache Web
server. Web site hosting companies and individuals using the Apache Web
server are familiar with the software and have adapted its abilities to their
security needs. Using the Apache software as a proxy server requires almost
no learning curve.

144 Chapter 4

Security 145

Apache can be used for an http caching proxy by using one of the mod-
ules that comes with the Apache source distribution: mod_proxy; this is a
plus when the Apache proxy is compared to other proxy servers. Many
proxy servers require tedious configurations just to be set to maintain net-
work security. Some even require many hours of work to attain an adaptive
network usage.

Obtaining the Apache Proxy

Apache is freely available via download from www.apache.org/, which
provides links to Apache mirrors in more than 10 countries. If the user is
seeking information on Apache and XML, then www.apache.org will be
beneficial. Direct links to full Web pages detail how, why, and what if. The
following links are provided:

■■ Apache Server
■■ XML-Apache
■■ Java-Apache

Figure 4.1 Proxy and firewall combination.

■■ mod_perl
■■ PHP
■■ Apache Tcl

Obtaining Documentation

Apache documentation is accessible from http://httpd.apache.org/. Mir-
rors can also be accessed from this Web site. The Apache decantation group
excelled at covering possible problems and configuration HOWTOS. The
following and many more topics are covered in the Apache documentation:

■■ Main configuration files
■■ Syntax of the configuration files
■■ Loading modules
■■ Directives (capabilities)
■■ Access
■■ Log files
■■ Starting Apache
■■ Errors during startup
■■ Starting at boot-time

mod_proxy

Generally Apache uses the mod_proxy module to act as an intermediary
between the client and the Web server that actually contains content. As a
proxy, Apache will decide if it should save time and bandwidth and use a
cached file to fulfill a request or if it should grab the real file from the server
and pass it back to the client. As of Apache 1.3, mod_proxy is still only an
HTTP/1.0 proxy.

Firewalls
Firewalls get their name from the part of a car chassis that separates the
passenger compartment from the engine compartment. If there is an
engine fire, the firewall helps to protect the passengers. A network firewall
separates parts of a network, such as a business network, from the Internet.
Instead of protecting from fire, it protects from intruders and allows con-
trol of the information that travels between networks. Having a firewall is

146 Chapter 4

Security 147

generally a good idea because it allows an administrator to centralize
many security policies to one system rather than having to worry about
every single machine on a network. Presence of a firewall does not guar-
antee absolute security but can enhance it significantly if the firewall is
well maintained.

To make the firewall effective, all traffic entering or leaving a site must
pass through it. In some cases, multiple firewalls are necessary when a
company has multiple connections, as routing all traffic through a single
firewall may not be feasible. In the end, all access points into and out of the
internal network will need a firewall to guard them.

In addition to security, the firewall also provides network address trans-
lation (NAT). Because Internet network addresses are becoming very
scarce, a firewall running NAT enables a company to use a few legal IP
addresses for essential Internet systems (DNS, mail, Web, FTP, etc.) while
the private network uses the IP address space reserved for private use by
IANA. With NAT, as data packets pass through the firewall from systems
using the private IP addresses, the firewall translates them into registered
IP addresses. Conversely, when the reply packets return from a system on
the Internet, the firewall performs a reverse translation.

Types of Firewalls

Although firewalls can perform many different functions, we will discuss
three particular types:

■■ Packet filtering
■■ Proxy serving
■■ IP masquerading

By combining these three functions, we can create an effective firewall
that will help maintain a tight, secure network.

Packet Filtering

By running a firewall as a packet filtering router, the firewall examines
each packet of data (a datagram) against a set of predefined rules. The fil-
tering rules are based on packet header information, which is available to
the IP forwarding process of the kernel. In the IP packet header, you will
find the following information:

■■ IP source address
■■ IP destination address
■■ Protocol: UDP, TCP, ICMP, or IP tunnel
■■ Source port for UDP or TCP
■■ Destination port for UDP or TCP
■■ ICMP message type
■■ Incoming interface of the packet
■■ Outgoing interface of the packet

Based on the information that the IP packet headers provide, rules can be
defined that either allow or deny packets to reach their destination.

For example, incoming SMTP traffic can be permitted to go only to a des-
ignated mail exchanger host on the internal network and deny all incom-
ing telnet. At the same time, incoming HTTP and FTP requests to a specific
Web or FTP server can be allowed.

Why Packet Filtering?

Packet filtering is useful not only for allowing, denying, and routing
incoming requests, but also because it provides a first line of defense
against some types of attacks, most notably spoofing, fragment, and source
routing attacks.

Spoofing. In an IP spoofing attack, the malicious person sends packets
from outside that are designed to resemble packets that would have
originated from an internal host. In other words, the packets are dis-
guised to look as though they originally came from the internal net-
work behind the firewall. To combat spoofing, the firewall simply
checks the packets that arrive on the external network interface, and if
their source address is that of an internal host, it refuses to admit the
packets. Hence, this sort of attack is simple to identify and nullify.
To turn on the kernel’s built-in anti-spoofing capabilities, run this
command:

<# for in /proc/sys/net/ipv4/conf/*/rp_filter; do echo 1> $f; done>

Fragment and source attacks. Packet filtering also prevents tiny fragment
attacks and source routing attacks. Tiny fragment attacks use the IP frag-
mentation feature to create very small packets that split the TCP header
information into separate packets, or fragments. The success of this

148 Chapter 4

Security 149

attack relies on fooling your filtering rules into permitting the first frag-
ment to pass and subsequently allowing the rest of the fragments to pass
unchecked. To protect against this sort of attack, set the rules to deny all
TCP packets that have the IP FragmentOffset header set to 1.
To prevent source routing attacks, set the rules to drop any packets
that do not contain the source route option.

Proxy Server Firewalls

The role of the proxy server is to monitor inbound and outbound traffic.
One benefit of using a proxy server is that it creates detailed logs of all data
transfers. Also, as they can examine the payload of a packet, proxy servers
can filter inappropriate content.

There are two types of proxy servers:

Application proxy servers. For each protocol that needs to run through
the proxy server, the application proxy server provides separate ser-
vices. One such example of a proxy server is a squid proxy server that
provides HTTP and FTP proxies.

SOCKS proxy server. This server provides generalized proxy services
for applications that can use a SOCKS proxy server.

IP Masquerading Proxy Servers

In order to use NAT to its full potential, IP masquerading can be used. As a
firewall tool, NAT provides the following benefits:

Hidden internal network. Because the internal networks are not routed
over the Internet, networks behind the firewall are hidden from the
rest of the world (i.e., the Internet). The hidden network cannot be
examined externally and so security is greatly enhanced.

Utilization of fewer valid IP addresses. When the firewall uses NAT,
the network needs fewer registered IP addresses.

Thus, IP masquerading allows all internal machines to access the Inter-
net from behind the firewall using the firewall’s IP address. As a result, the
Internet sees only the firewall machine and nothing beyond it. Breaking
through a properly secured Linux IP masquerading host and into the inter-
nal network is extremely difficult.

Firewalls and Network Architecture

There are different ways to set up networks, and the architecture ulti-
mately depends on the requirements of the network. The simplest network
has two components: an internal network and an external network with a
firewall between the two.

Still, corporations have needs that exceed the simple two-network
design. As a result, separate networks are created to house the public
access servers. Often referred to as the demilitarized zone (DMZ), this net-
work contains the mail, DNS, FTP, and Web servers. For security, the DMZ
is configured to provide limited access from the Internet to specific public
information servers.

As different services and requirements are needed, new portions of the
network can be designed. The bottom line for creating all of these sepa-
rated networks is to allow the application of different sets of security rules
for each network.

Securing the Firewall Machine

Obviously, it is of great importance to make sure that the firewall machine
is itself locked down and not left open to attacks. The first step in doing this
is to turn off all necessary services. Then, rename or delete the current
</etc/inetd.conf> file and create a new one with this line:

telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

This allows only for Telnet service for remote management of the fire-
wall system. After creating the new inetd file, send the SIGHUP signal
to inetd.

The /etc/passwd and /etc/shadow should contain an absolute min-
imum of accounts belonging to the administrator, root, bin, daemon, sync,
shutdown, halt, and operator. Furthermore, the system should not be part
of an NIS domain, and the machine should be used only for firewall
administration and operation.

Superfluous daemons (nfsd, dhcpd, named, atd, etc.), as well as X
Windows, should not run on the system. To disable particular daemons
from starting at run level three, go to /etc/rc.d/rc3.d and rename the

150 Chapter 4

Security 151

links starting with an uppercase S to a lowercase s. To disable the mysql
daemon, change the link from S90mysql to s90msql.

In Telnet, direct root login should be prohibited, and the passwords
should be secure (minimum lengths, non-dictionary words that are mixed-
case alpha-numerics). Change the passwords frequently, such as every
three months.

For further protection, consider disabling Telnet, installing SSH instead,
and connecting through SSH from designated secure hosts only.

What to Do If Attacked

The following list includes some steps you should take if your system
comes under attack:

■■ Gather as much information as possible.
■■ Determine what part of the system was vulnerable.
■■ Make appropriate changes.

If your network has been attacked, you need to gather as much informa-
tion as possible. Start with the system logs to try to determine how and
when the attackers entered. Some attackers attempt to remove evidence of
their entry from the system logs, so be observant for the disappearance of
information as well. Careful examination of the logs will provide you with
the attacker’s method of entry (which security loophole the attacker came
through). Once you know the vulnerability, you can check the different
resources (Bugtraq, CERT, or distribution sites) to see if a patch has been
made available for this loophole, and if so, apply it to your system. If you
cannot find a patch, you can certainly disseminate the existence of a secu-
rity loophole, and a patch will usually come out in a short time.

Fortunately, most log entries that relate to security issues on an up-to-
date system represent failures on the part of the attacker. The Linux com-
munity usually responds very quickly to system weaknesses and provides
regular updates that render many intrusion tools useless. Addressing
failed attempts usually involves blocking the offending IP and contacting
the service provider that owns the originating address. It would also be a
good idea to check CERT and Rootshell to see if there are any new exploits
for the targeted service. No system can be completely secure, and, from

time to time, an intruder will be successful and perhaps even gain privi-
leged access. In a worst-case scenario, finding an intruder on a system
might require dropping network interfaces, rebooting the server, or even
doing a major restore of system files.

Handling an Attack That Is in Progress

If you happen to catch an attack while it is in progress, the best thing to do
is to remove the system from the network until you can resolve the weak-
ness. You might unplug the Ethernet or hang up the modem; this isn’t
always an option if the system absolutely needs to be available to other
users during the time of the attack. If you cannot bring down the network,
you can disable the service from which the attack is originating by com-
menting it out in inetd.conf, followed by a kill -HUP pid. If that ser-
vice is the one that must stay up, try to block a range of the attacker’s IP in
TCP wrappers. Regardless of how it is done, you must modify your situa-
tion quickly to minimize damage.

Notify Service Provider or Local Authorities

If you were able to get the IP address of the attacker (this is not difficult in
most situations), you may be able to use the whois utility to find out who
owns the domain block from which the attack originated. If the owner is
not the attacker, you will most likely receive some assistance.

Restore the System

Recovery from attack will be much easier if you are using tools like trip-
wire to point out files that have been compromised. Having good backups
of critical system files (login, ls, bash, etc.) is important, as they are
often used as back doors or Trojan horses by those who have gained privi-
leged access. If at all possible, keep the system disconnected from the net-
work until you can discover the cause of the security breach.

Block IP Addresses

Once you have determined the domain from which the attack originated, it
might be a good idea to block as much of it as possible. If the attacker has a
dynamic IP address and you blocked only one IP address, the attacker could
return at another time with a slightly different address and regain access.
Blocking as much of the attacker’s domain as possible will prevent this.

Counterattack?

Never! Launching an attack is a very bad idea, not to mention illegal.
Doing so could make it impossible to determine the origin of attack. There

152 Chapter 4

Security 153

is a very high probability that the origin is simply some random machine
on the Internet that has been compromised. An entire chain of compro-
mised systems could be between you and that system. Before you get any
ideas of launching a counterattack, remember that it is probably not the
correct machine. If you feel that something needs to be done, gather as
much information about the attacker’s origin and report it to the origin’s
service provider or to the authorities.

Password Protection
In previous modules you set up password protection for your server. A set
of users can be defined, especially for Web access using the htpasswd pro-
gram. This gives the Apache administrator full control over which users
can access specific resources on your Web site(s). If you have root access to
your machine, you can also use the standard useradd command to add
users along with the groupadd command to add groups. A user can reach
an extensive level of complexity in the administration Web permissions by
combining users and groups. No matter what username and password a
user has, you can require that the user belong to a given group before
allowing access using the Require Group groupname directive. Each
method has its advantages and drawbacks.

The allow,deny directives can be combined with password protection
to further lock down a server by keeping all but the most qualified users
away from coveted resources. allow,deny can be combined with Sat-
isfy to offer two ways to reach resources, a valid IP address or a valid
username/password combination.

Password protection is something you can pass down to people you do
not want to access httpd.conf, due to .htaccess and .htpasswd files.
In this context you are able to give other people more power, which results
in less time spent restarting Apache and fewer requests in your inbox, leav-
ing time to focus on more important security matters. The downside to
.htaccess files is, of course, increased load on your server. It is a good
idea to make judicious use of .htaccess files to attain a balance between
server performance and customization for your users.

Another way to allow password protection on your server is to give your
users access to CGIs that mimic the username/password access Apache
offers. PHP, for instance, can send an unauthorized header to the top of a
Web page, prompting a username/password window.

Performance Monitoring

Performance monitoring can serve many purposes. While you can view it
as a reflection of changes, you can also use it to see if your server is being
attacked. How could you use mod_status to detect troublemakers?

Base Systems

Many different people can be working on the Web site that is served by
Apache. There could be many different groups of people, with each group
(and/or person) needing unique permissions. This section will describe
the ideas of access control, keeping a structure to security policies for an
Apache install, how to use Apache as a proxy, and much more.

Apache, Users, and Groups
If you install Apache from source and do not specify a user, Apache will
run as the user nobody. Running Apache as nobody is dangerous because
other processes run as nobody already. In the event of a security breach,
trying to figure out which nobody actually affected your system becomes
quite difficult. Remember also that any CGI script that Apache runs does
its business as the same user as Apache.

The obvious solution is to run Apache as a different user. We recommend
configuring Apache to run as webuser, as a member of webgroup.

Before Apache can run as webuser of webgroup, you must add that
user and group to Linux. First, make sure you are operating as root, then
add your group:

groupadd webgroup

While still operating as root, add your user:

useradd webuser -g webgroup

webuser now exists as a member of webgroup. If you were running
multiple daemons and were very nervous about security, you could con-
ceivably run each daemon as a different user, all as parts of the webgroup.

To make sure Apache runs as the user you want, add the following to
your ./configure command when you install Apache:

154 Chapter 4

Security 155

--server-uid=webuser \

--server-gid=webgroup

If you have already compiled Apache and it runs as nobody, you can also
change its user ID and group ID in httpd.conf. Just look for the lines:

User nobody

Group nobody

and change it to the user and group you like best. Then restart Apache.

The preceding assumes Apache is running as nobody.

Once you have changed Apache’s identity, it is a good idea to see if it can
still read the files in its DocumentRoot. Change directories into your doc-
ument root and view those files.

Don’t remember where your DocumentRoot is? Within your httpd
.conf file, use your favorite text editor to search for the string Document-
Root. Follow the absolute path that resides between the DocumentRoot
tags to find your document root.

Permissions
For the majority of the files it handles, all Apache has to be able to do is
read them. It must also be able to view the contents of any directories you
may have.

Apache needs special permissions in your CGI bin(s), where it needs
permission to execute any CGIs you may have. Further, if those CGIs add,
modify, execute, or delete any files, you must change their permissions for
webuser accordingly.

You may want to change the permissions and ownership of some files to
enhance security. You may find that root owns most files in Apache’s doc-
ument root directory. If you would rather have webuser own those files,
you need to use the chown command to change the owner.

Remember, you need permissions to change a file before you can change
ownership. Therefore, if a file is owned by root and that is the only user
that has write access to the file, then you must log in as root to change the
file’s permissions. The following:

chown webuser platform.html

will change the owner of platform.html to webuser.

Imagine that you want to change the owner of top_secret and all the
files that reside in it. You would want to use the -R option with chown to
recursively change permissions on all files in top_secret and
top_secret’s subdirectories.

chown -R webuser top_secret

Access Control
Controlling access to directories is usually a relatively large concern for an
Apache administrator. There are several ways to control access to different
areas of the Web-space.

AllowOverride

This is a very important directive and, if at all possible, should always be
set to None. The AllowOveride directive tells the server which access
directives can be overridden by the .htaccess file. If AllowOveride is
set to anything other than None, the server is forced to read every .htac-
cess file in every directory and subdirectory for every request, whether
the .htaccess file exists. This uses the stat system call and causes the
server to do a context switch, perform a disk access to check for the file,
and apply the directives in it before it can serve the request, slowing the
server. If users need to set their own access, it may be best to use this direc-
tive to specify what can be overridden in the .htaccess file. Some policy
decisions must be made, based on the site’s needs. Remember, it is impor-
tant to recognize the performance consequences that result from enabling
the .htaccess method.

Order, Allow, Deny

These three directives control access to specific parts of the server. They can
be used in the <Directory>, <Files>, and <Location> sections to
control access. It is also possible to control access based on client host
name, IP address, or other aspects of the request using environmental vari-
ables. Use the Allow and Deny directives to define access (or lack of
access) to specific clients. Use the Order directive to set the default access
state and configure how the Allow and Deny directives interact.

Following are two examples of the Order directive:

156 Chapter 4

Security 157

Order Deny,Allow. Apache evaluates the Deny directives before the
Allow directives. Access is allowed by default.

Order Allow,Deny. Apache evaluates the Allowdirective before Deny.
It denies access by default.

Notice the lack of space between the commas. The syntax allows separa-
tion of keywords with a comma only, meaning no white space.

Following is an example of the Order directive working with the Deny
and Allow directives:

<Directory "/my/directory/">

Order Deny,Allow

Deny from all

Allow from specialserver.org

</Directory>

In this example, only people who come from specialserver.org can
access /my/directory/. The default is to allow people, but the Deny
from all negates that. Use the Satisfy directive in concert with the
Allow and Deny directives. It is really useful only if access to a directory,
location, or file is restricted by both username/password and client host
address. When this happens, use the Satisfy directive to modify the
default behavior (which is to require both). Within the directory or .htac-
cess context, Satisfy any means that the client only has to satisfy host
restriction or enter a valid username and password.

Although we do not recommend using .htaccess for access control,
the default configuration of Apache allows for it and sets the access to
Deny from all. If the .htaccess method is used, modify the
AllowOveride directive accordingly. Remember that the changes will
apply, and turn on the stat call for all subdirectories.

To use clear text authentication to access the entire Web-space, follow
this process.

Add the following lines to the DocumentRoot Directory block.

AuthType Basic

AuthName "Restricted Site"

AuthUserFile /etc/httpd/conf/users

Require valid-user

NOTE These additional directives could also be put in the .htaccess file,
but, as stated, we do not recommend using the .htaccess files for
performance reasons.

Now it looks like this:

<Directory />

Options FollowSymLinks

AllowOverride None

AuthType Basic

AuthName "NonFreeZone"

AuthUserFile /etc/httpd/conf/users

Require valid-user

</Directory>

To display the usage options of the httpasswd program, type the fol-
lowing at the root prompt:

root@foo $ cd /usr/local/apache

root@foo apache $ bin/htpasswd -?

Create a new user and set the password:

root@foo apache $ bin/htpasswd /etc/httpd/conf/users test

New password:

Re-type new password:

Adding password for user test

root@foo apache $ bin/apachectl restart

The AuthUserFile line found in the httpd.conf file must corre-
spond to the httpasswd file. If the httpasswd file does not exist, use the
-c option for the httpasswd command to create the file.

root@foo apache $ bin/htpasswd -c /etc/httpd/conf/users test

Now We Can Test It

Open up a browser on the client machine, and try logging into the Web site
http://domain.suffix. You will be prompted with a password required
dialog box (see Figure 4.2).

This information could be applied to any directory, but by doing it this
way, a valid-user login is required to access the entire site. For more infor-
mation, see the online documentation for the Require directives and
those directives associated with it.

158 Chapter 4

Security 159

Anonymous Access

Anonymous access uses the anon_auth_module to allow anonymous
users to sign in with a default username and a valid e-mail address in order
to access information. Apache checks the e-mail address validity by look-
ing for both the “@” and the “.” symbols. The anonymous access method is
good for tracking users because it does not rely on cookies, but rather logs
the e-mail address entered by the user as the client moves around a site.

When anonymous access is selected, it is necessary to select the valid
user IDs using the Anonymous directive. For example:

Anonymous test welcome joe_user

This would allow anybody logging in with test, welcome, or
joe_user to access the system.

Setting Up the Apache Proxy
This section provides walk-throughs for setting up Apache as a proxy. The
different configurations and security issues that can occur, when using
Apache as a proxy, will also be discussed.

Proxy Specific Directives

Table 4.1 shows some of the Apache proxy common directives.

Figure 4.2 Password Required dialog box prompt.

Table 4.2 shows some Apache proxy caching common directives.

ProxyPass is a powerful and very useful directive. If a small company
has a network that consists of six computers the only machine accessible to
the outside world is the Web server/proxy. The ProxyPass directive will
allow a client to be mapped so that it can be accessed from an outside
world as well. In this scenario the Web server/proxy is a masquerading
host. Thus, the network is functioning with one IP address.

160 Chapter 4

Table 4.1 Apache Proxy Common Directives

DERIVATIVE AND SYNTAX DESCRIPTION

ProxyRequests on Turns the proxy functionality on.

ProxyRequests off Turns the proxy functionality off.

ProxyRemote remote- Specifies a remote proxy for the given protocol. (If the
server = protocol: * option can be given as the remote server, the
//hostname [:port] server will be contacted for all requests.)

ProxyPass path url Allows servers behind a firewall to be available via
Internet without changing firewall rules or
compromising security settings.

ProxyPassReverse Allows the Apache proxy module to share its load
path usr with proxy servers.

ProxyDomain domain_name Specifies the default domain of which the proxy is a
part. (Only useful for Apache proxy servers within
intranets.)

NoProxy {Domain | Only useful for Apache proxy servers within intranets;
SUBNET | IP-Address | specifies a list of domains, IP-addresses, subnets, and
HOSTNAME} host names to be served directly by the Apache server.

ProxyBlock {* | wird | Specifies a list of users for which HTTP, HTTPS, and
host |domain [word | FTP requests are blocked. (Option available in
host | domain}... Apache 1.2 and later.)

AllowCONNECTport Overrides the default HTTPS and snews ports. (This
[port]... option allows connections to the listed ports. Option

available only in Apache 1.3.2 and later.)

ProxyReceiveBufferSize Defines an explicit network buffer size for outgoing
bytes HTTP and FTP connections. (Must be higher than 512

or set to zero.)

ProxyVIa {on | off | Used to control the flow of proxy request along a
full | block} chain of proxy servers.

Security 161

Server-Side Configuration

There are certain configuration files and commands that are issued on
the Apache server when using Apache as a proxy. This section describes
such steps.

Configuring Apache as a Proxy Server

Many install the Apache Web server while installing their particular distri-
bution of Linux. Normally, distribution releases of the Apache software are
not compiled with the mod_proxy module. Use the following command
to list all modules currently compiled into the server:

bash$ httpd -l

If the mod_proxy module is not compiled into the release, then the user
will need to obtain the Apache source and compile including the
mod_proxy module. The previous method is recommended for an older
version of Apache. In the newest version of Apache, just uncomment and
edit the following lines in the httpd.conf configuration file:

httpd.conf -- Apache HTTP server configuration file

LoadModule proxy_module modules/libproxy.so

AddModule mod_proxy.c

Table 4.2 Apache Proxy Caching Common Directives

DERIVATIVE AND SYNTAX DESCRIPTION

CacheSize kilobytes Is the size of the cache file in kilobytes. The location
of this file is determined by the CacheRoot directive.

CacheRoot Sets the caching directory.
directory_name

CacheMaxExpire hours Defines the Max number of hours for which cachable
HTTP documents will be retained.

CacheGcInterval Checks cache every X hours and clears cache if cache
number_of_hours is greater than CacheSize.

CacheDirLevels Sets the number of subdirectories in the cache.

CacheForceCompletion Specifies the cache percentage at which a canceled
request will still be cached.

NoCache Specifies retrieved documents that should not
be cached.

ProxyRequests On

CacheRoot /var/cache/httpd

CacheSize 5

CacheGcInterval 4

CacheMaxExpire 25

CacheLastModifiedFactor 0.2

CacheDefaultExpire 1

NoCache host1.com eagle2.com etc.com

NOTE The preceding configuration options are not in the given order. They
are spread throughout the file.

This method can be used on a standard or normal install. Both of these
methods work well if Apache is being used as a proxy server only. To use
Apache as a Web server and a proxy server, a different approach will have
to be taken.

Configuring Apache as a Proxy/Web Server

More than one instance of the Apache server can run at the same time. A
simple way to configure a system to do this is to copy the existing
httpd.conf to a file called proxy.conf. Then edit the new file to run on
a new port (i.e., 8080 instead of port 80). Limit access to this proxy
server by binding to a private IP-address or by some other method. For
example, if the IP range was 257.0.*.*, the user would bind the proxy server
to a private address by using the command BindAddress 257.0.0.1 in
proxy.conf. This would grant access to the user over the IP-range
257.0.0.1 to 257.0.0255. Another option would be to add the following seg-
ment to the config file:

Proxy Access defined

<Directory proxy:*>

order deny,allow

deny from all

allow from 257.0.0.0/255.255.255.0 198.162.0.0/255.255.0.0

</Directory>

This limiting method would grant access to the all users over the IP-
range 257.0.0.1 to 257.0.0.255 and 192.168.*.* .

Starting the Apache Proxy

To start the process, copy the httpd startup script to proxyd. On SystemV
and most other systems, the script is usually named httpd; however, on

162 Chapter 4

Security 163

Slackware the script is named apachectl. The necessary Slackware
scripts are the following:

/etc/rc.d/rc.M. Run-level script that starts the service at boot time.
/etc/rc.httpd. Script that contains the command and arguments used

to start the server.
Apachectl. Script used to start the server.

Next, edit the proxyd or the apachectl script using a text editor. Find
the section labeled START. This section should look like the following
before it is edited:

SYSTEMV SYSTEMS

start)

echo -n "Starting httpd: "

daemon httpd

echo

touch /var/lock/subsys/httpd

BSD SYSTEMS (SLACKWARE)

the path to your httpd binary, including options if necessary

HTTPD=/var/lib/apache/sbin/httpd

After editing the files, restart the server. Remember that when restarting
the server httpd and proxyd or apachectl and proxyctl both have to
be started. After editing the configuration files, they should look like the
following:

SYSTEMV SYSTEMS

start)

echo -n "Starting proxy: "

/usr/sbin/httpd -f /etc/httpd/conf/proxyd.conf

echo

touch /var/lock/subsys/proxy

BSD SYSTEMS (SLACKWARE)

the path to your httpd binary, including options if necessary

HTTPD=/var/lib/apache/sbin/httpd -f /var/lib/apache/conf/proxyd.conf

NOTE The -f option is used to specify the configuration file.

Security Fundamentals
The visitors to a Web site have access similar to the user ID that is running
the server process, which is fine because that user ID should have limited
permissions. When things are configured properly, the user ID has a narrow
range of functions it is allowed to perform on the machine. Keeping the sys-
tem secure means keeping that user ID’s access limited to a narrow range.

NOTE Although Apache can be started by an individual without root access,
the Apache process will not be able to su to a different user ID (therefore
running as that user) and will not be able to attach to a port number less than
1,024. This can be useful under some limited circumstances but is not ideal for
a publicly accessible system.

Permissions

File permissions are an important aspect of security for a Linux system. If
care is not taken with the permissions of certain critical files, regular users
can implement changes that are normally restricted to the superuser.

For Apache to run as a non-privileged user on port 80 (or any port less
than 1,024), the user must launch it from root. This non-privileged user
(let’s call it webuser) must be able to read the Web document tree (but
probably not make changes to it). So that the webuser is able to read the
document tree, be sure that all files and directories that must be served
from the document tree are set world-readable:

chmod -R o+r

Create a group for those who will be working on the Web documents
(let’s call it webeditors). This must be a different group from the one
webuser belongs to, as it will be writing to the document tree. Setting the
group sticky bit for the <htdocs> directory will ensure that any new files
created there will be owned by the group and can be edited by any mem-
ber of the group:

chown -R otheruser.webeditors

chmod -R g+s

164 Chapter 4

Security 165

The -R switch causes the operation to be performed recursively so that
all directories below the current directory are affected by the chown and
chmod commands.

NOTE You can specify both the owner and the group name in the chown
command by separating them with a period, which will save you from having to
run a separate chgrp command to change the group ownership.

To use directory indexes or to read the directory from a script or Web
page, directories will have to be set world-executable:

chmod o+x directory

A common problem with log files is that the Apache process is not able
to write to the log files or log directory. If this is the case, a simple solution
is to give ownership of the log file to the webuser account:

touch /var/log/apache/{error,access}.log

chown webuser /var/log/apache/{error,access}.log

The touch statement creates the log files; the second statement gives
ownership to the webuser account. For additional protection (on newer file
systems), you can also restrict the user to append-only access on the log files:

chattr +a /var/log/apache/{error,access}.log

These commands are helpful when first creating the log files and should
also be included in any log rotation scripts you install so that the attributes
are maintained across log rotations.

Scripting

Running CGI scripts on Apache allows a user to create dynamic content. A
drawback of this expanded functionality is that security holes can result if
you do not correctly configure the server and verify that the CGI scripts are
functioning properly.

The nature of scripts means they have to be interpreted with the access
capabilities of some user, typically the same as the httpd process. Make

sure that this user is not inadvertently given the ability to make any unde-
sired changes to the system.

A certain amount of trust is required of scripts and those who have writ-
ten them. Because many CGI scripts can be rather complicated, evaluating
them for problems can be difficult. Many scripts are available on the Inter-
net for download, and some of the authors might have motives that go
beyond providing you with a feature for your server. Similarly, an author
can write a script without full knowledge of the repercussions of the secu-
rity issues involved, leaving the server open to attack by someone familiar
with the failings of that script.

WARN I NG Never place interpreters in the cgi-bin directory. This applies
to Perl, PHP, or any other language. This is usually a problem with the Windows
environment, but Linux users need to be aware of it.

suExec

One problem with CGI scripts is that they are run by the owner of the
server, which can cause serious problems if the script is written in a mali-
cious or careless way. Typically, the damage is restricted to whatever the
server processes’ owner may access. Under some circumstances, a visitor
can enter data that causes a script to do things the author didn’t intend, or
a visitor who has access to the system can modify a script to do things
beyond the intentions of the original author.

The <suexec> option allows CGI scripts to run under a user ID other
than the owner of the server and, at the same time, applies a series of strict
tests to what the script is trying to do. If a script tries to step out of the pre-
scribed parameters, it is terminated and an error is logged to the
<suexec> log file.

The Apache documentation warns that suexec should be used only by
someone who is familiar with the suid and sgid processes. An improper
implementation by an inexperienced administrator could result in unex-
pected actions by the script.

NOTE Configuring suexec is beyond the scope of this course. If you would
like to experiment with it, read the server documentation carefully, paying close
attention to permissions and ownerships.

166 Chapter 4

Security 167

Matrix of Ideal Permissions

Permissions can be set to read (r), write (w), or execute (x). Users require var-
ious levels of permissions, in order to both accomplish their tasks and keep
the system secure. Not every user should have permissions to every file.
Table 4.3 offers guidelines for setting the permissions of different groups.

NOTE Logs also include the lock and state files created by Apache under /var.

User Access Control
In the past, administrators used the access.conf file to define locations
that the world could access on the server machine. It is still available for
legacy purposes, but its directives have all rolled into the httpd.conf
file. Although it is not needed, access.conf may be used. In our exam-
ples, we use the httpd.conf file for all directives, including those for
access control.

Common Access Controls

The following represent some general access directives that affect the
server as a whole.

DirectoryIndex index.html

This directive defines the default index page, the file that will be loaded
when a directory is accessed without specifying a file. Sites on the Internet
on which the main page looks like an FTP directory usually are missing the
index file defined for this directory. index.html is often used, but other
names are also common. If a list of file names is specified and files match-
ing several of the names are present, the first file on the list is the one that
Apache uses.

Table 4.3 Matrix of Ideal Permissions

GROUP CONFIGURATION TOOLS LOGS CGI DOCUMENTATION

Webmaster rwx r-x r-x rwx rwx

Web --- --- --- rwx rwx
developer

Web author --- --- --- r-x rwx

Web server --- --- --- r-x r-x

AccessFileName .htaccess

When the AllowOverride directive is allowed in a directory, some access
methods can control the settings for that directory. This directive sets the
name for that file to .htaccess.

Blocking Access

It is possible for the outside world to view the entire contents of a server
machine’s file system if there are improper symbolic links to content that is
accessible from outside the server. In other words, if an innocuous
index.html file were linked to </>, everything on the system would be
available for perusal.

The <Directory> directive can prevent mistakes. It allows a user to
apply rules exclusively to a particular directory. By default, the directory
will inherit the preexisting directives on the server.

To control access to your Web content, there are a number of directives at
your disposal:

Deny and Allow

Order

Deny and Allow

These directives use the visitor’s originating host as a criterion to deter-
mine if access will be permitted. As with most Linux/Unix security mod-
els, these criteria are based on one of two perspectives that specifically
denies or allows.

The syntax is as follows:

Deny from host

or

Allow from host

The host specified can be a specific host name, an IP address, or any of
the following criterion arguments:

all: Wildcard, all hosts.
domain-name: Exact or partial names will be matched.
IP address: Exact or partial addresses will be matched.

168 Chapter 4

Security 169

network/netmask pair: Range of both will be used.
CIDR specification: A different way of specifying network/netmask,

such as 192.168.0.0/16.

Order

Order simply tells Apache the order in which it should handle a set of
Deny and Allow directives below it. One of the following three will be
used for an order directive:

deny,allow Evaluate the deny directives first.
allow,deny Evaluate the allow directives first.
mutual-failure Hosts must be specifically allowed while not match-

ing any deny criteria.

The Satisfy directive can be used in concert with the Allow and Deny
directives. It is useful only if access to a directory, location, or file is
restricted by both username/password and client host address. When this
happens use the Satisfy directive to modify the default behavior (which
is to require both). Within the directory or .htaccess context, Satisfy
means that the client only has to satisfy host restriction or enter a valid
username and password.

Do not put spaces between the deny and allow keywords. If you
include spaces, Apache will fail to start, displaying a configuration error.
The following is correct:

Order deny,allow

while this is incorrect:

Order deny, allow

Deny and allow work together by evaluating the originating host
according to what you chose to deny and allow and then granting access
depending on the outcome.

First, block access to everything:

<Directory />

Order deny,allow

Deny from all

</Directory>

Now that everything is blocked, we can follow through and let in what
we want. The following represents a server that has all of its content in one
directory, /www/htdocs:

<Directory /www/htdocs>

Order deny,allow

Allow from all

</Directory>

Sometimes an allowed directory will have files inside that need to be
blocked. Implementing a <Files> container can take care of this. For
example, the .htaccess file contains information about local changes to
the configuration and may be of interest to prying eyes.

Here is an example using a <Files> container to block access to a file:

<Files .htaccess>

Order allow,deny

Deny from all

</Files>

As of Apache 1.2, a pattern to block any matching files can be specified;
however, the FileMatch directive is the preferred method for pattern
matching in Apache 1.3. Also note that a Files container can be nested
inside a Directory container.

Enabling Content from
Home Directories
In many environments, such as corporate intranets or university installa-
tions, individual users on the system are interested in serving Web content.
One way to give individuals the ability to serve their own content is to pro-
vide a place within each user’s home directory.

Because access has been blocked to the root file system in the preceding
definition, the risk associated with having content in the home directories
is reduced. The main directives that allow system users to provide content
are as follows.

170 Chapter 4

Security 171

UserDir html

System users can create a directory in which any content they place will be
served. This directive defines the name of the directory within the user’s
home directory. A URL such as www.xyz.com/~joe would go to
/home/joe/html, the specified directory within joe’s home directory.

The following directives define some rules that are directory specific, so
they are bracketed within a <Directory> section. The general form is:

<Directory />

Options

AllowOverride

</Directory>

More specifically, here is an example of the first directive:

<Directory /home/*/html>

This directive appears again as we specify where the home directories
exist. It also marks the beginning of the section that contains the special
directives that are needed.

Here is an example of the second directive:

Options Indexes +SymLinksIfOwnerMatch IncludesNoExec

These turn on a set of options in a section. Choices can be None, All, or
any combination of Indexes, Includes, FollowSymLinks, ExecCGI,
or MultiViews. The MultiViews option must be explicitly named
because it is not included in Options All. Note that the FollowSym-
Links option, while helpful, could allow a user to accidentally create a
symbolic link to an area that should not be visible to visitors, such as /etc.
The SymLinksIfOwnerMatch option allows the use of symbolic links
without opening up this potential security leak.

Here is an example of the third directive:

AllowOverride all

When multiple directories are being defined, a file called .htaccess
(named in the AccessFileName directive) can be used within each direc-
tory to provide further control of the directory. The user may or may not

want this file to be able to change things that have been defined as system
defaults. This directive can use wildcards, such as All or None, or can
specify individual overrides, such as any combination of Options, File-
Info, AuthConfig, and Limit. When override is permitted, Apache
searches each level of the directory tree containing the current directory for
an instance of the access file. When the directory tree of the current direc-
tory is deep, this can impose significant performance penalties, which is
why an AllowOverride none restriction is commonly imposed on the
root directory. Override is enabled only for specific directories where over-
ride is expected to be used.

An example of the directive that will close the <Directory> section is:

</Directory>

Access Directives
Password-protected content needs to have a special definition that will
provide information that both Apache and the Web browsers will use
while negotiating the connection to the resource.

AuthType

This should be set to basic. Digest could also be placed here to enable
encrypted passwords, but not all browsers will support that feature.

AuthName

Password-protected areas are typically a directory and all subdirectories
within that directory. This section of content is known as a realm. Users who
pass the password challenge are allowed access to content within the realm.

AuthName “Private Documents”

Users must not use their system password for their Web password because
cracking the Web password is much easier and has almost none of the pro-
tections that even the simplest system password arrangement has. The fol-
lowing are directives listed within a directory’s .htaccess file and/or
httpd.conf <Directory> section. They can implement restricted use for
a directory containing important information.

172 Chapter 4

Security 173

AuthGroupFile. This file associates group names with their members.
The file can be edited by hand, with each line representing a unique
group and its associated users. This is optional unless you wish to use
group authorization.

AuthUserFile. Points to the file that contains usernames and pass-
words. Use the htpasswd utility to create entries in your file because
the passwords need to be in an encoded format. The /etc/passwd
file is not to be used for the AuthUserFile. A separate user autho-
rization file will need to be created.

Require. This directive is used to specify who can access restricted con-
tent. Whoever is included in the Require directive will have the
opportunity to enter a password. Arguments can include a list of users
and/or groups. Those who meet the criteria defined here will have an
opportunity to enter a valid password to gain access.

NOTE The files to which AuthGroupFile and AuthUserFile refer must be
outside of the directory tree and defined in DocumentRoot.

Defining within httpd.conf
To use an entry with httpd.conf to control all aspects of the authoriza-
tion resource, make a directory entry that contains the relevant informa-
tion. An entry for a working authorization setup is as follows:

<Directory /www/htdocs>

AuthType Basic

AuthName "Secret Place"

AuthUserFile /www/users

AuthGroupFile /www/groups

Require group kernelgroup

</Directory>

This entry creates a protected space on the server within the
/www/usr/apache/htdocs directory. As it is also the DocumentRoot of
the server, Apache requests a password before it provides any content from
the server. Group and password files were created then defined so that
mod_auth could find them. Finally, the Require directive has been
instructed to authorize members of the kernelgroup only.

When loading a page within /www/htdocs, a user will receive a
password prompt. If the user types in a username that is a member of

the kernelgroup and can provide a password that matches the user-
name, the user can enter.

Defining within Control Files

Another way access can be restricted is to use a file within the main direc-
tory of the content itself. Apache looks for the file and then uses it for direc-
tory-specific configuration. A default may already exist for this; if not, add
this line to the httpd.conf file to specify it:

AccessFileName .htaccess

Files with the name .htaccess that reside within content directories will
be used to control access within those directories. Here is the control file
that has been placed within /www/htdocs used to provide the same pro-
tection as the previous example:

#.htaccess

AuthType Basic

AuthName "Private Stuff"

AuthUserFile /www/users

AuthGroupFile /www/groupsfigure

Require group kernelgroup

As before, the users within kernelgroup have an opportunity to pro-
vide a valid password.

Shells and Commands

There are many ideas and concepts behind file security, especially over a
network. This section will describe some of these concepts and discuss
how they are used in Apache.

Checksums
A checksum is a computed value that depends on the contents of a block of
data and that is transmitted or stored along with the data in order to detect
corruption of the data. The receiving system recomputes the checksum
based on the received data and compares this value with the one sent with
the data. If the two values are the same, the receiver has some confidence
that the data was received correctly.

174 Chapter 4

Security 175

The checksum may be 8 bits (modulo 256 sum), 16, 32, or some other
size. It is computed by summing the bytes or words of the data block,
ignoring overflow. The checksum may be negated so that the total of the
data words plus the checksum is zero.

PGP and Checksums

PGP uses a checksum value to do the following:

■■ Produce noncryptographically secure pseudo-random numbers. A
strong pseudo-random number generator (PRNG) exists for the pro-
duction of numbers that need cryptographic security.

■■ Check whether a message has been corrupted during transit.

NOTE This is in addition to any cryptographically secure method of error
detection.

Using a checksum and PGP helps to ensure that what you are down-
loading is actually the program you think it is. Otherwise, you could be
downloading a Trojan horse or some other malicious program. OpenPGP
(v1) does not mandate that conventionally encrypted non-signed messages
are error checked, so errors may exist without warning. The checksum
function is used only in areas that don’t require cryptographic strength.
When cryptographic strength is required, PGP uses a hash function.

To perform a checksum, type the following on the command line:

md5sum file_name

The output will look something like this:

55596d03cf27c88ca0614aad016026ae file_name

What Is MD5?

MD5 reads data and calculates a cryptographic checksum that is very hard
to duplicate. Just as traditional checksums give assurance that a file has not
been accidentally modified, MD5 ensures that a file has not been intention-
ally modified, which helps to protect from downloading any Trojan horses.

Currently, no one knows how to modify a file without changing its MD5
checksum. Researchers continue to try and are making some progress
toward the eventual goal of breaking MD5, but it is still considered strong
enough for most uses.

Password Authentication
Apache can perform authentication tasks through the mod_auth module.
It is not necessary to specify its inclusion during compilation, as it is part of
the default configuration. A handful of directives are needed to implement
authentication with mod_auth. These directives work in conjunction with
the .htaccess file or <Directory> section to control access.

For authentication to work, you must provide mod_auth with the infor-
mation it needs about the users and the content that is to be protected,
including the following:

■■ User and group information
■■ Access directives

User

Information about the users is stored in a special file that you can create for
a given Web resource. This file requires encoded passwords, and a utility
called htpasswd exists to generate such entries:

htpasswd -c filename username

The -c tells htpasswd to create a new password file. If there is already
a file by that name, the -c is not necessary; otherwise, the password file
will be rebuilt and then truncated. Here is an example:

htpasswd -c /www/passfile tux

After invoking htpasswd with the desired arguments, the user will be
prompted to enter a password. The username will then be added with its
encoded password.

Group

A file containing group information is useful to authorize several users at
once. Being an authorized user does not guarantee access to the protected

176 Chapter 4

Security 177

content because a valid password is still required. The name of the group
file is unimportant as long as it exists and the AuthGroupFile directive
can find it. The user can edit this file manually. Its format is as follows:

groupname: member1 member2 member3

System Utilities

In addition to the internal configurations that can be compiled into
Apache, there are a number of utilities that will help with keeping an
Apache install secure. Some of these utilities are discussed in the following
subsections.

Server-Side Includes
A Server-Side Include directive appears inside an HTML document,
within comment brackets, like this:

<!-- #directive arguments -->

Basic Commands

Use SSI directives in HTML documents to echo information or any envi-
ronmental variable:

<!--# echo –Hello!Ó -->

Variables

SSI has any environmental variable at its command:

<!--#echo var=DATE_LOCAL -->

SSI can modify these variables. In this example, timefmt is a string used
when printing dates:

<!--#config timefmt=Ó%AÓ -->

Today is <!--#echo var=DATE_LOCAL -->

If today were Wednesday, it would say:

Today is Wednesday

The %A tells SSI to display just the full name of the day of the week. Table
4.4 shows other format commands you can use. They are the same output
controls used for the Unix date function.

178 Chapter 4

Table 4.4 Format Commands

COMMAND DESCRIPTION

%% A literal %

%a Locale’s abbreviated weekday name (Sun..Sat)

%A Locale’s full weekday name, variable length (Sunday..Saturday)

%b Locale’s abbreviated month name (Jan..Dec)

%B Locale’s full month name, variable length (January..December

%c Locale’s date and time (Sat Nov 04 12:02:33 EST 1989)

%d Day of month (01..31)

%D Date (mm/dd/yy)

%e Day of month, blank padded (1..31)

%h Same as %b

%H Hour (00..23)

%I Hour (01..12)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%m Month (01..12)

%M Minute (00..59)

%n A new line

%p Locale’s AM or PM

%r Time, 12-hour (hh:mm:ss [APJM])

%s Seconds since 00:00:00, Jan 1, 1970 (a GNU extension)

%S Second (00..60)

Security 179

XSSI
Apache goes beyond SSI with eXtended SSI (XSSI). With XSSI users can
attach conditions to the execution of an SSI directive, define variables, and
execute external programs and CGIs (if security allows it).

To create a variable with XSSI use the following:

<!--#set var="city" value="Carthage" -->

Shell Commands

XSSI directives can be used to execute shell commands, unless the directive
is turned off in httpd.conf:

<!--#exec cmd="ls" -->

would list all files and directories in the directory of the file being served.

This will produce something similar to Figure 4.3.

Table 4.4 (Continued)

COMMAND DESCRIPTION

%t A horizontal tab

%T Time, 24-hour (hh:mm:ss)

%U Week number of year with Sunday as first day of week (00..53)

%V Week number of year with Monday as first day of week (01..52)

%w Day of week (0..6); 0 represents Sunday

%W Week number of year with Monday as first day of week (00..53)

%x Locale’s date representation (mm/dd/yy)

%X Locale’s time representation (%H:%M:%S)

%y Last two digits of year (00..99)

%Y Year (1970…)

%z RFC-822 style numeric time zone (-0500) (a nonstandard
extension)

%Z Time zone (e.g., EDT), or nothing if no time zone is determinable

Users can also employ the exec command to execute CGI scripts easily,
as in the following example:

<!--#exec cgi="hello.pl" -->

The exec option can be turned on and off in the httpd.conf file with
the Options directive, which means users have control over where SSI is
allowed to execute files. Look for the Options directive and see if it has
the Includes option or the IncludesNOEXEC option. The Includes-
NOEXEC option allows you to use Server-Side Includes but does not
allow you to use the exec command.

Including Files

XSSI can include files and execute external CGI scripts or shell commands.

180 Chapter 4

Figure 4.3 Screenshot of a directory listing displayed in a Web browser using the ls
command.

Security 181

Use the file or virtual attribute to get different results. For example:

<!--#include file="base.html" -->

is different from

<!--#include virtual="/base.html" -->

Using the file attribute is a little less useful. It must be a file path relative
to the current directory, and it can not start with / or ../. The virtual
attribute specifies a URL relative to the page in which it is served, and it
must be on the same server.

Executing Scripts

Because any file using SSI can be included, the output from CGI scripts can
also be included. For example, the following:

<!--#include virtual="/cgi-bin/cool_hit_counter.cgi" -->

would include the preceding cgi in the HTML document.

Embedding XSSIs

An important note is that includes can be embedded. For example, imag-
ine that a footer is used for files residing deep in a Web site’s directory
structure, but it needs to access the cool_hit_counter cgi. Two
includes can be in every file:

<!--#include file="footer.shtml" -->

<!--#include virtual="/cgi-bin/cool_hit_counter.cgi" -->

To change CGIs and to move to the groovy_hit_counter.cgi, the
include in every file must be changed. An alternative is to have the virtual
include exist only in footer.shtml, which will make upgrading hit
counters less troublesome.

Conditional Statements

XSSI supports conditional statements, such as if, else, elif, &&, and ||.
These statements allow the developer to customize Web content without
the use of a full-fledged CGI.

For example, in the following HTML file, the day is checked and a cus-
tom message is displayed based on the result:

<!--#config timefmt="%A" -->

<!--#set var=today value="DATE_LOCAL" -->

<!--#if expr="$DATE_LOCAL = /Friday/" -->

<h2 align="center">IT IS FRIDAY!!!</ font></h2>

<!--#elif expr="$DATE_LOCAL = /Monday/" -->

<h6 align="center">Please, just one more cup of coffee</h6>

<!--#else -->

At least it isn’t Monday

<!--#endif -->

Notice the use of the $DATE_LOCAL variable, which is an environmental
variable. Using the following command provides a list of the environmen-
tal variables available to XSSI:

<!--# printenv -->

This will produce something similar to Figure 4.4.

182 Chapter 4

Figure 4.4 Screenshot of the XSSI Printenv command.

Security 183

To set a variable in XSSI, use the set command:

<!--#set var="boat" value="Titanic" -->

Now, whenever echo boat (<!--#echo var="boat"-->) is used,
XSSI will return "Titanic".

For another reference, see Apache’s SSI tutorial at
http://httpd.apache.org/docs/howto/ssi.html.

ModSSL versus Apache+SSL
There are two main SSL packages that can be used in an Apache install,
ModSSL and the Apache+SSL patch. The following section presents the
advantages, disadvantages, and installation issues of both packages.

SSL—mod_ssl

mod_ssl is a module derived from Ben Laurie’s Apache+SSL patch.

Essentially, these patches are given to the community at large, as alter-
natives to one another. They are no different from choosing whether to use
Vi or Vim.

The Secure Sockets Layer (SSL) protocol was developed by Netscape to
provide a secure channel for sensitive information, such as that used in
online credit card transactions. SSL is now an Internet standard, and
Apache is able to implement it through a module.

SSL—Secure Sockets Layer

The Secure Sockets Layer protocol is a protocol layer that may be placed
between a reliable connection-oriented network layer protocol (e.g.,
TCP/IP) and the application protocol layer (e.g., HTTP). SSL provides
secure communication between client and server by allowing mutual
authentication, the use of digital signatures for integrity, and encryption
for privacy.

The SSL protocol is designed to support a range of choices for specific
algorithms used for cryptography, digests, and signatures. This allows
algorithm selection for specific servers to be made based on legal, export,
or other concerns, and it also enables the protocol to take advantage of new

algorithms. Choices are negotiated between client and server at the estab-
lishment of a protocol session.

The SSL protocol is a low-level authentication and encryption method
used to secure transactions in higher-level protocols, such as HTTP and
FTP. It was developed by Netscape, but support is provided by most
browsers and Web servers. The current SSL protocol version is 3.0, but the
IETF Transport Layer Security (TLS) specification Version 1.0 actually
supersedes it. (SSL and TLS are generally discussed together, as TLS is
mainly a refined version of SSL.)

SSL includes provisions for server authentication (verifying the server’s
identity to the client), encryption of data in transit, and optional client
authentication (verifying the client’s identity to the server). By employing
SSL-enabled servers and clients, it is possible to send encrypted data, such
as passwords and credit card numbers, across the Internet without fear of
interception.

Clients requesting documents stored in SSL-enabled directories must
use the https:// URL format instead of the standard http:// format.
One reason for this is that SSL-enabled Web services are generally offered
on a different port than nonsecured transmissions, normally port 443.

Implementing SSL in Apache

There are two ways to add SSL to Apache. The first method is to replace
Apache with Apache-SSL. This is a version of Apache that has SSL security
included. (Actually, it is distributed as a patch to the Apache source code.)
It is available at the www.apache-ssl.org site. The other way is to add the
mod_ssl module to a standard version of Apache. (In most circumstances,
Apache must be recompiled to make mod_ssl work.) More information
on mod_ssl can be found at www.modssl.org/. We will focus on Apache-
SSL for the rest of this course.

Legal Issues

SSL data transport requires encryption, and many governments have
restrictions on the import, export, and use of encryption technology. Also,
a few of the encryption algorithms are patented in some countries. With
SSL included in a software package, its distribution involves a number of
legal issues. This is why SSL is distributed separately from the standard
Apache distribution.

184 Chapter 4

Security 185

Until recently, the United States prohibited the export of strong encryp-
tion, normally defined as anything beyond 40 bits. This ban has recently
been eased, but the full implications of the new law have not been entirely
analyzed. Within the United States, SSL can be used for any purpose due to
the expiration of the patent held by RSA Data Security on the RSAREF
code. This patent never applied generally outside the United States, so
now you should be able to use the code for any purpose.

Even though your Apache server should be well established by now, it
will require constant maintenance. The next chapter will discuss some sim-
ple solutions to common problems that may arise.

187

Objectives

■■ List Apache online troubleshooting resources.
■■ List common Apache messages and debugging options.
■■ List common configuration and logging problems.

Online Troubleshooting Resources

The online Apache manual at www.apache.org/docs/ is always a good
place to start. There is also a generic Apache FAQ available at www.apache
.org/docs/misc/FAQ.html.

Search the live Problem Report (PR) database at http://bugs.apache.org.
Near the top of this page you can enter a search string and search the entire
database. Further on down the page you can enter a number of parameters
to narrow your search.

Troubleshooting

C H A P T E R

5

At http://dev.apache.org you will also find links to archives of the new-
httpd mailing list. This archive is the list that the developers of Apache
have been using for years to discuss issues related to the development of
the Web server. There is a lot of information in these archives. Subscribing
to the new-httpd mailing list just to listen is a good idea. Subscription
instructions along with a list of other available mailing lists can be found
at: http://dev.apache.org/mailing-lists.html.

The primary user support forum available for Apache is the comp.infosys-
tems.www.servers.unix newsgroup on USENET. Archives of this group can
be found at www.deja.com/group/comp.infosystems.www.servers.unix.

Tracking Down an Apache Core Dump

Occasionally, things can go wrong. There are many reasons for Apache
crashing, such as a bug in the Apache code, bad memory in the machine, or
a bug in a third-party module that was added. In order to understand what
might have caused the crash, there are a number of things that can be done.

Check the /var/apache/logs/error_log file.

Here are some possible messages:

Tue May 2 09:20:46 2000] [notice] Apache/1.3.14

(Unix) mod_perl/1.21 configured — resuming normal operations

This is a good message. It means the server has started up and that it is
happy.

Tue May 2 09:21:17 2000] [notice] caught

SIGTERM, shutting down

This is also a good message. It means the server was shut down normally
using something such as apachectl stop.

Tue May 2 09:41:25 2000] [notice] SIGHUP

received. Attempting to restart

This is a good message. It means the server was restarted with a com-
mand, such as apachectl restart.

188 Chapter 5

Troubleshooting 189

Tue May 2 09:31:14 2000] [warn] pid file

/var/run/httpd.pid overwritten — Unclean

shutdown of previous Apache run?

This is not a very good message. It means that something happened to
the Apache server on its last run and that it did not shut down cleanly.

[Tue May 2 09:31:44 2000] [notice] child pid

10187 exit signal Segmentation Fault (11)

This is a very bad message. It means one of the httpd child processes core
dumped.

If a Segmentation Fault error or perhaps a Bus Error is found in
the error_log file, there are a couple of tools available that might provide
a hint as to what might be causing the problems:

/opt/sfw/bin/gdb

/usr/bin/truss

/usr/bin/mdb

A typical use of gdb:

gdb /usr/apache/bin/httpd

GNU gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are welcome

to change it and/or distribute copies of it under certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for details.

You can compile the httpd from the Source Package.

PATH=/usr/sbin:/usr/bin:/opt/sfw/bin:/usr/ccs/bin

cd /usr/share/src/apache

NOTE We run httpd with the -X flag, which means that it will be started in
non-forking mode. This makes it much easier to trace, as we have only a single
httpd process to worry about this way.

Some Useful Sites

The following sites will help you in your troubleshooting efforts:

cronolog (www.ford-mason.co.uk/resources/cronolog). A log file rota-
tion program for the Apache Web server.

ApacheWeek (www.apacheweek.com). A free online magazine with
tips.

O’Reilly Network Apache Forum (www.oreillynet.com/cgi-bin/conf/
summary?group=oreillynet.apache). A discussion forum for Apache
users.

Devshed Forums (www.devshed.com). A discussion forum that covers
a multitude of Apache problems and solutions.

Configuration Issues

Problems in configuration may cause Apache not to start at all, or they may
cause requests to fail or to be served other than the intended way.

Permissions problems occur because of several security principles
involved on administering a Web server:

Root. The system user allowed to bind low-numbered ports and access
all files.

httpd or nobody. Who the Web server “runs as.”
Webmaster. An administrator or other users who are able to start and

stop the Web server.
remote user. Those who are able to read.
author user. Those who create content but do not administer the Web

server.

Logging Problems

With multiple servers running on a single instance of the Web server dae-
mon and separate log files for each server, the user may become aware of
the consumption of file descriptors (also called file handles). If the error logs
start reporting such errors as unable to fork or that access logs are not being
written, this has happened. Basically, the problem is that Apache uses a file
descriptor for each distinct log file and 10 or 20 for internal use. Some sys-
tems have a limit of 64 file descriptors for a process, which may usually be

190 Chapter 5

Troubleshooting 191

increased up to a much larger number. Apache will attempt to increase the
limit as needed but may have problems under certain circumstances:

■■ If the system does not support the setlimit() call (or if it does not
work, as on Solaris 2.3)

■■ If the number of descriptors exceeds the absolute limit

If one of the first two conditions applies, starting Apache with a script
similar to this can help:

#!/bin/sh

ulimit -S -n 100

exec httpd

An alternate solution is to send all logs to the same file and filter them
out later for distribution to each client. A description of real-time logging
using piped logs is at www.apache.org/docs/new_features_1_3.html.

This issue and other problems are addressed in detail at the Apache Web
site, www.apache.org.

Labs and Exercises

Two

PA R T

195

Purpose

In this exercise, you will learn how to install and update Web server mod-
ules, features, and configurations so that they can meet your needs.

This exercise will be centered around four packages that you will install:
the apache-1.x.x.i386.rpm, php-4.0.x.x.i386.rpm, mod_php-4
.x.x.i386.rpm, and mod_perl-1.x.i386.rpm files. The installation
of these modules will give you moderate Web server functionality.

After these are installed, you will also need to complete any site-specific
configurations to the Web server that are required. The files used in this
part of the exercise will commonly be contained in the apache/conf
directory, with most of the work centering on the httpd.conf directory.

Theory

For this exercise, we are using the .rpm files for the installation/update.
The .rpm files are commonly used among many different distributions, not
just Red Hat; however, a few distributions, including Debian, Slackware,

Installation

L A B

I

and Corel, do not include .rpm files in their distribution media, such as
CD-ROMs. Even though .rpm files are not available in these distributions,
you will often find that the rpm program is included. This program allows
the user to install .rpm files, even if they are not included on the distribu-
tion’s CD.

Lab Exercises

This lab will go step by step through the installation, from downloading
the required packages to getting them installed and configured. The lab
will include the following steps:

1. Downloading modules.
2. Preinstalling Query.
3. Installing the package.
4. Setting up the basic server.

At the completion of this lab, the server should have the basic functions
needed.

Downloading Modules
The first step of this exercise is to acquire the packages needed. This can be
done in many ways, including distribution media installation and acquisi-
tion from the Internet. The two most common places to find the packages
are distribution CDs or the Internet. The packages on distribution CDs are
not always up-to-date, and the desired packages are not always readily
available. It is much easier to use packages downloaded from the Internet
because they offer a centralized location where the packages can be found.
This makes the packages very easy to find and readily available.

Finding the .rpm packages on the distribution’s CD is easy. First, make
sure the media is mounted. Then, enter the directory structure and locate
the .rpm files. These are usually located in a directory that shares its name
with the distribution. For example, the command for installing a package
on a Red Hat CD would most likely be this:

bash# rpm -i /mnt/cdrom/redhat/RPMS/packagename.ver.rpm

196 Lab I

Installation 197

For SuSE, the files are located in the subdirectories of the /suse direc-
tory, as in the following example:

bash# rpm -i /mnt/cdrom/suse/sd/packagename.rpm

The location of the packages varies between distributions, and it can take
some time to locate the packages you desire. The most up-to-date packages
must be obtained from the Internet.

To find packages on the Internet, you must first locate a reliable site.
RPMfind (www.rpmfind.com) and the official Red Hat Web site (www.red-
hat.com) are two of the most reliable sources for finding .rpm packages.

The packages that you will need for this lab are these:

apache-1.x.x.i386.rpm

mod_perl-1.x.i386.rpm

php-4.x.x.i386.rpm

mod_php-4.x.x.i386.rpm

The x’s represent the available, or current, minor version number of the
package.

Once you have these packages, make sure they contain what you will
need and do not contain errors.

Preinstallation Query
Once you have the packages, make sure that the packages are legitimate and
do not have any visible errors. To do this, you will have to run the rpm com-
mand to verify that the acquired packages are valid. This is done by running
rpm with the -qp argument, which allows you to query the uninstalled
package. The following is an example of how to query the uninstalled
Apache package:

bash# rpm -qp apache-1.3.12-25.i386.rpm

If nothing is wrong with the package, the command will return the name
of the package contained in apache 1.3.12-25.i386.rpm, as in the
following:

bash# rpm -qp apache-1.3.12-25.i386.rpm

apache-1.3.12-25

This means that the apache-1.3.12-25.i386.rpm package contains
the apache-1.3.12-25 package. Repeat this process with all of the pack-
ages that you are going to install. The next step will be to install the pack-
ages and then to verify them.

Package Installation
To install this package, use the -i option. It will install the selected pack-
age, as shown:

bash# rpm -i apache-1.3.12-25.i386.rpm

This installs the file that has been identified as the Apache package. Once
this package is installed, continue to install all of the other packages in the
same fashion. After the packages are installed, you will have to verify them
to make sure that they were installed properly, without errors. To do this,
run rpm once again; this time use the -V option and the name of the
installed package. The following command will test the integrity of the
Apache package that was just installed:

bash# rpm -V apache-1.3.12-25

If the package has returned output, then errors are in the installation,
and you should refer to the rpm man page in the signatures section; how-
ever, if the command did not return any output, then the package has been
verified and should be safe to use. After all the modules are installed and
verified, you may wish to view the files installed by the packages. This can
be done by using the rpm command in the following manner:

bash# rpm -ql apache-1.3.12-25

This will display the list of files that are part of the specified package, in
this case apache-1.3.12-25. The displayed output will be quite long,
and you will not need to see many of the results. For most of this exercise,
you will want to focus your attention on the files in the httpd/conf direc-
tory to customize the installation.

Basic Server Setup
Now that the verification and installation has been completed, the next
step should be to edit the configuration files to customize Apache. This
step is very easy if the administrator knows what to change. If you are new

198 Lab I

Installation 199

to Apache, you might be wondering how to find documentation on editing
the configuration files; the answer is surprising. Most of the required doc-
umentation is found in the configuration file itself, in the form of more than
650 commented-out statements. Most of these statements contain hints and
instructions on how to set up the server. Without all of the comments, the
file is only about a third as long.

Now, changes toward customization will take place. Open the
httpd.conf file in Vi or the editor of your choice. The configuration
depends greatly on what the Web server is going to do. It might be a good
idea to uncomment the lines containing the modules that were installed.
This can be done by finding the dynamic shared object (DSO) header in the
httpd.conf file and changing the paths of the files in the following lines
to where the modules are located:

LoadModule perl_module modules/libperl.so

#LoadModule php_module modules/mod_php.so

LoadModule php3_module modules/libphp3.so

LoadModule is the directive to show that a module is being loaded, and
it is followed by the module name and path. If the modules for the pack-
ages you just installed are in another directory, include the full path here.

Most of the other changes to make in the server configuration will be
done simply by uncommenting lines. First determine what you want the
server to do. After this is established, the needed changes can be made and
the desired effect can be achieved.

Questions

1. How would an administrator keep clients from making more than
one request per connection?

2. How would you find out what package is contained in a .rpm file?
3. If there is no DNS name for your machine, what should the server

name be?
4. Where are the best places to find RPM modules?

Answers

1. Modify the KeepAlive directive so that it is turned off.
2. Use the -qp argument on the rpm command. (rpm -qp <package>).
3. The machine’s IP address.
4. The sites of official vendors.

Advanced Questions

1. What would be a reason to edit a configuration file (other than
httpd.conf)?

2. Describe the advantage of using DSO modules.
3. Describe the advantage of using static modules.

200 Lab I

201

Purpose

The purpose of this lab is to install the Secure Socket Layer (SSL) protocol
for an Apache Web server. With SSL, Apache offers the high level of secu-
rity necessary for the safe transmission of sensitive data. With more and
more businesses performing online transactions, security has become nec-
essary to the continued growth of the Internet.

This lab will use an Open Source patch of SSL that is available from the
Apache+SSL project and provides a secure connection between the server
and the client’s Web browser. This process will provide an interface
between Apache and SSL.

Theory

SSL provides secure communications between a client and a server, allowing
for mutual authentication, use of digital signatures, and encryption of com-
munications. SSL is a low-level authentication and encryption method used
to secure transactions for upper-level protocols, such as HTTP and FTP.
Originally developed by Netscape, SSL includes provisions for server

Install Apache+SSL

L A B

II

authentication, encryption of data in transit, and client authentication. Using
these methods, it is possible to send encrypted data, such as passwords and
credit card numbers, across the Internet with a large degree of safety.

Due to various export restrictions, Apache and SSL are distributed sepa-
rately; therefore, SSL is installed using a patch. Before using Apache+SSL,
legal compliance should be checked.

NOTE Everything from here forward will be done in the working directory
/usr/src/apache+ssl.

Lab Exercises

This lab will cover the following steps:

1. Downloading the latest release of the Apache server.
2. Compiling Apache with mod_ssl support.
3. Verifying that Apache was compiled with mod_ssl.
4. Testing the sample page in a Web browser.

Downloading the Apache server
As root, create the directory /usr/src/apache+ssl using the following:

$ mkdir /usr/src/apache+ssl

From the sites www.open-ssl.org, apache.org, and apache-ssl.org, down-
load openssl-0.9.6a.tar.gz, apache_1.3.14.tar.gz, and
apache_1.3.14+ssl_1.42.tar.gz, respectively. These files should be
placed in the /usr/src/apache+ssl directory as shown here:

$ls

apache_1.3.14+ssl_1.42.tar.gz

apache_1.3.14.tar.gz

openssl-0.9.6a.tar.gz

Next, untar and install each file. From the /usr/src/apache+ssl
directory, perform the following:

202 Lab II

Install Apache+SSL 203

tar xvzf openssl-0.9.6a.tar.gz

cd openssl-0.9.6a

./configure

make

make test

make install

The default values are acceptable in most cases. The make install com-
mand will place Openssl files in the /usr/local/ssl directory. Openssl is
now installed on the system. Next, return to the /usr/src/apache+ssl
directory. Continue with the apache_1.3.14 file:

cd ..

tar xvzf apache_1.3.14.tar.gz

Now copy apache_1.3.14+ssl_1.42.tar.gz into the /usr/src/
apache+ssl/apache_1.3.14 directory with the following command:

cp apache_1.3.14+ssl_1.42.tar.gz apache_1.3.14/

Untarring the apache_1.3.14+ssl_1.42.tar.gzwill place the con-
tents in the same directory as the other Apache files. To do this, use the fol-
lowing:

tar xvzf apache_1.3.14+ssl_1.42.tar.gz

Compile Apache with mod_ssl
Support
The next step is to apply the SSL patch to Apache. Apache+SSL comes with
a script to handle this step. If the script does not work on the system, the
patch should be applied manually using the patch command. (For more
information on using patch, consult the man pages. In addition, consult the
README.SSL file for further information on configuration settings needed
to edit /usr/src/apache+ssl/apache_1.3.14/src/Configura-
tion.) Next, apply the patch using the Fixpatch script:

./Fixpatch

Apache is now ready for installation and configuration. The following
actions should be performed:

./configure --enable-module=so

make

make install

By default, Apache files are placed in the /usr/local/apache direc-
tory. If everything worked properly, the following output should be dis-
played:

+--+

| You now have successfully built and installed the |

| Apache 1.3 HTTP server. To verify that Apache actually |

| works correctly you now should first check the |

| (initially created or preserved) configuration files |

| |

| /usr/local/apache/conf/httpsd.conf |

| |

| and then you should be able to immediately fire up |

| Apache the first time by running: |

| |

| /usr/local/apache/bin/httpsdctl start |

| |

| Thanks for using Apache. The Apache Group |

| http://www.apache.org/ |

+--+

Verify That Apache Was Compiled
with mod_ssl
The next step involves creating a certificate. Go into the /usr/src/
apache+ssl/apache_1.3.14/src directory and make the certificate:

cd src

make certificate

The following output is generated (fill out the information pertinent to
the system):

You are about to be asked to enter information that will be incorporated into your

certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

204 Lab II

Install Apache+SSL 205

There are quite a few fields but you can leave some blank.

For some fields there will be a default value,

If you enter ".", the field will be left blank.

Country Name (2 letter code) [GB]:

State or Province Name (full name) [Some-State]:

Locality Name (e.g., city) []:

Organization Name (e.g., company; recommended) []:

Organizational Unit Name (e.g., section) []:

server name (e.g., ssl.domain.tld; required!!!) []:

Email Address []:

Test the Sample Page in
a Web Browser
The final step is to replace the Apache configuration file (httpd.conf)
with the SSL file. The location of the httpd.conf file varies with distrib-
ution. The following shows Red Hat’s default location:

$ cp /usr/src/apache+ssl/apache_1.3.14/SSLconf/conf/httpd.conf

/usr/local/apache/conf/.

The default settings work in most cases. If changes are made to
httpd.conf, check the configuration before starting the Apache daemon,
as shown here:

/usr/local/apache/bin/apachectl configtest

/usr/local/apache/bin/apachectl start

The server can be checked by bringing up a browser and connecting to
http://localhost. An OpenSSL certificate should be displayed on the
screen.

Questions

1. Give one way to check that the Apache+SSL installation is running
correctly.

2. Can a “normal user” employ apachectl?
3. Why are SSL and Apache distributed separately?

Answers

1. From the server, Lynx localhost or http://localhost in Netscape Nav-
igator, Internet Explorer, or another browser.

2. No, apachectl must be run as root.
3. Due to export restrictions imposed by the United States and other

nations, some software cannot be distributed with certain types and
levels of encryption. As a result, Apache can be distributed only with-
out the encryption and other features offered by SSL.

Advanced Questions

1. How does Apache+SSL negotiate content between the server and
client?

2. What encryption methods are available for Apache+SSL?

206 Lab II

207

Purpose

The purpose of this lab is to set up an Apache server with several common
Web server features. Apache is the most commonly used Web server
because it is freely available and can be customized to suit almost any need
for a Web server.

In this lab, you will perform the following steps:

1. Allow cgi-scripting in normal document directories outside of the
existing scriptalias cgi-bin.

2. Add a virtual host.

For this lab, your computer should have Apache+SSL preinstalled.

Theory

When Web pages were static, interaction was one way and the server sim-
ply sent requested pages. This method was effective, but it relied on the

Configuring Apache
to Perform Common Tasks

L A B

III

Web pages to be updated constantly or customized for a particular user. To
offer dynamic content and input from the user, Common Gateway Inter-
face (CGI) scripts were used to unlock the data residing on servers. CGIs
are programs that run on the server and send output to the user’s browser.
Almost any program that can run on a server can be used as a CGI script.
The most common of these are Perl scripts, JavaScript, and PHP. These pro-
grams are usually found in the cgi-bin subdirectory on the server. There
is typically a system-wide cgi-bin subdirectory, but it can also exist in a
user’s directory on the server. Placing the cgi-bin in the user’s directory
will be one of the tasks performed in this lab.

First, open the configuration file for Apache, httpd.conf, in a text edi-
tor. The location of added code is not crucial, but it makes future edits eas-
ier if all the CGI directives are together. On most default systems, there is a
default CGI directive similar to the following:

<Directory "/var/lib/apache/cgi-bin">

AllowOverride None

Options None

Order allow,deny

Allow from all

</Directory>

Add the following code to enable CGI scripts in a user’s home directory:

<Directory "/home/user/public_html/cgi-bin"> - specifies the directory containing

scripts

AllowOverride None - specifies whether a directive .htaccess should control

Options ExecCGI - executes all CGI scripts in the directory

Order allow,deny sets the order of permissions in .htaccess or in following lines

Allow from all - grants permission for all users to execute scripts

</Directory>

Save and restart Apache with the following:

apachectl restart

Next, a name-based virtual host will be configured. Among the many fea-
tures offered by Apache is the ability to host different sites on the same
machine. Small to medium-sized Web sites can typically be run off a
medium-grade Pentium machine with a 10-bit Ethernet connection. A 10-bit

208 Lab III

Configuring Apache to Perform Common Tasks 209

connection often provides more than enough bandwidth for these sites; in
this case, an additional site may be run. Therefore, the next task will be to set
up a virtual host.

There are three separate ways to host multiple Web sites on a single
machine:

■■ Use multiple instances of the daemon
■■ Use IP-based virtual hosting
■■ Use name-based virtual hosting

Similar to IP-based hosting, name-based hosting allows multiple server
names to point to one machine. One of the major benefits is that a number
of hosts can use a single IP address, avoiding the need to obtain an addi-
tional IP address. Name-based hosting is available because of a feature
available in most browsers. When a browser requests a page, the destina-
tion name is included in the header. Apache is able to use this information
and direct the request to the location holding the information.

Configuring a system to use name-based hosting takes place in the
httpd.conf file. In most distributions, the virtual host section is com-
mented out; the easiest way to implement virtual hosting is to remove the
comments. The following steps show how to add name-based hosting to
a site:

1. Open the Apache configuration file (httpd.conf) in a text editor.
2. Add the following text to the file:

<VirtualHost 123.45.67.89> - specifies the IP address for name-based hosting

ServerName www.site1.com - states the requested name for the first website

ServerAdmin webmaster1@site1.com - specifies the email for the administrator

DocumentRoot /home/web/site1 - sets the directory containing the first website

ErrorLog /var/log/site1-error_log - sets the error log directory for the first

site

</VirtualHost>

#Second host

<VirtualHost 123.45.67.89> - specifies the IP address for name-based hosting

ServerName www.site2.com - states the requested name for the second website

ServerAdmin webmaster2@site2.com - specifies the email for the administrator

DocumentRoot /home/web/site2 - set the directory containing the second website

ErrorLog /var/log/site2-error_log - sets the error log directory for the second

site

</VirtualHost>

3. Make sure the specified directories have the appropriate content.
Restart the httpd daemon to read the new configuration with the
following:

apachectl graceful

Lab Exercises

To perform these exercises, you will need to locate and understand the
Apache configuration files under /usr/local/apache/. All the other
Apache information is also located here. Make sure you find the configu-
ration files before proceeding.

To successfully debug these exercises, it will also be useful for you to
locate the Apache logs, particularly the error log. Again, these are located
in various places. Red Hat puts them in /var/log/httpd (and sym links
them from /etc/httpd/logs). The Apache distribution (unmodified)
puts them in /usr/local/apache/logs/.

Once you have found the appropriate Apache files and logs, follow these
steps:

1. Reconfigure Apache to give each of your users (~username paths) a
private cgi-bin directory, either under the user’s Web document
root or in another place in the user’s home directories.

2. Test the cgi-bin directory by writing a small Perl script or shell
script that prints hello.

3. Bind in a second IP address (192.168.1.250) for Apache to use as a vir-
tual site.

4. Configure Apache to use the new IP address as an IP virtual server.

Questions

1. What is the maximum number of name-based virtual hosts that a sin-
gle machine can accommodate?

2. What script is commonly used to restart the httpd daemon?
3. Name three common languages used to produce CGI scripts?

210 Lab III

Configuring Apache to Perform Common Tasks 211

Answers

1. There is no maximum number. More virtual hosts, though, mean
more resources consumed, which affects overall system performance.

2. Apachectl.
3. Perl, JavaScript, and PHP.

Advanced Questions

1. Why would you want to put the cgi-bin directory outside of the
document root?

2. What is the danger of having multiple cgi-bin directories scattered
throughout a server?

213

Purpose

This lab exercise will teach you to create a simple CGI script and execute it
from both a command line and a Web browser. This lab will allow you to
configure Apache to accept CGI scripts in a given directory, write a simple
CGI script and make it executable, give parameters to a CGI from a URL,
and process view parameters in the CGI’s output.

Theory

The Common Gateway Interface (CGI) can do tasks that HTML cannot
accomplish alone. CGI programs run on the server side, allowing you to
create forms and guestbooks, among other things. CGI scripts are written
most commonly in Perl, but they can also be written in C, C++, shell script-
ing, Python, TCL, and other languages.

CGI scripts are made available to a browser through the use of simple
links, specialized URLs containing question marks, HTML tags, or
HTML+FORMs. After an HTML document containing one of these ele-
ments is submitted, a query is passed to the HTTP server, which is then

Create a Simple CGI Script

L A B

IV

passed to the CGI script itself. The script processes the input, formats the
output into HTTP codes or an HTML document, and returns the codes or
documents to the HTTP server. This information is then passed along to
the client application.

Lab Exercises

CGI scripts can be shell scripts. This lab exercise will allow you to create a
simple CGI script and execute it.

Create a Basic CGI Script

NOTE All tasks from here forward will be in the working directory
/usr/local/apache.

Configure Apache for /cgi-bin/ scripting as root by adding the fol-
lowing lines to your httpd.conf file:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/

<Directory "/home/httpd/cgi-bin">

AllowOverride None

Options None

Order allow,deny

Allow from all </Directory>

NOTE Paths may vary based on your installation.

Save httpd.conf and restart Apache.

Check the log to see Apache’s status:

$ tail /var/log/httpd/error_log [Wed Dec 20 17:48:06 2000]

[notice] SIGHUP received. Attempting to restart [Wed Dec 20 17:48:10 2000]

[notice] Apache/1.3.12 (Unix) mod_perl/1.21 PHP/3.0.16 configured -- resuming normal

operations

Once you see the resuming normal operations message, create the
first script. Create this file as /var/lib/apache/cgi-bin/set.sh as
follows:

214 Lab IV

Create a Simple CGI Script 215

#!/bin/sh

set.sh -- show the environment in a CGI script.

echo Content-type: text/plain

echo

set

chown this file to the user and group under which Apache’s httpd
process runs, and mark it executable. In this example, Apache is run by
user.group nobody.nobody:

$ chown nobody.nobody /var/lib/apache/cgi-bin/set.sh

$ chmod +x /var/lib/apache/cgi-bin/set.sh

Run chmod from the command line; note the output.

$./set.sh

If the output scrolls off your screen before you get a chance to view it,
pipe (|) it into less:

$./set.sh | less

Use the space bar to scroll through the output.

Now try it from the Web browser. Open http://localhost/cgi-bin/set.sh
and view the contents there. Compare the two outputs.

Give the set script a parameter; open http://localhost/cgi-
bin/set.sh?test. Try it with different parameters. Check the value of the
QUERY_STRING variable each time.

Questions

1. Why change the owner of the script to the owner of Apache?
2. Assuming you have the correct owner of the file, what is the tightest

level of permission you can have on the file and still have it execute?

Answers

1. To give access to those viewing the page or script.
2. -rwx------.

Advanced Questions

1. set is a shell command. What other shell commands are useful in
CGI programming? What are some potentially dangerous shell com-
mands?

2. How can you use the QUERY_STRING variable for more complex
shell scripts?

3. Why is the output in your Web browser different from the output
obtained when you execute on the command line?

4. Why are there two echo commands in the bash script (i.e., echo
Content-type: text/plain echo)?

216 Lab IV

217

Purpose

In this lab, you will edit the httpd.conf file to use mod_auth_mysql for
HTTP user authentication. This will configure Apache to use MySQL as the
primary username and password database. Students will then gain famil-
iarity with administering a MySQL user database. The configuration will
be tested using a Web browser.

Theory

To increase security, the Apache Web server can require authentication
before processing a client’s request. There are several ways in which
Apache can store usernames and passwords. Although Apache can use
text files to store authentication data, it is often more secure and efficient to
administer this data through a MySQL database. This is done by using the
mod_auth_mysql module to enable authentication and to specify the use
of the MySQL database.

Configure and Run
mod_auth_mysql

L A B

V

Setting Up the MySQL Database
Before Apache can use mod_auth_mysql to perform authentication, a
database must exist to store the usernames and passwords of authorized
users. The mysqladmin command is used to create this database. When
the database has been created, it is necessary to set up the appropriate
database fields properly. After the MySQL database has been constructed,
MySQL must be configured to allow the Web server to access the newly
created database. MySQL must then be restarted so that the changes can
take place. It is also necessary to create a test user so that the configuration
can be tested later.

Setting Up Apache
With the MySQL database properly set up, the next step is to configure
Apache to use this database for authentication. This is done by first editing
the httpd.conf file to use the mod_auth_mysql module for authentica-
tion. With the authentication scheme in place, a test directory is needed
with a .htaccess file to protect the directory. After making changes to
Apache’s configuration file, the httpd daemon must be restarted to make
the changes take effect. The authentication can then be checked by access-
ing the page with a Web browser.

Lab Exercises

To complete this lab, a computer with Apache+SSL with MySQL
mod_auth_mysql already installed must be available.

Assuming you have added the path to the mysql bin/ directory to
your PATH environment variable, type:

mysqladmin create http_auth -u root -p

Enter MySQL’s root password at the password prompt to access
mysqladmin. Log into that database by typing:

mysql -u root -p http_auth

Enter your password at the prompt.

218 Lab V

Configure and Run mod_auth_mysql 219

Now it is time to add a simple table to your database, which you can use
to grab usernames and passwords. mod_auth_mysql has some default
field names for this table, which we will use. Set up the table as follows:

create table mysql_auth (

username char(25) not null,

passwd char(25) not null,

groups char(25),

primary key (username)

);

As you can see, this is a very simple table. In MySQL, the char() field is
designed specifically to hold characters. While it may seem unwise to store
user passwords as clear text in this database, mod_auth_mysql encrypts
the passwords by default by using the MySQL password() routine.

We also built the table with two fields that are labeled not null, mean-
ing that neither the username nor the password can be null when creating
new users.

For security purposes, you want to create a new username and pass-
word that mod_auth_mysql can use to access the database you have cre-
ated. Because you are currently logged in as root, this will be easy. Type
the following:

GRANT DELETE, INSERT, SELECT, UPDATE ON http_auth.* TO apache_user@localhost

IDENTIFIED BY 'kl4u137';

This gives the user apache_auth the ability to remove information,
insert information, find information, or change information on any table
within the mysql_auth database, as long as apache_auth is connecting
from the local host. Before the new user can go into effect, we need to flush
MySQL’s privilege tables. To do this, perform the following steps:

1. If you are still in MySQL, type exit; hit return. From the command
line, type the following:

mysqladmin -u root -p reload

2. Enter your password at the prompt. This command reloads the per-
missions so that MySQL will recognize your new user. To test, try to
enter the database as apache_user with a password of kl4u137, as
shown here:

mysql -u apache_user -p http_auth

3. Enter kl4u137 at the prompt. Now that you are in, use the following
code to add a new user, which Apache and mod_auth_mysql can
use to validate:

INSERT INTO mysql_auth (username, passwd, groups) VALUES ('user_1',

password('c0ff33'), 'test')

user_1 will be the first Web-based user for us to test.
4. Notice the use of password c0ff33 as the value that went into the

mysql_auth passwd field. Type the following:
select * from mysql_auth;

You will notice that the password column does not look like c0ff33
at all. password() is the default function mod_auth_mysql uses
when it checks passwords.

5. Open your httpd.conf file and add the following lines:
Auth_MYSQL on apache_user

Auth_MySQL_Info localhost apache_user kl4u137

Auth_MySQL_Encryption_Types MySQL

Auth_MySQL_Info designates the standard database you are using,
the username and password you use to connect to it, and the location
from which you plan to connect (in this case, localhost).
Auth_MySQL_Encryption_Types is the method by which
mod_auth_mysql will encrypt your passwords. There are three
options here:
■■ Plain text
■■ Crypt_DES
■■ MySQL
You can use one or all of these options, and the module will use each
method to check your database. Because we inserted our user with
the password() function in MySQL, it makes sense to choose the
MySQL option here.

6. Next, select a directory you would like to protect using
mod_auth_mysql. Create a .htaccess file in this directory, and
place the following code in it.

AuthName –Super Secret Web siteÓ

AuthType Basic

require valid-user

7. Restart Apache and then try to view a Web page within the newly
protected directory with your Web browser. When you see the popup

220 Lab V

Configure and Run mod_auth_mysql 221

window asking for your username and password, enter the combina-
tion that you entered into MySQL.

Student Resources
You can find additional information at the following URLs:

MySQL authentication module for Apache at www.diegonet.com/sup-
port/mod_auth_mysql.shtml (mod_auth_mysql v2.20).

Using MySQL for user authentication with the Apache server at
http://bignosebird.com/notebook/mysqlauth.shtml.

Questions

1. Could you use .htaccess files with mod_auth_mysql?
2. Because mod_auth_mysql uses the same directives as if you just

used text files, how would you check a user’s group as well?
3. Could you add columns to this table to hold more user information,

possibly for an online community situation?

Answers

1. Yes, but it would be slower.
2. Add require group test, where test is the name of the group

you require.
3. Yes.

Advanced Questions

1. You can use Auth_MySQL_DB [database_name] within a given
scope to point to a database different from the default. What purposes
could this serve?

2. What is the purpose of using Auth_MySQL_Encryption_Types
with one or more encryption methods? More specifically, what does
this directive secure against?

3. What are the security ramifications of storing a MySQL username
and password in httpd.conf?

222 Lab V

223

Purpose

The purpose of this lab is to configure Apache to work in tandem with
Jakarta-Tomcat. Jakarta-Tomcat will serve dynamic content, and Apache
will serve static content.

Theory

One of the strengths of Apache is that it can be customized to meet almost
any need. Traditionally, Apache utilized programming languages, such as
C and Perl, to offer dynamic content for Web pages. Java servlets offer an
alternative to CGI scripts. In addition to providing dynamic content, Java
code can be run on any platform using a Java Virtual Machine, with little or
no modification to the source code. In other words, the code can be ported
to other platforms easily.

Before beginning the Jakarta-Tomcat installation, the system must have
either Java Runtime Environment (JRE) or Java Development Kit (JDK)
installed. This software must be installed properly along with the proper
paths and classpaths before Tomcat will work properly.

Apache and Tomcat

L A B

VI

While Jakarta-Tomcat can be utilized as a stand-alone Web server, using
it along with Apache has its advantages. They are as follows:

■■ Apache hosts static Web pages faster than Tomcat.
■■ Apache has more configuration options than Tomcat.
■■ Tomcat, along with Apache, can host CGI scripts as easily as Java

servlets.

Lab Exercises

1. From the Web site http://jakarta.apache.org download the latest sta-
ble binary version of Jakarta-Tomcat; as of this writing, the latest ver-
sion is 3.2.1. For simplicity, put the Jakarta-Tomcat tarball in the same
directory as jdk (e.g., /opt):

cd /opt

tar xvzf jakarta-tomcat-3.2.1.tar.gz

2. The next step involves editing /etc/profile to include the follow-
ing environment variables:

export CLASSPATH=/opt/jakarta-tomcat-3.2.1/src.jar:/JAVA-DIR/jakarta-

tomcat-3.2.1/ servlet.jar:

export TOMCAT_HOME=/opt/jakarta-tomcat-3.2.1

3. Next, download the mod_jserv.so from http://jakarta.apache.org/
builds/jakarta-tomcat/release/ v.3.2.1/bin/linux/i386. Place this
file in the /JDK/jakarta-tomcat-3.2.1 directory.

4. Copy the tomcat-apache.conf file (or tomcat.conf) to tom-
cat-jserv.conf. Edit the Apache configuration file, httpd.conf,
to include the following line:

Include /opt/jakarta-tomcat-3.2.1/tomcat-jserv.conf

5. Make sure the mod_jserv.so file is referenced correctly in tom-
cat-jserv.conf. The first line of tomcat-jserv.conf should
include the following:

LoadModule jserv_module /opt/jakarta-tomcat-3.2.1/mod_jserv.so

6. Restart Apache using the init scripts or the apachectl script (e.g.,
/etc/rd.d/init.d/httpd restart or /etc/httpd/apache
restart).

224 Lab VI

Apache and Tomcat 225

7. Start Tomcat using the following:
/opt/jakarta-tomcat-3.2.1/bin/startup.sh

8. To test the new setup, point your browser to http://localhost/exam-
ples/servlets/.

9. Click on the links to execute the various examples of servlets.

Questions

1. Why would one use Tomcat in conjunction with Apache?
2. What technologies, other than Java servlets, provide dynamic content?

Answers

1. Tomcat, along with Apache, can host CGI scripts as easily as Java
servlets.

2. CGI scripts written in Perl, C, or shell scripts.

Advanced Questions

1. Compare and contrast Java servlets and CGI scripts.
2. Write a servlet to display user input.

227

Purpose

The purpose of this lab is to teach you how to configure a caching HTTP
proxy. A proxy can perform some of a firewall’s functions, but typically it
is used to allow users to access Web pages from behind a firewall or to
speed up performance of an Internet connection.

Theory

A proxy server is a machine that processes requests for data from one sys-
tem, then passes that request on to the proper server. Proxies are often used
to process HTTP requests through a firewall. If the proxy also saves
requested data, it becomes a caching proxy. Because they store information
locally and do not need to access the primary server, caching proxies allow
more efficient use of the network. Apache’s functionality may be extended
to include proxy features by using the module mod_proxy.

Configuration of a Proxy

L A B

VII

Installing mod_proxy
The first step to setting up Apache as a proxy server is to install
mod_proxy. Apache can be updated with mod_proxy in two ways. First,
Apache can be recompiled to include mod_proxy in the core distribution.
Second, if Apache has Dynamic Shared Object (DSO) support, mod_proxy
can be inserted as a module at run time. For this lab, mod_proxy will be
loaded as a module at run time. Therefore, Apache must have mod_so
compiled, which will provide loadable module support.

Configuring httpd
After mod_proxy has been integrated into Apache, httpd.conf must be
changed to take advantage of the proxying features. This is done by adding
directives recognized by mod_proxy to httpd.conf. Table VII.1 lists
some of the most common directives supported by mod_proxy.

A more detailed list of directives for mod_proxy can be found on the
Apache Web site: http://httpd.apache.org/doc/mod/mod_proxy.html.

After making changes to httpd.conf, the Web server must be restarted
for the configuration changes to take place.

228 Lab VII

Table VII.1 mod_proxy Directives

DIRECTIVE DESCRIPTION

ProxyRequests Determines if Apache will function as a proxy

ProxyRemote Specifies a proxy for Apache to use

ProxyPass Converts requests for local data to a proxy request

ProxyBlock Blocks proxy connections to specified sites

NoProxy Instructs Apache to serve requests directly, instead of proxying

ProxyDomain Appends the domain name within intranets

CacheRoot Sets the directory to write cache files to

CacheSize Sets the size of the cache in kilobytes

NoCache Specifies locations not to cache from

Configuration of a Proxy 229

Configuring the Client
Once the proxy server has been properly set up, any client wishing to use
the proxy server must be configured to use the server. This is done by mak-
ing changes to the client’s Web browser settings. For the purposes of this
lab, it is assumed that the client is running Netscape Navigator for HTTP
connections. After the settings have been changed, the client should be able
to make HTTP connections through the newly configured proxy.

Lab Exercises

The following exercises will take you through the steps of installing
mod_proxy, configuring httpd, and configuring the client.

Installing mod_proxy
The mod_proxy module is required for Apache to run on a proxy server.
The following steps show you how to install mod_proxy.

1. Make sure that Apache has loadable module support compiled in.
From the command prompt, type:

httpd -l

2. This will list all currently loaded modules. If mod_so is not listed,
Apache must be recompiled to include it. If mod_proxy was listed,
there is no need to complete the rest of this section. Skip to the next
section.

3. Compile the mod_proxy module according to the instructions
included with the distribution of Apache. mod_proxy is part of the
base Apache distribution and is included with the Apache source.

4. To have mod_proxy loaded every time Apache is started, use the
LoadModule directive. First, open httpd.conf with a text editor,
and add the following in the Global Environment Section:

LoadModule mod_proxy path/to/mod_proxy.so

Configuring httpd
This section shows you how to enable the proxy server.

1. Locate the proxy directives in the httpd.conf file that came with
Apache. Uncomment the lines that configure the proxy, and add any

230 Lab VII

site-specific configurations. In order for Apache to proxy, the directive
ProxyRequests On must be present before the other mod_proxy
directives. ProxyPass is the only directive that does not require
ProxyRequests.

2. Implement the caching abilities of mod_proxy by using the direc-
tives CacheRoot and CacheSize. The value of CacheRootmust be
set before Apache will cache HTTP data:

CacheRoot "/var/cache/http/"

Also, make sure that httpd has write permissions for this directory.
3. Restart httpd.

Configuring the Client
Configure the user-end client (Netscape) to use the proxy server, using the
following steps.

1. On the client machine, open Netscape.
2. From Edit>Preferences, select Advanced>Proxies.
3. Click Manual proxy configuration, and then click view.
4. In the HTTP proxy field, type the host name and port number that the

proxy uses.

Questions

1. If a company runs an intranet and uses the intranet server as the prox-
ying firewall, which directive should be used so the server will not
proxy intranet requests?

2. How can modules be integrated into Apache?
3. If the directives ProxyRequests Off and ProxyPass are both

present in httpd.conf, what will occur?

Configuration of a Proxy 231

Answers

1. The NoProxy directive will make a proxy server handle specified
requests, instead of proxying the request.

2. Apache can be recompiled to include the module, or if Apache has
DSO support, the module can be inserted with the LoadModule
directive.

3. The ProxyPass directive will function properly because it does not
require ProxyRequests.

Advanced Questions

1. How can Apache be set up to proxy FTP requests?
2. How can mod_proxy directives be included only on the condition

that mod_proxy is loaded?
3. How can Lynx be configured to use the Apache proxy?

233

Purpose

The lab will teach students the basics of URL rewriting, using Apache’s
URL rewriting engine. Students will attempt two tasks involving
mod_rewrite: rewriting a URL to point to a different Web server and
rewriting a URL to a different file based on browser type.

Theory

Apache has a powerful tool to redirect certain URLs based on pattern
matching. The method that Apache uses to redirect URLs is to rewrite the
URL sent to the server with the URL to which the client should be redi-
rected. This is useful because it provides backward compatibility for out-
dated URLs. To be able to rewrite URLs, the server must have
mod_rewrite installed and have appropriate patterns for the
RewriteRule directive to match.

mod_rewrite comes with several directives that can be used to rewrite
URLs. Several important mod_rewrite directives are listed in Table
VIII.1.

URL Rewriting

L A B

VIII

The RewriteEngine directive is the most important directive and must
be set On in order to be able to make use of URL rewriting.

RewriteRule is the most common directive and is used to actually
change a URL. Every URL that should be changed must start with the
RewriteRule directive, which takes the form:

RewriteRule pattern substitution [flags]

pattern is a regular expression for Apache to match, and substitution
is the string that should be substituted into a matching URL. flags are
optional modifiers that alter the directive. mod_rewrite recognizes sev-
eral wildcards when rewriting a URL, and several flags can be appended to
a RewriteRule directive. pattern must start with (^) and end with ($).
RewriteRule also performs wildcard expansion and can backreference
selected text. An example of backreferencing is this:

RewriteRule ^/(important\.docs) /secret/$1

In this example, the $1 backreferences important\.docs (the back-
slash is used to escape the period). Several backreferences can be used, by
changing $1 to $N, where N represents the Nth backreference. Also sup-
ported are the wildcards (.), (*), and (+). The period matches only one
character, the asterisk matches zero or more characters, and the plus
matches one or more characters.

Some of the flags that can be appended to a RewriteRule directive are
listed in Table VIII.2.

234 Lab VIII

Table VIII.1 mod_rewrite Directives

DIRECTIVE DESCRIPTION

RewriteEngine Enables URL rewriting

RewriteLog Sets the rewriting log file

RewriteLogLevel Determines the logging level

RewriteCond Provides conditionality of rewriting

RewriteRule Specifies actual rewriting rules

URL Rewriting 235

RewriteCond is also commonly used so that a condition may be tested
before executing a RewriteRule directive, much like an if statement
when programming. The syntax for RewriteCond is:

RewriteCond testpattern condpattern [flags]

where testpattern is checked against condpattern and flags are
optional modifiers. This can be remembered by the statement “if test-
pattern matches condpattern, execute the following code.” The
RewriteCond syntax includes the use of server variables, specified as
%{variable}, and backreferences to text grouped by parentheses, like
RewriteRule.

Some of the server variables supported by RewriteCond are these:

REMOTE_ADDR REMOTE_HOST REMOTE_USER DOCUMENT_ROOT

SERVER_NAME SERVER_ADDR SERVER_PORT SERVER_PROTOCOL

TIME_YEAR TIME_MON TIME_DAY TIME_HOUR TIME_MIN TIME_SEC

HTTP_USER_AGENT HTTP_REFERER HTTP_HOST HTTP_ACCEPT

A complete list can be found in the documentation for RewriteCond on
the Apache Web site at http://httpd.apache.org/docs/mod/mod_
rewrite.html.

Table VIII.2 RewriteRule Flags

FLAG DESCRIPTION

F Return an http 403, forbidden, error

G Return an http 410, gone, error

P Perform an internal proxy request to substitution via the
ProxyPass directive

R Perform an external redirect

NC Pattern is matched without respect to case

C Chain the current rule with the next rule

L Do not apply any more rewriting rules

236 Lab VIII

A basic example of RewriteCond is this:

RewriteCond %{REMOTE_HOST} ^theserver.com

RewriteRule ^/$ /theserverpage.html

This would rewrite all URLs to DocumentRoot/theserverspage
.html only if the variable REMOTE_HOST matches theserver.com.

Additionally, RewriteCond supports two optional flags: [OR] and [NC].
[OR] is used to test multiple conditions, while [NC] is used to disable case
sensitivity for both testpattern and condpattern. For example:

RewriteCond %{REMOTE_HOST} 192.168.3.14 [OR]

RewriteCond %{REMOTE_HOST} ^thatserver.com [NC]

RewriteRule ^/$ /theserverpage.html

will match the hosts 192.168.3.14, thatserver.com, or That-
SERver.com.

For additional help constructing regular expressions, consult the regex
man page.

Lab Exercises

For this lab, it is assumed that the user has Apache running, with
mod_rewrite installed. mod_rewrite will be used to rewrite URLs for
two different cases: redirecting from one server to a new server and redi-
recting a user to a browser-specific page, based on the Web browser being
used to access the server.

Using the RewriteRule directive, add a line to httpd.conf to redirect a
user from http://oldserver/~theuser/somepath to http://newserver/
~theuser/somepath.

Using the RewriteCond conditional statement, search for a user’s client
type and then, with RewriteRule, redirect the user to a client-specific page.

1. Open httpd.conf in a text editor.
2. Redirect the home directories from one location to another using

mod_rewrite.

URL Rewriting 237

Use mod_rewrite to redirect all URLs with /~theuser/
somepath/ to http://newserver/~theuser/somepath/ with the
following:

RewriteEngine on

RewriteRule ^/~(.+)$ http://newserver/~$1 [R,L]

3. Using RewriteCond redirect a user based on the client.
RewriteCond %{HTTP_USER_AGENT} ^Mozilla/3.*

RewriteRule ^foo.html$ foo.NS.html [L]

RewriteCond %{HTTP_USER_AGENT} ^Lynx/.* [OR]

RewriteCond %{HTTP_USER_AGENT} ^Mozilla/[12].*

RewriteRule ^foo.html$ foo.20.html [L] RewriteRule ^foo_html$

foo.32.html [L]

4. Save the changes to httpd.conf.
5. Restart httpd.

Questions

1. How can a mod_rewrite be used to change a URL only if a certain
condition is met?

2. Before any rewriting rules will function properly, what directive must
be present in httpd.conf?

Answers

1. The RewriteCond directive must be specified, along with a match-
ing statement, in order to provide a matching condition.

2. RewriteEngineOn must be present before mod_rewritewill work.

Advanced Questions

1. Are there any special issues if the redirected home directories are NFS
mounted?

2. Is it possible to redirect a user through a proxy server?
3. How can a testpattern be compared to a condpattern lexically in

a RewriteCond directive?

238 Lab VIII

239

Purpose

The purpose of this lab is to create and implement a custom log file that
tracks remote IP-addresses, lists the REFERRER environmental variable, the
time the request occurred (common log format), and the time it takes to
serve the request. Optionally, you can run logresolve to resolve the IP
addresses, as well as view the log file using a popular log-viewing program.

Theory

By default, Apache comes with basic logging capabilities. However, the
logging capabilities of Apache can be greatly expanded by using the
mod_log_config module. This module allows the administrator to set
custom log definitions through the httpd.conf file. mod_log_config
contains several different directives used to configure the log file, but the
main directive of interest is LogFormat, which is used to specify what
data is to be placed in the log and in what format. Other mod_log_con-
fig directives are listed in Table IX.1.

Create a Custom Log
for Apache

L A B

IX

Table IX.1 mod_log_config Directives

DIRECTIVE DESCRIPTION

CookieLog Sets the file name for logging cookies

CustomLog Sets the file name of the custom log

TransferLog Similar to custom log, with some restrictions

The basic syntax for the LogFormat directive is as follows:

LogFormat formatoptions name

where formatoptions specifies the format to write and name is an iden-
tifier used by CustomLog Directives.

The most useful characteristic of mod_log_config is its ability to con-
figure the data contained in a log file. This is done by providing a list of
options to the LogFormat directive. A list of some of the options is pro-
vided in Table IX.2.

240 Lab IX

Table IX.2 Options for mod_log_config

OPTION DESCRIPTION

%a Remote IP address

%A Local IP address

%B Bytes sent, not including headers

%D Time taken in microseconds

%h Remote host

%H Request protocol

%P PID of serving process

%r First line of request

%t Time in CLF

%u Remote user

%U URL path requested

Create a Custom Log for Apache 241

The codes shown in Table IX.2 can be included on a conditional basis by
placing an HTTP code between the percent sign (%) and the letter. For
example, %404U will put the requested URL in the log file if an HTTP 404
error is encountered. By putting an exclamation point (!) before the HTTP
code, the negative condition will cause logging. Text may also be put in a
log file entry by placing it within braces ({}) and inserting it between the
percent sign and the letter.

Once a format has been specified in httpd.conf, it must be imple-
mented via either CustomLog or TransferLog directives. CustomLog is
more commonly used because it is more versatile. The typical format for a
CustomLog directive is this:

CustomLog file name

file specifies the file to which to log, and name is the name used in the
LogFormat directive.

Lab Exercises

NOTE This lab assumes that the user has Apache with mod_log_config
installed.

1. Open httpd.conf in a text editor.
2. In the main section of the file, add a LogFormat directive that lists

remote IP addresses, lists the REFERRER environmental variable, the
time the request occurred (common log format), and the time it takes
to serve the request.

3. Create a name to reference this configuration.
4. Add a CustomLog line that logs data to /var/log/access_

log.test using the format created in Step 2.
5. Restart Apache.
6. Make a request to the Web server from another machine.
7. Open /var/log/access_log.test in a text editor to test the

configuration.

242 Lab IX

Questions

1. What is the default value for a log entry?
2. What format will TransferLog use if it is specified instead of

CustomLog?

Answers

1. LogFormat “%h %l %u %t ‘%r’ %>s %b”.
2. TransferLog will use the last specified LogFormat line.

Advanced Questions

1. How would you limit your log to only certain types of server/client
interactions (i.e., a 403 error)?

2. Can CustomLog be used to make syslogd handle custom Apache
logging? If yes, how?

243

Purpose

The purpose of this lab is to use several built-in monitoring features
to monitor Apache’s performance. Various tools, such as Apache Bench
(ab), mod_status, and mod_info, are used to establish a baseline for
performance.

Theory

Apache is equipped with a tool for benchmarking its performance. Apache
Bench (ab), the HTTP server benchmarking tool, does this by giving an
indication of how many requests per second the server can handle, along
with other statistics. These requests simulate real-world activity and aid in
diagnosing potential bottlenecks in server performance.

Benchmark Your Server

L A B

X

The most common options used with ab are as follows:
-n Specifies the number of requests. Default is a potential request.

-t Specifies the number of seconds ab should spend performing the benchmark. By default
there is no time limit.

-c Lists the number of simultaneous requests to perform. The default is one or no concurrency.

-w Prints results in HTML tables.

The benchmark results may lead to changes to the server configuration
file. Apache provides a means of starting, stopping, and obtaining infor-
mation about the use of apachectl. The Apache HTTP server control
interface (apachectl) provides a convenient means of controlling the
httpd daemon. As the heart of Apache, the httpd daemon handles all
Web page requests. Each time the configuration file for the httpd daemon,
httpd.conf, is changed the daemon must be restarted to read to new set-
tings. The httpd daemon can be stopped and restarted manually, but
apachectl provides an easier means of accomplishing this, along with
providing other information. Table X.1 shows a list of options available for
the apachectl script.

244 Lab X

Table X.1 Options for apachectl

OPTION DESCRIPTION

Start Starts the Apache daemon.

stop Stops the Apache daemon.

fullstatus Shows the full server status. (This feature requires the mod_status
module and the Lynx browser.)

restart Sends a SIGHUP signal to the daemon, which restarts the daemon
or starts the daemon if it is not running.

graceful Once given, the daemon will not accept any new requests; it will
finish all pending requests before it restarts. The method is less.

configtest This option tests the configuration file for errors. This is a syntax
check, not an efficiency check.

status Gives an abbreviated status screen (requires mod_status and Lynx.)

help Lists all the options available for apachectl.

Benchmark Your Server 245

Lab Exercises

1. Be sure the following files exist: /www/users and /www/groups.
2. Run htpassword -c /www/users <username>.
3. Add the <username> to the test group. For example, edit

/www/groups and add the line test: <username>.
4. Add the following section to the bottom of the configuration file:

ExtendedStatus On

<Location /status>

SetHandler server-status

AllowOverride Authconfig

AuthType Basic

AuthName "Private Performance Stuff"

AuthUserFile /www/users

AuthGroupFile /www/groups

require group test

</Location>

<Location /server-info>

SetHandler server-info

AllowOverride Authconfig

AuthType Basic

AuthName "Server information"

AuthUserFile /www/users

AuthGroupFile /www/groups

require group test

</Location>

5. Save the file and close it.
6. Restart httpd so that it reads the edited configuration file:

apachectl restart

7. Start Lynx so that it will access the status information on the server:
lynx localhost/status

The page will start to load but then complain about retrying because
of authorization requirements. This will leave the user with a prompt
to enter a username:

Username for 'Private Performance Stuff' at server \ 'localhost':

At the prompt, enter your username and password.

246 Lab X

Test the info page by pointing the browser to http://localhost/
server-info.
Enter the username and password again.

8. Test your server’s ability to take a load by running ab.
Type the following in the command line:

ab -n1000 -c100 http://localhost/server-info

ab will run Apache through its paces in a few seconds. When it is
done, the user will see something that is similar to the following:

Server Software: Apache+SSL/1.3.14

Server Hostname: localhost

Server Port: 80

Document Path: /server-info

Document Length: 48436 bytes

Concurrency Level: 100

Time taken for tests: 31.410 seconds

Complete requests: 1000

Failed requests: 0

Total transferred: 49806228 bytes

HTML transferred: 49584888 bytes

Requests per second: 31.84

Transfer rate: 1585.68 kb/s received

Connection Times (ms)

min avg max

Connect: 0 294 906

Processing: 591 2672 4797

Total: 591 2966 5703

9. Open server-status in your favorite Web browser again. Run ab
from the command line just as before. While it is running, hit reload
on your server-status page. If you previously ran ab from within X
Window, drop out of X and run the test again, saving it in a text file
like so:

ab -n1000 -c100 http://localhost/server-info > Xless_ab.txt

Go back into X and run the same test, saving it in a text file called
Xtest_ab.txt.
If a partner is available, check out his or her performance. Choose
http://partner’s_ip_address/server-info with ab.

Benchmark Your Server 247

Questions

1. Which apachectl option will deny all new requests and finish all
pending requests before restarting?

2. What is the default requests value for ab?
3. What is the common configuration file for the Web server daemon?

Answers

1. apachectl graceful.
2. 1.
3. httpd.conf.

Advanced Questions

1. What does it mean if several requests fail?
2. Outside of adding more memory, how can a Web server’s perfor-

mance be improved?
3. What is the number of virtual hosts a Web server can handle?

Practice Questions
and Answers

Three

PA R T

251

1. Which files contain a majority of the configurations for Apache?
A. apache.conf

B. httpd.conf

C. http.conf

D. cour

2. Which of the following best defines scope for Apache?
A. Scope is the area of effect for a given configuration.
B. Scope relates to the number of users who can access a site.
C. Scope is a program for monitoring Apache performance.
D. Scope is a configuration file that targets specific content to specific

IP ranges.

3. Which of the following best defines an Apache module?
A. A small chunk of data that is served to the Web via Apache.
B. A type of Apache server used in clusters.
C. A piece of code, separate from Apache, used to extend Apache’s

functionality.
D. A configuration file separate from the primary file.

Practice Questions

4. How is DNS look-up used in conjunction with an Apache server?
A. It is the process of resolving a name to its related IP address.
B. It is a way of automatically searching the Internet through a search

engine.
C. It is a denial-of-service attack.
D. It is a way of finding the current Apache version.

5. What is the role of a directive in Apache?
A. It offers guidelines on how to configure Apache.
B. It sets Internet standards, much like an RFC.
C. It gives a request for information by a browser.
D. It is an order given to Apache from within Apache’s configuration

files.

6. Which of the following will enable the module info during the
Apache build?

A. make apache module=info modules_install

B. /configure --enable-module=info

C. make httpd module=info modules_install

D. /configure --module=info

7. In addition to installing at compile time, modules may be enabled in
which of the following files?

A. srm.conf

B. access.conf

C. httpd.conf

D. apache.conf

8. Which of the following is the correct format for adding a mod_log
module to the Apache configuration file?

A. AddModule modules/mod_log.config.o

B. Module -enable=mod_log.config.o

C. Module -add=mod_log.config.o

D. Add module=mod_log.config.o

252 Practice Questions

Practice Questions 253

9. After reconfiguring Apache, the daemon fails to restart. Which of the
following files should be checked when diagnosing the problem?
(Select two.)

A. The Apache error log
B. /proc/apache/problems

C. Try running Apache under strace
D. /etc/lilo.conf

10. How is a secure connection opened with an Apache Web server?
A. Use https:// in the URL for the server.
B. Enable Java in your browser.
C. Hold down the Shift key while loading the page.
D. Add ~secure to the end of the URL.

11. What is the purpose of apachectl?
A. It allows Apache to run the CTL scripting language.
B. It controls which users have access to Apache on a system.
C. It allows complete configuration of Apache on remote systems

through a Web-based utility.
D. It is a script used to start, stop, or restart Apache.

12. In addition to httpd.conf, which of the following files may be used
to configure Apache? (Select two.)

A. srm.conf

B. yp.conf

C. access.conf

D. ypserv.conf

13. Which of the following is not a way to run multiple Web sites off one
Apache server?

A. Name-based hosting
B. Net-based hosting
C. One instance of Apache for each site
D. IP-based hosting

14. Which of the following options will configure Apache to conform to
Slackware’s file layout?

A. --with-Slackware

B. --structure=Slackware

C. --with-layout=Slackware

D. --layout Slackware

15. The ScriptAlias directive allows for renaming CGI scripts.
A. True
B. False

16. When attempting to access a Web document, a user is presented with
a “Forbidden” error message. This message corresponds to which of
the following errors?

A. 200
B. 202
C. 301
D. 403

17. Apache provides a means of ensuring that the program was compiled
correctly. Choose the two commands that do so.

A. make check

B. make compile check

C. make --valid

D. make test

18. Which of the following is a valid means to manually patch the SSL
package to the Apache source?

A. make patch = SSLpatch

B. compile_patch SSLpatch

C. patch –pl < SSLpatch

D. patch –compile SSLpatch

254 Practice Questions

Practice Questions 255

19. What content type is added to a CGI script to make sure the Web
browser can execute the script?

A. <screen>Content-Type: text/html</screen>
B. <screen>Content-Type: ascii/html</screen>

C. <screen>Content-Type: ansi/html</screen>

D. <screen>Content-Type: cgi/html</screen>

20. Which of the following are common CGI script types?
A. jpg, gif, png, pdf
B. Perl, shell, C++
C. PHP
D. None of the above

21. Which of the following is not true about .htaccess files?
A. They are a burden on the system’s performance.
B. They are really convenient.
C. They are a potential security risk.
D. They are inoperable without .htpasswd files.

22. In addition to password authentication, which of the following files
offers a means for Apache authentication?

A. The srmn.conf file
B. The .htaccess file
C. /usr/bin/access

D. /usr/bin/userconf

23. Which of the following sets the default access state for an Apache
directive to read the Deny directive first, then the Allow directive?

A. Directive Deny, Allow

B. set Order = Deny, Allow

C. Directive Set= Deny, Allow

D. Order Deny, Allow

24. Which three dimensions of every file does Apache use in content
negotiation?

A. Byte size, language, and protocol
B. Type, content age, and language
C. Content age, content decoding, and content attributes
D. Type, encoding, and language

25. Must all of Apache’s functionality be configured during compilation?
A. Yes, once httpd is compiled, it must be recompiled to add func-

tionality.
B. No, run-time modules can be added using apxs.
C. No, run-time modules are loaded using inetd.
D. Yes, but Java-based modules can dynamically recompile at

run time.

26. What is the advantage of using modules such as mod_proxy instead
of compiling into Apache?

A. The administrator can add and remove them as needed.
B. The modules can be recompiled separately and updated individ-

ually.
C. Modules reduce the size of the Apache binary, so Apache con-

sumes fewer resources.
D. The modules reduce the complexity of configuring Apache.

27. Which of the following changes to the client/browsers are required
for the use of a proxy server?

A. Setting the redirect to route things through InterNIC:/<url>.
B. Setting the proxy address and/or port number on the browser.
C. Setting the proxy port to 8080.
D. Using the prefix proxy://www.<site>.com.

28.What is the major difference between SSI and XSSI?
A. XSSI is an XML wrapper.
B. XSSI is platform independent.
C. XSSI is an XML renderer.
D. XSSI can use conditional directives.

256 Practice Questions

Practice Questions 257

29. Which of the following are the tags that enclose an SSI directive?
A. <!--# SSI info -->

B. <!--# SSI directive -->

C. <? SSI info ?>
D. <?--# SSI directive --?>

30. Why is the exclamation point (!) employed in matching conditional
patterns that use mod_rewrite?

A. It shows that the pattern takes precedence.
B. It looks for the opposite of the conditional statement to be true.
C. It comments out that particular statement.
D. It renices the httpd process handling the statement.

31. At what phase does Apache parse Server-Side Includes?
A. Phase 3
B. Phase 4
C. Phase 5
D. Phase 6

32. At what phase does Apache make sure an authenticated client has
access to the resource it requests?

A. Phase 3
B. Phase 4
C. Phase 5
D. Phase 6

33. Which of the following phases activates all handlers?
A. Phase 3
B. Phase 4
C. Phase 5
D. Phase 6

34. Which of the following represents the best means for an administra-
tor to connect to and perform operations on an Apache server?

A. ssh
B. Telnet
C. FTP
D. Webmail

35. In addition to other user authentication methods, which of the fol-
lowing is a good location for passwords for administrators, Webmas-
ters, and other individuals who need access to Apache server
configuration files?

A. /etc/passwd

B. /etc/shadow

C. /etc/access.conf

D. /etc/xpasswd

36. What is the environmental variable describing the client accessing the
Web server?

A. "%{User-agent}i"

B. "%{User-browser}i"

C. "%{Browser-agent}i"

D. "%{User}i"

37. Apache does not use the CLF format.
A. True
B. False

38. Which of the following would be best to use in conjunction with the
Allow and Deny directives?

A. IP address
B. Host name
C. Domain name
D. The .htaccess file

258 Practice Questions

Practice Questions 259

39. What are the ramifications of using a .htaccess file?
A. It increases performance because Apache has to look at only one

file.
B. It decreases performance because httpd has to search the whole

tree, if enabled.
C. It is deprecated, so it should not be used.
D. It does not affect performance at all.

40. Which of the following best describes the effects of the apachectl
fullstatus command?

A. It dumps a complete status page with the use of Lynx and
mod_status.

B. It dumps a complete status page, using only mod_status.
C. It dumps a list of current connections.
D. It shows the same information as status, but it records the date in

a log file.

41. How can you tell if Apache is installed? (Select all that apply.)
A. Look for the /var/apache.inst file.
B. Point your browser to http://127.0.0.1
C. Use the rpm -qa | grep apache command.
D. Use the find / -name httpd command.

42. How did Apache get its name? (Select all that apply.)
A. Its creator was Native American, of the Apache tribe.
B. It was a series of patches to the original httpd daemon, hence “a

patchy server.”
C. It is an acronym for Archive Protocol And CacHing Engine.
D. The creator liked the sound of the word.

43. What is a header?
A. A term used to describe when the Web server crashes.
B. The first few lines of the Apache configuration file.
C. A part of the request/response that contains information that tells

the client or the server what kind of information it is receiving.
D. A file that keeps track of available Apache modules.

44. Which of the following commands will verify an installed RPM pack-
age file?

A. rpm –Vp foo.rpm

B. rpm –i foo.rpm

C. rpm –q foo.rpm

D. rpm foo.rpm

45. Which of the following are common package formats? (Select two.)
A. RPM
B. DEB
C. NROFF
D. MOD

46. Which of the following are valid ways to test an installation of
Apache on a local host? (Select two.)

A. telnet localhost:80, then type GET /index.html
B. netscape --testapache

C. lynx localhost:80

D. apachectl localtest

E. httpd test

47. Which of the following is true concerning the Secure Sockets Layer
(SSL)? (Select two.)

A. It allows digital signatures.
B. It was created by the Apache community.
C. It exists on the data link layer of the TCP networking model.
D. It requires encryption.

48. Which of the following is true concerning Apache and SSL? (Select
two.)

A. SSL and Apache are both stand-alone Web servers.
B. SSL allows Apache to handle the HTTPS protocol.
C. Installing SSL with Apache requires the Apache+SSL patch.
D. SSL allows for remote system administration of Apache.

260 Practice Questions

Practice Questions 261

49. What does SSL use to secure a connection?
A. A PGP script
B. A bit stream
C. A cookie
D. A session key

50. Give the ./configure argument required to obtain the GNU layout.
A. ./gnuconfigure

B. ./configure --gnu

C. ./configure --with-layout=gnu

D. ./configure --gnulayout

51. Which of the following are valid ways to start Apache? (Select two.)
A. /etc/rc.d/init.d/httpd start

B. apache --start

C. apachectl start

D. apache start

52. Which of the following are valid ways to stop Apache? (Select two.)
A. apachectl stop

B. apache --stop

C. apache stop

D. /etc/rc.d/init.d/httpd stop

53. What does a NameVirtualHost configuration do?
A. It makes your main Web site redirect users to an internal page.
B. It configures your site so that it displays differently to machines

browsing from your internal network.
C. It specifies an IP address that should be used as a target for name-

based virtual hosts.
D. It redirects incoming requests to a second instance of httpd.

54. Which of the following best describes PHP?
A. It is an encryption cipher.
B. It is a query language for databases.
C. It is a compiled programming language.
D. It is a scripting language.

55. PHP can not be used in which situation?
A. In conjunction with CGI
B. As a scripting language
C. As a dynamic shared object module for Apache
D. As a major mode of Emacs

56. Which of the following is true concerning PHP and HTML? (Choose
the best answer.)

A. HTML is used for the Unix environment while PHP is mainly used
for MacOS and Win32 environments.

B. PHP is essentially embedded HTML used for dynamic content.
C. PHP is used for static Web pages, while HTML is used for dynamic

content.
D. PHP is a compiled language, while HTML is interpreted.

57. What will the following code do?
<html><head><title>Hello</title></head>

<body>

<?php echo "Hello Class<p>"; ?>

</body></html>

A. Display "Hello" on the page itself and display "Hello Class"
on stdout.

B. Display "Hello Hello Class" on the page itself.
C. Make the title of the page "Hello" and display "Hello Class"

on the page itself.
D. Nothing; there is a syntax error in line 3.

58. What are the start and end tags for a block of code in PHP?
A. <? is a start tag, and ?> is an end tag.
B. < is a start tag, and > is an end tag.
C. <!-- is a start tag, and -> is an end tag.
D. [is a start tag, and] is an end tag.

262 Practice Questions

Practice Questions 263

59. How should you separate lines of code in a PHP block?
A. End the line with a slash (/).
B. End the line with a dash (-).
C. End the line with a semicolon (;).
D. End the line with a colon (:).

60. Which of the following best describes CGI?
A. CGI is a method for allowing the Web server to execute a program,

triggered by a Web page (or content). It allows for a more dynamic
creation of content.

B. CGI scripts make delivering graphics over the Web easier.
C. A CGI script will create files with the .cgi extension, which are

viewable as image files similar to .jpg, .gif, or .png.
D. CGI scripts implement the Common Gateway Interface e-com-

merce standard.

61. Which of the following best describes the difference between CGI
scripts and PHP documents?

A. PHP documents are a set of embedded HTML tags; CGI scripts are
stand-alone, compiled binary programs.

B. CGI scripts are a set of embedded HTML tags; PHP documents are
stand-alone, compiled binary programs.

C. CGI scripts have to be recognized as executable by the operating
system; PHP documents do not.

D. PHP documents have to be recognized as executable by the oper-
ating system; CGI scripts do not.

62. What is htpasswd?
A. A password file for temporary passwords
B. A program for cracking passwords to gain entry to a machine
C. A way of connecting to several Apache servers using the same

username and password combination
D. An application provided by Apache that automates the genera-

tion of username/password files to be used with Web-based
authentication

63. What is mod_auth_mysql?
A. A module that allows Apache to pull dynamic content from a

MySQL database for use on a Web page
B. A module that can be used to put usernames and passwords into a

MySQL database, rather than a text file
C. A module that allows MySQL to store data in plain text
D. A module that disables remote logins to the Web server

64. When a user fills out a username and password in an authentication
window, how is that data passed back to Apache? How is it passed
back to Apache+SSL?

A. If passed to Apache alone, it is passed as encrypted data. If passed
through Apache+SSL, it is clear text.

B. If passed to Apache alone, it is passed as clear text. If passed
through Apache+SSL, it is encrypted data.

C. If passed to Apache alone, it is tunneled through ssh. If passed
through Apache+SSL, it is tunneled through Telnet.

D. All of the above.

65. Which of the following is true concerning content negotiation in
Apache? (Select the best answer.)

A. It is based on PHP user preferences.
B. It is based on client preferences and resources available to the

Apache server.
C. It is used to set up a secure path between client and server.
D. It is used for security only.

66. What are the pros and cons of style sheets?
A. Pro: centralization of content. Con: browser incompatibilities.
B. Pro: tighter control of text, graphics, and other page elements.

Con: works only with Lynx.
C. Pro: decentralization of content. Con: uses the XML standard.
D. Pro: it is interchangeable with DSSSL. Con: uses the XML standard.

264 Practice Questions

Practice Questions 265

67. What is meant by “carrying state” in a Web browser?
A. The browser is dependent on its locale.
B. The browser sets up a TCP/IP stream between the client and

server.
C. The server keeps track of the client as it moves through the site.
D. The client keeps track of the Web servers as it negotiates content.

68. Which of the following best describes the difference between Java
and JavaScript?

A. JavaScript is a programming language, and Java is only a protocol.
B. Java is a compiled language, and JavaScript is an interpreted

scripting language.
C. JavaScript is embedded byte-code and requires a stand-alone

JVM; Java does not.
D. JavaScript is a server-side scripting language similar to PHP, and

Java is embedded HTML.

69. How can you set up Apache to be used as a proxy?
A. Load the squid module, mod_squid
B. Load the proxy module, mod_proxy
C. Use winproxy
D. Redirect the port from 80 to 8080

70. Which of the following is true concerning proxy servers?
A. They allow hosts to masquerade as other hosts.
B. They cache dynamic content only.
C. They cache frequently accessed Web pages.
D. They allow hosts to connect to Web sites directly.

71. How does Apache use a caching proxy?
A. It intercepts a request, compares it to source, and returns from

cache, if available.
B. It contacts InterNIC for previously cached material.
C. It redirects the request to browsers on the same LAN that have

already accessed a page.
D. It downloads popular Web sites and replicates them locally.

72. Which of the following best describes a Server-Side Include?
A. A scripting language that runs on the server, such as jsp, PHP, or asp
B. A convenient way to handle data that is repeated multiple times

by referencing one copy of the data
C. A servlet engine
D. None of the above

73. What is generally the file extension for files that use SSI?
A. .ssi

B. .SSI

C. .shtml

D. .ssl

74. Which of the following best describes URL rewriting?
A. Dynamic HTML coding
B. IP spoofing
C. A rules-based rewriting engine that changes a requested URL to

another URL
D. An HTML debugger that can also debug CGI scripts

75. What is a phase?
A. A chunk of CPU cycles for serving a document
B. A main flow of operation in Apache
C. A single httpd process
D. A Web partition

76. What is a module?
A. A bit of code written to handle a specific task, such as logging or

authentication
B. A Virtual Host specified by named
C. The name for information kept between <directive>

</directive> braces
D. A cgi executable

266 Practice Questions

Practice Questions 267

77. What is a handler?
A. An interrupt-driven Web site
B. An interrupt-driven program
C. A set of C functions inside a module
D. A function that backs out of exceptions thrown by the Web server

78. Which of the following are phases of Apache processes that handle a
request?

A. URI to file name translation
B. Authentication
C. Authentication access checking
D. Non-authentication access checking
E. All of the above

79. What is the best way to prevent unused services from being compro-
mised?

A. Run a virus checker frequently
B. Disable them
C. Firewall effectively
D. Do not run inetd as root

80. Why should you use PAM?
A. It is an effective replacement for a firewall situation.
B. It adds an extra layer of security.
C. It allows all authentications to be handled by mod_pam.
D. It prevents spoofing attacks.

81. What would you put in /etc/hosts.deny to prevent all computers
from the bad.people.com domain from accessing the FTP service?

A. PREVENT: bad.people.com

B. ALL: bad.people.com

C. !bad.people.com

D. EVERYTHING: *.people.com

82. The index.html of Joe’s home page has a mode of 600. Joe owns
index.html. When others on the Internet try to access Joe’s home
page, they get "Forbidden--permission denied" errors. Which
of the following will more than likely allow everyone to see Joe’s sin-
gle Web page?

A. apache --add index.html

B. /etc/rc.d/init.d/httpd restart

C. chown everyone index.html

D. chmod a+rwx index.html

83. The file test is a text file. What will the following command do?
md5sum test

A. It will encrypt the file test.
B. It will perform a checksum.
C. It will produce an error.
D. It will test the results of the md5sum command.

84. Which of the following are valid uses of custom logs? (Select three.)
A. Looking for suspicious activity
B. Looking for “page missing” errors
C. Viewing site statistics
D. Creating dynamic content
E. Configuring Apache

85. What are some common tools that can be used to view logs? (Select
three.)

A. Analog
B. Webalizer
C. wusage
D. logviewer
E. SWAT

86. There is generally one log file that accommodates all virtual domains
on a given system.

A. True
B. False

268 Practice Questions

Practice Questions 269

87. Dave has made some changes to his httpd.conf file. Which of the
following is a valid way to make Apache reread its configuration file?

A. killall apache

B. apachectl reload

C. httpd restart

D. kill -9 httpd

88. Which of the following turns on Server-Side Includes for Apache?
A. Include SSI

B. Options Includes

C. SSI=yes

D. Options SSI

89. In httpd.conf, which of the following best describes what the
Include directive does?

A. It allows for other config files to be parsed.
B. It controls all parsing.
C. It logs all Apache activities, including parsing.
D. It activates the parsing mechanism for Apache.

90. Which of the following can Apache not do when an error occurs?
A. Display a message
B. Allow the user to correct the problem
C. Direct the user to another internal Web site
D. Direct the user to another external Web site

91. In httpd.conf, which of the following best describes what
ServerRoot does?

A. It gives Apache the ability to send e-mail messages to system
administrators.

B. It specifies which documents Apache must read to redirect Web
sites.

C. It tells Apache where all the configuration and log files can be
found.

D. It defines the root name server for Apache.

92. The .htaccess file is parsed in which circumstance?
A. Only when the Apache server is restarted
B. Only when the Apache server is accessed
C. Only after an Apache system is rebooted
D. Only after an Apache module is installed

93. After Apache receives a request and looks at the appropriate data, it
does which of the following?

A. E-mails the system administrator
B. Prompts the user for input
C. Takes actions based on the configuration files
D. Immediately starts up a Server-Side Include

94. By default, Apache listens on which of the following ports?
A. 10
B. 22
C. 80
D. 1024

95. By default, Apache checks which of the following locations for a
user’s Web pages?

A. /usr/local

B. /username/public_html

C. .htaccess

D. apache.conf

96. Which of the following tools is a benchmarking tool used to test the
performance of Apache?

A. bench
B. strace
C. apbench
D. ab

97. The permissions must include execute if the file is to run as a CGI
script.

A. True
B. False

270 Practice Questions

Practice Questions 271

98. Which of the following modules must be included with all Apache
builds? (Choose two.)

A. mod_so.c

B. mod_alias.c

C. mod_cgi.c

D. http_core.c

99. To utilize the apachectl fullstatus option, which of the follow-
ing must be present? (Choose two.)

A. cpuinfo

B. hinv

C. lynx

D. mod_status.so

100. Which of the following is true concerning cookies and Apache?
(Choose two.)

A. Users must accept cookies.
B. Cookies can be set from CGI scripts.
C. Cookies write small files to the client system.
D. Cookies require the use of mod_proxy.so

273

1. B. httpd.conf

2. A. Scope is the area of effect for a given configuration.

3. C. A piece of code, separate from Apache, used to extend Apache’s
functionality

4. A. It is the process of resolving a name to its related IP address.

5. D. It is an order you give to Apache from within Apache’s configu-
ration files.

6. B. /configure --enable-module=info

7. C. httpd.conf

8. A. AddModule modules/mod_log.config.o

9. A. The Apache error log
C. Try running Apache under strace.

Answers

10. A. Use http:// in the URL for the server.

11. D. It is a script used to start, stop, or restart Apache.

12. A. srm.conf
C. access.conf

13. B. Net-based hosting

14. C. --with-layout=Slackware

15. B. False

16. D. 403

17. A. make check
D. make test

18. C. patch –pl < SSLpatch

19. A. <screen>Content-Type: text/html</screen>

20. B. Perl, shell, C, C++

21. D. They are inoperable without .htpasswd files.

22. B. The .htaccess file

23. D. Order Deny, Allow

24. D. Typing, encoding, and language

25. B. No, run-time modules can be added using apxs.

26. C. Modules reduce the size of the Apache binary, so Apache
consumes fewer resources.

27. B. Setting the proxy address and/or port number on the browser

28. D. XSSI can use conditional directives.

29. A. <!--# SSI info -->

274 Answers

Answers 275

30. B. It looks for the opposite of the conditional statement to be true.

31. D. Phase 6

32. A. Phase 3

33. B. Phase 4

34. A. ssh

35. B. /etc/shadow

36. A. –%{User-agent}iÓ

37. B. False

38. A. An IP address

39. B. It decreases performance because httpd has to search the whole
tree if enabled.

40. A. It dumps a complete status page with the use of Lynx and
mod_status.

41. B. Point your browser to http://127.0.0.1.
C. Use the rpm –qa | grep apache command.
D. Use the find / -name httpd command.

42. A. Its creator was Native American, of the Apache tribe.

B. It was a series of patches to the original httpd daemon, hence “a
patchy server.”

43. C. A part of the request/response that contains information, which
tells the client or the server what kind of information it is receiving

44. A. rpm –Vp foo.rpm

45. A. RPM
B. DEB

46. A. telnet localhost:80, then type GET /index.html
C. lynx localhost:80

47. A. It allows digital signatures.
D. It requires encryption.

48. B. SSL allows Apache to handle the HTTPS protocol.
C. Installing SSL with Apache requires the Apache+SSL patch.

49. D. A session key

50. C. /configure --with-layout=gnu

51. A. /etc/rc.d/init.d/httpd start
C. apachectl start

52. A. apachectl stop
D. /etc/rc.d/init.d/httpd stop

53. C. It specifies an IP address that should be used as a target for
name-based virtual hosts.

54. D. It is a scripting language.

55. D. As a major mode of Emacs

56. B. PHP is essentially embedded HTML used for dynamic content.

57. C. Make the title of the page –HelloÓ and display –Hello
ClassÓ on the page itself.

58. A. <? is a start tag, and ?> is an end tag.

59. C. End the line with a semicolon (;).

60. A. CGI is a method for allowing the Web server to execute a pro-
gram, triggered by a Web page (or content). It allows for a more
dynamic creation of content.

61. C. CGI scripts have to be recognized as executable by the operating
system; PHP documents do not.

276 Answers

Answers 277

62. D. An application provided by Apache that automates the genera-
tion of username/password files to be used with Web-based
authentication

63. B. A module that can be used to put usernames and passwords into
a MySQL database, rather than a text file

64. B. If passed to Apache alone, it is passed as clear text. If passed
through Apache+SSL, it is encrypted data.

65. B. It is based on client preferences and resources available to the
Apache server.

66. A. Pro: centralization of content. Con: browser incompatibilities.

67. C. The server keeps track of the client as it moves through the site.

68. B. Java is a compiled language, and JavaScript is an interpreted
scripting language.

69. B. Load the proxy module, mod_proxy.

70. C. It caches frequently accessed Web pages.

71. A. It intercepts a request, compares it to source, and returns from
cache, if available.

72. B. A convenient way to handle data that is repeated multiple times,
by referencing one copy of the data

73. C. .shtml

74. C. A rules-based rewriting engine that changes a requested URL to
another URL.

75. B. A main flow of operation in Apache

76. A. A bit of code written to handle a specific task, such as logging or
authentication

77. C. A set of C functions inside a module

78. E. All of the above

79. B. Disable them.

80. B. It adds an extra layer of security.

81. B. ALL: bad.people.com

82. D. chmod a+rwx index.html

83. B. It will perform a checksum.

84. A. Look for suspicious activity.
B. Look for “page missing” errors.
C. View site statistics.

85. A. Analog
B. Webalizer
C. wusage

86. B. False

87. C. httpd restart

88. B. Options Includes

89. A. It allows for other config files to be parsed.

90. B. Allow the user to correct the problem.

91. C. It tells Apache where all the configuration and log files can be
found.

92. B. Only when the Apache server is accessed

93. C. Takes actions based on the configuration files

94. C. 80

95. B. /username/public_html

96. D. ab

278 Answers

Answers 279

97. A. True

98. A. mod_so.c
D. http_core.c

99. C. lynx
D. mod_status.so

100. B. Cookies can be set from CGI scripts.

281

.cgi This extension describes CGI scripts.

access_log Apache adds a line to this log file for every request it receives.

access.conf A file for controlling access to documents.

Access control This involves using directives, such as Allow, Order, Deny,
and AllowOverride, to control which users have access to the Web-
space.

Access permissions Read, write, and execute are the possible permissions
that a user or group can be given for a particular file.

AccessFileName This directive sets the name for the file that can control the
settings for the AllowOverride directive.

Actions These work with handlers to extend the capabilities of Apache and
PHP.

AddHandler This directive allows files with specified extensions to be
mapped to a particular action.

AddLanguage Users designate what language a file is by adding a file exten-
sion to it and then using Apache’s AddLanguage directive.

Alias An alternative name or label that refers to another particular name or
label. The Alias directive creates the equivalent of symlinks for URLs.

Glossary

Allow This directive, along with Order, controls who has access to the
pages in the Web directory.

Allow changes The number of days before the user can change the password.

Anonymous access authentication Using the anon_auth_module, anonymous
users can sign in with a default username and a valid e-mail address.
These users can then access information.

Apache A popular, stable Web server, based on NCSA’s httpd. It can be
found at www.apache.org.

APACHE+SSL This is a version of Apache that has Secure Sockets Layer (SSL)
security built into it.

apachectl This is the Apache HTTP server control interface; it helps control
the httpd daemon.Fullstatus.

AuthGroupfile The file that associates group names with their members.

AuthName This access directive allows users to access password-protected
areas, if they can complete the password challenge.

AuthType This access directive should be set to basic. Digest can be placed
here to enable encrypted passwords.

AuthUserFile This directive points to the file that contains usernames and
passwords.

BrowserMatch This directive defines environment variables based on the
user-agent header.

Browsers A browser is an application that allows users to view and interact
with information on the World Wide Web. PHP can tell a lot about a Web
browser by reading the headers sent by the browser.

Buffer overruns The source of most attacks on Linux systems. These attacks
occur when variables receive more data than the programmer antici-
pated or prepared for, leaving the system vulnerable.

cgi-bin The main directory for .cgi files.

checksum Information on a segment of data that can be checked against the
data itself, in order to determine if the data arrived at its destination
undamaged.

Child processes These are replications of Apache that dole out content and
complete process requests.

Cipher Suite Negotiation This element of the handshake sequence allows the
client and server to choose Cipher Suite that is supportable by both of
them.

282 Glossary

Glossary 283

Common Gateway Interface (CGI) This allows Web users to interact with infor-
mation servers, in order to provide a dynamic interface (as opposed
to static).

Common Gateway Interface (CGI) scripts These are invoked through a Web
server to provide for server-side, dynamic processing of data from users.

configtest Use the configtest command to have the httpd configuration
files parsed without having to restart the server.

Container A container consists of a paired set of delimiters with the name of
the scope to which the container applies.

Content negotiation The method in which Apache can make different lan-
guages or media types, which are found in a single resource, compatible,
usually through an index page where a user can select an item.

Control structures These are statements in code that test conditions, such as
the if, while, and for statements.

Cookies These are client-side files used to store data, sometimes allowing
Web sites to record user actions without consent.

CookieTracking If mod_usertrack is compiled into Apache, cookie-
tracking on will enable Apache to send a user-tracking HTTP cookie
for all new requests.

Cryptography This is the science of information security. Cryptography deals
primarily with the encryption and decryption of data.

CustomLog This directive is used by Apache to customize a log file format.

Daemon A program that runs in the background and interacts with the user
only when called on.

Deny This directive can be used to prohibit access to specific clients.

Directives Directives can be grouped into containers that refer to a single
directory, location, or virtual server in order to modify the default behav-
ior set in the main body of httpd.conf.

DirectoryIndex This directive indicates the default files for a Web site in
order of priority.

Domain Name System (DNS) This is an efficient, reliable, distributed system
that allows the mapping of arbitrary names to IP addresses across a
network.

Dynamic Shared Objects (DSO) These allow the user to add and remove fea-
tures from Apache or to update a feature to a newer version, without
recompiling the server.

Dynamic Web page A Web page that can change as it is updated from the
server through a script or program; it can allow user interaction.

Encrypted signatures A method to send documents that are verifiable and
undeniable.

Encryption This is any procedure used to convert plain text into scrambled
text, in order to make it more difficult for unauthorized persons to inter-
cept and interpret data.

Engine directive This directive dictates the directories or virtual servers that
PHP should examine.

EOF End of File.

error_log Apache uses this to keep a log of all errors.

Extended SSI (XSSI) Expands on SSI by allowing conditions to be attached to
directives, definition of variables by the user, and extension of external
programs and CGIs.

Filtering The process of acting on the stream of content as it travels to or
from the server, allowing a user to alter the data multiple times with dif-
ferent modules.

Forking When a stand-alone process splits into multiple processes.

Form handler Handles input into a form using GET or POST formats and
generates appropriate response.

Forms Forms are used in scripting languages, such as HTML and PHP, to
create data fields where the user can enter information.

Fragment attacks These attacks use the IP fragmentation feature to create
very small packets that split the TCP header information into separate
packets that, when reassembled, create a buffer overflow, which results
in a denial of service.

Function This is a set of code that performs an action, which the user may
want to call repeatedly. Use a function call to implement the function.

Group A group is a collection of users; groups help system administrators
organize users with similar needs into manageable units. Each user is
placed into at least one group, and additional group membership can be
assigned in the /etc/group file.

Header A part of the request/response that contains information that tells
the client or the server the type of information it is receiving.

htpasswd This is an application provided by Apache that somewhat auto-
mates the generation of username/password files to be used with Web-
based authentication.

284 Glossary

Glossary 285

HTTP HyperText Transfer Protocol is the protocol that browsers and servers
use to submit and server requests.

httpd A script that can start Apache’s daemon (located in /usr/sbin).

httpd.conf Apache finds its settings in this configuration file. It has all the
functionality of the former access.conf and srm.conf files.

HyperText Transfer Protocol (HTTP) The protocol that Web browsers and servers
use.

include This directive can insert additional directives into the configuration
files.

inetd Daemon started at boot-up that tells the system which sockets to lis-
ten for and what programs to start when those sockets are accessed.

IP address An identification code that uses four bytes of binary digits to dis-
tinguish a host on a network system.

KeepAlive When in effect, it causes child processes to spend time waiting for
requests on an open connection.

Keep-Alive Allows persistent connections that help to send multiple
requests over the same ICP connection.

Link A reference to a file or a directory.

LogFormat This directive is used by Apache to allow customization of the
log file format.

logresolve This simple script comes with Apache and allows a user to turn
IP addresses in the access_log file into resolved host names.

Lynx This is a widely used, text-mode Web browser. It can usually be found
on any Linux distribution.

MD5 Reads data and calculates a cryptographic “checksum” that is very
hard to duplicate, giving confidence that a file has not been intentionally
modified.

mod_access Along with mod_auth, it provides the authentication functions
of Apache.

mod_auth Provides the authentication functions of Apache and is used in
combination with mod_access.

mod_perl A package that allows a user to write Apache modules completely
in Perl.

mod_php A server-side, HTML-embedded scripting language that allows
database requests through the Apache Web server.

mod_rewrite This module, found in Apache versions 1.2 and higher, uses a
rule-based rewriting engine to rewrite requested URLs.

mod_ssl This module is derived from the Apache+SSL patch. It provides
Secure Sockets Layer (SSL) security to Apache.

Module An Apache module is a piece of software, external to the main
Apache program, which allows customization and additional options.

Multiviews Instructs Apache to look for a document that is the best match
for a client’s preferences.

MySQL An open source relational database management system that is fre-
quently used for accessing, adding, and processing data that is in a data-
base.

Name-based virtual hosting A virtual hosting scheme that allows more than
one host to be run on the same IP address by adding names to the DNS
as a CNAME on the machine.

NameVirtualHost This is how the user will specify on which IP address the
server will take petitions for name-based virtual hosts.

Nobody This is a user with practically no privileges on a given system.

Opera This Web browser is smaller than popular browsers, such as
Netscape, but is known for its stability and speed.

Order This directive, along with Allow, controls who has access to the
pages in the Web directory.

Package A collection of files combined into a single file to simplify distrib-
ution and installation.

Packet A data block that is transmitted over a network or the Internet. A
packet is made up of three pieces of data: the data being sent, the data
that guides the packet along the way, and the data that fixes problems
that arise during the process.

Packet filtering A router that allows the firewall to examine each packet of
data against a set of predefined rules and determine whether to accept or
deny the packet based on those rules.

Perl Program used on various platforms that integrates the best features of
awk, grep, sed, and tr.

Phases Phases are one of the three critical components of the Apache API.
The Apache flow of operation goes through eight phases each time
Apache receives a request to serve a Web page, and a request flows from
Phase 1 to Phase 8 in sequential order.

286 Glossary

Glossary 287

PHP A script language and interpreter that is primarily used with Linux
Web servers. It provides flexibility for producing dynamic content.

Port A 16-bit number used to identify a network service on a host. Also,
Port is a directive that can, when used in combination with Bind-
Address, specify an address and port, allowing different instances of the
Apache server running on the same machine to listen for requests on dif-
ferent addresses or ports.

Port 80 The port most commonly used for a Web server or Hypertext Trans-
fer Protocol daemon traffic.

Port-based virtual hosting These hosts can be used if another IP address or
alias for the server is not available.

Pretty Good Privacy (PGP) Program used to secure communications, to verify
that files have not been tampered with, and to verify that people are who
they say they are.

Proxy This acts as a gateway for Web requests and services, permits and
restricts access to a network based on a client’s IP address, caches docu-
ments to help the system run more efficiently, and controls access (or
helps firewalls control access) to networks.

Red Hat Package Manager (RPM) A program that provides flexibility in man-
aging packages and is used in a number of Unix and Linux distributions.

Request This log file contains the actual HTTP request that was sent by a
client, enclosed in quotes.

Rewrite Often used with mod_rewrite, this directive helps perform an
internal file name-based subrequest. Rewrite can be used more than once.

RewriteCond A directive used with mod_rewrite, RewriteCond defines a
condition for the RewriteRule. With one or more conditions preceding
it, RewriteRule will not be used unless all these conditions apply.

Rewrite rule This directive can run multiple times. It defines a simple rule
for rewriting.

Running herd A situation in which networks that use TCP/IP to communi-
cate with their clients rapidly increase their offered loads.

ScriptAlias This directive is an important setting in the srm.conf file that
gives an alias for the directory containing server-executed scripts.

Secure Sockets Layer (SSL) This protocol layer provides secure communica-
tion between client and server, by allowing mutual authentication, the
use of digital signatures for integrity, and encryption for privacy.

ServerName This is the location where a host must be defined if it is going to
have its own domain name associated with its IP address.

Server Side Includes (SSI) This directive can be used in HTML documents to
echo information for any environmental variable.

ServerSignature This directive adds a line to logs with the server version
number and the server name of the virtual host that generated the line.

ServerType Stand-alone Mode in the ServerType directive in which the
httpd daemon listens for connections.

Setcookie This directive will use PHP to set a cookie in a Web browser,
avoiding the JavaScript method.

Spoofing An attack in which packets are disguised to look as though they
originally came from another source, often the internal network behind
the firewall.

Squid caching proxy A program for caching HTTP information that does not
require high-end hardware for significant performance increases.

srm.conf A file for specifying what kind of documents can be served.

Standalone This option is the default method for Apache. In stand-alone
mode, servers are ready and waiting for connections. It is especially
good for busy sites.

Static Web page A Web page that does not change.

Style sheets Describes to browsers how documents are presented on screens
or in print.

Sudo Allows a system administrator to give certain users or groups of users
the ability to run specific commands as root or another user while log-
ging the commands and arguments.

Superuser The only account that may request certain system services such
as changing date/time, adding a new user account, and increasing the
priority of a process.

TCP/IP Transmission Control Protocol/Internet Protocol (TCP/IP) is the
main protocol suite that allows all the computers on the Internet to com-
municate. Every computer is given a unique IP address.

TCP wrappers These have a set of wildcards that allow matching services
and clients.

Thundering herd A problem in which all but one thread put themselves back
on the wait queue to wait for the next connection.

288 Glossary

Glossary 289

Trojan horse A program that appears to do a certain task for the user, but its
primary function is to perform another, possibly malicious, task.

Trusted networks Generally secure networks that employ one or more of the
following: Apache+SSL, mod_ssl, password authentication, .htac-
cess file authentication, and anonymous access.

Uniform Resource Identifier (URI) A subset of the URL that identifies the path
to the Web page.

Uniform Resource Location (URL) Part of the communication between clients
and servers using HTTP.

Uniform Resource Name (URN) Part of the communication between clients and
servers using HTTP.

User Anything that uses a process on a system.

UserDir A directive that assigns the name of the directory that is used as the
individual’s root document directory.

Virtual hosts Allow multiple domain names to be hosted under one IP
address or multiple IP addresses with different domain names to be
hosted.

Webuser/Webgroup Webuser and webgroup are the user and group that
Apache will use to read files, execute CGIs, and create child processes.

Worms A form of attack that enters a computer system as a stand-alone pro-
gram, not attached to other pieces of code, and may cause unintentional
damage or resource depletion.

A
ab (program), 99–100
Access, 146. See also

Anonymous access
blocking, 168–169
checking. See

Authentication;
Non-authentication
access checking

control, 156–159, 167–170.
See also Users

testing, 158–159
directives, 172–173
method, 68
permitting/restricting. See

Client
AccessFileName, 168
Account information, 139
AddHandler directive, 39, 90
Add-on encryption, 136
address, 120–122
Alias, 42–43, 60, 89
Aliasing. See Internet

Protocol
aliasnumber, 120
Allow (directive), 59,

156–158
AllowOverride, 61, 156, 172
American National

Standards Institute
(ANSI), 68

Analog, 110
Analysis tools. See Log
anon_auth_module, 159
Anonymous access, 137, 159
ANSI. See American

National Standards
Institute

Apache, 154–155
API, introduction, 76–83

basic configuration, 48–50
child processes, 6
compiling

mod_ssl support, usage,
203–204

verification, 204–205
configuration, 161–162

issues, 190
conventions, 6–7
core dump, discovery,

188–189
current status, 5
directories, layout, 6
documentation, 51
errors, log, 96
files, layout, 6
function, explanation, 5–10
header files, 9
history, 4
initialization, 91–93
installation, 29–34

summary, 40–41
testing, 33–34

logging problems,
190–191

logs
configuration, 41–42
viewing/interpretation,

109
modules, 10

introduction, 64–76
obtaining, 10–11
operations, theory, 3–18
options directive, 53–54
preparation, 58–63
scripts, 35
securing, 137–138
server. See Perl-enabled

Apache server
downloading, 202–203

setup, 45–54, 218
source tree, 38
SSL, implementation, 184
starting, 26, 45, 146
startup errors, 146
stopping, 45
TCP/IP, usage, 112–113
user, 137–138
version 1.3, 62

HTTP server, 36
version 2.0, 82–83
vulnerabilities, 138–139

Apache configuration
exercise, 207

lab exercises, 210
purpose, 207
questions/answers,

210–211
theory, 207–210

Apache custom log creation
exercise, 239

lab exercises, 241
purpose, 239
questions/answers, 242
theory, 239–241

APache eXtenSion (APXS), 9
Apache proxy

advantages, 144–145
obtaining, 145–146
server, 143–146
setup, 159–164
starting, 162–164

Apache Server, 145
Apache Tcl, 146
apachect1 fullstatus,

usage, 88
apache-devel, 24
Apache-driven Web sites, 66
Apache+SSL contrast. See

ModSSL

291

C H A P T E R

Index

Apache+SSL installation
exercise, 201

lab exercises, 202–205
purpose, 201
questions/answers,

205–206
theory, 201–202

Apache/Tomcat exercise, 223
lab exercises, 224–225
purpose, 223
questions/answers, 225
theory, 223–224

API. See Application
Programming
Interface

Append-only access, 165
Applets, embedding. See

Java
Application Programming

Interface (API), 76, 82
Application proxy

servers, 149
APXS. See APache

eXtenSion
ASP, 65
Attacks. See Counterattacks;

Fragment attacks;
Man in the middle
attack; Source

handling, 152
response, 151–153

Authenticated user ID, 94
Authentication, 40, 80,

136–137. See also Clear
text authentication;
Digest authentication;
htaccess; HyperText
Transport Protocol;
Passwords

access checking, 40, 81. See
also Non-
authentication access
checking

Authentication--
mod_access, 42–43

AuthGroupFile, 173
AuthName, 172–173
AuthType, 172
authuser, 41, 94
AuthUserFile, 173

B
Base systems, 18–34. See also

Networking; Security;
System administration

Basic redirect, 105–107

BCNF. See Boyce-Codd
Normal Form

Benchmarking, 98–100
exercise. See Server

benchmarking
exercise

test, 107
tool. See HyperText

Transport Protocol
Binary package, 29
BindAddress directive, 88
128-bit encryption, 37
Boot, usage. See httpd
Boot-time, starting, 146
Bounds checking, 142
Boyce-Codd Normal Form

(BCNF), 67
BrowserMatch, 114
Browsers, 10

HTTP, interaction, 13–14
page, testing. See World

Wide Web
type, 95

BSD systems, 163
Buffer overruns, 138,

141–142, 143
Bugtraq, 151
bytes, 42, 95

C
C, 223

functions, 78
programs, 143

C++, 15, 213
-c (concurrency option), 99
Caldera, 22
Case sensitivity, 128
CERT, 151
CGI. See Common Gateway

Interface
cgi-scripting, 207
Checksums, 174–176

interaction. See Pretty
Good Privacy

Child processes, 6. See also
Apache

chroot (command), 57
Chunking, 115
Clear text authentication, 157
CLF. See Common Log

Format
Client

access, permitting/
restricting, 144

configuration, 229, 230
machine, 158

preferences, 12
Client/server architecture, 69
Combined Logfile

Format, 110
Command-line options, 92
Commands, 177. See also

Networking; Security;
Shells; System
administration

Common Gateway
Interface (CGI), 60–61

bins, 155
configuration, 84

process, 90–91
explanation, 64
files, 80, 82
output, content, 100–102
page, 64
programming, 101
programs, 37
scripting, 35
security issues, 142–143
usage, timing, 64–66

Common Gateway
Interface (CGI) scripts,
5, 8, 39, 78–79

creation, 100–107
creation exercise, 213

lab exercises, 214–215
purpose, 213
questions/answers,

215–217
theory, 213–214

example, 101–102
execution, 180
input data, 103
problems, 166
running, 165
writing, 100

Common Log Format
(CLF), 41, 93

format, 95
support, 110

Compilation. See Source
Compile time, 43, 44
Compiled-in modules, 52
Compiler. See Platform-

dependent compiler
flags, 29

Compiling, 30–33
mod_ssl support, usage.

See Apache
Complexity, increase, 85
Comprehensive Perl

Archive Network
(CPAN), 76

292 Index

Index 293

Concurrency option. See -c
option

Conditional statements,
181–183

CondPattern TestString,
127–131

configtest, 47
Configuration. See Server-

side configuration
files, 39–41, 43, 110,

139, 146
editing, 163
syntax, 146

management, 56
methods, 43–44

configure (method), 38, 39
Configure script, 32, 33. See

also GNU configure
script

Connection, 128–129
Connection-oriented

network layer
protocol, 183

Containers, 7
Content

enabling, 170–172
management, 56
negotiation, 61–62

overview, 11–18
Content-Length, 115
Control files, usage. See

Defining
Core dump, discovery. See

Apache
Corel, 196

Linux, 22
Corporate intranets, 170
Counterattacks, 152–153
CPAN. See Comprehensive

Perl Archive Network
Crypt_DES, 220
Cryptographic

checksum, 175
Cryptographic security, 175
Cryptography, 183

D
Daemons. See httpd

daemon; Multiple
daemons

configuration. See
Multiple daemons;
Separate daemons

multiple instances, 209
Data

backups, 71–74

objects, 67
Database management

system (DBMS), 66–67
Database-driven Web site, 58
Databases. See RPM;

Structured Query
Language

concepts, 66–67
design considerations, 69
selection, 68–69
setup. See MySQL

date, 41, 95
DBMS. See Database

management system
DEB, 22

packages, 45
Debian, 35, 195
Debian-based installations, 6
Declarative queries, 68
Decoy location, 84
Default index, 47–49
Defining

control files, usage, 174
httpd.conf, usage, 173–174

Demilitarized zone
(DMZ), 150

Deny (directive), 59,
156–158

Destination address. See
Internet Protocol

developer (option), 39
device, 120
Digest authentication, 136
Digests, 183
Directives, 7–8, 146. See also

Access; Proxy
Directories, 64. See also

Home directories
enabling, 90–91
indexes, 165
layout. See Apache
tree, 85

DirectoryIndex, 167
Distribution. See RPM-

based distribution
sites, 151

DMZ. See Demilitarized zone
DNS. See Domain Name

System
Document

caching, 144
directory configuration, 53
parameters, choice, 12–13
root, usage, 91

Documentation,
obtaining, 146

DocumentRoot, 53, 122
Domain name, mapping, 28
Domain Name System

(DNS), 27, 144, 147, 150
look-up, 60, 94. See also

Double reverse DNS
look-up

name, 53, 199
server, 112
setup, 125
usage, 28

Double reverse DNS
look-up, 59

Downloads. See Source
Drives, usage. See Multiple

drives
drop-table (option), 72
DSO. See Dynamic Shared

Objects; Dynamically
shared objects

Dynamic loading, 8
Dynamic Shared Objects

(DSO), 6, 33, 199
advantages/

disadvantages, 9
files, 9–10
modules, 38
support, 38, 228

Dynamically shared objects
(DSO), 77

E
--enable-module=so, 33
Encoded passwords, 139, 176
Encoding, 11–12
Encryption. See Add-on

encryption; 128-bit
encryption

algorithms, 184
export laws. See U.S.

encryption export
laws

scheme, 137
Environmental variable,

129, 177. See also
REFERRER

EOF, 104
Error code, 82
Ethernet

connection, 208
interface, 120

Expirations, 114
eXtended SSI (XSSI), 179–183

embedding, 181
ExtendedStatus, usage. See

mod_status

F
-f (command-line option), 85
Files. See Configuration

files; Dynamic Shared
Objects; Log files

authentication. See
htaccess

handles, 21
including, 180–181
layout. See Apache
name, 12

translation, 80
security, 174

Filtering, 83. See also Packet
filtering

Firewalls, 143, 146–153. See
also Proxy

machine, securing, 150–151
network architecture,

interaction, 130
types, 147

Fixups, 40, 79, 81–82
FollowSymLinks, 60
Form handler, 103–104
Fragment attacks, 148–149
FTP, 58, 88, 147, 150, 201

directory, 167
server, 142, 148
services, 135

fullstatus, 46–47
Functionality. See Modules

local verification, 26–27
verification, network

usage, 27–28

G
Gateway

interface. See Common
Gateway Interface

providing, 144
Gatewaying, 65
GET method, 103
Global Environment, 229
GNU configure script, 35
GNU GPL-license, 68
GNU software, 32
GNU standards, 36
graceful, 47, 91
Groups, 154–155, 176–177
GUI tool, 10

H
Handlers, 8, 78–79
Hard drives, 20
HARD_SERVER_LIMIT

variable, 59

Hardware, 19–20
Hash function, 175
Headers, 112–113. See also

HyperText Transport
Protocol

extension. See Netscape
files. See Apache
request. See Host

Hidden internal network,
1490

Higher-level protocols, 184
Home directories, 170–172
Host. See Internet Protocol;

Multiple hosts; Non-
name-based hosts

header request, 115
name, 126

look-ups, 59–60
operating system, 116
request, directing. See

Virtual host
host, 41, 94
Host Header, 122
Hostile programs, 138–142
Hosting. See Single daemon;

Virtual hosting; World
Wide Web

hosts.allow, 135–136
hosts.deny, 135–136
htaccess, 168

file authentication, 137
HTML. See HyperText

Markup Language
html. See UserDir
HTTP. See HyperText

Transport Protocol
httpd, 4, 26

binary, 52
configuration, 228

files, 47
manual start, 45–47
processes, number, 88
runtime flags, 44
starting, boot usage, 45

httpd daemon, 34–45, 84, 115
customization, 35–36
defaults, 34–35

httpd.conf, 7, 43
configuration file, 161
file, 41, 45, 87–91

directives, 50
usage, 49. See also

Defining
httpd.conf Listen

(directive), 84
%(HTTP:header), 130

HUP signal, 90
HyperText Markup

Language (HTML),
101, 102

code, 66
document, 177, 181, 213
file, 8, 81, 112, 182
headers, 81
input forms, 103

HyperText Transport
Protocol (HTTP),
112, 201

404 error, 241
connection, 94, 229
definition, 113–115
Distributed Authoring

and Versioning, 82
headers, 128

extension. See Netscape
interaction. See Browsers
MIME-header name, 130
proxy

cache, 144
caching, 227
field, 230

request, 42, 95, 96, 227
header, 123

server, 58, 64, 213–214
benchmarking tool, 243
control interface, 244

serving, 59
status, 82

code, 42, 95, 96
usage, 13, 111
user authentication, 217
version 1.1, 113–115

I
IANA, 147
IBM DB2, 68
ICMP, 148

message type, 148
Ideal permissions,

matrix, 167
ident, 94
Identity check, 41
IETF, 184
ifconfig command, 120
Include (directive), 119
Includes. See Server-side

includes
Indexed Sequential Access

Method (ISAM), 66
Indexes (option), 47
index.html, 167
inetd file, 150

294 Index

Index 295

inetd (server process), 88
Informix SE, 68
Inline scripting languages, 65
Inodes, 21
INPUT tag, 103
Installation. See Apache;

Knowledge matrix;
Packages; RPM

query. See Preinstallation
query

Installation exercise, 195
lab exercises, 196–199
purpose, 195
questions/answers,

199–200
theory, 195–196

Internal network. See
Hidden internal
network

Internals. See Server
Internet Explorer, version

4.0b2, 114
Internet packets, 141

header, 147
Internet Protocol (IP)

aliasing, 119
destination address, 148
IP-based hosting,

64, 87, 118
IP-based hosts, 63
IP-based virtual hosting,

115, 119–122, 209
masquerading, 147

proxy servers, 149
method, 121
network, 28
range, 162
source address, 148
tunnel, 148

Internet Protocol (IP)
address, 27, 28, 63–64,
81. See also Virtual
hosting

access, 87
blocking, 152
conversion, 110
defining, 84
usage, 85, 120–124
utilization, 149

Internet Service Provider
(ISP), 57

Intranets. See Corporate
intranets

I/O bandwidth, 13
Iogresolve, 110
IP. See Internet Protocol

IPsec, 136
ISAM. See Indexed

Sequential Access
Method

ISP. See Internet Service
Provider

issue files, 136

J
Jakarta-Tomcat, 223, 224
Java, 15–17, 65

applets, embedding, 15, 16
Java Development Kit

(JDK), 223
Java Runtime Environment

(JRE), 223
Java Virtual Machine, 223
Java-Apache, 145
Java-enabled Web

browser, 17
JavaScript, 17–18, 65,

126, 208
code, 17

JDK. See Java Development
Kit

JPEG, 81
images, 112

JRE. See Java Runtime
Environment

K
KeepAlive, 63
Keep-Alive, 114
Kernel, 20–21, 119. See also

Stock kernel
Knowledge matrix,

installation/
configuration, 3

L
-l (command-line option),

92–93
Labs/exercises, 193
%(LA-F:variable), 130
Language, 12–13
%(LA-U:variable), 130
Linker flags. See Platform-

dependent linker flags
Linux, 9. See also Corel

database systems, 68
file system, 71
IP masquerading host, 149
optimization, 58
preparation, 18–21
programs, 81
security model, 168

system, 99, 164
Listen (directive), 117
LoadModule (command), 77
Local authorities,

notification, 152
Location header, 105
Log

analysis tools, 109–110
analyzer, 110
configuration. See Apache
creation. See Apache

custom log creation
exercise

keeping. See Transactions
usage. See Multiple logs

Log files, 21, 75, 93–95,
146, 165

formats, 95–98
design, 96–98

separation, 190
Logging. See Real-time

logging; Request
introduction, 83–84
problems. See Apache
process, 8, 20

Look-ups. See Host
Loopback

device, 25
interface, 120

M
Mailing lists. See PHP
Man in the middle

attack, 141
Masquerading. See Internet

Protocol
host. See Linux

MaxClients, 59, 88
150, 51

MaxRequestPerChild 0,
51–52

MaxSpareServers 10, 51
McCool, Rob, 4
MD5

Digest Authentication, 83
explanation, 175–176

Message type. See ICMP
MIME type,

determination, 40
Mime types, 91

determination, 81
MIME-header name. See

HyperText Transport
Protocol

MinSpareServers 5, 51
mod_access, 43

mod_auth, 42–43
module, 176

mod_auth_db, 80, 83
mod_auth_digest, 83
mod_auth_mysql,

configuration/running
exercise, 217

lab exercises, 218–221
purpose, 217
questions/answers,

221–222
theory, 217–218

mod_autoindex, 40
mod_charset_lite, 82
mod_dav, 82
mod_file_cache, 82
mod_mime, 81
mod_perl, 76, 117, 146
mod_php, 117
mod_php4, 66
mod_proxy, 145, 146, 227

installation, 228
module, 161

mod_rewrite, 125–131
mod_ssl, 37, 183, 184

support, usage. See
Apache

ModSSL, Apache+SSL
(contrast), 183–185

mod_status, 107–108
exploitation,

ExtendedStatus
(usage), 108

module, 46, 52
usage, 62

Modules, 8–10, 36, 43, 77.
See also Dynamic
Shared Objects

addition, RPM usage, 26
advantages/

disadvantages. See
Static modules

downloading, 196–197
enabling, 37–39
functionality, 37
improvements, 82–83
introduction. See Apache
loading, 146
performance, 37

Monitoring. See Performance
monitoring

motd files, 136
Mozilla, 10
Multiple daemons, 84–85

configuration, 85–88
running, 86–87

verification, 87–88
Multiple drives, usage, 20
Multiple hosts, 115–116
Multiple logs, usage, 20
Multi-user support, 68
MultiViews, 13

option, 171
MySQL, 64, 66–76, 220

architecture, 69
command syntax, 71
database, setup, 218
server, 71

daemon, 75
student resources, 221
system administration, 70

mysqldump (command),
71–73

N
-n (option), 99
Name

look-ups. See Host
translation. See Files

Name-based hosting, 118
Name-based hosts, 64
Name-based virtual

hosting, 115–116,
122–125, 209

NameVirtualHost
(directive), 63

NAT. See Network address
translation

NCSA, 4
version 1.3 Web server, 49

Netscape, 114, 183
Refresh HTTP header

extension, 106
version 4.7x, 10

Network. See Hidden
internal network;
Internet Protocol

access
control, 144
providing, 144

addresses, 64
architecture, interaction.

See Firewalls
layer protocol. See

Connection-oriented
network layer
protocol

security policy, 143
usage. See Functionality

Network address
translation (NAT),
147, 149

Networking, 111
base systems, 116–131
commands, 125–131
operations theory, 111–116
shells, 125–131

NIC, setup, 119
NIS domain, 150
Non-authentication access

checking, 40, 79, 81
Non-CGI environment, 106
Non-dictionary words, 151
Non-name-based hosts, 63
Non-privileged

programs, 138
Non-signed messages, 175
Normalization. See Tables

O
Online troubleshooting

resources, 187–188
Open Source, 201
Openssl files, 203
Opera, 114
Operations theory. See

Apache; Networking;
Security; System
administration

OPTIONAL trailer, 115
Oracle 8i, 68
Order (directive), 156–158,

169–170

P
Packages

installation, 198
introduction, 21–29
validation, 22–23

Packet filtering, 147–148
usage, reasons, 148–149

Packet, incoming/outgoing
interface, 148

Parent process ID, 91
Password. See World Wide

Web
authentication, 137, 176–177

method, 136
combinations, 80
entering, 173
protection, 107, 153–154
setting, 158

Passwords, 138. See also
Encoded passwords

Pentium-based machine, 19
Performance monitoring,

107–109, 154
Perl, 64, 213, 223

296 Index

Index 297

code, 76
interpreter, 76
script, 65, 208

Perl-enabled Apache
server, 76

Permissions, 154–156,
164–165

matrix. See Ideal
permissions

PGP. See Pretty Good
Privacy

Phases, 78–79
detail, 80–82

PHP, 64–66, 106, 146,
153, 208

mailing lists, 66
script, 82

Plain text, 220
Platform-dependent

compiler, 10
Platform-dependent linker

flags, 10
Port 80, 50
Port-based virtual

hosting, 124
POST method, 103–104
PostgreSQL, 69
Preinstallation query,

197–198
Pretty Good Privacy

(PGP), 136
checksums, interaction, 175

Private Documents,
172–173

Privileges, 74–75
PRNG. See Pseudo-random

number generator
Problem Report (PR), 187
Process

creation, 62
death, 62
ID, 95. See also Parent

process ID
Proxy. See Apache proxy

server. See Apache proxy;
Application proxy
servers; Internet
Protocol; SOCKS

firewalls, 149
types, 149
usage, 161–162

serving, 147
specific directives,

159–161
Proxy configuration

exercise, 227

lab exercises, 229–230
purpose, 227
questions/answers,

230–231
theory, 227–229

Proxy/Web server,
usage, 162

Pseudo-random number
generator (PRNG), 175

Pseudo-random
numbers, 175

public_html. See UserDir
Python, 213

Q
Query optimization, 68

R
RAM. See Read Access

Memory
Random character

generator, 138
RC4, 136
RDBMS, 68
Read Access Memory

(RAM), 19, 20
adding, 59

README file, 32, 48
Read-only directories, 87
Real-time logging, 191
Red Hat, 195

CD-ROM RPM, 29
layout, 53
servers, 22
version 6.2, 24, 45, 86

Redirect. See Basic redirect
REFERRER, environmental

variable, 239
Request, 128–129. See Host;

HyperText Transport
Protocol

directing. See Virtual host
logging, 40, 82
phases, logging, 79
processing, 39–40

request, 42, 95
Request For Comment

(RFC) 1413, 41, 94
Require (directive), 173
Resources, usage, 85
Response

header, 95
sending, 40, 82

restart method, 91
RewriteRule, 60, 130
Rewriting. See URL

engine. See Rule-based
rewriting engine

RFC. See Request For
Comment

Root access, 33
Root user, 53
Root-level access, 141
Rootshell, 151
RPM. See Source

database, 23
installation, 24
package, 45

file, 23
security tasks, 22–24

RPM-based distribution,
24, 26

RPM-based installations, 6
RSA, 136
RSA Data Security, 185
RSAREF code, 185
Rule-based rewriting

engine, 125
Run-level script, 163
Runtime flags. See httpd

S
safe_mysqld (script), 70
Satisfy (directive), 157, 169
ScriptAlias (directive), 39, 89
Scripting, 165–166. See also

Common Gateway
Interface

mistake, 101
Scripts. See Apache;

Common Gateway
Interface; Configure
script; GNU configure
script

execution, 181
SCSI drives, 20
Search string, 25
Secure Sockets Layer (SSL),

36–37, 136, 183–184
certificates, 134
contrast. See ModSSL
implementation. See

Apache
legal issues, 184–185

Security, 133. See also
Cryptographic
security; Files

base systems, 154–174
commands, 174–177
concerns, 134
fundamentals, 164–167
holes, 165

Security, Continued
issues. See Common

Gateway Interface
operations theory, 133–154
policies, 134–136. See also

Network
privileges, management,

74–75
profile, 69
risks, 63
shells, 174–177
system utilities, 177–185
tasks. See RPM
tightening, 131
updates, 22

locating, 25
verification, 23

Separate daemons,
configuration, 117–118

Server. See Apache;
Application proxy
servers; Internet
Protocol; SOCKS
proxy server

downloading. See Apache
environment, 51, 102–103
internals, 129
operating system, 89
referencing, 105
setup, 198–199
starting/stopping, 70–71
variables, 128–130

Server benchmarking
exercise, 243

lab exercises, 245–246
purpose, 243
questions/answers, 247
theory, 243–244

ServerAdmin root, 52–53
ServerAlias, 122
server-info, 109
Server-info page, 109
ServerName, 53, 122
ServerPath, 122
Server-side configuration,

161–164
Server-side includes,

81, 177–179
Server-Side Redirects, 81
ServerSignature,

activation, 84
ServerType stand-alone,

50–51
Service provider,

notification, 152

Shadow copy, 141
Shadow Suite, 138–139
Shareware, 110
Shells. See Networking;

Security; System
administration

commands, 179–180
script, 65
scripting, 213

Signatures, 183
Single daemon

running, 34
virtual hosting, 118–119

Slackware, 163, 195
SMTP traffic, 148
SOCKS, 143

proxy server, 149
Solaris, 62

version 2.3, 191
Source

attacks, 148–149
code installations, 30
compilations, 34
downloads, 34
form, 40
RPMs, 29
tree. See Apache

Source address. See Internet
Protocol

Spec file, 29
Special variables, 129
Spoofing, 138, 141, 148. See

also Transport Control
Protocol

SQL. See Structured Query
Language

Squid log format, 110
SSI, 65, 177–179
SSL. See Secure Sockets

Layer
Stand-alone. See ServerType

stand-alone
process, 89

StartServers, 88
Static modules, 77

advantages/
disadvantages, 9

status, 42, 95
Stock kernel, 20
Stock vendor builds,

issues, 22
Structured Query Language

(SQL). See MySQL
code, 66
commands, 72

databases, 68
statements, 72

Student resources. See
MySQL

Stuffit archives, 12
Style sheets, 14–15
Substitution, 130–131
sudo (command), 57
suExec, 166
suexec (command), 57
Summary, 110
SunOS, 62
Swap space, usage, 20
SymLinksIfOwnerMatch, 60
System

administrator, 56
calls, 143
memory, 19
resources, 100
restoration, 152
utilities, 34–54. See also

Security; System
administration

variables, 129
System administration, 55.

See MySQL
base systems, 84–98
commands, 98–100
operations theory, 56–84
shells, 98–100
system utilities, 100–110

SystemV systems, 163, 182

T
-t (command-line option),

92
Tables, normalization, 67
Tarballs, 22

unpacking, 29, 30
TCL, 213
TCP. See Transport Control

Protocol
TCP/IP. See Transport

Control Protocol/
Internet Protocol

Telnet, 88
services, 135
usage, 28

Test results, 23
Text editor, 163
Text files, 112
Third-party tools, 68
TLS. See Transport Layer

Security
Tomcat. See Jakarta-Tomcat

298 Index

Index 299

exercise. See Apache/
Tomcat exercise

Top-level directory, 30
Transactions, logs

(keeping), 75–76
Transport Control Protocol

(TCP), 148
connection, 94, 114
spoofing, 141
wrappers, 135, 152

Transport Control Protocol/
Internet Protocol
(TCP/IP), 183

explanation, 112–113
stack, 21
version, 59

Transport Layer Security
(TLS), 184

tripwire (tool), 152
Trojan Horses, 139, 140
Troubleshooting, 187

resources. See Online
troubleshooting
resources

sites, 189–190
Tuning, 58
Type, 11

U
UDP. See User Datagram

Protocol
Uniform Resource

Identifier (URI), 112,
125–126

Uniform Resource Locator
(URL), 171

pattern, 130
rewriting, 36, 125–131
Rewriting Guide, 126
specification, 181

Uniform Resource Locator
(URL) rewriting
exercise, 233

lab exercises, 236–237
purpose, 233
questions/answers,

237–238
theory, 233–236

Uniform Resource Name
(URN), 112

University installations, 170
Unix

security model, 168
system administrator, 56

Updates. See Security
Upper-level protocols, 201

URI. See Uniform Resource
Identifier

URL. See Uniform Resource
Locator

URN. See Uniform Resource
Name

U.S. encryption export
laws, 136

USENET, 188
User Datagram Protocol

(UDP), 148
UserDir

disabled root, 53
html, 171–172
public_html, 53

Usernames, 80, 157
Users, 154–155, 176. See

World Wide Web
access control, 167–170
accounts, management,

74–75
authentication. See

HyperText Transport
Protocol

ID, 117, 155, 164. See also
Authenticated user
ID

requirements, 139
/usr/local directory, 32
Utilities, 139. See also

Security; System;
System administration

V
-v (verbose option), 99
/var/apache/logs/

access_log, 93–94
/var/apache/logs/error_lo

g, 96–98
Variables, 177–179. See also

Server; Special
variables; System

VBScript, 65
Verbose option. See -v

option
Virtual host, 121

container, 85
request, directing, 118

Virtual Host
documentation, 123

Virtual hosting, 116–118. See
also Internet Protocol;
Name-based virtual
hosting; Port-based
virtual hosting; Single
daemon

examples, mixed methods
(usage), 124–125

introduction, 63–64
one IP address, example,

122–123
Virtual system, 57
VirtualHost

192.168.0.3, 121
tag pair, 63

/VirtualHost, 122
Viruses, 139, 140

W
Walk-throughs, 159
W3C. See World Wide Web

Consortium
Webalizer, 110
Webmaster, 4, 56–58
--with-layout=GNU, 36
--with-layout=RedHat, 33
World Wide Web

Consortium (W3C),
64, 106

World Wide Web (WWW/
Web), 37, 141, 147

browser, 10, 13, 64, 112.
See also Java-enabled
Web browser

page testing, 205
clients, 83
concepts, 5
hosting, 3
managers, 57
pages, 90
password, 172
server, 11, 105

daemon, 56
usage. See Proxy/Web

server
sites, 6, 13. See also

Apache-driven Web
sites

hosting service, 58
users, 5
Web-accessible method,

107
Web-based

administration, 110
Web-based user, 220
Web-space, 156, 157

Worms, 139, 141
wu-ftp xferlog, 110
Wusage, 110
www/hosts/ipbased1/

htdocs, 122
www.iptest.com, 122

X
X Window system, 10
XML, 145
XML-Apache, 145
XSSI. See eXtended SSI

Z
Zip files, 11

300 Index

	Contents
	Acknowledgments
	Introduction
	Part One Knowledge Matrix
	Chapter 1 Installation and Configuration
	Objectives
	Theory of Operations
	History of Apache
	Apache Today
	How Does Apache Work?
	How to Obtain Apache
	Overview of Content Negotiation

	Base Systems
	Preparing Linux
	Introduction to Packages
	Installation

	System Utilities
	The httpd Daemon
	Setting Up Apache

	Chapter 2 System Administration
	Objectives
	Theory of Operation
	Being a Webmaster
	Preparing Apache
	Introduction to Virtual Hosting
	Introduction to Apache Modules
	Introduction to the Apache API
	Introduction to Logging

	Base Systems
	Multiple Daemons
	Configuration
	Number of httpd Processes
	Alias
	CGI Scripts
	How to Configure CGI
	Apache Initialization
	Log Files
	Log File Formats

	Shells and Commands
	Benchmarking

	System Utilities
	Creating CGI Scripts
	Performance Monitoring
	Some Good Log Analysis Tools

	Chapter 3 Networking
	Objectives
	Theory of Operation
	What Is TCP/IP and How Does Apache Use It?
	What Is HTTP?
	Multiple Hosts

	Base Systems
	Virtual Hosting
	Directing the Request to a Virtual Host
	Single Daemon/Virtual Hosting
	IP-Based Virtual Hosting
	Name-Based Virtual Hosting

	Shells and Commands
	URL Rewriting mod_rewrite

	Chapter 4 Security
	Objectives
	Theory of Operation
	Security Concerns
	Security Policies
	Authentication
	Securing Apache
	Vulnerabilities
	Hostile Programs
	Security Issues with CGI
	The Apache Proxy Server
	Firewalls
	Password Protection

	Base Systems
	Apache, Users, and Groups
	Permissions
	Access Control
	Setting Up the Apache Proxy
	Security Fundamentals
	User Access Control
	Enabling Content from Home Directories
	Access Directives
	Defining within httpd.conf

	Shells and Commands
	Checksums
	Password Authentication

	System Utilities
	Server-Side Includes
	XSSI
	ModSSL versus Apache+SSL

	Chapter 5 Troubleshooting
	Objectives
	Online Troubleshooting Resources
	Tracking Down an Apache Core Dump
	Some Useful Sites
	Configuration Issues
	Logging Problems

	Part Two Labs and Exercises
	Lab I Installation
	Purpose
	Theory
	Lab Exercises
	Downloading Modules
	Preinstallation Query
	Package Installation
	Basic Server Setup

	Questions
	Answers
	Advanced Questions

	Lab II Install Apache+SSL
	Purpose
	Theory
	Lab Exercises
	Downloading the Apache server
	Compile Apache with mod_ssl Support
	Verify That Apache Was Compiled with mod_ssl
	Test the Sample Page in a Web Browser

	Questions
	Answers
	Advanced Questions

	Lab III Configuring Apache to Perform Common Tasks
	Purpose
	Theory
	Lab Exercises
	Questions
	Answers
	Advanced Questions

	Lab IV Create a Simple CGI Script
	Purpose
	Theory
	Lab Exercises
	Create a Basic CGI Script

	Questions
	Answers
	Advanced Questions

	Lab V Configure and Run mod_auth_mysql
	Purpose
	Theory
	Setting Up the MySQL Database
	Setting Up Apache

	Lab Exercises
	Student Resources

	Questions
	Answers
	Advanced Questions

	Lab VI Apache and Tomcat
	Purpose
	Theory
	Lab Exercises
	Questions
	Answers
	Advanced Questions

	Lab VII Configuration of a Proxy
	Purpose
	Theory
	Installing mod_proxy
	Configuring httpd
	Configuring the Client

	Lab Exercises
	Installing mod_proxy
	Configuring httpd
	Configuring the Client

	Questions
	Answers
	Advanced Questions

	Lab VIII URL Rewriting
	Purpose
	Theory
	Lab Exercises
	Questions
	Answers
	Advanced Questions

	Lab IX Create a Custom Log for Apache
	Purpose
	Theory
	Lab Exercises
	Questions
	Answers
	Advanced Questions

	Lab X Benchmark Your Server
	Purpose
	Theory
	Lab Exercises
	Questions
	Answers
	Advanced Questions

	Part Three Practice Questions and Answers
	Practice Questions
	Answers
	Glossary
	Index

