
Installing and
Administering Linux

Second Edition

John Wiley & Sons, Inc.

Wiley Computer Publishing

Linda McKinnon

Al McKinnon

Gearhead Press

Publisher: Robert Ipsen
Editor: Ben Ryan
Consulting Editor: Donis Marshall
Managing Editor: Angela Smith
Text Design & Composition: D&G Limited, LLC

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by Linda McKinnon and Al McKinnon. All rights reserved.

Published by John Wiley & Sons, Inc., New York

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

The Gearhead Press trademark is the exclusive property of Gearhead Group Corporation.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-20884-1

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Introduction xiii

Acknowledgments xx

About the Authors xxii

Chapter 1 Linux Origins 1

A Brief History of UNIX 1

History of Linux 7

Linux Features 8

Chapter 2 Installing Linux from a CD-ROM 13

Installing Linux on an IDE System 14

Initiating a Linux Installation 16

Chapter 3 Getting Started Using the Linux System 47

Logging In and Out 47

Creating User Accounts and Passwords 49

Command Syntax 55

Contents

vii

Online Information for Linux and UNIX Commands 56

Viewing the Date: date and cal Commands 64

Requesting Data on Logged-In Users 67

Sending and Receiving Mail: mail Command 70

Sending Messages to the Screen: write and wall Commands 75

Conversing Online: The talk Command 77

Blocking Messages and Conversations: The mesg Command 78

Additional Tools: clear, echo, banner, and wc Commands 79

Exercises 83

Quiz 90

Chapter 4 Files and Directories in Linux 93

File System Structure and Hierarchy 94

Navigating the Directory Structure 99

Managing Directories 101

Formatting and Accessing Floppy Disks 110

Exercises 117

Quiz 119

Chapter 5 Using Files in Linux 121

Files and Directories: A Quick Review 121

Linux Filename Guidelines 122

Creating and Updating Files: The touch Command 123

Linking Files: The ln Command 125

Viewing File Contents 127

Copying, Moving, and Deleting Files 130

The mtools Utilities 138

Printing Files: The lpr, lpq, and lprm Commands 140

Exercises 149

Quiz 154

Chapter 6 Linux File Permissions 157

Review of the ls -l Command 157

Permissions 159

Creating Personal Directories 168

Samples of Commands and Their Required Permissions 171

viii Contents

Exercises 171

Quiz 175

Chapter 7 Shell Basics 179

The Linux/UNIX Shells 180

Types of Linux/UNIX Shells 181

Command-Line Parsing 184

Metacharacters and Wildcards 185

Quoting Metacharacters to Disable Shell Interpretation 193

Standard Files: Redirection and Piping 195

Connecting Commands with Pipes 207

Command Grouping with Semicolons 212

Line Continuation with the Backslash 213

Shell History Commands 213

Exercises 217

Quiz 222

Chapter 8 Basic Linux Utilities 225

Searching Directories for Files: The find Command 226

Locating Commands: whatis, whereis, and
which Commands 234

Locating Data within a File: grep Command 237

Sorting Output: The sort Command 246

Displaying Parts of Files: The head and tail Commands 250

Exercises 253

Quiz 256

Chapter 9 Advanced Linux Utilities 257

Maximizing Work per Command: xargs 257

Linux/UNIX Shortcut: The alias Command 264

Comparing find Functions and Shell Functions 268

Determining File Types: The file Command 273

Comparing Text Files: The diff Command 276

Comparing All Types of Files: The cmp Command 283

Compressing Files: The gzip, gunzip, and zcat Commands 285

Displaying Nonprintable Characters: The cat
Command Options 288

Contents ix

Assigning Unique Filenames: Appending Information 292

Exercises 294

Quiz 298

Chapter 10 The vi Editor 299

An Introduction to vi 300

Starting vi 301

Exiting vi 301

Adding Text in Insert Mode 304

Manipulating Text in Command Mode 305

Options for Changing vi Functions 316

Entering and Editing Commands at the Command Line 319

Invoking Text Editor Features at the Command Line 320

Related vi Editors 321

Exercises 322

Quiz 330

Chapter 11 Shell Variables and the User Environment 331

Variables and the Terminal Environment 332

Shell Variable Types 333

Listing Variable Settings: set Command 335

Listing the Values of Individual Variables:
The echo Command 337

Setting Shell Variables 337

Setting Shell Variables by Command Substitution 341

Customizing the User Environment 343

Samples of Environment-Building Files 346

Exercises 352

Quiz 358

Chapter 12 Linux Processes and Process Control 359

Process Environments 360

The Login Process 361

Parent-Child Relationships 362

Processes and Variables 368

Return Codes from Commands 372

x Contents

Process Monitoring: The ps Command 373

Invoking Foreground and Background Processes 375

Terminating Processes 375

Running Long Processes: The nohup Command 380

Job Control in the bash and tcsh Shells 381

Daemons: Never-Ending System Processes 385

Exercises 386

Quiz 392

Chapter 13 Shell Programming 395

Shell Scripts 395

Executing Shell Scripts 397

Shell Script Invocation from a Process Standpoint:
Three Options 400

Creating Scripts: Some Practical Examples 406

Quiz 413

Chapter 14 The Linux X Window System 415

A Brief History 416

X Window Networking 417

X Window Managers 421

X Window Fundamentals 422

Basic X Window Components 426

xterm Fundamentals 431

Additional Basic X Window Commands 434

Exercises 438

Quiz 445

Chapter 15 Linux Documentation and Support 447

Distribution Package Documentation 448

Current Linux Distributors 450

The Linux Documentation Project 451

Linux Books and Magazines 453

More Linux Information Sites on the Internet 455

Exercises 460

Quiz 461

Contents xi

Appendix A Command Summary 463

Appendix B Exercise Answers 485

Appendix C Quiz Answers 495

Index 507

xii Contents

Welcome to the world of Linux! And welcome especially to the second edi-
tion of Installing and Administering Linux. You are now in the trenches with
us here at Gearhead Press and John Wiley & Sons. But fear not, you are in
excellent company. Well, we think so, anyway.

We do not know how many Linux books you already own. We do not
have any idea how many you have already picked up and put down here
in the store or library. But here is a book that you can really use. You can
use it in two ways. First, you can sit down at your personal computer with
your chosen version of Linux and install it. Then, you can go step-by-step
through a complete introductory course in basic Linux administration.
This book has everything you need to go from a beginner to an intermedi-
ate-level user or beginning-level administrator. It has introductory mater-
ial, organized “lectures,” lots of examples, laboratory exercises you can do
on your own system, and even quizzes you can take to test your compre-
hension. The information is all here. Or, you might already be an advanced
beginner or intermediate administrator and need an orderly and progres-
sive reference book. This book fills that need, too. Plus, it has the kind of
real-world tips you can use on your home system or on the job.

Introduction

xiii

Installing and Administering Linux, 2nd Edition might seem to focus on the
Red Hat distribution (because that is the version we show you how to
install in Chapter 2), but it teaches you concepts that are applicable to all
Linux flavors and even to all UNIX flavors: FreeBSD, AIX, HPUX, you
name it. So it is really “version independent.” If you are working on a
friend’s FreeBSD system or on the company’s IBM AIX system and you
need to know what basic command to use for whatever purpose, you can
still use this book. If you do not find exactly what you want in that case, we
expect you will get a good lead.

Overview of the Book and Technology

We wrote this book for several reasons:

■■ The book contains material that is comparable to what you would
find in a good introductory Linux course. Take a look at the price on
the cover. We guarantee that the price is absolutely tiny compared to
what you would pay at any technical institute, college, or university
for a comparable course.

■■ The book also makes a great companion for an introductory course.
In fact, the first edition of this book was actually adopted by more
than one technical school as their “Intro Linux” course.

■■ This book will help you on the road to Linux certification.
Unfortunately, it does not contain EVERYTHING you will need to
know, but it provides a pretty good foundation for the next levels.
Yes, be assured that it contains concepts, lab exercises, and quiz
questions that are comparable to those you might eventually find on
a Linux certification test. We are not interested in teaching you stuff
just to teach you stuff. We want to help you move ahead.

■■ Most importantly, this book reflects what our professional
colleagues and students have requested for years: a clear and easily
read text that introduces and explains what they need to know
NOW to get rolling with Linux.

One of the first things you will notice about “Installing and Administer-
ing Linux” is that it focuses on the “command line,” similar to the classic
UNIX or even to DOS, if you are familiar with the world before Microsoft
Windows. In other words, we will not emphasize the use of Linux’s X Win-
dow System, the graphical user interface (GUI) to Linux. Do not get the

xiv Introduction

wrong impression, though. Linux has some excellent window manager
applications, from the basic “twm” to the more complete and very quickly
developing “KDE” and “GNOME” window environments. No, the reason
we focus on the command line is because once you get a feel for it, it is
faster and more universally applicable from an administration standpoint.
Even in the GUIs, you will probably be doing something at the command
line eventually. “Be not afraid,” for command line concepts and the com-
mands themselves are easily learned with a little practice.

As we mentioned earlier, the material that you will find in this book is
“version independent.” In this case, it is really version and flavor indepen-
dent because its concepts and commands apply to most UNIXes and to
most Linuxes, from the earliest versions to the latest. This book is a basic-
to-intermediate book; these are basic-to-intermediate concepts, and the
basic concepts have not changed very much.

We have tried to make Installing and Administering Linux, 2nd Edition as
up-to-date as possible. That is why we take the time every year or so to
revise it. You will see, however, that the concepts found in it have not
changed, and the commands and utilities have changed only for the better.

How This Book Is Organized

If you are familiar at all with the first edition of Installing and Administering
Linux, 2nd Edition, then you will quickly notice how the organization of the
book has changed significantly. We have “re-chunked” the material and
introduced several new concepts and many new examples. Why? The
original book followed the flow of a typical introductory course: doing a
wide sweep of concepts on a basic level, then returning to certain concepts
and exploring them in more detail. That was fine. But as a reference tool,
the book was not as effective as it could have been. So, for this second edi-
tion, we regrouped the material and then filled in some blanks in the con-
cepts and in the flow of discussion. We find this second edition to be a little
more complete and comprehensive (for an introductory book, that is).

A lot of introductory courses begin by telling you a little about the tech-
nology you are dealing with—its origins and where it fits into the techno-
logical world. We do the same. In Chapter 1, we explain that Linux was not
always there. We show you the evolution of a project called “Multics” and
how Multics yielded UNIX. Then, we follow UNIX until Linux is born. We
mention some Linux/UNIX concepts that you might or might not know,
such as “free software” for example. We also hint at the future of Linux.

Introduction xv

Chapter 2 shows you how to install Red Hat Linux on your Integrated
Drive Electronics (IDE) personal computer. This installation is the most
common type of Linux installation. In the first edition of Installing and
Administering Linux, we put the installation chapter at the end. We were
interested primarily in teaching Linux concepts first, because the various
Linux flavors have slightly different installation procedures. Our readers
and reviewers, however, suggested that we move the installation chapter
forward for a better “start at the very beginning” approach. We are happy
to oblige. Now, if you need to know how to install Linux on a system other
than IDE, then we recommend our companion book called Upgrading and
Customizing Linux, which covers installation in more depth on different
systems and via different methods.

In Chapter 3, we show you how to “become somebody” in Linux. You
will learn how to log in and log out. You will create users and groups and
find out how to assign and change passwords. Then, just before we teach
you a few common commands, we teach you about commands—what they
all have in common with respect to syntax and how to find out more about
them. Then, we show you some very basic getting around and communi-
cating commands.

Chapters 4 through 6 delve into file and directory manipulation. You will
learn about the file types supported by Linux; how to create, remove, and
navigate the directories; how to examine and manipulate files; how to print
files; and how to alter permissions on files for a modicum of file security.

In Chapter 7, we will introduce the concept of a “shell.” You have likely
seen shells in action before, but no one ever called them that. We will show
you how the Linux shells interact with you and with Linux to make life
easier and more efficient for you and for the system you are using.

The shell concepts will set the stage for the basic (Chapter 8) and
advanced (Chapter 9) Linux utilities that will enable you to search, find,
and manipulate Linux commands, files, and the data within files. Once
you have mastered these utilities, a lot of the mysteries behind files and
data will disappear—and your ability to perform administration functions
will progress quickly.

Chapter 10 presents both a break and a catch-up. In this chapter, we
introduce the almost universal (to Linux/UNIX users, anyway) text editor
called “vi.” If you aspire to higher-level Linux expertise, then knowledge
of vi or other simple yet powerful Linux text editors will be mandatory. In
fact, with your new knowledge of vi, you will be able to return to earlier
exercises, if you wish, and do them so much faster. Needless to say, mov-
ing to the next chapters will be easier, too.

xvi Introduction

In Chapter 11, you will be introduced to the various environments in
which your Linux system operates. We tend to think that our systems just
operate the way they do, and that is that. This chapter will introduce you
to variables, the environments created and colored by those variables, how
your environments are built during system bootup and login, and how
you can alter all those components to make your system work your way.

For those who are curious about what really goes on behind the scenes
in a computer system, Chapter 12 will prove fascinating and potentially
very powerful. We will introduce you to the system processes without
which your system simply would not operate. You will discover how
Linux/UNIX enables you to actually control how those processes work
(something that other major operating systems do not enable you to do). In
fact, you will even recognize some of the concepts and symptoms at work
(or not at work) when other operating systems hang on you.

We introduce you to some basic system automation in Chapter 13 when
we discuss shell programming. In that chapter, we even provide you with
actual real-world scripts that you can use to make your system more
responsive and more powerful while at the same time alerting you to, if
not actually preventing, system overloads or other problems.

In Chapter 15, we provide a very basic introduction to Linux’s GUIs. For
some, this introduction might seem too basic and trivial. But there are also
some tips and tricks that you might find handy, whether you are already
familiar with Linux GUIs or not.

One of the most remarkable aspects of Linux is how it has grown up
courtesy of the Internet and other media. So, we finish the book with Chap-
ter 16, an up-to-date (if there really can be such a thing in a library or store-
shelf book) compendium of Internet and other sources of information. If
you need to know where to go to get applications, a newer kernel, X Win-
dow system information, or whatever, this chapter will lead you to it.

When we began to rewrite Installing and Administering Linux, we thought
that it might be more fun to introduce a cast of characters about whom all
this Linux activity revolved—imaginary people who might learn and illus-
trate the concepts and who might help keep the material lighter. We had read
“Don Quixote” several years ago and were inspired by it from several stand-
points, among which are 1) the cast of characters, 2) no matter what hap-
pened, Don Quixote had that indomitable and intrepid spirit (a trait we can
all use in this fast-paced and often confusing world), 3) some of the predica-
ments and adventures, not to mention the actions and reactions of Don and
his cohorts, were outrageous (not unlike some we get into ourselves), and 4)

Introduction xvii

they all combine to illustrate the beauty and strength of humanity and phi-
losophy.

Therefore, we adopted some names and basic traits and then con-
structed, in our minds and on our pages, Rueful Figures, Inc., a company
located in Spain that was dedicated to growing citrus fruit (to pay the bills)
and to doing noble and chivalrous deeds. Where we can, we use RFI staff
to show the reader how to perform the actions behind the concepts. We
hope you enjoy them; we had fun creating them.

Who Should Read This Book?

We wrote this book for the busy system administrator or network engineer
who aims to be up and running in short order. We want it to be fast-paced
and version-independent—a reference that features insights we have gath-
ered from our experiences in the trenches as system administrators, pro-
fessional trainers, and consultants.

This book is written from a Linux system professional’s perspective and
highlights key similarities and differences between Linux and other UNIX
systems to minimize the learning curve. We have provided time-tested
exercises and corresponding quizzes with answers at the end of nearly
every chapter plus helpful notes, warnings, and workarounds throughout
the book. This information is all intended to accelerate the direct develop-
ment of basic Linux skills as well as Linux system administration skills.

If you work your way through this book, you will learn to:

■■ Install Linux on an IDE system
■■ Log into and out of a Linux system as a root and ordinary user
■■ Create user accounts, group accounts, and passwords
■■ Execute common Linux commands
■■ Manage Linux files, directories, and processes
■■ Use common Linux utilities
■■ Use the vi text editor
■■ Customize the Linux work environment
■■ Use and customize a Linux X Window system environment

This book is also ideally suited to the Linux newcomer. That person
could be a newcomer to computer systems or someone who has operated
with that “other GUI operating system” but who is curious about a power-
ful and reliable operating system whose popularity is growing daily.

xviii Introduction

Vast experience, however, is not necessary to understand and enjoy it.
Advanced system administration concepts will likely be mentioned but
might not be covered in any great depth because they are beyond the scope
of this introductory course. In the meantime, you will still be introduced to
exercises and questions you can expect to encounter if you pursue Linux
certification.

Summary

We hope you will enjoy this introduction to the Linux adventure. The book
is a good and progressive course unto itself as well as an organized refer-
ence work. Once you have worked your way through it, you will have
enough background to take on any intermediate Linux course or text and
to take on any lower-level system administration or customer support.

Introduction xix

I have many to thank. First and foremost, thanks to Linda for the inspira-
tion to write this book. Thanks to the many, many Linux developers all
over the world. What a lesson in international cooperation we have all
learned from you. Thanks also to all our colleagues and to all the students
we have met over the past few years who’ve expressed the need for a pro-
gressive introduction to Linux and also for a book they could refer to when
they need it. We also thank the reviewers and readers of the first edition of
this book, who made the thoughtful comments and suggestions that led to
this “new and improved” version. And thanks to the editors at Gearhead
and Wiley, whose questions and comments kept us on our toes and made
us account for all the ideas, claims, and instructions found herein. Thanks
to Miguel de Cervantes Saavedra (1547-1616), whose “Don Quixote of La
Mancha” was the inspiration for the characters you will meet in this book.
If you have not read “Don Quixote” and (especially) if your spirit needs a
lift, we wholeheartedly recommend it. Finally, as sentimental as it sounds,
we still remember our beloved old dog Keeler, who spent her last few
months watching us “pound out and mouse click” our way through the
first edition. Her ghost lingers over this edition, too.

Acknowledgments

xx

This book is dedicated to those who need or want a stable and robust oper-
ating system that is constantly and transparently undergoing improvement
and to those Internet-linked free spirits who strive daily to make it even
better.

—Al McKinnon

Thanks to all those who came to me and said “Please write that down
for us.” Without you, I would never have embarked on this literary tour. A
special thanks goes to my peers who shared their views and to my stu-
dents who shared their ideas and needs. During the past seven years, I
have taught both basic and advanced Linux/UNIX curricula to more than
1,200 individuals. You know who you are; you guided my choice of topics.
This book is dedicated to you and to those who we have yet to convert
from that other operating system.

—Linda McKinnon

Acknowledgments xxi

Linda McKinnon has more than 10 years of experience as a successful
trainer and network engineer specializing in assisting major companies
throughout the USA and Canada in network architecture, systems admin-
istration and RFP procurement. In addition to being sought-after for her
Linux expertise, Ms. McKinnon teaches large-scale server technology
including the IBM RS/6000 SP and pSeries systems. On the software side,
she teaches WebSphere Application Server Administration as well as Web-
Sphere Commerce Suite implementation.”

Al McKinnon is a professional trainer and engineer who assists clients
throughout North America with network auditing, optimization and trou-
bleshooting, management and migration. Mr. McKinnon is also a technical
author and editor for IBM and other clients, and he has extensive knowl-
edge of networking technologies implemented on Linux, Windows 9x,
Windows NT/2000, IBM AIX, Novell Netware and IBM OS/2 Warp Server.

Al and Linda are both headquartered in Calgary, Canada, where the
prairie meets the foothills of the Canadian Rockies.

About the Authors

xxii

C H A P T E R

1

Linux Origins

1

This chapter presents a brief history of UNIX and Linux followed by an
introduction to the major features of Linux. Although the current incarna-
tion of Linux and its respective shells, programs, and other processes have
been written from scratch, they have also evolved from previous versions
of Linux and other UNIX flavors (HP-UX by Hewlett Packard, Solaris by
Sun Microsystems, and others). Knowledge of the history of these operat-
ing systems can help you predict the usefulness of a command, program,
or function or more easily troubleshoot unanticipated results.

A Brief History of UNIX

UNIX development was initiated in 1969 by several researchers working at
Bell Laboratories in New Jersey. Bell Laboratories had previously
(1964–1968) worked with General Electric and the Massachusetts Institute of
Technology (MIT) on the development of a multi-user, time-sharing operat-
ing system called Multics (Multiplexed Information and Computing Sys-
tem). Thus, the project involved a partnership between private industry

2 Installing and Administering Linux

and a respected academic institution. As the project progressed, however,
Multics was proving more difficult and more expensive than the partners
had anticipated. Deadlines were slipping, and the partners found they had
differing philosophies and goals. So, in early 1969, Bell Labs withdrew
from the Multics project.

Bell Labs researchers who had worked on Multics (Ken Thompson, Den-
nis Ritchie, Douglas McIlroy, Joseph Ossanna, and others) still wanted to
develop an operating system for their own and Bell Labs’ programming,
job control, and resource usage needs. So, in addition to the comparatively
routine activities they returned to, they also informally searched for an in-
house alternative to the Multics project. Bell’s executive managers, still
somewhat scorched by the Multics project and burdened by internal poli-
ticking, however, were not immediately receptive to subsequent proposals.

During this same year, Thompson (later helped by Ritchie) wrote a sim-
ple space travel program called, naturally enough, Space Travel—first for
Multics and then for the inflexible and inadequate GECOS operating sys-
tem on a GE 635 computer. Space Travel on the GE 635 was unsatisfactory.
That is, the program was jerky, hard to control, and expensive from a CPU-
per-dollar standpoint. Thompson soon found another computer, an
already obsolete DEC PDP-7, with acceptable display capabilities. But
from a programming standpoint, Space Travel was still a challenge—it was
written with macros for the assembler on the GE 635 computer and then
sent through a postprocessor that produced paper tapes that were in turn
fed into the PDP-7.

Thompson and Ritchie soon developed a new kind of primitive kernel
for the PDP-7 plus a text editor, an assembler, a command interpreter
(which we refer to as a shell), some rudimentary utilities, and a structured
file system (including directories, special files that described system
devices, inodes to describe file attributes, and so on). Many of these fea-
tures were influenced by their previous work on the Multics project.
Therefore, the PDP-7 achieved standalone capability. Almost all develop-
ment thus far had been in DEC assembler language, although they had
begun to develop a high-level language called B that is based on the exist-
ing BCPL language. B had been used to write a PDP-7 compiler.

In 1970, the developers requested and received a new computer, a DEC
PDP-11, which had a new type of 16-bit processor and thus required alter-
ations to the kernel code (this code was their Version 1). B was used to
develop a PDP-7 to PDP-11 cross-compiler. Their colleague, Brian
Kernighan, suggested that the new operating system be called Unix (UNIX
would not be all capital letters for years to come, but we will talk more

Linux Origins 3

about that later) as a sort of pun on Multics and as a way to contrast the
simplicity of this new operating system (OS) with the complexity of Multics.

UNIX Is Born
In a supportive and collegial environment, the researchers continued the
development of their portable (as defined in the preceding section), simple
as possible, high-level language operating system that they called the Unix
Time-Sharing System. The B language continued to be developed, too, and
its name was later changed to C. C enabled them to create not only appli-
cations but also system programs that could be ported to new architectures
as long as compilers existed for those architectures. By 1973, they were
even able to rewrite the Unix kernel in C for what they called Version 4
(V4). They had now risen above the hardware-specific assembler language
environment in which Unix had been born in 1969. The Unix operating
system was different: The developers kept the kernel as close to an essen-
tial input/output multiplexer as possible but built a collection of add-on
programming tools that carried out login and logout, command interpre-
tation, file naming, console activity, and more via a vast array of functions.
No longer did an application built with a hardware-specific language have
to do it all. Applications could now do solely what they were intended to
do (for example, text processing) and could rely on a high-level language
operating system to carry out input/output (I/O), file manipulation, print-
ing, handling several users at once, networking, inter-process communica-
tion, and so forth.

In 1973, AT&T/Bell recognized that hardware—especially telephone sys-
tem hardware—and applications were changing and that Unix would have
to become a standard interface between the two realms. Then, as hardware
or hardware vendors changed, applications could continue functioning
because Unix could be ported to accommodate the changing hardware.

From 1974 to 1977, Unix source code was licensed inexpensively or for
free to universities. AT&T, going back to a 1956 United States-AT&T
antitrust consent decree, was forbidden to sell software commercially.
Instead, they had to make such computer technology licensable to and by
the public. Unix V6, released in 1975, was especially popular. It was free
and it was great for teaching about operating systems because it was dis-
tributed with its source code, and students could follow along after they
became familiar with the C language. It was great for program developers,
too. They could write new applications—in C, for example—and then take
full advantage of the Unix operating system. DEC had provided thou-
sands of PDP-11s to universities across the United States at very little cost.

4 Installing and Administering Linux

The perfect match of Unix and PDP-11 was thus (accidentally) repeated
many times. This ground was fertile for further Unix development.

UNIX Becomes Commercialized
In 1979, AT&T announced that it planned to commercialize Unix, an
announcement that came true in 1983 with the release of its Unix System V.
Meanwhile, the University of California at Berkeley, among others, began
developing its own version of Unix based primarily on Unix V7. Berkeley
was also implementing the Transmission Control Protocol/Internet Protocol
(TCP/IP) networking protocol suite that had been based on its Berkeley
Systems Distribution (BSD) of Unix. The Internet itself was being developed
and expanded, sponsored by the U.S. Department of Defense Advanced
Research Projects Agency (that is why the original Internet was called the
ARPAnet).

The upshot was the first major proliferation of different versions of Unix
in the early 1980s:

■■ AT&T was developing its System V Unix.
■■ Berkeley was actively developing BSD Unix.
■■ Sun Microsystems (founded by Berkeley Ph.D. recipient Bill Joy)

produced its own BSD-based Unix called SunOS.
■■ Microsoft and the Santa Cruz operation (SCO) were already

distributing XENIX.
■■ Hewlett-Packard developed HP-UX for its workstations.
■■ DEC released ULTRIX.
■■ IBM developed versions of Unix for its PCs, PS/2s, and

System/370s. (Later, in 1986, IBM would develop AIX first for the
RT 6150 and then for the RS 6000.)

So, a former strength of Unix, AT&T’s free source code, was now becom-
ing a sort of weakness because so many new Unix versions were being
developed based on the pre-commercial V7, depending on the needs of the
respective developers who were not following any type of standard.

UNIX Moves Toward Standardization
In 1984, in an effort to promote open architecture standards that empha-
sized Unix as the operating system, several European vendors (among
them, Siemens, Amdahl, and Philips) formed X/Open. American compa-

Linux Origins 5

nies (including AT&T, DEC, and Sun) and Japanese companies (such as
Hitachi and Wang) later augmented the membership. The open aspects
they promoted included the development of systems that allowed applica-
tions to be easily ported among them, that were interoperable, and that
allowed users to work on the various systems without extensive retrain-
ing. X/Open was interested in using member consensus to adopt and inte-
grate open standards to ensure that new products conformed to them, but
not to actually write them. (In 1987, X/Open was incorporated as a limited
company, the X/Open Company Limited, whose shareholders were sev-
eral worldwide information technology suppliers.)

In 1988, AT&T bought a large portion of Sun Microsystems; therefore,
AT&T and Sun could then collaborate on future versions of Unix. The pur-
chase in effect merged AT&T’s System V and Sun’s OS. In response, nine
other vendors (IBM, DEC, HP, Bull, Nixdorf, Siemens, Hitachi, Philips, and
Apollo) formed a consortium called the Open Software Foundation (OSF);
membership ballooned to more than 200 firms by 1991.

The OSF’s approach was to produce a Unix operating system and other
software and then license the use of its products to its members and others.
In fact, in late 1990 they produced what they claimed was the first open
UNIX operating system, called OSF/1. OSF/1 was based on Carnegie Mel-
lon University’s Mach, a Unix operating system with original ties to BSD
Unix. Mach was developed by Carnegie Mellon from 1985 to 1994. After
the introduction of OSF/1, however, only DEC adopted it outright; other
OSF members—such as IBM and HP—adopted only parts of it.

OSF also developed the Motif GUI guideline and toolkit for further
development of the X Window System. The X Window System and the X
networking protocol had been under development at MIT since 1984. (We
will discuss X again in Chapter 15, “Linux Documentation and Support.”)

As a countermeasure to OSF, AT&T and Sun allied themselves with yet
more and different vendors to create the Unix International (UI) trade asso-
ciation. Members of that association—from computer manufacturers and
software developers to consultants and academics and even government
agencies—would advise AT&T regarding future development of System V
UNIX, although AT&T would retain its proprietary control. By 1991, UI’s
membership reached more than 200 from a dozen countries or so.
Although some overlap existed between the lower-rank members of OSF
and UI, no such overlap existed among principal members or sponsors.

Let’s step back a bit because of the relevance to Linux. The year 1987
saw the birth of MINIX, a much smaller Unix-like operating system written
by professor Andrew S. Tanenbaum of Vrije Universiteit in Amsterdam,

6 Installing and Administering Linux

Holland. This OS was written from scratch—meaning that it contained no
AT&T code—for university instruction. MINIX is mentioned again in the
next section because it was Linus Torvalds’ springboard to Linux.

In 1993, Novell purchased AT&T et al.’s UNIX Systems Laboratories,
which included the source code to System VR4 (System V, Release 4), the
amalgamation of System V, BSD, and XENIX as well as the UNIX trade-
mark. Novell then negotiated with X/Open to give X/Open the UNIX
trademark. This deal gave X/Open the power to bless any new operating
system as a version of UNIX if it met X/Open standards. One of those
standards is XPG4.2 (X/Open Portability Guide 4.2), which includes sev-
eral Portable Operating System Interface for UNIX (POSIX) standards devel-
oped by the Institute of Electrical and Electronic Engineers (IEEE) for
operating system interfaces. (For example, POSIX.1 is the application pro-
gram interface standard for the C language, and POSIX.2 is the shell and
utility interface standard.) Later in 1995, Novell sold its UNIXWare
(including the source code) to SCO, which continues to develop UNIX to
the present day.

In this brief history of UNIX, a great deal has been left out. UNIX devel-
opment has continued on many fronts in the 1980s and 1990s and into the
new millennium. To cover it all and to do it justice would require an entire
book. But before proceeding, we should mention that X/Open and OSF
eventually merged, forming the Open Group in 1996. The Open Group still
strives to promote, develop, and license open standards software, espe-
cially UNIX.

Multics—Epilogue
You might wonder what happened to Multics. It was, indeed, eventually
developed. The first Multics system was unveiled by MIT and the remain-
ing Multics partners in 1969—late and not without problems. GE had juris-
diction over future Multics development, which it sold—along with its
entire computer business—to Honeywell Corporation in 1970. Neverthe-
less, Multics systems were installed in several locations.

Development during the 1970s included a new storage system, using the
new concepts of logical and physical volumes to give it better recovery
capabilities. Also, in 1977, the first commercial relational database was
installed on a Multics system at Honeywell in Phoenix. Multics was used
by MIT, the U.S. Air Force, GM, Ford, and the University of Southwest
Louisiana and was purchased by a large number of organizations in
Europe in the 1980s.

Linux Origins 7

In 1985, Honeywell canceled further development of Multics. Over the
next three years, however, they made several attempts to revive it, as did a
few other companies who wanted to buy Multics. In 1988, Honeywell
transferred maintenance of Multics to the University of Calgary, Canada.
That university set up a corporation called ACTC Technologies, which was
eventually renamed Perigon Systems. Perigon was acquired by the CGI
Group in late 1998. We called CGI in the late summer of 2000 and were told
that they had just put their last Multics system to sleep. Later, in the fall of
2000, we heard that Canada’s Department of National Defence retired the
last-known (well, rumored, anyway) Multics system, apparently located in
Halifax, Nova Scotia, Canada.

Although that seems to be the end of Multics systems, we would just
like to acknowledge and congratulate those who were involved in its
development, deployment, configuration, administration, and mainte-
nance for all those years. Bravo, and thank you. Without your courage and
pioneering spirit, who knows what the state of information technology (IT)
would be today?

History of Linux

Any history of Linux would be remiss if it did not mention MINIX,
because it was on a MINIX USENET newsgroup bulletin board (comp
.os.minix) that Linus Torvalds posted his now-legendary notices, one of
which we quote from later in this section. As mentioned, MINIX was a
small UNIX-like operating system written by Professor Tanenbaum. Like
several other versions of UNIX, MINIX was written from scratch, with no
AT&T code, for university instruction. It is useful for anyone who wants to
learn the basics of UNIX operation. It is available free on the Internet at
www.cs.vu.nl/~ast/minix.html. We suggest that you visit the site. You
will find out how MINIX has evolved and learn about the two current ver-
sions (MINIX 2.0 for Intel CPUs from 8088 to Pentium and MINIX 1.5 for
Intel, Macintosh, Amiga, Atari, and SPARC). You will also find out about
the special copyright on MINIX by publisher Prentice Hall. MINIX is basi-
cally a type of public domain property.

In 1991, Linus Torvalds, a student at the University of Helsinki in Fin-
land, created Linux. He wanted to develop an operating system that
would exceed MINIX’s modest standards. In August 1991, shortly after
creating his Linux version 0.01, he published the following message to the
comp.os.minix newsgroup:

8 Installing and Administering Linux

Hello everybody out there using MINIX—I’m doing a (free) operating system
(just a hobby, won’t be big and professional like gnu) for 386 (486) AT clones. This
has been brewing since April, and is starting to get ready.

I’d like any feedback on things like/dislike in minix, as my OS resembles it
somewhat. Any suggestions are welcome, but I won’t promise I’ll implement
them :-)

According to Torvalds, “I’d guess the first version (v. 0.01) went out in
the middle of September ‘91.” The first official working version, v. 0.02,
was made available in October 1991. To read the recollections of Torvalds,
visit Web sites such as www.li.org/linuxhistory.php.

Many additions and revisions followed, but the first complete, bug-free
version, v. 1.0, was released in March 1994. These version numbers corre-
spond to the kernel version only, not to versions of Linux distributions as
applied by the respective manufacturers. The latest kernel version, as of
this writing, is 2.4.2-2. Reasonably current kernel version timelines are
found at www.linux-history.org/kernel/ and at www.memalpha.cx/
Linux/Kernel/.

One of the most remarkable aspects of Linux’s history is that it is a true
child of the Internet. Torvalds posted his original notice and request for help
over the Internet, and most of the improvements to Linux have come from
more than 100 programmers from all over the world, courtesy of the Inter-
net. You can also download Linux versions from the Internet at any time.

Linux Features

To quote from Linux Online!, “Linux is a free UNIX-type operating sys-
tem.” It is a POSIX implementation, which means it meets Open Group
POSIX standards (described previously in this chapter). It enables multi-
tasking, simultaneous multiple users, the sharing of system libraries for
efficiency, TCP/IP networking, virtual memory and swap spaces, and
other UNIX OS features. Users or administrators can use a GUI or the com-
mand line.

Linux enables you to set up Internet or intranet services, and many use it
for setting up Internet firewalls. In fact, because Linux does not require
steep licensing fees and can be used on relatively inexpensive (and used)
equipment, it is becoming a favorite of Internet service providers (ISPs). In
addition, Linux can accommodate existing Microsoft Windows applica-
tions and can be dual-booted with Windows operating systems. It can also
be integrated into existing multi-vendor networks—especially UNIX-

Linux Origins 9

based ones—because of their similarities. Soon, Linux will be incorporated
into mobile, handheld computing devices.

Free Software
Linux is free software, meaning that it is distributed under the terms of the
GNU General Public License developed by Richard Stallman. (To read
about this ex-MIT software developer and his “free software as in freedom
of speech, not free beer” philosophy, we invite you to visit his Web site at
www.gnu.org/philosophy/free-software-for-freedom.html.) This free soft-
ware does not mean that the Linux kernel, other associated software, or
entire distributions are the same kind of free as you associate with public
domain. It is also not shareware. Basically, free software means that you can
use the software for any purpose; study it to see how it is built and how it
works; adapt and improve it; and redistribute it free or for a price. But you
cannot restrict the software after you have redistributed it (that is, you
must distribute it under the GNU GPL, too), and you must provide the
source code just as it was supplied to you.

Sometimes, you will see references to open source software. This software
might be equivalent to free software or it might mean a free download
with copyright restrictions. If you find yourself faced with this terminol-
ogy, it is best to investigate further.

Mix and Match
At least 40 full-feature Linux distributions are available in English, and-
more than 20 are available in other languages. There are also 35 special
versions available for embedded systems, control systems, and so on (for
further information, see Chapter 15, “Linux Documentation and Sup-
port”). Here, we define a distribution as an amalgamation of the Linux ker-
nel with other associated software. The 60-odd distributions are not all the
same. Each has a different focus and slightly different features aimed at a
specific user audience (besides the obvious fact that the French editions,
for example, are for a French audience). Each distribution has different
perceived strengths and weaknesses.

In addition, you do not have to use a shrink-wrapped distribution;
instead, you can download the kernel of your choice. For example, instead
of using a stable, tested kernel, you might want to live on the edge with a
less-tested, potentially less-stable kernel. Or, you might want to combine a

10 Installing and Administering Linux

certain kernel with different applications or other special features (such as
RAID support or integration with a specific network) than would nor-
mally be found with a standard distribution.

Linux enables you to mix and match, use an existing distribution, mod-
ify a distribution, or create your own distribution. You can purchase copy-
righted software for Linux from software developers (new or established).
Or, you can obtain software from the Free Software Foundation (www
.gnu.org/fsf), which follows the GNU General Public License. Remember,
GNU GPL software might not always be free (as in no cost), but it is always
free as in source code and has no restrictions on the user, as described pre-
viously.

Hardware and Software Compatibility
Linux runs on Intel-compatible PCs, Alpha computers from Digital Equip-
ment Corporation, and Sun’s SPARC computers. Linux can also talk to
proprietary databases from IBM, Oracle, Sybase, Informix, and Pick, and
open source databases such as PostgresSQL and MySQL. A wide variety of
office applications run on Linux (StarOffice and Corel WordPerfect, to
name two). Several GUI interfaces are available in open source but are
restricted, such as KDE, or free, such as GNOME. As mentioned, an intro-
ductory tour of the X Window System and some X Window manager
applications appear in Chapter 14, “The Linux X Window System.”

Further Developments
Today, there are more than 80 UNIXes, from AIX to XENIX. Many are
undergoing continual development (such as Linux, SCO UNIX, FreeBSD,
and AIX), while some have stagnated and are no longer supported (for
example, Carnegie Mellon University’s Project Mach). Carnegie Mellon,
however, still maintains a Mach Web site at www-2.cs.cmu.edu/afs/cs
.cmu.edu/project/mach/public/www/mach.html.

According to a Gartner Group-Dataquest survey conducted in the third
quarter of 1998, UNIX workstations accounted for 67.4 percent of the
worldwide workstation market with respect to revenues. Shipments of
UNIX increased 14.6 percent between the third quarter of 1997 and the
third quarter of 1998, also in terms of revenues. In terms of units sold,
UNIX workstations accounted for approximately half, indicating that
UNIX systems dominate the middle to high-end markets. This situation is
a much better position than one would believe based on impressions
obtained from the mainstream media.

Linux Origins 11

Meanwhile, Linux has been gaining more friends everywhere. It has been
endorsed by top industry vendors—IBM, Dell Computer, Oracle, Hewlett-
Packard, SAP, and so on. According to Network World (www.nwfusion
.com/power2000/power-strlinux/power-strlinux.html), “it was the sec-
ond-most-shipped server operating system in 1999, behind Windows NT,
with market shares of 24.6% vs. 38.1%, according to market research firm
IDC. Linux out-shipped Novell NetWare and all combined Unix flavors,
each of which had less than 20% market share. IDC predicts that Windows
and Linux will continue to be No. 1 and 2, respectively, into 2004.”

All are drawn by Linux’s low cost, reliability, flexibility, and robust per-
formance. Linux has also cracked specialty applications and the handheld
market. More ISPs are moving to it, too. A purchaser for a large U.S. enter-
prise, however, stated that he will not recommend going to Linux. Why?
Because it is free software, there is “no one to sue” if something goes
wrong. Sheeesh.

C H A P T E R

2

Installing Linux from a CD-ROM

13

In this chapter, we discuss getting ready for an installation on an Integrated
Drive Electronics (IDE) system, booting from CD-ROM, the necessity for a boot
disk and rescue disks, and then some troubleshooting. Then, we walk
through a fairly typical Linux installation on an also fairly typical IDE system.

You will encounter a few concepts, commands, and procedures here that
we do not explain in detail until later in the book. If we fail to provide you
with sufficient cross-references, we apologize. But you should be able to
get by using the table of contents and the index. In our previous edition,
we left the installation procedure until the end of the book, but we
received many suggestions to move it forward.

First, though, if you are going to follow along, then you will need a copy
of Linux. Linux can be obtained from several sources, including your local
software vendor, from the various distribution manufacturers directly
(say, via the Internet), or on CD-ROMs included with instruction books
such as this one. If you have lots of bandwidth and a CD-ROM burner, you
can actually download the ISO images directly from several vendors’ Web
sites (see Chapter 15, “Linux Documentation and Support,” for a list of
Linux distributions), such as Red Hat.

14 Installing and Administering Linux 2E

The installation menus are dynamic and might change order for various
distribution versions. The installation in the chapter uses Red Hat Linux
version 7.1, which implements a Linux kernel level of 2.4.2-2. All the Red
Hat distributions starting at version 6.X offer a GUI installation option. We
will bypass the GUI installation and intentionally guide you through a text
menu installation for three reasons:

■■ There is (unfortunately) still a high failure rate for GUI installations.
■■ Our objective is to present you with a more consistent view of a

Linux installation procedure that has been in place since the very
early versions. Thus, if you are installing an earlier version, then this
book can still assist you.

■■ The text menu installation includes some menus that you would not
normally see in the GUI install and thus gives you a more technical
view of the overall procedure.

By definition, “Linux is a UNIX-like operating system kernel that it can be
freely distributed.” Technically, Linux is not freeware nor is it in the public
domain. Linux is protected by both a code of honor and the GNU General
Public License (GNU GPL). Essentially, this situation means that you
should not change the source code of the kernel and then release it under a
more restrictive license. Any changes or modifications made to the Linux
kernel are governed by the GPL as well. In other words, you can get the
code from anywhere and legally use it. You can even resell it. But you have
to supply the source code, too, just like it was supplied to you.

Installing Linux on an IDE System

As we said previously, in this section we will install Linux IDE architec-
ture. IDE is an IBM PC Industry Standard Architecture (ISA). It is generally
less expensive than SCSI and is simpler to configure. We have drawn the
disk drive configurations (hard disk drive and CD-ROM drive, too) in Fig-
ure 2.1 for you to study the partitions and mount point data.

Troubleshooting the IDE Installation
If you have trouble with the installation, stop and research what you are
doing. Based on our experience, most problems involve hard drive config-

Installing Linux from a CD-ROM 15

P
rim

ar
y

C
on

tr
ol

le
r

Primary
Master

/dev/hda

S
ec

on
da

ry
C

on
tr

ol
le

r

Secondary
Master

/dev/hdc

IDE
FUJITSU MPF3102AT

physical 19857/16/63
logical 1245/255/63

IDE
ATAPI 48X CDROM

Figure 2.1 IDE disk drive configurations.

urations or hardware compatibility, followed by network card and bad dri-
ver configuration.

With respect to drives, the problem is often a lack of documentation on
either the jumper or the termination settings. If you have a pair of IDE dri-
ves or a hard drive and CD-ROM combination, then it is often (actually, it
is usually) a master/slave configuration issue. If you suspect that is your
case, then make sure that all the IDE devices are compatible with each
other. In other words, do not mix older IDE technology with the newer
enhanced IDE technology. If they work together, then you are lucky. We
have a saying in the industry that says, “Are we being lucky or smart?”

Network card and driver combinations can also be troublesome. In our
opinion, Linux developers have made amazing progress in this area over
the past two years. Three years ago, there were very few network cards
supported in Linux—and now there are many. The newer network cards
are PCI and therefore are self-configuring. When it works, it is great. Of
course, how successfully this technology works with your system is
entirely dependent on the BIOS that you have installed in your system. If
the BIOS is buggy or old, then it could create a very difficult situation. Do
not ignore the DOS utilities that we will tell you about soon in this chapter.
Also, do not spend very much time on a network card that does not work
without checking out the IRQ, I/O port, and memory address space that it
is using (PCI or no PCI).

16 Installing and Administering Linux 2E

Watch for the following nasty behavior: You can ping the card internally,
but it will not respond to a DHCP server. This situation is typical of a
resource conflict, usually memory space. To check these issues, go directly
to the /proc directory and list the contents of all files called iomem, ioports,
irq, and net. If the network card is not even present in these files, then the
IRQ on the network card is no doubt set to something that is already used
by another device. If you cannot even ping the card internally, then the dri-
ver is probably not functioning correctly. If you do not get the “link light”
on the back of the network card, then it is probably the wrong driver or the
network card itself. We recommend that you only spend so much time
with a network card that will not work and then go out and buy one. For
example, the last D-Link network card that I purchased was less than $20.
Your time (and state of mind) is likely worth more than that. Barring that
approach, you can find many Linux drivers on the Internet at www
.driversguide.com, for example.

Video configuration is also a huge concern—so huge that we dedicated an
entire chapter to it in our companion book, Customizing and Upgrading Linux.
Please refer to that book for advice on video theory and video configuration.

Initiating a Linux Installation

Technically, all Linux CDs are bootable. Whether your Linux CD will boot
your system depends upon whether the CMOS on your PC is set correctly.
For example, most PCs are configured to boot from floppy disk first and
hard disk second. You have to change the boot sequence to CD-ROM first,
floppy second, and hard disk third. If it still fails to boot, then your BIOS or
hard disk controller probably does not support booting from a CD-ROM,
in which case you will have to create a boot diskette. You can create a boot
diskette from either a DOS/Windows or UNIX session. You should have
two diskettes available to accomplish this task.

CD Booting Problem Determination
Sometimes it appears that Linux cannot see or boot from IDE CD-ROMs. If
this problem occurs, you should try to determine why Linux could not see
the IDE device. It is possible that the BIOS cannot see or read an IDE chan-
nel because the BIOS is limited. This is probably the case if the system was
functioning properly before under a different operating system. The solu-

Installing Linux from a CD-ROM 17

tion is to either upgrade the BIOS or create a floppy boot diskette. We
would recommend that you create a floppy boot diskette because it is eas-
ier. Another reason might be that the system might not be configured cor-
rectly. This situation is usually the case if you have taken the opportunity
to add or move drives around in the system. Check the master/slave
jumpers on all the drives and devices. If the drives are all connected to the
same IDE controller, then one device should be configured as the master
and the other device should be the slave. You will have to locate the docu-
mentation for the individual IDE device to find out how the jumpers
should be set, because these instructions vary for different devices and for
various manufacturers.

Another more interesting problem is dealing with a CD-ROM that will
not load automatically after the installation. To get the system up and run-
ning, you can enter the following statement at the LILO prompt during the
boot sequence:

boot: linux hdx=cdrom

x is the IDE letter that Linux specifies for the drive. This letter will vary
depending on the IDE bus to which the drive is attached. This scenario
might also cause you some problems during boot time. Make a note of it,
and if the system also fails to boot after the installation, then revisit your
cabling and master/slave configuration.

Installation Boot Disks
and Linux Rescue Disks
With some Linux versions—those before the equivalent of Red Hat 6.x, for
example—to provide additional support for Personal Computer Memory
Card Internal Association (PCMCIA) and Session Message Block (SMB) instal-
lation, you have to create additional diskettes ahead of time. If you will be
installing an earlier version here, then you will be prompted for these
diskettes and they must be readily at hand. With newer versions of Red
Hat Linux, however, the installation procedure has been changed, so this
issue is no longer present.

The method for creating a Linux install boot disk depends on the oper-
ating system you have to begin with and whether you want to use that
operating system to create the boot disk. We will discuss two methods in
the next section:

18 Installing and Administering Linux 2E

■■ Creation from within a DOS/Windows operating system
■■ Creation from within a UNIX system

Boot diskettes made using DOS/Windows or Linux will behave the same
way; thus, choosing one over the other makes no difference.

Meanwhile, if you are prompted to insert a blank diskette, which will be
used to create a customized rescue diskette, we highly recommend that
you do so.

You can create a rescue disk after the installation is finished should you
have skipped this step during the installation. To create a post installation
rescue diskette, go to the /lib/modules directory and use the following com-
mand to create a rescue diskette customized for the system:

#cd /lib/modules

#mkbootdisk --device /dev/fd0 kernel_number

kernel_number will be similar in format to this one: 2.4.2-2. Although
you choose to install a newer kernel, you must insert the appropriate ver-
sion numbers for the level of kernel you are currently running.

You should always have a rescue diskette on hand that is specific for
each system. For example, it is considered bad practice to use a rescue
diskette from a system with a kernel level of 2.2.14-5 to rescue a system
that is supposed to be at a kernel level of 2.4.2-2. The current kernel level of
any system can be determined by observing the login prompt or by using
the uname a command at the system prompt.

You can also create a rescue diskette directory from the Red Hat CD by
going to the /images directory and issuing the following command:

G:\>

G:\>cd images

G:\images>dd if=rescue.img of=/dev/fd0 bs=1440 count=1

Creating the Install Boot Disk from a
DOS/Windows System
To create a boot diskette from DOS/Windows, we will use a program
called rawrite. In this example session, we insert the Red Hat Linux
product CD into the CD-ROM drive of a DOS or Windows system. The
rawrite utility will be in a directory called dosutils. The boot file that you
need is boot.img. Your listing of the images directory might not be identical,

Installing Linux from a CD-ROM 19

but should resemble the one found in Step 1, as follows. When you run
rawrite, it will prompt you for the boot.img file to transfer to the boot
diskette. Use the following instructions to create a boot diskette from a
DOS or Windows system:

1. Put the Red Hat CD in the CD-ROM drive. Change to the /images
directory and list the contents.

G:

G:>cd \images

G:\images>dir

Volume in drive G is Red Hat Linux_i3

Volume Serial Number is 3BC3-AD45

Directory of G:\images

08/30/00 06:40p <DIR> .

08/30/00 06:44p <DIR> ..

08/30/00 06:48p 485 TRANS.TBL

08/30/00 06:39p 1,474,560 boot.img

08/30/00 06:39p 1,474,560 bootnet.img

08/30/00 06:40p <DIR> de

08/30/00 06:40p 860,160 drivers.img

08/30/00 06:40p <DIR> es

08/30/00 06:40p <DIR> fr

08/30/00 06:40p <DIR> it

08/30/00 06:40p 147,456 paride.img

08/30/00 06:39p 1,474,560 pcmcia.img

08/30/00 06:40p <DIR> pxeboot

08/30/00 06:40p <DIR> sv

14 File(s) 5,431,781 bytes

0 bytes free

2. Run the rawrite utility from the \dosutils directory and transfer the
boot.img file to the floppy disk.

G:\dosutils\rawrite

Enter disk image source file name: boot.img

Enter target diskette drive: a:

Please insert a formatted diskette into drive A: and press -ENTER- :

<CR>

The result will be a bootable floppy with the following files on it.
You can use the floppy to boot the system and to initiate the installa-
tion process.

20 Installing and Administering Linux 2E

Volume in drive A is LINUX BOOT

Volume Serial Number is 2410-07EF

Directory of A:\

08/30/00 06:39p 5,860 LDLINUX.SYS

08/30/00 06:39p 425 SYSLINUX.CFG

08/30/00 06:39p 4,807 TEMPLATE.IMG

08/30/00 06:39p 789,543 INITRD.IMG

08/30/00 06:39p 600,265 VMLINUZ

08/30/00 06:39p 751 BOOT.MSG

08/30/00 06:39p 653 EXPERT.MSG

08/30/00 06:39p 859 GENERAL.MSG

08/30/00 06:39p 860 PARAM.MSG

08/30/00 06:39p 506 RESCUE.MSG

08/30/00 06:39p 545 SNAKE.MSG

11 File(s) 1,405,074 bytes

49,664 bytes free

Creating the Install Boot Diskette
from a UNIX System
In a UNIX-based environment, you can use the dd utility to create a boot
diskette. First, you have to mount the CD to get to the images directory where
the boot.img file resides. The dd utility is a UNIX utility, so it is not available
as such on the Linux CD (eventually it will be available on your new Linux
system, but for now you have to use another Linux/UNIX system).

1. Put the Red Hat CD in the CD-ROM drive. Mount the CD-ROM and
change to the /mnt/cdrom directory and list its contents:

Red Hat Linux release 7.0 (Guinness)

Kernel 2.4.2-2 on an i686

login: freston

Password:

Last login: Thu Jun 7 11:48:36 from 8.3.105.200

[freston@HostA freston]$ su - root

Password:

[root@HostA /root]# mount /dev/cdrom

[root@HostA /root]# mount

/dev/hda1 on / type ext2 (rw)

none on /proc type proc (rw)

usbdevfs on /proc/bus/usb type usbdevfs (rw)

none on /dev/pts type devpts (rw,gid=5,mode=620)

automount(pid469) on /misc type autofs

(rw,fd=5,pgrp=469,minproto=2,maxproto=3)

Installing Linux from a CD-ROM 21

/dev/hdc on /mnt/cdrom type iso9660 (ro,nosuid,nodev)

[root@HostA /root]# cd /mnt/cdrom

[root@HostA cdrom]# ls -l

total 63

-rw-r--r-- 10 root root 18385 Sep 7 1999 COPYING

-rw-r--r-- 10 root root 4730 Aug 25 2000 README

-rw-r--r-- 5 root root 25206 Aug 27 2000 RELEASE-NOTES

-rw-r--r-- 10 root root 1908 Sep 25 1999 RPM-GPG-KEY

drwxr-xr-x 4 root root 2048 Aug 30 2000 RedHat

-r--r--r-- 1 root root 465 Aug 30 2000 TRANS.TBL

-r--r--r-- 1 root root 2048 Aug 30 2000 boot.cat

drwxr-xr-x 6 root root 4096 Aug 30 2000 dosutils

drwxr-xr-x 8 root root 2048 Aug 30 2000 images

2. The boot file that you need is boot.img. Change to the /mnt/cdrom/
images directory and list the contents of that directory to confirm that
the boot.img file is present. Your listing of the images directory
might not be identical, but it should resemble the following:

[root@HostA cdrom]# cd /mnt/cdrom/images

[root@HostA images]# ls -l

total 5333

-r--r--r-- 1 root root 485 Aug 30 2000 TRANS.TBL

-rw-r--r-- 2 root root 1474560 Aug 30 2000 boot.img

-rw-r--r-- 2 root root 1474560 Aug 30 2000 bootnet.img

drwxr-xr-x 2 root root 2048 Aug 30 2000 de

-rw-r--r-- 2 root root 860160 Aug 30 2000 drivers.img

drwxr-xr-x 2 root root 2048 Aug 30 2000 es

drwxr-xr-x 2 root root 2048 Aug 30 2000 fr

drwxr-xr-x 2 root root 2048 Aug 30 2000 it

-rw-r--r-- 2 root root 147456 Aug 30 2000 paride.img

-rw-r--r-- 2 root root 1474560 Aug 30 2000 pcmcia.img

drwxr-xr-x 2 root root 2048 Aug 30 2000 pxeboot

drwxr-xr-x 2 root root 2048 Aug 30 2000 sv

3. Run the dd utility to transfer the boot.img file to the floppy diskette.
Provide the boot.img file and the floppy disk designation as
arguments to dd so it will transfer the appropriate files to the boot
diskette.

[root@HostA images]# dd if=boot.img of=/dev/fd0

2880+0 records in

2880+0 records out

22 Installing and Administering Linux 2E

The result will be a bootable floppy with the following files on it that
you can use to boot the system with and initiate the installation
process. For your information, please note that although we used the
dd utility here, the files are identical to those created with rawrite
in DOS.

[root@HostA /root]# mount /dev/fd0

[root@HostA /root]# cd /mnt/floppy

[root@HostA floppy]# ls -l

total 1401

-rwxr-xr-x 1 root root 955 Apr 8 22:37 boot.msg

-rwxr-xr-x 1 root root 658 Apr 8 22:37 expert.msg

-rwxr-xr-x 1 root root 1202 Apr 8 22:37 general.msg

-rwxr-xr-x 1 root root 768551 Apr 8 22:37 initrd.img

-r-xr-xr-x 1 root root 6192 Apr 8 22:37 ldlinux.sys

-rwxr-xr-x 1 root root 862 Apr 8 22:37 param.msg

-rwxr-xr-x 1 root root 506 Apr 8 22:37 rescue.msg

-rwxr-xr-x 1 root root 608 Apr 8 22:37 syslinux.cfg

-rwxr-xr-x 1 root root 652144 Apr 8 22:37 vmlinuz

If you are installing Red Hat like we are here, Red Hat has reported cer-
tain problems with boot images. Consider downloading the latest recom-
mended boot images. For example, Red Hat has them available at
www.redhat.com/errata. If you are determined to perform a GUI-assisted instal-
lation and your video is not working, consider downloading a newer boot.img
file. That might resolve the problem.

Invoking the Linux Installation
Program
The Linux installation program consists of a series of dialog boxes some-
times called screens or windows. The dialog boxes present information to
you and request information and decisions from you. The two most com-
mon methods used to invoke the installation program are as follows:

Inserting the Linux CD-ROM into the CD drive and booting the
system. The system CMOS must be set to facilitate booting from the
CD-ROM drive (see Initiating a Linux Installation earlier in this
chapter).

Inserting a bootable floppy disk into the floppy disk drive and
booting the system. The system CMOS must be set to facilitate
booting from the floppy disk drive.

TI P

Installing Linux from a CD-ROM 23

The installation chronicled in this chapter presumes that you will use the
floppy boot method. In fact, you will eventually see a dialog box that
instructs you to insert the CD.

We knew beforehand that the system we are installing Linux on in this
chapter would require a network connection to the Internet. Therefore, we
obtained some Internet protocol (IP) addresses before we started.

Entering Information in the
Installation Program
As you install Linux, you will notice several different ways to enter infor-
mation into the dialog boxes. These methods are as follows:

Text input. You will encounter dialog boxes in which you are to type
information, usually on a dashed line. This information insertion
method is used in conjunction with other methods such as buttons,
toggles, and so on.

Check boxes. These are spaces defined by brackets or boxes that you
will either select or deselect by pressing the space bar.

Buttons. These are generally square boxes that you select by pressing
the Tab key and then the Enter key.

Scroll and select. Some dialog boxes contain lists of components,
packages, or default services from which you will choose by scrolling
up or down and selecting. You will use combinations of Tab and
space keys, followed by pressing Enter at the end of the dialog boxes.

We present this list here for two reasons. First, there are the insertion meth-
ods you have to use, and the listing described earlier serves as a guide. Sec-
ond and more importantly, the list helps you focus on the issue at hand
rather than the collection of information. If you occasionally make a mis-
take, take heart—you will not be the first or the last to do so.

Insert your CD and boot the system. If you have trouble booting, read
the following paragraphs. If you do not experience trouble booting the sys-
tem, proceed to Step 1.

Stepping through the Installation
Our screens do not necessarily reflect what you will see on your system.
They will, however, give you an excellent idea of what information you

24 Installing and Administering Linux 2E

Figure 2.2 Installation options.

will require for your installation. We will explain default behavior and our
rationale for choosing specific options. It is our intention that you will be
able to make informed decisions when performing your own installation.

Step 1. Boot Message

If you were to walk away from this first screen without selecting anything
here, the installation program would proceed to boot the system on its
own and would default to the GUI installation mode. We are specifically
going to demonstrate the text mode installation (in other words, the type:
text <Enter> option in the screen facsimile shown in Figure 2.2).

Install or upgrade . . . graphical mode. This option is the default and
will launch a GUI install panel. Be aware that this choice has a high
video failure rate because it does not interpret all video cards and
monitors correctly. If you choose this option and it fails, we
recommend that you immediately reboot and use the text option.

Install or upgrade . . . text mode. This option is provided for practical
reasons to facilitate the installation of the majority of systems with no
graphical support. Remember, though, that not all systems that are
destined to be servers will have graphical support. If that is what
your system is to be, you might have to select this option.

Installing Linux from a CD-ROM 25

Figure 2.3 Selecting an installation language.

Enable expert mode. This option is not for the faint of heart but is
sometimes necessary (for example, when Autoprobe does not appear
to be discovering your card settings correctly). These dialog boxes
will enable you to supply the necessary information for all card
settings, such as IRQ, I/O, and DMA.

Enable rescue mode. This feature will enable you to boot a system
from a Linux CD. This option is a last resort if you cannot boot the
system and you do not have a rescue diskette.

All the rest of the dialog boxes we present in this chapter will presume
that you have chosen text mode. We chose text mode.

Step 2. Select Language

Whatever language you choose in the screen shown in Figure 2.3 will
become the default language used for the installation of the Linux operat-
ing system. You can add another language later should you require a multi-
lingual system. We chose English.

Step 3. Specify Keyboard

Do not be creative here. The question in Figure 2.4 is a technical question
about keyboard drivers. If you answer this question incorrectly, then
issues might arise when you try to enable and map keys. Not all keyboards

26 Installing and Administering Linux 2E

Figure 2.4 Keyboard type.

Figure 2.5 Welcome message.

are created equal. You can, however, choose the closest one here and adjust
it later when the system is up and running. We chose US.

Step 4. Welcome

Choose OK for the message shown in Figure 2.5 and go to the next screen.

Installing Linux from a CD-ROM 27

Figure 2.6 Installation type.

Step 5. Specify Installation Type

We will demonstrate a custom installation (see Figure 2.6), which will
allow you to specify exactly which packages and utilities that you need.
Just as a point of interest should you decide to install absolutely all of the
packages: You will have to create a 2.0-GB system partition to hold the
files, which does not include room for any data. Before we continue,
though, please consider the following comments.

Among the most popular features of contemporary Linux systems are
the new GNOME and KDE desktops. The one you choose should depend
on what you want to do. If you are experimenting, try to install one and
then the other. GNOME can run KDE applications and vice versa. Con-
sider your choice between the two as making one dominant over the other.
Of course, because the industry is somewhat political, the KDE develop-
ment group has different mandates than the GNOME development group.
Thus, we have two different factions creating desktops and utilities for
such desktops.

Notice that both the GNOME and KDE choices here are workstation
solutions. In other words, the default suggested combination of packages
and utilities are well suited for a desktop system such as that for an end
user. An end user here would also include a code developer or system
administrator, whereas the server solution offered here would install a set
of packages and utilities that you would not necessarily want on a work-
station. For your information, if you choose Server System, no X server
will be installed. This situation is a change from previous version behavior.

28 Installing and Administering Linux 2E

Figure 2.7 Hard disk partitioning.

If you wish to have an X server for a server class system, choose Select
individual packages during the installation or use the rpm utility
after the installation is complete.

Finally, they have added a choice for laptop computers in response to so
many users trying to get Linux up and running on their laptops only to
find out that they were missing many of the required packages. The
default installation for a laptop now includes those packages, such as a
PCMCIA slot and power and TFT video support utilities.

There is also an upgrade path available. We highly recommend that you
use this feature to upgrade a Linux distribution or Linux kernel to the next
level. This situation is far preferable to attempting to recompile a kernel.
Recompiling kernels is a specialized task that we are going to address in
another chapter in this book.

To repeat, we chose Custom.

Step 6. Partitioning

We are going to choose Continue (see Figure 2.7) to use automatic parti-
tioning to show you how the system will look after the installation. The
automatic partitioning will create a small partition called /boot, which
will contain the boot files for the system. All other files and directories will
go into one large partition called /.

Please be reminded again that this installation is using Red Hat 7.1,
which handles this situation differently from the previous Red Hat version
7.0. With RH 7.0, all the files—including the boot files—would go into one
large partition called /.

Installing Linux from a CD-ROM 29

Figure 2.8 LILO configuration—boot options.

Step 7. Installing and Configuring LILO

The first LILO configuration screen (Figure 2.8) will appear and will ask
about the use of linear mode. As it clearly says, it pertains to SCSI drives
only—and we will address this issue in our SCSI installation after this sec-
tion. On older versions of the Red Hat distribution, it did not state that it
was specific to SCSI installations. If you were to choose to enable this fea-
ture, it would have no effect—nor would it cause any problems. We chose
to remove the default * on Use linear mode

We plan to use LILO to manage the disk (see Figure 2.9). Therefore, we
are going to choose the Master Boot Record (MBR) option. If there were
some other alternate operating system partitions on the disk, the Linux
configuration program would see them and you could choose to add them
to your /etc/lilo.conf file as boot choices (see Figure 2.10). Because we are
only installing the one Linux system, we will let this choice default to boot-
ing Linux. If your system is a production system, we recommend that no
other operating systems should share the disk. This situation will primar-
ily simplify the maintenance, backup, and recovery of the system. In other
working environments, however, such as at home, you might appreciate
having more than one operating system from which to choose.

Step 8. Network Configuration

We are going to use a static IP address in the screen shown in Figure 2.11.
But, if this system is going to be a print server or will run any services for
other hosts, it should receive its own static IP address so that it will not

30 Installing and Administering Linux 2E

Figure 2.9 LILO configuration—bootloader options.

Figure 2.10 Boot partitions.

change. If the address changes, then other hosts on the network might not
be capable of finding the service. Another issue to examine is whether any
software on this host is not sensitive to having the IP address changed.
Because we knew this machine would join an existing network and would
eventually access the Internet, the IP addressing information we provided
was as follows:

Disable bootp/dhcp

IP address: 192.168.2.205

Netmask: 255.255.255.0

Installing Linux from a CD-ROM 31

Figure 2.11 Network configuration.

Default gateway: 192.168.1.1

Primary nameserver: 24.64.2.33

Secondary nameserver: 24.64.2.34

You can revisit this menu at any time after the installation via the
/usr/sbin/netconf or /usr/sbin/netcfg utilities. Please note that
there is no opportunity during the installation to configure an ISP Internet
connection. You can configure this option after the installation by using the
/usr/sbin/internet-config utility.

Step 9. Firewall Configuration

Firewall configuration (see Figure 2.12) is a new feature added to the Red Hat
7.1 distribution. This feature will not appear on the Red Hat 7.0 or previous
equivalent distributions. This feature is a response to concerns that users
had about security exposure on the Linux system itself. This particular
feature set does not create a firewall appliance in the sense that this system
can be used as a firewall for other systems. This feature set just provides
some firewall protection to the system on which it is being installed. Now,
about these Security Levels: For example, if you choose Medium as an
option, it will prevent Telnet access to the system but will not prevent Tel-
net connections through the system if the system is now or eventually

32 Installing and Administering Linux 2E

Figure 2.12 Firewall configuration.

equipped with two network cards. Linux can be used on firewalls, but this
goal is not the objective of this dialog box.

Because in our shop we already have a proper firewall in place and we
wish to have easy Telnet access to this system from various points on the
network so that we can manage it remotely, we chose No firewall.

If the system you are installing Linux on is to be at the end of ISP service,
we would recommend Medium or High so that it would not to be as easy a
target for hackers. Meanwhile, you can reconfigure this information after
the installation via the /usr/sbin/firewall-config utility.

Step 10. Mouse Selection

The system immediately asks you to configure the mouse if it senses one,
as shown in Figure 2.13. If you have a three-button mouse, you will be bet-
ter equipped to take advantage of the X Window system (please refer to
Chapter 14, “The Linux X Window System”) without confusion. For exam-
ple, on a three-button mouse, the left button is copy; the middle button is
paste; and the right button is used for context. On a two-button mouse, the
left button is copy and the right button is paste. If you have a two-button
mouse and you choose Emulate 3-buttons, then the left button will be
copy, the right will be context, and clicking the left and right buttons
together will be equivalent to the middle button. We have a two-button
mouse. We chose Generic - 2 button Mouse (PS/2) and Emulate

Installing Linux from a CD-ROM 33

Figure 2.13 Mouse selection.

three buttons. You can revisit this information after the installation via
/usr/sbin/mouseconfig.

Step 11. Language Support

We chose English (USA) in the screen shown in Figure 2.14 because we
wish to have those code pages installed on this system. Installing more lan-
guage support uses up significant space on your disk. All message files,
code pages, and related files—such as screen fonts for the X Windows sys-
tem—will be installed along with the language support.

If you are going to install additional or different language support here,
give some thought to what you are going to use for keyboard support.
Language support and keyboard support generally go hand in hand. This
information can also be reconfigured after the installation via
/usr/sbin/locale_config.

Step 12. Time Zone Configuration

Somewhere in your hardware setup plan, way back at the beginning,
should have been instructions to set the time properly in the system
CMOS. Does your CMOS time function on your system handle Greenwich
Mean Time (GMT)? If it does and you are going to use the system itself as a
source of time, then set the time in the CMOS and use the hardware clock
set to GMT option here. Then, it will convert the time set in your CMOS to

34 Installing and Administering Linux 2E

Figure 2.14 Language support.

Figure 2.15 Time zone selection.

the local time. If your CMOS date and time does not have the GMT capa-
bility and you set the time in your CMOS to the local time, then do not set
the feature in the screen shown in Figure 2.15. The decision to use the hard-

Installing Linux from a CD-ROM 35

ware clock will ultimately have to do with whether or not this system will
be a standalone entity with respect to time. For example, standalones are
often used by developers or by system administrators as utility systems. If
the system is going to be a server, it might have to participate in a network
by using the Network Time Protocol (NTP). Then, it would be appropriate to
make use of the Time Zone Selection. Plan for this situation ahead of time.
We cannot tell you how messed up a database server can get if the time is
set in the past. Not many database applications can recover from time
changes gracefully. We chose not to use the hardware clock because we
have the local time set in our CMOS, but we did choose Canada/Moun-
tain (a little local bias, eh?). This information can be reconfigured after
the installation via /usr/sbin/timeconfig.

Step 13. Root Password

Remember to choose a good password (see Figure 2.16) and then ensure that
you remember it. Linux has rules and guidelines for proper passwords.
Reviewing them would be worthwhile. Check the man pages (we discuss
these manual pages for commands in Chapter 3, “Getting Started Using the
Linux System”) for passwd and the Red Hat online documentation for
guidelines. This password can be reset after the installation by first logging
in as root and using the passwd utility.

Figure 2.16 Specifying the root user password.

36 Installing and Administering Linux 2E

Figure 2.17 Adding non-root users.

Step 14. Add Non-Root Users

The installation process will enable you to add users at this time (see Fig-
ure 2.17). You do not need to add all system users now, though, because
you can revisit this task at any time after completing the installation. The
reason for the Add User dialog here is to enable you to log into the system
for the first time as an ordinary user and not necessarily as a root user.
Technically, it is not proper form to log into the system as root. Therefore,
for those who play only by the rules, the opportunity is here. We chose to
create a dbadmin user at this time because we knew we were going to
need this one. We have plans to create all of our users after the installation
is validated and ready for system administration. Another reason to create
a non-root user is if you have to have Telnet access to the system after
installation. By default, the Telnet daemon will not let you log in directly as
root. You have to log in as a regular user and then su to root. Therefore, if
you only have Telnet access immediately after the installation, you will
require an additional userid.

Step 15. Authentication Configuration

The two default selections shown in Figure 2.18 will ensure that you are
compatible with other systems on the network. Configuring for Network
Information Services (NIS), Lightweight Directory Access Protocol (LDAP), and

Installing Linux from a CD-ROM 37

Figure 2.18 Authentication.

Kerberos support is available for advanced configurations. These
advanced configurations are almost mandatory in large distributed server
environments. These capabilities have always been available for Linux,
but now they are configurable during the installation process. We are
going to use the defaults here: Use Shadow Password and Enable MD5
Passwords, in order to be compatible with our other operating systems
on the network. This information can be reconfigured after the installation
via /usr/sbin/authconfig.

Step 16. Package Group Selection

Components are groups of software packages that provide an overall ser-
vice or feature to the system. The components shown in Figure 2.19 do not
display all the possible selections, only the ones we suggest installing for
this exercise. You might note that the dialog box on your screen is a little
smaller than the one shown; use the arrow key to reveal more components.
We installed these components:

■■ Printer support
■■ X Window System
■■ GNOME
■■ DOS/Windows Connectivity
■■ Games
■■ Networked workstation

38 Installing and Administering Linux 2E

Figure 2.19 Selecting packages to install.

■■ NFS Server
■■ Kernel development
■■ Utilities

We could have added KDE, too, at least for comparison purposes. Nor-
mally, either GNOME or KDE is installed. Support for additional features
can be added after the installation by using rpm, the Red Hat Package
Manager. All of the associated services for various run levels can be man-
aged after the installation using either /usr/sbin/chkconfig or
/usr/sbin/ntsysv to modify the services.

There is potential here for frustrating errors. For example, if you had
chosen to install a GNOME Workstation, these packages would be differ-
ent. You would get networking capability but you might not have Telnet or
File Transfer Protocol (FTP) functionality, which might be important to you.
Normally, you would get only Telnet, FTP, and NFS if you had chosen to
do a Server installation (remember, we chose Custom). Now is your
chance to add all functionalities by choosing Select individual
packages. It is much easier to add functionalities here than to install and
configure them later after the installation.

We have worked with earlier versions of Red Hat, so we were used to
working with utilities such as linuxconf and XFree86Config. We con-
sider those packages to be absolute musts for a system administrator. Do

Installing Linux from a CD-ROM 39

not trust the Utilities function. Go into Select individual pack-
ages under Applications/System and User Interface/X and go
get the other two. While you are there, check for all your Telnet, FTP, and
other essential daemons as well. Some daemons that were standard before
are not anymore with the newer distributions. Also, although they can be
added afterward, it is easier to deal with them here.

If you scroll down through these dialog boxes, you will eventually see the
Everything choice at the bottom of the component list. We mentioned ear-
lier that choosing to install everything will result in 2.0 GB of files and direc-
tories on your system. If you are performance-minded, you might want to be
somewhat selective at this stage. If performance is not a primary considera-
tion, you might want to choose all components and thus all of the packages.

The installation program will tell you if you have inadequate disk
space. In the meantime, do not forget your planning and do not make disk
space too tight in the / and /usr file system partitions. Finally, be sure to avoid
removing mandatory packages, such as kernel support.

If you choose to install a particular package that uses another package as a
prerequisite, the installation process will bring that to your attention, as
shown in Figure 2.20 and will install all required software for you. We rec-
ommend Install packages to satisfy dependencies.

WARN I NG

Figure 2.20 Adding packages to satisfy dependencies.

40 Installing and Administering Linux 2E

Figure 2.21 X probing for a video card and X server.

Step 17. Probing for the Video Card and X Server

In our case, the installation process has conducted a PCI Probe and found
our video adapter (see Figure 2.21). We recommend at this point that you
make a note of the video card and X server response and move along. Our
experience is that this action will fail on most systems most of the time. We
have an entire chapter dedicated to configuring the video on a system.
Remain focused on other features and functionality at this point and move
through the video configuration, accepting all of the suggested defaults.
Apparently, we were having a good day (and we hope you do, too) and it
recognized our video chip set. The video configuration can be reconfigured
after the installation via /usr/bin/X11/Xconfigurator. Choose OK.

Step 18. Installation

A log file called /tmp/install.log will remain after the installation so you can
review what files and packages were installed (see Figure 2.22). This log
can also serve as good documentation in the event that you ever have to
re-create or recover a system without a proper backup system.

Figure 2.22 Installation begins.

Installing Linux from a CD-ROM 41

Figure 2.23 Installation progress.

A progress screen (see Figure 2.23) will keep you informed as to the sta-
tus of the file copy process. Throughout the installation process, you will
see the installation status dialog box, which will show you the progress of
the installation of individual packages and programs as well as the overall
progress of the total Linux installation. Note in the top half that as the indi-
vidual packages install, the installation program will provide the package
name, the size of the package, and a brief description of the package.

On the bottom, the program keeps track of the space used by the install
packages as well as the remaining space required. Moreover, it tracks the
total, elapsed, and remaining installation time. This point might be a good
time for you to take a break while the installation proceeds.

If the second CD is required, it will be requested (see Figure 2.24). Do not
worry if the second CD is not required; it just means that you did not
choose to install any packages from that CD. If the CD-ROM does not run
immediately, give it some time and try again.

Step 19. Create a Custom Bootdisk

Although you can create a custom boot disk at any time, we recommend
that you make one now (see Figure 2.25). Did you know that these rescue
disks are not generic but are specific to each system? Please, do it.

42 Installing and Administering Linux 2E

Figure 2.24 Request for the second CD-ROM.

Figure 2.25 Creating a custom boot disk.

In response to the screen shown in Figure 2.26, insert a blank floppy disk
and choose OK. The screen shown in Figure 2.27 will appear.

Step 20. Monitor Setup

Although scores of monitor names appear on the screen shown in Figure
2.28, your monitor might not show up in the list. If your monitor is not
there, you can choose Custom here. If you choose Custom, it will try to
test the configuration later. In the event your video fails, do not worry and
move on. We will show you how to configure the monitor when we show
you how to configure the video in another chapter. Again, we were having
a good day; the Gateway Vivitron 17 was in the list.

Step 21. Back to Video Configuration

At this point (see Figure 2.29), our installation might not reflect what your
installation process is doing because these menus are dynamic with

Installing Linux from a CD-ROM 43

Figure 2.26 Inserting a blank floppy.

respect to previous responses made. In our case, it probed and located a
video card and is now prompting us to indicate how much memory is
available or on the video card. Again, we emphasize that you should move
on, and we will reconfigure the video and monitor later using a better util-
ity. Our video card has 4 MB of memory on it. So, naturally, we chose 4 mb.

The only way that you would know which clockchip you had (see Fig-
ure 2.30) was to read the documentation that came with the video card. We
are choosing to configure the video later, however, so choose No
Clockchip Setting and move on. Once the system is running, you can
run /usr/bin/X11/SuperProbe to identify the video chipset.

Although we are going to configure the video setting later, you have to
choose at least one in the screen shown in Figure 2.31. We recommend that if
you choose anything, choose at least these: 8 bit: 800x600, 1024x768,
16 bit: 800x600, 1024x768. These are representative of the lowest com-
mon denominator; that is, they are what most monitors can handle.

Figure 2.27 Inserting a blank floppy.

44 Installing and Administering Linux 2E

Figure 2.28 Selecting monitor type.

Figure 2.29 Specifying available video memory.

Step 22. X Window Configuration

You can choose OK in the screen shown in Figure 2.32 just for fun at this
point, but if your video is not going well, this choice will definitely not

Installing Linux from a CD-ROM 45

Figure 2.30 Clockchip specification.

Figure 2.31 Video mode preferences.

work. If it works, then choose Yes. Only choose Yes if you do not see any
irregularities. A typical irregularity would be a box or small images hang-
ing around the mouse pointer or black lines on the screen where they
should not be. Respond with Skip if there are any irregularities.

46 Installing and Administering Linux 2E

Figure 2.32 Testing the X Window configuration.

You might also be presented with a screen asking you whether
you would like the X Window desktop to automatically start when the system
starts. We highly recommend that you say no in case the desktop hangs the
system. You can always start the X Window desktop at any time by entering
startx at the command line after you log into the system.

WARN I NG

Figure 2.33 Configuration is complete.

Step 23. Complete

Congratulations! Your installation is complete (see Figure 2.33).

C H A P T E R

3

Getting Started Using
the Linux System

47

Initial access to any operating system is gained by logging in and out, so
that is where we will begin here. The chapter continues with Linux/UNIX
commands for adding users, adding and changing passwords, and com-
municating with all or some selected users on a Linux system. We include
information on Linux/UNIX syntax and end with a description of several
tools that we find useful and hope that you will, too.

Logging In and Out

Because Linux, like other UNIX systems, is a multi-user system, a basic
level of security is implemented to control access. Although passwords
might only be optional on some UNIX systems, they are mandatory on
Linux systems. The system administrator sets the initial password for each
user, but users can change their own passwords after they first log into the
system.

The term Linux/UNIX is used here to describe commands that work on
Linux as well as on any UNIX-based system.
NOTE

48 Installing and Administering Linux 2E

Logging In
After you have booted your system and are ready to log in, the screen dis-
plays the hostname login prompt (hostname refers to the name given
to the computer during the installation of Linux). At this point, you enter
your username:

hostname login: username

You are then presented with the following message:

Password:

Obviously, this prompt tells you to provide your password by typing it.
For security purposes, the password is not echoed back to (displayed on)
the screen as it is entered. If the password matches your records and this is
the first time you have logged into the system, the system replies with a
system prompt. An example of such a prompt follows:

[username@hostname "home dir"]$

The prompt shown has two components: The first username@hostname
indicates the name of the user and the system to which they are logged in,
and home dir indicates that immediately after the login, the user has
been placed into his or her home directory in the file system. Then, every
time the user changes directories in the file system, the name of the new
directory (that is, the present working directory or pwd) will appear as
part of the prompt in the place where home dir is presently displayed.
That is why, later in this book, you might see other terms in the prompt.
One common term will be username, another indication that the user is
situated in his or her home directory (the absolute name of which is com-
monly /home/username; the prompt will only take the last part of the direc-
tory name). These system prompts can be customized. We will discuss
customizing them later in Chapter 11, “Shell Variables and the User Envi-
ronment,” when we discuss the user environment.

Meanwhile, if you have logged in and out of the system previously, the
system instead displays the following:

Last login: day date time on login location

[username@hostname "home dir"]$

Getting Started Using the Linux System 49

In either case, the $ prompt indicates that the system is now ready for you
to enter additional commands.

Logging Out
To log out, you have a choice of three methods: Entering the logout or
exit commands or simultaneously pressing the combination Ctrl-D. The
first choice looks like the following:

[username@hostname "home dir"]$ logout<Enter>

The logout command works only when you are in your own login shell,
which is where you generally conduct your business anyway. (For more
information about the login shell, see Chapter 11.) If you should discover
that logout does not work, use the exit command as follows:

[username@hostname "home dir"]$ exit<Enter>

Alternatively, press Ctrl-D (repeatedly if necessary). Eventually, you will
reach your login shell (where you can issue the logout command), or you
will just be logged out of the system.

If $ is part of the prompt, you are in your login shell.

Once you have logged out, no matter which of the three logout methods
you have used, Linux provides the same response:

distributorname Linux releasenumber

kernelnumber on a CPUname

hostname login:

Creating User Accounts and Passwords

On any Linux system, the system’s root user or the system administrator
creates user accounts and initial passwords. Ordinary users cannot create
user accounts and cannot change the passwords of other user accounts.

If you have Linux installed on a home system or in a smaller network
environment, you might not have a designated system administrator.
Therefore, please note that when we refer to a system administrator, we

NOTE

50 Installing and Administering Linux 2E

mean someone with root privileges. At Rueful Figures Inc., our sample
organization, Freston the Wizard is the system administrator.

User Accounts
The first task in creating a user account, or record, is to specify a username.
Linux imposes no restrictions on usernames, although we recommend that
you do not use blank spaces, unprintable characters, or even mixtures of
upper-case and lower-case characters in them. Such names can cause prob-
lems not only at login but also when you perform certain system adminis-
tration tasks.

In addition, system administrators are usually advised beforehand by
their respective organization about:

■■ The format of usernames (such as an abbreviated form of the user’s
name and the company name)

■■ The names of those who will soon be joining the organization’s
system (in other words, the names of new users)

■■ What organizational group(s) the new users are to join
■■ What their security clearances will be
■■ What file systems they will be able to access

The syntax for user account creation is simple:

[root@hostname /root]# useradd newusername<Enter>

or

[root@hostname /root]# adduser newusername<Enter>

Why are there two commands? Each comes from a different version of
UNIX, and Linux developers did not want to play favorites. You can use
either command; both accomplish the same thing.

(The useradd and adduser commands are examples of linking, in
which two command names are linked to one command. Linking is not
restricted to commands, however, but we are getting a little ahead of our-
selves. We will discuss the linking function in more detail in Chapter 5,
“Using Files in Linux.”)

If you have made a mistake creating a user account (it happens), or if
one or more users have left your organization, then you will have to delete
the user account. Use the following syntax:

Getting Started Using the Linux System 51

[root@hostname /root]# userdel username<Enter>

Meanwhile, to see what else you can do with useradd and adduser,
check their man pages (we will discuss man pages in detail later in this
chapter).

Group Accounts
Often, when user accounts are added to an organization’s database, they
are immediately assigned to specific user group accounts within that orga-
nization. That way, their activities and access to organizational resources
can be quickly configured for security and convenience. If the system
administrators assign user accounts to group accounts during the creation
of the user account, they will include the -g option with the adduser/
useradd command.

But, in order to add a username to a group account, the group account
must have been created first. To create a group account, use the following
syntax:

groupadd [-g gid [-o]] [-r] [-f] group<Enter>

The -g option is used if the administrator wants to assign a specific group
number. Otherwise, Linux will assign the lowest available unique number
greater than 500 that has not yet been assigned. Numbers 0 to 499 are
reserved for system accounts. The -o option is used if the system adminis-
trator wants to advise Linux that the assigned group ID number is not
unique. The -r option is used to indicate that the account is to be a system
account. The -f is used to tell Linux to halt command execution if such a
group already exists.

The group argument specifies the name of the new group.
The system administrator can check the correlation of accounts by exam-

ining the /etc/passwd or /etc/group files.
If the user account is to be added to more than one group, that can be

done at the time of user account creation with the -G option. It can also be
done later by using the usermod command as follows:

usermod -G additionalgroupname username<Enter>

Similarly, usermod can be used to change initial group membership, as such:

usermod -g newinitialgroupname username<Enter>

52 Installing and Administering Linux 2E

Table 3.1 Rueful Figures, Inc., User Groups

GROUP NAME DESCRIPTION EXAMPLES

knights1 The company’s “knights errant”— Don Quixote: username
staff members who will quixoted; Sancho Panza:
conduct noble deeds username panzasan

knights2 Staff who conduct fruit growing, Master Nicholas the Barber:
harvesting, and marketing username nicholas; Perez
functions; they also provide the Curate: username
support to the knights1 group perez; others

knights3 Executive and management staff Lady Dulcinea: username
dulcinea; Sancho’s wife
Juana Gutierrez: username
gutiejua; Lady Molinera:
username molinera; Lady
Toloso: username toloso

knights4 Special group for horses, burros, Don Quixote’s horse
and other support animals Rozinante: username

horseroz; Sancho’s burro
Dapple: username
burrodap

If a system administrator intends to delete a group account, he or she must
first clear it of its component user accounts. Then, the following command
is issued:

groupdel groupname<Enter>

Example 3.1 Creating a Group Account

Originally, Don Quixote requested that Rueful Figures, Inc., staff members
be grouped according to Table 3.1.

Example 3.2 illustrates this simultaneous user account creation with
group account assignment.

Freston has complied and created the groups. Here is how he created
knights1:

groupadd -f knights1<Enter>

Example 3.2 useradd or adduser with Group Names

After Don Quixote hired Sancho Panza for Rueful Figures Inc., Sancho was
given the username panzasan. As we saw, Sancho was to be added to the

Getting Started Using the Linux System 53

group called knights1. Here is how Freston created Sancho’s user account
and simultaneously added his user account to the knights1 group account:

[root@hostname /root]# adduser panzasan -g knights1<Enter>

As we mentioned previously, Freston could also have used:

[root@hostname /root]# useradd panzasan -g knights1<Enter>

Passwords
Passwords are the primary mechanism for ensuring system security. For
users to log in the first time, the system administrator must have already
set the user’s initial password.

Here is how a system administrator sets the initial password for a user.
The syntax is

passwd username<Enter>

After their first login, users can set their own passwords but they gener-
ally cannot set their own usernames. After a user changes his or her pass-
word, it is encrypted, which means that users (including the root user)
cannot decode the password. Organizational policy generally requires
that users change their passwords periodically (for example, every day,
week, or month). Example 3.3 shows how users can set new passwords for
themselves.

Example 3.3 passwd

According to Rueful Figures, Inc.’s policy, Freston set Sancho’s initial pass-
word to be identical to his username panzasan, like so:

passwd panzasan<Enter>

Changing password for user panzasan

New UNIX password: panzasan<Enter>

Retype UNIX password: panzasan<Enter>

passwd: all authentication tokens updated successfully

Impressed with Rueful Figures, Inc.’s security policy, Sancho later changes
his password from panzasan to 1m@5qu1r3. Here is how he does it:

[username@hostname 'home dir']$ passwd<Enter>

Changing password for panzasan

54 Installing and Administering Linux 2E

(current)UNIX password: panzasan<Enter>

New UNIX password: 1m@5qu1r3<Enter>

Retype new UNIX password: 1m@5qu1r3<Enter>

passwd: all authentication tokens updated successfully

Remember that in reality, Linux does not display the old and new pass-
words on the terminal screen. We showed the passwords just for illustra-
tive purposes.

Please notice that to prevent a user from being inadvertently locked out
of the system through a simple typing error, the new password has to be
entered twice. The system accepts the new password only if the new pass-
word meets Linux’s basic rules and if the two typed versions match. The
old password immediately becomes invalid.

Although Linux does not set restrictions on usernames, passwords are a
different story. We have already mentioned that the root user must estab-
lish the first password for every user. We have also seen how new pass-
words must be entered twice. In addition, passwords are case sensitive.

The following are some guidelines for the root user when establishing
passwords and for ordinary users who are changing their password:

■■ Make your password at least six characters long.
■■ Do not make the new password similar to the last one.
■■ Do not use any word that Linux would term to be a dictionary

word.
■■ Try to make a password that is fairly easy to remember but not easy

for others to guess. Some bad examples include the word
password, the sequence qwerty, the user’s first or last name, the
sequence 123456, a name or phrase that might be attributed to the
user, such as cat_lover, and the user’s phone number, birth date,
or favorite sports team.

■■ Try to mix numbers with letters.
■■ Do not make your password identical or even similar to your

username (in fact, Linux will compare the two and reject the
proposed password if it is too similar).

■■ Although the authors for the passwd man page disagree, we
suggest you write your password down and keep it secure (but also
available) at all times.

If, when specifying passwords, the root user violates these guidelines,
Linux will likely warn them that the chosen password is a BAD PASSWORD
and will provide a reason why. Having warned the root user, however,

Getting Started Using the Linux System 55

Linux will not prevent them from establishing the specified password
anyway.

On the other hand, if an ordinary user violates the guidelines, Linux will
warn them in the same manner but will also prevent them from establish-
ing the password.

Command Syntax

Because we have already started to enter commands, it is a good idea to
discuss Linux commands in general. Linux commands generally follow
the syntax and format of UNIX commands. The order and correct separa-
tion of elements are important. The name of the command (or process, as
some might refer to it) always comes first. The command name can then be
followed by one or more options (some call them flags) that can, in turn, be
followed by one or more arguments (these might also be called flags by
some; it’s best to be as precise as possible in your references, though). You
must separate options from the command name and from other options by
single spaces. Also, options must be preceded by a hyphen (-). In the fol-
lowing, -f and -l are options to their respective commands:

[username@hostname "home dir"]$ mail -f newmail<Enter>

[username@hostname "home dir"]$ wc -l filename<Enter>

We will be discussing both of those commands in more detail soon. For
now, however, suffice it to say that the first command line reads, “Bring me
the contents of my mailbox for processing (reading, replying, deleting, and
the like). Then, when I am finished, return the undeleted messages to an
alternate mailbox called newmail.” Notice that the filename newmail is the
argument to the command mail and its option, -f.

The second command line reads, “Count the number of lines in the file
called filename.”

You can group multiple options together and precede them by a single
hyphen. For example,

$ ls -lf<Enter>

This command says, “List the files found in the directory I’m in now, but
only the files (not the directories). Also, provide detailed information

56 Installing and Administering Linux 2E

about those files.” The -f means “files only,” and the -l means “detailed
description.”

If you do not precede an option with a hyphen, the system might try to
treat it as an argument instead, which could result in an error message.

An argument is a further refinement of the command, usually indicating
an object to be retrieved and worked on or an object to be created as a
result of the requested process (like the file newmail, which we mentioned
earlier). If you use more than one argument, then each argument must be
separated from the option(s) and from other argument(s) by a single space.
Unlike options, however, arguments cannot be bunched together.

Online Information for Linux
and UNIX Commands

Linux and UNIX have a time-honored and effective tradition of providing
various forms of online help. In this section, we introduce the most popu-
lar and helpful sources for help with Linux/UNIX commands: man pages,
info pages, and the usage utility.

man Command
Almost every Linux command, system call, or special file has an online
manual page (man page), which is an authoritative online document that is
located in your Linux system directories and that you can access instantly.
The man page is used in most if not all Linux and UNIX environments.
Many users and system administrators use man almost exclusively.

Syntax

To consult the man pages for a command, subroutine, special file, or other
element, the syntax is simple:

$ man commandname<Enter>

Notice that this time, commandname is an argument and not a command.
The command here is man. If at any time you want to suspend or stop man

Getting Started Using the Linux System 57

operation, press Ctrl-Z. Later, you can re-enter the man page where you left
it by simply entering fg. These commands are discussed in Chapter 11.

Types of Information Available

You usually access the man pages from the command line. Once you have
done so, several of the following categories of information will appear
immediately on the screen in ASCII text format. Just which categories
appear will depend on the information’s origin and author as well as the
format the author chose to use. This point is where the history of the
selected command or function might have some influence:

NAME: The name of the command, subroutine, file, and so on and a
brief description of what it does

SYNOPSIS: Synopsis is the syntax to use when invoking the
command, subroutine, or file. (Synopsis is a term commonly used in
the Linux and UNIX world to mean syntax.) Typically, the syntax
follows the format we introduced here in this chapter, but you might
also see a complete listing of all the options and arguments for the
command for the particular version of Linux you are using. (In
Example 3.3, we make further comments pertinent to the Synopsis
section.)

INTRODUCTION or DESCRIPTION: A more in-depth definition or
description of what the command does. This section can also list or
discuss the options and arguments, or it might list step-by-step
instructions to follow before, during, or after the command is
executed.

OPTIONS: The available options and arguments.

FILES: A list of files and their relation to the command. (For instance,
you might need to consult a certain file to find the parameters of the
command.)

ENVIRONMENT: A list of the configuration files that are checked for
certain parameters before a command is executed.

EXAMPLES: Although examples are often found in the Introduction or
Description section, an author might list a number of common
examples for using the command, subroutine, or file in this Examples
section.

SEE ALSO: This part contains names of related commands or files or
names of commands that might produce the same effect.

58 Installing and Administering Linux 2E

HISTORY: The version of Linux or UNIX in which this command first
appeared, the original developers, and other historical information.

BUGS: Additional tips or cautions regarding how, when, where, and
why you should use this command, file, or subroutine. You might
also find directions regarding how and when not to execute the
command.

SUMMARY: Another section for presenting options, descriptions, uses,
and the like.

AUTHOR: The name of the individual or organization that developed
the command, subroutine, or file or the name of the person or
organization providing this information page. You might also find an
address for reaching the author directly. Often, this section indicates
whether the command originated with another version of UNIX or
whether it was developed especially for Linux.

DERIVATION: At the bottom of the man page, you might find
additional information regarding the origin of the command (sources
such as AT&T or Berkeley or version numbers or dates).

DATE: The date of the man page’s last update. This date does not
indicate when the last update of the command’s utility, options, or
arguments occurred. The man pages themselves are not always
updated when someone modifies an element of the
command/program or file.

Navigating man Pages

After a man page is open, press the following keys to move around in it:

■■ The space bar navigates down the file one screen at a time.
■■ b navigates up through the file one screen at a time.
■■ d navigates down through the file one-half screen at a time.
■■ u navigates up the file one-half screen at a time.
■■ Enter or the down arrow key navigates down the file one line at a

time.
■■ h displays a help screen with a number of other navigation

commands.
■■ q quits the help screen and returns you to the man page.
■■ / followed by an alphanumeric string and Enter searches for the

string.

Getting Started Using the Linux System 59

■■ n finds the next occurrence of the previous search.
■■ q exits the man page.

After you exit the man page, these keys are no longer active for navigation
until you invoke the man command again or until you enter fg, as we
mentioned previously.

Printing man Information

If you want to print a hard copy of a man page for a particular command,
type

$ man commandname | lpr<Enter>

Alternatively, if you are using a PostScript printer, type

$ man -t commandname | lpr<Enter>

Of course, using these options and pipelined commands requires that the
printer be set up beforehand. If you intend to do so now, please flip to
Chapter 5, “Using Files in Linux,” where we discuss printing.

Example 3.4 man Command

Soon, we will see Sancho use the who command. But if he wants to know
something about the who command beforehand (or at any time), he can
access its man page as follows:

$ man who<Enter>

The first page of the system’s response would resemble:

WHO(1 FSF WHO(1)

NAME

who - show who is logged on

SYNOPSIS

who [OPTION] f [FILE | ARG1 ARG2]

DESCRIPTION

-H, --heading

print line of column headings

60 Installing and Administering Linux 2E

-i, -u, --idle

add user idle time as HOURS:MINUTES, . or old

-l, --lookup

attempt to canonicalize hostnames via DNS

-m, only hostname and user associated with stdin

-q, --count

all login names and number of users logged on

(etc.)

The coding in the Synopsis section uses these typographical conventions.
Optional fields appear in square brackets, [and]. They mean that you

need not enter an option or argument. Mandatory fields, if there were any,
would appear in curly brackets: { and }. If there were mandatory fields,
then you would have to enter a value for the respective option or argu-
ment after the command name. When you see a pipe character (|) sepa-
rating two mandatory options or arguments, then you would have to enter
one or the other with the command. In the case of who, though, the argu-
ments—although separated by a pipe—are optional. So you would not
have to supply anything unless you chose to do so.

You might have noticed the FILE option in the who man page. When
users are logged in, a record of their login is kept in the file /var/run/
utmp. By default, the who command looks there for the information. If the
system administrator has configured the system to use another file to
record login information, then you would have to specify that filename
after the who command.

info Pages
The info pages use the same database as man but present the information
in a different format. Some say info is more powerful because it enables
you to examine information in more bite-sized chunks and shows the rela-
tionships between the information you have searched for and other related
information.

Another important feature of info, especially for new users, is that it
presents its own instructions on the first screen and also enables you to
enter a primer immediately after you invoke info. This hand-holding
approach greatly enhances the likelihood of a successful search.

The syntax could not be simpler:

Getting Started Using the Linux System 61

$ info<Enter>

After invoking the command, the first ASCII character-based info screen
appears and declares that you are at the top of the info directory tree.
Basic instructions follow as well as the opportunity to start the info
primer.

If you do not require the primer, press the Tab key or the up and down
arrow keys to move among the many available user commands, system
calls, subroutines, devices, file formats, games, system administration
functions, and more. Example 3.5 lists the basic categories but not all the
functions you can access from this screen. When you have selected a cate-
gory, press the Enter key. You are then presented with a screen containing
information about your selection.

After a user exits from info, however, there is no command similar to
fg (as we used with man) to return the user to the point where they left
info. They have to re-enter at the beginning and go through the whole
procedure again.

Users can also invoke info from xterm windows, and additional info
or man-like programs can be invoked from the X Window system desktop.
The names and types of these programs vary with each X window manager.
From KDE, for example, you can invoke KDE Help. KDE Help enables you
to navigate through hyperlinks with a mouse as opposed to the keyboard
navigation we used to get through the ASCII-oriented info pages. See
Chapter 14, “The Linux X Window System,” for more information about
the X Window System and X window managers.

Check the man pages and other information sources for the options and
arguments for all the commands mentioned in this chapter.

Example 3.5 Obtaining Command Information
with info

Let’s say that Sancho wants to compare the who information provided by
man to that provided by info. To invoke the info command, he types:

$ info<Enter>

Linux responds with the info directory tree, whose approximately 250
lines are structured like the following:

NOTE

62 Installing and Administering Linux 2E

File:dir Node:top This is the top of the INFO tree

"Basic Instructions"

*Menu:

Texinfo documentation system

Miscellaneous (i.e., list of common commands)

Programming Languages

GNU Gettext Utilities

GNU Packages

Libraries

Individual Utilities

Net Utilities

World Wide Web

Printing Tools

C library code

Programming

GNU Emacs

GNU Admin

Programming & development tools

GNU libraries

Indent Code Formatter

GNU programming tools

We know that Sancho wants to know something about the who command.
With the Tab key or the up or down arrow keys, he moves the cursor to
*who under Miscellaneous and selects who by pressing Enter. Linux then
jumps, or hyperlinks, to the who information:

'who': Print who is currently logged in

= =

'who' prints information about users who are currently logged on.

"Synopsis"

"Explanation"

"Options"

(etc.)

Sancho can navigate up and down through the information. He can press
the following:

■■ The space bar to navigate down the file one screen at a time
■■ h to display help
■■ / followed by a string and Enter to search for the string in the text
■■ n to move to the next related topic or function (if any)

Getting Started Using the Linux System 63

■■ p to move to a previous related topic or function
■■ d to return to the first screen (that is, back to the top of the info

directory)
■■ q to exit info

The usage Utility
The usage utility can prove invaluable. It is based on the same database
used by man and info. You invoke this facility in two ways. First, let’s
invoke it by requesting command usage help. The syntax is as follows:

$ commandname -help<Enter>

The second way to invoke usage is basically accidental. If you enter a
command incorrectly, Linux responds with information on what is wrong
with what you did, and then (by using usage) it tells you how to correct
the command entry.

Example 3.6 illustrates the two ways usage gets invoked.

Example 3.6 Invoking the usage Utility

Sancho has always been something of a sneakernet proponent—that is, he
still occasionally uses floppy disks. Naturally, he wants to know how to
use the floppy disk drive on his Rueful Figures, Inc. system. Freston, the
system administrator, has told him that he has to become familiar with the
mount command. Sancho seems to recall a -d option that he could use
with mount. Here, he will check by invoking usage. First, he deliberately
requests information for the mount command:

$ mount - help<Enter>

Usage: mount -V : print version

mount -h : print this help

mount : list mounted filesystems

mount -l : idem, including volume labels

So far the informational part. Next the mounting.

The command is 'mount [-t fstype] something somewhere'.

Details found in /etc/fstab may be omitted.

(etc.)

Sancho does not see a -d option, but he thinks there might be an oversight.
So, he will take a chance and deliberately enter the mount command with
a -d option to see how Linux responds:

64 Installing and Administering Linux 2E

$ mount -d /dev/fd0<Enter>

Here is Linux’s response:

mount:invalid option -d

Usage: mount -V : print version

mount -h : print this help

mount list mounted filesystems

mount -l : idem, including volume labels

So far the informational part. Next the mounting.

The command is 'mount [-t fstype] something somewhere'.

Details found in /etc/fstab may be omitted.

(etc.)

Convinced that there is no -d option after all, Sancho decides to pursue
other mount options. Meanwhile, we will discuss the mount command in
Chapter 4, “Files and Directories in Linux.”

Viewing the Date: date and cal Commands

Now that we know 1) something about command syntax and 2) where to
go for help with our commands; let’s look at some common commands we
use in everyday administration.

Freston’s responsibilities as system administrator include setting the
date globally for the Rueful Figures, Inc. network. Once he has done that,
the users can then display the date on their own systems by entering the
date command.

When you use the date command to display the date, you can cus-
tomize it in several ways—but by default, it requires no options. (For more
information on setting the date, consult the man pages for the date com-
mand.) The syntax is simply

$ date<Enter>

Linux responds with a time based on a 24-hour clock (for example, 1 P.M. is
indicated as 13:00:00), followed by the date and the time zone (for exam-
ple, CST for Central Standard Time).

The syntax for the cal (calendar) command is as follows:

Getting Started Using the Linux System 65

$ cal [month] year<Enter>

When entering the month, use the number of the month (a value between
1 and 12; for example, January is 1), but not the name of the month or any
type of abbreviation. If you do not specify a month, the system responds
with a calendar for the current month. When entering the year, use the full
four digits (for example, 2001) and not the two-digit abbreviation.
Although you will not get an error message when you use two digits, you
will likely receive erroneous results.

In Example 3.7, we show several ways to use the date and cal com-
mands.

Example 3.7 date and cal

Sancho wants to check his appointment calendar. First, he checks today’s
date:

$ date<Enter>

Mon Jul 2 1:07:34 CST 2001

Now, he wants to have a look ahead at the whole month of July. If the cur-
rent month is July, then he only needs to enter

$ cal<Enter>

If it is any other month, Sancho must enter

$ cal 07 2001<Enter>

The response will be:

July 2001

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30

Now, he decides to view the entire year:

66 Installing and Administering Linux 2E

$ cal 2001<Enter>

Linux responds with a three-month-wide by four-month-long listing of the
monthly calendars in the specified year. But the text on Sancho’s screen
scrolled by so rapidly that he was unable to see the first three months, and
now he cannot even see the names of months four through six. All he sees
clearly now are the calendars for the last six months of the year. He calls
Freston to ask for help. Freston gives him some keyboard tips and advises
him to practice temporarily stopping, restarting, and terminating the
scrolling of command output. Freston tells him to try the command a few
more times but to use the following key combinations while the output is
sent to the terminal screen:

■■ Ctrl-S will stop the scrolling until you deliberately restart it or
terminate the output completely.

■■ Ctrl-Q will resume scrolling after you have stopped it.
■■ Ctrl-C terminates the current command.

Freston also tells Sancho that if he wanted to view the whole year, screen-
ful by screenful, he should enter the following command at the beginning:

$ cal 2001 | more<Enter>

What does Freston mean by “screenful by screenful”? This last cal com-
mand contains the | character, which is called a pipe, followed by the
more command. By using the pipe (which is a command unto itself and
actually dates back to the first days of Unix) and adding more, we are
telling the system to fill the screen with output from the cal command
starting from January 1 to whatever the screen can hold and then to stop
and wait for further instruction. He can then press Enter to advance one
line at a time through the rest of the output or press the space bar to move
a whole screen at a time. He can also use the Ctrl-Q and Ctrl-C combina-
tions listed previously. When he sees a new command prompt at the bot-
tom, he will know that he has reached the end of the output and that the
system is ready for a new command.

The pipelining, or piping, of commands is discussed again in Chapter 7,
“Shell Basics.” Meanwhile, the more command—and a somewhat newer
and more versatile variation called the less command—are discussed in
Chapter 5.

Getting Started Using the Linux System 67

Requesting Data on Logged-In Users

Occasionally, administrators, and even ordinary users, need to know who
is logged in to the system. Linux/UNIX enables them to find out by pro-
viding several handy commands.

The basic purpose of the who, who am i, whoami, and finger com-
mands is to obtain information about those logged in users. As you’ll see,
though, each provides its own “twist” on that information.

who, who am i, and whoami
Commands
The output from the who command is simply a list of users who are cur-
rently logged in along with their stations and the time they most recently
logged in.

The -u and -m options are often added to the who command. The
response to who -u displays all usernames, their respective real names,
workstation names, login times, and the identities of the processes they are
running.

The response to who -m is identical to that of who am i, which appears
in Example 3.9. For both commands, the system responds with the user-
name of the person who entered the command, the name of the user’s
workstation, and the user’s login time.

Example 3.8 who

A week after he was hired, Sancho wants to contact Don Quixote. He
knows enough about the who command now to check to see whether the
good Don is on the network this morning. He enters

$ who<Enter>

root console Jul 9 07:30

quixoted tty2 Jul 9 08:10

perez tty3 Jul 9 08:15

nicholas tty4 Jul 9 08:18

dulcinea tty5 Jul 9 08:10

panzasan tty6 Jul 9 08:07

Example 3.8 shows that the root user (Freston) has been logged into the
system console since 7:30 A.M. on July 9 and that several other users have
logged into their respective terminals since then.

68 Installing and Administering Linux 2E

Sancho finds it interesting that Freston is logged in at the console and
not at his customary terminal 1 (tty1; tty is actually a “hangover” term
inherited from the old teletype communication days). Meanwhile, the con-
sole is generally defined as the device (typically a terminal as opposed to a
full-fledged workstation) directly attached to the computer on which
Linux is running. By default, the console is the device that receives system
messages. Every computer on which a copy of Linux has been installed
must have a console defined at all times, and there must be only one con-
sole for that computer.

Meanwhile, Sancho also sees that Don Quixote is apparently in his office
and is connected to the network.

Example 3.9 who am i and whoami

Freston’s job is not always as straightforward as other users’. At times, he
has to switch identities to perform other functions. It can be confusing
sometimes. Here is a way that he can check to see just who he is logged in
as. He types the following:

$ who am i<Enter>

hostname!quixoted tty1 Jul 10 11:10

He could also have typed:

$ whoami<Enter>

quixoted

Either way, the system thinks that he is Don Quixote! Oh, that’s right—he
remembers that he had logged into this session earlier as quixoted to
check something for the Don and had not changed back to his own iden-
tity. No wonder he has not had the functionality to which he thought he
was entitled. Now, he has to decide whether to change back to his own
identity or not. For the sake of convenience, he probably will.

finger Command
The finger command displays information about the users who are cur-
rently logged into the system, as shown in Example 3.10. The default
response format is the full username, login time, user’s home directory,
and user’s login shell. You can use the finger command to look up infor-

Getting Started Using the Linux System 69

mation about users who are logged into a remote system, as well. You
must know the correct name of the remote system, however.

Example 3.10 finger

One morning, Don Quixote intends to send a message to Sancho but needs
to know whether Sancho is on the system. Here is how he uses finger to
find out:

[username@hostname username]$ finger<Enter>

Login Name Tty Idle Login Time Office Office Phone

root root tty1 2 Jul 10 07:30

quixoted tty 2 Jul 10 11:16

panzasan tty6 Jul 10 08:30

Using finger without options gave him a list of all the currentlylogged-in
users. Luckily, there were not too many. If he had wanted to just check for
Sancho, he could have entered

$ finger panzasan<Enter>

Login: panzasan Name: (null)

Directory: /home/panzasan Shell: /bin/bash

On since Tue Jul 17 8:32 (CST) on tty6

No mail.

No Plan.

So, Don Quixote knows that Sancho is on the system. But what was that
other information all about?

A user can create files called .project and .plan (please notice that the file-
names must be preceded by a period, which we will call dot to indicate that
they are normally hidden) to enhance the responses received when some-
one inquires about them with the finger command. The detailed process
is beyond the scope of this book, but we will present a quick outline of it.
Suppose that Nicholas the Barber (username nicholas) created hidden files
called .plan and .project in his home directory by using a text editor such as
vi (for details on vi, see Chapter 10, “The vi Editor”). When creating these
files, he would have to remember to provide the r permission for others on
those files as well as the x permission for others on the nicholas home direc-
tory. (File and directory permissions are discussed in detail in Chapter 6,
“Linux File Permissions.”) When users invoke the finger command with
the nicholas username argument, they are provided with all the informa-
tion Nicholas has written to those files.

70 Installing and Administering Linux 2E

Sending and Receiving Mail: mail Command

The mail command is interactive and is used to both send and receive
mail messages.

To Send Mail
To send a message to another user on the same system, the format is

$ mail username<Enter>

To send a message to more than one user on the same system, enter all user
names after the mail command, separating each by one space:

$ mail username1 username2<Enter>

To send a message to a user on another system, type the username fol-
lowed by @ and the name of the system:

$ mail username@hostname<Enter>

To send a message to more than one user on another system, separate each
username@hostname entry by one space.

Example 3.11 shows how one user can send mail to another user on the
same system (that is, on the same host) and to one on a different system.
Notice that whenever the mail command is invoked, the system responds
with a Subject: prompt. Type a description line that will appear in the
receiver’s list of incoming mail, and then press Enter again. Now you can
type whatever you want to communicate to the receiver.

When you have finished your message, press Enter and then press the
combination Ctrl-D. The system responds with a Cc: prompt. If you want
to send copies of the message to others, type their usernames. When you
are finished, press Ctrl-D again. The system sends the message and
responds with a shell prompt (usually $ and a cursor).

Example 3.11 Sending Mail
with the mail Command

Knowing that Sancho is on the system today, Don Quixote sends a mes-
sage to him:

Getting Started Using the Linux System 71

$ mail panzasan<Enter>

Subject: Meeting at El Toboso<Enter>

Sancho! Don’t forget the meeting tonight at Lady Dulcinea’s!

signed, Quixote de La Mancha

<Ctrl>-d

Cc: <Enter>

What if our noble knight Quixote wishes to send a message to a user on
another system? Knowing that Dulcinea is working at her home office in
El Toboso, here’s what he might enter:

$ mail dulcinea@eltoboso<Enter>

Subject: Meeting Still OK, My Lady?<Enter>

Is it still OK for your me (your devoted Knight-Errant), my squire, and

our comrades to meet with you tonight at your casa in El Toboso? We wish

to discuss our plans for future noble exploits.

I have already taken the liberty to inform Sancho, Nicholas the Barber

and Perez the Curate. I will inform the others after I receive your

blessing.

signed, Quixote de La Mancha

<Ctrl>-d

Cc: <Enter>

To Receive Mail
Whenever you log in, the system lets you know whether you have mail
messages waiting in the username file (where username refers to your
username) in the /var/spool/mail/ directory.

The You have mail notification and the mail messages themselves are
not displayed simultaneously when a new message arrives. System admin-
istrators can customize the shell (in other words, the system) to check on all
mailbox files periodically; for example, once every 600 seconds. If the shell
detects a new message in a user’s /var/spool/mail/username file, it then dis-
plays the You have mail notification. System administrators can cus-
tomize other aspects of this mail notification, as well. That said, to view
new messages, the format is simply

$ mail<Enter>

The mail program responds with a listing of the new messages in the file.
Note that once you invoke the mail program, it has its own specific
prompt (&), which tells you that it is now running. Let’s use an example to
explore mail a little more.

72 Installing and Administering Linux 2E

Example 3.12 Receiving mail with mail

Figure 3.1 Receiving, reading and storing mail.

Getting Started Using the Linux System 73

Sancho is working on tty6when he receives the following system message:

You have mail in /var/spool/mail/panzasan.

Note that here, the username file is panzasan.
Sancho’s system is configured to check for mail every 10 minutes. It has

apparently done so and has given him the new mail notification. To check
the mail, Sancho enters

$ mail<Enter>

Mail version 8.1.6/6/93 Type ? for help

"/var/spool/mail/panzasan": 2 messages 1 new

U 1 quixote@hostname.local Tue Jul 17 10:50 10/267 "Meeting at El

Toboso"

N 2 nicholas@hostname.local Tue Jul 17 11:05 16/311 "Meeting Postponed?"

&

Note the U and N designations at the beginning of each listed message in
Example 3.10. U means unread (a holdover message from a previous time
when the user viewed his or her mail but did not read that particular mes-
sage). The N designation means new.

When presented with the & prompt, Sancho knows that he can immedi-
ately check his unread messages simply by pressing Enter. He does so to read
the first message, which he had not read the last time he checked his mail.

&<Enter>

Message 1:

From quixoted Tue Jul 17 10:15:47 2001

Date: Tue, Jul 17 2001 10:15:47 -600

To: panzasan@hostname.localdomain

Subject: Meeting at El Toboso<Enter>

Sancho! Don’t forget the meeting tonight at Lady Dulcinea's!

signed, Quixote de La Mancha

Sancho then reads the new message 2 by typing:

& 2<Enter>

(Because he had already finished reading message 1, he could have just
pressed Enter here, too.)

Message 2:

From nicholas Tue Jul 17 10:50:32 2001

74 Installing and Administering Linux 2E

Date: Tue, Jul 17 2001 10:50:32 -600

From: nicholas@hostname.localdomain

To: panzasan@hostname.localdomain

Subject: Meeting Postponed?

Sancho, Perez just dropped by my office. Please call us regarding the

status of the meeting Don Quixote scheduled for tonight at Lady

Dulcinea's. The Don told us yesterday that he thought the meeting was a

'go' but that he had not received confirmation from the Lady yet. Is it

still on? Meanwhile, are you keeping a close watch over him? We don’t

need another 'windmill' episode.

Nicholas and Perez

Here are few subcommand options—also called subcommands because
they invoke their own functionality—for reading mail:

■■ To read the first message in the listing, press Enter or type 1 and
then press Enter.

■■ To skip the first message and read the second message, type 2 and
press Enter.

■■ To read the first new message in any listing, type t and press Enter.
■■ To read the messages in sequence, simply press Enter after starting

at your chosen first message. Then, press Enter after reading each
message in turn.

You can also type the following letters (among others) at the & prompt
while reviewing your messages:

f lists the headlines of messages in the mailbox

d deletes messages

m forwards messages

r sends a reply

q exits mail and leaves unread messages in the queue

s appends a message to a file

To obtain a full list of available subcommands to use while in mail, type ?
at the & prompt.

Now, what if Sancho wanted to check messages that he has received and
read in the past? The mail -f command displays a list of messages in his
personal mailbox (that is, in the /home/panzasan/mbox file). Normally, when
he quits the mail program, undeleted (but already read) messages are
written back to that mbox file and not back to the (incoming)
/var/spool/mail/panzasan file from which all the new messages came. By

Getting Started Using the Linux System 75

starting the mail -f aspect of mail, he can review and deal with these
messages in the same way he dealt with the new or unread messages in
/var/spool/mail/panzasan by using mail. Figure 3.1 illustrates a typical mail
reception and storage process.

Sending Messages to the Screen:
write and wall Commands

Both of the commands discussed in this section provide the capability to
contact other users on the system:

■■ write enables you to contact one or more specific users
■■ wall enables you to contact all users on the system

Let’s discuss each in turn.

The write Command
The mail command showed us how to send messages to others’ mailboxes
and how to receive and manipulate messages in our mailbox. By contrast,
the write command displays a message immediately on the specified
user’s screen. You can send messages to a user on the local system or on
another system on the network (simply replace username with user-
name@hostname). If, by using who or finger, you determine that your
target user is logged in on more than one terminal, you can display your
message on all the terminals unless you just want to specify the terminal(s)
to which you want your message to be sent, as follows:

$ write username ttynumber<Enter>

Otherwise, to reach the target user on any and all terminals, the syntax is
just the following:

$ write username<Enter>

For a specific user to receive the message, however, he or she must be
logged in at the time and must not have refused permission for the mes-
sage to appear on his or her terminal. By default, Linux does not turn off
the write permission; that task is accomplished by the user with the mesg
command (covered later in this chapter).

76 Installing and Administering Linux 2E

You cannot turn off messages sent to you from the root user.

In a write session, each user alternately sends and receives messages.
Long messages can be placed in a file and directed or redirected to the
other user (or users). The syntax is

$ write username < filename.ext<Enter>

Example 3.13 illustrates write being used by two users. The receiving
user uses the same syntax to reply to the originating user.

Example 3.13 write

Don Quixote needs to inform Sancho that Lady Dulcinea (real name:
Aldonza Lorenzo, but she has long ago given up trying to convince the
noble old fellow that he is mistaken. Besides, the human resources coordi-
nator has her correct name) has confirmed the meeting, so he takes a
chance and interrupts Sancho by sending the following:

$ write panzasan tty6<Enter>

Sancho, Lady Dulcinea has confirmed that we can meet at El Toboso at 6!

BYO nachos y salsa!<Enter>

signed, Quixote de La Mancha<Enter>

<Ctrl>-d

Sancho receives the following on his screen immediately:

Message from quixoted@hostname on tty2 at 13:13

Sancho, Lady Dulcinea has confirmed that we can meet at El Toboso at 6!

BYO nachos y salsa!

signed, Quixote de La Mancha

EOF

To get back to their own prompts, the receivers of the messages must
press Enter.

The wall Command
The wall command sends a common message to all users who are logged
into the system. The syntax is

$ wall textofmessage<Enter>

NOTE

Getting Started Using the Linux System 77

By default, all users can use the wall command. Example 3.14 shows the
use of the wall command by the root user.

Example 3.14 wall

Early Tuesday afternoon, Freston has to send the following emergency
message (remember, the root user has the # prompt instead of $):

wall Warning!! System Going Down in 15 Seconds! Please Log Off Now!!

Sorry, colleagues!<Enter>

And every logged-in user immediately receives the following message:

Broadcast message from root (tty1) Tue Jul 17

13:24:48 2000 . . .

Warning!! System Going Down in 15 Seconds! Please Log Off Now!! Sorry,

colleagues!

Again, to get back to their own prompts, the receivers of the message must
press Enter.

Conversing Online: The talk Command

The talk command enables two users to hold a conversation. As shown
in Example 3.14, one user invites the other to talk as follows:

$ talk username<Enter>

You can use the talk command locally on one system or across a network.
To talk across a network, the syntax for both the invitation and the
response is

$ talk username@hostname<Enter>

If the invitation is accepted, the screen on each terminal splits in two hori-
zontally. The messages typed by the other user appear in the top window;
replies are typed in the lower window. To close the connection, press Ctrl-C.

Example 3.15 talk

We already know that Don Quixote and Sancho Panza are both logged in.
To talk to Quixote, Sancho enters

78 Installing and Administering Linux 2E

$ talk quixoted<Enter>

Don Quixote de La Mancha receives the following message immediately:

Message from TalkDaemon@hostname at 14:14 . . .

talk: connection requested by panzasan

talk: respond with: talk panzasan

To accept the invitation, Quixote follows the instruction and enters

$ talk panzasan<Enter>

What about those times when the Don (or better, you) do not want to be
interrupted by messages or invitations to converse? Or what about when
you want to resume receiving messages and conversations after having
denied them for a while? The next section explains how to block and
unblock messages.

Blocking Messages and Conversations: The
mesg Command

You have seen how you can use the write, wall, and talk commands
for communicating with users. But sometimes users should not be inter-
rupted. For those times, they can use the mesg command, as illustrated in
Example 3.16. The syntax is

$ mesg [y/n]<Enter>

Note that the system does not acknowledge the command. With mesg
turned off (with n), others will not receive feedback from the system (with
one exception: messages from the root user cannot be turned off). The
write and wall command messages from the root users always reach all
users on the system.

Example 3.16 mesg

If Don Quixote had not wanted to be interrupted, he could have entered

$ mesg n<Enter>

Getting Started Using the Linux System 79

After he enters that command, whenever anyone enters the write
quixoted command, they will immediately get a write: quixoted
has messages disabled message.

If later our noble knight wants to make himself available to receive mes-
sages and conversations again, then he could type

$ mesg y<Enter>

By default, the system’s shell startup process permits messaging. If a user
has just entered mesg n during a login session and then logs out and logs
in again, the system resets the username to mesg y. To prevent messages
from coming through after exiting and logging in again, the user must
reset mesg n.

Users can override the default mesg y behavior by including mesg n in
their $HOME/.bash_profile file. In other words, they can set mesg n in the
script that runs automatically when they log in. We will discuss the
$HOME/.bash_profile file and other similar files in Chapter 11, “Shell Vari-
ables and the User Environment.”

Additional Tools: clear, echo,
banner, and wc Commands

From time to time, users and administrators have a need for additional
tools to help them with routine duties. Here, we present four tools that are
not related, are not revolutionary in scope or power, and are not needed
every day. But they do help prevent confusion. Have a look at them, and
for each one ask yourself: Has there ever been a time when I could have
used this tool? Almost every time, you will likely answer “Yes.”

The clear Command
If your screen is full of confusing commands and responses, incoming
messages, and the like, you might want to use the clear command. This
command appears to execute simply and easily. What could be simpler
than erasing a bunch of now unnecessary characters and leaving you with
only a prompt and a clear terminal screen?

There is more to clear than meets the eye, however. To determine how
to clear the screen, the clear process first checks the TERM environment

80 Installing and Administering Linux 2E

specifications in RAM and then the /usr/share/lib/terminfo directory, which
contains the terminal definition files. If the TERM variable is not set or is set
incorrectly, the command results in no action.

The echo Command
The echo command makes the terminal reiterate what you have just
typed, as shown in Example 3.16. This procedure seems trivial when sim-
ply entered interactively on the screen, but the command can be valuable
when included in shell scripts or similar files (for example, batch files). For
instance, the echo command is helpful when you are writing a script file
and you want to be notified when certain instructions are executing.

Example 3.17 echo

Freston spends the first couple of hours a day fighting user fires. After that,
he tries to dedicate some time to automating some of his administration
functions. Here, he practices with echo prior to using it in a configuration
script:

$ echo Installing modem drivers now. . .<Enter>

Installing modem drivers now. . .

A few of the argument-like conventions that you can use with the echo
command are \b to display a backspace character, \n to display a new-
line (where the Enter key has been pressed) character, and \t to display
a Tab character. See the online man pages or other information sources for
an exhaustive list.

The banner Command
The banner command displays ASCII character strings in large format on
the screen or printed as hard copy. It constructs the characters out of #
symbols and displays them from the top down (not from left to right). Like
echo, this command might seem trivial when you play with it at your ter-
minal, but it can prove invaluable in a large office or network environment
when, for example, you want to identify individual print jobs from a
shared printer. The syntax is as follows:

$ banner [-wn] ascii_text<Enter>

Getting Started Using the Linux System 81

Some versions of Linux will not have the proper $PATH specified to easily
use banner. In that case, they might get a message to the effect of com-
mand not found. In such cases, specify the whole path to the banner
command as such:

$ /usr/games/banner [-wn] ascii_text<Enter>

The -w option adjusts the width of the output. The -n option is the speci-
fied character width of the output you want. (Your screen width is nor-
mally 80.) You cannot specify a width without also using the w option. If
you want to display more than one word, you must put quotation marks
(“”) around the phrase. Otherwise, banner prints only the last word it
was given, if anything at all. All these options are shown in Example 3.18.

Example 3.18 banner

Without options, banner prints extremely large. So, to display “Hello!”
large enough to see:

$ banner -w40 Hello!<Enter>

To print a phrase and give yourself the ability to scroll up and down
through the output:

$ banner -w40 "Hello Friends!" | less<Enter>

To send the output to a file:

$ banner -w40 "Print Job 1" > pjob1<Enter>

If the file does not exist yet, it is created during this process.
Perez the Curate wants to print a hard copy of an inspirational message

that he will deliver at the El Toboso meeting. So that he can watch for it to
be printed on the printer across the room, he uses banner to append a
Print Job 1 label to the existing message file that he wants to print:

$ banner -w40 "Print Job 1" >> peptalk1<Enter>

Please note, though, that if the report file already exists, banner appends
its output to the end of the file. If Perez had wanted the banner output at

82 Installing and Administering Linux 2E

the front of the file, then the output must be inserted before the rest of the
material.

Now, you might ask, “But how do I print these documents so that I can
see what banner did?” Again, document printing is discussed in Chapter 5,
“Using Files in Linux.”

The wc Command
When you need to know certain attributes of a certain file, one command
you can use is the wc (word count) command. The basic syntax and a few
command options are as follows:

$ wc [-l] [-w] [-c] filename.ext<Enter>

The -l option counts the number of lines; -w counts the number of words;
and the -c option counts the number of characters (that is, the number of
bytes). If you type:

$ wc filename<Enter>

you might get something resembling the following:

17 126 1085 filename

(lines) (words) (characters) (name of file)

If you do not specify any options, you always get lines, words, characters,
and the filename. You can shorten or lengthen the output by specifying
options.

Example 3.19 wc

wc might be a helpful command for Perez to check the length of his inspi-
rational message. Let’s say that he feels he is capable of effectively inspir-
ing Don Quixote and Sancho if he speaks at three words per second. But he
knows that if his message goes beyond seven minutes, the Don and San-
cho will become distracted and bored. He can check the length of peptalk1
by entering the following:

$ wc -w peptalk1<Enter>

If the result is greater than approximately 1200 words, he might have to do
some editing. As it is, he gets the following response:

Getting Started Using the Linux System 83

1215 peptalk1

Hmm, what should he do? If he had not specified the -w option and had
only typed

$ wc peptalk1<Enter>

he might have gotten

165 1215 9407 peptalk1

Just a reminder: for further information on various commands, consult
their respective online man, info, or other similar pages. Other information
sources are discussed in Chapter 15, “Linux Documentation and Support.”

Exercises

1. Log in as the root user, using password as the root user’s password.

hostname login: root<Enter>

Password: ********<Enter>

Last login: Day Mon No. hh:min:sec on ttyx

[root@hostname /root]# _

2. As the root user, create a user account called teamxx where the xx
should be replaced by a two-digit number.

[root@hostname /root]# useradd teamxx<Enter>

3. Now, give teamxx the password abc123 (later, as teamxx, you will
change this password).

[root@hostname /root]# passwd teamxx<Enter>

Changing password for user teamxx

New UNIX password: abc123<Enter>

(You will get a message saying BAD PASSWORD: it is based
on a dictionary word. Ignore it.)

NOTE

84 Installing and Administering Linux 2E

Retype new UNIX password: abc123<Enter>

Passwd: all authentication tokens updated successfully.

4. Log out as the root user and log in again as teamxx.

[root@hostname /root]# logout<Enter>

hostname login: teamxx

Password: abc123<Enter>

[teamxx@hostname teamxx]$

5. Log into the system with the user name teamxx.

$ Login: teamxx<Enter>

Password: abc123<Enter>

6. Change the teamxx password.

$ passwd<Enter>

Changing password for "teamxx"

(current) UNIX password: abc123

New UNIX password:(specify a password)

Retype new UNIX password: (re-type the new password)

If you are successful, you will get the following:

passwd:all authentication tokens updated successfully.

7. Verify that the new password has been set. Log out and then log
back in with the new password.

$ exit<Enter>

login: teamxx

Password:

8. Access the man pages for the man command itself.

$ man man<Enter>

Getting Started Using the Linux System 85

Read the text so that you can better understand the functionality of
the man command. Which navigation key sequences would you use
to do the following?

• Move down one screen at a time: space bar

• Move down one half screen at a time: d

• Move up one half screen at a time: u

• Move down one line at a time: down arrow key or Enter

• Move up one line at a time: up arrow key

• Search for occurrences of the text string ormat:/ormat

• Search for the next occurrences of the same text string: n

• Quit from the man page: q

9. Invoke info from the command line.

$ info<Enter>

Navigate downward in the first screen until you find the date com-
mand and then select it. What is the name of the file from which the
date information has been extracted? What is the name of this
node? What is the name of the next node?

10. Using info navigation keys, go to the next node. Press the n key. Is
this node’s name the same as what you anticipated from reading the
date page in Exercise 9?

11. Press the p key to go back as far as you can to the most previous
node in this file. What is the name of the most previous node?

12. Exit from the info pages by using the q key.

Exercise 13 is specific to the X Window System. If you are running KDE,
go to Exercise 14. If you want to skip exercises on X Window and KDE variants
of Linux, continue with Exercise 15.

13. Exercises for the X Window System:

• At the command line, enter startx and then press Enter to
invoke the X Window System. When X Window System starts,

NOTE

86 Installing and Administering Linux 2E

you will probably be placed in a window titled xterm. If neces-
sary, click to activate the window (that is, to turn the title bar to a
bright color and to ready the window for input).

• Invoke the X Window version of man by typing the following in
the window’s command line:

$ xman &<Enter>

• A small window titled Manual Browser appears with three but-
tons: Help, Quit, and Manual Page.

• Click the Manual Page button. The Manual Page window appears,
containing xman information.

• Click the Sections menu and while holding down the mouse but-
ton, move the cursor to the System Commands entry. Release the
mouse button. Another manual page appears with an alphabetical
listing of system commands.

• Scroll down, if necessary, and click the date command. Scroll up
and down the new window to read about date. When you are
finished, click Sections or Options and continue your investigation
of xman.

• When you are ready to return to the original xterm window, exit
xman by clicking the X button (the close button) in the upper-right
corner of the window frame.

14. Exercises for KDE (the K Desktop Environment):

• Invoke KDE, and using its start button or equivalent, find and
invoke KDE Help, which is the KDE online help browser. A Wel-
come window with three major categories appears.

• Under the KDE Help Contents category, click the System man
page contents link. The Online Manuals window appears.

• Click Section 1—User Commands. The Online Manuals—Section 1
window appears.

• Scroll up and down by clicking the mouse in the right scroll bar
until you see the date command. Click to select it. The man page
for date appears.

• Practice navigating by clicking the various blue titles with under-
lines or by clicking the menus on the gray menu bar. For example,
to go back to the original KDE Welcome window, click GoTo and

Getting Started Using the Linux System 87

then select Contents. When you are finished, click the File menu
and select Close or Quit.

• To leave KDE altogether, use the KDE Start button and select
Logout. You are returned to the Linux command-line prompt.

15. At the command line, invoke the help option for mount. How does
Linux respond? Pay special attention to the options that Linux says
can be used with mount.

16. Try to invoke mount but deliberately use an incorrect option. How
does Linux respond?

17. Display the system’s date.

$ date<Enter>

18. Display a count of the number of lines in the /etc/passwd file.

$ wc -l /etc/passwd<Enter>

19. Display the entire calendar for the year 2002.

$ cal 2002<Enter>

Now, try displaying it with the addition of | more.

$ cal 2002 | more<Enter>

20. Display the month of September for the year 1752.

$ cal 9 1752<Enter>

Do you notice anything peculiar about September?

21. Display the month of August for the year 1999 and then for the
year 99.

$ cal 8 1999<Enter>

$ cal 8 99<Enter>

88 Installing and Administering Linux 2E

Are 1999 and 99 the same?

22. Display a list of users who are currently logged into your system.
Check to see when they logged in.

$ who<Enter>

or

$ finger<Enter>

If you use the finger command and see ??? in the Name field,
optional user information was not added to the user profile (that is, in the
/etc/passwd file) when it was created.

23. Display only your login name.

$ whoami<Enter>

24. Use banner to display Out to Lunch.

$ banner -w40 "Out to Lunch"<Enter>

(Did banner work by itself? If not, try /usr/games/banner. If
that does not work, use the find banner command to determine
where banner is for your version/distribution of Linux.)

25. Remember to use Ctrl-C or Ctrl-Q to get back to your user prompt
after displaying the banner message.

$ q<Enter>

26. Use the echo command to write the character string Out to
Lunch to your display.

$ echo Out to Lunch<Enter>

27. Use the clear command to clear your screen.

NOTE

Getting Started Using the Linux System 89

$ clear<Enter>

If you are using an ASCII terminal and the clear command does not
work, check to see that the TERM variable is correctly set.

28. Send a note to yourself by using the mail command. Provide a
subject but ignore the Cc: (carbon copy) prompt.

$ mail teamxx<Enter>

Subject: A Reminder to Myself<Enter>

The meeting starts at 6:00 p.m. at El Toboso.<Enter>

<Ctrl>-d

Cc: <Enter>

29. Start the mail process and list the messages in your mailbox. Read
your message, save it, and quit the mail program (your message
might not arrive right away because the daemon has to check for it
and then deliver it to you; just wait a few minutes).

$ mail<Enter>

& h<Enter>

& 1<Enter>

& q<Enter>

30. Access your mail, list your messages, and delete the message you
saved in your personal mailbox (here, we presume that it is message
number 1). Use the h subcommand again to ensure that the message
has been deleted. Exit the mail program.

$ mail -f<Enter>

& h<Enter>

& d1<Enter>

& h<Enter>

& q<Enter>

31. If you have time and there are other users, then practice sending
mail to someone who is logged into your system. Otherwise, log out
from the system.

$ <Ctrl>-d

See Appendix B for answers to questions presented during these exercises.

NOTE

90 Installing and Administering Linux 2E

Quiz

1. In how many ways can you invoke the usage facility? What are they?

2. Which of the following commands or options uses a different
database than the other three?

locate

info

man

Help/usage

3. What combination of commands and options do you use from the
command line when you want to print man information but you do
not have a PostScript printer?

4. Match the environments with the appropriate information source
command:

K Desktop Environment xman

ASCII/command-line info info

Fvwm95”Help” "Help"

5. Which of the following illustrates the correct Linux syntax for the
mail command?

$ mail newmail -f

$ mail f newmail

$ -f mail

$ mail -f newmail

6. What command would you use to send a mail message to
username?

7. List three commands that you can use to communicate with logged-
in users.

8. What output would you expect from the following command:

$ cal 8

Getting Started Using the Linux System 91

9. Which of the following commands would you use to determine
when a particular user logged in?

$ who am I

$ who

$ finger everyone

$ finger username

See Appendix C for answers.

C H A P T E R

4

Files and Directories in Linux

93

In Chapter 3, “Getting Started Using the Linux System,” we discussed a
few basic Linux user commands. In this chapter, we begin to look at some
basic Linux administrative functions—those dealing primarily with the
directories on your system. We will start by defining files (but only to con-
trast them with the definition of a directory). We address files and file
manipulation in more detail in Chapter 5, “Using Files in Linux.” Mean-
while, other topics in this chapter include the structure and hierarchy of
Linux file and directory systems, navigating around the directory struc-
ture, managing directories, and using floppy disks (in ext2 and DOS for-
mats). If you are a UNIX veteran, you might consider these topics
elementary or almost trivial. Try to take time to review these concepts and
tasks, however, because they are fundamental to creating and maintaining
a proper Linux file and directory system.

94 Installing and Administering Linux 2E

File System Structure and Hierarchy

The Linux operating system does not impose any internal structure on the
contents of a file, nor are any specific attributes required. Only the applica-
tion or tool is concerned with a file’s structure and contents.

File Types
In Linux, everything—including the devices attached to the system—is
represented as a file. First, though, what is a file? The answer is as follows:
a file is 1) a collection of data or 2) a stream of characters (that is, a byte
stream). A typical file can contain either text or code data. Text files are
readable by a user and can be displayed or printed. Code data, also known
as a binary file, is readable by the computer and might even be executable.

Linux does not impose any internal structure on the content of a file (we
will allude to this fact again when we discuss the creation and use of
floppy disks). The user is free to structure and interpret the contents of a
file in whatever way he or she believes is appropriate for his or her needs.
You might notice that this philosophy and technology is unlike “that other
major operating system” that is so prevalent in our homes and workplaces.
Thus, in Linux, only the application/utility/tool cares about the structure
and contents of a file; the operating system does not require the file to have
any specific attributes. Meanwhile, all information about a file, except for
its contents, is stored in the file’s inode (index node), which we will discuss
a little further in the next section.

Linux can recognize the following file types:

Ordinary files. Contain either text or code data. Text files are readable
by users and can be displayed or printed. Code data, also known as
binary files, are readable by the computer. Binary files can be
executable.

Directories. Contain information that the system needs in order to
access all types of files but do not contain the actual data. Each
directory entry represents either a file or a subdirectory. Directories
and subdirectories constitute a method of storing files in some type
of logical order (such as alphabetical or numerical).

Special files. Usually represent devices used by the system. An
application of special files appears in the Path Names section later in
this chapter.

Files and Directories in Linux 95

Figure 4.1 Directory contents.

Directory Contents
Although it is customary to refer to a directory as a type of envelope that
contains entire subdirectories, files, and their contents, in truth a directory
is a unique type of file that is used to organize other files into a hierarchical
structure. Thus, it contains only the information that is needed to access
the files or other directories that are affiliated with it according to (hope-
fully, generally) some sort of logical order. As a result, a directory occupies
less space than other types of files.

A directory resembles a table of contents. It lists the names of files and
subdirectories and their corresponding inode numbers. When users exe-
cute a command to access a file, they use the filename. The system consults
the directory to match the filename with its corresponding inode number
and then accesses the inode table, which holds information about the file’s
characteristics (including its location). Then, once the system knows the
location of the file, the data can be located. See Figure 4.1 for a partial list-
ing of contents of the quixoted directory, which is shown in its entirety in
Figure 4.2, as well as an illustration of the corresponding inode table
entries.

96 Installing and Administering Linux 2E

The following categories of information are stored in the inode table:

■■ The file type (directory or file)
■■ The mode (directory or file permissions; see Chapter 6, “Linux File

Permissions,” for details)
■■ Links (which enable you to refer to a file by more than one name; for

more information about linking, see Chapter 5)
■■ The userid of the file’s owner
■■ Group permissions
■■ The date the file was last accessed and modified
■■ The file size
■■ The file’s location

Remember that the filename is stored in a directory, not in the inode table.
You might ask, “Why not store the inode information in the directory and
dispense with the inode table?” Our answer is as follows: restricting infor-
mation in the directory to filenames and inode numbers simplifies direc-
tory management and allows for the efficient use of disk space.

Hierarchical Structure
The file structure depicted in Figure 4.2, called a directory tree, represents
only part of a typical Linux file system. In this depiction, directory names
appear in boxes and filenames are unboxed words.

The top of the structure is the root (/) directory. The root contains many
directories that are critical in system operations. Root subdirectories
depicted in Figure 4.2 are described in Table 4.1.

You can also access files on other computers on the network. The details
of that process are beyond the scope of this book. For now, just remember
that from a user’s perspective, the network is configured such that remote
files appear to behave just like local files. The /home, /usr, /tmp, and /var
directories are examples of directories whose files can be accessed by local
and remote systems.

Path Names
The purpose of a path name is to tell you the location of a file. You write a
path name as a string of names separated by forward slashes (/). The
rightmost name is the filename and can represent any type of file; the other

Files and Directories in Linux 97

Figure 4.2 Linux directory tree.

Table 4.1 Root Subdirectories

SUBDIRECTORY DESCRIPTION

/usr System programs such as /usr/bin, which in turn contain
user commands such as ls, cat, and date. Because the
/usr directory generally contains system-related rather than
user-related commands and utilities (despite its name),
users do not have write access to this directory. In addition,
because the files in this directory are system related, the
directory is not considered very dynamic.

/dev Special files that represent devices

/home User login directories and files. When a user is added to the
system, he or she is allocated an individual subdirectory, the
name of which is the same as the user’s login name. When
users log in, they are put in their own directory and they
can do whatever they want with it, such as create
subdirectories within it and create, delete, move, copy,
and rename files. Because users generally change their files
regularly, the /home directory is considered quite dynamic.

/sbin System utilities for system startup

continues

98 Installing and Administering Linux 2E

Table 4.1 continued

SUBDIRECTORY DESCRIPTION

/etc System configuration files used by system administrators

/var An abbreviation of variable, the var directory contains files
that change with system activity. For example, this directory
is typically used by or for many user-oriented programs,
such as mail or printing.

/tmp Holds files that are temporarily needed or created by
applications and programs. For example, the vi editor
(discussed in detail in Chapter 10, “The vi Editor”) uses the
/tmp directory as a buffer space until the file being worked
on is written to disk. Compiler programs use /tmp to hold
files written during compilation. When the compiler is
finished, the files created there are eliminated.

/root The top of the directory structure belonging to the root user

names must be directories. A full path name, which is also referred to as an
absolute path name, always begins with a forward slash (/) to indicate that
it begins at the root directory. Path names that do not begin with a forward
slash are termed relative.

The path names in Example 4.1 refer to the files depicted in Figure 4.2. In
the full path name, the first forward slash represents the root directory. In
the relative path names, the current directory is presumed.

Example 4.1 Absolute and Relative Path Names

Let’s look at the full or absolute path name for Don Quixote’s weekly
report, typically submitted to Lady Dulcinea on Monday morning:

/home/quixoted/admin/mon_rept

Now, let’s look at the relative path names of other files in the Rueful Fig-
ures, Inc. directory structure. Let’s presume that our current directory is
Don Quixote’s home directory, /home/quixoted:

admin/mon_rept

./test1

../dulcinea/pgms/suba

Files and Directories in Linux 99

Notice that this example contains two special files (one begins with a
single dot; the other begins with a double dot). Both types were mentioned
previously.

In ./test1, the dot (.) represents the current directory; in other words, it
says “start in this directory and look for the file called test1.” In the last
example, ../dulcinea/pgms/suba, the leading two dots represent the parent
directory to the current directory—in effect, saying “go back up one level to
the home directory, look in Lady Dulcinea’s home directory (dulcinea) for a
directory called pgms, and then look there for a file called suba.”

When you are trying to find a file, particularly in a complex, multi-lay-
ered structure, the single dot (.) and the double dot (..) special files
can save time by eliminating the need to describe the location of the file in
relation to the root directory. They can be helpful also when programming
an application if you do not know the absolute tree structure where the
application might eventually be installed, but you do have a good idea
where files are with respect to one another or with respect to an executable.

Navigating the Directory Structure

Now that we know something about how directories are structured in
Linux/UNIX, let’s see how we can move around in the structure. Prior to
knowing how to get around, though, it’s best to know where you are to
begin with. So the first command we’ll show you is pwd. Then, to enable
you to move around, we’ll introduce cd.

Locate the Working Directory Path:
The pwd Command
The pwd (print working directory) command is a Linux/UNIX command
for finding out which directory you are in; that is, where you are in the
directory tree. This command always returns the full or absolute path
name of the current working directory, as shown in Example 4.2. Without
pwd, you would have no way of knowing which directory you are in.
(Such information can be added to the command prompt, which we will
discuss later.)

NOTE

100 Installing and Administering Linux 2E

Example 4.2 Determining the Current Directory
with pwd

Don Quixote is looking for a file he created a while back. The file is called
trio_ltr, and it is a memo to Sancho, Nicholas, and Perez. He logs in and
checks to ensure that the directory he is in is indeed his home directory:

$ pwd<Enter>

/home/quixoted

Navigating Directories: The cd
Command
The cd (change directory) command enables you to navigate the directory
structure. As with any commands that operate on directories, you can
specify the relative or full path name. With relative path names, however,
you must be certain of the directory in which you are working. If you are
not sure, use the pwd command. Here is the syntax:

$ cd [directoryname]<Enter>

Using the cd command with no arguments automatically returns you to
your home directory—the directory you were automatically placed in
when you logged into the system. This function can be very handy or very
confusing.

Example 4.3 Navigating Directories with cd

The Don is still searching for trio_ltr. He thinks he might have left it in his
doc directory. So, he decides to navigate from his (current) home directory,
/home/quixoted, to the /home/quixoted/doc directory. Here is how he per-
forms this task the easy way from where he is, using only the relative path
name:

$ cd admin<Enter>

To do it the more complex way, using the full path name, he could have
entered

$ cd /home/quixoted/doc<Enter>

Now, from his doc directory, to go back to his home directory all he needs
to do is enter

Files and Directories in Linux 101

$ cd<Enter>

In fact, no matter where he is, if he wants to go back to his home directory
he only needs to enter that command.

Also, no matter where he is, if he wants to navigate up one level to the
parent directory of his current working directory, he only needs to enter

$ cd ..<Enter>

Please note, though, that the only time the cd .. command would fail
him is if he did not have permission to access that directory. We will dis-
cuss file and directory permissions later in Chapter 6.

Managing Directories

An understanding of directory structure and the ability to navigate that
structure provide a foundation for the most important aspects of directory
management: the creation and deletion of directories and the examination
of their contents. These activities are among the most important and basic
of an administrator’s duties. Without these essential skills, users and
administrators would be unable to organize their applications, data, and
information. Perhaps even more important: Without these skills, users and
administrators might never find the data and information they’ve already
created.

Creating Directories: The mkdir
Command
The mkdir (make directory) command creates new directories and names
them according to the specified directory name. You can specify multiple
directory names as long as you separate each by a space.

The syntax for the command is as follows:

$ mkdir [-m] directoryname(s)

Each new directory or subdirectory automatically contains the standard
entries: dot (.) and dot-dot (..). Use -m as an option before the chosen
directory name to specify which permissions to set for the new directory
when it is created. Ordinary users can create directories where they have

102 Installing and Administering Linux 2E

write permission. (File and directory permissions are discussed in more
detail in Chapter 6.)

Unlike DOS, Linux does not enable you to abbreviate the mkdir com-
mand to md.

Example 4.4 Creating Directories with mkdir

Don Quixote wants to create a subdirectory to contain proposals, plans,
and reports for noble endeavors. Suppose that he has navigated to the root
directory. He can use a one-step procedure, like the following, to create a
directory called noble as a subdirectory of his /home/quixoted directory:

$ mkdir /home/quixoted/noble<Enter>

Or, he can use a two-step process such as

$ cd /home/quixoted<Enter>

$ mkdir noble<Enter>

Deleting Directories: The rmdir
Command
Removing a directory involves two steps. First, empty the directory of its
contents. A directory is considered empty when it contains only the dot
and double-dot entries. Second, remove the directory. The syntax is simple:

$ rmdir directoryname<Enter>

Although you can be in the target directory to remove its contents, you
cannot be in the target directory when you intend to remove the directory
itself. Two conditions must be met: The target directory must not be the
working directory, and the target directory must be empty. Refer to Exam-
ple 4.5.

Example 4.5 Deleting Directories with rmdir and rm

Refer to Figure 4.2. If the Don wants to remove a directory without going
to the effort of emptying it first, he can enter the following:

$ cd /home/quixoted<Enter>

$ rm -r expired<Enter>

NOTE

Files and Directories in Linux 103

If he wants to remove an empty subdirectory while he is in his home direc-
tory (/home/quixoted):

$ rmdir misc<Enter>

(Actually, the Don will not remove these directories and their contents
until later, after Example 4.11. But, when the time comes, these are the
commands that he will use.)

Linux does not display a screen message when the rmdir command is
successful, so it is a good idea to make sure that the command worked as
expected. To do so, execute the ls command on the parent directory. (See the
Listing Directory Contents section, coming soon in this chapter.)

Creating or Removing Multiple
Directories Simultaneously
You can create two types of subdirectories. Horizontal subdirectories share
the same parent directory. Vertical (or recursive) subdirectories are subdi-
rectories of subdirectories of subdirectories of . . . well, you get the idea.
Figure 4.3 shows both types of subdirectories.

To create a horizontal subdirectory, you issue the mkdir command and
list the subdirectories that you wish to create with a space between each
name. If you were creating some generic subdirectories named dira, dirb,
and dirc, you would enter the following:

$ mkdir dira dirb dirc<Enter>

To create vertical sudirectories, add the -p (path or parent) option to
mkdir. For example, once you have created dira, you could type the fol-
lowing to create some generic vertical subdirectories named dird and dire
under dira:

$ mkdir -p dira/dird/dire<Enter>

Example 4.6 Creating Horizontal and Vertical
Subdirectories with mkdir

Recruiting Lady Dulcinea (nee Aldonza Lorenzo) was probably the best
thing Rueful Figures, Inc. ever did, although accepting RFI’s offer was pretty
much against her better judgment. At this stage, as her duties expand, the

NOTE

104 Installing and Administering Linux 2E

Lady needs to create some extra directories within and beneath her home
directory (/home/dulcinea). To see where she is starting from, please refer to
Figure 4.2.

First, she wants to create horizontal directories for:

■■ The reports submitted to her periodically
■■ Company mission statements, objectives, and other policies
■■ Special correspondences and other documents (such as the odes,

songs, poems, drawings, and plans that Don Quixote seems to
generate endlessly)

So, she navigates to her home directory and then enters the mkdir com-
mand:

$ cd /home/dulcinea<Enter>

$ mkdir repts objs spec<Enter>

Dulcinea has decided that the Don and Sancho will report to her sepa-
rately every week, but she acknowledges that Sancho was recruited by the
Don and is still under the Don’s supervision (although everyone suspects
that it might unofficially be the other way around). So, she wants to create
subdirectories for each of their reports. Thus, within (or beneath, if you
prefer) the new repts directory, she will create vertical subdirectories for
them, too. Here is how she performs this task:

$ mkdir -p repts/don/sancho<Enter>

Have a look at Figure 4.3 to see the results of Lady Dulcinea’s work so far.
For the sake of simplicity, we are only showing Lady Dulcinea’s portion of
the directory structure.

Example 4.7 rmdir to Delete Vertical Directories

Lady Dulcinea knows that if she ever has to remove the repts subdirectory
and the subdirectories beneath it, she would enter

$ rmdir -p repts/don/sancho<Enter>

In this example, the last specified directory, sancho, would be removed
first, followed by don and then repts. Freston reminds her, however, that if
for some reason now or in the future she does not have write permission to
one or more of the specified directories, or if one or more of the directories
are not empty, the rmdir command would terminate (prematurely) at that

Files and Directories in Linux 105

Figure 4.3 Creating horizontal and vertical subdirectories simultaneously.

point. For that reason, it is a good idea for her to check the status of her
directories (with various combinations of the cd and ls commands) after
the rmdir command has finished executing.

Listing Directory Contents: The ls
Command
The ls (list contents) command displays the contents of one or more
directories. This command has several useful options, some of which will
be illustrated in action in Examples 4.8, 4.9, 4.10, and 4.11. First, though,
here is the basic syntax:

$ ls [-a][-R][-l][directoryname]<Enter>

If you do not specify a directory, the contents of the current working direc-
tory will be displayed. The -a option displays all hidden files. (For more
information about hidden files, see the section Linux File Name Guidelines
in Chapter 5.) The -R option displays all subdirectories and their respec-
tive contents, except the hidden files, right down to the bottom of the
directory tree. Combining the -a and -R options results in a listing of sub-
directories, files, and hidden files to the bottom of the directory tree.

By default, the information that the ls command returns is sorted in
alphabetical order, and no distinction is made between files and directories.

106 Installing and Administering Linux 2E

Example 4.8 Displaying Directory Contents with
ls, ls -a, and ls -R

To list the contents of his home directory, Don Quixote enters the following
commands. To see where he is starting from, please refer to Figure 4.2 and
remember that the Don created the subdirectory noble (which contains the
file named windmills) in Exercise 4.5, but he has not yet deleted the expired
subdirectory and its contents.

The first pwd command, to determine where he is to begin with, is a sort
of best practice:

$ pwd<Enter>

/home/quixoted

Comfortable that he is in his home directory, the Don then enters the sec-
ond command:

$ ls<Enter>

admin Desktop expired manuals mbox misc noble test1

Color-coding on his terminal screen tells the Don which entries are files
(white printing) and which are directories (blue). He knows, however, that
there is at least one hidden document in his quixoted subdirectory. To relist
the contents of the same directory (but this time, to include all hidden
files), he re-enters

$ ls -a<Enter>

. .. .bash_profile admin Desktop expired manuals mbox misc noble test1

To list all contents to the end of his portion of the directory tree (that is, to
list contents recursively), he enters

$ ls -R<Enter>

admin Desktop expired manuals mbox misc noble test1

admin:

mon_rept trio_ltr

Desktop:

expired:

old_plans

old_rsch

Files and Directories in Linux 107

Table 4.2 Output from the ls -l Command

FIELD 1 FIELD 2 FIELD 3 FIELD 4 FIELD 5 FIELD 6 FIELD 7 FIELD 8

drwxrwxr-x 2 quixoted knights1 4096 Apr 05 14:30 misc

-rw-rw-r-- 2 quixoted knights1 257 Mar 17 13:29 test1

misc:

noble:

windmills

The ls command with the -l (long listing; also called a detailed listing)
option displays file and directory information from the inode table, as we
will show in Example 4.9. It also displays the names of the files or directories.

Example 4.9 Displaying Detailed Directory
Contents with ls -l (long listings)

In Example 4.8, Don Quixote listed the contents of his home directory and
its subdirectories. Although the lists were apparently adequate, there is
still some information he needs about each directory and file. He relists the
contents again, but this time he asks for a detailed description of each
entry by using the ls command with its -l option:

$ ls -l<Enter>

total 8

drwxrwxr-x 2 quixoted knights1 4096 May 26 10:18 admin

drwxr-xr-x 2 quixoted knights1 4096 Mar 07 08:11 Desktop

drwxrwxr-x 2 quixoted knights1 4096 May 17 09:21 expired

-rw-rw-r-- 1 panzasan knights1 144 Jul 11 11:42 manuals

-rw------- 1 quixoted knights1 1116 May 26 10:18 mbox

drwxrwxr-x 2 quixoted knights1 4096 Apr 05 14:30 misc

drwxrwxr-x 2 quixoted knights1 4096 Jul 11 15:21 noble

-rw-rw-r-- 2 quixoted knights1 257 Mar 17 13:29 test1

The total amount refers to the number of 4096-byte blocks allocated to
the files in the directory.

Table 4.2 presents the detailed information for two of the entities listed
in Example 4.9: the misc directory and the test1 file. Let’s look at each field
in a little more detail:

Field 1 represents the file, directory, and permission bits. File and
directory permissions are covered in Chapter 6. For now, we will just

108 Installing and Administering Linux 2E

point out that a d in the first position indicates that the entity is a
directory. If there is a hyphen (-) in the first position, that indicates
a file.

Field 2 is the link count. For directories, the link count indicates the
number of subdirectories in that directory. Directories always have a
link count of at least two (for . and ..). The link count for files
indicates the number of names given to a single file. When you enter
the command rm filename, for instance, you reduce the link count for
a file by 1. A file is removed only when its link count reaches 0. For a
discussion of linking and removing files, see Chapter 5.

Field 3 is the username of the person who owns the entry (the file or
directory). The owner is generally the person who created the entry,
but ownership can be transferred.

Field 4 is the name of the group for which group protection privileges
are in effect. Groups are generally created to organize users based on
job description, organizational structure, project assignment, and so
on, and their privileges determine the files and directories to which
the group has access. Every user belongs to at least one group. The
user in Example 4.9 is assigned to the group knights01. We touch
briefly upon group concepts in Chapter 6 when we discuss file and
directory permissions.

Field 5 is the character count of the entry. Note that directory space is
allocated in 4096-byte increments. Thus, just looking at the output
here will not necessarily give you a good idea of the number of files
or subdirectories in the directory in question. Note that you do not
make the directory allocation size smaller when you delete files. To
decrease the size of a directory, you must move files to newer, smaller
directories.

Fields 6 and 7 indicate the date and time that the contents of the file or
directory were last modified. Other ls command options display
other time attributes (for example, -u displays the last access time to
the file and -c displays the time the inode was modified).

Field 8 is the name of the entry, whether a file or a directory.

Example 4.10 Long Listings, Including inode
Numbers, with ls -li

The Don will use the -li options with the ls command to display file
information, including the inode number. But first, please notice that he is

Files and Directories in Linux 109

confining his inquiry to the test1 file only by specifying its filename as an
argument to the ls command:

$ ls -li test1<Enter>

187018 -rw-rw-r-- 1 quixoted knights01 257 Mar 17 13:29 test1

Although typically, ordinary users are not usually interested in inode
numbers, the functions of various file manipulation commands (such as
mv and cp) are better understood if inode tables and the information in
them are understood first.

Displaying Directory Information: The
ls and stat Commands
The ls (list) and stat (statistics) commands can be used to display infor-
mation about files and directories, because Linux treats directories as files
for these purposes. In Example 4.11, the ls command displays inode table
information. As shown in the example, the options -l, -d, and -i result in
a long listing with inode information and the inode number in the first dis-
played field.

Example 4.11 Listing Directory Contents with ls

To get a long listing with inode information and the inode number in the
first displayed field, Don Quixote enters

$ ls -ldi expired<Enter>

109096 drwxr-xr-x 5 quixoted knights01 4096 May 18 15:22 expired

Linux systems maintain three timestamps for files and directories. The fol-
lowing are additional options you can use with ls to display each of these
timestamps:

■■ ls -lu displays the access time.
■■ ls -l displays the modification time.
■■ ls -lc displays the updated time.

The stat command displays inode information for a specified file or
directory. The syntax is as follows:

$ stat directoryname<Enter>

To explain the results of the command, let’s provide an example.

110 Installing and Administering Linux 2E

Example 4.12 Inode and Timestamp Information
with stat

To get inode information for a specific (namely expired) subdirectory in his
home directory, Don Quixote enters

$ stat expired<Enter>

File: “expired”

Size: 4096 Blocks: 8 Directory

Access: (0775/drwxrwxr-x) Uid: (501/ quixoted) Gid: (607/ knights01)

Device: 306 Inode: 109096 Links: 5

Access: Wed Jul 12 18:13:21 2001

Modify: Mon Jul 10 13:22:17 2001

Change: Mon Jul 10 13:22:17 2001

In the stat results shown in Example 4.12, let’s look at the Access, Mod-
ify, and Change lines:

■■ Access means that the file has been read or written to and tells us
the time and date when that last happened. When a file is read but
no changes are made to it, the access time is changed but not the
modification or change times.

■■ Modify indicates that the contents of the file or directory have been
changed and indicates the time and date when that last happened.

■■ Change tells us that the inode information has been changed and
indicates the time and date when that last happened.

At this point, as we mentioned previously in Example 4.5, Don Quixote
deletes the expired and misc directories and their contents. Figure 4.4 illus-
trates what Don Quixote’s portion of the RFI directory now looks like.

Formatting and Accessing Floppy Disks

Many users, especially new or ex-DOS and ex-Windows users, do not
know that they can use floppy disks with Linux/UNIX. Although many of
us work with UNIX-type systems on large networks and have abandoned
sneaker netting to varying degrees, most if not all users still require it
from time to time. In this section, we will create a Linux-like ext2 file sys-
tem on one floppy and a DOS file system on another floppy.

Files and Directories in Linux 111

Figure 4.4 Don Quixote’s portion of the RFI directory structure.

Floppies with ext2 File Systems
You can create and manipulate files on floppies in as many ways as the
half-dozen types of file systems that Linux supports. The ext2 file system
procedure described in this section should be used on floppies moving
from one Linux-like system to another.

We will start at the beginning and format a floppy disk. Insert the floppy
disk into your floppy disk drive. The following procedure could be done

112 Installing and Administering Linux 2E

as a root user or as an ordinary user. Let’s do it as an ordinary user. So,
with the floppy disk in the floppy drive, type

$ fdformat /dev/fd0H1440<Enter>

You had to specify that the floppy disk was in device /dev/fd0; that is, in
the first floppy disk drive. (If it had been in a second floppy drive, you
would have had to specify /dev/fd1.) You enter the H1440 (with no
space between this specification and the /dev/fd0 device name) to tell
the system that /dev/fd0 contains a 3.5-inch high-density floppy disk
with a capacity of 1.44MB. If your floppy disk is of another type, refer to
the fdformat man page for the appropriate description.

As the system executes the fdformat command, it responds with

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.

Formatting ... (counts to 80) done

Verifying ... (also counts to 80) done

Now that the floppy is formatted, the next step is to create a file system on
it. Linux supports a half a dozen or so types of file systems that you can
create on a floppy. In this first procedure, we will create an ext2 file sys-
tem to be compatible with the ext2 file systems created on the hard disk
during the Linux installation. Continuing as an ordinary user, type

$ /sbin/mkfs -t ext2 /dev/fd0<Enter>

Ordinary users should use /sbin/mkfs as the command because the
directory /sbin is probably not in their $PATH. If you had performed this
task as the root user, you would only have had to enter mkfs as the com-
mand because /sbin is already in root’s $PATH environment variable.

The -t option indicates that the user is about to tell the system what
kind of file system to install on the floppy disk. The option is followed by
the argument ext2, which is the default Linux file system type. After you
enter the command, the system executes it and responds with

mke2fs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09

Linux ext2 filesystem format

Filesystem label=

OS Type: Linux

Block size = 1024 (log=8)

Fragment size = 1024 (log=8)

Files and Directories in Linux 113

184 inodes, 1440 blocks

72 blocks (5.00%) reserved for the super user

First data block=1

1 block group

8192 blocks per group, 8192 fragments per group

184 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

Simply put, the system has told you that it has finished formatting the
floppy disk and is now awaiting further instruction. (For an explanation of
the output, which is beyond the scope of this book, refer to one of the
sources of information mentioned in Chapter 15, “Linux Documentation
and Support.”)

The next step is to mount the file system, which means that the system
must be told to make the newly defined file system (the newly formatted
floppy disk, in this case) part of its tree-like file hierarchy. Enter the next
command as the root user, because ordinary users, when they try it, will be
disappointed. All they will get is the mount: only root can do that
error message. Here, then, is the command:

mount -t ext2 /dev/fd0 /mnt/floppy<Enter>

It is best and easiest to perform this task (mounting file systems) as a
root or superuser. For security reasons, an ordinary user is not allowed to
mount or unmount a file system. An ordinary user can get around this restric-
tion, however, by using mtools, which we will discuss in Chapter 5.

The mount command tells the system to make the ext2 file system,
found on /dev/fd0, part of the total file system and to refer to the newly
added file system as /mnt/floppy (that is, a subdirectory called /floppy in a
subdirectory called /mnt, all part of the root directory). You could call it
other names, but this name is the Linux convention. If you have entered
everything correctly, the system will do as you command and respond
with another root prompt.

To view what has occurred thus far, enter the following line:

ls -la /mnt/floppy<Enter>

The system responds with

NOTE

114 Installing and Administering Linux 2E

total 14

drwxr-xr-x 3 username username 1024 Apr 28 16:36 .

drwxr-xr-x 4 root root 1024 Jan 31 11:31 ..

drwxr-xr-x 2 root root 12288 Apr 28 16:36 lost+found

The system has already named the largest subdirectory on the floppy
lost+found. You can change its name if you want. Also, notice that owner-
ship of the single-dot special file has been given to username because it
was as an ordinary user that we began this process. If we had done the
whole procedure as the root user, then ownership of the single-dot file
would have been root root.

You are now ready to use the floppy disk as part of your file system,
using Linux commands.

When you are through using the floppy disk and wish to remove it,
please remember that you cannot just “pop” the floppy disk out right
away. First, you have to unmount the floppy disk’s file system (again, as
the root user) from the total file system. To do that, type

umount /mnt/floppy<Enter>

or

umount /dev/fd0<Enter>

Note that the command is umount, not “unmount.” Again, you have to be
a root user to unmount a file system just as you have to be a root user to
mount it in the first place. In addition, you cannot unmount from the
floppy diskette’s own file directories; you have to cd out of them. Other-
wise, you will get a device busy error message.

Now, you can remove the floppy. When you want to use it again, you
must re-enter the mount statement to get Linux to recognize it again. But
you do not have to edit the /etc/fstab file, because those specifications
remain.

DOS File Systems
In the previous section, we formatted a floppy disk to be compatible with
a Linux-like ext2 file system. To sneaker net between a Linux system and
a DOS file system, however, you use commands that are similar but differ-
ent than those discussed in the preceding section. We will start again with
formatting a floppy disk.

Files and Directories in Linux 115

Again, as an ordinary user, type the following:

$ fdformat /dev/fd0H1440<Enter>

Again, you had to specify that the floppy disk is in the /dev/fd0 device
(that is, your first floppy disk drive). You told the system H1440 (with no
space between this specification and the /dev/fd0 device name), which
means that /dev/fd0 contains a 3.5-inch high-density diskette with a
capacity of 1.44MB. The system executes the command, and as it does so, it
responds with the following:

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.

Formatting ... (counts to 80) done

Verifying ... (also counts to 80) done

Once the floppy disk is formatted, the next step is to create an MS-DOS file
system on it and specify that the floppy disk is in /dev/fd0:

$ /sbin/mkdosfs /dev/fd0<Enter>

Again, we have shown you how to perform this task as an ordinary user.
Thus, the command was /sbin/mkdosfs. If you had been the root user,
the command would simply have been mkdosfs. The system responds with

/sbin/mkfsdos 2.2 (06 Jul 1999)

The next step is to mount the file system; that is, to make the newly
defined file system (the just-formatted floppy disk, in this case) part of the
overall system file hierarchy. Now, you can use the mount command by
using one of several choices. For example, you can use

mount -t msdos /dev/fd0 /mnt/floppy<Enter>

to tell the system to mount the fd0 device as part of the file system and
refer to it as the /mnt/floppy directory (that is, a subdirectory called /floppy
under a subdirectory called /mnt, which itself is under the root directory).

Once again, you must mount file systems as the root user. For security
reasons, an ordinary user is not allowed to mount or unmount a file system. An
ordinary user can get around this restriction, however, by using mtools, which
we will discuss in Chapter 5.

NOTE

116 Installing and Administering Linux 2E

You also told the system that the format of the files in the directory will
be DOS but not the type of DOS that supports long filenames. If that is not
suitable—for example, if you want to mount the type of DOS files devel-
oped under Microsoft Windows 9x, operating systems that do support
long filenames—use the following:

mount -t vfat /dev/fd0 /mnt/floppy<Enter>

If you have entered everything correctly, the system will do as you com-
mand and simply respond with another root prompt.

To check on what has occurred thus far, type the following:

ls -la /mnt/floppy<Enter>

Notice that you could enter the command as the root or as an ordinary user.
If the floppy disk does not contain any files yet, the system responds with

total 8

drwxr-xr-x 2 root root 7168 Dec 31 1969 .

drwxr-xr-x 4 root root 1024 Jan 31 11:31 ..

If the floppy contains files, you get the same response along with a listing
of those files. Whenever you mount a DOS diskette in this manner, we rec-
ommend that you include either the -t msdos option or the -t vfat
option because it is more likely that ext2 might already be specified in
/etc/fstab if a floppy diskette has ever been used with that system. Specify-
ing msdos or vfat on the command line here overrides any specification
that is already in /etc/fstab.

Now, you are ready to use the floppy disk as part of your file system by
using Linux commands. As with the previous procedure, when you are
finished with the floppy and wish to remove it, you cannot simply pop it
out. First, you must, as the root user, unmount the floppy disk’s file system
from the total file system. Enter the following:

umount /mnt/floppy<Enter>

or

umount /dev/fd0<Enter>

Again, you must be the root user to unmount a file system just as you have
to be a root user to mount it in the first place. In addition, you cannot be in

Files and Directories in Linux 117

the floppy diskette’s own file system when you try to umount; if you are,
you will get that frustrating device busy error message. So, before you
umount, cd to a directory level above that of the floppy disk.

Finally, now you can remove the floppy. But remember that when you
want to use it again, you must re-enter the mount statement to get Linux to
recognize its file system again.

Exercises

1. Using the pwd command, verify that you are in your home directory
(the directory you are placed in when you first log into the system):

$ pwd<Enter>

2. Change your current directory to the root directory:

$ cd /<Enter>

3. Verify that you are in the root directory:

$ pwd<Enter>

4. Request a simple listing of the files and subdirectories in that
directory:

$ ls<Enter>

5. Then, request a long listing of the files and subdirectories in that
directory:

$ ls -l<Enter>

6. Issue the ls command with the -a and -R options:

$ ls -a<Enter>

$ ls -R<Enter>

What is the effect of each option?

118 Installing and Administering Linux 2E

The -R option results in extensive output. After you have seen enough,
press Ctrl-C to end command execution. Or, you can practice with Ctrl-S and
Ctrl-Q to interrupt and restart execution.

7. Return to your home directory and list its contents, including
hidden files:

$ cd<Enter>

$ ls -a<Enter>

8. Create a directory in your home directory called mydir. Then, display
a long listing of both home/directoryname/mydir and the parent
directory of mydir. What are the sizes of each directory?

9. Change to the /home/mydirectory/mydir directory. Use the touch
command to create two zero-length files called myfile1 and myfile2 in
your mydir directory.

$ cd mydir<Enter>

$ touch myfile1<Enter>

$ touch myfile2<Enter>

10. Display a long listing of the contents of your mydir directory. What
are the sizes of myfile1 and myfile2?

$ ls -l<Enter>

11. View the long listing again, but this time display the inode numbers,
too. What are the inode numbers of each file?

$ ls -li<Enter>

12. Change back to your home directory and issue the ls -R command
to view your directory tree.

$ cd<Enter>

$ ls -R<Enter>

13. Use the stat command to view the inode information in your mydir
directory. Why might the “Last Accessed” date be more current than
the other two dates?

NOTE

Files and Directories in Linux 119

$ stat mydir<Enter>

14. Use the rmdir command to remove the mydir directory. Does it
work?

$ rmdir mydir<Enter>

To remove a nonempty directory, you must use the rm -r command,
not the rmdir command. For more on rm -r, refer to Chapter 5.

$ rm -r mydir<Enter>

See Appendix B for answers.

Quiz

1. Using the directory tree structure shown in Figure 4.2 and using
/home as your current directory, how would you refer to the suba file
in Lady Dulcinea’s /pgms directory using both full and relative path
names?

2. When specifying a path name, what is the difference between using
double dots (..) and a single dot (.)?

3. What will the following command do?

$ cd ../..<Enter>

4. What conditions must be satisfied for the rmdir command to
complete successfully?

5. Match the following ls command options with their functions.

COMMAND OPTION FUNCTION

-a Provides a long listing of files

-i Lists hidden files

-d Lists subdirectories and their contents

-l Displays the inode number

-R Displays information about a directory

NOTE

120 Installing and Administering Linux 2E

6. Referring to Figure 4.2, assume that your current working directory
is /home/quixoted and that you entered the following command:

$ mkdir test<Enter>

What happens? Why?

7. Referring again to Figure 4.2, assume that you are in the directory
called /home/panzasan. What is the difference in the results after
issuing the following commands?

$ mkdir dir1/dir2/dir3

$ mkdir dir1 dir2 dir3

See Appendix C for answers.

C H A P T E R

5

Using Files in Linux

121

In Chapter 4, “Files and Directories in Linux,” we defined files and directo-
ries and then navigated and manipulated directories. In this chapter, we
will describe several more aspects of files and file manipulation, including
naming files, copying files, moving files, and referencing a file by more than
one name. We will also show you how to look at the contents of a file page
by page, rather than as a fast-scrolling display on your screen. The chapter
closes with that all-important file manipulation function: printing files.

Files and Directories: A Quick Review

As stated in Chapter 4, a file is a collection of data or a stream of characters.
A typical file can contain either text (which can displayed or printed) or
code data (more commonly called a binary file, which can also be exe-
cutable). In Linux, everything is represented as a file—even system
devices. Linux does not impose any internal structure on the contents of a
file, nor does it require the file to have any specific attributes. Only the
application or tool is concerned with a file’s structure and contents.

122 Installing and Administering Linux 2E

Linux can recognize three major file types: ordinary files, directories,
and special files. All information about a file, except its contents, is stored
in the file’s inode (index node).

Directories and subdirectories are designed so that we can store files in
some type of logical order. Directories contain information that the system
needs to access all types of files, but directories do not contain the actual
data. A directory resembles a table of contents, listing filenames and subdi-
rectories and their corresponding inode numbers. When users execute a
command to access a file, they use the filename. The system consults the
directory to match the filename with its corresponding inode number. It then
accesses the inode table, which holds information about the file’s character-
istics (including its location). Once it learns the file’s location, it can locate the
data. Meanwhile, special files usually represent devices used by the system.

Linux Filename Guidelines

The following are some guidelines and rules for creating filenames in Linux:

Describe the file’s content. A filename should indicate what the file
contains. Make sure you do not create confusion when putting
similar but not identical files in different directories, however.

Use only alphanumeric characters and selected symbols. You can use
all letters in the alphabet as well as numerals in filenames. Letters
can be uppercase, lowercase, or a combination. In addition, the
following symbols can be used: number sign (#), at sign (@),
underscore (_), plus sign (+), and hyphen (-).

Do not use embedded spaces. Spaces should not be used within a
filename because they might interfere with subsequent command
execution, resulting in syntax errors. You are allowed to create a file
with spaces if you enclose its name in single or double quotation
marks (that is, "filename" or 'filename'). We strongly suggest
that you not do this, however; think of the syntax you would have to
use to execute commands on such filenames.

Do not use shell metacharacters. The following characters are not
allowed because of their use in command execution, system calls,
and so forth: asterisk (*), question mark (?), greater-than and less-
than signs (> or <), forward slash and backslash (/ and \),
semicolon (;), ampersand (&), exclamation point (!), open and
closed brackets ([and]), vertical pipe (|), single and double

Using Files in Linux 123

quotation marks (‘ and “), and open or closed parentheses, (and). If
you inadvertently include one of these characters, the shell’s
interpretation will be unreliable and inconsistent.

Do not begin with a plus sign or a hyphen. You can use the plus sign
(+) and hyphen (-) within a filename, but do not use them to begin
the filename.

Do not use command names. You should not name a file using a
command name unless you are creating an executable program file.
The inadvertent use of a command might wreak havoc in a file system.

Other filename characteristics you should keep in mind are as follows:

Filenames are case sensitive. Although potentially confusing, this
requirement can result in increased flexibility.

Filenames have a maximum length of 255 characters. Unlike some
UNIX-based systems, Linux does not restrict filenames to 14
characters. We recommend, however, that you keep filenames to a
reasonable length, such as 16 characters. Bear in mind that some
applications work with only 8-dot-3 filenames (that is, xxxxxxxx.xxx,
or eight-character filenames and three-character extensions), such as
DOS filenames. To ensure compatibility with other environments—if
that is a concern—consider restricting filename length and format.

Some applications append their own extensions or suffixes (such as
.tmp or .sam) to denote a specific file type, so your filename
conventions might have to accommodate this practice.

If the filename begins with a dot (.), the filename will be hidden
from the standard ls commands. Linux/UNIX allows dots as
legitimate filename characters as long as they are wholly contained
within the filename. The system does not presume anything about
the file based on the location of the dot.

Some applications that run on Linux/UNIX, however, do not
recognize the dot as part of the filename. Therefore, they might
react unpredictably when faced with such names.

Creating and Updating Files: The touch
Command

We generally know how to create files. We can use all sorts of applications
(such as text processors, database applications, graphics applications, and

124 Installing and Administering Linux 2E

so on). But UNIX and Linux have another interesting tool to create files:
the touch command. We will see Lady Dulcinea use touch in Example
5.1. Here is the syntax:

$ touch [-c]filename<Enter>

Basically the command has two purposes:

■■ If the filename specified with touch does not yet exist, touch will
create a zero-length (that is, empty) file. If you do not want the
creation to take place, use the -c option.

■■ You can also specify a directory name with touch. If the file or
directory specified does exist, the last modification date and time (as
displayed with the ls -l command) is updated to reflect the
current date and time unless you specify a preferred time variable.

The touch command can be helpful when you are about to invoke an
application against one or more files, and that application checks the
files’ modification times before taking some action (such as backup or
restore) with the files. By using touch alone or with its options, you can
alter the dates on certain files so that they will or will not be affected by
the application.

Example 5.1 Creating and Altering Files with touch

Lady Dulcinea is operating in her home directory. She wants to create a
zero-length file called nobledeeds in her objs subdirectory. She also wants to
change the access date on the existing suba file in the pgms subdirectory.
Please refer to Figure 5.1, which depicts her portion of the RFI directory
structure as it is now and as she proposes to change it.
First, she checks the existing situation:

$ pwd<Enter>

/home/dulcinea

$ cd pgms

$ ls -l<Enter>

-rwxrwxr-x 1 dulcinea knights3 320 Jun 14 07:30 suba

Now, as a reference, she checks the time and date:

$ date<Enter>

Wed July 18 16:53:46 CST 2001

She proceeds to make her change to suba and then checks her results:

Using Files in Linux 125

/

home

dulcinea

Desktoppgmsspec

Existing Structure

objsrepts

don suba

sancho

/

home

dulcinea

Desktoppgmsspec

Proposed Structure

objsrepts

don subanobledeewds

sancho

Figure 5.1 Lady Dulcinea’s portion of the RFI directory structure.

$ touch suba<Enter>

$ ls -l<Enter>

-rwxrwxr-x 1 dulcinea knights3 320 Jul 18 16:54 suba

She then proceeds to create nobledeeds under the objs subdirectory. Again,
she checks her results:

$ touch /home/dulcinea/objs/nobledeeds<Enter>

$ cd ../objs

$ pwd

$ ls -l<Enter>

-rw-r--r-- 1 dulcinea knights3 0 Jul 18 16:55 nobledeeds

Linking Files: The ln Command

We briefly mentioned file linking early in Chapter 4, “Files and Directories
in Linux,” and later in Example 4.12. We create such links with the ln com-
mand. The ln (link) command, in its simplest form, enables one file to
have at least two different names in the directory structure. In other words,

126 Installing and Administering Linux 2E

one copy of a file is referenced by multiple names. This type of link is
called a hard link. The owner of the file, the file permissions, and the inode
number remain the same for both copies. The syntax is as follows:

$ ln sourcefile targetfile<Enter>

It is important to remember that in order to create links, the proper per-
missions must be set on the respective directories: where the source file
resides and where the target link will be created. In older versions of
Linux/UNIX, it was much easier to create links because it was likely that
the default permissions allowed it without too much bother. Because of
security concerns, however, the latest versions of Linux do not set default
permissions so that links can easily be created without proper permissions.
Please refer to Chapter 6, “Linux File Permissions,” for a discussion of per-
mission bits.

Once we have gone through the following example, you might want to
refer to Chapter 4 to see how we dealt with links when managing directories.

Example 5.2 Linking Files with ln

Sancho, at Don Quixote’s request, created a file called manuals (which
includes a list of mandatory reading materials for those who wish to
become chivalrous knights) and filed it in Don Quixote’s home directory,
/home/quixoted. Now, he would like to refer to it as knightdata in his home
directory, /home/panzasan. Please refer to Figure 5.2, which depicts Sancho’s
portion of the RFI directory structure as it is now and as he proposes to
change it.

Here is how he creates the hard link in his home directory:

$ pwd<Enter>

/home/panzasan

$ cd /home/quixoted<Enter>

$ ln /home/quixoted/manuals knightdata<Enter>

$ ls -l knightdata<Enter>

-rw-r--r-- 1 panzasan knights1 144 Jul 11 11:42 knightdata

You can create another type of link, the symbolic link, by using the -s
option with the ln command. Symbolic links are often used to allow two
or more different directories in two or more different file systems to point
to the same files. (Symbolic links are not discussed in this book.)

Using Files in Linux 127

Figure 5.2 Linking files; Sancho’s directory structure.

Viewing File Contents

File contents can be viewed in several ways. In this section, we cover the
most popular methods: using the cat command and using the more and
less commands.

Listing File Contents: cat Command
The cat (concatenate) command displays the contents of all specified files:

$ cat filename1 filename2 . . .<Enter>

If you want cat to number all the lines in a file, use the -n option as
such:

$ cat filename -n<Enter>

128 Installing and Administering Linux 2E

The most obvious problem with cat is that when viewing files that are
longer than a single screen, the file scrolls until the bottom of the file is
reached. Thus, you can easily miss what was at the top of the file. You can
mitigate this situation in a couple of ways. First, while the file is actually
being displayed, you could press Ctrl-S to freeze the scrolling of the screen
during output. To resume scrolling, you could then press Ctrl-Q. This
action might not be appropriate, however, if the scrolling happens quickly.

The second and recommended method is to use the | more (“pipe-
more”) and | less (“pipe-less”) commands in conjunction with cat, as
such:

$ cat filename | more<Enter>

“Pipe-more”and “pipe-less” cause cat to display the first screenful of
file contents and then stop and wait for to the user to go forward only
(with pipe-more) or backward and forward (with pipe-less) through the
file contents at the user’s preferred pace. We will discuss the more and
less commands in more detail in the next section.

In Chapter 10, “The vi Editor,” we will also discuss how cat can read
from a device called standard in and display to a device called stan-
dard out. You can also use the cat command to create or even print a file
by combining it with the redirect output symbol (>). In fact, we tell you
how to use cat for printing at the end of this chapter, in the section cat
Can Print, Too. Otherwise, please check the man pages and other sources for
additional options.

Example 5.3 Listing File Contents with cat

As mentioned earlier, Don Quixote had asked Sancho to start a file called
manuals that will eventually list materials that must be studied by those
Rueful Figures, Inc. staff members who aspire to be knights. Now, the Don
would like to have a look at the file. Here is what he enters:

$ cd<Enter>

$ pwd<Enter>

/home/quixoted

$ cat manuals<Enter>

Displaying a File Page by Page: The
more and less Commands
In the previous section, we mentioned the problem of file contents on the
terminal screen scrolling by so rapidly that you cannot comprehend the

Using Files in Linux 129

Table 5.1 Moving through a File Displayed with the more Command

KEYPRESS EXPLANATION

<Spacebar> Moves down through the file one screen at a time

<Enter> Moves down through the file one line at a time

<Ctrl>-c or <Ctrl>-z Ends more and returns to the command line

contents. We mentioned that you could use Ctrl-S and Ctrl-Q to stop and
restart scrolling, but it is probably a better idea to use the more and less
commands to display the contents of a file one screen at a time. Both com-
mands pause after the first screenful of information is displayed and await
instruction.

To invoke more, the syntax could not be simpler:

$ more filename<Enter>

When you use the more command, the --more-- status message
appears at the bottom of each screenful of file contents (with the exception
of the last screenful of information, when the word END appears in paren-
theses). When more is reading from a file, a percentage appears alongside
the more text indicating the proportion of the file already displayed.

To maneuver through the file contents, you use special keypresses that
are listed in Table 5.1.

The less command is a more recent (and still not really as well known)
improvement over more, and the syntax is very similar:

$ less filename<Enter>

You get more mobility when you examine files with the less command,
as shown with the additional keypresses listed in Table 5.2.

When you use the less command, only a colon (:) appears at the bottom
of each screenful of output, again with the exception of the last screenful.

The more and less commands have several more handy options in
their man pages. (In fact, the man pages themselves use the less com-
mand to display their contents.)

Example 5.4 Listing File Contents
Screen by Screen with cat | less

Because of the support requests he has recently received, Freston cannot
help but notice that RFI staff members have been adding to and changing

130 Installing and Administering Linux 2E

Table 5.2 Moving through a File Displayed with the less Command

KEYPRESS EXPLANATION

<Spacebar> Moves down through the file one screen at a time

<Enter> Moves down through the file one line at a time

d or u Moves down or up through the file half a screen at a
time

down or up arrow Moves down or up through the file one line at a
time

<Ctrl>-c or <Ctrl>-z Ends less and returns to the command line

their individual portions of the corporate directory structure. To monitor
the dimensions of the home directory portion of the RFI directory struc-
ture, Freston lists, recursively, the home directory structure. He redirects
the information to a file called rfi_home_trees_jul_21 in his home directory
(later, in Chapter 10, “The vi Editor,” we will discuss the commands that
he might have used to do that). Then, he lists the contents of that file to his
terminal screen with the following command:

cat rfi_home_trees_jul_21 | less<Enter>

Copying, Moving, and Deleting Files

Users and system administrators alike consider printing to be the most
important file manipulation function. That is certainly true from the stand-
point of accomplishments in the workplace, but more goes into those
accomplishments than simply printing. For example, you might print a
draft document for review, finalize it, and then print the document again.
But you probably performed a lot of file manipulation before that draft
review or crowning moment. And you probably did more file manipula-
tion afterward; perhaps you copied the document or moved the file in the
directory for housecleaning, security, sharing, or collaboration.

Copying a Single File:
The cp Command
At first glance, the cp (copy) command appears to be fairly straightforward:

$ cp source target<Enter>

Using Files in Linux 131

Figure 5.3 Copying files; Don Quixote’s directory structure.

You follow the command with the source filename (if the file is not in the
current working directory, you must specify either the relative or full path
name) and the target (also called the destination). See Example 5.5.

The cp command has many options. We recommend that you check the
man pages. You might want to look at other sources of information as well.
For example, you could check out the help utility by typing the following:

$ cp-h | more<Enter>

What effect does cp have on inode information? All information on the
source file remains unchanged except that the last access time and date are
updated. New inode numbers, permissions, and other relevant entries are
created for the new files.

Example 5.5 Copying Single Files with cp

One part of Freston’s responsibilities is to report on system activity to
Lady Dulcinea. One aspect of this reporting includes creating a copy of his

132 Installing and Administering Linux 2E

latest rfi_home_trees_mmmdd file and sending it to Lady Dulcinea’s
/home/dulcinea/repts directory. Here is how he does that:

$ pwd<Enter>

/root

$ cp rfi_home_trees_jul21 /home/dulcinea/repts/<Enter>

Example 5.5 might be a little misleading for new users. You can change
the name of the source file in flight, as seen in the example, only if the tar-
get directory is also the current working directory. Otherwise, you must
execute a separate renaming process (if such is desirable) after the copy of
the file has arrived. Renaming files is discussed later in this chapter.

Copying Multiple or Special Files:
The cp Command
When copying multiple files, the target must be a directory:

$ cp -i file1 file2 . . . target_dir<Enter>

We used the -i option with the cp command just in case the cp
target is the name of a file that already exists. Otherwise, without the -i, if the
target file does already exist it would be overwritten without any error or notifi-
cation message appearing. To prevent that from happening and to ensure that
the system prompts the user, the -i option should be included.

Note that the copies will have the same name as the originals.

Example 5.4 Copying Multiple Files with cp

Don Quixote’s existing structure is shown in Figure 5.4. He decides that
copies of his manuals and test1 files also belong within the noble subdirec-
tory. Here is how he copies them:

$ cd<Enter>

$ pwd<Enter>

/home/quixoted

$ cp manuals test1 /noble<Enter>

$ cd noble<Enter>

$ ls

manual windmills test

As indicated in Example 5.4, this situation was also an opportunity to
use relative path names.

WARN I NG

Using Files in Linux 133

Figure 5.4 Copying multiple files.

This situation would also have been an opportunity to use the . and ..
special files introduced in Chapter 4. How would the noble Don have done
that? He could have started in the lower /home/quixoted/noble subdirectory,
not in the higher /home/quixoted directory, and entered the following:

$ cd /home/quixoted/noble<Enter>

$ pwd<Enter>

/home/quixoted/noble

$ cp ../manuals ../test1 ./<Enter>

Copying Recursively:
The cp Command
To recursively copy a directory and its files and subdirectories, including
the files within the subdirectories, use the cp -R command. Here is the
syntax:

$ cp -iR sourcedirectory targetdirectory<Enter>

134 Installing and Administering Linux 2E

Figure 5.5 Copying files recursively.

Using cp -R recursively in this manner enables the replication of com-
plete data trees. Meanwhile, if the target directory does not yet exist, the
cp command will create it. Again, we added the -i option as a best prac-
tice to ensure that files are not overwritten unless an advisory message is
presented.

Example 5.5 Copying Files Recursively with cp -R

At this point, Don Quixote wants to copy the files called mon_rept and
trio_ltr, found in the admin subdirectory within his home directory, to a
new subdirectory called newdir that does not yet exist but will be within his
home directory, too. Please refer to Figure 5.5 for an illustration of his plan.

Here is how he does it:

$ cp -iR /home/quixoted/admin /home/quixoted/newdir<Enter>

Moving and Renaming Files:
The mv Command
Like the cp command, the mv command appears straightforward:

$ mv source target<Enter>

Using Files in Linux 135

The mv command is followed by the source filename (you must specify the
relative or full path name if the file is not in the current working directory)
and the target. The target can be a directory (if you are moving a file only)
or a filename (if you are moving and renaming). See Example 5.6 for a file-
moving example. If you are moving more than one file, the target must be
a directory for the command to execute.

Generally, when files are moved and the destination is a directory name,
the files retain their original names. If you specify a filename as the target,
however, you will be moving and renaming the file at the same time.
Example 5.7 will show you how to perform this task, too.

The mv command has the same effect as cp on inode information. All
information on the source file remains unchanged except that the last
access time and date are updated. New inode numbers and entries are also
created for the new files.

Just like with the cp command, if the mv target is the name of an
existing file and you have the correct permissions set for that file and the direc-
tory, the file will be overwritten. No error or notification message will appear.
To prevent this situation and to cause the system to prompt the user, use the -i
option with the mv command.

We recommend that you check the man pages for all the options of the
mv command. You should check out other information sources as well,
such as the help utility:

$ mv -h | more<Enter>

Example 5.6 Moving Files with mv

Don Quixote thinks that the file test1, which instructs potential knights-
errant about bravery in the face of great odds, would be more appropri-
ately placed under the admin subdirectory than under the noble
subdirectory where it is now. Here is how he will move it:

$ cd<Enter>

$ pwd<Enter>

/home/quixoted

$ mv /noble/test1 /admin<Enter>

Example 5.7 Renaming Files with mv

Later, the Don recounts to Freston how he moved test1 from noble to admin
because the file dealt with bravery. Now, he tells Freston, he will actually

WARN I NG

136 Installing and Administering Linux 2E

rename test1 to the more appropriate name, bravery. Freston tells Don
Quixote that had the Don realized beforehand that he would eventually
rename test1, he could have done both at once (in other words, move the
file and rename it) by using the same mv command. Here is how Freston
tells the Don that it should have been done to begin with:

$ mv /noble/test1 /admin/bravery<Enter>

Deleting Files and Directories: The rm
Command
The rm command removes the entries for the specified file(s) from a direc-
tory. But you must have the required permissions to remove the files. Here
is the syntax for the rm command:

$ rm [-i] filename1 filename2 ...<Enter>

The -i option is the interactive version of the rm command. You do not
receive confirmation after the files are removed. Example 5.8 shows the rm
command with and without the -i option.

You can also remove directories with the rm command. The syntax is
similar:

$ rm [-i][-r] directoryname1 directoryname2 ...<Enter>

You can also use the -r option for recursive removal of directories and
their respective files.

Be careful when using the rm command with the -r option; that
is, to remove directories and their contents recursively. Removal in this manner
does not require the directories to be empty before execution.

In Example 4.9 in Chapter 4, we briefly mention the effects of the rm
command on files with links. You might want to refer back to that example
now in light of the discussion here.

WARN I NG

Using Files in Linux 137

Figure 5.6 Removing files and directories.

Example 5.8 Deleting Files with rm

Don Quixote looks at his portion of the RFI directory structure (please look
at the “Existing Structure” side of Figure 5.6) and decides to clean it up a
little.

First, Don Quixote will remove one copy of manuals—the one that is not
in the noble subdirectory:

$ cd /home/quixoted<Enter>

$ rm manuals<Enter>

He wants to remove the original copy of test1 now, too. But, instead of
just removing it outright, he will remove it interactively:

$ rm -i test1<Enter>

rm: remove 'test1'? y<Enter>

Example 5.9 Deleting Directories with rm

All Don Quixote wants to remove now, in order to complete his cleanup, is
the newdir subdirectory and its files named trio-ltr and mon_rept. The

138 Installing and Administering Linux 2E

copies never did come in handy as he originally planned. Here is how he
removes newdir recursively:

$ pwd<Enter>

/home/quixoted

$ rm -r ./newdir<Enter>

The mtools Utilities

Now that we have discussed several Linux/UNIX commands and their
effects on Linux/UNIX files and directories, let’s visit the mtools.

The mtools utilities are a public domain collection of UNIX utilities for
creating, accessing, and manipulating DOS disks from Linux/UNIX with-
out having to mount or unmount the DOS file systems (in our case, that
means not having to mount and unmount DOS floppy disk file systems).
The mtools are maintained by Alain Knaff and David Niemi. Some UNIX
veterans refer to mtools commands simply as m commands.

Obtaining and Loading mtools
A copy of the mtools utilities might be packaged with your Linux distrib-
ution. If so, they probably work fine. But two or three years back, the
mtools enclosed with distributions were unreliable, so it was best to get
the latest version of mtools from one of the mtools Web sites. If you
would like to obtain and use these utilities, or if you find that your existing
version is buggy, check out one of the following sites to download the lat-
est version of mtools or the latest patches to your version:

■■ www.tux.org/pub/knaff/mtools/ (U.S. Web site)
■■ http://mtools.linux.lu/ (European Web site)
■■ ftp://www.tux.org/knaff/mtools/
■■ ftp://ibiblio.unc.edu/pub/Linux/utils/disk-management/

Please note that more versions are available at the FTP sites than at the
HTTP sites. We recommend that you download the text files (especially the
mtools manuals from one of the first two Web sites) as well, because they
include the most up-to-date instructions for loading mtools on your sys-
tem and also have an in-depth discussion of mtools in general.

Using Files in Linux 139

Suppose that you download the mtools-3.9.8-2.i386.rpm file from among
the several formats and versions available. The latest full version of
mtools, version 3.9.8, was released in late May 2001. Once you have
downloaded that version, you can then install it with those versions of
Linux that use rpms, for example, by entering

rpm -U mtools-3.9.8-2.i386.rpm<Enter>

If you use another version, simply follow the instructions for obtaining
and loading alternate versions (found by following the FAQ links at the
HTTP Web sites).

Basic mtools Features
The mtools commands are usually identical to DOS commands with the
following difference: exception of the addition of an m prefix. The mtools
commands follow the DOS convention of referring to DOS file systems as
drives. For example, the first floppy disk drive is called the A: drive, and the
first hard disk drive is customarily called the C: drive. DOS can even refer
to a drive by more than one (letter) designation, or in the case of multiple
floppy drives, using one drive letter to refer to both drives (in a predeter-
mined search order). Furthermore, DOS filenames are generally preceded
by the drive letter and a colon. UNIX file names do not have such prefixes.

If you are accessing only the floppy drives, mtools enables you to do so
without mounting and unmounting their respective file systems, and you
usually do not have to modify the /usr/local/etc/mtools.conf file. You must
ensure that this file is properly configured, however, if you will be access-
ing DOS hard disk partitions and DOS emulation image files.

If you find it necessary to use pattern matching, remember that the
mtools utilities use Linux/UNIX syntax and conventions (for example,
use * as a wildcard instead of DOS’s *.*). Also, to add options to com-
mands, use a hyphen (-) instead of DOS’s slash (/).

mtools Commands
The mtools utilities have an extensive man page, and a great deal of infor-
mation is also available on the Internet sites listed previously.

We present only a sampling of the commands available in mtools.
These commands resemble those used frequently by DOS users and DOS

140 Installing and Administering Linux 2E

file system administrators. The mtools commands are not case sensitive.
Table 5.3 lists the syntax and purpose of about half of the existing mtools
commands.

Refer to the man pages and other sources for information regarding the
options. Remember that all pattern matching follows UNIX syntax and
conventions, not DOS’s. With commands such as mcopy and mmove, you
can determine whether the files are going from a DOS file system to a
UNIX file system by determining whether the sourcefile or targetfile has the
DOS letter-drive designation.

MToolsFM
MToolsFM is a program designed to give people easy GUI-based file man-
agement of floppy disks under Linux and UNIX-like operating systems.
MtoolsFM was formerly called mfm, but that was occasionally confused
with MFM, the Motif File Manager. The latest version is MToolsFM-1.8.

It uses mtools functionality. But the advantage to MToolsFM is that
because there are fewer and fewer people who know DOS, the GUI inter-
face gives them the functionality but does not require them to learn a dif-
ferent set of command line commands.

MtoolsFM can be downloaded from www.core-coutainville.org/
MToolsFM/, where it is maintained by Christian Ospelkaus (christian@
core-coutainville.org).

Printing Files: The lpr, lpq,
and lprm Commands

Printing with Linux could take up a book on its own. Here, we will try to
condense these introductory instructions and examples as much as possi-
ble. If you will be setting up printing with Linux, however, we recommend
that you read the latest Linux HOWTO on printing at www.linuxprinting
.org. The HOWTO has been maintained (and copyrighted, too) by Grant
Taylor since 1992.

Connecting Your Printer and Creating
a Print Queue
Prior to discussing, however briefly, some basic printing commands, let’s
follow “first things first.” First, connect a printer to your system. We used
a Hewlett-Packard LaserJet 6L printer. We connected it to the parallel port.

Using Files in Linux 141

Table 5.3 mtools Commands

SYNTAX PURPOSE

mattrib +/-[flags] Changes file attributes
dosfilename(s)

mcat [-w] drive: Copies an entire disk image from or
to the floppy device; same as the
Linux/UNIX cat command

mcd dosdirectory Changes the mtools working
directory on the DOS drive

mcopy -[options] dossourcefile Copies DOS files to and from UNIX
dostargetfile

mdel -[options] dossourcefile Deletes a DOS file
dostargetfile

mdeltree -[options] Removes a DOS directory and all its
dosdirectory (ies) subdirectories and their contents

mdir -[options] dosfilename(s) Displays the contents of a DOS
directory

mformat -[options] dosdrive: Adds an MS-DOS filesystem to a
diskette that has already been
formatted by a UNIX low-level
fdformat command

mlabel -[options] Adds a volume label to a disk
drive:[label]

mmd -[options] Creates a DOS subdirectory
dosdirectory(ies)

mmount dosdrive [args] Mounts a DOS disk; available only
on Linux

mmove -[options] dossourcefile Moves or renames an existing DOS
dostargetfile file or subdirectory

mrd -[options] Removes a DOS subdirectory
dosdirectory(ies)

mren -[options] Moves or renames an existing DOS
dossourcefile dostargetfile file or subdirectory

mtype -[options] dosfile(s) Displays a DOS file

142 Installing and Administering Linux 2E

Next, let’s create a print queue for the printer. A print queue mechanism
enables more than one user to use the same printer without having to wait
for the printer to become available. But to create a queue, we have to leave
the command line world for a moment and enter the world of the X Win-
dow system, which itself is covered in more detail in Chapter 14, “The
Linux X Window System.”

To invoke an X Window System manager (in other words, a GUI desk-
top), go to your command line and, as the root user, enter

su - root

Password:

startx<Enter>

One or another of the Linux Desktop Manager programs will be
invoked. The following instructions will presume that you have KDE
installed and functioning.

On the KDE desktop, click the shell terminal icon on the toolbar (on
the toolbar, the icon we are looking for is one that consists of a miniature
terminal window with some sort of abalone or similar shell overlaying it).
Or, if there is no such icon, press the K button and search within its menus
for the Terminal bar and click it. At some point, you will be successful
and a terminal window will appear on the desktop. Activate the terminal
window by clicking it.

Once you are in the terminal window, ensure that you are logged in as a
root user. Ordinary users cannot set up printing functions. Then, as the
root user, type

printtool<Enter>

A separate printconf-gui dialog box/window will appear. There
will likely be no print queues listed yet. On the toolbar, click New.

A separate Edit Queue dialog box will appear (see Figure 5.7). On the
left-hand side (LHS), there will be the following list of variables for which
you will have to specifiy values:

Name and Aliases

Queue Type

Printer Driver

Highlight Name and Aliases. Then, on the right-hand side (RHS), in
the Queue Name field, type the name you will use to identify your print-
ing queue. Because we were installing a Hewlett-Packard LaserJet 6L

Using Files in Linux 143

Figure 5.7 The Edit Queue dialog box; Name and Aliases.

printer, we specified LJ6L-Q as our queue name. If you want to use one or
more aliases for the queue, then add your preferred alias names to the
Aliases field. Aliases are not mandatory, but the queue name is.

Back on the LHS, highlight Queue Type (see Figure 5.8). On the RHS
now, leave the Queue Type value as the default Local Printer (that is,
if you are attaching the printer to the system you are connected to and not
on a server elsewhere on the network), and leave the Printer Device
value as the default /dev/lp0 (UNIX-speak for “the first parallel port”).

Now, highlight Printer Driver on the LHS (see Figure 5.9). On the
RHS, scroll down to the name of your printer’s manufacturer (in our case,
it was HP) and double-click it. Another listing appears consisting of the
names of the printer models made by the manufacturer you specified.
Scroll down to the actual model name of your printer (in our case, it was
LaserJet 6L) and highlight the name. We left the Printer Driver
value as the default lj5gray and then clicked the OK button at the bot-
tom of the Edit Queue dialog box to indicate that we were finished.

Leave the Driver Options at their respective defaults (see Figure
5.10). We recommend that you do not change these until you have proven

144 Installing and Administering Linux 2E

Figure 5.8 The Edit Queue dialog box; Queue Type.

that the printing scenario works. You can revisit this screen at any time to
make further adjustments.

Back in the printconf-guiwindow, we see that the queue we created
is now listed (see Figure 5.11). Highlight the name of the queue and click
the Default button on the toolbar. A check mark should appear at the LHS
of the queue name. Starting and or refreshing the lpd daemon is
absolutely mandatory at this point. Essentially, these menus have updated
the /etc/printcap file. The daemon now has to reread this file to activate the
new printer. What is the easiest way to perform this task? You must click
the File drop-down menu and select Restart lpd.

Once the lpd daemon has been restarted, you should test the printer.
Click the Test drop-down menu and select Print ASCII Test Page.
See Figure 5.12.

At this point, you should have a functional printing environment. We rec-
ommend that you do not edit any of the print files such as the /etc/printcap or
any of the queue directories manually. Always use the printtool utility
or the printing commands to manage this environment. The reason is

Using Files in Linux 145

Figure 5.9 The Edit Queue dialog box; Printer Driver.

because many of these entries for print files and parameters are main-
tained across several files. The commands and utilities take care of the con-
sistency over all these files and will prevent your printing environment
from corruption.

exit<Enter>

On the GUI desktop, click the K^ button and log out. After verifying that
you are indeed logging out, you will be returned to your normal command
prompt.

Commands for Printing
Now that we have connected a printer and created a print queue, we can
get to the actual printing commands. Or, to paraphrase the great comedian
Bill Cosby, “(We) told you all that to tell you this.”

146 Installing and Administering Linux 2E

Figure 5.10 The Edit Queue dialog box; Driver Options.

Figure 5.11 The printconf-gui dialog box; restarting the lpd daemon.

Using Files in Linux 147

Figure 5.12 The printconf-gui dialog box; printing a test page.

Printing with lpr

To queue a file for printing, ordinary users use the lpr command. The root
user and superuser have additional printing commands at their disposal.

To send a print job to the default printer, here is the syntax:

$ lpr filename1 filename2 ...<Enter>

To specify a printer other than the default printer, where lp1 is the name
of the alternate printer, you enter the following:

$ lpr -P lp1 filename<Enter>

The lpr process sends a copy of the file to the /var/spool directory, where
the copy sits for however much time it takes for a free line-printing dae-
mon, called lpd, to discover and print it. For a short queue, the timing is
almost instantaneous; the print job seems to go straight to the printer.

For large files, where copying them to the spool directory might cause
memory congestion, you could create a just-in-time delivery-oriented,
symbolic link between the spool directory and the file. When the print job
is to be executed for the specified file name, the lpd daemon processes the
link, which causes the file to be directly transferred in time for printing:

$ lpr -s filename<Enter>

148 Installing and Administering Linux 2E

The lpr command has many options and arguments. We recommend
that you check the man pages and other sources for more information.
Two other important print commands, lpq and lprm, are shown in
Example 5.10.

Example 5.10 Printing Files with lpr

Don Quixote wants to read and review a poem he wrote about the wind-
mills that so soundly defeated him on a previous Noble Deeds Division
misadventure. He also wants to review his weekly report (the file called
mon_rept) on hard copy before sending it to Lady Dulcinea. Here is how he
sends the two print jobs to his default printer:

$ lpr windmills mon_rept<Enter>

Listing and Canceling Print Jobs

To list print jobs in the default print queue, display its current status:

$ lpq<Enter>

To check the status of any queue that is not the default queue (assuming
again that lp1 is the alternate printer):

$ lpq -P lp1 filename<Enter>

To cancel a print job:

$ lprm jobnumber<Enter>

To find the job number, issue the lpq command beforehand.

Example 5.11 Listing Print Jobs with lpq

Don Quixote, after sending his print jobs to the queue, does a quick check
of the print queue to see whether he has to wait long for the printing to be
done and what the current status of his two print requests is:

$ lpq<Enter>

Rank Owner Job Files Total Size

active quixoted 301 windmills 255 bytes

active quixoted 302 mon_rept 2537 bytes

Using Files in Linux 149

The Don sees that his two print jobs are first in line. Both are small, so they
should be done soon.

Example 5.12 Canceling Print Jobs with lprm

At the last second, Don Quixote decides to add to his weekly report. So, he
cancels the printing of mon_rept for the time being:

$ lprm 302<Enter>

cat Can Print, Too
Before we leave this topic and this chapter, it is worth pointing out that the
cat command can also be used to print text and files. To use cat in this
manner also requires redirection, which we have mentioned previously
under Viewing File Contents.

Exercises

1. Change to the /home/mydirectory/mydir directory. Use the touch
command to create two zero-length files called myfile1 and myfile2 in
your mydir directory:

$ cd mydir<Enter>

$ touch myfile1<Enter>

$ touch myfile2<Enter>

2. Display a long listing of the contents of your mydir directory. What
are the sizes of myfile1 and myfile2?

$ ls -l<Enter>

3. View the long listing again, but this time display the inode numbers,
too. What are the inode numbers of each file?

$ ls -li<Enter>

4. Using the pwd command, verify that you are in the home directory,
/home/directoryname.

150 Installing and Administering Linux 2E

$ pwd<Enter>

5. List the contents of your home directory, including its hidden files.

$ ls -a<Enter>

6. View the contents of the /etc/motd and /etc/passwd files. Use the cat,
more, and less commands to see how each command handles the
output. The /etc/motd file contains the message of the day (what you
see after you first log in). The /etc/passwd file contains a list of all the
users who are authorized to use the system.

$ cat /etc/motd<Enter>

$ cat /etc/passwd<Enter>

$ more /etc/motd<Enter>

$ less /etc/motd<Enter>

$ more /etc/passwd<Enter>

$ less /etc/passwd<Enter>

7. Turn off the printer attached to your system. Print the /etc/motd file
on the system printer.

$ lpr /etc/motd<Enter>

8. Check the status of your print job.

$ lpq<Enter>

9. Turn the printer back on.

10. Copy the /bin/cat file into your current (that is, home) directory:

$ cp /bin/cat /home/teamxx<Enter>

or

$ cp /bin/cat . <Enter>

11. Copy the /usr/bin/cal file into your current (home) directory:

Using Files in Linux 151

$ cp /usr/bin/cal /home/teamxx<Enter>

or

$ cp /usr/bin/cal . <Enter>

12. List the files in your current directory. You should see the two files
you just copied.

$ ls<Enter>

13. In your home directory, create a subdirectory called bin:

$ mkdir bin<Enter>

14. Move and rename the two files that you copied in Exercises 5 and 6
into your new subdirectory. Name them mycat and mycal,
respectively:

$ mv cat bin/mycat<Enter>

$ mv cal bin/mycal<Enter>

15. Make the new subdirectory (bin) your current directory:

$ cd bin<Enter>

16. List the contents of the directory to verify that the files were copied.

$ ls<Enter>

17. Use the mycat command to list the .bash_profile file in your home
directory:

$ mycat ../.bash_profile<Enter>

or

152 Installing and Administering Linux 2E

$ mycat /home/teamxx/.bash_profile<Enter>

18. Make your home directory the current directory:

$ cd<Enter>

19. Create another subdirectory called goodstuff in your home directory:

$ mkdir goodstuff<Enter>

20. Copy a file called /etc/profile into the new directory and name the
new file newprofile:

$ cp /etc/profile goodstuff/newprofile<Enter>

21. Use the cat command to look at the file:

$ cat goodstuff/newprofile<Enter>

22. Is it hard to read? Try the more and less commands:

$ more goodstuff/newprofile<Enter>

or

$ less goodstuff/newprofile<Enter>

23. The newprofile filename is too long to input time after time. Change
its name to np. List the contents of the goodstuff directory to make
sure that you have accomplished the task:

$ mv goodstuff/newprofile goodstuff/np<Enter>

$ ls goodstuff<Enter>

Using Files in Linux 153

24. This point is a good place to check everything out. Starting from
your home directory and working down, display a hierarchical tree
of your files and subdirectories.

25. Ensure that you are in your home directory. Remove the goodstuff
directory:

$ pwd<Enter>

$ rmdir goodstuff<Enter>

Could you do it? Why or why not?

26. Change to the goodstuff directory. Request a listing of the contents of
the goodstuff directory (including any hidden files). Remove the files.
Do another listing of the goodstuff directory, including the hidden
files. Note that the . and .. files are still there. The directory is
considered empty if these are the only two entries left.

$ cd goodstuff<Enter>

$ ls -a<Enter>

$ rm np<Enter>

$ ls -a<Enter>

27. Now, remove the directory:

$ cd .. <Enter>

$ rmdir goodstuff<Enter>

28. Assume that you want to find the program that generates today’s
date. Use the slocate command to search on the keyword date:

$ slocate date<Enter>

From the list produced, find the command that displays the date.
What is the name of the command, and what directory or directories
is it in?

29. Having found the date command in Exercise 2, use man without
options to obtain the correct syntax of the command:

154 Installing and Administering Linux 2E

$ man date<Enter>

When you have finished with the man page, type q to exit from it.

See Appendix B for answers.

Quiz

1. What is the effect of executing the following commands in
succession?

$ cd /home/quixoted<Enter>

$ cp file1 file2<Enter>

2. What is the effect of executing the following commands in
succession?

$ cd /home/quixoted<Enter>

$ mv file1 newfile<Enter>

3. What is the effect of executing the following commands in
succession?

$ cd /home/quixoted<Enter>

$ ln newfile myfile<Enter>

4. List the commands that can be used to view the contents of a file.

5. Which of the commands listed in Question 4 is used automatically
when you invoke man pages? How do you know?

6. Which of the following are valid filenames?

• !

• aBcDe

• -myfile

• myfile

• my.file

• my file

• .myfile

Using Files in Linux 155

7. Once you have configured printing queues and installed printer
drivers, what must you do to enable the printing environment? How
would you do it?

8. What file has been updated by configuring the queues and installing
the printer drivers?

See Appendix C for answers.

C H A P T E R

6

Linux File Permissions

157

Along with passwords and authentication systems, file and directory
access—known as permissions—forms the basis for system security.
Although similar in nature, directory permissions and file permissions are
not the same—and occasionally, that difference leads to confusion and
even security breaches.

We begin the chapter with a review of the ls -l command, which you
use to view existing file and directory permissions. Then, we focus on
information found in the first column of the ls -l response information—
the permission bits—which provide a summary of the file mode of these
entries. We introduce several terms, commands, and issues involved in set-
ting and changing permissions.

Review of the ls -l Command

We described the output of the ls -l (long listing) command in detail in
Chapter 4, “Files and Directories in Linux.” Example 6.1 and Table 6.1
illustrate our quick review of this frequently used command.

158

Ta
b

le
 6

.1
Re

sp
on

se
 to

 th
e

ls
 -

l C
om

m
an

d

FI
E

LD
 1

FI
E

LD
 2

FI
E

LD
 3

FI
E

LD
 4

FI
E

LD
 5

FI
E

LD
 6

FI
E

LD
 7

t
o
t
a
l

6

d
r
w
x
r
w
x
r
-
x

5
q
u
i
x
o
t
e
d

k
n
i
g
h
t
s
1

4
0
9
6

M
a
y

2
6

1
0
:
1
8

a
d
m
i
n

d
r
w
x
r
-
x
r
-
x

5
q
u
i
x
o
t
e
d

k
n
i
g
h
t
s
1

4
0
9
6

M
a
r

0
7

0
8
:
1
1

D
e
s
k
t
o
p

-
r
w
-
r
-
-
r
-
-

1
p
a
n
z
a
s
a
n

k
n
i
g
h
t
s
1

1
4
4

J
u
l

1
1

1
1
:
4
2

m
a
n
u
a
l
s

-
r
w
-
-
-
-
-
-
-

1
q
u
i
x
o
t
e
d

k
n
i
g
h
t
s
1

1
1
1
6

M
a
y

2
6

1
0
:
1
8

m
b
o
x

d
r
w
x
r
w
x
r
-
x

5
q
u
i
x
o
t
e
d

k
n
i
g
h
t
s
1

4
0
9
6

A
p
r

0
5

1
4
:
3
0

m
i
s
c

d
r
w
x
r
w
x
r
-
x

5
q
u
i
x
o
t
e
d

k
n
i
g
h
t
s
1

4
0
9
6

J
u
l

1
1

1
5
:
2
1

n
o
b
l
e

Linux File Permissions 159

Example 6.1 The ls -l Command
$ pwd<Enter>

/home/quixoted

$ ls -l<Enter>

The following is a description of the different fields of output:

Field 1 consists of the object identifier and file or directory permission
bits.

Field 2 is the link count. Ordinary files have a link count of 1.
Directories have a link count of 2. The ln command can increase the
link count by 1; removing a file reduces its link count by 1. When the
link count reaches 0, the file is removed.

Field 3 is the username of the person who owns the entry.

Field 4 is the name of the group for which group protection privileges
are in effect.

Field 5 is the character count of the entry.

Field 6 is the date and time the entry was last modified.

Field 7 is the name of the file or directory.

To display information about only a particular directory, use the -d option
with the ls -l command. Directories are treated like ordinary files.

Permissions

In this chapter, we will introduce the term entry when we discuss direc-
tory and subdirectory contents. Files, directories, linked files, block spe-
cial files, character special files, symbolic links, named pipes, and sockets
are all examples of entries. When a user creates an entry, he or she
becomes the owner of that entry. Some people also use the term object
to indicate an entry.

The owner of an entry generally wants to control who will have access to
or use of the entry. Each entry, once created, has attributes called permis-
sion bits that are used for access control. Because it is possible to change
the nature of these permission bits (or permissions, a term that we will use
interchangeably) on an entry, the owner has the power to make the entry
either more secure or more widely available.

160 Installing and Administering Linux 2E

Table 6.2 illustrates a breakdown of permission bits available to each entry.
The single character on the far left of the permission bit string identifies

the type of entry, or object. The leftmost group of three permission bits—in
other words, the three located next to the object identifier—refers to the
permissions the owner of the entry has with respect to the entry. The mid-
dle three are the permissions that the group has for the entry (that is, the
group to which the entry will belong). The rightmost three bits are the per-
missions held by other users who are not owners of the entry and who are
also not in the group to which the entry belongs.

For both files and directories, r is the permission to read; w is the per-
mission to write; and x is the permission to execute. Although the names
of these permissions are identical for files and directories, the permis-
sions themselves mean different things. You might ask, “What do we
mean by that?”

When viewing or establishing the permissions for an ordinary file,

■■ r permits the viewing of file contents.
■■ w permits the changing and storing of file contents.
■■ x permits the execution of the file (r is also needed).

But for a directory,

■■ r permits the viewing of files in the directory.
■■ w permits the creation and removal of files in the directory (x is

also needed).
■■ x permits a user to be in the directory (that is, to cd to a directory

and to access files from the directory).

The x permission is required to access any files or subdirectories within
a directory. In other words, the x permission is required on all directories
above the specific directory, as well.

To remove a file from a directory, you need only w and x permissions
for the directory. You do not necessarily need permissions on the file
itself.

Table 6.2 Permission Bits

ENTRY OWNER GROUP OTHERS

d rwx rwx rwx

Linux File Permissions 161

Table 6.3 Symbolic Parameters

SYMBOLMODE DEFINITION

u Owner of the file

g Owner’s group

o Other users on the system

a Owner, group, and others

+ Add the permission

- Remove the permission

= Clear the existing permission mode, then set to the
mode specified

r Read permission

w Write permission

x Execute permission

Changing Permissions: The chmod
Command
You use the chmod (change permission mode) command along with sym-
bolic notation or numeric notation to specify changes to the existing per-
missions for a file or directory. How do you perform this task? The answer
is, by adding or deleting permissions.

Symbolic Notation

Symbolic notation requires you to know the existing permissions prior to
specifying new permissions. Then, when you specify the new permissions,
the specification is made with respect to the existing permissions. The syn-
tax for changing permissions using symbolic notation with the chmod
command is as follows:

$ chmod symbolmode filename<Enter>

Table 6.3 summarizes the symbolmode parameters. You can specify
multiple symbolic modes by separating them with commas. The opera-

162 Installing and Administering Linux 2E

tions are performed in the order in which they appear (in other words,
from left to right). Example 6.2, which deals with the use of symbolic para-
meters to change permission modes, will illustrate what we mean.

When you use the symbolic mode to specify permissions, the first set of
parameters you specify set the permission field, as follows:

■■ u file owner (when discussing permissions, owner permissions are
often referred to as user)

■■ g group
■■ o all others
■■ a owner, group, and all others

Using a is the same as specifying the ugo option. The a option is the
default permission field. That is, if you omit the permission field, Linux
defaults to the a option.

The second set of flags determines whether permissions are to be added,
taken away, or set as specified:

■■ + adds the specified permissions.
■■ - removes the specified permissions.
■■ = clears the selected permission field and sets it to whatever follows

on the command line. If you do not specify a permission mode
following the =, then Linux will remove all permissions from the
selected field.

The third set of parameters determines the permission as shown here:

■■ r read permission
■■ w write permission
■■ x execute permission for files; search permission for directories

To change permissions, you should first issue the ls -l command to
check the current permission settings (that is, the current file mode). Then,
you use the chmod command to specify the symbolic modes. Finally, it is a
good idea to check these new permissions by issuing the ls -l command
again. This procedure is followed in Example 6.2.

With symbolic and numeric notation, you do not separate entries with
spaces. This situation is contrary to your experience with entering commands
thus far.

NOTE

Linux File Permissions 163

Example 6.2 chmod and Symbolic Notation

Back sometime prior to Chapter 4, “Titles and Directories in Linux,”, San-
cho, at Don Quixote’s request, had created a file called manuals (which
includes a list of mandatory reading materials for those who wish to
become chivalrous knights) and filed it in Don Quixote’s home directory
/home/quixoted. Later, in Example 5.2, Sancho linked to the same file but
referred to it as knightdata in his home directory, /home/panzasan.

But we had not yet explained how Sancho was able to create a file and
store it in Don Quixote’s home directory at the beginning. Sancho would
not ordinarily have had access to Don Quixote’s home directory.

To allow Sancho to save a file in Don Quixote’s home directory,
/home/quixoted, Don Quixote would have had to change the permissions on
that directory. Here is how he did it:

$ pwd<Enter>

/home/quixoted

$ cd ..<Enter>

$ pwd<Enter>

/home

$ ls -l quixoted<Enter>

drwx - - - - - - 5 quixoted knights1 4096 Mar 07 08:11

quixoted

$ chmod g+rwx quixoted<Enter>

$ ls -l quixoted<Enter>

drwxrwx - - - 5 quixoted knights1 4096 Jul 10 08:11

quixoted

We can see that Don Quixote first checked the directory he was in and
found that it was his home directory. He knows that he cannot change the
status of the directory if he is in it, so he changed to the directory /home and
verified that he was there. Then, he checked the original permissions on the
/home/quixoted directory. At that point, he changed the group permissions to
allow anyone in knights1 to have read, write, and execute permissions on
/home/quixoted (because he was already in /home, he only needed to specify the
relative pathname quixoted). Then, he checked the status of /home/quixoted
again and found that he was successful. Now, anyone in the group knights1
could save a file in his home directory.

Numeric Notation

The syntax for using the chmod command with numeric notation is similar
to that used with symbolic notation:

164 Installing and Administering Linux 2E

Figure 6.1 Translating binary to numeric notation.

$ chmod numeric filename<Enter>

With numeric (also called octal) notation, you specify absolute file or
directory permissions. You do not need to know the existing values before-
hand. This situation contrasts with symbolic notation, which requires you
to know the existing permissions before adding, subtracting, or redefining
new permissions with respect to the existing permissions.

A scenario might help to explain the numeric notation concept. As we go
through it, please refer to Figure 6.1.

Let’s say that you have created a file called newfile and you want the
owner and the group to be able to read and write to it, but you only want
it to be readable by all other system users.

First, to enable the owner to read and write to the file, you add the r and
w permissions to the three leftmost permission bits (in other words, the
owner’s permission bits).

Each permission you set within the nine permission bits is represented
by a binary value 1. Each lack of a permission is represented by a 0. For
example, rw-r--r-- translates to 110100100 in binary.

Use Figure 6.1 to translate the binary notation to numeric (octal). In Figure
6.1, we see that the owner’s r and w permission bits would have values of
400 and 200, respectively. Second, to set the same permissions for the group,
you add 40 (r) and 20 (w). Finally, to set the read permission for all other
system users, you add 4 (r). The numeric result comes from simple addition:

400 + 200 + 40 + 20 + 4 = 664
So, to translate the permission mode from a symbolic (alphabetic) form

to a numeric form, you add the numbers that correspond to the individual
permissions required and then specify that number as an argument to the
chmod command.

Linux File Permissions 165

Table 6.4 Numeric Parameters versus Other Notations

NOTATION OWNER GROUP OTHERS

symbolic rwx rw - r - -

binary 111 110 100

numeric/octal 7 (4 + 2 + 1) 6 (4 + 2 + 0) 4 (4 + 0 + 0)

The chmod command is then

$ chmod 664 newfile<Enter>

At first glance, the numeric format seems easier than the symbolic for-
mat. There are, however, some additional permissions that cannot be unset
by using numeric notation. For example, you cannot remove the SETGID
attribute on a directory by using numeric notation. You would have to
explicitly remove the permission using symbolic notation. If you want to
know more about SETGID and similar permissions, please check other
information sources. Those topics are unfortunately beyond the scope of
this introductory-level book.

Meanwhile, specifying permissions with numeric notation can occasion-
ally result in safety messages. For example, suppose that you are the owner
of a file and have no permissions on the file, but you try to remove it. The
Linux system will then ask whether you want to override the protection
setting on the file you want to remove. If you respond yes, Linux removes
the file. The same would happen if you were a member of the group.

Table 6.4 summarizes the relationships between the symbolic notation
and its binary notation and numeric notation counterparts. Use that table
as you follow along with Example 6.3.

Example 6.3 chmod and Numeric Notation

In Example 6.2, Don Quixote changed the permissions on his home direc-
tory by using chmod with symbolic notation. How would he have done it
with numeric notation instead? Here is how:

$ pwd<Enter>

/home/quixoted

$ cd ..<Enter>

$ pwd<Enter>

/home

$ ls -l quixoted<Enter>

166 Installing and Administering Linux 2E

Table 6.5 File and Directory Values (Default umask Applied)

ENTRY ID SYMBOLIC NOTATION NUMERIC NOTATION

File Root -rw-r--r-- 644

User -rw-r--r-- 644

Directory Root drwxr-xr-x 755

User drwxr-xr-x 755

drwx - - - - - - 5 quixoted knights1 4096 Mar 07 08:11

quixoted

$ chmod 770 quixoted<Enter>

$ ls -l quixoted<Enter>

drwxrwx - - - 5 quixoted knights1 4096 Jul 10 08:11

quixoted

Once again, we see that Don Quixote first checked the directory he was
in and found that it was his home directory. Knowing he cannot change
the status of that directory if he is in it, he changed to the directory /home
and verified that he was there. Then, he checked the original permissions
on the /home/quixoted directory and found them to be equivalent to 700
(that is, 400 + 200 + 100 + 0 + 0). He then changed the group permissions to
allow anyone in knights1 to have read, write, and execute permissions (in
other words, he added 40 + 20 + 10 = 70) on /home/quixoted. Again, because
he was already in /home, he only needed to specify the relative pathname
quixoted. Then, he checked the status of /home/quixoted again and found
that he had been successful. Thereafter, anyone in the group knights1
could save a file in Don Quixote’s home directory.

Setting Permissions: The umask
Command
The real default permission values for a file in Linux, using numeric and
symbolic notation, are 666 and -rw-rw-rw-, respectively. Those for a direc-
tory are 777 and drwxrwxrwx, respectively. So, why have we listed different
figures in Table 6.5? The answer lies in a masking subroutine called umask.

Notice how the differences in the default file modes all hinge on the
application of the x permission for directories? As we mentioned earlier, if
there were no x permissions, no one would be able to cd into the directo-
ries to see, let alone manipulate, other subdirectories or files found therein.

Linux File Permissions 167

Checking Permission Modes

The umask value is subtracted from 666 from a file permission standpoint
and from 777 from a directory standpoint to determine the permissions
that will be attributed to files and directories as that user creates them. The
resulting 644 (666 minus 022) for file permissions means that the owner
and the owner’s group by default have read and write access to the files
created, but other system users have only read access. The resulting 755 for
directory permissions means that the owner and the owner’s group have
read, write, and execute permissions and that others have only read and
execute permissions to any directories created.

The umask command is commonly called a file system option, which
restricts access to certain files or directories. The command is actually a
masking subroutine that creates and applies file modes, or permissions, on
files or directories as they are created, however. If you want to use umask
to check permission modes, the syntax is simply

$ umask<Enter>

Example 6.4 shows you how to check the permission mode with umask.
When a user logs in, his or her username, user number, group name, and

group number are inputted to the /etc/profile program, which deter-
mines whether the user qualifies as a root user or as an ordinary user as far
as umask is concerned.

If the user is an ordinary user or a root user, Linux by default assigns a
umask of 022 (in earlier versions, the default umask for users was 002, and
for root users the umask was 022). So, the file permissions are 644 and the
directory permissions are 755. The owner has read and write permissions
on created files, but others have only read permissions. On created directo-
ries, the owner has read, write, and execute permissions, and the owner’s
group and others have read and execute permissions.

Those who advocate higher security, especially on a network, recom-
mend a default umask of 022 as the absolute minimum with alternatives
such as 027 or even 077. Generally, the higher the umask number, the
tighter the security.

Example 6.4 Checking Permission Modes with umask

After a discussion of system security with Freston, Lady Dulcinea decides
that she wants to know what modes her files and directories are and will
be. To do so, she must find out what her umask is:

168 Installing and Administering Linux 2E

$ umask<Enter>

022

To ensure that this later version of Linux is consistent whether you are a
user or a root user, Freston shows Lady D. his default (root user) umask:

umask<Enter>

022

$ ls -ld /home/dulcinea<Enter>

Changing Permission Modes

You can also use the umask command to specify the permission bits to be
set on any new file or directory created in the same session only. Argu-
ments are numeric:

$ umask numeric<Enter>

Subtracting the new umask parameter from the default values of 666
and 777 enables you to determine the new permission bits you want for
files and directories, respectively.

Keep in mind the following items when changing permission modes:

■■ The umask value, and thus the permission bits, are applicable to
only the session in progress and are not in effect after the
owner/user logs out and logs back in. The default values apply
upon a new login.

■■ The new umask value affects only files and directories created after
the new umask value is specified. Thus, the command has no effect
on existing files and directories. To alter permissions on existing files
and directories, you must use the chmod command.

Remember that in general, the chmod command applies permissions and
umask subtracts permissions. By manipulating these commands, users and
system administrators can balance proper security with accessibility.

Creating Personal Directories

That said, we will demonstrate how to create a directory (a subdirectory, to
be absolutely correct) with the appropriate permissions for storing per-
sonal documents and data. Such a directory would enable only the owner

Linux File Permissions 169

to access it and to store information in it. Later, only the owner would
access it and review and change subdirectory structure(s) and/or files
within the personal directory. The ls -l listing of such a directory would
resemble the following:

drwx----- 5 me mygroup 4096 date time mydirectoryname

The numeric mode of such a directory would be 700.

The permission modes proposed here are now the default modes for
home directories created with the latest versions of Linux (kernel versions of
approximately 2.4.5 and later). Thus, if you have the latest version of Linux, this
information might be a little redundant. But if you are working with an older
version, then this material might still be beneficial to you.

Be careful of personal directories, though—your home directory or any
you might create. They can still be accessed and read by the root user (in
other words, system administrators).

As we have learned before, the command for creating a directory is mkdir:

$ mkdir directoryname<Enter>

But there are two different ways to create such a directory:

■■ Altering your umask temporarily, creating the directory, and then
changing your umask back to another value (likely, the original
value). This method is the slower way.

■■ Creating the directory and then using chmod to change its
permission bits. By a step or two, this method is the easier, faster
way.

Consider the following points when creating personal directories:

■■ Users should maintain their own execute (x) values on their
personal directories to ensure their own access.

■■ Users should be aware that although the personal directory is
invisible to all other users, the root user can still access the personal
directory and read the files contained in it.

Let’s look at examples of both methods now.

NOTE

170 Installing and Administering Linux 2E

Example 6.5 Creating a Personal Directory with
umask and mkdir

Don Quixote wants to create a private directory called personal in his home
directory. He remembers that it can be done with umask. Here is how he
does it:

$ cd<Enter>

$ pwd<Enter>

/home/quixoted

$ umask 077<Enter>]

$ mkdir personal<Enter>

$ ls -l<Enter>

total 8

drwxrwxr-x5 quixoted knights1 4096 May 26 10:18 admin

drwxr-xr-x5 quixoted knights1 4096 Mar 07 08:11 Desktop

-rw-rw--r--1 panzasan knights1 144 Jul 11 11:42 manuals

-rw-------1 quixoted knights1 1116 May 26 10:18 mbox

drwxrwxr-x5 quixoted knights1 4096 Apr 05 14:30 misc

drwxrwxr-x5 quixoted knights1 4096 Jul 11 15:21 noble

drwx------5 quixoted knights1 4096 Jul 24 10:05 personal

$ umask 022<Enter>

$ umask<Enter>

022

Example 6.6 Creating a Personal Directory with
mkdir and chmod

You change the directory permissions with chmod:

$ chmod numeric directoryname<Enter>

This way, the owner/user can move to his or her home directory, create
a subdirectory within it, change the mode of the new subdirectory, and
then check the permissions on the new subdirectory. With this strategy, the
user does not need to alter the umask and then return the umask to the
previous value.

Let’s see how Don Quixote could have used the chmod strategy to create
the same private directory called personal within his home directory:

$ cd /home/quixoted<Enter>

$ mkdir personal<Enter>

$ chmod 700 personal<Enter>

$ ls -ld personal<Enter>

drwx-----/5 quixoted knights1 4096 Jul 23 13:45 personal

Linux File Permissions 171

Table 6.6 Required Permissions for Selected Files and Directories

COMMAND SOURCE SOURCE TARGET
DIRECTORY FILE DIRECTORY

cd x N/A N/A

ls r N/A N/A

ls -l r, x N/A N/A

mkdir x, w (parent) N/A N/A

rmdir x, w (parent) N/A N/A

cat, more x r N/A

mv x, w None x, w

cp x r x, w

touch x, w* N/A None

rm x, w None N/A

* The write permission is required in the source directory when using the touch command to create a zero-
length file but not when using touch on an existing file to update the modification date.

Samples of Commands and Their Required
Permissions

We provide Table 6.6 as a reference to help you ensure that you set the
proper permissions on files and directories to accomplish what you want.
Remember that to remove a file, you need write permission on the direc-
tory that contains the file. You do not need write permission on the file
itself.

Exercises

1. Change to your myscripts directory. Display a long listing of the files
in that directory. Note the owner and permissions for the files that
you copied in the Chapter 5 exercises. Record the permissions for
mycal and mycat:

172 Installing and Administering Linux 2E

$ cd myscripts<Enter>

$ ls -l<Enter>

2. Execute a long listing on the original cal and cat files in the /usr/bin
directory and compare the permissions to those in the myscripts
directory:

$ ls -l /usr/bin/cat /usr/bin/cal<Enter>

3. Change the modification time of mycal and mycat in the myscripts
directory. Check to see that the time changed:

$ touch mycal mycat<Enter>

$ ls -l<Enter>

Describe another use for the touch command.

4. Execute the necessary commands so that you can reference the mycal
file in the myscripts directory by the name home_mycal in your home
directory.

$ ls mycal /home/teamxx/home_mycal<Enter>

or

$ ln mycal ../home_mycal<Enter>

$ ls -l mycal<Enter>

$ ls -l /home/teamxx/home_mycal<Enter>

or

$ ls -l ../home_mycal<Enter>

Compare the detailed information for both files. Is there a difference?
What is the link count?

5. Change the directory to your home directory. Execute home_mycal:

Linux File Permissions 173

$ cd<Enter>

$./home_mycal<Enter>

Because of default path limitations in Linux, simply typing home_mycal
will not work.

What does the output look like? Now, change permissions on the
home_mycal file so that you, the owner of the file, have read-only per-
mission. Try running the mycal command:

$ chmod 455 home_mycal<Enter>

$ ls -l home_mycal<Enter>

$ myscripts/mycal<Enter>

Can you do it? Why or why not?

6. Remove home_mycal:

$ rm home_mycal<Enter>

Did that remove myscripts/mycal? Why or why not?

$ ls -l myscripts/mycal<Enter>

7. Change the directory to the myscripts directory. Using symbolic
notation with the chmod command, remove the read permission on
the other permission bits from the mycat file. Check the new
permissions:

$ cd myscripts<Enter>

$ chmod o-r mycat<Enter>

$ ls -l mycat<Enter>

8. Using octal notation, change the permissions on mycat so that the
owner permission bits are set to read-only with no permission for
anyone else. Check the new permissions:

NOTE

174 Installing and Administering Linux 2E

$ chmod 400 mycat<Enter>

$ ls -l mycat<Enter>

9. Execute the mycat command against the .bash_profile file:

$ mycat ../.bash_profile<Enter>

or

$ mycat /home/teamxx/.bash_profile<Enter>

Did it work? What happened?

10. Make your home directory the current directory. Check to see
whether you are in your home directory:

$ cd<Enter>

$ pwd<Enter>

11. Alter the permissions on the myscripts directory so that you have
read-only access to it:

$ chmod u-wx myscripts<Enter>

or

$ chmod u=r myscripts<Enter>

or

$ chmod 455 myscripts<Enter>

12. Use a long list to check that you have set the permissions correctly:

$ ls -l /home/teamxx<Enter>

or

Linux File Permissions 175

$ ls -ld myscripts<Enter>

13. Try getting a simple list of the contents of the directory. Try a long list:

$ ls myscripts<Enter>

$ ls -l myscripts<Enter>

Did they work? Why or why not?

14. Try to execute mycal:

$ myscripts/mycal<Enter>

Did it work? Why or why not?

15. Try to remove mycal:

$ rm myscripts/mycal<Enter>

Did it work? Why or why not?

16. Return the permissions of myscripts back to its original form (rwxr-
xr-x) and then remove mycal:

$ chmod 755 myscripts<Enter>

$ rm myscripts/mycal<Enter>

17. Experiment with other permission combinations. When you are
through, make sure to change the permissions back to rwx for the
owner.

See Appendix B for answers.

Quiz

Questions 1, 2, and 3 are based on a file called reporta, which has the
following set of permissions: -rwxr-xr-x.

1. What is the file mode expressed in numeric (octal) notation?

NOTE

176 Installing and Administering Linux 2E

2. Change the file mode to -rwxr--r-- using the symbolic format.

3. Repeat the operation in Question 2 using the numeric (octal) format.

4. Assume that the jobs directory contains the joblog file. Using
ls -lR should verify it:

$ ls -lR<Enter>

total 8

drwxr-xr-x5 perez knights2 4096 Jun 17 08:09 jobs

./jobs:

total 8

-rw-rw-r--1 perez knights2 100 Jun 18 13:22 joblog

Can Nicholas, who is a member of the knights2 group, modify the
joblog file?

5. This question is based on the following listing. Assume that the jobs
directory contains the work directory, which in turn contains the
joblog file:

$ ls -lR<Enter>

total 8

drwxrwxr-x5 perez knights2 4096 Jun 17 08:09 jobs

./jobs:

total 8

drwxrw-r-x2 perez knights2 4096 Jul 21 09:41 work

./jobs/work:

total 8

-rw-rw-r--1 perez knights2 100 Jun 18 13:22 joblog

Can Nicholas, who is a member of the knights2 group, modify the
file joblog?

6. This question is based on the following listing. Assume that the jobs
directory contains the work directory (note that the permissions on
work have changed), which in turn contains the joblog file:

$ ls -lR<Enter>

total 8

drwxr-xr-x 5 perez knights2 40961 Jun 17 08:09 jobs

./jobs:

total 8

Linux File Permissions 177

drwxrwxrwx 2 perez knights2 40961 Jul 21 09:41 work

./jobs/work:

total 8

-rw-rw-r-- 1 perez knights2 1001 Jun 18 13:22 joblog

Can Nicholas, who is a member of the knights2 group, copy the
joblog file to his home directory?

See Appendix C for answers.

C H A P T E R

7

Shell Basics

179

As soon as you log into a Linux system, you are exposed to a shell-gener-
ally, the Bash variant, which we discuss in detail in this chapter. The shell
program is an interface to the operating system, translating your typed
input (or input from other sources) into instructions for the operating sys-
tem. DOS’s command.com program does just about the same thing.

This chapter describes the ins and outs of the basic Linux shells.
Although the focus is on Bash, we introduce elements of the tsch shell
and include certain twists on the commands relevant to still other shells.

Knowing what the shell is doing with your input will make you a more
efficient and effective Linux user and system administrator. When you see
how you can customize your input with wildcards, metacharacters, and
pipelining, you will begin to understand their power.

180 Installing and Administering Linux 2E

The Linux/UNIX Shells

The shell is but one of the interfaces to Linux/UNIX. There are others, such
as the X Window System, which we will discuss in Chapter 14, “The Linux
X Window System.” Remember that any shell is just an interface program
and is not the operating system itself. After you log in, typing your user-
name and password, the operating system starts the shell program. On one
hand, if you are using a command line-based shell, then the shell program
responds by giving you a command-line prompt, such as

[username@hostname /directory]$

Or, if you are the root user, you will see

[root@hostname /root directory]#

As you have noticed, in this book we have shortened these prompts to $
and #, respectively.

On the other hand, the X Window System, as a shell, would present you
with a GUI desktop image.

What does a shell do? It has three basic functions: a command inter-
preter, a job controller, and a comprehensive programming language.

First, let’s look at the shell as a command interpreter. When you present
a command to the shell, it looks at the command name to see whether it
matches an internal shell command that it can execute itself. It checks also
to see whether the command is an alias for another command. If the com-
mand is not an internal command, nor an alias for an internal command,
the shell searches the hard disk for the program corresponding to the com-
mand name. If it finds one, the shell executes the program and feeds it the
arguments (if any) that accompanied the command name entry.

What happens when the shell cannot locate a program? It responds with
an error message, such as

shellname: commandname: command not found

As a job controller, the shell:

■■ Enables multiple task execution. On occasion (perhaps more often
than we realize), it can enable some programs (also referred to as
processes or jobs) to run in the background where they likely require

Shell Basics 181

no user interaction, and it also enables another program to run in
the foreground (which likely interacts with the user).

■■ Switches between the foreground processes and background
processes as well as between other multiple tasks as necessary

■■ Suspends jobs without losing track of where the processes stopped
so that they can begin again at the same point

■■ Enables programs to be piped to achieve complex results with single
but perhaps complex commands. Remember, with pipelining (or
piping, as it is more commonly called), we have seen the output of
one program become the input to another, which starts
automatically unless the user specifies that interaction is required.

■■ Enables you to write scripts (we will introduce you to shell script
writing later in Chapter 15, “Linux Documentation and Support”). A
shell script can invoke other shell scripts as long as their locations
are in the search path.

Thus, the shell is also a comprehensive programming language that does
not need a compiler because it interprets the logic itself. Keep in mind, how-
ever, that different shells use different syntaxes to execute shell scripts.

Types of Linux/UNIX Shells

The two major UNIX shells are the Bourne shell and the C shell. The
Bourne shell is similar to the first UNIX shell developed by Bell Labs. The
C shell was developed at the University of California at Berkeley and has a
format similar to the C programming language. Another prominent shell
is the Korn shell, developed at AT&T Bell Labs, which was based on the
Bourne shell but also incorporated some C shell functionality.

Your copy of Linux likely contains several shells. Check your documen-
tation for a complete listing as well as for an indication of which shells are
automatically installed as part of the basic installation. Table 7.1 lists some
typical shells.

You can check to see whether any of the preceding shells (or others) are on
your installation medium, as well as which ones were installed with your
Linux operating system, by viewing the listing in the /etc/shells file.

To determine the default shell you log into, check the listing after your
username in the /etc/passwd file or check your environment by typing env
followed by the Enter key to see which directory is listed as the SHELL=

182 Installing and Administering Linux 2E

Table 7.1 Typical Linux/UNIX Shell Programs

NAME DESCRIPTION

ash A Bourne shell clone that supports all Bourne shell commands but is
smaller than Bash

ash.static A version of ash that is not dependent on software libraries

bash Stands for Bourne Again Shell, the default Linux shell. An
sh-compatible interpreter, it reads standard input or input from a
file; incorporates features from both Korn and C shells; and is
intended to conform with IEEE POSIX Shell and Tools specifications.

mc Midnight Commander, a visual shell. It looks like a file manager but
has many more features.

pdksh A reimplementation of the Korn shell intended for interactive and
shell script use

rsh The restricted shell used for network operations

sash A statically linked shell that contains simplified versions of some
basic commands. It is useful for system recovery.

tcsh An enhanced version of the C shell with additional features and
fancier prompts. In Linux, this shell is the usual choice as the
alternative to Bash.

zsh An enhanced version of the Bourne shell with most Korn shell, Bash,
and tcsh features (and more)

variable value. Although Bash is the usual default shell, you can spec-
ify which shell you want to use—either by default or for a specific process
or task. On some systems, you can change your shell with commands such
as chsh or passwd with the -s option. For further help, check your infor-
mation sources.

Example 7.1 Which Is the Login Shell?

Freston, an experienced shell programmer, is contemplating changing his
login shell. But first, he would like to see what shell he logs into by default.
He types

cat /etc/password<Enter>

Freston’s one-line password profile,

Shell Basics 183

root:x:0:0:root:/root:/bin/bash

appears near the top of /etc/passwd while the other users appear near the
bottom. The ordinary users’ profiles are similar to Freston’s. For example,
here is the one belonging to Nicholas the barber:

nicholas:x:606:604:/home/nicholas:/bin/bash

Example 7.2 Listing the Available Shells on Your
Linux System

Freston continues his shell investigation by checking to see what shells are
available on his Linux system. Now, he enters

cat /etc/shells<Enter>

/bin/bash2

/bin/bash

/bin/sh

/bin/ash

/bin/bsh

/bin/tcsh

/bin/csh

/bin/ksh

Example 7.3 Changing Shells

Freston decides that he would prefer using the tcsh (enhanced C shell) as
his login shell. Here is how he changes to it:

chsh root<Enter>

Changing shell for root.

Password: xxxxxxxx<Enter>

New shell [/bin/bash]: /bin/tcsh<Enter>

Shell changed

Freston knew from experience to enter the full path name /bin/tcsh for his
chosen login shell. He knows that if he were only to enter tcsh, the exist-
ing shell would reply chsh: shell must be a full path name and
then dump him back to his prompt to start over again.

To check that the shell has indeed been changed, Freston again enters

cat /etc/password<Enter>

184 Installing and Administering Linux 2E

This time, Freston’s one-line password profile is

root:x:0:0:root:/root:/bin/tcsh

Command-Line Parsing

Earlier, we mentioned Linux/UNIX shells as command interpreters. Here
is what the shell does as a command interpreter.

When a command is presented to the shell, it looks at the command
name to see whether it matches an internal shell command that it can exe-
cute by itself. It also checks to see whether the command is an alias for
another command. If it is not an internal command and not an alias for an
internal command, the shell searches for the program according to the
command name submitted on that part of the hard disk defined in its
PATH environment variable. (See Example 11.1 for an example of the PATH
variable.) If it can find the program somewhere in its specified PATH, the
shell executes it and feeds it the arguments, if any, provided at the com-
mand line.

What if the program cannot be found in the specified PATH? The shell
responds with an error message:

shellname: commandname: command not found

Please remember that the program might be on the hard disk but not
within the PATH. If you suspect that this situation is the case, try using a
command such as the following to find it:

$ whereis commandname<Enter>

(The whereis command and other related commands are discussed in
Chapter 13, “Shell Programming.”) If the shell tells you where the pro-
gram is, re-enter the command name at the command line but use the
absolute path name as well as the name of the program. For example, in
later distributions of Linux, the banner command might have to be
invoked by using

$ /usr/games/banner -w40 "hello friends"<Enter>

(This information is handy to remember when doing Exercise 14 at the
end of this chapter.) Before the shell begins searching for the executable

Shell Basics 185

(command) program in its various locations, it parses the command line.
In other words, the shell effectively examines the command line in the fol-
lowing order:

1. Redirection (<, >, 2>, |, >>, 2>>)

2. Variable and command substitution

3. Wildcard expansion (*, ?, [])

After the shell has examined the command in the preceding order, it
submits the command to the operating system to be executed.

Metacharacters and Wildcards

Metacharacters are characters that have a special meaning to the shell,
although that meaning can vary from one shell to another. For that reason,
you should never use them as part of a filename. An exception is the
hyphen (-), which you can use as long as it is not the first character in the
filename.

The following is a list of metacharacters:

~ ! # $ % ^ & * () { } [] | \ ; " ' < > ? /

Wildcards are a subset of metacharacters. They are used for a process
called pattern-matching notation for files, or pattern matching for short.
That means that Linux shells, like those of all UNIX operating systems, can
reference more than one filename by using these symbols. Here are some
examples of wildcards:

* ? ! []

The Asterisk (*) as a Wildcard
For certain commands, you can include one or more asterisks (*) with a
character or string of characters in a filename specification. The inclusion
of the asterisk causes the shell—not the operating system—to initiate a
type of pattern-matching process called wildcard expansion. The wildcard
expansion process substitutes all possible filenames that meet the parame-
ters specified by the characters included before or after the asterisk in the
command sequence. The shell substitutes filenames containing zero to any
number of additional characters as long as the specified character or string
also appears.

186 Installing and Administering Linux 2E

Table 7.2 Examples of Asterisk Wildcard Expansions

COMMAND EXPLANATION

echo *a*<Enter> “list on the screen all filenames that contain the letter a”

echo a*<Enter> “list on the screen all filenames that begin with a”

echo *a<Enter> “list on the screen all filenames that end with a”

echo a*a<Enter> “list on the screen all filenames that begin and end with a”

Table 7.2 lists some examples with explanations of common types of
asterisk wildcard expansion.

Example 7.4 provides a couple of illustrations of normal asterisk wild-
card expansion.

The exception to wildcard expansion is that there will not be a match to
any files that begin with a single dot; that is, to any hidden files. Why not?
The answer is, mostly for security reasons. Those files are intentionally
hidden from prying eyes and fingers. They should not be exposed or even
jeopardized by being included (perhaps innocently and inadvertently) to
processes invoked by wildcard expansion, which introduces a certain
lapse of user or administrator control. Also, if single-dot matches were
allowed, the directories called “.” and “..” (that is, the current and parent
directories, respectively) would also be fair game to whatever processes
would be invoked. That could be very dangerous with certain commands
(for example, rm).

Example 7.5 provides an example of the exception.
Now, wouldn’t you know it—there are exceptions to the exceptions

here. A match will be made to a single dot string if the single dot is
included as part of the search string.

Example 7.6 provides an example to the “exception to the exception.”
These principles are easier to grasp through examples. Let’s look at

Examples 7.4, 7.5, and 7.6. But first, those examples will be more meaning-
ful if you take the time beforehand to create the following files with a text
editor such as vi (be careful if you are not familiar with European-style
phone numbers):

■■ Filename: /home/gutiejua/admin/phone#s/RFI_Tel1

Madrid Head Office - +34 91 555 12 34

Travel Coordinator - Madrid - +34 91 555 00 01

Curate’s Office - +34 91 555 23 45

Barber/Surgery/MASH - +34 91 555 45 67

Shell Basics 187

La Mancha Field Office (Noble Deeds) - +34 958 55 34 56

El Toboso Field Office (Executive Suites) - +34 958 55 56 78

Valencia Field Office (Citrus Orchards) - +34 96 555 78 90

Valencia Warehouse - +34 96 555 89 01

Sevilla Field Office (Citrus & Other Products) - +34 95 555 90 12

Stable/Spa - Toledo (Trainers, Rozinante, Dapple et al) - +34 95 555

67 89

■■ Filename: /home/gutiejua/admin/phone#s/RFI_Tel2

Group: Knights3

A. Lorenzo (aka Lady Dulcinea) - Tel: +34 91 555 01 23

Cell: +34 61 666 12 34

Casa: +34 958 55 19 01

J. Gutierrez - Tel: +34 91 555 01 24

Cell: +34 61 666 46 81

Casa: +34 958 55 13 15

Group: Knights1

D. Quixote de La Mancha - Tel: +34 91 555 13 57

Cell: +34 61 666 24 68

Casa: +34 958 55 01 03

S. Panza - Tel: +34 91 555 35 79

Cell: +34 61 666 46 80

Casa: +34 958 55 13 15

Group: Knights2

Perez - Tel: +34 91 555 23 45 or +34 91 555 23 46

Casa: +34 958 55 15 17

Nicholas - Tel: +34 91 555 45 67 or +34 91 555 45 68

Cell: +34 61 666 68 02

Casa: +34 958 17 19

Others:

Freston - Tel: +34 91 555 91 35

Pager: +34 91 666 8024

Cell: +34 61 666 0246

Casa: N/A

■■ Filename: /home/gutiejua/admin/phone#s/RFI_Tel3

Emergencies - +34 91 800 09 87

Human Resources - +34 91 900 55 87

188 Installing and Administering Linux 2E

Fax/Mail Room - +34 91 555 32 10

Web Site Design/Management - +34 958 55 19 21

Example 7.4 The Asterisk (*) Wildcard

Intending to refine the telephone list files, Juana creates a new /tempwork
subdirectory under her home directory. Then, she copies the RFI_Tel files
from her /admin/phone#s subdirectory to the new /tempwork subdirectory,
where she will work on them:

$ cd<Enter>

$ mkdir tempwork<Enter>

$ cd admin/phone#s<Enter>

$ cp R* ../../tempwork<Enter>

To be sure they are copied to the right location, she goes to her new
/tempwork subdirectory and echoes all files whose filenames begin with
RFI to the screen:

$ cd /home/gutiejua/tempwork<Enter>

$ echo RFI*<Enter>

RFI_Tel1 RFI_Tel2 RFI_Tel3

The files are all copied correctly, and now Juana’s portion of the RFI
directory structure looks like Figure 7.1.

Lady Dulcinea is passing by at that moment. She suggests that Juana
should try another asterisk command, such as this one:

$ echo *_*<Enter>

RFI_Tel1 RFI_Tel2 RFI_Tel3

Example 7.5 An Exception to the Asterisk (*)
Wildcard Expansion

Perez wants to check his operating environment. To list his hidden .bash
files, located in his home directory, he mistakenly enters

$ echo *bash* <Enter>

bash

It surprises him that the shell just echoes his input back to the screen but
does not list any files. He will call Freston for help.

Shell Basics 189

Figure 7.1 Juana’s portion of the RFI directory structure.

Example 7.6 An Exception to the Exception to
Asterisk (*) Wildcard Expansion

Upon receiving the call for help (see Example 7.2), Freston advises Perez to
enter the following in his home directory:

$ echo .bash* <Enter>

.bash_history .bash_logout .bash_profile .bashrc

Perez is rewarded by a listing of the names of all his hidden .bash files.

The Question Mark as a Wildcard
A question mark (?) is another wildcard that you can use in a filename
specification. The shell substitutes filenames that have only a single char-
acter in the same position as the question mark, as shown in Example 7.4.

190 Installing and Administering Linux 2E

Thus, the shell still does wildcard expansion, but the expansion goes to
only one character instead of from zero to any number of characters.

As with the asterisk wildcard, the exception is that matches will not
occur to files beginning with a dot (.). Example 7.8 illustrates the exception.

From our experience with the asterisk wildcard, we could predict quite
naturally that there would be an “exceptions to the exception” here, too. A
match will be made to a single dot string if the single dot is included as
part of the search string. Example 7.9 illustrates this situation.

Example 7.7 The Question Mark (?) Wildcard

Juana has found another way to list her telephone list files. She goes to her
/home/gutiejua/admin/phone#s subdirectory and enters

$ ls RFI_Tel?<Enter>

RFI_Tel1 RFI_Tel2 RFI_Tel3

Still looking for a technique that would yield faster typing, she tries

$ ls ???_????<Enter>

RFI_Tel1 RFI_Tel2 RFI_Tel3

Example 7.8 An Exception to the Question Mark
(*) Wildcard Expansion

Perez wants to check his operating environment. To list his hidden .bash
files, located in his home directory, he mistakenly enters

$ echo ?bash* <Enter>

?bash*

This time, it does not really surprise him that the shell just echoes his
input back to the screen and does not list any files. But instead of calling
Freston, he recalls what happened with the asterisk exceptions and perse-
veres on his own. See Example 7.9.

Example 7.9 An Exception to the Exception to the
Question Mark (*) Wildcard Expansion

Perez, remembering what happened when he was working with the aster-
isk wildcard, enters the following in his home directory:

$ echo .bash_???????<Enter>

.bash_history .bash_profile

Shell Basics 191

Well, at least he sees two of the four possible files listed. But, he decides
that this method is really not an efficient way to obtain a comprehensive
listing of hidden .bash files.

Square Brackets for Lists
When you want to match only one of several characters, you use the
square brackets. Similar to the ? wildcard, the position defined by the
brackets is expanded by the shell but to only one character. Unlike the ?
wildcard, however, only filenames with the same characters, as specified
between the brackets, are used as input to the command. Again, this
process is easier to see in action, so refer to Example 7.10.

Example 7.10 Using [] for Lists

Juana has found yet another way to list her telephone list files. She goes to
her /home/admin/phone#s subdirectory and enters

$ ls RFI_Tel[123]<Enter>

RFI_Tel1 RFI_Tel2 RFI_Tel3

Example 7.11 An Exception to the
Square Bracket [] Wildcard Expansion

Perez is still listing his hidden .bash files, which are located in his home
directory. He mistakenly enters

$ echo [.]bash* <Enter>

[.]bash*

Again, it is no surprise to him that the shell just echoes his input back to
the screen and does not list any files. Again, he perseveres on his own. See
Example 7.12.

Example 7.12 An Exception to the Exception to the
Square Bracket [] Wildcard Expansion

Perez, remembering what happened with his previous asterisk and ques-
tion wildcards, enters the following in his home directory:

$ echo .bash[-_]*<Enter>

.bash_history .bash_logout .bash_profile

192 Installing and Administering Linux 2E

Now, he sees three of the four possible files listed. Still, he observes, this
way is not an efficient method for obtaining a comprehensive listing of
hidden .bash files, either.

The Exclamation Point as a Wildcard
You use the exclamation point (!) within square brackets as a wildcard to
exclude possibilities. Again, the position defined by the location of the
brackets is expanded by the shell but to only one character, as shown in
Example 7.13. Unlike the square list brackets, however, only filenames
whose characters in that position are not members of the set of characters
specified within the brackets are used as input to the command.

It might help to think of ! as meaning not.

Using wildcards with certain commands, especially the rm
(remove) command, can be risky. You might get unexpected and unwelcome
results. We recommend that you use the interactive form (that is, rm -i) when
you want to include wildcards. This recommendation is especially helpful when
you want to introduce recursive options (-R) that might alter the contents of
directories all the way down the directory tree.

Example 7.13 The Exclamation Point (!) and
Bracket [] Wildcards

Continuing from Example 7.12, Perez makes a copy of his .bash_history file
but renames the copy .bash-history (with a hyphen in the middle instead of
an underscore). Then, he enters the same command he used in Example
7.12 to find all possible .bash files with either a hyphen or an underscore in
the middle:

$ cp .bash_history .bash-history<Enter>

$ echo .bash[-_]*<Enter>

.bash_history .bash-history .bash_logout .bash_profile

Now, he decides to use the exclamation point wildcard to exclude the
new .bash-history file, as such:

$ echo .bash[!-]*<Enter>

.bash_history .bash_logout .bash_profile

His exclamation point tells the shell to ignore the .bash files, which have
hyphens in the middle. The result: He sees the same three files as he saw in
Example 7.12. The shell, predictably, has ignored the .bash-history file.

WARN I NG

Shell Basics 193

Square Brackets for Ranges
You can use square brackets not only for lists but also for ranges. Here, too,
the position defined by the location of the square brackets is expanded by
the shell, but to only one character. But this time, only filenames whose
characters in that position are members of the range of characters specified
in the brackets are used as input to the command. This feature enables a
much larger list of characters while reducing the amount of typing
required to define the list. See Example 7.14.

Example 7.14 Square Range Brackets [-]

Juana, still experimenting with listing her phone-list files, finds that she
can use the range brackets, too, as follows:

$ ls *[1-3]<Enter>

RFI_Tel1 RFI_Tel2 RFI_Tel3

Quoting Metacharacters to Disable Shell
Interpretation

Quoting is the disabling, overriding, negating, or escaping (you will
encounter all of these terms in reference to this concept) of the special
meaning of other metacharacters, variables, or command names. It is
called quoting because two of the three methods use single or double
quotes.

Basically, these quoting techniques, equipped with their own sets of
metacharacters, are used to override or disable the shell’s normal interpre-
tation of other metacharacters. Table 7.3 summarizes the functions of the
quoting metacharacters and presents simple examples.

The quoting metacharacters cause the enclosed metacharacter to be
interpreted literally (for example, the single quotes cause $HOME to be
interpreted as just that—$HOME—because the dollar sign becomes just a
dollar sign and not a single character command) or to not be expanded in
the manner that the shell would have otherwise interpreted and acted
upon. For example, echo “*.*” returns *.*, not a listing of all files
whose filenames contain a single dot in any but the first position.

Remember that you must use the single and double quotes in
pairs. Otherwise, your secondary command-line prompt appears. (In most
WARN I NG

194 Installing and Administering Linux 2E

Table 7.3 Quoting Metacharacters and Their Functions

METACHARACTER INSTRUCTION TO SHELL EXAMPLES

Single quotes (' ') Ignore all metacharacters $ echo '$HOME'<Enter>
between quotes

$HOME

Double quotes (" ") Ignore all metacharacters $ echo "$HOME"<Enter>
between quotes except the
dollar sign ($), backquote
(“),and backslash (\)

/home/quixoted

$ echo "*.*"<Enter>

.

Backslash (\) Ignore the special meaning $ echo \$HOME<Enter>
of the next metacharacter

$HOME

The backslash character deserves special scrutiny. If you are using a
backslash to continue a command on another line, that backslash disables
the special meaning of the pressed Enter key that immediately follows,
which normally submits whatever is on the line to the shell for interpre-
tation. By using the backslash there, the shell is being told, “The com-
mand isn’t finished yet; ignore the next Enter and let me continue
entering instructions.” Then, the next Enter key submits the command to
the shell.

Check out how we use the backslash in Example 7.15. Instead of the
shell seeing three double quotes and presenting a secondary prompt
(which was not our intention), it presents the statement followed by the
double quotation mark (which was our intention).

Example 7.15 Quoting Metacharacters
$ echo "This is a double quotation mark \""<Enter>

This is a double quotation mark "

cases, an angle bracket [>] appears on the next lines, and the shell expects
instructions. To return to the primary prompt, press Ctrl-C.)

Shell Basics 195

Standard Files: Redirection and Piping

For each process invoked within the Linux system, three files are automat-
ically opened:

Standard input (stdin). The location where a command expects to
find its input. Usually, that location is the keyboard.

Standard output (stdout). The location where the command expects
to send its results. Usually, that location is the screen, but it can also
be a file.

Standard error (stderr). The location where the command expects to
send its error messages. Usually, that location is the user’s terminal
screen, but it can also be the system console.

The description of the default location is stored in a command’s file
descriptor table. You can change the locations, though (for example, screen,
file, or console) by using redirection, which we will describe shortly.

File Descriptors
Each command or utility opens its own file descriptor to keep track of
data files, inputs, outputs, and error messages. File descriptors differ
depending on the command or utility that is running. File descriptor
entries might refer to special device pointer files that in turn point to sys-
tem devices, such as a terminal or a disk drive. See the file descriptors in
Table 7.4. Note that descriptors and operators from 0 to 2 have default
values, but a user can define others from 3 to 9. Meanwhile, please
remember that in Linux/UNIX, not all filenames refer to data files. Also,
for now, please do not worry too much about the device pointer num-
bers. We will be using them specifically later when we discuss combined
redirection.

Consider the cat command (which we were introduced to in Chapter 5,
“Using Files in Linux”), which is used to list the contents of files whose
names we provided on the command line. If you do not specify a filename,
cat simply echoes back to the terminal screen whatever you type on the
command line before you press Enter. To cat, the default stdin is the
keyboard (not a file), and stdout is the terminal screen.

196 Installing and Administering Linux 2E

Table 7.4 File Descriptor Parameters

DESCRIPTOR DEVICE DEFAULT
NAME OPERATOR POINTER DEVICE

Standard in < 0 Keyboard
(stdin)

Standard out > 1 Screen
(stdout)

Standard error 2> 2 System console
(stderr)

User Defined 3< or 3> 3 No default device. Can
be defined by user.

User Defined 4< or 4> 4 No default device. Can
be defined by user.

.

.

User Defined 9< or 9> 9 No default device. Can
be defined by user.

Example 7.16 Defining a File Descriptor

If Sancho wanted to define descriptor 3, say, to output to a specific file in
his home directory, then he might use a syntax like the following:

$ exec 3> /home/username/Sancho.output.file<Enter>

Then, he could follow it up with a command such as:

$ date >&3<Enter>

or

$ ls -li >&3<Enter>

Input Redirection
Redirection enables you to specify where you want a program to expect its
input to come from. In other words, if you do not want it to come from the
default location, which for most commands is usually the keyboard, then

Shell Basics 197

you use redirection to indicate where the program should go to find its
input data. The syntax for redirected input is

$ command < filename<Enter>

Some commands, such as ls and rm, do not accept redirected input.
Other commands pause and request information from the user if you do not
give them a file or data which which to work.

Example 7.17 Using < to Redirect Input

Here, Sancho illustrates how the default standard input for the mail pro-
gram is the keyboard:

$ mail quixoted<Enter>

Subject: Upcoming Journey - August

Good morning Senor! Dapple and I will be ready to leave anytime.

Signed, Sancho

<Ctr>l-d

Cc:<Enter>

At this point, let’s assume that the rozinante file, which is a quick sum-
mary profile of Don Quixote’s faithful steed, has already been created.
Sancho will use redirected input to tell the mail program to send the roz-
inante file as the letter to quixoted.

$ mail quixoted < rozinante<Enter>

Sancho used the left angle bracket (<) to tell mail to take rozinante as
the standard input, supplanting mail’s expected default standard input,
which would be characters typed at the keyboard. This way, it is easier to
create and format the rozinante file, correct typing errors, or add other
embellishments to it before sending it to the Don.

With input redirection in place, though, mail does not return the
Suject: and Cc: prompts that we saw before unless the -sc argument is
added to the mail command.

Output Redirection
Redirection also enables you to specify where you want standard output to
go; that is, if you do not want it to go to the default location (which for

NOTE

198 Installing and Administering Linux 2E

most commands is usually the terminal screen). There are several types of
redirection depending on what you want to do.

Some commands produce output that cannot be redirected
in this way. For example, print commands write to the printer, period.

Destructive Redirection

If your intention is to add data to an existing file or to create a file for the
data “on the fly,” then you can use destructive redirection. It is called
“destructive” because, if the target file already exists and it already has
data in it, that data will be overwritten.

The syntax is

$ command > filename<Enter>

Example 7.18 illustrates the default standard output of the ls command
followed by the instruction to ls to send its output to the phone_no.out file.
If the file does not yet exist, it is created. If the phone_no.out file already
exists, its contents are overwritten (called destructive redirection).

Example 7.18 Destructive Output Redirection
Using >

Juana, when she lists the names of her telephone list files, illustrates the
default behavior (especially the standard output, which is what we will con-
centrate on) for the ls command. Typically, the standard output (stdout) is
her terminal screen. First, she changes to her /gutiejua/admin/phone#s subdi-
rectory. Then, she lists the contents with ls:

$ cd /gutiejua/admin/phone#s<Enter>

$ ls<Enter>

RFI_Tel1 RFI_Tel2 RFI_Tel3

Table 7.5 lists the default descriptors and behavior for the ls command
as illustrated by what Juana has just done. Because these are default attrib-
utes, the Status, at this point, is “unchanged” for all descriptors.

Juana will now instruct the ls command to redirect its output to the
phone_no.out file. If the phone_no.out file exists, it will be overwritten. If it
does not exist yet, it will be created:

$ ls > phone_no.out<Enter>

NOTE

Shell Basics 199

Table 7.5 Typical Descriptor Table for the ls Command

DEVICE DESCRIPTOR DEFAULT
POINTER OPERATOR NAME DEVICE STATUS

0 < stdin keyboard unchanged

1 > stdout terminal screen unchanged

2 2> stderr terminal screen unchanged

Table 7.6 The ls Command’s Modified Descriptor Table

DEVICE DESCRIPTOR DEFAULT
POINTER OPERATOR NAME DEVICE STATUS

0 < stdin keyboard unchanged

1 > stdout phone_no.out file changed

2 2> stderr terminal screen unchanged

Because of Juana’s instruction, the shell recognizes that the ls command’s
descriptor table is effectively changed as shown in Table 7.6.

Nondestructive Redirection

If your intention is to add data to a file or simply avoid overwriting exist-
ing data, you can append output to an existing file (called nondestructive
redirection). The syntax is as follows:

$ command >> filename

This type of nondestructive redirection is shown in Example 7.19.

Example 7.19 Nondestructive Output Redirection
Using >>

Freston regularly and periodically uses the who command to check to see
who is on the system. When he does so, he redirects who’s output to an
existing text file called who_survey.out for future reference and for statisti-
cal purposes. To redirect the output and append it to that existing file, he
tells the who command to send its output to the who_survey.out file,
appending the output to any data that is already in the file:

$ who >> who_survey.out<Enter>

200 Installing and Administering Linux 2E

Table 7.7 The who Command’s Modified Descriptor Table

DEVICE DESCRIPTOR DEFAULT
POINTER OPERATOR NAME DEVICE STATUS

0 < stdin keyboard unchanged

1 > stdout who_survey. changed
out file

2 2> stderr terminal screen unchanged

Because of Freston’s instruction, the shell recognizes that the who com-
mand’s descriptor table is effectively changed as shown in Table 7.7.

cat and Redirected Output

Here is a handy, alternate use for output redirection. We know already that
the cat command is normally used to list the contents of files. But if we
combine cat and redirected output, we can create text files quickly with-
out invoking a text editor. In fact, for small files, this procedure might be
considered as good as, or even superior to, using a text editor. Here is the
syntax, and we have included some lines of text:

$ cat > newfilename<Enter>

Line 1 of newfilename ...<Enter>

Line 2 of newfilename ...<Enter>

After this line 3, we want to end the file ...<Enter>

<Ctrl>-d

Note that we use Ctrl-D at the end of the file. Using Ctrl-C, on the other
hand, would have canceled the command.

Here are two more examples of this type of redirection:

■■ This first example creates a zero-length file called newfile. If newfile
already exists, this process removes the original contents of the file.

$ cat > newfile<Enter>

<Ctrl>-d

■■ This second example creates a file called file3, which contains the
combined contents of file1 and file2.

$ cat file1 file2 > file3<Enter>

<Ctrl>-d

Shell Basics 201

Example 7.20 cat and Redirection for File Creation

The first part of Example 7.20 shows the typical use for cat: listing file
contents. The second part uses cat with redirection to create a new file.

Freston uses the cat command in its normal capacity to list the contents
of Juana’s RFI_Tel3 file:

$ cat /home/gutiejua/admin/phone#s/RFI_Tel3<Enter>

Emergencies - +34 91 800 09 87

Human Resources - +34 91 900 55 87

Fax/Mail Room - +34 91 555 32 10

Web Site Design/Management - +34 958 55 19 21

Now, he wants to create the beginning of his own specialized telephone list
called RFI_et_al_Tel#s. He uses cat with redirection to create the new file:

$ cat > /root/RFI_et_al_Tel#s<Enter>

RFI Web Site Design/Management - +34 958 55 19 21

Fernando’s Web Creation, Inc. - +34 91 555 66 22

Rodrigues’ Internet Services, Inc. (Sevilla) - +34 95 555 22 66

<Ctrl>-d

Table 7.8 lists the file descriptors for the cat > /root/RFI_et_al_
Tel#s example.

Error Redirection
Error messages are normally sent immediately to the screen or to the sys-
tem console. Sometimes, however, you want to redirect error messages for
various reasons. There are two types of error redirection:

■■ Redirecting error messages to a file
■■ Redirecting error messages to /dev/null

We will discuss each one in some detail.

Table 7.8 The cat Command’s Modified Descriptor Table

DEVICE DESCRIPTOR DEFAULT
POINTER OPERATOR NAME DEVICE STATUS

0 < stdin keyboard unchanged

1 > stdout RFI_et_al_Tel#s changed
file

2 2> stderr terminal screen unchanged

202 Installing and Administering Linux 2E

Redirecting Error Messages to a File

Occasionally, you will want to collect error messages from scripts or shell
programs for future reference or for troubleshooting. One application for
this type of redirection is system error logging or network analysis.

Here is the syntax for destructive redirection of error output to a file:

$ command 2> filename<Enter>

The difference between error redirection and general redirection is the
inclusion of the 2 before the right angle bracket symbol (>).

The following is the syntax for redirecting and appending error output
(that is, for nondestructive redirection) to a file, which is a similar format
to redirecting output in general:

$ command 2>> filename<Enter>

It is important to remember that the operator symbols for standard
error redirection are 2> and 2>>, with no spaces between the characters.

Example 7.21 Redirecting Error Output to a File

Juana has provided Nicholas with a copy of her RFI_Tel3 telephone listing
file. He wants to compare it with Freston’s new RFI_et_al_Tel#s file, the one
Freston mentioned to him at lunch. See how the standard error output from
Nicholas’ next command, to cat RFI_Tel3 and /root/RFI_et_al_Tel#s, goes
directly to the screen or system console:

$ cat RFI_Tel3 /root/RFI_et_al_Tel#s<Enter>

Emergencies - +34 91 800 09 87

Human Resources - +34 91 900 55 87

Fax/Mail Room - +34 91 555 32 10

Web Site Design/Management - +34 958 55 19 21

cat: /root/RFI_et_al_Tel#s: Permission denied

Nicholas now tries a variation of the previous procedure. He redirects
the /root/RFI_et_al_Tel#s error message to the errfile file (new or existing)
and then uses cat to read the error message:

$ cat RFI_Tel3 /root/RFI_et_al_Tel#s 2> errfile<Enter>

Emergencies - +34 91 800 09 87

Human Resources - +34 91 900 55 87

Fax/Mail Room - +34 91 555 32 10

NOTE

Shell Basics 203

Web Site Design/Management - +34 958 55 19 21

$ cat errfile<Enter>

cat: /root/RFI_et_al_Tel#s: Permission denied

In Example 7.20, the /root/RFI_et_al_Tel#s error message was sent directly
to the errfile file. If errfile did not exist beforehand, it was created. If errfile
already existed, its contents were overwritten. (As with output redirection,
this overwriting capability is called destructive redirection.) The RFI_Tel3
results were sent to the screen, but Nicholas had to invoke the cat com-
mand with errfile to see what happened to /root/RFI_et_al_Tel#s’ results.
The file descriptor is as follows in Table 7.9.

Redirecting Error Messages to /dev/null

Here, we will learn how to redirect error messages to /dev/null, commonly
called the bit bucket—a special file that remains empty regardless of what
you dump into it. It is used for all sorts of purposes, such as creating
processes to check monitoring capability, creating network traffic for
analysis, and disposing of error messages you might not want to be both-
ered with.

Here is the basic syntax for redirecting a generic fileb error message to
/dev/null:

$ cat fileb 2> /dev/null<Enter>

Example 7.22 Redirecting Error Output to
/dev/null (the Bit Bucket)

Nicholas tries another variation of the procedure he has tried in Examples
7.20 and 7.21. He is very interested in cat’ing RFI_Tel3 but is not as inter-
ested in succeeding with cat’ing /root/RFI_et_al_Tel#s. So, he decides to
send any error messages to /dev/null:

Table 7.9 The Example 7.20 cat Command’s Modified Descriptor Table

DEVICE DESCRIPTOR DEFAULT
POINTER OPERATOR NAME DEVICE STATUS

0 < stdin keyboard (unchanged)

1 > stdout screen (unchanged)

2 2> errfile errfile file (changed)

204 Installing and Administering Linux 2E

$ cat RFI_Tel3 /root/RFI_et_al_Tel#s 2> /dev/null<Enter>

Emergencies - +34 91 800 09 87

Human Resources - +34 91 900 55 87

Fax/Mail Room - +34 91 555 32 10

Web Site Design/Management - +34 958 55 19 21

Table 7.10 illustrates the file descriptor table for this second error mes-
sage redirection.

Combined Redirection
Combined redirection is basically a combination of two or more redirections
of input, output, and/or errors. There are two basic types:

■■ General combined redirection, where the ordering of commands
does not matter

■■ Association, which is a type of combined redirection where the
ordering of commands does matter

When we discuss association, we will actually be using the device
pointer numbers that we have seen in the descriptor tables.

Typical Combined Redirection

The following is the syntax for a basic (but similar to what we have seen
before), potentially destructive combined redirection:

$ command < infile > outfile 2> errfile<Enter>

Here is the syntax for nondestructive redirection using the same input file:

$ command >> appendfile 2>> errfile < infile<Enter>

Table 7.10 Example 7.1 cat Command’s Modified Descriptor Table

DEVICE DESCRIPTOR DEFAULT
POINTER OPERATOR NAME DEVICE STATUS

0 < stdin keyboard (unchanged)

1 > stdout screen (unchanged)

2 2> /dev/null /dev/null file (changed)

Shell Basics 205

In these two syntax examples, the order in which the redirections appear
does not matter. As we have stated previously—to clarify why one redirec-
tion is called potentially destructive and the other is nondestructive—
notice that, in the first example, we direct the command output to out-
file and any error information to errfile. If outfile and errfile already con-
tain information, that information is overwritten (and destroyed) with the
new information from this new command. In the second example, the
results from command execution are appended to appendfile, preserving
whatever information might already be in the file. Similarly, error informa-
tion, if any, is appended to errfile, preserving whatever information might
be there as well.

Association

Association is another type of combined redirection. The best way to dis-
cuss it is to demonstrate it. Please have a look at Example 7.23. As we men-
tioned previously, our discussion of association will include the use of the
device pointer numbers that we have seen in the descriptor tables.

Example 7.23 Redirection Using Association: A
Simple Task

Let’s revisit Nicholas’ situation, which we were introduced to in Examples
7.21 and 7.22. He still wants to cat the two files (his own copy of RFI_Tel3
and Freston’s RFI_et_al_Tel#s). He wants to redirect the cat output to the
combo file. He also wants any error messages to be sent to &1, which means
that they should also be sent to the standard output location (because 1 is
the device pointer for standard output, as we have seen in the descriptor
tables) as well. Within this very command, however, standard output has
just been redefined to mean the combo file. So, the error messages will be
sent to combo, too. Here is the command, then:

$ cat RFI_Tel3 /root/RFI_et_al_Tel#s > combo 2>&1<Enter>

In the second half of this example, we will change the syntax and the
order in which the redirections and associations appear to show that the
order does matter. But in this part of the example, the error messages will
be redirected to the standard output location—which is the terminal screen
—and then standard output will be redefined as combo:

$ cat RFI_Tel3 /root/RFI_et_al_Tel#s 2>&1 > combo<Enter>

cat: /root/RFI_et_al_Tel#s: Permission denied

206 Installing and Administering Linux 2E

$ cat combo<Enter>

Emergencies - +34 91 800 09 87

Human Resources - +34 91 900 55 87

Fax/Mail Room - +34 91 555 32 10

Web Site Design/Management - +34 958 55 19 21

Error messages ultimately went to the screen. Then, Nicholas had to cat
combo to see his original cat process results because that is where they went.

Example 7.24 Redirection Using Association: An
Analysis Task with Proper Syntax

In this example, Perez wants to get a list of all the files in all the directories
on the system. But once he has executed the command, he wants to be able
to go back and analyze the results to see how effective his syntax was and
to see which directories he has and does not have permission to access. He
wants his successful long file listing and his error messages to be sent to the
list.file file so that he can call that file up later, at his convenience, to check
the results. Here is what he enters:

$ ls -l /*/* > list.file 2>&1<Enter>

After the command executes, all Perez sees is another shell prompt,
because all results will be in list.file. Meanwhile, the file descriptor table for
this example is shown in Table 7.11.

Example 7.25 Redirection Using Association: An
Unsuccessful Analysis Task because of Improper
Syntax

The next command presents an example of how Perez might not want to
execute the same listing:

$ ls -l /*/* 2>&1 >list.file<Enter>

Table 7.11 The ls Command’s Descriptor Table: Proper Syntax

DEVICE DESCRIPTOR DEFAULT
POINTER OPERATOR NAME DEVICE STATUS

0 < stdin keyboard (unchanged)

1 > ./list.file list.file file (changed)

2 2> ./list.file list.file file (changed)

Shell Basics 207

This time, the association is out of proper order. The ls command is told
to send error messages to &1, which, in this case, means to the same location
as stdout. Later in the command, stdout is changed to the list.file file, but
at that point, it is too late for the error messages. They will go to the original
stdout, which by default for ls is the terminal screen. But what if there are
lots of errors? Perez can go back later and look at his successful output
because it will be in the list.file file. But how will he be able to analyze his
errors? Most, if not all, of his errors would likely be lost; only a few of the
last ones might still be displayed on the screen.

As predicted, Perez’ terminal screen is bombarded with errors. Table
7.12 illustrates the descriptor tabulation.

In Table 7.12, please notice that the errors are sent to stdout and not to
stderr. By default, error messages from ls are sent to stderr, which for
ls is the terminal screen. And, by default, the stdout for ls is also the
terminal screen. So, by telling ls to send error messages to stdout and
not stderr, it becomes just a technical coincidence that the error mes-
sages still end up on the terminal screen. Of course, if the command had
been properly configured as it was in Example 7.22, then the error mes-
sages would have been sent to list.file.

Connecting Commands with Pipes

In Linux, as in UNIX, you can connect two or more commands on a single
command line by using the pipe symbol (|). This concept is called pipelin-
ing or piping and is one of the earliest and most revolutionary aspects of
UNIX. Here are the only requirements:

■■ Any command to the left of a pipe must send its output to standard
output (stdout).

■■ Any command to the right of a pipe must take its input from its
standard input (stdin).

Table 7.12 The ls Command’s Descriptor Table: Improper Syntax

DEVICE DESCRIPTOR DEFAULT
POINTER OPERATOR NAME DEVICE STATUS

0 < stdin keyboard (unchanged)

1 > ./list.file list.file file (changed)

2 2> stdout terminal screen (changed)

208 Installing and Administering Linux 2E

We will discuss three types of command piping:

■■ Typical command piping
■■ Filter commands
■■ Tee commands

If one of the commands in a pipe fails, the entire pipe fails. So, if you
fail to get any input, you cannot necessarily conclude that the last command, or
any particular command, is the faulty one.

Typical Command Piping
The output from the command to the left of the pipe is not displayed
because it is given straight over to the input of the command to the right of
the pipe. You see the results of the final process only, as shown in Example
7.26. The syntax is simply

$ command1 | command2<Enter>

Example 7.26 Typical Command Piping

Juana will count the number of entries (in other words, files and directo-
ries) in her home directory by using command piping. Please refer to Fig-
ure 7.2, which depicts her portion of the RFI directory structure.

$ ls | wc -w<Enter>

4

Freston tells Juana that the piped command line she used in this exam-
ple is the same as the following sequence of commands. Skeptical, Juana
enters them:

$ ls > tempfile<Enter>

$ wc -w tempfile<Enter>

5 tempfile

Juana asks Freston, “If the piped command was equivalent to the sequence
of commands, why did the word count differ from one to the other?”

Freston replies, “Simple, really. In the command sequence, you created a
new file called tempfile, and its name got caught up in the word count.
Check to see.”

So Juana cat’s tempfile to check. When she is through checking, she
deletes tempfile:

NOTE

Shell Basics 209

Figure 7.2 Juana’s portion of the RFI directory structure.

$ cat tempfile<Enter>

admin

Desktop

mbox

tempfile

tempwork

$ rm tempfile<Enter>

Filter Commands
Here, we will show you how the various elements of a pipe execute in
parallel.

A command is referred to as a filter if it can read its input from standard
input, alter it in some way, and write the output to standard output. A fil-
ter can thus be used as an intermediate command between pipes. When

210 Installing and Administering Linux 2E

you use filters as intermediate steps in piped commands, you save pro-
cessing steps and time. The syntax is

$ command1 | filtercommand<Enter>

Example 7.27 Using Filter Commands

Here, Juana wants to know quickly how many files in her /home/gutiejua/
admin/phone#s subdirectory begin with the letter r. She will use the ls
command to list all the files in that subdirectory and then pipe the infor-
mation to the grep command. The grep command (covered in more
detail in Chapter 8, “Basic Linux Utilities”) will find all filenames begin-
ning with the letter r. The output of the grep command is then piped to
the wc -l command. The wc command counts the number of lines of
input and thus the number of files whose names begin with r:

$ cd /home/gutiejua/admin/phone#s<Enter>

$ ls | grep ^r | wc -l<Enter>

3

Referring to Figure 7.2, you can see that the three telephone list file-
names—RFI_Tel1, RFI_Tel2, and RFI_Tel3—begin with r, so the preceding
result, 3, is correct.

Thus, the grep process acted as a filter because it found the three file-
names and passed them to wc while discarding the fourth filename.

Just for your information and practice, here is another way we could
have expressed the piped command:

$ ls -R /home/gutiejua/admin | grep ^r | wc -l<Enter>

The difference, of course, is that in this version, we started in a different
directory and gave the command the absolute path name.

Split Outputs: The tee Command

You can tap information from a command pipeline. The tee command
acts as a filter for capturing a snapshot of information at a specific point in
a pipe. The command puts a copy of the data at that point into a file and
passes the original data to standard output, which is used through the
standard input of the next downstream command:

$ command1 | tee filename | command2<Enter>

Shell Basics 211

Thus, the tee command takes its input and routes it to two destinations:

1. By default to the terminal, unless you pipe its output to another
command (such as in Example 7.25)

2. To the file of your choice

Meanwhile, the tee command does not alter the data. For this example,
please refer to Figure 7.3.

Example 7.28 Tapping Information with the tee
Command

Juana wants to combine the filenames of the three RFI telephone lists
(RFI_Tel1, RFI_Tel2, and RFI_Tel3) into one file called RFI_TEL. She goes to
her /home/gutiejua/tempwork subdirectory before beginning the pipe com-
mand. She checks where she is, then she will check to make sure the
proper files are there to begin with. Then, she will issue the pipe’d com-
mand, whose ultimate output will return a count of the number of file-
names entered in her newly created file RFI_TEL:

cd /home/gutiejua/tempwork<Enter>

#pwd<Enter>

/home/gutiejua/tempwork

ls<Enter>

RFI_Tel1, RFI_Tel2, RFI_Tel3

$ ls | tee RFI_TEL | wc -l<Enter>

3

Figure 7.3 The tee command.

212 Installing and Administering Linux 2E

By the end of the pipe’d command’s execution, there were actually four
files (RFI_Tel1, RFI_Tel2, RFI_Tel3, and RFI_TEL), yet the wc command
reported only three. If the pipes are truly parallel, shouldn’t the wc com-
mand have reported four? Perhaps, but it reported three because it took
longer for a file handle to be given to tee than it took for the entire series of
piped commands to run.

We saw how the tee command took its input from ls and routed it to
two destinations: to another command and to the RFI_TEL file.

Command Grouping with Semicolons

Contrary, perhaps, to the impression we have created so far, Linux/UNIX
shells can cope with multiple commands on the same line. The semicolon
(;) is the metacharacter that facilitates the process. The syntax is as fol-
lows:

$ command1 ; command2<Enter>

Placing several commands on the same line, each separated from the
next by a semicolon, produces the same result as entering each command
on a separate line, as shown in Example 7.28. Relationships between the
output of one process and the input to the next are not necessary.

One reason you might consider using the semicolon in this way is
because some commands (such as the ls -R command, which we will see
in Example 7.29) might take a while to execute. Separating them with a
semicolon allows the next command to execute without delay after the
previous one has finished executing.

Example 7.29 Using ; for Multiple Commands

Freston has asked all the users to regularly and periodically (at the end of
every month, actually) list the files and directories in their respective por-
tions of the RFI directory structure. On July 31, Sancho performs this duty
just before he logs out at the end of the day. Here is what he enters:

$ cd<Enter>

$ pwd<Enter>

/home/panzasan

$ ls -R > outfile<Enter>

$ exit<Enter>

Shell Basics 213

Don Quixote performs the same procedure but issues all his commands on
the same single command line as such:

$ cd ; ls -R > outfile ; exit<Enter>

Line Continuation with the Backslash

Line continuation is a shell feature that is useful when the options and argu-
ments appended to a single command cause you to type past the length of
a single command line. Simply type as far as you can and finish with a sin-
gle backslash (\) followed by pressing Enter immediately. No other char-
acter can follow the backslash. The shell takes you to the next line and
automatically presents you with an angle bracket (>), called the secondary
prompt, which indicates that the shell is expecting more input from you:

$ command(s) continued_command\<Enter>

> continued_command(s)<Enter>

The secondary prompt does not interfere with the interpretation of the
command. Do not confuse this prompt with the redirection angle bracket,
which is a key you are actually required to type. See Example 7.30. You can
change the secondary prompt from the angle bracket to another symbol or
even to a phrase of your choice by changing the value in the PS2 variable
(we will discuss environment variables in a later chapter).

Example 7.30 Using the Backslash (\) to Continue
(or, Split) Commands

To compare his own telephone list file to Juana’s RFI_Tel2 file, Freston
types the following:

cat /home/gutiejua/admin/phone#s/RFI_Tel2 \<Enter>

> /root/RFI_et_al_Tel#s<Enter>

Shell History Commands

One of the shortcomings of working from the command line is the occa-
sional (because of inadvertent typographical errors) or even frequent (for

214 Installing and Administering Linux 2E

example, if you are testing a procedure or performing several repetitive
operations) need to re-enter commands that are identical or similar to
those you have previously entered. In this section, we’ll introduce three
commands which, over time, will save you a lot of time and countless key-
strokes: history, fc, and ! (which is called “bang”). All three can reduce
your frustration and speed your progress, especially on those busier days.

The history Command
The history command reads, numbers, and displays the text of the pre-
vious commands from the buffer and also from the .bash_history file in the
user’s home directory or from whatever file is named as a value for the
HISTFILE variable (we discuss environment variables such as HISTFILE
later in Chapter 11, “Shell Variables and the User Environment”). The
default value is HISTFILE=$HOME/.bash_history, but you can change
the default by adding or modifying HISTFILE=filename to your
$HOME/.bash_profile file.

The maximum number of commands that history can access is the
number of commands already in the buffer from the current session plus
the number of commands stored in the $HOME/.bash_history file. The max-
imum size of that file is specified in the HISTFILESIZE variable. The
maximum number of previous commands that history can display,
however, is the number specified in the HISTSIZE variable. If no number
is specified, the default is 17 (although many reference materials say 16).

The history command has several options and arguments. For example,
history -a appends the current session’s commands to the .bash_history
file immediately and not upon your logout. Another example is history
n, which displays only the previous n commands as long as n is less than or
equal to the value of the HISTSIZE variable. For further information, check
your information sources.

The fc Command
You can also use the fc command to display your command history as well
as to edit those commands. Used with its options and arguments, fc can be
handier than history. For example, fc -l 5 120 lists all previous com-
mands in your history list sequentially from number 5 to number 120. To
list the same commands but in reverse order, use fc -l -r 5 120. The
limitations on this maneuverability are that HISTSIZE, HISTFILESIZE,
and other variable values must accommodate what you want to do.

Shell Basics 215

You can also use fc to edit any of your previous commands by invoking
the editor of your choice. An example is fc -e vi 68, which means “edit
previous command number 68 with the vi editor.” The shell responds by
opening vi and displaying the command corresponding to number 68 on
the top line. You do whatever editing you want and then exit vi, after
which the shell executes the newly modified command.

Here is another example. Assume that your previous command number
68 is set | more. You want to change it quickly to set | cat and then
execute it immediately without going into or exiting from a text editor. Just
type the following:

fc -s more=cat 68<Enter>

The default text editor is automatically invoked and changes command
number 68 to what you want, and then the shell executes it.

You might ask how you can control which text editor the shell uses. Set
the FCEDIT variable to the name of your preferred text editor. If nothing is
specified for FCEDIT, vi is used by default. One thing you will probably
notice after using fc is that when you display your command history, you
never see the fc command. All you see is the proper or revised command.
The only time the fc command and its options are displayed is when com-
mand execution did not occur, which means that you made a mistake.

For other fc options and arguments, refer to your sources for additional
information.

Re-executing Commands with the
Bang Command
Regardless of the form of fc or history command you use to display
your previous commands, you can re-execute any displayed commands
by using the bang command, represented by the exclamation mark symbol
(!) as follows:

$!commandnumber<Enter>

or

$!textstring<Enter>

216 Installing and Administering Linux 2E

The command number is obvious after the listing of the previous com-
mands. The text string option can be handy, however, if you do not want to
do a history listing and you remember the first few unique characters in
the text of the desired command.

Recall that command number 68 was set | more in the preceding
example. Assume that you want to set a variable, FCEDIT=vi, and you
want to verify that the variable has indeed been set to vi:

$ FCEDIT=vi<Enter>

$!68<Enter>

Your environment variables are then displayed. You could also have
input the following and obtained the same result:

$ FCEDIT=vi<Enter>

$!se<Enter>

You do not even need the whole word set, but only se. A word of cau-
tion, though: If another set command was in your history list, the shell
would be confused, and you would likely end up with unanticipated results.

The bang command can save you a lot of typing. But when you examine
a command history, you never find a ! command per se, just the command
that you invoked by using ! (just like with the fc command). Again, the
only exception is when you make a mistake.

The ! command has other handy arguments and options, such as the
inclusion of extra arguments with previous commands or the mixing of
arguments from one previous command to another before re-execution.
Again, consult your sources for more information.

Some information sources indicate that a space is required between
the exclamation point and the command number or text string, and some indi-
cate that there should be no space between them. The correct syntax is no
space between ! and the command number or text string.

Accessing Your Command History
with the Up and Down Keys
The Up and Down keys can be powerful, too, for the convenience that they
provide. You can use them to tap into your command history, starting with
the RAM buffer where commands from the current session are saved, and

NOTE

Shell Basics 217

then proceeding into the hidden file called .bash_history in your $HOME
directory (or whatever file has been specified for the HISTFILE variable to
which we have referred previously). So, by using the Up or Down keys,
you can recall to the command line commands that you have executed pre-
viously.

Naturally, you have to move at least one command up to be able to start
utilizing the Down key, which moves you forward again in the history of
your executed commands.

When you back up enough to enter the hidden .bash_history file, your
initial position in that file is at the bottom, or the most recent command
before your last logout. By specifying values for the environmental vari-
ables we described earlier in this chapter, you can control the size of the
.bash_history file so that you can travel back a fair distance in your com-
mand history. Pressing the Up key once you reach the top of .bash_history
however, results in a shell error “beep.”

The benefit, then, of using the Up and Down arrow keys at the com-
mand line is that you can repeat procedures by recalling their commands
and then pressing Enter to re-execute them. This feature can save you a lot
of typing, especially when complicated syntax is involved. You can also do
some sensitivity analyses by re-executing commands while changing
options or arguments with each execution to compare results.

Exercises

1. Go to your home directory. Execute a simple ls command to list the
non-hidden files in your home directory. Now, use the ls command
with a wildcard character to list these files:

$ ls<Enter>

$ ls *<Enter>

What is the difference in output of these two commands? Why?

2. Change to the /usr/bin directory. List the files whose filenames begin
with the letter a:

$ cd /usr/bin<Enter>

$ ls a*<Enter>

218 Installing and Administering Linux 2E

3. List all two-character filenames:

$ ls ??<Enter>

4. List all filenames that begin with the letters a, b, c, or d:

$ ls [abcd]*<Enter>

or

$ ls [a-d]*<Enter>

5. List all filenames except those beginning with c through t. This list will
be long, so you might want to pipe the output to more or to less:

$ ls [!c-t]* | more<Enter>

Did you get any filenames that you did not expect? If so, do you
know why?

6. Using all three methods of quoting, banner the literal symbol *:

$ banner ‘*’<Enter>

$ banner “*”<Enter>

$ banner *<Enter>

Why do all three work?

7. Make sure that you are in your home directory. Create a directory
named quoting in your home directory:

$ cd<Enter>

$ pwd<Enter>

$ mkdir quoting<Enter>

8. Change to the quoting directory. Create a zero-length file named filea
in that directory. Create a variable named n and set it to the value
hello. Test what you did by displaying the contents of quoting and
the value of n:

Shell Basics 219

$ cd quoting<Enter>

$ touch filea<Enter>

$ n=hello<Enter>

$ ls<Enter>

$ echo $n<Enter>

9. From the quoting directory, execute the following five commands.
Record the output:

$ echo '* $n `ls`'

$ echo "* $n `ls`"

$ echo * \$n \`ls\`

$ echo * $n `ls`

$ echo * $n "ls"

10. Return to your home directory:

$ cd<Enter>

11. Using the cat command and redirection, create a file called junk
containing a few lines of text. Use Ctrl-D at the beginning of a new
line when you have finished entering text and want to return to the
shell prompt, $:

$ cat > junk<Enter>

Type several lines of junk for this file.<Enter>

When you’re finished, press the Enter key<Enter>

to go to a new line and then press Ctrl-d<Enter>

to return to the shell prompt.<Enter>

<Ctrl>-d

12. Append more lines of text to the file that you have created by using
the cat command and redirection:

$ cat >> junk<Enter>

Type some more lines and append them to <Enter>

junk. When you are finished, go to a new line

and press the <Enter> key and then the Ctrl-d keys. <Enter>

<Ctrl>-d.

Remember that there are no spaces between the (file append) angle
brackets in the command line.
NOTE

220 Installing and Administering Linux 2E

13. Mail the junk file to yourself. Wait several seconds, and then open
your mail, delete junk, and quit the program:

$ mail username << junk<Enter>

$ mail<Enter>

? t<Enter>

? d<Enter>

? q<Enter>

14. Using the ls command, list the files in your current directory:

$ ls<Enter>

Make a note of the number of files.

15. List the files in your current directory, but this time redirect the
output to the temp file:

$ ls > temp<Enter>

16. Use the appropriate command to count the number of words in the
temp file:

$ wc -w temp<Enter>

Is this count the same as in Exercise 14? If it is not the same, why?

Display the contents of temp:

$ cat temp<Enter>

Now remove the temp file:

$ rm temp<Enter>

17. This time, use a pipe to count the number of files in your current
directory:

$ ls | wc -w<Enter>

Was the result what you expected this time? Is it the same as in Exer-
cise 14?

Shell Basics 221

18. Use the command you created in Exercise 17, but this time insert a
tee in the middle, trapping the result of the list in a file called junk2:

$ ls | tee junk2 | wc -w<Enter>

Was the number displayed on the screen? Check the contents of
junk2 to make sure that it contains what you expected:

$ cat junk2<Enter>

19. Again, using piped commands:

• List, in reverse order, the contents of your current directory.

• Send the results of the reverse listing to a file named junk3 and to a
program to count the number of words in the reverse listing.

• Append the final count to junk3.

Remember to use the append version of redirection. In this particular
case, you might get unexpected results if you do not. It might not be a
straight overwrite because the file is being used twice in the same com-
mand. Experiment if you are curious.

$ ls -r | tee junk3 | wc -w >> junk3<Enter>

20. A special file in the /dev directory represents your terminal. Display
the filename associated with your terminal. The output will be
something like tty0, lft0, or pts/x:

$ who am i<Enter>

21. Repeat the command from Exercise 19 with two exceptions:

• Rather than using junk3, tee the output to the special file that rep-
resents your terminal.

• Do not append the results of the wc command to junk3. Display
the count at your terminal:

$ ls -r | tee /dev/lft0 | wc -w<Enter>

222 Installing and Administering Linux 2E

22. On the same command line, display the date, who is logged in, the
name of your current directory, and the names of the files in your
current directory:

$ date ; who ; pwd ; ls<Enter>

Do these commands have any relation to each other?

23. The primary purpose of this exercise is to use line continuation with
a command that is too long to fit on one command line. The
secondary purpose is to test what you have learned so far by letting
you create a very long command string. You can choose to break the
line anywhere you like. When completed, test your output by
displaying the contents of the files that were created. This output
should be one long command connected by pipes and redirection:

• Do a long listing of the files in your home directory, including hid-
den files.

• Capture the output to a file named reverse.listing and send the same
output to a program that will count only the number of words.

• Capture the number of words and place the number in four files
named file1 through file4.

• Finally, send the output to a program to count the number of lines
in file4, and redirect that number to a file named file5:

$ ls -al | tee reverse.listing | wc -w | tee file1 \<Enter>

> | tee file2 | tee file3 | tee file4 | wc -l > file5<Enter>

See Appendix B for answers.

Quiz

1. Put the following command-parsing steps in the proper logical order
for the shell to interpret them correctly:

• Command/variable substitution

• Command execution

Shell Basics 223

• Redirection

• Wildcard expansion

2. What will the following command match?

$ ls ???[!a-z]*[0-9]t

For Questions 3 through 8, assume the following:

• The home directory is /home/quixoted.

• The current directory is /home/quixoted/docs.

• The current directory contains three files: aa, bb, and cc.

For Questions 3 through 8, what are the results of the following
commands?

3. $ echo "Home directory is $HOME"

4. $ echo 'Home directory is $HOME'

5. $ echo "Current directory is 'pwd'"

6. $ echo "Files in this directory are *"

7. $ echo * $HOME

8. $ echo *

9. Identify the devices for this command:

$ cat file1<Enter>

standard input (0) ___________

standard output (1) __________

standard error (2) ___________

10. Identify the devices for this command:

$ mail tim < letter<Enter>

standard input (0) ___________

standard output (1) __________

standard error (2) ___________

224 Installing and Administering Linux 2E

11. Identify the devices for this command:

$ cat .profile > newprofile 2> l<Enter>

standard input (0) ___________

standard output (1) __________

standard error (2) ___________

For Questions 12, 13, and 14, first create command lines to display the
contents of a file called filea by using cat.

12. Place the output of the command in fileb and the errors in filec.

13. Place the output of the command in fileb and associate any errors
with the output in fileb.

14. Place the output in fileb and discard any error messages (that is, do
not display or store error messages).

15. What will the following command do?

$ banner hello > /dev/tty1<Enter>

See Appendix C for answers.

NOTE

C H A P T E R

8

Basic Linux Utilities

225

The commands covered in this chapter are useful for various practical
administrative tasks, such as finding and manipulating files and the text
within files. Specifically, we will discuss the find command, several find-
like utilities, and the grep, head, tail, and sort commands. This chapter
will not be our only exposure to find, however; it is only an introduction.
We will use find again in Chapter 9, “Advanced Linux Utilities.”

These commands are powerful and handy but also a bit more compli-
cated than the commands we have discussed so far. If you keep their
respective purposes, principles, and syntaxes in mind, however, with
experience you will find that these utilities will enhance your efficiency
and overall effectiveness.

226 Installing and Administering Linux 2E

Figure 8.1 The find command; Sancho’s directory structure.

Searching Directories for Files: The find
Command

In this section, we will introduce the basic uses and syntax of the find
command. The find command is a powerful utility because it can find
files and automatically perform actions on those files. We will use Sancho
Panza’s portion of the RFI directory structure, as depicted in Figure 8.1, for
the examples in this section and in the rest of the chapter.

The find program searches recursively downward through the file
structure, starting in the directories you specify. The syntax is particular

Basic Linux Utilities 227

(some believe that it is more like peculiar) and can generally be expressed
as follows:

$ find [where to start looking?] [what to look for?] [what to do with it

when it's found?]<Enter>

The real syntax, though, is

$ find directory(ies) conditions<Enter>

The conditions could include or be called options, match criteria, actions,
arguments, and all sorts of other designations. Nearly all information
sources seem to have a different interpretation of what to call the required
parameters, but their examples all look similar. Luckily, although no agree-
ment exists on how to express the parameters for the find command,
overall agreement does exist on how to use it.

Example 8.1 Using find with Conditions

Since we last looked at Sancho’s directory structure, it has changed signif-
icantly. Recently, after some confusion while looking for maps and other
data, Sancho has concluded that he relies on the filename misc maybe a lit-
tle too much. To begin straightening things out, he wants to know how
many times he has used it recently. Here is how he checks:

$ cd<Enter>

$ pwd<Enter>

/home/panzasan

$ find -name misc -print<Enter>

./misc

./Misc/misc

./Maint/misc

./Admin/misc

Sancho first changed directories to return to his home directory. Then, he
invoked the find utility, which began searching at the top of his home
directory. He also specified -print at the end of the command line, which
is interpreted as printing to stdout (standard output; that is, printing to
the terminal screen). If he had not specified anything, the output would
still have printed to his terminal by default. In earlier versions of UNIX
and UNIX-like operating systems, though, this situation was not the case.
You had to explicitly tell the shell what to do with the output.

228 Installing and Administering Linux 2E

The find utility returned a list of four files called misc. But it also indi-
cated Sancho’s Misc subdirectory.

Two additional considerations are worthy of mention:

In the example, the find utility found the four misc files. Had there
also been one or more misc subdirectories somewhere in Sancho’s file
structure, find would have returned a reference to them, as well.
find would have returned references to only the subdirectories,
however, not to files within them that are not called misc.

File and directory permissions apply to find as they do to other
commands. If you have no business in certain directories or no
permissions to certain files, find will not find them. You cannot use
the command to circumvent permission requirements. If you lack
appropriate permissions, you will receive an error message similar to
the following on the terminal screen: find: /directoryname:
Permission denied.

The find Command with a
Noninteractive Single Action
Here, we can combine find with the execution of one more command (or, if
you prefer, one more action) in tandem. The syntax is

$ find directory(ies) conditions -exec commandname options { } \;<Enter>

Note that because of the way we have coded the find/exec command
combination, no interaction will occur between the processes and the ter-
minal. This feature might or might not be desirable, as we will see in the
next couple of examples.

Note also that the \; sequence must be part of the command line when
find is combined with the -exec action. See Example 8.2. It must also
appear when find is combined with the -ok action, too (we will discuss
the -ok action in the next section).

Example 8.2 find with a Non-interactive Action

Sancho thinks that at least some of his various misc files should be deleted.
But first, he wants to get some information about them. Instead of con-
ducting ls -l several times (in other words, once for each directory that a

Basic Linux Utilities 229

misc appears in), he will apply find with one non-interactive action as fol-
lows:

$ find . -name 'mi*' -exec ls -l { } \;<Enter>

-rw-rw-r--1 panzasan knights1 21 Jul 15 08:48 ./misc

-rw-rw-r--1 panzasan knights1 27 Jul 15 14:54 ./Misc/misc

-rw-rw-r--1 panzasan knights1 32 Jul 20 11:37 ./Admin/misc

-rw-rw-r--1 panzasan knights1 75 Jul 20 15:03 ./Maint/misc

Loosely speaking, the find command in Example 7.2 states, “Start in the
current directory, and working downward, find all entries that begin with
mi. As you find each entry, present its data on the screen in long list format.”

Here is a breakdown of each element in the command:

■■ . (the dot) means to start in the current directory, which in this
example is /home/panzasan, and move recursively through the
file structure

■■ -name means that the names of the entries you want to find will
follow

■■ 'm*' indicates that the first character in each entry is m. The asterisk
(*) indicates that subsequent characters do not matter. This part of
the command is in single quotes because the asterisk is a
metacharacter, and if it were not surrounded in single quotes, it
would have a different effect on the command.

■■ -exec means that after finding each entry, execute the following
command on it in turn

■■ ls -l {} requests a long listing of the entry. The {} argument
means that as each entry is found, its name should be substituted
here so that ls -l can be executed on it.

■■ \; is called an escaped semicolon. It indicates that we have reached
the end of the find and exec command sequences.

■■ Enter submits the command sequence for parsing and execution

Again, because of the way we have coded the find/exec command
combination, no interaction occurs between the process and the terminal.
In this case, this situation is desirable because the second action (ls -l) is
not really a drastic action.

In Linux and other more recent versions of UNIX, you can use ls as an
option with find. Thus, you can use an abbreviated syntax to get the

230 Installing and Administering Linux 2E

same results as you did with the longer command from Example 8.2. Try
the following:

$ find . -name 'm*' -ls<Enter>

The find Command with an
Interactive Single Action
In the previous example, the second action was not drastic. When it exe-
cuted, it did not impact the directory structure, contents or the file con-
tents. But what if that second action was a little more drastic? What if, for
example, Sancho had wanted to remove the entries that find found?
What if he had not entered the appropriate options or arguments? What if
he had not entered m* instead of mi*? He might have accidentally deleted
his mbox and memos files.

So, in some cases, we see that interaction between the second process
and the terminal might be useful. This section focuses on how to add such
interactivity to the find command by adding the -ok option. This time,
instead of just going ahead and performing the second command, Linux
prompts the user for verification before proceeding, as shown in Example
8.3. The prompt asks a basic yes or no question; to respond, the user types
y, yes, n, or no and then presses Enter.

The advantage to this interaction option is that the user has the ability to
monitor the action and prevent inadvertent problems that might develop
as a result of execution of the action. The syntax is as follows:

$ find directory(ies) conditions -ok commandname options { } \;

Consider using -ok with find in the following situations:

When your search pattern might not be or cannot be absolutely
accurate (or absolutely surgical, if you are only trying to affect some
entries and not all of them) and you do not want to affect any entries
unnecessarily.

When your second command is fairly final. In Example 8.3, we are
removing the successful find candidates, and that action is pretty
final. If we were doing this action noninteractively and something
were to go wrong, however, we would have to find a way to restore
the entries we did not want to remove. This process could prove
costly in some situations.

Basic Linux Utilities 231

Table 8.1 Selected find Options

OPTION DESCRIPTION

-type c Find files of type c (character-special file). The type can also
be b (block special file), d (directory), f (plain file), l (sym-
bolic link), p (fifo or a named pipe), or s (socket).

-size n[c] Find files containing n blocks, or if c is specified, n charac-
ters long (1 block = 4,096 bytes)

-mtime +n|n|-n Find files that were last modified more than (+n), less than
(-n), or exactly (n) days ago

-perm nnn Find files whose permissions are set to octal number nnn

-user username Find files belonging to the specified user

-o Find files that match specified conditions

-newer filename Find files that have been modified more recently than
filename. (Note the similarity to mtime.)

When the number of files to be located by find is relatively small.
No one really wants to sit at a terminal for a long time typing y and
Enter or n and Enter repeatedly. This activity is tedious, and tedious
activities can lead to mistakes.

Table 8.1 lists some other common options that you can specify with the
find command. For even more options, consult your information sources.

Example 8.3 find with an Interactive Action

Sancho is convinced now that his misc files should be deleted. He will use
find in combination with a single action, but he will do it interactively.

Doing it interactively is a good thing—he is about to make a typograph-
ical error in his command sequence. But the interactivity will enable him to
prevent the wrong files from being deleted:

$ find . -name 'm*' -ok rm { } \;<Enter>

< rm/mbox > ? n<Enter>

< rm/misc > ? y<Enter>

< rm/Misc/misc > ? y<Enter>

< rm/Admin/memos > ? n<Enter>

< rm/Admin/misc > y<Enter>

< rm/Maint/misc > ? y<Enter>

232 Installing and Administering Linux 2E

If Sancho had not made the command interactive, then his mbox and
/admin/memos files would also have been deleted.

Using Additional Options with the
find Command
This section includes four examples of find command options. Most of
these options were described in the preceding section.

Example 8.4 find with a Line Continuation (Split
Command)

Sancho remembers working on a profile of each of the two “beasts of bur-
den” (Rozinante and Dapple) recently but has forgotten where he filed
them. He knows they are both medium to small documents and that they
are in his directory structure somewhere, so he enters

$ cd<Enter>

$ pwd<Enter>

/home/panzasan

$ find . -mtime -1 -type f -size +500c\<Enter>

> -exec ls -l {} \;<Enter>

-rw-------1 panzasan knights1 682 Jul 02 14:49 mbox

-rw-------1 panzasan knights1 3930 Jul 02 08:32 ./.bash_history

-rw-r--r--1 panzasan knights1 667 Jul 21 14:49 ./maint/rozinante

-rw-r--r--1 panzasan knights1 993 Jul 22 09:44 ./Maint/dapple

-rw-r--r--1 panzasan knights1 642 Jul 22 11:13 ./fleas

Here, he split the command so that one part is written opposite the pri-
mary prompt and the rest is written opposite the secondary prompt. We
had Sancho perform this action to show how this command form works
(and to show that it will work).

What is the command requesting? It says, “Starting from the current
directory, find all files that are larger than 500 characters in length and that
were modified within the last day. Then, as each successful file is found,
create a long listing of it and present the long listing on the terminal
screen.” And, after a quick perusal of the response, Sancho sees that his
two files are in his /home/panzasan/maint subdirectory.

Basic Linux Utilities 233

Example 8.5 find with Complex Options

Freston is randomly checking the permissions on files to see whether any
staff members have altered their umask to 002 for file creation in their
home directories during the past calendar week:

cd /<Enter>

pwd<Enter>

/

find ./home -perm 664 -mtime -7 -print<Enter>

./home/perez/Quixote

In other words, in Example 8.5, Freston requested that the system find
and display—again, from the current directory downward—the names of
all files created in the past seven days with permissions set to 664 (that is,
-rw-rw-r--).

Freston makes a note to call Perez and ask him why he has created the
Quixote file with the permissions it has. Meanwhile, if you have any con-
cerns regarding permission bits, please review the discussion in Chapter 6,
“Linux File Permissions.”

Example 8.6 find with the -o (OR) option

Sancho was working on profiles of both Rozinante and Dapple recently.
Now, he has lost track of where he filed them. Luckily, he remembers their
names. Here is how he finds them:

$ cd<Enter>

$ pwd<Enter>

/home/panzasan

$ find . -name rozinante -o -name dapple<Enter>

./Admin/rozinante

./Admin/dapple

In other words, Sancho requested that the system find and display the
names of all files named rozinante or dapple from his current directory
downward.

Example 8.7 find with Error Redirection

Freston was explaining to Sancho how he (Freston) was searching the whole
directory structure for files pertaining to security that have the word security
as part of their path name. He told Sancho how he (Freston) would do it:

234 Installing and Administering Linux 2E

cd /

find / -name "security" -print 2> errfile<Enter>

/etc/security

/usr/include/security

/lib/security

Interpreting his command, we see that Freston, in Example 8.7,
requested that the system find, from the root directory downward (that is,
through the entire system file structure), filenames containing the secu-
rity text string as part of their path name. Then, the system was to dis-
play the successful path names on the terminal screen. Errors are not to be
displayed on the screen but instead are to be listed in the errfile file in the
current directory. If such a file does not exist, the command creates it.

Sancho, after a moment, tells Freston that he did the same thing and got
the same result:

$ cd /

$ find / -name "security" -print 2> errfile<Enter>

/etc/security

/usr/include/security

/lib/security

Freston says, “Well, Sancho, although you (fortunately, even luckily) got
the same output to the screen that I did, you didn’t really get the same
result. When I cat’d my errfile, I found it to be empty. So I’m confident that
I was able to examine all directories. Is your errfile empty?”

Sancho checks and tells him, “No way! My errfile is full of errors! Many
directories didn’t allow me entry at all!”

The lesson here is to be careful with commands like this one. If the com-
mand does not appear to provide the expected output, or even if it does, it
might still have created errors. But you will not know about the errors
unless you check the errfile file. An ordinary user (as opposed to a supe-
ruser or a root user) is likely to encounter more errors in these situations
due to a lack of permissions on directories or files.

Locating Commands: whatis, whereis, and
which Commands

What if you are trying to execute a program and the shell tells you it cannot
find the file or directory you refer to when you use the name of the com-
mand? Or, what if you are writing a program that will invoke a command

Basic Linux Utilities 235

and you need the full path name of the command, but you do not know
where it resides? Here are three quick find-like utilities that can help.

whatis
When you are not sure of a command name, when you are not sure of
exactly what the command will do, or even when you want to resolve
arguments among colleagues, the whatis is command can be helpful. The
whatis command searches the whatis database, a file found in the
/usr/bin directory, for the command name that you want to investigate and
then prints a brief summary of what that command does when invoked.
The syntax for whatis is straightforward:

$ whatis commandname<Enter>

Be sure to use a complete word. No partial text strings are allowed. See
Example 8.8.

Example 8.8 whatis

Sancho and the others have been advised to use the grep command to
search for information within their files without having to cat them indi-
vidually. Before he actually uses grep, Sancho decides to investigate it. He
starts with whatis as follows:

$ whatis grep<Enter>

grep (1) - print lines matching a pattern

Thanks to whatis, Sancho at least has verified the correct command
name to continue his search (if decides to do so). If he had the wrong name
to begin with (such as “gresp” or something), he might have had to enter
whatis several times to nail down the correct name. If more information
is required, Sancho can search grep’s man pages or other information
sources.

which
The which command is different from both whatis and whereis. It lists
the path names of the files that will be executed if you run the specified
command. Unlike whereis (which we will look at next), which searches
your PATH variable. The major drawback to which is that it stops search-
ing after it finds and reports on the first occurrence of the command name

236 Installing and Administering Linux 2E

that you specify. But an advantage to which is that if you are working in a
C shell environment, it also checks the .cshrc file (if one exists) for aliases.
Its syntax is as follows (see Example 8.9):

$ which commandname<Enter>

Example 8.9 which

Our intrepid Sancho continues his preliminary investigation of the grep
command by trying which. It will show him at least one location of the
executable grep file. He enters the following:

$ which find<Enter>

/bin/grep

whereis
The whereis command is a little different from whatis. You can use
whereis to find commands, command sources, and manual pages. This
command searches a standard built-in list of directories (/bin, /etc, /usr/bin,
and /usr/local/bin, among others) to find and print all matches of the speci-
fied command name. whereis does not search your own search path,
however (that is, as spelled out in your PATH variable), so it might not find
your individual shell scripts if they are in your local system directories or
in your own $HOME/bin directory (assuming that you have created one).
The syntax is

$ whereis commandname<Enter>

The whereis command, the way we used it in Example 8.9, is simpli-
fied compared with the syntax you will find in your information sources.
They will also tell you that you can specify the type of file to look for,
where to look for it, and so on. So, you can see that whereis is not quite as
simple as whatis. As always, consult your information sources for further
details. See Example 8.10.

Example 8.10 whereis

Sancho completes his investigation of grep by using whereis to look for
grep’s executable file and its man page(s):

Basic Linux Utilities 237

$ whereis grep<Enter>

find: /bin/grep /usr/share/man/man1/grep.1.gz

whereis has also substantiated the results of the which search results.
Sancho correctly perceives that there is only one executable grep, which is
common to ordinary users and root users.

Locating Data within a File: grep Command

You can use the grep (global regular expression parsing) command alone
or with other commands. We mentioned this command in Chapter 7,
“Shell Basics,” in the discussion of commands that are used as filters to
other commands. The syntax for the basic use of grep looks a lot like the
syntax for any command:

$ grep [options] regular expression [filename1 filename2 ... filenameN]

<Enter>

There is another syntax for grep for those occasions when grep is used
in tandem with other commands. That syntax is as follows:

$ commandname [options] | grep [options] | commandname [options]<Enter>

or

$ commandname [options] | grep [options]\<Enter>

> | commandname [options]<Enter>

We showed the tandem commands earlier as they would typically be
typed: on two separate lines. By the time you enter three or more com-
mands, you have probably decided to split them (to type part of the com-
mand structure at the primary prompt and the rest at the secondary
prompt).

Generally, the grep command searches for a regular expression, a spec-
ified pattern of text, logical constructs, and/or metacharacters (patterns or
wildcard symbols that stand for something special) within specified files.
If and when such expressions are found, grep takes one or more slices
(each line in the text file that contains the regular expression is a slice) from
the files and writes the slices to stdout.

238 Installing and Administering Linux 2E

The metacharacter symbols used by grep might be identical to some
used by the shell, but they might mean different things to grep. Conse-
quently, sometimes certain symbols should be surrounded by single quo-
tation marks (preferably) or double quotation marks. Meanwhile, the
grep command’s metacharacters are discussed in the next section.

You usually specify a filename with grep. If you do not, grep searches
stdin for its input. It is acceptable to alter stdin to accommodate that
(that is, you can use the technique in Chapter 7 to designate files or direc-
tories for grep to search).

If you have not altered stdin, the shell takes you to the next line on the
screen and leaves you with a flashing cursor (no prompt, even) and waits
for you to enter input. Remember, to grep, the terminal is the default
stdin. If you execute grep and want to do that, fine. If and when you
enter a text pattern that matches the specified search text pattern, grep
will echo that text pattern to the screen. To stop the echoing, press Ctrl-C.
The process terminates and returns a prompt.

Assume that you have entered a search text pattern and a single file-
name to search through, and grep finds your text pattern one or more
times in that file. It returns copies of those lines to your screen but does not
display any lines that do not match the text pattern. If you have entered
more than one filename to search and grep has found your text pattern in
more than one file, however, it returns each line it found and also precedes
each line with the name of the file in which it found the text pattern.
(Example 8.11 illustrates this type of response.)

Example 8.11 grep

Examples 8.11 and 8.12 will be more meaningful if you revisit the follow-
ing files, which were created for Examples 7.1, 7.2, and 7.3:

■■ Filename: /home/gutiejua/admin/phone#s/RFI_Tel1

■■ Filename: /home/gutiejua/admin/phone#s/RFI_Tel2

■■ Filename: /home/gutiejua/admin/phone#s/RFI_Tel3

Furthermore, these examples will be more meaningful if you take the
time beforehand to create the following additional files with a text editor
such as vi:

■■ Filename: /home/gutiejua/admin/Feed

Rozinante, Dapple -

hay (alfalfa, timothy, etc) .8

oats .3

Basic Linux Utilities 239

chop .2

vegetables (fresh) .65

vegetables (old, rotten) .6

fruits .4

supplements .1

nachos/salsa .15

Dogs, Cats -

dog food .5

dog treats .55

cat food .7

catnip .75

■■ Filename: /home/gutiejua/admin/Innfile

file<Spacebar>Inn No. 4

file<Spacebar>Inn No. 7

file<Tab>Inn No. 8

file<Tab>Inn No. 1

file<Spacebar>Inn No. 8

In the Innfile file, <Spacebar> indicates that you should press the
space bar between the end of the word file, for example, and the beginning of
the phrase Inn No. x. Similarly, <Tab> indicates that you should press the Tab
key between the end of the word file, for example, and the beginning of the
phrase Inn No. x. Also, there are really two Inn No. 8 entries; there is no typo-
graphical error.

Lady Dulcinea is curious about how many staff members make their
homes near La Mancha and El Toboso. She asks Juana to check her RFI_Tel*
telephone number files. Juana knows that only two files (namely, RFI_Tel1
and RFI_Tel2) contain such information. She uses grep with the regional
area code 958 as follows:

$ grep 958 RFI_Tel1 RFI_Tel2<Enter>

RFI_Tel1: La Mancha Field Office (Noble Deeds) - +34 958 55 34 56

RFI_Tel1: El Toboso Field Office (Executive Suites) - +34 958 55 56 78

RFI_Tel2: Casa: +34 958 55 19 01

RFI_Tel2: Casa: +34 958 55 01 03

RFI_Tel2: Casa: +34 958 55 13 15

RFI_Tel2: Casa: +34 958 55 13 15

RFI_Tel2: Casa: +34 958 55 15 17

RFI_Tel2: Casa: +34 958 55 17 19

NOTE

240 Installing and Administering Linux 2E

Example 8.12 grep for Extracting Data

Juana remembers compiling three telephone lists for Rueful Figures, Inc.
and storing them in her phone#s subdirectory. Here is how she checks that
number:

$ cd<Enter>

$ cd admin/phone#s<Enter>

$ ls | grep ^R | wc -l<Enter>

3

In the command in Example 8.12, Juana moved to her home directory
first, then changed directories to her /home/admin/phone#s subdirectory.
Then, she listed all the files in that subdirectory and grep’d all files whose
filenames began with an R and then counted the number of lines in the out-
put to that grep command. Because grep found three files, RFI_Tel1,
RFI_Tel2, and RFI_Tel3 (for reference, see the file listings in Example 8.11),
its output would have three lines. The wc command counts those grep
output lines and reports a 3 to the terminal screen, which is the default
stdout (standard output device). The grep command is used most often
in this capacity to extract certain specified information from stdin for fur-
ther processing.

In the next section, we will examine grep’s metacharacters as used in its
regular expressions.

Admittedly, Juana could have just done an ls listing on the same direc-
tory and counted the files whose filenames began with an R. If she had had
to check through a long list of files through several subdirectories, how-
ever, then a simple listing would have been insufficient.

grep: Regular Expressions with
Metacharacters
Take another look at Example 8.11. You could get the same results by enter-
ing the following:

$ grep 958 RFI*<Enter>

For Juana’s file structure, the asterisk wildcard would point to the three
files. What if she had more than three files that began with RFI but she
only wanted to check those three files, however? How could she restrict
the search? Besides listing the three files explicitly, can you think of any

Basic Linux Utilities 241

Table 8.2 Metacharacters in grep and the Shell

METACHARACTER MEANING IN GREP MEANING IN THE SHELL

. Match any character If followed by filename, exe-
cute filename

* Match zero or more Match zero or more
preceding

^ Match beginning of line Bourne shell pipe symbol

$ Match end of line Variable (generally, the user
prompt)

\ Escape the character Escape the character
following following

[] Match one from this Match from this set or range
set or range

{ } Match this range of
instances

+ Match one or more
preceding

? Match zero or one Match zero or one
preceding

other syntax that would work? The next section should help answer these
questions.

Meanwhile, we know that grep can search in specified files for speci-
fied regular expressions, which can include text patterns and metacharac-
ters. In Example 8.12, we saw a metacharacter used with grep to search
for every file that begins with the character R (grep ^R).

We also mentioned how the metacharacters used with grep might or
might not mean the same as the metacharacters used by the shell. Take a
look at Table 8.2. Can you see how grep metacharacters might cause con-
fusion as well as unreliable and undesirable results? For this reason, we rec-
ommend that you surround grep expressions containing metacharacters
with single quotes. Double quotes might be acceptable in some situations,
but you will get the most reliable performance by using single quotes.

The following are three examples of grep metacharacter usage:

■■ [a-f] means any one character from the range a through f
■■ ^a means any lines beginning with a
■■ z$ means any lines ending with z

242 Installing and Administering Linux 2E

Table 8.3 Selected grep Options

OPTION DESCRIPTION

-v Print the lines that do not match the specified pattern.

-c Print only a count of the matching lines.

-l Print only the names of the files with matching lines.

-n Print matching lines and their line numbers in the respec-
tive files.

-i Ignore the case of the letters when making comparisons.

-w Perform a whole word search.

grep Options
Table 8.3 presents some of the more common grep options. All of these
options are used in Example 8.7, where we present the poem titled “Fleas.”

Example 8.13 Applying grep to “Fleas”

Sancho, inspired by Don Quixote’s poetic prowess (questionable though
these examples might be), has written this poem and has saved it in his
home directory. After you read it, you will probably wonder why:

$ cat fleas<Enter>

Fleas

You bite those bugs and give a yelp

You scratch anon, sometimes it helps

You chase your tail, you drag your butt

Oh, but you’re suffering, my dear old mutt

I rub your belly and your back

To stem that burning itch attack

I scratch your ears, and scratch your head,

But those cursed fleas fill me with dread!

They are entrenched, they won't go 'way

Do what you will, they’re here to stay

You long for the "powders", you yearn for the "collars"

Perhaps a mud pit in which to waller?

But, you know what? You see, old friend?

To rout those fleas, reach your happy end?

Basic Linux Utilities 243

There is just one way to escape their wrath,

Yes, amigo, you must have a bath!

It might not be good, but it was fast. And besides, Sancho can now use
“Fleas” to practice his grep skills. For example:

■■ To search for all lines containing the word you, in both upper-case
and lower-case variants of y:

$ grep -i you fleas<Enter>

■■ To perform the search by using only metacharacters:

$ grep '[Yy]ou' fleas<Enter>

■■ To perform the search using the egrep command (discussed later):

$ egrep 'you|You' fleas<Enter>

■■ To search for all lines containing at least one character but to return
only a line count of those lines:

$ grep -c '.' fleas<Enter>

■■ To search for all files that contain the word you, whether in
lowercase or uppercase:

$ grep -li you *<Enter>

This example illustrates how you can combine options. Note that when
subdirectories are encountered during the search, the following message
appears: grep: directoryname: Is a directory.

■■ To search for all lines that do not contain the word you, lowercase or
not:

$ grep -vi you fleas<Enter>

This example illustrates the combination of options, but the displayed
output includes all blank lines, as well.

■■ To search for all lines in the fleas file, number them and send the
output to the fleas.num file:

$ grep -n '.*' fleas > fleas.num<Enter>

244 Installing and Administering Linux 2E

Note how this example uses grep options and metacharacters and then
uses redirection to send the output to the fleas.num file. To view the results,
type $ cat fleas.num<Enter>.

■■ To search for all occurrences of the whole word you in the poem:

$ grep -w 'you' fleas<Enter>

Note that the words your and You’re are also in the poem. If whole
word had not been specified by the -w option, the occurrence of those
words would also have been displayed.

More Examples of grep with
Metacharacters
In this section, we provide more examples of grep in action to help ensure
that you understand how to use this powerful command. These examples
are representative of the tasks that administrators typically encounter.

■■ Select all lines (blank lines and non-blank lines) from the RFI_Tel1
file:

$ grep '.*' RFI_Tel1

When you ask for this type of output, you are probably assuming that
the file has blank lines. Single quotes surround the regular expression,
because without them, the shell will interfere with grep’s execution by
imposing the shell’s interpretation on the asterisk.

■■ Select only the blank lines in RFI_Tel1:

$ grep '^$' RFI_Tel1<Enter>

■■ Select all the lines in the RFI_Tel2 file that begin with the letter M and
end with the number 7, with any number of characters in between:

$ grep '^C.*1$' RFI_Tel2

This request asks for lines that have a particular pattern within a file.

Basic Linux Utilities 245

■■ Select all the lines in the RFI_Tel2 file that contain a plus sign (+):

$ grep '\+' RFI_Tel2<Enter>

Other grep Commands:
egrep and fgrep
We have already discussed how grep can be extremely useful when you
have to extract text from a data stream, such as a text file. (Yes, grep can be
used for other types of data streams, but this usage is not covered here.)
The command’s functionality or performance for extracting text in particu-
lar situations is further enhanced by the egrep and fgrep commands.

egrep: Searching for Alternates

The grep command itself cannot be used for the type of search request
where you want to find all strings containing one item or another. The
extended grep command, egrep, enables OR searches by letting you put
a pipe symbol (|) between your specified alternate search expressions,
as shown in Example 8.14. The egrep command also works with grep’s
metacharacters and options. The egrep command is a little slower than a
normal grep, mostly because it executes more than one grep process.

Example 8.14 egrep

Lady Dulcinea wants to know how many 800 numbers the RFI has to pay
for. She also wants to know whether RFI has any 900 numbers:

$ egrep '800|900' RFI_Tel3<Enter>

Emergencies - +34 91 800 09 87

Human Resources - +34 91 900 55 87

Although she is not sure why the human resources department has a 900
number, she is satisfied that the emergencies number is an 800 number.

Faster Searching for Fixed Strings with fgrep

The fgrep command is similar to grep but does not provide the regular
expression capability. Instead, you are limited to searching for fixed text
strings, as shown in Example 8.15. This command enables you to use the

246 Installing and Administering Linux 2E

same options as grep with the exception of any that deal with metachar-
acters or other aspects of regular expressions.

Because fgrep does not require the extra translation, it requires fewer
processor resources.

Example 8.15 fgrep

At one point, Perez needs to call Lady Dulcinea. He has saved his copy of
the RFI_Tel2 file in the admin subdirectory of his home directory. Here is
how he can quickly access her phone number:

$ fgrep 'Dulcinea' ./admin/RFI_Tel2<Enter>

A. Lorenzo (Lady Dulcinea) - Tel: +34 91 555 01 23

Sorting Output: The sort Command

You use the sort command to sort the output of a file or the stdout of a
process before it is sent to the screen or wherever you want it to go. Thus,
sort helps to ensure that the output is in an acceptable order or that it is
presented how you want. It works by reading stdin (which might be the
stdout of another process), processing the data, and sending it to stdout
or wherever you designate. The sort command’s syntax is as follows:

$ sort [-t delimiter] [+field[.column]] [options] [file(s)]<Enter>

The processes of the sort command use dictionary or ASCII ordering
by default, which you can override with options—several of which appear
in Table 8.4. For information on sort’s many other options, consult your
information sources.

Example 8.16 sort with Spaces and Tabs

In Example 8.16, Juana first uses the cat command to display the contents
of the Innfile file. Then, by adding +1 in the +field position (see the syn-
tax), she can sort the contents of the file according to the second field of
each line. Look at how tabs have priority over spaces:

$ cat Innfile<Enter>

Filename: /home/gutiejua/admin/Innfile

file<Spacebar>Inn No. 4

file<Spacebar>Inn No. 7

file<Tab>Inn No. 8

file<Tab>Inn No. 1

file<Spacebar>Inn No. 8

Basic Linux Utilities 247

Table 8.4 Selected sort Options

OPTION DESCRIPTION

-b Ignore leading spaces and tabs.

-c Check whether data in the file is already sorted; if so,
produce no output.

-d Sort in dictionary order.

-f Ignore differences in uppercase and lowercase.

-n Sort in arithmetic order.

-ofile Place output in the file.

-r Reverse the sort order.

$ sort Innfile +1<Enter>

Filename: /home/gutiejua/admin/Innfile

file<Tab>Inn No. 1

file<Spacebar>Inn No. 4

file<Spacebar>Inn No. 7

file<Tab>Inn No. 8

file<Spacebar>Inn No. 8

I

The sort command uses <Tab> or <Spacebar> as the default delim-
iter between fields. If the input to sort consists of a combination of spaces
and tabs throughout the data being sorted, the tabs and spaces are subject to
the sorting process. This situation can result in what appears to be incorrect
processing (as shown in Example 8.16).

Example 8.17 Several sort Examples

In Example 8.17, Juana shows us several instances of the sort command
in action. To do so, she will use the Feed file, which is in her admin subdi-
rectory.

To display the Feed file as written, she enters

$ cat Feed<Enter>

Filename: /home/gutiejua/admin/Feed

Rozinante, Dapple -

hay (alfalfa, timothy, etc) .8

oats .3

chop .2

vegetables (fresh) .65

vegetables (old, rotten) .6

NOTE

248 Installing and Administering Linux 2E

fruits .4

supplements .1

nachos/salsa .15

Dogs, Cats -

dog food .5

dog treats .55

cat food .7

catnip .75

Notice that there are four blank lines in Feed. Those blank lines will show
up in each of the next three examples. They are not forgotten by the sort
command.

■■ Now, Juana sorts all the lines in Feed into dictionary (in other
words, alphabetical) order:

$ sort Feed<Enter>

cat food .7

catnip .75

chop .2

dog food .5

Dogs, Cats -

dog treats .55

Filename: /home/gutiejua/admin/Feed

fruits .4

hay (alfalfa, timothy, etc) .8

nachos/salsa .15

oats .3

Rozinante, Dapple -

supplements .1

vegetables (fresh) .65

vegetables (old, rotten) .6

■■ Now, she sorts alphabetically by the second character in the first
word of each line:

$ cat Feed | sort +0.1<Enter>

Basic Linux Utilities 249

nachos/salsa .15

cat food .7

catnip .75

oats .3

hay (alfalfa, timothy, etc) .8

vegetables (fresh) .65

vegetables (old, rotten) .6

chop .2

Filename: /home/gutiejua/admin/Feed

dog food .5

Dogs, Cats -

dog treats .55

Rozinante, Dapple -

fruits .4

supplements .1

Finally, Juana uses the t option to tell sort which character in the file to
recognize as the field separator. The most common separators are colons,
tabs, or \n (newline character). Juana will illustrate how to sort on the sec-
ond field, numerically, using the dot (.) as the field delimiter:

$ cat Feed | sort -t. -n +1<Enter>

Dogs, Cats -

Filename: /home/gutiejua/admin/Feed

hay (incl. alfalfa, timothy, etc) .8

Rozinante, Dapple -

supplements .1

chop .2

oats .3

fruits .4

dog food .5

vegetables (old, rotten) .6

cat food .7

nachos/salsa .15

dog treats .55

vegetables (fresh) .65

catnip .75

Please notice that the blank lines, followed by the lines with no numbers or
where there are no numbers in the second field, were listed first. The hay
line shows a dot delimiter in the abbreviated word incl., but there is no
number following it. The number 8 appears in what sort would consider
to be the third field.

250 Installing and Administering Linux 2E

Then, the sort command sorted the other lines, which met the search
criteria more correctly, in numerical order. Notice also that the single-digit
numbers were sorted before the double-digit numbers.

sort’s options are unique to it. If you were using the cut command, by
comparison, the delimiter would be d, not t.

Displaying Parts of Files:
The head and tail Commands

You use the head and tail commands when you want to view only parts
of a file.

The head Command
In this section, we discuss only the simplest applications of the head com-
mand. Refer to your sources for further information regarding this com-
mand’s additional options.

The head command is used to display the first n number of lines in a
file, as illustrated in Example 8.18. The syntax is

$ head [-number of lines] [file(s)]<Enter>

If you do not specify a number, the default value of 10 is used. If no files
are specified, head reads from the standard input device (stdin). If head
is combined after another command, head still reads from stdin
although it appears that head is reading from the stdout of the previous
command. If more than one file is read, a header of the type ==> file-
name <== is displayed before the respective lines of text.

The second part of Example 8.18 shows how you can pipe to head the
output of one process to display only a specified number of lines.

Example 8.18 head

Juana cannot remember offhand whether she put the filename at the top or
the bottom of the Feed file. From her home directory, she simply types

NOTE

Basic Linux Utilities 251

$ head -5 ./admin/Feed<Enter>

Filename: /home/gutiejua/admin/Feed

Rozinante, Dapple -

hay (incl. alfalfa, timothy, etc) .8

Now, again from her home directory, Juana will do a recursive listing, but
starting from her admin subdirectory (in other words, seeming to jump
over her /home/gutiejua directory), and will send the output to head:

$ ls -R ./admin | head -7<Enter>

./admin:

Feed

Innfile

phone#s

./admin/phone#s:

RFI_Tel1

The tail Command
The tail command performs a bit differently than head. Its syntax is

$ tail [-number of lines | +number of lines] [file(s)]<Enter>

Note that you can specify a positive or negative number for the number of
lines. (For other options, see your information sources.) The negative num-
ber tells tail to display text beginning at the nth line from the end of the
file, so you get n lines of text. The first part of Example 8.19 illustrates this
type of output.

The positive number specification tells tail to display text beginning at
the nth line from the beginning of the file and to continue from there. The
second part of Example 8.19 illustrates this situation.

One interesting option with the tail command is the -f option. With
this option, tail continues reading additional lines from the input file as
they become available. For example, suppose that Juana has an accounts-
receivable file called Repts_rec that she knows will keep growing. She
could monitor its growth by entering the following:

$ tail -f Repts_rec<Enter>

252 Installing and Administering Linux 2E

The result is the (default) last 10 lines of the file at the moment the com-
mand is processed. Then, additional lines are displayed as they are added
to the file. Juana could stop it by pressing Ctrl-C.

Example 8.19 tail

Juana wants to see where she left off when compiling the Feed file. Specifi-
cally, she wants to know whether she listed feed for the support animals
(the dogs and cats). Here is how she checks:

$ tail -6 Feed<Enter>

Dogs, Cats -

dog food .5

dog treats .55

cat food .7

catnip .75

Remember, the -6 told tail to display text beginning at the sixth line
from the end of the file, so Juana received six lines of text.

Earlier, Juana listed the first five lines of the Feed file with head. Now,
she wants to continue listing—picking up from where she left off. She can-
not remember just how long Feed is, so she uses the tail command to
begin at line 6:

$ tail +6 animals<Enter>

oats .3

chop .2

vegetables (fresh) .65

vegetables (old, rotten) .6

fruits .4

supplements .1

nachos/salsa .15

Dogs, Cats -

dog food .5

dog treats .55

cat food .7

catnip .75

The +6 told tail to display text beginning at the sixth line from the begin-
ning of the file and to continue from there. That is why Juana got 14 lines of
output. The Feed file is 19 lines long. If Feed had only been, say, nine lines
long, then she would only have gotten four lines of output.

Basic Linux Utilities 253

Exercises

1. Log into the system and ensure that you are in your home directory.
Then, find and display all files in the /tmp directory:

$ cd<Enter>

$ pwd<Enter>

$ find /tmp<Enter>

2. Find all files in your home directory that begin with the letter s and
then have ls -l automatically execute on each filename found as a
result of the search operation:

$ find . -name 's*' -exec ls -l { } \;<Enter>

3. Repeat the search in the preceding step but interactively prompt the
user to display a long list on each file:

$ find . -name 's*' -ok ls -l { } \;<Enter>

4. Find all files starting from the /usr directory owned by the uucp
username. Modify the command line to count the number of files
owned by uucp. You probably do not have read permission for some
directories, which would result in a permission denied message
on your terminal screen. Because you anticipate this situation,
redirect all error messages to a file called errfile:

$ find /usr -user uucp 2> errfile | wc -l<Enter>

5. Display the errfile file from the preceding instruction to see whether
any error messages were written:

$ pg errfile<Enter>

6. To demonstrate that find recursively searches all directories and
subdirectories from the search path down, do the following. First,
ensure that you are in your home directory:

$ cd<Enter>

$ mkdir level1<Enter>

254 Installing and Administering Linux 2E

Create a zero-length file named letter1 in the level1 subdirectory:

$ touch level1/letter1<Enter>

Change to the level1 subdirectory:

$ cd level1<Enter>

Make a subdirectory under level1 called level2:

$ mkdir level2<Enter>

Create a zero-length file named letter2 in the level2 subdirectory:

$ touch level2/letter2<Enter>

Change to your home directory:

$ cd<Enter>

From your home directory, issue the command to list all files starting
with the letter l. Record the names displayed:

$ ls l*<Enter>

From your home directory, issue the command to find only files
starting with the letter l:

$ find . -name 'l*' -type f<Enter>

Finally, record the names displayed.

Basic Linux Utilities 255

7. Find all lines in the /etc/passwd file for usernames that start with
team:

$ grep team /etc/passwd<Enter>

8. Find all lines in the /etc/passwd file that begin with the letter t:

$ grep '^t' /etc/passwd<Enter>

9. Find all lines in /etc/passwd that contain a digit from 0 through 9:

$ grep [0-9] /etc/passwd<Enter>

10. Repeat the search in the preceding step, but this time display only
the number of lines that contain the pattern:

$ grep -c [0-9] /etc/passwd<Enter>

11. Use the ps and grep commands to display the processes that have
been initiated by users other than yourself:

$ ps ua | grep -v username<Enter>

12. Display the contents of the /etc/passwd file in alphabetical order:

$ sort /etc/passwd<Enter>

13. Display the contents of the same file but in reverse order:

$ sort -r /etc/passwd<Enter>

14. Display the first ten lines of /etc/passwd:

$ head /etc/passwd<Enter>

256 Installing and Administering Linux 2E

15. Display the first five lines of /etc/passwd:

$ head -5 /etc/passwd<Enter>

16. Display the last ten lines of /etc/passwd:

$ tail /etc/passwd<Enter>

17. The tail command is handy also for stripping header information
from the output of a command. First, list all processes that are
currently running on your system. Note the headings:

$ ps ua | less<Enter>

18. Next, display all processes running on your system excluding the
header information:

$ ps ua | tail +2 | less<Enter>

See Appendix B for answers.

Quiz

1. Which command would you use to locate all the files in your system
that begin with the text string mis?

2. Explain the following command:

$ ps ua | grep -w root | grep -w /sbin*<Enter>

3. Explain the following command:

$ ls -l /home/teamxx | egrep 'um$|isc$|ync' | sort -r +8 | tail +2 |

head -7<Enter>

See Appendix C for answers.

C H A P T E R

9

Advanced Linux Utilities

257

In Chapter 8, “Basic Linux Utilities,” we discussed some basic Linux utili-
ties. This chapter continues that discussion and broadens your ability to
perform file system administration. In several of the sections and exam-
ples in this chapter, we refer once again to Sancho’s file structure.

Maximizing Work per Command: xargs

For efficient execution, the xargs command is one of the best commands
that Linux/UNIX offers. xargs has two very valuable functions that we
will discuss here.

xargs: Optimal Execution for “Smart”
Commands
Some Linux/UNIX commands are smart enough to take input from a
parameter line and execute with it. Moreover, if the parameter line is
empty, the command is again smart enough to take input from stdin,

258 Installing and Administering Linux 2E

which is often a pipe. xargs is a very efficient command that can read sev-
eral arguments one line at a time from its stdin and then assemble as
many of them as possible into a single command line until it determines
that it has reached its capacity. By “reached capacity,” we mean that xargs
would not be capable of executing if any more arguments are added. Also,
the arguments to xargs are generally commands or programs themselves,
as you will see in Example 9.1.

Thus, once xargs has filled its input to capacity this way, all the com-
mands will be executed. If there are still more arguments in the source,
xargs will assemble more of them into another single command line until
it too is filled to capacity, and then those command(s) will be executed. The
xargs command continues to perform this task until it exhausts the given
supply of arguments/commands.

The syntax for xargs is as follows:

$ command [options] | xargs [options][arguments]<Enter>

We recommend that when xargs is executed, the -t option (which
invokes verbose mode) should be included—at least until you are familiar
with xargs and it is doing exactly what you want. After you get comfort-
able with xargs and can trust it, you will probably no longer choose to
use the -t option.

Example 9.1 Using xargs with “Smart” Commands

In Example 9.1, we will illustrate two fairly simple applications of xargs.
But first, let’s take a look at the latest version of Don Quixote’s portion of
the RFI directory structure in Figure 9.1. He has been busy preparing for
the next Noble Deeds Division journey. He has expanded his file structure
so that he can dedicate a file to each provision.

Don Quixote has two objectives at this point:

■■ To print the large number of filenames within his new
/home/quixoted/provisions subdirectory

■■ To change the names of the existing files so that he can add new files
with similar names later

Here is how he will use xargs and other commands to print the filenames:

$ cd /home/quixoted/provisions<Enter>

$ ls > prov_list<Enter>

Advanced Linux Utilities 259

Figure 9.1 Don Quixote’s portion of the RFI directory structure.

$ cat prov_list<Enter>

accom_inns

bills

buckler

cell_ph

.

.

.

travel_H2O

wthr_fcsts

$ xargs -t lpr < prov_list

lpr accom_inns bills buckler ... insurance

lpr lance maps medical ... wthr_fcsts

260 Installing and Administering Linux 2E

In this first step, Don Quixote illustrated the printing of a number of
filenames at once. He moved to the /provisions subdirectory, then created a
file there named prov_list, which consists of the names of all the files in the
subdirectory. Those were the names he wanted to print. He used cat to
examine the filenames in the new file list.

In this step, the Don used the combined xargs and lpr commands
and the results. The feedback from the shell indicated that xargs was
capable of filling the command line with arguments from accom_inns to
insurance before lpr was executed the first time. Then, xargs had the
capability to pass the rest of the files, from lance to wthr_fcsts, to lpr for
the second execution. Note that the Don was using the -t option to
ensure that xargs had passed the input to lpr and that lpr did indeed
execute.

Because the existing files pertained mostly to his last journey in March,
he chose to change their filenames to reflect that date. Here is how he
changed the names of all the files at once:

$ ls | xargs -t -i mv {} {}.mar01<Enter>

mv accom_inns accom_inns.mar01

mv bills bills.mar01

mv buckler buckler.mar01

mv cell_ph cell_ph.mar01

.

.

.

mv travel_H2O travel_H2O.mar01

mv wthr_fcsts wthr_fcsts.mar01

The second part of Example 9.1 shows how the Don inserted his file-
names into the middle of a command line. His objective was to rename all
the files in the provisions subdirectory by adding the .mar01 suffix to each.
He invoked a short listing (in other words, ls) of the files in that directory
and then piped the filenames from stdout to xargs. xargs, then
instructed that each filename, in turn, be inserted (the -i option inserts
each line of standard input) between the curly bracket placeholders fol-
lowing the mv command. This form of mv is commonly used to rename
files. Because he also specified the -t option, the Don was also able to
monitor the execution of mv as each filename was passed to it. That is
because the -t option causes the individual commands to be printed to
stderr just before executing the mv command. Later, after the last file-
name, wthr_fcsts, was changed to wthr_fcsts.mar01, the combination com-
mand finished and the primary shell prompt returned.

Advanced Linux Utilities 261

xargs: Tandem Execution for
“Not-So-Smart” Commands
We mentioned in the introduction to this section that there are two uses for
xargs. Our first discussion and example illustrated how xargs can work
with files that are smart enough to take input from a pipe. But unfortu-
nately, not all commands are that smart. For example, rm (the delete com-
mand) is one of those not-so-smart commands. Faced with this situation,
what would you do if you had a lot of repetitions of a command (such as
rm) to perform? Your options are as follows:

■■ Invoke the command several times manually.
■■ Use some type of automated loop to invoke the command for every

file, which spawns a subprocess every time the command is invoked
(taxing on time and processing capability).

■■ In the case of rm, use find to identify the input filenames and then
execute cat, xargs, and rm in tandem.

The third option is the best. This example illustrates xarg’s second and
very valuable use: taking cat’s output and passing it to rm. We will see
how this process works in Example 9.2.

Example 9.2 xargs

Juana’s portion of the RFI directory structure is illustrated in Figure 9.2.
Juana now wants to remove the copies of RFI_Tel1, RFI_Tel2, and

RFI_Tel3 that she has kept in her /home/gutiejua/tempwork subdirectory. For
the first part of the process, she will collect their filenames into a single
file called tempphonelists. Then, she will cat that file to be sure that it is
correct:

$ cd <Enter>

$ cd ./tempwork<Enter>

$ find . -name ‘*Tel*’ -print > ./tempphonelists<Enter>

$ cat tempphonelists<Enter>

./RFI_Tel1

./RFI_Tel2

./RFI_Tel3

Now, in the second and final stage, Juana will use xargs and rm against
tempphonelists to remove the copies of the phone list files:

262 Installing and Administering Linux 2E

Figure 9.2 Juana’s portion of the RFI directory structure.

$ cat tempphonelists | xargs -t rm<Enter>

rm ./RFI_Tel1 ./RFI_Tel2 ./RFI_Tel3

The first command was relatively simple: find identified all three
phone list files and put their names into the tempphonelists file. With the
second command, cat passed the list of filenames to xargs through std-
out/stdin. xargs then translated the information from that stdin pipe
and passed each parameter (in this case, each filename) to the parameter
line for the subsequent rm command. The xargs command was smart
enough to know the length of the parameter line it could produce before
rm was to be invoked. Thus, rm was invoked the optimum number of
times, which illustrates why this method is the most efficient way of han-
dling this procedure.

You might have noticed that Juana also used the -t option with xargs.
The -t option again caused the individual command to be printed to

Advanced Linux Utilities 263

stderr just before the command executed. Juana, like the Don in the pre-
vious example, was allowed to monitor (in real time as it happens) the
number of times that rm is invoked. That is why the line rm ./RFI_Tel1
/RFI_Tel2 ./RFI_Tel3 appears while the tandem cat, xargs, and rm
commands are executed. In this case, rm itself was executed only once.

Combining the xargs, find,
and grep Utilities
Combining the find, grep, and xargs utilities has its benefits. All are
powerful and efficient in their own right, but combining them multiplies
their usefulness and can make you an even more efficient system user. Let’s
illustrate their combined power by moving to Example 9.3 immediately.

Example 9.3 Combining find, xargs, and rm

RFI staff members cooperate with Freston when he searches for files with
modification dates older than 30 days so that he can remove them from the
system. Of course, some old files are important, and Freston also cooper-
ates with them to ensure that backup copies are available for future refer-
ence. But the object is not to clutter the storage capabilities of the system.

Normally, if he did not use xargs and other commands in tandem, Fre-
ston would have to enter a command like the following:

find . -type f -mtime +30 -exec rm {} \;

That might not appear inefficient or objectionable at first glance, but it
means that rm would be invoked every time a file was found that matched
the find criteria. How many times would it have to be invoked if Freston
was searching through a very large file system?

So this coding is what Freston enters to find and remove the old files. He
uses find, xargs, and rm in tandem as follows:

$ find . -type f -mtime +30 | xargs -t rm <Enter>

rm ./oldfilex ./oldfiley ./oldfilez ./oldfileaa etc. . . .

Using xargs allows Freston to pass multiple parameters to rm, so rm is
invoked far fewer times to remove all of the old files. In addition, Freston
finds the xargs syntax easier to remember than the combined find,
exec, and rm syntax. Note that in Example 9.3, we show Freston using the
-t xargs option so that he can see how many times rm would actually be
invoked.

264 Installing and Administering Linux 2E

Example 9.4 Combining find, xargs, and grep

Sancho wants to call and talk to Dapple’s trainer, but because he is still
new to RFI and he has only been to the stable/spa in Toledo once, he can-
not remember who Dapple’s trainer is. But he knows that each animal’s
profile has the trainer’s name in it. He was just reading the profiles and
adjusting them recently, but their filenames have slipped his mind. But he
can quickly examine his current directories and find all the files containing
the word “trainer” (regardless of whether it is in upper or lower case). This
is what he enters:

$ find . -type f | xargs -t grep -lwi 'trainer' lpr<Enter>

grep -lwi trainer lpr ... recursive listing of files ...

./Maint/rozinante

./Maint/dapple

First, find passes a list of the files in the current directory to xargs. The
xargs command invokes grep to look into all the files for the entire word
trainer (the -w option) regardless of case (the -i option) and list the
names of the files containing trainer (the -l option). The output list is
handed to lpr, which prints a recursive list of the files examined to the
screen. After that, the names of the files that contain trainer are printed:
rozinante and dapple, both of which are in Sancho’s Maint subdirectory.

We can see that grep was invoked only once because the example file
structure contains a small number of files. If there had been many more
files to examine, invoking grep more often might have been necessary.

Linux/UNIX Shortcut: The alias Command

You would probably appreciate being able to execute frequently used com-
mands with fewer keystrokes. Or, there might be long-winded commands,
frequently used or not, for which you would really appreciate using fewer
keystrokes.

Enter the alias command, which you can use to:

■■ Create an abbreviated command name—or perhaps some kind of
mnemonic sequence—that becomes a new internal shell command
that will accomplish the same effects as the longer command it
replaces.

■■ Investigate to find any aliases that have already been created.

Advanced Linux Utilities 265

We have already seen examples of the use of aliases in Examples 11.2
(the etc/bashrc file) and 11.4 (the .bashrc file).

An alternative to creating command names using alias is to write a
shell script to do the same thing. Because a new alias-created command
is an internal shell command, however, the shell gives it precedence over
any script you might have created to do the same thing. In addition, creat-
ing shell scripts involves using a text editor such as vi, and testing and
using shell scripts requires you to give the script files the proper permis-
sions. Then, you have to make sure that the PATH variable includes a refer-
ence to the location of the shell script so that it can be found and executed.
Of course, sometimes a shell script is just what you want or need, espe-
cially when you want to do something more complex (for example, exe-
cuting a sequence of commands automatically when you log in). Still, from
the standpoint of creating, testing, and executing, the use of the alias
command is a more simple and straightforward technique.

Examining Existing Aliases and
Creating New Ones
You can use the new alias by itself as a command, or you can add argu-
ments to it. But the arguments must pertain to the command (if there is
more than one command within the alias, the arguments must pertain to
the last command).

For investigating what aliases might already exist, here is the syntax:

$ alias<Enter>

And for creating new aliases, the syntax is

$ alias (-options)newaliasname='commandname (-options)

[arguments]'<Enter>

For instance, assume that you have a new alias, l, which is equivalent to
ls -l. If you want to see hidden files too, you should type l -a at the
prompt.

By adding aliases to global function and alias files, the system administra-
tor can make those aliases available to all or specific groups of other users.

In Example 9.5, we first use the alias command alone to view the aliases
that have already been defined in our profile, function, and alias files.

266 Installing and Administering Linux 2E

Example 9.5 Using the alias Command to Check
for Existing Aliases and to Create New Ones

To find existing aliases, use

$ alias<Enter>

alias dir-p='ls -l | more'

alias which='type -path'

He found two: dir-p, which he created in a previous section, and
which, the default alias that helps us identify commands.

To create three new aliases for common functions to reduce lengthy key-
boarding, use

$ alias l='ls -l'<Enter>

$ alias p='ps f'<Enter>

$ alias r='fc -e -'<Enter>

To check that the new aliases are listed with the original two, use

$ alias<Enter>

alias dir-p='ls -l | more'

alias which='type -path'

alias l='ls -l'

alias p='ps f'

alias r='fc -e -'

Next, he used the alias command with arguments to create three new
aliases. Two of them perform listing functions: alias l='ls -l' creates
a long listing of the non-hidden files and subdirectories in your current
directory, and alias p='ps f' creates a list of processes and indicates
which child processes were spawned by which parent processes. The last
alias (alias r='fc -e -') is a shorthand form for “repeat the last or
immediately previous command.” Finally, we use the alias command by
itself again to verify that the three new aliases were created.

Using and Removing Aliases
Suppose that you no longer need an alias you have been using and want to
delete it. To do so, you use the unalias command. Its syntax is as follows:

$ unalias aliasname<Enter>

Advanced Linux Utilities 267

In Example 9.6, we check for existing aliases, verify that the alias we cre-
ated in Example 9.5 works, remove that alias, and then verify that it no
longer works.

Keep in mind that these aliases will work only in the shells in which
they were created. If you want them to work elsewhere, you have to enter them
in your $HOME/.bashrc file (or whatever file you use for the BASH_ENV vari-
able) or into function or alias files for your other shells. We will discuss those
files and variables in Chapter 11, “Shell Variables and the User Environment.”

Example 9.6 Identifying and Removing an Alias

To identify existing aliases, use

$ alias<Enter>

alias dir-p='ls -l | more'

alias l='ls -l'

alias p='ps f'

alias r='fc -e -'

alias which='type -path'

To verify that the l alias works, use

$ l<Enter>

-rw-r--r- 1 flintsfr staff 524 Jun 13 12:45 xfile1

-rw-r--r- 1 flintsfr staff 1455 Jul 15 14:13 xfile2

To remove the l alias and then check to see whether it works, use

$ unalias l<Enter>

$ l<Enter>

bash: l: command not found

You can remove more than one alias at a time by entering their names
in a list after the unalias command. Be careful to separate each name
with a space.

Remember that unalias removes the alias from the current shell’s
alias list, but if the alias appears somewhere in the definition of the BASH_ENV
variable file, it will be back the next time you log in and will also appear in any

NOTE

NOTE

268 Installing and Administering Linux 2E

subshells that you create (even now). So you must take care to remove it, if that
is your intention, from all definition files where it might be found.

Comparing find Functions and
Shell Functions

In this section, we illustrate the difference between the functionality of cer-
tain shells and the find command. We discussed the capability of the
find command to travel down through directories (in other words, to
search recursively), which is one of its primary benefits.

During most routine operations, the shell interprets the command line
and then provides the appropriate arguments to an executable command.
Thus, the commands do not understand directory structures and rely on
the shell to expand wildcards and then provide the full directory or path
name of candidate files for execution. Juana’s file structure has expanded
rapidly since she started working with Lady Dulcinea (Figure 9.3 depicts
her portion of the RFI directory structure).

Example 9.7 Shell versus find

Lady D. has asked for a summary of recent accounts-payable activity.
Juana knows the information is in one of her Repts* files, but to find it she
needs to remember which part of her directory structure it is located. So,
she will ask the Linux shell to find all filenames that begin with R:

$ cd /home/gutiejua<Enter>

$ ls R*<Enter>

Req-K1 Req-K2 Req-K3

She realizes that using ls alone, she did not get a thorough-enough
search. She found all the request files (special requests sent to her from
each Knights group) in her current directory, but she could not find any
report files. They appear to be in another subdirectory somewhere.

Unfortunately, in these types of situations where you try to enter a fairly
simple search command, the shell does not look any further than the cur-
rent directory. To get the shell to look beyond the current directory and tra-
verse the three-tiered directory structure in this example, Juana would
have had to enter the following:

$ ls R* */R* */* /R*<Enter>

Advanced Linux Utilities 269

Figure 9.3 Juana’s latest directory/file structure.

This search is tedious and confusing to type; moreover, she would have
had to investigate the structure beforehand to know how many arguments
to enter so that all the directory levels would be searched. Finally, the shell
would not have allowed ls to check any hidden directories (those begin-
ning with a dot), either.

For this reason, she should have used the find command. The syntax is
easier, subdirectories are searched, hidden directories (if applicable) are
searched, and she would have to know beforehand the depth of the file
structure under the initially specified directory. For these reasons, many
administrators and programmers consider find’s recursive search capa-
bility its best characteristic.

So now, she will ask find to find all the filenames that begin with r:

$ find . -name 'R*'<Enter>

./admin/phone#s/RFI_Tel1

./admin/phone#s/RFI_Tel2

270 Installing and Administering Linux 2E

./admin/phone#s/RFI_Tel3

./admin/Repts-ac_pay

./admin/Repts-rec

./Req-K1

./Req-K2

./Req-K3

She now sees that she saved her Repts-ac_pay file in her admin subdirec-
tory, but she notices that a high proportion of her filenames seem to begin
with R. “Huh?”she thinks. “If I ever get any spare time, I suppose I’ll have
to do something about that, too.”

The find Command with
the -links Option
In this section, we discuss the use of the -links option with find. There
are two reasons to use this command combination:

■■ If you can have the same file referenced by two separate names, the
only way you can tell whether they are indeed the same file is by
examining the inode number. If the inode numbers are identical,
they are the same file.

■■ More importantly, for security reasons you do not want outsiders
linking to insider programs or files. You must have a way of seeing
and confirming where all links are pointing to evaluate whether
they are necessary and legitimate. Therefore, it is important to
conduct a find -links check periodically to search for such
potential infiltration.

The syntax is as follows (and here, we use “line continuation” from
Chapter 7, “Shell Basics,” to split and then continue the commands):

$ find directory(ies) -type [options] -links +[options]\<Enter>

> | xargs ls -li<Enter>

Example 9.6 is typical of a find -links check. Note that you should
be certain to perform -links checks on only files because directories by
their nature have at least two links (their own and their link with the par-
ent directory). Note that the linked files’ inode numbers, link counts, and
file sizes are the same. The only difference among the three is their respec-
tive filenames. Rest assured that they all refer to the same file, regardless of
their names.

Advanced Linux Utilities 271

Figure 9.4 Linked files between Don Quixote’s and Sancho’s directories.

Example 9.8 Find -links

Figure 9.4 shows portions of both Don Quixote’s and Sancho’s directory
structures. If we showed all of both, the figure would be a little too confus-
ing. But you can see that they are adding new files all the time. Notice,
though, that there are three files in each user’s structure that are linked to
files in the other’s structure:

■■ manuals in /home/quixoted/noble to knightdata in /home/panzasan

■■ /home/quixoted/noble/ode_to_dapple to /home/panzasan/dapple_poem

■■ /home/quixoted/noble/ode_to_roz to /home/panzasan/roz_poem

Here is how Sancho might check for links in his file structure:

$ cd<Enter>

$ find . -type f -links 2 | xargs ls -li<Enter>

13444 -rw-r--r--2 panzasan knights1 144 Jul 11 11:42

./knightdata

16698 -rw-r--r--2 quixoted knights1 605 Jul 21 15:35

./dapple_poem

18138 -rw-r--r--2 quixoted knights1 392 Jul 17 14:37

./roz_song

272 Installing and Administering Linux 2E

In his own directories, here is how Don Quixote might check and find
the same links:

$ cd<Enter>

$ find . -type f -links 2 | xargs ls -li<Enter>

13444-rw-r--r-- 2 panzasan knights1 144 Jul 11 11:42

./manuals

16698-rw-r--r--2 quixoted knights1 605 Jul 21 15:35

./ode_to_dapple

18138-rw-r--r--2 quixoted knights1 392 Jul 17 14:37

./ode_to_roz

You can see how the inode numbers and various other parameters match
from one end of each link to the other. The filenames are unique, however.

Example 9.8 used xargs in tandem with find -links, but Sancho or
the Don could also have used a pure find, such as the following:

$ find . -type f -links 2 -exec ls -li {} \;

In this case, their choice could be attributed to a matter of syntax prefer-
ence.

Reducing Keystrokes: Using find
with alias
In this section, we show aliases being used to simplify and substitute for
certain long commands that are used periodically for system monitoring
and maintenance. The syntax for creating an alias is as follows:

$ alias shortcommand='commandname [options] [arguments]'<Enter>

Remember, when you set aliases from the command line, as we do in
Examples 9.9 and 9.10, those aliases are effective only for the current login
session. We will show you a technique in Chapter 12, “Linux Processes and
Process Control,” to ensure that aliases survive from session to session.

Meanwhile, the aliases illustrated here (and others) can be undefined
by using the unalias command.

Example 9.9 Checking for Links
with an alias Command

Over coffee, Sancho tells Juana how he checked for links in his file struc-
ture (please refer to Example 9.8). Freston overhears and says, “If you
ever do that again, save yourself some time and effort by creating an

Advanced Linux Utilities 273

alias command.” Then, he offers to show Sancho how to create an alias
called “linkcheck,” which is similar to the one he (Freston) uses to check
for file links:

$ alias linkcheck='find . -type f -links 2 | xargs ls -li'<Enter>

After that, all Sancho would have to do is cd to his own home directory
and then enter

$ linkcheck<Enter>

13444 -rw-r--r-- 2 panzasan knights1 144 Jul 11 11:42

./knightdata

16698-rw-r--r--2 quixoted knights1 605 Jul 21 15:35

./dapple_poem

18138-rw-r--r--2 quixoted knights1 392 Jul 17 14:37

./roz_song

Example 9.10 Removing Old Files
with an alias Command

In Example 9.3, we saw how Freston combined find, xargs, and rm to
search for files with modification dates older than 30 days so that he can
remove them from the system.

He has created an alias command called oldrm to achieve the same
objectives and to save time. Here is how he created that alias command:

$ alias oldrm='find . -type f -mtime +30 | xargs rm'<Enter>

Notice that he has left off the -t (verbose) option. Freston, a long-time
Linux/UNIX user, does not really need to minutely monitor the rm
process.

So now, Freston enters the following code to find and remove old files:

$ oldrm<Enter>

rm ./oldfilex ./oldfiley ./oldfilez ./oldfileaa etc. . . .

Determining File Types: The file Command

The file command is used to classify a file according to its content. This
command uses up to three tests:

274 Installing and Administering Linux 2E

■■ A file system test
■■ A magic number test (file itself will use the /usr/share/magic file to

look for a specific number in the candidate file that would tell
Linux/UNIX whether the file is executable)

■■ A language test (if the file is determined to be a text file)

Here is file’s syntax:

$ file [options] /path/filename(s)<Enter>

The output from file is usually a message saying that the candidate file
is some variation of “text,” “data,” or “executable” unless it cannot find the
candidate file. If it cannot find the file, file returns an error message. Here
is an example of such a message when we tried to determine a file type for
a nonexistent file that we named, appropriately, nonexistentfile:

$ file nonexistentfile<Enter>

Nonexistentfile: can't stat 'nonexistentfile' (No such file or

directory)

Why is file beneficial? It can give you a quick indication of whether a
file is the type of file that you can more easily display on your terminal
screen or send to a printer. Or, it can tell you that a file is an executable file.
Without it, attempting to display an executable file on your screen could
cause confusion or even hang up your terminal. For binary files, file can
even provide an indication of the operating system and the version used to
compile the file.

The file command has its own set of options. Check your information
sources. In Example 9.9, we will see a simple directory search. In Example
9.10, we will see the -f option, which tells file to determine file types for
a list of filenames found in another file specified immediately after the -f.
In Example 9.10, that specified file—the one with the list of filenames
inside it—is called listoffiles. Note that when specifying a filename as an
argument to the file command, you should ensure that each filename
appears separately on a single line in that argument file.

Example 9.11 Simple File Type Determination with
the file Command

Juana, while exploring her home directory, sees a subdirectory called Desktop.
Because she works solely from the command line (unless she deliberately

Advanced Linux Utilities 275

invokes a specific application), she wonders what such a subdirectory con-
tains. Here is what she does:

$ cd<Enter>

$ ls<Enter>

admin Desktop mbox Req-K1 Req-K2 Req-K3 tempwork

$ cd Desktop<Enter>

$ file ./*<Enter>

./Autostart: symbolic link to ../.kde/Autostart

./Linux Documentation: ASCII Text

./Printer: ASCII Text

./kontrol-panel: ASCII Text

Example 9.12 Determining File Types with the file
Command and a filename Argument

With all the development, configuration, troubleshooting, Internet brows-
ing, and reporting that Freston has to do to keep the RFI system function-
ing, it is no surprise that he occasionally loses track of the files over which
he has jurisdiction—even those files within his own /root directory struc-
ture. Here, we see him checking his file types. First, he cds to his home
directory then checks to be sure he is really there. Then, he creates the
listoffiles file, whose contents are a listing of the filenames in his /root direc-
tory only (for a start; he can do a recursive -R listing or examine individual
subdirectories later):

cd<Enter>

pwd<Enter>

/root

ls > listoffiles<Enter>

file -f listoffiles<Enter>

4.1.0 tgz: gzip compressed data, deflated, last modified: Mon

Jun 4 10:52:13 2001, os: Unix

BugReport: ASCII English text

Desktop: directory

.

.

.

To repeat, the option we used here was -f. The option told file to
check the listing of files found within the file specified immediately after
the -f (that is, in the file called listoffiles). Note that when using such an
argument file to list files for file to check, you should ensure that each
filename appears alone on a single line in that argument file.

276 Installing and Administering Linux 2E

Example 9.13 More Simple file Examples

Sancho knows that he, like us, will soon be learning about the
Linux/UNIX text editor called vi. He has used it before, but slowly and
carefully. He only knows the bare, essential commands. He thinks file
can tell him more about vi as an executable application. Here is how he
finds out more:

$ file /bin/vi<Enter>

/bin/vi: ELF 32-bit LSB executable, Intel 30386,version 1,

dynamically-linked (uses shared libs), stripped

Now, he wants file to examine his dapple profile file called dapple:

$ file /home/panzasan/admin/dapple<Enter>

/home/panzasan/admin/dapple: English text

We suggest that you take the time to check the file man page and also
scroll through the /usr/share/magic file to understand more fully how file
checks for “magic numbers” coded within executable files.

Comparing Text Files: The diff Command

Occasionally, you might want to determine the differences between two
text files. For example, two users might be working on different sections of
the same report at the office or on the same sections of the same report—or
even on the same report at different times. These are times when the diff
command comes in handy. This command can compare the lines of text in
two files or even compare all similarly named pairs of text files in two
directories (if the arguments are directory names instead of filenames). The
syntax is as follows:

$ diff [-options] filename1 filename2<Enter>

Thus, the diff command enables a user to compare two text files line
by line (we will discuss the cmp command later, which enables other types
of files to be compared and on a byte-by-byte basis). diff has numerous
options; check your information sources. In Example 9.12, we will use two

Advanced Linux Utilities 277

common options: the -q option, which gives you a quick report on
whether two files actually differ, and the -y option, which prints the two
files side by side on the screen so that you can compare them yourself. We
will also see how the sdiff command is equivalent to the diff command
with the -y option.

Some other valuable options are listed in Table 9.1.
In Examples 9.12 and 9.13, we will see how diff provides a sort of

coded output as well as verbatim copies of some lines from the compared
files. The codes diff provides are a mix of numbers and letters. The num-
bers refer to the line numbers in each file. Also, in Table 9.2, we list and
explain the letter codes that diff provides. The diff command, its
options, and its output codes might seem a bit complicated at first. But
with practice, they are easy to grasp and make valuable analytical tools.

Example 9.12 Comparing Files with diff

Don Quixote has suggested that Sancho read and review a number of
books if he (Sancho) is to accompany the Don on his noble and chivalrous

Table 9.1 Selected diff Options

OPTIONS DESCRIPTION

-b Ignore leading, repeating, end-of-line spaces, tab characters, and
so on.

-e Print a text editor script that you might use to modify the first file
so that it would be identical to the second file.

-w n For two-column output, the total number of characters used for
both columns must have a maximum n characters. (The default is
130 characters, but most users prefer to set it to 80 or so.)

Table 9.2 diff Output Codes

CODE DESCRIPTION

a Add or append lines to the first file to obtain the result shown in the
second file.

c Lines that have been changed between the first and second file

d Lines deleted from the second file. (Although Example 9.12 did not
include a d, its meaning is reasonably straightforward.)

278 Installing and Administering Linux 2E

adventures. So, in the month or so since he was hired, Sancho has been
doing a lot of reading.

Previously, we saw how Sancho had created a file called manuals in the
Don’s directory structure and then created a link to that file called knight-
data in his own directory structure. Because he has read and reviewed a
number of books since he originally created knightdata, he has expanded
the reading list. What he did was copy knightdata to knightdata.july01 and
then added the new titles to knightdata.july01. The two files are depicted in
Figure 9.5.

Now, Sancho will use diff to compare the two files, knightdata and
knightdata.july01. First, he uses diff with the simple -q option to see
whether the files are indeed different:

$ diff -q knightdata knightdata.july01<Enter>

Files knightdata and knightdata.july01 differ

Next, he will use diffwithout any options to see how the two files differ:

Figure 9.5 The knightdata and knightdata.july01 files.

Advanced Linux Utilities 279

$ diff knightdata knightdata.july01<Enter>

3,5c3,5

< Required Reading

< for

< "Knights-Errant"

- - -

> Required Reading

> for

> "Knights-Errant"

7c7

< 1. Amadia of Gaul

- - -

> 1. The Bible

10c10

< 3. The Bible

- - -

> 3. Amadis of Gaul

11a12,16

> 5. Chronicles of the Nine

Worthies

> 6. The Garden of Flowers

> 7. The Knight Platir

> 8. Don Olivante de Laura

Now, he will use diff with the -y option to compare the two files side
by side. The first file specified will appear on the left-hand side of the
screen; the second file specified will appear on the right-hand side:

$ diff -y knightdata knightdata.july01<Enter>

When the response to this command appears, identical lines are printed
side by side, verbatim, like so:

Rueful Figures, Inc. Rueful Figures, Inc.

When the lines differ, a pipe symbol (|) appears between them as follows:

1. Amadia of Gaul | 1. The Bible

When one file or another has a line that the other does not, then that line
is printed with a greater-than sign (>) or a less-than sign (<) symbol
printed next to it. In the following line, the second file has a line that does
not appear in the first file:

6. The Garden of Flowers

280 Installing and Administering Linux 2E

Depending on his preference, instead of entering

$ diff -y knightdata knightdata.july01<Enter>

Sancho could have entered the equivalent:

$ sdiff knightdata knightdata.july01<Enter>

Example 9.13 diff for Comparing Files

It is not uncommon to have several versions of the same, or essentially the
same, document floating around your system. As you can see from Figure
9.6, in the period between March 2001 and August 2001, RFI’s Web site
development team underwent significant change:

■■ The team expanded from five to seven members.
■■ Perez rotated out to resume his other RFI duties. He was replaced by

his colleague, Nicholas.

Figure 9.6 The RFI_Web.mar01 and RFI_Web.aug01 files.

Advanced Linux Utilities 281

■■ Don Quixote had other duties and had to leave the team. He insisted
that his place be taken by his horse Rozinante, however. To avoid a
confrontation, the other members shrugged, rolled their eyes, and
then tolerated his request.

■■ Juan Haldudo was dismissed by RFI when Lady Dulcinea found he
had betrayed RFI to competitors. No great loss—he had never been
enthusiastic about the establishment of the Noble Deeds Division,
for one, and had only reluctantly contributed to Web site
development anyway.

■■ Lady Molinera, an enthusiastic public relations specialist, had been
recruited by the Don and was placed on the Web site team.

■■ Long-time agricultural colleague and friend Pedro Alonso also
joined RFI, albeit reluctantly. He believed in the Citrus Division but
was not enthusiastic about “Noble Deeds.”

■■ Ms. Urganda was also recruited. She was a clever, sort of self-taught
medical person and also a friend of the Don. She agreed to be called
“Ms.” because no one was willing to call her “Dr.”

Let’s use this simple example to discuss what diff discovers and dis-
plays when it is invoked by Juana and when it compares the original Web
site development team list (filename: /gutiejua/admin/RFI_Web.0301) to the
new one (filename: /gutiejua/admin/RFI_Web.0801):

$ cd<Enter>

$ cd admin<Enter>

$ diff RFI_Web.0301 RFI_Web.0801<Enter>

3c3

< March 2001

- - -

> August 2001

6,9c6,11

< 2. Don Quixote

< 3. Perez

< 4. Juan Haldudo

< 5. Juana

- - -

> 2. Rozinante (!?)

> 3. Nicholas

> 4. Juana

> 5. Lady Molinera

> 6. Pedro Alonso

> 7. Ms. Urganda

282 Installing and Administering Linux 2E

11,13c13

<

<

< filename: /gutiejua/admin/RFI_Web.0301

- - -

> filename: /gutiejua/admin/RFI_Web.0801

(END)

In examining the diff output, we can see that three changes were made
from /gutiejua/admin/RFI_Web.0301 to /gutiejua/admin/RFI_Web.0801. There
are three lines that include some sort of combination of number and letter
codes: 3c3; 6,9c6,11; and 11,13c13. Each of those lines denotes the
beginning of a diff explanation of the respective change.

The first code, 3c3, tells us that a change has been made to line 3 from
the first file to that of the second file. Counting down from the top of each
file, we see that line 3 indicates the date of the member list. Now, note that
the line beginning with a less-than sign (<) shows us line 3 as it appears in
the first file (that is, March 2001). Then, there is a line with three dashes
that serves to separate line 3 of the first file from what is coming next.
What comes next is a line that begins with a greater-than sign (>), which
shows us line 3 as it appears in the second file (that is, August 2001). It
is easy to see that diff is telling us that the date has been changed from
the first file to the second, and if we wanted the files to be identical, we
would have to make some sort of change to line 3 in /gutiejua/admin/
RFI_Web.0301 or /gutiejua/admin/RFI_Web.0801. You have probably
noticed that the first 3 in 3c3 means line 3 in the first file and the second
3 means line 3 in the second file. The c code separates the first from the
second.

Lines appearing in the first file but not in the second file begin with a
less-than sign (also called a left angle bracket) (<). Conversely, lines that
appear in the second file but not in the first file begin with a greater-than
sign (also called a right angle bracket) (>). Any lines that have been modi-
fied between the first and second files are shown as < and > but with three
dashes on a line interjected between the two. We have focused on the third
line, where diff notified us of changes in the dates for the respective
team lists.

The second code, 6,9c6,11, is a little more complicated. The first 6,9
is on the side pertaining to the first file. Then, there is the c. Then, there is
another 6,11 on the side pertaining to the second file.

What does it mean? Keep reading the output and you see four lines with
< 2. Don Quixote, < 3. Perez, < 4. Juan Haldudo, and < 5.

Advanced Linux Utilities 283

Juana on them, respectively. The diff command is telling us that these
are lines 6 through 9 in the first file. Then, we see the line with the three
dashes, which indicates that references to the first file are complete for
now. Also, because there is another 6,11 combination after the c, we can
now anticipate seeing lines 6 through 11 from the second file. Sure enough,
> 2. Rozinante (!?), > 3. Nicholas, > 4. Juana, > 5. Lady
Molinera, > 6. Pedro Alonso, and > 7. Ms. Urganda appear on
the next six lines. So, lines 6 through 9 from the first file were completely
replaced by new lines 6 through 11 in the second file.

Similarly, the third code—11,13c13—tells us that lines 11 through 13
from the first file were replaced by line 13 in the second file. diff then lists
the lines 11 through 13 from the first file: two blank lines indicated by two
< symbols followed by > filename: /gutiejua/admin/RFI_Web
.0301. Then, there are three dashes on a line followed by what is on line 13
in the second file: < filename:/gutiejua/admin/RFI_Web.0801.

Additional File Comparison
Commands: comm and diff3
Two similar commands that might be of interest are comm and diff3. The
comm command shows you which information is common to both files as
well as the information that is unique to each file. It presents lines that are
only in the first file in column one, lines that are only in the second file in
column two, and lines that are found in both files in column three.

The diff3 command enables the user to compare three files. The out-
put coding is a little different, but the principles are the same as in diff.
For further information, consult your information sources.

Comparing All Types of Files:
The cmp Command

In the preceding section, we discussed the diff command, which is used
to compare text files line by line. The cmp (file compare) command differs
from diff in several ways. First, cmp is used for text files and other types
of files as well. Furthermore, cmp compares byte by byte rather than line
by line. In text files, cmp makes a character-by-character comparison. Its
syntax is as follows:

$ cmp [-options] file1 file2<Enter>

284 Installing and Administering Linux 2E

When used with no options, cmp prints a message and stops as soon as
it encounters the first difference between the files. The cmp response states
the names of the files it has compared and then indicates exactly which
byte is the first to differ between the two files. In the first part of Example
9.14, you can see that the first byte to differ between the two files being
compared (the same team lists we compared in Example 9.13) is character
41 on line 3 (the 3 in the date in /gutiejua/RFI_Web.0301 versus the 8 in the
date in /gutiejua/RFI_Web.0801).

Example 9.14 Are These Files Different?
Comparing Files with cmp and no Options

Juana places a copy of the new and old RFI_Web.0x01 files (in other words,
the Web site development team rosters for March and August 2001) into
Lady Dulcinea’s directory structure. Later, Lady D. does a quick check to
see whether the new file is different from the old one. Here is how she does
it, using cmp without options:

$ cmp /gutiejua/RFI_Web.0301 /gutiejua/RFI_Web.0801<Enter>

/gutiejua/RFI_Web.0301 /gutiejua/RFI_Web.0801 differ: char 42,

line 3

Example 9.15 How Different Are These Files?
Comparing Files with cmp and the -l Option

Later, Lady D. returns to check just how different the new Web site devel-
opment team roster is from the new one. She will compare the two files
using cmp and the -l option:

$ cmp -l /gutiejua/RFI_Web.0301 /gutiejua/RFI_Web.0801<Enter>

42 115 101

43 141 165

44 162 147

45 143 165

.

.

.

154 61 146

155 12 151

(END)

In Example 9.15, Lady D. asked for a more detailed comparison by typ-
ing the -l option after the cmp command. The command replies by listing
all the bytes that differ between the two files (five screens full, as it turns
out). The output is in three columns:

Advanced Linux Utilities 285

■■ The first column contains the decimal value of the byte number.
■■ The second column contains the corresponding octal value of the

character found in that position in the first file examined.
■■ The third is the corresponding octal value of the character found in

that position in the second file examined.

There are no differences until byte number 42 is encountered. The first
file, RFI_Web.0301, has a character in that position whose octal value is 115.
The second file, RFI_Web.0801, has a character in that position whose octal
value is 101. For all text files, these octal values refer to the values of the
characters in the ASCII character set.

The cmp command is not the best comparison tool for text files, as you
have undoubtedly surmised by now. It is more suitable for comparing data
or program object files.

Compressing Files: The gzip, gunzip, and
zcat Commands

Data files, including text files, are generally compressed so that they can be
stored in less space or transmitted in a shorter period of time. Compres-
sion (or compaction) programs generally look for redundancies in files and
then use one representative token for all identical pieces of data. In this
way, no data is lost.

Compressing Files with gzip
Linux uses a command called gzip to compress data in specified files using
an algorithm called Lempel-Ziv (LZ77) coding. The syntax is as follows:

$ gzip [-options] filename(s)<Enter>

Other UNIX-like operating systems might use gzip or another program
called compress, which uses a different version of the Lempel-Ziv coding
and is generally used with the tar command for archiving data. The gzip
command can compress (ASCII) files by as much as 80 percent.

By default, gzip names the compressed file with the original filename but
appends .gz to the end of the filename to indicate that it is a compressed

286 Installing and Administering Linux 2E

file, as shown in Example 9.16. It then deletes the original file. Also by
default, gzip transfers the original ownership and permission modes and
access and modification times to the new .gz file.

You can use numerous options to enhance the use of gzip or to override
the defaults. For a complete listing and description of options, consult
your information sources. Three of the handiest options are described in
Table 9.3.

Example 9.16 gzip with the Verbose (-v) Option

Don Quixote’s niece and housekeeper in La Mancha knows that the Don
and Sancho will be traveling in August. They never know how to reach the
Don when he is traveling (they are reluctant to say “when he’s on the
road” because he has landed on gravel and asphalt so many times before).
So they call Juana and ask for a copy of the telephone lists. Juana is glad to
comply. She combines all three RFI_Tel* files into one file called
RFI_Phone#s and then compresses that one file in preparation for transmis-
sion by e-mail. Here is how she creates the single file with cat and then
uses gzip with its -v (verbose) option so that she can see that the task is
done:

$ cd /home/gutiejua/phone#s<Enter>

$ cat RFI_Tel* > RFI_Phone#s<Enter>

$ gzip -v RFI_Phone#s<Enter>

RFI_Phone#s: 58.0% -- replaced with RFI_Phone#s.gz

Table 9.3 Selected gzip Options

OPTION DESCRIPTION

-v Verbose. Print the original name and the new compressed file-
name along with the percent compression to which the file has
been subjected.

-r Recursive. When used with a directory name, execute gzip on all
files in the directory and from that directory down through the file
system.

n Speed of compression; n is a number from 1 through 9. 1
executes compression at the fastest speed with the least
compression. 9 executes compression at the slowest speed,
resulting in the highest compression. The default value is 6.

Advanced Linux Utilities 287

Examining and Manipulating
Compressed Files with zcat
The next command, zcat, is used for two reasons:

■■ To examine the contents of a compressed file without going through
the process of uncompressing it

■■ To use a compressed file as input to one or more piped commands

We use zcat for the first purpose in Example 9.17. The output from
zcat is the same as the output of the uncompressed file, similar to what
you would get with cat. You can see that zcat does the same thing for
compressed files that its counterpart cat does for uncompressed files.
Like cat, zcat cannot go back and forth through the file output. For this
purpose, you might want to use the zless command, which behaves just
like the less program (see Chapter 5, “Using Files in Linux,” to review
the less command) except that it requires compressed files as input argu-
ments. The syntax for zcat is

$ zcat [-options] filename(s)<Enter>

Example 9.17 Examining Compressed File
Contents with zcat

After Juana has combined the telephone list files into one and then com-
pressed that one file (see Example 9.16), she wants to check that the com-
pressed file is in good shape as far as content and format before she
transmits it to La Mancha. She uses zcat, piped to less, to do so:

$ zcat RFI_Phone#s.gz | less<Enter>

zcat responds with an output similar to the one she would have received
if she had used cat on the original uncompressed file.

Uncompressing Files with gunzip
The gunzip command uncompresses files that have been compressed
with gzip or compress. Basically, gunzip reverses the gzip process,
restoring the compressed file to its original uncompressed components. Its
syntax is as follows:

$ gunzip [-options] filename(s)<Enter>

288 Installing and Administering Linux 2E

This command uses most of the same options as gzip (see your infor-
mation sources). For example, we will use the -v option with gunzip in
Example 9.18.

Example 9.18 gunzip

Once Don Quixote’s niece receives the telephone list (filename:
RFI_Phone#s; see Example 9.16) from Juana at RFI, she uncompresses it so
that she can read and print it. Here is how she uses gunzip to do so:

$ gunzip -v RFI_Phone#s.gz<Enter>

RFI_Phone#s.gz:58.0% -- replaced with RFI_Phone#s

The zip and unzip commands might also be available with your Linux
distribution. You might prefer to use them instead to compress and uncom-
press files.

Displaying Nonprintable Characters: The cat
Command Options

Here, we discuss three options that you can use in conjunction with the
now-familiar cat command (refer to Chapter 5 for our original discussion
of cat) to determine the following:

■■ Whether invisible or otherwise unprintable characters exist in text
files or filenames (that is, directories)

■■ The nature of the spaces in your text files

The second determination might be important because of unexpected
diff command output or problems with output from the sort command.

When someone is composing a document or specifying a file or direc-
tory name, there are key sequences that can be entered accidentally that
will cause unexpected results in documents or file or directory names.
Take a look at Table 9.4, for instance, for a listing of some odd key
sequences that are sometimes entered when you use the vi text editor. The
table also shows what the key sequences will look like during the creation
of the file in vi, when the same file is cat’d at the command line and also
when it is cat’d with the cat’s -etv options.

The fact that no characters will show up with cat makes these what we
call nonprintable. Thus, it might not be possible to resolve these issues or
problems based on the typical viewing of directory or file contents. Using

NOTE

Advanced Linux Utilities 289

Table 9.4 Some Odd vi Key Sequences That Can Lead to Confusion

KEY SEQUENCE VI RESULTS CAT RESULTS CAT -ETV RESULTS

<Ctrl>-4 ^\ ^\

<Ctrl>-5 ^] ^]

<Ctrl>-7 ^_ ^_

<Ctrl>-g “beep” deletion deletion

<Ctrl>-i <Tab> ^I

<Ctrl>-k ^K move to lower ^K
line and continue

<Ctrl>-l ^L move to lower ^L
line and continue

<Ctrl>-r " delete delete

<Ctrl>-t <Tab>

<Ctrl>-p ^P ^P

<Alt>-2 @

<Alt>-7 { {

cat with the options discussed here might help you determine how at least
some of the file contents or names were created and therefore might help
you figure out how to read or manipulate them later. The syntax is the
same as for cat in other circumstances, of course:

$ cat [-options] [file(s)]<Enter>

The options used in Example 9.19 are defined in Table 9.5.

Table 9.5 Selected cat Options

OPTION DESCRIPTION

-e Display $ to indicate the end-of-line key; that is, Enter or Return.

-t Display ^I to indicate a Tab used as a space.

-v Display ^G to indicate the otherwise invisible Ctrl-G key sequence.

290 Installing and Administering Linux 2E

Example 9.19 cat for Displaying Nonprintable
Characters

Juana checks her “Requests” files (Req-K1, Req-K2, and Req-K3) every
morning. In late July, she reads this garbled message that originates from
Don Quixote:

$ cat Req-K1<Enter>

Date: July @, 2001

Subject: Request for Advance Funds for August Trip

Status: Urgent

Deadline: ASA

From: Quixote de

a Mancha

need 100 Euros as an advance. For the August trip.

Sancho will requisition his own funds, etc.

zinante needs new equipment [shoes, blanket] and provisions.

Will likely leave August at }:3} HRS

lus, can someone make an appointment for me at Toledo spa?

now the manager?

hope this meets with your approval and

Very much appre¢iate your ¢ooperation. t to . ady Dulcinea’s, too.

Signed, Q de

a M

She calls the Don and discusses the situation. Once everything is satis-
factory, she calls Freston, who suggests that she do the following with the
same message:

$ cat -etv Req-K1<Enter>

Date: July @^\, 2001$

^ISubject: Request for Advance Funds for August Trip$

Status: Urgent$

Deadline: ASA^P$

From: Quixote de ^La Mancha$

$

^I need 1^]00 Euros as an advance. For the August trip.$

Sancho will requisition his own funds, etc.$

zinante needs new equipment [shoes, blanket] and provisions.$

Will likely leave ^IAugust ^_ at }^]:3} HRS$

^Plus, can someone make an appointment for me at Toledo spa?

^Know the manager?

^I hope this meets with your approval ^I and ^Lady DulM”-inea’s,

too.$

^[[AVery much appreM”-iate your M”-ooperation. t to .$

Signed, Q de ^La M$

Advanced Linux Utilities 291

It helped Juana decipher some of the key sequences but not all. To deter-
mine all of them, Juana would have to see the original document in Don
Quixote’s files. Again, the options used in Example 9.19 were defined pre-
viously in Table 9.4.

Use cat in a Pipe Sequence for ? in
Filenames
When executing listings of directory contents, you might sometimes
encounter filenames containing a question mark (?). The creator of such a
filename might have intentionally inserted the question mark, but this sym-
bol can also indicate the presence of other characters that cannot be readily
interpreted by the shell. When dealing with these odd filenames in directo-
ries, you can use cat as the second process in a piped set of commands:

For example, a typical ls command might reveal the following:

testfile1 te?stfile2

Now, we try cat:

$ ls | cat -vt<Enter>

The output might look something like the following:

testfile1

te^Gstfile2

This example shows a Ctrl-G (that is, ^G) in the middle of what other-
wise would have been called testfile2. How do you correct the filename?
You could simply rename the file as follows:

$ mv te?stfile2 testfile2<Enter>

You cannot enter te^Gstfile2 at the command line. If you try, you
will hear an error “beep” from Linux.

If the correction strategy fails, you can try another technique. First, you
need to obtain the inode number of the file with ls -li. (Remember that
the filename displayed is probably te?stfile2 because a simple ls -li does
not display the hidden Ctrl-G characters.)

NOTE

292 Installing and Administering Linux 2E

Assume that the inode number for the file is 1311. Now, enter the fol-
lowing:

$ find . -inum 1311 -exec mv {} testfile2 \;<Enter>

Artificially creating this situation is a bit difficult. But things such as
these do happen. We stuck to Ctrl-G (or ^G, if you prefer that style of notation)
as our chosen invisible character because it is the only one that Linux enables
us to use.

Assigning Unique Filenames:
Appending Information

Sometimes an application—or a user or a programmer, too—has to assign
a unique name to a file. In this section, we discuss two methods of assign-
ing unique names:

■■ Automatically appending the process number as a suffix to the end
of a filename

■■ Automatically appending the date as a suffix to the end of a
filename

Appending a Process Number
to a Filename
By appending two dollar signs to the end of a filename, as shown here and
in Example 9.20, the shell automatically appends a two- to five-digit
process number to the end of that filename. This technique will likely pro-
duce a unique filename every time. The syntax is as follows:

$ touch filename$$<Enter>

Example 9.20 Appending a Process Number
to a Filename

Every day, Pedro Alonso, in RFI’s Citrus Division, orders new equipment,
fertilizer, seed, cuttings, and so on. He needs a way to make the daily
orders files unique. What he does is:

$ touch citdiv_order$$<Enter>

$ ls citdiv_order*<Enter>

citdiv_order342 citdiv_order1105 citdiv_order12038

NOTE

Advanced Linux Utilities 293

For both techniques, we are using the touch command to create
example files. You, of course, can create files in many ways.

Appending a Date to a Filename
Although appending a process number to a filename will produce a
unique filename, some people prefer the suffix to tell them a little more
about the file. This reason is why the other method, appending a date as
the suffix, is popular.

But before we discuss the appending date suffix method, let’s take a
closer look at the possible output of the date command. The following is a
typical shell response to the date command when used by itself:

$ date<Enter>

Wed Jul 14 12:48:32 CDT 2001

When creating filenames, though, you probably do not want to include
the text names of the day or month (such as Wed or July). Instead, you
want to use their numerical equivalents (such as 07 for July). The numeri-
cal equivalent of the preceding date is generated as follows:

$ date +'%y%m%d%H%M%S'<Enter>

000714124832

Here, we ask the shell for the date in the format of year (y), month (m),
day (d), hour (H), minute (M), and second (S).

As seen in Example 9.21, the filename is formatted as a basic filename,
followed by a dot as a separator, followed by the date as an extension in
the month-day-hour format. If you will be generating more than one file-
name per hour, though, you should add more precise date fields (minute
or even second) to the format to prevent files from being overwritten (and
thus, losing valuable information). The syntax is

$ touch filename.`date +'[options]'`<Enter>

No matter what you decide, be aware of the command syntax. Note that
two types of metacharacters are used: the single quotation mark (‘) and
the back quote (`).

Example 9.21 Appending the Date to a Filename

After just a few weeks, the citdiv_order$$ files are starting to confuse Pedro
and his other Citrus Division colleagues. Freston suggests that they use the

NOTE

294 Installing and Administering Linux 2E

following date-based technique to assign unique filenames to their order
files:

$ touch citdiv_order.`date +'%m%d%H'`<Enter>

$ ls testfile.*<Enter>

citdiv_order.072113 citdiv_order.072215 citdiv_order.072313

Everyone agrees that it is a little easier now to figure out when orders
were created just by looking at the filenames.

Exercises

1. Log into the system and ensure that you are in your home directory.
Create a new subdirectory called newdir. Change to this new
subdirectory and create five zero-length files in it. Name the files 1,
2, 3, 4, and 5:

$ mkdir newdir<Enter>

$ cd newdir<Enter>

$ touch 1 2 3 4 5<Enter>

2. List the contents of the newdir subdirectory. Then, pass the output to
xargs to copy the files and rename them with the prefix file so
that the resulting copied filenames are file1, file2, and so on. Finally,
verify that the files were copied and that their names were assigned
accordingly:

$ ls<Enter>

$ ls | xargs -t -i cp {} file{}<Enter>

$ ls<Enter>

3. Copy the /etc/passwd file into your newdir subdirectory so that you
have one file in the directory containing text. All other files in the
subdirectory will be zero length. Using find, xargs, and grep, cat
the contents of the files that contain text:

$ cp /etc/passwd .<Enter>

$ find . -type f | xargs -t grep '.*' | cat<Enter>

4. Identify the directory in which the find command is located:

Advanced Linux Utilities 295

$ whereis find<Enter>

or

$ which find<Enter>

5. Determine what type of file (such as executable, ASCII, or directory)
the find command is:

$ file /usr/bin/find<Enter>

6. Using the find command, create a recursive listing of all files
starting in your home directory and redirect the output to a file
named myfiles. Using the redirected myfiles file, determine the type of
files located in the list:

$ find /home/teamxx > myfiles ; file -f myfiles | less<Enter>

or

$ ls -R > myfiles<Enter>

$ file -f myfiles | less<Enter>

or

$ find /home/teamxx | xargs file | less<Enter>

7. Create a file called list1. In list1, list the names of several people you
know. Copy list1 to a file called list2:

$ vi list1<Enter>

i

Name 1

Name 2

Name 3

.

.

.

<Esc>

:wq<Enter>

$ cp list1 list2<Enter>

296 Installing and Administering Linux 2E

Edit list2 and make the following changes: Change the spelling of
one of the names; remove one of the names; and add a new name.

$ vi list2<Enter>

i

.

.

.

<Esc>

:wp<Enter>

8. Using diff, compare the contents of list1 and list2:

$ diff list1 list2<Enter>

Did you notice anything?

9. Using cmp, compare the contents of list1 and list2. Then, invoke a
complete or long comparison of the contents of both files.

$ cmp list1 list2<Enter>

$ cmp -l list1 list2<Enter>

10. Copy the /usr/share/magic file to a file in your home directory named
mymagic. Do a long listing of mymagic and record the number of
bytes in the file.

$ cp /usr/share/magic mymagic<Enter>

$ ls -l mymagic<Enter>

11. Using the verbose option with gzip, compress mymagic. Record the
percentage of compression and the name of the new compressed file.

$ gzip -v mymagic<Enter>

12. Do a long listing of the file and record the number of bytes. Compare
this number to the number in the preceding instruction. Is there an
approximate match on the percentage of compression?

$ ls -l mymagic.gz<Enter>

Advanced Linux Utilities 297

13. Using zcat or zless, expand and view the contents of the file you
compressed in the preceding exercise. (Use zcat if it is a small file or
zless if it is a large file.)

$ zcat mymagic.gz | less<Enter>

or

$ zless mymagic.gz<Enter>

14. Using gunzip with its verbose option, restore the compressed file
back to its original characteristics.

$ gunzip -v mymagic.gz<Enter>

15. Invoke a long listing of the uncompressed file and record the
number of bytes. Is the number the same as, greater than, or less
than the number you recorded for Exercise 12?

$ ls -l mymagic<Enter>

16. In your home directory, create a file named invis and type a few lines
that include random Tab, space bar, and Ctrl-G key presses between
the words. (Feel free to replace the sample file contents with your
own.) Then, display the file.

$ vi invis<Enter>

i

<Tab> this<Tab>file has<Enter> several <Tab> mysterious

spaces<Enter> and^G non-^Gprint<Tab>able<Enter>

characters.<Tab>^G <Esc>

:wq<Enter>

$ cat invis<Enter>

17. Note in the preceding exercise that when you displayed the contents
of invis, it did not look quite right. Display and locate all the
nonprintable characters to determine where you used tabs, spaces,
and other nonprintable characters.

$ cat -etv invis<Enter>

See Appendix B for answers.

298 Installing and Administering Linux 2E

Quiz

1. True or false: The most important characteristic of the find
command is its capability to travel both ways through the tree-like
hierarchy of a file system.

2. When you use quoting metacharacters with find, which of the
following interprets the wildcards?

• find itself

• The shell

• Depends on the shell you are using at the time

3. Which of the following commands is used to determine the type of
data in a file?

• cmp

• diff

• find

• grep

• file

4. True or false: The gzip command deletes the original file and
replaces it with a compressed copy of the file and then renames the
copy with the original name but appends a .z extension to it.

5. To display nonprintable characters in a file, which of the following
command lines would you use?

• ls -la

• cat -etv

• find -inv

• grep -s

• file -v

6. True or false: The diff command compares only text files.

See Appendix C for answers.

C H A P T E R

10

The vi Editor

299

Linux provides several text editor programs, from the simplistic vi to the
more elegant Emacs. The main reason for discussing vi (the visual front
end for the actual editor, ex) in its own chapter is that you are likely to run
into it no matter what type of UNIX-related system you encounter. The vi
editor is on almost every system because it requires comparatively little
space and still does the job adequately. When you look for it, please
remember that it might not be called vi exactly, but it will be called some-
thing similar (such as vim).

The vi editor can be a bit of a tough slog, but you will need it to deal
with Linux or with any other UNIX-based operating system on a regular
basis. Another reason for dedicating a chapter to vi is that it does not have
a lot of interactive help (or any other kind). It does have a man page, how-
ever. Because vi fronts for ex, you can also check the man page for ex.

Before you begin editing text, you might want to determine which other
text editors are available on your system. Some are installed automatically
as part of the base system; others are installed only during custom (or
expert) installations. Check your /bin directory for names that might be
familiar to those we will mention here. Or, check your installation guide or

300 Installing and Administering Linux 2E

user guide. You will probably find that every Linux distribution has a spe-
cific command that you can enter to check whether a program has been
installed, but you have to be able to enter the precise program name or
something very close to it (using wildcard symbols, perhaps).

Other text editors you might have at your disposal are Emacs, ed, joe,
jed, or variations on those names, depending on the environment you
will be using them in (for example, jed versus jed-xjed) or the extra fea-
tures one might have compared with another (for example, vim-minimal
versus vim-enhanced).

One last word: vi and other text editors are not word processing pro-
grams, so do not set your expectations too high. They are valuable tools
nonetheless because they facilitate administration of UNIX-like operating
systems.

An Introduction to vi

As mentioned, vi is the standard editor in all UNIX-related systems. The
original vi editor was distributed with the Berkeley Software Distribu-
tion; the various Linux distributions use a form of Visual Editor Improved
(vim), which claims to be an improvement over the classic vi. When you
enter vi filename to invoke the editor, you are actually using a symbolic
link to vim. vim then emulates the classic vi editor (an instance of
upward compatibility).

The following features are fairly standard across vi versions and types:

■■ Full-screen editor
■■ Two modes of operation: Command and Insert
■■ Use of one-letter commands
■■ Unformatted text
■■ Flexible search-and-replace facility with pattern matching
■■ User-defined editing features using macros

This chapter does not pretend to be a comprehensive summary of vi.
Consult the various Linux information sources for more detailed descrip-
tions of vi features. In addition, we have provided a command summary
in Appendix A.

We will describe and use two vi modes: Command and Insert. Some
Linux/UNIX gurus claim that vi has three modes: Command, Insert, and
Last-line. Users are in Last-line mode when they have used Esc to leave

The vi Editor 301

Insert mode and then typed a colon (:) so that they can enter specific single-
letter commands to quit, save, and so on. In this chapter, we fold the Last-
line mode in with Command mode.

Starting vi

Assuming that you have logged into Linux and are now facing the com-
mand-line prompt, enter the following to invoke vi:

$ vi filename<Enter>

If the specified file already exists, vi creates a copy of it and puts the
copy into a buffer in the /tmp directory for you to work on. If the file does
not exist, vi opens an empty buffer in the same directory and gives the file
the name specified in your vi command.

When invoked, vi checks for a file called .exrc and incorporates any
specifications found there (we discuss .exrc later in this chapter in a section
titled Options for Changing How vi Operates). Then, vi starts in Command
mode and waits for directions from you. What you see on the screen is a
flashing cursor and the filename at the bottom of the screen. If the file is
new, the editor tells you so on the last line. For instance, if you invoke vi
to create a new file called RFI_trip_laundry, you would see an empty screen
similar to that in Figure 10.1. Dashes represent blank lines, and like we
said, the filename appears on the last line.

If the file already exists, Linux gives you the filename in double quotes as
well as the number of lines and number of characters in the file. Figure 10.2
shows you what might result if you had created RFI_trip_laundry, exited vi
for a while, and then invoked vi again to edit the same file. As you can see
from the bottom of the screen, the file has 13 lines with 172 characters (equal
to all the characters, blanks, and line feeds).

Exiting vi

To exit from the vi editor, you must be in Command mode. To ensure that
you are in Command mode before inputting commands at any time, press
Esc. You can exit vi in one of the following ways (all end with pressing
Enter):

302 Installing and Administering Linux 2E

Figure 10.1 Starting vi.

■■ :q quits vi without saving your file.
■■ :wq writes changes and quits.
■■ <Shift>-zz writes changes and quits.

The :q option works only if you have not made any changes. If you
have made changes and you try to quit this way, Linux gives you the fol-
lowing message:

No write since last change (use ! to override)

The vi Editor 303

Figure 10.2 Editing with vi.

If you want to exit at this point, type one of the following:

■■ :wq writes changes and quits (as we mentioned earlier).
■■ :q! quits without writing changes.
■■ :x also writes changes and quits.

If you choose :wq or :x, vi will display the updated status of the file (in
other words, "filename" Line count, Character count) then
quit and return you to a shell prompt. If, on the other hand, you enter :q!,
then vi will simply quit and return you to a shell prompt.

304 Installing and Administering Linux 2E

Adding Text in Insert Mode

Let’s say that you open a file in vi and want to enter text. Then, you must
be in Insert mode (also known as input mode or text mode). Take the fol-
lowing steps to get into Insert mode and then insert text:

1. Using the up and down arrows, position the cursor at the point in a
new or existing file where you want to begin inserting text.

2. Use one of the following single-letter commands:

• a adds text immediately after the cursor.

• A (that is, Shift-A) adds text beginning at the end of the line on
which the cursor is sitting.

• i inserts text beginning at the same position presently underlined
by the cursor.

• I inserts text at the beginning of the line on which the cursor is
sitting.

• <Insert> also inserts text beginning at the same position
presently underlined by the cursor.

3. Add your text.

The difference between a and i will become apparent with practice.
Note that while you are adding text, the filename, which was at the bottom
of the terminal screen, has been replaced by - INSERT -. This message is
a reminder that you are in Insert mode.

If you want to save your text as you go, press Esc to re-enter Command
mode and then type the following:

:w<Enter>

This action saves the text you have entered thus far, updates the file’s
status for you ("filename" Line count, Character count), and
keeps the file available for input. To resume entering text, use one of the
single-letter commands just listed.

When you finish adding text, you need to leave Insert mode by pressing
Esc. You are then returned to Command mode. Then, you will see that
your file is still on the screen, but the filename is no longer displayed at the
bottom.

The vi Editor 305

Manipulating Text in Command Mode

The first method you need to know in order to manipulate text is how to
move around in the vi editor. Table 10.1 provides a list and corresponding
descriptions of typical methods for moving your cursor in vi while in
Command mode. There are even more maneuvering commands available
than those listed in Table 10.1, too. Check vi’s man pages or other informa-
tion sources for further help.

Deleting Text
There are many commands available for deleting text in Command mode.
We list several ways of doing so in Table 10.2 along with two commands to
use if you want to undo the deletion. For additional commands, check
Appendix A as well as the man pages and other information sources.

Searching for Text Strings
When you are in Command mode, pressing the forward slash (/) button
automatically puts you in text search forward mode and takes you to the
last line on the screen, where vi has placed a forward slash prompt. Simi-
larly, pressing the question mark (?) automatically puts you in text search
backward mode and takes you to the last line on the screen, where vi has
placed a question mark prompt.

After the prompt, enter the string of text you want to search for and
press Enter. The search begins in the chosen direction from the position of
the cursor. The cursor stops underneath the first character of the first
found text string. If you want to continue searching in the same direction,
press n. If you want to search in the opposite direction, press N. Eventually,
you will reach the bottom or top of the file, and vi will notify you when
you do.

To exit from text search, simply enter any other command. You do not
press Esc first.

Searching for and Replacing Text
Manually cutting and pasting can be tiresome, inefficient, and occasionally
inaccurate. The following is a command for automating it when you are in
Command mode in vi:

306 Installing and Administering Linux 2E

Table 10.1 Cursor Movements in vi

MOVEMENT WITHIN
A LINE CURSOR MOVES

<Left Arrow> or h One character to the left

<Right Arrow> or l One character to the right

0(zero) To the beginning of the line

$ To the end of the line

MOVEMENT AMONG
WORDS CURSOR MOVES

w To the next word

b Back to the previous word

e To the end of the existing word; if the cursor
is already at the end of a word, then it will
move to the end of the next word

MOVEMENT WITHIN
THE SCREEN CURSOR MOVES

<Up Arrow> or k One line up

<Down Arrow> or j One line down

H To the beginning of the top line on the
screen

M To the beginning of the middle line on the
screen

L To the beginning of the last line on the
screen

SCROLLING AMONG SCREENS
IN THE SAME FILE CURSOR MOVES

<Ctrl>-f Forward to the top of the next screen

<Ctrl>-b Backward to the bottom of the previous
screen

GENERAL MOVEMENT
WITHIN THE FILE CURSOR MOVES

1G To the first line of the file

xxG To line number xx of the file. Substitute the
line number you want to travel to.

G To the last line of the file

The vi Editor 307

Table 10.2 Key Sequences for Deleting Text in vi

KEY SEQUENCE DELETE ACTION APPLIED

x To a single character

dw To the end of the current word

d$ To the end of the line

d0 To the start of the line

dd The entire line

dG To the end of the file

u Undo the last change

U Restore the entire line (only if the cursor has not left the line)

:g/searchstring /s//replacementstring /g<Enter>

The command works as follows:

■■ The first g (global) tells the editor to perform a search for the first
occurrence of the text string in every line of the file.

■■ The two forward slashes bracket the search string. Please note that
in this case, with /searchstring /, the characters are followed
by a space. If the search string is found ending a line or immediately
followed by punctuation, it is not replaced.

■■ The s means substitute.
■■ The forward slash following the s tells the editor to use the text

string preceding the s as the target for the substitution (that is, the
preceding text string will be the one replaced).

■■ The next two forward slashes bracket the text string to be
substituted for the replaced text string (in this case,
/replacementstring /; again, the characters are followed by a
space).

■■ The last g tells the editor to make the substitution at every
occurrence in each line found by the first g.

An extra feature we could have added to the syntax example is a c
before the last g (that is, /cg). The c tells the editor to ask for confirmation
before making each change.

Another of many ways you could modify the command is to make
changes to only one line or to the first occurrence on every relevant line.

308 Installing and Administering Linux 2E

See your information sources for additional ways to carry out a search and
replace.

Example 10.1 Searching for and Replacing Text in vi

Inspired by Quixote, Sancho devotes what spare time he has—that is, when
he is not reading about knights and chivalry—to working on his own
poetry skills. In Figure 10.3, you can see the latest version of his latest mag-
num opus, “Fleas,” which he admits freely is still a “work in progress.”
Sancho is not satisfied yet. First, he wants to replace the four occurrences of
the contraction I’ll with the simpler I. Here is how he does it:

Figure 10.3 Searching for and replacing text in vi.

The vi Editor 309

■■ He opens “Fleas” with vi.
■■ He is probably already in Command mode, but he makes sure by

pressing Esc.
■■ Then, he enters his search and replace command.

Here are his commands:

$ vi fleas<Enter>

<Esc>

:g/I’ll /s//I /g<Enter>

In this example, vi found all the occurrences of the first string I’ll and
replaced them with the string I.

Moving and Copying Text by
Characters and Words
As we mentioned previously, vi utilizes 36 buffers into which you can cut
or copy (or, as vi says, yank) file data. Unless you specify a buffer number
or letter, the data is cut or copied into buffer 0 by default.

There are also many commands available for copying or moving text in
Command mode. We list several ways of doing so in Table 10.3, along with
two commands to use if you want to undo the action. These commands are
handy enough for copying or moving text but are not as popular as the
“line by line” technique we will describe next. Meanwhile, for additional
commands to those we list in Table 10.3, check Appendix A as well as the
man pages and other information sources.

Moving or Cutting Text
Line(s) by Line(s)
The vi editor utilizes 36 buffers (numbered 0 through 9 and lettered a
through z) into which you can cut or copy file data. Unless you specify a
number or a letter, the data is cut or copied into buffer 0 by default. Here is
the general line-by-line text moving procedure:

■■ In Command mode, move the cursor to the line you want to move.
■■ Press dd. The specified line disappears into buffer 0 (the default

buffer), and the cursor moves to the next line.

310 Installing and Administering Linux 2E

■■ Move the cursor to the line after which you want to place the
specified line.

■■ Press p. The original line appears after the line on which you placed
the cursor.

If you press P instead of p, the original line appears above the line on
which you had placed the cursor.

If you want to do more complicated moving of text, such as moving sev-
eral strings at once, try the following:

To cut a line into buffer 2, move the cursor to that line and type

"2dd

To cut a word into buffer 3, move the cursor to that word and type

"3dw

To cut a line and the three lines following it into buffer c, move to that
line and type

“c4dd

Table 10.3 Key Sequences for Moving and Copying Text in vi

KEY SEQUENCE ACTION APPLIED

cw Remove all characters to the end of the current word.
Puts you in - - Insert - - mode. Press Esc and p as
often as you like to paste the word into the file.

c$ Remove all characters to the end of the line. Then, same
behavior/actions as cw.

c0 Remove all characters to the start of the line except the
character the cursor is under. Then, same
behavior/action as cw.

cG Remove all characters to the end of the file. Then, same
behavior/actions as cw.

u Undo the last change.

U Restore the entire line (only if the cursor has not left the
line).

The vi Editor 311

Move to the various target locations and type “2p, “3p, and “cp,
respectively (remember, the double quotation mark is essential), to place
those text strings where you want them. You can do so repetitively, out of
order, or however you want because copies of the text strings remain in
their respective buffers until they are replaced.

Preceding the alphanumeric key combinations with one double quote
is essential when specifying buffers. If you do not use the quotation mark, the
system interprets the rest of the string as some type of bungled command and
either does not respond or gives you an error message.

Example 10.2 Moving Lines of Text in vi

Here is a simplistic example of moving text. In Command mode, Sancho
moves the cursor to the line in “Fleas” that he wants to move (note the
underlined O in the third line of text):

You bite those bugs and give a yelp

You scratch anon, sometimes it helps

Oh, but you suffer, my dear old mutt!

You chase your tail, you drag your butt

Press dd. The specified line disappears into buffer 0 (the default buffer),
and the cursor moves to the next line. If necessary, move the cursor to the
line after which you want to place the specified line. (The cursor is already
in the correct place in this example, under the Y in the now second line.)

You bite those bugs and give a yelp

You scratch anon, sometimes it helps

You chase your tail, you drag your butt

Press p. The original line appears after the line on which you placed the
cursor. Now, the cursor is on the newly placed line.

You bite those bugs and give a yelp

You scratch anon, sometimes it helps

You chase your tail, you drag your butt

Oh, but you suffer, my dear old mutt!

Copying Text Line by Line in vi
Here is the technique for copying text line by line:

NOTE

312 Installing and Administering Linux 2E

■■ In Command mode, move the cursor to the line you want to copy.
■■ Press yy. The line is copied into buffer 0 (the default buffer), but the

original line remains on the screen. The cursor, meanwhile, stays
where it was.

■■ Move the cursor to the line below which you want to place the
yanked line.

■■ Press p. The yanked copy of the original line appears below the line
where you placed the cursor. Now, the cursor moves to the newly
placed (in other words, the copied) line.

As with moving text, if you want to do more complicated copying—say,
copying several strings at once—do the following:

To copy a line into buffer 2, move the cursor to the line and type

"2yy

To copy a word into buffer 3, move the cursor to that word and type

"3yw

To copy a line and the three lines following it into buffer c, move to that
line and type

"c4yy

Move to the various target locations and type "2p, "3p, and "cp,
respectively, to place those text strings where you want them.

As with moving text, you can copy text repetitively or out of order
because copies of the text strings remain in their respective buffers until
they are replaced. In the multiple-copy example, just as in the multiple-
move example (Example 10.2), "2yy, "3yw, and "c4yy are all preceded by
one quotation mark. Remember, you must precede alphanumeric key
combinations with one double quote when specifying buffers.

Meanwhile, notice that vi echoes, at the bottom of the screen, the
actions you have taken (for example, xxx lines yanked; xxx more
lines) as they are completed.

Example 10.3 illustrates a simple example of copying text.

The vi Editor 313

Example 10.3 Copying Text Line by Line in vi

Sancho has heard that repeating the last line in a stanza is a poetic and
songwriting technique used for emphasis, and he wants to see whether it
works in “Fleas.” So, in Command mode, he moves the cursor to the line
he wants to copy (there is the cursor—just below the O in the second line):

You chase your tail, you drag your butt

Oh, but you suffer, my dear old mutt!

He presses yy. The line is copied into buffer 0 (the default buffer), but
the original line remains on the screen. Also, the cursor stays where he
placed it.

Now, he moves the cursor to the line below which he wants to place the
yanked line, which is still in the buffer. (In this case, because he just wants
to repeat the last line of the stanza, the cursor is already in the correct loca-
tion. So he keeps it where it is.)

You chase your tail, you drag your butt

Oh, but you suffer, my dear old mutt!

Then, he presses p. The yanked copy of the original line appears below
the line where he had left the cursor. Now, the cursor is on the newly
placed (in other words, the copied) line.

You chase your tail, you drag your butt

Oh, but you suffer, my dear old mutt!

Oh, but you suffer, my dear old mutt!

“No,” he concludes, “it was okay the way it was.”

The Undo Buffer
If you are deleting, moving, or copying text, the most recent buffer you
have put a text string into is the undo buffer, whether you have specified it
(such as the 2 or 3 or c in the multiple-move example) or whether it is the
default 0 buffer (if you have not specified one).

Using the multiple-move example, after you have cut the three text
strings, the undo buffer is the c buffer, not the 2 or 3 buffer. The only
action you would be able to undo with the u command is "c4dd. To undo
your last command, simply press u. If you have made several changes on

314 Installing and Administering Linux 2E

one line and you want to undo all of those changes and you have not
moved off that line yet, press U.

Executing Linux/UNIX
Commands in vi
Suppose that while you are working in vi, you realize that you need to
exit vi to run a command. But you do not really want to exit vi, run the
command, and then re-enter vi. What is your solution? Using the excla-
mation point (!) command within vi creates an appropriate shell to exe-
cute the chosen command, prompts you for the command, executes it, and
displays the results.

Here, we will show how to copy a file while remaining in the vi editor
instead of having to exit vi, use the cat command on the file, write down
the information, re-enter vi, and type the information in the file.

To copy the contents of one source file into a target file, enter the
following:

$ vi targetfilename<Enter>

You will see the contents of targetfilename on the terminal screen.

Press Esc to enter Command mode.

Move the cursor down to where you want to add the information from
sourcefilename.

Now, list the contents of the directory where sourcefilename resides:

:!ls /directorypath<Enter>

vi will respond with the following:

[No write since last change]

"- - other files and directories - -" RFI_trip_laundry

Hit ENTER or type command to continue _

Type the following:

:r /directorypath/sourcefilename<Enter>

vi will respond with

The vi Editor 315

"sourcefilename" Line count, Character count

Hit ENTER or type command to continue _

To complete the procedure, press Enter to insert the contents of the
sourcefilename file into targetfilename. By default, the text from sourcefilename
will be inserted just below where you left your cursor in targetfilename
before you pressed :!ls etc.

If beforehand, line numbering had been set to On in the targetfilename file,
you could have inserted a line number before :r /directorypath/
sourcefilename to tell the vi editor to place the contents of sourcefile-
name there instead. (Line numbering is discussed later in this chapter; the
line numbering command is described in Table 10.3.)

By the way, this method is a common technique for dumping the output
of the date command into letters, memos, and other documents.

Please note that when you are prompted with Hit ENTER or type
command to continue, if you need to run a series of commands with-
out returning to vi after the execution of the first command, type

:sh

Then, you can run all your commands in the shell. When you want to
exit the shell and return to vi, press Ctrl-D.

Example 10.4 Executing Linux/UNIX Commands
from vi

Don Quixote is producing a staff notice called Knight_Laundry, a list of the
minimal protective and other clothing that knights-errant should take with
them on their travels. He has already created an up-to-date list of such
materials in the RFI_trip_laundry file, which we saw in Figure 10.2 (were
you wondering when you would see that list again?). To copy that file into
his Knight_Laundry notice, he enters the following:

$ vi Knight_Laundry<Enter>

He sees, so far, that the Knight_Laundry file reads like the following on
the screen:

All RFI knights-errant should obtain the

following beforehand and bring it with them

on their Noble Deeds Division missions:

"- - blank line - -"

316 Installing and Administering Linux 2E

~

~

He presses Esc to enter Command mode. Then, he moves the cursor down
to the blank line below “ . . . Noble Deeds Division missions:”,
where he wants to append the information from RFI_trip_laundry.

Now, he lists the contents of the directory where RFI_trip_laundry is
located:

:!ls<Enter>

[No write since last change]

"- - other files and directories - -" RFI_trip_laundry

Hit ENTER or type command to continue _

He types

:r RFI_trip_laundry<Enter>

"RFI_trip_laundry" 6 lines, 40 characters

Hit ENTER or type command to continue _

Finally, now he presses Enter to insert the contents of the RFI_trip_
laundry file into Knight_Laundry. By default, the text is inserted just below
where Don Quixote had left cursor in that file (in other words, on the blank
line below “ . . . Noble Deeds Division missions:”). So,
Knight_Laundry now resembles Figure 10.4.

Options for Changing vi Functions

You can change several appearance and behavior characteristics of vi to
make it more useful or convenient. We list some of them in this section,
and we also discuss how you change characteristics.

The two basic approaches to changing vi characteristics are to:

■■ Set default options that remain in place after you close the current
session (with the hidden .exrc file).

■■ Specify options for single-session use.

When you invoke vi, it searches for your own specific default charac-
teristics in a hidden file called .exrc in the current directory. If vi finds an
.exrc file, it follows whatever default specifications are listed there. If it
does not find the .exrc file in the current directory, it checks your home
directory for it. Please note, though, that a .exrc file might not even exist. If

The vi Editor 317

Figure 10.4 Executing Linux/UNIX commands from vi.

no one has specifically configured vi to alter its default behavior, then
there is no need for .exrc.

At any rate, have a look in your current directory and/or home direc-
tory for a hidden .exrc file. If you cannot locate one, you can actually use
vi to create one. Invoke vi with .exrc as its argument (in other words, to
create .exrc), get into Insert mode, and enter any of the options listed in
Table 10.4 or in any other vi information source. We have only listed a
dozen or so options in Table 10.4; there are many more. Some affect the
way text is presented; others facilitate editing (especially for new users).

If you want to invoke any of the Table 10.4 options on the fly while you
are already in a vi session, then simply press Esc to get into Command

318 Installing and Administering Linux 2E

Table 10.4 vi Customizing Options

OPTION DESCRIPTION

set all Display all settings

set Display settings different than the default settings

set ai Turn on autoindent

set noai Turn off autoindent

set nu Turn on line numbering

set nonu Turn off line numbering

set list Display nonprintable characters

set nolist Hide nonprintable characters

set showmode Show the current mode of operation

set noshowmode Hide the current mode of operation

set ts=4 Set tabs to four character jumps

set ic Ignore case sensitivity

set noic Set case sensitivity

set wrapmargin Set the margin for automatic word wrapping from
one line to the next; a value of 0 turns off word
wrapping

mode and then type a colon (:) followed by the option as you see it in
Table 10.4. We must provide a note of clarification, though: when you list
any of the Table 10.4 options in the .exrc file, do not put a colon at the begin-
ning of any of them. Again, the colon is used only when you are doing an
interactive-style specification in Command mode when you are already in
a vi session.

You can also set options for a specific session rather than every time you
invoke vi. For example, to number lines as you enter text, go to Command
mode and type the following:

:set nu<Enter>

At the end of the session, you will (naturally) leave vi. The next time you
invoke the vi editor, though, line numbering will be off as usual (unless you
or someone else has entered set nu in the .exrc file. Table 10.4 lists com-

The vi Editor 319

monly specified options. For more comprehensive listings, check your infor-
mation sources.

Entering and Editing Commands at the
Command Line

Before we discuss editing at the command line, it might be useful to men-
tion Linux/UNIX shells again. Shells are, among other things, Linux/UNIX
command interpreters, and we described them in more detail in Chapter 7,
“Shell Basics.”

Let’s quickly summarize by stating that when a user logs in to Linux,
one of the several available shells is invoked by default according to what
is found in the user’s profile in the /etc/passwd file. Because many princi-
ples, utilities, and commands are similar from shell to shell, we will focus
here on the Bourne Again Shell, or Bash shell. (We also learned in Chapter
7 how a user can switch from one shell to another by using some simple
commands, however.)

Basic Command-Line Navigation and
Editing
With Bash, you type commands by using letters, numbers, and some
metacharacters and then execute the commands by pressing Enter. To nav-
igate back and forth along the command line, you can use the right arrow
and left arrow keys. To delete text, you can use the Delete and Backspace
keys. You can use some of the other handy keys, too, such as Home and
End.The Shift, Alt, Ctrl, and function keys (that is, F1, F2, and so on) are a
different story, however. Using them can provide some utility (examples:
Ctrl-o presents the ls command automatically; Ctrl-p presents the last
command executed; the Alt key, used with characters such as 2, 4, 7, 8, 9, 0,
-, c, e, or }, can create other special characters, and so on). But sometimes,
using them can produce unpredictable or inconvenient results as well.

The Up and Down Keys and
Command History: A Review
Remember back near the end of Chapter 7 when we introduced you to the
power and convenience of the up and down keys? We can use them to tap
into our command history, starting with the RAM buffer where commands

320 Installing and Administering Linux 2E

from the current session are saved, and then proceeding into the hidden
file called .bash_history in our $HOME directory. Using Up or Down allows
us to recall and re-execute, then, commands that we have executed previ-
ously.

When you back up enough to enter the hidden .bash_history file, your
initial position in that file is at the bottom, or the most recent command
before your last logout. You can specify the number of old commands that
will be placed in the .bash_history file, so you can travel back a fair distance
in your command history (we will discuss how to do that in Chapter 11,
“Shell Variables and the User Environment”). But pressing the Up key
once you reach the top of .bash_history, however, results in a shell error
beep.

To summarize, the benefit of using Up and Down is that you can repeat
procedures by recalling commands and then pressing Enter to re-execute.
That can save you a lot of typing, especially with respect to complicated
syntax. You can also perform sensitivity analyses by re-executing com-
mands while changing options or arguments with each execution.

Invoking Text Editor Features at the
Command Line

Linux also enables you to invoke, at the command line, the editing fea-
tures from its various text editors. For example, if you type the following
at the command line, Linux enables you to use some vi commands and
keystrokes:

$ set -o vi<Enter>

To turn the features off, type

$ set +o vi<Enter>

The “invoking other editor features” facility can be handy for UNIX-
based operating system users and administrators when they find them-
selves at different locations (especially at different keyboards). The feature
can bring some predictability to command-line activities.

For example, invoking vi features might let you use the h, j, k, and l
keys to emulate the left, down, up, and right arrow keys, respectively, to
navigate the command line or to recall previous commands by tapping
into the buffer and your .bash_history file.

The vi Editor 321

With the flexibility of the text editor features, there are issues, though.
Please read the warning carefully.

Be careful when invoking editor features at the command line.
You might get unpredictable (and thus, inconvenient) results. Plus, if you try to
turn off vi features (with set +o vi, for instance), you might succeed in turn-
ing off vi features but you might also turn off previous bash command-line
features. It could leave you almost helpless at the command line. You might
have to log out and log back in again to regain your previous command-line
utility. That sounds easy, but because your command-line functionality is
severely reduced, you will have trouble keying in logout. Try using the j and k

keys to move up and down through your command history to find a logout
command somewhere.

The “ambush” described in the warning is the reason why we approach
even the updating of this section of the book with caution. It seems like just
checking on these commands can get us into trouble. Hopefully, you will
not suffer any similar inconvenience.

Related vi Editors

Here is a quick summary of other editors loaded by Linux that are related
to the vi editor:

■■ view is the read-only version of vi. Changes cannot be saved unless
overridden by using an exclamation mark.

■■ ex is a line-oriented text editor, but it can access vi’s screen-editing
capabilities.

■■ ed is a line-oriented text editor with no visual or screen capabilities.

Check the /bin directory for any of those names. You can then experi-
ment with them by invoking them at the command line by using a syntax
like the following:

$ ex filename<Enter>

You also might be fortunate enough to have Emacs, an elegant and pow-
erful visual screen text editor. Unfortunately, Emacs uses a lot of disk stor-
age, so it is not installed universally. But it ships with some Linux
distributions and is available on the Internet.

WARN I NG

322 Installing and Administering Linux 2E

Do not be fooled by the presence of an emacs directory (for example,
/usr/share/emacs) on your system. It does not necessarily mean that Emacs
is installed.

Exercises

1. Go to your home directory and create a file in it called vitest:

cd<Enter>

vi vitest<Enter>

2. When you open a vi file, you are automatically placed in Command
mode. Press the i (insert) key to switch to Insert mode. You can also
press the a (append) key. The use of i or a simply determines
whether typing will start before or after the cursor. Although there is
no indicator when you are in Command mode, the text string -
INSERT - appears at the bottom of the screen when you are in
Insert mode.

Switch from Insert mode to Command mode by pressing the Esc key.
Press Esc a second time. Note that if you press Esc twice, you will
probably get a beep from your terminal (be careful, though: some
ASCII terminals do not beep). The beep indicates that you are
already in Command mode. Now, press i again to go back into
Insert mode, and continue to the next exercise.

3. Insert the following text exactly as it is presented (otherwise, you
have to alter the steps we will present later), line by line. Then, type
the alphabet one character per line. The following shows a through
c only, but please continue on to z on your terminal. Adding the
alphabet, one letter to a line, is an easy way to fill a few screens of
information quickly and easily, which you will need for later
exercises.

This is a training session about the usage of the vi editor. We need

some more lines to learn about the most common commands of the editor.

We are now in the Insert

mode and we will switch right after this to the Command mode.

a

b

The vi Editor 323

c

.

.

.

4. Return to Command mode. Write and quit this new file. Note that as
soon as you press the colon (:) key, it appears below the last line of
your input area. After the buffer is empty and the file is closed, you
see a message giving the number of lines and characters in the file.

<Esc>

:wq

or

<Shift>-zz

5. Open the vitest file by using vi. Note that the bottom line of the
screen indicates the name of the file and the number of lines and
characters it has found in the file.

$ vi vitest<Enter>

6. Using both the arrow keys and the h, j, k, and l keys, practice
moving the cursor down one line, up one line, to the right a couple
of characters, and back to the left a couple of characters.

7. You might not want to move the cursor one character or one line at a
time throughout an entire file. Practice by using cursor movement
keys to navigate page by page or line by line. Using the cursor
movement keys mentioned in Exercise 6, position your cursor at the
first line of the file. While in Command mode, do the following:

Move forward one page:

<Ctrl>-f

or

<PageDown>

There is no PageDown key on ASCII terminals.NOTE

324 Installing and Administering Linux 2E

Move back one page:

<Ctrl>-b

or

<PageUp>

Scroll the screen up to one-half the screen size:

<Ctrl>-u

Move the cursor to the last line in the file:

<Shift>-g

Move the cursor to the first line in the file:

1<Shift>-g

or

:1<Enter>

Move the cursor to line 4 of the file:

4<Shift>-g

or

:4<Enter>

Move the cursor to the end of the line:

The vi Editor 325

$

Move the cursor to the beginning of the line:

0 (zero)

8. Move your cursor to the top of the file.

1<Shift>-g

or

:1<Enter>

Search for the word entry. Your cursor should be on the e. Switch to
Insert mode and add the word text with a space after the word.

/entry<Enter>

i

text

9. Move the cursor to the space after the word mode on the same line.
Insert a comma. Remember, you are still in Insert mode.

<Esc>

Position the cursor to the space after the word mode.

i

,

10. Enter Command mode. Position the cursor anywhere on the line
beginning with learn the most. Insert a blank line to form two
paragraphs.

<Esc>

Position the cursor on the line that starts with learn the most.

326 Installing and Administering Linux 2E

o

The lowercase o opens the blank line following the line beginning
with learn the most.

11. Opening up a blank line, as in the preceding exercise, automatically
puts you in Insert mode. Therefore, return to Command mode. Now,
save the changes you have made thus far, but do not exit the editor.

<Esc>

:w<Enter>

12. While still in Command mode, remove the characters c, e, and g but
leave the blank lines in their place; in other words, do not delete the
entire line, just the characters. Then, go back and remove the blank
lines. This situation is an opportunity to use two of the delete
functions.

• Position the cursor on the c; press x.

• Position the cursor on the e; press x.

• Position the cursor on the g; press x.

• Do the following twice: Position the cursor on a blank line and
press dd.

13. Now, replace the character h with z. Position the cursor on the h.

• Press r.

• Press z.

14. Assume that you decided you do not want to save the changes to the
characters. Quit the editing session without saving the changes
made since the last save.

:q!<Enter>

15. Edit vitest one more time.

$ vi vitest<Enter>

Do the following:

• Copy the first paragraph one line at a time to the end of the file.

The vi Editor 327

• Position the cursor on line 1; press yy.

• <Shift>-g; press p

• 2<Shift>-g; type yy

• <Shift>-g; press p

• 3<Shift>-g; type yy

• <Shift>-g; press p

When you complete the preceding actions, copy the second para-
graph all at once to the end of the file:

• 4<Shift>-g; type 3yy

• <Shift>-g; press p

16. Assume that you decided the lines you just added to the end of the
file do not look right. Delete all of them with a single command.
Position the cursor on the first copied line to be deleted at the bottom
of the file. Count the number of lines to delete.

Press 5dd.

17. Now, before you do anything else with this file, assume that you
need to embed the current date and time as the first line of the file.
Do this action without leaving the vi editor.

:!date > datefile<Enter>

Press RETURN or enter command to continue<Enter>

:0r datefile<Enter>

18. Options can be set temporarily in an editing session by using the
set command. Return to the top of the file.

1<Shift>-g

Ensure that you are in Command mode, and set the following com-
mands:

• Set automatic word wrap to 15 spaces before the right margin.

• Display the Insert mode message when in Insert mode.

• Turn line numbering on.

328 Installing and Administering Linux 2E

<Esc>

:set wrapmargin=15<Enter>

:set showmode<Enter>

:set number<Enter>

19. Test each of the options set in Exercise 18. You should see that the
lines in the file are automatically numbered just after the command
was entered. Try entering Insert mode by typing i or a. You will see
the - INSERT - message at the bottom-left of your screen. Type a
few continuous lines of text to test the automatic word wrap feature.

Enter Command mode by pressing Esc. The - INSERT - message
disappears from the bottom of the screen.

20. Write the file and quit the editor.

:wq<Enter>

21. To set up a command-line editing session, use the set -o vi
command.

$ set -o vi<Enter>

22. Now, you can recall previously executed commands, edit them, and
resubmit them. Let’s build a command history. List the contents of
the /usr directory (do a simple list, not a long list). Display the
contents of the /etc/filesystems file. Echo hello.

$ ls /usr<Enter>

$ cat /etc/filesystems<Enter>

$ echo hello<Enter>

23. Assume that you want to edit one of the commands you just
executed. Press the Esc key to get to vi Command mode. Try
pressing the k key several times to go up the list of commands. Try j
to go down. This recall of commands is essentially a browse through
a buffer of commands that you previously executed in this session.
After you log out, the commands are stored in your .bash_history file
in your home directory.

24. Retrieve the ls command. Use the l key to move your cursor to the
slash in /usr. (Note: The arrow keys tend to wipe out your line. You
have to use the l key for right cursor movement and h for left cursor

The vi Editor 329

movement.) Use the j key to insert text and change this command to
a long list, and then execute by pressing Enter.

• k to get to the ls /usr command

• l to get to the /

• i to get into Insert mode; you could also use an a to append if the
cursor was on the space before the /

• -l to change the ls to ls -l

25. Recall the cat command. This time, list the contents of the
/etc/passwd file:

• Press Esc.

• Press k(to get to the previous cat command).

• Move the cursor to the f in filesystems.

• Press D (to erase from the f to the end of the line or dw to simply
erase the word).

• Press a (to begin appending text).

To execute the /etc/passwd file, type

passwd<Enter>

26. Recall the cat command. Go to the end of the line (use $). Add to
the end of that command by piping the output of the etc/passwd
command to wc, which counts the lines in the etc/passwd file.

• Press Esc.

• Press k (to get to the previous cat command).

• Press $ (to get to the end of the line).

• Press a (to begin appending text).

Type the following to execute the etc/passwd file again and to get wc
to count the number of lines in etc/passwd and print the number to
the screen:

| wc -l<Enter>

See Appendix B for answers.

330 Installing and Administering Linux 2E

Quiz

1. When using the vi editor, what are the two modes of operation?

2. While using vi, how do you get into Command mode?

3. Which of these single-letter commands could you use to enter text?

• a

• x

• i

• dd

4. True or false: While in Command mode, pressing u repeatedly will
undo all previously entered commands.

5. True or false: The vi editor can be used to globally change the first
occurrence of a pattern on every line with a given pattern.

6. Which of these will enable you to quit vi while in Insert mode?

• :qw

• :wq

• <Shift>-zz

• <Shift>-ss

• :q!

• All of the above

• None of the above

See Appendix C for answers.

C H A P T E R

11

Shell Variables and the User
Environment

331

This chapter describes many of the variables found in both the terminal
and the shell environments. Linux supports three types of variables:

■■ Terminal environment variables
■■ Built-in variables
■■ User-defined variables

We will also show you the two principal methods of setting variables:
variable substitution and command substitution.

Variables can be set so that all or only specified processes can use
them. Note, however, that some variable setting commands differ from
shell to shell.

Meanwhile, sometimes you might wish you had more control over your
Linux/UNIX environment. Perhaps you would like to execute some com-
monly used commands but would rather use the DOS names because,
well, you know them already. Or perhaps you would prefer to use a differ-
ent default shell at login than bash. How could you do that? We will also
discuss the evolution of your Linux environment to set the stage for where

332 Installing and Administering Linux 2E

and why you might, or might not, customize it. Topics covered include
techniques to undertake any desired Linux environment customization,
the use of aliases for certain commands so that you can remember or exe-
cute them more easily, and methods for manipulating and re-executing
previously executed commands in a fast and easy manner.

Variables and the Terminal Environment

Before we can discuss variables in detail and their influence on the Linux
terminal and shell environments, it is worthwhile to first define variables
and the terminal environment.

A variable is a name that is known to a program and that represents data.
Although the value of the data might remain constant, it more likely
changes one or more times while the program is running.

The terminal environment is basically the set of all variables and shell
functions to which all your shells and their commands, utilities, and other
processes have access. The terminal environment is thus the set of vari-
ables that all those commands, utilities, and processes have in common,
but it is not some all-encompassing set of all variables from all shells. This
definition varies from the more classic definition of a terminal environ-
ment; that is, the list of variables pertaining only to your computer termi-
nal (the ones you can see by typing stty -a at the command line). For
our purposes, the variables in the terminal environment include the stty
variables and variables exported to the environment by various profiles,
daemons, startup files, and even the shells themselves as your system was
configured (as it starts up and as you log in).

As you learn more about Linux, you will no doubt customize your termi-
nal environment by altering the values of existing variables and by defining
and exporting other variables into your environment. You can rely on the
variables that shipped with your distribution and that were initialized dur-
ing your installation and configuration, or you can add to or change them
as you become more familiar with variable and process functionality.

How do you identify the variables in your terminal environment and
their respective values? Go to a command line and type env.

At some point, you might decide that one or more of your shell variables
should be added to your environment so that you do not have to keep
defining them from session to session or from shell to shell. How do you
add variables to your terminal environment? If you are in the bash shell,
you first set the shell variable by typing

Shell Variables and the User Environment 333

$ variablename=value<Enter>

(See the Equals Sign section later in the chapter for an explanation of this
syntax.) Then, to export that variable, you type

$ export variablename<Enter>

Now, if you are in the tcsh shell, the export command is different.
After you have set the variable, you type

$ setenv variablename value<Enter>

The set and setenv commands are discussed again later in this chap-
ter. See Chapter 12, “Linux Processes and Process Control,” for more infor-
mation about exporting variables.

Shell Variable Types

As discussed in Chapter 7, “Shell Basics,” the shell is the interface between
the user and the operating system, and it passes information about the ter-
minal environment to applications, commands, and processes. Your shell
must have access to several variables so that it can control your Linux ses-
sion. When you check your shell for all its variables, you will find that it
has inherited all the terminal environment variables plus all the shell vari-
ables that have not been exported to the environment.

Thus, the set of shell variables (that is, the shell environment) is larger
than the set of terminal environment variables. Have a look at Figure 11.1;
it illustrates the relationships among the environments that we have dis-
cussed to this point. It is not meant to show the relative sizes of those envi-
ronments, just the relationships.

Linux supports the following three types of variables:

Terminal environment variables. Part of the operating system
environment. Users do not necessarily have to define these, but they
can use them in shell programs; some can be modified within shell
programs (for example, PATH, USER, and SHELL).

Built-in variables. Provided by Linux’s operating system and are
automatically set by the shell to make decisions within a shell script
or program (for example, $#, $?, $0, $*, $$). Users cannot modify
these variables.

334 Installing and Administering Linux 2E

Figure 11.1 Relationships between environments.

User-defined variables. Defined by a user when a shell script is
written. Users can use and modify these variables anytime within a
shell program.

The shell uses all these variable types to define a user’s Linux session.
All shell environment variables are case sensitive. For instance, if you
define a variable called path, it will not be the same as PATH. Built-in vari-
ables and terminal environment variables are generally uppercase, and
those defined by the user are generally lowercase. This situation is not a
rule but rather a convention. When you observe this convention, however,
user-defined variables will not interfere with the operation of terminal

Shell Variables and the User Environment 335

environment or built-in variables, and you will find it easier to keep them
straight when reading your variable listings or doing your own shell pro-
gramming.

Listing Variable Settings: set Command

To identify your shell environment variables, you can type

$ set<Enter>

It might be advisable to type the following instead in case the listing of
variables is longer than one screenful:

$ set | more<Enter>

or

$ set | less<Enter>

Actually, the customary use of the set command is to assign values to
variables, as we will see later in the Variable Substitution section, as follows:

$ set variablename=value<Enter>

If you do not use options or arguments with the set command, how-
ever, the shell reports back with a listing of all shell variables as well as
their values (as you will see in Example 11.1).

The set command is a shell-related command and thus provides a dif-
ferent listing according to the shell that is currently being used. Because
the set command reports the variables set in the current shell, it also
reports the variables from the terminal environment. As mentioned, the
terminal environment variables are a subset of the shell environment vari-
ables. Although your current shell has access to the values of these vari-
ables, all your commands might not have the same access because they
might be invoked from different shells. The export command enables
you to export the variables and their values to the terminal environment so
that all commands will have that access, too.

336 Installing and Administering Linux 2E

Near the end of the set variable listing, you will probably notice a line
that begins with an underscore (_). This line is related to the command
you executed before set. The next time you execute set, different charac-
ters will likely appear following the underscore because you will have
entered a different command before executing set.

Example 11.1 Listing Environment Variables with set

Sancho wonders why he always has to specify the directory path when-
ever he invokes the banner command (as we saw in Chapter 3, “Getting
Started Using the Linux System”). Freston says the reason is probably
because banner’s directory path is not specified in Sancho’s PATH vari-
able. To check the PATH variable, Freston tells Sancho to go to his terminal
and type

$ set<Enter>

COLORS /etc/DIR_COLORS

set

addsuffix

argv ()

autologout 60

cwd /home/panzasan

dirstack /home/panzasan

dspmbyte euc

echo-style both

edit

file /home/panzasan/.i18n

gid 603

group knights1

history 1000

home /home/panzasan

.

.

.

path (/usr/local/bin /bin /usr/bin /usr/X11R6/bin)

.

.

.

uid 604

user panzasan

version tcsh 6.10.00 (Astron) ... etc.

(If you are in the bash shell and you type the same command, be pre-
pared to see something similar but still quite different. Remember, Sancho
works in the tcsh shell). So, Freston was right. The /usr/games directory is
not specified as part of Sancho’s PATH variable.

Shell Variables and the User Environment 337

Listing the Values of Individual Variables:
The echo Command

If you want to check to see what a variable is set to, simply enter the echo
command followed by a dollar sign and the name of the variable, as such:

$ echo $variablename<Enter>

Note that you add a space between the echo command and the dollar
sign but not between the dollar sign and the name of the variable being
referenced.

Example 11.2 Using echo $ to Check Variable
Settings

Sancho works in the tcsh shell. He asks Don Quixote, who he knows works
in the bash shell, whether the Don’s path variable contains /usr/games. The
Don enters

$ echo $PATH<Enter>

/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/quixoted/bin

Both realize that /usr/games is not specified in either of their PATHs.

Setting Shell Variables

User-defined variables can hold any type of data (for example, integer
numbers, single words, text strings, or complex numbers). It is up to the
application referencing the variable to decide what to do with the contents.
In contrast, the content of system-defined variables is fairly static and
inflexible. For example, the HOME variable can contain only a directory and
not a file.

When we say “set shell variables,” we mean “specify, or set, the value of
a variable.” The values of variables can be set in two ways:

■■ By a form of direct definition called variable substitution

■■ To the output of a command or a group of commands, which is
called command substitution. Command substitution is discussed
later in this chapter.

We will look at each technique in turn.

338 Installing and Administering Linux 2E

Variable Substitution: Setting Variable
Values with the Equals Sign
There are two ways to use variable substitution. This first method is sim-
ple and straightforward and does not really rely on the “character substi-
tution” aspect of variable substitution, which we will illustrate in the next
section.

When setting the values of variables, the commands differ depending on
the shell you are using. To set a variable when you are in the bash or pdksh
shell, use the equals sign with the name of the variable (existing or new) on
the left side and the value you want to set for the variable on the right side:

$ variablename=value<Enter>

There are no spaces between the characters. To set a variable in the tcsh
shell, on the other hand, use the set command:

$ set variablename = value<Enter>

In the tcsh case, spaces appear on both sides of the equals sign. See
Example 11.2 for setting variables in all three shells.

The man page for each shell generally describes the syntax used to set
their respective prompts. Do not forget—if you are in the tcsh shell and you
want to export variables and their values to the terminal environment, you have
to use setenv instead of export.

Example 11.3 Setting Variable Values with the
Equals Sign (=)

Both Don Quixote and Sancho find that the commands they type tend to
require more than one line. But the secondary prompt (PS2) variable, the
simple right angle bracket symbol, tends to confuse them occasionally and
they make mistakes on the second line. Here is how they each change their
respective secondary prompts. Because he works in the bash shell, the
Don sets the PS2 variable as follows (similar to the pdksh shell):

$ PS2=”Please Continue >”<Enter>

NOTE

Shell Variables and the User Environment 339

Sancho, who uses the tcsh shell, types

$ set PS2 = "More >"<Enter>

The variable substitution in Example 11.3 is reminiscent of the latter part
of Chapter 7, where we used a backslash followed by Enter to interrupt a
long command on one line so that we could continue typing the command
on the next line. We mentioned that the greater-than sign (>) was assigned
to the secondary prompt through the value of the PS2 variable.

Thus, in Example 11.3, the Don and Sancho changed from the secondary
prompt > to a text string to avoid confusion with the standard out redirec-
tion symbol. Note that to do so, they each had to include double quotation
marks at each end of the text string. If they did not use the double quota-
tion marks, they would have received an error message beginning with
bash:syntax error. So, whenever you set a variable with a text string,
always enclose the text string in double quotation marks.

Variable Substitution Using Character
Substitution
This method is a handy technique that can save you keystrokes almost
every day. We will define it the best we can here, but to get the best grasp
of it, we refer you to Example 11.4. In this case, examples work best.

Begin by defining variables and specifying values for them as you have
done before. For the bash shell,

$ variablename=value<Enter>

Then, as you create correspondences, memos, and such, you insert the
variable names right into your text using a dollar sign as the first character
of the variable name. Then, when the time comes, the shell will substitute
the value of the variable for the variable name you typed.

Look closely at Example 11.4. It illustrates some typical and successful
variable definition and substitution scenarios. But one scenario produces
unexpected and incorrect results.

To set a variable equivalent to a string of text, surround the text string
with double quotation marks.
NOTE

340 Installing and Administering Linux 2E

Example 11.4 Setting Variables by Character
Substitution

Juana is learning to use the character substitution technique to save her
some time when she is organizing Lady Dulcinea’s schedule. She finds
that she uses the word day in many situations. So, she will try to create a
variable called abc and assign the value day to it. Here, she sets and veri-
fies the abc variable:

$ abc=day<Enter>

$ echo $abc<Enter>

day

Now, she checks to see whether it works by substitution:

$ echo Tomorrow is Tues$abc <Enter>

Tomorrow is Tuesday

So far so good. It works when no space appears before the variable. The
substitution is not hampered.

But here, something seems to go wrong. The shell tries but fails to sub-
stitute:

$ echo There will be a $abclong meeting<Enter>

There will be a meeting

When no space is encountered after the variable name, the shell was
tricked into looking for the wrong name. In this case, it searched in vain for
a variable it thought was called abclong, which we know did not exist
because we did not define it. When the shell could find no definition for
this (wrong) variable name abclong, it returned with a null string. That
is, the shell did not make a substitution but rather, removed the portion of
the statement containing the wrong or undefined variable name.

To try again to substitute, this time successfully:

$ echo There will be a ${abc}long meeting<Enter>

There will be a daylong meeting

When you cannot have a space following the variable name, you can
preserve the proper variable name by surrounding it with curly brackets
({}). Note, however, that $ must remain outside the curly brackets. Other-
wise, the shell will not be “triggered” to perform the substitution.

Shell Variables and the User Environment 341

Setting Shell Variables by Command
Substitution

In the preceding discussion of variable substitution, you saw how to
specifically place a value into a variable. In this section, we discuss how to
place the result of command execution into a variable.

In Linux’s bash shell, you can accomplish command substitution by
using two types of syntaxes:

$ variablename=`command (-options) [arguments]`

and

$ variablename=$(command (-options) [arguments])

The first syntax example uses back quotes (not single quotes) to surround
the command whose output you want to assign as the value of the vari-
able. The back quote key (`) is located immediately to the left of the 1 key.
Do not confuse the back quote with single quotation marks.

Back quotes are supported by the classic Bourne and C shells, so they are
supported also by the bash and tcsh shells. Back quotes are supported by
the Korn shell for backward compatibility.

The second type of syntax, variablename=$(command . . .
etc.), was originally specific to the Korn shell.

Example 11.5 Command Substitution: Variable
Values Set to Command Results

Freston, while performing several of his routine administration functions,
makes use of command substitution. In the following code, he will define
a variable called now and for its value substitute the output of the date
command:

$ date<Enter>

Mon Jul 16 16:14:34 CST 2001

He sets the variable to contain the results of the command:

$ now=`date`<Enter>

or

342 Installing and Administering Linux 2E

$ now=$(date)<Enter>

Now, he checks to see whether the variable works:

$ echo $now<Enter>

Mon Jul 16 16:14:34 CST 2001

Note that you can carry out the command only once. The result is then
available for use until the variable is removed or reassigned.

Changing Variable Settings with the
unset Command
At some point, you might no longer need or want some variables. To
remove them, you use the unset command as follows:

$ unset variablename<Enter>

After using unset, it is a best practice to check that the variable is
indeed gone by echoing it (do not forget to add the dollar sign):

$ echo $variablename<Enter>

It will seem to you that the shell did not react to the command. But that
lack of a response is a good thing. The shell is telling you that variable-
name no longer has a value set for it.

Similar to echo $variablename, you can also unset variablename
on variables whose values were set through command substitution.

Example 11.6 Changing Variable Settings with the
unset Command

After creating the variable abc and assigning the value “day” to it, Juana
finds that she does not use the variable as much as she thought she would
and that the syntax is a little cumbersome those few times she uses it. So,
she decides to remove abc. Then, she checks to see whether it has really
been removed.

$ unset abc<Enter>

$ echo $abc<Enter>

NOTE

Shell Variables and the User Environment 343

The shell simply returns a command prompt to her. “Good,” she thinks,
“it’s gone.”

Customizing the User Environment

In this section, we describe the sources of most environment variables and
mention the roles of several programs, initialization scripts, and other files
that you use from the time you boot your system until you successfully log
in. Then, we will look at how you can customize your environment
depending on your job functions, maybe, or depending on your other
needs or preferences.

Setting Default Shell Variables During
Bootup and Login
We will focus on logging into a bash shell; the other shells use a slightly
different but similar process. The compiling of environment variables from
their respective files is shown in Figure 11.2. It is not meant to be totally
comprehensive, but it is sufficient for this introductory-level discussion.
As you can see from Figure 11.2, the values for some variables can be
“updated” as additional files are consulted during the login process. From
version to version, we have noticed that Linux developers have worked to
eliminate this redundancy.

But, if you have logged in and you notice that the value of one or
another variable is not what you expect, then it might be worth checking
which files contain the variable and in what order the environment was
configured. (Here, we use the broadest definition of files as collections of
data or byte streams; some of these files are programs, scripts, and the like
and are not strictly data files.)

Okay, assume that you are logging in at your terminal, which you have
already booted. Already, during the course of booting, the init program
(commonly regarded as the parent of all system processes because it is the
first program that the kernel executes; it is even given the PID of 1) has
already executed, or caused to be executed, several system initialization
scripts. Those scripts—the primary one being /etc/rc.d/rc.sysinit—define the
system initialization environment and other parameters regarding security
and other system features that reflect your or your company’s policies. The
/etc/profile shell script (which contains system-wide environment variables

344 Installing and Administering Linux 2E

and commands) and its companion, the /etc/bashrc shell script (which con-
tains system-wide functions and aliases) can be changed only by the sys-
tem administrator or root user. The init program has also invoked a
mingetty program.

Normally, a getty is a program that is invoked by init to connect a
user with the Linux/UNIX system. Initially, getty prints the contents of
/etc/issue (if it exists), then prints the login message field for the entry it is
using. When you log in by supplying your username, the getty (in our
case, mingetty, which is a scaled-down getty program) program
invokes the /bin/login program, which carries out a number of func-
tions and prompts you for a password. Also, while reading your login
name, mingetty attempts to adapt the system to the speed and type of
terminal being used. (If you type the ps a command at your terminal,
you will see copies of /sbin/mingetty waiting at your other virtual termi-
nals).

If you provide a password that matches the now-encoded password on
file for you, login authenticates you and then runs the login command
with the /etc/passwd profile. Now that you have been authenticated, your
login shell—the one listed alongside your username in /etc/passwd—is
invoked.

Your $HOME/.bash_profile and $HOME/.bashrc shell scripts are used to
initialize the bash shell and add more variables and values to your shell
environment. The environment variables in those scripts override any of
the same variables set in previous scripts (for example, PATH as it might
have been defined by /etc/profile or /etc/rc.d/rc.sysinit). In addition, you can
change or add to the $HOME script files to customize your environment.

The difference between .bash_profile and .bashrc is that .bash_profile is
used when you are in your login shell and .bashrc is read when you invoke
any other child process (such as a subshell) that is not your login shell.
Both bash and tcsh distinguish between the login shell and other invoca-
tions of the shell. If .bash_profile is not present at login, .profile is used if it
exists.

Now that you are authenticated and your shell is initialized, login dis-
plays the message of the day (/etc/motd), if there is one, checks for any e-
mail messages awaiting you, and notifies you whether e-mail messages
are available.

Shell Variables and the User Environment 345

Figure 11.2 Building the shell environment during bootup and login.

346 Installing and Administering Linux 2E

Samples of Environment-Building Files

Let’s look at some of the files illustrated in Figure 11.2 in some detail. Some
are system-wide in scope; some pertain only to individual users.

A Sample /etc/profile File
The /etc/profile file is the default initialization file for the bash, ksh, and sh
shells. Because it contains the environment commands and variables that are
invoked when every user logs into the system, this file is also called the
global profile. Only the system administrator can change the file, but individ-
ual users can override the variables by modifying them in their own
$HOME/.bash_profile files. The /etc/profile file, however, is not intended to
replace the individual user’s $HOME/.bash_profile script file. All customizing
should be performed in those individual scripts.

The /etc/profile should be kept as small as possible because it is used by
other scripts as well as by users. Example 11.7 shows the contents of a sam-
ple global profile file. An explanation of some of its variables is contained
in Table 11.1, which follows it.

Example 11.7 Examining an etc/profile File

Freston is in charge of maintaining and altering, if necessary, to reflect new
corporate policies, the system-wide environment. So occasionally, he has a
look at the “global profile”; that is, at the /etc/profile file.

cat /etc/profile<Enter>

/etc/profile

System-wide environment and startup programs

Functions and aliases go in /etc/bashrc

if ! echo $PATH | /bin/grep -q "/usr/X11R6/bin"; then

PATH=”$PATH:/usr/X11R6/bin”

fi

PS1="[\u@\h \W]\\$ "

ulimit -S -c 1000000 > /dev/null 2> &1

if [`id -gn` = `id -un` -a `id -u` -gt 14]; then

umask 002

else

umask 022

fi

Shell Variables and the User Environment 347

USER=`id -un`

LOGNAME=$USER

MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`

HISTSIZE=1000

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then

INPUTRC=/etc/inputrc

fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

for i in /etc/profile.d/*.sh ; do

if [-x $i]; then

. $i

fi

done

unset i

Selected variables from Example 11.7 are described in Table 11.1. The
PATH variable lists the directories through which the shell will look for
commands that have been issued to it. Note the format of PATH in Exam-
ple 12.1, especially $PATH, which tells the shell to include all directories
listed in previous initialization scripts. Notice also that the shell was told
to add the /usr/X11R6/bin directory to those directories.

The PS1 variable, as discussed previously, sets the format of the pri-
mary shell prompt. In Example 11.7, the shell is told to put the username,
the name of the user’s computer, and the user’s default home (file) direc-
tory in square brackets. The dollar sign (outside the brackets) is the
prompt symbol.

With the ulimit command, the shell is provided with the upper limit
on system resources that commands and files can use. Check the ulimit
man pages or other sources for further information.

As discussed in Chapter 6, “Linux File Permissions,” umask sets the
user’s default permissions as owner, group member, and member of “oth-
ers” for user-created files and directories. In the example, the user ID is
subjected to an if-then-else process to set the umask for a root user to 002
and for an ordinary user to 022.

Next, the shell is told that the format for the user account name will be
the user’s name on the system, not the user’s ID number as found in
/etc/passwd. In other words, any command or script that calls for the vari-
able USER will be given that name in the format specified here.

The LOGNAME variable tells the shell that the user’s login name will be
the same as the user’s name stipulated by the USER variable.

348 Installing and Administering Linux 2E

Table 11.1 Selected Variables in the Global Profile File

VARIABLE OR COMMAND
NUMBER NAME DESCRIPTION

1 PATH List of directories the shell will look
through for commands

2 PS1 Primary system prompt

3 ulimit Upper limit on system resources that a
file or command can use

4 umask 002; Permissions on new files or directories
for the root user

umask 022 Permissions on new files or directories
for the ordinary user

5 $USER Format of user’s name as it is applied
to commands and scripts

6 LOGNAME Format of expected login name

7 MAIL Directory where the user’s mail mes-
sages are found

8 HOSTNAME Name of the computer

9 HISTSIZE Maximum number of previous
commands displayed in response to
the history command

The MAIL variable tells the shell where to look for mail messages for
USER. The mail will be found in the directory whose name is the same as
the USER within the /var/spool/mail directory.

The HOSTNAME variable tells the shell where to find the name of the
computer (in this case, /bin/hostname).

The HISTSIZE variable sets the number of lines of command history
(that is, the number of previous commands) that the shell will display
when the user types history. This feature can be handy, as discussed pre-
viously, for retyping previous commands, doing sensitivity analyses
around command arguments, or even troubleshooting. As seen in Exam-
ple 11.7, the default is 1,000 commands!

A Sample /etc/bashrc File
The etc/bashrc file is another system initialization script invoked by init.
It is the companion to /etc/profile, but where /etc/profile is intended to hold

Shell Variables and the User Environment 349

environment variables and commands, /etc/bashrc is intended to hold other
system functions and aliases for commands or procedures. Remember that
a function is a procedure that transforms a value or performs other actions
and returns the results. Invoking the action or transformation is generally
referred to as calling the function.

In Example 11.8, we see a reminder that environment information will
be placed in /etc/profile. We then ensure that the primary system prompt for
users will be consistent no matter where the user is operating. Finally, an
alias is defined (discussed later in this chapter), which enables any user to
use the newly defined command when trying to determine the absolute path
location of any command they name. For example, which man<Enter>
returns /usr/bin/man, the location of the executable file that invokes
man pages.

Example 11.8 System Initialization with
/etc/bashrc

Along with checking the global profile, Freston also periodically checks
the /etc/bashrc file, with its system-wide functions and aliases:

cat /etc/bashrc<Enter>

/etc/bashrc

System wide functions and aliases

Environment stuff goes in /etc/profile

are we an interactive shell?

if ["$PS1"]; then

if [-x /usr/bin/tput]; then

if "x`tput kbs`" != "x"]; then #We can't do this with

“dumb” terminal

stty erase `tput kbs`

elif [-x /usr/bin/wc]; then

if ["`tput kbs/wc -c `" -gt 0]; then #We can't do

this with "dumb" terminal

fi

fi

fi

case $TERM in

xterm*)

PROMPT_COMMAND='echo -ne

"\033]0;${USER]@${HOSTNAME}: ${PWD}\007"`

;;

*)

;;

350 Installing and Administering Linux 2E

esac

["$PS1" = "\\s_\\v\\\$ "] && PS1="[\u@\h \W]\\$ "

if ["x$SHLVL" != "x1"]; then #We're not a login shell

for i in /etc/profile.d/*.sh; do

if [-x $i]; then

. $i

fi

done

fi

fi

The file still functions, and there have been no complaints or requests, so
Freston leaves it alone for now.

A Sample $HOME/.bash_profile File
In Example 11.9, we see the variables set for an individual user in his or her
personal .bash_profile script file. Every time the user (in this case, Don
Quixote) logs in, this script is read and its variables and commands are
adopted or executed.

Example 11.9 Setting Variables for an Individual User

Curious about why his PATH has his home directory in it and Sancho’s
does not, Don Quixote calls again on Freston. Freston tells him to check his
hidden .bash_profile file. “It’s probably specified there,” Freston says. So the
Don goes to his home directory and cat’s his .bash_profile:

$ pwd<Enter>

/home/quixoted

$ cat .bash_profile<Enter>

.bash_profile

Get the aliases and functions

if [-f ~/.bashrc]; then

. ~/.bashrc

fi

User-specific environment and startup programs

PATH=$PATH:$HOME/bin

BASH_ENV=$HOME/.bashrc

export BASH_ENV PATH

unset USERNAME

Shell Variables and the User Environment 351

The Don sees how the first conditional if-then-else decision structure
calls for the shell to check whether a hidden script file called .bashrc (con-
taining aliases and functions specific to this user only and not to all users,
such as those in /etc/bashrc) exists in this directory, and if so, to execute it.
Note that the .bashrc file, which contains user-specific functions and
aliases, could be called anything, but the convention is to name it similarly
to the /etc/bashrc file, which has global functions and aliases.

Next, he sees how his user’s PATH statement is modified. The existing
PATH directories are adopted, and the /bin directory in the user’s home
directory is added to them (please note that this scenario is a bash shell sit-
uation; Sancho’s environment, being tcsh, does not include this addition of
the home directory to the PATH). If you want to ensure that the current
directory is included in the PATH variable, verify that the variable contains
two or more adjacent colons or a colon followed by a period.

Don Quixote now has an idea why his PATH and Sancho’s are not iden-
tical during normal operations. Freston tells him, later, that the PATHs are
identical when Sancho works in the bash shell.

Meanwhile, the BASH_ENV variable causes the .bashrc script in the user’s
home directory to run every time another new bash shell is invoked. This
script is not exported because the settings, aliases, and other functions in
.bashrc might not be variables and thus are not subject to export.

Note that the BASH_ENV and PATH variables are exported so that these
variables and their respective values will be adopted by child processes.

Finally, the variable USERNAME (which has fallen out of favor with
recent Linux versions), if it has survived this far, is removed. It used to
cause confusion with users and administrators alike.

Just as /etc/profile has a companion in /etc/bashrc for system functions and
aliases, $HOME/.bash_profile has, by convention, its companion
$HOME/.bashrc for user-defined functions and aliases.

A Sample $HOME/.bashrc File
Example 11.3 contains the BASH_ENV=$HOME/.bashrc variable, which
causes $HOME/.bashrc, with its extra specifics, to be executed every time
the users starts a new bash shell. The $HOME/.bash_profile file is executed
only once when the user logs in.

In Example 11.10, we see that aliases and functions specific to the user
are recommended, and then the global aliases and functions are searched
for and invoked by the if-then-else decision string. Otherwise, those func-
tions, aliases, and so on would not be invoked.

352 Installing and Administering Linux 2E

Example 11.10 Script for User-Defined Functions
and Aliases

Here, we eavesdrop on the Don when he checks his .bashrc file:

$ pwd<Enter>

/home/quixoted

$ cat .bashrc

.bashrc

User specific aliases and functions

Source global definitions

if [-f /etc/bashrc]; then

. /etc/bashrc

fi

Begin aliases written by Quixote de La Mancha

Number 1 - Alias similar to old DOS command; written on July 23

alias dir-p=”ls -l | less”

End of aliases written by Quixote de La Mancha

In Example 11.10, we see how Don Quixote has written his own alias. It
appears that the Don is a DOS veteran, preferring the dir style of com-
mands to the UNIX ls style. Note, however, that he cannot use dir /p,
which is the proper DOS syntax. He has to modify the command. Why?
The shell would not interpret the forward slash in the same way as DOS
and so would return an error message.

Exercises

1. Ensure that you are in your home directory and then display the
shell variables.

$ cd<Enter>

$ pwd<Enter>

$ set<Enter>

2. Create a variable named lunch and set its value to pizza. Create
another variable named dinner and set its value to ham. Display
the value of the variables by using echo.

Locate them in the list of variables.

$ lunch=pizza<Enter>

$ dinner=ham<Enter>

Shell Variables and the User Environment 353

$ echo $lunch ; echo $dinner<Enter>

$ set<Enter>

3. Using the variables you just defined, display the message Lunch
today is pizza and dinner is ham.

$ echo Lunch today is $lunch and dinner is $dinner<Enter>

4. Using the variables you just defined, display the message Lunch
today is hamburgers.

$ echo Lunch today is ${dinner}burgers<Enter>

5. Remove the value of both variables. Check to make sure they are no
longer included in your list of variables.

$ unset lunch<Enter>

$ unset dinner<Enter>

$ set<Enter>

6. Display the value of your primary and secondary prompt strings.

$ echo $PS1<Enter>

$ echo $PS2<Enter>

7. Change the primary prompt string to You Rang?

$ PS1=”You Rang?”<Enter>

Why is it necessary to use quotes with You Rang?

Single quotation marks will work, too.

8. Change your secondary prompt string to What Else? Test it with
the ls command by using line continuation. End the command.
Reset both prompt strings back to their original values.

You Rang? PS2=”What Else?”<Enter>

You Rang? ls -l\<Enter>

What Else? <Enter>

What Else? <Ctrl>-c

You Rang? PS1= “$”<Enter>

$ PS2=”>”<Enter>

NOTE

354 Installing and Administering Linux 2E

Why are quotes needed around the left angle bracket (>) when reset-
ting the PS2 variable?

9. Check the value of the variable related to your home directory. Reset
that variable to change your home directory to /bin. Use the cd and
pwd commands to test the effects of this change.

$ echo $HOME<Enter>

$ HOME=/bin<Enter>

$ cd ; pwd<Enter>

You can check the value also by using set.

10. Log out and then log back in.

$ exit<Enter>

hostname login: username<Enter>

Password:

What is your home directory?

$ cd ; pwd<Enter>

$ echo $HOME<Enter>

Why is your home directory what it is?

11. Display your list of variables. Reissue the command but send the
output to the wc command to get the number of variables that are
currently set.

$ set<Enter>

$ set | wc -l<Enter>

12. Using command substitution, echo the following:

variables are currently set

where # is the number of variables.

$ echo `set | wc -l` variables are currently set<Enter>

NOTE

Shell Variables and the User Environment 355

13. Each user ID configured on the system is represented by one line in
the /etc/passwd file. Applying your knowledge of command
substitution, echo a message that displays

There are # users created on the system

where # is the number of line entries in /etc/passwd.

$ echo There are `cat /etc/passwd | wc -l` users created on the

system<Enter>

14. To customize your environment and have that customized
environment take effect every time you log in, you must incorporate
your modifications in a file that is read at login. First, log into the
system and ensure that you are in your home directory.

$ cd<Enter>

$ pwd<Enter>

15. Now, edit your .bash_profile file as follows: Change your primary
system prompt string to reflect your current directory; display a
message at every log in that contains your login name and the time
of your login; and define an alias named dir that invokes the ls -l
command.

$ vi .bash_profile<Enter>

i (to enter Insert mode)

PS1='$ PWD =>'<Enter>

echo User $LOGNAME logged in at `date` <Enter>

alias dir='ls -l'<Enter>

set -o vi<Enter>

<Esc> (to enter Command mode)

:wq<Enter> (to save .bash_profile and leave vi)

16. Test your customization by re-executing your .bash_profile. You can
do that by logging out and then logging in or by simply rerunning
the file using dot notation.

$ logout

Login: username

Password:

or

356 Installing and Administering Linux 2E

$. .bash_profile<Enter>

Execute and answer the following:

• Did your message appear?

• Is your prompt identical to the name of your home directory?

• Change to the /etc directory. Did your prompt change?

• Use dir. Did you get a long listing of your current directory?

If you answered no to any of these questions, edit your
.bash_profile and correct it.

17. After your customized .bash_profile is set up and functioning
properly, open a subshell.

/home/teamxx => bash<Enter>

Is your prompt identical to the name of your current directory?

Does the dir alias still work the way you set it?

18. Exit from the subshell and return to your home directory.

$ <Ctrl>-d

/home/teamxx => cd<Enter>

19. Most settings, with the exception of system variables, apply only to
the current environment they are set in and are not passed to
subshells (which are child processes). To pass customized settings
down to subshells, you must set the BASH_ENV variable
appropriately in your .bash_profile, and you must have a properly
customized .bashrc file.

Revise your .bash_profile and create the appropriate .bashrc file to sup-
port the customization you implemented in Exercise 15. Remove only
what you previously added to the .bash_profile in Exercise 15 except
for the echo statement and the PS1 variable assignment.

Add the BASH_ENV variable assignment. Export both the PS1 and
BASH_ENV variables and their values.

Shell Variables and the User Environment 357

/home/teamxx => vi .bash_profile<Enter>

i (to enter Insert mode)

BASH_ENV=/home/teamxx/.bashrc<Enter>

export PATH PS1 BASH_ENV<Enter>

<Esc> (to enter Command mode)

:wq<Enter> (to save .bash_profile and leave vi)

/home/teamxx => vi .bashrc<Enter>

i (to enter Insert mode)

alias dir='ls -l'<Enter>

<Esc> (to enter Command mode)

:wq<Enter> (to save .bashrc and leave vi)

20. Test your customization by re-executing your .bash_profile file. Open
a subshell.

/home/teamxx => . .bash_profile<Enter>

/home/teamxx => bash<Enter>

Is your prompt identical to the name of your current directory? Is the
value of the dir alias still working?

21. Exit the subshell and return to your login shell. Display a listing of
all currently set alias names and locate the dir alias.

/home/teamxx => <Ctrl>-d

/home/teamxx => cd<Enter>

/home/teamxx => alias<Enter>

22. Temporarily unalias dir without editing the .bashrc file. Then,
display the list of alias settings again and ensure that dir is no
longer defined. Try executing dir.

/home/teamxx => unalias dir<Enter>

/home/teamxx => alias<Enter>

/home/teamxx => dir<Enter>

23. The dir alias is still in your .bashrc file, but it is not set. The
unalias command removed it from the list of current alias names.
Invoke .bashrc to automatically add dir back to the alias list.

$ logout

Login: teamxx

Password:

358 Installing and Administering Linux 2E

or

$. .bashrc<Enter>

Execute dir.

/home/teamxx => dir<Enter>

See Appendix B for answers.

Quiz

1. True or false: The listing of terminal environment variables contains
all the variables found in your current shell.

2. True or false: When creating built-in variables, you have to ensure
that their names are in uppercase. Otherwise, the operating system
does not process them properly.

3. What methods can you use to set variable values?

4. What are the differences between the .bash_profile and .bashrc files?

5. True or false: You have to have a .bashrc file when you are using the
bash shell.

6. True or false: The init process is considered the parent of all
processes.

7. Which file is called the global profile? Why?

8. Define the following:

• HISTSIZE

• HISTFILE

9. True or false: After an alias is defined in your .bashrc file, you
cannot undo its functionality with unalias.

10. Fill in the blanks. In the bash shell, _________________ is to
/etc/profile as __________________ is to .bash_profile.

See Appendix C for answers.

C H A P T E R

12

Linux Processes and
Process Control

359

Processes are the essence of computing. Each command during execution
represents at least one process. Some processes run in the foreground,
where you can monitor and feed them, while some run in the background.
Some, like daemons, are initiated at boot time to run all the time or accord-
ing to an on-demand regime. Batch processes are generally scheduled for
execution at a specified time, such as only once, periodically, or some-
where in between.

This chapter describes processes and their environments. Topics also
include relationships between processes (for example, how their ID num-
bers indicate who is who) and the exporting of variables between parent
and child processes. Then, we discuss return codes, which are used to
indicate whether commands have completed successfully. Later in the
chapter, we discuss monitoring and controlling processes as well as fore-
ground and background processes. We then turn to elegant and brutal
process termination.

360 Installing and Administering Linux 2E

Table 12.1 Process Environment

FIELD EXPLANATION

Terminal (TTY) Terminal ID from which the process was launched

Open files Files the process is using

Current directory The directory from which the process was invoked

User ID (UID) ID of the user who invoked the process

Group ID (GID) ID of the group to which the user belongs

Process ID (PID) A unique number that the kernel randomly
assigned to the process

Parent process ID (PPID) A unique number randomly assigned by the
process that launched the subject process, if
applicable

Flags Any options and arguments appended to the
command that launched the process

Process Environments

A process is a single program or task running in its own virtual address
space. A command or a job can consist of many processes, but (contrary to
some opinions) a process is not necessarily the same as a command or a
job. Very simple commands, however, can be considered single processes.

From a strict technical interpretation, a program is just a set of instruc-
tions, but a process is a dynamic operation that uses the running system’s
resources. As we discussed before, when you log in, Linux places you in
your home (file) directory and initiates a program called a shell. The shell
itself is a process. After that, whenever you invoke commands or applica-
tions, you are initiating them from within the shell (that is, from within the
shell process).

In Linux, you can run more than one process at a time, and you can run
several copies of the same program simultaneously. You can also track the
environments of all the processes while they run. Table 12.1 summarizes
the environment, which consists of variables and parameters that a typical
process might require to run. Some processes require fewer variables and
parameters; others require more.

We have already mentioned that the shell is a process. Example 12.1
shows you how to check the process ID, or PID, of the shell process.

Linux Processes and Process Control 361

The built-in variable $ (which is, by no coincidence, also the default user
prompt) is the symbol for the current shell.

To view the PID of the current shell, use the following syntax:

$ echo $$<Enter>

Example 12.1 Checking the Shell’s PID

To view the PID of the current shell, type

$ echo $$<Enter>

340

The Login Process

The user login process creates a Linux session that continues until the user
logs out. The process environment contains all the information necessary to
enable the process to run. We have seen before how Linux creates the shell
environment and initiates the shell process. Generally, by default, users are
placed in their own home directories and the bash shell is initiated.

Example 12.2 Variables and Parameters for
Logging In

Example 12.2 shows the typical variables and parameters required for the
user login process:

Command: -bash

UID: quixoted

GID: knights1

TTY: tty1

PID: 340

All of the information in Example 12.2 is unique to the process environ-
ment as long as Don Quixote remains logged in. After he logs out, the
information is forgotten. When he logs in again, another new process envi-
ronment is created for him.

362 Installing and Administering Linux 2E

Parent-Child Relationships

When you execute a command, it is important to remember that one or
more processes are already running. Thus, every process running in Linux
is invoked or managed by another process. All processes exist in this par-
ent-child relationship (or parent-child hierarchy, if you prefer). The process
started by a program or command is known as the parent process. The par-
ent process can invoke other processes; those processes are called child
processes. A parent process might have several child processes, but any
child process can have only one parent process.

The child process environment is a local one that it has inherited from
the parent. That environment tells the child what invoked the child
process, how the child process should handle output, and so on. The
child can modify its inherited environment and pass the modified envi-
ronment down to its own children (if applicable), but it cannot pass the
modified environment back to its parent. The exception is the child
process that is invoked through the use of a dot (.), which we will dis-
cuss later.

Invoking Shells
A common parent-child propagation is the invocation of one shell from
another—usually the invocation of a non-login shell from a user’s login
shell. There are two basic ways to invoke new shells:

■■ Invoke a new shell. The original shell becomes a “sleeping shell.”
■■ Invoke a new shell. The original shell is stopped.

Almost all of our examples in this chapter will involve the first method:
invoking a new shell while the original shell goes to sleep. In the mean-
time, let’s look at the two methods.

Invoking a New Shell and Interrupting the
Original Shell

To invoke a new shell while only interrupting the original shell, use the fol-
lowing syntax:

$ newshellname (-options) [arguments]<Enter>

Linux Processes and Process Control 363

Table 12.2 Options Available for Use with bash or sh Shells

OPTION EXPLANATION

-c The additional commands following the -c can be run with the
shell command.

-r Start a restricted shell; that is, a shell that has approximately a
dozen restrictions. Examples: you cannot cd between directories;
you cannot set or unset the SHELL, PATH, ENV, or BASH_ENV vari-
ables (and so on).

-i The shell will be run interactively; you can test this capability with
startup files or scripts.

-- (no spaces between them) indicates “that’s the end of the
options”; any arguments after the - - will be treated like filenames
or other arguments (not as options). You can use - as well.

When a new shell is invoked in this manner, the previous shell (usually,
but not always, the login shell) will “sleep” until you go back to it by enter-
ing the exit command.

You can also invoke a new shell by entering the following:

$ newshellname (-options) commandname (-options) [arguments]<Enter>

or

$ newshellname (-options) scriptname<Enter>

This action spawns a new shell, which in turn will execute either a new
command/program or a new script. Once the command/program or
script has executed, then control will pass from the new shell back to the
original shell. Until then, the original shell will “sleep.”

Table 12.2 lists a few of the several options that can be invoked along
with either the sh or bash shell commands.

You will notice that when a new shell is invoked that is the same as the
login shell, the user prompt will not change (have a look at Figure 12.1). As
it is invoked, the new shell will read the same environment files as the pre-
vious shells. You can check that a new shell has been invoked by entering
the ps command with no options or arguments. The new shell will have
the same name as the previous shell but will have a different process ID
number (PID).

364 Installing and Administering Linux 2E

Figure 12.1 Invoking a shell while interrupting the original shell.

Meanwhile, if you invoke a new shell that is different from the existing
shell, the prompt will change. The shell, when invoked, will have read its
own specific environment files—and chances are that a different PS1 style
was specified in them.

Invoking a New Shell and Stopping the
Original Shell

To invoke a new shell while stopping the original shell, use the following
syntax:

$ exec newshellname (-options) [arguments]<Enter>

When a new shell is invoked in this manner, the previous shell (usually,
but not always, the login shell) will stop completely and the new shell will
actually take the previous shell’s process ID number. The only way to
return to the previous shell would be to invoke a new one. And, even then,

Linux Processes and Process Control 365

Figure 12.2 Invoking a new shell and stopping the original shell.

that shell would have a new PID. Here, you will notice that when a new
shell is invoked that is different from the login shell, the user prompt has
changed (see Figure 12.2).

As it is invoked, the new shell will read its own environment files, which
are usually different from the previous shell’s files. You can tell that a new
shell has been invoked just by looking at the screen. This time, though,
when you enter the ps command, the new shell will naturally have a dif-
ferent name from the previous shell but will have inherited the previous
shell’s PID.

Example 12.3 The ps -auxf Command to Examine
Parent-Child Processes

To illustrate some parent-child process relationships, suppose that Lady
Toloso logs into her terminal and types the following command and
options at the command line:

366 Installing and Administering Linux 2E

$ ps -auxf | less<Enter>

We will discuss the command in more detail later. But for now, the sys-
tem normally responds with a list of processes that are currently running.
The output will probably come to more than one screenful of output. We
have piped the output of the ps command and options to the less com-
mand, however, so the system will stop and wait for user input after each
screenful of output is displayed. Let’s look at some of the output; see Table
12.3.

We included the init process in the listing here to illustrate that it is
indeed the parent of all processes. Now, let’s look at PID 637, which
shows us when the root user logged in. The system provided the capability
to log in at 09:32, but the root user actually logged in at 12:57. We also see
that root’s login process automatically spawned the child process PID
694, a (default) bash shell, at 12:57. We know that the bash shell is the child
of the login because of the slash mark(\) that connects the bash com-
mand to login - - root.

Moving along, we see that our user Lady Toloso logged in at 14:22,
which caused the spawning of a child process bash shell, as well. Notice
the same slash connection between that bash shell and Lady Toloso’s login
process. Later, at 14:37, we see that Lady Toloso entered the ps -auxf |
less command. Two child processes were spawned as a result of Lady
Toloso entering that command: the ps -auxf process itself and the (piped)
less process. Those two processes are children of the bash shell because
each has a slash connection to it.

Example 12.4 Examining PIDs and PPIDs

Have a look now at Figure 12.3. This figure shows an illustration of Don
Quixote’s login session, which we briefly discussed earlier in this chapter.
Remember that the init process—the first process to start in a system—
has a process ID number of 1. The Don logged into the system and the ker-
nel assigned his login shell a PID of 340. To check the PID number, he
could have used the echo $$ command. Incidentally, the echo command
is one of several built-in commands; thus, when it is invoked, there is no
need to create a subshell to run it.

Although Don Quixote used the special $$ variable as an argument to
echo, $$ is mostly used within shell scripts to distinguish between multi-
ple instances of the same shell script. The value of that variable changes as
you move from one (current) process environment to another.

At any rate, there he is in the login shell. The PID is 340 and the parent
process ID (PPID) is 1 (init process). To further illustrate parent-child

367

Ta
b

le
 1

2.
3

Re
su

lts
 o

f t
he

 p
s

-a
ux

f C
om

m
an

d

U
SE

R
P

ID
%

C
P

U
%

M
EM

V
SZ

R
SS

TT
Y

ST
AT

ST
A

R
T

TI
M

E
CO

M
M

A
N

D

r
o
o
t

1
0
.
0

0
.
7

1
1
2
0

4
7
2

?
S

0
9
:
3
1

0
:
0
4

i
n
i
t

. . r
o
o
t

6
3
7

0
.
0

1
.
6

2
2
2
4

1
0
3
6

t
t
y
1

S
0
9
:
3
2

0
:
0
0

l
o
g
i
n

-

-

r
o
o
t

r
o
o
t

6
9
4

0
.
0

1
.
4

1
7
0
2

9
4
4

t
t
y
1

S
1
2
:
5
7

0
:
0
0

\
_

-
b
a
s
h

r
o
o
t

6
3
8

0
.
0

1
.
7

2
2
3
2

1
1
2
8

t
t
y
2

S
0
9
:
3
2

0
:
0
0

l
o
g
i
n

-

-

T
o
l
o
s
o

T
o
l
o
s
o

7
4
9

0
.
0

1
.
4

1
7
0
0

9
4
0

t
t
y
2

S
1
4
:
2
2

0
:
0
0

\
_

-
b
a
s
h

T
o
l
o
s
o

8
1
6

0
.
0

1
.
2

2
4
8
8

7
8
8

t
t
y
2

R
1
4
:
3
7

0
:
0
0

\
_

p
s

-
a
u
x
f

T
o
l
o
s
o

8
1
7

0
.
0

1
.
0

1
5
8
4

6
7
6

t
t
y
2

S
1
4
:
3
7

0
:
0
0

\
_

l
e
s
s

. .

368 Installing and Administering Linux 2E

Figure 12.3 Parent-child processes.

relationships, he starts another bash shell. He could have started the tcsh
or any other shell depending on whether he needed a specific shell to run
a certain application or shell script, but here he was content to just open
another bash session. The PID of the new shell is 382 and the PPID is 340,
indicating that the parent process was the previous bash shell.

While in the second bash shell (that is, the subshell), the Don invoked the
date command, which is yet another process. That date process is PID 383,
and its parent’s PPID is 382 (the process ID number of the bash subshell).

Next, Don Quixote exited from the bash subshell by pressing Ctrl-D. He
moved to the original bash login shell, which he verified by executing
echo $$ one last time. Note that had he invoked more complicated com-
mands or maybe a shell script or two, their processes might have spawned
additional child processes. Shell scripts often launch additional shells
wherein, in turn, more shell commands are executed.

Although it executes very quickly, you must have noticed that
while the date command executes, you cannot interact with the shell. You have
to wait until the command is finished before running other processes. Thus, the
parent (the bash subshell) “sleeps” while the child (date, in this case) exe-
cutes. Also, when the child process has terminated, the parent (in other words,
the shell) “reawakens.”

Processes and Variables

When a user defines his or her own variables, those user-defined variables
are local to the shell or process in which they are set. Child processes do
not automatically inherit user-defined variables and their values. The two
basic principles involved here are as follows:

WARN I NG

Linux Processes and Process Control 369

■■ Variables form part of the environment of a process.
■■ Processes cannot access or change variables in the environment of

another process.

Example 12.5 illustrates these points.

Example 12.5 Setting User-Defined Variables

Set a value of x in the bash shell:

$ x=4<Enter>

Now, create another bash subshell:

$ bash<Enter>

Search for the value of x in the subshell.

$ echo $x<Enter>

$

No record of x is found. So far, it looks like neither the variable nor its
value was inherited. So, now, set the value of x in this subshell to 1:

$ x=1<Enter>

Exit from the bash subshell to the original bash shell and check the
value of x.

$ <Ctrl>-d

$ echo $x<Enter>

4

The original value of 4 is returned. As expected, the subshell’s variable x
and its respective value 1 were not inherited backwards. They also had no
effect on the original variable x and its value, 4.

Exporting Shell Variables
In Chapter 11, “Shell Variables and the User Environment,” we encoun-
tered the export command when we discussed how to ensure that vari-
ables are inherited from the terminal environment to the shell environment.

370 Installing and Administering Linux 2E

In this section, we discuss the inheriting of variables and their values from
parent processes to their respective child processes—the same principle,
only extrapolated.

As we stated previously, every process has an operating environment
inherited from its parent process. User-defined variables, however, are
valid only in their respective processes; they are not by default inherited
from parent to child, nor are they passed back from child to parent. But
sometimes, you are in a shell and you need to set variables so that they can
be used by other programs or shell scripts (that is, by other processes). To
make one or more variables and their respective values available to any
child processes, you export them. But before you export, you have to set
the value of the variable, as we will show in Example 12.6. The syntax for
the export command is

$ variablename=value<Enter>

$ export variablename<Enter>

If you do not specify options after the export command, the screen dis-
plays the variables that are already exported. This feature can be handy
sometimes. Also handy are the set and env commands for displaying the
shell environment and the inherited environment (referred to as the termi-
nal environment in Chapter 11), respectively.

Example 12.6 -export

Once again, the echo command lets us check the PID of the process that is
currently running:

$ echo $$<Enter>

340

The system responds and tells us that the PID is 340. We now set the
value of the variable x to 4:

$ x=4<Enter>

We now tell the system that any user-defined variables or values, such
as x = 4, will be inherited by child processes.

$ export x<Enter>

Now, we start a bash subshell, which is a child process of the original
bash shell.

Linux Processes and Process Control 371

$ bash<Enter>

Now, we check the PID of the new bash subshell:

$ echo $$<Enter>

395

The system tells us that the subshell has a PID of 395.
And now, the moment of truth: We ask what the value of the user-

defined variable x is.

$ echo $x<Enter>

4

The value of x has indeed been inherited by this child process. Now, at
this subshell process level, we change the value of x to 400.

$ x=400<Enter>

As a check, we request the value of x.

$ echo $x<Enter>

400

As expected, the value of x in this subshell is now 400. We now leave
the bash subshell and return to the parent bash shell.

$ <Ctrl>-d

We check to see whether we have indeed left the subshell by requesting
the PID of this shell.

$ echo $$<Enter>

340

This situation is no surprise. We are back in the parent bash shell. Now,
we request the value of x to see whether the 400 has been inherited
upward to the parent process.

$ echo $x<Enter>

4

372 Installing and Administering Linux 2E

No, the value of x in the parent process is still 4. Thus, variable values
are inherited from parent to child but not vice versa.

The export command (alone) and the env command show all inher-
ited variables. Use set to show all shell variables.

To paraphrase Example 12.6, the value of x was set to 4 in the login shell
and then exported to the terminal environment. Another bash subshell
was then created. The inherited value of x was, as predicted, 4 here, too.
Then, we changed the value of x to 400 in the subshell to see whether it
would affect the value of x in the parent login shell. Then, we exited to the
login shell and checked the value of x. We discovered that despite the fact
that we changed x from 4 to 400 in the bash subshell, the value of x
remained unchanged in the login shell (it was still 4). In other words, then,
changing the value of a variable in a subshell does not affect the parent
process.

Assume that you are still in the bash subshell and have just changed the
value of x from 4 to 400. If you open another subshell within this subshell,
will the value of x be 4 or 400? The answer is 400. The child process inher-
its the parent process value in this case. After a variable has been exported,
it does not have to be exported again. If you continued to open subshells
within these subshells, the value of x would remain 400 until you saw fit
to change it.

If you exit from the string of subshells back to the login shell and then
open subshells below the login shell, the value of x would return to and
remain at 4. Changes made by a child process to an exported variable are
available only to subsequent child processes. The variable value is not
inherited back up to the login shell or down any other process.

Return Codes from Commands

After a command has attempted or completed execution, it sends a return
code (also known as an exit code) to its parent process. Note that a return
code is a return message from a command, not from each individual
process within the command. Also, please note that piped commands
(discussed in Chapter 7, “Shell Basics”) send only one return code to their
parent.

The return code is stored in the parent process environment as a value
for the built-in question mark (?) variable, as shown in Example 12.7. Suc-

NOTE

Linux Processes and Process Control 373

cessful completion of a command returns a value of 0; unsuccessful com-
pletion returns a value ranging from 1 to 255.

How do you find the return code to a command? After sending the com-
mand for execution, type

$ echo $?<Enter>

Example 12.7 Using $? to Find a Command’s
Return Code

$ date<Enter>

Fri Mar 19 12:05:39 CST 1999

$ echo $?<Enter>

0

If you are contemplating using this method by default, be aware that
after settings are made in the current shell (you are usually in the login shell),
the only way of returning to the original default settings is to log out and log
back in again.

Process Monitoring: The ps Command

Users (occasionally) and system administrators (more frequently) have to
check how their Linux processes are running. The ps (process status) com-
mand is commonly used to see how many processes are running, whether
a specific process is running or has gotten hung up, and how many
resources the various processes are using. In addition, the command
checks priorities, who is doing what, and so on. A frequent use of the ps
command is to monitor background jobs and other processes that do not
regularly communicate with your terminal. The syntax is as follows:

$ ps (-options)<Enter>

Earlier in this chapter, we briefly introduced you to the ps command
when we illustrated parent-child process relationships. At that time, the
ps command, with its a, u, x, and f options, showed us which processes
were running, who they belonged to, and which processes were children
of other processes.

The default ps listing, illustrated in Example 12.8, displays only mini-
mum information about the processes started from your terminal. These

NOTE

374 Installing and Administering Linux 2E

Table 12.4 Response to the ps Command

FIELD DESCRIPTION

PID Process identification number assigned by the kernel

TTY Terminal where the process originated

STAT Current status of the process (for example, S = Asleep, R =
Runnable)

TIME Cumulative execution time for the process (min:sec)

COMMAND Name of the process being executed

processes are described in Table 12.4. On a system that has more than one
terminal, the TTY field indicates which terminal initiated the process.

Example 12.8 Monitoring Processes with ps
$ ps<Enter>

PID TTY STAT TIME COMMAND

340 1 s 0:00 -bash

356 1 S 0:00 bash

363 1 S 0:00 ls -R /

364 1 S 0:00 ps

The ps command options are fully detailed in the man pages and in
other information sources. A few options are explained in Table 12.5.

Table 12.5 Some ps Command Options

OPTIONS DESCRIPTION

e Environment of the process

f Processes and subprocesses spawned from the parent processes

l Long listing (along with basic ps flags, including FLAGS, UID,
PPID, PRI, NI, SIZE, RSS, WCHAN)

j Jobs format (along with basic ps flags, including UID, PPID,
PGID, SID, TPGID)

a Other users’ processes, too

u User’s name and start time

x Processes without an associated terminal

Linux Processes and Process Control 375

Invoking Foreground and Background
Processes

Typically—and so far in this book—you invoke processes interactively
from the command line. You can also invoke processes from the fore-
ground and background states, however.

Processes that are started and require interaction from the terminal are
called foreground processes. They are invoked in the foreground when you
are fairly sure that they will finish in a short time or when you have to
interact with them before and during execution. The processes themselves
take over the terminal while they run. As we have seen before, the syntax
for a foreground process is

$ command [-] options arguments<Enter>

Processes that run independently from the initiating terminal are called
background processes. You run processes in the background when, for exam-
ple, you want to use your terminal for other tasks. But they are most useful
for executing commands (or scripts or batch files containing numerous
commands) that will take a long time to run, regardless of whether or not
you are using your terminal. The syntax for a background process, then, is

$ command [-] options arguments / > backfile &<Enter>

A process can be run in the background only if it does not require key-
board input and only if you observe the invocation syntax—the ampersand (&)
at the end of the command line.

Terminating Processes

You might want to terminate a foreground or background process for sev-
eral reasons:

■■ You no longer need the program or process, and there is no other
way to stop it.

■■ You are not getting the results you expected.
■■ You are not getting any results and your system seems “frozen.”

NOTE

376 Installing and Administering Linux 2E

■■ Conversely, your output facilities (screen or printer) are
overwhelmed by program or process output.

■■ The process or program is using too many system or network
resources (such as memory, CPU usage, or bandwidth usage).

■■ The process or program is not behaving properly or predictably.

The first reason likely affects an advanced user or system administrator
who might have altered the configuration of one or more systems and now
finds that daemons or other background processes are no longer relevant
to the system. The other reasons are pretty much self-explanatory.

Termination Methods
Foreground processes run on the user’s terminal and can usually be termi-
nated by some type of quit signal. The three most common methods are as
follows:

■■ The Ctrl-C key sequence
■■ The kill command
■■ Powering the system down

The Ctrl-C key sequence is the most common method. It stops a fore-
ground process and returns you to a shell prompt, generally a dollar sign
($) for users or a pound sign (#) for the administrator, root, and superuser.
But remember that Ctrl-C does not work with man; use q or Ctrl-Z instead.
Also, some shell scripts or other programs might ignore the quit signal.

In some cases where the processes ignore the common quit signals, you
might have to enter the kill command, which we discuss in detail in the
next section. You always have to use kill to terminate background
processes.

Powering down a local system is a reasonably sure way of terminating
foreground or background processes running on the system. You should
always be concerned with the effects that suddenly powering down might
have on individual files or programs, file systems, other system features or
processes, and even other users, however. So powering down should be a
last resort alternative.

The kill Command

An ordinary user has the ability to kill any process that he or she has initi-
ated. By comparison, a root user can kill any process. The syntax is

Linux Processes and Process Control 377

$ kill PIDs<Enter>

or

$ kill signal PIDs<Enter>

If a process is successfully terminated, you get no message from the shell
except a prompt. If you try to kill a process that you have no right to ter-
minate, or if you try to kill a process and the process you specify does not
exist, you will see error messages.

Be careful when specifying PIDs with the kill command: if you kill
the wrong process by mistake, you might end up in a lot of trouble.

Example 12.9 Terminating a Process with the kill
Command

In this example, the yes command is invoked in the background. Then, the
ps command finds its PID and a kill command is sent to the yes PID.

$ bash<Enter>

$ yes > /dev/null &<Enter>

$ ps f<Enter>

PID TTY STAT TIME COMMAND

201 1 s 0:00 -bash

206 1 S 0:00 _ bash

209 1 R 0:00 _ yes

210 1 R 0:00 _ ps f

$ kill 209<Enter>

Another way to kill a process is kill %jobnumber. This method is dis-
cussed later in this chapter.

If your terminal hangs up, locks, or freezes (all these names describe the
same affliction) and Ctrl-C does not work, you might have to log in to a
different terminal (or to a different virtual terminal). From there, you
might use the kill command on the login shell of the hung-up terminal.
This feature is just one advantage of UNIX operating systems over that
popular GUI-related operating system we all know.

NOTE

NOTE

378 Installing and Administering Linux 2E

Table 12.6 Selected kill Command Signals

NUMERIC BASH TCSH
SIGNAL SIGNAL SIGNAL DESCRIPTION

1 SIGHUP HUP Hang-up signal sent to a process if its
parent is terminated (such as logging
off while the process is running). The
process can terminate gracefully.

2 SIGINT INT Interrupt signal sent when <Ctrl>-c is
sent from the keyboard.

3 SIGQUIT QUIT Quit signal sent when <Ctrl>-\ is
sent from the keyboard.

9 SIGKILL KILL Unconditional kill, which cannot be
caught or ignored. Stops processes
before they have completed.

15 SIGTERM TERM Termination signal, which is the
default that instructs a process to
terminate.

kill Command Signals

With the kill command, you can specify one of several signals to termi-
nate processes in a prescribed manner. Table 12.6 shows just a few of the
30-odd signals available. To get a complete listing of Linux kill com-
mand signals, type the following at the command line:

$ kill -l<Enter>

As we stated previously (and as can be seen in the kill -l listing),
these signals are used to communicate a change of state to running com-
mands. Depending on the signal used, the change of state ranges from an
orderly stop to an immediate stop to a stop with the dumping of informa-
tion to a file for debugging or even to a rereading of parameters.

Let’s discuss the signals tabulated here in a little more detail. First, the
hang-up signal (that is, 1, SIGHUP, or HUP) is sent to a process if its parent
process is terminated. For example, when you log out—that is, when you
terminate the login shell—a hang-up signal is sent to any running back-
ground processes.

The interrupt signal (that is, 2, SIGINT, or INT) is sent when a user
presses the interrupt key sequence, Ctrl-C. A process running in the fore-
ground stops unless its program is set to ignore interrupts. Then, a more

Linux Processes and Process Control 379

drastic step might be required. Interrupts do not work on background
processes.

The quit signal (that is, 3, SIGQUIT, or QUIT) is sent when the quit key is
pressed. Generally, the quit key sequence is Ctrl-\, but it might vary by
system. This signal produces a core file.

The unconditional kill signal (that is, 9, SIGKILL, or KILL) is sent when
no other signal can stop the process. No process can catch, or ignore, this
signal. It should be used with caution because the target process stops
immediately. It does not finish what it was intended to do, which could
cause a loss or damage to files or information already generated by the
process. For example, if you unconditionally kill a process that is updating
a file, the updated material or even the entire file could be lost.

The termination signal (that is, 15, SIGTERM, or TERM) is the default sig-
nal that tells the command it should proceed with an orderly shutdown.
Some commands or shell scripts, however,

■■ Might be waiting for device operations to finish
■■ Might be attempting to interact with unavailable NFS resources
■■ Might contain statements that enable them to continue executing

despite being sent a kill signal (that is, they contain statements that
enable them to catch the kill signals)

In those cases, a more drastic kill -9 might be necessary.
You can specify any one of several signals by using the syntax we show

you in Example 12.9. But if you do not specify a signal, kill sends the
default -15 (also called SIGTERM in the bash shell or TERM in the tsch
shell) to instruct all processes to terminate themselves.

Example 12.10 kill Signals

In this example, we use the unconditional -9/KILL/SIGKILL to show
you the two basic ways to specify kill signals: using their numeric names
or using their shell-specific names.

Numeric signals for the bash or tcsh shell:

$ kill -9 PID<Enter>

The bash shell signal name:

$ kill SIGKILL PID<Enter>

The tcsh shell signal name:

380 Installing and Administering Linux 2E

$ kill KILL PID<Enter>

The number assigned to a signal by Linux/UNIX has no bearing on its
strength or priority. In other words, a higher or lower number does not indicate
potency.

Sometimes when a process is killed—especially if it has been
terminated with a kill -9—a child process might be terminated. But the
parent process, although notified of the child’s termination, does not acknowl-
edge the termination. The now-dead child process becomes what is called a
zombie and will appear as defunct under the COMMAND column when you issue
a ps command. You might or might not be able to kill a zombie; it will con-
tinue to be listed in the COMMAND column because it holds onto a process slot
(that is, a record in the process table) until its parent process acknowledges its
termination. A few zombies do not present a major problem, but if the ps table
begins to fill up with them, your ability to execute legitimate processes
declines. Zombies can be eliminated by a system reboot or occasionally by a
cleanup initiated by the init process.

Running Long Processes: The nohup
Command

The nohup (no hang-up) command tells a background command or
process to ignore kill signals 1 (hang-up) and 3 (quit). This command
enables the background process to continue executing after the owner logs
out of the system. The nohup command itself takes over control of the
command. The syntax is as follows:

$ nohup command -option argument > filename &<Enter>

Because the nohup command is designed to shepherd a process after the
user/owner has logged out, output from the command cannot go to the
terminal screen. Therefore, the user/owner should redirect the output to a
destination of his or her choice. If the user/owner does not redirect output,
nohup automatically redirects the output to the nohup.out file in the direc-
tory in which the nohup command was originally invoked. See Example
12.11 for both types of redirection.

WARN I NG

NOTE

Linux Processes and Process Control 381

Example 12.11 nohup

When the user redirects output,

$ nohup ls -R > fileout &<Enter>

[1] 384

When the nohup command redirects output,

$ nohup ls -R &<Enter>

[2] 574

nohup: appending output to 'nohup.out'

If more than one background process is started with nohup in the same
current directory and the owner/user has not deliberately redirected output, the
nohup.out file contains the output from all of those processes (either mixed or
appended). This situation might create unpredictable results. If no output is
required, the output could be directed to a log file or even to the null device
(/dev/null).

Because all processes require affiliation with a parent process, com-
mands started with nohup are affiliated with the init process as their
parent after the owner/user logs out of the system.

After the nohup command is sent for execution, the shell replies by dis-
playing numbers (such as [1] 384 in Example 12.5). In this case, the num-
bers translate to “This is the first command this user is running in the
background, and the PID is 384.”

Job Control in the bash and tcsh Shells

There may be times when you, in your role as administrator, have to
change the priorities of the jobs running on your system. For example, in
some organizations, routine processes are periodically suspended or
given lower priorities when payrolls are calculated and checks are gener-
ated. Some organizations will interrupt otherwise routine processing for
special technical tasks or for special reports. At those times, it is valuable
to know how to access, suspend, resume, terminate, and otherwise manip-
ulate the jobs on the system, whether they run in the foreground or the

NOTE

382 Installing and Administering Linux 2E

background. This section introduces several handy commands which
enable you to do so.

Creating a List of Background or
Suspended Jobs
When you are running multiple processes, it is important to be able to
identify which processes are running in the background. You cannot
always determine which jobs are in the background with the ps command;
that is where the jobs command comes in handy.

Looking at Example 12.11. You can see that the results from the jobs
command indicate that there are two jobs and that each has been given a
job number (in square brackets). The first is still running, and the second
has run and completed. (If we invoked jobs again, the second job would
not appear.) The jobs command does not list jobs that were started with
the nohup command if the user has logged out of the system and then
logged back in. If the user invokes a nohup job and issues the jobs com-
mand before logging out, however, that nohup job is displayed.

Example 12.12 Listing Background Processes with
the jobs Command

$ jobs<Enter>

[1]- Running yes >/dev/null

[2]+ Done nohup ls -R

Suspending and Resuming a
Foreground Task
Ctrl-Z is used to suspend, not terminate, a foreground process. No CPU
resources are used for the suspended process, although it is still a process—
it still occupies system memory and is subject to swapping to the hard
disk. In other words, the suspended process’s data, functions, scripts, and
so on remain mapped in RAM until higher-priority processes are invoked
that will occupy the same RAM space. If that happens, that will cause the
suspended process’s attributes to be saved in the swap space on the hard
disk until the suspended process is resumed or terminated. You can tell the
job to continue as needed in the foreground or background.

On some older ASCII terminals, Ctrl-Z might not be capable of suspend-
ing a foreground task. If that is the case, try entering the following to force
the shell to use the key sequence to suspend processes:

Linux Processes and Process Control 383

$ stty susp <Ctrl>-z<Enter>

As seen in Example 12.13, to resume a foreground suspended task, sim-
ply enter fg at the prompt.

Example 12.13 Foreground Task Control

In this example, we use the yes utility that, in this case, simply enters the
characters y and newline (that is, Enter) ad infinitum, using system
resources until it is deliberately terminated. Thus, we are using yes as a
utility with predictable and controllable outputs. If you are curious about
more useful ways to use yes, consult your information sources.

So, to suspend a foreground task,

$ yes >/dev/null<Enter>

<Ctrl>-z

[1]+ Stopped yes >/dev/null

And then, to resume the suspended task,

[1]+ Stopped yes >/dev/null

$ fg<Enter>

yes ./dev/null

Suspending and Resuming a
Background Task
If the job you want to suspend is running in the background, you will find
that Ctrl-Z does not work because it is strictly a foreground-related com-
mand. In this case, use the fg command to bring the command into the
foreground and then suspend it with Ctrl-Z. You might have to use the job
number as supplied by the jobs command.

As shown in Example 12.13, you would issue fg %jobnumber, press
Enter, and then press Ctrl-Z. Assume that you want to resume a suspended
job and return the job processing to the background. Simply type bg (back-
ground) at the prompt. The shell returns a job number in square brackets
followed by a plus sign (+). The plus sign indicates that the job is the most
recently started or stopped. The returned display also includes the amper-
sand (&) at the end of the listed job name, indicating that the job is in the
background.

384 Installing and Administering Linux 2E

Example 12.14 Background Task Control

To suspend a background task, use the fg command to move it to the fore-
ground. Then, suspend it:

$ fg %jobnumber<Enter>

<Ctrl>-z

[1]+ Stopped yes >/dev/null

To resume the same suspended task and move it to the background,

[1]+ Stopped yes >/dev/null

$ bg<Enter>

[1]+ yes >/dev/null &

When you execute jobs to check background processes, the shell
assigns a job number (in square brackets) to each job. With the kill com-
mand, you can use the job number or the PID. With the bg or fg command, you
must use the job number; the PID will not work.

More Job Control Examples
Example 12.15 illustrates how a job can be created and controlled by using
the commands covered in this chapter.

Example 12.15 Job Creation and Control

A job is initiated in the background, and the shell assigns it job number 1
and PID 273.

$ ls -R > out &<Enter>

[1] 273

The jobs command indicates that the job is running in the background:

$ jobs<Enter>

[1]+ Running ls -R > out &

The job is brought to the foreground:

$ fg %1<Enter>

ls -R > out

NOTE

Linux Processes and Process Control 385

The job is stopped with Ctrl-Z, and the shell reports that it has indeed
stopped:

<Ctrl>-z

[1]+ ls -R > out &

Again, jobs indicates that the job is running in the background:

$ jobs<Enter>

[1]+ Running ls -R > out &

kill terminates the job in the background:

$ kill %1<Enter>

The jobs command verifies that the job has terminated:

$ jobs<Enter>

[1]+ Terminated ls -R > out

Daemons: Never-Ending System Processes

Daemons are constantly running processes that were not started by the user
and are not associated with the terminal. They start when you start your
system and run until you shut down your system.

Daemons wait for a specific event to take place, such as the submission
of a print job to a print queue. The printing daemon detects the event and
then takes responsibility for the task, seeing that it gets processed. More
specifically, Linux’s printing daemon, called lpd, tracks print job requests
as well as the printers available to handle those requests. The daemon
maintains queues (that is, spool directories) of outstanding requests and
sends each request to the appropriate device at the proper time.

In Linux, most of the filenames associated with daemons end with d and
are found in configuration file directories (such as /usr/bin). You can usu-
ally view them by entering the following command:

$ ps -guax<Enter>

If you have a moment, take a look at them. You will see common dae-
mons such as lpd, syslogd, inetd, and crond. System administrators
typically maintain these directories and files.

386 Installing and Administering Linux 2E

Exercises

1. Ensure that you are in your home directory, and then display your
current process ID (PID).

$ cd<Enter>

$ pwd<Enter>

$ echo $$<Enter>

2. Create a subshell by entering bash at the prompt and then request
the PID of the subshell. Is the subshell PID different than your login
process?

$ bash<Enter>

$ echo $$<Enter>

3. Enter the ls -R / > outfile 2> errfile &<Enter>
command and then execute the command that displays all your
running processes. (The ls command terminates when it gets to the
end of the file system.)

$ ls -R / > outfile 2> errfile &<Enter>

$ ps a<Enter>

4. Terminate your child shell.

$ exit<Enter>

What happens if you type exit from your login shell?

5. Display all variables in your current process environment.

$ set<Enter>

6. Create a variable named x and set its value to 10. Check the value of
the variable. Again, display all current variables.

$ x=10<Enter>

$ echo $x<Enter>

$ set<Enter>

Linux Processes and Process Control 387

7. Create a subshell.

$ bash<Enter>

Check to see what value the x variable holds in the subshell.

$ echo $x<Enter>

What is the value of x? List the subshell’s current variables.

$ set<Enter>

Do you see a listing for x?

8. Return to your parent process.

$ exit<Enter>

Set the value of the x variable so that its value will be inherited by
your child processes.

$ export x=10<Enter>

Verify by creating a subshell and checking the value of x in the sub-
shell.

$ bash<Enter>

$ echo $x<Enter>

9. Change the value of x in the subshell to 200.

$ x=200<Enter>

Verify that the value was changed.

$ echo $x<Enter>

388 Installing and Administering Linux 2E

10. Return to the parent process.

$ exit<Enter>

Check the value of x in this environment.

$ echo $x<Enter>

Was the change in the subshell exported back to the parent?

11. Create a shell script and name it sc1. It should read pwd, cd /, pwd

$ vi sc1<Enter>

i (to enter Insert mode)

pwd

cd /

pwd

<Esc> (to leave Insert mode)

:x<Enter> (to save scl and leave vi)

12. Make sc1 executable and run the program.

$ chmod 700 sc1<Enter>

$ sc1<Enter>

What directory are you in now? Why?

$ pwd<Enter>

If you received a response such as bash: sc1: command not found,
rerun the program with the command /home/username/sc1. It is likely that
/home/username was not in your PATH environment variable, so the shell
could not find the sc1 command.

13. Create another shell script and name it sc2. Have it read as follows:

var1 = hello; var2=$LOGNAME; export var1 var2.

$ vi sc2<Enter>

i (to enter Insert mode)

var1=hello

NOTE

Linux Processes and Process Control 389

var2=$LOGNAME

export var1 var2

<Esc> (to leave Insert mode)

:x<Enter> (to save sc2 and quit vi

14. Make sc2 executable and run the program.

$ chmod 700 sc2<Enter>

$ sc2<Enter>

When the script has finished, examine the values of the var1 and
var2 variables.

$ echo $var1 $var2<Enter>

What values do var1 and var2 have? Why?

15. Run the sc2 program again, this time by forcing it to run in the
current shell.

$. sc2<Enter>

When it is finished, check the values for var1 and var2.

$ echo $var1 $var2<Enter>

What values do var1 and var2 have now? Why?

16. Execute the ls -R / > outfile 2> errfile<Enter>
command in the foreground.

$ ls -R / > outfile 2> errfile<Enter>

17. Suspend the job you just started.

$ <Ctrl>-z

390 Installing and Administering Linux 2E

18. List all the jobs that you are running on the system, and restart the
preceding job in the background.

$ jobs<Enter>

$ bg %jobnumber<Enter>

19. Bring the job back to the foreground.

$ fg %jobnumber<Enter>

20. After the ls command finishes executing, restart it again in the
background. Display the process ID and log out.

$ ls -R / > outfile 2> errfile<Enter>

$ ps a<Enter>

$ exit<Enter> (You will see a message telling you that you have jobs

running.)

$ exit<Enter>

21. Log in. Check to see whether the process is still running.

Login: username<Enter>

Password: <Enter>

$ ps a<Enter>

22. Create a shell script and name it sc3. It should read as follows:

sleep 60; ls -R / > outfile 2> errfile &.

$ vi sc3<Enter>

i (to enter Insert mode)

sleep 60

ls -R / > outfile 2> errfile &

<Esc> (to leave Insert mode)

:x<Enter> (to save sc3 and quit vi)

Make the script executable.

$ chmod 700 sc3<Enter>

Linux Processes and Process Control 391

Start the script with the nohup command, reference it by using an
explicit path, and put it in the background. Do not forget to redirect
the output from sc3 and then log out.

$ nohup ./sc3 > sc3.out 2> sc3err &<Enter>

$ exit<Enter> (You will see a message telling you that you have jobs

running.)

$ exit<Enter>

23. Log in. Check to see whether the process is still running.

Login: username<Enter>

Password: <Enter>

$ ps a<Enter>

24. When the process has finished, display the file that contains your
output. (Hint: If you did not specify an output file, nohup sends the
output to nohup.out.)

$ more /home/directoryname/sc3.out<Enter>

25. Use the ls -R /<Enter> command to start a long-running job in
the background.

$ ls -R / > outfile 2> errfile &<Enter>

Note the process ID that is provided when you begin the back-
ground process.

26. If you did not record the process ID when you first started the
command in the background, how would you find it?

After you know the process ID, kill the process. Check to be sure it
was killed.

$ ps a<Enter>

$ kill PID<Enter>

392 Installing and Administering Linux 2E

(For this step, enter the PID you recorded in Exercise 25 or found
with the ps a command you just executed.)

$ ps a<Enter>

27. Repeat Exercise 25. Kill the process using the job number rather than
the process ID. Check to be sure the job was killed.

$ ls -R / > outfile 2> errfile &<Enter>

$ jobs<Enter>

$ kill %jobnumber<Enter>

$ ps a<Enter>

or

$ jobs<Enter>

See Appendix B for answers.

Quiz

1. Which command is used to pass the value of a variable from a
parent shell to a subshell?

2. Determine the value of x at the end of the following procedure:

$ (starting in the login shell)

$ x=5<Enter>

$ bash<Enter>

$ x=50<Enter>

$ export x<Enter>

$ <Ctrl>-d

3. True or false: each process returns an exit code to its parent process
after successful completion.

4. Which of the following is the proper syntax for checking a shell’s
process identification number?

• $ echo $$<Enter>

• $ echo $?<Enter>

Linux Processes and Process Control 393

• $ echo $pid<Enter>

• $ ps ef<Enter>

5. When you export a variable, the variable and its value become part
of what environment?

6. What option would you use with the ps command to show the
relationships between your running programs and their parent
processes?

7. True or false: As an ordinary user, you can kill only your own jobs
and not those of other users.

8. Which of the kill command signals is strongest and cannot be
caught or ignored?

9. It is always a good idea to start long jobs in the background with the
nohup command. Give two reasons why.

10. What are never-ending Linux/UNIX processes called?

11. True or false: When users execute a command in the normal way and
the command involves navigation of the directory structure, they
will find themselves in the last directory mentioned in the command
unless some type of return command (such as cd) is included in the
program or script.

See Appendix C for answers.

C H A P T E R

13

Shell Programming

395

This chapter does some cool stuff and gives you an opportunity to test
your shell command knowledge. At this point, we do not expect you to be
able to construct a shell script by yourself, but you should be able to read
one. We have learned from past experience that the best way to introduce
someone to scripting is to use lots of examples. This chapter contains some
very basic shell scripts with some discussion of what they do and what
they can be used for.

Shell Scripts

A shell script is:

■■ A readable text file that can be edited with a text editor like vi or the
others we mentioned in Chapter 10, “The vi Editor”

■■ A program that contains system commands, variable assignments,
flow control syntax, and shell commands

■■ A program that contains comments to let you or some other reader
or developer in the future or in some unknown place know what the

396 Installing and Administering Linux 2E

objectives, subroutines, and expected outputs were of the script
itself (sometimes the comments are as important as the script
commands themselves)

Thus, a shell script is a collection of system commands stored in a text file
that the shell reads and executes in sequence. A script can enable you to do
anything that you could normally do from the shell prompt. Therefore, in
its simplest form, it will contain at least one Linux/UNIX command, as
shown in Example 13.1. When the shell processes a shell script, it reads the
script file one command at a time, parses the commands, and sends them
to the operating system for execution. The commands are executed in turn,
just as if you had typed them at the terminal command line.

You can execute any Linux command in a shell script. In fact, some shell
features that you can use in a script cannot be accessed at the command
line. They are built-in facilities that enable more complicated functions to
be performed.

Meanwhile, you can use any Linux/UNIX text editor to create a shell
script.

Example 13.1 Using the cat Command to Create a
Simple Shell Script

Lady Molinera wants to execute the date command, but she does not
want to enter it on the command line every time she wants to invoke it. So,
she creates a shell script called script1 using the cat command as her
text editor:

$ cat > script1<Enter>

$ date<Enter>

<Ctrl>-d

Example 13.2 Creating a Simple
Shell Script with vi

Lady Molinera also likes to keep close track of her directory contents. She
wants to execute date, pwd, and ls -l periodically but does not want to
enter the commands at the command line one after the other every time.
So, with vi, she creates another shell script called script2 to handle this
function:

$ vi script2<Enter>

i

Shell Programming 397

date

pwd

ls -l

:wq

Example 13.3 Creating the Same Simple Shell
Script with cat and ;

Lady Molinera could have used cat to create script2, too. There is really
no difference between the scripts created with vi and the syntax shown
next. You will come across (and use, likely) several styles of script creation
when reviewing others’ shell scripts. Here, the Lady creates script3,
which does the same as script2 with cat:

$ cat > script3<Enter>

date;pwd;ls -l<Enter>

<Ctrl>-d

Executing Shell Scripts

Before executing a shell script, you have to determine two things:

■■ Can the users access the script file?
■■ How will the script be executed? Are the permissions on the shell

script file set so the script can be executed in the manner you
intended?

Can Users Access the Script File?
In order for users to be able to execute the script file, they have to be able
to access it. If they cannot, then naturally they will never be able to exe-
cute it.

One way to make it accessible is to put the script file in a directory to
which there is a path. So, try to make sure its directory is listed in the PATH
environment variable: yours, your group’s, or everyone’s. If there is no
path to the directory, then whoever tries to invoke it will get a message
from Linux similar to the following:

bash: script1: No such file or directory

398 Installing and Administering Linux 2E

If the shell script cannot be located in the user’s path, then they will have
to provide a directory path to the script (relative or absolute) when they
execute it.

Executing the Shell Script
There are two basic ways to execute a shell script:

■■ Use the bash command (if you are in the bash shell; otherwise, you
use the respective shell execution command).

■■ Make the script file an executable file all its own. That way, the user
only has to use its name to execute it.

Using the bash (or Equivalent) Command
to Execute the Script File

If the script’s permissions are not set as executable, you can still execute
the script, but you have to use the bash command. In this case, no one
needs the x (in other words, execute) permission on the file—not even the
owner. bash will take care of it. Later in this chapter, we will show you
what is actually happening when scripts are executed in this manner from
a process standpoint.

Example 13.4 Using the bash Command to Execute
a Shell Script

Here, Lady Molinera executes her script2 script by using the bash
command:

$ bash script2

Sat Jul 28 13:45:25 MDT 2001

/home/molinera

total 12

-rwxrwxr-x 1 molinera knights3 110 Jul 14 12:47 apples

drwxr-xr-x 2 molinera knights3 4096 Jul 4 12:36 Desktop

-rw-rw-r-- 1 molinera knights3 8 Jul 25 13:24 script1

-rw-rw-r-- 1 molinera knights3 15 Jul 25 13:36 script2

Note that in this example, we presumed one of two things: 1) that the
script file is in the same directory as Lady Molinera (which the response
actually substantiates), or 2) that the script file could have been some-
where in the directories defined by the Lady’s PATH variable.

Shell Programming 399

To check her PATH environment variable value(s), let’s have Lady
Molinera echo her PATH:

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.:/home/molinera/bin:

Making Shell Script Files Executable

The alternative (the preferred alternative, really) for script execution relies
on the owner of the shell script file making that an “executable” by using
the chmod command (we discussed chmod in Chapter 6, “Linux File Per-
missions”). Users of the shell script file must have both read and execute
permissions for the shell script file. Why? The answer is, because the shell
needs to open the script file to read the commands within it. If you give
“group” the execute permission, however, you need not give it to “others”
and vice versa (although if someone is in “group,” he or she is probably in
“others,” too). You can be selective.

The owner can use either of the following two syntax formats:

$ chmod ugo+rx scriptfilename<Enter>

or

$ chmod 755 scriptfilename<Enter>

or

$ chmod +x script2<Enter>

In those three examples, “execute” permission is given to everybody. We
could have narrowed the permissions somewhat to “ug+rx” or “754” for
just the “same group” members or just “u+x” or “744” so that the owner is
the only one who can execute it like that.

At any rate, after you complete the previous step(s), the designated
user(s) can invoke the script2 shell script as if it were an ordinary com-
mand (in other words, without bash or any other shell execution com-
mand) as follows:

$ script2<Enter>

400 Installing and Administering Linux 2E

Similar to executing with the bash command, later in this chapter we
will show you what is actually happening from a process standpoint when
scripts are executed in this manner.

Example 13.5 Using the bash Command to Execute
a Shell Script

Lady Molinera wants to make her script2 file executable so that she can
execute it without relying on the shell execution commands all the time.
Plus, she would like to make script2 available to others in her group for
their convenience, too. Here is how she does both at once:

$ chmod 754 script2<Enter>

She can now invoke it in the following manner:

$ script2<Enter>

Wed Jul 25 13:54:25 MDT 2001

/home/molinera

total 12

-rwxrwxr-x 1 molinera knights3 110 Jul 14 12:47 apples

drwxr-xr-x 2 molinera knights3 4096 Jul 4 12:36 Desktop

-rw-rw-r-- 1 molinera knights3 8 Jul 25 13:24 script1

-rwxr-xr-- 1 molinera knights3 15 Jul 25 13:36 script2

Before we move on, see how the permission bits were changed on
script2?

Shell Script Invocation from a Process
Standpoint: Three Options

We have already seen the results of two of the following three options for
invoking shell scripts. Here are all three:

■■ Invoking shell scripts by using the bash command
■■ Invoking shell scripts that are executable
■■ Invoking shell scripts inside the current shell

Shell Programming 401

Basically, all three methods seem to create the same results. But they
might cause the shell(s) to behave differently. To illustrate, we will use
Lady Molinera’s very simple script1 file created in Example 13.1.

Option 1: Invoking Scripts by Using
the bash Command
When a shell script like script1 is invoked with bash, a bash subshell is
invoked by the login -bash shell to execute the shell script file.

That other bash subshell runs as a child to the parent login shell. When
that subshell has finished executing the commands in the script1 file, it
terminates and control is passed back to the parent login -bash shell.

Example 13.6 Processes Invoked When the bash
Command Executes a Shell Script

The only way that we can really demonstrate this behavior is to

■■ Identify and echo the current shell’s PID.
■■ Ask script1, as it is being executed, to echo back the PID of the

shell in which it is actually being executed.

To do so, we have asked Lady Molinera to modify her script1 to echo
the current subshell’s PID as it runs. The script now looks like the follow-
ing (the echo $$ will display the PID of the subshell that actually invokes
script1):

$ cat script1<Enter>

date

echo $$

Before running the script, she displays the current shell’s PID to demon-
strate that it is different from the subshell in which the script will eventu-
ally execute:

$ echo $$<Enter>

2393

$ bash script1<Enter>

Wed Jul 25 14:35:59 MDT 2001

2413

402 Installing and Administering Linux 2E

The output shows that the original login -bash shell has a PID of 2393
and that script1, when executed, returned the date and a PID of 2413.
This concept is very important to remember. In this case, PID 2413 is a
child of PID 2393.

Figure 13.1 illustrates that the login shell called -bash opens another
bash subshell to run script1, and the date command itself will run in
yet another subshell. All of the subshells exist only for the time it takes to
run their respective commands. Also, when they are finished, control is
passed back to the login -bash shell, which has been asleep while the sub-
shells performed their functions.

Option 2: Invoking Scripts by Making
Them Executable
When script1 is made to be executable on its own and then invoked, a
bash subshell is invoked again by the login -bash shell to execute the
shell script file (basically the same process as Option 1 when the bash com-
mand was used).

The only difference is—and this fact is probably obvious to you by now—
that the shell script has been flagged as executable. Then you can execute
the script directly, like such:

$ bash script1

script1

date
- bash

bash bash

date

- bash

$ bash script1
Wed Jul 25
$_

1. Commands are
read from
keyboard 2. date Command

is read from
script1 3. date Command

is executed

Figure 13.1 Invoking shell scripts by using the bash command.

Shell Programming 403

$ script1<Enter>

Wed Jul 25 15:07:51 MDT 2001

As illustrated in Figure 13.2, invoking script1 on its own in the login
shell invokes another bash subshell that runs as a child to the login shell.
When that subshell has finished executing the commands in the script1
file, it terminates and control is passed back to the parent login -bash shell.

Example 13.7 Processes the Shell Script Invoked Itself

We will demonstrate this behavior in a manner identical to Option 1
(Example 13.6):

■■ Identify and echo the current shell’s PID.
■■ Ask script1, as it is being executed, to echo back the PID of the

shell in which it is actually being executed.

Using $ chmod 775<Enter>, Lady Molinera has now made script1
executable. Its long listing now looks like the following:

$ ls -l script1<Enter>

-rwxrwxr-x 1 molinera knights3 13 Jul 14 15:10 script1

Before running the script, she again displays the current shell’s PID to
demonstrate that it is different from the subshell in which the script will
eventually execute:

$ echo $$<Enter>

2393

$ bash script1<Enter>

Wed Jul 25 14:35:59 MDT 2001

2443

This output shows that the original login -bash shell has a PID of 2393
and that script1, when executed, returned the date and a PID of 2443.
Again, this concept is important to remember. PID 2413 is the child of PID
2393 this time.

Figure 13.2 illustrates that the login shell called -bash opens another
bash subshell to run script1 and that the date command itself will run
in yet another subshell. When they were finished, control was passed back
to the login -bash shell, which was asleep while the subshells performed
their functions.

404 Installing and Administering Linux 2E

$ script1

script1

date
- bash

bash bash

date

- bash

$ script1
Wed Jul 25
$_

1. Executable
Command is
read from
keyboard

2. date Command
is read from
script1 3. date Command

is executed

Figure 13.2 Invoking shell scripts that are executable.

Option 3: Invoking Scripts in the
Same Shell
It is possible to force shell scripts to execute in the current shell instead of
opening all the other subshells. You perform this task by altering the syn-
tax to what is shown here:

$. scriptfilename<Enter>

or

$ source script1<Enter>

In the first syntax example, the “.” denotes “in the current shell.” The
process will ultimately resemble that shown in Figure 13.3.

Example 13.8 Invoking Scripts in the Same Shell

Freston tells Lady Molinera that she can save a few CPU cycles and some
nanoseconds if she forces her script1 to execute in the same shell she is
in now. But to prove it, he has her check her shell’s PID’s again, just like
she did for Options 1 and 2.

Shell Programming 405

$ echo $$

2393

$. script1

Wed Jul 25 15:55:28 MDT 2001

2393

She executed script1 by running it with a “.” in front of it. Remember, the
“.” means, “Do this in the current shell.” The original shell returned a PID
of 2393, and the shell script also returned a current PID of 2393. The alter-
native syntax to the “.” is “source.” These two methods are the same, and
Figure 13.3 illustrates both of them.

$ echo $$

2393

$ source script1

Wed Jul 25 16:05:53 MDT 2001

2393

Example 13.9 Changing .bash_profiles “On the Fly”

Where else do you think this method could be useful? Assume that Freston
has just made changes to his hidden .bash_profile file. Using the “.” or
source, he can make the shell re-execute his user profile without him having

$ source script1
or
$. script1

- bash - bash

$ source script1
Wed Jul 25
$_

1. Commands are
read from keyboard

2. date Command
is executed
from script1

script1

date

Figure 13.3 Invoking shell scripts inside the current shell.

406 Installing and Administering Linux 2E

to log out and log in again. After he has made the changes to the file itself,
all he has to do is type either of the following:

$. .bash_profile<Enter>

or

$ source .bash_profile<Enter>

Creating Scripts: Some Practical Examples

Example 13.10 Exporting Variables and Values for
Use with Scripts

The following script shows a variation on the classic Hello World script:
Sancho is sending a greeting to his burro, Dapple (well, maybe one of the
trainers will read it to him. Who knows?). We are going to use this simple
script to illustrate the exporting of variables and how they can be accessed
in subshells.

$ cat > hello<Enter>

1 #!/bin/bash

2 #This is a simple Hello World type of script

3 #

4 var1="Hi Dapple! Ready for our August journey?"

5 echo $var1

<Ctrl>-d

Now, to make the script executable,

$ chmod 755 hello<Enter>

When it is executed, the hello script will return the following:

$ hello<Enter>

Hi Dapple! Ready for our August journey?

The hello script has been listed with line numbers for reference. As we
examine it, we will not mention all the lines. Actually, if you are using
these scripts as example, leave the line numbers off.

Line 1, although it has a tic-tac-toe symbol, is actually a shell
declaration (the ! ensures that). Putting a declaration in such as this

Shell Programming 407

one is considered proper practice, because you never know what
shell the user will be in (and this addition guarantees that this script
will execute in a bash shell environment).

Line 2 is a comment. It is also considered best practice to describe what
the script does and sometimes who to contact for support. Quite
often, these lines include information about script versioning in large
environments.

Line 3 is a comment spacer line. This line makes scripting “easier on
the eyes” (in other words, easier to create; easier to debug; easier to
analyze; and even easier to copy).

Line 4 sets a user-defined variable called var1 to the text string “Hi
Dapple! Ready for our August journey?”. When a variable
is set inside the script, there will never be any question on what var1
is equal to.

Line 4 will echo the string to standard out, which is the terminal
screen.

We will work with this example to demonstrate how to access variables
outside the script. In the sample code coming up next, we will set another
variable. But this time, it will be set outside the script in the current shell
environment. The thing to note here is that it will not find the variable.
This situation is intentional, and we will fix it in the next sample code:

$ cat >> hello<Enter>

echo $var2<Enter>

<Ctrl>-d

$ var2="Yes I am. Let's go!"<Enter>

$ echo $var2<Enter>

Yes I am. Let's go!

$ cat hello<Enter>

#!/bin/bash

#This is a simple Hello World type of script

#

var1="Hi Dapple! Ready for our August journey?"

echo $var1

echo $var2

$ hello<Enter>

Hi Dapple! Ready for our August journey?

Notice that var2 did not display. The reason why is because the script
executed in a subshell. The var2 variable, created in the parent login shell,

408 Installing and Administering Linux 2E

was not exported to the child subshell. Therefore, the subshell did not have
access to it. Let’s fix that now by using the export feature.

$ export var2<Enter>

$ hello<Enter>

Hi Dapple! Ready for our August journey?

Yes I am. Let’s go!

For this reason, many system administrators choose to set all their vari-
ables inside a script that needs them. In the event that you are in a situation
where you are relying on a variable outside your shell, you should always
conduct a test to see whether the variable is null or not before proceeding
with whatever processing you wish to perform.

Example 13.11 A Simple Backup Script

A more practical, but still simple, script would be a backup script. But first,
let’s look at Freston’s private directory:

$ ls -l<Enter>

total 56

-rwxrwxr-x 1 freston knights4 110 Apr 14 12:47 monthly.rept

drwxr-xr-x 2 freston knights4 4096 Jan 4 12:36 Desktop

-rwxrwxr-x 1 freston knights4 102 Mar 14 16:26 hello

-rwxrwxr-x 1 freston knights4 74 Jul 14 16:43 private_bu

-rwxrwxr-x 1 freston knights4 13 Jul 25 14:30 script1

-rwxr-xr-x 1 freston knights4 15 Jul 25 13:36 script2

-rw-rw-r-- 1 freston knights4 2288 Jul 26 16:44 typescript

See if you can interpret what the following script does:

$ cat private_bu<Enter>

#!/bin/bash

BUF=/nightly/$USER-backup-$(date +%Y%m%d).tgz

tar -cZf $BUF ~

The script is called private_bu, and let’s say that its permissions are
executable. The script is directed to run in a bash shell environment. A
variable called BUF is set to a string that will represent the name of the
backup file used by the tar command. The string for BUF will resolve
another variable called $USER to Freston and will set the date with a spec-
ified format of year-month-day to keep the filename unique. The tar com-
mand will use this BUF variable to create the file inside a directory called
nightly. Basically, Freston is creating a one-user backup file in a special
directory.

Shell Programming 409

Does it work? Let’s invoke it:

$ private_bu<Enter>

$ ls -l /nightly<Enter>

total 12

-rw-rw-r-- 1 freston knights4 8299 Jul 14 16:44 freston-backup-

20010714.tgz

Well, we can tell you that it worked. Try it.

Conditionals
We mentioned earlier that sometimes you need to test for a condition—
that is, to see whether it something true or not—before proceeding with a
script. The use of conditionals like this is quite simple and the conditionals
generally use combinations or variations of “if,” “then,” and “else” expres-
sions. These conditionals can use many forms but at the same time must
abide by some simple rules.

If, Then, Else

The simplest form of a conditional is just if and then, as follows: “If this
happens, then do that.” The if part has to be true, though. Otherwise, it is
ignored. Sometimes this simple “If . . . then” is all you need.

When this statement is not enough, you can add else: “If this happens to
be true, then do the following. For all those that are false, then do else.”
Think of each of these elements as being people. Mr. If decides whether it is
true or false. If it is true, Mr. If will give the work to Mr. Then. If it is false,
then Mr. If will give the work to Ms. Else. The beauty of Mr. If’s job is that
everything is either true or false. No matter what the response is, he gets to
hand the rest of the job off to somebody else.

The only other thing that we will mention before showing some exam-
ples is that there are many forms of the use of if, then, and else in other pro-
gramming environments. Unless you want to make a career out of
memorizing when a finish is required and when it is not required, just use
it. At the end of every if, then, and else should be an fi.

Example 13.12 The Modified Simple Backup Script

Freston modified the script from the previous example to check for “disk
full” before backing up files in the home directory. Look for the “if . . . then
. . . else” sequence:

410 Installing and Administering Linux 2E

$ cat private_bu

#!/bin/bash

var3=`df -h | grep hda6 | grep % | cut -c 40-42`

BUF=/nightly/$USER-backup-$(date +%Y%m%d).tgz

if [$var3 -lt "85"] ; then

tar -cZf $BUF ~

else

echo "The file system is too full! Call system administrator NOW!"

fi

This script also sets a variable called var3 to the results of the piped
commands. This method is a very nice way to supply information to a
script. This specific case takes the results of the df- h command, greps
out the “% used” number, and then uses cut to single out the value. If the
value exceeds 85 percent, then it is to issue a console message to contact
the system administrator.

For, Cron, While, and Until Loops
Nothing is handier than a little mechanism that can save you lots of redun-
dant keying. We are going to show you how to use basic for, while, and until
loops to aid your productivity. We also mention crontab, too.

For Looping

For is good for iterating over strings of data and performing basic functions.

Example 13.13 “For Looping” the Scripts to the Boss

Suppose that Lady Dulcinea wants a copy of Freston’s script files at the
end of every day. Freston would write a script with a for loop to accommo-
date this request. Here he goes:

$ cat > cp4boss<Enter>

#!/bin/bash

#

Copy files to the bosses directory

#

for i in $(ls script*) ; do

cp $i /home/dulcinea

echo $i copied to Lady Ds directory

done

<Ctrl>-d

Shell Programming 411

$ chmod 755 cp4boss<Enter>

$ cp4boss<Enter>

script1 copied to Lady Ds directory

script2 copied to Lady Ds directory

private_bu copied to Lady Ds directory

cp4boss copied to Lady Ds directory

Example 13.14 “Cron-ing” the Scripts Every day

Because it is a regular activity, Freston crons the job to run at 7 P.M. every
day. This way, he knows he will not miss any, and he does not have to dial
up from home when he forgets.

$ crontab -l<Enter>

DO NOT EDIT THIS FILE - edit the master and reinstall.

(/tmp/crontab.2886 installed on Sat Jul 14 18:37:01 2001)

(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37 vixie

Exp $)

0 19 * * /home/freston/cp4boss #Copy script files to bosses directory

Example 13.15 “While Looping” to Prevent a
System Crash

At about 2 P.M. on Mondays in October, Freston knows that everyone in the
extended RFI organization will decide to check the local soccer, football,
baseball, and hockey pool results. He knows that such a load will be just
too much for the server to handle. When the number of users exceeds 540,
he knows the system will crash. So, in preparation for the inevitable heavy
load, he decides that a while script would be a worthwhile thing to develop
in order to advise all those who are logged in to try another time before the
system crashes. The script will send out a warning every five seconds until
users respond. He has seen it in action before: It is very annoying and
therefore works well. His script looks like the following:

$ cat > warn_users<Enter>

#!/bin/bash

#

This script warns users that the system may be slow due to peak usage

It will urge them to logout if they aren’t active

#

var4=`w | wc -l`

while [$var4 -gt "435"] ; do

wall System will be slow because there are $var4 other users logged in.

wall If you are not active please logout!

sleep 5

done

<Ctrl>-d

412 Installing and Administering Linux 2E

He will run the script “in the background.” To submit the job for back-
ground use, he uses the “&” (ampersand symbol; Juana calls it a “pretzel”).
Here is how he will do it:

$ warn_users &<Enter>

In October, when the “crunch” comes, this message is what the users
will see every five seconds:

Broadcast message from freston (pts/2) Mon Oct 15 14:50:54 2001...

If you are not active please logout!

Broadcast message from freston (pts/2) Mon Oct 15 18:50:54 2001...

System will be slow because there are 456 other users logged in.

Broadcast message from freston (pts/2) Mon Oct 15 18:50:59 2001...

If you are not active please logout!

Broadcast message from freston (pts/2) Mon Oct 15 18:50:59 2001...

System will be slow because there are 456 other users logged in.

They will hate him for it. But it will work. And everyone will still be able
to work.

Example 13.16 “Until Looping” to Prevent a
System Crash

Freston could have taken a different approach to the same problem by
implementing an until script. With this script, until the number of users
logged in is reduced to 425, the messages will continue to appear. That
script would look like the following:

$ cat > warn_users<Enter>

#!/bin/bash

#

This script warns users that the system may be slow due to peak useage

It will urge them to logout if they aren’t active

#

var4=`w | wc -l`

until [$var4 -lt "425"] ; do

wall System will be slow because there are $var4 other users logged in.

wall If you are not active please logout!

sleep 5

done

<Ctrl>-d

Shell Programming 413

Some More Tips for Scripts
These scripts that we have presented are very simple yet effective. As your
requirements increase, so do the sizes and complexity of the scripts.
Although this section is a very brief introduction to scripting, there are some
very sound recommendations and best practices for creating robust scripts:

■■ Document the prerequisites and main sequence for running scripts.
■■ Divide actions into logical groups.
■■ Develop an execution sequence based on a common usage scenario.
■■ Provide comments and instructions in each shell script.
■■ Make an initial backup to create a baseline.
■■ Check for input parameters and environment variables.
■■ Try to provide “usage” feedback.
■■ Try to provide a “silent” running mode.
■■ Provide one function to terminate the script when there are errors.
■■ When possible, provide functions that do a single task well.
■■ Capture the output of each script while watching the output being

produced.
■■ Inside each script, capture the return code of each line command.
■■ Keep a count of the failed transactions.
■■ Highlight the error messages for easy identification in the output

file.
■■ When possible, generate files “on the fly.”
■■ Provide feedback on the progress of the execution of the script.
■■ Provide a summary of the execution of the script.
■■ Try to provide an output file that is easy to interpret.
■■ When possible, provide cleanup scripts and a way to return to the

baseline.

Quiz

1. When would you execute a shell script by using the dot (.)
command? Why?

414 Installing and Administering Linux 2E

2. When invoking shell scripts, which permissions among the
following must be given to the script file?

• drwsxrwxrwx

• r but not necessarily w or x

• x and r

• 755

• -rw-r-xr-x

• r but not necessarily w or x and -rw-r-xr-x

• r but not necessarily w or x; x and r

• -rw-r-xr-x

3. How would you handle making variables available to subshells?

• Define the variable inside the script.

• Recreate the variable in the new shell.

• Export the variable.

• Place all new variables required in a file.

4. How could you guarantee that whomever ran your script would run
it in a bash environment?

5. Will the following script print true or false?

#!/bin/bash

T1="foo"

T2="bar"

if ["$T1" = "$T2"] ; then

echo This script evaluates as true

else

echo This script evaluates as false

fi

6. Using the same script, if we were to export T2=”foo”, would it
change how the script evaluates?

See Appendix C for answers.

C H A P T E R

14

The Linux X Window System

415

Thus far, we have concentrated on Linux at the command line. Depending
on your information source, that is also called

■■ At the character cell prompt
■■ At the console
■■ In the ASCII character environment

Although it seems to be an outmoded way of doing things—especially
when there are so many GUIs available for a price or for free—for effective
Linux usage and especially administration, we often rely on our ability to
use and understand command-line concepts, commands, and utilities.

Linux also has powerful and flexible GUI capabilities, however. This
chapter provides an introduction to the GUI foundation, called the X Win-
dow System. We wholeheartedly recommend installing the X Window
System when you first install Linux on your system (our preference) or
later after Linux has been installed. After you properly install and config-
ure X, it will facilitate your productivity and enjoyment and will enable
you to use many more Linux/UNIX programs.

416 Installing and Administering Linux 2E

For those who are planning to install X Window System, we echo
the advice of all X installers: Pay special attention to your system’s video card
and monitor specifications. Failure to do so could result in system or monitor
damage.

Meanwhile, some of the concepts in this chapter (and the way we
explain them) will seem to be very basic—even trivial to some (dare we say,
“most”?). If so, we apologize. But it is still very important to form a proper
knowledge foundation. Also, you never know when you might find a
“pearl” among these oysters. Hey, some people like oysters. I know I do.

A Brief History

The first X Window System was developed in 1984 by the Massachusetts
Institute of Technology (MIT). The X Window System, which is often referred
to as X or X11, provides a powerful network-based foundation for a
Linux/UNIX GUI environment. X is a collection of programs, including
servers, documentation, fonts, programming libraries, and utilities, but its
foundation programs are as follows:

■■ A basic windowing program that provides windowing services
■■ The X Network Protocol, a protocol for network communication
■■ A low-level interface called Xlib, which sits between the higher-

level programs (on top) and the network or base system (on the
bottom)

■■ A “window manager”—an X application to control the type and
appearances of the windows

The X Window System enhances UNIX in the same way that the “other
GUI operating system” enhances (or enhanced at one time) DOS, only more
reliably. What do we mean by enhance? Some advantages and features of
GUIs are listed next:

■■ An attractive and intuitive (that is, easy-to-use) human-to-machine
interface

■■ Potentially easier ways of identifying, entering, and modifying data
■■ Several control devices that require no knowledge of programming

or other commands (for example, buttons, icons, menus, and
scrollbars)

WARN I NG

The Linux X Window System 417

■■ Consistency of look and utility, which leads to reduced training
requirements for new applications

■■ Greater ease in managing multiple and simultaneous processes and
applications

Now, all is not perfect in the world of GUIs. GUI programs by nature are
generally large and rather inefficient because they tend to use a lot of
resources. They have to write or call upon many controlling functions for
window manipulation, graphics control, and data input from a keyboard
and a mouse. In short, GUIs require more resources than the command
line but can also make complex programs easier to use.

Since the birth of X in 1984, commercial vendors—particularly the ven-
dor- and researcher-based organization called the X Consortium, whose
membership includes IBM, Digital Equipment, and MIT—have effectively
made X the UNIX industry standard. X is installed on most UNIX systems
around the world.

A free software conversion (in other words, a free “port”) of X for Linux
and other UNIX variants, called XFree86, was developed by the XFree86
Project Inc. (now a member of the X Consortium). XFree86 is a version of
MIT’s X Window System v. 11, rel. 6 (that is, X11R6).

If XFree86 is installed on your system, you will see several X11R6 refer-
ences as part of directory or filenames. The original X version 11 was
released in 1987, release 6 came out in 1994, and the latest version is
X11R6.4. As of this writing, the latest release of XFree86 itself is 4.1.0. Your
version of XFree86 probably has all the binary files, support files, libraries,
and tools that you will need. If not, check the XFree86 Project Internet site
at www.XFree86.org. You can also check that Web site for the latest version
of XFree86.

X Window Networking

In Figure 14.1, we illustrate a simplified X Window System network con-
sisting of various types of machines. In an environment like this one, an X
application could run on one processor or even on one type of processor. A
user or administrator could sit at any other system on the network and run
an X Window application. Thus, we can claim that X is platform indepen-
dent. X enables a display and keyboard attached to one system to use pro-
grams (that is, clients) running on a completely different system—even a
completely different type of system.

418 Installing and Administering Linux 2E

Linux/UNIX
System

Linux/UNIX
Server

Non-Linux/UNIX
System

Figure 14.1 A simplified X Window System network.

X Window System functions are split into terminal and application sup-
port. Typically, the application support runs on a Linux/UNIX system. The
terminal support can run on the same Linux/UNIX system, on a remote
Linux/UNIX system, or even on a non-Linux/UNIX system. An example
of the last two systems is one that might have a slow CPU of its own or
might have no hard disk drive. The client applications would run on a
remote, fast central server while only the terminal-supporting X Window
server would run on the underpowered terminal. For this reason, we refer
to the X Window System as a networking window system. Any connections
between the client and the server are TCP/IP protocol-based connections.

Different Client/Server Environment
Concepts
For those who do not customarily operate in UNIX X environments, the
concepts of client and server are generally understood to be the following:

The Linux X Window System 419

■■ A server is a system that provides resources such as applications,
hard drive storage, modems, printers, and so on to other systems
across one or more networks.

■■ A client is a system that uses those resources, accessing them across
one or more networks. In the Linux/UNIX environment, however,
the client and server concepts are different.

In the world of the Linux/UNIX X Window system, however, a client is
defined as a device-independent program that runs on your local machine
or on a remote machine and requires input from the user and the capabil-
ity to display or otherwise provide output to the user. In other words, the
client is the system or machine providing the application support.

Common applications, such as xcalc and xclock as well as the more
complicated database or simulation applications, are clients to a Linux/
UNIX X system.

On the other hand, a server is a device-dependent program that runs on
your local machine and controls the input devices (for example, keyboard
and mouse) as well as the terminal display and other output devices. We
say that the server is the system or machine providing the terminal sup-
port. In many cases—especially in a small network or home environment
—the client and the server run on the same system. Even so, they still com-
municate with each other by using the TCP/IP protocol.

X Client Features
A user interacts with X clients when he or she interacts with applications
(such as xclock, xcalc, and xterm) that might be running on either a
local machine or on a remote machine. The applications themselves are the
X clients that are invoked and run by the users in an X window system.

X clients can be started from the command line by special startup files or
from other X clients. For example, you can start window managers manu-
ally or invoke them automatically when your machine boots up. To access
remote machines, you might need special applications invoked on a local
machine (for example, WRQ Inc.’s product, ReflectionXÆ, enables Win-
dows machines to access UNIX machines. Their Web site, if you are inter-
ested, is www.wrq.com.

Most X clients share the same or similar options, such as foreground
color, background color, display name, fonts, and window geometry. For
example, invoke xterm ? on the command line. Examine the specifica-
tions and options. Then, invoke xclock ? and compare those specifica-

420 Installing and Administering Linux 2E

Table 14.1 Selected X Client Options

OPTION DESCRIPTION

-bg <color> Background color of the window

-fg <color> Foreground color of the window

-bw <pixels> Window border width in pixels

-fn <font_name> Font set for the standard text size in the window

-geometry geom Geometry of the window (such as 80x125+0+0)

-rvc Reverse the default image on the screen (that is,
if the screen normally appears with black text
on a white background, this option changes the
appearance to white text on a black background)

tions and options. No doubt, xterm has more specifications and options,
but some will be identical to xclock’s. Some standard options are listed in
Table 14.1.

X Server Features
XFree86 is the version of the X11R6 X Window System software that has

been converted for use on Intel-based platforms. XFree86, then, is the
basis for the X Server. XFree86 has to be configured for each system it runs
on, which you can accomplish by specifying certain system attributes in a
file called XF86Config, which is found in the /etc/X11 (the file itself) or
/usr/X11R6/lib/X11 (some examples) directories.

When XFree86 is invoked (either at the command line by the user typing
the startx command or automatically upon system bootup), it reads the
XF86Config file and follows the instructions found therein. Customarily,
those instructions tell XFree86 how and when to:

■■ Control and route the keyboard, mouse, graphics pad stylus, or
other such input to the correct clients

■■ Perform basic graphic operations on one or more screens
■■ Control video-related attributes such as colors, color depth, screen

size, fonts, modelines, vertical sync ranges, horizontal sync, video
chipsets, video RAM, and clockchips

The Linux X Window System 421

■■ Enable simultaneous access by several clients
■■ Load special software modules
■■ Control special system actions (such as core dumps, video mode

switching, and input device configuration)

The actual installation of the X Window System and the development of
the XF86Config file are beyond the scope of this book. Consult your sources
for this information.

Only after XFree86 has invoked the other server-style software can you
say that the full combination of XFree86 and any other necessary software
has become your X Server, ready to enable you to use the full features of
the X Window System. You might occasionally hear others refer to video
servers—such as Mach32, Mach64, or S3—as X servers. Such references
occur probably because configuration of the video attributes is by far the
most involved and occasionally perilous (for your monitor, if not done cor-
rectly) part of X Window System installation and configuration. But the
full X server has to control much more than video output.

The X Window System provides the basis for your graphical interface.
But the interface itself—the look, feel, and personality of X—is provided by
a client application called a window manager.

X Window Managers

New users often believe that X and its various window managers are syn-
onymous, but this situation is not the case. X is in charge of all communi-
cation between and among windows, applications, and input and output
devices, whether those facilities are located on the local machine or are dis-
tributed across a local or wide-area network (WAN). On the other hand, the
window manager handles local operations such as the movement, resiz-
ing, or iconifying of windows. As we stated previously, the window man-
ager provides the look and feel of your X desktop.

Thus, a window manager is an X client, albeit a special one. It is the only
one that has no windows itself unless you count the window or menu that
you summon when you left-click the empty desktop. But the window
manager can move, resize, iconify (hide), de-iconify (restore), map, and
unmap windows. Your distribution or other version of Linux might pro-
vide several window managers (check your installation information or
scout around your file system with whereis or with a similar command).

422 Installing and Administering Linux 2E

A user can switch from one to another in a given session but can use only
one at a time.

Without a window manager, you can still invoke an X session and dis-
play windows, but you cannot move or resize them. In addition, if one
window completely overlays another, you can access only the one on top.
If part of a window is hidden by another window, you cannot access the
hidden part of that window.

Several window managers are listed in Table 14.2. For more examples of
window managers and desktop environments, or for the latest ones, check
the www.plig.org/xwinman Web site. There, you will also find feature
comparison charts and resource requirements (if applicable). Plus, there is
a lot of good basic X information.

The first six window managers listed in Table 14.2 are still called “win-
dow managers.” The last three are commonly called “desktop environ-
ments” or “desktops” for short. The desktop environments have received
the most development over the past few years. Now, they are considered
(and are) more complete interfaces. They have a wider range of better-inte-
grated utilities (witness the fact that in Chapter 5, “Using Files in Linux,”
we actually use KDE to set up printing) and more (and more entertaining,
too) applications available. They have become the number one attraction
to the “at-home” Linux newbies.

X Window Fundamentals

This section introduces the most basic aspects of the X Window system
that a novice user wants to know. Just like learning to ride a bicycle or
drive a car, the first things a new user wants to know are: “How do I get it
going?” followed by “How do I stop it?” The only extra topic we add is
“How do I get it to start automatically?”

Starting X Manually
No matter what distribution of Linux you purchased or downloaded from
the Internet, you probably realized that by default, it does not invoke X
automatically when it boots up. You are probably left staring at the com-
mand-line login prompt. In that case, you have to start it manually.

When you have completed the login procedure, you will be faced with
your user or root prompt ($ or #, respectively). At the prompt, type
startx. The screen goes blank briefly as your X session is initiated, and
the window manager appears in front of you.

The Linux X Window System 423

Table 14.2 Window Managers

WINDOW MANAGER DESCRIPTION

twm Tab window manager, the classic MIT window
manager; included with the standard XFree86
distribution.

olvwm Open Look Virtual Window Manager, a more
advanced window manager; used by SunOS and
Solaris UNIXes.

fvwm Popular window manager; small, requires less than
half the memory used by twm; greatly customizable.

mwm Motif Window Manager; basis for CDE.

Enlightenment Popular and well written; originally based on fvwm,
but recent versions are written from scratch.

AfterStep Descendant of fvwm; has floating window for
application buttons, icons, and so on, and some
animation.

GNOME GNU Network Object Model Environment
(pronounced “guh-nome”) developed as part of
the GNU project; complete user-friendly desktop
comprised of utilities and applications. GNOME
and related applications are free because of their
availability under the GNU Public License (GPL).
Described as the future of the graphical X desktop.

CDE Common Desktop Environment, a commercially
developed standard desktop/window manager for
most versions of UNIX.

KDE K Desktop Environment, a freeware project designed
to be similar to CDE but developed and released
under the GNU General Public License. KDE
emphasizes international support and a
standardized appearance and performance with
many applications. KDE was formerly available only
as a download from the Internet, but due to recent
resolutions of copyright issues, some Linux
distributions now include KDE. In fact, some now
use KDE as their default window manager.

Exit X
You have two ways to exit X inside a window manager: AfterStep or
fvwm. Using the first method, you only need to move the cursor arrow to a

424 Installing and Administering Linux 2E

blank area of your desktop (that is, an area without a window) and left-
click. You are presented with a root menu. You then scroll down to a selec-
tion similar to Exit <window manager> and hold the mouse in that
position or even left-click. A second part of the menu might appear
(depending on the window manager). It might ask you whether your
intention is to Really Quit <window manager name>?. If this situa-
tion happens and it is still your intention to quit, select the Yes, Really
Quit option. After you have chosen to quit, you are returned to a com-
mand-line prompt. Using this method, you will be able to gracefully exit X,
which involves stopping all relevant applications and processes in order.

The second method simply involves entering the Ctrl-Alt-Backspace key
sequence. Almost immediately, you are returned to a command-line
prompt. Alternatively, you could enter Ctrl-Alt-F1, followed by Ctrl-C. But
because the two key sequences achieve the same objective as the single-
step sequence, you might as well use Ctrl-Alt-Backspace. The single-step
method is pretty brutal, though. It stops the X server, but then all applica-
tions die ungracefully because they simply lose their connections. If you
do not want the single-step sequence used on your machine, you can dis-
able it in the /etc/X11/XF86Config file.

Meanwhile, if you are in a Desktop environment such as KDE or
GNOME, you usually have a Start-like button in the lower-left corner. If
that is the case, all you need to do is click it and select exit or logout or
something similar. It is pretty intuitive (now watch me get lost looking for
it next time).

Start X Automatically
Before you even think of instituting the following procedure for starting X
automatically, you must ensure that your X configuration works properly.
Otherwise, you might have trouble logging into your system. To carry out
this procedure, you have to be the root user.

Test xdm with the nodaemon Argument

The xdm program (X Display Manager) can control one or more X display
sessions on one or more servers, local and remote. This application pre-
sents you with what is called an xlogin widget (basically a graphical
prompt for a username and password) and then invokes the X Window
System after you have been authenticated. You can customize xdmwith the

The Linux X Window System 425

use of a configuration file, customarily called xdm-config (but that is
beyond the scope of this book). All you have to do is ensure that xdm
works correctly, because it is used in the process of automatically starting
X from bootup.

To test xdm, type the following at the command prompt:

xdm -nodaemon<Enter>

The nodaemon option prevents xdm from following its normal proce-
dure, which is to put its daemon beyond the control of the terminal. Thus,
you are not preventing the daemon from being used by xdm but are rather
keeping it under some control.

If all goes well, xdm presents you with its xlogin widget. You type
root as the login name, press Enter, type root’s password, and press Enter
again. The xdm program then creates the X Window environment with
your chosen window manager. Although we have focused on xdm, it is not
the only display manager. Other display managers such as the Gnome Dis-
play Manager and the KDE Manager are also available and have many fea-
tures that can help you manage your environment.

If you got the results described, xdm works for you. It is safe now to
move on to the next steps. But first, exit from the window manager by
using the root menu or start button. The xdm program takes you back to
the xlogin widget. To get back to the command line, use the key
sequence Ctrl-Alt-F1. That takes you back nearly to a command prompt,
but you will not be at a prompt per se. You should see a cursor blinking
on the line immediately below the xdm -nodaemon command. Now,
press Ctrl-C to terminate the xdm daemon and be left at the command
prompt.

Edit the /etc/inittab File to Run Level 5

Using vi as your text editor, you will modify the Linux initialization table
found in the /etc/inittab file, which controls (among other things) the run
level (in other words, the number and type of services provided by Linux
when it boots up). Be very careful. Browse down through /etc/inittab until
you see the line id:3:initdefault, and change the 3 to a 5. Do not
change anything else. Save and exit /etc/inittab. To Linux, running level 5
means that it should no longer boot to full multiuser mode as it did with
running level 3. It should now boot to X11 mode.

426 Installing and Administering Linux 2E

Reboot the System

At this juncture, all you have to do is reboot the machine. When Linux
boots again, the command-line login prompt does not appear. Instead, you
are presented with the graphical xlogin widget.

Basic X Window Components

The concepts introduced in this section should be easily grasped, espe-
cially since almost all of us have used a graphical user interface (GUI)
before. However, even though the discussion may seem almost trivial to
some, the terms and concepts as defined here are worth remembering.
They are common to all GUIs, and provide a foundation for understanding
and comparison not only among X Window managers, but also between
the X Window system and other GUIs.

Display
Figure 14.2 illustrates what your X Window System display might look like
when using one of the less-complex window managers. All window man-
agers do not look like this one, however; some have more or fewer appli-
cations showing different backgrounds and so on, depending on the
preferences of the system administrator or the person who installed X.
Moreover, ordinary users will have some ability to add or delete applica-
tions or other information.

The basic components of the display are described next:

Root window. Also called the desktop, this area fills the entire screen.
You can move your mouse to an open part of this area (that is, an
area not covered by other windows or other displays) and then left-
click to access the root menu, a menu that helps you start other
windows or otherwise customize your environment. A sample root
menu appears in the bottom-right corner of Figure 14.2. Note that we
have chosen a generic name (winmgr) for the window manager.
Now, if you right-click an open area of the root window, you
automatically invoke the Programs menu, which is the same menu
you would get if you accessed a root menu and then clicked
Programs (because of space constraints, we did not show the

The Linux X Window System 427

x clockroot 341 0 0 0 4 724 296 2 S 11 02 0 00 /
root 344 0 0 0 4 724 296 2 S 11 02 0 00 /
root 345 0 0 0 4 724 296 2 S 11 02 0 00 /
root 906 0 0 0 4 724 296 2 S 10 16 0 00 /
root 808 0 0 0 4 724 296 2 S 10 16 0 00 /
root 838 0 0 0 4 724 296 2 S 10 20 0 00 /
root 866 0 0 3 3 2900 2190 p1 T 10 44 0 00 x
[f1interfr2peeches f1intefr]s kill 9 066
[1] killed xterm
[f1interfr2peeches f1intefr]s kill ps us
USER PID XCPU XMEM SIZE RSS ITT STAT START TIME C
f1interfr 853 0 0 1 2 1224 904 p1 S 10 20 0 00
f1interfr 072 0 0 0 7 724 404 p1 R 10 56 0 00 /
root 341 0 0 0 4 724 296 2 S 11 02 0 00 /
root 344 0 0 0 4 724 296 2 S 11 02 0 00 /
root 345 0 0 0 4 724 296 2 S 11 02 0 00 /
root 806 0 0 0 4 724 296 2 S 11 02 0 00 /
root 808 0 0 0 4 724 296 2 S 10 16 0 00 /
root 838 0 0 0 4 724 296 2 S 10 20 0 00 /
[f1interfr2peeches f1intefr]s []

root
window

root
menu

information
window

Start

xterm
window

iconified
window

xterm
window

New shell
Programs >
System Utilities >
Preferences >
Window Operations >
Lock Screen / Screen Saver
About "winmger"
Exit "winmger" >

{flintsfr0xxtes flintsfr}$

Figure 14.2 An example of an X Window display.

Programs menu in Figure 14.2). Thus, right-clicking to invoke the
Programs menu is just a shortcut.

Information window. The xclock window is an example of an
application window that displays information for the user’s benefit.

xterm window. An xterm window is a terminal emulation window
that has been opened for any number of purposes. Figure 14.2 shows
two terminal windows open, one for each process.

Iconified window. In Figure 14.2, the calculator symbol (with Calc
across the bottom) is not a window but a representation of a window.
The represented process has not been terminated.

root Menu
As we mentioned, when you move the mouse pointer to an open area of
the root window and left-click, the root menu appears. The menu options
are described in Table 14.3. You can either move the mouse pointer over
one or more options or left-click to select a specific option.

428 Installing and Administering Linux 2E

Table 14.3 root Menu Options

OPTION DESCRIPTION

New shell Create another xterm window.

Programs Types of programs available, as well as some specific
programs.

System Utilities Types of utilities available.

Preferences Types of changes you can make to your environment.

Window Operations Types of available window operations.

Lock Screen/Screen Saver Invoke the xlock program.

About “winmgr” Invoke a menu with information about your host
machine, the window manager you are using, and
your X environment.

Exit “winmgr” Restart your X session; switch from your present
window manager to another; cancel the quit/exit
from X; or verify your quit/exit from X.

Mouse Pointers, Input Focus, and
Location Cursors
Linux can work with either a two-button or a three-button mouse, but the
documentation with most distributions recommends that you use a three-
button mouse or invoke three-button mouse emulation (using both but-
tons at once simulates the use of the middle button) during Linux
installation. Meanwhile, moving the mouse causes the movement of a
small icon, commonly called a pointer or a cursor, on the terminal screen.
There are several types of pointers.

When used on an X display, the mouse and its pointer can be used to
select whatever window you would like to activate (making the window
capable of receiving input). Note that when you activate a window, its
frame changes color (it becomes highlighted). Furthermore, when you
direct some input information or data to that highlighted active window,
you are focusing. There are two types of focusing: explicit focusing, where
you move the pointer to a window and left-click the mouse to activate the
window, and pointer focusing, where you only have to move the pointer to
a window to activate it. Most window managers use explicit focusing.

The Linux X Window System 429

When you place the pointer in or on windows or other objects, pressing
the left button activates the window or object. Pressing the right button or
pressing the middle button—or, on a two-button mouse, pressing both the
left and right buttons simultaneously—will also cause certain actions to
take place, such as the appearance of a menu from which you can select
further actions.

In X, the location cursor is similar to the cursor on the command line of
your character-based screen. Its location determines where to insert your
keyboard input on a terminal emulation screen. The location cursor is not
activated until you activate the terminal window first, however.

Window Frame
The frame around a window is often taken for granted. Although we gen-
erally think of the window contents and frame as one and the same, they
are not. Strictly speaking, the frame is provided by the window manager
application and enables a certain amount of window manipulation with-
out affecting the operation of the application running in the window itself.
That window manipulation, however, requires the proper placement and
operation of the mouse. The basic components of the window frame might
vary slightly from one window manager application to another (for exam-
ple, one might have an exit button at the far right end of the title bar, but
another might not).

The first component of the window frame is the title bar, which runs
across the top of the window between the window operations button on
the left and the minimize and maximize buttons on the right. Predictably,
the title bar contains the title of the window. For instance, the window
emulating a terminal screen would be titled xterm. You can use the title
bar to move the window from place to place on the root menu by the drag-
and-drop method.

The term “drag and drop” refers to the following actions: positioning
the mouse cursor over something (such as a title bar or menu option) and
pressing but not releasing the left mouse button; then moving the mouse cursor
to another location (dragging) and releasing the left mouse button (dropping).

You can reduce the window to its icon representation (its minimum size)
by left-clicking the minimize button, which is immediately to the right of the
title bar. If the window is smaller than its maximum size, you can maxi-
mize it by left-clicking the maximize button next to the minimize button
(maximum size usually means that the window will fill the entire root

NOTE

430 Installing and Administering Linux 2E

window). Some window managers also provide an exit or close button,
which usually looks like a square with an X in its center, in the upper-right
corner of the window frame. Left-clicking that button will close the win-
dow, the same as left-clicking the window operations button and selecting
the close/exit option.

Speaking of resizing the window, there are several ways of making the
window larger or smaller. All require proper placement of the mouse
pointer. Note that if you place the pointer exactly in the corners of the win-
dow frame, the pointer changes to resemble something like an arrow
pushing against the corner. By dragging and dropping at that point, you
can alter the window’s dimensions in two directions (height and width)
simultaneously, if you want.

If you just place the mouse on any of the four borders (top, bottom, left,
or right) of the window frame at any one time, the pointer again changes,
but this time it changes to something resembling an arrow pushing against
that border only. Now you can drag and drop again, but you can change
only one window dimension at a time.

If you move the mouse pointer to the upper-left corner of the window
frame and left-click on what is called the window operations button, you will
activate a drop-down menu containing several commands. You can move
the pointer down the menu and select the operations of your choice.

Icons
You probably already know about the benefits of icons on your desktop.
They are a handy way of multitasking without repeatedly having to
invoke applications, and they are a handy way to manage your root win-
dow (that is, desktop) space. When an application window has been
changed to an icon, the process remains invoked and ready, but the screen
clutter is reduced.

You can create an icon from an active application in two ways. One is by
left-clicking the window operations button in the top-left corner of the
application window and then scrolling down the resulting drop-down
menu to select the minimize (or hide/restore or similar instruction) option.
The benefit of using this method stems mainly from having a choice of
options presented to you. The result is the same as the second and simpler
method, namely left-clicking the minimize button on the window frame.

Depending on the window manager used, the resulting icons for identi-
cal applications might be different in appearance. For example, minimiz-
ing the calculator window in fvwm95 results in an icon that looks like a
button bar. Minimizing the same window in lesstif results in an icon

The Linux X Window System 431

that looks like a reduced-scale calculator. No matter which window man-
ager you use, the resulting icons are actually bitmap images.

xterm Fundamentals

An xterm window is an X client application that simulates a common
video terminal, such as a DEC vt100. By now, you have undoubtedly
noticed that you can create and use xterm windows (commonly called
nxterm, AIXterm, or something similar, depending on the version of
UNIX) while in X to enter Linux/UNIX commands in the same manner
you entered them at the command line when X was not invoked.

Create an xterm Window
You can create additional windows in X in two ways. First, from an
already opened xterm window, you can type xterm &. Alternatively, you
can move the mouse pointer to an open area of the desktop (that is, the
area not already occupied by a window) and left-click the mouse. Then,
from the resulting root menu, left-click New shell, which is the first selec-
tion under Start at the top of the root menu.

Copy Text
The xterm window enables you to copy and paste text to another part of
the window or to another window. Place the mouse pointer at the first let-
ter of the text you want to copy, and then left-click and drag over all the
text you want to copy. The text is highlighted. When you release the mouse
button, the highlighted text is copied into a buffer. Then, you move the
mouse pointer to a position in the same window or in another xterm win-
dow. If you are using a three-button mouse, press the center button to copy
the text. If you are using a two-button mouse, push both buttons at once.

Create a Scrollbar
If you want to create a window with a scrollbar in it, first create another
preliminary window. In that preliminary window, type one of the follow-
ing command sequences:

$ xterm -sb leftbar<Enter>

432 Installing and Administering Linux 2E

or

$ xterm -sb rightbar <Enter>

Each of these sequences creates a new window with a scrollbar on the
side that you specify.

If you want to create a scrollbar in an existing window, place the mouse
pointer inside that window, hold down the Ctrl key, and press the center
button on the mouse (on a three-button mouse) or press both mouse but-
tons at once (on a two-button mouse). The VT Options menu is displayed
on the screen. The first, or one of the first, selections on the menu is
Enable scrollbar. Click that selection, and a scrollbar appears in your
window.

To use the scrollbar, place the mouse pointer in the scrollbar itself and
then press the left mouse button to move up or press the right mouse but-
ton to move down. If you want to remove the scrollbar, redo the instruc-
tion and left-click Enable scrollbar to remove the check mark next to
that selection.

Use the man pages, the help options, and other information sources to
see what else you can do with the xterm command.

Close an xterm Window
To close an xterm window, you have several alternatives. At the prompt
in the window, press Ctrl-D or type exit and press Enter. Double-click the
Window-Ops button in the upper-left corner of the window or left-click
that same Window-Ops button and then left-click Close on the resulting
drop-down menu.

Customize xterm
We have already discussed a couple of xterm options:

■■ Running the second xterm window in the background so that you
can move back and forth from window to window (the & option)

■■ Adding a scrollbar to the new xterm window (using the -sb option
with either the -leftbar or -rightbar option)

In this section, we present a few more of the dozens of options available
to you with the xterm command. Combining these options gives you per-
haps thousands of possibilities for new xterm windows. Take a look at
Example 14.1 and Table 14.4 to see how xterm can work for you.

The Linux X Window System 433

Table 14.4 Selected xterm Options

OPTION EXPLANATION

-bg color Background color of the window

-cr color Cursor color. The default color is the foreground color.

-display Host server name and X server display number
Name:Number where the command will run. If not specified, the client

program gets the hostname and displays the number
from the DISPLAY environment variable.

-e command Command to be executed in the window. This flag
executes a command; it does not start a shell. The
command and its arguments (if any) must appear last
on the xterm command line.

-fg color Foreground color of the window

-fn font Font to be used for all normal-sized text

-fullcursor Full height (not the underscore style) text cursor

-geometry Geometry location and dimensions of the window. The
default is 80x25+0+0; that is, 80 pixels wide, 25 pixels
long, located in the top-left corner (that is, at the 0,0
position) of the screen.

-help Available option flags

-i Display a newly created window as an icon, not a window.

-keywords List the xdefaults keywords.

-l Append output from the xterm command to the login.

-lf file The location where the output is saved. The default file is
xterm.logxxxxx, where xxxxx is the PID of the
xterm command.

-n icon name Icon name used by the xterm command

-name application The application name to use for .Xdefaults

-sb Scrollbar. -leftbar places the scrollbar on the left.

-sl Maximum number of lines to save that are scrolled off
the top of a window. The default is 64.

-T title Name of the window in the title bar. If -n is not specified
or a name for the icon has not been specified in .Xdefaults,
this name is displayed also on the icon of the window.

-W Move the cursor to the middle of the xterm window
when it is created.

-xrm string Resource string to be used

434 Installing and Administering Linux 2E

Example 14.1 Creating an xterm Window

On host machine SYSTEMB, create an xterm window for X server 0. Allow
this process to run in the background:

$ xterm -display SYSTEMB:0 &<Enter>

On this host machine, create an xterm window with a red background
and white foreground with Times Roman 10 normal font, 80 pixels wide
and 40 pixels long, and positioned in the top-left corner (the 0,0 position).
Allow the window to run in the background.

$ xterm -bg red -fg white -fn rom10 \<Enter>

> -geometry 80x40+0+0 &<Enter>

You can apply the options in Table 14.4 to other X applications such as
xcalc and xclock. For further information regarding those applications and
their options, check the man pages and other information sources.

Now that you have had a look at xterm windows in general, it is time
to look at a special way of using them: to create a special window for the
root user.

Additional Basic X Window Commands

This section introduces some features that you may not be familiar with if
you are not already a Linux/UNIX user. These features have been avail-
able with UNIX for years and set Linux/UNIX apart from “that other GUI
operating platform.”

Become the root User
When using xterm windows in an X session, you can become the root
user in two ways. First, if you are operating in an ordinary xterm win-
dow, you can simply enter su - <Enter>. You are prompted immedi-
ately with the root Password: prompt, at which point you type the root
password. Then you are prompted with the root prompt, #, and you can
conduct root business.

Alternatively, left-click an open desktop area, scroll down the root
menu, and select System Utilities. Another drop-down menu called
System Utilities Button Bar, appears. Scroll down that menu and select

NOTE

The Linux X Window System 435

Root Shell. An xterm window appears. At the top is the title Root Win-
dow, and within the window is the root Password: prompt. Type the
proper password and press Enter, and you are given the root # prompt.

Let Another User Run a Client on
Your System
As we discussed earlier, the X Window System uses the client/server
model. Remember, the client is an application (such as xterm or xcalc),
and the server is the program that supports the application by controlling
input and output. In many cases, the client and server both run on the
same system. The last topic in this chapter is xhost, which you must
invoke before any of the clients will connect and work.

With X, however, you can run a client on your own system on the network
but display the application on another (presumably remote) terminal screen.
This arrangement gives others access to software programs running on your
system. Others can therefore enter commands in the window and use their
mouse, despite the fact that the actual process is running on your system.

Assume that you are trying to run a client application on the sys1
machine, but you want to display the output on the sys2 server. The
application is simply xterm (that is, you want to open an xterm window),
but it could be any X Window system application begun through the char-
acter cell. Example 14.2 shows three possible ways to invoke xterm.

To run the client remotely and display its results locally, you must tell
the client process where to display its window. X applications use the
value of the DISPLAY environment variable to indicate the TCP/IP host
name of the server (that is, the name of the system on which the client
should display its output).

If the DISPLAY value has not been set, you must include the -display
option in the command to invoke the client application. If the DISPLAY
value is set, you can override it by using the -display option and the
specified server name when starting the client. Typically, the display value
is set to something like :0.0 for the local server or sys2:0.0 to tell the
client to display its output on the remote server called sys2. The part
before the colon specifies the server’s TCP/IP host name or IP address.
The part after the colon specifies the server number and display number,
but the display number is optional. Unless you run multiple servers on
one machine or have multiple displays controlled by a single server, set
these values to 0. The TCP/IP protocol must be installed and configured
on the network.

436 Installing and Administering Linux 2E

Example 14.2 Invoke xterm on Another System

Option 1: In an xterm window on sys1, redefine the DISPLAY variable as
sys2:0.0. You can then invoke the application, and the shell automati-
cally sends the output wherever that environment variable tells it to go:

$ DISPLAY=sys2:0.0<Enter>

$ xterm &<Enter>

Option 2: In an xterm window on sys1, enter

$ export DISPLAY=sys2:0.0; xterm &<Enter>

Option 3: In an xterm window on sys1, enter

$ xterm -display sys2:0.0 &<Enter>

The export command is a TCP/IP command that sends another com-
mand to a specified remote system for execution.

Run a Client on Someone Else’s
System
Suppose you want to be able to use applications on someone else’s system.
To do that, open an xterm window, activate it, and enter the following text
on the command line:

$ rlogin -l username remote_hostname<Enter>

You must use a username that has already been created on the remote
host. rlogin is one of the remote-host execute commands, commonly
called r commands. The -l (the letter “ell,” not a number one) option
basically clears the way for you to specify the username. The remote host
name is the TCP/IP name of the system you are trying to log into. (The r
commands, which we do not cover in this book, are introduced here only
to illustrate how to accomplish this simplified client/server application
execution.)

The shell responds with a password prompt. Simply fill it in and press
Enter, and you are authenticated to the remote system. Now, use one of the
two following command sequences to invoke an application on the remote
host and display it on your system:

$ xterm -display sys1:0.0 &<Enter>

The Linux X Window System 437

or

$ export DISPLAY=sys1:0.0; xterm &<Enter>

To accomplish the procedures described in this section and the preced-
ing one, you have to give the systems the capability to allow, restrict, or
limit other remote hosts from accessing their displays or applications. To
do so, the xhost command must be executed on the server(s).

xhost Command
As mentioned, the X Window System enables users at one host system to
run a client on another system. But there might be times, for security or
other reasons, when it is not desirable to allow a particular user or system
to connect to another. One way to deny access to a user or a system is to
use the xhost command on the system to which access is sought.

At the target machine, the user invokes a terminal emulation screen
and enters

$ xhost [+ | -] [name]<Enter>

The square brackets indicate that the plus and minus signs are optional,
as are the usernames or host names. The examples in Table 14.5 should
help to clarify these concepts. If you need further information, consult
your information sources. Note that using only xhost + will open the
machine in question to everyone on the network, and if applicable, possi-
bly to everyone on the Internet. Consequently, if your machine is exposed
to a large network or to the Internet, you should install security on the

Table 14.5 xhost Syntax Options

SYNTAX EXPLANATION

xhost Ask for a message: Is access control enabled or not?

xhost + Turn off access control; grant access to everyone.

xhost - Turn on access control; grant access only to those on
the list.

xhost + name Add name to the list of users/hosts allowed to connect
to this X server (the + is optional here).

xhost - name Delete name from the list of users/hosts allowed to
connect to this X server.

438 Installing and Administering Linux 2E

machine. Although xhost might not be a comprehensive answer, it can be
a first step.

After you use xhost to invoke access control to an X server machine, a
file similar to X*.hosts is created in the /etc directory. That file contains
the names of the host machines and users who can access the X server
machine in question.

Exercises

1. Start the X Window system environment with the startx
command.

$ startx<Enter>

What window manager is invoked by default? Are any windows
displayed by default? If so, what are they called?

2. If an xterm window appears, verify that it is activated or activate it
if it is not. If there is no xterm window, create one.

• If an xterm window has been created already, check to see
whether the window’s title bar is highlighted in blue. If it is not,
move your mouse pointer to the xterm window and left-click.
The window frame changes color to indicate that the window is
now activated.

• If there is no xterm window yet, you might have to left-click an
open space in the root window or press an equivalent start button
and then select New shell, xterm, or a similar item from a root
menu. Each distribution of Linux, and each window manager
within each distribution, has a different but similar way of conjur-
ing up these xterm-like windows.

3. Using the xterm window, try some commands such as ls (with or
without other arguments), date, cal, and whoami.

4. Resize the width of the window.

Move your mouse pointer to the right edge of the window frame.
Note how the pointer changes shape (for example, from a single-
headed arrow or I-beam to a double-headed arrow, or from a single-
headed arrow to an arrow pushing against a perpendicular line),
indicating that the mouse can now be used to change one dimension

The Linux X Window System 439

of the window (the width or the height, depending on which edge
the cursor sits). Press and hold the left mouse button and move the
mouse to alter the window’s dimensions. An outline might appear,
indicating the new window size. Also, a small feedback indicator
might appear, which tells you the new dimensions in pixels or in
lines and columns. An indication of the location of the upper-left
corner of the window might also appear. As we stated previously,
each window manager has its own idiosyncrasies. When the win-
dow is the desired size, simply release the left mouse button.

If you saw the small feedback indicator, note that it contains the
same kind of information you might use if you were to create a new
xterm window from the command line of an existing xterm win-
dow, using the xterm command with -geometry as an argument
followed by the dimensions and location.

5. Change the height and width of the window simultaneously.

Move your mouse pointer to a corner of the window frame. Note
how this time the pointer again changes shape (for example, to an
arrow pushing against a corner), indicating that the mouse can now
be used to change both window dimensions (width and height) at
once. Press and hold the left mouse button and move the mouse to
alter the window dimensions. You will get the same kind of response
feedback you received in Exercise 4. Again, when the window is the
desired size, simply release the left mouse button.

6. Drag and drop the xterm window from one side of the root window
to the other.

Move your mouse pointer to the title bar of the window frame. Note
how this time the pointer again changes shape (for example, to a
large dot), indicating that you can now use the mouse to move the
window. Press and hold the left mouse button and move the mouse
to alter the window’s location. You get the same type of response
feedback you received in Exercises 4 and 5, except you will not be
altering the window size. When the window reaches the desired
location, release the left mouse button.

7. Now, use the options in the window operations (button) menu to
move and resize the window.

In the xterm window, left-click the window operations button (that
is, the button to the left of the title bar) on the window frame. The

440 Installing and Administering Linux 2E

window operations menu appears. Left-click the Move command
and you will notice a similar feedback to the response in Exercise 6,
except that you do not have to hold down the left button as you
move the window. When the window is in the desired position, sim-
ply press the left button and the window will stay where it is.

Now, left-click the window operations button. From the window
operations menu, left-click the Resize command. You will notice
the same type of feedback as in Exercises 4 and 5, except that you do
not have to hold down the left button as you alter the window’s
dimensions. When the window is the desired size, simply press the
left button and the window remains that size.

Instead of left-clicking to hold the window in the desired position or to
maintain the new dimensions, depending on which function you are exercising,
you can also press Enter.

8. Take a close look at the window operations menu again. Are there
any items on it that appear grayed or dimmed? If so, why?

On the xterm window, left-click the window operations button
(that is, the button to the left of the title bar) on the window frame
again. The window operations menu appears.

9. Here is something you might not have tried. On the window
operations menu, type the letter m instead of clicking Move and then
use the arrow keys. This method is another way to move your
window. Now, try the underlined letters for some of the other
functions.

On the xterm window, left-click the window operations button and
the window operations menu appears. This time, instead of left-click-
ing the Move command, just type m on the keyboard. You will notice
a similar feedback to the response in Exercise 7, and you will not
have to hold the left button down as you move the window around.
When the window is in the desired position, simply press the left
mouse button or press Enter and the window stays where it is.

10. With the window operations menu closed, try some of the
underlined letters. Do they work?

Activate the xterm window. Then, without activating the window
operations menu, try using the underlined letters you noted when
that menu was open.

NOTE

The Linux X Window System 441

11. Iconify (that is, minimize) the xterm window. After it is an icon,
restore it back to the root window.

Activate the xterm window. Three buttons appear to the right of the
title bar. Left-click the iconify (or, if you prefer, the minimize) button,
which is immediately to the right of the title bar. The xterm window
apparently disappears, but an icon remains. The icon indicates that
the process is still available for use; you need only reactivate it.

Left-click the xterm icon. The icon disappears and the full-fledged
xterm window reappears.

12. Now, maximize the xterm window. What happens?

Look again at the three buttons to the right of the xterm window’s
title bar. Left-click the middle button, called the maximize (or, if you
prefer, the restore) button.

13. After you maximize the xterm window, resize it to a smaller size.

Note that three buttons appear to the right of maximized xterm
window’s title bar. Left-click the middle button again.

14. Use the root menu to open another xterm window.

Move the mouse pointer to an open area of the root window (desk-
top) and click the left mouse button. The root menu appears. Left-
click New shell or a similar command.

15. Start another different type of clock by using the root menu.

Move the mouse pointer again to an open area of the desktop and
click the right mouse button. The Programs menu appears. Move the
mouse pointer down to System and left-click. The System submenu
appears. Left-click Time Tool. A different type of clock appears.

16. The xterm command has many command-line options. Try viewing
these options by using the xterm -help command. You need to
pipe the output from the command to more or less. Note that some
distributions of Linux/UNIX do not allow the use of the pipe with
the xterm command.

If an xterm window appears on the desktop, activate it. Otherwise,
create an xterm window by left-clicking an open area of the desk-
top and selecting New shell or a similar command from the result-
ing root menu.

442 Installing and Administering Linux 2E

At the command line, enter

$ xterm -help | less<Enter>

17. Start another xterm window from the command line within an
xterm window. Give the new window the following characteristics:

• Background color: sky blue

• Foreground color: green

• Title: My New Window

• Scrollbar: left side

$ xterm -bg skyblue -fg green -T "My New Window" -sb -leftbar<Enter>

18. Now, start an xclock from the command line within one of the
windows. Have it run in the background. Give the clock the
following characteristics:

• Background color: white

• Foreground color: red

• Hands on the dial: blue

• Second hand update: every second

$ xclock -bg white -fg red -hd blue -update 1 &<Enter>

19. For the next few exercises, make sure that you have created at least
two xterm windows. (If you create an xterm window from another
xterm window, make sure you add the & argument to the xterm
command so that the second window runs in the background of the
first and you can move easily from one window to the other.) In one
xterm window, use the vi editor to create a file called ex14file. Add
a few lines of text to this file, but do not exit from it:

$ vi ex14file<Enter>

i

Hi, how are you?

I am fine.

Today is not Friday.

I will transplant this line to ex14file.new.

I'll copy this line to ex14file.new, too.

<Esc>

:wq<Enter>

The Linux X Window System 443

20. In the second xterm window, use the vi editor to create another file
called ex14file.new. Go into Insert mode, but do not add any text to
the file yet.

$ vi ex14file.new<Enter>

i

21. Copy a few lines of text from the ex14file in the first xterm window
to the ex14file.new in the second window. Then, exit vi in both
windows.

• Move the mouse pointer back to the window in which you
entered text in the file ex14file.

• Place the mouse pointer at the beginning of the lines you want to
move to ex14file.new.

• Press the left mouse button and hold it while you move the mouse
pointer across the lines you want to copy.

• When you reach the end of the text you want to copy, release the
left button.

• Move the mouse pointer to the window with ex14file.new already
begun and then point in the file where you want to insert the lines
you are copying from ex14file.

• If you have a three-button mouse, press the middle button to
insert the text lines. If you have a two-button mouse, press both
buttons at once to insert the lines.

• Exit vi in both windows.

22. You have now completed the single-machine part of this exercise.
Your choices now are to try the optional network-based exercises
(proceed to Exercise 23) or to end your X session. If you choose to
end your session, take the following actions:

• Go to an open area of the desktop and left-click.

• Select Exit winmgr.

• From the resulting Really Quit winmgr submenu, select Yes,
Really Quit.

23. As the root user, create a user named remote1 on your client system
and give that user the remote1 password. Revert to your normal
user identity and enter xhost +<Enter> in an xterm window to

444 Installing and Administering Linux 2E

enable all other users access to your X server. The shell should reply
with a message such as access control disabled, clients
can connect from any host.

useradd remote1<Enter>

passwd remote1<Enter>

Changing password for user remote1

New UNIX password: remote1

Re-type new UNIX password: remote1<Enter>

logout<Enter>

login: teamxx<Enter>

Password: teamxx<Enter>

$ startx<Enter>

If an xterm window is created by default, activate it by left-clicking
the mouse pointer on it. Then, at the command line, enter

$ xhost +<Enter>

24. Check to see whether the DISPLAY variable has been set.

$ echo $DISPLAY<Enter>

You have probably noticed that before you can set a value for DIS-
PLAY, you need to know the TCP/IP name of your computer. This
information can be obtained by typing the command hostname
with no options or arguments.

$ hostname<Enter>

If the value for DISPLAY is already set to hostname:0.0, proceed
directly to Exercise 25. If the DISPLAY value is not hostname:0.0,
set it by entering the following:

$ DISPLAY=hostname:0.0<Enter>

25. After you have ensured that your DISPLAY variable is set correctly,
stay at your own system but start an xterm session on someone
else’s computer and have it appear on your system. First, you need
to know the other system’s host name. When specifying a login ID,
use remote1.

The Linux X Window System 445

$ rlogin -l remote1 other_client_hostname<Enter>

Password: remote1<Enter>

$ export DISPLAY=your_client_hostname:0.0; xterm &<Enter>

Voila! A new window appears.

26. In the window you just started on the other system, use hostname
to verify that the window is running on the remote system. Check
the value of the DISPLAY variable on that system. It should indicate
the name of your (remote) client/host system.

$ hostname<Enter>

$ echo $DISPLAY<Enter>

27. From the remote system’s window, execute xcalc &.

$ xcalc &<Enter>

From which system is the calculator being executed?

You can verify your answer with the ps command. When you have
completed this exercise, close the remote system’s window.

$ ps<Enter>

$ exit<Enter>

28. Exit from your X Window environment.

• Go to an open area of the desktop and left-click.

• Select Exit winmgr.

• If there is a resulting Really Quit winmgr submenu, select Yes,
Really Quit.

See Appendix B for the answers.

Quiz

1. Which of the following statements are true?

• Connections between clients and servers in a Linux/UNIX envi-
ronment can be based on any networking protocol.

• A window manager is one of the basic components of an X Win-
dow System.

446 Installing and Administering Linux 2E

• In a Linux/UNIX environment, a server provides resources such
as hard disk drives and printers.

• You can use only one window manager at a time.

• You can quit an X session with the Ctrl-Alt-Backspace key
sequence, but it is not graceful.

2. Provide a brief definition of an X Server.

3. Which of the following commands is used to run a client on a
different system?

• xhost

• export

• xterm

• telnet

• fvwm

4. What do the following xterm options mean?

• -bg red

• -fg black

• -T ledger

• -geometry 80x125+0+0

• -n lgr

5. When you are in X, how many ways are there to become a root user?
Briefly, what are they?

See Appendix C for the answers.

C H A P T E R

15

Linux Documentation
and Support

447

The Linux operating system consists of many subsystems and processes
working together simultaneously. Thus, to monitor, measure, modify, and
control your Linux system, you need information about commands, utili-
ties, configuration, applications, and more.

In this book, we have introduced you to some basic Linux concepts,
commands, utilities, and processes. To fully understand these concepts,
however, you might have to refer to or have knowledge of things that are
not discussed at length in this book. Because it is difficult to absorb, let
alone commit to memory, all of the concepts, commands, and related infor-
mation you need to make your Linux system perform the way you want
now and in the future, it is important to be aware of all the sources of infor-
mation available to you.

In this chapter, we list and discuss some sources of information and sup-
port that you will be able to call upon immediately and later, whether
inside your own shop or elsewhere in the Linux world. Although we can-
not possibly cover all available information sources, we do provide an
introduction to some of the more popular and helpful ones.

448 Installing and Administering Linux 2E

Throughout the book, when we suggest that you check other informa-
tion sources, we are referring to the sources mentioned in this chapter.

Distribution Package Documentation

You can obtain a Linux distribution in two basic ways: officially and unof-
ficially. This section covers the information you can expect to find with
both types of sources.

Official Linux Distributions
Every official Linux distribution ships with a large amount of documenta-
tion, and that is one reason why we recommend that you purchase an offi-
cial distribution. Most distribution packages contain the following
information, which is specific to the Linux software you have purchased:

Features of the enclosed Linux software and applications. You will
learn which version of the Linux kernel you have, the hardware it
supports, the applications you can install and use immediately, and
what else is available and from what location.

Installation instruction and assistance. You will be told how to install
Linux on your system (for example, how to install a graphical versus
a text-based interface and options for basic and custom installations)
and how to do basic fine-tuning.

Basic system administration instructions. These are important because
you have to know how to create and administer the root and other
users on your system just to get going.

Sources for troubleshooting and support after you register your
software. Troubleshooting and support can be invaluable, especially
if you are loading Linux for the first time or are updating to a version
that is different from your current version. Do not forget to register
your software as soon as you unwrap or install it.

A simplified history of UNIX and Linux. This information might aid
your comprehension of the attributes and behavior of certain parts of
your software, especially the actions of the shell (some of which we
have discussed in earlier chapters).

NOTE

Linux Documentation and Support 449

Instructions for obtaining additional documentation. Most
distribution materials are geared toward specific audiences (the
majority are geared toward novices and non-experts, while some are
geared toward business users, some toward programmers, and so
on). But most packages contain references to their own hard-copy
documentation, their own online documentation, and to other
sources of information (books, magazines, Internet sites, and the like).

Downloaded Linux and Other
Unofficial Distributions
Purchasing an official Linux distribution is not the only way to go. Some
people and organizations acquire their copies of the Linux kernel with or
without the simultaneous acquisition of applications by downloading
Linux from the Internet or through other means.

If you take this route, you can find documentation in many venues. For
example, recent years have seen an avalanche of books on Linux. You can
find them at local bookstores, university or college bookstores, computer
bookstores, and on the Internet. You can often find related applications or
utilities and their respective documentation in the same places.

Many books and magazines also contain CD-ROMs of one of the Linux
distributions, although it is usually one or two revisions behind the distri-
bution or kernel package you can obtain directly from the manufacturer.
The same book and CD-ROM combinations customarily contain some
applications, as well. Meanwhile, new Linux-related magazines appear
almost monthly. Later in this chapter, we will list a few of these books and
magazines for you.

New Linux-oriented Internet sites crop up all the time. We list several of
the more established sites later in the chapter, as well. Often, they are affil-
iated with educational institutions, Linux support or interest groups, or
other organizations that have adopted Linux in their own shops or are oth-
erwise promoting its use. The information and services offered by these
sources are varied but almost always include installation instructions,
some basic system administration help, troubleshooting advice, device
drivers, fine-tuning tricks, and other types of support.

Linux support and user groups have emerged in almost every major
urban center or region. Joining one of these groups is an economical and
sociable way to learn more about Linux, to obtain free or inexpensive soft-
ware, to see free demonstrations of hardware and software, and even to do

450 Installing and Administering Linux 2E

a good turn by helping others with their problems. To find these groups,
check your local computer newspaper (usually free at software and hard-
ware vendors, at major newsstands, and even at some convenience stores),
go surfing with a good Internet search engine, or go straight to www.linux
.tucows.com and drill down through the links found there (especially the
“Software Library” links). Tucows even provides ratings of several Linux
flavors.

Meanwhile, other Internet sites will link you to support groups, too
(especially Linux Online! at www.linux.org).

Current Linux Distributors

The operative word in the title to this section is current. When we began to
write this book, there were certainly fewer distributors of Linux than there
were at the publication of this book. And by the time you read this book,
there will no doubt be even more. If you are interested in investigating the
various flavors of Linux, keep track of the distributions listed and
described at the Linux Online! Web site at www.linux.org.

At last count, 40 full-featured distributions and 35 mini or specialty dis-
tributions were available in the English language, and more than 20 non-
English distributions were available in Spanish, Italian, French, Portuguese,
German, Chinese, Japanese, Thai, Ukrainian, Russian, Swedish, Finnish,
Turkish, Croatian, and Korean. The Linux Online! site provides descrip-
tions of the distributions as well as links to the respective download sites.
The site is well worth checking out, even if only to see how Linux’s popu-
larity has spread throughout the world in a few short years. At the Web
sites for the distributions listed at Linux Online!, you will find some varia-
tion of the following types of information and services:

■■ Company history and description
■■ Purchase information
■■ Names and addresses of resellers
■■ Patches, updates, or bug fixes for the products, including kernel

updates
■■ Announcements regarding security issues pertinent to their

products
■■ Press releases regarding their company or Linux in general
■■ FAQs (frequently asked questions) regarding their products or

Linux in general

Linux Documentation and Support 451

■■ Related or linked Internet sites (such as FTP sites or mirror sites)
■■ Support contact information (such as telephone and fax numbers

and e-mail and surface mail addresses)

Some of these sources do not provide FTP sites to download their prod-
ucts but do provide sources for inexpensive CD-ROM copies.

We cannot leave the topic of Linux Online! without complimenting them
on the “Getting Started with Linux” lesson found under the header “Linux
101” on the home page. Bravo! Hopefully there will be more courses like
this one to come.

The Linux Documentation Project

The Linux Documentation Project (LDP) consists of guides, HOWTOs,
FAQs, and projects. Perhaps the best way to describe it is to quote from its
manifesto, which you can read at www.linuxdoc.org, the project’s Web
site. An excerpt follows:

The Linux Documentation Project is working on developing free, high quality
documentation for the GNU/Linux operating system. The overall goal of the
LDP is to collaborate in all of the issues of Linux documentation. This includes
the creation of “HOWTOs” and “Guides.” We hope to establish a system of doc-
umentation for Linux that will be easy to use and search. This includes the inte-
gration of the manual pages, info docs, HOWTOs, and other documents.

LDP’s goal is to create the canonical set of free Linux documentation. While
online (and downloadable) documentation can be frequently updated in order to
stay on top of the many changes in the Linux world, we also like to see the same
docs included on CDs and printed in books. If you are interested in publishing any
of the LDP works, see the section “Publishing LDP Documents” (on this webpage).

The LDP is essentially a loose team of volunteers with minimal central organi-
zation. Anyone who would like to help is welcome to join in this effort. We feel
that working together informally and discussing projects on our mailing lists is
the best way to go. When we disagree on things, we try to reason with each other
until we reach an informed consensus.

LDP Guides
The LDP’s guides are book-length documents that cover many aspects of
Linux operations. To access them, drill down through the LDP Web site at
www.linuxdoc.org or go directly to them at http://metalab unc.edu/pub/
Linux/docs/LDP/.

The guides have been published by the LDP. Currently available and
maintained guides include the following:

452 Installing and Administering Linux 2E

■■ Securing and Optimizing Linux: Red Hat Edition (Open Docs)
■■ Administering Linux: The Basics (Open Docs)
■■ Linux Complete (Sybex)
■■ Linux the Complete Reference (Linux System Labs)
■■ Linux Desktop Starter Kit (McGraw Hill)
■■ Linux Facile (An Italian Linux Manual)
■■ Linux Network Administrator’s Guide, 2nd Edition (O. Kirch and T.

Dawson)

HOWTOs
Linux HOWTOs are documents that explain specific topics rather than the
broad subjects generally found in the guides. The following is a summary
of available HOWTOs and their location:

226 HOWTOs at www.ibiblio.org/pub/Linux/docs/HOWTO/

4 unmaintained HOWTOs at
http://ibiblio.org/pub/Linux/docs/HOWTO/unmaintained/

131 mini-HOWTOs at
http://ibiblio.org/pub/Linux/docs/HOWTO/mini/

Remember that unmaintained documents are not updated and might
now be invalid. But, as it states on the “unmaintained” Web page, “ . . .
sometimes old documentation is better than none at all”

If you want to create your own HOWTO or become the new custodian of
an unmaintained HOWTO, contact the LDP through its Web site. See the
“Projects” section later in this chapter.

Occasionally, HOWTOs are published in hard-copy format, such as in
Linux Undercover (Red Hat, 1998).

Your distribution of Linux might include copies of HOWTOs. Look in
directories named /usr/doc/HOWTO, /usr/doc/HOWTO/mini, or something
similar. You will probably have to uncompress the HOWTO files before
you can view them.

FAQs
As of this writing, the LDP has nine sets of frequently asked questions (FAQs)
on its Internet site at www.linuxdoc.org/FAQ/. At one time, the LDP sug-
gested that any new HOWTO documents also include a set of FAQs,

Linux Documentation and Support 453

because readers of the documents often have questions about the docu-
ments themselves or about how the document instructions relate to their
own systems. Although the LDP no longer states that explicitly, we think it
is still a good idea.

Your Linux software distribution might have FAQs as well; look for
them in the installation manual and in directories named /usr/doc/FAQ or
something similar. You will probably have to uncompress the FAQ files
before you can view them.

Linux Man Pages
The LDP maintains the man pages for C programming and devices (sec-
tions 2, 3, 4, 5, 6, 7, and 9). But they recommend consulting the user com-
mand man pages (sections 1 and 8) on the respective distribution CDs.

Projects
The LDP always has documentation and other projects under develop-
ment. The projects are organized into several categories, such as hardware
ports; kernel, drivers, and file systems; papers; networking; organizations
and groups; Linux and free or open software; research and science groups;
distributions; benchmarks and standards; and miscellaneous.

To get involved, check out the advice in the “Current Projects and Getting
Involved” section of the LDP manifesto at www.linuxdoc.org or contact the
LDP coordinator. You can e-mail the LDP at feedback@linuxdoc.org.

Linux Books and Magazines

In the process of preparing course materials and writing this book, we
were exposed to several sources of expertise and information, and we are
grateful to them all. Here are some suggestions to help you find the ones
you need:

Check out the references presented at the Linux Web site at
www.linux.org/books. You will find a description and short
evaluation of several (43, actually, as of late 2001) current and
prominent reference books dealing with Linux, Linux applications,
and the integration of Linux with other systems.

Use your favorite Internet search engine. Type an appropriate
description, such as Linux books, click the Search button, and

454 Installing and Administering Linux 2E

watch your screen fill with Web site references. You will probably
want to refine your search description to find something closer to
your requirements. (Our search for Linux reference books and
similar terms returned well over 100,000 responses. Overwhelming?
Yes, but there is bound to be something out there to meet almost
everyone’s needs. All you have to do is refine your search.)

Check out the book reviews in Linux paper magazines or online
magazines. For example, Linux Weekly News (a division of Tucows) at
http://lwn.net or Linux Planet at www.linuxplanet.com.

Use the search features at the e-commerce sites operated by large
booksellers. You can get descriptions and order them, as well.

Take the time to visit your local computer bookstore or “big-box”
bookstore. This method is the best way to determine which books
are best suited to your needs. Many establishments now enable you
to peruse your potential purchase leisurely, even over an in-house
beverage.

Although we are reluctant to recommend any particular Linux book out
of the many available, we do suggest reading the following:

Operating Systems: Design and Implementation, 2nd ed., by Andrew S.
Tanenbaum and Albert S. Woodhull (Prentice Hall). Tanenbaum also
maintains a MINIX Web site at www.cs.vu.nl/~ast/minix.html.

The UNIX Programming Environment, by Brian Kernighan and Rob Pike
(Prentice Hall Computer Books). These two Bell Labs researchers
were heavily involved with the development of UNIX. This book,
which presents the unique features of the UNIX design philosophy, is
a classic.

Customizing and Upgrading Linux, Second Edition, by Linda McKinnon
and Al McKinnon (John Wiley & Sons, 2002). Our companion book
describes the installation of Linux on several platforms via various
methods. It also tells you how to upgrade the Linux kernel. Please
pardon our “tub-thumping” here, but we think it is pretty good stuff.

Several Linux journals are listed in Table 15.1. All are available as online
magazines, and the first three are available in hard copy, too. You might
already have heard of some of them, such as the Linux Journal, which has
been publishing for five years or so. The others are similar in approach.

Linux Documentation and Support 455

Table 15.1 Linux Online Magazines

TITLE WEB SITE

Linux Journal www2.linuxjournal.com

Linux Magazine www.linux-mag.com

Linux Planet www.linuxplanet.com

Linux Weekly News http://lwn.net

Linux Today http://linuxtoday.com

Linux Center www.portalux.com

Linux Start www.linuxstart.com

Linux Gazette www.ssc.com/lg/ or www.linuxgazette.com

Linux Focus www.linuxfocus.org

Penguin Magazine www.penguinmagazine.com

ZDNet Linux Zone http://linux.zdnet.com

Linux World www.linuxworld.com

ITtoolbox Linux http://linux.ittoolbox.com

Linux.com www.linux.com

Linux Business Week.com www.sys-con.com/linux

UNIXREVIEW.COM www.unixreview.com

As we mentioned, almost every urban center or region has some type of
free or inexpensive computer-oriented newspaper. They are a great source
of up-to-date articles, contacts for support or user groups, and advertise-
ments of all kinds. Support groups typically have e-mail-type newsletters,
chat groups or newsgroups, and mailing lists as well.

More Linux Information Sites
on the Internet

So many valuable Linux-related sites are on the Internet that it is difficult
to decide where to begin and just as difficult to determine where to stop.
We have already mentioned several Internet sites, and this section
describes a few more that we hope you will find interesting and beneficial.

456 Installing and Administering Linux 2E

Linux Online
Linux Online!, the official Linux Web site (which we have mentioned a
couple of times already), is at www.linux.org. Certainly, it has to be one of
the more obvious places to start when you are looking for any Linux infor-
mation. Everything you need to know about Linux in general is there,
organized into categories such as General Information, Distributions,
Applications, Support, Projects, Hardware, User Groups, Book Store, Ven-
dors, Events, Services, Featured Books, The GNU General Public License,
Documentation, Courses, News, People, and so on. You can link to most of
the other significant sites through the categories. There is a search engine
on the site, too. Hey, on the site you can even support Linux development
by buying a Linux Online! coffee mug featuring Tux, the Linux penguin.

Tux, the Linux Penguin
Speaking of Tux, the official logo of Linux is a penguin (please see the end of
the last section). To find out about him, try going to www.isc.tamu.edu/
~lewing/linux, which is the site of Larry Ewing, his creator.

Linux Online in Canada
The www.linuxcanada.net site is recommended. Its major attraction is that
it has many direct links to other excellent Internet sites. Its categories are
Linux Books, Linux User Groups, Linux Facts, Linux Discussions, Linux
News, Biz Press, and Linux Software.

Linux Online in Europe
Also recommended is www.linux.eu.org, designed to help European users
find Local UserGroups (LUGs), information, and other Linux sites in their
own language and/or country. There are “national flag” links from this
site to sites in more than 30 European nations.

Software Sources
The following sites, which can be accessed from the two just-noted sites,
bear special mention because they are reputable sources for Linux soft-
ware and applications. All have a similar structure (articles, software, links
to other sites, and so on):

Linux Documentation and Support 457

■■ http://freshmeat.net
■■ http://slashdot.org (Its motto: “News for Nerds. Stuff that

matters.”)
■■ www.kernel.org (“The Linux Kernel Archives,” the quintessential

source for the latest Linux kernels.) If you want, you can also
investigate www.ibiblio.org. Once you get there, click the “Enter the
Navigator” button to find other Linux kernels and kernel
information.

X Window System Sources
The following three sites deal with X Window System (explained in detail
in Chapter 14, “The Linux X Window System”).

The XFree86 Project, Inc. atwww.xfree86.org is the master Web site for
X Window System information and downloads. On that site, you will
learn what XFree86 is, what the latest version is, and what mirror
sites you can access (if necessary). It will also tell you the latest
X Window system news and provide documentation and
other information. You can find an FTP download site at
ftp://ftp.xfree86.org/pub/XFree86/ and an HTTP download
site at http://ftp.XFree86.org/pub/XFree86/.

www.kde.org/ is the Web site for the K Desktop Environment (KDE), one
of the more sophisticated X Window managers (mentioned in
Chapter 14). The site is organized similarly to others: General
Information, Worldwide Sites, Developer Information, Events,
Supporting KDE, FAQs, Downloads, and so on.

www.gnome.org/ is the Web site for the GNU Network Object Model
Environment (GNOME), considered by many to be the modern X
Window manager. Based entirely on open-source (in other words,
free) software, it has links to the GNOME software and Manifesto
sites and is otherwise structured like the two previous sites.

Linux Newsgroups
USENET newsgroups are a worldwide system of computers that store,
update, and exchange collections of discussion text files organized by cate-
gory. Newsgroups are a means of public discussion. Their articles/messages
look like e-mail, but they can potentially be read by millions of people all

458 Installing and Administering Linux 2E

over the world. Newsgroup articles are distributed via news servers, which
contain databases of articles and are operated by Internet service providers
(ISPs), schools, universities, and companies.

Newsreaders for Accessing Newsgroups

You will have to get newsreader software, such as PAN (http://pan
.rebelbase.com/download.html), that also supports offline newsreading,
multiple connections, and extra features (including those for alt.binary
files). It is available in several formats (RPMs, tarballs, and so on) on the
Web site, but it is also found packaged with the major Linux distributions.
Documentation and other resources can be found on the Web site.

Once your newsreader is configured to read newsgroups, you should be
able to click on the various newsgroup names to read them. If that does not
work, you might have to contact your ISP for further advice on how to
access USENET.

Here are a few Linux-oriented USENET newsgroups:

comp.os.linux.advocacy. The benefits of Linux compared to other OSs.

comp.os.linux.announce. All announcements that are relevant to the
Linux community: new software, new documentation, warnings
about bugs and security holes, notices about user group meetings,
and so on.

comp.os.linux.answers. For posting Linux FAQs, HOWTOs,
READMEs, and other documents.

comp.os.linux.development.apps. Questions and discussions
regarding the writing of applications for Linux and the porting of
applications to Linux.

comp.os.linux.alpha. Linux on Digital Alpha machines.

comp.os.linux.hardware. Questions and discussions specific to Linux
visà-vis a particular piece of hardware.

comp.os.linux.m68k. Intended to further interest in, and development
of, porting Linux to Motorola’s 680x0 architecture.

comp.os.linux.powerpc. Linux running on PowerPC microprocessors.

comp.os.linux.networking. Questions and discussions relating to
networking or communications, including Ethernet boards, serial
communications, SLIP, and so on.

comp.os.linux.x. Questions and discussions relating to X Window
System, version 11, compatible software including servers, clients,

Linux Documentation and Support 459

libraries, and fonts running under Linux will be directed to this
newsgroup.

comp.windows.x.i386unix. XFree86 issues that are not unique to Linux.

comp.os.linux.development.system. Questions and discussions
regarding the Linux OS development: kernel, device drivers, and
loadable modules.

comp.os.linux.development.apps. Writing Linux applications; porting
applications to Linux.

comp.os.linux.setup. Questions and discussions relating to Linux
installation and system administration.

comp.os.linux.misc. Questions and discussions relating to Linux but
not covered by a more specific Linux newsgroup.

Other miscellaneous Linux newsgroups are as follows:

alt.uu.comp.os.linux.questions han.sys.linux

aus.computers.linux hannet.ml.linux.680x0

dc.org.linux-users it.comp.linux.pluto

de.alt.sources.linux.patches maus.os.linux

de.comp.os.linux.hardware maus.os.linux68k

de.comp.os.linux.misc no.linux

de.comp.os.linux.networking okinawa.os.linux

de.comp.os.x tn.linux

ed.linux tw.bbs.comp.linux

fido.linux-ger ucb.os.linux

fj.os.linux uiuc.sw.linux

fr.comp.os.linux umich.linux

Other newsgroups you might also try include the following:

■■ alt.linux presents alternative views of Linux (in addition to the
following):

■■ alt.linux.redhat (alternative views of the Red Hat Linux distribution)
■■ alt.linux.stormix (alternative views of Storm Linux from Stormix

Technologies)
■■ alt.linux.slakware (alternative views of the Slackware Linux

distribution)

460 Installing and Administering Linux 2E

■■ alt.linux.sucks (alternative views of Linux)
■■ alt.linux.storage.* (one group; alternative views of Linux and

various hdd storage issues)
■■ alt.linux.sux (more alternative views of Linux)
■■ linux.appletalk is the place for discussions regarding the use of

Linux and Apple’s LocalTalk networking protocol.

Browsing to Read Newsgroups

If you want to try to browse USENET for articles and you do not have a
newsreader installed, then go to http://groups.google.com/ (or go to the
Google search engine at www.google.com and click the “Google Groups”
link). This site used to be called Deja News www.deja.com until Google
acquired it and changed the Web site name to Google Groups. At the top of
the site, you can Search Groups by providing a name or Browse Groups
according to categories.

Linux mtools Sites
The mtools utilities enable easier manipulation of DOS floppy diskettes
by using newer commands that are unlike the somewhat stilted, older-
style UNIX commands (see Chapter 5, “Using Files in Linux”). The follow-
ing sites provide information, software, and services regarding mtools:

■■ www.tux.org/pub/knaff/mtools/ (U.S. Web site)
■■ http://mtools.linux.lu/ (European Web site)
■■ ftp://www.tux.org/knaff/mtools/
■■ ftp://ibiblio.unc.edu/pub/Linux/utils/disk-management/

Exercises

1. Dial in to the Internet or activate the Internet browser on your
system. Go to the Linux Web site at www.linux.org. Navigate around
and become familiar with this site. When did Linus Torvalds release
Version 1.0 of the Linux kernel? What is the current featured version,

Linux Documentation and Support 461

and when was it released (this question is tricky; you might have to
find a link to another site)?

2. Go to the Linux Documentation Project site at www.linuxdoc.org.
What is the date of this master copy of the LDP Web site? What is the
date of the mirror copy of the Web site located nearest to your
location? (Hint: go up to LDP worldwide at the top-left corner of the
home page and click the Mirrors link.)

3. Go to the Web site of the Linux Journal at www.linuxjournal.com and
navigate it until you have familiarized yourself with the site. What is
the journal’s slogan?

4. Go to the freshmeat.net Web site at http://news.freshmeat.net. What
is the name of the first software package listed at the top of their
Web site, beneath the freshmeat search engine? What is the title of
the first editorial in the right-hand side frame?

5. Go to http://groups.google.com/ (formerly www.deja.com, until
Google acquired them and changed the Web site name to Google
Groups). At the top of the site, under Search Groups, type
comp.os.linux.setup in the search field and click Google Search.
What is the date and title of the most recent message?

See Appendix B for answers.

Quiz

1. Provide the Internet addresses for the best-known Linux Web site
and the best-known X Window System Web site.

2. What is the name of the official Linux penguin?

3. What are USENET newsgroups? What two ways are there to access
them?

4. Who is working on developing free, high-quality documentation for
the GNU/Linux operating system?

See Appendix C for answers.

A P P E N D I X

A

Command Summary

463

Logging Off and Shutting Down

COMMAND DESCRIPTION

Ctrl-D Log off the Linux system (or the current shell)

exit Log out from the Linux system (or the current shell)

logout Log off the Linux system (or the current shell)

shutdown Shut down the system by disabling all processes; requires the
user to be a root user

Use -h (halt) option in root user mode for total shutdown;
cold boot required to restart system

Use -r (reboot) option for (warm) reboot

Use now or two digit number (“time in minutes”)
arguments with either option (for immediate or delayed
action)

464 Installing and Administering Linux 2E

Directories

COMMAND DESCRIPTION

mkdir Make a new directory. Supply directoryname as an argument.

cd Change to another directory; the default (no option/argument
supplied) is the $HOME directory; otherwise, supply an exist-
ing directoryname as an argument.

rmdir Remove/delete a directory (beware of files starting with dot);
supply a directoryname as an argument.

rm Remove a file; supply a filename as an argument.

The -R option removes the directory and all files and
subdirectories recursively.

pwd “Print working directory” to the terminal screen (that is, tell
user what directory they are in).

ls List files; default (no options/arguments) displays names of all
files and directories except hidden files.

Use the -a option for all (including hidden) files.

Use the -i option to display respective inode numbers.

Use the -l option for long listings.

Use the -d option for Directory information only.

Use the -r option for Reverse alphabetic listing.

Use the -t option to sort by “time when entry was changed.”

Use the -C option for Multicolumn format display.

Use the -R option for Recursive listing.

Use the -F option to place a / (backslash) after each directory
name and an * (asterisk) after each executable file.

Command Summary 465

Basic File Management

COMMAND DESCRIPTION

cat List file contents (concatenate) to the terminal screen.

Or, with the output redirection symbol (>), create a new file
(for example, cat> newfile<Enter>).

Then, use Ctrl-D to end input to the new file.

chmod Change permission mode for files or directories.

Use r, w, x symbolic permissions for read, write, and execute.

Use + (plus), - (hyphen or minus), or = (equals sign) to grant,
revoke, or specify exact permissions.

Use u, g, o, a to give permissions to user, group, others, and
all, respectively.

Can also use octals (in other words, numerics): 4 = read, 2 =
write, and 1 = execute.

Linux sums permissions: the first is user, the next is group, and the last
is other. For example, chmod 746 filename gives these permissions: user r, w,
x; group r; and others r, w.

NOTE

COMMAND DESCRIPTION

chown Change the owner of a file (for example, chown ownername
filename)

cp Copy file; supply filename as argument

del Delete files with prompting; rm (see above) deletes files with
no prompting

mv Move and/or rename file; supply filename(s) as argument(s)

. (start at) Current directory

.. (start at) Parent directory

/string Find string, proceeding in forward direction

?string Find string, proceeding in backward direction

- - Move backward - pages

- ? Move forward - pages

rm Remove (delete) files; supply filename(s) as argument(s)

Use the -r option to remove the directory and all files and
subdirectories.

466 Installing and Administering Linux 2E

Basic File Management, Continued

COMMAND DESCRIPTION

head Print first several lines of a file; supply filename as an argument

tail Print last several lines of a file; supply filename as argument

wc Report the number of specified elements in a file

Use -l option to count and report number of lines

Use -w option to count and report number of words

Use -c option to count and report number of characters

If you use no options, wc displays lines, words, and characters.

su Switch user; supply username as argument; will likely have to
supply password for authentication

id Display user ID environment and how it is currently set

tty Display the active device

Useful in X Window System because you can create several
pts devices, and it is handy to know which one is active. The
whoami command provides the same function.

Advanced File Management

COMMAND DESCRIPTION

banner Display a banner

Also redirect a banner to another terminal, nn, by specifying
>/dev/ttynn

cal Calendar command (cal [month] year)

diff Show differences between two files

find Find files anywhere on disk; specify location by path (searches
all subdirectories under specified directory)

Syntax: find (path expression action)

Examples:

find / -name "*.txt" -print

find / -name "*.txt" -exec li -l {} \;

Executes li -l where names found are substituted for {}.

The ; (semicolon) indicates end-of-command to be executed.
The \ (backslash) removes its usual interpretation as a
command continuation character.

Command Summary 467

Advanced File Management, Continued

COMMAND DESCRIPTION

find Use -name fl option/argument to find filenames matching
fl criteria

Use -user username option/argument to find files owned
by user username

Use -size +n option/argument to find files larger or smaller
than n blocks; can also use -n to find files smaller than n
blocks

Use -perm num option/argument to find files whose access
permission modes match num

Use -exec commandname option/argument to execute a
command, using as input the results of the find command

Use -ok option to execute a command, interactively using as
input the results of the find command

Use -o (logical OR) option to combine find with another
command name

Use -print option to display results of find; this command
is usually included

grep Search for a pattern within specified files (for example, grep
pattern filenames); pattern can include regular expressions

Use -c option to count lines with matches but do not list

Use -l option to list files with matches

Use -n option to list line numbers with matching lines

Use -v option to find files without pattern

Expression metacharacters

Use square brackets [] to match any one character from set
or range specified inside the brackets

Use the Ctrl symbol (^) to match beginning of line when ^
begins the pattern

Use the dollar sign ($) to match end of line when $ ends
the pattern

Use single dot (.) to match any single character (same as ? in
shell)

Use the asterisk (*) to match zero or more occurrences of a
preceding character

continues

468 Installing and Administering Linux 2E

.* (dot asterisk) is the same as * (asterisk) in the shell.NOTE

Advanced File Management, Continued

COMMAND DESCRIPTION

sed Stream (text) editor; used with editing flat files

sort Sort and merge files

Use -r option to list in reverse order

Use -u option to keep only unique lines

Editors

COMMAND DESCRIPTION

vi (or vim) On-screen text editor

emacs On-screen text editor (GNU Emacs for X Window system)

Shells, File Descriptors, Redirection, Command Piping, etc.

COMMAND DESCRIPTION

< File Descriptor—Input Redirection

(read) Example:

$ commandname < filename

“read input for commandname from filename”

> File Descriptor—Output Redirection (Destructive)

(write) Example:

$ commandname > filename

“write output for commandname to filename, overwriting the
filename’s contents”

>> File Descriptor—Output Redirection (Non-destructive)

(append) Example:

$ command >> file

“append output from commandname to the end of filename”

Command Summary 469

Shells, File Descriptors, Redirection, Command Piping, etc., Continued

COMMAND DESCRIPTION

2> File Descriptor—Error Redirection (Destructive)

Example:

$ commandname 2> filename

“write errors from commandname execution to filename”

2>> File Descriptor—Error Redirection (Non-destructive)

Example:

$ commandname 2>> filename

“append errors from commandname execution to end of
filename”

Other redirection examples:

$ commandname < infilename > outfilename 2>
errorfilename

$ commandname >> appendoutfilename 2>>
appenderroroutfilename < infilename

; Command delimiter/terminator—used to string commands
together on a single line

| Pipe/pipeline output from one command to be input to the
next command

Example:

ls | cpio -o > /dev/fd0

“pass the results of the ls command to the cpio command;
send final output to first floppy disk”

\ Continuation character—to continue commands on a second
(or more) line; will be prompted with > (secondary prompt)
for command continuation

tee Reads standard input and sends standard output to both stan-
dard output and a file

Example:

$ ls | tee ls.save | sort

ls output goes to ls.save and is also piped to the sort
command

470 Installing and Administering Linux 2E

Metacharacters

COMMAND DESCRIPTION

? Match any single character

[abc] Match any character from the list “abc”

[a-c] Match any character from the list range a to c

! Don’t match to any of the following characters

Example:

$ echo [!tn]*

“echo all filenames that do not begin with t or n”

; Command delimiter/terminator; used to string commands
together on a single line

& Command(s) preceding the ampersand character are to be run
in background mode

Comment character; put at left-hand side of comment lines

\ Remove special meaning of (in other words, do not interpret)
the following character

" Interpret only $, ' (back quote), and \ characters between the
quotes

` Set value of variablename to the results of command execution

Example:

$ now = `date`

“set the value of the variable now to the current results of the
date command

$ Preceding variablename indicates the value of the variable

Command Summary 471

Variables

COMMAND DESCRIPTION

= Variable substitution to set the value of a variable

Example:

$ d = "day"

“set the value of the variable d to the specified value day”

Command substitution; set the value of the variable to be the
results of a command

Example:

$ now = 'date'

“set the value of the variable now to the current result of the
date command”

HOME Home directory

PATH Directory paths to be checked by the shell when searching for
commands

SHELL Shell to be used by default

TERM Terminal being used

PS1 Default primary prompt character, usually $ or #

PS2 Secondary prompt character, usually >

$? Return the status code of the last command executed

set Display current local variable settings

export Export variables so that they are inherited by child processes

env Display inherited variables

echo Display the following message back to the terminal screen

Examples:

$ echo HI or $ echo $d

“display the word HI”; “display the value of the variable d”

\c Turn off carriage returns (by placing \c at the end of the message)

\n Print a blank line (by placing \n at the end of the message)

472 Installing and Administering Linux 2E

Tapes and Floppy Diskettes

COMMAND DESCRIPTION

fdformat Format a floppy diskette

backup Back up individual files

Use -i option to read file names from standard input

Use -v (verbose) option to list files as they are backed up

Example:

$ backup -iv -f/dev/rmt0 filename1, filename2

Use -u option to backup file system at the specified level

Example:

$ backup -level -u filesystem

Use | (pipe) to list files to be backed up into command

Example:

$ find . -print | backup -ivf/dev/rmt0

Where you are already in the directory that is to be backed up

restore Restore from backup

Use -x option to restore files created with backup -i

Use -v option to list files as they are restored

Use -T option to list files stored on tape or floppy diskette

Use -r option to restore file system created with backup -
level -u

Example:

$ restore -xv -f/dev/rmt0

cpio Copy to and from an I/O device. Destroy all data previously on
tape or floppy diskette. For input, must be able to place files in
the same relative (or absolute) path name as when copied
(can determine path names with the -it option). For input, if
file exists, compare last modification date and keep most
recent (can override with the -u option).

-o Output

-i Input

-t Table of contents

Command Summary 473

Tapes and Floppy Diskettes, Continued

COMMAND DESCRIPTION

-v Verbose

-d Create needed directory for relative path names

-u Unconditional to override last modification date

Example:

$ cpio -o > /dev/fd0

filename1

filename2

<Ctrl>-d

or $ cpio -iv filename1 < /dev/fd0

tar Alternative utility to back up and restore files

Transmitting

COMMAND DESCRIPTION

mail Send and receive mail. With username argument, send mail to
that user. Without username argument, display your mail.
When processing your mail, at the ? prompt for each mail
item, you can use the following subcommands, too:

d Delete

s Append

q Quit

<Enter> Skip

m Forward

uucp Copy file to other UNIX system (UNIX-to-UNIX copy)

uux Execute on a remote system (UNIX-to-UNIX execute)

474 Installing and Administering Linux 2E

System Administration

COMMAND DESCRIPTION

kill PID Kill the batch process with the specified PID number

kill-9 PID The “unconditional kill”

mount Associate logical volume to a specified directoryname

Example:

$ mount device directoryname

umount Disassociate file system from directoryname

ps -ef Show status of process(es)

Miscellaneous

COMMAND DESCRIPTION

banner Display specified characters as a banner

date Display current date and time

nice Assign lower priority to the following specified commandname

Example:

$ nice 'ps -f

passwd Modify current password (root user can supply username
argument to change username’s password)

sleep n System to remain dormant for specified number of seconds

stty Show and/or set terminal settings

touch Create zero length file; or

update modification time

startx Invoke X Window System manager

wall Send message to all logged-in users

who List users currently logged in (whoami identifies this user)

man With commandname as argument, display manual pages for the
specified commandname

Command Summary 475

System Files

COMMAND DESCRIPTION

/etc/group List of user groups

/etc/motd Message of the day; usually displayed at login

/etc/passwd List of users and default user information (for example,
password, home directory, userid, and groupid)

Can prvent password hacking by editing to remove!
(password). System-wide user profile executed at login

/etc/profile Can override variables by resetting in the user’s profile file

Shell Programming Summary

Shell Variables

COMMAND DESCRIPTION

Variablename=string Set variable value to be string; remember, no
spaces between the variablename, equals sign,
and the designated string

Enclose spaces with double quotes

Variablename=string Special characters in the string must be enclosed
by single quotes to prevent substitution

Piping (|), redirection (<, >, >>), and & symbols
are not interpreted.

$variablename Provide value of variablename to command
sequence

echo $variablename Display value of variablename to terminal
screen

Example:

$ echo $variablename

$HOME Home directory of user

$MAIL Mail filename

continues

476 Installing and Administering Linux 2E

Shell Variables, Continued

COMMAND DESCRIPTION

$PS1 Default primary prompt character, usually $ or #

$PS2 Default secondary prompt character; usually > but
can be changed by the user

$PATH Default search path (when searching to invoke
commands)

$TERM Terminal type being used

export Export variables to the environment

env Display environment variables settings

${variablename:-string} Give value of variablename in a command; if
variablename is null, use string instead

$1 $2 $3 . . . Positional parameters for variablename passed
into the shell script

$* Used for all arguments passed into the shell script

$# Number of arguments passed into the shell script

$0 Name of the shell script

$$ Process ID (PID)

$? Last return code from a command

Shell Commands

COMMAND DESCRIPTION

Comment designator; use at left-hand side of line

&& Logical AND. Means run the command following the && only
if the command preceding the && succeeds (in other words,
if the preceding command had a return code = 0).

|| Logical OR. Means run the command following the || only if
the command preceding the || fails (in other words, if the
preceding command had a return code < > 0).

for loop Specify a command or a series of commands to be carried
out as long as a variable or a filename meets certain value
specifications.

Example:

Comment - Begin the loop

Command Summary 477

Shell Commands, Continued

COMMAND DESCRIPTION

for variable/file range

do

cp $a textdir/$a

done

#Comment - the loop is ended

Example:

Comment - Begin the loop

for a in *.doc

do

commandname(s)

done

#Comment - The loop is ended

if-then-else The user is allowed to select from alternatives based on the
result of the execution of a command. The else portion is
optional.

Example:

Comment - Begin the loop

if

commandname

then

commandname (alternative 1)

else

commandname (alternative 2)

fi

Comment - The loop is ended

read Read from standard input

shift Shift arguments 1–9 one position to the left and decrement
number of arguments

continues

478 Installing and Administering Linux 2E

Shell Commands, Continued

COMMAND DESCRIPTION

test Used for conditional test; has two formats:

1. $ if test expression

Example:

$ if test $- -eq2

2. $ If [expression]

Example:

$ if [$# -eq 2]

Please Note: Spaces are required

Operators:

-eq =

-lt <

-le =<

-ne < >

-gt >

-ge =>

String operators:

= Equal

!= Not equal

-z Zero length

File status (for example, -opt file 1)

-f Ordinary file

-r Readable by this process

-w Writable by this process

-x Executable by this process

-s Nonzero length

Command Summary 479

vi Editor

Shell Commands, Continued

COMMAND DESCRIPTION

while loop Enables the user to execute (or not) a command depending
on the exit status (or results) of another command

Example:

#Comment - Begin the loop

while commandname(s)

do

commandname(s)

done

#Comment - The Loop is ended

Entering vi

COMMAND DESCRIPTION

vi filename Display the specified file (in other words, bring it into the
buffer) for editing

vi filename1 Edit the files consecutively (via :n)
filename2

.exrc File that contains the vi profile

wm=nn Set wrap margin to nn

Enter at a point specified other than at the first line by adding:

+ (Enter at the last line)

+ n (Enter at line n)

+ /pattern (Enter at the first occurrence of pattern)

:n Next file in stack

:set all Show all options

:set nu Display line numbers (off when set nonu)

:set list Display control characters in file

:set wm=n Set wrap margin to n

:set showmode Set display of the word INSERT when in insert mode

480 Installing and Administering Linux 2E

Reading in, Writing in, and Exiting vi

COMMAND DESCRIPTION

:w Write buffer contents

:w filename2 Write buffer contents to filename2

:w >> file2 Write buffer contents to the end of filename2

:q Quit this editing session (no writing of buffer contents if
q is used alone)

:q! Quit this editing session and discard any changes

:r filename2 Read filename2 contents into buffer following the
current cursor position

:r! commandname Read the results of commandname shell command
following the current cursor position

:! Exit shell command (filter through command)

:wq or ZZ Write buffer contents back to the file and then quit this
editing session

Navigating in vi

COMMAND DESCRIPTION

h, l Move one character position to the left; one character position
to the right

k or Ctrl-p Move the cursor to the character position immediately above
the present position

j or Ctrl-n Move the cursor to the character position immediately below
the present position

^, $ Move the cursor to the beginning of the current line; to the
end of the current line

w, b Move the cursor one word position to the right; one word
position to the left

Enter or + Move the cursor to the beginning of the next line

- Move the cursor to the beginning of the previous line

G Move the cursor to the beginning of the last line of the buffer
contents

Command Summary 481

Cursor Movement in vi
Can precede cursor movement commands (including the cursor arrow)
with the number of times to repeat; for example, 9 <right arrow>
moves right 9 characters.

COMMAND DESCRIPTION

0 Move the cursor to the first character in the line

$ Move the cursor to the last character in the line

^ Move the cursor to the first nonblank character in the line

fx Move the cursor to the right to character x

Fx Move the cursor to the left to character x

tx Move the cursor to the right, to the character preceding x

Tx Move the cursor to the left, to the character preceding x

w Tab one word (nw = n tab word) (punctuation marks are con-
sidered to be words)

b Backtab one word (punctuation marks are considered to be
words)

B Backtab one word (ignore punctuation marks)

e Tab to the last character of the next word (punctuation marks
are considered to be words)

E Tab to the last character of the next word (ignore punctuation
marks)

(Move the cursor to the beginning of the current sentence

) Move the cursor to the beginning of the next sentence

{ Move the cursor to the beginning of the current paragraph

} Move the cursor to the beginning of the next paragraph

H Move the cursor to the first line on the screen

M Move the cursor to the middle line on the screen

L Move the cursor to the last line on the screen

Ctrl-f Scroll forward one screen

Ctrl-d Scroll forward half screen

Ctrl-b Scroll backward one screen

continues

482 Installing and Administering Linux 2E

Cursor Movement in vi, Continued

COMMAND DESCRIPTION

Ctrl-u Scroll backward half screen

G Go to last line in file

nG Go to line n

Ctrl-g Display the current line number

Searching and Replacing in vi

COMMAND DESCRIPTION

/pattern Search for the pattern in the forward direction

?pattern Search for the pattern in the backward direction

n Continue/repeat the search in the same direction

N Continue/repeat the search in the opposite direction

Adding Text in vi

COMMAND DESCRIPTION

a Add text after the cursor (end with <Esc>)

A Add text at the end of the current line (end with <Esc>)

i Add text before the cursor (end with <Esc>)

I Add text before first nonblank character in the current line

o Add a line following the current line

O Add a line before the current line

<Esc> Return from insert mode to command mode

Deleting Text in vi

COMMAND DESCRIPTION

Ctrl-w Undo entry of current word

@ Kill the insert on this line

x Delete the current character

Command Summary 483

Deleting Text in vi, Continued

COMMAND DESCRIPTION

dw Delete to the end of the current word (observe punctuation)

dW Delete to the end of the current word (ignore punctuation)

dd Delete the current line

D Erase to the end of the same line (same as d$)

d) Delete the current sentence

d} Delete the current paragraph

dG Delete from the current line through to the end of the buffer

d^ Delete to the beginning of the line

u Undo last change

U Restore the current line to state it was in before the
modification

Replacing Text in vi

COMMAND DESCRIPTION

ra Replace the current character with an a

R Replace all characters overtyped until <Esc>

s Delete the current character and append text until <Esc>

s/s1/s2 Replace s1 with s2 (but only in the same line)

S Delete all the characters in the line and append text

cc Replace all the characters in the line (same as S)

ncx Delete n text objects of type x, where x can be:

w, b - words

) - sentences

} - paragraphs

$ - to the end of the line

^ - to the beginning of the line

<Enter> - append mode

C Replace all the characters from the present cursor position to
the end of the line

484 Installing and Administering Linux 2E

Moving Text in vi

COMMAND DESCRIPTION

p Paste the last text deleted after the present cursor position (xp
transposes two characters)

P Paste the last text deleted before the present cursor position

nYx Yank n text objects of type x

"ayy Use named registers for moving, copying; cut and paste with
"ayy command for register a (use registers a-z)

Then paste with the "ap command

A P P E N D I X

B

Exercise Answers

485

Chapter 3

10. Yes. The name of this node is uname invocation, which is the same
as what appeared adjacent to Next on the date page.

11. The name of the most-previous node is date invocation, which
coincidentally is the first date page you encountered.

15. Linux’s shell responds with a usage message, specifying options
and other arguments for mount.

16. This time, Linux’s shell responds with an invalid option diagnosis
followed by the same usage message that appeared for Exercise 10
when you invoked mount with its help argument.

20. We hope you noticed something peculiar about September. The
shortening of September 1752 was decreed by Pope Gregory to bring
the calendar back into sync with Earth’s rotation. The Pope’s
decision caused turmoil at the time, because many people believed
he was trying to take away 11 days of their lives.

486 Installing and Administering Linux 2E

21. August 1999 and August 99 are not the same. The year 99 is taken
literally as the second-to-last year of the first century AD, not a two-
digit form of the year 1999. Remember to be specific about the
century when asking about the calendar.

24. Chances are that banner did not work when invoked by itself. You
will probably have to specify its directory path, too—something like
$ /usr/games/banner . . . or so on.

Chapter 4

6. Using the -a option results in a listing of all files in the directory,
including the hidden files that are not normally displayed when
using the ls command alone. Using the -R option results in a
recursive listing of all nonhidden files in the directory structure,
from the current working directory to the bottom.

8. Because the two are fairly new directories and have had little or no
activity, both are sized at 1,024 bytes (that is, two times the size of the
basic 512-byte directory building block).

10. Because the two are new zero-length files, both are sized at 0 bytes.
Regarding inode numbers, because both were created at nearly the
same time in the same part of the directory structure, their numbers
should be similar and close but still different. Despite their zero-byte
size, they are still given inode numbers. Meanwhile, your answer
might vary according to the workstation or terminal.

13. The Access time and date will be changed any time the directory or
file is so much as viewed. The Modify and Change dates and times
will only be changed when directory contents or inode structure are
changed.

14. The rmdir command does not work and returns the following:

rmdir: mydir: Directory not empty.

Chapter 5

21. The file is difficult to read because it is longer than one screen and
scrolls past the screen very quickly. When you use the more or less
commands, the file is then listed one screen at a time and you can

Exercise Answers 487

move ahead (with less, ahead and back) at your own pace.
Therefore, it is a lot easier to read.

25. You cannot remove the directory because it is not empty. After you
remove the files from goodstuff, you can remove the directory. Note
that if a directory contains only the .. and . special files, it is
considered empty, so removal is not impeded.

28. The name of the command is date, and the command is found in
/usr/bin.

29. At the top of the date command’s first page, you read that the
information has been taken from the sh-utils.info file and that the
node name is date invocation. The name of the next node is uname
invocation.

Chapter 6

3. Creating zero-length files.

4. There is no difference in the file information. Both correspond to the
same physical file; it is just that the file has two different filenames.
You can check this information by executing ls -li to get the inode
number for each filename. You will see that each file has the same
inode number.

An ordinary file has a link count of 1. A file with a single link to it
has a link count of 2. Both the original mycal file and its link have
link counts of 2.

5. The output is identical to the output of mycal, which is a display of
the calendar of the current month. You cannot execute the mycal
command. You will get a reply from Linux of bash:
myscripts/mycal: Permission denied. Changing the
permissions to read-only on the linked filename is the same as
changing permissions on the file to the (original) file itself.

6. No, removing the linked filename does not remove the original file
to which it is linked. Removing home_mycal simply removes the
directory entry in the myscripts directory that refers to homemycal
and changes the link count from 2 to 1. The ./myscripts/mycal file
remains intact. If you execute an ls -l on the original file, however,
you will see that the link count is reduced.

488 Installing and Administering Linux 2E

9. You cannot execute mycat against the .bash_profile file because you
have removed the user’s x permission. Linux responds with
bash:./mycat: Permission denied.

13. The simple $ ls myscripts works because the user still has read
permission on the myscripts directory, and that is all that ls needs.
$ ls -l myscripts, however, which requires both read and
execute to work, does not work in this case because the x permission
has been removed from that directory. Instead, you get

ls: myscripts/mycat: Permission denied

ls: myscripts/mycat: Permission denied

14. mycal will not execute because the x permission is needed to access
any files, including executables, in a directory.

15. Both x and w permissions are needed to remove something from a
directory.

Chapter 7

1. The output of ls gives the names of the non-hidden files and
subdirectories in only the current working directory. The output of
ls * gives the names of the files and subdirectories in the current
working directory and all subdirectories recursively down the
directory tree from the current working directory. ls * does not
display hidden files, but ls -a does. ls -a does not display the
contents of subdirectories, but ls * does.

5. You might have, because the command is case sensitive. If you have
files or directories beginning with upper-case letters from C through
T, they are listed as well as all files and subdirectories recursively
below them, no matter what they begin with and no matter whether
they are uppercase or lowercase.

6. All three methods work because the shell always disables wildcards,
no matter what quoting method is used.

9. The output of echo '* $n `ls`' is * $n `ls` because single
quotes disable everything between them.

The output of echo "* $n `ls`" is * hello filea because
double quotes disable only variable and command substitution
variables.

Exercise Answers 489

The output of echo * \$n \`ls\` is * $n `ls` because a
backslash disables the character following it. Note that we used a
backslash in front of each back quote.

The output of echo * $n `ls` is filea hello filea.

The output of echo * $n "ls" is filea hello ls.

16. No. The word count, which is essentially the number of files found
in the directory, is higher in Exercise 16 by one because by the time
the count is taken in Exercise 16, the file created in Exercise 14 (temp)
is included.

17. Yes, the answer is what you expect and is identical to the file count
in Exercise 14. The file created in Exercise 15, temp, was removed
before Exercise 17—so the word count and file count numbers
should be the same.

18. Yes, the number is displayed on the screen and is the same number
as found in Exercises 13 and 10. And yes, junk2 has the right
filename listing.

22. No, they do not. The output from one does not have to be pipelined
to any other. A minor relation might be drawn between the output of
pwd and ls because the files and directories listed by ls depend on
the current working directory. But regardless of where in the
structure you find yourself, there will be some output from ls.
Consequently, it is considered a minor relationship.

Chapter 8

6. We anticipated that you listed more entries that began with l than
files. That is because the ls also includes subdirectories (which, in
turn, includes all their contents, not just those that begin with l).

Chapter 9

8. You probably noticed that the number of coded messages displayed
by diff coincides with the number of changes you were asked to
make to file2. That is not always exactly the case, especially if you
combine some changes or press Enter once or twice in addition to
the typed changes.

490 Installing and Administering Linux 2E

10. All the answers should be approximately, if not exactly, the same and
should be in the 155KB range.

12. Again, unless the speed of compression is changed in individual
cases, all the answers should be approximately, if not exactly, the
same. Based on default parameters, the percentage of compression
should be about 72 percent. The name of the file is mymagic.gz unless
the original file name was modified beforehand. The size of the
newly compressed file—again, if no changes have been made to
the speed of compression—should be approximately 45KB. Finally,
there should be agreement on the percentage of compression: the
size of the compressed file, compared with the size of the original
uncompressed file, should reflect approximately 72 percent
compression by gzip.

15. Again, even if the default speed of compression settings have been
changed for whatever reason, the size of the newly uncompressed
mymagic file should be the same as the original mymagic file.

Chapter 11

7. You must use double quotes here because of the space between the
words.

8. You have to use the quotes around the right angle bracket.
Otherwise, the shell interprets the symbol as a redirection.

10. Your home directory will have reverted to the default /home/username
directory. Why? Changing the variable from the command line sets
the value for only the length of the Linux session, which ends when
you log out. And, after you log out, the changed variable is removed
from your shell variables. When you log back in, the shell adopts the
home directory defined in your profile.

16. All the answers are “yes.” The message displays at login (using the
dot does not require logging in, so you would not have seen the
message), the primary prompt reflects whatever directory you were
in, and dir returns the same information as ls -l.

17. This time, the answers are “no” to all the questions. The subshell,
which is a child process to the login shell, does not inherit the
variables, aliases, and other functions. In fact, you get a command
not found error message to your attempt at invoking dir. That is

Exercise Answers 491

why we move along to Exercise 4 to set up some additional
functions so that child processes are as customized as the login shell.

20. Now, the variables, functions, and aliases also apply to the subshell.
The answers to the questions are “yes.”

Chapter 12

2. The PID of the subshell is different from the PID of the login shell
because a child PID is always different from its parent PID. Check
this fact by comparing a child PID with its PPID. They should be
different, and the child’s PPID should be identical to the parent’s PID.

4. You will be logging out of the system. It is handy to check where you
are from time to time so that you can avoid accidental logouts.

7. In the subshell, the value of x is “null” and is not shown in the set
command listing.

10. No, because the subshell has its own environment and its variable
values are not passed back to its parent process.

12. You find yourself back in the directory in which you started. When
sc1 is invoked, it is invoked in a subshell, which has its own
environment. In the subshell, then, you as the user are moved into
the root directory. But then the command finishes, the subshell closes
(thus ending the visit to the root directory), and you are returned to
the login shell process, which is in your original directory
(/home/username).

14. The values of both var1 and var2 are “null” (that is, they have no
value). Script sc2 runs in a subshell. When it finishes, control is
passed back to the parent process. But variables and values set in the
subshell are not passed back to the parent process. The exporting
performed in the subshell benefits child processes to that subshell
but not to the parent of the subshell.

15. This time, the value for var1 is hello and the value for var2 is
your login name. Because the values for the variables were set in the
current shell and therefore in the current process environment, they
remain current and verifiable by the echo command. Setting them
with sc2 is just like setting them at the command line by typing
them in manually.

492 Installing and Administering Linux 2E

Chapter 14

1. The answers to these questions vary with each Linux distribution. In
fact, they vary from version to version of any single Linux
distribution. Some distributions use fvwm or fvwm95. Some use KDE
or GNOME. Typically, the window manager automatically displays an
xterm window of some sort, and the window is usually called
something similar to xterm.

8. Generally, no items appear grayed (meaning unavailable for the
particular window) because this menu is, after all, a window
operations menu. Occasionally, though, you might notice that some
items are unavailable in a window, depending on the state of the
window or the commands that have already been invoked in or on
the window.

10. No, they do not work unless the window operations menu is
displayed. Otherwise, they appear as characters typed on a
command line.

12. The xterm window expands to cover the entire root window,
covering any other windows that might have been displayed with
the exception of any xclocks, which stays on top of the xterms.

27. You are still operating on the remote client/host, so xcalc is
executing on that system.

Chapter 15

1. According to the Web site, Linus Torvalds released version 1.0 in
1994. The answer to the second question depends on when you
access the Web site but will likely appear in the sentence following
the version 1.0 statement.

2. The first answer is promptly displayed on the Web site; the answer
to the second question is displayed on the page accessed by clicking
the here hyperlink on the Web site. The answer depends on the date
you access the Web site.

3. The magazine’s slogan is “The Premiere Linux Magazine.”

4. The names of those items depend on when the Web site is accessed;
they change every day. The first software package is named and

Exercise Answers 493

described immediately after the freshmeat.net banner; the
editorials are accessed by left-clicking the editorials’ hyperlink to the
right of the same banner.

5. Again, the dates and titles of the most recent message depend on
when you access the newsgroup or discussion. They are updated
frequently, though typically not on a daily basis.

A P P E N D I X

C

Quiz Answers

495

Chapter 3

1. Two methods are available. The first is deliberately specifying the
- help option after the command name you want to investigate.
The second method is accidentally: the result of using a command
incorrectly. Linux returns with a preliminary diagnosis of your
problem, followed by a quick summary of the command’s proper
usage.

2. locate. The other three commands use the same basic man
database. With locate, you search the file system or a database
path that you can specify.

3. $ man commandname | lpr<Enter>. Although this question
might seem trivial, someday you might find yourself on another
system wanting to print some man information. Remembering basic
command sequences like this one might prove handy.

496 Installing and Administering Linux 2E

4. K Desktop Environment: “Help”

ASCII/command line: info

Fvwm95: xman

We disguised the KDE Help command a bit. Including its full name
would have been a giveaway.

5. mail -f newmail

Remember, the correct syntax is

$ command (-option) [argument]

6. $ mail username

7. talk, write, or wall

8. The calendar for the year 8 AD.

9. who or finger username. Both provide the last login time.

Chapter 4

1. Relative path name: dulcinea/pgms/suba; absolute path name:
/home/dulcinea/pgms/suba.

2. The single dot (.) specifies “with respect to the current directory,”
and the double dot (..) specifies “with respect to the parent
directory.”

3. Moves you up two directories in the directory tree structure. It is as
if you instructed the system to “go to the parent directory of the
current directory; now go to the parent directory of the parent
directory.”

4. The directory to be removed must be empty, and your current
working directory must be at least one directory level higher than
the directory to be removed.

5. -l provides a long listing of files.

-a lists hidden files.

-R lists subdirectories and their contents.

-i displays the inode number.

-d displays information about a directory.

Quiz Answers 497

6. The following message appears: mkdir: cannot make
directory 'test' : File exists. The system has seen that a
directory named test already exists and reports that back to the
user. No further action is taken by the system.

7. The first command creates a subdirectory named /dir1 in
/home/quixoted and then creates in /dir1 a subdirectory named /dir2.
After that, a subdirectory named /dir3 is created in the /dir2
subdirectory.

The second command creates three subdirectories named /dir1, /dir2,
and /dir3, all in /home/panzasan, but they are not within one another.

Chapter 5

1. The first command makes /home/quixoted the current directory. The
second command tells Linux to copy the file1 file and name the copy
file2. Thus, each copy of the file has a unique name and inode
number. Changes made to one copy of the file will not affect the
other copy.

2. The first command makes /home/quixoted the current directory. The
second command tells Linux to rename the file, originally called
file1, to newfile. The newly named file has the attributes of the
original file.

3. The first command makes /home/quixoted the current directory. The
second command tells Linux to allow the file called newfile to be
known also as myfile. An ls -l on the /home/quixoted directory
shows two files, one by each name, although only one file is
physically on the disk. An ls -li on that directory substantiates
that by showing that both files have the same inode number. Any
changes made to newfile also show up if you use or access myfile.

4. The commands are cat, which scrolls continuously until the entire
file has been displayed on the screen; more, which displays
continuous text one screen at a time; and less, which is the same as
more but allows the flexibility of moving both forward and
backward in the file while it is displayed on the terminal screen.

498 Installing and Administering Linux 2E

5. The command that the man pages automatically invoke is less. You
know this information because you are given the ability to move
forward and backward to examine the contents of a man page.

6. !

aBcDe

my_file

my.file

.myfile

7. Starting and/or refreshing the lpd daemon is mandatory at this
point. Otherwise, the printing configuration is really not complete. If
the printtool utility has already been closed, go to the command
line and enter

printtool<Enter>

The printconf-gui dialog box/window will appear. Click the
File drop-down menu and select Restart lpd.

8. These procedures have updated the /etc/printcap file. It is best
to use the printtool utility to update that file. Unless you are
experienced with it, changing the file manually might invite trouble.

Chapter 6

1. 755

2. $ chmod go-x reporta<Enter>

3. $ chmod 744 reporta<Enter>

4. Yes. He is a member of the same group as Perez (that is, knights2).
That group has execute permission on the jobs directory as well as
write permission on the joblog file.

5. No. Although his group, knights2, has write permission on the
joblog file, they do not have execute permission on the work
directory. As a member of others, Nicholas might have execute
permission on the work directory, but he does not have execute
permission on the joblog file.

Quiz Answers 499

6. Yes. The knights2 group and others have execute permission on
the two directories, jobs and work. The group also has read
permission on the joblog file. Nicholas presumably has write and
execute permissions on his own home directory.

Chapter 7

1. Redirection, command/variable substitution, wildcard expansion,
and command execution.

2. This command lists all the files beginning with any three characters.
The fourth character must not be in the range a to z. Then, any
number of characters can follow, after which the second-to-last
character must be from 0 through 9. The final character must be t.

3. Home directory is /home/quixoted.

4. Home directory is $HOME. (Note that this question used single
quotes.)

5. Current directory is /home/quixoted/docs. (Note that pwd is enclosed in
back quotes.)

6. Files in this directory are *.

7. aa bb cc /home/quixoted

8. *

9. Standard input (0) is the keyboard; standard output (1) is the screen;
standard error (2) is the screen.

10. Standard input (0) is a file named letter; standard output (1) is
handled by the mail program; standard error (2) is the screen.

11. Standard input (0) is the keyboard; standard output (1) is a file
named newprofile; standard error (2) is a file named l (or 1, if you
would rather. It is sometimes difficult to tell with some of these
fonts. At any rate, it was a bit of a trick question: you might have
thought that we were clumsily trying to indicate a redirection to
standard output and that the ampersand was missing. We were not;
we deliberately left the ampersand out.).

12. $ cat filea > fileb 2> filec

13. $ cat filea > fileb 2>&1

14. $ cat filea > fileb 2> /dev/null

500 Installing and Administering Linux 2E

15. Output the text string hello on the screen of terminal tty1
(provided that tty1 has not set mesg n).

Chapter 8

1. $ find / -name ‘mis*’ -type f<Enter>

2. List all processes that begin with the /sbin string in their respective
command paths and that belong to the root user. The -w option is a
bit of a red herring (or, if you are an Alfred Hitchcock movie fan, a
“McGuffin”). The -w option simply ensures that searches are
performed on the whole word so that usernames or processes that
contain the respective strings, but which form only part of longer
strings, are not included in the output.

3. A recursive long listing is carried out from the /home/username
directory downward through the file system. We will be looking for
listings of lines that end in um or isc or that contain ync. (We are
using egrep because we need to do a sort of OR grep. Then, we
take those long-listed file entries (as lines) and pipe them to the
sort command. The sort command sorts the lines in reverse order
based on the eighth field (that is, on the filenames themselves). Some
but not all results are presented. The display begins with the second
line, and only seven lines are displayed. As you can surmise, this
complex command might require you to continue the command
from the first command line, with the primary PS1 prompt, to the
second command line with its secondary PS2 prompt.

Chapter 9

1. False. Unfortunately, find travels only recursively down through a
file system structure.

2. find itself. This time, the quoting metacharacters are used to keep
the interpretation away from the shell.

3. file is the command that reports to you on the type of files you
choose to examine.

4. False. Everything is true except that the extension is .gz, not just .z.

Quiz Answers 501

5. Use cat -etv to display all possible nonprintable characters,
including end-of-line indicators, tabs, spaces, and other invisible
characters.

6. True. diff compares text files only, and it is really the best choice for
doing so. Use cmp to compare all types of files except text files.

Chapter 10

1. Command mode and Insert mode.

2. Press the Esc key. Remember, however, that Esc does not toggle
Command mode on and off. If you press the Esc key repeatedly,
you remain in Command mode and eventually hear an annoying
error notification “beep.”

3. a and i. The other two commands delete text.

4. False. The u command will undo only the last command. The undo
buffer contains only one entry.

5. True. Adding a single g at the beginning of a search and replace
command enables you to do that.

6. Watch out. This question is a trick question. You cannot quit vi
while in Insert mode. Thus, the answer is “none of the above.” To
exit vi, you first have to get into Command mode by pressing Esc.
Then, you can use :x, :wq, Shift-zz, or :q!.

Chapter 11

1. False. A listing of shell variables would contain all terminal
environment variables, not vice-versa.

2. False. You do not create built-in variables. Moreover, uppercase
versus lowercase is only a convention.

3. Variable substitution and command substitution.

4. Although both files are read at login, only the .bashrc file is read
every time a child process (such as a subshell) is invoked. The
.bash_profile generally contains environment variables, and .bashrc
contains aliases and other functions.

502 Installing and Administering Linux 2E

5. False. You are not obligated to have a .bashrc file. But you will get
some unexpected and probably undesirable results if you put all your
variables, aliases, and functions in only your .bash_profile file.

6. True. All Linux processes are spawned from the init process, which
originates during system bootup.

7. The /etc/profile file is called the global profile because it contains all
the variables that will apply to all users on the system. If users want
to override the /etc/profile variables or create variables of their own,
they must modify their respective .bash_profile files.

8. Both are environment variables. HISTSIZE defines the maximum
number of previous commands that the bash shell displays when
you enter the history or fc commands. If you do not specify a
HISTSIZE, the default value is 17 (other sources say 16; try this task
for yourself). HISTFILE is a variable that defines the name of the file
in which you want the text of all your previous commands to be
deposited after you log out. The default filename is
$HOME/.bash_history.

9. You can undo any alias temporarily with unalias. If the alias has
been defined in your $HOME/.bashrc file, it will be read and invoked
every time a child process is spawned and every time you log in.
Consequently, if you only want to knock out an alias in your
current shell for your current session, use unalias. Meanwhile, if
you want to permanently knock out an alias, you must modify the
appropriate files.

10. If you are going to properly customize your environment, keeping
these files straight is important. The sentence goes as follows: “In the
bash shell, /etc/bashrc is to /etc/profile as $HOME/.bashrc is to
$HOME/.bash_profile.”

Chapter 12

1. You use the export command.

2. The answer is 5, the value of the original login shell. Changing the
value in the child process (in this case, the subshell) has no effect on
the value of the same variable in the parent process.

Quiz Answers 503

3. Strictly speaking, this sentence is false. Each command returns an
exit (or return) code after any attempt at completion. That is, a return
code is given back to the parent process even if the command has
failed.

4. $ echo $$<Enter> and $ ps ef<Enter>

The ps command provides more information, but one of the
parameters it displays is the process ID (PID) number for the various
processes that are currently running.

5. The variable and its value become part of the current process
environment. The variable and its value are available for any child
process but cannot be passed back to the parent process.

6. Use the ps f command. The f option (or flag) shows the family tree
of each running process.

7. True. Only the root user or superuser can control the jobs of other
users.

8. Signal -9 (also known as KILL in the tcsh shell or SIGKILL in the
bash shell) cannot be caught or ignored, so it terminates a process at
the point of execution—not allowing for a graceful shutdown of the
process. Use -9 with caution.

9. (1) The job will not lock up the user’s terminal while it is running. (2)
If the user wants to or has to log out of the system, the job continues
running. Upon the user’s return, the status of the job can be checked.

10. They are called daemons. They are usually started when the system
is started and stop only when the system shuts down.

11. False. The user is always in the original directory if the command
was started in the normal fashion (that is, without using the dot [.]
command). Because the command executes in a subshell, any
environment changes made in the subshell are not passed back to
the parent process.

Chapter 13

1. Whenever you are trying to change variable values in your current
environment and you are using the bash shell.

2. The correct answers are the second (r but not necessarily w or x);
fourth (755); and fifth (-rw-r-xr-x). These show that the file needs

504 Installing and Administering Linux 2E

only the read permission. The first answer (drwsxrwxrwx) might
seem right at first, but it refers to a directory. The third answer (x
and r) is incorrect because of the word and. The last two answers are
red herrings.

3. The recommended solutions are a) and c). It is considered best
practice to define the variables inside the script and export them to
make them available to subshells.

4. At the beginning of the script file, use the #!/bin/bash statement.
This action will ensure that the script will run the bash shell
environment no matter what shell the user is in.

5. The results of this script are false because “foo” does not equal “bar.”

6. The results are still false, because although you can set and even
export the variables T1 and T2 at the command line when the script
executes, it will set them right back to T1=”foo” and T2=”bar”. This
situation is a common error in scripting, which is why you should
always check the variables before you implement them.

Chapter 14

1. Statements b), d), and e) are true. Regarding statement a),
connections are based on TCP/IP. Regarding statement c), it is the
definition of a server in non-Linux/UNIX environments.

2. The XFree86 program (as configured by using the XF86Config file)
with other software that helps XFree86 to control other functions and
attributes of the X environment is the X Server for your system(s).

3. export, along with another command and other options and
arguments. A case could be made for including telnet as well
because it too can be used to connect to other machines. Then, once
connected, a user can execute clients on the remote system.

4. -bg red: the background color of the new xterm window is red.

-fg black: the foreground characters are white.

-T ledger: the title of the window is ledger.

-geometry 80x125+0+0: make the window 80 pixels wide and
125 pixels long and place it in the upper-left corner of the root
window.

Quiz Answers 505

-n lgr: when the window is minimized, the title of its
representative icon is lgr.

5. Two ways. (1) You can open another xterm window, and at the
prompt type su and then supply the password. (2) You can left-click
an open desktop area and then scroll down the resulting root menu
and select System Utilities. On the drop-down menu called
System Utilities Button Bar, scroll down and select Root Shell. An
xterm window appears, titled Root_Window. Within this window is
the root Password: prompt. Fill in the proper password, and you
are given the root # _ prompt.

Chapter 15

1. The best-known Linux Web site is Linux Online! at www.linux.org.
The best-known X Window System Web site is www.XFree86.org.

2. This question is another “sort-of trick” question. It seems trivial, but
his face is known throughout the world now. We mentioned it in the
text and even provided the URL of his creator, Mr. Ewing’s, Web site.
And what is the penguin’s name? Yes, his name is Tux.

3. The USENET newsgroups are a worldwide system of computers that
store, update, and exchange collections of discussion text files. You
can access them with specific software called newsreader software,
or you can use an ordinary browser and go to Google Groups (at
http://groups.google.com/googlegroups/deja_announcement
.html) and use the search engines there. The site was formerly called
Deja News (www.deja.com) until Google purchased it.

4. To quote from their manifesto, “The Linux Documentation Project is
working on developing free, high-quality documentation for the
GNU/Linux operating system.”

A
absolute versus relative path names, 98—99
accidental command errors, usage utility to

correct, 63—64
access control, shell/in shell programming,

script files, 397—398
ACTC Technologies, 7
adduser, 50

group names and, 52—53
AIX, 4, 10
alias command, 264—268

creating, 265—266
examining, 265—266
reducing keystrokes in find utility with,

272—273
removing, 266—268
removing, using unalias command, 267
shells and, 267
using, 266—268

all (a) permissions, 162
Alpha computers, 10
Amdahl, 4

Index

507

AND, 476
angle brackets (<, >) for redirection, 197
answers to exercises/quizzes, 484—505
Apollo, 5
append command, 468
appending information to filenames, 292—294
arguments, 55, 60
ARPAnet, 4
association in combined redirection and,

205—207
asterisk as wildcard, 185—189
AT&T, 3–6
authentication configuration, 36—37

B
B language, 2
background processes, 181, 375

suspending and resuming, 383—384
backslash, for line continuation, 213
backup command, 472
backup script example, 408—409
bang command, 215—216

banner command, 80—82, 184, 466, 474
bash command, 398—402
bash shell, 179

job control in, 381—385
bash_profiles, changing on the fly, 405—406
BCPL language, 2
Bell Laboratories, 1—3, 181
Berkeley Software Distribution (BSD), 4—6, 300
/bin directory, text editor listing, 299
binary files, 94
BIOS, installation, 15—17
bit bucket error redirection, 203—204
blocking messages and conversations, 78—79
books and magazines for Linux, 453—455
boot disks, 41—42

boot image problems in Red Hat, 22
DOS/Windows, 18—20
installation, 17—22
rawrite utility for, 18—20
UNIX systems, 20—22

boot message, at installation, 24—25
boot process,

environment variable setting during,
343—345

installation, problems in, 16—17
Bourne shell, 181
brackets as field delimiters, 60
built-in environment variables, 333
Bull, 5

C
C language, 3, 6
C shell, 181
cal (calendar) command, 64—67, 466
calling functions, 349
Carnegie Mellon University, 5, 10
case sensitivity, 123

in environment variables, 334—335
cat command, 100—101, 127—128, 149, 183,

195, 464—465
displaying nonprintable characters using,

288—292
question mark in filename, pipe sequences

and, 291—292
redirection in, 200—201
shell script creation using, 396–397

CD-ROM installation, 13—46
authentication configuration in, 36—37
BIOS and, 15—17

508 Index

boot disk creation in, 17—22, 41—42
boot image problems in Red Hat, 22
boot message in, 24—25
boot problems in, 16—17
buttons in, 23
check boxes in, 23
client/server systems, 27—28
CMOS and, 22
completion notification in, 46
custom install in, 27
disk space requirements, 39, 41
entering information for, 23
expert mode for, 25
firewall configuration in, 31—32
GNOME in, 27, 38
GUI option for, caveats on, 14
hard drive configuration and, 14—15
hardware compatibility, 15
I/O port settings and, 15
install versus upgrade option in, 24
installation process in, 40—41
IP addresses in, 23, 30—31
IRQ settings and, 15
KDE in, 27—28, 38
keyboard selection, 25—26
language selection, 25
language support in, 33
laptop support in, 28
licensing issues in, 14
LinuxLoader (LILO) and, 17, 29
Master Boot Record (MBR) in, 29
master slave drives and, 15, 17
memory address space and, 15
menus for, 14
monitor setup in, 42
mouse selection in, 32—33
network card and drivers in, 15—16
network configuration in, 29—30
network connection for, 23
non-root users in, 36
package group selection for, 37—40
partitioning in, 28
PCI Probe for, 40
ping test anomalies in, 16
rescue disk creation in, 17—18
rescue mode for, 25
root password setting in, 35
screens or windows used in, 22—23
scroll and select dialog boxes in, 23
text input dialog boxes in, 23

text versus GUI option in, 24
time zone configuration in, 33—35
troubleshooting in, 14—16
type of installation, specifying, 27—28
video configuration and, 16, 40, 42—44
Welcome message in, 26—27
X Server configuration in, 27—28, 40
X Window System configuration in, 44—46

change directory, using cd command, 100—101
character substitution, environment variables

setting, 339—340
chat, 77—78
child processes, 362—368
chmod command, 161—166, 465
chown command, 465
chsh command, 183
clear command, 79—80
client/server

installation of, 27—28
X/in X Window System, 417—421

clients, X/in X Window System, 419—420,
435—437

CMOS
installation, 22
time zone configuration in, 33—35

cmp command, 282—285
combined redirection, 204—207
comm command, 282
command, 55
command execution, vi/ in vi editor,

Linux/UNIX commands, 314—316
command interpreter, 180, 184

quoting metacharacters to disable in,
193—194

command line parsing, 184—185
Command mode, vi/ in vi editor, 300,

305—316
command substitution, environment

variables setting, 337, 341—343
command summary, 463—484
command syntax, 55—56
commands

accessing history of, using Up and Down
keys, 216—217

connecting with pipes, 207—212
displaying history of, using fc command,

214—215
filter commands and piping in, 209—212
history of, 319—320
line continuation with backslash in, 213

Index 509

locating, using whatis, whereis, which
commands, 234—237

maximizing work per command, using
xargs, 257—264

re executing, using bang command,
215—216

return codes from, 372—373
semicolons to group, 212—213
“smart,” xargs for optimal execution of,

257—260
split output from, tee command for,

210—212
typical piping for, 208—209

commercial UNIX distributions, 4
common messages to all users, using wall

command, 76—77
comparing all types of files, using cmp

command, 282—285
comparing text files, using comm and diff3

commands, 282
comparing text files, using diff command,

276—283
compatibility issues, 10, 15
compressing files, using gzip, gunzip, zcat

commands, 285—288
concatenation (See cat command)
conditionals, shell/ in shell programming,

409—410
continuation characters, 469
copying files, cp command, 130—133
Corel, 10
cp command, 130—134, 465
cpio command, 472—473
crond daemon, 385
crontab, 411
Ctrl C, 376
Ctrl D, 463
custom install, 27

D
daemons, 385
database support, 10
date command, 64—67, 474
date process, 368
dbadmin user, 36
del command, 465
Dell Computer, 11
desktop environments or desktops, X/in X

Window System, 422, 426

destructive redirection in, 198—199
dev directory, 97
dev/null or bit bucket error redirection,

203—204
diff command, 276—283, 466
diff3 command, 282
Digital Equipment (DEC), 4–5, 10, 417
directories and subdirectories (See also file

management), 55—56, 93—122
absolute versus relative path names in,

98—99
change directory in, using cd command,

100—101
command summary for, 464
contents of, 95—96
contents of, using ls command and

options, 105—109
copying, using cp command, 133—134
creating, using mkdir command,

101—105, 170
deleting, using rm command, 136—138
deleting, using rmdir command, 102—105
displaying information on, using stat

command, 109—110
dot special files (. and ..) in, 99, 101, 123
hidden files in, 105
hierarchical structure of, 96
horizontal subdirectories in, 103—105
inodes in, 110
management of, 101—110
navigating through, 99—101
path names in, 96—99
permissions in (See also permissions),

157—177
personal, creation of, 168—170
root subdirectories in, 97—98
searching for files in, using find command,

226—234
timestamps in, 110
tree structure, directory tree in, 96
vertical (recursive) subdirectories in,

103—105
working directory in, using pwd

command, 99—100
disk space requirements, 39, 41
display, X/in X Window System, 426—427
displaying directory information, stat

command, 109—110
distributions of Linux, 9—10, 448—450
distributors of Linux, current, 450—451

510 Index

documentation and support, 447—461
books and magazines for, 453—455
distribution package, 448—450
frequently asked questions (FAQs) in,

452—453
Guides in, 451—452
HOWTOs in, 452
info pages in, 60—63
Linux Documentation Project (LDP) in,

451—453
man pages in, 56—60, 453
projects in, 453

dollar sign variable, 361, 476
DOS/Windows, 37

boot disks for, 18—20
floppy disk format and access, 114—117
mtools utilities for, 138—140

dosutils directory, 18—19
dot files, 465
dot notation, 69
dot special files (. and ..), 99, 101, 123
downloaded Linux distributions, 449—450
drag and drop, X/in X Window System, 429
dual boot systems, 8

E
echo command, 80, 337, 471, 475
ed text editor, 300, 321
egrep command, 245
emacs command, 468
Emacs editor, 299, 321
email, 70—75

checking for mail in, 73—74
mailbox in, 74—75
reading mail in, 74
receiving mail, 71—75
sending mail, using mail command, 70—71
storing mail in, 74—75
You have mail notification in, 71

encrypted passwords, 53
env command, 471, 476
environment variables, 331—358

adding, 332—333
bootup, setting default variables during,

343—345
built-in, 333
case sensitivity in, 334—335
changing settings, using unset command,

342—343

character substitution to set, 339—340
command substitution to set, 337, 341—343
command summary for, 471
customizing environment using, 343—345
equals sign to set, 338—339
etc/bashrc file for, 348—350
etc/profile file for, 346—348
exporting, using export command, 333,

335—336
HOME/.bash_profile file for, 350—351
list of, using stty command, 332
listing settings of, set command, 335—336
listing values of individual, using echo

command, 337
login, setting default variables during,

343—345
sample environment building files for, 346
setting, 337—340
setting, using set and setenv commands,

333, 370—372
terminal environment and, 332—333
terminal type, 333
types of, 333—335
user-defined, 334
variable substitution to set, 337—339

equals sign to set environment variables,
338—339

error messages, 180
dev/ to dev/null or bit bucket redirection

of, 203—204
file/to file redirection of, 202—203
redirection of, 201—204
shell, 180, 184

escaped semicolon, 229
etc directory, 98
etc/bashrc file, environment variables,

348—350
etc/group, 475
etc/inittab file, X/in X Window System, edit

to run level 5, 425
etc/motd, 475
etc/passwd, 475
etc/profile file, 346—348, 475
ex text editor, 321
exclamation point as wildcard, 192
executable shell script files, 399—400, 402—404
execute (x) permission, 160, 162
exercise answers, 485—493
exit codes, 372
exit command, 49, 463

Index 511

expert mode installation, 25
export command, 333, 335—336, 369—372,

471, 476
ext2 file systems, floppies, 111—114

F
fc command, 214—215
fdformat command, 472
file descriptors, 195—196
file extensions, 69
file management, 55—56, 93—155

alternate searching in, using egrep
command, 245

appending information to filenames in,
292—294

association in combined redirection and,
205—207

asterisk wildcards and, 185—189
case sensitivity of filenames in, 123
cat command for redirection in, 200—201
cat command in, 195
change directory in, using cd command,

100—101
combined redirection in, 204—207
command summary for, 465—468
comparing all types of files, using cmp

command, 282—285
comparing text files, using comm and diff3

commands, 282
comparing text files, using diff command,

276—283
compressing files, using gzip, gunzip, zcat

commands, 285—288
copying file, directory, and subdirectory

(recursive copy), using cp
command, 133—134

copying files in, using cp command,
130—133

creating files in, using touch command,
123—125

data within, using grep command, 237—246
deleting files in, using rm command,

136—138
destructive redirection in, 198—199
directories and subdirectories in, 94—96,

101—110
DOS disks and files in, using mtools

utilities, 138—140
dot special files (. and ..) in, 99, 101, 123

error redirection in, 201—204
exclamation point as wildcard in, 192
file descriptors in, 195—196
file system structure and hierarchy in,

94—99
file types in, 94, 273—276
file utility in, 273—276
filenames and, 96, 122—123, 292—294
find utility versus shell functions in,

268—273
fixed string searches, using fgrep, 245—246
floppy disk format and access in, 110—117
hidden files in, 105, 123
inodes (index nodes) in, 94, 96, 110, 122
linking files in, using ln command, 125—127
links option of find and, 270—272
listing contents of, using cat command,

127—128
listing files in, using ls command, 157—159
mounting a filesystem in, 113, 115
moving files in, using mv command,

134—136
mtools utilities for, 138—140
MToolsFM for, 140
navigating directory structure in, 99—101
nondestructive redirection in, 199—200
old file removal, using alias command, 273
page-by-page display in, using more and

less commands, 128—130
partial files, using head and tail

commands, 250—252
path names in, 96—99
pattern matching and, 185—189
permissions in (See also permissions), 69,

157—177
pipelining, piping using, 181, 195, 207—212
printing files in, using lpr, lpq, and lprm

commands, 140—149
question mark as wildcard in, 189—191
question mark in filename, pipe sequences

and, 291—292
redirection in, 185, 195—207
redirection of input in, 196—197
redirection of output in, 197—201
renaming files in, using mv command,

134—136
searching for files in, using find command,

226—234
sorting, using sort command, 246—250
square brackets for lists, 191—192

512 Index

square brackets for ranges in, 193
standard error (stderr) files in, 195
standard files and, 195—207
standard input (stdin) files in, 195, 207
standard output (stdout) files in, 195, 207
timestamps in, 110
tree structure, directory tree in, 96
updating files in, using touch command,

123—125
viewing contents of, 127—130
word count for, using wc command, 82—83
working directory in, using pwd

command, 99—100
File Transfer Protocol (FTP), 38
file utility, 273—276
filenames, 55, 96, 122—123

appending information to, 292—294
filesystems, mounting, 113, 115
filter commands, piping, 209—212
find command, 226—234, 263—264, 466—467

complex options in, 233
conditions used with, 227—228
error redirection with, 233—234
interactive single action used with, 230—232
line continuation (split command) in, 232
links option for, 270—272
noninteractive single action with, 228—230
options for, 231—234
OR option and, 233
reducing keystrokes using alias with,

272—273
shell functions versus, 268—273

finding programs, whereis command, 184
finger command, 68—69
firewall configuration, 31—32
fixed string searches, using fgrep, 245—246
flags, 55
floppy disk format and access, 110—117

command summary for, 472—473
DOS file systems and, 114—117
ext2 file systems and, 111—114
mounting, 113, 115
unmounting, 116—117

for loop, shell/ in shell programming,
410—412, 476—477

foreground processes, 181, 375
suspending and resuming, 382—383

frame, window frame, X/in X Window
System, 429—430

free software for Linux, 9

Free Software Foundation, 10
FreeBSD, 10
frequently asked questions (FAQs), 452—453
functions, calling, 349

G
games, 37
GE, 6
GECOS operating system, 2
General Electric, 1
getty program, 344
global regular expression parsing (See grep

command)
GNOME, 10, 37–38

installation, 27
GNU General Public License (GPL), 9—10, 14
graphical user interface (GUI) (See also

GNOME; KDE), 416—417
X Window System as (See X Window

System), 415—446
grep command, 237—246, 263—264, 467

alternate searches, using egrep
command, 245

extracting data using, 240
fixed string searches, using fgrep, 245—246
metacharacters and, 244—245
options for, 242—244
pattern matching using, 238
regular expressions with metacharacters

and, 240—241
group (g) permissions, 162
group accounts, 50—53
gunzip, 285—288
gzip, 285—288

H
hardware compatibility, 10, 15
head command, 250—252, 466
Hewlett-Packard, 4–5, 11
hidden files, 105, 123
history command, 213—217, 348

vi/ in vi editor, 319—320
history of Linux, 1—11
HISTSIZE, 348
Hitachi, 5
HOME, 471, 475
home directory, 48, 69, 97

HOME/.bash_profile file for, 350—351

Index 513

HOME/.bash_profile file, environment
variables, 350—351

Honeywell Corporation, 6—7
horizontal subdirectories in, 103—105
host systems, X/in X Window System, xhost

command, 437—438
HOSTNAME, 348
HOWTOs, 452
HP UX, 4
hyphens as option delimiter, 55

I
I/O port settings, installation, 15
IBM, 4–5, 10–11, 417
iconified window in X/in X Window

System, 427
icons in X/in X Window System, 430—431
id command, 466
IDE system installation on (See CD-ROM

installation)
if then else, shell programming, 409—410, 477
images directory, 18—22
index nodes (See inodes)
Industry Standard Architecture (ISA), 14
inetd daemon, 385
info pages, 60—63
information technology (IT), 7
information window in X/in X Window

System, 427
Informix, 10
init, 344
inodes, 94, 96, 110, 122
input focus in X/in X Window System,

428—429
input redirection, 196—197
input/output (I/O), 3
Insert mode vi/ in vi editor, 300, 304
installation (See CD-ROM installation)
Institute of Electrical and Electronic

Engineers (IEEE), 6
integrated drive electronics (See IDE systems)
interface, shell as, 180—181
Internet Protocol (IP) (See also IP addresses), 23
Internet service providers (ISP), 8
iomem file, 16
ioports file, 16
IP addresses, 23, 30—31
irq file, 16
IRQ settings, 15

J
jed text editor, 300
job command, 382
job control

background jobs, suspending and
resuming, 383—384

bash and tcsh shells, 381—385
creating a job, 384—385
foreground jobs, suspending and

resuming, 382—383
shell, 180—181
suspended jobs, list of, using job

command, 382
joe text editor, 300

K
KDE, 10, 38

installation, 27—28
printing and, 142

kernel, 38
rescue disks and, 18
versions of, 8

keyboard selection, 25—26
kill command, 376—378, 474

L
language selection, 25
language support, 33, 450
laptop support, 28
Last line mode vi/ in vi editor, 300
left angle bracket (<) for redirection, 197
Lempel-Ziv (LZ77) coding, 285
less command, 66, 128—130
licensing issues, 9, 14
Lightweight Directory Access Protocol

(LDAP), 36—37
line breaks, 213
line continuation (split command)

backslash in, 213
find and, 232

linking files, ln command, 125—127
links, checking, using alias command,

272—273
links option, find, 270—272
Linux Desktop Managers, printing, 142
Linux Documentation Project (LDP), 451—453
Linux Guides, 451—452

514 Index

Linux Online web sites, 456
linuxconf, 38
LinuxLoader (LILO), 17, 29
listing files in directory, using ls command,

105—109
lists, square brackets, 191—192
ln command, 125—127
location cursors in X/in X Window System,

428—429
logging in and out, 47—49, 344, 361, 463

command summary for, 463
environment variable setting during,

343—345
requesting information on logged in users,

67—69
shell for, 182—183
variables and parameters for, 361
X/in X Window System, 422—423
xlogin widget in, 426

login shell, 49
LOGNAME, 347
long processes and nohup command,

380—381
looping in shell programming, 410—412
lpd daemon, 144, 385
lpq command, 148—149
lpr command, 147—148
lprm command, 148—149
ls command, 55, 105—109, 157—159, 464

M
Mach operating system, 5, 10
MAIL, 348, 475
mail command (See also email), 70—71,

473—474
man command, man pages, 56—60, 453

information available from, 57—58
navigating through, 58—59
printing info from, 59—60

Massachusetts Institute of Technology (MIT),
1, 5–6, 416

Master Boot Record (MBR), 29
master/slave drives, 15, 17
maximizing work per command, using

xargs, 257—264
memory address space, 15
mesg command, 78—79
messages, 75—77

blocking, using mesg command, 78—79
common messages to all users, using wall

command, 76—77
error redirection in, 201—204
mesg command, 78—79
write command in, 75—76

metacharacters (See also grep command),
185—193

command summary for, 470
in filenames, 122
grep command and, 244—245
quoting, to disable shell interpretation in,

193—194
regular expressions and grep command

using, 240—241
Microsoft, 4, 8
mingetty, 344
minimize/maximize buttons X/in X

Window System, 429—430
MINIX, 5—6, 7—8
mkdir command, 101—105, 170, 464
modes, for permissions, 168—169
monitors in X Window System, 416
monitors and displays, 42
more command, 66, 128—130
mount command, 113, 115, 474
mounting a filesystem, 113, 115
mouse pointers in X/in X Window System,

428—429
mouse selection, 32—33
mtools utilities, 138—140, 460

basic features in, 139
commands in, 139—141
MToolsFM and, 140
naming conventions used in, 139
obtaining and loading, 138—139
pattern matching and, 139

Multics, 1–2, 607
multitasking, 8, 180—181
mv command, 134—136, 465
MySQL, 10

N
net file, 16
NetWare, 11
network card and drivers, 15—16
network configuration, 29—30
Network Information Services (NIS), 36—37

Index 515

Network Time Protocol (NTP), 35
networking, 8—10, 37

installation, 23
X/in X Window System, 417—421

newsgroups, 457—460
NFS, 38
NFS server, 38
nice command, 474
Nixdorf, 5
nohup command, 380—381
non-root users, 36
nondestructive redirection, 199—200
noninteractive single action, find with,

228—230
Novell, 6, 11
numeric notation, permissions, 163—166

O
octal notation, permissions, 164
online information for commands, 56—64
Open Software Foundation (OSF), 5
open source software, 9
operating systems, 2—3
optional fields, 60
options, 55
OR, 233, 476
Oracle, 10–11
others (o) permission, 162
output redirection, 197—201
output symbol (>), 128
owner (u) permissions, 162

P
package group selection, 37—40
page-by-page file display, more and less

commands, 128—130
parent child relationships, processes and

process control, 362—368
parent process ID (PPID), 366—368
partitioning, 28
passwd command, 53—54, 474
passwords, 49—55

changing, 53
encrypted, 53
guidelines for selection of, 54—55
login/logout, 47—49
root password setting in, 35

PATH, 333–334, 347, 471, 476
path names, 96—99

banner command, 184
pattern matching, 185

grep command and, 238
mtools utilities, 139

PCI Probe, 40
PCMCIA support, 17, 28
Perigon Systems, 7
permissions, 69, 157—177

all (a) permissions in, 162
bits available to each entry in, 160
changing, using chmod command, 161—166
execute (x) permission in, 160, 162
group (g) permissions in, 162
modes in, changing using umask

command, 168
modes in, checking using umask

command, 167—168
numeric notation in, 163—166
others (o) permission in, 162
owner (u) permissions in, 162
personal directory creation and, 168—170
read (r) permission in, 160, 162
setting, using umask command, 166—168
symbolic parameters for, 161—163
uses for, 159—160
write (w) permission in, 160, 162

Personal Computer Memory Card Internal
Association (See PCMCIA support)

personal directories, 168—170
creating, using mkdir and chmod, 170
creating, using umask and mkdir, 170

Philips, 4–5
Pick, 10
ping test anomalies, 16
pipe character, 60, 66
pipelining, piping, 66, 181, 195, 207—212, 469

filter commands for, 209—212
information from, using tap command,

210—212
question mark in filename, pipe sequences

and, 291—292
split output in, tee command for, 210—212
standard input (stdin) files in, 207
standard output (stdout) files in, 207
typical command, 208—209

plan files, 69
Portable Operating System for UNIX (See

POSIX), 6

516 Index

POSIX, 6, 8
PostgresSQL, 10
powering down to terminate processes, 376
print queues, 140—145
printconf-gui dialog, 142—144
printers, 37, 140—145
printing, 140—149

canceling print jobs in, using lprm
command, 148—149

cat command for, 149
commands for, 145—149
connecting printer for, 140—145
displaying nonprintable characters, using

cat command and options, 288—292
HOWTO file for, 140
KDE and, 142
Linux Desktop Managers for, 142
listing print jobs in, using lpq command,

148—149
local versus remote, 143
lpd daemon for, 144
lpr command for, 147—148
man page information, 59—60
names and aliases for printers, 142—143
print queues for, 140—145
printconf-gui dialog in, 142—144
printer drivers for, 143—144
printtool utility for, 144—145
testing, 144
X Window System manager for, 142

printtool utility, 144—145
proc directory, 16
process ID (PID), 360, 366—368
processes and process control, 359—393

background, 375
background, suspending and resuming,

383—384
daemons as, 385
date, 368
dollar sign variable and, 361
environments for, 360—361
foreground, 375
foreground, suspending and resuming,

382—383
invoking shell using, 362—368
job control in bash and tcsh shells and,

381—385
job creation in, 384—385
login, 361

long, running using nohup command,
380—381

monitoring, using ps command, 373—374
parent child relationships in, 362—368
parent process ID (PPID) in, 366—368
process ID (PID) in, 360, 366—368
ps auxf command to examine parent-child,

365—367
question mark variable in, 372—373
return codes from commands in, 372—373
shell as, 360
suspended jobs, list of, using job

command, 382
system, 385
terminating, 375—380
terminating, by powering down the

system, 376
terminating, using Ctrl C key sequence, 376
terminating, using kill command, 376—378
variables, 368—372

exporting, 369—372
user-defined, 369

project files, 69
projects, Linux research and development, 453
ps auxf command to examine parent-child

processes, 365—367
ps command, 373—374, 474
PS1, 347, 471, 476
PS2, 471, 476
pwd command, 99—100, 464

Q
question mark as wildcard, 189—191
question mark variable, 372—373, 471
quit signals, 379
quiz answers, 495—505
quotation marks, quoting metacharacters to

disable shell interpretation, 193—194
quoting metacharacters to disable shell

interpretation, 193—194

R
RAID, 10
ranges, square brackets, 193
rawrite utility, 18—20
re executing commands, bang command,

215—216

Index 517

read (r) permission, 160, 162
read command, 468, 477
recursive copy, cp command, 133—134
Red Hat, 17

boot image problems in, 22
redirection, 185, 468, 469

association in combined redirection and,
205—207

cat command for, 200—201
combined redirection in, 204—207
destructive redirection in, 198—199
error redirection in, 201—204
find command and, 233—234
input, 196—197
nondestructive redirection in, 199—200
output, 197—201

Reflection XE, 419
regular expressions (See also grep

command), 237
metacharacters in, using grep command

with, 240—241
relative path names, 98—99
rescue disk creation, 17—18
rescue mode installation, 25
restore command, 472
return codes, 372—373
rm command, 136—138, 464, 465

find and xargs utilities combined with, 263
rmdir command, 102—105, 464
root directory, 98
root menu for X/in X Window System,

427—428
root password setting, 35
root subdirectories, 97—98
root user

shell and, 180
X/in X Window System, 434—435

root window in X/in X Window System, 426
run levels, X/in X Window System, 425

S
Santa Cruz operation (SCO), 4
SAP, 11
sbin directory, 97
SCO, 6
SCO UNIX, 10
screen display

banner command for, 80—82

clear command for, 79—80
echo command, 80

screen messages, 75—77
scripting support using, 181
scripts, shell, 395—397
scrollbar creation X/in X Window System,

431—432
security, 31—32
sed command, 468
semicolon, escaped, 229
semicolons to group commands, 212—213
servers

X/in X Window System, 420—421, 435—437
XF86Config file in, 420—421

Session Message Block (SMB), 17
set command, 333, 335—336,

370—372, 471
setenv command, 333, 370—372
SHELL, 333, 471
shell basics (See also environment variables;

shell programming), 179—224
accessing command history in, using Up

and Down keys, 216—217
aliasing and, 267
association in combined redirection and,

205—207
background processes and, 181
bash shell in, 179
Bourne type, 181
C type, 181
cat command for redirection in, 200—201
changing, using chsh command, 183
combined redirection in, 204—207
command grouping with semicolons in,

212—213
command interpreter in, 180
command line parsing using, 184—185
command summary for, 468—469
default, 181—182
destructive redirection in, 198—199
displaying command history in, using fc

command, 214—215
environment variables, setting defaults

during bootup/login, 343—345
error messages from, 180, 184
error redirection in, 201—204
exporting variables from, 369—372
file descriptors in, 195—196
find utility versus functions in, 268—273

518 Index

finding programs in, using whereis
command, 184

foreground processes and, 181
history commands in, 213—217
interface use of, 180—181
interrupting old shell in, 362—364
invoking shell, using parent-child

processes, 362—368
job control using, 180—181
line continuation with backslash in, 213
listing of available, using cat command, 183
login shell in, 182—183
metacharacters and grep command in,

185—193, 241
multitasking using, 180—181
new, invoking new shell, interrupting old,

362—364
new, invoking new shell, stopping old,

364—365
nondestructive redirection in, 199—200
path names in, using banner command, 184
pattern matching in, 185
pipelining, piping using, 181, 195, 207—212
process of, 360
programming for (See shell programming)
prompts for, 180
quoting metacharacters to disable shell

interpretation in, 193—194
re executing commands, using bang

command, 215—216
redirection in, 185, 195—207
redirection of input in, 196—197
redirection of output in, 197—201
root user, 180
scripting support using, 181
shell program in, 179
sleep mode in, 363
standard error (stderr) files in, 195
standard files and, 195—207
standard input (stdin) files in, 195, 207
standard output (stdout) files in, 195, 207
stopping old shell in, 364—365
substitution of variables and commands

in, 185
suspending jobs using, 181
types of, 181—184
variables in (See environment variables)
wildcard expansion in, 185—193

shell program, 179

shell programming (See also shell basics),
395—414

backup script example in, 408—409
bash_profiles, changing on the fly, 405—406
command summary for, 475—479
conditionals in, 409—410
creating shell script in, using cat and

semicolon, 397
creating shell script in, using cat

command, 396
creating shell script in, using vi editor,

396—397
crontab for, 411
examples of, 406—413
executable shell script files, 399—400,

402—404
executing shell scripts in, 397—400
executing shell scripts, using bash

command, 398—400
exporting variables and values for use in,

406—408
for loops in, 410—412
if then else in, 409—410
invoking scripts in the same shell, 404—406
invoking scripts in, using bash command,

401—402
invoking, from process standpoint, 400—406
loops in, 410—412
shell scripts in, 395—397
tips and techniques for, 413
until loops in, 412
user access to script files in, 397—398
while loops in, 411—412

shell scripts, 395—397
shift command, 477
shortcuts, alias command, 264—268
shutdown command, 463
Siemens, 4–5
sleep command, 474
sleep mode, shell, 363
“smart commands”, xargs for optimal

execution, 257—260
software compatibility, 10
software sources, 456—457
sort command, 246—250, 468
Space Travel program, 2
SPARC computers, 10
split pipe output, tee command, 210—212
square brackets for lists, 191—192

Index 519

square brackets for ranges, 193
standard error (stderr) files, 195
standard files, 195—207
standard input (stdin) files, 195, 207, 469
standard output (stdout) files, 195, 207, 469
standardization of Unix, 4—6
StarOffice, 10
startx command, 474
stat command, 109—110
string command, 465
stty command, 332, 474
su command, 466
substitution of variables and commands, 185
Sun Microsystems, 4–5, 10
SunOS, 4
suspended jobs, 181, 382
swap spaces, 8
Sybase, 10
symbolic parameters, permissions, 161—163
syslogd daemon, 385
system administration commands, 474
system files, 475
system processes, 385
System V, 4—6

T
tail command, 250—252, 466
talk command, 77—78
Tanenbaum, Andrew S., 5—7
tap command, 210—212
tape backup systems, command summary,

472—473
tar command, 473
TCP/IP, 8

X/in X Window System, 435
tcsh shell, job control, 381—385
tee command, 210—212, 469
Telnet, 31—32, 36, 38
TERM, 471, 476
terminal environment, environment

variables, 332—333
terminating processes, 375—380
termination signal, 379
test command, 478
text editors (See also vi editor), 69, 128

bin directory listing of, 299
command summary for, 468
vi related, 321—322

word processors versus, 300
time zone configuration, 33—35

Network Time Protocol (NTP), 35
timestamps, 110
title bar X/in X Window System, 429
tmp directory, 98
touch command, 123—125, 474
Transmission Control Protocol/Internet

Protocol (TCP/IP), 4
transmitting command, 473
tree structure, directory tree, 96
tty command, 466
Tux, 456
typical command piping, 208—209

U
ulimit command, 347
ULTRIX, 4
umask command, 166—168, 347
umount command, 474
unalias command, 267
unconditional kill signal, 379
Undo, vi/ in vi editor, 313—314
University of Calgary, 7
University of California, Berkeley, 4, 181
Unix International (UI), 5
UNIX systems, boot disks, 20—22
Unix Time Sharing System, 3
Unix, 2—4
UNIXWare, 6
unofficial Linux distributions, 449—450
unset command, 342—343
until loops, 412
Up and Down keys, 216—217

vi/ in vi editor, 319—320
usage utility, 63—64
use of UNIX/Linux, statistics, 10
USER, 333, 347
user accounts, 49—55
user-defined environment variables, 334
user environment (See environment

variables)
useradd command, 50

group names and, 52—53
usermod command, 51
username, 48, 50—51
users, requesting information on logged in

users, 67—69

520 Index

usr directory, 97
utilities, 38—39, 225—255

advanced, 257—298
appending information to filenames,

292—294
combining xargs, find, and grep in,

263—264
comparing all types of files, using cmp

command, 282—285
comparing text files, using diff command,

276—283
compressing files, using gzip, gunzip, zcat

commands, 285—288
displaying nonprintable characters, using

cat command and options, 288—292
file types and file utility, 273—276
find versus shell functions, 268—273
maximizing work per command, using

xargs, 257—264
shortcuts using, alias command, 264—268

uucp command, 473
uux command, 473

V
var directory, 98
variable substitution, environment variables

setting, 337—339
variables

command summary for, 471
exporting, 369—372
processes and process control and, 368—372
shell scripts, exporting for use in, 406—408
user-defined, 369

versions, 8
vertical (recursive) subdirectories, 103—105
vi command, 468
vi editor, 69, 128, 299—330

adding text in, 482
adding text in Insert mode, 304
changing functions in, 316—319
command execution (Linux/UNIX) in,

314—316
command line navigation in, 319
Command mode in, 300, 305—316
command summary for, 468, 479—484
copying text by character or word in, 309
copying text line-by-line in, 309—313
cursor movement in, 306, 481—482

default options setting in, 316—319
deleting text in, 305, 307, 482—483
ed editor versus, 321
entering and editing commands in, 319—320
ex editor versus, 321
exiting, 301—303, 480
features of, 300
history in, 319—320
Insert mode in, 300, 304
invoking features at the command line in,

320—321
Last line mode in, 300
manipulating text in Command mode,

305—316
moving text by character or word in, 309
moving text in, 484
moving text line-by-line in, 309—311
navigating in, 480
reading in, 480
related editors for, 321—322
replacing text in, 483
saving in, 304
search and replace text in, 305—309, 482
searching for text strings in, 305
shell script creation using, 396—397
single session use options for, 316—319
starting, 301
Undo buffer in, 313—314
Up and Down keys in, 319—320
view editor versus, 321
word processors versus, 300
writing in, 480

video configuration, 16, 40, 42—44
X/in X Window System and, 416

view text editor, 321
vim text editor, 300
Visual Editor Improved (See vi editor)
Vrije University, 5—6

W
wall command, 76—77, 474
Wang, 5
wc command, 82—83, 466
Web sites of interest to Linux users, 455—460
Welcome message, 26—27
whatis command, 234—237
whereis command, 184, 234—237
which command, 234—237

Index 521

while loops, 411—412, 479
who am i command, 67—68
who command, 67—68, 474
whoami command, 67—68
wide area networks (WANs), X Window

System, 421
wildcard expansion, 185—193
wildcards

asterisk as, 185—189
exclamation point as, 192
pattern matching using, 185
question mark as, 189—191
square brackets for lists, 191—192
square brackets for ranges, 193
warning for use of, 192

window managers X/in X Window System,
421—423

window operations button X/in X Window
System, 430

Windows applications, 8
word count (wc command), 82—83
word processors versus text editors, 300
WordPerfect, 10
working directory, pwd command, 99—100
workstations, 37
write (w) permission, 160, 162
write command, 75—76, 468
WRQ Inc., 419

X
X Consortium, 417
X server, 27—28, 40
X Window System, 5, 10, 37, 44—46, 180,

415—446
client/server concepts for, 418—419,

435—437
clients in, 419—420
clients in, letting another user run on your

system, 435—436
clients in, running a client on another

system, 436—437
closing xterm window in, 432
copying text in, 431
customizing xterm in, options for, 432—434
desktop environments or desktops for,

422, 426
display for, 426—427
drag and drop features in, 429

editing etc/inittab file to run level 5, 425
exiting, 422—423
frame, window frame in, 429—430
graphical user interfaces (GUIs) and,

416—417
history of, 416—417
host systems in, xhost command, 437—438
iconified window in, 427
icons in, 430—431
information window in, 427
input focus in, 428—429
installation of, 416
location cursors in, 428—429
login, 422—423
minimize/maximize buttons in, 429—430
monitor configuration and, caveats on, 416
mouse pointers in, 428—429
networking in, 417—421
printing in, 142
rebooting, 426
root menu for, 427—428
root user for, 434—435
root window in, 426
run levels in, 425
scrollbar creation in, 431—432
servers in, 420—421
sizing windows in, 430
sources for, 457
starting automatically, 424—426
starting manually, 422—423
TCP/IP and, 435
testing xdm with nodaemon argument,

424—245
title bar in, 429

522 Index

video configuration and, caveats on, 416
window managers for, 421—423
window operations button in, 430
xcalc in, 419
xclock in, 419
XF86Config file in, 420—421
XFree86 and, 417
xlogin widget in, 426
xterm in, 419
xterm window in, 427, 431—434

X/Open, 4—6
xargs, 257—265
xcalc, X/in X Window System, 419
xclock, X/in X Window System, 419
xdm, testing using nodaemon argument,

424—425
XENIX, 4, 6, 10
XF86Config file, 420—421
XFree86, 417
XFree86Config, 38
xhost command, 437—438
xlogin widget X/in X Window System, 426
XPG4.2, 6
xterm, 419
xterm window, 427

Y
You have mail notification, 71

Z
zcat, 285—288

