

San Francisco • London

LPIC-1:

Linux Professional
Institute Certification

Study Guide

Roderick W. Smith

4425.book Page iii Tuesday, July 12, 2005 11:29 PM

Publisher: Neil Edde
Acquisitions and Developmental Editor: Maureen Adams
Production Editor: Lori Newman
Technical Editors: Dan York
Copyeditor: Judy Flynn
Compositor: Craig J. Woods, Happenstance Type-O-Rama
CD Coordinators and Technicians: Dan Mummert, Keith McNeil, Kevin Ly
Proofreaders: Nancy Riddiough, Jim Brook, Candace English
Indexer: Nancy Guenther
Book Designer: Bill Gibson, Judy Fung
Cover Designer: Archer Design
Cover Illustrator/Photographer: Victor Arre and Photodisc

Copyright © 2005 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No
part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but
not limited to photocopy, photograph, magnetic, or other record, without the prior agreement and written per-
mission of the publisher.

Library of Congress Card Number: 2005924819

ISBN: 0-7821-4425-X

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States
and/or other countries.

Screen reproductions produced with The GIMP, a freely distributed piece of software. (http://www.gimp.org)

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997-1999 Macromedia Inc. For
more information on Macromedia and Macromedia Director, visit http://www.macromedia.com.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final
release software whenever possible. Portions of the manuscript may be based upon pre-release versions supplied
by software manufacturer(s). The author and the publisher make no representation or warranties of any kind
with regard to the completeness or accuracy of the contents herein and accept no liability of any kind including
but not limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of
any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4425.book Page iv Tuesday, July 12, 2005 11:29 PM

Contents

Introduction xxi

Assessment Test xxx

Part I The LPI 101 Exam (106 Weights) 1

Chapter 1 Linux Command-Line Tools 3

Command-Line Basics 4
Linux Shell Options 4
Using a Shell 5
Shell Configuration 10
Using Environment Variables 11
Getting Help 12

Using Streams, Redirection, and Pipes 13
Types of Streams 13
Redirecting Input and Output 14
Piping Data Between Programs 15
Generating Command Lines 16

Processing Text Using Filters 17
File-Combining Commands 17
File-Transforming Commands 19
File-Formatting Commands 23
File-Viewing Commands 26
File-Summarizing Commands 27

Using Regular Expressions 29
Understanding Regular Expressions 29
Using

grep

 30
Using

sed

 32
Editing Files with Vi 33

Vi Modes 34
Basic Text-Editing Procedures 34
Saving Changes 37

Managing Processes 37
Examining Process Lists 38
Foreground and Background Processes 43
Managing Process Priorities 44
Killing Processes 45

Summary 47
Exam Essentials 47
Review Questions 49
Answers to Review Questions 53

4425.book Page ix Tuesday, July 12, 2005 11:29 PM

x

Contents

Chapter 2 Managing Software 57

Package Concepts 58
Using RPM 60

RPM Distributions and Conventions 60
Upgrades to RPM 62
The

rpm

 Command Set 63
Extracting Data from RPMs 67
RPM Configuration Files 69
RPM Compared to Other Package Formats 70

Using Debian Packages 70
Debian Distributions and Conventions 71
The

dpkg

 Command Set 71
Using

apt-get

 74
Using

dselect

 78
Reconfiguring Packages 80
Debian Packages Compared to Other Package Formats 80
Configuring Debian Package Tools 81

Converting between Package Formats 82
Package Dependencies and Conflicts 83

Real and Imagined Package Dependency Problems 83
Workarounds to Package Dependency Problems 84
Startup Script Problems 86

Installing Programs from Source 87
Obtaining and Extracting Software 87
Configuring Software 89
Compiling and Installing Software 90
Uninstalling Locally Compiled Software 92

Managing Shared Libraries 93
Library Principles 93
Locating Library Files 94
Library Management Commands 97

Summary 99
Exam Essentials 99
Review Questions 101
Answers to Review Questions 105

Chapter 3 Configuring Hardware 109

Configuring the BIOS and Core Hardware 110
Understanding the Role of the BIOS 110
IRQs 111
I/O Addresses 114
DMA Addresses 115
The Real-Time Clock 116
Boot Disks and Geometry Settings 116

4425.book Page x Tuesday, July 12, 2005 11:29 PM

Contents

xi

Configuring Expansion Cards 118
Configuring ISA Devices 118
Configuring PCI Devices 120

Configuring Modems 121
Functions of Modems 121
Setting the RS-232 Serial Port Characteristics 122
Winmodem Detection and Avoidance 123
Using Broadband Hardware 124

Configuring USB Devices 125
USB Basics 125
Linux USB Drivers 126
USB Manager Applications 127

Configuring Sound Cards 128
Configuring SCSI Devices 130

Varieties of SCSI 130
SCSI IDs 131
SCSI Termination 132
Identifying SCSI Hardware 133

Designing a Hard Disk Layout 134
Why Partition? 134
Types of Disk Partitions 135
Mount Points 137
Common Partitions and Filesystem Layouts 138

Creating Partitions and Filesystems 139
Partitioning a Disk 140
Preparing a Partition for Use 143

Installing Boot Loaders 149
Boot Loader Principles 149
Using LILO or GRUB 151

Summary 152
Exam Essentials 152
Review Questions 154
Answers to Review Questions 158

Chapter 4 Managing Files and Filesystems 161

Maintaining Filesystem Health 162
Tuning Filesystems 163
Maintaining a Journal 165
Checking Filesystems 166
Monitoring Disk Use 168

Mounting and Unmounting Filesystems 171
Temporarily Mounting or Unmounting Filesystems 171
Permanently Mounting Filesystems 176

4425.book Page xi Tuesday, July 12, 2005 11:29 PM

xii

Contents

Managing Files 178
File Naming and Wildcard Expansion Rules 179
File Commands 180
Managing Links 185
Directory Commands 186

Managing File Ownership 187
Assessing File Ownership 187
Changing a File’s Owner 188
Changing a File’s Group 188

Controlling Access to Files 189
Understanding Permissions 189
Changing a File’s Mode 193
Setting the Default Mode and Group 197
Changing File Attributes 198

Managing Disk Quotas 199
Enabling Quota Support 199
Setting Quotas for Users 200

Locating Files 201
The FHS 201
Tools for Locating Files 205

Summary 208
Exam Essentials 209
Review Questions 211
Answers to Review Questions 215

Chapter 5 The X Window System 219

Configuring Basic X Features 220
X Server Options for Linux 220
Methods of Configuring X 221
X Configuration Options 226
Fine-Tuning Video Modes 235

Configuring X Fonts 236
Font Technologies and Formats 236
Configuring X Core Fonts 237
Configuring a Font Server 239
Configuring Xft Fonts 240

Managing GUI Logins 242
The X GUI Login System 242
Running an XDMCP Server 243
Configuring an XDMCP Server 243

Configuring a Desktop Environment 245
Desktop Environment Choices 245
Configuring Linux to Run Your Desktop Environment 246
Configuring the X Environment 249
Configuring a Window Manager 250

4425.book Page xii Tuesday, July 12, 2005 11:29 PM

Contents

xiii

Using X for Remote Access 250
X Client/Server Principles 250
Using Remote X Clients 251

Summary 253
Exam Essentials 254
Review Questions 255
Answers to Review Questions 260

Part II The LPI 102 Exam (99 Weights) 263

Chapter 6 The Boot Process and Scripts 265

Managing Kernel Modules 266
Obtaining Information about the Kernel and Its Modules 266
Loading Kernel Modules 270
Removing Kernel Modules 271
Maintaining Kernel Modules 272

Creating a Custom Kernel 274
Kernel Version Numbering 274
Obtaining the Kernel 276
Configuring the Kernel 278
Compiling the Kernel 281
Putting Everything in Its Place 281

Configuring a Boot Loader 282
Using LILO as the Boot Loader 283
Using GRUB as the Boot Loader 287

Understanding the Boot Process 292
Extracting Information on the Boot Process 292
The Boot Process 293

Dealing with Runlevels and the Initialization Process 294
Runlevel Functions 294
Identifying the Services in a Runlevel 296
Managing Runlevel Services 297
Checking Your Runlevel 299
Changing Runlevels on a Running System 300

Managing the Shell Environment 302
Shell Options 302
Built-in Shell Functions 303
 Using Environment Variables 304
Shell Configuration Files 308

Linux Scripting 310
Beginning a Shell Script 310
Using Commands 311
Using Variables 313

4425.book Page xiii Tuesday, July 12, 2005 11:29 PM

xiv

Contents

Using Conditional Expressions 315
Using Functions 317

Summary 319
Exam Essentials 319
Review Questions 321
Answers to Review Questions 325

Chapter 7 Documentation and Security 329

Using Local System Documentation 330
Using Linux Manual Pages 330
Using Package Documentation 334

Finding Linux Documentation and Help on the Internet 335
The Linux Documentation Project 336
Additional Online Help Resources 336

Communicating with Users 338
Restricting Access by Ports 339

Common Server Ports 340
Configuring a Firewall 342
Using Super Server Restrictions 353
Disabling Unused Servers 355

Package and Program Security 360
Tracking Down SUID/SGID Programs 360
Verifying Package Integrity 361
Keeping Packages Up-to-Date 364

Passwords 366
Password Risks 366
Choosing a Good Password 367
Tools for Managing Passwords 369

Configuring User-Level Security 370
Configuring Mail Aliases 370
Setting Login, Process, and Memory Limits 371

Summary 372
Exam Essentials 373
Review Questions 375
Answers to Review Questions 379

Chapter 8 Administering the System 383

Managing Users and Groups 384
User and Group Concepts 384
Configuring User Accounts 387
Configuring Groups 397

Tuning User and System Environments 401

4425.book Page xiv Tuesday, July 12, 2005 11:29 PM

Contents

xv

Using System Log Files 402
Understanding

syslogd

 402
Setting Logging Options 402
Rotating Log Files 404
Reviewing Log File Contents 407

Maintaining the System Time 409
Linux Time Concepts 409
Setting the Time Zone 410
Manually Setting the Time 411
Using NTP 413

Running Jobs in the Future 418
The Role of

cron

 418
Creating System

cron

 Jobs 419
Creating User

cron

Jobs 420
Using

anacron

 421
Using

at

 424
Backing Up the System 425

Common Backup Hardware 425
Common Backup Programs 427
Backing Up a Computer 432
Planning a Backup Schedule 432
Preparing for Disaster: Backup Recovery 434

Summary 436
Exam Essentials 436
Review Questions 438
Answers to Review Questions 442

Chapter 9 Basic Networking 445

Understanding TCP/IP Networking 446
Basic Functions of Network Hardware 446
Types of Network Hardware 447
Network Packets 448
Network Protocol Stacks 449
TCP/IP Protocol Types 450

Network Addressing 451
Types of Network Addresses 452
Resolving Hostnames 457
Network Ports 459

Configuring Linux for a Local Network 460
Network Hardware Configuration 460
DHCP Configuration 461
Static IP Address Configuration 461
Configuring Routing 464

4425.book Page xv Tuesday, July 12, 2005 11:29 PM

xvi

Contents

Using GUI Configuration Tools 465
Hostname Configuration 466

Configuring Linux as a PPP Client 468
Making Basic PPP Connections 468
Using Supplemental PPP Tools 470

Diagnosing Local and PPP Connections 472
Testing Basic Connectivity 473
Tracing a Route 473
Checking Network Status 474
Examining Raw Network Traffic 475
Using Additional Tools 476

Using a Super Server 478
The Role of a Super Server 478
Configuring

inetd

 480
Configuring

xinetd

 483
Configuring Printing 484

The Linux Printing Architecture 484
Understanding PostScript and Ghostscript 485
Running a Printing System 488
Configuring BSD LPD and LPRng 488
Configuring CUPS 491
Printing to Windows or Samba Printers 496
Monitoring and Controlling the Print Queue 497

Summary 502
Exam Essentials 502
Review Questions 504
Answers to Review Questions 508

Chapter 10 Managing Servers 511

Configuring Sendmail 512
E-Mail Basics 513
Setting Sendmail Options for Your System 514
Managing the Mail Queue 518
Sendmail Security Considerations 519

Configuring Apache 520
Apache Basics 520
Setting Apache Options for Your System 522
Apache Security Considerations 523

Configuring an NFS Server 524
NFS Basics 524
Creating File Exports 525
Mounting NFS Exports 526
NFS Security Considerations 527

4425.book Page xvi Tuesday, July 12, 2005 11:29 PM

Contents

xvii

Configuring Samba 528
Samba Basics 528
Using Samba as a Server 529
Samba Security Considerations 536

Using a Forwarding DNS Server 537
DNS Server Basics 537
Setting DNS Options for Your Network 539
Using a Forwarding DNS Server 540
BIND Security Considerations 541

Configuring SSH 541
SSH Basics 542
Setting SSH Options for Your System 543
SSH Security Considerations 546

Summary 546
Exam Essentials 546
Review Questions 548
Answers to Review Questions 552

Glossary

555

Index 581

4425.book Page xvii Tuesday, July 12, 2005 11:29 PM

Table of Exercises

Exercise 1.1

Exercises . xv

Exercise 1.1

Editing Commands . 10

Exercise 2.1

Managing Packages Using RPM. 66

Exercise 2.2

Managing Debian Packages 77

Exercise 3.1

Creating Filesystems .147

Exercise 4.1

Modifying Ownership and Permissions 195

Exercise 4.2

Locating Files .208

Exercise 5.1

Changing the X Resolution and Color Depth 233

Exercise 6.1

Changing Your

bash

 Prompt 308

Exercise 6.2

Creating a Simple Script . .318

Exercise 7.1

Create a Firewall Script .350

Exercise 7.2

Monitor Network Port Use 358

Exercise 8.1

Creating User Accounts . .391

Exercise 8.2

Creating User

cron

Jobs . .422

Exercise 9.1

Configuring a Network Connection 466

Exercise 9.2

Adding a Server to

inetd

. .482

Exercise 10.1

Create a Samba File Share532

4425.book Page xix Tuesday, July 12, 2005 11:29 PM

Introduction

Why should you learn about Linux? It’s a fast-growing operating system, and it is inexpensive and
flexible. Linux is also a major player in the small and mid-sized server field, and it’s an increasingly
viable platform for workstation and desktop use as well. By understanding Linux, you’ll increase
your standing in the job market. Even if you already know Windows or Mac OS and your employer
uses these systems exclusively, understanding Linux will give you an edge when you are looking for
a new job or if you are looking for a promotion. For instance, this knowledge will help you to make
an informed decision about if and when you should deploy Linux.

The Linux Professional Institute (LPI) has developed its LPI-1 certification as an introductory
certification for people who want to enter careers involving Linux. The exam is meant to certify
that an individual has the skills necessary to install, operate, and troubleshoot a Linux system and
is familiar with Linux-specific concepts and basic hardware.

The purpose of this book is to help you pass both of the LPIC-1 exams (101 and 102).
Because these exams cover basic Linux command-line tools, software management, hardware
configuration, filesystems, the X Window System, the boot process, scripts, security, documen-
tation, administration, and networking, those are the topics that are emphasized in this book.
You’ll learn enough to manage a Linux system and how to configure it for many common tasks.
Even after you’ve taken and passed the LPIC 101 and 102 exams, this book should remain a
useful reference.

This book has undergone its own testing and certification by ProCert (

http://procert.com/
labs_quicklinks/ql_latm.html

). This means that you can rest assured that the book covers the
LPIC objectives.

What Is Linux?

Linux is a clone of the Unix operating system (OS) that has been popular in academia and many
business environments for years. Formerly used exclusively on large mainframes, Unix and
Linux can now run on small computers—which are actually far more powerful than the main-
frames of just a few years ago. Because of its mainframe heritage, Unix (and hence also Linux)
scales well to perform today’s demanding scientific, engineering, and network server tasks.

Linux consists of a kernel, which is the core control software, and many libraries and utilities
that rely on the kernel to provide features with which users interact. The OS is available in many
different distributions, which are collections of a specific kernel with specific support programs.

Why Become LPI Certified?

Several good reasons to get your LPI certification exist. The LPI website suggests four
major benefits:

Relevance

LPI’s exam was designed with the needs of Linux professionals in mind. This was
done by performing surveys of Linux administrators to learn what they actually need to know
to do their jobs.

4425.book Page xxi Tuesday, July 12, 2005 11:29 PM

xxii

Introduction

Quality

The LPI exams have been extensively tested and validated using psychometric stan-
dards. The result is an ability to discriminate between competent administrators and those who
must still learn more material.

Neutrality

LPI is a nonprofit organization that does not itself market any Linux distribution.
This fact removes the motivation to create an exam that’s designed as a way to market a par-
ticular distribution.

Support

The LPI exams are supported by major players in the Linux world. LPI serves the
Linux community.

How to Become LPI Certified

The LPI certification is available to anyone who passes the test. You don’t have to work for a
particular company. It’s not a secret society.

To take an LPI exam, you must first register with LPI to obtain an ID number. You can do
this online at

https://www.lpi.org/en/register.html

. Your ID number will be e-mailed
to you. With the ID number in hand, you can register for the exam with either of the two firms
that administer them: Thomson Prometric and Pearson VUE. The exams can be taken at any
Thomson Prometric or Pearson VUE testing center. If you pass, you will get a certificate in the
mail saying that you have passed. To find the Thomson Prometric testing center nearest you,
call (800) 294-3926. Contact (877) 619-2096 for Pearson VUE information. Alternatively, reg-
ister online at

http://www.2test.com

 for Thomson Prometric or

http://www.vue.com

 for
Pearson VUE. However you do it, you’ll be asked for your name, mailing address, phone num-
ber, employer, when and where you want to take the test (i.e., which testing center), and your
credit card number (arrangement for payment must be made at the time of registration).

Who Should Buy This Book

Anybody who wants to pass the LPIC-1 exams may benefit from this book. If you’re new to
Linux, this book covers the material you will need to learn the OS from the beginning, and it
continues to provide the knowledge you need up to a proficiency level sufficient to pass the
LPIC-1 101 and 102 exams. You can pick up this book and learn from it even if you’ve never
used Linux before, although you’ll find it an easier read if you’ve at least casually used Linux
for a few days. If you’re already familiar with Linux, this book can serve as a review and as a
refresher course for information with which you might not be completely familiar. In either
case, reading this book will help you to pass the LPIC exams.

This book is written with the assumption that you know at least a little bit about Linux (what
it is, and possibly a few Linux commands). I also assume that you know some basics about com-
puters in general, such as how to use a keyboard, how to insert a floppy disk into a floppy drive,
and so on. Chances are you have used computers in a substantial way in the past—perhaps even
Linux, as an ordinary user, or maybe you have used Windows or Mac OS. I do

not

 assume that
you have extensive knowledge of Linux system administration, but if you’ve done some system
administration, you can still use this book to fill in gaps in your knowledge.

As a practical matter, you’ll need a Linux system with which to practice and learn in a hands-
on way. Although LPIC topic 102 is titled “Linux Installation & Package Management,” neither

4425.book Page xxii Tuesday, July 12, 2005 11:29 PM

Introduction

xxiii

the exam nor this book focuses on actually installing Linux on a computer from scratch, although
some of the prerequisites (such as disk partitioning) are covered. You may need to refer to your
distribution’s documentation to learn how to accomplish this task.

How This Book Is Organized

This book consists of 10 chapters plus supplementary information: a glossary, this introduction,
and the assessment test after the introduction. The chapters are organized as follows:
�

Chapter 1, “Linux Command-Line Tools,” covers the basic tools you need to interact with
Linux. These include shells, redirection, pipes, text filters, regular expressions, the Vi editor,
and basic process management commands.

�

Chapter 2, “Managing Software,” describes the programs you’ll use to manage software.
Much of this task is centered around the RPM and Debian package management systems.
The chapter also covers compiling software from source code and managing shared libraries.

�

Chapter 3, “Configuring Hardware,” focuses on Linux’s interactions with the hardware on
which it runs. Specific hardware and procedures for using it include the BIOS, expansion
cards, modems, USB devices, sound cards, SCSI devices, hard disk partitions, filesystem cre-
ation, and boot loaders.

�

Chapter 4, “Managing Files and Filesystems,” covers the tools used to manage files and the file-
systems that hold them. This includes commands to monitor filesystem health, make filesystems
available, and manage disk quotas. On the file side, it includes extended information on file
management commands, ownership and permissions, and Linux’s standard directory tree.

�

Chapter 5, “The X Window System,” describes the Linux GUI subsystem. Topics include
X configuration, managing GUI logins, and setting up a working GUI environment.

�

Chapter 6, “The Boot Process and Scripts,” explains how Linux boots up and the scripts
it uses to do so. Specific topics include kernel modules (drivers), creating a custom kernel,
configuring a boot loader, runlevels, SysV startup scripts, the shell environment, and basic
scripting information.

�

Chapter 7, “Documentation and Security,” covers those two topics. Specific subjects
include system documentation, Linux documentation on the Internet, restricting access to
the computer, and user-level security.

�

Chapter 8, “Administering the System,” describes miscellaneous administrative tasks.
These include user and group management, tuning user environments, managing log files,
running jobs in the future, system backups, and setting the clock.

�

Chapter 9, “Basic Networking,” focuses on basic network configuration. Topics include
TCP/IP basics, setting up Linux on a TCP/IP network, setting up a PPP link to the Internet,
running a super server, and managing Linux’s printing system.

�

Chapter 10, “Managing Servers,” summarizes some of the more common and important
Linux servers. These include the sendmail mail server, the Apache web server, the NFS and
Samba file servers, the BIND DNS server, and the SSH remote login server.

4425.book Page xxiii Tuesday, July 12, 2005 11:29 PM

xxiv

Introduction

Chapters 1 through 5 cover the LPIC 101 exam, while chapters 6 through 10 cover the LPIC
102 exam. These make up Part I and Part II of the book, respectively.

Each chapter begins with a list of the LPIC objectives that are covered in that chapter. (The
LPIC objectives contain gaps in their numbering, and the book doesn’t cover the objectives in
order. Thus, you shouldn’t be alarmed at some of the odd ordering of the objectives within the
book.) At the end of each chapter, you’ll find a couple of elements you can use to prepare for
the exam:

Exam Essentials

This section summarizes important information that was covered in the
chapter. You should be able to perform each of the tasks or convey the information requested.

Review Questions

Each chapter concludes with 20 review questions. You should answer these
questions and check your answer against the one provided after the questions. If you can’t
answer at least 80 percent of these questions correctly, go back and review the chapter, or at
least those sections that seem to be giving you difficulty.

The review questions, assessment test, and other testing elements included in
this book are

not

 derived from the LPIC exam questions, so don’t memorize the
answers to these questions and assume that doing this will enable you to pass
the exam. You should learn the underlying topic, as described in the text of the
book. This will let you answer the questions provided with this book

and

 pass
the exam. Learning the underlying topic is also the approach that will serve you

best in the workplace—the ultimate goal of a certification like LPIC.

To get the most out of this book, you should read each chapter from start to finish and then
check your memory and understanding with the chapter-end elements. Even if you’re already
familiar with a topic, you should skim the chapter; Linux is complex enough that there are often
multiple ways to accomplish a task, so you may learn something even if you’re already compe-
tent in an area.

Bonus CD-ROM Contents

This book comes with a CD-ROM that contains several additional elements. Items available on
the CD-ROM include the following:

Book contents as a PDF file

The entire book is available as a fully searchable PDF that runs
on all Windows platforms as well as on Linux.

Electronic “flashcards”

The CD-ROM includes 150 questions in “flashcard” format (a ques-
tion followed by a single correct answer). You can use these to review your knowledge of the
LPIC exam objectives.

Sample tests

All of the questions in this book appear on the CD-ROM—including the
30-question assessment test at the end of this introduction and the 200 questions that make
up the 20-question review question sections for each chapter. In addition, there are two
50-question bonus exams.

4425.book Page xxiv Tuesday, July 12, 2005 11:29 PM

Introduction

xxv

Conventions Used in This Book

This book uses certain typographic styles in order to help you quickly identify important infor-
mation and to avoid confusion over the meaning of words such as on-screen prompts. In par-
ticular, look for the following styles:
�

Italicized text

 indicates key terms that are described at length for the first time in a chapter.
(Italics are also used for emphasis.)

�

A monospaced font

 indicates the contents of configuration files, messages displayed at a
text-mode Linux shell prompt, filenames, text-mode command names, and Internet URLs.

�

Italicized monospaced text

 indicates a variable—information that differs from one
system or command run to another, such as the name of a client computer or a process ID
number.

�

Bold monospaced text

 is information that you’re to type into the computer, usually at a
Linux shell prompt. This text can also be italicized to indicate that you should substitute an
appropriate value for your system. (When isolated on their own lines, commands are pre-
ceded by non-bold monospaced

$

 or

#

 command prompts.)

In addition to these text conventions, which can apply to individual words or entire para-
graphs, a few conventions highlight segments of text:

A note indicates information that’s useful or interesting but that’s somewhat
peripheral to the main text. A note might be relevant to a small number of net-

works, for instance, or it may refer to an outdated feature.

A tip provides information that can save you time or frustration and that may
not be entirely obvious. A tip might describe how to get around a limitation or

how to use a feature to perform an unusual task.

Warnings describe potential pitfalls or dangers. If you fail to heed a warning,
you may end up spending a lot of time recovering from a bug, or you may even

end up restoring your entire system from scratch.

E X E R C I S E 1 . 1

Exercises

An exercise is a procedure you should try out on your own computer to help you learn about
the material in the chapter. Don’t limit yourself to the procedures described in the exercises,
though! Try other commands and procedures to really learn about Linux.

4425.book Page xxv Tuesday, July 12, 2005 11:29 PM

xxvi

Introduction

The Exam Objectives

Behind every computer industry exam you can be sure to find exam objectives—the broad top-
ics in which exam developers want to ensure your competency. The official LPI objectives for
the LPIC 101 and 102 exams are listed here. (They’re also printed at the start of the chapters
in which they’re covered.)

Exam objectives are subject to change at any time without prior notice and at
LPI’s sole discretion. Please visit the LPIC Certification page of LPI’s website
(

http://www.lpi.org/en/lpic.html

) for the most current listing of exam

objectives.

Exam 101

Topic 101: Hardware & Architecture

1.101.1 Configure Fundamental BIOS Settings

1.101.3 Configure Modem and Sound cards

1.101.4 Setup SCSI Devices

1.101.5 Setup different PC expansion cards

1.101.6 Configure Communication Devices

1.101.7 Configure USB devices

Sidebars

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit into
the main flow of the text.

Real World Scenario

A real world scenario is a type of sidebar that describes a task or example that’s particularly
grounded in the real world. This may be a situation I or somebody I know has encountered,
or it may be advice on how to work around problems that are common in real, working
Linux environments.

4425.book Page xxvi Tuesday, July 12, 2005 11:29 PM

Introduction

xxvii

Topic 102: Linux Installation & Package Management

1.102.1 Design hard disk layout

1.102.2 Install a boot manager

1.102.3 Make and install programs from source

1.102.4 Manage shared libraries

1.102.5 Use Debian package management

1.102.6 Use Red Hat Package Manager (RPM)

Topic 103: GNU & Unix Commands

1.103.1 Work on the command line

1.103.2 Process text streams using filters

1.103.3 Perform basic file management

1.103.4 Use streams, pipes, and redirects

1.103.5 Create, monitor, and kill processes

1.103.6 Modify process execution priorities

1.103.7 Search text files using regular expressions

1.103.8 Perform basic file editing operations using vi

Topic 104: Devices, Linux Filesystems, Filesystem

Hierarchy Standard

1.104.1 Create partitions and filesystems

1.104.2 Maintain the integrity of filesystems

1.104.3 Control mounting and unmounting filesystems

1.104.4 Managing disk quota

1.104.5 Use file permissions to control access to files

1.104.6 Manage file ownership

1.104.7 Create and change hard and symbolic links

1.104.8 Find system files and place files in the correct location

Topic 110: The X Window System

1.110.1 Install & Configure XFree86

1.110.2 Setup a display manager

1.110.4 Install & Customize a Window Manager Environment

4425.book Page xxvii Tuesday, July 12, 2005 11:29 PM

xxviii

Introduction

Exam 102

Topic 105: Kernel

1.105.1 Manage/Query kernel and kernel modules at runtime

1.105.2 Reconfigure, build, and install a custom kernel and kernel modules

Topic 106: Boot, Initialization, Shutdown and Runlevels

1.106.1 Boot the system

1.106.2 Change runlevels and shutdown or reboot system

Topic 107: Printing

1.107.2 Manage printers and print queues

1.107.3 Print files

1.107.4 Install and configure local and remote printers

Topic 108: Documentation

1.108.1 Use and manage local system documentation

1.108.2 Find Linux documentation on the Internet

1.108.5 Notify users on system-related issues

Topic 109: Shells, Scripting, Programming and Compiling

1.109.1 Customize and use the shell environment

1.109.2 Customize or write simple scripts

Topic 111: Administrative Tasks

1.111.1 Manage users and group accounts and related system files

1.111.2 Tune the user environment and system environment variables

1.111.3 Configure and use system log files to meet administrative and security needs

1.111.4 Automate system administration tasks by scheduling jobs to run in the future

1.111.5 Maintain an effective data backup strategy

1.111.6 Maintain system time

Topic 112: Networking Fundamentals

1.112.1 Fundamentals of TCP/IP

1.112.3 TCP/IP configuration and troubleshooting

1.112.4 Configure Linux as a PPP client

4425.book Page xxviii Tuesday, July 12, 2005 11:29 PM

Introduction

xxix

Topic 113: Networking Services

1.113.1 Configure and manage inetd, xinetd, and related services

1.113.2 Operate and perform basic configuration of sendmail

1.113.3 Operate and perform basic configuration of Apache

1.113.4 Properly manage the NFS, smb, and nmb daemons

1.113.5 Setup and configure basic DNS services

1.113.7 Set up secure shell (OpenSSH)

Topic 114: Security

1.114.1 Perform security administration tasks

1.114.2 Setup host security

1.114.3 Setup user level security

The preceding objective list includes only the basic objective titles. You should
consult the complete LPIC exam list to learn what commands, files, and proce-

dures you should be familiar with before taking the exam.

4425.book Page xxix Tuesday, July 12, 2005 11:29 PM

Assessment Test

1.

How can you enter the BIOS CMOS setup utility to enable or disable onboard devices?

A.

Press F10 during the POST.

B.

Press Delete during the POST.

C.

Press Ctrl+S during the POST.

D.

It depends on the motherboard model.

2.

How can you tell whether your system is using

inetd

 or

xinetd

 as a super server? (Select all
that apply.)

A.

Type

ps ax | grep inetd

 and examine the output for signs of

inetd

 or

xinetd

.

B.

Type

superserver

 to see a report on which super server is running.

C.

Look for the

/etc/inetd.conf

 file or

/etc/xinetd.d

 subdirectory, which are signs of

inetd or xinetd, respectively.

D. Examine the /etc/inittab file to see which super server is launched by init, which is
responsible for this task.

3. How does the lpc utility for CUPS differ from its counterpart in BSD LPD and LPRng?

A. The lpc utility is unique to CUPS; it doesn’t ship with BSD LPR or LPRng.

B. CUPS doesn’t ship with an lpc command, but BSD LPD and LPRng do.

C. CUPS’s lpc is much more complex than its counterpart in BSD LPD and LPRng.

D. CUPS’s lpc is much simpler than its counterpart in BSD LPD and LPRng.

4. How do HOWTO documents and FAQs differ?

A. HOWTOs are book-length works on specified subjects; FAQs are terse command summaries.

B. HOWTOs are tutorial documents; FAQs are terse command summaries.

C. HOWTOs are tutorial documents; FAQs are answers to specific questions.

D. HOWTOs are book-length works on specified subjects; FAQs are answers to specific questions.

5. Which of the following are required when configuring a computer to use a static IP address?
(Select all that apply.)

A. The IP address of the DHCP server

B. The hostname of the NBNS server

C. The computer’s IP address

D. The network mask

4425.book Page xxx Tuesday, July 12, 2005 11:29 PM

Assessment Test xxxi

6. You want a Linux workstation to mount a remote NFS share automatically whenever it boots.
How can you accomplish this goal on the Linux workstation (the NFS client)?

A. Create a file in /etc/xinetd.d for the NFS export you want to mount, providing informa-
tion about the export on named lines in the file.

B. Edit /etc/exports to reference the NFS export, providing the computer name and options
in parentheses following the computer name.

C. Edit /etc/fstab to reference the NFS export rather than a Linux device filename, providing
a filesystem type code of nfs and a standard Linux mount point.

D. Any of the above.

7. Which of the following lines, when entered in /etc/lilo.conf, begins a definition to boot
Linux using the /boot/bzImage-2.6.19 kernel when the /boot partition is /dev/hda2?

A. image=(hd0,1)/bzImage-2.6.19

B. kernel=/boot/bzImage-2.6.19

C. image=/boot/bzImage-2.6.19

D. kernel=(hd0,1)/boot/bzImage-2.6.19

8. What does the number 703 represent in the following /etc/passwd entry?

george:x:703:100:George Brown:/home/george:/bin/tcsh

A. The account’s human ID (HID) number

B. The account’s process ID (PID) number

C. The account’s group ID (GID) number

D. The account’s user ID (UID) number

9. What does the grep command accomplish?

A. It creates a pipeline between two programs.

B. It searches files’ contents for a pattern.

C. It concatenates two or more files.

D. It displays the last several lines of a file.

10. Which of the following are journaling filesystems for Linux? (Select all that apply.)

A. HPFS

B. JFS

C. Ext2fs

D. Ext3fs

11. In what file do you set the default Linux runlevel?

A. /etc/inittab

B. /etc/inittab.conf

C. /etc/runlevel

D. /etc/inetd.conf

4425.book Page xxxi Tuesday, July 12, 2005 11:29 PM

xxxii Assessment Test

12. Which printing systems rely on /etc/printcap for printer configuration? (Select all that apply.)

A. BSD LPD

B. CUPS

C. Ghostscript

D. LPRng

13. You’re experiencing sporadic problems with a Secure Shell (SSH) login server—users can some-
times log in and sometimes they can’t. What might you try immediately after a failure to help
diagnose this problem?

A. On the server computer, type http://localhost:631 into a web browser to access the SSH
configuration page and check its error subpage for error messages.

B. Type diagnose sshd to run a diagnostic on the SSH server daemon (sshd).

C. Type tail /var/log/messages to look for error messages from the server.

D. Examine the /dev/ssh device file to look for error messages from the server.

14. What is the function of the ~/.profile file?

A. It is the user configuration file for the ProFTP server.

B. It is one of a user’s bash startup scripts.

C. It is the user configuration file for the ProFile file manager.

D. Its presence tells tcsh to ignore file modes.

15. After unpacking a source code tarball and configuring the software to compile on your system
(as described in its documentation), what command are you likely to need to type to compile
the software?

A. setup

B. make

C. compile

D. gcc

16. A system administrator logs onto a home computer and uses Telnet over a cable modem con-
nection to access a work computer. This person then uses su to acquire superuser privileges to
make some changes to the remote system’s configuration. What risks does this procedure pose?

A. The connection can be tracked by spammers, placing both the local and remote systems’
users on spammers’ address lists.

B. If the cable modem connection dies, the Telnet server will be left running, consuming con-
siderable system resources until a reboot.

C. A virus on the remote system might propagate itself into the individual’s home computer,
thus infecting it and spreading the virus further.

D. The individual’s user account and the root password might be discovered by miscreants
with sniffers installed on any intervening system.

4425.book Page xxxii Tuesday, July 12, 2005 11:29 PM

Assessment Test xxxiii

17. What role does BIND fill?

A. It allows programs to use dynamic library files.

B. It translates between hostnames and IP addresses.

C. It ties together POP and SMTP servers.

D. It binds an IP address to a network interface.

18. Which of the following is true of automated X configuration tools?

A. They create a binary configuration file that cannot be manipulated with a text editor.

B. They all run in stripped-down GUI mode in order to test the X configuration.

C. They can usually create a working configuration, but this isn’t guaranteed.

D. They can all create both XFree86 3.3.6 and XFree86 4.0.x configuration files.

19. Which utility should you use to rename the file pumpkin.txt to lantern.txt?

A. dd

B. rm

C. cp

D. mv

20. You want to run a lengthy scientific simulation program, called simbigbang, which doesn’t
require any user interaction; the program operates solely on disk files. If you don’t want to tie
up the shell from which you run the program, what should you type to run simbigbang in the
background?

A. start simbigbang

B. simbigbang &

C. bg simbigbang

D. background simbigbang

21. Which of the following commands will install an RPM package called theprogram-1.2.3-
4.i386.rpm on a computer? (Select all that apply.)

A. rpm -Uvh theprogram-1.2.3-4.i386.rpm

B. rpm -i theprogram-1.2.3-4.i386.rpm

C. rpm -U theprogram

D. rpm -e theprogram-1.2.3-4.i386.rpm

22. What tool can diagnose and fix many common Linux filesystem problems?

A. mkfs

B. fsck

C. chkdsk

D. scandisk

4425.book Page xxxiii Tuesday, July 12, 2005 11:29 PM

xxxiv Assessment Test

23. How can an ordinary user select which window manager to run? (Select all that apply.)

A. By editing user configuration files like .xinitrc or .xsession

B. By editing system configuration files like /etc/X11/xinit/xinitrc or /etc/X11/xdm/
Xsession

C. By selecting the window manager from a list presented by a GUI login program

D. By using the standard Xselector program, logging out, and logging back in

24. Which of the following commands displays help on topic when typed in a Linux shell? (Select
all that apply.)

A. manual topic

B. man topic

C. ? topic

D. info topic

25. A computer’s hardware clock keeps track of the time while the computer is powered off. In what
format may this time be stored on an x86 Linux system? (Select all that apply.)

A. Coordinated Universal Time (UTC)

B. Internet Time

C. Local time

D. 12-hour time

26. You want to know what kernel modules are currently loaded. What command would you type
to learn this information?

A. insmod

B. depmod

C. modprobe

D. lsmod

27. You want to enable all members of the music group to read the instruments.txt file, which
currently has 0640 (-rw-r-----) permissions, ownership by root, and group ownership by
root. How might you accomplish this goal? (Select all that apply.)

A. Type chown music instruments.txt in the file’s directory.

B. Type chgrp music instruments.txt in the file’s directory.

C. Type chgroup music instruments.txt in the file’s directory.

D. Type chown .music instruments.txt in the file’s directory.

4425.book Page xxxiv Tuesday, July 12, 2005 11:29 PM

Assessment Test xxxv

28. Under which of the following circumstances will a chmod command not work?

A. The user issuing the command doesn’t own the file but does own and have write permission
to the directory in which the file resides.

B. The root user issues the command on a file that resides in a read/write filesystem, although
the file itself has no write permissions active.

C. The owner of the file issues the command, but the file’s permissions don’t grant the owner
write access to the file.

D. The owner of the file issues the command, but the file resides in a directory to which the
owner has read but not write access.

29. Which of the following, when typed in Vi’s command mode, saves a file and quits from
the program?

A. :rq

B. :wq

C. :re

D. :we

30. In evaluating Linux’s compatibility with a computer, which factor is more important for
SCSI-based systems than for ATA-based computers?

A. The rotational velocity of the disks

B. The master/slave status of the disks

C. The availability of Linux drivers for the adapter card

D. The support for the disk model in the hdparm utility

4425.book Page xxxv Tuesday, July 12, 2005 11:29 PM

Answers to Assessment Test
1. D. The procedure for entering the BIOS CMOS utility varies from one motherboard to

another. It’s usually a single keystroke, such as F10 or Delete, during a critical part of the POST.
Consult your motherboard manual for details. Most systems also display a prompt telling you
how to get to the BIOS CMOS utility, but you may need to read fast to spot it! See Chapter 3
for more information.

2. A, C. Examining a process listing (obtained from ps) for signs of the super server is the most
reliable way to determine which one is actually running. The presence of the super server’s
configuration file or files (as in option C) is also a good diagnostic, although some older sys-
tems that have been upgraded may have both sets of configuration files. There is no standard
superserver utility to report on which one is used. Most distributions launch the super server
through a SysV startup script; the /etc/inittab file isn’t directly involved in this process, so
examining it would be pointless. See Chapter 9 for more information.

3. D. The lpc utility is used to start, stop, change the priority of, and otherwise control jobs in
a print queue. CUPS ships with an lpc utility, but it’s quite rudimentary compared to the lpc
utilities of BSD LPD and LPRng. Instead, CUPS relies on its Web-based interface and stand-
alone utilities to provide the ability to control print jobs. See Chapter 9 for more information.

4. C. Option C correctly summarizes the nature of both HOWTOs and FAQs, both of which
can be found at the Linux Documentation Project (LDP). Although some HOWTOs are fairly
lengthy, few or none can legitimately be called “book-length.” The Guides at the LDP could be
so described, though. The description of FAQs as “terse command summaries” is incorrect; that
description better applies to man pages. See Chapter 7 for more information.

5. C, D. The computer’s IP address and network mask (aka subnet mask or netmask) are the most
critical components in TCIP/IP network configuration. (Additional information you may need
to provide on many networks includes the IP address of 1 to 3 DNS servers, the hostname or IP
address of a router, and the computer’s hostname.) You shouldn’t need the IP address of a
Dynamic Host Configuration Protocol (DHCP) server—and if a DHCP server is present,
chances are you should be using DHCP rather than static IP address assignment. A NetBIOS
Name Service (NBNS) server converts between names and IP addresses on NetBIOS networks.
The hostname of such a computer is not likely to be a critical configuration element, although
you may need to provide this information to Samba for some operations to function correctly
when sharing files. See Chapter 9 for more information.

6. C. Linux treats NFS exports much like local filesystems, so you can specify them in /etc/
fstab along with local filesystems, although some details (most important, the filesystem iden-
tifier and the filesystem type code) are different. The /etc/xinetd.d directory contains config-
uration files for servers launched from the xinetd super server; it has nothing to do with NFS
client configuration. Option B describes in rough terms how to configure an NFS server, not an
NFS client as the question specifies. See Chapter 10 for more information.

4425.book Page xxxvi Tuesday, July 12, 2005 11:29 PM

Answers to Assessment Test xxxvii

7. C. The image= line in /etc/lilo.conf identifies a kernel image to be booted using normal
Linux filenames, so /boot/bzImage-2.6.19 is the correct notation. There is no kernel= option
in LILO’s configuration file. The (hd0,1) notation in options A and D is a GRUB hard disk iden-
tifier; this notation is not used in LILO. Option D also uses both the GRUB disk identifier notation
and the /boot Linux filesystem specification. See Chapter 3 for more information.

8. D. The third field of /etc/passwd entries holds the UID number for the account. Linux doesn’t
use any standard identifier called a human ID (HID), although the acronym HID stands for human
interface device, a class of USB devices. Accounts don’t have PID numbers; those belong to running
processes. The account’s GID number is stored in the fourth field of /etc/passwd—100 in this
example. See Chapter 3 for more information.

9. B. The grep command scans files to find those that contain a specified string or pattern. In the
case of text files, it displays the matching line or lines; for binary files, it reports that the file
matches the pattern. The method of creating a pipeline involves separating two commands with
a vertical bar (|). The grep command can be used in a pipeline, but it doesn’t create one. The
command that concatenates files is cat, and the command that displays the last several lines of
a file is tail. See Chapter 1 for more information.

10. B, D. The Journaled Filesystem (JFS) is a journaling filesystem written by IBM for AIX and OS/2
and later ported to Linux. The Third Extended Filesystem (ext3fs) is a journaling filesystem based
on the older non-journaling Second Extended Filesystem (ext2fs). The High-Performance Filesystem
(HPFS) is a non-journaling filesystem designed by Microsoft for OS/2. See Chapter 3 for more
information.

11. A. You set the boot-time runlevel on a line that begins with the code id within /etc/inittab. The
/etc/inittab.conf and /etc/runlevel files are fictitious. The /etc/inetd.conf file has noth-
ing to do with setting the runlevel and doesn’t even exist on some systems. See Chapter 6 for more
information.

12. A, D. The BSD LPD and LPRng printing systems both define printers in /etc/printcap,
using similar formats. The newer Common Unix Printing System (CUPS) doesn’t rely on
/etc/printcap for configuration, although it does generate a simple /etc/printcap file
for the benefit of programs that refer to it to learn print queue names. Ghostscript isn’t a
complete printing system, and it doesn’t use /etc/printcap, although other printing sys-
tems may call Ghostscript to help process print jobs. See Chapter 9 for more information.

13. C. Log files, such as /var/log/messages and sometimes others in /var/log, often contain
useful information concerning server errors. The tail program displays the last few lines of a
file, so using it to examine log files immediately after a problem occurs can be a useful diagnostic
procedure. The http://localhost:631 URL accesses the Common Unix Printing System
(CUPS) configuration utility, which has nothing to do with SSH. There is no standard diagnose
utility to help diagnose server problems, and there is no standard /dev/ssh file. See Chapter 8
for more information.

14. B. The ~./profile file is one of several bash startup scripts. It has nothing to do with the
ProFTP server or the tcsh shell. The ProFile file manager mentioned in option C is fictitious. See
Chapter 6 for more information.

4425.book Page xxxvii Tuesday, July 12, 2005 11:29 PM

xxxviii Answers to Assessment Test

15. B. The make command consults a file (typically called Makefile) that contains instructions
on how to compile individual source code files and build a working application from source
code. Most Linux programs don’t ship with compilation or installation tools called setup or
compile. The gcc program is a compiler. Although it’s often invoked by make, most programs
you download from the Internet don’t require you to call it directly. See Chapter 2 for more
information.

16. D. Because of Telnet’s insecure nature, it should not be used for remote administration, especially
not over the Internet—passwords and other sensitive data might be discovered by miscreants with
access to intervening systems. Ideally, Telnet should not be installed at all. In theory, spammers
could eavesdrop on such a connection, but the provided scenario didn’t mention the transfer of
e-mail addresses, and unless they’re explicitly sent, they wouldn’t be easily discovered from this
connection alone. If the cable modem link goes down, the Telnet server would probably quickly
drop the connection. Even if it didn’t, the overhead of a single Telnet connection is quite low and
is unlikely to be a problem. Viruses don’t propagate via Telnet connections—at least, not unless
they’re spread through some additional commands typed by the user. See Chapter 7 for more
information.

17. B. BIND is the Berkeley Internet Name Domain—a name server. Normally, BIND runs only on
your network’s name servers; other computers on your network point to a DNS server that runs
BIND or similar software. See Chapter 10 for more information.

18. C. Like many automated tools, the X configuration tools occasionally produce nonworking
files. These files are plain text, and so they can be edited in a text editor. The tools themselves
may or may not run in GUI mode, and they may or may not provide a means for you to test the
configuration. Most tools work only with XFree86 3.3.6 or XFree86 4.0.x, not both. See Chap-
ter 5 for more information.

19. D. The mv utility can be used to rename files as well as move them from one location to another.
The dd utility is used to copy files to backups, while rm is used to remove (delete) files and cp
copies files. See Chapter 4 for more information.

20. B. Appending an ampersand (&) to a command causes that command to execute in the
background. The program so launched still consumes CPU time, but it won’t monopolize
the shell you used to launch it. The start and background commands are fictitious.
Although bg does place a job into the background, it doesn’t launch a program that way; it
places a process that’s been suspended (by pressing Ctrl+Z) into the background. See Chap-
ter 1 for more information.

21. A, B. The -Uvh parameter issues an upgrade command (which installs the program whether or
not an earlier version is installed) and creates a series of hash marks to display the command’s
progress. The -i parameter installs the program if it’s not already installed but causes no
progress display. Option C uses a package name, not a complete filename, and so it will fail to
install the package file. The -e option removes a package. See Chapter 2 for more information.

22. B. Option B, fsck, is Linux’s filesystem check utility. It’s similar in purpose to the DOS and
Windows CHKDSK and ScanDisk utilities, but these DOS and Windows utilities don’t work on
Linux filesystems like ext2fs or ReiserFS. Option A, mkfs, creates new filesystems; it doesn’t
diagnose or fix filesystem problems. See Chapter 4 for more information.

4425.book Page xxxviii Tuesday, July 12, 2005 11:29 PM

Answers to Assessment Test xxxix

23. A, C. User configuration files and login-time options can both be used to select the window
manager, depending on the system’s configuration. Ordinary users should not have write access
to system configuration files, although system administrators can change defaults by editing
them. Although a program that changes the default window manager for a user would be handy,
such a program is not a standard part of Linux or XFree86. See Chapter 5 for more information.

24. B, D. The correct answers, man and info, are two common Linux help packages. Although ?
is a common help command within certain interactive programs, it isn’t a help command in bash
or other common Linux shells. There is no common command called manual. See Chapter 1 for
more information.

25. A, C. Unix systems traditionally store time in UTC (aka Greenwich Mean Time), and Linux
may do so as well. Most other x86 PC OSs traditionally store time as the local time, however,
so Linux also supports this option. Internet Time is an alternative to the 24-hour clock in which
the day is broken into 1,000 “beats.” Standard PC BIOSs don’t support this time format. Like-
wise, a 12-hour clock isn’t terribly useful to computers because it doesn’t differentiate A.M. from
P.M. See Chapter 8 for more information.

26. D. Typing lsmod produces a list of the modules that are currently loaded. The insmod and
modprobe programs both load modules—either a single module or a single module and all those
upon which it depends, respectively. The depmod command generates the modules.dep file that
contains module dependency information. See Chapter 6 for more information.

27. B, D. The chgrp and chown commands can both change the group ownership of a file. The
chgrp command takes a group name and a filename as parameters, as in option B. The chown
command normally changes a file’s owner, but if you provide a group name preceded by a dot
(.), as in option D, it changes the group of a file. The chown command shown in option A will
change the primary ownership of the file to the music user, if such a user exists on the system;
it won’t change the group ownership. There is no standard chgroup command, as in option C.
See Chapter 4 for more information.

28. A. Only the file’s owner and root may change permissions on a file via chmod. Whether the file
is writeable by the owner is irrelevant, as is whether the directory in which the file resides is
writeable. See Chapter 4 for more information.

29. B. The colon (:) starts ex mode, from which you can enter commands. In ex mode, r includes
a file in an existing one, w writes a file, e loads an entirely new file, and q quits the program.
Thus, the desired combination is :wq. See Chapter 1 for more information.

30. C. Linux provides generic ATA drivers that work with most ATA adapter cards, albeit at low
speed. No such generic drivers are available for SCSI; instead, Linux requires device-specific
drivers for any SCSI host adapter it uses. Disk rotational velocity doesn’t directly affect hard-
ware compatibility for either SCSI or ATA disks. ATA disks can be set as the master or slave
device, but SCSI disks don’t use these settings. The hdparm utility can measure SCSI or ATA disk
performance and can tune some ATA performance parameters, but that utility doesn’t need
explicit support for specific disk models. See Chapter 3 for more information.

4425.book Page xxxix Tuesday, July 12, 2005 11:29 PM

PART

I

The LPI 101 Exam
(106 Weights)

4425.book Page 1 Thursday, July 7, 2005 5:28 PM

Chapter

1

Linux Command-Line
Tools

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.103.1 Work on the command line (weight: 5)

�

1.103.2 Process text streams using filters (weight: 6)

�

1.103.4 Use streams, pipes, and redirects (weight: 5)

�

1.103.5 Create, monitor, and kill processes (weight: 5)

�

1.103.6 Modify process execution priorities (weight: 3)

�

1.103.7 Search text files using regular expressions (weight: 3)

�

1.103.8 Perform basic file editing operations using vi

(weight: 1)

4425.book Page 3 Thursday, July 7, 2005 5:28 PM

Linux borrows heavily from Unix, and Unix began as a text-based
operating system (OS). Unix and Linux retain much of this heri-
tage, which means that to understand how to use and, especially,

administer Linux, you must understand at least the basics of its command-line tools. Thus, this
book begins with an introduction to Linux

shells

 (the programs that accept and interpret text-
mode commands) and many of the basic commands and procedures you can use from a shell.

This chapter begins with basic shell information, including shell options and basic proce-
dures for using them. From there, this chapter covers streams, pipes, and redirects, which you
can use to shunt input and output between programs or between files and programs. These tech-
niques are frequently combined with text processing using filters—commands you can use to
manipulate text without the help of a conventional text editor. Sometimes you must manipulate
text in an abstract way, using codes to represent several different types of text. This chapter
therefore covers this topic. Frequently, using a full-fledged text editor is necessary, so this chap-
ter describes Vi, a basic but common Linux text editor. Finally, this chapter concludes with a
look at managing running programs.

Command-Line Basics

Before you do anything else with Linux, you should understand how to use a Linux shell. Sev-
eral shells are available, but most provide similar capabilities. Understanding a few basics will
take you a long way in your use of Linux, so I describe some of these techniques and commands.
You should also understand shell

environment variables,

 which are placeholders for data that
may be useful to many programs. Finally on the topic of command-line basics, you should know
how to get help on commands you’re trying to use.

Linux Shell Options

As with many key software components, Linux provides a range of options for shells. A com-
plete list would be quite long, but the more common choices include the following:

bash

The GNU Bourne Again Shell (

bash

) is based on the earlier Bourne shell for Unix but
extends it in several ways. In Linux,

bash

 is the most common default shell for user accounts,
and it’s the one emphasized in this book and on the LPI exam.

bsh

The Bourne shell upon which

bash

 is based also goes by the name

bsh

. It’s not often used
in Linux, although the

bsh

 command is usually a symbolic link to

bash

.

4425.book Page 4 Thursday, July 7, 2005 5:28 PM

Command-Line Basics

5

tcsh

This shell is based on the earlier C shell (

csh

). It’s a fairly popular shell in some circles,
but no major Linux distributions make it the default shell. Although it’s similar to

bash

 in many
respects, some operational details differ. For instance, you don’t assign environment variables
in the same way in

tcsh

 as in

bash

.

csh

The original C shell isn’t much used on Linux, but if a user is familiar with

csh

,

tcsh

makes a good substitute.

ksh

The Korn Shell (

ksh

) was designed to take the best features of the Bourne shell and the
C shell and extend them further. It’s got a small but dedicated following among Linux users.

zsh

The Z shell (

zsh

) takes shell evolution further than the Korn Shell, incorporating features
from earlier shells and adding still more.

In addition to these shells, dozens more obscure ones are available. In Linux, most users run

bash

 because it’s the default. Some other OSs use

csh

 or

tcsh

 as the default, so if your users
have backgrounds on non-Linux Unix-like OSs, they may be more familiar with these other
shells. You can change a user’s default shell by editing the account, as described in Chapter 8,
“Administering the System.”

The file

/bin/sh

 is a symbolic link to the system’s default shell—normally

/bin/bash

for Linux. This practice enables you to point to a shell (say, at the start of a simple shell
script, as described in Chapter 6, “The Boot Process and Scripts”) and be assured that a
shell will be called, even if the system’s available shells change. This feature is particularly
important when developing shell scripts that might be run on other computers, as described
in Chapter 6.

Using a Shell

Linux shell use is fairly straightforward for anybody who’s used a text-mode OS before: You
type a command, possibly including options to it, and the computer executes the command. For
the most part, Linux commands are external—that is, they’re separate programs from the shell.
A few commands are internal to the shell, though, and knowing the distinction can be impor-
tant. You should also know some of the tricks that can ease use of the command shell—how
to have the computer complete a long command or filename, or retrieve a command you’ve
recently run, or edit a command you’ve recently used (or haven’t yet fully entered).

One class of commands—those for handling basic file management—are very
important but are not described here in great detail. For more information on

these commands, consult Chapter 4, “Managing Files and Filesystems.”

Using Internal and External Commands

Internal commands are, as you might expect, built into the shell. Most shells offer a similar set
of internal commands, but shell-to-shell differences do exist, so consult your shell’s

man

 page (as

4425.book Page 5 Thursday, July 7, 2005 5:28 PM

6

Chapter 1 �

Linux Command-Line Tools

described later, in “Getting Help”) for details, particularly if you’re using an exotic shell. Inter-
nal commands you’re likely to use enable you to perform some common tasks:

Change the working directory

Whenever you’re running a shell, you’re working in a specific
directory. When you refer to a file without providing a complete path to the file, the shell
works on the file in the current working directory. (Similar rules apply to many programs.)
The

cd

 command changes the current working directory. For instance, typing

cd /home/
sally

 changes to the

/home/sally

 directory. The tilde (~) character is a useful shortcut; it
stands for your home directory, so

cd ~

 will have the same effect as

cd /home/sally

 if your
home directory is

/home/sally

.

Display the working directory

The

pwd

 command displays the current working directory.

Display a line of text

The

echo

 command displays the text you enter; for instance, typing

echo Hello

 causes the system to display the string

Hello

. This may seem pointless, but it’s use-
ful in scripts (described in Chapter 6), and it can also be a good way to review the contents of
environment variables (described later in this chapter, in “Using Environment Variables”).

Execute a program

The

exec

 command runs an external program that you specify, as in

exec
myprog

 to run

myprog

. In most cases, this is better accomplished by typing the name of the pro-
gram you want to run. The

exec

 command has one special feature, though: Rather than create
a new process that runs alongside the shell, the new process

replaces

 the shell. When the new
process terminates, it’s as if you terminated the shell.

Time an operation

The

time

 command times how long subsequent commands take to exe-
cute. For instance, typing

time pwd

 tells you how long the system took to execute the

pwd com-
mand. The time is displayed after the full command terminates. Three times are displayed: total
execution time (aka real time), user CPU time, and system CPU time. The final two values tell
you about CPU time consumed, which is likely to be much less than the total execution time.

Set options In its most basic form, set displays a wide variety of options relating to bash
operation. These options are formatted much like environment variables, but they aren’t
the same things. You can pass various options to set to have it affect a wide range of shell
operations.

Remove options The unset command removes an option from those that are displayed or
modified by set and used by bash.

Terminate the shell The exit and logout commands both terminate the shell. The exit com-
mand terminates any shell, but the logout option terminates only login shells—that is, those
that are launched automatically when you initiate a text-mode login as opposed to those that
run in xterm windows or the like.

This list is not complete. Later sections of this chapter and later chapters
describe some additional internal commands. Consult your shell’s documen-
tation for a complete list of its internal commands.

4425.book Page 6 Thursday, July 7, 2005 5:28 PM

Command-Line Basics 7

Some of these internal commands are duplicated by external commands that do the same
thing, but these external commands aren’t always installed on all systems. Even when these
external commands are installed, the internal command takes precedence unless you provide the
complete path to the external command on the command line, as in typing /bin/pwd rather
than pwd.

When you type a command that’s not recognized by the shell as one of its internal com-
mands, the shell checks its path to find a program by that name to execute it. The path is
a list of directories in which commands can be found. It’s defined by the PATH environment
variable, as described shortly, in “Using Environment Variables.” A typical user account
will have about half a dozen or a dozen directories in its path. You can adjust the path by
changing the PATH environment variable in a shell configuration file, as described in “Shell
Configuration.”

You can run programs that aren’t on the path by providing a complete path on the command
line. For instance, typing ./myprog runs the myprog program in the current directory, and
/home/arthur/thisprog runs the thisprog program in the /home/arthur directory.

Confusion over Internal and External Commands

When duplicate internal and external commands exist, they sometimes produce subtly differ-
ent results or accept different options. These differences can sometimes cause problems. For
instance, consider the pwd command and symbolic links to directories. (Symbolic links are
described in more detail in Chapter 4. For now, know that they’re files that point to other files
or directories and for most intents and purposes act just like the files or directories to which
they point when they’re accessed.) Suppose you create a symbolic link to /bin within your
home directory and then cd into that directory. You then want to know where you are. The pwd
command that’s internal to bash will produce a different result from the external pwd command:

$ pwd

/home/sally/binlink

$ /bin/pwd

/usr/bin

As you can see, bash’s internal pwd shows the path via the symbolic link, whereas the external
command shows the path to which the link points. Sometimes these differences can cause con-
fusion, such as if you read the man page or other documentation that describes one version but
you use the other and a difference is important. You may wonder why the command isn’t oper-
ating as you expect. If in doubt, look up the documentation for, and type the complete path to,
the external command to be sure you use it.

4425.book Page 7 Thursday, July 7, 2005 5:28 PM

8 Chapter 1 � Linux Command-Line Tools

The root account should normally have a shorter path than ordinary user accounts.
Typically, you’ll omit directories that store GUI and other user-oriented programs
from root’s path in order to discourage use of the root account for routine opera-
tions, thus minimizing the risk of security breaches related to buggy or compro-
mised binaries being run by root. Most importantly, root’s path should never
include the current directory (./). Placing this directory in root’s path makes it pos-
sible for a local miscreant to trick root into running replacements for common pro-
grams, such as ls, by having root change into a directory with such a program.
Indeed, omitting the current directory from ordinary user paths is also generally a
good idea. If this directory must be part of the ordinary user path, it should appear
at the end of the path so that the standard programs take precedence over any
replacement programs in the current directory.

In the case of both programs on the path and those whose complete paths you type as part
of the command, the program file must be marked as executable. This is done via the execute
bit that’s stored with the file. Standard programs are marked executable when they’re installed,
but if you need to adjust a program’s executable status, you can do so with the chmod command,
as described in Chapter 4.

Shell Command Tricks

Many users find typing commands to be tedious and error prone. This is particularly true of
slow or sloppy typists. For this reason, Linux shells include various tools that can help speed
up operations. The first of these is command completion: Type part of a command or (as an
option to a command) a filename and then press the Tab key. The shell tries to fill in the rest
of the command or the filename. If just one command or filename matches the characters
you’ve typed so far, the shell fills it in and places a space after it. If the characters you’ve typed
don’t uniquely identify a command or filename, the shell fills in what it can and then stops.
Depending on the shell and its configuration, it may beep. If you press the Tab key again, the
system responds by displaying the possible completions. You can then type another character
or two and, if you haven’t completed the command or filename, press the Tab key again to
have the process repeat.

The most fundamental Linux commands have fairly short names—mv, ls, set, and so on.
Some other commands are much longer, though, such as traceroute or sane-find-scanner.
Filenames can also be quite lengthy—up to 255 characters on many filesystems. Thus, com-
mand completion can save a lot of time when typing. It can also help you avoid typos.

The most popular Linux shells, including bash and tcsh, support command
and filename completion. Some older shells, though, don’t support this
helpful feature.

Another helpful shell shortcut is the shell history. The shell keeps a record of every com-
mand you type (stored in ~/.bash_history in the case of bash). If you’ve typed a long

4425.book Page 8 Thursday, July 7, 2005 5:28 PM

Command-Line Basics 9

command recently and want to use it again, or use a minor variant of it, you can pull the
command out of the history. The simplest way to do this is to press the up arrow key on
your keyboard; this brings up the previous command. Pressing the up arrow key repeatedly
moves through multiple commands so you can find the one you want. If you overshoot,
press the down arrow key to move down the history. The Ctrl+P and Ctrl+N keystrokes
double for the up and down arrow keys, respectively.

Another way to use the command history is to search through it. Press Ctrl+R to begin a
backward (reverse) search, which is what you probably want, and begin typing characters
that should be unique to the command you want to find. The characters you type need not be
the ones that begin the command; they can exist anywhere in the command. You can either
keep typing until you find the correct command or, after you’ve typed a few characters, press
Ctrl+R repeatedly until you find the one you want. The Ctrl+S keystroke works similarly but
searches forward in the command history, which might be handy if you’ve used a backward
search or the up arrow key to look back and have overshot. In either event, if you can’t find
the command you want or change your mind and want to terminate the search, press Ctrl+G
to do so.

Frequently, after finding a command in the history, you want to edit it. The bash shell, like
many shells, provides editing features modeled after those of the Emacs editor:

Move within the line Press Ctrl+A or Ctrl+E to move the cursor to the start or end of the line,
respectively. The left and right arrow keys will move within the line a character at a time. Ctrl+B
and Ctrl+F will do the same, moving backward and forward within a line. Pressing Ctrl plus the
left or right arrow keys will move backward or forward a word at a time, as will pressing Esc
and then B or F.

Delete text Pressing Ctrl+D or the Delete key deletes the character under the cursor, while
pressing the Backspace key deletes the character to the left of the cursor. Pressing Ctrl+K deletes
all text from the cursor to the end of the line. Pressing Ctrl+X and then Backspace deletes all the
text from the cursor to the beginning of the line.

Transpose text Pressing Ctrl+T transposes the character before the cursor with the character
under the cursor. Pressing Esc and then T transposes the two words immediately before (or under)
the cursor.

Change case Pressing Esc and then U converts text from the cursor to the end of the word
to uppercase. Pressing Esc and then L converts text from the cursor to the end of the word to
lowercase. Pressing Esc and then C converts the letter under the cursor (or the first letter of the
next word) to uppercase, leaving the rest of the word unaffected.

Invoke an editor You can launch a full-fledged editor to edit a command by pressing Ctrl+X
followed by Ctrl+E. The bash shell attempts to launch the editor defined by the $FCEDIT or
$EDITOR environment variable or Emacs as a last resort.

These editing commands are just the most useful ones supported by bash; consult its man
page to learn about many more obscure editing features. In practice, you’re likely to make
heavy use of command and filename completion, command history, and perhaps a few edit-
ing features.

4425.book Page 9 Thursday, July 7, 2005 5:28 PM

10 Chapter 1 � Linux Command-Line Tools

Shell Configuration

Shells, like many Linux programs, are configured through files that hold configuration options in a
plain-text format. The bash configuration files are actually bash shell scripts, which are described
more fully in Chapter 6. For now, you should know that the ~/.bashrc and ~/.profile files are

E X E R C I S E 1 . 1

Editing Commands

In this exercise, you’ll experiment with your shell’s completion and command editing tools. To
do so, follow these steps:

1. Log in as an ordinary user.

2. Create a temporary directory by typing mkdir test. (Directory and file manipulation com-
mands are described in more detail in Chapter 4.)

3. Change into the test directory by typing cd test.

4. Create a few temporary files by typing touch one two three. This command creates three
empty files named one, two, and three.

5. Type ls -l t, and without pressing the Enter key, press the Tab key. The system may beep
at you or display two three. If it doesn’t display two three, press the Tab key again and it
should do so. This reveals that either two or three is a valid completion to your command,
because these are the two files in the test directory whose filenames begin with the letter t.

6. Type h, and again without pressing the Enter key, press the Tab key. The system should
complete the command (ls -l three), at which point you can press the Enter key to exe-
cute it. (You’ll see information on the file.)

7. Press the up arrow key. You should see the ls -l three command appear on the com-
mand line.

8. Press Ctrl+A to move the cursor to the beginning of the line.

9. Press the right arrow key once and type es (without pressing the Enter key). The command
line should now read less -l three.

10. Press the right arrow key once and press the Delete key three times. The command should
now read less three. Press the Enter key to execute the command. (Note that you can do
so even though the cursor is not at the end of the line.) This invokes the less pager on the
three file. Because this file is empty, you’ll see a mostly empty screen.

11. Press the Q key to exit from the less pager.

4425.book Page 10 Thursday, July 7, 2005 5:28 PM

Command-Line Basics 11

the main user configuration files for bash, while /etc/bashrc and /etc/profile are the main
global configuration files.

Even without knowing much about shell scripting, you can make simple changes to these
files. Edit them in your favorite text editor and change whatever needs changing. For instance,
you can add directories to the $PATH environment variable, which takes a colon-delimited list
of directories.

Be careful when changing your bash configuration, and particularly the global
bash configuration files. Save a backup of the original file before making
changes, and test them immediately by logging in using another virtual ter-
minal. If you spot a problem, revert to your saved copy until you can learn the
cause and create a working file.

Using Environment Variables

Environment variables are like variables in programming languages—they hold data to be
referred to by the variable name. Environment variables differ in that they’re part of the envi-
ronment of a program, and this environment can be modified by other programs, such as the
shell. Programs can rely upon environment variables to set information that can apply to many
different programs. For instance, suppose a computer hosts several different Usenet news read-
ers. These programs all need to know what Usenet news server to use, so if they all agree to use
an environment variable, such as $NNTPSERVER, to hold this information, you can set this envi-
ronment variable once as part of your shell startup script and then forget it. You needn’t set this
feature individually for all the news readers installed on the system.

Chapter 6 describes environment variables and their manipulation in more detail. For the
moment, you should know that they can be set in bash using the export command:

$ export NNTPSERVER=news.abigisp.com

This line sets the $NNTPSERVER environment variable to news.abigisp.com. (When setting
an environment variable, you omit the dollar sign, but subsequent references include a dollar
sign to identify the environment variable as such.) Thereafter, programs that need this informa-
tion can refer to the environment variable. In fact, you can do so from the shell yourself, using
the echo command:

$ echo $NNTPSERVER

news.abigisp.com

You can also view the entire environment by typing env. The result is likely to be several
dozen lines of environment variables and their values. Chapter 6 describes what many of these
variables are in more detail.

4425.book Page 11 Thursday, July 7, 2005 5:28 PM

12 Chapter 1 � Linux Command-Line Tools

Getting Help

Linux provides a text-based help system known as man. This command’s name is short for manual,
and its entries (its man pages) provide succinct summaries of what a command, file, or other feature
does. For instance, to learn about man itself, you would type man man. The result is a description of
the man command.

The man utility uses the less pager to display information. This program displays text a page
at a time. Press the spacebar to move forward a page, Esc followed by V to move back a page, the
arrow keys to move up or down a line at a time, the slash (/) key to search for text, and so on.
(Type man less to learn all the details, or consult the upcoming section, “Paging Through Files
with less.”) When you’re done, press Q to exit from less and the man page it’s displaying.

Linux man pages are actually categorized into several sections, which are summarized in Table
1.1. Sometimes a single keyword has entries in multiple sections; for instance, passwd has entries
under both section 1 and section 5. In most cases, man returns the entry in the lowest-numbered
section; however, you can force the issue by preceding the keyword by the section number. For
instance, typing man 5 passwd returns information on the passwd file format rather than the
passwd command.

Some programs have moved away from man pages to info pages. The basic purpose of info
pages is the same as that for man pages, but info pages use a hypertext format so that you can
move from section to section of the documentation for a program. Type info info to learn
more about this system.

T A B L E 1 . 1 Manual Sections

Section Number Description

1 Executable programs and shell commands

2 System calls provided by the kernel

3 Library calls provided by program libraries

4 Device files (usually stored in /dev)

5 File formats

6 Games

7 Miscellaneous (macro packages, conventions, etc.)

8 System administration commands (programs run mostly or exclu-
sively by root)

9 Kernel routines

4425.book Page 12 Thursday, July 7, 2005 5:28 PM

Using Streams, Redirection, and Pipes 13

Both man pages and info pages are usually written in a terse style. They’re intended as ref-
erence tools, not tutorials; they frequently assume basic familiarity with the command, or at
least with Linux generally. For more tutorial information, you must look elsewhere, such as this
book or the Web. The Linux Documentation Project (http://tldp.org) is a particularly rel-
evant Web-based resource for learning about various Linux topics.

Using Streams, Redirection, and Pipes
Streams, redirection, and pipes are some of the more powerful command-line tools in Linux.
Linux treats the input to and output from programs as a stream, which is a data entity that can
be manipulated. Ordinarily, input comes from the keyboard and output goes to the screen
(which in this context can mean a full-screen text-mode login session, an xterm or similar win-
dow, or the screen of a remote computer via a remote login session). You can redirect these
input and output streams to come from or go to other sources, though, such as files. Similarly,
you can pipe the output of one program into another program. These facilities can be great tools
to tie together multiple programs.

Part of the Unix philosophy to which Linux adheres is, whenever possible, to do
complex things by combining multiple simple tools. Redirection and pipes help
in this task by enabling simple programs to be combined together in chains,
each link feeding off of the output of the preceding link.

Types of Streams

To begin understanding redirection and pipes, you must first understand the different types of
input and output streams. Three are most important for this topic:

Standard input Programs accept keyboard input via standard input, or stdin. In most cases,
this is the data that comes into the computer from its keyboard (or from the keyboard of a
remote terminal, a network login client, or the like).

Standard output Text-mode programs send most data to their users via standard output (aka
stdout), which is normally displayed on the screen, either in a full-screen text-mode session or
in a GUI window such as an xterm. (Fully GUI programs such as GUI word processors don’t
use standard output for their regular interactions, although they might use standard output to
display messages in the xterm from which they were launched. GUI output isn’t handled via an
output stream in the sense I’m describing here.)

Standard error Linux provides a second type of output stream, known as standard error, or
stderr. This output stream is intended to carry high-priority information such as error messages.
Ordinarily, standard error is sent to the same output device as standard output, so you can’t easily
tell them apart. You can redirect one independently of the other, though, which can be handy. For

4425.book Page 13 Thursday, July 7, 2005 5:28 PM

14 Chapter 1 � Linux Command-Line Tools

instance, you can redirect standard error to a file while leaving standard output going to the screen
so that you can interact with the program and then study the error messages later.

Internally, programs treat these streams just like data files—they open them, read from or write
to the files, and close them when they’re done. Put another way, ordinary files are streams from
a program’s point of view. These streams just happen to be the ones used to interact with users.

Redirecting Input and Output

To redirect input or output, you use symbols following the command, including any options it takes.
For instance, to redirect the output of the echo command, you would type something like this:

$ echo $NNTPSERVER > nntpserver.txt

The result is that the file nntpserver.txt contains the output of the command (in this case,
the value of the $NNTPSERVER environment variable). Redirection operators exist to achieve sev-
eral effects, as summarized in Table 1.2.

Most of these redirectors deal with output, both because there are two types of output (stan-
dard output and standard error) and because you must be concerned with what to do in case
you specify a file that already exists. The most important input redirector is <, which takes the
specified file’s contents as standard input.

T A B L E 1 . 2 Common Redirection Operators

Redirection Operator Effect

> Creates a new file containing standard output. If the specified file
exists, it’s overwritten.

>> Appends standard output to the existing file. If the specified file does
not exist, it’s created.

2> Creates a new file containing standard error. If the specified file exists,
it’s overwritten.

2>> Appends standard error to the existing file. If the specified file does not
exist, it’s created.

&> Creates a new file containing both standard output and standard error.
If the specified file exists, it’s overwritten.

< Sends the contents of the specified file to be used as standard input.

<< Accepts text on the following lines as standard input.

<> Causes the specified file to be used for both standard input and stan-
dard output.

4425.book Page 14 Thursday, July 7, 2005 5:28 PM

Using Streams, Redirection, and Pipes 15

A common trick is to redirect standard output or standard error to /dev/
null. This file is a device that’s connected to nothing; it’s used when you
want to get rid of data. For instance, if the whine program is generating too
many error messages, you might type whine 2> /dev/null to run it and dis-
card its error messages.

One redirection operator that requires elaboration is <<. This operator implements a here
document, which takes text from the following lines as standard input. Chances are you won’t
use this redirector on the command line, though, because the following lines are standard input,
so there’s no need to redirect them. Rather, you might use this command as part of a script in
order to pass data to a command. Unlike most redirection operators, the text immediately fol-
lowing the << code isn’t a filename; instead, it’s a word that’s used to mark the end of input. For
instance, typing someprog << EOF causes someprog to accept input until it sees a line that con-
tains only the string EOF (without even a space following it).

Some programs that take input from the command line expect you to terminate
input by pressing Ctrl+D. This keystroke corresponds to an end-of-file marker
using the American Standard Code for Information Interchange (ASCII).

A final redirection tool is the tee command. This command splits standard input so that it’s
displayed on standard output and on as many files as you specify. Typically, tee is used in con-
junction with data pipes so that a program’s output can be both stored and viewed immediately.
For instance, to view and store the output of someprog, you might type this:

$ someprog | tee output.txt

The vertical bar (|) is the pipe character. It implements a pipe, as described in
the next section.

Ordinarily, tee overwrites any files whose names you specify. If you want to append data to
these files, pass the -a option to tee.

Piping Data Between Programs

Programs can frequently operate on other programs’ outputs. For instance, you might use
a text-filtering command (such as the ones described shortly, in “Processing Text Using Fil-
ters”) to manipulate text output by another program. You can do this with the help of redi-
rection operators; send the first program’s standard output to a file and then redirect the
second program’s standard input to read from that file. This solution is awkward, though,
and it involves the creation of a file that you might easily overlook, leading to unnecessary
clutter on your system.

4425.book Page 15 Thursday, July 7, 2005 5:28 PM

16 Chapter 1 � Linux Command-Line Tools

The solution is to use data pipes (aka pipelines). A pipe redirects the first program’s standard
output to the second program’s standard input and is denoted by a vertical bar (|):

$ first | second

For instance, suppose that first generates some system statistics, such as system uptime,
CPU use, number of users logged in, and so on. This output might be rather lengthy, so you
want to trim it a bit. You might therefore use second, which could be a script or command that
echoes from its standard input only the information in which you’re interested. (The grep com-
mand, described in “Using grep,” is often used in this role.)

Pipes can be used in long sequences:

$ first | second | third | fourth | fifth | sixth [...]

Generating Command Lines

Sometimes you’ll find yourself constructing command after command that are similar to each
other but not similar enough to enable you to use their normal options to substitute a single
command. For instance, suppose you want to remove every file in a directory tree with a name
that ends in a tilde (~). (This filename convention denotes backup files created by various text
editors.) With a large directory tree, this task can be a daunting one; the usual file-deletion
command (rm, described in more detail in Chapter 4) doesn’t provide an option to search for
and delete every file in a directory tree that matches such a specific criterion. One command
that can do the search part of the job, though, is find, which is also described in more detail
in Chapter 4. This command displays all the files that match criteria you provide. If you could
combine the output of find to create a series of command lines using rm, the task would be
solved. In fact, this is precisely the purpose of the xargs command.

The xargs command builds a command from its standard input. The basic syntax for this
command is as follows:

xargs [options] [command [initial-arguments]]

The command is the command you want to execute, and initial-arguments are arguments
you want to pass to the command. The options are xargs options; they aren’t passed to
command. When you run xargs, it runs command once for every word passed to it on standard
input, adding that word to the argument list for command. If you want to pass multiple options to
the command, you can protect them by enclosing the group in quotation marks.

For instance, consider the task of deleting all those backup files, denoted by tilde characters.
You could do this by piping the output of find to xargs, which then calls rm:

$ find ./ -name "*~" | xargs rm

The first part of this command (find ./ -name "*~") finds all the files in the current direc-
tory (./) or its subdirectories with a name that ends in a tilde (*~). This list is then piped to
xargs, which adds each one to its own rm command.

4425.book Page 16 Thursday, July 7, 2005 5:28 PM

Processing Text Using Filters 17

A tool that’s similar to xargs in many ways is the backtick (`), which is a character to the
left of the 1 key on most keyboards. The backtick is not the same as the single quote character
('), which is located to the right of the semicolon (;) on most keyboards.

In any event, text within backticks is treated as a separate command whose results are sub-
stituted on the command line. For instance, to delete those backup files, you might type the fol-
lowing command:

$ rm `find ./ -name "*~"`

Processing Text Using Filters
In keeping with Linux’s philosophy of providing small tools that can be tied together via pipes
and redirection to accomplish more complex tasks, many simple commands to manipulate text
are available. These commands accomplish many tasks of various types, such as combining
files, transforming the data in files, formatting text, displaying text, and summarizing data.

Many of the following descriptions include input file specifications. In most
cases, these can be omitted, in which case the utility reads from standard
input instead.

File-Combining Commands

The first group of text-filtering commands are those used to combine two or more files into one
file. Three important commands in this category are cat, join, and paste, which join files end
to end, based on fields in the file, or by merging on a line-by-line basis, respectively.

Combining Files with cat

The cat command’s name is short for concatenate, and this tool does just that: It links together
an arbitrary number of files end to end and sends the result to standard output. By combining
cat with output redirection, you can quickly combine two files into one:

$ cat first.txt second.txt > combined.txt

Although cat is officially a tool for combining files, it’s also commonly used to display the
contents of a short file. If you type just one filename as an option, cat ends up displaying that
file. This is a great way to review short files; however, for long files, you’re better off using a full-
fledged pager command, such as more or less.

You can add options to have cat perform some minor modifications to the files as it com-
bines them:

Display line ends If you want to see where lines end, add the -E or --show-ends option. The
result is a dollar sign ($) at the end of each line.

4425.book Page 17 Thursday, July 7, 2005 5:28 PM

18 Chapter 1 � Linux Command-Line Tools

Number lines The -n or --number option adds line numbers to the beginning of every line.
The -b or --number-nonblank option is similar, but it numbers only lines that contain text.

Minimize blank lines The -s or --squeeze-blank option compresses groups of blank lines
down to a single blank line.

Display special characters The -T or --show-tabs option displays tab characters as ̂ I. The
-v or --show-nonprinting option displays most control and other special characters using
carat (^) and M- notations.

Joining Files by Field with join

The join command combines two files by matching up the contents of specified fields within the
files. Fields are typically space-separated entries on a line, although you can specify another char-
acter as the field separator with the -t char option, where char is the character you want to use.

The effect of join may best be understood through a demonstration. Consider Listings 1.1
and 1.2, which contain data on telephone numbers—Listing 1.1 shows the names associated
with those numbers, while Listing 1.2 shows whether the numbers are listed or unlisted.

Listing 1.1: Demonstration File Containing Telephone Number Account Names

555-2397 Beckett, Barry

555-5116 Carter, Gertrude

555-7929 Jones, Theresa

555-9871 Orwell, Samuel

Listing 1.2: Demonstration File Containing Telephone Number Listing Status

555-2397 unlisted

555-5116 listed

555-7929 listed

555-9871 unlisted

You can display the contents of both files using join:

$ join listing1.1.txt listing1.2.txt

555-2397 Beckett, Barry unlisted

555-5116 Carter, Gertrude listed

555-7929 Jones, Theresa listed

555-9871 Orwell, Samuel unlisted

By default, join uses the first field as the one to match across files. Because Listings 1.1 and
1.2 both placed the phone number in this field, it’s the key field in the output. You can specify
another field by using the -1 or -2 options to specify the join field for the first or second file,
respectively, as in join -1 3 -2 2 people.txt numbers.txt to join using the third field in
people.txt and the second field in numbers.txt.

The join command can be used at the core of a set of simple customized database manipu-
lation tools using Linux text-manipulation commands. It’s very limited by itself, though; for

4425.book Page 18 Thursday, July 7, 2005 5:28 PM

Processing Text Using Filters 19

instance, it requires its two files to have the same ordering of lines. (You can use the sort com-
mand to ensure this is so.)

Merging Lines with paste

The paste command merges files line by line, separating the lines from each file with tabs. For
instance, using Listings 1.1 and 1.2 again:

$ paste listing1.1.txt listing1.2.txt

555-2397 Beckett, Barry 555-2397 unlisted

555-5116 Carter, Gertrude 555-5116 listed

555-7929 Jones, Theresa 555-7929 listed

555-9871 Orwell, Samuel 555-9871 unlisted

You might use paste to combine data from files that aren’t keyed with fields suitable for use
by join. Of course, to be meaningful, the files’ line numbers must be exactly equivalent. Alter-
natively, you might use paste as a quick way to create a two-column output of textual data;
however, the alignment of the second column might not be exact if the first column’s line lengths
aren’t exactly even, as shown in the preceding example.

File-Transforming Commands

Many of Linux’s text manipulation commands are aimed at transforming the contents of files.
These commands don’t actually change files’ contents, though; like most of these commands,
they send the changed file to standard output. You can then pipe this output to another com-
mand or redirect it into a new file.

An important file-transforming command is sed. This command is very com-
plex and is covered later in this chapter, in “Using sed.”

Convert Tabs to Spaces with expand

Sometimes text files contain tabs but programs that need to process the files don’t cope well
with tabs; or perhaps you want to edit a text file in an editor that uses a different amount of hor-
izontal space for the tab than the editor that created the file. In such cases, you might want to
convert tabs to spaces. The expand command does this.

By default, expand assumes a tab stop every eight characters. You can change this spacing
with the -t num or --tabs=num option, where num is the tab spacing value.

Display Files in Octal with od

Some files aren’t easily displayed in ASCII; most graphics files, audio files, and so on use non-
ASCII characters that look like gibberish. Worse, these characters can do strange things to your
display if you try to view such a file with cat or a similar tool. For instance, your font may

4425.book Page 19 Thursday, July 7, 2005 5:28 PM

20 Chapter 1 � Linux Command-Line Tools

change or your console may begin beeping uncontrollably. Nonetheless, you might sometimes
want to display such files, particularly if you want to investigate the structure of a data file. You
might also want to look at an ASCII file in a way that eliminates certain ambiguities, such as
whether a gap between words is a tab or several spaces. In such cases, od (whose name stands
for octal dump) can help. It displays a file in an unambiguous format—octal (base 8) numbers
by default. For instance, consider Listing 1.2 as parsed by od:

$ od listing1.2.txt

0000000 032465 026465 031462 033471 072440 066156 071551 062564

0000020 005144 032465 026465 030465 033061 066040 071551 062564

0000040 005144 032465 026465 034467 034462 066040 071551 062564

0000060 005144 032465 026465 034071 030467 072440 066156 071551

0000100 062564 005144

0000104

The first field on each line is an index into the file in octal. For instance, the second line begins
at octal 20 (16 in base 10) bytes into the file. The remaining numbers on each line represent the
bytes in the file. This type of output can be difficult to interpret unless you’re well versed in octal
notation and perhaps in the ASCII code itself.

Although od is nominally a tool for generating octal output, it can in fact generate many
other output formats, such as hexadecimal (base 16), decimal (base 10), and even ASCII
with escaped control characters. Consult the man page for od for details on creating these
variants.

Sort Files with sort

Sometimes you’ll create an output file that you want sorted. To do so, you can use a command that’s
called, appropriately enough, sort. This command can sort in several variant ways, including:

Ignore case Ordinarily, sort sorts by ASCII value, which differentiates between uppercase
and lowercase letters. The -i or --ignore-case option causes sort to ignore case.

Month sort The -M or --month-sort option causes the program to sort by three-letter month
abbreviations (JAN through DEC).

Numeric sort You can sort by number by using the -n or --numeric-sort option.

Reverse sort order The -r or --reverse option sorts in reverse order.

Sort field By default, sort uses the first field as its sort field. You can specify another field
with the -k field or --key=field option. (The field can, in fact, be two numbered fields
separated by commas to sort on multiple fields.)

As an example, suppose you wanted to sort Listing 1.1 by first name. You could do so like this:

$ sort -k 3 listing1.1.txt

555-2397 Beckett, Barry

555-5116 Carter, Gertrude

4425.book Page 20 Thursday, July 7, 2005 5:28 PM

Processing Text Using Filters 21

555-9871 Orwell, Samuel

555-7929 Jones, Theresa

The sort command supports a large number of additional options, many of them quite
exotic. Consult sort’s man page for details.

Break a File into Pieces with split

The split command can split a file into two or more files. Unlike most of the text-manipulation
commands described in this chapter, this command requires you to enter an output filename—
or more precisely, an output filename prefix, to which is added an alphabetic code. You must
also normally specify how large you want the individual files to be:

Split by bytes The -b size or --bytes=size option breaks the input file into pieces of
size bytes. This option can have the usually undesirable consequence of splitting the file
mid line.

Split by bytes in line-sized chunks You can break a file into files of no more than a specified
size without breaking lines across files by using the -C=size or --line-bytes=size option.
(Lines will still be broken across files if the line length is greater than size.)

Split by number of lines The -l lines or --lines=lines option splits the file up into
chunks with no more than the specified number of lines.

As an example, consider breaking Listing 1.1 into two parts by number of lines:

$ split -l 2 listing1.1.txt numbers

The result is two files, numbersaa and numbersab, that together hold the original contents
of listing1.1.txt.

Reverse the Line Order of a File with tac

The tac command is named after the cat command, but with the letters of its name reversed.
This naming is a clue to the command’s function: It concatenates files, much like cat, but it
reverses the order of lines in the files. Here’s an example using Listing 1.1:

$ tac listing1.1.txt

555-9871 Orwell, Samuel

555-7929 Jones, Theresa

555-5116 Carter, Gertrude

555-2397 Beckett, Barry

Translate Characters with tr

The tr command changes individual characters from standard input. Its syntax is as follows:

tr [options] SET1 [SET2]

4425.book Page 21 Thursday, July 7, 2005 5:28 PM

22 Chapter 1 � Linux Command-Line Tools

You specify the characters you want replaced in a group (SET1) and the characters with which
you want them to be replaced as a second group (SET2). Each character in SET1 is replaced with
the one at the equivalent position in SET2. Here’s an example using Listing 1.1:

$ tr BCJ bc < listing1.1.txt

555-2397 beckett, barry

555-5116 carter, Gertrude

555-7929 cones, Theresa

555-9871 Orwell, Samuel

This example translates some, but not all, of the uppercase characters to lowercase. Note
that SET2 in this example was shorter than SET1. The result is that tr substitutes the last
available letter from SET2 for the missing letters. In this example, the J in Jones became a c.
The -t or --truncate-set1 option causes tr to truncate SET1 to the size of SET2 instead.

Another tr option is -d, which causes the program to delete the characters from SET1. When
using -d, you can omit SET2 entirely.

The tr command also accepts a number of shortcuts, such as [:alnum:] (all numbers and
letters), [:upper:] (all uppercase letters), [:lower:] (all lowercase letters), and [:digit:]
(all digits). You can specify a range of characters by separating them with dashes (-), as in A-
M for characters between A and M. Consult tr’s man page for a complete list of these shortcuts.

Convert Spaces to Tabs with unexpand

The unexpand command is the logical opposite of expand; it converts multiple spaces to tabs.
This can help compress the size of files that contain many spaces and could be helpful if a file
is to be processed by a utility that expects tabs in certain locations.

Like expand, unexpand accepts the -t num or --tabs=num option, which sets the tab spac-
ing to once every num characters. If you omit this option, unexpand assumes a tab stop every
eight characters.

Delete Duplicate Lines with uniq

The uniq command removes duplicate lines. It’s most likely to be useful if you’ve sorted a file
and don’t want duplicate items. For instance, suppose you want to summarize Shakespeare’s
vocabulary. You might create a file with all of the Bard’s works, one word per line. You could
then sort this file using sort and pass it through uniq. Using a shorter example file containing
the text to be or not to be, that is the question (one word per line), the result looks
like this:

$ sort shakespeare.txt | uniq

be

is

not

or

question

4425.book Page 22 Thursday, July 7, 2005 5:28 PM

Processing Text Using Filters 23

that

the

to

Note that the words to and be, which appeared in the original file twice, appear only once
in the uniq-processed version.

File-Formatting Commands

The next three commands, fmt, nl, and pr, reformat the text in a file. The first of these is
designed to reformat text files—for instance, if a program’s README documentation file uses
lines that are too long for your display. The nl command numbers the lines of a file, which can
be helpful in referring to lines in documentation or correspondence. Finally, pr is a print-pro-
cessing tool; it formats a document in pages suitable for printing.

Reformat Paragraphs with fmt

Sometimes text files arrive with outrageously long line lengths, irregular line lengths, or other
problems. Depending on the problem, you might be able to cope simply by using an appropriate
text editor or viewer to read the file. If you want to clean the file up a bit, though, you can do
so with fmt. If called with no options (other than the input filename, if you’re not having it work
on standard input), the program attempts to clean up paragraphs, which it assumes are delim-
ited by two or more blank lines or by changes in indentation. The new paragraph formatting
defaults to no more than 75 characters wide. You can change this with the -width, -w width,
or --width=width options, though, which set the line length to width characters.

Number Lines with nl

As described earlier, in “Combining Files with cat,” you can number the lines of a file with that
command. The cat line numbering options are limited, though, so if you need to do complex
line numbering, nl is the tool to use. In its simplest case, you can use nl alone to accomplish
much the same goal as cat -b achieves: numbering all the non-blank lines in a file. You can add
many options to nl, though, to achieve various special effects, such as:

Body numbering style You can set the numbering style for the bulk of the lines with
the -b style or --body-numbering=style option, where style is a style format code,
described shortly.

Header and footer numbering style If the text is formatted for printing and has headers or foot-
ers, you can set the style for these elements with the -h style or --header-numbering=style
option for the header and -f style or --footer-numbering=style option for the footer.

Page separator Some numbering schemes reset the line numbers for each page. You can tell nl
how to identify a new page with the -d=code or --section-delimiter=code option, where
code is a code for the character that identifies the new page.

4425.book Page 23 Thursday, July 7, 2005 5:28 PM

24 Chapter 1 � Linux Command-Line Tools

Line number options for new pages Ordinarily, nl begins numbering each new page with
line 1. If you pass the -p or --no-renumber option, though, it doesn’t reset the line number
with a new page.

Number format You can specify the numbering format with the -n format or --number-
format=format option, where format is ln (left justified, no leading zeros), rn (right justified,
no leading zeros), or rz (right justified with leading zeros).

The body, header, and footer options enable you to specify a numbering style for each of
these page elements:

Number only non-blank lines The default behavior is to number lines that aren’t empty. This
corresponds to a style of t.

Number all lines If you want empty lines to be numbered, specify a style of a.

Number no lines To omit line numbers (say, for headers or footers), specify a style of n.

Number lines matching a regular expression A style of pREGEXP numbers only those lines
that match the regular expression REGEXP. (Regular expressions are described later, in “Using
Regular Expressions.”)

As an example, suppose you’ve created a script, buggy, but you find that it’s not working as
you expect. When you run it, you get error messages that refer to line numbers, so you want to
create a version of the script with lines that are numbered for easy reference. You can do so by
calling nl with the option to number blank lines (-b a):

$ nl -b a buggy > numbered-buggy.txt

Because the input file doesn’t have any explicit page delimiters, the output will
be numbered in a single sequence; nl doesn’t try to impose its own page-
length limits.

The numbered-buggy.txt file created by this command isn’t useful as a script because of the line
numbers that begin each line. You can, however, load it into a text editor or display it with a pager
such as less to view the text and see the line numbers along with the commands they contain.

Prepare a File for Printing with pr

If you want to print a plain-text file, you may want to prepare it with headers, footers, page
breaks, and so on. The pr command was designed to do this. In its most basic form, you pass
the command a file:

$ pr myfile.txt

The result is text formatted for printing on a line printer—that is, pr assumes an 80-character
line length in a monospaced font. Of course, you can also use pr in a pipe, either to accept input
piped from another program or to pipe its output to another program. (The recipient program
might be lpr, which is used to print files, as described in Chapter 9, “Basic Networking.”)

4425.book Page 24 Thursday, July 7, 2005 5:28 PM

Processing Text Using Filters 25

By default, pr creates output that includes the original text with headers that include the
current date and time, the original filename, and the page number. You can tweak the out-
put format in a variety of ways, including:

Multi-column output Passing the -numcols or --columns=numcols option creates output
with numcols columns. Note that pr doesn’t actually reformat text, though, so if line lengths
are too long, they’ll be truncated or run over onto multiple lines.

Double-spaced output The -d or --double-space option causes double-spaced output from
a single-spaced file.

Use form feeds Ordinarily, pr separates pages by using a fixed number of blank lines. This
works fine if your printer uses the same number of lines that pr expects. If you have problems
with this issue, you can pass the -F, -f, or --form-feed option, which causes pr to output a
form feed character between pages. This works better with some printers.

Set page length The -l lines or --length=lines option sets the length of the page in lines.

Set the header text The -h text or --header=text option sets the text to be displayed in
the header, replacing the filename. To specify a multi-word string, enclose it in quotes, as
in --header="My File". The -t or --omit-header option omits the header entirely.

Set left margin and page width The -o chars or --indent=chars option sets the left margin
to chars characters. This margin size is added to the page width, which defaults to 72 characters
and can be explicitly set with the -w chars or --width chars option.

These options are just the beginning; pr supports many more, which are described in its man
page. As an example of pr in action, consider printing a double-spaced and numbered version
of a configuration file (say, /etc/profile) for your reference. You can do this by piping
together cat and its -n option to generate a numbered output, pr and its -d option to double-
space the result, and lpr to print the file:

$ cat -n /etc/profile | pr -d | lpr

The result should be a printout that might be handy for taking notes on the configuration file.
One caveat, though: If the file contains lines that approach or exceed 80 characters in length,
the result can be single lines that spill across two lines. The result will be disrupted page bound-
aries. As a workaround, you could set a somewhat short page length with -l and use -f to
ensure that the printer receives form feeds after each page:

$ cat -n /etc/profile | pr -dfl 50 | lpr

The pr command is built around assumptions about printer capabilities that
were reasonable in the early 1980s. It’s still useful today, but you might prefer
to look into GNU Enscript (http://people.ssh.fi/mtr/genscript/). This pro-
gram has many of the same features as pr, but it generates PostScript output
that can take better advantage of modern printer features.

4425.book Page 25 Thursday, July 7, 2005 5:28 PM

26 Chapter 1 � Linux Command-Line Tools

File-Viewing Commands

Sometimes you just want to view a file or part of a file. A few commands can help you accom-
plish this goal without loading the file into a full-fledged editor.

As described earlier, the cat command is also handy for viewing short files.

Viewing the Starts of Files with head

Sometimes all you need to do is see the first few lines of a file. This may be enough to identify
what a mystery file is, for instance, or you might want to see the first few entries of a log file to
see when that file was started. You can accomplish this goal with the head command, which
echoes the first 10 lines of one or more files to standard output. (If you specify multiple file-
names, each one’s output is preceded by a header to identify it.) You can modify the amount of
information displayed by head in two ways:

Specify the number of bytes The -c num or --bytes=num option tells head to display num
bytes from the file rather than the default 10 lines.

Specify the number of lines You can change the number of lines displayed with the -n num or
--lines=num option.

Viewing the Ends of Files with tail

The tail command works just like head, except that tail displays the last 10 lines of a file.
(You can use the -c/--bytes and -n/--lines options to change the amount of data displayed,
just as with head.) This command is useful for examining recent activity in log files or other files
to which data may be appended.

The tail command supports several options that aren’t present in head and that enable the
program to handle additional duties, including:

Track a file The -f or --follow option tells tail to keep the file open and to display new
lines as they’re added. This feature is helpful for tracking log files because it enables you to see
changes as they’re added to the file.

Stop tracking on program termination The -pid=pid option tells tail to terminate tracking
(as initiated by -f or --follow) once the process with a process ID (PID) of pid terminates.
(PIDs are described in more detail later in this chapter, in “Managing Processes.”)

Some additional options provide more obscure capabilities. Consult tail’s man page
for details.

Paging Through Files with less

The less command’s name is a joke; it’s a reference to the more command, which was an early
file pager. The idea was to create a better version of more, so the developers called it less.

4425.book Page 26 Thursday, July 7, 2005 5:28 PM

Processing Text Using Filters 27

The idea behind less (and more, for that matter) is to enable you to read a file a screen at
a time. When you type less filename, the program displays the first few lines of filename.
You can then page back and forth through the file:
� Pressing the spacebar moves forward through the file a screen at a time.
� Pressing Esc followed by V moves backward through the file a screen at a time.
� The up and down arrow keys move up or down through the file a line at a time.
� You can search the file’s contents by pressing the slash (/) key followed by the search term.

For instance, typing /portable finds the first occurrence of the string portable after the
current position. Typing a slash alone moves to the next occurrence of the search term.

� You can search backward in the file by using the question mark (?) key rather than the
slash key.

� You can move to a specific line by typing g followed by the line number as, in g50 to go to
line 50.

� When you’re done, type q to exit from the program.

Unlike most of the programs described here, less can’t be readily used in a pipe, except as
the final command in the pipe. In that role, though, less is quite useful because it enables you
to readily examine lengthy output.

Although less is quite common on Linux systems and is typically config-
ured as the default text pager, some Unix-like systems use more in this role.
Many of less’s features, such as the ability to page backward in a file, don’t
work in more.

One additional less feature can be quite handy: Typing h displays less’s internal help system.
This display summarizes the commands you may use, but it’s long enough that you must use the
usual less paging features to view it all! When you’re done with the help screens, type q, just as
if you were exiting from viewing a help document with less. This action will return you to your
original document.

File-Summarizing Commands

The final text-filtering commands I describe are used to summarize text in one way or another. The
cut command takes segments of an input file and sends them to standard output, while the wc com-
mand displays some basic statistics on the file.

Extracting Text with cut

The cut command extracts portions of input lines and displays them on standard output. You
can specify what to cut from input lines in several ways:

By byte The -b list or --bytes=list option cuts the specified list of bytes from the input
file. (The format of a list is described shortly.)

4425.book Page 27 Thursday, July 7, 2005 5:28 PM

28 Chapter 1 � Linux Command-Line Tools

By character The -c list or --characters=list option cuts the specified list of characters
from the input file. In practice, this method and the by-byte method usually produce identical
results. (If the input file uses a multi-byte encoding system, though, the results won’t be identical.)

By field The -f list or --fields=list option cuts the specified list of fields from the input
file. By default, a field is a tab-delimited section of a line, but you can change the delimiting char-
acter with the -d char or --delim=char option, where char is the character you want to use
to delimit fields. Ordinarily, cut echoes lines that don’t contain delimiters. Including the -s or
--only-delimited option changes this behavior so that the program does not echo lines that
don’t contain the delimiter character.

Many of these options take a list, which is a way to specify multiple bytes, characters, or
fields. This specification is done by number; it can be a single number (such as 4), a closed range
of numbers (such as 2-4), or an open range of numbers (such as -4 or 4-). In this final case, all
bytes, characters, or fields from the beginning of the line to the specified number or from the
specified number to the end of the line are included in the list.

The cut command is frequently used in scripts to extract data from some other command’s
output. For instance, suppose you’re writing a script and the script needs to know the hardware
address of your Ethernet adapter. This information can be obtained from the ifconfig com-
mand (described in more detail in Chapter 9):

$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:76:96:A3:73

 inet addr:192.168.1.3 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:76ff:fe96:a373/64 Scope:Link

 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:7127424 errors:0 dropped:0 overruns:0 frame:0

 TX packets:5273519 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:6272843708 (5982.2 Mb) TX bytes:1082453585 (1032.3 Mb)

 Interrupt:10 Base address:0xde00

Unfortunately, most of this information is extraneous for the desired purpose. The hardware
address is the 6-byte hexadecimal number following HWaddr. To extract that data, you can com-
bine grep (described shortly, in “Using grep”) with cut in a pipe:

$ ifconfig eth0 | grep HWaddr | cut -d " " -f 11

00:0C:76:96:A3:73

Of course, in a script you would probably assign this value to a variable or otherwise process
it through additional pipes. Chapter 6 describes scripts in more detail.

Obtaining a Word Count with wc

The wc command produces a word count (hence the name), as well as line and byte counts, for a file:

$ wc file.txt

 308 2343 15534 file.txt

4425.book Page 28 Thursday, July 7, 2005 5:28 PM

Using Regular Expressions 29

This file contains 308 lines (or, more precisely, 308 newline characters), 2,343 words, and
15,534 bytes. You can limit the output to the newline count, the word count, the byte count,
or a character count with the --lines (-l), --words (-w), --bytes (-c), and --chars (-m)
options, respectively. You can also learn the maximum line length with the --max-line-
length (-L) option.

For an ordinary ASCII file, the character and byte counts will be identical. These
values might diverge for files that use multi-byte character encodings.

Using Regular Expressions
Many Linux programs employ regular expressions, which are tools for expressing patterns in
text. Regular expressions are similar in principle to the wildcards that can be used to specify
multiple filenames. At their simplest, regular expressions can be plain text without adornment.
Certain characters are used to denote patterns, though. Because of their importance, I describe
regular expressions here. I also cover two programs that make heavy use of regular expressions:
grep and sed. These programs search for text within files and permit editing of files from the
command line, respectively.

Understanding Regular Expressions

Two forms of regular expression are common: basic and extended. Which form you must use
depends on the program; some accept one form or the other, but others can use either type, depend-
ing on the options passed to the program. (Some programs use their own minor or major variants
on either of these classes of regular expression.) The differences between basic and extended regular
expressions are complex and subtle, but the fundamental principles of both are similar.

The simplest type of regular expression is an alphabetic string, such as Linux or HWaddr.
These regular expressions match any string of the same size or longer that contains the regular
expression. For instance, the HWaddr regular expression matches HWaddr, This is the
HWaddr, and The HWaddr is unknown. The real strength of regular expressions comes in the
use of non-alphabetic characters, which activate advanced matching rules:

Bracket expressions Characters enclosed in square brackets ([]) constitute bracket expres-
sions, which match any one character within the brackets. For instance, the regular expression
b[aeiou]g matches the words bag, beg, big, bog, and bug.

Range expressions A range expression is a variant on a bracket expression. Instead of listing
every character that matches, range expressions list the start and end points separated by a dash
(-), as in a[2-4]z. This regular expression matches a2z, a3z, and a4z.

Any single character The dot (.) represents any single character except for a newline. For
instance, a.z matches a2z, abz, aQz, or any other three-character string that begins with a and
ends with z.

4425.book Page 29 Thursday, July 7, 2005 5:28 PM

30 Chapter 1 � Linux Command-Line Tools

Start and end of line The carat (^) represents the start of a line and the dollar sign ($) denotes
the end of a line.

Repetition operators A full or partial regular expression may be followed by a special symbol
to denote how many times a matching item must exist. Specifically, an asterisk (*) denotes zero
or more occurrences, a plus sign (+) matches one or more occurrences, and a question mark (?)
specifies zero or one match. The asterisk is often combined with the dot (as in .*) to specify a
match with any substring. For instance, A.*Lincoln matches any string that contains A and
Lincoln, in that order—Abe Lincoln and Abraham Lincoln are just two possible matches.

Multiple possible string The vertical bar (|) separates two possible matches; for instance
car|truck matches either car or truck.

Parentheses Ordinary parentheses (()) surround subexpressions. Parentheses are often used
to specify how operators are to be applied, such as surrounding a group of words that are con-
catenated with the vertical bar to ensure that the words are treated as a group, any one of which
may match, without involving surrounding parts of the regular expression.

Escaping If you want to match one of the special characters, such as a dot, you must escape
it—that is, precede it with a backslash (\). For instance, to match a computer hostname (say,
twain.example.com), you must escape the dots, as in twain\.example\.com.

The preceding description applies to extended regular expressions. Some details are different
for basic regular expressions. In particular, the ?, +, |, (, and) symbols lose their special mean-
ing. To perform the tasks handled by these characters, some programs, such as grep, enable you
to recover the functions of these characters by escaping them (say, using \| instead of |).
Whether you use basic or extended regular expressions depends on which form the program
supports. For programs, such as grep, that support both, you can use either, and which you
choose is mostly a matter of personal preference.

Regular expression rules can be confusing, particularly when you’re first introduced to them.
Some examples of their use, in the context of the programs that use them, will help. The next
couple of sections provide such examples.

Using grep

The grep command is extremely useful. It searches for files that contain a specified string and
returns the name of the file and (if it’s a text file) a line of context for that string. The basic grep
syntax is as follows:

grep [options] regexp [files]

The regexp is a regular expression, as just described. The grep command supports a large
number of options. Some of the more common options enable you to modify the way the pro-
gram searches files:

Count matching lines Instead of displaying context lines, grep displays the number of lines
that match the specified pattern if you use the -c or --count option.

4425.book Page 30 Thursday, July 7, 2005 5:28 PM

Using Regular Expressions 31

Specify a pattern input file The -f file or --file=file option takes pattern input from the
specified file rather than from the command line.

Ignore case You can perform a case-insensitive search, rather than the default case-sensitive
search, by using the -i or --ignore-case option.

Search recursively The -r or --recursive option searches in the specified directory and all
subdirectories rather than simply the specified directory.

Use an extended regular expression The grep command interprets regexp as a basic regular
expression by default. To use an extended regular expression, you can pass the -E or --extended-
regexp option. Alternatively, you can call egrep rather than grep; this variant command uses
extended regular expressions by default.

A simple example of grep uses a regular expression with no special components:

$ grep -r eth0 /etc/*

This example finds all the files in /etc that contain the string eth0 (the identifier for the first
Ethernet device). Because the example includes the -r option, it searches recursively, so files in
subdirectories of /etc are examined as well as those in /etc itself. For each matching text file,
the line that contains the string is printed.

Some files in /etc can’t be read by ordinary users. Thus, if you type this com-
mand as a non-root user, you’ll see some error messages relating to grep’s
inability to open files.

Ramping up a bit, suppose you want to locate all the files in /etc that contain the strings
eth0 or eth1. You could enter the following command, which uses a bracket expression to
specify both variant devices:

$ grep eth[01] /etc/*

A still more complex example searches all files in /etc that contain the hostnames
twain.example.com or bronto.pangaea.edu and, later on the same line, the number 127.
This task requires using several of the regular expression features. Expressed using extended
regular expression notation, the command looks like this:

$ grep -E "(twain\.example\.com|bronto\.pangaea\.edu).*127" /etc/*

This command illustrates another feature you may need to use: shell quoting. Because the
shell uses certain characters, such as the vertical bar and the asterisk, for its own purposes, you
must enclose certain regular expressions in quotes lest the shell attempt to parse the regular
expression as shell commands.

You can use grep in conjunction with commands that produce a lot of output in order to sift
through that output for the material that’s important to you. (Several examples throughout this
book use this technique.) For example, suppose you want to find the process ID (PID) of a running

4425.book Page 31 Thursday, July 7, 2005 5:28 PM

32 Chapter 1 � Linux Command-Line Tools

xterm. You can use a pipe to send the result of a ps command (described shortly, in “Managing
Processes”) through grep, thus:

ps ax | grep xterm

The result is a list of all running processes called xterm, along with their PIDs. You can even
do this in series, using grep to further restrict the output on some other criterion, which can be
useful if the initial pass still produces too much output.

Using sed

The sed command directly modifies the contents of files, sending the changed file to standard
output. Its syntax can take one of two forms:

sed [options] -f script-file [input-file]

sed [options] script-text [input-file]

In either case, the input-file is the name of the file you want to modify. (Modifications are
actually temporary unless you save them in some way, as illustrated shortly.) The script (script-
text or the contents of script-file) is the set of commands you want sed to perform. When
passing a script directly on the command line, the script-text is typically enclosed in single
quote marks. Table 1.3 summarizes a few sed commands that can be used in its scripts.

T A B L E 1 . 3 Common sed Commands

Command Addresses Meaning

= 0 or 1 Display the current line number.

a\text 0 or 1 Append text to the file.

i\text 0 or 1 Insert text into the file.

r filename 0 or 1 Append text from filename into the file.

c\text range Replace the selected range of lines with the provided text.

s/regexp/
replacement

range Replace text that matches the regular expression (regexp)
with replacement.

w filename range Write the current pattern space to the specified file.

q 0 or 1 Immediately quit the script, but print the current
pattern space.

Q 0 or 1 Immediately quit the script.

4425.book Page 32 Thursday, July 7, 2005 5:28 PM

Editing Files with Vi 33

Table 1.3 is incomplete; sed is quite complex, and this section merely intro-
duces this tool.

The Addresses column of Table 1.3 requires elaboration: sed commands operate on addresses,
which are line numbers. Commands may take no addresses, in which case they operate on the
entire file; one address, in which case they operate on the specified line; or two addresses (a range),
in which case they operate on that range of lines, inclusive.

In operation, sed looks something like this:

$ sed 's/2005/2006/' cal-2005.txt > cal-2006.txt

This command processes the input file, cal-2005.txt, using sed’s s command to replace
every occurrence of 2005 with 2006. By default, sed sends the modified file to standard output,
so this example uses redirection to send the output to cal-2006.txt. The idea in this example
is to quickly convert a file created for the year 2005 so that it can be used in 2006. If you don’t
specify an input filename, sed works from standard input, so it can accept the output of another
command as its input.

Although it’s conceptually simple, sed is a very complex tool; even a modest summary of its
capabilities would fill a chapter. You can consult its man page for basic information, but to fully
understand sed, you may want to consult a book on the subject, such as Dale Dougherty and
Arnold Robbins’s sed & awk, 2nd Edition (O’Reilly, 1997).

Certain sed commands, including the substitution command, are also used in Vi.

Editing Files with Vi
Vi was the first full-screen text editor written for Unix. It’s designed to be small and simple. Vi is
small enough to fit on tiny, floppy-based emergency boot systems. For this reason alone, Vi is worth
learning; you may need to use it in an emergency recovery situation. Vi is, however, a bit strange,
particularly if you’re used to GUI text editors. To use Vi, you should first understand the three modes
in which it operates. Once you understand those modes, you can begin learning about the text-
editing procedures Vi implements. This section also examines how to save files and exit from Vi.

Most Linux distributions actually ship with a variant of Vi known as Vim, or “Vi
Improved.” As the name implies, Vim supports more features than the original
Vi does. The information presented here applies to both Vi and Vim. Most dis-
tributions that ship with Vim support launching it by typing vi, as if it were the
original Vi.

4425.book Page 33 Thursday, July 7, 2005 5:28 PM

34 Chapter 1 � Linux Command-Line Tools

Vi Modes

At any given moment, Vi is running in one of three modes:

Command mode This mode accepts commands, which are usually entered as single letters.
For instance, i and a both enter insert mode, although in somewhat different ways, as described
shortly, and o opens a line below the current one.

Ex mode To manipulate files (including saving your current file and running outside programs),
you use ex mode. You enter ex mode from command mode by typing a colon (:), typically directly
followed by the name of the ex mode command you want to use. After you run the ex mode com-
mand, Vi returns automatically to command mode.

Insert mode You enter text in insert mode. Most keystrokes result in text appearing on the
screen. One important exception is the Esc key, which exits from insert mode back to com-
mand mode.

If you’re not sure what mode Vi is in, press the Esc key. This will return you to
command mode, from which you can reenter insert mode, if necessary.

Unfortunately, terminology surrounding Vi modes is inconsistent at best. Command mode
is sometimes referred to as normal mode, and insert mode is sometimes called edit mode or entry
mode, for instance. Ex mode is often not described as a mode at all, but as colon commands.

Basic Text-Editing Procedures

As a method of learning Vi, consider the task of editing /etc/lilo.conf to add a new kernel.
Listing 1.3 shows the original lilo.conf file used in this example. If you want to follow along,
enter it using a text editor with which you’re already familiar and save it to a file on your disk.

Listing 1.3: Sample /etc/lilo.conf File

boot=/dev/sda

map=/boot/map

install=/boot/boot.b

prompt

default=linux

timeout=50

image=/boot/vmlinuz

 label=linux

 root=/dev/sda6

 read-only

4425.book Page 34 Thursday, July 7, 2005 5:28 PM

Editing Files with Vi 35

Don’t try editing your real /etc/lilo.conf file as a learning exercise; a mistake
could render your system unbootable the next time you type lilo. You might
put your test lilo.conf file in your home directory for this exercise.

The first step to using Vi is to launch it and have it load the file. In this example, type vi
lilo.conf while in the directory holding the file. The result should resemble Figure 1.1, which
shows Vi running in a Konsole window. The tildes (~) down the left side of the display indicate
the end of the file. The bottom line shows the status of the last command—an implicit file load
command because you specified a filename when launching the program.

Adding a new entry to lilo.conf involves duplicating the lines beginning with the image=
line and modifying the duplicates. Therefore, the first editing task is to duplicate these four lines.
To do this, follow these steps:

1. Move the cursor to the beginning of the image= line by using the down arrow key; you
should see the cursor resting on the i.

The h, j, k, and l keys can also be used in place of the left, down, up, and right
arrow keys. This is a holdover from the days before all keyboards had arrow
keys. Some people prefer to use these keys because they can be faster to use,
once the mappings are learned, than the arrow keys.

F I G U R E 1 . 1 The last line of a Vi display is a status line that shows messages from
the program.

4425.book Page 35 Thursday, July 7, 2005 5:28 PM

36 Chapter 1 � Linux Command-Line Tools

2. You must now “yank” four lines of text. This term is used much as “copy” is used in most
text editors—you copy the text to a buffer from which you can later paste it back into the
file. To yank text, you use the yy command, preceded by the number of lines you want to
yank. Thus, type 4yy (do not press the Enter key, though). Vi responds with the message
4 lines yanked on its bottom status line. The dd command works much like yy, but it
deletes the lines as well as copying them to a buffer. Both yy and dd are special cases of the
y and d commands, respectively, which yank or delete text in amounts specified by the next
character, as in dw to delete the next word.

3. Move the cursor to the last line of the file by using the arrow keys.

4. Type p (again, without pressing the Enter key). Vi pastes the contents of the buffer starting
on the line after the cursor. The file should now have two identical image= stanzas. The
cursor should be resting at the start of the second one. If you want to paste the text into the
document starting on the line before the cursor, use an uppercase P command.

Now that you’ve duplicated the necessary lines, you must modify one copy to point to your
new kernel. To do so, follow these steps:

1. Move the cursor to the v in vmlinuz on the second image= line. You’re about to begin cus-
tomizing this second stanza.

2. Up until now, you’ve operated Vi in command mode. There are several commands that you
can use to enter insert mode. At this point, the most appropriate is R, which enters insert
mode so that it is configured for text replacement rather than insertion. If you prefer to
insert text rather than overwrite it, you could use i or a (the latter advances the cursor one
space, which is sometimes useful at the end of a line). For the purposes of these instructions,
type R to enter insert mode. You should see -- REPLACE -- appear in the status line.

3. Type the name of a new Linux kernel. For the purposes of this example, let’s say you’ve
called it bzImage-2.6.13, so that’s what you’d type. This entry should replace vmlinuz.

4. Use the arrow keys to move the cursor to the start of linux on the next line. You must
replace this label so that your new entry has its own label.

5. Type a new label, such as mykernel. This label should replace the existing linux label.

6. Exit from insert mode by pressing the Esc key.

7. Save the file and quit by typing :wq. This is actually an ex mode command, as described
shortly. (The ZZ command is equivalent to :wq.)

Many additional commands are available that you might want to use in some situations.
Here are some of the highlights:

Case changes Suppose you need to change the case of a word in a file. Instead of entering
insert mode and retyping the word, you can use the tilde (~) key in command mode to change
the case. Position the cursor on the first character you want to change and press ~ repeatedly
until the task is done.

Undo To undo any change, type u in command mode.

Opening text In command mode, typing o opens text—that is, it inserts a new line immedi-
ately below the current one and enters insert mode on that line.

4425.book Page 36 Thursday, July 7, 2005 5:28 PM

Managing Processes 37

Searches To search forward for text in a file, type / in command mode, followed immediately
by the text you want to locate. Typing ? will search backward rather than forward.

Changes The c command changes text from within command mode. You invoke it much like
the d or y commands, as in cw to change the next word or cc to change an entire line.

Go to a line The G key brings you to a line that you specify. The H key “homes” the cursor—
that is, it moves the cursor to the top line of the screen. The L key brings the key to the bottom
line of the screen.

Global replacement To replace all occurrences of one string by another, type :%s/original/
replacement, where original is the original string and replacement is its replacement.
Change % to a starting line number, comma, and ending line number to perform this change on
just a small range of lines.

There’s a great deal more depth to Vi than is presented here; the editor is quite capable, and
some Linux users are very attached to it. Entire books have been written about Vi. Consult one
of these, or a Vi web page like http://www.vim.org, for more information.

Saving Changes

To save changes to a file, type :w from command mode. This enters ex mode and runs the w ex-
mode command, which writes the file using whatever filename you specified when you launched
Vi. Related commands enable other functions:

Edit new file The :e command edits a new file. For instance, :e /etc/inittab loads /etc/
inittab for editing. Vi won’t load a new file unless the existing one has been saved since its last
change or unless you follow :e with an exclamation mark (!).

Include existing file The :r command includes the contents of an old file in an existing one.

Execute an external command The ex-mode command :! executes the external command
that you specify. For instance, typing :!ls runs ls, enabling you to see what files are present
in the current directory.

Quit Use the :q command to quit from the program. As with :e, this command won’t work
unless changes have been saved or you append an exclamation mark to the command (as in :q!).

You can combine ex commands such as these to perform multiple actions in sequence. For
instance, typing :wq writes changes and then quits from Vi.

Managing Processes
When you type a command name, that program is run and a process is created for it. Knowing
how to manage these processes is critical to using Linux. Key details in this task include iden-
tifying processes, manipulating foreground and background processes, killing processes, and
adjusting process priorities.

4425.book Page 37 Thursday, July 7, 2005 5:28 PM

38 Chapter 1 � Linux Command-Line Tools

Examining Process Lists

One of the most important tools in process management is ps. This program displays processes’
status (hence the name, ps). It sports many helpful options, and it’s useful in monitoring what’s
happening on a system. This can be particularly critical when the computer isn’t working as it
should be—for instance, if it’s unusually slow. The ps program supports an unusual number of
options, but just a few of them will take you a long way. Likewise, interpreting ps output can
be tricky because so many options modify the program’s output. Some ps-like programs, most
notably top, also deserve some attention.

Useful ps Options

The official syntax for ps is fairly simple:

ps [options]

This simplicity of form hides considerable complexity because ps supports three differ-
ent types of options, as well as many options within each type. The three types of options
are as follows:

Unix98 options These single-character options may be grouped together and are preceded by
a single dash (-).

BSD options These single-character options may be grouped together and must not be pre-
ceded by a dash.

GNU long options These multi-character options are never grouped together. They’re pre-
ceded by two dashes (--).

Options that may be grouped together may be clustered without spaces between them. For
instance, rather than typing ps -a -f, you can type ps -af. The reason for so much complexity
is that the ps utility has historically varied a lot from one Unix OS to another. The version of
ps that ships with major Linux distributions attempts to implement most features from all these
different ps versions, so it supports many different personalities. In fact, you can change some
of its default behaviors by setting the PS_PERSONALITY environment variable to posix, old,
linux, bsd, sun, digital, or various others. The rest of this section describes the default ps
behavior on most Linux systems.

Some of the more useful ps features include the following:

Display help The --help option presents a summary of some of the more common ps options.

Display all processes By default, ps displays only processes that were run from its own
terminal (xterm, text-mode login, or remote login). The -A and -e options cause it to dis-
play all the processes on the system, and x displays all processes owned by the user who
gives the command. The x option also increases the amount of information that’s displayed
about each process.

Display one user’s processes You can display processes owned by a given user with the -u
user, U user, and --User user options. The user variable may be a username or a user ID.

4425.book Page 38 Thursday, July 7, 2005 5:28 PM

Managing Processes 39

Display extra information The -f, -l, j, l, u, and v options all expand the information pro-
vided in the ps output. Most ps output formats include one line per process, but ps can display
enough information that it’s impossible to fit it all on one 80-character line. Therefore, these
options provide various mixes of information.

Display process hierarchy The -H, -f, and --forest options group processes and use inden-
tation to show the hierarchy of relationships between processes. These options are useful if
you’re trying to trace the parentage of a process.

Display wide output The ps command output can be more than 80 columns wide. Normally,
ps truncates its output so that it will fit on your screen or xterm. The -w and w options tell ps
not to do this, which can be useful if you direct the output to a file, as in ps w > ps.txt. You
can then examine the output file in a text editor that supports wide lines.

You can combine these ps options in many ways to produce the output you want. You’ll prob-
ably need to experiment to learn which options produce the desired results because each of these
options modifies the output in some way. Even those that would seem to influence just the selec-
tion of processes to list sometimes modify the information that’s provided about each process.

Interpreting ps Output

Listings 1.4 and 1.5 show a couple of examples of ps in action. Listing 1.4 shows ps -u
rodsmith --forest, and Listing 1.5 shows ps u U rodsmith.

Listing 1.4: Output of ps -u rodsmith --forest

$ ps -u rodsmith --forest

 PID TTY TIME CMD

 2451 pts/3 00:00:00 bash

 2551 pts/3 00:00:00 ps

 2496 ? 00:00:00 kvt

 2498 pts/1 00:00:00 bash

 2505 pts/1 00:00:00 _ nedit

 2506 ? 00:00:00 _ csh

 2544 ? 00:00:00 _ xeyes

19221 ? 00:00:01 dfm

Listing 1.5: Output of ps u U rodsmith

$ ps u U rodsmith

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

rodsmith 19221 0.0 1.5 4484 1984 ? S May07 0:01 dfm

rodsmith 2451 0.0 0.8 1856 1048 pts/3 S 16:13 0:00 -bash

rodsmith 2496 0.2 3.2 6232 4124 ? S 16:17 0:00 /opt/kd

rodsmith 2498 0.0 0.8 1860 1044 pts/1 S 16:17 0:00 bash

rodsmith 2505 0.1 2.6 4784 3332 pts/1 S 16:17 0:00 nedit

4425.book Page 39 Thursday, July 7, 2005 5:28 PM

40 Chapter 1 � Linux Command-Line Tools

rodsmith 2506 0.0 0.7 2124 1012 ? S 16:17 0:00 /bin/cs

rodsmith 2544 0.0 1.0 2576 1360 ? S 16:17 0:00 xeyes

rodsmith 2556 0.0 0.7 2588 916 pts/3 R 16:18 0:00 ps u U

The output produced by ps normally begins with a heading line, which displays the mean-
ing of each column. Important information that might be displayed (and labeled) includes the
following:

Username The name of the user who runs the programs. Listings 1.4 and 1.5 restricted this
output to one user to limit the size of the listings.

Process ID The process ID (PID) is a number that’s associated with the process. This item
is particularly important because you need it to modify or kill the process, as described later
in this chapter.

Parent process ID The parent process ID (PPID) identifies the process’s parent. (Neither List-
ing 1.4 nor Listing 1.5 shows the PPID, though.)

TTY The teletype (TTY) is a code used to identify a terminal. As illustrated by Listings 1.4
and 1.5, not all processes have TTY numbers—X programs and daemons, for instance, do not.
Text-mode programs do have these numbers, though, which point to a console, xterm, or
remote login session.

CPU time The TIME and %CPU headings are two measures of CPU time used. The first indicates the
total amount of CPU time consumed, and the second represents the percentage of CPU time the pro-
cess is using when ps executes. Both can help you spot runaway processes—those that are consum-
ing too much CPU time. Unfortunately, just what constitutes “too much” varies from one program
to another, so it’s impossible to give a simple rule to help you spot a runaway process.

CPU priority As described shortly, in “Managing Process Priorities,” it’s possible to give dif-
ferent processes different priorities for CPU time. The NI column, if present (it’s not in the pre-
ceding examples) lists these priority codes. The default value is 0. Positive values represent
reduced priority, while negative values represent increased priority.

Memory use Various headings indicate memory use—for instance, RSS is resident set size (the
memory used by the program and its data) and %MEM is the percentage of memory the program
is using. Some output formats also include a SHARE column, which is memory that’s shared with
other processes (such as shared libraries). As with CPU use measures, these columns can help
point you to the sources of difficulties, but because legitimate memory needs of programs vary
so much, it’s impossible to give a simple criterion for when a problem exists.

Command The final column in most listings is the command used to launch the process. This
is truncated in Listing 1.5 because this format lists the complete command, but so much other
information appears that the complete command won’t usually fit on one line. (This is where
the wide-column options can come in handy.)

As you can see, a lot of information can be gleaned from a ps listing—or perhaps that should
be the plural listings, because no one format includes all of the available information. For the most
part, the PID, username, and command are the most important pieces of information. In some

4425.book Page 40 Thursday, July 7, 2005 5:28 PM

Managing Processes 41

cases, though, you may need specific other components. If your system’s memory or CPU use has
skyrocketed, for instance, you’ll want to pay attention to the memory or CPU use columns.

It’s often necessary to find specific processes. You might want to find the PID
associated with a particular command in order to kill it, for instance. This infor-
mation can be gleaned by piping the ps output through grep, as in ps ax | grep
bash to find all the instances of bash.

Although you may need a wide screen or xterm to view the output, you may find ps -A
--forest to be a helpful command in learning about your system. Processes that don’t fall off
others were either started directly by init or have had their parents killed, and so they have
been “adopted” by init. (Chapter 6 describes init and the boot procedure in more detail.)
Most of these processes are fairly important—they’re servers, login tools, and so on. Processes
that hang off several others in this tree view, such as xeyes and nedit in Listing 1.4, are mostly
user programs launched from shells.

top: A Dynamic ps Variant

If you want to know how much CPU time various processes are consuming relative to one
another, or if you simply want to quickly discover which processes are consuming the most CPU
time, a tool called top is the one for the job. The top tool is a text-mode program, but of course
it can be run in an xterm or similar window, as shown in Figure 1.2, and there are also GUI vari-
ants, like kpm and gnome-system-monitor. By default, top sorts its entries by CPU use, and it
updates its display every few seconds. This makes it a very good tool for spotting runaway pro-
cesses on an otherwise lightly loaded system—those processes almost always appear in the first
position or two, and they consume an inordinate amount of CPU time. By looking at Figure 1.2,
you might think that FahCore_65.exe is such a process, but in fact, it’s legitimately consuming
a lot of CPU time. You’ll need to be familiar with the purposes and normal habits of programs
running on your system in order to make such determinations; the legitimate needs of different
programs vary so much that it’s impossible to give a simple rule for judging when a process is
consuming too much CPU time.

Like many Linux commands, top accepts several options. The most useful of these options
are listed here:

-d delay This specifies the delay between updates, which is normally 5 seconds.

-p pid If you want to monitor specific processes, you can list them using this option. You’ll
need the PIDs, which you can obtain with ps, as described earlier. You can specify up to 20 PIDs
by using this option multiple times, once for each PID.

-n iter You can tell top to display a certain number of updates (iter) and then quit. (Nor-
mally, top continues updating until you terminate the program.)

-b This specifies batch mode, in which top doesn’t use the normal screen update commands.
You might use this to log CPU use of targeted programs to a file, for instance.

4425.book Page 41 Thursday, July 7, 2005 5:28 PM

42 Chapter 1 � Linux Command-Line Tools

F I G U R E 1 . 2 The top command shows system summary information and information on
the most CPU-intensive processes on a computer.

You can do more with top than watch it update its display. When it’s running, you can enter
any of several single-letter commands, some of which prompt you for additional information.
These commands include the following:

h or ? These keystrokes display help information

k You can kill a process with this command. The top program will ask for a PID number, and
if it’s able to kill the process, it will do so. (The upcoming section “Killing Processes” describes
other ways to kill processes.)

q This option quits from top.

r You can change a process’s priority with this command. You’ll have to enter the PID num-
ber and a new priority value—a positive value will decrease its priority and a negative value will
increase its priority, assuming it has the default 0 priority to begin with. Only root may increase
a process’s priority. The renice command (described shortly, in “Managing Process Priori-
ties”) is another way to accomplish this task.

s This command changes the display’s update rate, which you’ll be asked to enter (in seconds).

P This sets the display to sort by CPU usage, which is the default.

M You can change the display to sort by memory usage with this command.

More commands are available in top (both command-line options and interactive com-
mands) than can be summarized here; consult top’s man page for more information.

One of the pieces of information provided by top is the load average, which is a measure
of the demand for CPU time by applications. In Figure 1.2, you’ll see three load-average
estimates on the top line; these correspond to the current load average and two previous

4425.book Page 42 Thursday, July 7, 2005 5:28 PM

Managing Processes 43

measures. A system on which no programs are demanding CPU time will have a load aver-
age of 0. A system with one program running CPU-intensive tasks will have a load average
of 1. Higher load averages reflect programs competing for available CPU time. You can also
find the current load average via the uptime command, which displays the load average
along with information on how long the computer has been running. The load average can
be useful in detecting runaway processes. For instance, if a system normally has a load aver-
age of 0.5 but it suddenly gets stuck at a load average of 2.5, there may be a couple of CPU-
hogging processes that have hung—that is, become unresponsive. Hung processes some-
times needlessly consume a lot of CPU time. You can use top to locate these processes and,
if necessary, kill them.

jobs: Processes Associated with Your Session

The jobs command displays minimal information on the processes associated with the current
session. In practice, jobs is usually of limited value, but it does have a few uses. One of these
is to provide job ID numbers. These numbers are conceptually similar to PID numbers, but
they’re not the same. Jobs are numbered starting from 1 for each session, and in most cases, a
single shell has only a few associated jobs. The job ID numbers are used by a handful of utilities
in place of PIDs, so you may need this information.

A second use of jobs is to ensure that all your programs have terminated prior to logging
out. Under some circumstances, logging out of a remote login session can cause the client pro-
gram to freeze up if you’ve left programs running. A quick check with jobs will inform you of
any forgotten processes and enable you to shut them down.

Foreground and Background Processes

One of the most basic process management tasks is to control whether a process is running
in the foreground or the background—that is, whether or not it’s monopolizing the use of
the terminal from which it was launched. Normally, when you launch a program it takes
over the terminal, preventing you from doing other work in that terminal. (Some programs,
though, release the terminal. This is most common for servers and some GUI programs.)

If a program is running but you decide you want to use that terminal for something else,
pressing Ctrl+Z normally pauses the program and gives you control of the terminal. (An impor-
tant point is that this procedure suspends the program, so if it’s performing real work, that work
stops!) This can be handy if, say, you’re running a text editor in a text-mode login and you want
to check a filename so you can mention it in the file you’re editing. You’d press Ctrl+Z and type
ls to get the file listing. To get back to the text editor, you’d then type fg, which restores the
text editor to the foreground of your terminal. If you’ve suspended several processes, you’d add
a job number, as in fg 2 to restore job 2. You can obtain a list of jobs associated with a terminal
by typing jobs, which displays the jobs and their job numbers.

A variant on fg is bg. Where fg restores a job to the foreground, bg restores a job to running
status, but in the background. You might use this command if the process you’re running is per-
forming a CPU-intensive task that requires no human interaction but you want to use the ter-
minal in the meantime. Another use of bg is in a GUI environment—after launching a GUI

4425.book Page 43 Thursday, July 7, 2005 5:28 PM

44 Chapter 1 � Linux Command-Line Tools

program from an xterm or similar window, that shell is tied up servicing the GUI program,
which probably doesn’t really need the shell. Pressing Ctrl+Z in the xterm window will enable
you to type shell commands again, but the GUI program will be frozen. To unfreeze the GUI
program, type bg in the shell, which enables the GUI program to run in the background while
the shell continues to process your commands.

An alternative to launching a program, using Ctrl+Z, and typing bg to run a program in the
background is to append an ampersand (&) to the command when launching the program. For
instance, rather than edit a file with the NEdit GUI editor by typing nedit myfile.txt, you
could type nedit myfile.txt &. This command launches the nedit program in the back-
ground from the start, leaving you able to control your xterm window for other tasks.

Managing Process Priorities

There may be times when you’ll want to prioritize your programs’ CPU use. For instance, you
might be running a program that’s very CPU-intensive but that will take a long time to finish
its work, and you don’t want that program to interfere with others that are of a more interactive
nature. Alternatively, on a heavily loaded computer, you might have a job that’s more impor-
tant than others that are running, so you might want to give it a priority boost. In either case,
the usual method of accomplishing this goal is through the nice and renice commands. You
can use nice to launch a program with a specified priority or use renice to alter the priority
of a running program.

You can assign a priority to nice in any of three ways: by specifying the priority pre-
ceded by a dash (this works well for positive priorities but makes them look like negative
priorities), by specifying the priority after a -n parameter, or by specifying the priority after
an --adjustment= parameter. In all cases, these parameters are followed by the name of
the program you want to run:

nice [argument] [command [command-arguments]]

For instance, the following three commands are all equivalent:

$ nice -12 number-crunch data.txt

$ nice -n 12 number-crunch data.txt

$ nice --adjustment=12 number-crunch data.txt

All three of these commands run the number-crunch program at priority 12 and pass it the
data.txt file. If you omit the adjustment value, nice uses 10 as a default. The range of possible
values is –20 to 19, with negative values having the highest priority. Only root may launch a pro-
gram with increased priority (that is, give a negative priority value), but any user may use nice to
launch a program with low priority. The default priority for a program run without nice is 0.

If you’ve found that a running process is consuming too much CPU time or is being swamped
by other programs and so should be given more CPU time, you can use the renice program to
alter its priority without disrupting the program’s operation. The syntax for renice is as follows:

renice priority [[-p] pids] [[-g] pgrps] [[-u] users]

4425.book Page 44 Thursday, July 7, 2005 5:28 PM

Managing Processes 45

You must specify the priority, which takes the same values this variable takes with nice.
In addition, you must specify one or more PIDs (pids), one or more group IDs (pgrps), or one
or more usernames (users). In the latter two cases, renice changes the priority of all programs
that match the specified criterion—but only root may use renice in this way. Also, only root
may increase a process’s priority. If you give a numeric value without a -p, -g, or -u option,
renice assumes the value is a PID. You may mix and match these methods of specification. For
instance, you might enter the following command:

renice 7 16580 -u pdavison tbaker

This command sets the priority to 7 for PID 16580 and for all processes owned by pdavison
and tbaker.

Killing Processes

Sometimes reducing a process’s priority isn’t a strong enough action. A program may have
become totally unresponsive, or you might want to terminate a process that shouldn’t be run-
ning at all. In these cases, the kill command is the tool to use. This program sends a signal (a
method that Linux uses to communicate with processes) to a process. The signal is usually sent
by the kernel, the user, or the program itself to terminate the process. Linux supports many
numbered signals, each of which is associated with a specific name. You can see them all by typ-
ing kill -l. If you don’t use -l, the syntax for kill is as follows:

kill -s signal pid

Although Linux includes a kill program, many shells, including bash and csh,
include built-in kill equivalents that work in much the same way as the exter-
nal program. If you want to be sure you’re using the external program, type its
complete path, as in /bin/kill.

The -s signal parameter sends the specified signal to the process. You can specify the signal
using either a number (such as 9) or a name (such as SIGKILL). The signals you’re most likely
to use are 1 (SIGHUP, which terminates interactive programs and causes many daemons to
reread their configuration files), 9 (SIGKILL, which causes the process to exit without perform-
ing routine shutdown tasks), and 15 (SIGTERM, which causes the process to exit but allows it to
close open files and so on). If you don’t specify a signal, the default is 15 (SIGTERM). You can
also use the shortened form -signal. If you do this and use a signal name, you should omit the
SIG portion of the name—for instance, use KILL rather than SIGKILL. The pid option is, of
course, the PID for the process you want to kill. You can obtain this number from ps or top.

The kill program will only kill processes owned by the user who runs kill. The
exception is if that user is root; the superuser may kill any user’s processes.

4425.book Page 45 Thursday, July 7, 2005 5:28 PM

46 Chapter 1 � Linux Command-Line Tools

A variant on kill is killall, which has the following form:

killall [options] [--] name [...]

This command kills a process based on its name rather than its PID number. For
instance, killall vi kills all the running processes called vi. You may specify a signal
in the shortened form (-signal) or by preceding the signal number with -s or --signal.
As with kill, the default is 15 (SIGTERM). One potentially important option to killall is
-i, which causes it to ask for confirmation before sending the signal to each process. You
might use it like this:

$ killall -i vi

Kill vi(13211) ? (y/n) y

Kill vi(13217) ? (y/n) n

In this example, two instances of the Vi editor were running but only one should have been
killed. As a general rule, if you run killall as root, you should use the -i parameter; if you
don’t, it’s all too likely that you’ll kill processes that you should not, particularly if the computer
is being used by many people at once.

Some versions of Unix provide a killall command that works very differently
from Linux’s killall. This alternate killall kills all the processes started by
the user who runs the command. This is a potentially much more destructive
command, so if you ever find yourself on a non-Linux system, do not use
killall until you’ve discovered what that system’s killall does, say by read-
ing the killall man page.

Running Programs Persistently

Signals can be passed to programs by the kernel even if you don’t use the kill command. For
instance, when you log out of a session, the programs you started from that session are sent
the SIGHUP signal, which causes them to terminate. If you want to run a program that will con-
tinue running even when you log out, you can launch it with the nohup program:

$ nohup program options

This command causes the program to ignore the SIGHUP signal. It could be handy if you want
to launch certain small servers that may legitimately be run as ordinary users.

4425.book Page 46 Thursday, July 7, 2005 5:28 PM

Exam Essentials 47

Summary
The command line is the key to Linux. Even if you prefer GUI tools to text-mode tools, under-
standing text-mode commands is necessary to fully manage Linux. This task begins with the
shell, which accepts commands you type and displays the results of those commands. In addi-
tion, shells support linking programs together via pipes and redirecting programs’ input and
output. These features enable you to perform complex tasks using simple tools by having each
program perform its own small part of the task. This technique is frequently used with Linux
text filters, which manipulate text files in various ways—sorting text by fields, merging multiple
files, and so on. Beyond text filters, Linux also supports many text editors, but the most basic
Linux text editor is Vi. Although it’s very strange by modern standards, Vi is a compact and effi-
cient editor that’s found on just about every Linux emergency system ever built, so knowing
how to use it can help you when you need to use such a system.

Beyond manipulating text files, using Linux involves manipulating processes. Knowing how
to manage foreground and background processes, adjust process priorities, and kill stray pro-
cesses can help you keep your Linux system working well.

Exam Essentials
Summarize features that Linux shells offer to speed up command entry. The command history
often enables you to retrieve an earlier command that’s similar or identical to the one you want
to enter. Tab completion reduces typing effort by letting the shell finish long command names or
filenames. Command line editing enables you to edit a retrieved command or change a typo before
committing the command.

Describe the purpose of the man command. The man command displays the manual page for
the keyword (command, filename, system call, or other feature) that you type. This documen-
tation provides succinct summary information that’s useful as a reference to learn about exact
command options or features.

Explain the purpose of environment variables. Environment variables store small pieces of
data—program options, information about the computer, and so on. This information can be
read by programs and used to modify program behavior in a way that’s appropriate for the cur-
rent environment.

Describe the difference between standard output and standard error. Standard output carries
normal program output, whereas standard error carries high-priority output, such as error mes-
sages. The two can be redirected independently of one another.

Explain the purpose of pipes. Pipes tie programs together by feeding the standard output
from the first program into the second program’s standard input. They can be used to link
together a series of simple programs to perform more complex tasks than any one of the pro-
grams could manage.

4425.book Page 47 Thursday, July 7, 2005 5:28 PM

48 Chapter 1 � Linux Command-Line Tools

Summarize the structure of regular expressions. Regular expressions are strings that describe
other strings. They contain normal alphanumeric characters, which match the exact same charac-
ters, as well as several special symbols and symbol sets that can be used to match multiple different
characters. The combination is a powerful pattern-matching tool used by many Linux programs.

Describe Vi’s three editing modes. You enter text using the insert mode, which supports text
entry and deletion. The command and ex modes are used to perform more complex commands
or run outside programs to operate on the text entered or changed in insert mode.

Explain the difference between foreground and background processes. Foreground processes
have control of the current terminal or text-mode window (such as an xterm). Background pro-
cesses do not have exclusive control of a terminal or text-mode window but are still running.

Describe how to limit the CPU time used by a process. You can launch a program with nice
or use renice to alter its priority in obtaining CPU time. If a process is truly out of control, you
can terminate it with the kill command.

4425.book Page 48 Thursday, July 7, 2005 5:28 PM

Review Questions 49

Review Questions
1. You type a command into bash and pass a long filename to it, but after you enter the com-

mand, you receive a File not found error message because of a typo in the filename. How
might you proceed?

A. Retype the command and be sure you type the filename correctly, letter by letter.

B. Retype the command, but press the Tab key after typing a few letters of the long filename
to ensure that the filename is entered correctly.

C. Press the up arrow key and use bash’s editing features to correct the typo.

D. Any of the above.

2. Which of the following commands is implemented as an internal command in bash?

A. cat

B. echo

C. tee

D. sed

3. You type echo $PROC and the computer replies Go away. What does this mean?

A. No currently running processes are associated with your shell, so you may log out without
terminating them.

B. The remote computer PROC is not accepting connections; you should contact its administra-
tor to correct the problem.

C. Your computer is handling too many processes; you must kill some of them to regain control
of the computer.

D. You, one of your configuration files, or a program you’ve run has set the $PROC environment
variable to Go away.

4. How does man display information by default on most Linux systems?

A. Using a custom X-based application

B. Using the Mozilla web browser

C. Using the less pager

D. Using the Vi editor

5. You want to store the standard output of the ifconfig command in a text file (file.txt) for
future reference, and you want to wipe out any existing data in the file. How would you do so?

A. ifconfig < file.txt

B. ifconfig >> file.txt

C. ifconfig > file.txt

D. ifconfig | file.txt

4425.book Page 49 Thursday, July 7, 2005 5:28 PM

50 Chapter 1 � Linux Command-Line Tools

6. What is the effect of the following command?

$ myprog &> input.txt

A. Standard error to myprog is taken from input.txt.

B. Standard input to myprog is taken from input.txt.

C. Standard input and standard error from myprog are written to input.txt.

D. All of the above.

7. How many commands can you pipe together at once?

A. 2

B. 3

C. 4

D. An arbitrary number

8. What program would you use to display the end of a configuration file?

A. uniq

B. cut

C. tail

D. wc

9. What is the effect of the following command?

$ pr report.txt | lpr

A. The file report.txt is formatted for printing and sent to the lpr program.

B. The files report.txt and lpr are combined together into one file and sent to standard
output.

C. Tabs are converted to spaces in report.txt and the result is saved in lpr.

D. None of the above.

10. Which of the following commands will number the lines in aleph.txt? (Select all that apply.)

A. fmt aleph.txt

B. nl aleph.txt

C. cat -b aleph.txt

D. cat -n aleph.txt

11. Which of the following commands will change all occurrences of dog in the file animals.txt
to mutt in the screen display?

A. sed –s "dog" "mutt" animals.txt

B. grep –s "dog||mutt" animals.txt

C. sed 's/dog/mutt/' animals.txt

D. cat animals.txt | grep –c "dog" "mutt"

4425.book Page 50 Thursday, July 7, 2005 5:28 PM

Review Questions 51

12. Which of the following commands will print lines from the file world.txt that contain matches
to changes and changed?

A. grep change[ds] world.txt

B. sed change[d-s] world.txt

C. od "change'd|s'" world.txt

D. cat world.txt changes changed

13. Which of the following regular expressions will match the strings dig and dug but not dog?

A. d.g

B. d[iu]g

C. d[i-u]g

D. di*g

14. How would you remove two lines of text from a file using Vi?

A. In command mode, position the cursor on the first line and type 2dd.

B. In command mode, position the cursor on the last line and type 2yy.

C. In insert mode, position the cursor at the start of the first line, hold the Shift key down while
pressing the down arrow key twice, and hit the Delete key on the keyboard.

D. In insert mode, position the cursor at the start of the first line and press Ctrl+K twice.

15. A user types kill -9 11287 at a bash prompt. What is the probable intent, assuming the user
typed the correct command?

A. To cut off a network connection using TCP port 11287

B. To display the number of processes that have been killed with signal 11287 in the last
nine days

C. To cause a server with process ID 11287 to reload its configuration file

D. To terminate a misbehaving or hung program with process ID 11287

16. What programs might you use to learn what your system’s load average is? (Select all that apply.)

A. ld

B. load

C. top

D. uptime

17. Which of the following commands creates a display of processes, showing the parent/child rela-
tionships through links between their names?

A. ps --forest

B. ps aux

C. ps -e

D. All of the above

4425.book Page 51 Thursday, July 7, 2005 5:28 PM

52 Chapter 1 � Linux Command-Line Tools

18. You use top to examine the CPU time being consumed by various processes on your system. You
discover that one process, dfcomp, is consuming over 90 percent of your system’s CPU time.
What can you conclude?

A. Very little; dfcomp could be legitimately consuming that much CPU time or it could be an
unauthorized or malfunctioning program.

B. No program should consume 90 percent of available CPU time; dfcomp is clearly malfunc-
tioning and should be terminated.

C. This is normal; dfcomp is the kernel’s main scheduling process, and it consumes any unused
CPU time.

D. This behavior is normal if your CPU is less powerful than a 1.5GHz Pentium 4, but on newer
systems, no program should consume 90 percent of CPU time.

19. Which two of the following commands are equivalent to one another? (Select two.)

A. nice --value 10 crunch

B. nice -n -10 crunch

C. nice -10 crunch

D. nice crunch

20. Which of the following are restrictions on ordinary users’ abilities to run renice? (Select all
that apply.)

A. Users may not modify the priorities of processes that are already running.

B. Users may not modify the priorities of other users’ processes.

C. Users may not decrease the priority (that is, increase the priority value) of their own
processes.

D. Users may not increase the priority (that is, decrease the priority value) of their own processes.

4425.book Page 52 Thursday, July 7, 2005 5:28 PM

Answers to Review Questions 53

Answers to Review Questions
1. D. Any of these approaches will work, or at least could work. (You might err when performing

any of them.) Option B or C is likely to be the most efficient approach, though; with a long file-
name to type, option A is likely to be tedious.

2. B. The echo command is implemented internally to bash, although an external version is also
available on most systems. The cat, tee, and sed commands are not implemented internally to
bash, although they can be called from bash as external commands.

3. D. The echo command echoes what follows to standard output, and $PROC is an environment
variable. Thus, echo $PROC displays the value of the $PROC environment variable, meaning
that it must have been set to the specified value by you, one of your configuration files, or a
program you’ve run. Although many environment variables are set to particular values to con-
vey information, $PROC is not a standard environment variable that might be associated with
information described in options A, B, or C.

4. C. By default, man uses the less pager to display information on most Linux systems. Although
an X-based version of man does exist (xman), the basic man doesn’t use a custom X-based appli-
cation, nor does it use Mozilla or the Vi editor.

5. C. The > redirection operator stores a command’s standard output in a file, overwriting the con-
tents of any existing file by the specified name. Option A specifies the standard input redirection
so that ifconfig will take the contents of file.txt as input. Option B is almost correct; the
>> redirection operator redirects standard output, as requested, but it appends data to the spec-
ified file rather than overwriting it. Option D specifies a pipe; the output of ifconfig is sent
through the file.txt program, if it exists. (Chances are it doesn’t, so you’d get a command not
found error message.)

6. C. The &> redirection operator sends both standard output and standard error to the specified
file, as option C states. (The name of the file, input.txt, is a bit of misdirection, but the usage
is still valid.) Option A mentions standard error but describes it as if it were an input stream,
which it’s not; it’s an output stream. Option B mentions standard input, but the &> operator
doesn’t affect standard input.

7. D. In principle, you could pipe together as many commands as you like. (In practice, of course,
there will be limits based on input buffer size, memory, and so on, but these limits are far higher
than the 2, 3, or 4 commands specified in options A, B, and C.)

8. C. The tail command displays the final 10 lines of a file. (You can change the number of lines
displayed with the -n option.) The uniq command removes duplicate lines from a list. The cut
command echoes the specified characters or fields from an input text file. The wc command dis-
plays counts of the number of characters, words, and lines in a file.

9. A. The pr program takes a text file as input and adds formatting features intended for printing,
such as a header and blank lines to separate pages. The command also pipes the output through
lpr (which is a Linux printing command).

4425.book Page 53 Thursday, July 7, 2005 5:28 PM

54 Chapter 1 � Linux Command-Line Tools

10. B, C, D. The nl command numbers lines, so it does this task without any special options. (Its
options can fine-tune the way it numbers lines, though.) The cat command can also number
lines via its -b or -n options; -b numbers non-blank lines, while -n numbers all lines (including
blank lines). The fmt command is the only one described here that will not number the lines of
the input file.

11. C. The sed utility can be used to “stream” text and change one value to another. In this case,
the s option is used to replace dog with mutt. The syntax in option A is incorrect, while
choices B and D are incorrect since grep does not include the functionality needed to make
the changes.

12. A. The grep utility is used to find matching text within a file and print those lines. It accepts reg-
ular expressions, which allow for the placing of the two characters you are looking for within
brackets. The syntax for sed, od, and cat would not perform the specified task.

13. B. The bracket expression within the d[iu]g regular expression means that either i or u may be
the middle character; hence, this regular expression matches both dig and dug but not dog.
Option A’s dot matches any single character, so d.g matches all three words. The range expres-
sion [i-u] matches any single character between i and u, inclusive. Because o falls between
these two letters, option C matches all three words. Finally, di*g matches dig, diig, diiig, or
any other word that begins with d, ends with g and contains any number of i letters in-between.
Thus, option D matches dig but not dug as required.

14. A. In Vi, dd is the command-mode command that deletes lines. Preceding this command by a
number deletes that number of lines. While yy works similarly, it copies (“yanks”) text rather
than deleting it. Option C works in many more modern text editors, but not in Vi. Option D
works in Emacs and similar text editors, but not in Vi.

15. D. The kill program accepts various signals in numeric or named form (9 in this example)
along with a process ID number (11287 in this example). Signal 9 corresponds to SIGKILL,
which is an extreme way to kill processes that have run out of control. Although you might use
kill to kill network processes, you can’t pass kill a TCP port number and expect it to work.
The program also won’t display information on the number of processes that have been killed.
To do as option C suggests, you’d need to tell kill to pass SIGHUP (signal 1), so the command
would be kill -1 11287.

16. C, D. The top utility displays a dynamic list of processes ordered according to their CPU use
along with additional system information, including load averages. If you want only the load
average at a specific moment, uptime may be better because it presents less extraneous infor-
mation—it shows the current time, the time since the system was booted, the number of active
users, and the load averages. The ld command has nothing to do with displaying load averages
(it’s a programming tool that links together program modules into an executable program).
There is no standard Linux program called load.

17. A. The --forest option to ps shows parent/child relationships by creating visual links between
process names in the ps output. (Listing 1.4 shows this effect.) Options B and C are both valid
ps commands, but neither creates the specified effect.

4425.book Page 54 Thursday, July 7, 2005 5:28 PM

Answers to Review Questions 55

18. A. CPU-intensive programs routinely consume 90 percent or more of available CPU time,
but not all systems run such programs. Furthermore, some types of program bugs can create
such CPU loads. Thus, you must investigate the matter more. What is dfcomp? Is it designed
as a CPU-intensive program? Is it consuming this much CPU time consistently, or was this
a brief burst of activity?

19. Answers: C, D. The nice command launches a program (crunch in this example) with increased
or decreased priority. The default priority when none is specified is 10, and the nice -10 crunch
command also sets the priority to 10, so options C and D are equivalent. Option A isn’t a valid
nice command because nice has no --value option. Option B is a valid nice command, but it
sets the priority to –10 rather than 10.

20. Answers: B, D. Linux insulates users’ actions from one another, and this rule applies to renice;
only root may modify the priority of other users’ processes. Similarly, only root may increase
the priority of a process, in order to prevent users from setting their processes to maximum pri-
ority, thus stealing CPU time from others. Option A correctly describes nice, but not renice;
the whole point of renice is to be able to change the priorities of existing processes. Option C
also describes an action that renice permits.

4425.book Page 55 Thursday, July 7, 2005 5:28 PM

Chapter

2

Managing Software

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.102.3 Make and install programs from source (weight: 5)

�

1.102.4 Manage shared libraries (weight: 4)

�

1.102.5 Use Debian package management (weight: 8)

�

1.102.6 Use Red Hat Package Manager (RPM) (weight: 8)

4425.book Page 57 Thursday, July 7, 2005 5:28 PM

A Linux system is defined largely by the collection of software it
contains. The Linux kernel, libraries used by many packages,
the shells used to interpret commands, the X Window System

GUI, servers, and more all make up the system’s software environment. Many of the chapters
of this book are devoted to configuring specific software components, but they all have some-
thing in common: tools used to install, uninstall, upgrade, and otherwise manipulate the soft-
ware itself. Ironically, this commonality is a major source of differences between Linux
systems. Two major Linux package management tools exist: the

RPM Package Manager
(RPM)

 and

Debian packages.

 (Several less-common package management systems also exist.)
With few exceptions, each individual Linux computer uses precisely one package manage-
ment system, so you’ll need to know only one to administer a single system. To be truly fluent
in all things Linux, though, you should be at least somewhat familiar with both of them. Thus,
this chapter describes both.

This chapter also covers another common method of installing software: building it from
source code. Most Linux software is available in source code form, and some administrators
like installing as much software as possible from source code because doing so enables them to
tweak compiler settings and be sure that no strange patches have been applied to the software.
Even if you prefer the convenience of binary package installation via RPM or Debian packages,
you should be familiar with the basic procedures for installing software from source code so
that you can do so if you must—say, if you can’t find an obscure but important (for you) pack-
age in binary form for your system. Finally, this chapter covers

libraries

—software components
that can be used by many different programs. Libraries help reduce the disk space and memory
requirements of complex programs, but they also require some attention, and if that attention
isn’t given to them, they can cause problems by their absence or because of incompatibilities
between their and their dependent software’s versions.

Package Concepts

Before proceeding further, you should understand some of the principles that underlie Linux
package management tools. Any computer’s software is like a house of cards: One program
may rely upon five other programs or libraries, each of which rely upon several more, and so
on. The foundation upon which all these programs rely is the Linux kernel. Any of these pack-
ages can theoretically be replaced by an equivalent one; however, doing so sometimes causes
problems. Worse, removing one card from the stack could cause the whole house of cards to
come tumbling down.

4425.book Page 58 Thursday, July 7, 2005 5:28 PM

Package Concepts

59

Linux package management tools are intended to minimize such problems by tracking what soft-
ware is installed. The information that the system maintains helps avoid problems in several ways:

Packages

The most basic information that package systems maintain is information on soft-
ware

packages

—that is, collections of files that are installed on the computer. Packages are usu-
ally distributed as single files that are similar to

tarballs

 (archives created with the

tar

 utility
and usually compressed with

gzip

 or

bzip2

) or zip files. Once installed, most packages consist
of dozens or hundreds of files, and the package system tracks them all. Packages include addi-
tional information that aids in the subsequent duties of package management systems, though.

Installed file database

Package systems maintain a database of installed files. The database
includes information on every file installed via the package system, the name of the package to
which it belongs, and associated additional information.

Dependencies

One of the most important pieces of information maintained by the package
system is

dependency

 information—that is, the requirements of packages for one another. For
instance, if SuperProg relies on UltraLib to do its work, the package database records this infor-
mation. If you attempt to install SuperProg when UltraLib isn’t installed, the package system
won’t let you do so. Similarly, if you try to uninstall UltraLib when SuperProg is installed, the
package system won’t let you. (You can override these prohibitions, as described later, in “Forc-
ing the Installation.” Doing so is usually inadvisable, though.)

Checksums

The package system maintains checksums and assorted ancillary information
about files. This information can be used to verify the validity of the installed software. This fea-
ture has its limits, though; it’s intended to help you spot disk errors, accidental overwriting of
files, or other non-sinister problems. It’s of limited use in detecting intrusions because an
intruder could use the package system to install altered system software.

Upgrades and uninstallation

By tracking files and dependencies, package systems permit
easy upgrades and uninstallation: Tell the package system to upgrade or remove a package
and it will replace or remove every file in the package. Of course, this assumes that the
upgrade or uninstallation doesn’t cause dependency problems; if it does, the package system
will block the operation unless you override it.

Binary package creation

Both RPM and Debian package systems provide tools to help create
binary packages (those that are installed directly) from source code. This feature is particularly help-
ful if you’re running Linux on a peculiar CPU; you can download source code and create a binary
package even if the developers didn’t provide explicit support for your CPU. Creating a binary pack-
age from source has advantages over compiling software from source in more conventional ways,
as described in “Installing Programs from Source,” because you can then use the package manage-
ment system to track dependencies, attend to individual files, and so on.

Both the RPM and Debian package systems provide all of these basic features, although the
details of their operation differ. These two package systems are incompatible with one another
in the sense that their package files and their installed file databases are different; you can’t
directly install an RPM package on a Debian-based system or vice versa. (Tools to convert
between formats do exist, though, and developers are working on ways to better integrate the
two package formats.)

4425.book Page 59 Thursday, July 7, 2005 5:28 PM

60

Chapter 2 �

Managing Software

Most distributions install just one package system. It’s possible to install more
than one, though, and in fact some programs (such as

alien

) require both for
full functionality. Actually

using

 both systems to install software is inadvisable,
though, because their databases are separate. If you install a library using a
Debian package and then try to install an RPM that relies on that library, RPM

won’t realize that the library is already installed and will return an error.

Using RPM

The most popular package manager in the Linux world is RPM. In fact, RPM is available on
non-Linux platforms, although it sees less use outside the Linux world. The RPM system pro-
vides all the basic tools described in the preceding section, “Package Concepts,” such as a pack-
age database that allows for checking conflicts and ownership of particular files.

RPM Distributions and Conventions

RPM was developed by Red Hat for its own distribution. Red Hat released the software under
the General Public License (GPL), however, so others have been free to use it in their own dis-
tributions, and in fact, this is precisely what has happened. Some distributions, such as Man-
driva (formerly Mandrake), LinuxPPC, and Yellow Dog, are based on Red Hat, and so they use
RPMs as well as many other parts of the Red Hat distribution. Others, such as SuSE and Conec-
tiva, borrow less from the Red Hat template, but they do use RPMs. Of course, all Linux dis-
tributions share many common components, so even those that weren’t originally based on Red
Hat are very similar to it in many ways other than their use of RPM packages. On the other
hand, distributions that were originally based on Red Hat have diverged from it over time. As
a result, the group of RPM-using distributions shows substantial variability, but all of them are
still Linux distributions that provide the same basic tools, such as the Linux kernel, common
shells, an X server, and so on.

Red Hat has splintered into two distributions: Fedora is the downloadable ver-
sion favored by home users, students, and businesses on a tight budget. The

Red Hat

 name is now reserved for the for-pay version of the distribution.

RPM is a cross-platform tool. As noted earlier, some non-Linux Unix systems can use RPM,
although most don’t use it as their primary package distribution system. RPM supports any
CPU architecture. In fact, Red Hat Linux is or has been available for at least five CPUs:

x

86,
AMD64 (aka

x

86-64), IA-64, Alpha, and SPARC. Among the distributions mentioned earlier,
LinuxPPC and Yellow Dog are PowerPC distributions (they run on Apple Power Macs and
some non-Apple systems), and SuSE is available on

x

86, AMD64, PowerPC, and Alpha sys-
tems. For the most part, source RPMs are transportable across architectures—you can use the

4425.book Page 60 Thursday, July 7, 2005 5:28 PM

Using RPM

61

same source RPM to build packages for

x

86, AMD64, PowerPC, Alpha, SPARC, or any other
platform you like. Some programs are actually composed of architecture-independent scripts
and so they need no recompilation. There are also documentation and configuration packages
that work on any CPU.

The convention for naming RPM packages is as follows:

packagename

-

a.b.c

-

x

.

arch

.rpm

Each of the filename components has a specific meaning:

Package name

The first component (

packagename

) is the name of the package, such as

samba

for the Samba file and print server.

Version number

The second component (

a.b.c

) is the package version number, such as
2.2.7a. The version number doesn’t have to be three period-separated numbers, but that’s the
most common form. The program author assigns the version number.

Build number

The number following the version number (

x

) is the

build number

 (also known
as the

release number

). This number represents minor changes made by the package maintainer,
not by the program author. These changes may represent altered startup scripts or configura-
tion files, changed file locations, added documentation, or patches appended to the original pro-
gram to fix bugs or to make the program more compatible with the target Linux distribution.
Some distribution maintainers add a letter code to the build number to distinguish their pack-
ages from those of others. Note that these numbers are

not

 comparable across package main-
tainers—George’s build number 5 of a package is

not

 necessarily an improvement on Susan’s
build number 4 of the same package.

Architecture

The final component preceding the

.rpm

 extension (

arch

) is a code for the pack-
age’s architecture. The

i386

 architecture code is the most common one; it represents a file com-
piled for any

x

86 CPU from the 80386 onward. Some packages include optimizations for
Pentiums or above (

i586

 or

i686

), and non-

x

86 binary packages use codes for their CPUs, such
as

ppc

 for PowerPC CPUs or

x86_64

 for the AMD64 platform. Scripts, documentation, and
other CPU-independent packages generally use the

noarch

 architecture code. The main excep-
tion to this rule is source RPMs, which use the

src

 architecture code.

As an example of RPM version numbering, the Fedora 3 distribution ships with a Samba
package called

samba-3.0.10-1.fc3.i386.rpm

, indicating that this is build 1.fc3 of Samba
3.0.10, compiled with 386 optimizations. These naming conventions are just that, though—
conventions. It’s possible to rename a package however you like and it will still install and work.
The information in the filename is retained within the package. This fact can be useful if you’re
ever forced to transfer RPMs using a medium that doesn’t allow for long filenames. In fact, early
versions of SuSE eschewed long filenames, preferring short filenames such as

samba.rpm

.
In an ideal world, any RPM package will install and run on any RPM-based distribution that

uses an appropriate CPU type. Unfortunately, compatibility issues can crop up from time to
time, including these:
�

Distributions may use different versions of the RPM utilities, as described shortly in
“Upgrades to RPM.” This problem can completely prevent an RPM from one distribution
from being used on another.

4425.book Page 61 Thursday, July 7, 2005 5:28 PM

62

Chapter 2 �

Managing Software

�

An RPM package designed for one distribution may have dependencies that are unmet in
another distribution. A package may require a newer version of a library than is present on
the distribution you’re using, for instance. This problem can usually be overcome by install-
ing or upgrading the depended-on package, but sometimes this causes problems because the
upgrade may break other packages. By rebuilding the package you want to install from a
source RPM, you can often work around these problems, but sometimes the underlying
source code also needs the upgraded libraries.

�

An RPM package may be built to depend on a package of a particular name, such as

samba-client

 depending on

samba-common

, but if the distribution you’re using has
named the package differently, the

rpm

 utility will object. You can override this objection
by using the

--nodeps

 switch, but sometimes the package won’t work once installed.
Rebuilding from a source RPM may or may not fix this problem.

�

Even when a dependency appears to be met, different distributions may include slightly dif-
ferent files in their packages. For this reason, a package meant for one distribution may not
run correctly when installed on another distribution. Sometimes installing an additional
package will fix this problem.

�

Some programs include distribution-specific scripts or configuration files. This problem is
particularly acute for servers, which may include startup scripts that go in

/etc/rc.d/
init.d

 or elsewhere. Overcoming this problem usually requires that you remove the
offending script after installing the RPM and either start the server in some other way or
write a new startup script, perhaps modeled after one that came with some other server for
your distribution.

Despite this list of caveats, mixing and matching RPMs from different distributions usually
works reasonably well for most programs, particularly if the distributions are closely related or
you rebuild from a source RPM. If you have trouble with an RPM, though, you may do well to
try to find an equivalent package that was built with your distribution in mind.

Upgrades to RPM

The earliest versions of RPM were quite primitive by today’s standards; for instance, they
did not support dependencies. Over time, though, improvements have been made. This fact
occasionally causes problems when Red Hat releases a new version of RPM. For instance,
Red Hat 7.0 introduced version 4 of the RPM utilities, but version 4 RPM files cannot be
installed with most earlier versions of RPM. This led to frustration on the part of many peo-
ple who used RPM-based distributions in late 2000 because they couldn’t use Red Hat 7.0
RPMs on their systems. (RPM 4.3.

x

 is current in mid-2005.)
It’s usually possible to overcome such problems by installing a newer version of RPM and

upgrading the RPM database. Unfortunately, there’s a chicken-and-egg problem, because without
the new version of RPM, it’s impossible to install the updated version of RPM. Red Hat and many
other RPM-based distribution providers frequently do make a version of the next-generation ver-
sion of RPM available for older systems. In the case of the switch to RPM 4.0 with Red Hat 7.0,
Red Hat has made this upgrade available in its Red Hat 6.2 updates area, for instance. After

4425.book Page 62 Thursday, July 7, 2005 5:28 PM

Using RPM

63

installing such an upgrade, be sure to type rpm --rebuilddb to have the system rebuild your
RPM database to conform to the new program’s expectations. If you fail to do this, you may be
unable to install new programs or access information on old ones.

The rpm Command Set

The main RPM utility program is known as rpm. Use this program to install or upgrade a package
at the shell prompt. The rpm command has the following syntax:

rpm [operation][options] [package-files|package-names]

Table 2.1 summarizes the most common rpm operations, and Table 2.2 summarizes the most
important options. Be aware, however, that rpm is a very complex tool, so this listing is necessarily
incomplete. Tables 2.1 and 2.2 do include information on the most common rpm features, however.
For information on operations and options more obscure than those listed in Tables 2.1 and 2.2, see
the man pages for rpm. Many of rpm’s less-used features are devoted to the creation of RPM packages
by software developers.

T A B L E 2 . 1 Common rpm Operations

Operation Description

-i Installs a package; system must not contain a package of the same name.

-U Installs a new package or upgrades an existing one.

-F or --freshen Upgrades a package only if an earlier version already exists.

-q Queries a package—finds if a package is installed, what files it con-
tains, and so on.

-V or -y or --verify Verifies a package—checks that its files are present and unchanged
since installation.

-e Uninstalls a package.

-b Builds a binary package, given source code and configuration files;
moved to the rpmbuild program with RPM version 4.2.

--rebuild Builds a binary package, given a source RPM file; moved to the
rpmbuild program with RPM version 4.2.

--rebuilddb Rebuilds the RPM database to fix errors.

4425.book Page 63 Thursday, July 7, 2005 5:28 PM

64 Chapter 2 � Managing Software

T A B L E 2 . 2 Common rpm Options

Option Used with Operations Description

--root dir Any Modifies the Linux system having a root
directory located at dir. This option can be
used to maintain one Linux installation dis-
crete from another one (say, during OS
installation or emergency maintenance).

--force -i, -U, -F Forces installation of a package even
when it means overwriting existing files
or packages.

-h or --hash -i, -U, -F Displays a series of hash marks (#) to indi-
cate the progress of the operation.

-v -i, -U, -F Used in conjunction with the -h option to
produce a uniform number of hash marks
for each package.

--nodeps -i, -U, -F, -e Specifies that no dependency checks be
performed. Installs or removes the pack-
age even if it relies on a package or file
that’s not present or is required by a pack-
age that’s not being uninstalled.

--test -i, -U, -F Checks for dependencies, conflicts, and
other problems without actually installing
the package.

--prefix path -i, -U, -F Sets the installation directory to path
(works only for some packages).

-a or --all -q, -V Queries or verifies all packages.

-f file or --file file -q, -V Queries or verifies the package that
owns file.

-p package-file -q Queries the uninstalled RPM package-file.

-i -q Displays package information, including the
package maintainer, a short description,
and so on.

-R or --requires -q Displays the packages and files on which
this one depends.

-l or --list -q Displays the files contained in the package.

4425.book Page 64 Thursday, July 7, 2005 5:28 PM

Using RPM 65

To use rpm, you combine one operation with one or more options. In most cases, you include
one or more package names or package filenames as well. (A package filename is a complete file-
name, but a package name is a shortened version. For instance, a package filename might be
samba-3.0.10-1.fc3.i386.rpm, while the matching package name is samba.) You can issue
the rpm command once for each package, or you can list multiple packages, separated by spaces,
on the command line. The latter is often preferable when you’re installing or removing several
packages, some of which depend on others in the group. Issuing separate commands in this sit-
uation requires that you install the depended-on package first or remove it last, whereas issuing
a single command allows you to list the packages on the command line in any order.

Some operations require that you give a package filename, and others require a package
name. In particular, -i, -U, -F, and the rebuild operations require package filenames; -q, -V,
and -e normally take a package name, although the -p option can modify a query (-q) opera-
tion to work on a package filename.

When you’re installing or upgrading a package, the -U operation is generally the most useful
because it allows you to install the package without manually uninstalling the old one. This one-
step operation is particularly helpful when packages contain many dependencies because rpm
detects these and can perform the operation should the new package fulfill the dependencies
provided by the old one.

To use rpm to install or upgrade a package, issue a command similar to the following:

rpm -Uvh samba-3.0.10-1.fc3.i386.rpm

You could also use rpm -ivh in place of rpm -Uvh if you don’t already have a samba pack-
age installed.

It’s possible to distribute the same program under different names. In this situa-
tion, upgrading may fail, or it may produce a duplicate installation, which can
yield bizarre program-specific malfunctions. Red Hat has described a formal sys-
tem for package naming to avoid such problems, but they still occur occasion-
ally. Therefore, it’s best to upgrade a package using a subsequent release
provided by the same individual or organization that provided the original.

Verify that the package is installed with the rpm -qi command, which displays information
such as when and on what computer the binary package was built. Listing 2.1 demonstrates this
command. (rpm -qi also displays an extended plain-English summary of what the package is,
which has been omitted from Listing 2.1.)

Listing 2.1: RPM Query Output

$ rpm -qi samba

Name : samba Relocations: (not relocatable)

Version : 3.0.10 Vendor: Red Hat, Inc.

Release : 1.fc3 Build Date: Fri 17 Dec 2004

 ➥10:23:20 PM EST

Install Date: Thu 20 Jan 2005 03:43:12 PM EST Build Host:

4425.book Page 65 Thursday, July 7, 2005 5:28 PM

66 Chapter 2 � Managing Software

 ➥tweety.build.redhat.com

Group : System Environment/Daemons Source RPM:

 ➥samba-3.0.10-1.fc3.src.rpm

Size : 24865876 License: GNU GPL Version 2

Signature : DSA/SHA1, Mon 20 Dec 2004 01:42:00 PM EST, Key

 ➥ID b44269d04f2a6fd2

Packager : Red Hat, Inc. <http://bugzilla.redhat.com/bugzilla>

URL : http://www.samba.org/

Summary : The Samba SMB server.

E X E R C I S E 2 . 1

Managing Packages Using RPM

This exercise runs you through the process of managing packages using the rpm utility. To
manage packages, follow these steps:

1. Log into the Linux system as a normal user.

2. Acquire a package to use for testing purposes. You can try using a package from your dis-
tribution that you know you haven’t installed, but if you try a random package, you may
find it’s already installed or you may find it has unmet dependencies. This lab uses as an
example the installation of zsh-4.2.0-3.i386.rpm, a shell that’s not installed by default on
most systems, from the third Fedora 3 CD onto a Fedora 3 system. You must adjust the
commands as necessary if you use another RPM file in your tests.

3. Launch an xterm from the desktop environment’s menu system if you used a GUI login.

4. Acquire root privileges. You can do this by typing su in an xterm, by selecting Session �
New Root Console from a Konsole window, or by using sudo (if it’s configured) to run the
commands in the following steps.

5. Type rpm -q zsh to verify that the package is not currently installed. The system should
respond with the message package zsh is not installed.

6. Type rpm -qpi zsh-4.0.7-1.1.i386.rpm. (You’ll need to add a complete path to the pack-
age file if it’s not in your current directory.) The system should respond by displaying infor-
mation about the package, such as the version number, the vendor, the hostname of the
machine on which it was built, and a package description.

7. Type rpm -ivh zsh-4.0.7-1.1.i386.rpm. The system should install the package and dis-
play a series of hash marks (#) as it does so.

8. Type rpm -q zsh. The system should respond with the complete package name, including
the version and build numbers. This response verifies that the package is installed.

4425.book Page 66 Thursday, July 7, 2005 5:28 PM

Using RPM 67

Extracting Data from RPMs

Occasionally you may want to extract data from RPMs without actually installing the pack-
age. For instance, this can be a good way to retrieve the original source code from a source
RPM for compiling the software without the help of the RPM tools or to retrieve fonts or
other non-program data for use on a non-RPM system.

RPM files are actually modified cpio archives. Thus, converting the files into cpio files is rel-
atively straightforward, whereupon you can use cpio to retrieve the individual files. To do this
job, you need to use the rpm2cpio program, which ships with most Linux distributions. (You
can use this tool even on distributions that don’t use RPM.) This program takes a single argu-
ment—the name of the RPM file—and outputs the cpio archive on standard output. Thus, if
you want to create a cpio archive file, you must redirect the output:

$ rpm2cpio samba-3.0.10-1.fc3.src.rpm > samba-3.0.10-1.fc3.cpio

The redirection operator, >, is described in more detail in Chapter 1, “Linux
Command-Line Tools,” as is the pipe operator (|), which is mentioned shortly.

You can then extract the data using cpio, which takes the -i option to extract an archive
and --make-directories to create directories:

$ cpio -i --make-directories < samba-3.0.10-1.fc3.cpio

9. Type zsh. This launches a Z shell, which functions much like the more common bash and
tcsh shells. You’re likely to see your command prompt change slightly, but you can issue
most of the same commands you can use with bash or tcsh.

10. Type rpm -V zsh. The system should not produce any output, just display a new command
prompt. The verify (-V or --verify) command checks the package files against data stored
in the database. Immediately after installation, most packages should show no deviations.
(A handful of packages will be modified during installation, but zsh isn’t one of them.)

11. Type rpm -e zsh. The system shouldn’t produce any output—just a new command prompt.
This command removes the package from the system, though. Note that you’re removing
the zsh package while running the zsh program. Linux continues to run the zsh program
you’re using, but you’ll be unable to launch new instances of the program. Some programs
may misbehave if you do this because files will be missing after you remove the package.

12. Type exit to exit from zsh and return to your normal shell.

13. Type rpm -q zsh. The system should respond with a package zsh is not installed error
because you’ve just uninstalled it.

E X E R C I S E 2 . 1 (c o n t i n u e d)

4425.book Page 67 Thursday, July 7, 2005 5:28 PM

68 Chapter 2 � Managing Software

Alternatively, you can use a pipe to link these two commands together without creating an
intermediary file:

$ rpm2cpio samba-3.0.10-1.fc3.src.rpm | cpio -i --make-directories

 In either case, the result is an extraction of the files in the archive in the current directory.
In the case of binary packages, this is likely to be a series of subdirectories that mimic the layout
of the Linux root directory—that is, usr, lib, etc, and so on, although precisely which direc-
tories are included depends on the package. For a source package, the result of the extraction
process is likely to be a source code tarball, a .spec file (which holds information RPM uses to
build the package), and perhaps some patch files.

When extracting data from an RPM file using rpm2cpio and cpio, create a hold-
ing subdirectory and then extract the data into this subdirectory. This practice
will ensure that you can find all the files. If you extract files in your home direc-
tory, some of them might get lost. If you extract files as root in the root (/)
directory, they could conceivably overwrite files that you want to keep.

Another option for extracting data from RPMs is to use alien, which is described later, in
“Converting between Package Formats.” This program can convert an RPM into a Debian
package or a tarball.

Using Higher-Level RPM Utilities

To ease system administration, many distributions now provide higher-level RPM tools. The Yum
program (http://linux.duke.edu/projects/yum/) is popular in this respect and is the basis for
GUI tools such as the Red Hat and Fedora Update Agent. Another option is to use the Advanced
Packaging Tool (APT) from Debian; a port for RPM versions is known as apt4rpm and is available
from http://apt4rpm.sourceforge.net.

The upcoming section, “Using apt-get,” describes using APT, and that description is applicable
to apt4rpm, although you’ll need to install APT using more conventional means and locate an
appropriate repository site. (The apt4rpm home page can help with those tasks.)

One advantage of higher-level utilities is that they permit easy installation of new software
without juggling your CD-ROMs; just type a command, such as apt-get install someprog, and
the someprog package will be installed on your system (if it exists). Another advantage is that
these tools help automate system updates. For instance, typing apt-get update; apt-get
dist-upgrade will upgrade all your packages to the latest versions. Such mass upgrades are
not without their risks (a buggy program could cause problems), but on the whole, easy system
updates are a boon for system administration.

4425.book Page 68 Thursday, July 7, 2005 5:28 PM

Using RPM 69

RPM Configuration Files

Ordinarily, you needn’t explicitly configure RPM; distributions that use RPM configure it in
reasonable ways by default. Sometimes, though, you might want to tweak a few details, partic-
ularly if you routinely build source RPM packages and want to optimize the output for your sys-
tem. To do so, you typically edit an RPM configuration file.

The main RPM configuration file is /usr/lib/rpm/rpmrc. This file sets a variety of options,
mostly related to the CPU optimizations used when compiling source packages. This file, though,
should not be edited; instead, you should create and edit /etc/rpmrc (to make global changes)
or ~/.rpmrc (to make changes on a per-user basis). The main reason to create such a file is to
implement architecture optimizations—for instance, to optimize your code for your CPU model
by passing appropriate compiler options when you build a source RPM into a binary RPM. This
is done with the optflags line:

optflags: athlon -O2 -g -march=i686

This line tells RPM to pass the -O2 -g -march-i686 options to the compiler whenever
building for the athlon platform. Although RPM can determine your system’s architecture, the
optflags line by itself isn’t likely to be enough to set the correct flags. Most default rpmrc files
include a series of buildarchtranslate lines that cause rpmbuild (or rpm for older versions
of RPM) to use one set of optimizations for a whole family of CPUs. For x86 systems, these lines
typically look like this:

buildarchtranslate: athlon: i386

buildarchtranslate: i686: i386

buildarchtranslate: i586: i386

buildarchtranslate: i486: i386

buildarchtranslate: i386: i386

These lines tell RPM to translate the athlon, i686, i586, i486, and i386 CPU codes to use
the i386 optimizations. This effectively defeats the purpose of any CPU-specific optimizations
you create on the optflags line for your architecture, but it guarantees that the RPMs you
build will be maximally portable. To change matters, you must alter the line for your CPU type,
as returned when you type uname -p. For instance, on an Athlon-based system, you might enter
the following line:

buildarchtranslate: athlon: athlon

Thereafter, when you rebuild a source RPM, the system uses the appropriate Athlon optimiza-
tions. The result can be a slight performance boost on your own system, but reduced portability—
depending on the precise optimizations you choose, such packages might not run on non-Athlon
CPUs. (Indeed, you may not even be able to install them on non-Athlon CPUs!)

4425.book Page 69 Thursday, July 7, 2005 5:28 PM

70 Chapter 2 � Managing Software

RPM Compared to Other Package Formats

RPM is a very flexible package management system. In most respects, it’s comparable to
Debian’s package manager, and it offers many more features than tarballs do. When com-
pared to Debian packages, the greatest strength of RPMs is probably their ubiquity. Many
software packages are available in RPM form from their developers and/or from distribu-
tion maintainers.

Distribution packagers frequently modify the original programs in order to make
them integrate more smoothly into the distribution as a whole. For instance, dis-
tribution-specific startup scripts may be added, program binaries may be relo-
cated from default /usr/local subdirectories, and program source code may be
patched to fix bugs or add features. Although these changes can be useful, you
may not want them, particularly if you’re using a program on a distribution other
than the one for which the package was intended.

The fact that there are so many RPM-based distributions can be a boon. You may be able to
use an RPM intended for one distribution on another, although as noted earlier, this isn’t certain.
In fact, this advantage can turn into a drawback if you try to mix and match too much—you can
wind up with a mishmash of conflicting packages that can be very difficult to disentangle.

The RPMFind website, http://rpmfind.net, is an extremely useful resource
when you want to find an RPM of a specific program. Another site with similar
characteristics is Fresh RPMs, http://www.freshrpms.net. These sites include
links to RPMs built by programs’ authors, specific distributions’ RPMs, and
those built by third parties.

Compared to tarballs, RPMs offer much more sophisticated package management tools.
This can be important when you’re upgrading or removing packages and also for verifying the
integrity of installed packages. On the other hand, although RPMs are very common in the
Linux world, they’re less common on other platforms. Therefore, you’re more likely to find tar-
balls of generic Unix source code, and tarballs are preferred if you’ve written a program that you
intend to distribute for other platforms.

Using Debian Packages
In their overall features, Debian packages are similar to RPMs, but the details of operation for
each differ, and Debian packages are used on different distributions than are RPMs. Because
each system uses its own database format, RPMs and Debian packages aren’t interchangeable
without converting formats. Using Debian packages requires knowing how to use the dpkg,
dselect, and apt-get commands. A few other commands can also be helpful.

4425.book Page 70 Thursday, July 7, 2005 5:28 PM

Using Debian Packages 71

Debian Distributions and Conventions

As the name implies, Debian packages originated with the Debian distribution. Since that
time, the format has been adopted by several other distributions, including Libranet, Ubuntu,
and Xandros. Such distributions are derived from the original Debian, which means that
packages from the original Debian are likely to work well on other Debian-based systems.
Although Debian doesn’t emphasize flashy GUI installation or configuration tools, its deriv-
atives—particularly Xandros—add GUI configuration tools to the base Debian system, which
makes these distributions more appealing to Linux novices. The original Debian favors a sys-
tem that’s as bug free as possible, and it tries to adhere strictly to open-source software prin-
ciples rather than invest effort in GUI configuration tools. The original Debian is unusual in
that it’s maintained by volunteers who are motivated by the desire to build a product they
want to use rather than by a company that is motivated by profits.

Like RPM, the Debian package format is neutral with respect to both OS and CPU type.
Debian packages are extremely rare outside Linux, although efforts are under way to create
a Debian distribution that uses the GNU Hurd kernel rather than the Linux kernel. Such a dis-
tribution would not be Linux but would closely resemble Debian GNU/Linux in operation
and configuration.

The original Debian distribution has been ported to many different CPUs, including x86,
IA-64, PowerPC, Alpha, 680x0, MIPS, and SPARC. The original architecture was x86, and
subsequent ports exist at varying levels of maturity. Derivative distributions generally work
only on x86 systems, but this could change in the future.

Debian packages follow a naming convention similar to those for RPMs, but Debian
packages sometimes omit codes in the filename to specify a package’s architecture, partic-
ularly on x86 packages. When these codes are present, they may differ from RPM conven-
tions. For instance, a filename ending in i386.deb indicates an x86 binary, powerpc.deb
is a PowerPC binary, and all.deb indicates a CPU-independent package, such as docu-
mentation or scripts. As with RPM files, this file-naming convention is only that—a con-
vention. You can rename a file as you see fit, to either include or omit the processor code.
There is no code for Debian source packages because, as described in the upcoming section,
“Debian Packages Compared to Other Package Formats,” Debian source packages actually
consist of several separate files.

The dpkg Command Set

Debian packages are incompatible with RPM packages, but the basic principles of operation are
the same across both package types. Like RPMs, Debian packages include dependency infor-
mation, and the Debian package utilities maintain a database of installed packages, files, and so
on. You use the dpkg command to install a Debian package. This command’s syntax is similar
to that of rpm:

dpkg [options][action] [package-files|package-name]

The action is the action to be taken; common actions are summarized in Table 2.3. The
options (Table 2.4) modify the behavior of the action, much like the options to rpm.

4425.book Page 71 Thursday, July 7, 2005 5:28 PM

72 Chapter 2 � Managing Software

T A B L E 2 . 3 dpkg Primary Actions

Action Description

-i or --install Installs a package

--configure Reconfigures an installed package: runs the post-installation script
to set site-specific options

-r or --remove Removes a package, but leaves configuration files intact

-P or --purge Removes a package, including configuration files

-p or --print-avail Displays information about an installed package

-I or --info Displays information about an uninstalled package file

-l pattern or --list
pattern

Lists all installed packages whose names match pattern

-L or --listfiles Lists the installed files associated with a package

-S pattern or --search
pattern

Locates the package(s) that own the file(s) specified by pattern

-C or --audit Searches for partially installed packages and suggests what to do
with them

T A B L E 2 . 4 Options for Fine-Tuning dpkg Actions

Option Used with Actions Description

--root=dir All Modifies the Linux system using a root directory
located at dir. Can be used to maintain one Linux
installation discrete from another one, say during
OS installation or emergency maintenance.

-B or --auto-
deconfigure

-r Disables packages that rely on one that is being
removed.

--force-things Assorted Forces specific actions to be taken. Consult the dpkg
man page for details of things this option does.

--ignore-
depends=package

-i, -r Ignores dependency information for the specified
package.

4425.book Page 72 Thursday, July 7, 2005 5:28 PM

Using Debian Packages 73

As with rpm, dpkg expects a package name in some cases and a package filename in others.
Specifically, --install (-i) and --info (-I) both require the package filename, but the other
commands take the shorter package name.

As an example, consider the following command, which installs the samba-common_
3.0.10-1_powerpc.deb package:

dpkg -i samba-common_3.0.10-1_powerpc.deb

If you’re upgrading a package, you may need to remove an old package before installing the
new one. To do this, use the -r option to dpkg, as in the following:

dpkg -r samba

To find information on an installed package, use the -p parameter to dpkg, as shown in
Listing 2.2. This listing omits an extended English description of what the package does.

Listing 2.2: dpkg Package Information Query Output

$ dpkg -p samba-common

Package: samba-common

Priority: optional

Section: net

Installed-Size: 4824

Maintainer: Eloy A. Paris <peloy@debian.org>

Architecture: powerpc

Source: samba

Version: 3.0.10-1

Replaces: samba (<< 2.999+3.0.alpha21-4)

--no-act -i, -r Checks for dependencies, conflicts, and other
problems without actually installing or removing
the package.

--recursive -i Installs all packages that match the package name
wildcard in the specified directory and all sub-
directories.

-G -i Doesn’t install the package if a newer version of the
same package is already installed.

-E or --skip-same-
version

-i Doesn’t install the package if the same version of the
package is already installed.

T A B L E 2 . 4 Options for Fine-Tuning dpkg Actions (continued)

Option Used with Actions Description

4425.book Page 73 Thursday, July 7, 2005 5:28 PM

74 Chapter 2 � Managing Software

Depends: debconf, libpam-modules, libc6 (>= 2.3.2.ds1-4), libcomerr2➥

 (>= 1.33-3), libkrb53 (>= 1.3.2), libldap2 (>= 2.1.17-1)

Filename: pool/updates/main/s/samba/samba-common_2.2.3a-12_powerpc.deb

Size: 2103052

MD5sum: e4b852940d6bdce313cb3e7b668e2c21

Debian-based systems often use a pair of somewhat higher-level utilities, apt-get and
dselect, to handle package installation and removal. These utilities are described in the next
couple of sections. Their interfaces can be very useful when you want to install several packages,
but dpkg is often more convenient when manipulating just one or two packages. Because dpkg
can take package filenames as input, it’s also the preferred method of installing a package that
you download from an unusual source or create yourself.

Using apt-get

Another option for Debian package management is the Advanced Packaging Tool (APT) utilities,
and particularly apt-get. This tool enables you to perform easy upgrades of packages, espe-
cially if you have a fast Internet connection. Debian-based systems include a file, /etc/apt/
sources.list, that specifies locations from which important packages can be obtained. If you
installed the OS from a CD-ROM drive, this file will initially list directories on the installation
CD-ROM in which packages can be found. There are also likely to be a few lines near the top,
commented out with hash marks (#), indicating directories on an FTP or website from which
you can obtain updated packages. (These lines may be uncommented if you did a network
install initially.)

Although APT is most strongly associated with Debian systems, a port to RPM-
based systems is also available. Check http://apt4rpm.sourceforge.net for
information on this port.

Don’t add a site to /etc/apt/sources.list unless you’re sure it can be trusted.
The apt-get utility does automatic and semiautomatic upgrades, so if you add
a network source to sources.list and that source contains unreliable pro-
grams or programs with security holes, your system will become vulnerable
after upgrading via apt-get.

The apt-get utility works by obtaining information on available packages from the sources
listed in /etc/apt/sources.list and then using that information to upgrade or install pack-
ages. The syntax is similar to that of dpkg:

apt-get [options][command] [package-names]

4425.book Page 74 Thursday, July 7, 2005 5:28 PM

Using Debian Packages 75

Table 2.5 lists the apt-get commands, and Table 2.6 lists the most commonly used options.
In most cases, you won’t actually use any options with apt-get, just a single command and pos-
sibly one or more package names. One particularly common use of this utility is to keep your
system up-to-date with any new packages. The following two commands will accomplish this
goal if /etc/apt/sources.list includes pointers to up-to-date file archive sites:

apt-get update

apt-get dist-upgrade

T A B L E 2 . 5 apt-get Commands

Command Description

update Obtains updated information on packages available from the installa-
tion sources listed in /etc/apt/sources.list.

upgrade Upgrades all installed packages to the newest versions available,
based on locally stored information on available packages.

dselect-upgrade Performs any changes in package status (installation, removal, etc.)
left undone after running dselect.

dist-upgrade Similar to upgrade, but performs “smart” conflict resolution to avoid
upgrading a package if that would break a dependency.

install Installs a package by package name (not by package filename),
obtaining the package from the source that contains the most up-to-
date version.

remove Removes a specified package by package name.

source Retrieves the newest available source package file by package file-
name using information on available packages and installation
archives listed in /etc/apt/sources.list.

check Checks the package database for consistency and broken package
installations.

clean Performs housekeeping to help clear out information on retrieved
files from the Debian package database. If you don’t use dselect for
package management, run this from time to time in order to save
disk space.

autoclean Similar to clean, but removes information only on packages that can
no longer be downloaded.

4425.book Page 75 Thursday, July 7, 2005 5:28 PM

76 Chapter 2 � Managing Software

If you use apt-get to automatically upgrade all packages on your system, you
are effectively giving control of your system to the distribution maintainer.
Although Debian or other distribution maintainers are unlikely to try to break
into your computer in this way, an automatic update with minimal supervision
on your part could easily break something on your system, particularly if
you’ve obtained packages from unusual sources in the past.

T A B L E 2 . 6 Most Useful apt-get Options

Option Used with Commands Description

-d or --download-only upgrade, dselect-upgrade,
install, source

Downloads package files but does
not install them.

-f or --fix-broken install, remove Attempts to fix a system on which
dependencies are unsatisfied.

-m, --ignore-missing,
or --fix-missing

upgrade, dselect-upgrade,
install, remove, source

Ignores all package files that can’t
be retrieved (because of network
errors, missing files, or the like).

-q or --quiet All Omits some progress indicator
information. May be doubled (for
instance, -qq) to produce still less
progress information.

-s, --simulate, --just-
print, --dry-run, --recon,
or --no-act

All Performs a simulation of the
action without actually modifying,
installing, or removing files.

-y, --yes, or --assume-yes All Produces a “yes” response to
any yes/no prompt in installation
scripts.

-b, --compile, or --build source Compiles a source package after
retrieving it.

--no-upgrade install Causes apt-get to not upgrade a
package if an older version is
already installed.

4425.book Page 76 Thursday, July 7, 2005 5:28 PM

Using Debian Packages 77

E X E R C I S E 2 . 2

Managing Debian Packages

In this exercise, you’ll familiarize yourself with the Debian package system. To manage pack-
ages, follow these steps:

1. Log into the Linux system as a normal user.

2. Acquire a package to use for testing purposes. You can try using a package from your dis-
tribution that you know you haven’t installed, but if you try a random package, you may
find it’s already installed or you may find it has unmet dependencies. This lab uses as an
example the installation of zsh_4.0.4-33_powerpc.deb, a shell that’s not installed by
default on most systems, from the first CD-ROM of a Debian 3.0 for a PowerPC system. You
must adjust the commands as necessary if you use another package in your tests. If you’re
installing on an x86 system, the package filename will differ as well.

3. Launch an xterm from the desktop environment’s menu system if you used a GUI login.

4. Acquire root privileges. You can do this by typing su in an xterm, by selecting Session �
New Root Console from a Konsole window, or by using sudo (if it’s configured) to run the
commands in the following steps.

5. Type dpkg -L zsh to verify that the package is not currently installed. This command
responds with a list of files associated with the package if it’s installed or with an error that
reads Package `zsh' is not installed if it’s not.

6. Type dpkg -I zsh_4.0.4-33_powerpc.deb. (You’ll need to add a complete path to the pack-
age file if it’s not in your current directory.) The system should respond by displaying infor-
mation about the package, such as the version number, dependencies, the name of the
package maintainer, and a package description.

7. Type dpkg -i zsh_4.0.4-33_powerpc.deb. The system should install the package and dis-
play a series of lines summarizing its actions as it does so.

8. Type dpkg -p zsh. The system should respond with information on the package similar to
that displayed in step 6.

9. Type zsh. This launches a Z shell, which functions much like the more common bash and
tcsh shells. You’re likely to see your command prompt change slightly, but you can issue
most of the same commands you can use with bash or tcsh.

4425.book Page 77 Thursday, July 7, 2005 5:28 PM

78 Chapter 2 � Managing Software

Using dselect

The dselect program is a high-level package browser. Using it, you can select packages to install
on your system from the APT archives defined in /etc/apt/sources.list, review the packages
that are already installed on your system, uninstall packages, and upgrade packages. Overall,
dselect is a very powerful tool, but it can also be an intimidating one to the uninitiated because
it presents a lot of options that aren’t obvious, using a text-mode interactive user interface.

Although dselect supports a few command-line options, they’re mostly obscure or minor
(such as options to set the color scheme). Consult dselect’s man page for details. To use the
program, type dselect. The result is the dselect main menu, as shown running in a KDE Kon-
sole window in Figure 2.1.

The main dselect menu presents six options that enable you to perform various actions:

Set the access method The first option, [A]ccess, lets you tell dselect what sources to use
for software. The best option is often to use APT, but if you don’t want to configure /etc/
sources.list, you can point dselect directly at your installation CD-ROM, a Network File
System (NFS) server, or some other source.

Update software lists You can tell dselect to update its list of available packages with its
[U]pdate option. Doing so before you install new software from a network source is generally
advisable so that you install the latest software available.

10. Type dpkg -P zsh. This command removes the package from the system, including con-
figuration files. It will produce a series of warnings about nonempty directories that it
couldn’t remove. Note that you’re removing the zsh package while running the zsh pro-
gram. Linux continues to run the zsh program you’re using, but you’ll be unable to launch
new instances of the program. Some programs may misbehave because files will be miss-
ing after you remove the package.

11. Type exit to exit from zsh and return to your normal shell.

12. Type dpkg -L zsh. The system should respond with a Package `zsh' is not installed
error because you’ve just uninstalled it.

13. Type apt-get install zsh to install zsh using the Advanced Package Tools (APT) system.
Depending on your configuration, the system may download the package from an Internet
site or ask you to insert a CD-ROM. If it asks for a CD-ROM, insert it and press the Enter key.
The system should install the package.

14. Type dpkg -p zsh. The system should respond with information on the package similar to
that displayed in step 6 or 8.

15. Type dpkg -P zsh. This command removes the package from the system, as described in
step 10.

E X E R C I S E 2 . 2 (c o n t i n u e d)

4425.book Page 78 Thursday, July 7, 2005 5:28 PM

Using Debian Packages 79

Select software The [S]elect option is the one that’s most intimidating. When you pick this
option, dselect displays an instruction screen and then shows package lists. Select packages to
install or uninstall by pressing the + and - keys on your keyboard, respectively. You can search
for packages by pressing the slash (/) key followed by a search term. When you’re done, press
the Enter key to initiate the changes or press the X key to abort the operation.

Install software The [I]nstall option adds any software to your system that’s been marked
for installation but not yet installed.

Configure software Debian packages sometimes include scripts to configure software after
the package has been installed. Selecting the [C]onfig option runs these scripts. Some of these
scripts require interaction to enable you to pick sensible defaults for your system, so be prepared
to answer some questions.

Remove software If you opted to remove software, the [R]emove option will do so.

Exit The [Q]uit option exits from the program.

Overall, dselect is a useful tool, particularly if you need to locate software but don’t know
its exact name—the ability to browse and search the available packages can be a great boon.
Unfortunately, the huge package list can be intimidating, particularly if you’re not familiar with
the dselect package browser interface.

A somewhat friendlier dselect-like tool is Synaptic. This program has function-
ality that’s similar to dselect, but Synaptic is an X-based GUI tool with a point-
and-click interface. This design makes for easier package selection if you’re not
familiar with the dselect package browser.

F I G U R E 2 . 1 The dselect utility provides access to APT features using a menu system.

4425.book Page 79 Thursday, July 7, 2005 5:28 PM

80 Chapter 2 � Managing Software

Reconfiguring Packages

Debian packages often provide more extensive initial setup options than do their RPM coun-
terparts. Frequently, the install script included in the package asks a handful of questions, such
as asking for the name of an outgoing mail relay system for a mail server program. These ques-
tions help the system set up a standardized configuration that’s nonetheless been customized for
your system.

In the course of your system administration, you may alter the configuration files for a pack-
age. If you do this and find you’ve made a mess of things, you may want to revert to the initial
standard configuration. To do so, you can use the dpkg-reconfigure program, which runs the
initial configuration script for the package you specify:

dpkg-reconfigure samba

This command reconfigures the samba package, asking the package’s initial installation
questions and restarting the Samba daemons. Once this is done, the package should be in some-
thing closer to its initial state.

Debian Packages Compared to Other Package Formats

The overall functionality of Debian packages is similar to that of RPMs, although there are dif-
ferences. Debian source packages are not single files; they’re groups of files—the original source
tarball, a patch file that’s used to modify the source code (including a file that controls the build-
ing of a Debian package), and a .dsc file that contains a digital “signature” to help verify the
authenticity of the collection. The Debian package tools can combine these and compile the
package to create a Debian binary package. This structure makes Debian source packages
slightly less convenient to transport because you must move at least two files (the tarball and
patch file; the .dsc file is optional) rather than just one. Debian source packages also support
just one patch file, whereas RPM source packages may contain multiple patch files. Although
you can certainly combine multiple patch files into one, doing so makes it less clear where a
patch comes from, thus making it harder to back out of any given change.

These source package differences are mostly of interest to software developers, however. As
a system administrator or end user, you need not normally be concerned with them unless you
must recompile a package from a source form—and even then, the differences between the for-
mats need not be overwhelming. The exact commands and features used by each system differ,
but they accomplish similar overall goals.

Because all distributions that use Debian packages are derived from Debian, they tend to be
more compatible with one another (in terms of their packages) than RPM-based distributions are.
In particular, Debian has defined details of its system startup scripts and many other features to
help Debian packages install and run on any Debian-based system. This helps Debian-based sys-
tems avoid the sorts of incompatibilities in startup scripts that can cause problems using one dis-
tribution’s RPMs on another distribution. Of course, some future distribution could violate
Debian’s guidelines for these matters, so this advantage isn’t guaranteed to hold over time.

As a practical matter, it can be harder to locate Debian packages than RPM packages for
some more exotic programs. Nonetheless, Debian maintains a good collection at http://

4425.book Page 80 Thursday, July 7, 2005 5:28 PM

Using Debian Packages 81

www.debian.org/distrib/packages, and some program authors make Debian packages
available as well. If you can find an RPM but not a Debian package, you may be able to convert
the RPM to Debian format using a program called alien, as described shortly in “Converting
between Package Formats.” If all else fails, you can use a tarball, but you’ll lose the advantages
of the Debian package database.

Configuring Debian Package Tools

With the exception of the APT sources list mentioned earlier, Debian package tools don’t usu-
ally require configuration. Debian (and its derivative distributions) install reasonable defaults.
On rare occasion, though, you might want to adjust some of these defaults. Doing so requires
that you know where to look for them.

The main configuration file for dpkg is /etc/dpkg/dpkg.cfg or ~/.dpkg.cfg. This file
contains dpkg options, as summarized in Table 2.4, but without the leading dashes. For
instance, to have dpkg always perform a test run rather than actually install a package,
you’d create a dpkg.cfg file that contains one line:

no-act

For APT, the main configuration file you’re likely to modify is /etc/apt/sources.list,
which is described earlier, in “Using apt-get.” Beyond this file is /etc/apt/apt.conf, which
controls APT and dselect options. As with dpkg.cfg, chances are you won’t need to modify
apt.conf. If you do need to make changes, the format is more complex and is modeled after
those of the Internet Software Consortium’s (ISC’s) Dynamic Host Configuration Protocol
(DHCP) and Berkeley Internet Name Domain (BIND) servers’ configuration files. Specifically,
options are grouped together by open and close curly braces ({}):

APT

{

 Get

 {

 Download-Only "true";

 };

};

These lines are equivalent to permanently setting the --download-only option described in
Table 2.6. You can, of course, set many more options. For details, consult apt.conf’s man page.
You may also want to review the sample configuration file, /usr/share/doc/apt/examples/
apt.conf. (The working /etc/apt/apt.conf file is typically extremely simple and therefore
not very helpful as an example.)

You should be aware that Debian’s package tools rely on various files in the /var/lib/dpkg
directory tree. These files maintain lists of available packages, lists of installed packages, and so
on. In other words, this directory tree is effectively the Debian installed file database. As such,
you should be sure to back up this directory when you perform system backups and be careful
about modifying its contents.

4425.book Page 81 Thursday, July 7, 2005 5:28 PM

82 Chapter 2 � Managing Software

Converting between Package Formats
Sometimes you’re presented with a package file in one format but you want to use another format.
This is particularly common when you use a Debian-based distribution and can only find tarballs or
RPM files of a package. When this happens, you can keep looking for a package file in the appro-
priate format, install the tools for the foreign format, create a package from a source tarball using
the standard RPM or Debian tools, or convert between package formats with a utility like alien.

This section focuses on this last option. The alien program comes with Debian and a few other
distributions but may not be installed by default. If it’s not installed on your system, install it by typ-
ing apt-get install alien on a system that uses APT, or use the RPM Find or Debian package
websites to locate it. This program can convert between RPM packages, Debian packages, Stampede
packages (used by Stampede Linux), and tarballs. There are some caveats, however. For one thing,
alien requires that you have appropriate package manager software installed—for instance, both
RPM and Debian to convert between these formats. The alien utility doesn’t always convert all
dependency information completely correctly. When converting from a tarball, alien copies the
files directly as they had been in the tarball, so alien works only if the original tarball has files that
should be installed off the root (/) directory of the system.

Although alien requires both RPM and Debian package systems to be installed
to convert between these formats, alien doesn’t use the database features of
these packages unless you use the --install option. The presence of a foreign
package manager isn’t a problem as long as you don’t use it to actually install
software that might duplicate or conflict with software installed with your pri-
mary package manager.

The basic syntax of alien is as follows:

alien [options] file[...]

The most important options are --to-deb, --to-rpm, --to-slp, and --to-tgz, which
convert to Debian, RPM, Stampede, or tarball format, respectively. (If you omit the destination
format, alien assumes you want a Debian package.) The --install option installs the con-
verted package and removes the converted file. Consult the alien man page for additional
options.

For instance, suppose you have a Debian package called someprogram-1.2.3-4_i386.deb
but you want to create an RPM from this. You could issue the following command to create an
RPM called someprogram-1.2.3-5.i386.rpm:

alien --to-rpm someprogram-1.2.3-4_i386.deb

If you use a Debian-based system and want to install a tarball but keep a record of the files
it contains in your Debian package database, you can do so with the following command:

alien --install binary-tarball.tar.gz

4425.book Page 82 Thursday, July 7, 2005 5:28 PM

Package Dependencies and Conflicts 83

It’s important to remember that converting a tarball converts the files in the directory struc-
ture of the original tarball using the system’s root directory as the base. Therefore, you may need
to unpack the tarball, juggle files around, and repack it to get the desired results prior to install-
ing the tarball with alien. For instance, suppose you’ve got a binary tarball that creates a direc-
tory called program-files, with bin, man, and lib directories under this. The intent might
have been to unpack the tarball in /usr or /usr/local and create links for critical files. To con-
vert this tarball to an RPM, you might issue the following commands:

tar xvfz program.tar.gz

mv program-files usr

tar cvfz program.tgz usr

rm -r usr

alien --to-rpm program.tgz

By renaming the program-files directory to usr and creating a new tarball, you’ve created
a tarball that, when converted to RPM format, will have files in the locations you want—/usr/
bin, /usr/man, and /usr/lib. You might need to perform more extensive modifications,
depending on the contents of the original tarball.

Package Dependencies and Conflicts
Although package installation often proceeds smoothly, there are times when it doesn’t. The
usual sources of problems relate to unsatisfied dependencies or conflicts between packages.
The RPM and Debian package management systems are intended to help you locate and
resolve such problems, but on occasion (particularly when mixing packages from different
vendors), they can actually cause problems. In either event, it pays to recognize these errors
and know how to resolve them.

Real and Imagined Package Dependency Problems

Package dependencies and conflicts can arise for a variety of reasons, including the following:

Missing libraries or support programs One of the most common dependency problems is
caused by a missing support package. For instance, all K Desktop Environment (KDE) pro-
grams rely on Qt, a widget set that provides assorted GUI tools. If Qt isn’t installed, you won’t
be able to install any KDE packages using RPMs or Debian packages. Libraries—support code
that can be used by many different programs as if it were part of the program itself—are par-
ticularly common sources of problems in this respect.

Incompatible libraries or support programs Even if a library or support program is installed on
your system, it may be the wrong version. For instance, if a program requires Qt 3.2, the presence
of Qt 2.2 won’t do much good. Fortunately, Linux library naming conventions enable you to
install multiple versions of a library in case you have programs with competing requirements.

4425.book Page 83 Thursday, July 7, 2005 5:28 PM

84 Chapter 2 � Managing Software

Duplicate files or features Conflicts arise when one package includes files that are already
installed and that belong to another package. Occasionally, broad features can conflict as well,
as in two web server packages. Feature conflicts are usually accompanied by name conflicts.
Conflicts are most common when mixing packages intended for different distributions because
distributions may split files up across packages in different ways.

Mismatched names RPM and Debian package management systems give names to their pack-
ages. These names don’t always match across distributions. For this reason, if one package checks
for another package by name, the first package may not install on another distribution, even if the
appropriate package is installed, because that target package has a different name.

Some of these problems are very real and serious. Missing libraries, for instance, must be
installed. (Sometimes, though, a missing library isn’t quite as missing as it seems, as described
in the upcoming section “Forcing the Installation.”) Others, like mismatched package names,
are artifacts of the packaging system. Unfortunately, it’s not always easy to tell into which cat-
egory a conflict fits. When using a package management system, you may be able to use the
error message returned by the package system, along with your own experience with and
knowledge of specific packages, to make a judgment. For instance, if RPM reports that you’re
missing a slew of libraries with which you’re unfamiliar, you’ll probably have to track down at
least one package—unless you know you’ve installed the libraries in some other way, in which
case you may want to force the installation.

Workarounds to Package Dependency Problems

When you encounter an unmet package dependency or conflict, what can you do about it?
There are several approaches to these problems. Some of these approaches work well in some
situations but not others, so you should review the possibilities carefully. The options include
forcing the installation, modifying your system to meet the dependency, rebuilding the problem
package from source code, and finding another version of the problem package.

Forcing the Installation

One approach is to ignore the issue. Although this sounds risky, in some cases involving failed
RPM or Debian dependencies, it’s appropriate. For instance, if the dependency is on a package
that you installed by compiling the source code yourself, you can safely ignore the dependency.
When using rpm, you can tell the program to ignore failed dependencies by using the --nodeps
parameter thus:

rpm -i apackage.rpm --nodeps

You can force installation over some other errors, such as conflicts with existing packages,
by using the --force parameter:

rpm -i apackage.rpm --force

4425.book Page 84 Thursday, July 7, 2005 5:28 PM

Package Dependencies and Conflicts 85

Do not use --nodeps or --force as a matter of course. Ignoring the dependency
checks can lead you into trouble, so you should use these options only when you
need to do so. In the case of conflicts, the error messages you get when you first
try to install without --force will tell you which packages’ files you’ll be replac-
ing, so be sure you back them up or are prepared to reinstall the package in case
of trouble.

If you’re using dpkg, you can use the --ignore-depend=package, --force-depends, and
--force-conflicts parameters to overcome dependency and conflict problems in Debian-
based systems. Because there’s less deviation in package names and requirements among
Debian-based systems, though, these options are less often needed on such systems.

Upgrading or Replacing the Depended-On Package

Officially, the proper way to overcome a package dependency problem is to install, upgrade, or
replace the depended-upon package. If a program requires, say, Qt 3.3 or greater, you should
upgrade an older version (such as 3.2) to 3.3. To perform such an upgrade, you’ll need to track
down and install the appropriate package. This usually isn’t too difficult if the new package you
want comes from a Linux distribution; the appropriate depended-on package should come with
the same distribution.

One problem with this approach is that packages intended for different distributions some-
times have differing requirements. If you run Distribution A and install a package that was built
for Distribution B, the package will express dependencies in terms of Distribution B’s files and
versions. The appropriate versions may not be available in a form intended for Distribution A,
and by installing Distribution B’s versions, you can sometimes cause conflicts with other Dis-
tribution A packages. Even if you install the upgraded package and it works, you could run into
problems in the future when it comes time to install some other program or upgrade the distri-
bution as a whole—the upgrade installer might not recognize Distribution B’s package or might
not be able to upgrade to its own newer version.

Rebuilding the Problem Package

Some dependencies result from the libraries and other support utilities installed on the computer
that compiled the package, not from requirements in the underlying source code. If the software
is recompiled on a system that has different packages, the dependencies will change. Therefore,
rebuilding a package from source code can overcome at least some dependencies.

If you use an RPM-based system, the command to rebuild a package is straightforward: You
call rpm or rpmbuild with the name of the source package and use --rebuild, as follows:

rpmbuild --rebuild packagename-version.src.rpm

Of course, to do this you must have the source RPM for the package. This can usually be obtained
from the same location as the binary RPM. When you execute this command, rpm extracts the
source code and executes whatever commands are required to build a new package—or sometimes

4425.book Page 85 Thursday, July 7, 2005 5:28 PM

86 Chapter 2 � Managing Software

several new packages. (One source RPM can build multiple binary RPMs.) The compilation process
can take anywhere from a few seconds to several hours, depending on the size of the package and
the speed of your computer. The result should be one or more new binary RPMs in /usr/src/
distname/RPMS/arch, where distname is a distribution-specific name (such as redhat on Red Hat
or packages on SuSE) and arch is your CPU architecture (such as i386 or i586 for x86 or ppc for
PowerPC). You can move these RPMs to any convenient location and install them just as you would
any others.

Source packages are also available for Debian systems, but aside from sites
devoted to Debian and related distributions, Debian source packages are rare.
The sites that do have these packages provide them in forms that typically
install easily on appropriate Debian or related systems. For this reason, it’s less
likely that you’ll rebuild a Debian package from source.

You can also recompile a package from a source tarball. This process is described later, in
“Installing Programs from Source.” This section also describes some of the potential pitfalls
with compiling source code, whether from a tarball or using a source RPM.

Locating Another Version of the Problem Package

Frequently, the simplest way to fix a dependency problem or package conflict is to use a differ-
ent version of the package you want to install. This could be a newer or older official version
(4.2.3 rather than 4.4.7, say), or it might be the same official version but built for your distri-
bution rather than for another distribution. Sites like RPM Find (http://www.rpmfind.net)
or Debian’s package listing (http://www.debian.org/distrib/packages) can be very useful
in tracking down alternative versions of a package. Your own distribution’s website or FTP site
can also be a good place to locate packages as well.

If the package you’re trying to install requires newer libraries than you’ve got
and you don’t want to upgrade those libraries, an older version of the package
may work with your existing libraries.

The main problem with locating another version of the package is that sometimes you really
need the version that’s not installing correctly. It might have features that you need, or it might
fix important bugs. On occasion, other versions might not be available, or you might be unable
to locate another version of the package in your preferred package format.

Startup Script Problems

One particularly common problem when trying to install servers from one distribution in another
is in getting SysV startup scripts working. Although most major Linux distributions use SysV
startup scripts, these scripts are not always transportable across distributions. Different distribu-
tions frequently implement support routines in unique ways, so these scripts may be incompatible.

4425.book Page 86 Thursday, July 7, 2005 5:28 PM

Installing Programs from Source 87

The result is that the server you installed may not start up, even if the links to the startup scripts
are correct. Possible workarounds include modifying the startup script that came with the server,
building a new script based on another one from your distribution, and starting the server through
a local startup script like /etc/rc.d/rc.local or /etc/rc.d/boot.local. Chapter 6, “The
Boot Process and Scripts,” describes startup scripts in more detail.

Startup script problems affect only servers and other programs that are started
automatically when the computer boots; they don’t affect typical user applica-
tions or libraries.

Installing Programs from Source
Sometimes the package tools just don’t do quite what you need. Perhaps the software you
want is particularly obscure and is available only in source code. Perhaps you want to use
the original software without any patches applied by a distribution maintainer. Perhaps you
need to apply your own changes to the software. In any of these cases, the usual solution
is to obtain the program’s source code and compile it locally. To do so, you must know how
to obtain and unpack the software, how to configure it, how to compile it, how to install
it, and perhaps how to uninstall it.

Compiling software yourself has its advantages and disadvantages. It enables
you to optimize the software for your system and it enables you to change the
software as you see fit or ensure that you’re running the author’s original soft-
ware. On the downside, compiling software from source can take a long time
(particularly if something goes wrong), and it bypasses your distribution’s
package system, thus eliminating its advantages.

Obtaining and Extracting Software

The first step in compiling software from source is to obtain it and extract the source code
on your system. Most programs for Linux are available in source code form, but to obtain
it, you must locate it. Unfortunately, there is no single repository for all open-source soft-
ware, although several sites do host lots of it. The most important of these are SourceForge
(http://sourceforge.net) and freshmeat (http://freshmeat.net). You can find many
open-source projects hosted at these sites; try using their search systems to find ones that
are of interest to you. Of course, you may already know what software you want to com-
pile, in which case you may know its Web address or could at least search for it using a con-
ventional Web search engine.

4425.book Page 87 Thursday, July 7, 2005 5:28 PM

88 Chapter 2 � Managing Software

If you have an RPM source file, you can extract the pristine source code using
rpm2cpio, as described earlier in “Extracting Data from RPMs.” Most source
RPMs provide the original, unmodified source code along with one or more
patch files. You can discard the patch files (or apply them, if you like) and use
the source tarball from the source RPM.

In any event, most Linux source code is distributed in the form of a tarball—an archive file
created with tar and compressed with gzip or bzip2. Such files have filename extensions of
.tgz, .tar.gz, .tbz, or .tar.bz2. The first two of these denote tarballs that use gzip com-
pression, while the last two indicate bzip2 compression.

Traditionally, you extract source code into the /usr/src directory, which holds subdirectories
for different software packages. Ordinarily, only root may write to this directory, though, so you
might prefer to do this job in an ordinary user’s home directory. (An ordinary user can build most
system software, which is safer than doing so as root, although the software must normally be
installed by root.) To actually extract the software, you use the tar program, which is described
more fully in Chapter 8, “Administering the System.” Before extracting any files, I recommend you
examine the contents of the tarball:

$ tar tvzf ~/someprog-1.2.3.tar.gz | less

This command creates a listing of the files in the tarball and pipes that listing through the
less pager, enabling you to readily view the file’s contents. Typically, source packages con-
tain a single directory named after the program (such as someprog-1.2.3). For small pro-
grams, this directory may contain all the source code files, but larger programs typically
include a series of subdirectories. A few programs don’t create a main program subdirectory
(such as someprog-1.2.3) at all; they contain nothing but the main source files. With them,
you must be sure to create an appropriate subdirectory yourself and extract the files into
that subdirectory by running subsequent tar commands from that directory.

The basic tar command to extract a source code tarball looks like this:

$ tar xvzf ~/someprog-1.2.3.tar.gz

This example extracts the someprog-1.2.3.tar.gz archive located in your home directory.
You should change this filename to whatever is appropriate for your package, of course. The result
should be the creation of the files and directories you discovered when you reviewed the package
file’s contents.

Both of these examples assume the tarball was compressed with gzip. The z option in the
tvzf and xvzf option blocks is a code that tells tar to use gzip compression. If the tarball uses
bzip2 compression, though, you should substitute j for z:

$ tar xvjf ~/someprog-1.2.3.tar.bz2

The j option tells tar to use bzip2. An alternative form for either compression tool is to use
a pipe:

$ gunzip -c ~/someprog-1.2.3.tar.gz | tar xvf -

4425.book Page 88 Thursday, July 7, 2005 5:28 PM

Installing Programs from Source 89

For bzip2 archives, substitute bunzip2 for gunzip in this command. This more complex
command is a holdover from traditional Unix systems, which had simpler tar commands that
didn’t interface as well with gunzip and bunzip2. Some programs’ documentation suggests
using this method, but the simpler command utilizing the z or j option to tar works as well
under Linux.

However you do it, at the end of this process you should have a directory corresponding to
the software you want to compile. This directory should hold source code files (possibly in one
or more subdirectories), documentation, and so on.

Configuring Software

Unfortunately, standardization in procedures for configuring and compiling software from source
code is incomplete at best. Some very small programs skip the configuration procedure altogether.
Most programs, though, are complex enough that they include some sort of utility to help you
configure the program. These utilities detect your OS, CPU, and libraries in order to create a cus-
tomized Makefile for your system. This file controls the build process (which is handled by the
make utility), so customizing it automatically enables the package to create a binary with compiler
optimizations for your CPU, among other things.

You should always read the documentation before building a source package.
The documentation may describe options to modify the way the package is
built, provide information on bugs and packages upon which the program
depends, and so on.

The most common configuration processes require you to type one of two commands:

$./configure

$ make config

You need only type one of these commands, but which one you type depends on the package.
(Some use other commands, too.) Consult your documentation for details. Both systems work in a
similar way—the script uses various common system utilities to detect your CPU type, your OS, and
so on. Some configure scripts also provide options that enable you to activate or deactivate features
for your programs—that is, compile-time options. For instance, you might include or exclude sup-
port for advanced network authentication tools. In any event, the configure script creates a custom-
ized Makefile or other configuration files. In principle, you should then be able to move on to
building the source code.

Sometimes, though, you may need to hand-tweak the configuration even after the config-
ure script has done its work. To do so, you typically edit a file called Makefile or makefile.
This file contains build instructions for the make utility, which you use to actually compile the
software. A full description of the format of the Makefile is beyond the scope of this book,
but you should be able to make some simple changes with only a minimal understanding of
its contents.

4425.book Page 89 Thursday, July 7, 2005 5:28 PM

90 Chapter 2 � Managing Software

The most common types of simple Makefile changes relate to the locations of common
libraries, header files, utilities, and the ultimate installation directory. These options are set as
you’d set variables in many programming languages, with an equal sign:

prefix = /usr/local

This specific example sets the prefix variable to /usr/local. This option is a common
one; it tells make where to install the software when the time comes to do so. The /usr/
local directory tree is commonly used for locally compiled software, so this setting is quite
popular in default Makefile configurations. You could change it if you needed to do so,
though; for instance, you could set prefix to /opt if you wanted to install the software in
the /opt directory tree.

Other options set variables that are used to access system tools or utilities. For instance, the
software might need to know where the gzip program is located:

AMPLOT_COMPRESS = /bin/gzip

In most cases, the package’s configure script gets these details right; however, if the com-
pilation fails in such a way that it appears to be trying to run programs from the wrong loca-
tion, you could try looking for and changing such assignments. You might also want to make
a substitution of some type. For instance, a common assignment tells make what C compiler
to use:

CC = gcc

Subsequent calls to the C compiler use the CC variable rather than the gcc name. If you want
to use another C compiler, though, you can change this assignment to do the trick.

Frequently, large packages have multiple subdirectories, each with its own
Makefile. The master Makefile contains references to the Makefile in each
subdirectory. You can set global options in the main Makefile, or set options
for a single subcomponent in its own Makefile.

Compiling and Installing Software

Actually compiling software is usually a matter of typing just one command:

$ make

This command causes the make utility to read the Makefile and execute a series of com-
mands specified in the Makefile. Typically, the bulk of these commands are calls to gcc (or
another compiler), followed by operations to link the individual object files (with .o filename
extensions) created by gcc together into a single program file. Sometimes, though, other oper-
ations are equally important. For instance, make could build help files in several formats from
a single help source file.

4425.book Page 90 Thursday, July 7, 2005 5:28 PM

Installing Programs from Source 91

Whatever the details, the end result of typing make is one or more compiled programs,
along with various temporary files and perhaps ancillary files (such as help files). Some pack-
ages place the main program file in the root of the source tree, but others put executable files
in a subdirectory. Typically the program files should be installed before they’re used, although
many programs can be run from wherever they are. Particularly small and simple programs
frequently leave the installation up to you: You must copy the program file, as root, to a con-
venient location using cp or mv:

cp someprog /usr/local/bin

The traditional location for locally compiled programs is /usr/local, and their binaries
usually go in /usr/local/bin. Before you type such a command, though, you should read the
documentation to be sure that it’s necessary. Most programs include a special make target to
copy all the package’s files to appropriate locations:

make install

This command is likely to install binary files, man pages, support files, and so on. As with a
simple cp installation, you must run this command as root.

At this point, the software is installed and should be usable. For user programs, you can try
running the software to verify that it’s working. For servers, consult the documentation; you may
need to launch the server via a super server, as described in Chapter 9, “Basic Networking,” or
launch it via a startup script.

Once you’re convinced that everything’s working, you may want to clean up a bit. Type make
clean to have make go through and remove temporary files. This saves space but will slow
things down if you need to go back and recompile the package for any reason. To save even
more space, of course, you can delete the entire source code directory tree; however, if you do
so you won’t be able to uninstall the software as easily.

Tracking Down Compilation Problems

Unfortunately, compiling software from source code frequently doesn’t go as smoothly as just
described. Most problems are caused by missing libraries. Such problems are often caught by
the configure script—it will fail with a message to the effect that a particular library couldn’t be
found. Note that what’s really missing isn’t the library file that’s used by the executable but the
development library, which contains header files—files that enable source code to refer to
library routines. Frequently, these files are included in separate packages from the main library.
For instance, you might have the somelib package installed, but to compile software that uses
somelib, you must install the somelib-devel package. Try searching your distribution for devel-
opment libraries if you run into this problem.

4425.book Page 91 Thursday, July 7, 2005 5:28 PM

92 Chapter 2 � Managing Software

Uninstalling Locally Compiled Software

Sometimes you install software only to discover that it’s not what you wanted, or perhaps you
use it for a while and then no longer need it. When this happens, you may want to uninstall the
software. One of the great advantages of package management systems is that the package man-
ager tracks the files associated with each package, enabling easy uninstallation. When you build
packages from source code, you lose the integration with the package manager, so you must
find another way to uninstall the software.

Two exceptions exist to the lack of package manager integration when you
build from source code. One exception is if you use the package manager’s
own tools to build from source code, such as the rpmbuild program. When
you build a binary package and then install it using the package manager, you
can uninstall this software quite easily. The second exception is the Gentoo
Linux distribution, which uses a package manager that builds almost every-
thing locally.

The simplest packages make no provisions to help uninstall software. If you use such a pack-
age, you must manually track down and delete all the package’s files in order to uninstall them.
This task is tedious and can lead to error. Fortunately, most modern source packages include a
special uninstall target to make. You use it much as you use the install target, as root:

make uninstall

The result is that the make utility does all the dirty work for you, going through and deleting
all the files it originally installed.

Sometimes missing libraries don’t become apparent until you’re running make. The compile
will proceed normally until it runs into a reference to the missing library, at which point it
hangs, often with a message about a nonexistent file. Try doing a Web search on that filename;
perhaps that will give you a clue about what it is. Sometimes you’ll discover the file lurking on
your system. If this happens, you may be able to get the compile to succeed by editing the
Makefile to refer to the correct location of this file. You’ll need to figure out which variable to
change, though. Sometimes the names are similar enough that you won’t have problems, but
other times you’ll need intimate familiarity with the software to figure out what to change.

Another common compile-time problem is compiler incompatibilities. These are particularly
common if you’re using a very old or very new compiler, if you’re using an unusual compiler,
or if you’re compiling very old software. Compiler incompatibilities frequently manifest them-
selves as compiler errors—claims that the program’s syntax is incorrect, for instance. Library
version incompatibilities can cause similar problems, although these can often look more like
missing libraries. The usual solution for such problems is to upgrade or downgrade either the
software you’re compiling or the compiler or library that’s causing the problems.

4425.book Page 92 Thursday, July 7, 2005 5:28 PM

Managing Shared Libraries 93

Managing Shared Libraries
Most Linux software relies heavily on shared libraries. The preceding sections have described
some of the problems that can arise in managing the shared library packages—if a library isn’t
installed or is the wrong version, you may have problems installing a package. Library manage-
ment goes beyond merely configuring them, though. To understand this, you must first under-
stand a few library principles. You can then move on to setting the library path and using
commands that manage libraries.

Library Principles

The idea behind a library is to simplify programmers’ lives by providing commonly used
program fragments. For instance, one of the most important libraries is the C library (libc),
which provides many of the higher-level features associated with the C programming lan-
guage. Another common type of library is associated with GUIs. These libraries are often
called widget sets because they provide the on-screen widgets used by programs—buttons
and scroll bars and menu bars and so on. The GIMP Tool Kit (GTK+) and Qt are the most
popular Linux widget sets, and both ship largely as libraries. Libraries are chosen by pro-
grammers, not by users; you usually can’t easily substitute one library for another. (The
main exceptions are minor version upgrades.)

Linux uses the GNU C library (glibc) version of the C library. Package manager
dependencies and other library references are to glibc specifically. As of glibc
2.3.4, for historical reasons the main glibc file is usually called /lib/libc.so.6,
but this file is sometimes a symbolic link to a file of another name, such as
/lib/libc-2.3.4.so.

In principle, the routines in a library can be linked into a program’s main file, just like all the
object code files created by the compiler. This approach, however, has certain problems:
� The resulting program file is huge. This means that it takes up a lot of disk space and it con-

sumes a lot of RAM when loaded.
� If multiple programs use the library, as is common, the program size issue is multiplied

several times.
� The program can’t take advantage of improvements in the library without recompiling (or

at least relinking) the program.

For these reasons, most programs use their libraries as shared libraries (aka dynamic
libraries). In this form, the main program executable omits most of the library routines.
Instead, the executable includes references to shared library files, which can then be loaded
along with the main program file. This approach helps keep program file size down, enables
sharing of the memory consumed by libraries across programs, and enables programs to
take advantage of improvements in libraries simply by upgrading the library.

4425.book Page 93 Thursday, July 7, 2005 5:28 PM

94 Chapter 2 � Managing Software

Linux shared libraries are similar to the dynamic link libraries (DLLs) of Win-
dows. Windows DLLs are usually identified by .DLL filename extensions, but in
Linux, shared libraries usually have .so or .so.version extensions, where
version is a version number. (.so stands for “shared object.”) Linux static
libraries (used by linkers for inclusion in programs when dynamic libraries
aren’t to be used) have .a filename extensions.

On the downside, shared libraries can degrade program load time slightly if the library isn’t
already in use by another program, and they can create software management complications:
� Shared library changes can be incompatible with some or all programs that use the

library. Linux uses library numbering schemes to enable you to keep multiple versions
of a library installed at once. Upgrades that shouldn’t cause problems can overwrite
older versions, whereas major upgrades get installed side-by-side with their older coun-
terparts. This approach minimizes the chance of problems, but sometimes changes that
shouldn’t cause problems do cause them.

� Programs must be able to locate shared libraries. This task requires adjusting configuration
files and environment variables. If it’s done wrong, or if a program overrides the defaults
and looks in the wrong place, the result is usually that the program won’t run at all.

� The number of libraries for Linux has risen dramatically over time. When they’re used in
shared form, the result can be a tangled mess of package dependencies, particularly if you
use programs that rely on many or obscure libraries. In most cases, this issue boils down to
a package problem that can be handled by your package management tools.

� If an important shared library becomes inaccessible because it was accidentally overwritten,
because of a disk error or for any other reason, the result can be severe system problems. In
a worst-case scenario, the system might not even boot.

In most cases, these drawbacks are manageable and are much less important than the prob-
lems associated with using static libraries. Thus, dynamic libraries are very popular.

Static libraries are sometimes used by developers who create programs using
particularly odd, outdated, or otherwise exotic libraries. This enables them to
distribute their binary packages without requiring users to obtain and install
their oddball libraries. Likewise, static libraries are sometimes used on small
emergency systems, which don’t have enough programs installed to make the
advantages of shared libraries worth pursuing.

Locating Library Files

The major administrative challenge of handling shared libraries is in enabling programs to locate
their shared libraries. Binary program files can point to libraries either by name alone (as in
libc.so.6) or by providing a complete path (as in /lib/libc.so.6). In the first case, you must

4425.book Page 94 Thursday, July 7, 2005 5:28 PM

Managing Shared Libraries 95

configure a library path—a set of directories in which programs should search for libraries. This
can be done both through a global configuration file and through an environment variable. If a
static path to a library is wrong, you must find a way to correct the problem. In all of these cases,
after making a change, you may need to use a special command to get the system to recognize the
change, as described later in “Library Management Commands.”

Setting the Path Systemwide

The first way to set the library path is to edit the /etc/ld.so.conf file. This file consists of a
series of lines, each of which lists one directory in which shared library files may be found. Typ-
ically, this file lists between half a dozen and a couple dozen directories. Some distributions have
an additional type of line in this file. These lines begin with the include directive; they list files
that are to be included as if they were part of the main file. For instance, Fedora 3’s ld.so.conf
begins with this line:

include ld.so.conf.d/*.conf

This line tells the system to load all the files in /etc/ld.so.conf.d whose names end in
.conf as if they were part of the main /etc/ld.so.conf file. This mechanism enables package
maintainers to add their unique library directories to the search list by placing a .conf file in
the appropriate directory.

A mechanism with a similar goal but different details is used by some other distributions, such
as Gentoo. With these distributions, the env-update utility reads files in /etc/env.d to create
the final form of several /etc configuration files, including /etc/ld.so.conf. In particular, the
LDPATH variables in these files are read and their values make up the lines in ld.so.conf. Thus,
to change ld.so.conf in Gentoo or other distributions that use this mechanism, you should add
or edit files in /etc/env.d and then type env-update to do the job.

Generally speaking, there’s seldom a need to change the library path system-wide. Library
package files usually install themselves in directories that are already on the path or add their
paths automatically. The main reason to make such changes would be if you installed a library
package, or a program that creates its own libraries, in an unusual location via a mechanism
other than your distribution’s main package utility. For instance, you might compile a library
from source code and then need to update your library path in this way.

After you change your library path, you must use ldconfig to have your programs use the
new path, as described later in “Library Management Commands.”

In addition to the directories specified in /etc/ld.so.conf, Linux refers to the
trusted library directories, /lib and /usr/lib. These directories are always on
the library path, even if they aren’t listed in ld.so.conf.

Temporarily Changing the Path

Sometimes changing the path permanently and globally is unnecessary and even inappropriate.
For instance, you might want to test the effect of a new library before using it for all your pro-
grams. To do so, you could install the shared libraries in an unusual location and then set the

4425.book Page 95 Thursday, July 7, 2005 5:28 PM

96 Chapter 2 � Managing Software

LD_LIBRARY_PATH environment variable. This environment variable specifies additional direc-
tories the system is to search for libraries.

Chapter 6 describes environment variables in more detail.

To set the LD_LIBRARY_PATH environment variable using the bash shell, you can type a com-
mand like this:

$ export LD_LIBRARY_PATH=/usr/local/testlib:/opt/newlib

This line adds two directories, /usr/local/testlib and /opt/newlib, to the search path.
You can specify as few or as many directories as you like, separated by colons. In any event,
these directories are added to the start of the search path, which means that they take prece-
dence over other directories. This fact is handy when testing replacement libraries, but it can
also cause problems if users manage to set this environment variable inappropriately.

You can set this environment variable permanently in a user’s shell startup script files, as
described in Chapter 6. Doing so means that the user will always use the specified library
paths in addition to the normal system paths. In principle, you could set the LD_LIBRARY_
PATH globally; however, using /etc/ld.so.conf is the preferred method of effecting global
changes to the library path.

Unlike other library path changes, this one does not require that you run ldconfig for it to
take effect.

Correcting Problems

Library path problems usually manifest as an inability of a program to locate a library. If you
launch it from a shell, you’ll see an error message like this:

$ gimp

gimp: error while loading shared libraries: libXinerama.so.1: cannot➥

 open shared object file: No such file or directory

This message indicates that the system couldn’t find the libXinerama.so.1 library file. The
usual cause of such problems is that the library isn’t installed, so you should look for it using
commands such as find (described in Chapter 4, “Managing Files and Filesystems”). If the file
simply isn’t installed, try to track down the package to which it should belong (a Web search
can work wonders in this task) and install it.

If, on the other hand, the library file is available, you may need to add its directory globally
or to the LD_LIBRARY_PATH. Sometimes the library’s path is hard-coded in the program’s binary
file. (You can discover this using ldd, as described shortly, in “Library Management Com-
mands.”) When this happens, you may need to create a symbolic link from the location of the
library on your system to the location the program expects. A similar problem can occur when
the program expects a library to have one name but it has another name on your system. For
instance, the program might link to biglib.so.5 but your system has biglib.so.5.2

4425.book Page 96 Thursday, July 7, 2005 5:28 PM

Managing Shared Libraries 97

installed. Minor version number changes like this are usually inconsequential, so creating a
symbolic link will correct the problem:

ln -s biglib.so.5.2 biglib.so.5

You must type this command as root in the directory in which the library resides. You must
then run ldconfig, as described in the next section.

Library Management Commands

Linux provides a pair of commands that you’re likely to use for library management. The ldd pro-
gram displays the shared library dependencies of a program—that is, it lists the shared libraries that
a program uses. The ldconfig program updates caches and links used by the system for locating
libraries—that is, it reads /etc/ld.so.conf and implements any changes in that file or in the direc-
tories to which it refers. Both of these tools are invaluable in managing libraries.

Displaying Shared Library Dependencies

If you run into programs that won’t launch because of missing libraries, the first step is to check
which libraries the program file uses. You can do this with the ldd command:

$ ldd /bin/ls

 librt.so.1 => /lib/librt.so.1 (0x0000002a9566c000)

 libncurses.so.5 => /lib/libncurses.so.5 (0x0000002a95784000)

 libacl.so.1 => /lib/libacl.so.1 (0x0000002a958ea000)

 libc.so.6 => /lib/libc.so.6 (0x0000002a959f1000)

 libpthread.so.0 => /lib/libpthread.so.0 (0x0000002a95c17000)

 /lib64/ld-linux-x86-64.so.2 (0x0000002a95556000)

 libattr.so.1 => /lib/libattr.so.1 (0x0000002a95dad000)

Each line of output begins with a library name, such as librt.so.1 or libncurses.so.5.
If the library name doesn’t contain a complete path, ldd attempts to find the true library and
it displays the complete path following the => symbol, as in /lib/librt.so.1 or /lib/
libncurses.so.5. You needn’t be concerned about the long hexadecimal number following
the complete path to the library file. The preceding example shows one library (/lib64/ld-
linux-x86-64.so.2) that’s referred to with a complete path in the executable file. It lacks the
initial directory-less library name and => symbol.

The ldd command accepts a few options. The most notable of these is probably -v, which
displays a long list of version information following the main entry. This information might be
helpful in tracking down which version of a library a program is actually using, in case you have
multiple versions installed.

Keep in mind that libraries can themselves depend on other libraries. Thus, you can use ldd
to discover what libraries are used by a library. Because of this potential for a dependency chain,
it’s possible that a program will fail to run even though all its libraries are present. When using
ldd to track down problems, be sure to check the needs of all the libraries of the program, and
all of the libraries used by the first tier of libraries, and so on until you’ve exhausted the chain.

4425.book Page 97 Thursday, July 7, 2005 5:28 PM

98 Chapter 2 � Managing Software

The ldd utility can be run by ordinary users, as well as by root, although of course you must
run it as root if you can’t read the program file as an ordinary user.

Re-loading the Library Cache

Linux (or more precisely, the ld.so or ld-linux.so programs, which manage the loading of
libraries) doesn’t read /etc/ld.so.conf every time a program runs. Instead, the system relies
on a cached list of directories and the files they contain, stored in binary format in /etc/
ld.so.cache. This list is maintained in a format that’s much more efficient than a plain-text
list of files and directories. The drawback is that you must reload that cache every time you add
or remove libraries. These additions and removals include both changing the contents of the
library directories and adding or removing library directories.

The tool to do this job is called ldconfig. Ordinarily, it’s called without any options:

ldconfig

This program does, though, take options to modify its behavior:

Display verbose information Ordinarily, ldconfig doesn’t display any information as it
works. The -v option causes the program to summarize the directories and files it’s registering
as it goes about its business.

Don’t rebuild the cache The -N option causes ldconfig to not perform its primary duty of
updating the library cache. It will, though, update symbolic links to libraries, which is a sec-
ondary duty of this program.

Process only specified directories The -n option causes ldconfig to update the links con-
tained in the directories specified on the command line. The system won’t examine the directo-
ries specified in /etc/ld.so.conf or the trusted directories (/lib and /usr/lib).

Don’t update links. The -X option is the opposite of -N; it causes ldconfig to update the
cache but not manage links.

Use a new configuration file You can change the configuration file from /etc/ld.so.conf
by specifying it with the -f conffile option, where conffile is the file you want to use.

Use a new cache file You can change the cache file that ldconfig creates by passing the -C
cachefile option, where cachefile is the file you want to use.

Use a new root The -r dir option tells ldconfig to treat dir as if it were the root (/) directory.
This option is helpful when recovering a badly corrupted system or when installing a new OS.

Display current information The -p option causes ldconfig to display the current cache—all
the library directories and the libraries they contain.

Both RPM and Debian library packages typically run ldconfig automatically after install-
ing or removing the package. The same thing happens as part of the installation process for
many packages compiled from source. Thus, you may well be running ldconfig more than you
realize in the process of software management. Still, you may need to run the program yourself
if you manually modify your library configuration in any way.

4425.book Page 98 Thursday, July 7, 2005 5:28 PM

Exam Essentials 99

Summary
Linux provides numerous tools to help you manage software. Most distributions are built
around the RPM or Debian package systems, both of which enable installation, upgrade, and
removal of software using a centralized package database to avoid conflicts and other problems
that are common when no central package database exists. You can perform basic operations
on individual files or, with the help of extra tools such as APT, keep your system synchronized
with the outside world, automatically or semi-automatically updating all your software to the
latest versions. In addition to these tools, you can use traditional Unix methods of software
compilation and installation. This has the advantage of greater control on your part—you can
set compile options for your system and even modify the source code. Installing software from
source, though, eliminates the advantages of the RPM or Debian package database.

No matter how you install your software, you may need to deal with shared library man-
agement. These software components are necessary building blocks of large modern programs,
and in the best of all possible worlds they operate entirely transparently. Sometimes, though,
shared libraries need to be upgraded or the system configuration changed so that programs can
find the libraries. When this happens, knowing about critical configuration files and commands
can help you work around any difficulties.

Exam Essentials
Identify critical features of RPM and Debian package formats. RPM and Debian packages
store all files for a given package in a single file that also includes information on what other
packages the software depends on. These systems maintain a database of installed packages and
their associated files and dependencies.

Describe the tools used for managing RPMs. The rpm program is the main tool for installing,
upgrading, and uninstalling RPMs. This program accepts operations and options that tell it pre-
cisely what to do.

Describe the tools used for managing Debian packages. The dpkg program installs or unin-
stalls a single package or a group of packages you specify. The apt-get utility retrieves programs
from installation media or from the Internet for installation and can automatically upgrade your
entire system. The dselect program serves as a menu-driven interface to apt-get, enabling you
to select programs you want to install from a text-mode menu.

Summarize tools for extracting files and converting between package formats. The rpm2cpio
program can convert an RPM file to a cpio archive, enabling users of non-RPM systems to
access files in an RPM. The alien utility can convert in any direction between Debian packages,
RPMs, Stampede packages, and tarballs. This enables use of packages intended for one system
on another.

4425.book Page 99 Thursday, July 7, 2005 5:28 PM

100 Chapter 2 � Managing Software

Explain the process of compiling source code. Source code compilation involves obtaining
source code, extracting it into a source code directory, running a configure script, compiling the
software with make, and installing the software. Details vary from one package to another, so you
should always consult the documentation to learn precisely how to do it for any given program.

Identify the main advantages and disadvantages of compiling software from source code.
Compiling software yourself enables you to ensure that you’re using the author’s original ver-
sion of the program, to optimize the software for your system, and to modify the source code
yourself. The main drawbacks are the extra time involved in the process and the fact that you’re
then bypassing your distribution’s package utilities and thus get no benefit from them for the
package you’re compiling.

Summarize the reasons for using shared libraries. Shared libraries keep disk space and mem-
ory requirements manageable by placing code that’s needed by many programs in separate files
from the programs that use it, enabling one copy to be used multiple times. More generally,
libraries are useful by enabling programmers to use basic “building blocks” that others have
written without having to constantly reinvent code.

Describe methods available to change the library path. The library path can be changed
system-wide by editing the /etc/ld.so.conf file and then typing ldconfig. For tempo-
rary or per-user changes, directories may be added to the path by placing them in the LD_
LIBRARY_PATH environment variable.

4425.book Page 100 Thursday, July 7, 2005 5:28 PM

Review Questions 101

Review Questions
1. Which of the following is not an advantage of a source package over a binary package?

A. A single source package can be used on multiple CPU architectures.

B. By recompiling a source package, you can sometimes work around library incompatibilities.

C. You can modify the code in a source package, altering the behavior of a program.

D. Source packages can be installed more quickly than binary packages can.

2. Which is true of using both RPM and Debian package management systems on one computer?

A. It’s generally inadvisable because the two systems don’t share installed file database
information.

B. It’s impossible because their installed file databases conflict with one another.

C. It causes no problems if you install important libraries once in each format.

D. It’s a common practice on Red Hat and Debian systems.

3. Which of the following statements is true about binary RPM packages that are built for a
particular distribution?

A. They can often be used on another RPM-based distribution for the same CPU architecture,
but this isn’t guaranteed.

B. They may be used in another RPM-based distribution only when you set the
--convert-distrib parameter to rpm.

C. They may be used in another RPM-based distribution only after you convert the package
with alien.

D. They can be recompiled for an RPM-based distribution running on another type of CPU.

4. Which is true of source RPM packages?

A. They consist of three files: an original source tarball, a patch file of changes, and a PGP sig-
nature indicating the authenticity of the package.

B. They require programming knowledge to rebuild.

C. They can sometimes be used to work around dependency problems with a binary package.

D. They are necessary to compile software for RPM-based distributions.

5. Which of the following do RPM filenames conventionally include?

A. Single-letter codes indicating Red Hat–certified build sites

B. Build date information

C. Version number and CPU architecture information

D. The initials of the package’s maintainer

4425.book Page 101 Thursday, July 7, 2005 5:28 PM

102 Chapter 2 � Managing Software

6. An administrator types the following command on an RPM-based Linux distribution:

rpm -ivh megaprog.rpm

What is the effect of this command?

A. The megaprog package, if it’s installed, is uninstalled from the computer.

B. The megaprog.rpm package, if it exists, is valid, and is not already installed, is installed on
the system.

C. The megaprog.rpm source RPM package is compiled into a binary RPM for the computer.

D. Nothing; megaprog.rpm is not a valid RPM filename, so rpm will refuse to operate on this file.

7. Which of the following commands will extract the contents of the myfonts.rpm file into the
current directory?

A. rpm2cpio myfonts.rpm | cpio -i --make-directories

B. rpm2cpio myfonts.rpm > make-directories

C. rpm -e myfonts.rpm

D. alien --to-extract myfonts.rpm

8. To use dpkg to remove a package called theprogram, including its configuration files, which of
the following commands would you issue?

A. dpkg -P theprogram

B. dpkg -p theprogram

C. dpkg -r theprogram

D. dpkg -r theprogram-1.2.3-4.deb

9. Which of the following describes a difference between apt-get and dpkg?

A. apt-get provides a GUI interface to Debian package management; dpkg does not.

B. apt-get can install tarballs in addition to Debian packages; dpkg cannot.

C. apt-get can automatically retrieve and update programs from Internet sites; dpkg cannot.

D. apt-get is provided only with the original Debian distribution, but dpkg comes with
Debian and its derivatives.

10. Which of the following is true of an attempt to use a Debian package from one distribution on
another Debian-derived distribution?

A. It’s unlikely to work because of library incompatibilities and divergent package-naming
conventions.

B. It’s guaranteed to work because of Debian’s strong package definition and enforcement of
standards for startup scripts and file locations.

C. It will work only when the distributions are built for different CPUs or when the alien
package is already installed on the target system.

D. It’s likely to work because of the close relationship of Debian-based distributions, assuming
the two distributions are for the same CPU architecture.

4425.book Page 102 Thursday, July 7, 2005 5:28 PM

Review Questions 103

11. Which of the following is the default destination format when using alien?

A. Tarball

B. RPM

C. Debian package

D. Stampede package

12. How do you select packages for installation using dselect?

A. You highlight the package in the selection list and press the plus (+) key.

B. You right-click the package name with the mouse and select the Mark for Installation option.

C. You highlight the package in the selection list and press the spacebar key.

D. You click the package name with the mouse and pick the Install � Package option from the
main menu.

13. As root, you type apt-get update on a Debian system. What should be the effect of this command?

A. None; update is an invalid option to apt-get.

B. The APT utilities deliver information on the latest updates you’ve made to the APT Internet
repositories, enabling you to share your changes with others.

C. The APT utilities download all available upgrades for your installed programs and install
them on your system.

D. The APT utilities retrieve information on the latest packages available so that you may
install them with subsequent apt-get commands.

14. Which of the following commands would you use to extract the contents of the newprog-5.3.tbz
source code tarball? (Select all that apply.)

A. tar xvjf newprog-5.3.tbz

B. bunzip2 -c newprog-5.3.tbz | tar xvf -

C. tar xvzf newprog-5.3.tbz

D. rpm2cpio newprog-5.3.tbz | cpio -i --make-directories

15. Which of the following is not a good reason for installing software from source code?

A. Installing software from source code enables you to optimize the software for your CPU.

B. Installing software from source code helps maintain your RPM or Debian package database.

C. Installing software from source code enables you to make changes to the source code.

D. Installing software from source code enables you to tweak program options to your liking.

16. Which of the following steps should you always take before attempting to compile software
from source code?

A. Edit the Makefile to optimize the compilation for your CPU.

B. Read the documentation provided with the source code.

C. Type make config to configure the software for your computer.

D. Ensure that the Qt and GTK+ libraries are installed for use by the software.

4425.book Page 103 Thursday, July 7, 2005 5:28 PM

104 Chapter 2 � Managing Software

17. What methods might you use to uninstall a program you installed from source code without the
help of a package manager? (Select all that apply.)

A. Consult the Registry to learn what files are installed and delete those associated with
the package.

B. Type make uninstall in the original program source code directory.

C. Type rpm -e packagename, where packagename is the name of the package.

D. Manually track down and delete all the files installed by the package.

18. What is the function of the ldd program?

A. It displays information on the libraries used by a program or a library.

B. It copies a file, optionally applying conversions to it.

C. It causes the system to re-create the library cache files and renew library links.

D. It flushes the LD_LIBRARY_PATH environment variable.

19. What is the preferred method of adding a directory to the library path for all users?

A. Modify the LD_LIBRARY_PATH environment variable in a global shell script.

B. Add the directory to the /etc/ld.so.conf file and then type ldconfig.

C. Type ldconfig /new/dir, where /new/dir is the directory you want to add.

D. Create a symbolic link from that directory to one that’s already on the library path.

20. You prefer the look of GTK+ widgets to Qt widgets, so you want to substitute the GTK+ libraries
for the Qt libraries on your system. How would you do this?

A. You must type ldconfig --makesubs=qt,gtk. This command substitutes the GTK+
libraries for the Qt libraries at load time.

B. You must uninstall the Qt library packages and re-install the GTK+ packages with the
--substitute=qt option to rpm or the --replace=qt option to dpkg.

C. You must note the filenames of the Qt libraries, uninstall the packages, and create symbolic
links from the Qt libraries to the GTK+ libraries.

D. You can’t easily do this; libraries cannot be arbitrarily exchanged for one another. You
would need to rewrite all the Qt-using programs to use GTK+.

4425.book Page 104 Thursday, July 7, 2005 5:28 PM

Answers to Review Questions 105

Answers to Review Questions
1. D. Because they must be compiled prior to installation, source packages require more time to

install than binary packages do, contrary to option D’s assertion. The other options all describe
advantages of source packages over binary packages.

2. A. Package management systems don’t share information, but neither do their databases actively
conflict. Installing the same libraries using both systems would almost guarantee that the files
served by both systems would conflict with one another. Actively using both RPM and Debian
packages isn’t common on any distribution, although it’s possible with all of them.

3. A. RPMs are usually portable across distributions, but occasionally they contain incompatibilities.
There is no --convert-distrib parameter to rpm, nor is alien used to convert from RPM for-
mat to RPM format. Binary packages can’t be rebuilt for another CPU architecture, but source
packages may be rebuilt for any supported architecture provided the source code doesn’t rely on
any CPU-specific features.

4. C. Some dependencies result from dynamically linking binaries to libraries at compile time and
so they can be overcome by recompiling the software from a source RPM. Option A describes
Debian source packages, not RPM packages. Recompiling a source RPM requires only issuing
an appropriate command, although you must also have appropriate compilers and libraries
installed. Source tarballs can also be used to compile software for RPM systems, although this
results in none of RPM’s advantages.

5. C. The package version number (as well as an RPM build number) and CPU architecture code
(or src for source code or noarch for architecture-independent files) are included in most
RPM package filenames. Red Hat does not provide certification for RPM maintainers. Build
dates and package maintainers’ names are stored in the RPM, but not in the filename. (Some
distributions include a code for the distribution name in the RPM filename, but this is not a
universal practice.)

6. B. The -i operation installs software, so option B is correct. (The -v and -h options cause a status
display of the progress of the operation, which wasn’t mentioned in the option.) Uninstallation is per-
formed by the -e operation, and rebuilding source RPMs is done by the --rebuild operation (to
either rpm or rpmbuild, depending on the RPM version). Although the filename megaprog.rpm is
missing several conventional RPM filename components, the rpm utility doesn’t use the filename as
a package validity check, so option D is incorrect.

7. A. The rpm2cpio program extracts data from an RPM file and converts it into a cpio
archive that’s sent to standard output. Piping the results through cpio and using the -i and
--make-directories options, as in option A, will extract those files to the current direc-
tory. Option B creates a cpio file called make-directories that contains the files from
the RPM package. Option C will uninstall the package called myfonts.rpm (but not the
myfonts package). The alien utility has no --to-extract target, so option D is invalid.

8. A. An uppercase -P invokes the purge operation, which completely removes a package and its
configuration files. The lowercase -p causes dpkg to print information on the package’s con-
tents. The -r parameter removes a package but leaves configuration files behind. The final vari-
ant (option D) also specifies a complete filename, which isn’t used for removing a package—you
should specify only the shorter package name.

4425.book Page 105 Thursday, July 7, 2005 5:28 PM

106 Chapter 2 � Managing Software

9. C. You can specify Debian package archive sites in /etc/apt/sources.list, and then you can
type apt-get update and apt-get upgrade to quickly update a Debian system to the latest
packages. GUI package management tools for Debian and related distributions exist, but they
aren’t apt-get. The alien program can convert an RPM file and install the converted package
on a Debian system; dpkg and apt-get both come with all Debian-based distributions.

10. D. Systems that use Debian are based on the same core OS and so they share most components, mak-
ing package transplants likely—but not certain—to succeed. Library incompatibilities could cause
problems but aren’t likely to, especially if you use recent packages and distributions. Although
Debian has clearly defined key file locations, startup scripts, and so on, these can’t guarantee success.
Binary packages built for different CPUs are almost guaranteed not to work, although scripts or
other non-binary packages most likely will work across CPU types.

11. C. The alien utility can convert to any of these formats, but if you omit the specification, it
defaults to a Debian output package.

12. A. The dselect program is a text-based menuing interface to APT or other Debian package
tools. Selecting packages to install involves highlighting them and then pressing the plus (+) key.
The spacebar, as in option C, does not select packages for installation. Options B and D both
describe an X-based GUI tool, but dselect is a text-mode program.

13. D. The update option to apt-get causes retrieval of new information, as described in option D.
This option is perfectly valid, contrary to option A’s assertion. The apt-get program doesn’t per-
mit you to upload information to the Internet repositories, so option B is incorrect. Option C
describes the effect of the upgrade or dist-upgrade options, not the update option.

14. A, B. The package filename ends in .tbz, which means it’s a tarball that’s been compressed
with bzip2. This tarball can be extracted by tar if you pass it the -j option, as in option A;
or you can uncompress the tarball with bunzip2 and pipe the results through tar without any
compression options, as in option B. Option C would work if the file were compressed with
gzip; its -z option is appropriate for that compression tool. Option D simply will not work,
although it’s appropriate for extracting the contents of an RPM file without installing it using
the RPM package system.

15. B. Your RPM or Debian package database is not used when you install software from source
code, so option B is simply an incorrect statement. Options A, C, and D are all advantages of
building software from source code.

16. B. Reading the documentation ensures that you’ll be aware of any unique requirements or proce-
dures for this software, thus increasing your chances of successfully compiling and installing it.
Although you can tweak the Makefile, as described in option A, this isn’t a requirement for com-
pilation, and manual tweaks are often unnecessary. The make config procedure of option C is
indeed necessary for some programs, but many others use other configuration procedures, so this
precise action is not always required. The Qt and GTK+ libraries referred to in option D are nec-
essary for some programs but not for all of them, so this step is not always required.

4425.book Page 106 Thursday, July 7, 2005 5:28 PM

Answers to Review Questions 107

17. B, D. Many programs provide an uninstall target for make, so option B will often (but not
always) work. When it doesn’t, or if you no longer have the original source code files, you must
remember or be able to figure out which files belong to the package and delete them, as described
in option D. Linux has no Registry; that’s a Windows concept, so option A is invalid. Option C
would work if you’d installed the package using RPM, but this procedure is useless for packages
compiled from source. (An exception would be if you compiled a source RPM file and then
installed the resulting binary file, but the question indicates this wasn’t the case.)

18. A. Option A correctly summarizes the function of ldd. Option B summarizes the function of dd,
an unrelated program described in Chapter 8. Option C describes the function of ldconfig.
Option D is pure fiction, although the LD_LIBRARY_PATH environment variable is real.

19. B. The /etc/ld.so.conf file holds the global library path, so editing it is the preferred
approach. You must then type ldconfig to have the system update its library path cache.
Although you can add a directory to the library path by altering the LD_LIBRARY_PATH envi-
ronment variable globally, this approach is not the preferred one. Option C simply won’t
work. Option D also won’t work, although linking individual library files would work. This
method is not the preferred one for adding a whole directory, though.

20. D. Libraries are selected by programmers, not by users or system administrators. If you don’t
like the widgets provided by one library, you have few options. (Many widget sets do provide
a great deal of configurability, though, so you may be able to work around the problem in other
ways.) Options A and B describe completely fictitious options to ldconfig, rpm, and dpkg.
Option C would not work; Qt-using programs would simply crash when they found GTK+
libraries in place of the Qt libraries they were expecting.

4425.book Page 107 Thursday, July 7, 2005 5:28 PM

Chapter

3

Configuring Hardware

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.101.1 Configure fundamental BIOS settings (weight: 1)

�

1.101.3 Configure modem and sound cards (weight: 1)

�

1.101.4 Set up SCSI devices (weight: 1)

�

1.101.5 Set up different PC expansion cards (weight: 3)

�

1.101.6 Configure communication devices (weight: 1)

�

1.101.7 Configure USB devices (weight: 1)

�

1.102.1 Design hard disk layout (weight: 5)

�

1.102.2 Install a boot manager (weight: 1)

�

1.104.1 Create partitions and filesystems (weight: 3)

4425.book Page 109 Thursday, July 7, 2005 5:28 PM

All OSs run atop hardware, and this hardware influences how the
OSs run. Most obviously, hardware can be fast or slow, reliable
or unreliable. Somewhat more subtly, OSs provide various means

of configuring and accessing the hardware—initializing RS-232 serial ports and partitioning
hard disks, for instance. You must understand at least the basics of how Linux interacts with
its hardware environment in order to effectively administer a Linux system, so this chapter pre-
sents this information.

This chapter begins with a look at the BIOS, which is the lowest-level software that runs on
a computer. The BIOS starts the boot process and configures certain hardware devices. This
chapter then moves on to expansion cards, modems, audio hardware, and USB devices. Finally,
this chapter covers disk hardware in more detail, including SCSI hardware, disk partitioning,
and maintaining a boot loader, which helps boot Linux.

Configuring the BIOS and Core Hardware

All computers ship with a set of core hardware—most obviously, a

central processing unit
(CPU),

 which does the bulk of the computational work, and

random access memory (RAM),

which holds data. Many additional basic features help glue everything together, though, and
some of these can be configured both inside and outside of Linux. At the heart of much of this
hardware is the

Basic Input/Output System (BIOS),

 which provides configuration tools and ini-
tiates the OS booting process. You can use the BIOS to enable and disable key hardware com-
ponents, but once Linux is booted, you may need to manage this hardware using Linux utilities.
Key components managed by the BIOS (and, once it’s booted, Linux) include interrupts, I/O
addresses, DMA addresses, the real-time clock, and

Advanced Technology Attachment (ATA)

hard disk interfaces.

Understanding the Role of the BIOS

The BIOS is the firmware that initiates the process of booting an operating system on a com-
puter. It resides on the motherboard in ROM, typically in an

electronically erasable program-
mable read-only memory (EEPROM)

, aka flash memory. When you turn on a computer, the
BIOS performs a

power-on self-test (POST)

, initializes hardware to a known operational state,
loads the boot loader from the boot device (typically the first hard disk), and passes control to
the boot loader, which in turn loads the OS.

4425.book Page 110 Thursday, July 7, 2005 5:28 PM

Configuring the BIOS and Core Hardware

111

Historically, a further purpose of the BIOS was to provide fundamental input/output (I/O) ser-
vices to the operating system and application programs, insulating them from hardware changes.
While the Linux kernel uses the BIOS to collect information about the hardware, once running,
it doesn’t use BIOS services for I/O. Having said that, Linux system administrators require a basic
understanding of the BIOS because of the key role it plays in configuring hardware and in booting.

While BIOS implementations vary from manufacturer to manufacturer, most provide an
interactive facility to configure them. Typically, you enter this setup tool by pressing the Delete,
F1, or F2 key early in the boot sequence. (Consult your motherboard manual or look for on-
screen prompts for details.) Figure 3.1 shows a typical BIOS setup main screen. You can use the
arrow keys, the Enter key, and so on to move around the BIOS options and adjust them. Com-
puters usually come delivered with reasonable BIOS defaults, but you may need to adjust them
if you add new hardware. For instance, you might want to disable an onboard RS-232 port to
make way for an internal modem that you add.

IRQs

An

interrupt request (IRQ)

, or an interrupt, is a signal sent to the CPU instructing it to suspend
its current activity and to handle some external event such as keyboard input. On the

x

86 plat-
form, IRQs are numbered from 0 to 15. Some are reserved for specific purposes such as the key-
board and the real-time clock, others have common uses (and are sometimes overused) but may
be reassigned, and some are left available for extra devices that may be added to the system.
Table 3.1 lists the IRQs and their common purposes.

F I G U R E 3 . 1

The BIOS setup screen provides features related to low-level hardware

configuration.

4425.book Page 111 Thursday, July 7, 2005 5:28 PM

112

Chapter 3 �

Configuring Hardware

T A B L E 3 . 1

IRQs and Their Common Uses

IRQ Typical Use Notes

0 System timer Reserved for internal use.

1 Keyboard Reserved for keyboard use only.

2 Cascade for IRQs 8–15 The original

x

86 IRQ-handling circuit can manage
just 8 IRQs; 2 are tied together to handle 16 IRQs,
but IRQ 2 must be used to handle IRQs 8–15.

3 Second RS-232 serial port (

COM2:

in Windows)

May also be shared by a fourth RS-232 serial port.

4 First RS-232 serial port (

COM1:

in Windows)

May also be shared by a third RS-232 serial port.

5 Sound card or second parallel port
(

LPT2:

 in Windows)

6 Floppy disk controller Reserved for the first floppy disk controller.

7 First parallel port (

LPT1:

in Windows)

8 Real-time clock Reserved for system clock use only.

9 Open interrupt

10 Open interrupt

11 Open interrupt

12 PS/2 mouse

13 Math coprocessor Reserved for internal use.

14 Primary ATA controller The controller for ATA devices such as hard drives;
typically

/dev/hda

 and

/dev/hdb

 under Linux.

15 Secondary ATA controller The controller for more ATA devices; typically

/dev/hdc

 and

/dev/hdd

 under Linux.

4425.book Page 112 Thursday, July 7, 2005 5:28 PM

Configuring the BIOS and Core Hardware

113

The original

Industry Standard Architecture (ISA)

 bus design makes sharing an interrupt
between two devices tricky. Ideally, every ISA device should have its own IRQ. The more recent

Peripheral Component Interconnect (PCI)

 bus makes sharing interrupts a bit easier, so PCI
devices do frequently end up sharing an IRQ. The ISA bus has become rare on computers made
since 2001 or so, but it’s quite common on older computers. Even some computers that lack
physical ISA slots may use ISA internally to manage some devices, such as RS-232 serial ports
and parallel ports.

IRQ 5 is a common source of interrupt conflicts because it is the default value

for sound cards as well as for second parallel ports.

Once a Linux system is running, you can explore what IRQs are being used for various pur-
poses by examining the contents of the

/proc/interrupts

 file. A common way to do this is
with the use of the

cat

 command:

cat /proc/interrupts

 CPU0

 0: 1132592 XT-PIC timer

 1: 12 XT-PIC keyboard

 2: 0 XT-PIC cascade

 3: 39035 XT-PIC orinoco_cs

 8: 4 XT-PIC rtc

 11: 107 XT-PIC eth0, Intel 82801DB-ICH4

 12: 9 XT-PIC PS/2 Mouse

 14: 0 XT-PIC ide0

 15: 26071 XT-PIC ide1

NMI: 0

ERR: 0

The

/proc

 filesystem is a virtual filesystem—it doesn’t refer to actual files on
a hard disk, but to data that’s convenient to represent using a filesystem. The
files in

/proc

 provide information about the hardware, running processes, and
so on. Many Linux utilities use

/proc

 behind the scenes, or you can directly
access these files using utilities like

cat

, which copies the data to the screen

when given just one argument.

This output shows the names of the drivers that are using each IRQ. Some of these driver
names are easy to interpret, such as

keyboard

. Others are more puzzling, such as

orinoco_cs

(it’s a driver for a wireless networking card). If the purpose of a driver isn’t obvious, try doing
a Web search on it; chances are you’ll find a relevant hit fairly easily.

4425.book Page 113 Thursday, July 7, 2005 5:28 PM

114

Chapter 3 �

Configuring Hardware

The

/proc/interrupts

 file lists IRQs that are in use by Linux; however, Linux
doesn’t begin using an IRQ until the relevant driver is loaded. This may not hap-
pen until you try to use the hardware. Thus, the

/proc/interrupts

 list may not
show all the interrupts that are actually configured on your system. For instance,
the preceding example shows nothing for IRQ 6, which is reserved for the floppy
disk, because it hadn’t been used prior to viewing the file. If the floppy disk were
used and

/proc/interrupts

 viewed again, an entry for IRQ 6 and the

floppy

driver would appear.

If your system suffers from IRQ conflicts, you must reconfigure one or more devices to use
different IRQs. This topic is described shortly, in “Configuring Expansion Cards.”

I/O Addresses

I/O addresses (also referred to as I/O ports) are unique locations in memory that are reserved
for communications between the CPU and specific physical hardware devices. Like IRQs, I/O
addresses are commonly associated with specific devices and should not ordinarily be shared.
Table 3.2 shows a listing of some Linux device filenames along with the equivalent names in
Windows, as well as the common IRQ and I/O Address settings.

T A B L E 3 . 2

Common Linux Devices

Linux Device Windows Name Typical IRQ I/O Address

/dev/ttyS0 COM1

4 0x03f8

/dev/ttyS1 COM2

3 0x02f8

/dev/ttyS2 COM3

4 0x03e8

/dev/ttyS3 COM4

3 0x02e8

/dev/lp0 LPT1

7 0x0378-0x037f

/dev/lp1 LPT2

5 0x0278-0x027f

/dev/fd0 A:

6 0x03f0-0x03f7

/dev/fd1 B:

6 0x0370-0x0377

4425.book Page 114 Thursday, July 7, 2005 5:28 PM

Configuring the BIOS and Core Hardware

115

Although the use is deprecated, older systems sometimes use

/dev/cua

x

(where

x

 is a number from

0

 and up) to indicate an RS-232 serial device. Thus,

/dev/ttyS0

 and

/dev/cua0 would refer to the same physical device.

Once a Linux system is running, you can explore what I/O addresses are being used by exam-
ining the contents of the /proc/ioports file. A common way to do this is with the use of the
cat command.

cat /proc/ioports

0000-001f : dma1

0020-003f : pic1

0040-005f : timer

0060-006f : keyboard

0070-007f : rtc

00f0-00ff : fpu

0170-0177 : ide1

01f0-01f7 : ide0

0376-0376 : ide1

03c0-03df : vga+

03f6-03f6 : ide0

As with IRQs, if your system suffers from I/O port conflicts, you must reconfigure one or
more devices, as described in “Configuring Expansion Cards.” In practice, such conflicts are
rarer than IRQ conflicts.

DMA Addresses

Direct memory addressing (DMA) is an alternative method of communication to I/O ports.
Rather than have the CPU mediate the transfer of data between a device and memory, DMA
permits the device to transfer data directly, without the CPU’s attention. The result can be lower
CPU requirements for I/O activity, which can improve overall system performance.

To support DMA, the x86 architecture implements several DMA channels, each of which
can be used by a particular device. To learn what DMA channels are in use on your system,
examine the /proc/dma file:

$ cat /proc/dma

 3: parport0

 4: cascade

This output indicates that DMA channels 3 and 4 are in use. As with IRQs and I/O ports,
DMA addresses should not normally be shared. In practice, DMA address conflicts are rarer
than IRQ conflicts, so chances are you won’t run into problems. If you do, consult the upcoming
section, “Configuring Expansion Cards.”

4425.book Page 115 Thursday, July 7, 2005 5:28 PM

116 Chapter 3 � Configuring Hardware

The Real-Time Clock

The real-time clock (RTC) is the battery powered clock used to keep track of time when the sys-
tem is powered off. It’s also known as the hardware clock or the complementary metal oxide
semiconductor (CMOS) clock. Usually, the BIOS setup utility has a facility for setting the RTC.

Once running, the Linux kernel doesn’t use the RTC directly to keep track of time. Instead,
it uses the timer interrupt to maintain a software counter known as the system clock or the soft-
ware clock, which gets its initial value from the RTC at startup.

The date command displays the date and time represented by the system clock,
not the RTC. You can read and write the RTC from within Linux using hwclock.
The commands are covered in Chapter 8, “Administering the System.”

Boot Disks and Geometry Settings

Most BIOSes allow you to choose the order of the devices from which to boot, falling back to
the second entry if the first fails, the third entry if the second fails, and so on. A common order
is the first floppy (known as A: in DOS and Windows), followed by the CD-ROM, followed by
the first hard disk. With this configuration, the system will attempt to boot from each device in
turn until one works. If all the devices fail to boot, the BIOS displays an error message.

While this is a common boot sequence, it has its problems. Specifically, if somebody accidentally
leaves a floppy disk in the drive, this can prevent the system from booting. Worse, some (mostly old)
viruses are transmitted by floppy disks’ boot sectors, so this method can result in viral infection.
Using removable disks as the default boot media also opens the door to intruders who have physical
access to the computer; they need only reboot with a bootable floppy disk or CD-ROM to gain com-
plete control of your system. For these reasons, it’s better to make the first hard disk the only boot
device. (You must change this configuration when installing Linux or using an emergency boot disk
for maintenance.) Some BIOSes (most commonly on notebooks) make temporary changes easier by
providing a special key to allow a one-time change to the boot sequence. On most other computers,
to change the boot sequence, you must locate the appropriate BIOS option, change it, and reboot the
computer. It’s usually located in an Advanced menu, so look there.

Another disk option is the one for detection of disk devices. Figure 3.1 shows three disk
devices: the A: floppy disk (/dev/fd0 under Linux), a 1048MB primary master hard disk, and
a CD-ROM drive as the secondary master. In most cases, the BIOS detects and configures hard
disks and CD-ROM drives correctly. You may need to tell it what sort of floppy disk you’ve got,
though. Also, in rare circumstances, you must tell the BIOS about the hard disk’s cylinder/head/
sector (CHS) geometry.

The CHS geometry is a holdover from the early days of the x86 architecture. Figure 3.2 shows
the traditional hard disk layout, which consists of a fixed number of read/write heads that can move
across the disk surfaces (or platters). As the disk spins, each head marks out a circular track on its
platter; these tracks collectively make up a cylinder. Each track is broken down into a series of sec-
tors. Thus, any sector on a hard disk can be uniquely identified by three numbers: a cylinder number,

4425.book Page 116 Thursday, July 7, 2005 5:28 PM

Configuring the BIOS and Core Hardware 117

a head number, and a sector number. The x86 BIOS was designed to use this three-number CHS
identification code. One consequence of this configuration is that the BIOS must know how many
cylinders, heads, and sectors the disk has. Modern hard disks relay this information to the BIOS
automatically, but for compatibility with the earliest hard disks, BIOSes still enable you to set these
values manually.

The BIOS will detect only certain types of disks. Of particular importance, SCSI
disks and serial ATA disks won’t appear in the main BIOS disk detection screen.
These disks are handled by supplementary BIOSes associated with the control-
lers for these devices. Some BIOSes do provide explicit options to add SCSI
devices into the boot sequence, though, so you can give priority to either ATA
or SCSI devices. For those without these options, SCSI disks generally take sec-
ond seat to ATA disks.

CHS geometry, unfortunately, has its problems. For one thing, all but the earliest hard
disks use variable numbers of sectors per cylinder—modern disks squeeze more sectors onto
outer tracks than inner ones, fitting more data on each disk. Thus, the CHS geometry pre-
sented to the BIOS by the hard disk is a convenient lie. Worse, because of limits on the num-
bers in the BIOS and in the ATA hard disk interface, plain CHS geometry tops out at 540MB,
which is puny by today’s standards. Various patches, such as CHS geometry translation, can
be used to expand the limit to about 8GB. Today, though, the preference is to use logical
block addressing (LBA) mode. (Some sources use the expansion linear block addressing for
this acronym.) In this mode, a single unique number is assigned to each sector on the disk, and
the disk’s firmware is smart enough to read from the correct head and cylinder when given
this sector number. Modern BIOSes typically provide an option to use LBA mode, CHS trans-
lation mode, or possibly some other modes with large disks. In most cases, LBA mode is the
best choice. If you must retrieve data from very old disks, though, you might need to change
this option.

F I G U R E 3 . 2 Hard disks are built from platters, each of which is broken into tracks, which
are broken into sectors.

Pivoting arms with
read/write heads

Track
Sector

Platters

4425.book Page 117 Thursday, July 7, 2005 5:28 PM

118 Chapter 3 � Configuring Hardware

Because of variability in how different BIOSes handle CHS translation, moving
disks between computers can result in problems because of mismatched CHS
geometries claimed in disk structures and by the BIOS. Linux is usually smart
enough to work around such problems, but you may see some odd error mes-
sages in disk utilities like fdisk. If you see messages about inconsistent CHS
geometries, proceed with caution when using low-level disk utilities lest you
create an inconsistent partition table that could cause problems, particularly in
OSs that are less robust than Linux on this score.

Configuring Expansion Cards
Many hardware devices require configuration—you must set the IRQ, I/O port, and DMA
addresses used by the device. (Not all devices use all three resources, though.) Through the mid-
1990s, this process involved tedious changes to jumpers on the hardware. Today, though, most
options can be configured through software. To this end, you must know something about the
methods used to configure both ISA cards and PCI cards.

Even devices that are built into the motherboard are configured through the
same means used to configure ISA or PCI cards.

Configuring ISA Devices

Very old ISA cards are configured through jumpers on the cards. For instance, you might set one
jumper to adjust the IRQ used by the device and a second jumper to adjust its I/O port. These
settings are very device specific, so you must consult the documentation for your particular
card. Unfortunately, this process is error prone and tedious. For this reason, in the mid-1990s
a new configuration method for ISA cards was developed. Known as Plug and Play (PnP), the
idea was to create jumperless ISA cards that could be automatically configured by the OS’s driv-
ers. In practice, ISA PnP devices are usually easier to configure and manage than are jumpered
ISA devices, but ISA PnP devices do still require some configuration. Two mechanisms exist to
do this: in-kernel support in 2.4.x and later kernels and the isapnp utilities that are used in ear-
lier kernels and optionally in later ones.

Using In-Kernel PnP Support

The 2.4.x kernels added direct kernel support for the ISA PnP protocols. This support enables
kernel drivers to directly configure ISA PnP devices. To use it, you must locate and activate the
appropriate support. Figure 3.3 shows the relevant menu in a 2.6.10 kernel configuration tool;
it’s part of the Device Drivers � Plug and Play Support area. Enable both the main Plug and Play

4425.book Page 118 Thursday, July 7, 2005 5:28 PM

Configuring Expansion Cards 119

Support option and all the relevant protocols—if in doubt, activate all of them. (Chapter 6,
“The Boot Process and Scripts,” describes the basics of compiling your own kernel.) Modern
Linux distributions ship with these options enabled by default, so you shouldn’t need to adjust
it if you use the standard kernel.

Once the in-kernel PnP support option is activated, the kernel will attempt to activate and
configure PnP devices using the drivers’ default preferences, driver options, and the needs of
other devices as guides to what is possible. In most cases, this works well. If you need to adjust
a configuration, you can do so by passing options to the modules for the relevant drivers. (Chap-
ter 6 describes how to do this.)

Using Non-Kernel Utilities

If you’re using an old Linux distribution with a pre-2.4.x kernel, you must use an extra package
to manage ISA PnP devices. Indeed, even 2.4.x and later kernels permit use of this mechanism
if you prefer. The package as a whole is called isapnp, and it includes two important utilities:
pnpdump and isapnp.

Typically, you begin configuring ISA PnP devices by using pnpdump, which retrieves the cur-
rent configuration of ISA PnP devices:

pnpdump > isapnp.conf

F I G U R E 3 . 3 Linux’s in-kernel ISA PnP support requires you to activate the appropriate
options when you compile the kernel.

4425.book Page 119 Thursday, July 7, 2005 5:28 PM

120 Chapter 3 � Configuring Hardware

This command dumps the PnP configuration to the isapnp.conf file. (The isapnp utility fre-
quently uses a file called /etc/isapnp.conf as its input.) Load the isapnp.conf file into a text
editor and review it. Most lines are commented out by hash marks (#). If you see an option you
want to enable, such as an IRQ for a device, uncomment that line. You should also uncomment
the line that reads (ACT Y) for the device—this line activates the preceding configuration lines.

If your computer dual-boots between Linux and Windows, you may be able to
learn of a good configuration by booting Windows and writing down the IRQ, I/O
port, and DMA settings used by Windows. Uncomment the equivalent settings in
isapnp.conf and they’ll probably work. If you don’t dual-boot to Windows, you
may need to locate unused resources by examining /proc/interrupts, /proc/
ioports, and /proc/dma. Remember to use every installed hardware device before
accessing these files in order to ensure that all your hardware’s resources have
been activated.

Once you’ve made these changes, pass the file to the isapnp utility, which implements the
ISA PnP configuration stored in the configuration file you give it:

isapnp /etc/isapnp.conf

Once this is done, if your configuration is correct, you should be able to load the relevant ker-
nel modules and use the device, as described in Chapter 6. If your distribution relies on the
isapnp package, it should provide a startup script that calls this command so that your hard-
ware is detected automatically at boot time. This package and script is likely to be missing from
modern distributions based on the 2.4.x or 2.6.x kernels, though.

Configuring PCI Devices

The PCI bus was designed with PnP-style configuration in mind; thus, automatic configuration
of PCI devices is the rule rather than the exception. For the most part, PCI devices configure
themselves automatically and there’s no need to make any changes. You can, though, tweak
how PCI devices are detected in several ways:
� The Linux kernel has an option that affects how it detects PCI devices: Bus Options �

PCI Access Mode. This option has four values: BIOS, which uses the BIOS to do the job;
MMConfig, which uses a protocol of that name to detect PCI devices; Direct, which uses
a Linux-specific direct-detection system; and Any, which tries MMConfig followed by
Direct followed by BIOS detection. In most cases, Any is the most appropriate option; how-
ever, if your devices aren’t being detected correctly or are being assigned resources that are
causing conflicts, you might want to try experimenting with this option.

� Most BIOSes have PCI options that change the way PCI resources are allocated. Adjusting
these options may help if you run into strange hardware problems with PCI devices. These
options affect only the BIOS detection system, though, and so may work only if you select
BIOS as the PCI detection method in the kernel.

� Some Linux drivers support options that cause them to configure the relevant hardware to
use particular resources. You should consult the drivers’ documentation files for details of

4425.book Page 120 Thursday, July 7, 2005 5:28 PM

Configuring Modems 121

the options they support. You must then pass these options to the kernel using a boot loader
(as described later, in “Installing Boot Loaders”) or as kernel module options (as described
in Chapter 6).

� The setpci utility can be used to directly query and adjust PCI devices’ configurations. This
tool is most likely to be useful if you know enough about the hardware to fine-tune its low-
level configuration; it’s not often used to tweak its basic IRQ, I/O port, or DMA options.

In addition to the configuration options, you may want to check on how PCI devices are cur-
rently configured. A command for this purpose is lspci, which will display all information
about the PCI busses on your system and all devices that are connected to these busses.

Configuring Modems
Modems have long been a staple of computer communications. These devices come in various
forms and types, some of which require special hardware configuration. You may need to set
your RS-232 serial port hardware to use a conventional telephone modem. Other types of
modems support higher-speed communication over telephone or cable TV lines.

Functions of Modems

A modem is a hardware device that enables computers to communicate over ordinary telephone
lines. (Some types of modems work over other media, though.) While telephones transmit infor-
mation in the form of analog waves, computers store and manipulate digital data. A sending
modem converts the outgoing digital signal to an analog signal for transmission. This is known
as modulation. Likewise, a receiving modem converts the incoming analog signal back to digital
for the receiving computer. This is known as demodulation. Hence, the word modem is an acro-
nym for modulator/demodulator.

Despite the proliferation of high-speed DSL and cable Internet service, telephone
modems are still useful communications devices. Things you can do with your modem
include the following:

Log in to a Remote Access Service (RAS) computer or Bulletin Board System (BBS) Usually,
this activity takes the form of a terminal session similar to an old-fashioned dumb terminal and uses
a terminal communications program like minicom, kermit or cu.

Connect your computer (or network) to the Internet This uses a serial implementation of
the Internet Protocol (IP), the most common being the Point-to-Point Protocol (PPP). Others
include the Serial Line Internet Protocol (SLIP) or Compressed SLIP (CSLIP). Chapter 9, “Basic
Networking,” describes setting up a PPP connection in detail.

Configure your computer for dial-in use Modems can be used for dial-out purposes, as just
described; however, Linux can sit at the other end of this connection. Configuring Linux to
accept remote terminal access or incoming PPP connections enables you to give access to your
system from remote sites.

Send and receive faxes Most modern modems have send and receive fax capability.

4425.book Page 121 Thursday, July 7, 2005 5:28 PM

122 Chapter 3 � Configuring Hardware

Setting the RS-232 Serial Port Characteristics

There are times when you have to tell the Linux operating system more information that it can
guess from the BIOS about the RS-232 serial port that your modem uses. It may be an internal
ISA modem that isn’t PnP or it may be simply that the RS-232 serial driver is not detecting
things correctly.

Traditionally, internal modems have been RS-232 serial ports with modem
circuitry attached, so you should treat them as ordinary RS-232 serial ports.
Today, less complex software modems (aka Winmodems or Linmodems) are
more common. These modems don’t always work with Linux, as described in
the section “Winmodem Detection and Avoidance.”

When things are not working correctly, setserial is a very useful command for finding out
the settings that Linux thinks you have. An example of setserial for querying settings looks
like this:

setserial /dev/ttyS0

/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4

This shows the basic information for the RS-232 serial device, including the port and I/O
address. More information can be obtained with the -a option:

setserial -a /dev/ttyS0

/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4

 Baud_base: 115200, close_delay: 50, divisor: 0

 closing_wait: 3000

 Flags: spd_normal skip_test

You can also view the settings of multiple RS-232 serial ports. In a sample system with
two RS-232 serial ports and a third one due to an internal modem, you would use a com-
mand like this:

setserial -a /dev/ttyS[014]

/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4

/dev/ttyS1, UART: 16550A, Port: 0x02f8, IRQ: 3

/dev/ttyS4, UART: 16550A, Port: 0xdc00, IRQ: 5

You may notice that the /dev/ttyS4 device is using a non-standard I/O address and IRQ
(it’s an internal modem). If you need to change a setting, you can do so by passing it to
setserial. For example, if the real IRQ for /dev/ttyS4 was 10, you would use a com-
mand like this:

setserial /dev/ttyS4 IRQ 10

4425.book Page 122 Thursday, July 7, 2005 5:28 PM

Configuring Modems 123

For adjusting settings, setserial takes a large number of options; consult its man page for
details (that is, type man setserial). You can adjust the IRQ, the connection speed, and more.

Although setserial provides options to set IRQs and other low-level features,
these options don’t set features in the sense that the PnP tools do. Instead,
setserial tells the system how the card is already configured in case it’s been
detected incorrectly.

If your communication speed is set incorrectly, you can adjust it with a setserial command:

setserial /dev/ttyS0 baud_base 9600

This command sets the RS-232 serial port’s connect speed to 9,600 bits per second (bps). The
term baud is often used as synonymous with bps. Technically there are differences, but setserial
uses baud in various option names when bps would be more appropriate.

Most programs that use modems provide their own means to set the
modem’s speed; thus, you’re unlikely to need to use setserial to change
the modem’s speed in most configurations. A few very simple tools do
require this use, though.

Frequently, /dev/modem is a link to one of the /dev/ttySx files. This practice is intended to
simplify access to the modem; you can refer to /dev/modem rather than the actual device file
when using setserial or other modem-using commands. Do not confuse a real RS-232 serial
device file with /dev/modem; although they often work alike, /dev/modem is not guaranteed to
point to the real modem device file.

Part of the output to the setserial command is a field called uart. A Universal Asynchro-
nous Receiver/Transmitter (UART) is a controller chip that processes data coming in from and
going out of an RS-232 serial device. Any UART versions prior to the 16550 and 16550A lack
a buffer that lets you get higher communication speeds with your modems. Typical slower
UARTs are the 8250 and 16450, and it is best to keep them at a speed of 9,600bps or lower.
All modern computers’ RS-232 serial ports have at least 16550A-compatible UARTs, but you
might run into a less-capable UART on an old modem or RS-232 serial port board you’ve found
in a parts bin.

Winmodem Detection and Avoidance

Most modern internal modems are not full hardware modems—that is, they’re devices in which
some of the modem functionality is not built into the card. These modems rely on software driv-
ers that offload some of the modem duty to the main microprocessor of the computer system.
The modems are generally called Winmodems or software modems (although the term Linmo-
dems is sometimes applied when they can be made to work in Linux), and they require addi-
tional software to operate. Check http://www.linmodems.org for details.

4425.book Page 123 Thursday, July 7, 2005 5:28 PM

124 Chapter 3 � Configuring Hardware

Similarly, most USB-interfaced modems use custom chipsets and require custom drivers that
aren’t available for Linux. One major exception is USB modems that use the Communication
Device Class/Abstract Control Modem (CDC ACM) interface; these modems work in Linux.

In the case of both software modems and proprietary USB modems, the trick is identi-
fying them. Examining a box in a store, you may be hard-pressed to tell a software modem
from a hardware modem. One clue is the “requirements” list on the box. If the box specifies
that the modem works with DOS, OS/2, Linux, or other non-Windows OSs, chances are it’s
a hardware modem. If the box lists only Windows as a supported OS, chances are it’s a soft-
ware modem. (On the other hand, the manufacturer might just be reluctant to deal with
non-Windows support and so might list only Windows as a supported OS.)

If the modem is already installed in a computer, you may just need to boot the system to check
it out. If you can get the modem to respond using a standard /dev/ttySx device file, chances are
it’s a hardware modem. Information obtained from pnpdump or lspci might also provide clues—
but just because the device is detected by these tools does not mean that it’s a hardware modem.

You may also want to consult online resources. The Linmodems website contains informa-
tion on many supported and unsupported software modems, so it’s a good starting point. Your
distribution’s hardware compatibility list (usually available from your distribution’s website)
may be helpful as well.

Using Broadband Hardware

The word modem is most frequently applied to analog telephone modems; however, other
devices serve similar functions but provide faster speed. These devices, or the services they pro-
vide, are often referred to as broadband. This term refers to either high-speed remote network
access or a communications medium that can deliver multiple types of data (such as voice,
video, and digital data). The most common types of broadband hardware are as follows:

ISDN adapters The Integrated Services Digital Network (ISDN) protocol is a digital telephone
variant. In its basic form, it provides for two 64Kbps data channels plus an extra 16Kbps channel
for control signals, for a total of 144Kbps in both directions (although only 128Kbps is usable for
data)—over twice the 56Kbps a typical telephone modem provides. An ISDN adapter works
much like a conventional telephone modem but connects to an ISDN line. Some ISDN adapters
connect to an RS-232 serial port, but others are internal devices that require special Linux drivers.
(These are available in the Device Drivers � ISDN Subsystem area of the kernel configuration.)

DSL modems Digital Subscriber Line (DSL) is a term that’s applied to a wide range of connection
protocols delivered over conventional telephone lines. Depending on the variety, DSL can provide
speeds of several megabits per second (Mbps). Because of this very high speed, DSL modems don’t
usually connect through an RS-232 serial port; they use an Ethernet connection, a USB port, or an
internal (PCI) expansion slot. Ethernet-connected DSL modems can be treated just like ordinary net-
work connections, but USB-interfaced and internal DSL modems require special drivers.

Cable modems Cable modems are just like DSL modems from Linux’s point of view, although
the underlying technology is quite different. Most cable modems are external Ethernet-interfaced
devices, although some use USB ports and a few internal cable modems exist. As with DSL
modems, the external Ethernet-based devices are the simplest to configure.

4425.book Page 124 Thursday, July 7, 2005 5:28 PM

Configuring USB Devices 125

A decade ago, ISDN held great promise, and it made some headway in Europe. ISDN never
caught on in the U.S., though, and with the rise of faster forms of broadband, ISDN seems
doomed to obscurity. DSL and cable modems are both quite popular, though. If you’re shop-
ping for one of these services, be sure you get an external Ethernet-interfaced modem. This will
enable you to use a conventional Ethernet card, for which Linux drivers are plentiful. If your
provider insists on giving you an internal or USB-interfaced device, you’ll need to go hunting for
drivers, and there’s no guarantee that you’ll find them.

On the software end, ISDN modems work just like telephone modems; you run the standard
Linux PPP utilities, as described in Chapter 9, to make a connection to an Internet service pro-
vider (ISP). If you’re using an internal ISDN adapter, though, you’ll need to use the appropriate
device identifier rather than a /dev/ttySx RS-232 serial port identifier.

Some DSL and most cable modem connections work just like local network connections; you
configure your system to use a static IP address or to obtain an IP address automatically, as
described in Chapter 9. If your modem is an Ethernet-interfaced model, there’s nothing else to
it. If your modem is an internal or USB-interfaced device, though, you’ll need to consult your
driver’s documentation to learn what network device name you’ll use.

Many DSL connections don’t use standard local network protocols. Instead, they use PPP
over Ethernet (PPPoE), which is a variant of PPP designed for use over Ethernet rather than
over RS-232 serial lines. A similar protocol, PPP over ATM (PPPoA), is also used with some
internal modems. Most modern Linux distributions ship with PPPoE software, and recent ker-
nels include this support directly. You can also check for add-on packages, such as Roaring Pen-
guin’s RP-PPPoE (http://www.roaringpenguin.com/pppoe/).

Configuring USB Devices
Modern computers invariably ship with Universal Serial Bus (USB) ports, and increasing numbers
of external devices are now being produced in USB form, often replacing older interfaces as the
preferred method of connecting to a computer. This fact means you must understand something
about USB, including USB itself, Linux’s USB drivers, and Linux’s USB management tools.

USB Basics

USB is a protocol and hardware port for transferring data to and from devices. It allows for
many more (and varied) devices per interface port than either ATA or SCSI and gives better
speed than RS-232 serial and parallel ports. The USB 1.0 and 1.1 specifications allow for up to
127 devices and 12Mbps of data transfer. USB 2.0 allows for much higher transfer rates—
480Mbps, to be precise.

Data transfer speeds may be expressed in bits per second (bps) or multiples
thereof, such as megabits per second (Mbps), or in bytes per second (B/s) or
multiples thereof, such as megabytes per second (MB/s). In most cases, there
are 8 bits per byte, so multiplying or dividing by eight may be necessary if
you’re trying to compare speeds of devices that use different measures.

4425.book Page 125 Thursday, July 7, 2005 5:28 PM

126 Chapter 3 � Configuring Hardware

USB is the preferred interface method for many external devices, including printers, scanners,
mice, digital cameras, and music players. USB keyboards, Ethernet adapters, modems, speakers,
hard drives, and other devices are also available, although USB has yet to dominate these areas
as it has some others.

Most computers ship with four to eight USB ports. (A few years ago, two USB ports were
more common.) Each port can handle one device by itself, but you can use a USB hub to connect
several devices to each port. Thus, you can theoretically connect huge numbers of USB devices
to a computer. In practice, you may run into speed problems, particularly if you’re using USB
1.x for devices that tend to transfer a lot of data, such as scanners, printers, or hard drives.

If you’ve got an older computer that only supports USB 1.x and you want to
connect a high-speed USB 2.0 device, buy a separate USB 2.0 board. You can
use this board for the USB 2.0 device and either disable the onboard USB 1.x
ports or use them for slower devices.

Linux USB Drivers

Three competing controller types for USB are common:

UHCI The Universal Host Controller Interface (UHCI) is a USB 1.x controller most com-
monly found on motherboards with Intel or VIA chipsets.

OHCI The Open Host Controller Interface (OHCI) is a USB 1.x controller most commonly
found on non-Intel and non-VIA motherboard chipsets and in many add-on cards.

EHCI The Enhanced Host Controller Interface (EHCI) is the most common type of USB 2.0
controller.

Motherboards and USB add-on cards that support USB 2.0 almost always provide both
EHCI and either UHCI or OHCI hardware. Thus, you must ensure that your kernel supports
both EHCI and either UHCI or OHCI; if you load just the EHCI driver, you won’t be able to
use USB 1.x hardware, and if you omit the EHCI driver, you’ll be able to use USB 2.0 devices
only at the much lower USB 1.x speeds. Supporting both UHCI and OHCI won’t cause prob-
lems; the kernel will simply detect which one your system has and use the correct driver. In the
past, USB driver modules were called usb-uhci.o and usb-ohci.o for UHCI and OHCI,
respectively; however, with more modern kernels they’re called uhci-hcd.ko, ohci-hcd.ko,
and ehci-hcd.ko.

You can learn a great deal about your devices by examining the /proc/bus/usb/devices
file—type less /proc/bus/usb/devices to view it in the less pager, for instance. Much of
the information in this file will look like gibberish unless you’re familiar with the details of USB
implementations, but even the uninitiated can extract some useful clues. Pay particular atten-
tion to the Manufacturer, Product, and Driver items, which contain information on the man-
ufacturer, model, and driver used for the device, respectively. Note that several of the entries in
this file are for the USB controller itself. Others may belong to any USB hubs you have.

4425.book Page 126 Thursday, July 7, 2005 5:28 PM

Configuring USB Devices 127

Early Linux USB implementations required a separate driver for every USB device. In fact,
many of these drivers remain in the kernel, and some software relies on them. For instance, USB
disk storage devices use USB storage drivers that interface with Linux’s SCSI support, making
USB hard disks, removable disks, and so on look like SCSI devices. Linux is migrating, though,
toward a model in which a USB filesystem provides access to USB devices. This filesystem
appears as part of the /proc virtual filesystem. In particular, USB device information is acces-
sible from /proc/bus/usb. That’s why /proc/bus/usb/devices holds basic device informa-
tion. Subdirectories of /proc/bus/usb are given numbered names based on the USB controllers
installed on the computer, as in /proc/bus/usb/001 for the first USB controller. Software can
access files in these directories to control USB devices rather than use device files in /dev as with
most hardware devices.

If you want to know what driver is associated with a specific USB device’s /proc/bus/usb
entry, you can use the usbmodules program and its --device option:

$ usbmodules --device /proc/bus/usb/005/004

usblp

usb-storage

This example identifies the device as using the usblp and usb-storage modules, which are
used for printers and storage (disk) devices, respectively. This specific device is a multi-function
printer/scanner with an integrated media reader, so both printer and storage drivers apply to it.
Not all devices have drivers that are identified in this way; just devices with kernel-level drivers
for the devices are so identified. Devices that are accessed directly by their respective utility pro-
grams have no drivers. Sometimes, a device can be accessed both through a kernel-level driver
and through direct means. For instance, the preceding example shows no driver for the scanner
functions of the device; those are handled by direct access.

USB Manager Applications

USB can be challenging for OSs because it was designed as a hot-pluggable technology—that is,
you can connect or disconnect USB devices while the computer is powered up and working. The
Linux kernel was not originally designed with this sort of activity in mind, so the kernel relies
on external utilities to help manage matters. Two tools in particular are used for managing USB
devices: usbmgr and hotplug.

The usbmgr package (located at http://www.dotaster.com/~shuu/linux/usbmgr/) is a
program that runs in the background to detect changes on the USB bus. When it detects changes,
it loads or unloads the kernel modules that are required to handle the devices. For instance, if
you plug in a USB Zip drive, usbmgr will load the necessary USB and SCSI disk modules. This
package uses configuration files in /etc/usbmgr to handle specific devices and /etc/usbmgr/
usbmgr.conf to control the overall configuration.

With the shift from in-kernel device-specific USB drivers to the USB device filesystem (/proc/
bus/usb), usbmgr has been declining in importance. In fact, it may not be installed at all on your
system. Instead, most distributions rely on the Hotplug package (http://linux-hotplug
.sourceforge.net), which relies on kernel support added with the 2.4.x kernel series. This

4425.book Page 127 Thursday, July 7, 2005 5:28 PM

128 Chapter 3 � Configuring Hardware

system uses files stored in /etc/hotplug to control the configuration of specific USB devices. In
particular, /etc/hotplug/usb.usermap contains a database of USB device IDs and pointers
to scripts in /etc/hotplug/usb that are run when devices are plugged in or unplugged. These
scripts might change permissions on USB device files so that ordinary users can access USB hard-
ware, run commands to detect new USB disk devices, or otherwise prepare the system for a new
(or newly removed) USB device.

Configuring Sound Cards
There are two main sound systems for Linux: the Open Sound System (OSS) and the Advanced
Linux Sound Architecture (ALSA). Prior to the 2.6.x kernel series, OSS was the only sound sys-
tem built into the standard Linux kernel; ALSA was an optional add-on available from its web-
site, http://www.alsa-project.org. ALSA was added to the main Linux kernel with the
2.6.x kernel series, and OSS is now deprecated. You might find that OSS works better for you,
but in most cases ALSA is at least as good. If you have a choice, you should probably use ALSA.

A commercial variant of OSS is available from 4Front Technologies (http://
www.opensound.com). This package is fully compatible with the kernel’s stan-
dard sound system, but some of the drivers work better than the standard ker-
nel OSS drivers. It’s worth investigating if neither the kernel’s OSS nor the
ALSA drivers work for your sound card.

At the hardware level, sound cards are just like any other devices and can be configured
through tools such as isapnp or the hardware drivers. You may need to consult the documen-
tation for your particular drivers to learn about driver-specific kernel or module options.

Beyond the low-level hardware options, several command-line and GUI tools exist to help
your system detect the sound hardware and load the correct modules:

sndconfig This program was developed by Red Hat as a way to probe for a sound card and
set up appropriate configuration files. It was adopted by several other distributions, but has
since been supplanted by other tools. If your distribution still supports it, type sndconfig as
root to run the program. You can limit its actions by including the --noprobe option (which
prevents the system from probing for PnP cards) or --noautoconfig (which prevents the sys-
tem from configuring PnP cards). If you use these options, you’ll have to enter configuration
parameters manually.

Audio Devices This program, also known as system-config-soundcard or redhat-config-
soundcard, is the successor to sndconfig on Fedora and Red Hat systems. To use it, type its
name or locate its option in the default desktop menu. The result should be a dialog box similar
to the one shown in Figure 3.4. You can test the detected sound hardware by clicking Play Test
Sound. Unfortunately, this tool, like most such tools, presents little in the way of debugging or
configuration options.

4425.book Page 128 Thursday, July 7, 2005 5:28 PM

Configuring Sound Cards 129

F I G U R E 3 . 4 When they work, GUI audio configuration tools provide simplified detection
and configuration of sound cards.

YaST and YaST2 SuSE’s YaST and YaST2 tools provide a wide range of configuration
options using text-mode and GUI interfaces, respectively. In particular, the Sound option in the
Hardware area does the job; it should detect the sound card and change the necessary config-
uration files to have it work every time the system boots.

alsactl This program is less of a detection tool than it is a tool to set the sound hard-
ware’s parameters. It’s an ALSA-only tool that can read or set the values for the sound
card’s mixer (that is, its volume settings). Type alsactl store to store the current mixer
settings in its configuration file (/etc/asound.state); type alsactl restore to change
the mixer settings to the values stored in this file. Distributions with good ALSA support
generally use this command to set up ALSA’s mixer when the system boots, so setting the
volume as you like it and then typing alsactl store will restore the settings automatically
the next time you boot.

Configuring sound hardware is usually either extremely easy or extremely hard. In most
cases, tools like sndconfig, Audio Devices, or YaST will correctly detect your hardware
and get it working. Once this is done, the hardware itself is configured, although of course
you must use audio players, mixers, and other tools to play sounds, adjust the output, and
so on.

You can use the play program to test basic sound-playing capabilities. This
program plays most audio files with .wav filename extensions.

Unfortunately, sometimes the automated audio-detection and auto-configuration tools fail.
When this happens, you must figure out which driver to load and load it in some other way,
such as compiling it into your kernel or manually loading the appropriate driver module. (These
topics are covered in Chapter 6.)

4425.book Page 129 Thursday, July 7, 2005 5:28 PM

130 Chapter 3 � Configuring Hardware

Configuring SCSI Devices
The Small Computer System Interface (SCSI) is an interface standard for connecting peripheral
devices to your computer system. Typical devices include hard disks, tape drives, and CD-ROM
drives. SCSI competes with the ATA standard. In most respects, SCSI is technically superior to
ATA, but ATA is less expensive and is better supported on x86 hardware. Thus, SCSI is often used
on servers and other high-performance systems, whereas ATA is most often used on desktop sys-
tems. Like ATA, SCSI hardware comes in several varieties, so you should understand something
about the different SCSI varieties. Actually configuring SCSI devices requires knowing something
about their addressing systems and termination. Once a system with SCSI devices is booted, you
may need to identify specific devices, and of course Linux provides tools to help you do this.

Varieties of SCSI

There are many types of SCSI definitions from the commonly know SCSI-1, SCSI-2, and SCSI-3
(also known as Ultra Wide SCSI) to the often confused Fast SCSI, Wide SCSI, Fast Wide SCSI,
UltraSCSI, and more. One critically important difference between SCSI busses is the size of the
SCSI bus, which comes in 8-bit and 16-bit widths. The 8-bit SCSI variants are sometimes referred
to as Narrow SCSI, while the 16-bit versions are sometimes called Wide SCSI. A Wide SCSI bus
supports twice as much data being transferred at a time, so these varieties are faster than their
8-bit counterparts at any given bus speed. Wide SCSI also requires cables with more wires (80-pin
versus 40- or 25-pin for Narrow SCSI). Despite the additional wires, Wide SCSI cables are often
physically smaller than Narrow SCSI cables, because the connectors pack the pins in more densely.

Getting ALSA to Work

If you elect to use ALSA drivers, you may run into a problem: You’ll load the drivers and test a
sound file with play or its ALSA-specific variant, aplay. The program won’t return an error mes-
sage, but neither will it produce any sound.

The trick is that ALSA starts up with all audio channels muted by default. To fix the problem,
you must use a mixer program, such as alsamixer, to unmute the relevant channels. (You may
need to unmute several channels, such as a master channel and a PCM device.) Once this is
done, you should be able to hear sounds.

To make your changes permanent, type alsactl store. If sound is still muted when you reboot
the computer, you’ll need to modify a startup script to include a call to alsactl restore.

4425.book Page 130 Thursday, July 7, 2005 5:28 PM

Configuring SCSI Devices 131

Traditional varieties of both ATA and SCSI use parallel busses, meaning that
several signal lines run in parallel, enabling the transfer of an entire byte of data
(or more) with each exchange. Parallel busses may sound more efficient than
the alternative serial busses, in which a single bit is transferred at a time; but in
practice, timing problems in the design of parallel busses can slow things
down. Thus, both ATA and SCSI are moving toward serial designs, with Serial
ATA (SATA) and Serial Attached SCSI (SAS). In the future, these two busses
seem likely to merge, resulting in a single standard for both ATA and SCSI.

An 8-bit SCSI bus has three address lines, which allows up to 8 devices to be on that SCSI
bus (23 = 8 combinations). A 16-bit SCSI bus has 4 address lines and allows for up to 16 devices
on that SCSI bus (24 = 16 combinations). In both cases, the SCSI host adapter itself counts as
1 device, so excluding the SCSI adapter, Narrow SCSI permits up to 7 devices while Wide SCSI
supports up to 15 devices—in theory. In practice, cable length limits make it hard to fit more
than 3 to 5 devices on most varieties of SCSI. (Cable length limits vary from one variety of SCSI
to another. Consult your host adapter’s documentation for details.)

SCSI was designed with backward compatibility in mind. In theory, you can attach any type
of SCSI device to any type of SCSI host adapter. (Low-voltage differential, or LVD, SCSI is an
exception to this rule, as is the new SAS.) In practice, you’re best off sticking to devices that are
similar in protocol levels; mixing something very old (such as an old SCSI-1 CD-ROM drive)
with something new (such as the latest Ultra640 SCSI hard disk) is likely to cause problems.

SCSI hard disks aren’t detected by the standard x86 BIOS. You can still boot
from a SCSI hard disk if your SCSI host adapter has its own BIOS that supports
booting. Most high-end SCSI host adapters have this support, but low-end
SCSI host adapters don’t have BIOSes. If you use such a host adapter, you can
still attach SCSI hard disks to the adapter, and Linux can use them, but you’ll
need to boot from an ATA hard disk.

SCSI IDs

In order for the host adapter to identify and communicate with SCSI devices, each device,
including the host adapter, is given an ID number. For 8-bit SCSI these IDs are in the range 0
through to 7. For 16-bit SCSI they are numbered 0 through 15.

When SCSI was only available as an 8-bit bus, SCSI IDs were used to also indicate priority
order for attention on the bus. For this reason, SCSI ID 7 is the best choice for the SCSI host
adapter itself and all lower SCSI IDs have an increasingly lower priority. When 16-bit SCSI
devices were developed, the original 7 through to 0 priorities were kept as the high-priority IDs
and the remaining IDs from 15 through to 8 are left as the lower-priority IDs.

4425.book Page 131 Thursday, July 7, 2005 5:28 PM

132 Chapter 3 � Configuring Hardware

SCSI priorities vary from one host adapter to another. Although the system just
described applies to most host adapters, some deviate from this system.

SCSI IDs are not used to identify the corresponding device file on a Linux system. Hard
drives follow the naming of /dev/sdx (where x is a letter from a up), SCSI tapes are given /dev/
stx and /dev/nstx (where x is a number from 0 up), and SCSI CD-ROMs are /dev/scdx
(where x is a number from 0 and up).

SCSI device identification can be confusing at first, but the important thing to remember is
that the Linux device numbering (or lettering) is assigned in increasing order based on the SCSI
ID. If you had one hard disk with a SCSI ID of 2 and another hard disk with a SCSI ID of 4, they
will be assigned to /dev/sda and /dev/sdb, respectively. The real danger here is if you happen
to add a third SCSI drive and give it an ID of 0, 1, or 3. This new disk would become /dev/sda
(for IDs of 0 or 1) or /dev/sdb (for ID 3), bumping up one or both of the existing disks’ Linux
device identifiers. For this reason, it’s usually best to give hard disks the lowest possible SCSI IDs
so that you can add future disks using higher IDs.

Another complication is when you have multiple SCSI host adapters. In this case, Linux
assigns device filenames to all of the disks on the first adapter followed by all those on the sec-
ond adapter. Depending on where the drivers for the SCSI host adapters are found (compiled
directly into the kernel or loaded as modules) and how they’re loaded (for modular drivers), you
might not be able to control which adapter takes precedence.

Remember that some non-SCSI devices, such as USB disk devices, are mapped
onto the Linux SCSI subsystem. This can cause a true SCSI hard disk to be
assigned a higher value than you’d expect if you use USB devices. The same is
true for some varieties of SATA drives, because many Linux SATA drivers are
treated like SCSI drivers by the Linux kernel.

SCSI Termination

The SCSI bus is logically one-dimensional—that is, every device on the bus falls along a single
line. This bus must not fork or branch in any way. Figure 3.5 shows both good and bad SCSI
bus configurations.

Each end of the SCSI bus must be terminated. This refers to the presence of a special resis-
tor pack that prevents signals from bouncing back and forth along the SCSI chain. Several
types of SCSI termination have been developed over the years, including simple passive ter-
mination, active termination, and low-voltage differential (LVD) termination. Consult your
SCSI host adapter and SCSI devices’ manuals to learn what type of termination they require.
Remember that both ends of the SCSI chain must be terminated, but devices mid-chain must
not be terminated. The SCSI host adapter qualifies as a device, so if it’s at the end of the chain,
it must be terminated.

4425.book Page 132 Thursday, July 7, 2005 5:28 PM

Configuring SCSI Devices 133

F I G U R E 3 . 5 A SCSI bus should be a single line, with no branches or forks.

Modern SCSI devices usually include a jumper or other setting to enable or disable termina-
tion. Older internal devices use comb-shaped resister packs that you insert or remove to termi-
nate the device, and older external devices use external terminators that attach to one of the
device’s two SCSI connectors. (A few external SCSI devices are permanently terminated and
have just one SCSI connector.)

Incorrect termination often results in bizarre SCSI problems, such as an inability to detect
SCSI devices, poor performance, or unreliable operation. Similar symptoms can result from the
use of poor-quality SCSI cables or cables that are too long.

Identifying SCSI Hardware

Information on your SCSI devices is kept in the /proc/scsi/scsi file. Inspecting it will give
you a summary of the manufacturers, model numbers, SCSI IDs, and similar information for all
your SCSI devices:

$ cat /proc/scsi/scsi

Attached devices:

Host: scsi0 Channel: 00 Id: 05 Lun: 00

 Vendor: IOMEGA Model: ZIP 100 Rev: D.13

 Type: Direct-Access ANSI SCSI revision: 02

Host: scsi2 Channel: 00 Id: 00 Lun: 00

 Vendor: ATA Model: Maxtor 6Y080M0 Rev: 1.02

 Type: Direct-Access ANSI SCSI revision: 05

This example demonstrates the presence of two SCSI devices. If you examine it closely, you’ll
notice something odd: The second SCSI device is identified with a vendor code of ATA. In truth,
this is an SATA hard disk, not a SCSI disk. The driver for this device just happens to tie itself
into the SCSI subsystem, making the disk look just like a SCSI hard disk to Linux. The first disk
is a genuine SCSI disk, though. Because of this mix of devices, Linux thinks it has two SCSI host
adapters installed (scsi0 and scsi2).

Bad SCSI
configuration

Good SCSI
configuration

4425.book Page 133 Thursday, July 7, 2005 5:28 PM

134 Chapter 3 � Configuring Hardware

To further complicate matters, each SCSI device can contain multiple logical unit numbers
(LUNs). These are typically used by sophisticated devices such as RAID controllers, tape drives,
and CD-ROM units that support multiple media or other devices. In these cases, the various
LUNs will be reported along with the SCSI ID to the controller so that these devices may be
accessed individually.

Designing a Hard Disk Layout
Whether your system uses ATA or SCSI disks, you must design a disk layout for Linux. If you’re
using a system with Linux preinstalled, you may not need to deal with this task immediately;
however, sooner or later you’ll have to install Linux on a new computer or one with an existing
OS or upgrade your hard disk. The next few pages describe the x86 partitioning scheme, Linux
mount points, and common choices for a Linux partitioning scheme. The upcoming section
“Creating Partitions and Filesystems” covers the mechanics of creating partitions.

Why Partition?

The first issue with partitioning is the question of why it should be done. The answer is that par-
titioning provides a variety of advantages, including:

Multi-OS support Partitioning enables you to keep the data for different OSs separate from
each other. In fact, many OSs can’t easily co-exist on the same partition because they don’t sup-
port each other’s primary filesystems. This feature is obviously important only if you want the
computer to boot multiple OSs. It can still be handy to help maintain an emergency system,
though—you can install a single OS twice, using one installation as an emergency maintenance
tool for the first in case problems develop.

Filesystem choice By partitioning your disk, you can use different filesystems—data structures
designed to hold all the files on a partition—on each partition. Perhaps one filesystem is faster
than another and so is important for time-critical or frequently accessed files, but another might
provide accounting or backup features you want to use for users’ data files.

Disk space management By partitioning your disk, you can lock certain sets of files into a
fixed space. For instance, if you restrict users to storing files on one or two partitions, they can
fill those partitions without causing problems on other partitions, such as system partitions.
This feature can help keep your system from crashing if space runs out. On the other hand, if
you get the partition sizes wrong, it can cause lesser problems much sooner than would be the
case if you’d used fewer or no partitions.

Disk error protection Disks sometimes develop problems. These problems can be the result of
bad hardware or of errors that creep into the filesystems themselves. In either case, splitting a
disk into partitions provides some protection against such problems. If data structures on one
partition become corrupted, these errors affect only the files on that disk. This separation can
therefore protect data on other partitions and simplify data recovery.

4425.book Page 134 Thursday, July 7, 2005 5:28 PM

Designing a Hard Disk Layout 135

Security You can use different security-related mount options on different partitions. For
instance, you might mount a partition that holds critical system files read-only, preventing users
from writing to that partition. Linux’s file security options should provide similar protection,
but taking advantage of Linux filesystem mount options provides redundancy that can be help-
ful in case of an error in setting up file or directory permissions.

Backup Some backup tools work best on whole partitions. By keeping partitions small, you
may be able to back up more easily than you could if your partitions were large.

In practice, most Linux computers use several partitions, although precisely how the system
is partitioned varies from one system to another. (The upcoming section “Common Partitions
and Filesystem Layouts” describes some common possibilities.)

Types of Disk Partitions

The x86 architecture dates back to the 1980s, when a big hard disk was about 10MB in size.
In such an environment, creating lots of partitions on the disk seemed pointless, so the original
x86 partitioning scheme supported just four partitions. Today, these four partitions are known
as primary partitions. Some OSs, such as DOS and Windows, must boot from a primary par-
tition. Linux isn’t so limited, but using one or more primary partitions for some (or even all) of
Linux’s partition needs is common.

As hard disks grew larger and OSs more plentiful, the four-partition limit of the original x86
partitioning scheme became a problem. To work around the issue while maintaining backward
compatibility, the x86 partitioning scheme was expanded by using a single primary partition as
a placeholder for an arbitrary number of additional partitions. The placeholder partition is
known as an extended partition, and the partitions it contains are called logical partitions. The
x86 partitioning system supports an arbitrary number of logical partitions, but because they’re
all contained within a single extended partition, the logical partitions must all be contiguous
with one another. Figure 3.6 depicts this scheme, although the specific partition sizes, locations,
and number of partitions are arbitrary.

Under Linux, primary and extended partitions are assigned numbers from 1 to 4, as in /dev/
hda1 or /dev/sdb3 for the first primary partition on the first ATA disk or the third primary
partition on the second SCSI disk, respectively. These numbers are fixed, and numbers can be
skipped. For instance, a disk might have /dev/hda1 and /dev/hdb3, but not /dev/hda2 or
/dev/hda4.

F I G U R E 3 . 6 The x86 partitioning system uses up to four primary partitions, one of which
can be a placeholder extended partition that contains logical partitions.

Third primary
partition

First primary
partition

Second primary partition/extended partition

First logical
partition

Second logical
partition

4425.book Page 135 Thursday, July 7, 2005 5:28 PM

136 Chapter 3 � Configuring Hardware

Logical partitions are assigned numbers from 5 up, as in /dev/hda5 or /dev/sdb5. These
numbers are assigned sequentially, and numbers aren’t ordinarily skipped; if a disk has /dev/
hda6, a /dev/hda5 also exists.

For the most part, Linux doesn’t care whether a partition is primary or logical; you can use
either partition for just about any partition function in Linux. For booting the OS, you can
use either type of partition, but if you put certain Linux files on a logical partition, you’ll limit
your boot loader options. (This topic is described in more detail later in this chapter, in
“Installing Boot Loaders.”)

In addition to the distinction between primary, extended, and logical partitions, another
class of partition types is important: The x86 partition table supports partition type codes,
which are two-digit hexadecimal numbers that are assigned to specific functions. For instance,
0x06 is reserved for a certain type of File Allocation Table (FAT) partition, 0x82 denotes a
Linux swap partition, and 0x83 indicates a Linux filesystem partition. Some OSs, such as DOS
and Windows, rely on these type codes to determine which partitions they should try to access.
DOS and Windows ignore Linux partitions because of their type codes, for instance. For the
most part, though, Linux ignores partition type codes; you can try to mount any type of parti-
tion. A couple of partial exceptions to this rule exist, though:
� During installation, most Linux distributions pay attention to the partition type codes to

help them guess how the system is configured. Installers and Linux disk utilities also create
partitions with appropriate type codes set.

� Linux relies on the extended partition type codes (0x05 and 0x0f) to identify extended par-
titions. You can still try to act directly on the extended partition using various utilities, but
for the most part doing so would be a mistake.

The x86 partition table stores partition information in both CHS and LBA forms. The
partition table also records the CHS geometry for the disk. If you use a disk on just one com-
puter, no problems will result; however, if you move a disk from one computer to another,
the CHS geometry might change, which can result in confusion. Linux is usually pretty flex-
ible about this, so Linux can usually cope well with such changes. Other OSs aren’t always
so flexible, though.

Although partitioning is usually considered a hard disk tool, some other disk devices can be
partitioned. This practice is most common with certain types of removable disks. Because most
removable disks are treated just like hard disks in Linux, you can partition them as you see fit,
and in fact this practice is common with certain types of removable disks, such as Zip disks.
Other removable disks, such as CD-ROMs and magneto-optical (MO) disks, are not commonly
partitioned. Linux doesn’t support partitioning for some types of disks, such as floppy disks. If
you’re in doubt about whether to partition a particular type of removable disk, try examining
a working disk. Type fdisk -l /dev/hdb (change hdb to an appropriate device identifier) to
examine the partition table on a disk. If this command returns partition table information, other
disks of this type should probably be partitioned. The upcoming section “Partitioning a Disk”
describes how to use fdisk in more detail.

4425.book Page 136 Thursday, July 7, 2005 5:28 PM

Designing a Hard Disk Layout 137

Mount Points

Once a disk is partitioned, an OS must have some way to access the data on the partitions. In
DOS and Windows, this is done by assigning a drive letter, such as C: or D:, to each partition.
(DOS and Windows use partition type codes to decide which partitions get drive letters and
which to ignore.) Linux, though, doesn’t use drive letters; instead, Linux uses a unified directory
tree. Each partition is mounted at a mount point in that tree. A mount point is simply a directory
that’s used as a way to access the filesystem on the partition, and mounting the filesystem is the
process of linking the filesystem to the mount point.

For instance, suppose that a Linux system has three partitions: the root (/) partition, /home,
and /usr. The root partition holds the basic system files, and all other partitions are accessed
via directories on that filesystem. If /home contains users’ home directories, such as sally and
sam, those directories will be accessible as /home/sally and /home/sam once this partition is
mounted at /home. If this partition were unmounted and remounted at /users, the same direc-
tories would become accessible as /users/sally and /users/sam.

Partitions can be mounted just about anywhere in the Linux directory tree, including on
directories on the root partition as well as directories on mounted partitions. For instance, if
/home is a separate partition, you could have a /home/morehomes directory that serves as a
mount point for another partition.

Chapter 4, “Managing Files and Filesystems,” describes the commands and configuration
files that are used for mounting partitions. For now, you should only be concerned with what
constitutes a good filesystem layout (that is, what directories you should split off into their own
partitions) and how to create these partitions.

Non-x86 Partitioning Systems

Most non-x86 platforms have their own partitioning systems. Most of these systems are sim-
pler than the x86 system in that there’s no distinction between primary, extended, and logical
partitions. The basic principles of partitioning are the same across these platforms, though: The
disk is split into multiple partitions for the same reasons x86 systems are partitioned, and Linux
identifies the partitions in the same way (as /dev/hda2, for instance). Thus, at a system level,
non-x86 partitions work just like x86 partitions.

To manipulate non-x86 partitions, though, you may use different tools. Sometimes these tools
have the same name as the x86 tools, but their operational details may differ. One tool that’s
common across several platforms is GNU Parted (http://www.gnu.org/software/parted/),
which supports x86, Macintosh, and several other types of partition tables.

Linux itself can handle about a dozen different partitioning schemes, although x86 distributions
may not have the necessary support compiled by default. The File Systems � Partition Types
kernel configuration area lists the available options should you need to read disks created on
an unusual platform.

4425.book Page 137 Thursday, July 7, 2005 5:28 PM

138 Chapter 3 � Configuring Hardware

Common Partitions and Filesystem Layouts

So, what directories are commonly split off into separate partitions? Table 3.3 summarizes
some popular choices. Note that typical sizes for many of these partitions vary greatly depend-
ing on how the system is used. Therefore, it’s impossible to make recommendations on partition
size that will be universally acceptable.

T A B L E 3 . 3 Common Partitions and Their Uses

Partition

(mount point) Typical size Use

Swap (not
mounted)

1.5–2 times sys-
tem RAM size

Serves as an adjunct to system RAM; is slow, but enables the
computer to run more or larger programs.

/home 200MB–200GB Holds users’ data files. Isolating it on a separate partition
preserves user data during a system upgrade. Size depends
on number of users and their data storage needs.

/boot 5–50MB Holds critical boot files. Creating as a separate partition
allows for circumventing limitations of older BIOSes and
boot loaders on hard disks over 8GB.

/usr 500MB–6GB Holds most Linux program and data files; this is frequently
the largest partition.

/usr/local 100MB–3GB Holds Linux program and data files that are unique to this
installation, particularly those that you compile yourself.

/opt 100MB–3GB Holds Linux program and data files that are associated
with third-party packages, especially commercial ones.

/var 100MB–200GB Holds miscellaneous files associated with the day-to-day
functioning of a computer. These files are often transient
in nature. Most often split off as a separate partition when
the system functions as a server that uses the /var direc-
tory for server-related files like mail queues.

/tmp 100MB–20GB Holds temporary files created by ordinary users.

/mnt N/A /mnt isn’t itself a separate partition; rather, it or its subdi-
rectories are used as mount points for removable media
like floppies or CD-ROMs.

/media N/A Holds subdirectories that may be used as mount points for
removable media, much like /mnt or its subdirectories.

4425.book Page 138 Thursday, July 7, 2005 5:28 PM

Creating Partitions and Filesystems 139

Some directories—/etc, /bin, /sbin, /lib, and /dev—should never be placed on separate
partitions. These directories host critical system configuration files or files without which a
Linux system cannot function. For instance, /etc contains /etc/fstab, the file that specifies
what partitions correspond to what directories, and /bin contains the mount utility that’s used
to mount partitions on directories.

The 2.4.x and later kernels include support for a dedicated /dev filesystem,
which obviates the need for files in an actual /dev directory, so in some sense,
/dev can reside on a separate filesystem, although not a separate partition.

Creating Partitions and Filesystems
If you’re installing Linux on a computer, chances are it will present you with a tool to help guide you
through the partitioning process. These installation tools will create the partitions you tell them to
create or create partitions sized as the distribution’s maintainers believe appropriate. If you need to
partition a new disk you’re adding, though, or if you want to create partitions using standard Linux
tools rather than rely on your distribution’s installation tools, you must know something about the
Linux programs that accomplish this task. Partitioning really involves two tasks: creating the parti-
tions and preparing the partitions to be used. In Linux, these two tasks are usually accomplished
using separate tools, although some tools can handle both tasks simultaneously.

When to Create Multiple Partitions

One problem with splitting off lots of separate partitions, particularly for new administrators, is that
it can be difficult to settle on appropriate partition sizes. As noted in Table 3.3, the appropriate size
of various partitions can vary substantially from one system to another. For instance, a workstation
is likely to need a fairly small /var partition (say, 100MB), but a mail or news server might need a
/var partition that’s gigabytes in size. Guessing wrong isn’t fatal, but it is annoying. You’ll need to
resize your partitions (which is tedious and dangerous) or set up symbolic links between partitions
so that subdirectories on one partition can be stored on other partitions.

For this reason, I generally recommend that new Linux administrators try simple partition lay-
outs first. The root (/) partition is required, and swap is a very good idea. Beyond this, /boot can
be very helpful on hard disks of more than 8GB with older distributions or BIOSes but is seldom
needed with computers or distributions sold since 2000. An appropriate size for /home is often
relatively easy for new administrators to guess, so splitting it off generally makes sense.
Beyond this, I recommend that new administrators proceed with caution.

As you gain more experience with Linux, you may want to break off other directories into their
own partitions on subsequent installations or when upgrading disk hardware. You can use the
du command to learn how much space is used by files within any given directory.

4425.book Page 139 Thursday, July 7, 2005 5:28 PM

140 Chapter 3 � Configuring Hardware

Partitioning a Disk

The traditional Linux tool for disk partitioning is called fdisk. This tool’s name is short for
fixed disk, and the name is the same as a DOS and Windows tool that accomplishes the
same task. (When I mean to refer to the DOS/Windows tool, I capitalize its name, as in
FDISK. The Linux tool’s name is always entirely lowercase.) Both DOS’s FDISK and Linux’s
fdisk are text-mode tools to accomplish similar goals, but the two are very different in
operational details.

Although fdisk is the traditional tool, several others exist. One of these that’s gaining
in popularity is GNU Parted, which can both partition a disk and prepare the partitions for
use in a single operation. GNU Parted can also resize several partition types without losing
data. Although this operation is risky, dynamic partition resizing can save a lot of time
and effort.

Using fdisk

To use Linux’s fdisk, type the command name followed by the name of the disk device you
want to partition, as in fdisk /dev/hda to partition the primary master ATA disk. The result
is an fdisk prompt. On most modern disks, you’ll also see a note telling you that the number
of cylinders is greater than 1024:

fdisk /dev/hda

The number of cylinders for this disk is set to 7297.

There is nothing wrong with that, but this is larger than 1024,

and could in certain setups cause problems with:

1) software that runs at boot time (e.g., old versions of LILO)

2) booting and partitioning software from other OSs

 (e.g., DOS FDISK, OS/2 FDISK)

Command (m for help):

At the Command (m for help): prompt, you can type commands to accomplish various
goals:

Display the current partition table You may want to begin by displaying the current par-
tition table. To do so, type p. If you only want to display the current partition table, you
can type fdisk -l /dev/hda (or whatever the device identifier is) at a command prompt
rather than enter fdisk’s interactive mode. This command displays the partition table and
then exits.

Create a partition To create a partition, type n. The result is a series of prompts asking for
information about the partition—whether it should be a primary, extended, or logical partition;
the partition’s starting cylinder; the partition’s ending cylinder or size; and so on. The details of
what you’re asked depend in part of what’s already defined. For instance, fdisk won’t ask you

4425.book Page 140 Thursday, July 7, 2005 5:28 PM

Creating Partitions and Filesystems 141

if you want to create an extended partition if one already exists. One fdisk feature you may
find odd is that it measures partition start and end points in cylinders, not megabytes. This is a
holdover from the CHS measurements used by the x86 partition table. In most cases it’s not
a problem; you can simply pick the default start point and then specify the partition size in
megabytes or gigabytes and fdisk will compute the correct end cylinder.

Delete a partition To delete a partition, type d. The program will ask for the partition number,
which you must enter.

Change a partition’s type When you create a partition, fdisk assigns it a type code of 0x83,
which corresponds to a Linux filesystem. If you want to create a Linux swap partition or a par-
tition for another OS, you can type t to change a partition type code. The program then
prompts you for a partition number and a type code.

List partition types Several dozen partition type codes exist, so it’s easy to forget what they
are. Type l (that’s a lowercase L) at the main fdisk prompt to see a list of the most common
ones. You can also get this list by typing L when you’re prompted for the partition type when
you change a partition’s type code.

Mark a partition bootable Some OSs, such as DOS and Windows, rely on their partitions
having special bootable flags in order to boot. You can set this flag by typing a, whereupon
fdisk asks for the partition number.

Get help Type m or ? to see a summary of the main fdisk commands.

Exit Linux’s fdisk supports two exit modes. First, you can type q to exit from the program
without saving any changes; anything you do with the program is lost. This option is particu-
larly helpful if you’ve made a terrible mistake. Second, typing w writes your changes to the disk
and exits from the program.

As an example, consider deleting a primary, an extended, and a logical partition on a Zip
disk and creating a single new one in their place:

fdisk /dev/sda

Command (m for help): p

Disk /dev/sda: 100 MB, 100663296 bytes

4 heads, 48 sectors/track, 1024 cylinders

Units = cylinders of 192 * 512 = 98304 bytes

 Device Boot Start End Blocks Id System

/dev/sda1 1 510 48936 83 Linux

/dev/sda2 511 1024 49344 5 Extended

/dev/sda5 511 1024 49320 83 Linux

4425.book Page 141 Thursday, July 7, 2005 5:28 PM

142 Chapter 3 � Configuring Hardware

Command (m for help): d

Partition number (1-5): 5

Command (m for help): d

Partition number (1-5): 2

Command (m for help): d

Selected partition 1

Command (m for help): n

Command action

 e extended

 p primary partition (1-4)

p

Partition number (1-4): 4

First cylinder (1-1024, default 1): 1

Last cylinder or +size or +sizeM or +sizeK (1-1024, default 1024): 1024

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

This process begins with a p command to verify that the program is operating on the correct
disk. With this information in hand, the three existing partitions are deleted. Note that the first
two deletions ask for a partition number, but the third doesn’t, because only one partition is left.
Once this is done, n is used to create a new primary partition. This example created a partition
numbered 4 simply because this is the standard for Zip disks. The task completed, the w com-
mand is used to write the changes to disk and exit from the program. The result of this sequence
is a Zip disk with a single primary partition (/dev/sda4) marked as holding a Linux filesystem.

Using GNU Parted

GNU Parted (http://www.gnu.org/software/parted/) is a cross-platform partitioning
tool—you can use it with non-x86 partition tables as well as x86 partition tables. It also sup-
ports more features than fdisk and is easier to use in some ways. For instance, it measures disk
space in megabytes rather than cylinders. GNU Parted also supports dynamic partition resizing
for several filesystem types, which can be a great convenience. On the other hand, GNU Parted
uses its own way of referring to partitions, which can be confusing. It’s also more finicky about
mismatched CHS geometries than is fdisk. Although GNU Parted isn’t covered on the LPI
exam, knowing a bit about it can be handy.

You start GNU Parted much as you start fdisk, by typing its name followed by the device
you want to modify, as in parted /dev/hda to partition /dev/hda. The result is some brief

4425.book Page 142 Thursday, July 7, 2005 5:28 PM

Creating Partitions and Filesystems 143

introductory text followed by a (parted) prompt at which you type commands. Type ? to see
a list of commands, which are multi-character commands similar to Linux shell commands. For
instance, print displays the current partition table, mkpart creates (makes) a partition, rm
removes a partition, move moves a partition, and resize changes a partition’s size. Some of the
more advanced options only work on some filesystem types, such as Linux’s native ext2fs and
ext3fs and the DOS/Windows standby of FAT. (The next section describes filesystem types in
more detail.)

Resizing or moving a filesystem can be dangerous. If the resizing code contains
a bug or if there’s a power failure during the operation, data can be lost. Thus,
I strongly recommend you back up any important data before resizing or mov-
ing a partition. Also, resizing or moving your boot partition can render the sys-
tem unbootable until you re-install your boot loader.

Preparing a Partition for Use

Once a partition is created, you must prepare it for use. This process is often called “making a
filesystem” or “formatting a partition.” It involves writing low-level data structures to disk.
Linux can then read and modify these data structures to store files in the partition. You should
know something about the common Linux filesystems and know how to use filesystem-creation
tools to create them.

The word formatting is somewhat ambiguous. It can refer to either low-level
formatting, which involves creating a structure of sectors and tracks on the
disk media, or high-level formatting, which is creating a filesystem. Hard
disks are low-level formatted at the factory and should never need to be low-
level formatted again. Floppy disks, though, can be both low- and high-level
formatted. The tools described here can high-level format a floppy disk as
well as a hard disk. To low-level format a floppy disk, you must use the
fdformat command, as in fdformat /dev/fd0. This command cannot be used
on a hard disk, though.

Common Filesystem Types

Linux supports quite a few different filesystems, both Linux native and those intended for other
OSs. Some of the latter barely work under Linux, and even when they do work reliably, they usu-
ally don’t support all the features that Linux expects in its native filesystems. Thus, when prepar-
ing a Linux system, you’ll use one or more of its native filesystems for most or all partitions:

Ext2fs The Second Extended File System (ext2fs or ext2) is the traditional Linux native file-
system. It was created for Linux and was the dominant Linux filesystem throughout the late
1990s. Ext2fs has a reputation as a reliable filesystem. Ext2fs has since been eclipsed by the

4425.book Page 143 Thursday, July 7, 2005 5:28 PM

144 Chapter 3 � Configuring Hardware

other filesystems, but it still has its uses. In particular, ext2fs can be a good choice for a small
/boot partition, if you choose to use one, and for small (sub-gigabyte) removable disks. On
such small partitions, the size of the journal used by more advanced filesystems can be a real
problem, so the non-journaling ext2fs is a better choice. (I describe journaling in more detail
shortly.) The ext2 filesystem type code is ext2.

Ext3fs The Third Extended File System (ext3fs or ext3) is basically ext2fs with a journal
added. The result is a filesystem that’s as reliable as ext2fs but that recovers from power outages
and system crashes much more quickly. The ext3 filesystem type code is ext3.

ReiserFS This filesystem was designed from scratch as a journaling filesystem for Linux and
is a popular choice in this role. It’s particularly good at handling filesystems with large numbers
of small files (say, smaller than about 32KB) because ReiserFS uses various tricks to squeeze the
ends of files into each other’s unused spaces. This small savings can add up to a large percentage
of file sizes when files are small. You can use reiserfs as the type code for this filesystem.

JFS IBM developed the Journaled File System (JFS) for its AIX OS and later re-implemented it
on OS/2. The OS/2 version was subsequently donated to Linux. JFS is a technically sophisticated
journaling filesystem that might be of particular interest if you’re familiar with AIX or OS/2 or
want an advanced filesystem to use on a dual-boot system with one of these OSs. As you might
expect, this filesystem’s type code is jfs.

XFS Silicon Graphics (SGI) created its Extents File System (XFS) for its IRIX OS and, like
IBM, later donated the code to Linux. Like JFS, XFS is a very technically sophisticated filesys-
tem. XFS has gained a reputation for robustness, speed, and flexibility on IRIX, but some of the
XFS features that make it so flexible on IRIX aren’t supported very well under Linux. Use xfs
as the type code for this filesystem.

In practice, most administrators seem to choose ext3fs or ReiserFS as their primary file-
systems; however, JFS and XFS also work well, and some administrators prefer them. Hard
data on the merits and problems with each filesystem are difficult to come by, and even
when they do exist, they’re suspect because filesystem performance interacts with so many
other factors. For instance, as just noted, ReiserFS can cram more small files into a small
space than can other filesystems, but this advantage is not very important if you’ll be storing
mostly larger files.

If you’re using a non-x86 platform, be sure to check filesystem development on
that platform. A filesystem might be speedy and reliable on one CPU but slug-
gish and unreliable on another.

In addition to these Linux-native filesystems, you may need to deal with some others from
time to time, including the following:

FAT The File Allocation Table (FAT) filesystem is old and primitive. It is, however, ubiquitous.
It’s the only hard disk filesystem supported by DOS and Windows 9x/Me. For this reason, every
major OS understands FAT, making it an excellent filesystem for exchanging data on removable

4425.book Page 144 Thursday, July 7, 2005 5:28 PM

Creating Partitions and Filesystems 145

disks. Two major orthogonal variants of FAT exist: It varies in the size of the FAT data structure
after which the filesystem is named (12-, 16-, or 32-bit pointers), and it has variants that support
long filenames. Linux automatically detects the FAT size, so you shouldn’t need to worry about
this. To use the original FAT filenames, which are limited to eight characters with an optional
three-character extension (the so-called 8.3 filenames), use the Linux filesystem type code of
msdos. To use Windows-style long filenames, use the filesystem type code of vfat. A Linux-only
long filename system, known as umsdos, supports additional Linux features—enough that you
can actually install Linux on a FAT partition, although this practice isn’t recommended except for
certain types of emergency disks or to try Linux out on a Windows system.

NTFS The New Technology File System (NTFS) is the preferred filesystem for Windows NT/
200x/XP. Unfortunately, Linux’s NTFS support is rather rudimentary. As of the 2.6.x kernel
series, Linux can reliably read NTFS and can overwrite existing files, but Linux cannot write
new files to an NTFS partition.

If you must have good NTFS read/write support for a dual-boot system, look
into Captive (http://www.jankratochvil.net/project/captive/). This is a
tool that lets Linux use the NTFS driver delivered with Windows via an interface
module. The result is full read/write NTFS support that’s fairly reliable. Unfor-
tunately, though, Captive is no longer being maintained.

HFS and HFS+ Apple has long used the Hierarchical File System (HFS) with its Mac OS, and
Linux provides full read/write HFS support. This support isn’t as reliable as Linux’s read/write
FAT support, though, so you might want to use FAT when exchanging files with Mac users.
Apple has extended HFS to better support large hard disks and many Unix-like features with its
HFS+ (aka Extended HFS). Linux 2.6.x adds limited HFS+ support, but this filesystem is still
fairly new in the 2.6.x kernels.

ISO-9660 The standard filesystem for CD-ROMs has long been ISO-9660. This filesystem
comes in several levels. Level 1 is similar to the original FAT in that it supports only 8.3 filenames.
Levels 2 and 3 add support for longer 32-character filenames. Linux supports ISO-9660 using its
iso9660 filesystem type code. Linux’s ISO-9660 support also works with the Rock Ridge exten-
sions, which are a series of extensions to ISO-9660 to enable it to support Unix-style long filena-
mes, permissions, symbolic links, and so on. If a disc includes Rock Ridge extensions, Linux will
automatically detect and use them.

Joliet This filesystem is used much like Rock Ridge, as an extension to ISO-9660, but it’s
technically a separate filesystem. Joliet was created by Microsoft for use by Windows, so it
emphasizes Windows filesystem features rather than Unix/Linux filesystem features. Linux
supports Joliet as part of its iso9660 driver; if a disc contains Joliet but not Rock Ridge,
Linux uses the Joliet filesystem.

UDF The Universal Disc Format (UDF) is the next-generation filesystem for optical discs. It’s
commonly used on DVD-ROMs and recordable optical discs. Linux supports it, but read/write
UDF support is still in its infancy.

4425.book Page 145 Thursday, July 7, 2005 5:28 PM

146 Chapter 3 � Configuring Hardware

As a practical matter, if you’re preparing a hard disk for use with Linux, you should probably
use Linux filesystems only. If you’re preparing a disk that will be used for a dual-boot config-
uration, you may want to set aside some partitions for another filesystem type. For removable
disks, you’ll have to be the judge of what’s most appropriate. You might use ext2fs for a Linux-
only removable disk, FAT for a cross-platform disk, or ISO-9660 (perhaps with Rock Ridge and
Joliet) for a CD-R.

ISO-9660 and other optical disc filesystems are created with special tools
intended just for this purpose. Specifically, mkisofs creates an ISO-9660 file-
system (optionally with Rock Ridge, Joliet, HFS, and UDF components added),
while cdrecord writes this image to a blank CD-R.

Creating a Filesystem

Most filesystems, including all Linux-native filesystems, have Linux tools that can create the
filesystem on a partition. Typically, these tools have filenames of the form mkfs.fstype, where
fstype is the filesystem type code. These tools can also be called from a front-end tool called
mkfs; you pass the filesystem type code to mkfs using its -t option:

mkfs -t ext3 /dev/hda6

For ext2 and ext3 filesystems, the mke2fs program is often used instead of mkfs.
The mke2fs program is just another name for mkfs.ext2.

This command creates an ext3 filesystem on /dev/hda6. Depending on the filesystem, the
speed of the disk, and the size of the partition, this process can take anywhere from a fraction
of a second to a few seconds. Most filesystem-build tools support additional options, some of
which can greatly increase the time required to build a filesystem. In particular, the -c option
is supported by several filesystems. This option causes the tool to perform a bad block check—
every sector in the partition is checked to be sure it can reliably hold data. If it can’t, the sector
is marked as bad and is not used.

If you perform a bad block check and find that some sectors are bad, chances
are the entire hard disk doesn’t have long to live. Sometimes this sort of prob-
lem can result from other problems, though, such as bad cables or SCSI termi-
nation problems.

Of the common Linux filesystems, ext2fs and ext3fs provide the most options in their mkfs
tools. (In fact, these tools are one and the same; the program simply creates a filesystem with a
journal when it’s called as mkfs.ext3 or when mkfs is called with -t ext3.) You can type man
mkfs.ext2 to learn about these options, most of which deal with obscure and unimportant fea-
tures. One obscure option that does deserve mention is -m percent, which sets the reserved

4425.book Page 146 Thursday, July 7, 2005 5:28 PM

Creating Partitions and Filesystems 147

space percentage. The idea is that you don’t want the disk to completely fill up with user files;
if the disk starts getting close to full, Linux should report that the disk is full before it really is,
at least for ordinary users. This gives the root user the ability to log in and create new files, if
necessary, to help recover the system.

The ext2fs/ext3fs reserved space percentage defaults to 5 percent, which translates to quite
a lot of space on large disks. You might want to reduce this value (say, by passing -m 2 to reduce
it to 2 percent) on your root (/) filesystem and perhaps even lower (1 percent or 0 percent) on
some, such as /home. Setting -m 0 also makes sense on removable disks, which aren’t likely to
be critical for system recovery and are likely to be a bit cramped to begin with.

In addition to providing filesystem creation tools for Linux-native filesystems, Linux distri-
butions usually provide such tools for various non-Linux filesystems. The most important of
these may be for FAT. The main tool for this task is called mkdosfs, but it’s often linked to the
mkfs.msdos and mkfs.vfat names, as well. This program can automatically adjust the size of
the FAT data structure to 12 or 16 bits depending on the device size. You can override this
option with the -F fat-size option, where fat-size is the FAT size in bits—12, 16, or 32.
In fact, this option is required if you want to create a FAT-32 partition, which is a practical
necessity for any partition over 2GB in size and is usually desirable for partitions over 512MB
in size. No special options are required to create a FAT filesystem that can handle Windows-
style (VFAT) long filenames; these are created by the OS and require no special options when
the filesystem is created.

E X E R C I S E 3 . 1

Creating Filesystems

Try creating some filesystems on a spare partition or a removable disk. Even a floppy disk will
do, although you won’t be able to create journaling filesystems on a floppy disk. The following
steps assume you’re using a Zip disk, /dev/sda4; change the device specification as necessary.
Be sure to use an empty partition! Accidentally entering the wrong device filename could wipe
out your entire system!

This exercise uses a few commands that are described in more detail in Chapter 4. To create
some filesystems, follow these steps:

1. Log in as root.

2. Use fdisk to verify the partitions on your target disk by typing fdisk -l /dev/sda. You
should see a list of partitions, including the one you’ll use for your tests.

3. Verify that your test partition is not currently mounted. Type df to see the currently
mounted partitions and verify that /dev/sda4 is not among them.

4. Type mkfs -t ext2 /dev/sda4. You should see several lines of status information appear.

5. Type mount /dev/sda4 /mnt to mount the new filesystem to /mnt. (You may use another
mount point, if you like.)

4425.book Page 147 Thursday, July 7, 2005 5:28 PM

148 Chapter 3 � Configuring Hardware

Creating Swap Space

Some partitions don’t hold files. Most notably, Linux can use a swap partition, which is a par-
tition that Linux treats as an extension of memory. (Linux can also use a swap file, which is a
file that works in the same way. Both are examples of swap space.) Linux uses the partition type
code of 0x82 to identify swap space, but as with other partitions, this code is mostly a conve-
nience to keep other OSs from trying to access Linux swap partitions; Linux uses /etc/fstab
to define which partitions to use as swap space, as described in Chapter 4.

Solaris for x86 also uses a partition type code of 0x82, but in Solaris, this code
refers to a Solaris partition. If you dual-boot between Solaris and Linux, this
double meaning of the 0x82 partition type code can cause confusion. This is
particularly true when installing the OSs. You may need to use Linux’s fdisk to
temporarily change the partition type codes to keep Linux from trying to use a
Solaris partition as swap space or to keep Solaris from trying to interpret Linux
swap space as a data partition.

6. Type df /mnt to see basic accounting information on the filesystem. On a 100MB Zip disk,
you should see that 95,171 blocks are present, 13 blocks are used, and 90,244 blocks are
available. The difference between the present and available blocks is caused by the 5 per-
cent reserved space.

7. Type umount /mnt to unmount the filesystem.

8. Type mkfs -t ext2 -m 0 to create a new ext2 filesystem on the device, but without any
reserved space.

9. Repeat steps 5–7. Note that the available space has increased (to 95,158 blocks on a Zip
disk). The available space plus the used space should now total the total blocks.

10. Repeat steps 4–7, but use a filesystem type code of ext3 to create a journaling filesystem.
(This won’t be possible if you use a floppy disk.) Note how much space is consumed by
the journal.

11. Repeat steps 4–7, but use another filesystem, such as JFS or ReiserFS. Note how the file-
system creation tools differ in the information they present and in their stated amounts of
available space.

Be aware that, because of differences in how filesystems store files and allocate space, a
greater amount of available space when a filesystem is created may not translate into a greater
capacity to store files.

E X E R C I S E 3 . 1 (c o n t i n u e d)

4425.book Page 148 Thursday, July 7, 2005 5:28 PM

Installing Boot Loaders 149

Although swap space doesn’t hold a filesystem per se, and isn’t mounted in the way that file-
system partitions are mounted, swap space does require preparation similar to creation of a file-
system. This task is accomplished with the mkswap command, which can generally be used by
passing it nothing but the device identifier:

mkswap /dev/hda7

This example turns /dev/hda7 into swap space. To use the swap space, you must activate
it with the swapon command:

swapon /dev/hda7

To permanently activate swap space, you must create an entry for it in /etc/fstab, as
described in Chapter 4.

Installing Boot Loaders
Hard disks contain more than partitions and their contents. One very small part of the disk is
unusually important: The master boot record (MBR) contains the partition table and a boot
loader (also sometimes called a boot manager). The boot loader is the software that the BIOS
reads and executes when the system begins to boot. The boot loader, in turn, is responsible for
loading the Linux kernel into memory and starting it running. Thus, configuring a hard disk (or
at least, your boot hard disk) isn’t complete until the boot loader is configured. Although Linux
distributions provide semi-automated methods of configuring a boot loader during system
installation, you may need to know more, particularly if you recompile your kernel or need to
set up an advanced configuration—say, one to select between several OSs.

In practice, two boot loaders are important in Linux: the Linux Loader (LILO) and the
Grand Unified Boot Loader (GRUB). LILO is older and it’s slowly being replaced by GRUB as
the most common Linux boot loader, but LILO is still quite common.

LILO and GRUB are both x86 boot loaders. Other platforms have their own boot
loaders. Some of these are similar to LILO in operation (and may even be called
LILO), but they aren’t quite identical. You should consult platform-specific doc-
umentation if you need to reconfigure a non-x86 boot loader. An exception is
the AMD64 platform, which can use x86 boot loaders.

Boot Loader Principles

The x86 boot process can be a bit convoluted, in part because so many options are available.
Figure 3.7 depicts a typical configuration, showing a couple of possible boot paths. In both
cases, the boot process begins with the BIOS. As described earlier, in “Boot Disks and Geometry
Settings,” you tell the BIOS which boot device to use—a hard disk, a floppy disk, a CD-ROM

4425.book Page 149 Thursday, July 7, 2005 5:28 PM

150 Chapter 3 � Configuring Hardware

drive, or something else. Assuming you pick a hard disk as the primary boot device, or if higher-
priority devices aren’t bootable, the BIOS loads code from the MBR. This code is the primary
boot loader code. In theory, it could be just about anything, even a complete (if tiny) OS. In
practice, the primary boot loader does one of two things:
� It examines the partition table and locates the partition that’s marked as bootable. The pri-

mary boot loader then loads the boot sector from that partition and executes it. This boot
sector contains a secondary boot loader, which continues the process by locating an OS ker-
nel, loading it, and executing it. This option is depicted by the “A” arrows in Figure 3.7.

� It locates an OS kernel, loads it, and executes it directly. This approach bypasses the sec-
ondary boot loader entirely, as depicted by the “B” arrow in Figure 3.7.

Traditionally, x86 systems running DOS or Windows follow path “A.” DOS and Windows
9x/Me ship with very simple boot loaders that provide little in the way of options. Windows
NT/200x/XP provides a boot loader that can provide limited redirection in the second stage of
the “A” path.

Linux’s boot loaders, LILO and GRUB, are both much more flexible. They support installation
in either the MBR or the boot sector of a boot partition. Thus, you can either keep a DOS/
Windows-style primary boot loader and direct the system to boot a kernel from a boot sector
installation (path “A”) or bypass this step and load the kernel straight from the MBR (path “B”).
The first option has the advantage that another OS is unlikely to wipe out LILO or GRUB, because
it’s stored safely in a Linux partition. Windows has a tendency to write its standard MBR boot
loader when it’s installed, so if you need to re-install Windows on a dual-boot system, this action
will wipe out an MBR-based boot loader. If the boot loader is stored in a Linux partition’s boot
sector, it will remain intact, although Windows might configure the system to bypass it. To reac-
tivate the Linux boot loader, you must use a tool such as the DOS/Windows FDISK to mark the
Linux partition as the boot partition.

A drawback of placing LILO or GRUB in a partition’s boot sector is that this partition must
normally be a primary partition. (An exception is if you’re using some other boot loader in the
MBR or in another partition. If this third-party boot loader can redirect the boot process to a
logical partition, this restriction goes away.) For this reason, many people prefer putting LILO
or GRUB in the hard disk’s MBR.

In the end, both approaches work, and for a Linux-only installation, the advantages and dis-
advantages of both approaches are very minor. Some distributions don’t give you an option at
install time. For them, you should review your boot loader configuration and, when you must
add a kernel or otherwise change the boot loader, modify the existing configuration rather than
try to create an entirely new one.

F I G U R E 3 . 7 The x86 boot system provides several options for redirecting the process,
but ultimately an OS kernel is loaded.

BIOS MBR

B

Boot
sector Kernel Non-boot partition

A

4425.book Page 150 Thursday, July 7, 2005 5:28 PM

Installing Boot Loaders 151

Both LILO and GRUB can be installed to a floppy disk as well as to a hard disk.
Even if you don’t want to use a floppy disk as part of your regular boot process,
you might want to create an emergency floppy disk with LILO or GRUB. You
can then use it to boot Linux if something goes wrong with your regular LILO
or GRUB installation.

This description provides a somewhat simplified view of boot loaders. In fact, LILO and
GRUB are both much more complex than this. They can redirect the boot process to non-Linux
boot sectors and present menus that enable you to boot multiple OSs or multiple Linux kernels.
You can chain several boot loaders, including third-party boot loaders such as System Com-
mander or BootMagic. Chaining boot loaders in this way enables you to take advantage of
unique features of multiple boot loaders, such as the ability of System Commander to boot sev-
eral versions of DOS or Windows on a single partition.

Using LILO or GRUB

LILO and GRUB both have their own configuration files. For LILO, the file is /etc/lilo.conf; for
GRUB, it’s either /boot/grub/grub.conf or /boot/grub/menu.lst, depending on the distribu-
tion. Details of these configuration files’ layouts and how to edit them are covered in Chapter 6.

If your system is configured and working correctly, you should see a LILO or GRUB display
when you boot the computer. Details vary greatly from one system to another, but most modern
Linux distributions configure LILO or GRUB to display a menu with all your options. These
options may include one or more different Linux kernels, additional dual-boot options, and per-
haps options to redirect the boot process to a floppy disk or CD-ROM. You should be able to
select an option by using the keyboard’s arrow keys and then pressing the Enter key.

Older LILO setups don’t present a menu; instead, they display a prompt, usually called
boot:. You type the name of a kernel or OS definition at this prompt, then press the Enter key.
If you don’t know the names of the available options, pressing the Tab key displays them.

Both LILO and GRUB are capable of directly booting a Linux kernel or of redirecting the
boot process to another OS’s partition. GRUB was designed as a cross-platform boot loader, so
it includes direct support for some non-Linux OSs, such as FreeBSD; it can load a FreeBSD ker-
nel rather than relying on a FreeBSD boot loader to do that job. (LILO passes this duty off to
a FreeBSD boot loader.)

Another important difference between LILO and GRUB is that LILO’s options are hard-
coded in the boot sector (the MBR or the boot partition’s boot sector, depending on its config-
uration). This means that when you change the LILO configuration, you must re-install the boot
sector by typing lilo as root. GRUB, by contrast, relies on external configuration files (/boot/
grub/grub.conf or /boot/grub/menu.lst), which it reads whenever its boot sector code is
run. Thus, you can alter a GRUB configuration without reinstalling it, just by editing the con-
figuration file. In fact, it’s possible to install this file on a FAT or other non-Linux partition,
which can sometimes be handy—it enables you to edit the GRUB configuration from a DOS
boot floppy, for instance.

4425.book Page 151 Thursday, July 7, 2005 5:28 PM

152 Chapter 3 � Configuring Hardware

Summary
Most Linux tools and procedures provide a layer around the hardware, insulating you from a
need to know too many details. Nonetheless, sometimes you’ve got to dig in and configure hard-
ware directly. BIOS settings can control onboard devices such as ATA controllers and USB
ports. Plug-in cards can be configured through jumpers or through Linux tools for managing
PnP hardware. Modems have been an important component in the past, and remain important
for some users, and they have their own quirks that may need attention. USB and SCSI devices
have their own quirks, and USB in particular is quickly evolving.

Hard disks are one class of hardware that’s likely to require more attention than most. Spe-
cifically, you must know how to create partitions and prepare filesystems on those partitions.
These tasks are necessary when you install Linux (although most distributions provide GUI
tools to help guide you through this task during installation), when you add a hard disk, or
when you reconfigure an existing system. You should also know something about boot man-
agers. These programs help get Linux up and running when you turn on a computer’s power,
so they really are unusually critical to Linux operation.

Exam Essentials
Summarize BIOS essentials. The BIOS provides two important functions: First, it configures
hardware—both hardware that’s built into the motherboard and hardware on many types of
plug-in cards. Second, the BIOS begins the computer’s boot process, passing control on to the
boot loader in the MBR.

Describe what files contain important hardware information. There are many files under the
/proc filesystem. Many of these files have been mentioned throughout this chapter. Familiarize
yourself with these files, such as /proc/ioports, /proc/interrupts, /proc/dma, /proc/
bus/usb, and others.

Describe how and when to use setserial. The setserial command is used to view the set-
tings of serial devices. It is also used for changing settings when they are incorrectly guessed or
assigned by the BIOS.

Explain Linux’s model for managing USB hardware Linux uses drivers for USB controllers
(OHCI, UHCI, and EHCI). These drivers in turn are used by some device-specific drivers (for
USB disk devices, for instance) and by programs that access USB hardware via entries in the
/proc/bus/usb directory tree.

Summarize the role of other hardware configuration tools. These tools include ISA-centric
tools like isapnp and pnpdump, PCI-centric tools like lspci and setpci, and USB configura-
tion tools like usbmgr and hotplug. Don’t overlook their respective configuration files.

4425.book Page 152 Thursday, July 7, 2005 5:28 PM

Exam Essentials 153

Identify SCSI concepts. Key concepts to familiarize yourself with are SCSI bus sizes and how
that impacts the number of devices on a SCSI controller, SCSI IDs (and LUNs), and how
attention to SCSI devices is prioritized from SCSI ID 7 down to 0 and then from 15 to 8 (if
they are available).

Describe the purpose of disk partitions. Disk partitions break the disk up into a handful of
distinct parts. Each partition can be used by a different OS, can contain a different filesystem,
and is isolated from other partitions. These features improve security and safety and can greatly
simplify running a multi-OS system.

Summarize important Linux disk partitions. The most important Linux disk partition is the
root (/) partition, which is at the base of the Linux directory tree. Other possible partitions
include a swap partition, /home for home directories, /usr for program files, /var for tran-
sient system files, /tmp for temporary user files, /boot for the kernel and other critical boot
files, and more.

Describe the role of a boot loader and what boot loaders are provided with Linux. A boot
loader takes over from the BIOS, enabling the computer to load an OS kernel or direct the
boot process to another (secondary) boot loader. LILO and GRUB are the most important
Linux boot loaders.

4425.book Page 153 Thursday, July 7, 2005 5:28 PM

154 Chapter 3 � Configuring Hardware

Review Questions
1. Which device file could be a serial device?

A. /dev/ttyS0

B. /dev/ttys0

C. /dev/ttySa

D. /dev/ttysa

2. What is a common tool for configuring sound cards in Linux?

A. soundconfig

B. sndconfig

C. configsound

D. soundconf

3. What are common IRQs for serial ports? (Select all that apply.)

A. 1

B. 3

C. 4

D. 16

4. How many devices can be added to an 8-bit SCSI bus, not counting the SCSI host adapter itself?

A. 7

B. 8

C. 15

D. 16

5. What are the highest- and lowest-priority SCSI IDs on a 16-bit SCSI bus?

A. 0 and 15, respectively

B. 7 and 8, respectively

C. 7 and 0, respectively

D. 15 and 0, respectively

6. Which files contain essential system information such as IRQs, DMA channels and I/O
addresses? (Select all that apply.)

A. /proc/ioports

B. /proc/ioaddresses

C. /proc/dma

D. /proc/interrupts

4425.book Page 154 Thursday, July 7, 2005 5:28 PM

Review Questions 155

7. Where are settings for ISA Plug and Play devices stored for the isapnp command?

A. /proc/isa

B. /etc/isapnp.conf

C. /etc/pnp.conf

D. /etc/pnp/isa.conf

8. You’ve connected two devices to a computer’s USB ports: a USB 1.0 mouse and a USB 2.0
printer. Which USB driver modules are required to use both devices at the best possible speeds?
(Select all that apply.)

A. The usb1.o and usb2.o modules

B. An OHCI or UHCI module

C. The usbcore.o module

D. An EHCI module

9. What would be the equivalent RS-232 serial device filename for what Windows would refer to
as COM1?

A. /dev/ttyS0

B. /dev/ttyS1

C. /dev/lp0

D. /dev/lp1

10. USB device drivers are loaded and unloaded by helper applications. Which application may be
used by your Linux system? (Select all that apply.)

A. usbmgr

B. hotplug

C. usbmanager

D. deviceloader

11. Typing fdisk -l /dev/hda on an x86 Linux computer produces a listing of four partitions:
/dev/hda1, /dev/hda2, /dev/hda5, and /dev/hda6. Which of the following is true?

A. The disk contains two primary partitions and two extended partitions.

B. Either /dev/hda1 or /dev/hda2 is an extended partition.

C. The partition table is corrupted; there should be a /dev/hda3 and a /dev/hda4 before
/dev/hda5.

D. If you add a /dev/hda3 with fdisk, /dev/hda5 will become /dev/hda6 and /dev/hda6
will become /dev/hda7.

4425.book Page 155 Thursday, July 7, 2005 5:28 PM

156 Chapter 3 � Configuring Hardware

12. A new Linux administrator plans to create a system with separate /home, /usr/local, and /etc
partitions. Which of the following best describes this configuration?

A. The system won’t boot because /etc contains configuration files necessary to mount non-
root partitions.

B. The system will boot, but /usr/local won’t be available because mounted partitions must
be mounted directly off their parent partition, not in a subdirectory.

C. The system will boot only if the /home partition is on a separate physical disk from the
/usr/local partition.

D. The system will boot and operate correctly, provided each partition is large enough for its
intended use.

13. Which of the following directories is most likely to be placed on its own hard disk partition?

A. /bin

B. /sbin

C. /mnt

D. /home

14. You discover that an x86 hard disk has partitions with type codes of 0x0f, 0x82, and 0x83.
Assuming these type codes are accurate, what can you conclude about the disk?

A. The disk holds a partial or complete Linux system.

B. The disk holds DOS or Windows 9x/Me and Windows NT/200x/XP installations.

C. The disk holds a FreeBSD installation

D. The disk is corrupt; those partition type codes are incompatible.

15. You run Linux’s fdisk and modify your partition layout. Before exiting from the program,
though, you realize that you’ve been working on the wrong disk. What can you do to correct this
problem?

A. Nothing; the damage is done, so you’ll have to recover data from a backup.

B. Type w to exit from fdisk without saving changes to disk.

C. Type q to exit from fdisk without saving changes to disk.

D. Type u repeatedly to undo the operations you’ve made in error.

16. What does the following command accomplish?

mkfs -t ext2 /dev/sda4

A. It sets the partition table type code for /dev/sda4 to ext2.

B. It converts a FAT partition into an ext2fs partition without damaging the partition’s
existing files.

C. It creates a new ext2 filesystem on /dev/sda4, overwriting any existing filesystem and data.

D. Nothing; the -t option isn’t valid, and so it causes mkfs to abort its operation.

4425.book Page 156 Thursday, July 7, 2005 5:28 PM

Review Questions 157

17. Which of the following best summarizes the differences between DOS’s FDISK and Linux’s fdisk?

A. Linux’s fdisk is a simple clone of DOS’s FDISK but written to work from Linux rather than
from DOS or Windows.

B. The two are completely independent programs that accomplish similar goals, although
Linux’s fdisk is more flexible.

C. DOS’s FDISK uses GUI controls, whereas Linux’s fdisk uses a command-line interface, but
they have similar functionality.

D. Despite their similar names, they’re completely different tools—DOS’s FDISK handles disk
partitioning, whereas Linux’s fdisk formats floppy disks.

18. What mount point should you associate with swap partitions?

A. /

B. /swap

C. /boot

D. None

19. Which of the following correctly describes a difference between LILO and GRUB?

A. LILO includes explicit support for FreeBSD kernels; GRUB does not.

B. LILO can boot Linux kernels through the 2.4.x series; GRUB is necessary to boot 2.6.x and
later kernels.

C. You must reinstall LILO to the MBR or partition boot sector after changing its configura-
tion; this is unnecessary with GRUB.

D. LILO can chain load another OS’s boot loader, whereas GRUB can boot only Linux kernels.

20. Where should you install GRUB if your system dual-boots Linux and Windows and you don’t
want Windows to wipe out GRUB if you re-install Windows?

A. The MBR of the first hard disk

B. /var/grub.conf

C. The boot sector of a logical Linux partition

D. The boot sector of a primary Linux partition

4425.book Page 157 Thursday, July 7, 2005 5:28 PM

158 Chapter 3 � Configuring Hardware

Answers to Review Questions
1. A. Only /dev/ttyS0 is acceptable. Serial devices all have a lowercase tty and a capital S fol-

lowed by a number for their naming convention.

2. B. The sndconfig command is a Red Hat creation for helping to configure sound cards. The
other command names are fictional.

3. B, C. IRQs 3 and 4 are common defaults for serial ports. IRQ 1 is reserved for the keyboard, and
there is no IRQ 16. IRQs only go from number 0 up to number 15.

4. A. An 8-bit SCSI bus only has 8 SCSI IDs available and 1 is needed for the controller itself.
That leaves only 7 more IDs available for devices. Similarly a 16-bit SCSI bus may only have
15 devices.

5. B. Because of historical circumstances, SCSI ID 7 remains the highest priority ID. Priorities go
from 7 down to 0 and then start up again at 15 and descend to 8.

6. A, C, D. There is no /proc/ioaddresses file. All other files contain useful information; /proc/
ioports holds information on I/O ports, /proc/dma holds information on DMA port usage, and
/proc/interrupts holds information on IRQs.

7. B. The isapnp configuration file is /etc/isapnp.conf. The other options are all fictitious files.

8. B, C, D. To use the USB 1.0 mouse, you need an OHCI or UHCI module, depending on the com-
puter’s hardware. To use the USB 2.0 printer at full speed, you need the EHCI module. (The
printer will work as a USB 1.1 device with an OHCI or UHCI driver, but it will probably print
more slowly like this.) The usbcore.o module is at the very base of the USB driver hierarchy;
it’s always required. There are no standard usb1.o or usb2.o modules.

9. A. /dev/ttyS0 is the only correct answer. /dev/ttyS1 is equivalent to COM2. /dev/lp0 and
/dev/lp1 are for parallel ports and are equivalent to LPT1 and LPT2, respectively.

10. A, B. The applications usbmgr and hotplug manage this task. Options C and D do not exist.

11. B. Logical partitions are numbered from 5 and up, and they reside inside an extended partition
with a number between 1 and 4. Therefore, one of the first two partitions must be an extended
partition that houses partitions 5 and 6. Because logical partitions are numbered starting at 5,
their numbers won’t change if /dev/hda3 is subsequently added. The disk holds one primary,
one extended, and two logical partitions.

12. A. The /etc/fstab file contains the mapping of partitions to mount points, so /etc must be an
ordinary directory on the root partition, not on a separate partition. Options B and C describe
restrictions that don’t exist. Option D would be correct if /etc were not a separate partition.

4425.book Page 158 Thursday, July 7, 2005 5:28 PM

Answers to Review Questions 159

13. D. The /home directory is frequently placed on its own partition in order to isolate it from the
rest of the system and sometimes to enable use of a particular filesystem or filesystem mount
options. The /bin and /sbin directories should never be split off from the root (/) filesystem
because they contain critical executable files that must be accessible in order to do the most
basic work, including mounting filesystems. The /mnt directory often contains subdirectories
used for mounting floppy disks, CD-ROMs, and other removable media or may be used for
this purpose itself. It’s seldom used to directly access hard disk partitions, although it can be
used for this purpose.

14. A. The 0x0f partition type code is one of two valid partition type codes for an extended
partition. (The other is 0x05.) The 0x82 code refers to a Linux swap partition, while 0x83
denotes a Linux filesystem partition. Thus, it appears that this disk holds Linux partitions.
Windows 9x/Me, Windows NT/200x/XP, and FreeBSD all use other partition type codes for
their partitions. Partitions exist, in part, to enable different OSs to store their data side-by-side
on the same disk, so mixing several partition types (even for different OSs) on one disk does
not indicate disk corruption.

15. C. Linux’s fdisk doesn’t write changes to disk until you exit from the program by
typing w. Typing q exits without writing those changes, so typing q in this situation will
avert disaster. Typing w would be precisely the wrong thing to do. Typing u would do noth-
ing useful since it’s not an undo command.

16. C. The mkfs command creates a new filesystem, overwriting any existing data and therefore
making existing files inaccessible. This command does not set the partition type code in the
partition table. The -t ext2 option tells mkfs to create an ext2 filesystem; it’s a perfectly
valid option.

17. B. Although they have similar names and purposes, Linux’s fdisk is not modeled after DOS’s
FDISK. DOS’s FDISK does not have GUI controls. Linux’s fdisk does not format floppy disks.

18. D. Swap partitions aren’t mounted in the way filesystems are, so they have no associated mount
points.

19. C. Option C correctly describes the requirements for reinstallation of LILO and GRUB after
changing their configurations. Option A has it backwards; it’s GRUB with explicit support for
FreeBSD (and some other OS kernels), not LILO. Neither LILO nor GRUB is limited to booting
2.4.x and earlier Linux kernels, so option B is incorrect. Both LILO and GRUB can chain load
another boot loader, so option D is incorrect.

20. D. Placing a Linux boot loader, such as LILO or GRUB, in the boot sector of a primary Linux
partition will protect that boot loader from being deleted when you re-install Windows. (It may
still be deactivated, but can be reactivated with the DOS/Windows FDISK program.) The stan-
dard x86 MBR boot loader can’t redirect the boot process to a logical partition, so option C
won’t work unless you use a third-party MBR boot loader, in which case it would be wiped out
by a Windows re-installation. Placing GRUB in the MBR of the first hard disk would make it
vulnerable to damage by Windows re-installation. Although some distributions call their GRUB
configuration files grub.conf, this file is stored in /boot/grub, not in /var, and it’s not where
the main boot loader code itself resides.

4425.book Page 159 Thursday, July 7, 2005 5:28 PM

Chapter

4

Managing Files and
Filesystems

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.103.3 Perform basic file management (weight: 3)

�

1.104.2 Maintain the integrity of filesystems (weight: 3)

�

1.104.3 Control mounting and unmounting filesystems

(weight: 3)

�

1.104.4 Managing disk quotas (weight: 3)

�

1.104.5 Use file permissions to control access to files

(weight: 5)

�

1.104.6 Manage file ownership (weight: 1)

�

1.104.7 Create and change hard and symbolic links (weight: 1)

�

1.104.8 Find system files and place files in the correct

location (weight: 5)

4425.book Page 161 Thursday, July 7, 2005 5:28 PM

Ultimately, Linux is a collection of files stored on your hard disk.
Other disk files contain all your user data. For these reasons,
being able to manage disk filesystems and the files they contain

are important skills for any Linux system administrator. Chapter 3, “Configuring Hardware,”
described creating disk partitions and preparing filesystems on them. This chapter continues
this topic by looking more closely at filesystem maintenance and file management.

Chapter 3 includes a description of the filesystems that are available for Linux.
Although the LPI exam focuses on the Second Extended File System (ext2fs),
other filesystems—most notably the Third Extended File System (ext3fs) and
ReiserFS, but also the Extents File System (XFS) and the Journaled File System

(JFS)—have become dominant in the Linux world.

This chapter begins with an examination of filesystem health—how to track disk usage, tune
filesystems for optimal performance, check their internal consistency, and repair simple defects.
Assuming a filesystem is in good shape, you must be able to mount it to be able to use it, so that
topic is up next. Once a filesystem is mounted, you presumably want to access and manipulate the
files it contains, so I describe the commands you can use to do this. As a multi-user OS, Linux pro-
vides tools that enable you to restrict

who

 may access your files, so I describe the Linux ownership
model and the commands that are built upon this model to control file access. Furthermore, Linux
provides a system that enables you to restrict how much disk space individual users may consume,
so I describe this feature. Finally, this chapter looks at locating files—both the formal description
of where certain types of files should reside and the commands you can use to locate files.

Maintaining Filesystem Health

Filesystems can become “sick” in a variety of ways. They can become overloaded with too much
data, they can be tuned inappropriately for your system, or they can become corrupted because of
buggy drivers, buggy utilities, or hardware errors. Fortunately, Linux provides a variety of utilities
that can help you keep an eye on the status of your filesystems, tune their performance, and fix them.

Many of Linux’s filesystem maintenance tools should be run when the filesys-
tem is not mounted. Changes made by maintenance utilities while the filesys-
tem is mounted can confuse the kernel’s filesystem drivers, resulting in data
corruption. In the following pages, I mention when utilities can and cannot be

used with mounted filesystems.

4425.book Page 162 Thursday, July 7, 2005 5:28 PM

Maintaining Filesystem Health

163

Tuning Filesystems

Filesystems are basically just big data structures—they’re a means of storing data on disk in an
indexed method that makes it easy to locate the data at a later time. Like all data structures, file-
systems include design compromises. For instance, a design feature might enable you to store more
small files on disk but it might chew up disk space, thus reducing the total capacity available for
storage of larger files. In many cases, you have no choice concerning these compromises; however,
some filesystems include tools that enable you to set filesystem options that affect performance.
This is particularly true of ext2fs and the related ext3fs. Three tools are particularly important for
tuning these filesystems:

dumpe2fs

,

tune2fs

, and

debugfs

. The first of these tools provides infor-
mation about the filesystem, while the other two enable you to change tuning options.

Obtaining Ext2fs Information

You can learn a lot about your ext2 or ext3 filesystem with the

dumpe2fs

 command. This com-
mand’s syntax is fairly straightforward:

dumpe2fs [

options

]

device

The

device

 is the filesystem device file, such as

/dev/hda2

 or

/dev/sdb7

. This command
accepts several

options

, most of which are rather obscure. The most important option is prob-
ably

-h

, which causes the utility to omit information on group descriptors. (This information
is helpful in very advanced filesystem debugging, but not for basic filesystem tuning.) For infor-
mation on additional options, consult the

man

 page for

dumpe2fs

.
Unless you’re a filesystem expert and need to debug a corrupted filesystem, you’re most likely

to want to use

dumpe2fs

 with the

-h

 option. The result is about three dozen lines of output,
each specifying a particular filesystem option, like these:

Last mounted on: <not available>

Filesystem features: has_journal filetype sparse_super

Filesystem state: clean

Inode count: 657312

Block count: 1313305

Last checked: Sun May 30 23:39:16 2004

Check interval: 15552000 (6 months)

Some of these options’ meanings are fairly self-explanatory; for instance, the filesystem was
last checked (with

fsck

, described in “Checking Filesystems”) on May 30. Other options are
not so obvious; for instance, the

Inode count

 line may be puzzling. (It’s a count of the number
of

inodes

 supported by the filesystem. Each inode contains information for one file, so the num-
ber of inodes effectively limits the number of files you can store.)

The next two sections describe some of the options you might want to change. For now, you
should know that you can retrieve information on how your filesystems are currently configured
using

dumpe2fs

. You can then use this information when modifying the configuration; if your cur-
rent settings seem reasonable, you can leave them alone, but if they seem ill adapted to your config-
uration, you can change them.

4425.book Page 163 Thursday, July 7, 2005 5:28 PM

164

Chapter 4 �

Managing Files and Filesystems

Unlike many low-level disk utilities, you can safely run

dumpe2fs

 on a filesystem that’s
currently mounted. This can be handy when you’re studying your configuration to decide
what to modify.

Adjusting Tunable Filesystem Parameters

The

tune2fs

 program enables you to change many of the filesystem parameters that are
reported by

dumpe2fs

. This program’s syntax is fairly simple, but it hides a great deal of
complexity:

tune2fs [

options

]

device

The complexity arises because of the large number of

options

 that the program accepts.
Each feature that

tune2fs

 enables you to adjust requires its own option:

Adjust maximum mount count

Ext2fs and ext3fs require a periodic disk check with

fsck

.
This check is designed to prevent errors from creeping onto the disk undetected. You can adjust
the maximum number of times the disk may be mounted without a check with the

-c

mounts

option, where

mounts

 is the number of mounts. You can trick the system into thinking the file-
system has been mounted a certain number of times with the

-C

mounts

 option; this sets the
mount counter to

mounts

.

Adjust time between checks

Periodic disk checks are required based on time as well as the
number of mounts. You can set the time between checks with the

-i

interval

 option, where

interval

 is the maximum time between checks. Normally,

interval

 is a number with the
character

d

,

w

, or

m

 appended, to specify days, weeks, or months, respectively.

Add a journal

The

-j

 option adds a journal to the filesystem, effectively converting an ext2
filesystem into an ext3 filesystem. Journal management is described in more detail shortly, in
“Maintaining a Journal.”

Set the reserved blocks

The

-m

percent

 option sets the percentage of disk space that’s
reserved for use by

root

. The default value is

5

, but this is excessive on large multi-gigabyte hard
disks, so you may want to reduce it. You may want to set it to

0 on removable disks intended
to store user files. You can also set the reserved space in blocks, rather than by the percentage
of disk space, with the -r blocks option.

The options described here are the ones that are most likely to be useful. Several other
options are available; consult tune2fs’s man page for details.

As with most low-level disk utilities, you shouldn’t use tune2fs to adjust a mounted filesys-
tem. If you want to adjust a key mounted filesystem, such as your root (/) filesystem, you may
need to boot up an emergency disk system, such as the CD-ROM-based Knoppix (http://
www.knoppix.org).

Interactively Debugging a Filesystem

In addition to reviewing and changing filesystem flags with dumpe2fs and tune2fs, you can
interactively modify a filesystem’s features using debugfs. This program provides the abilities
of dumpe2fs, tune2fs, and many of Linux’s normal file-manipulation tools all rolled into one.

4425.book Page 164 Thursday, July 7, 2005 5:28 PM

Maintaining Filesystem Health 165

To use the program, type its name followed by the device filename corresponding to the file-
system you want to manipulate. You’ll then see the debugfs prompt:

debugfs /dev/hda11

debugfs:

You can type commands at this prompt to achieve specific goals:

Display filesystem superblock information The show_super_stats or stats command pro-
duces superblock information, similar to what dumpe2fs displays.

Display inode information You can display the inode data on a file or directory by typing
stat filename, where filename is the name of the file.

Undelete a file You can use debugfs to undelete a file by typing undelete inode name,
where inode is the inode number of the deleted file and name is the filename you want to give
to it. (You can use undel in place of undelete if you like.) This facility is of limited utility
because you must know the inode number associated with the deleted file. You can obtain a list
of deleted inodes by typing lsdel or list_deleted_inodes, but the list you obtain might not
provide enough clues to let you zero in on the correct one.

Extract a file You can extract a file from the filesystem by typing write internal-file
external-file, where internal-file is the name of a file in the filesystem you’re manipulating
and external-file is a filename on your main Linux system. This facility can be handy if a file-
system is badly damaged and you want to extract a critical file without mounting the filesystem.

Manipulate files Most of the commands described later in this chapter in “Managing Files”
work within debugfs. You can change your directory with cd, create lines with ln, remove a
file with rm, and so on.

Obtain help Typing list_requests, lr, help, or ? produces a summary of available commands.

Exit Typing quit exits from the program.

This summary just scratches the surface of debugfs’s capabilities. In the hands of an expert,
this program can help rescue a badly damaged filesystem or at least extract critical data from
it. To learn more, consult the program’s man page.

Although debugfs is a useful tool, it’s a potentially dangerous one. Don’t use it
on a mounted filesystem, don’t use it unless you have to, and be very careful
when using it. If in doubt, leave the adjustments to the experts.

Maintaining a Journal

The ext2 filesystem is a traditional filesystem. Although it’s a good performer, it suffers from a
major limitation: After a power failure, system crash, or other uncontrolled shutdown, the file-
system could be in an inconsistent state. The only way to safely mount the filesystem so that

4425.book Page 165 Thursday, July 7, 2005 5:28 PM

166 Chapter 4 � Managing Files and Filesystems

you’re sure its data structures are valid is to perform a full disk check on it, as described in
“Checking Filesystems.” This task can be handled automatically when the system boots, but it
still takes time—probably several minutes, or perhaps even over an hour on a large filesystem
or if the computer has many smaller filesystems.

The solution to this problem is to change to a journaling filesystem. Such a filesystem maintains
a journal, which is a data structure that describes pending operations. Prior to writing data to the
disk’s main data structures, Linux describes what it’s about to do in the journal. When the oper-
ations are complete, their entries are removed from the journal. Thus, at any given moment the
journal should contain a list of disk structures that might be undergoing modification. The result
is that, in the event of a crash or power failure, the system can examine the journal and check only
those data structures described in it. If inconsistencies are found, the system can roll back the
changes, returning the disk to a consistent state without checking every data structure in the file-
system. This greatly speeds the disk check process after power failures and system crashes, making
journaling filesystems very popular, particularly on servers and other systems that should suffer
from minimal downtime.

Four journaling filesystems are available for Linux: ext3fs, ReiserFS, XFS, and JFS. Of these,
the last three require little in the way of journal configuration. Ext3fs is a bit different, though;
it’s basically just ext2fs with a journal added. This fact means that you can add a journal to an
ext2 filesystem, converting it into an ext3 filesystem. In fact, this is what the -j option to
tune2fs does, as described earlier in “Adjusting Tunable Filesystem Parameters.”

Although using tune2fs on a mounted filesystem is generally inadvisable, it’s
safe to use its -j option on a mounted filesystem. The result is a file called
.journal that holds the journal. If you add a journal to an unmounted filesys-
tem, the journal file will be invisible.

Adding a journal alone won’t do much good, though. In order to use a journal, you must mount
the filesystem with the correct filesystem type code—ext3 rather than ext2. (The upcoming section
“Mounting and Unmounting Filesystems” describes how to do this.)

The journal, like other filesystem features, has its own set of parameters. You can set these
with the -J option to tune2fs. In particular, the size=journal-size and device=external-
journal suboptions enable you to set the journal’s size and the device on which it’s stored. By
default, the system creates a journal that’s the right size for the filesystem and stores it on the
filesystem itself.

Checking Filesystems

Tuning a filesystem is a task you’re likely to perform every once in a while—say, when making
major changes to an installation. Another task is much more common: checking a filesystem
for errors. Bugs, power failures, and mechanical problems can all cause the data structures
on a filesystem to become corrupted. The results are sometimes subtle, but if they are left
unchecked, they can cause severe data loss. For this reason, Linux includes tools for verifying
a filesystem’s integrity and for correcting any problems that might exist. The main tool you’ll

4425.book Page 166 Thursday, July 7, 2005 5:28 PM

Maintaining Filesystem Health 167

use for this purpose is called fsck. This program is actually a front end to other tools, such
as e2fsck (aka fsck.ext2 and fsck.ext3). The syntax for fsck is as follows:

fsck [-sACVRTNP] [-t fstype] [--] [fsck-options] filesystems

The LPI objectives emphasize e2fsck rather than fsck, but as fsck is the more gen-
eral tool that’s useful on more filesystems, it’s the form described in more detail in
this book.

The more common parameters to fsck enable you to perform useful actions:

Check all files The -A option causes fsck to check all the filesystems marked to be checked in
/etc/fstab. This option is normally used in system startup scripts.

Progress indication The -C option displays a text-mode progress indicator of the check pro-
cess. Most filesystem check programs don’t support this feature, but e2fsck does.

Verbose output The -V option produces verbose output of the check process.

No action The -N option tells fsck to display what it would normally do without actually
doing it.

Set the filesystem type Normally, fsck determines the filesystem type automatically. You can
force the type with the -t fstype flag, though. If used in conjunction with -A, this causes the
program to check only the specified filesystem types, even if others are marked to be checked.
If fstype is prefixed with no, then all filesystems except the specified type are checked.

Filesystem-specific options Filesystem check programs for specific filesystems often have their
own options. The fsck command passes options it doesn’t understand, or those that follow a
double dash (--), to the underlying check program. Common options include -a or -p (perform
an automatic check), -r (perform an interactive check), and -f (force a full filesystem check
even if the filesystem initially appears to be clean).

Filesystem list The final parameter is usually the name of the filesystem or filesystems being
checked, such as /dev/sda6.

Normally, you run fsck with only the filesystem device name, as in fsck /dev/sda6. You
can add options as needed, however. Check fsck’s man page for less common options.

Run fsck only on filesystems that are not currently mounted or that are mounted
in read-only mode. Changes written to disk during normal read/write operations
can confuse fsck and result in filesystem corruption.

Linux runs fsck automatically at startup on partitions that are marked for this in /etc/fstab,
as described later in the section “Permanently Mounting Filesystems.” The normal behavior of
e2fsck causes it to perform just a quick cursory examination of a partition if it’s been unmounted
cleanly. The result is that the Linux boot process isn’t delayed because of a filesystem check unless

4425.book Page 167 Thursday, July 7, 2005 5:28 PM

168 Chapter 4 � Managing Files and Filesystems

the system wasn’t shut down properly. A couple of exceptions to this rule exist, however: e2fsck
forces a check if the disk has gone longer than a certain amount of time without checks (normally
six months) or if the filesystem has been mounted more than a certain number of times since the
last check (normally 20). You can change these options using tune2fs, as described earlier in
“Adjusting Tunable Filesystem Parameters.” Therefore, you will occasionally see automatic file-
system checks of ext2fs and ext3fs partitions even if the system was shut down correctly.

Journaling filesystems do away with filesystem checks at system startup even if the system was
not shut down correctly. Nonetheless, these filesystems still require check programs to correct
problems introduced by undetected write failures, bugs, hardware problems, and the like. If you
encounter odd behavior with a journaling filesystem, you might consider unmounting it and per-
forming a filesystem check—but be sure to read the documentation first. Some Linux distributions
do odd things with some journaling filesystem check programs. Most notably, Mandriva uses a
symbolic link from /sbin/fsck.reiserfs to /bin/true. This configuration speeds system boot
times should ReiserFS partitions be marked for automatic checks, but it can be confusing if you
need to manually check the filesystem. If this is the case, run /sbin/reiserfsck to do the job.

Monitoring Disk Use

One common problem with disks is that they can fill up. To avoid this problem, you need tools
to tell you how much space your files are consuming. This is the task of the df program and du,
whose task is to summarize disk use on a partition-by-partition and directory-by-directory
basis, respectively.

Monitoring Disk Use by Partition

The df command’s syntax is as follows:

df [options] [files]

In the simplest case, you can simply type the command name to see a summary of disk space
used on all a system’s partitions:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdb10 5859784 4449900 1409884 76% /

/dev/sdb12 2086264 991468 1094796 48% /opt

/dev/hda13 2541468 320928 2220540 13% /usr/local

/dev/hda9 15361340 10174596 5186744 67% /home

/dev/hda10 22699288 13663408 7882820 64% /other/emu

/dev/hda6 101089 22613 74301 24% /boot

/dev/sdb5 1953216 1018752 934464 53% /other/shared

none 256528 0 256528 0% /dev/shm

speaker:/home 6297248 3845900 2451348 62% /speaker/home

//win/music 17156608 8100864 9055744 48% /win/mp3s

4425.book Page 168 Thursday, July 7, 2005 5:28 PM

Maintaining Filesystem Health 169

This output shows the device file associated with the filesystem, the total amount of space on
the filesystem, the used space on the filesystem, the free space on the filesystem, the percentage
of space that’s used, and the mount point (the directory from which the filesystem can be
accessed). Typically, when used space climbs above about 80 percent, you should consider
cleaning up the partition. The appropriate ceiling varies from one system and partition to
another, though. The risk is greatest on partitions that hold files that change frequently, and
particularly if large files are likely to be created on a partition, even if only temporarily.

You can fine-tune the effects of df by passing it several options. Each option modifies the df
output in a specific way:

Include all filesystems The -a or --all option includes pseudo filesystems with a size of 0 in
the output. These filesystems might include /proc, /sys, /proc/bus/usb, and others.

Use scaled units The -h or --human-readable option causes df to scale and label its units;
for instance, instead of reporting a partition as having 5859784 blocks, it reports the size as
5.6G (for 5.6GB). The -H and --si options have a similar effect, but they use power-of-ten
(1,000, 1,000,000, and so on) units rather than power-of-two (1,024, 1,048,576, and so on)
units. The -k (--kilobytes) and -m (--megabytes) options force output in these units.

Summarize inodes By default, df summarizes available and used disk space. You can instead
receive a report on available and used inodes by passing the -i or --inodes option. This infor-
mation can be helpful if a partition has very many small files, which can deplete available inodes
sooner than they deplete available disk space.

The -i option works well for ext2, ext3, XFS, and some other filesystems that
create a fixed number of inodes when the filesystem is created. Other filesys-
tems, such as ReiserFS, create inodes dynamically, rendering the -i option
meaningless.

Local filesystems only The -l or --local option causes df to omit network filesystems. This
can speed up operation.

Display filesystem type The -T or --print-type option adds the filesystem type to the infor-
mation df displays.

Limit by filesystem type The -t fstype or --type=fstype option displays only information
on filesystems of the specified type. The -x fstype or --exclude-type=fstype option has the
opposite effect; it excludes filesystems of the specified type from the report.

This list is incomplete; consult df’s man page for details about more options. In addition to
these options, you can specify one or more files to df. When you do this, the program restricts
its report to the filesystem on which the specified file or directory exists. For instance, to learn
about the disk space used on the /home partition, you could type df /home. Alternatively, you
can give a device filename, as in df /dev/hda9.

4425.book Page 169 Thursday, July 7, 2005 5:28 PM

170 Chapter 4 � Managing Files and Filesystems

Monitoring Disk Use by Directory

The df command is helpful for finding out which partitions are in danger of becoming over-
loaded, but once you’ve obtained this information, you may need to fine-tune the diagnosis and
track down the directories and files that are chewing up disk space. The tool for this task is du,
which has a syntax similar to that of df:

du [options] [directories]

This command searches directories you specify and reports how much disk space each is con-
suming. This search is recursive, so you can learn how much space the directory and all its subdi-
rectories consume. The result can be a very long listing if you specify directories with many files, but
several options can reduce the size of this output. Others can perform other helpful tasks as well:

Summarize files as well as directories Ordinarily, du reports on the space used by the files in
directories but not the space used by individual files. Passing the -a or --all option causes du
to report on individual files as well.

Compute a grand total Adding the -c or --total option causes du to add a grand total to the
end of its output.

Use scaled units The -h or --human-readable option causes du to scale and label its units;
for instance, instead of reporting the total disk space used as 5859784 blocks, it reports the size
as 5.6G (for 5.6GB). The -H and --si options have a similar effect, but they use power-of-ten
(1,000, 1,000,000, and so on) units rather than power-of-two (1,024, 1,048,576, and so on)
units. The -k (--kilobytes) and -m (--megabytes) options force output in these units.

Count hard links Ordinarily, du counts files that appear multiple times as hard links only
once. This reflects true disk space used, but sometimes you might want to count each link inde-
pendently (for instance, if you’re creating a CD-R and the file will actually be stored once for
each link). To do so, include the -l (that’s a lowercase L) or --count-links option.

Limit depth The --max-depth=n option limits the report to n levels. (The subdirectories’ con-
tents are counted even if they aren’t reported, though.)

Summarize If you don’t want a line of output for each subdirectory in the tree, pass the -s or
--summarize option, which limits the report to those files and directories you specify on the
command line. This option is equivalent to --max=depth=0.

Limit to one filesystem The -x or --one-file-system option limits the report to the current
filesystem. If another filesystem is mounted within the tree you want summarized, its contents
are not included in the report.

This list is incomplete; you should consult du’s man page for information on additional options.
As an example of du in action, consider using it to discover which of your users is consuming the
most disk space in /home. Chances are you’re not concerned with the details of which subdirec-
tories within each home directory is using the space, so you’ll pass the -s option to the program:

du -s /home/*

12 /home/ellen

4425.book Page 170 Thursday, July 7, 2005 5:28 PM

Mounting and Unmounting Filesystems 171

35304 /home/freddie

1760 /home/jennie

12078 /home/jjones

0 /home/lost+found

10110324 /home/mspiggy

In this example, the wildcard character (*) stands in for all the directories in /home, thus pro-
ducing summaries for all of these subdirectories. (For more on this topic, consult the upcoming
section “File Naming and Wildcard Expansion Rules.”) Clearly, mspiggy (or whoever owns the
/home/mspiggy directory) is the biggest disk space user—or at least, that directory’s contents
are consuming the most space. You could investigate further, say by typing du -s /home/
mspiggy/* to learn where the disk space is being used within the /home/mspiggy directory. In
the case of user files, if this space consumption is a problem, you might want to contact this user
instead of trying to clean it up yourself.

Many types of files shouldn’t simply be deleted. For instance, most program
files should be removed via the system’s package management system, if you
decide to remove them. (This topic is covered in Chapter 2, “Managing Soft-
ware.”) If you’re not sure what a file is or how it should be removed, don’t
delete it—try a Web search, type man filename, or otherwise research it to fig-
ure out what it is.

Mounting and Unmounting Filesystems
Maintaining filesystems is necessary, but the whole reason filesystems exist is to store files—in
other words, to be useful. Under Linux, filesystems are most often used by being mounted—that
is, associated with a directory. This task can be accomplished on a one-time basis by using tools
such as mount (and then unmounted with umount) or persistently across reboots by editing the
/etc/fstab file.

Temporarily Mounting or Unmounting Filesystems

Linux provides the mount command to mount a filesystem to a mount point. The umount com-
mand reverses this process. (Yes, umount is spelled correctly; it’s missing the first n.) In practice,
using these commands are usually not too difficult, but they support a large number of options.

Syntax and Parameters for mount

The syntax for mount is as follows:

mount [-alrsvw] [-t fstype] [-o options] [device] [mountpoint]

4425.book Page 171 Thursday, July 7, 2005 5:28 PM

172 Chapter 4 � Managing Files and Filesystems

Common parameters for mount support a number of features:

Mount all filesystems The -a parameter causes mount to mount all the filesystems listed in the
/etc/fstab file, which specifies the most-used partitions and devices. The upcoming section
“Permanently Mounting Filesystems” describes this file’s format.

Mount read-only The -r parameter causes Linux to mount the filesystem read-only, even if
it’s normally a read/write filesystem.

Verbose output As with many commands, -v produces verbose output—the program pro-
vides comments on operations as they occur.

Mount read/write The -w parameter causes Linux to attempt to mount the filesystem for both
read and write operations. This is the default for most filesystems, but some experimental drivers
default to read-only operation.

Filesystem type specification Use the -t fstype parameter to specify the filesystem type.
Common filesystem types are ext2 (for ext2fs), ext3 (for ext3fs), reiserfs (for ReiserFS), jfs
(for JFS), xfs (for XFS), vfat (for FAT with VFAT long filenames), msdos (for FAT using only
short DOS filenames), iso9660 (for CD-ROM filesystems), nfs (for NFS network mounts),
smbfs (for SMB/CIFS network shares), and cifs (a newer driver for SMB/CIFS network
shares). Linux supports many others. If this parameter is omitted, Linux will attempt to auto-
detect the filesystem type.

Linux requires support in the kernel or as a kernel module to mount a filesys-
tem of a given type. If this support is missing, Linux will refuse to mount the
filesystem in question.

Additional options You can add many options using the -o parameter. Many of these are file-
system specific.

Device The device is the device filename associated with the partition or disk device, such as
/dev/hda4, /dev/fd0, or /dev/cdrom. This parameter is usually required, but it may be omit-
ted under some circumstances, as described shortly.

Mount point The mountpoint is the directory to which the device’s contents should be attached.
As with device, it’s usually required, but it may be omitted under some circumstances.

The preceding list of mount parameters isn’t comprehensive; consult the mount man page for
some of the more obscure options. The most common applications of mount use few parameters
because Linux generally does a good job of detecting the filesystem type and the default param-
eters work reasonably well. For instance, consider this example:

mount /dev/sdb7 /mnt/shared

This command mounts the contents of /dev/sdb7 on /mnt/shared, auto-detecting the file-
system type and using the default options. Ordinarily, only root may issue a mount command;
however, if /etc/fstab specifies the user, users, or owner option, an ordinary user may mount
a filesystem using a simplified syntax in which only the device or mount point is specified, but not

4425.book Page 172 Thursday, July 7, 2005 5:28 PM

Mounting and Unmounting Filesystems 173

both. For instance, a user might type mount /mnt/cdrom to mount a CD-ROM if /etc/fstab
specifies /mnt/cdrom as its mount point and uses the user, users, or owner option.

Many Linux distributions ship with auto-mounter support, which causes the
OS to automatically mount removable media when they’re inserted. In GUI
environments, a file browser may also open on the inserted disk. In order to
eject the disk, the user will need to unmount the filesystem by using umount, as
described shortly, or by selecting an option in the desktop environment.

When Linux mounts a filesystem it ordinarily records this fact in /etc/mtab. This file has a
format similar to that of /etc/fstab and is stored in /etc, but it’s not a configuration file that
you should edit. You might examine this file to determine what filesystems are mounted, though.
(The df command, described in more detail in “Monitoring Disk Use by Partition,” is another
way to learn what filesystems are mounted.)

Options for mount

When you do need to use special parameters, it’s usually to add filesystem-specific options.
Table 4.1 summarizes the most important filesystem options. Some of these are meaningful only
in the /etc/fstab file.

T A B L E 4 . 1 Important Filesystem Options for the mount Command

Option Supported Filesystems Description

defaults All Causes the default options for this filesystem to be
used. It’s used primarily in the /etc/fstab file to
ensure that there’s an options column in the file.

loop All Causes the loopback device for this mount to be
used. Allows you to mount a file as if it were a
disk partition. For instance, mount -t vfat -o
loop image.img /mnt/image mounts the file
image.img as if it were a disk.

auto or noauto All Mounts or does not mount the filesystem at boot
time or when root issues the mount -a command.
The default is auto, but noauto is appropriate for
removable media. Used in /etc/fstab.

user or nouser All Allows or disallows ordinary users to mount the
filesystem. The default is nouser, but user is often
appropriate for removable media. Used in /etc/
fstab. When included in this file, user allows users
to type mount /mountpoint (where /mountpoint is
the assigned mount point) to mount a disk. Only the
user who mounted the filesystem may unmount it.

4425.book Page 173 Thursday, July 7, 2005 5:28 PM

174 Chapter 4 � Managing Files and Filesystems

users All Similar to user, except that any user may
unmount a filesystem once it’s been mounted.

owner All Similar to user, except that the user must own
the device file. Some distributions, such as Red
Hat, assign ownership of some device files (such
as /dev/fd0 for the floppy disk) to the console
user, so this can be a helpful option.

remount All Changes one or more mount options without
explicitly unmounting a partition. To use this
option, you issue a mount command on an
already-mounted filesystem but with remount
along with any options you want to change. This
feature can be used to enable or disable write
access to a partition, for example.

ro All Specifies a read-only mount of the filesystem.
This is the default for filesystems that include
no write access and for some with particularly
unreliable write support.

rw All read/write
filesystems

Specifies a read/write mount of the filesystem.
This is the default for most read/write filesystems.

uid=value Most filesystems that
don’t support Unix-style
permissions, such as
vfat, hpfs, ntfs, and hfs

Sets the owner of all files. For instance, uid=500
sets the owner to whoever has Linux user ID 500.
(Check Linux user IDs in the /etc/passwd file.)

gid=value Most filesystems that
don’t support Unix-style
permissions, such as
vfat, hpfs, ntfs, and hfs

Works like uid=value, but sets the group of all
files on the filesystem. You can find group IDs in
the /etc/group file.

umask=value Most filesystems that
don’t support Unix-style
permissions, such as
vfat, hpfs, ntfs, and hfs

Sets the umask for the permissions on files. value
is interpreted in binary as bits to be removed from
permissions on files. For instance, umask=027
yields permissions of 750, or –rwxr-x---. Used in
conjunction with uid=value and gid=value, this
option lets you control who can access files on
FAT, HPFS, and many other foreign filesystems.

T A B L E 4 . 1 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

4425.book Page 174 Thursday, July 7, 2005 5:28 PM

Mounting and Unmounting Filesystems 175

Some filesystems support additional options that aren’t described here. The man page for mount
covers some of these, but you may need to look to the filesystem’s documentation for some file-
systems and options. This documentation may appear in /usr/src/linux/Documentation/
filesystems or /usr/src/linux/fs/fsname, where fsname is the name of the filesystem.

Using umount

The umount command is simpler than mount. The basic umount syntax is as follows:

umount [-afnrv] [-t fstype] [device | mountpoint]

Most of these parameters have meanings similar to their meanings in mount, but some dif-
ferences deserve mention:

Unmount all Rather than unmount partitions listed in /etc/fstab, the -a option causes
the system to attempt to unmount all the partitions listed in /etc/mtab, the file that holds
information on mounted filesystems. On a normally running system, this operation is likely
to succeed only partly because it won’t be able to unmount some key filesystems, such as the
root partition.

Force unmount You can tell Linux to force an unmount operation that might otherwise fail
with the -f option. This feature is sometimes helpful when unmounting NFS mounts shared by
servers that have become unreachable.

Fall back to read-only The -r option tells umount that if it can’t unmount a filesystem, it
should attempt to remount it in read-only mode.

conv=code Most filesystems used
on Microsoft and Apple
OSs: msdos, umsdos, vfat,
hpfs, hfs

If code is b or binary, Linux doesn’t modify the
files’ contents. If code is t or text, Linux auto-
converts files between Linux-style and DOS- or
Macintosh-style end-of-line characters. If code is
a or auto, Linux applies the conversion unless the
file is a known binary file format. It’s usually best
to leave this at its default value of binary because
file conversions can cause serious problems for
some applications and file types.

norock iso9660 Disables Rock Ridge extensions for ISO-9660
CD-ROMs.

nojoliet iso9660 Disables Joliet extensions for ISO-9660 CD-ROMs.

T A B L E 4 . 1 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

4425.book Page 175 Thursday, July 7, 2005 5:28 PM

176 Chapter 4 � Managing Files and Filesystems

Unmount partitions of a specific filesystem type The -t fstype option tells the system to
unmount only partitions of the specified type. You can list multiple filesystem types by separat-
ing them with commas.

The device and mount point You need to specify only the device or only the mountpoint,
not both.

As with mount, normal users cannot ordinarily use umount. The exception is if the partition
or device is listed in /etc/fstab and specifies the user, users, or owner option, in which case
normal users can unmount the device. (In the case of user, only the user who mounted the par-
tition may unmount it; in the case of owner, the user issuing the command must also own the
device file, as with mount.) These options are most useful for removable-media devices.

Be cautious when removing floppy disks. Linux caches accesses to floppies,
which means that data may not be written to the disk until some time after a
write command. Because of this, it’s possible to corrupt a floppy by ejecting the
disk, even when the drive isn’t active. You must always issue a umount com-
mand before ejecting a mounted floppy disk. This isn’t an issue for most non-
floppy removable media because Linux can lock their eject mechanisms, pre-
venting this sort of problem. Another way to write the cache to disk is to use the
sync command, but because this command does not fully unmount a filesys-
tem, it’s not really a substitute for umount.

Permanently Mounting Filesystems

The /etc/fstab file controls how Linux provides access to disk partitions and removable
media devices. Linux supports a unified directory structure in which every disk device (partition
or removable disk) is mounted at a particular point in the directory tree. For instance, you might
access a floppy disk at /mnt/floppy. The root of this tree is accessed from /. Directories off this
root may be other partitions or disks, or they may be ordinary directories. For instance, /etc
should be on the same partition as /, but many other directories, such as /home, may correspond
to separate partitions. The /etc/fstab file describes how these filesystems are laid out. (The
filename fstab is an abbreviation for filesystem table.)

The /etc/fstab file consists of a series of lines that contain six fields each; the fields are sep-
arated by one or more spaces or tabs. A line that begins with a hash mark (#) is a comment, and
is ignored. Listing 4.1 shows a sample /etc/fstab file.

Listing 4.1: Sample /etc/fstab File

#device mount point filesystem options dump fsck

/dev/hda1 / ext3 defaults 1 1

LABEL=/home /home reiserfs defaults 0 0

/dev/hdb5 /windows vfat uid=500,umask=0 0 0

/dev/hdc /mnt/cdrom iso9660 users,noauto 0 0

4425.book Page 176 Thursday, July 7, 2005 5:28 PM

Mounting and Unmounting Filesystems 177

/dev/fd0 /mnt/floppy auto users,noauto 0 0

server:/home /other/home nfs users,exec 0 0

//winsrv/shr /other/win smbfs users,credentials=/etc/creds 0 0

/dev/hda4 swap swap defaults 0 0

The meaning of each field in this file is as follows:

Device The first column specifies the mount device. These are usually device filenames that
reference hard disks, floppy drives, and so on. Some distributions, such as Red Hat, have taken
to specifying partitions by their labels, as in the LABEL=/home entry in Listing 4.1. When Linux
encounters such an entry, it tries to find the partition whose filesystem has the specified name
and mount it. This practice can help reduce problems if partition numbers change, but many
filesystems lack these labels. It’s also possible to list a network drive, as in server:/home,
which is the /home export on the computer called server.

Mount point The second column specifies the mount point; in the unified Linux filesystem,
this is where the partition or disk will be mounted. This should usually be an empty directory
in another filesystem. The root (/) filesystem is an exception. So is swap space, which is indi-
cated by an entry of swap.

Filesystem type The filesystem type code is the same as the type code used to mount a filesys-
tem with the mount command. You can use any filesystem type code you can use directly with
the mount command. A filesystem type code of auto lets the kernel auto-detect the filesystem
type, which can be a convenient option for removable media devices. Auto-detection doesn’t
work with all filesystems, though.

Mount options Most filesystems support several mount options, which modify how the ker-
nel treats the filesystem. You may specify multiple mount options, separated by commas. For
instance, uid=500,umask=0 for /windows in Listing 4.1 sets the user ID (owner) of all files to
500 and sets the umask to 0. (User IDs and umasks are covered later in this chapter.) Table 4.1
summarizes the most common mount options. Type man mount or consult filesystem-specific
documentation to learn more.

Backup operation The next-to-last field contains a 1 if the dump utility should back up a par-
tition or a 0 if it should not. If you never use the dump backup program, this option is essentially
meaningless. (The dump program is a common backup tool, but it’s by no means the only one.)

Filesystem check order At boot time, Linux uses the fsck program to check filesystem integrity.
The final column specifies the order in which this check occurs. A 0 means that fsck should not
check a filesystem. Higher numbers represent the check order. The root partition should have a
value of 1, and all others that should be checked should have a value of 2. Some filesystems, such
as ReiserFS, should not be automatically checked and so should have values of 0.

If you add a new hard disk or have to repartition the one you’ve got, you’ll probably need
to modify /etc/fstab. You might also need to edit it to alter some of its options. For instance,
setting the user ID or umask on Windows partitions mounted in Linux may be necessary to let
ordinary users write to the partition.

4425.book Page 177 Thursday, July 7, 2005 5:28 PM

178 Chapter 4 � Managing Files and Filesystems

The credentials option for the /other/win mount point in Listing 4.1 deserves greater
elaboration. Ordinarily, most SMB/CIFS shares require a username and password as a means
of access control. Although you can use the username=name and password=pass options to
smbfs or cifs, these options are undesirable, particularly in /etc/fstab, because they leave
the password vulnerable to discovery—anybody who can read /etc/fstab can read the pass-
word. The credentials=file option provides an alternative—you can use it to point Linux
at a file that holds the username and password. This file has labeled lines:

username=hschmidt

password=yiW7t9Td

Of course, the file you specify (/etc/creds in Listing 4.1) must be well protected—it must
be readable only to root and perhaps to the user whose share it describes.

Managing Files
Basic file management is critical to use of any computer. This is particularly true on Unix-like sys-
tems, including Linux, because these systems treat almost everything as a file, including most hard-
ware devices and various specialized interfaces. Thus, being able to create, delete, move, rename, and
otherwise manipulate files is a basic skill of any Linux user or system administrator.

To begin, you should understand something of the rules that govern filenames and the short-
cuts you can use to refer to files. With this information in hand, you can move on to learning
how to manipulate files, how to manipulate directories, and how to manage links.

Managing User-Mountable Media

You may want to give ordinary users the ability to mount certain partitions or removable
media, such as floppies, CD-ROMs, and Zip disks. To do so, create an ordinary /etc/fstab entry
for the filesystem, but be sure to add the user, users, or owner option to the options column.
Table 4.1 describes the differences between these three options. Listing 4.1 shows some exam-
ples of user-mountable media: /mnt/cdrom, /mnt/floppy, /other/home, and /other/win. The
first two of these are designed for removable media and include the noauto option, which pre-
vents Linux from wasting time trying to mount them when the OS first boots. The second pair
of mount points are network file shares that are mounted automatically at boot time; the users
option on these lines enables ordinary users to unmount and then remount the filesystem,
which might be handy if, say, ordinary users have the ability to shut down the server.

As with any filesystems you want to mount, you must provide mount points—that is, create
empty directories—for user-mountable media. Removable media are usually mounted in sub-
directories of /mnt or /media, as described later in “Important Directories and Their Contents.”

4425.book Page 178 Thursday, July 7, 2005 5:28 PM

Managing Files 179

File Naming and Wildcard Expansion Rules

Linux filenames are much like the filenames on any other OS. Every OS has its filename quirks,
though, and these differences can be stumbling blocks to those who move between systems—
or to those who want to move files between systems.

Linux filenames can contain uppercase or lowercase letters, numbers, and even most punc-
tuation and control characters. To simplify your life and avoid confusion, though, I recommend
restricting non-alphanumeric symbols to the dot (.), the dash (-), and the underscore (_). Some
programs create backup files that end in the tilde (~), as well. Although Linux filenames can
contain spaces, and although such filenames are common in some OSs, they must be escaped on
the Linux command line by preceding the space with a backslash (\) or by enclosing the entire
filename in quotes ("). This requirement makes spaces a bit awkward in Linux, so most Linux
users substitute dashes or occasionally underscores.

A few characters have special meaning and should never be used in filenames. These include
the asterisk (*), the question mark (?), the forward slash (/), the backslash (\), and the quota-
tion mark ("). Although you can create files that contain all of these characters except for the
forward slash (which serves to separate directory elements) by escaping them, they’re likely to
cause greater confusion than other symbols.

Linux filename length depends on the filesystem in use. On ext2fs, ext3fs, ReiserFS, XFS, and
many others, the limit is 255 characters. If you’ve ever used DOS, you’re probably familiar with
the 8.3 filename limit: DOS filenames are restricted to eight characters followed by an optional
three-character extension. These two components are separated by a dot. Although one- to
four-character extensions are common in Linux, Linux filenames can contain an arbitrary num-
ber of dots. In fact, filenames can begin with a dot. These so-called dot files are hidden from
view by most utilities that display files, so they’re popular for storing configuration files in your
home directory.

If you access a File Allocation Table (FAT) filesystem on a floppy disk or parti-
tion used by DOS, you can do so using any of three filesystem type codes:
msdos, which limits you to 8.3 filenames; vfat, which supports Windows-style
long filenames; or umsdos, which is a Linux-only extension that supports Linux-
style long filenames.

A pair of filenames are particularly special. The filename that consists of a single dot (.) refers
to the current directory, while a double dot (..) refers to the parent directory. For instance, if your
current directory is /home/jerry, . refers to that directory and .. refers to /home.

One critical difference between Linux filenames and those of most other OSs is that Linux
treats its filenames in a case-sensitive way—Filename.txt is different from filename.txt or
FILENAME.TXT. All three files can exist in a single directory. Under Windows, all three filenames
refer to the same file. Although Windows 95 and later all retain the case of the filename, they
ignore it when you refer to an existing file, and they don’t permit files whose names differ only
in case to co-exist in a single directory. This difference isn’t a major problem for most people
who migrate from Windows to Linux, but you should be aware of it. It can also cause problems
when you try to read a FAT disk using the Linux vfat driver because Linux has to follow the
Windows rules when managing files on that disk.

4425.book Page 179 Thursday, July 7, 2005 5:28 PM

180 Chapter 4 � Managing Files and Filesystems

You can use wildcards with many commands. A wildcard is a symbol or set of symbols that
stand in for other characters. Three classes of wildcards are common in Linux:

? A question mark (?) stands in for a single character. For instance, b??k matches book, balk,
buck, or any other four-letter filename that begins with b and ends with k.

* An asterisk (*) matches any character or set of characters, including no character. For
instance, b*k matches book, balk, and buck just as does b??k. b*k also matches bk, bbk, and
backtrack.

Bracketed values Characters enclosed in square brackets ([]) normally match any character in the
set. For instance, b[ao][lo]k matches balk and book but not buck. It’s also possible to specify a
range of values; for instance, b[a-z]ck matches any back, buck, and other four-letter filenames of
this form whose second character is a lowercase letter. This differs from b?ck—because Linux treats
filenames in a case-sensitive way, b[a-z]ck doesn’t match bAck, although b?ck does.

Wildcards are actually implemented in the shell and passed to the command you call. For
instance, if you type ls b??k and that wildcard matches the three files balk, book, and buck,
the result is precisely as if you’d typed ls balk book buck. The process of wildcard expansion
is known as file globbing or simply globbing.

The way wildcards are expanded can lead to some undesirable consequences.
For instance, suppose you want to copy two files, specified via a wildcard, to
another directory but you forget to give the destination directory. The cp com-
mand (described shortly) will interpret the command as a request to copy the
first of the files over the second.

File Commands

A few file-manipulation commands are extremely important to everyday file operations. These
commands enable you to list, copy, move, rename, and delete files.

The ls Command

To manipulate files, it’s helpful to know what they are. This is the job of the ls command,
whose name is short for list. The ls command displays the names of files in a directory. Its syn-
tax is simple:

ls [options] [files]

The command supports a huge number of options; consult ls’s man page for details. The
most useful options include the following:

Display all files Normally, ls omits files whose names begin with a dot (.). These dot files are
often configuration files that aren’t usually of interest. Adding the -a or --all parameter dis-
plays dot files.

4425.book Page 180 Thursday, July 7, 2005 5:28 PM

Managing Files 181

Color listing The --color option produces a color-coded listing that differentiates directo-
ries, symbolic links, and so on by displaying them in different colors. This works at the Linux
console, in xterm windows in X, and from some types of remote logins, but some remote login
programs don’t support color displays.

Display directory names Normally, if you type a directory name as one of the files, ls dis-
plays the contents of that directory. The same thing happens if a directory name matches a wild-
card. Adding the -d or --directory parameter changes this behavior to list only the directory
name, which is sometimes preferable.

Long listing The ls command normally displays filenames only. The -l parameter (a lower-
case L) produces a long listing that includes information such as the file’s permission string
(described later in “Understanding Permissions”), owner, group, size, and creation date.

Display file type The -p or --file-type option appends an indicator code to the end of each
name so you know what type of file it is. The meanings are as follows:

Recursive listing The -R or --recursive option causes ls to display directory contents recur-
sively. That is, if the target directory contains a subdirectory, ls displays both the files in the tar-
get directory and the files in its subdirectory. The result can be a huge listing if a directory has
many subdirectories.

Both the options list and the files list are optional. If you omit the files list, ls displays
the contents of the current directory. You may instead give one or more file or directory names,
in which case ls displays information on those files or directories, as in this example:

$ ls -p /usr /bin/ls

/bin/ls

/usr:

X11R6/ games/ include/ man/ src/

bin/ i386-glibc20-linux/ lib/ merge@ tmp@

doc/ i486-linux-libc5/ libexec/ sbin/

etc/ i586-mandrake-linux/ local/ share/

This output shows both the /bin/ls program file and the contents of the /usr directory.
The latter consists mainly of subdirectories, but it includes a couple of symbolic links as well. By
default, ls creates a listing that’s sorted by filename, as shown in this example. Note, though, that
uppercase letters (as in X11R6) always appear before lowercase letters (as in bin).

/ directory

@ symbolic link

= socket

| pipe

4425.book Page 181 Thursday, July 7, 2005 5:28 PM

182 Chapter 4 � Managing Files and Filesystems

One of the most common ls options is -l, which creates a listing like this:

$ ls -l t*

-rwxr-xr-x 1 rodsmith users 111 Apr 13 13:48 test

-rw-r--r-- 1 rodsmith users 176322 Dec 16 09:34 thttpd-2.20b-1.i686.rpm

-rw-r--r-- 1 rodsmith users 1838045 Apr 24 18:52 tomsrtbt-1.7.269.tar.gz

-rw-r--r-- 1 rodsmith users 3265021 Apr 22 23:46 tripwire.rpm

This output includes the permission strings, ownership, file sizes, and file creation dates in
addition to the filenames. This example also illustrates the use of the * wildcard, which matches
any string—thus, t* matches any filename that begins with t.

You can combine multiple options together by merging them with a single pre-
ceding dash, as in ls -lp to get a long listing that also includes file type codes.
This can save a bit of typing compared to the alternative of ls -l -p.

The cp Command

The cp command copies a file. Its basic syntax is as follows:

cp [options] source destination

The source is normally one or more files, and the destination may be a file (when the
source is a single file) or a directory (when the source is one or more files). When copying to a
directory, cp preserves the original filename; otherwise, it gives the new file the filename indi-
cated by destination. The command supports a large number of options; consult its man page
for more information. Some of the more useful options enable you to modify the command’s
operation in helpful ways:

Force overwrite The -f or --force option forces the system to overwrite any existing files
without prompting.

Interactive mode The -i or --interactive option causes cp to ask you before overwriting
any existing files.

Preserve ownership and permissions Normally, a copied file is owned by the user who issues
the cp command and uses that account’s default permissions. The -p or --preserve option
preserves ownership and permissions, if possible.

Recursive copy If you use the -R or --recursive option and specify a directory as the source,
the entire directory, including its subdirectories, will be copied. Although -r also performs a
recursive copy, its behavior with files other than ordinary files and directories is unspecified. Most
cp implementations use -r as a synonym for -R, but this behavior isn’t guaranteed.

Update copy The -u or --update option tells cp to copy the file only if the original is newer
than the target or if the target doesn’t exist.

4425.book Page 182 Thursday, July 7, 2005 5:28 PM

Managing Files 183

This list of cp options is incomplete but covers the most useful options. Consult
the cp man page for information on additional cp options.

As an example, the following command copies the /etc/fstab configuration file to a backup
location in /root, but only if the original /etc/fstab is newer than the existing backup:

cp -u /etc/fstab /root/fstab-backup

The mv Command

The mv command (short for move) is commonly used both to move files and directories from
one location to another and to rename them. Linux doesn’t distinguish between these two types
of operations, although many users do. The syntax of mv is similar to that of cp:

mv [options] source destination

The command takes many of the same options as cp does. From the earlier list, --preserve
and --recursive don’t apply to mv, but the others do.

To move one or more files or directories, specify the files as the source and specify a direc-
tory or (optionally for a single file move) a filename for the destination:

$ mv document.sxw important/purchases/

This command copies the document.sxw file into the important/purchases subdirectory.
If the copy occurs on one low-level filesystem, Linux does the job by rewriting directory entries;
the file’s data need not be read and rewritten. This makes mv fast. When the target directory is
on another partition or disk, though, Linux must read the original file, rewrite it to the new
location, and delete the original. This slows down mv. Also, mv can move entire directories
within a filesystem but not between filesystems.

The preceding example used a trailing slash (/) on the destination directory.
This practice can help avoid problems caused by typos. For instance, if the des-
tination directory were mistyped as important/purchase (missing the final s),
mv would move document.sxw into the important directory under the filename
purchase. Adding the trailing slash makes it explicit that you intend to move the
file into a subdirectory. If it doesn’t exist, mv complains, so you’re not left with
mysterious misnamed files. You can also use the Tab key to avoid problems.
When you press Tab in many Linux shells, such as bash, the shell tries to com-
plete the filename automatically, reducing the risk of a typo.

Renaming a file with mv works much like moving a file, except that the source and destina-
tion filenames are in the same directory, as shown here:

$ mv document.sxw washer-order.sxw

4425.book Page 183 Thursday, July 7, 2005 5:28 PM

184 Chapter 4 � Managing Files and Filesystems

This renames document.sxw to washer-order.sxw in the same directory. You can combine
these two forms as well:

$ mv document.sxw important/purchases/washer-order.sxw

This command simultaneously moves and renames the file.

The rm Command

To delete a file, use the rm command, whose name is short for remove. Its syntax is simple:

rm [options] files

The rm command accepts many of the same options as cp or mv. Of those described with
cp, --preserve and --update do not apply to rm, but all the others do. With rm, -r is synon-
ymous with -R.

By default, Linux doesn’t provide any sort of “trash-can” functionality for its rm
command; once you’ve deleted a file with rm, it’s gone and cannot be recovered
without retrieving it from a backup or performing low-level disk maintenance
(such as with debugfs). Therefore, you should be cautious when using rm, par-
ticularly when you’re logged on as root. This is particularly true when you’re
using the -R option—rm -R / will destroy an entire Linux installation! Many
Linux GUI file managers do implement trash-can functionality so that you can
easily recover files moved to the trash (assuming you haven’t emptied the
trash), so you may want to use a file manager for removing files.

The touch Command

Linux-native filesystems maintain three time stamps for every file:
� Creation time
� Last modification time
� Last access time

Various programs rely on these time stamps; for instance, the make utility (described in
Chapter 2) uses the time stamps to determine which source code files must be recompiled if an
object file already exists for the source code file. Thus, sometimes you may need to modify the
time stamps. This is the job of the touch command, which has the following syntax:

touch [options] files

By default, touch sets the modification and access times to the current time. You might use
this if, for instance, you want make to recompile a particular source code file even though a
newer object file exists. If the specified files don’t already exist, touch creates them as empty
files. This can be handy if you want to create some dummy files—say, to experiment with other
file-manipulation commands.

4425.book Page 184 Thursday, July 7, 2005 5:28 PM

Managing Files 185

You can pass various options to touch to have it change its behavior:

Change only the access time The -a or --time=atime option causes touch to change the
access time alone, not the modification time.

Change only the modification time The -m or --time=mtime option causes touch to change
the modification time alone, not the access time.

Do not create file If you don’t want touch to create any files that don’t already exist, pass it
the -c or --no-create option.

Set the time as specified The -t timestamp option sets the time to the specified timestamp.
This value is given in the form MMDDhhmm[[CC]YY][.ss], where MM is the month, DD is the day,
hh is the hour (on a 24-hour clock), mm is the minute, [CC]YY is the year (such as 2005 or 05,
which are equivalent), and ss is the second. Another way to set a particular time is with the
-r reffile or --reference=reffile option, where reffile is a file whose time stamp you
want to replicate.

Managing Links

In Linux, a link is a way to give a file multiple identities, similar to shortcuts in Windows and
aliases in Mac OS. Linux employs links to help make files more accessible, to give commands
multiple names, to enable programs that look for the same files in different locations to access
the same files, and so on. Two types of links exist: hard links and soft links (aka symbolic links).
(Their differences are described in more detail shortly.) The ln command creates links. Its syn-
tax is similar to that of cp:

ln [options] source link

The source is the original file, while the link is the name of the link you want to create. This
command supports options that have several effects:

Remove target files The -f option causes ln to remove any existing links or files that have the
target link name.

Create directory hard links Ordinarily, you can’t create hard links to directories. The root
user can do so, though, by passing the -d, -F, or --directory option to ln. (Symbolic links to
directories are not a problem.)

Create a symbolic link The ln command creates hard links by default. To create a symbolic
link, pass the -s or --symbolic option to the command.

A few other options exist to perform more obscure tasks; consult ln’s man page for details. By
default, ln creates hard links, which are produced by creating two directory entries that point to the
same file (more precisely, the same inode). Both filenames are equally valid and prominent; neither
is a “truer” filename than the other, except that one was created first (when creating the file) and the
other was created second. To delete the file, you must delete both hard links to the file. Because of
the way hard links are created, they must exist on a single low-level filesystem; you can’t create a
hard link from, say, your root (/) filesystem to a separate filesystem you’ve mounted on it, such as

4425.book Page 185 Thursday, July 7, 2005 5:28 PM

186 Chapter 4 � Managing Files and Filesystems

your /home filesystem (if it’s a separate filesystem). The underlying filesystem must support hard
links. All Linux native filesystems support this feature, but some non-Linux filesystems don’t.

Symbolic links, by contrast, are special file types. The symbolic link is a separate file whose
contents point to the linked-to file. Linux knows to access the linked-to file whenever you try
to access the symbolic link, though, so in most respects accessing a symbolic link works just like
accessing the original file. Because symbolic links are basically files that contain filenames, they
can point across low-level filesystems—you can point from the root (/) filesystem to a file on a
separate /home filesystem, for instance. The lookup process for accessing the original file from
the link consumes a tiny bit of time, so symbolic link access is slower than hard link access—
but not by enough that you’d notice in any but very bizarre conditions or artificial tests. Long
directory listings show the linked-to file:

$ ls -l alink.sxw

lrwxrwxrwx 1 rodsmith users 8 Dec 2 15:31 alink.sxw -> test.sxw

In practice, symbolic links are more common than are links; their disadvantages are minor and
the ability to link across filesystems can be important. Linux employs hard links in certain critical
system administration tasks. For instance, System V (SysV) startup scripts use symbolic links in
runlevel directories, as described in Chapter 6, “The Boot Process and Scripts.” Certain com-
mands that have historically been known by multiple names are also often accessible via links. For
example, the /sbin/fsck.ext2, /sbin/fsck.ext3, and /sbin/e2fsck programs are usually
links (hard links on some systems, symbolic links on others). You can often leave these links alone,
but sometimes you must adjust them. Chapter 6 describes changing the SysV startup script links
to affect what programs run when the system boots, for instance.

Directory Commands

Most of the commands that apply to files also apply to directories. In particular, ls, mv, touch,
and ln all work with directories, with the caveats mentioned earlier. The cp command also
works with directories, but only when you use a recursion option, such as -r. A couple of addi-
tional commands, mkdir and rmdir, enable you to create and delete directories, respectively.

The mkdir Command

The mkdir command creates a directory. This command’s official syntax is as follows:

mkdir [options] directory-names

In most cases, mkdir is used without options, but a few are supported:

Set mode The -m mode or --mode=mode option causes the new directory to have the specified
permission mode, expressed as an octal number. (The upcoming section “Understanding Per-
missions” describes permission modes.)

Create parent directories Normally, if you specify the creation of a directory within a direc-
tory that doesn’t exist, mkdir responds with a No such file or directory error and doesn’t
create the directory. If you include the -p or --parents option, though, mkdir creates the nec-
essary parent directory.

4425.book Page 186 Thursday, July 7, 2005 5:28 PM

Managing File Ownership 187

The rmdir Command

The rmdir command is the opposite of mkdir; it destroys a directory. Its syntax is similar:

rmdir [options] directory-names

Like mkdir, rmdir supports few options, the most important of which handle these tasks:

Ignore failures on nonempty directories Normally, if a directory contains files or other direc-
tories, rmdir won’t delete it and returns an error message. With the --ignore-fail-on-non-
empty option, rmdir still won’t delete the directory, but it doesn’t return an error message.

Delete tree The -p or --parents option causes rmdir to delete an entire directory tree. For
instance, typing rmdir -p one/two/three causes rmdir to delete one/two/three, then one/
two, and finally one, provided no other files or directories are present.

When you’re deleting an entire directory tree filled with files, rm -R is a better
choice than rmdir because rm -R deletes files within the specified directory but
rmdir doesn’t.

Managing File Ownership
Security is an important topic that cuts across many types of commands and Linux subsystems.
In the case of files, security is built upon file ownership and file permissions. These two topics
are closely intertwined; ownership is meaningless without permissions that use it, and permis-
sions rely upon the existence of ownership.

Ownership is actually two tiered: Each file has an individual owner and a group with which
it’s associated (sometimes called the group owner, or simply the file’s group). Each group can
contain an arbitrary number of users, as described in Chapter 8, “Administering the System.”
The two types of ownership enable you to provide three tiers of permissions to control access
to files: by the file’s owner, by the file’s group, and to all other users. The commands to manage
these two types of ownership are similar, but they aren’t identical.

Assessing File Ownership

You can learn who owns a file with the ls command, which was described earlier. In particular,
that command’s -l option produces a long listing, which includes both ownership and permis-
sion information:

$ ls -l

total 1141

-rw-r--r-- 1 rodsmith users 219648 Mar 8 13:06 4425ch02.doc

-rw-r--r-- 1 rodsmith users 942590 Mar 6 23:31 f0201.tif

4425.book Page 187 Thursday, July 7, 2005 5:28 PM

188 Chapter 4 � Managing Files and Filesystems

This long listing includes the username of the owner (rodsmith for both files in this example)
and the group name of the files’ groups (users for both files in this example). The permission
string (-rw-r--r-- for both files in this example) is also important for file security, as described
later in “Controlling Access to Files.”

In most cases, the usernames associated with files are the same as login usernames. Files can,
however, be owned by accounts that are not ordinary login accounts. For instance, some servers
have accounts of their own, and server-specific files may be owned by these accounts.

If you delete an account, as described in Chapter 8, the account’s files don’t vanish, but the
account name does. Internally, Linux uses numbers rather than names, so you’ll see numbers in
place of the username and group name in the ls output. Depending on the file, you might want
to archive it, reassign ownership to an existing user, or delete it.

Changing a File’s Owner

Whenever a file is created, it’s assigned an owner. The superuser can change a file’s ownership,
though, using the chown command, whose syntax is as follows:

chown [options] [newowner][:newgroup] filenames

As you might expect, the newowner and newgroup variables are the new owner and group
for the file; you can provide both or omit either, but you can’t omit both. For instance, suppose
you want to give ownership of a file to sally and the skyhook group:

chown sally:skyhook forward.sxw

Linux’s chown command accepts a dot (.) in place of a colon (:) to delimit the
owner and group, at least as of the core file utilities version 5.2.1. The use of a
dot has been deprecated, though, meaning that the developers favor the alter-
native and may eventually eliminate the use of a dot as a feature.

You can use several options with chown, most of which are fairly obscure. One that’s most
likely to be useful, though, is -R or --recursive, which implements the ownership change on
an entire directory tree. Consult the man page for chown for information on additional options.

The chown command may only be used by root. If an ordinary user tries to use it, the result
is an Operation not permitted error message.

Changing a File’s Group

Both root and ordinary users may run the chgrp command, which changes the group of a file.
(Ordinary users may only change a file’s group to a group to which the user belongs, though.)
This command’s syntax is similar, but simpler, to that of chown:

chgrp [options] newgroup filenames

4425.book Page 188 Thursday, July 7, 2005 5:28 PM

Controlling Access to Files 189

The chgrp command accepts many of the same options as chown, including -R or --
recursive. In practice, chgrp provides a subset of the chown functionality, with the important
exception that ordinary users can use chgrp.

Controlling Access to Files
The bulk of the complexity in file ownership and permissions is on the permissions end of
things. Linux’s system of permissions is moderately complex, so understanding how they work
is critical to any manipulation of permissions. With the basic information in hand, you can
tackle the commands used to change file permissions.

Understanding Permissions

Linux permissions are fairly complex. In addition to providing access control for files, a few spe-
cial permission bits exist, which provide some unusual features.

The Meanings of Permission Bits

Consider the file access control string that’s displayed with the -l option to ls:

$ ls -l test

-rwxr-xr-x 1 rodsmith users 111 Apr 13 13:48 test

This string (-rwxr-xr-x in this example) is 10 characters in length. The first character has
special meaning—it’s the file type code. The type code determines how Linux will interpret the
file—as ordinary data, a directory, or a special file type. Table 4.2 summarizes Linux type codes.

T A B L E 4 . 2 Linux File Type Codes

Code Meaning

- Normal data file; may be text, an executable program, graphics, compressed data, or
just about any other type of data.

d Directory; disk directories are files just like any others, but they contain filenames and
pointers to disk inodes.

l Symbolic link; the file contains the name of another file or directory. When Linux
accesses the symbolic link, it tries to read the linked-to file.

p Named pipe; a pipe enables two running Linux programs to communicate with each
other. One opens the pipe for reading, and the other opens it for writing, enabling data
to be transferred between the programs.

4425.book Page 189 Thursday, July 7, 2005 5:28 PM

190 Chapter 4 � Managing Files and Filesystems

The remaining nine characters of the permission string (rwxr-xr-x in the example) are bro-
ken up into three groups of three characters. The first group controls the file owner’s access to
the file, the second controls the group’s access to the file, and the third controls all other users’
access to the file (often referred to as world permissions).

In each of these three cases, the permission string determines the presence or absence of each
of three types of access: read, write, and execute. Read and write permissions are fairly self-
explanatory, at least for ordinary files. If the execute permission is present, it means that the file
may be run as a program. (Of course, this doesn’t turn a non-program file into a program; it
only means that a user may run a program if it is a program. Setting the execute bit on a non-
program file will probably cause no real harm, but it could be confusing.) The absence of the
permission is denoted by a dash (-) in the permission string. The presence of the permission is
indicated by a letter—r for read, w for write, or x for execute.

Thus, the example permission string of rwxr-xr-x means that the file’s owner, members of
the file’s group, and all other users can read and execute the file. Only the file’s owner has write
permission to the file. You can easily exclude those who don’t belong to the file’s group, or even
all but the file’s owner, by changing the permission string, as described in “Changing a File’s
Mode” later in this chapter.

Individual permissions, such as execute access for the file’s owner, are often referred to as per-
mission bits. This is because Linux encodes this information in binary form. Because it is binary,
the permission information can be expressed as a single 9-bit number. This number is usually
expressed in octal (base 8) form because a base-8 number is 3 bits in length, which means that the
base-8 representation of a permission string is three digits long, one digit for each of the owner,
group, and world permissions. The read, write, and execute permissions each correspond to one
of these bits. The result is that you can determine owner, group, or world permissions by adding
base-8 numbers: 1 for execute permission, 2 for write permission, and 4 for read permission.

Table 4.3 shows some examples of common permissions and their meanings. This table is
necessarily incomplete, though; with 9 permission bits, the total number of possible permissions
is 29, or 512. Most of those possibilities are peculiar, and you’re not likely to encounter or create
them except by accident.

s Socket; a socket is similar to a named pipe, but it permits network and bidirectional links.

b Block device; a file that corresponds to a hardware device to and from which data is trans-
ferred in blocks of more than one byte. Disk devices (hard disks, floppies, CD-ROMs, and
so on) are common block devices.

c Character device; a file that corresponds to a hardware device to and from which
data is transferred in units of one byte. Examples include parallel and RS-232 serial
port devices.

T A B L E 4 . 2 Linux File Type Codes (continued)

Code Meaning

4425.book Page 190 Thursday, July 7, 2005 5:28 PM

Controlling Access to Files 191

Execute permission makes sense for ordinary files, but it’s meaningless for most other file
types, such as device files. Directories, though, make use of the execute bit in another way.
When a directory’s execute bit is set, that means that the directory’s contents may be searched.
This is a highly desirable characteristic for directories, so you’ll almost never find a directory on
which the execute bit is not set in conjunction with the read bit.

Directories can be confusing with respect to write permission. Recall that directories are files
that are interpreted in a special way. As such, if a user can write to a directory, that user can create,
delete, or rename files in the directory, even if the user isn’t the owner of those files and does not
have permission to write to those files. The sticky bit (described shortly, in “Special Permission
Bits”) can be used to alter this behavior.

T A B L E 4 . 3 Example Permissions and Their Likely Uses

Permission string Octal code Meaning

rwxrwxrwx 777 Read, write, and execute permissions for all users.

rwxr-xr-x 755 Read and execute permission for all users. The file’s owner
also has write permission.

rwxr-x--- 750 Read and execute permission for the owner and group.
The file’s owner also has write permission. Users who are
not the file’s owner or members of the group have no
access to the file.

rwx------ 700 Read, write, and execute permissions for the file’s owner
only; all others have no access.

rw-rw-rw- 666 Read and write permissions for all users. No execute per-
missions to anybody.

rw-rw-r-- 664 Read and write permissions to the owner and group. Read-
only permission to all others.

rw-rw---- 660 Read and write permissions to the owner and group. No
world permissions.

rw-r--r-- 644 Read and write permissions to the owner. Read-only per-
mission to all others.

rw-r----- 640 Read and write permissions to the owner, and read-only
permission to the group. No permission to others.

rw------- 600 Read and write permissions to the owner. No permission to
anybody else.

r-------- 400 Read permission to the owner. No permission to
anybody else.

4425.book Page 191 Thursday, July 7, 2005 5:28 PM

192 Chapter 4 � Managing Files and Filesystems

Symbolic links are unusual with respect to permissions. This file type always has 777
(rwxrwxrwx) permissions, thus granting all users full access to the file. This access applies
only to the link file itself, however, not to the linked-to file. In other words, all users can
read the contents of the link to discover the name of the file to which it points, but the per-
missions on the linked-to file determine its file access. Attempting to change the permissions
on a symbolic link affects the linked-to file.

Many of the permission rules do not apply to root. The superuser can read or write any file
on the computer—even files that grant access to nobody (that is, those that have 000 permis-
sions). The superuser still needs an execute bit to be set to run a program file, but the superuser
has the power to change the permissions on any file, so this limitation isn’t very substantial.
Some files may be inaccessible to root, but only because of an underlying restriction—for
instance, even root can’t access a hard disk that’s not installed in the computer.

Special Permission Bits

A few special permission options are also supported, and they may be indicated by changes to
the permission string:

Set user ID (SUID) The set user ID (SUID) option is used in conjunction with executable files,
and it tells Linux to run the program with the permissions of whoever owns the file rather than
with the permissions of the user who runs the program. For instance, if a file is owned by root
and has its SUID bit set, the program runs with root privileges and can therefore read any file
on the computer. Some servers and other system programs run in this way, which is often called
SUID root. SUID programs are indicated by an s in the owner’s execute bit position of the per-
mission string, as in rwsr-xr-x.

Set group ID (SGID) The set group ID (SGID) option is similar to the SUID option, but it sets
the group of the running program to the group of the file. It’s indicated by an s in the group exe-
cute bit position of the permission string, as in rwxr-sr-x.

Sticky bit The sticky bit has changed meaning during the course of Unix history. In modern
Linux implementations (and most modern versions of Unix), it’s used to protect files from being
deleted by those who don’t own the files. When this bit is present on a directory, the directory’s
files can be deleted only by their owners, the directory’s owner, or root. The sticky bit is indi-
cated by a t in the world execute bit position, as in rwxr-xr-t.

These special permission bits all have security implications. SUID and SGID
programs (and particularly SUID root programs) are potential security risks.
Although some programs must have their SUID bits set to function properly,
most don’t, and you shouldn’t set these bits unless you’re certain that doing so
is necessary. The sticky bit isn’t dangerous in this way, but as it affects who
may delete files in a directory, you should consider its effect—or the effect of
not having it—on directories to which many users should have write access,
such as /tmp. Typically, such directories have their sticky bits set.

4425.book Page 192 Thursday, July 7, 2005 5:28 PM

Controlling Access to Files 193

Changing a File’s Mode

You can modify a file’s permissions using the chmod command. This command may be issued
in many different ways to achieve the same effect. Its basic syntax is as follows:

chmod [options] [mode[,mode...]] filename...

The chmod options are similar to those of chown and chgrp. In particular, --recursive (or
-R) will change all the files within a directory tree.

Most of the complexity of chmod comes in the specification of the file’s mode. There are two
basic forms in which you can specify the mode: as an octal number or as a symbolic mode,
which is a set of codes related to the string representation of the permissions.

The octal representation of the mode is the same as that described earlier and summarized
in Table 4.3. For instance, to change permissions on report.tex to rw-r--r--, you could
issue the following command:

$ chmod 644 report.tex

In addition, you can precede the three digits for the owner, group, and world permissions
with another digit that sets special permissions. Three bits are supported (hence values between
0 and 7): adding 4 sets the set user ID (SUID) bit, adding 2 sets the set group ID (SGID) bit, and
adding 1 sets the sticky bit. If you omit the first digit (as in the preceding example), Linux clears
all three bits. Using four digits causes the first to be interpreted as the special permissions code.
For instance, suppose you’ve created a script called bigprogram in a text editor. You want to

Using ACLs

Unix-style permissions have served Linux well since its creation, and are emphasized on the
LPI exam; however, a new and improved permission system is now available. An access con-
trol list (ACL) is a list of users or groups and the permissions they’re given. Linux ACLs, like
Linux owner, group, and world permissions, consist of three permission bits, one each for read,
write, and execute permissions. ACLs can be assigned by the file’s owner to an arbitrary num-
ber of users and groups, making ACLs more flexible than Linux permissions, which are limited
to groups defined by the system administrator.

ACLs require support in the underlying filesystem. All the major Linux filesystems now sup-
port ACLs, but you may need to recompile your kernel (or at least the relevant kernel module)
to activate this support.

ACLs require their own commands to set and view. The setfacl command sets an ACL, while
the getfacl command displays the ACLs for a file. Consult these commands’ man pages for
more information.

4425.book Page 193 Thursday, July 7, 2005 5:28 PM

194 Chapter 4 � Managing Files and Filesystems

set both SUID and SGID bits (6); to make the script readable, writeable, and executable by the
owner (7); to make it readable and executable by the group (5); and to make it completely inac-
cessible to all others (0). The following commands illustrate how to do this; note the difference
in the mode string before and after executing the chmod command:

$ ls -l bigprogram

-rw-r--r-- 1 rodsmith users 10323 Oct 31 18:58 bigprogram

$ chmod 6750 bigprogram

$ ls -l bigprogram

-rwsr-s--- 1 rodsmith users 10323 Oct 31 18:58 bigprogram

A symbolic mode, by contrast, consists of three components: a code indicating the permis-
sion set you want to modify (the owner, the group, and so on); a symbol indicating whether
you want to add, delete, or set the mode equal to the stated value; and a code specifying what
the permission should be. Table 4.4 summarizes all these codes. Note that these codes are all
case sensitive.

T A B L E 4 . 4 Codes Used in Symbolic Modes

Permission

set code Meaning

Change

type code Meaning

Permission to

modify code Meaning

u owner + add r read

g group - remove w write

o world = set equal to x execute

a all X execute only if
file is directory or
already has execute
permission

 s SUID or SGID

 t sticky bit

 u existing owner’s
permissions

 g existing group
permissions

 o existing world
permissions

4425.book Page 194 Thursday, July 7, 2005 5:28 PM

Controlling Access to Files 195

To use symbolic permission settings, you combine one or more of the codes from the first col-
umn of Table 4.4 with one symbol from the third column and one or more codes from the fifth
column. You can combine multiple settings by separating them by commas. Table 4.5 provides
some examples of chmod using symbolic permission settings.

T A B L E 4 . 5 Examples of Symbolic Permissions with chmod

Command Initial Permissions End Permissions

chmod a+x bigprogram rw-r--r-- rwxr-xr-x

chmod ug=rw report.tex r-------- rw-rw----

chmod o-rwx bigprogram rwxrwxr-x rwxrwx---

chmod g=u report.tex rw-r--r-- rw-rw-r--

chmod g-w,o-rw report.tex rw-rw-rw- rw-r-----

E X E R C I S E 4 . 1

Modifying Ownership and Permissions

In this exercise, you will experiment with the effect of Linux ownership and permissions on file
accessibility. During this exercise, you will need to use three accounts: root and two user
accounts, each in a different group. To study these effects, follow these steps:

1. Log in three times using three virtual terminals, once as root, once as user1, and once as
user2. (Use usernames appropriate for your system, though. Be sure that user1 and user2
are in different groups.) If you prefer, instead of using virtual terminals, you can open three
xterm windows in an X session, using su to acquire each user’s privileges.

2. As root, create a scratch directory—say, /tmp/scratch. Type mkdir /tmp/scratch.

3. As root, give all users read and write access to the scratch directory by typing chmod 0777
/tmp/scratch.

4. In the user1 and user2 login sessions, change to the scratch directory by typing cd /tmp/
scratch.

5. As user1, copy a short text file to the scratch directory using cp, as in cp /etc/fstab
./testfile.

6. As user1, set 0644 (-rw-r--r--) permissions on the file by typing chmod 0644 testfile. Type
ls -l and verify that the permission string in the first column matches this value (-rw-r--r--).

7. As user2, try to access the file by typing cat testfile. The file should appear on the screen.

4425.book Page 195 Thursday, July 7, 2005 5:28 PM

196 Chapter 4 � Managing Files and Filesystems

As a general rule, symbolic permissions are most useful when you want to make a simple
change (such as adding execute or write permissions to one or more class of users) or when you
want to make similar changes to many files without affecting their other permissions (for instance,
adding write permissions without affecting execute permissions). Octal permissions are most use-
ful when you want to set some specific absolute permission, such as rw-r--r-- (644). In any
event, a system administrator should be familiar with both methods of setting permissions.

A file’s owner and root are the only users who may adjust a file’s permissions. Even if other
users have write access to a directory in which a file resides and write access to the file itself, they
may not change the file’s permissions (but they may modify or even delete the file). To under-
stand why this is so, you need to know that the file permissions are stored as part of the file’s
inode, which isn’t part of the directory entry. Read/write access to the directory entry, or even
the file itself, doesn’t give a user the right to change the inode structures (except indirectly—for
instance, if a write changes the file’s size or a file deletion eliminates the need for the inode).

8. As user2, try to change the name of the file by typing mv testfile changedfile. The sys-
tem won’t produce any feedback, but if you type ls, you’ll see that the file’s name has
changed. Note that user2 doesn’t own the file but can rename it because user2 can write
to the directory in which the file resides.

9. As user2, try to change the mode of the file by typing chmod 0600 changedfile. The system
should respond with an Operation not permitted error because only the file’s owner may
change its permissions.

10. As user2, try to delete the file by typing rm changedfile. Depending on your configuration,
the system may or may not ask for verification, but it should permit the deletion. This is
true despite the fact that user2 doesn’t own the file because user2 can write to the direc-
tory in which the file resides.

11. As user1, repeat step 5 to re-create the test file.

12. As user1, give the file more restrictive permissions by typing chmod 0640. Typing ls -l
should reveal permissions of -rw-r-----, meaning that the file’s owner can read and write
the file, members of the file’s group can read it, and other users are given no access.

13. As user2, repeat steps 7–10. The cat operation should fail with a Permission denied
error, but steps 8–10 should produce the same results as they did the first time around.
(If the cat operation succeeded, then either user2 belongs to the file’s group or the file’s
mode is set incorrectly.)

14. Log out of the user1 and user2 accounts.

15. As root, type rm -r /tmp/scratch to delete the scratch directory and its contents.

If you like, you can perform tests with more file permission modes and other file-manipulation
commands before step 14.

E X E R C I S E 4 . 1 (c o n t i n u e d)

4425.book Page 196 Thursday, July 7, 2005 5:28 PM

Controlling Access to Files 197

Setting the Default Mode and Group

When a user creates a file, that file has default ownership and permissions. The default owner is,
understandably, the user who created the file. The default group is the user’s primary group. The
default permissions are configurable. These are defined by the user mask (umask), which is set by
the umask command. This command takes as input an octal value that represents the bits to be
removed from 777 permissions for directories, or from 666 permissions for files, when a new file
or directory is created. Table 4.6 summarizes the effect of several possible umask values.

Note that the umask isn’t a simple subtraction from the values of 777 or 666; it’s a bit-wise
removal. Any bit that’s set in the umask is removed from the final permission for new files, but
if a bit isn’t set (as in the execute bit in ordinary files), its specification in the umask doesn’t do
any harm. For instance, consider the 7 values in several entries of Table 4.6’s Umask column.
This corresponds to a binary value of 111. An ordinary file might have rw- (110) permissions,
but applying the umask’s 7 (111) eliminates 1 values but doesn’t touch 0 values, thus producing
a 000 (binary) value—that is, --- permissions, expressed symbolically.

Ordinary users can enter the umask command to change the permissions on new files they
create. The superuser can also modify the default setting for all users by modifying a system con-
figuration file. Typically, /etc/profile contains one or more umask commands. Setting the
umask in /etc/profile might or might not actually have an effect because it can be overridden
at other points, such as a user’s own configuration files. Nonetheless, setting the umask in
/etc/profile or other system files can be a useful procedure if you want to change the default
system policy. Most Linux distributions use a default umask of 002 or 022.

To find what the current umask is, type umask alone, without any parameters. Typing umask
-S produces the umask expressed symbolically rather than in octal form. You may also specify
a umask in this way when you want to change it, but in this case, you specify the bits that you
do want set. For instance, umask u=rwx,g=rx,o=rx is equivalent to umask 022.

T A B L E 4 . 6 Sample Umask Values and Their Effects

Umask Created Files Created Directories

000 666 (rw-rw-rw-) 777 (rwxrwxrwx)

002 664 (rw-rw-r--) 775 (rwxrwxr-x)

022 644 (rw-r--r--) 755 (rwxr-xr-x)

027 640 (rw-r-----) 750 (rwxr-x---)

077 600 (rw-------) 700 (rwx------)

277 400 (r--------) 500 (r-x------)

4425.book Page 197 Thursday, July 7, 2005 5:28 PM

198 Chapter 4 � Managing Files and Filesystems

In addition to setting the default mask with umask, users can change their default group with
newgrp, as in newgrp skyhook to create new files with the group set to the skyhook group. To
use this command, the user must be a member of the specified group. The newgrp command
also accepts the -l parameter, as in newgrp -l skyhook, which reinitializes the environment
as if the user had just logged in.

Changing File Attributes

Some filesystems support attributes in addition to those described in the preceding sections. In
particular, most Linux native filesystems support several attributes that you can adjust with the
chattr command:

Append only The a attribute sets append mode, which disables write access to the file except
for appending data. This can be a security feature to prevent accidental or malicious changes to
files that record data, such as log files.

Compressed The c attribute causes the kernel to automatically compress data written to the
file and uncompress it when it’s read back.

Immutable The i flag makes a file immutable, which goes a step beyond simply disabling
write access to the file. The file cannot be deleted, links to it cannot be created, and the file can-
not be renamed.

Data journaling The j flag tells the kernel to journal all data written to the file. This improves
recoverability of data written to the file after a system crash but can slow performance. This flag
has no effect on ext2 filesystems.

Secure deletion Ordinarily, when you delete a file, its directory entry is removed and its inode
is marked as being available for recycling. The data blocks that make up the bulk of the file are
not erased. Setting the s flag changes this behavior; when the file is deleted, the kernel zeros its
data blocks, which might be desirable for files that contain sensitive data.

No tail-merging Tail-merging is a process in which small pieces of data at the ends of files that
don’t fill a complete block are merged with similar pieces of data from other files. The result is
reduced disk space consumption, particularly when you store many small files rather than a few big
ones. Setting the t flag disables this behavior, which is desirable if the filesystem will be read by cer-
tain non-kernel drivers, such as those that are part of the Grand Unified Boot Loader (GRUB).

No access time updates If you set the A attribute, Linux won’t update the access time stamp
when you access a file. This can reduce disk input/output, which is particularly helpful for sav-
ing battery life on laptops.

This list of attributes is incomplete but includes the most useful options; consult the man page
for chattr for more flags. You set the options you want using the minus (-), plus (+), or equal
(=) symbols to remove an option from an existing set, add an option to an existing set, or set a
precise set of options (overwriting any that already exist), respectively. For instance, to add the
immutable flag to the important.txt file, you’d enter the following command:

chattr +i important.txt

4425.book Page 198 Thursday, July 7, 2005 5:28 PM

Managing Disk Quotas 199

The result is that you will then be unable to delete the file, even as root. To delete the file,
you must first remove the immutable flag:

chattr -i important.txt

Managing Disk Quotas
Just one or two users of a multi-user system can cause serious problems for others by consuming too
much disk space. If a single user creates huge files (say, multimedia recordings), those files can pre-
vent other users from creating their own files. To help manage this situation, Linux supports disk
quotas—limits enforced by the OS on how many files or how much disk space a single user may con-
sume. The Linux quota system supports quotas both for individual users and for Linux groups.

Enabling Quota Support

Quotas require support in both the kernel for the filesystem being used and various user-space
utilities. As of the early 2.6.x kernels, the ext2fs, ext3fs, and ReiserFS filesystems support quo-
tas, but you must explicitly enable support via the Quota Support kernel option in the filesystem
area when recompiling your kernel. Many distributions ship with this support precompiled, so
recompiling your kernel may not be necessary, but you should be aware of this option if you do
recompile your kernel.

Two general quota support systems are available for Linux. The first was used through the
2.4.x kernels and is referred to as the quota v1 support. The second was added with the 2.6.x
kernel series and is referred to as the quota v2 system. This description applies to the latter sys-
tem, but the former works in a similar way.

Outside of the kernel, you need support tools to use quotas. For the quota v2 system, this
package is usually called quota, and it installs a number of utilities, configuration files, SysV
startup scripts, and so on.

You can install the support software from source code, if you like; however, this
job is handled most easily using a package for your distribution. This descrip-
tion assumes that you install the software in this way. If you don’t, you may
need to create SysV or local startup scripts to initialize the quota support when
you boot your computer. The Quota Mini-HOWTO, at http://en.tldp.org/
HOWTO/Quota.html, provides details of how to do this.

You must modify your /etc/fstab entries for any partitions on which you want to use the
quota support. In particular, you must add the usrquota filesystem mount option to employ
user quotas and the grpquota option to use group quotas. Entries that are so configured resem-
ble the following:

/dev/hdc5 /home ext3 usrquota,grpquota 1 1

4425.book Page 199 Thursday, July 7, 2005 5:28 PM

200 Chapter 4 � Managing Files and Filesystems

This line activates both user and group quota support for the /dev/hdc5 partition, which is
mounted at /home. Of course, you can add other options if you like.

Depending on your distribution, you may need to configure the quota package’s SysV
startup scripts to run when the system boots. Chapter 5 describes SysV startup script man-
agement in detail. Typically, you’ll type a command such as chkconfig quota on; how-
ever, you should check on the SysV scripts installed by your distribution’s quota package.
Some distributions require use of commands other than chkconfig to do this task, as
described in Chapter 6. Whatever its details, this startup script runs the quotaon command,
which activates the quota support.

After installing software and making configuration file changes, you must activate the systems.
The simplest way to do this is to reboot the computer, and this step is necessary if you had to
recompile your kernel to add quota support directly into the kernel. If you didn’t do this, though,
you should be able to get by with less disruptive measures: using modprobe to install the kernel
module, if necessary; running the SysV startup script for the quota tools; and remounting the file-
systems on which you intend to use quotas by typing mount -o remount /mount-point, where
/mount-point is the mount point in question.

Setting Quotas for Users

At this point, quota support should be fully active on your computer, but the quotas themselves
are not set. You can set the quotas by using edquota, which starts the Vi editor (described in
Chapter 1, “Linux Command-Line Tools”) on a temporary configuration file (/etc/quotatab)
that controls quotas for the user you specify. When you exit from the utility, edquota uses the
temporary configuration file to write the quota information to low-level disk data structures
that control the kernel’s quota mechanisms. For instance, you might type edquota sally to
edit sally’s quotas. The contents of the editor will show the current quota information:

Quotas for user sally:

/dev/hdc5: blocks in use: 3209, limits (soft = 5000, hard = 6500)

 inodes in use: 403, limits (soft = 1000, hard = 1500)

The temporary configuration file provides information on both the number of disk blocks in
use and the number of inodes in use. (Each file or symbolic link consumes a single inode, so the
inode limits are effectively limits on the number of files a user may own. Disk blocks vary in size
depending on the filesystem and filesystem creation options, but they typically range from 512
bytes to 8KB.) Changing the use information has no effect, but you can alter the soft and hard
limits for both blocks and inodes. The hard limit is the maximum number of blocks or inodes
that the user may consume; the kernel will not permit a user to surpass these limits. Soft limits
are somewhat less stringent; users may temporarily exceed soft limit values, but when they do
so, the system issues warnings. Soft limits also interact with a grace period; if the soft quota limit
is exceeded for longer than the grace period, the kernel begins treating it like a hard limit and
refuses to allow the user to create more files. You can set the grace period by using edquota with
its -t option, as in edquota -t. Grace periods are set on a per-filesystem basis rather than a
per-user basis.

4425.book Page 200 Thursday, July 7, 2005 5:28 PM

Locating Files 201

A few more quota-related commands are useful. The first is quotacheck, which verifies and
updates quota information on quota-enabled disks. This command is normally run as part of
the quota package’s SysV startup script, but you may want to run it periodically (say, once a
week) as a cron job. (Chapter 5 describes cron jobs.) Although theoretically not necessary if
everything works correctly, quotacheck ensures that quota accounting doesn’t become inac-
curate. The second useful auxiliary quota command is repquota, which summarizes the quota
information on the filesystem you specify or on all filesystems if you pass it the -a option. This
tool can be very helpful in keeping track of disk usage. The quota command has a similar effect.
The quota tool takes a number of options to have them modify their outputs. For instance, -g
displays group quotas, -l omits NFS mounts, and -q limits output to filesystems on which
usage is over the limit. Consult quota’s man page for still more obscure options.

Locating Files
Maintaining your filesystems in perfect health, setting permissions, and so on is all pointless if you
can’t find your files. For this reason, Linux provides several tools to help you locate the files you need
to use. The first of these tools is actually a standard for where files are located; with the right knowl-
edge, you may be able to find files without the use of any specialized programs. The second class of
tools is just such specialized programs, which search a directory tree or a database for files that meet
whatever criteria you specify.

The FHS

Linux’s placement of files is derived from 30 years of Unix history. Given that fact, the structure
is remarkably simple and coherent, but it’s easy for a new administrator to become confused.
Some directories seem, on the surface, to fulfill similar or even identical roles, but in fact there are
subtle but important differences. This section describes the Linux directory layout standards, pre-
sents an overview of what goes where, and explains the use of the du utility, which is useful in
learning where your disk space is being used.

The FSSTND and FHS

Although Linux draws heavily on Unix, Unix’s long history has led to numerous splits and variants,
starting with the Berkeley Standard Distribution (BSD), which was originally a set of patches and
extensions to AT&T’s original Unix code. As a result of these schisms within the Unix community,
early Linux distributions didn’t always follow patterns that were identical to each other. The result
was a great deal of confusion. This problem was quite severe early in Linux’s history, and it threat-
ened to split the Linux community into factions. Various measures were taken to combat this prob-
lem, one of which was the development of the Filesystem Standard (FSSTND), which was first
released in early 1994. The FSSTND standardized several specific features, including:
� Standardized the programs that reside in /bin and /usr/bin. Differences on this score

caused problems when scripts referred to files in one location or the other.

4425.book Page 201 Thursday, July 7, 2005 5:28 PM

202 Chapter 4 � Managing Files and Filesystems

� Specified that executable files should not reside in /etc, as had previously been common.
� Removed changeable files from the /usr directory tree, enabling it to be mounted read-

only, a useful security measure.

There have been three major versions of FSSTND: 1.0, 1.1, and 1.2. FSSTND began to rein
in some of the chaos in the Linux world in 1994. By 1995, however, FSSTND’s limitations were
themselves becoming apparent. Thus, a new standard was developed: the Filesystem Hierarchy
Standard (FHS). This new standard is based on FSSTND but extends it substantially. The FHS
was created in conjunction with developers of some non-Linux Unix-like OSs, for instance. For
this reason, the FHS is more than a Linux standard; it may be used to define the layout of files
on other Unix-like OSs.

One important distinction made by the FHS is the one between shareable files and unshare-
able files. Shareable files may be reasonably shared between computers, such as user data files
and even program binary files. (Of course, you don’t need to share such files, but you may do
so.) If files are shared, they’re normally shared through an NFS server, described briefly in
Chapter 10, “Managing Servers.” Unshareable files contain system-specific information, such
as configuration files. For instance, you’re not likely to want to share a server’s configuration
file between computers.

A second important distinction used in the FHS is the one between static files and variable
files. The former don’t normally change except through direct intervention by the system
administrator. Most program executables are good examples of static files. Variable files may
be changed by users, automated scripts, servers, or the like. For instance, users’ home directories
and mail queues are composed of variable files. The FHS tries to isolate each directory into one
cell of this 2 × 2 (shareable/unshareable × static/variable) matrix. Figure 4.1 illustrates these
relationships. Some directories are mixed, but in these cases, the FHS tries to specify the status
of particular subdirectories. For instance, /var is variable, and it contains some shareable and
some unshareable subdirectories, as shown in Figure 4.1.

Like the FSSTND, the FHS comes in numbered versions. Version 2.3, the latest version
as I write, was released in January 2004. The URL for FHS’s official web page is http://
www.pathname.com/fhs/.

F I G U R E 4 . 1 The FHS attempts to fit each important directory in one cell of a 4 × 4 matrix.

Shareable Unshareable

/usr
/opt

/etc
/boot

/home
/var/mail

/var/run
/var/lock

Static

Variable

4425.book Page 202 Thursday, July 7, 2005 5:28 PM

Locating Files 203

Important Directories and Their Contents

The FHS defines some directories very precisely, but details for others are left unresolved. For
instance, users’ files normally go in the /home directory, but you may have reason to call this
something else or to use two or more separate directories for users’ files. Overall, the most com-
mon directories defined by the FHS or used by convention are the following:

/ Every Linux filesystem traces its roots to a single directory, known as / (pronounced, and
often referred to, as the root filesystem or root directory). All other directories branch off of this
one. Linux doesn’t use drive letters; instead, every partition or removable disk is mounted at a
mount point within another partition (/ or something else). Certain critical subdirectories, such
as /etc and /sbin, must reside on the root partition, but others can optionally be on separate
partitions. Do not confuse the root directory with the /root directory, described shortly.

/boot The /boot directory contains static and unshareable files related to the initial booting
of the computer. Higher-level startup and configuration files reside in another directory, /etc.
Some systems impose particular limits on /boot. For instance, older x86 BIOSes and older ver-
sions of the Linux Loader (LILO) may require that /boot reside below the 1,024th cylinder of
the hard disk. These requirements sometimes, but not always, necessitate that the /boot direc-
tory be a separate partition.

/bin This directory contains certain critical executable files, such as ls, cp, and mount. These
commands are accessible to all users and constitute the most important commands that ordi-
nary users might issue. You won’t normally find commands for big application programs in
/bin (although the Vi editor is located here). The /bin directory contains static files. Although
in some sense the /bin files are shareable, because they’re so important to the basic operation
of a computer, the directory is almost never shared—any potential clients must have their own
local /bin directories.

/sbin This directory is similar to /bin, but it contains programs that are normally run only
by the system administrator—tools like fdisk and e2fsck. Therefore, it’s static and theoreti-
cally shareable, but in practice, it makes no sense to share it.

/lib This directory is similar to /bin and /sbin, but it contains program libraries, which are
made up of code that’s shared across many programs and stored in separate files to save disk
space and RAM. The /lib/modules subdirectory contains kernel modules—drivers that can be
loaded and unloaded as required. Like /bin and /sbin, /lib is static and theoretically share-
able, although it’s not shared in practice.

/usr This directory hosts the bulk of a Linux computer’s programs. Its contents are shareable
and static, so it can be mounted read-only and may be shared with other Linux systems. For
these reasons, many administrators split /usr off into a separate partition, although this isn’t
required. Some subdirectories of /usr are similar to their namesakes in the root directory (such
as /usr/bin and /usr/lib), but they contain programs and libraries that aren’t absolutely crit-
ical to the basic functioning of the computer.

/usr/local This directory contains subdirectories that mirror the organization of /usr, such
as /usr/local/bin and /usr/local/lib. The /usr/local directory hosts files that a system

4425.book Page 203 Thursday, July 7, 2005 5:28 PM

204 Chapter 4 � Managing Files and Filesystems

administrator installs locally—for instance, packages that are compiled on the target computer
itself. The idea is to have an area that’s safe from automatic software upgrades when the OS as
a whole is upgraded. Immediately after Linux is installed, /usr/local should be empty except
for some “stub” subdirectories. Some system administrators split this off into its own partition
to protect it from OS reinstallation procedures that might erase the parent partition.

/usr/X11R6 This directory houses files related to the X Window System (X for short), Linux’s
GUI environment. Like /usr/local, this directory contains subdirectories similar to those in
/usr itself, such as /usr/X11R6/bin and /usr/X11R6/lib.

/opt This directory is similar to /usr/local in many ways, but it is intended for ready-made
packages that don’t ship with the OS, like commercial word processors or games. Typically, these
programs reside in subdirectories in /opt named after themselves, such as /opt/applix. The /opt
directory is static and shareable. Some system administrators break it into a separate partition or
make it a symbolic link to a subdirectory of /usr/local and make that a separate partition.

/home This directory contains users’ data, and it is shareable and variable. Although the /home
directory is considered optional in FHS, in practice it’s a matter of the name being optional. For
instance, if you add a new disk to support additional users, you might leave the existing /home
directory intact and create a new /home2 directory to house the new users. The /home directory
often resides on its own partition.

/root This is the home directory for the root user. Because the root account is so critical and
system specific, this variable directory isn’t really shareable.

/var This directory contains transient files of various types—system log files, print spool files,
mail and news files, and so on. As such, the directory’s contents are variable. Some subdirecto-
ries are shareable, but others are not. Many system administrators put /var in its own partition,
particularly on systems that see a lot of activity in /var, like major Usenet news or mail servers.

/tmp Many programs need to create temporary (hence variable) files, and the usual place to
do so is in /tmp. Most distributions include routines that clean out this directory periodically,
and sometimes wipe the directory clean at bootup. The /tmp directory is seldom shared. Some
administrators create a separate /tmp partition to prevent runaway processes from causing
problems on the root filesystem when processes create too-large temporary files. A similar direc-
tory exists as part of the /var directory tree (/var/tmp).

/mnt Linux mounts removable-media devices within its normal directory structure, and /mnt is
provided for this purpose. Some distributions create subdirectories within /mnt, such as /mnt/
floppy and /mnt/cdrom, to function as mount points. Others use /mnt directly or even use sep-
arate mount points off /, such as /floppy and /cdrom. The FHS mentions only /mnt; it doesn’t
specify how it’s to be used. Specific media mounted in /mnt may be either static or variable. As a
general rule, these directories are shareable.

/media This directory is an optional part of the FHS. It’s like /mnt, but it should contain sub-
directories for specific media types, such as /media/floppy and /media/cdrom. A few distri-
butions, such as SuSE, now use /media subdirectories as the default mount points for common
removable disk types.

4425.book Page 204 Thursday, July 7, 2005 5:28 PM

Locating Files 205

/dev Because Linux treats most hardware devices as if they were files, the OS must have a
location in its filesystem where these device files reside. The /dev directory is that place. It con-
tains a large number of files that function as hardware interfaces. If a user has sufficient privi-
leges, that user may access the device hardware by reading from and writing to the associated
device file. The Linux kernel supports a device filesystem that enables /dev to be an automat-
ically created virtual filesystem—the kernel and support tools create /dev entries on-the-fly to
accommodate the needs of specific drivers. A few distributions, such as Gentoo, use this feature
by default, but many others don’t.

/proc This is an unusual directory because it doesn’t correspond to a regular directory or par-
tition. Instead, it’s a virtual filesystem that’s created dynamically by Linux to provide access to
certain types of hardware information that’s not accessible via /dev. For instance, if you type
cat /proc/cpuinfo, the system responds by displaying information on your CPU—its model
name, speed, and so on.

Knowledge of these directories and their purposes is invaluable in properly administering a
Linux system. For instance, understanding the purpose of directories like /bin, /sbin, /usr/bin,
/usr/local/bin, and others will help you when it comes time to install a new program. Placing
a program in the wrong location can cause problems at a later date. For example, if you put a
binary file in /bin when it should go in /usr/local/bin, that program may later be overwritten
or deleted during a system upgrade when leaving it intact would have been more appropriate.

Tools for Locating Files

You use file-location commands to locate a file on your computer. Most frequently, these com-
mands help you locate a file by name, but sometimes you can use other criteria, such as modi-
fication date. These commands can search a directory tree (including root, which scans the
entire system) for a file matching the specified criteria in any subdirectory.

The find Command

The find utility implements a brute-force approach to finding files. This program finds files by
searching through the specified directory tree, checking filenames, file creation dates, and so on
to locate the files that match the specified criteria. Because of this method of operation, find
tends to be slow, but it’s very flexible and is very likely to succeed, assuming the file for which
you’re searching exists. The find syntax is as follows:

find [path...] [expression...]

You can specify one or more paths in which find should operate; the program will restrict
its operations to these paths. The expression is a way of specifying what you want to find. The
man page for find includes information on these expressions, but some of the more common
enable you to search by various common criteria:

Search by filename You can search for a filename using the -name pattern expression. Doing
so finds files that match the specified pattern. If pattern is an ordinary filename, find matches
that name exactly. You can use wildcards if you enclose pattern in quotes, and find will locate
files that match the wildcard filename.

4425.book Page 205 Thursday, July 7, 2005 5:28 PM

206 Chapter 4 � Managing Files and Filesystems

Search by permission mode If you need to find files that have certain permissions, you can do
so by using the -perm mode expression. The mode may be expressed either symbolically or in
octal form. If you precede mode with a +, find locates files in which any of the specified per-
mission bits are set. If you precede mode with a -, find locates files in which all the specified
permission bits are set.

Search by file size You can search for a file of a given size with the -size n expression. Nor-
mally, n is specified in 512-byte blocks, but you can modify this by trailing the value with a letter
code, such as c for bytes or k for kilobytes.

Search by group The -gid GID expression searches for files whose group ID (GID) is set to
GID. The -group name option locates files whose group name is name. The former can be handy
if the GID has been orphaned and has no name, but the latter is generally easier to use.

Search by user ID The -uid UID expression searches for files owned by the user whose user
ID (UID) is UID. The -user name option searches for files owned by name. The former can be
handy if the UID has been orphaned and has no name, but the latter is generally easier to use.

Restrict search depth If you want to search a directory and, perhaps, some limited number of
subdirectories, you can use the -maxdepth levels expression to limit the search.

There are many variant and additional options; find is a very powerful command. As an
example of its use, consider the task of finding all C source code files, which normally have
names that end in .c, in all users’ home directories. If these home directories reside in /home,
you might issue the following command:

find /home -name "*.c"

The result will be a listing of all the files that match the search criteria.

Ordinary users may use find, but it doesn’t overcome Linux’s file permission
features. If you lack permission to list a directory’s contents, find will return
that directory name and the error message Permission denied.

The locate Command

The locate utility works much like find if you want to find a file by name, but it differs in two
important ways:
� The locate tool is far less sophisticated in its search options. You normally use it to search only

on filenames, and the program returns all files that contain the specified string. For instance,
when searching for rpm, locate will return other programs, like gnorpm and rpm2cpio.

� The locate program works from a database that it maintains. Most distributions include
a cron job that calls locate with options that cause it to update its database periodically,
such as once a night or once a week. (You can also use the updatedb command to do this
task at any time.) For this reason, locate may not find recent files, or it may return the
names of files that no longer exist. If the database update utilities omit certain directories,
files in them won’t be returned by a locate query.

4425.book Page 206 Thursday, July 7, 2005 5:28 PM

Locating Files 207

Because locate works from a database, it’s typically much faster than find, particularly on
system-wide searches. It’s likely to return many false alarms, though, especially if you want to
find a file with a short name. To use it, type locate search-string, where search-string
is the string that appears in the filename.

Some Linux distributions use slocate rather than locate. The slocate program
includes security features to prevent users from seeing the names of files in
directories they should not be able to access. On most systems that use slocate,
the locate command is a link to slocate, so locate implements slocate’s secu-
rity features. A few distributions, including SuSE, don’t install either locate or
slocate by default.

The whereis Command

The whereis program searches for files in a restricted set of locations, such as standard binary file
directories, library directories, and man page directories. This tool does not search user directories
or many other locations that are easily searched by find or locate. The whereis utility is a quick
way to find program executables and related files like documentation or configuration files.

The whereis program returns filenames that begin with whatever you type as a search
criterion, even if those files contain extensions. This feature often turns up configuration
files in /etc, man pages, and similar files. To use the program, type the name of the program
you want to locate. For instance, the following command locates ls:

$ whereis ls

ls: /bin/ls /usr/share/man/man1/ls.1.bz2

The result shows both the ls executable (/bin/ls) and the ls man page. The whereis pro-
gram accepts several parameters that modify its behavior in various ways. These are detailed in
the program’s man page.

The which Command

Considered as a search command, which is very weak; it merely searches your path for the com-
mand that you type and lists the complete path to the first match it finds. (You can search for
all matches by adding the -a option, though.) For instance, you might want to know where the
xterm program is located:

$ which xterm

/usr/bin/xterm

Because the files that which finds are on your path, it won’t help you to run these programs.
Instead, it’s likely to be useful if you need to know the complete path for some reason—say,
because you want to call the program from a script and don’t want to make assumptions about
the path available to the script and so want to include the complete path in the script.

4425.book Page 207 Thursday, July 7, 2005 5:28 PM

208 Chapter 4 � Managing Files and Filesystems

Summary
File and filesystem management are basic to being able to administer or use a Linux system. The
most basic of these basic tasks are filesystem tasks—the ability to mount filesystems, check their
health, and repair ailing filesystems. Once a filesystem is mounted, you may want to periodically
check to see how full it is lest you run out of disk space. Various commands are useful to both
users and administrators for copying, moving, renaming, and otherwise manipulating files and
directories. You may also want to set up access controls, both to limit the amount of disk space
users may consume and to limit who may access specific files and directories. Finally, Linux pro-
vides tools to help you locate files using various criteria.

E X E R C I S E 4 . 2

Locating Files

This exercise demonstrates several methods of locating files. You’ll locate the startx program.
(If your system doesn’t have X installed, you can try searching for another program or file, such
as pwd or fstab. You may need to change the path passed to find in step 5, though.) To find a
file, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system if you used a GUI login
method.

3. Type locate startx. The system should display several filenames that include the string
startx. This search should take very little time. (A few distributions lack the locate com-
mand, so this step won’t work on some systems.)

4. Type whereis startx. The system responds with the names of a few files that contain the
string startx. Note that this list is slightly different than the list returned by step 3 but that
the search proceeded quite quickly.

5. Type find /usr -name startx. This search will take longer, and when run as an ordinary
user, it will most likely return several Permission denied error messages. It should also
return a single line listing the /usr/X11R6/bin/startx program file. Note that this com-
mand searched only /usr. If you had searched /usr/X11R6, the command would have
taken less time; if you’d searched /, the command would have taken more time.

6. Type which startx. This search will complete almost instantaneously, returning the com-
plete filename of the first instance of startx the system finds on its path.

4425.book Page 208 Thursday, July 7, 2005 5:28 PM

Exam Essentials 209

Exam Essentials
Describe commands that help you monitor disk use. The df command provides a one-line
summary of each mounted filesystem’s size, available space, free space, and percentage of space
used. The du command adds up the disk space used by all the files in a specified directory tree
and presents a summary by directory and subdirectory.

Summarize the tools that can help keep a filesystem healthy. The fsck program is a front-
end to filesystem-specific tools such as e2fsck and fsck.xfs. By whatever name, these pro-
grams examine a filesystem’s major data structures for internal consistency and can correct
minor errors.

Explain how filesystems are mounted in Linux. The mount command ties a filesystem to a
Linux directory; once the filesystem is mounted, its files can be accessed as part of the mount
directory. The /etc/fstab file describes permanent mappings of filesystems to mount points;
when the system boots, it automatically mounts the described filesystems unless they use the
noauto option (which is common for removable disks).

Describe commands used to copy, move, and rename files in Linux. The cp command copies
files, as in cp first second to create a copy of first called second. The mv command does
double duty as a file-moving and a file-renaming command. It works much like cp, but mv
moves or renames the file rather than copying it.

Summarize Linux’s directory-manipulation commands. The mkdir command creates a new
directory, while rmdir deletes a directory. You can also use many file-manipulation commands,
such as mv and rm (with its -r option) on directories.

Explain the difference between hard and symbolic links. Hard links are duplicate directory
entries that both point to the same inode and hence to the same file. Symbolic links are special
files that point to another file or directory by name. Hard links must reside on a single filesys-
tem, but symbolic links may point across filesystems.

Describe Linux’s file ownership system. Every file has an owner and a group, identified by
number. File permissions can be assigned independently to the file’s owner, the file’s group, and
all other users.

Explain Linux’s file permissions system. Linux provides independent read, write, and execute
permissions for the file’s owner, the file’s group, and all other users, resulting in nine main per-
mission bits. Special permission bits are also available, enabling you to launch program files
with modified account features or alter the rules Linux uses to control who may delete files.

Summarize the commands Linux uses to modify permissions. The chmod command is Linux’s
main tool for setting permissions. You can specify permissions using either an octal (base 8) mode
or a symbolic notation. The chown and chgrp commands enable you to change the file’s owner
and group, respectively. (The chown command can do both but can only be run by root.)

Describe the prerequisites of using Linux’s disk quota system. Linux’s disk quota system
requires support in the Linux kernel for the filesystem on which quotas are to be used. You must
also run the quotaon command, typically from a SysV startup script, to enable this feature.

4425.book Page 209 Thursday, July 7, 2005 5:28 PM

210 Chapter 4 � Managing Files and Filesystems

Explain how quotas are set. You can edit quotas for an individual user via the edquota com-
mand, as in edquota larry to edit larry’s quotas. This command opens an editor on a text
file that describes the user’s quotas. You can change this description, save the file, and exit from
the editor to change the user’s quotas.

Summarize how Linux’s standard directories are structured. Linux’s directory tree begins
with the root (/) directory, which holds mostly other directories. Specific directories may hold
specific types of information, such as user files in /home and configuration files in /etc. Some
of these subdirectories and their subdirectories may in fact be separate partitions, which helps
isolate data in the event of filesystem corruption.

Describe the major file-location commands in Linux. The find command locates files by brute
force, searching through the directory tree for files that match the criteria you specify. The locate
(or slocate) command searches a database of files in important directories. The whereis com-
mand searches a handful of important directories, while which searches the path.

4425.book Page 210 Thursday, July 7, 2005 5:28 PM

Review Questions 211

Review Questions
1. Which of the following options is used with fsck to force it to use a particular filesystem type?

A. -A

B. -N

C. -t

D. -C

2. Which of the following pieces of information can df not report?

A. How long the filesystem has been mounted

B. The number of inodes used on an ext3fs partition

C. The filesystem type of a partition

D. The percentage of available disk space used on a partition

3. What is an advantage of a journaling filesystem over a conventional (non-journaling) filesystem?

A. Journaling filesystems are older and better tested than non-journaling filesystems.

B. Journaling filesystems never need to have their filesystems checked with fsck.

C. Journaling filesystems support Linux ownership and permissions; non-journaling filesys-
tems don’t.

D. Journaling filesystems require shorter disk checks after a power failure or system crash.

4. You want to use /mnt/cdrom to access your CD-ROM drive, so you insert a CD-ROM into the
drive and type mount /mnt/cdrom /dev/cdrom as root, but you receive the error message
/mnt/cdrom is not a block device. Why did this happen?

A. You must first prepare the mount point by typing mountpoint /mnt/cdrom; only then will
the mount command succeed.

B. The command reverses the order of the CD-ROM device file and the mount point; it should
be mount /dev/cdrom /mnt/cdrom.

C. The /dev/cdrom filename is not valid; you must determine what device file is associated
with your CD-ROM drive.

D. The CD-ROM is defective or the CD-ROM drive is malfunctioning. Try another CD-ROM
and, if necessary, replace the drive.

5. What is wrong with the following /etc/fstab file entry? (Select all that apply.)

/dev/hda8 nfs default 0 0

A. The entry is missing a mount point specification.

B. All /etc/fstab fields should be separated by commas.

C. The default option may only be used with ext2 filesystems.

D. /dev/hda8 is a disk partition, but nfs indicates a network filesystem.

4425.book Page 211 Thursday, July 7, 2005 5:28 PM

212 Chapter 4 � Managing Files and Filesystems

6. You want to discover the sizes of several dot files in a directory. Which of the following com-
mands might you use to do this?

A. ls -la

B. ls -p

C. ls -R

D. ls -d

7. You want to move a file from your hard disk to a floppy disk. Which of the following is true?

A. You’ll have to use the --preserve option to mv to keep ownership and permissions
set correctly.

B. The mv command will adjust filesystem pointers without physically rewriting data if the
floppy uses the same filesystem type as the hard disk partition.

C. You must use the same filesystem type on both media to preserve ownership and
permissions.

D. The mv command will delete the file on the hard disk after copying it to the floppy.

8. You type mkdir one/two/three and receive an error message that reads, in part, No such file
or directory. What can you do to overcome this problem? (Select all that apply.)

A. Add the --parents parameter to the mkdir command.

B. Issue three separate mkdir commands: mkdir one, then mkdir one/two, then mkdir one/
two/three.

C. Type touch /bin/mkdir to be sure the mkdir program file exists.

D. Type rmdir one to clear away the interfering base of the desired new directory tree.

9. You want to create a link from your home directory on your hard disk to a directory on a
CD-ROM drive. Which of the following types of links might you use?

A. Only a symbolic link.

B. Only a hard link.

C. Either a symbolic or a hard link.

D. None of the above; such links are not possible under Linux.

10. What command would you type to change the ownership of somefile.txt from ralph
to tony?

A. chown ralph:tony somefile.txt

B. chmod somefile.txt tony

C. chown somefile.txt tony

D. chown tony somefile.txt

4425.book Page 212 Thursday, July 7, 2005 5:28 PM

Review Questions 213

11. Typing ls -ld wonderjaye reveals a symbolic file mode of drwxr-xr-x. Which of the following
is true? (Select all that apply.)

A. wonderjaye is a symbolic link.

B. wonderjaye is an executable program.

C. wonderjaye is a directory.

D. wonderjaye may be read by all users of the system.

12. When should programs be configured SUID root?

A. At all times; this permission is required for executable programs.

B. Whenever a program should be able to access a device file.

C. Only when they require root privileges to do their job.

D. Never; this permission is a severe security risk.

13. Which of the following commands would you type to give all users read access to the file
myfile.txt? (Assume that you’re the owner of myfile.txt.)

A. chmod 741 myfile.txt

B. chmod 0640 myfile.txt

C. chmod u+r myfile.txt

D. chmod o+r myfile.txt

14. Which of the following umask values will result in files with rw-r----- permissions?

A. 640

B. 210

C. 022

D. 027

15. You see the usrquota and grpquota options in the /etc/fstab entry for a filesystem. What is
the consequence of these entries?

A. Quota support will be available if it’s compiled into the kernel; it will be automatically
activated when you mount the filesystem.

B. Quota support will be available if it’s compiled into your kernel, but you must activate it
with the quotaon command.

C. Quota support will be disabled on the filesystem in question unless you activate it with the
quotaon command.

D. Nothing; these options are malformed and so will have no effect.

4425.book Page 213 Thursday, July 7, 2005 5:28 PM

214 Chapter 4 � Managing Files and Filesystems

16. Which of the following commands can be used to summarize the quota information on all
filesystems?

A. repquota

B. repquota -a

C. quotacheck

D. quotacheck -a

17. You’ve installed a commercial spreadsheet program, called WonderCalc, on a workstation. In
which of the following directories are you most likely to find the program executable file?

A. /usr/sbin

B. /etc/X11

C. /bin

D. /opt/wcalc/bin

18. Which of the following file-location commands is likely to take the most time to find a file that
might be located anywhere on the computer?

A. The find command.

B. The locate command.

C. The whereis command.

D. They’re all equal in speed.

19. You want to track down all the files in /home that are owned by karen. Which of the following
commands will do the job?

A. find /home -uid karen

B. find /home -user karen

C. locate /home -username karen

D. locate /home karen

20. What can you conclude from the following interaction?

$ which man

/usr/bin/man

A. The only file called man on the system is in /usr/bin.

B. The /usr/bin/man program was installed by system package tools.

C. The /usr/bin/man program will be run by any user who types man.

D. The first instance of the man program, in path search order, is in /usr/bin.

4425.book Page 214 Thursday, July 7, 2005 5:28 PM

Answers to Review Questions 215

Answers to Review Questions
1. C. The –t option is used to tell fsck what filesystem to use. Normally, fsck determines the file-

system type automatically. The –A option causes fsck to check all the filesystems marked to be
checked in /etc/fstab. The –N option tells fsck to take no action and to display what it would
normally do without actually doing it. The –C option displays a text-mode progress indicator of
the check process.

2. A. A default use of df reports the percentage of disk space used. The number of inodes and file-
system types can both be obtained by passing parameters to df. This utility does not report how
long a filesystem has been mounted.

3. D. The journal of a journaling filesystem records pending operations, resulting in quicker disk
checks after an uncontrolled shutdown. Contrary to option A, journaling filesystems are, as a
class, newer than non-journaling filesystems; in fact, the journaling ext3fs is built upon the non-
journaling ext2fs. Although disk checks are quicker with journaling filesystems than with non-
journaling filesystems, non-journaling filesystems do have fsck utilities, and these may still need
to be run from time to time. All Linux native filesystems support Linux ownership and permis-
sions; this isn’t an advantage of journaling filesystems, contrary to option C.

4. B. The mount command takes a device filename first and a mount point second, so option B is
correct. There is no need for special mount point preparation, as option A implies, other than
the existence of the mount point directory. Contrary to option C, /dev/cdrom is often a valid
device file for CD-ROMs (or more precisely, a symbolic link to a valid device file). Furthermore,
the error message mentions /mnt/cdrom, not /dev/cdrom. Defective CD-ROMs and drives can
certainly cause problems, as option D implies, but this error message refers to block devices, sug-
gesting the problem is one of Linux configuration, not media viability.

5. A, D. A mount directory must be specified between the device entry (/dev/hda8) and the
filesystem type code (nfs). The nfs filesystem type code may only be used with an NFS
export specification of the form server:/export as the device specification. Fields in /etc/
fstab are separated by spaces or tabs, not commas (but commas are used between individ-
ual options if several options are specified in the options column). The default option may
be used with any filesystem type.

6. A. The -l parameter produces a long listing, including file sizes. The -a parameter produces a
listing of all files in a directory, including the dot files. Combining the two produces the desired
information (along with information on other files). The -p, -R, and -d options do not have the
specified effects.

7. D. When moving from one partition or disk to another, mv must necessarily read and copy the
file and then delete the original if that copy was successful. If both filesystems support own-
ership and permissions, they’ll be preserved; mv doesn’t need an explicit --preserve option
to do this, and this preservation does not rely on having exactly the same filesystem types.
Although mv doesn’t physically rewrite data when moving within a single low-level filesystem,
this approach cannot work when you are copying to a separate low-level filesystem (such as
from a hard disk to a floppy disk); if the data isn’t written to the new location, it won’t be
accessible should the disk be inserted in another computer.

4425.book Page 215 Thursday, July 7, 2005 5:28 PM

216 Chapter 4 � Managing Files and Filesystems

8. A, B. If you try to create a directory inside a directory that doesn’t exist, mkdir responds with
a No such file or directory error. The --parents parameter tells mkdir to automatically
create all necessary parent directories in such situations. You can also manually do this by cre-
ating each necessary directory separately. (It’s possible that mkdir one wouldn’t be necessary
in this example if the directory one already exists. No harm will come from trying to create a
directory that already exists, although mkdir will return a File exists error.)

9. A. Symbolic links can point across filesystems, so creating a symbolic link from one filesystem
(in which your home directory resides) to another (on the CD-ROM) isn’t a problem. Hard
links, as in options B and C, are restricted to a single filesystem and so won’t work for the
described purpose. Because symbolic links will work as described, option D is incorrect.

10. D. Option D is the correct command. Typing chown ralph:tony somefile.txt, as in option A,
sets the owner of the file to ralph and the group to tony. The chmod command used in option B
is used to change file permissions, not ownership. Option C reverses the order of the filename and
the owner.

11. C, D. The d character that leads the mode indicates that the file is actually a directory, while the
r symbol in the r-x triplet at the end of the symbolic mode indicates that all users of the system
have read access to the directory. Symbolic links are denoted by leading l characters, which this
mode lacks, so option A is incorrect. Although the x symbols usually denote executable program
files, as specified in option B, in the case of directories this permission bit indicates that the direc-
tory’s contents may be searched; executing a directory is meaningless.

12. C. The set user ID (SUID) bit enables programs to run as the program’s owner rather than as the
user who ran them. This makes SUID root programs risky, so setting the SUID bit on root-owned
programs should be done only when it’s required for the program’s normal functioning, as stated
in option C. This should certainly not be done for all programs because the SUID bit is not required
of all executable programs as option A asserts. Although the SUID root configuration does enable
programs to access device files, the device files’ permissions can be modified to give programs
access to those files, if this is required, so option B is incorrect. Although SUID root programs are
a security risk, as stated in option D, they’re a necessary risk for a few programs, so option D goes
too far.

13. D. Using symbolic modes, the o+r option adds read (r) permissions to the world (o). Thus, option D
is correct. Option A sets the mode to rwxr----x, which is a bit odd and does not provide world
read access to the file, although it does provide world execute access. Option B sets the mode to
rw-r-----, which gives the world no access whatsoever to the file. Option C adds read access to
the file for the owner (u) if the owner does not already have this access; it doesn’t affect the world
permissions.

14. D. Option D, 027, removes write permissions for the group and all world permissions. (Files
normally don’t have execute permissions set, but explicitly removing write permissions when
removing read permissions ensures reasonable behavior for directories.) Option A, 640, is the
octal equivalent of the desired rw-r----- permissions, but the umask sets the bits that are to be
removed from permissions, not those that are to be set. Option B, 210, would remove write per-
mission for the owner, but it would not remove write permission for the group, which is incor-
rect. This would also leave all world permissions open. Finally, option C, 022, would not
remove world read permission.

4425.book Page 216 Thursday, July 7, 2005 5:28 PM

Answers to Review Questions 217

15. B. Using quotas requires kernel support, the usrquota or grpquota (for user or group quotas)
filesystem mount option, and activation via the quotaon command (which often appears in SysV
startup scripts). Thus, option B is correct. Option A suggests that quotaon is not necessary, and
option C suggests that quotaon is sufficient, but neither is true. The usrquota and grpquota
options are both valid, so option D is incorrect.

16. B. The repquota utility is used to summarize the quota information on the filesystem. When
used with the –a option, it will show this information for all filesystems. The quotacheck utility
checks quota information on a disk and writes corrections.

17. D. The /opt directory tree exists to hold programs that aren’t a standard part of a Linux distri-
bution, such as commercial programs. These programs should install in their own directories
under /opt; these directories usually have bin subdirectories of their own, although this isn’t
required. The /usr/sbin directory holds programs that are normally run only by the system
administrator, and /bin holds critical basic binary files. The /etc/X11 directory holds X-related
configuration files. None of these directories is an appropriate place for a spreadsheet program.

18. A. The find utility operates by searching all files in a directory tree, and so it is likely to take a
long time to search all a computer’s directories. The locate program uses a precompiled data-
base, and whereis searches a limited set of directories, so these commands will take less time.

19. B. The find command includes the ability to search by username using the -user name option,
where name is the username; thus, option B is correct. The -uid option to find can also locate
files owned by a user, but it takes a numeric user ID (UID) number as an argument, so option A
isn’t quite correct. The locate command provides no ability to search by user, so options C and
D are incorrect.

20. D. The which program searches the path just as bash does, but it prints the path to the first execut-
able program it finds on the path. Thus, option D is correct. The which program does not conduct
an exhaustive search of the system, so there could be many more files called man on the system, con-
trary to option A. System package tools and which are not closely related; option B is incorrect.
Although /usr/bin/man would be run when the user whose which output matches that in the ques-
tion types man, this might not be true of others because the path can vary from one user to another.
Thus, option C is incorrect.

4425.book Page 217 Thursday, July 7, 2005 5:28 PM

Chapter

5

The X Window System

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.110.1 Install & Configure XFree86 (weight: 5)

�

1.110.2 Setup a display manager (weight: 3)

�

1.110.4 Install & Customize a Window Manager

Environment (weight: 5)

4425.book Page 219 Thursday, July 7, 2005 5:28 PM

Major modern desktop OSs all provide some form of

graphical
user environment (GUI),

 which provides the windows, menus,
dialog boxes, flexible fonts, and so on with which you’re proba-

bly already familiar. In Linux, the main GUI is known as the

X Window System

 (or

X

 for short).
X configuration is either very easy or moderately hard; most distributions today provide auto-
detection and easy configuration options during installation, and these usually work correctly.
When they don’t, or when you want to tweak the configuration, you must delve into the X con-
figuration file or use a GUI X configuration tool. Doing either requires that you know how X
treats the video hardware, among other things.

Beyond basic X configuration are a few extra topics. These include fonts, GUI login tools,
user desktop environments, and using X for remote access. Each of these topics is closely asso-
ciated with basic X configuration, but they all go beyond it in one way or another, extending
X’s capabilities or providing more features for users, as described in this chapter.

Configuring Basic X Features

Basic X configuration sets features such as the mouse used, the keyboard layout, the screen res-
olution, the video refresh rate, the display color depth, and the video card you’re using. Some
of these options require telling X about what hardware you have installed, whereas others
enable you to adjust settings on your hardware. In any event, before you proceed with actual
configuration, you should know something about the X servers that are available for Linux
because your selection will determine what additional tools are available and what files you may
need to adjust manually. GUI and text-mode configuration utilities can help you configure X,
but sometimes you must delve into the configuration files, so knowing their format is important.
This requires that you know what the major option groups do so that you can adjust them.

X Server Options for Linux

Although X is by far the dominant GUI for Linux, several implementations of X are available:

XFree86

The dominant X server in Linux until 2004 was XFree86 (

http://www.xfree86.org

).
This open-source server supports a wide array of video cards and input devices, and most Linux soft-
ware is designed with XFree86 in mind. As I write, the most recent version is 4.5.0. Significant
changes occurred between 3.3.6 and the 4.

x

 series, and many utilities (including the

xf86config

and

XF86Setup

 tools mentioned in the LPI objectives) work only with the old 3.3.6 and earlier ver-
sions of XFree86. Although a tiny number of systems must run XFree86 3.3.6 or earlier for driver
support reasons, most systems today run XFree86 4.

x

 or X.org-X11.

4425.book Page 220 Thursday, July 7, 2005 5:28 PM

Configuring Basic X Features

221

X.org-X11

In 2004, most Linux distributions shifted from XFree86 to X.org-X11 because
of some licensing changes to XFree86. X.org-X11 6.7.0 was based on XFree86 4.3.99, but it’s
developed independently up to the current version (6.7.2 as I write). Because X.org-X11 is
based on XFree86, the two are virtually identical in most important respects. One important
difference is the name of the configuration file; another is the default location for fonts. Sub-
sequent sections of this chapter point out these differences. Other differences are likely to
emerge in the future as XFree86 and X.org-X11 develop independently. You can learn more
at

http://www.x.org

.

Accelerated-X

The commercial Accelerated-X server from Xi Graphics (

http://www.xig.com

)
is an alternative to the open-source XFree86 and X.org-X11. In practice, running Accelerated-X
is seldom necessary, but if you have problems getting your video card working, you may want to
look into Accelerated-X; its driver base is independent of the more popular open-source choices,
so it’s possible you’ll have better luck with it. The Accelerated-X configuration tools and files are
completely different from those described in “Methods of Configuring X” and “X Configuration
Options,” though, so you’ll need to consult its own documentation for help. The rest of this chap-
ter’s topics still apply to Accelerated-X.

In practice, it’s usually easiest to stick with whatever X server your distribution provides. For
modern distributions, this is most often X.org-X11, but it might be XFree86, particularly if
you’re running an older distribution. For a handful of rare video cards, you may need to run the
rather elderly XFree86 3.3.6 rather than a more recent version.

Methods of Configuring X

Configuring X has traditionally been a difficult process because the X configuration file
includes many arcane options. The task is made simpler if you can use a configuration utility,
and in fact most Linux distributions now run such a utility as part of their installation pro-
cess. If the configuration utility doesn’t do everything you want it to do, though, you may
need to delve into the X configuration file to set options manually, so knowing something
about its format will help a lot. You must also know how to go about restarting X in order
to test your changes.

The upcoming section “X Configuration Options” describes the major X fea-

tures and how to control them in more detail.

X Configuration Utilities

X configuration utilities vary from one version of X to another. Most importantly, the tools for
XFree86 3.3.6 and earlier are very different from those for XFree86 4.

x

 and X.org-X11. The
LPI exam still covers the XFree86 3.3.6 tools, but in the real world you’re more likely to
encounter the more recent tools.

4425.book Page 221 Thursday, July 7, 2005 5:28 PM

222

Chapter 5 �

The X Window System

Configuration Tools for XFree86 3.3.6 and Earlier

Many configuration tools are available for XFree86 3.3.6 and before. Most distributions ship
with at least one of the following tools, and sometimes more:

xf86config

This is the crudest of the XFree86 3.3.6 configuration programs. It runs entirely
in text mode, and it asks a series of questions regarding your hardware and configuration pref-
erences. The program asks about your mouse type (including brand and device file), keyboard
type (including number of keys and country), monitor specifications (horizontal and vertical
refresh rates), and video card (chipset or card manufacturer, amount of video RAM, and default
resolution). Because of its simple user interface, it can be used to create an initial X configura-
tion. The

xf86config

 utility offers no provision for correcting errors, though, so if you mistype
an entry, you must stop it and start again from scratch.

Xconfigurator

This program runs in text mode when launched from a text-based login. In
some distributions, it runs in GUI mode when launched from X. In either case, it uses menus to
help you pick appropriate settings, but it still steps you through the configuration in a fixed

Using Manufacturer-Provided Video Drivers

One of X’s functions is to provide drivers that control the video card. XFree86, X.org-X11, and
Accelerated-X all ship with a wide variety of drivers that support most video cards. Some cards,
though (particularly very new ones), have weak support in the stock packages. XFree86 4.

x

 and
X.org-X11 both support a modular driver architecture, which means you can drop in a driver
module for your card and, with minimal changes to your X configuration, use it without recom-
piling the main X package. Some video card manufacturers provide Linux video card drivers
designed to work with XFree86 and X.org-X11. (Both X servers can use the same drivers.) Thus,
if you have problems with the standard X video drivers, you may want to check with your video
card manufacturer and the video card chipset manufacturers for Linux drivers.

Installing and using the manufacturer-provided video drivers is usually a matter of extracting
files from a tarball and making a few configuration file changes. Consult the documentation
that comes with these drivers for details. Many of these drivers are particularly helpful for
enabling 3D acceleration features of modern cards. This support is most important for certain
Linux games, but some non-game software can also benefit from 3D acceleration.

Note that some manufacturers have a habit of placing the standard Linux drivers (or, in this
case, the standard XFree86 or X.org-X11 drivers) on their website. Thus, you should try to
ascertain whether the drivers are genuinely different from what you already have before you
bother installing them.

One problem with manufacturer-supplied drivers is that they’re often proprietary. You might
not have source code, which means that the drivers might not work on more exotic CPUs, and
the drivers could cease working with a future upgrade to your X server.

4425.book Page 222 Thursday, July 7, 2005 5:28 PM

Configuring Basic X Features

223

order. As a general rule, it’s easier to use than

xf86config

. Recent versions support both
XFree86 3.3.6 and 4.

x

.

XF86Setup

This program runs only in GUI mode, as shown in Figure 5.1, so it works only
once X is running at least minimally. This program can be used to reconfigure X from a working
but non-optimal mode. It enables you to move around the configuration as you see fit by select-
ing any of the major systems from the buttons along the top of the window (Mouse, Keyboard,
Card, and so on).

As a general rule,

Xconfigurator

 can be a good tool to use for configuring a new system for
the first time, and

XF86Setup

 is good for adjusting an existing system without digging into
XFree86’s

XF86Config

 file. (This file has the same name as one configuration utility, but its
case is different.) Unfortunately for those forced to use XFree86 3.3.6, these tools are very hard
to find and use with modern distributions, so you may be forced to use

xf86config

 or edit the
configuration file manually. Fortunately, most people today can use XFree86 4.

x

 or X.org-X11
and the native configuration tools for these X servers.

Sometimes one configuration tool will produce a working X system but
another won’t. This is particularly likely when you’re using finicky hardware,
such as the LCD monitors used on notebook computers. If you can’t seem to

get a working X configuration out of one utility program, try another.

F I G U R E 5 . 1

XF86Setup

 enables you to select which options you want to configure in each

of several major categories.

4425.book Page 223 Thursday, July 7, 2005 5:28 PM

224

Chapter 5 �

The X Window System

Configuration Tools for XFree86 4.

x

 and X.org-X11

Configuration tools for XFree86 4.

x

 and X.org-X11 are identical but are (with one notable
exception) different from those for XFree86 3.3.6 and earlier:

The X server itself

The X server itself includes the capacity to query the hardware and produce a
configuration file. To do so, type

XFree86 -configure

 (for XFree86) or

Xorg -configure

 (for
X.org-X11) when no X server is running. The result should be a file called

/root/XF86Config.new

(for XFree86) or

/root/xorg.conf.new

 (for X.org-X11). This file might not produce optimal
results, but it is at least a starting point for manual modifications.

Xconfigurator

Current versions of

Xconfigurator

 can produce and modify the XFree86
4.

x

XF86Config

 file format as well as the 3.3.

x

 format of the file. Red Hat (

Xconfigurator

’s
developer) has abandoned this tool in favor of GUI utilities, though.

Distribution-specific tools

Many modern distributions ship with their own custom X config-
uration tools. These include Red Hat’s (and Fedora’s) Display Settings tool (accessible from the
default desktop menu or by typing

system-config-xfree86

 in an

xterm

) and SuSE’s YaST
and YaST2. These tools frequently resemble the distribution’s install-time X configuration
tools, which can vary substantially.

xf86cfg

 or

xorgcfg

This utility works only on XFree86 4.

x

 or X.org-X11 (each package ships
with a version named after itself). This program is another that works only once X is already run-
ning. Its user interface (shown in Figure 5.2), like that of

XF86Setup

, enables you to jump around
to configure different elements in whatever order you like. In

xf86cfg

/

xorgcfg

, you right-click
an icon and select the Configure option to configure the element, or you can select other options
(Remove, Disable, and so on) to perform other actions.

F I G U R E 5 . 2

The

 xf86cfg/xorgcfg

 program lets you configure XFree86 4.x or X.org-X11

using point-and-click operations.

4425.book Page 224 Thursday, July 7, 2005 5:28 PM

Configuring Basic X Features

225

All of these utilities gather the same type of information needed by XFree86 3.3.6 configu-
ration tools, which in turn is the same type of information needed to manually configure X.
Your best bet for understanding these tools and what they want is to understand the underlying
X configuration file’s format and contents.

The X Configuration File Format

The X configuration file’s name and location varies with the version of X being run:

XFree86 3.3.6 and earlier

The X configuration file’s name is

XF86Config

, and the file is most
commonly located in

/etc/X11

 or

/etc

.

XFree86 4.

x

The XFree86 4.

x

 configuration file format is slightly different from that
of XFree86 3.3.6 and earlier, so to support the transition period, XFree86 4.

x

 supports a
configuration file called

XF86Config-4, which is typically located in /etc/X11. If this file
isn’t found, XFree86 4.x looks for a file called XF86Config in /etc/X11 or /etc.

X.org-X11 This server’s configuration file is called xorg.conf, and it’s usually stored in
/etc/X11, although /etc and several other locations are also acceptable to the server. This
file’s format is exactly the same as for the XFree86 4.x configuration file.

All three of these classes of X server use configuration files that are broken down into multi-
line sections, one section for each major feature. These sections begin with a line consisting of
the keyword Section and the section name in quotes and end with the keyword EndSection:

Section "InputDevice"

 Identifier "Keyboard0"

 Driver "kbd"

 Option "XkbModel" "pc105"

 Option "XkbLayout" "us"

 Option "AutoRepeat" "500 200"

EndSection

This section tells X about the keyboard—its model, layout, and so on. Details for the sections
you’re most likely to need to adjust are described shortly, in “X Configuration Options.”

For the most part, the different X servers support the same sections and most of the same
option names. A few exceptions to this rule do exist, though:
� The Option keyword is not used in XFree86 3.3.6 and earlier. Instead, the option name

(such as XkbLayout or AutoRepeat in the preceding example) appears without quotes as
the first word on the line.

� XFree86 3.3.6 and earlier don’t use the ServerLayout section, described later in “Putting
It All Together.”

� XFree86 3.3.6 and earlier lack the Identifier and Driver lines, which are common in
the XFree86 4.x and X.org-X11 configuration files.

� Some section-specific features vary between versions. I describe the most important of these
in the coming pages.

4425.book Page 225 Thursday, July 7, 2005 5:28 PM

226 Chapter 5 � The X Window System

The X Configure-and-Test Cycle

If your X configuration isn’t working correctly, you need to be able to modify that configuration
and then test it. Many Linux distributions configure the system to start X automatically; however,
starting X automatically can make it difficult to test the X configuration. To a new Linux admin-
istrator, the only obvious way to test a new configuration is to reboot the computer.

A better solution is to kick the system into a mode in which X is not started automatically.
On most distributions, this goal can be achieved by typing telinit 3. This action sets the com-
puter to use runlevel 3, in which X normally doesn’t run. Chapter 6, “The Boot Process and
Scripts,” covers runlevels in more detail, but for now, know that setting the system to a runlevel
of 3 normally shuts down the X session that launched automatically at system startup.

Some distributions, such as Debian and Gentoo, don’t use runlevels as a signal
for whether or not to start X. With such distributions, you must shut down the
GUI login server by typing /etc/init.d/xdm stop. (You may need to change xdm
to gdm or kdm, depending on your configuration.)

Once the X session is shut down, you can log in using a text-mode login prompt and tweak
your X settings manually, or you can use text-based X configuration programs. You can then
type startx to start the X server again. If you get the desired results, quit from X and type
telinit 5 (/etc/init.d/xdm start in Debian and other distributions that don’t use runlev-
els to start the GUI login prompt) to restore the system to its normal X login screen. If after typ-
ing startx you don’t get the results you want, you can end your X session and try modifying
the system some more.

If X is working minimally but you want to modify it using X-based configuration tools, you
can do so after typing startx to get a normal X session running. Alternatively, you can recon-
figure the system before taking it out of the X-enabled runlevel.

Another approach to restarting X is to leave the system in its X-enabled runlevel and then kill
the X server. The Ctrl+Alt+Backspace keystroke does this on many systems, or you can do it
manually with the kill command after finding the appropriate process ID with the ps com-
mand, as shown here:

ps ax | grep X

1375 ? S 6:32 /etc/X11/X -auth /etc/X11/xdm/authdir/

kill 1375

This approach works better on systems that don’t map the running of X to specific runlevels,
such as Debian and its derivatives.

X Configuration Options

When editing the X configuration file, the best approach is usually to identify the feature that’s
not working and zero in on the section that controls this feature. You can then edit that section,
save your changes, and test the new configuration. In XFree86 4.x and X.org-X11, the major

4425.book Page 226 Thursday, July 7, 2005 5:28 PM

Configuring Basic X Features 227

sections described here are called Module, InputDevice, Monitor, Device, Screen, and
ServerLayout. You’re likely to have two InputDevice sections, one for the keyboard and one
for the mouse. (In XFree86 3.3.6 and earlier, the mouse is handled by a separate Pointer sec-
tion.) The section order doesn’t matter.

Fonts are a complex enough topic that they’re described in more detail a bit
later, in “Configuring X Fonts.” Part of this configuration is handled in the
Files section.

Loading Modules

The Module section controls the loading of X server modules—drivers for specific features or
hardware. A typical example looks like this:

Section "Module"

 Load "dbe"

 Load "extmod"

 Load "fbdevhw"

 Load "glx"

 Load "record"

 Load "freetype"

 Load "type1"

 Load "dri"

EndSection

Each module is named (dbe, extmod, and so on) and is loaded by name using the Load
option. Most of these module names can be deciphered with a bit of knowledge about the fea-
tures they control. For instance, freetype and type1 handle TrueType and Adobe Type 1 font
rendering, respectively. If you’re perusing your Module section and see modules you don’t
understand, though, you shouldn’t worry about it; generally speaking, modules that are con-
figured automatically are necessary for normal operation, or at least they do no harm.

For the most part, if an X configuration works, you shouldn’t try to adjust the Module sec-
tion, even if you want to tweak the X configuration. Sometimes, though, you’ll need to add lines
to this section or occasionally remove them. This is particularly likely to be necessary if you’re
activating 3D acceleration support or some sort of exotic feature. In such cases, you should con-
sult the documentation for the feature you want to activate.

Setting the Keyboard

The keyboard is one of two common input devices configured via an InputDevice section:

Section "InputDevice"

 Identifier "Keyboard0"

 Driver "kbd"

4425.book Page 227 Thursday, July 7, 2005 5:28 PM

228 Chapter 5 � The X Window System

 Option "XkbModel" "pc105"

 Option "XkbLayout" "us"

 Option "AutoRepeat" "500 200"

EndSection

The Identifier line provides a label that’s used by another section (ServerLayout,
described in “Putting It All Together”). This line and the ServerLayout section are not present
in XFree86 3.3.6 or earlier. The string given on this line is arbitrary, but for a keyboard, a name
such as this example’s Keyboard0 will help you understand the file.

The Driver line tells X what driver to use to access the keyboard. This should be kbd or
Keyboard, depending on your X server. Unless your keyboard isn’t working at all, you
shouldn’t adjust this line.

The Option lines set various options that adjust various keyboard features, such as the
model, the layout, and the repeat rate. For the most part, the defaults work well; however, you
might want to change the AutoRepeat option or add it if it’s not present. This option tells X
when to begin repeating characters when you hold down a key and how often to repeat them.
It takes two numbers as values, enclosed in quotes: the time until the first repeat and the time
between subsequent repeats, both times expressed in milliseconds (ms). In the preceding exam-
ple, the system waits 500ms (half a second) for the first repeat and then 200ms for each subse-
quent repeat (that is, five repeats per second).

Many desktop environments and other user-level utilities provide tools to set
the keyboard repeat rate. Thus, the options you set in the X configuration file
are used as defaults only and might or might not have any real effect for users.

Setting the Mouse

A second InputDevice section controls how X treats the mouse:

Section "InputDevice"

 Identifier "Mouse0"

 Driver "mouse"

 Option "Protocol" "IMPS/2"

 Option "Device" "/dev/input/mice"

 Option "Emulate3Buttons" "no"

 Option "ZAxisMapping" "4 5"

EndSection

In XFree86 3.3.6 and earlier, this section is called Pointer rather than
InputDevice.

4425.book Page 228 Thursday, July 7, 2005 5:28 PM

Configuring Basic X Features 229

As with the keyboard, the Identifier line is used in the ServerLayout section to tell X
which input device to use. The Driver line identifies the driver to use: mouse. The Option lines
set mouse control options. The most important of these are Device and Protocol.

The Device line tells X what Linux device file to read to access the mouse. In this example,
it’s /dev/input/mice, but other common possibilities include /dev/mouse (a pointer to the
real mouse device, whatever its name), /dev/psaux (for the PS/2 mouse port), /dev/usb/
usbmouse (an old identifier for USB mice), /dev/ttyS0 (the first RS-232 serial port mouse),
and /dev/ttyS1 (the second RS-232 serial port mouse). If your mouse is working at all (even
if its motions are erratic), don’t change this line. If your mouse isn’t working, you may need
to experiment.

The Protocol option tells X what signals to expect from the mouse for various movements
and button presses. The most common protocol for new mice today is IMPS/2, which stands for
Microsoft’s Intellimouse variant on the PS/2 mouse protocol. (Note that “PS/2” is both a hard-
ware interface and a software protocol and many USB mice use the PS/2 mouse protocol even
though they don’t use the PS/2 mouse port.) If your mouse has a scroll wheel, chances are this
is the protocol you should use. If your mouse is older, you may need to try older protocols, such
as PS/2, Microsoft, or Logitech.

Additional options are usually less critical than the Device and Protocol options. The
Emulate3Buttons option tells X whether or not to treat a chord (that is, a simultaneous press)
of both buttons on a two-button mouse as if it were a middle button press. This option is usually
disabled on three-button mice and scroll mice (the scroll wheel does double duty as a middle
mouse button). The ZAxisMapping option in the preceding example maps the scroll wheel
actions to the fourth and fifth buttons, because X must treat scroll wheels as if they were but-
tons. When you scroll up or down, these “button” presses are generated. Software can detect
this and take appropriate actions.

Setting the Monitor

Some of the trickiest aspects of X configuration relate to the monitor options. You set these in
the Monitor section, which has a tendency to be quite large, particularly in XFree86 3.3.6 and
earlier. A shortened Monitor section looks like this:

Section "Monitor"

 Identifier "Monitor0"

 ModelName "VisionMaster Pro 450"

 HorizSync 27.0-115.0

 VertRefresh 50.0-160.0

 # My custom 1360x1024 mode

 Modeline "1360x1024" 197.8 \

 1360 1370 1480 1752 \

 1024 1031 1046 1072 -HSync -VSync

EndSection

4425.book Page 229 Thursday, July 7, 2005 5:28 PM

230 Chapter 5 � The X Window System

As in the keyboard and mouse configurations, the Identifier option is a free-form string
that contains information that’s used to identify a monitor. The Identifier can be just about
anything you like. Likewise, the ModelName option also can be anything you like; it’s used
mainly for your own edification when reviewing the configuration file.

As you continue down the section, you’ll see the HorizSync and VertRefresh lines, which
are extremely critical; they define the range of horizontal and vertical refresh rates that the
monitor can accept, in kilohertz (kHz) and hertz (Hz), respectively. Together, these values
determine the maximum resolution and refresh rate of the monitor. Despite the name, the
HorizSync item alone doesn’t determine the maximum horizontal refresh rate. Rather, this
value, the VertRefresh value, and the resolution determine the monitor’s maximum refresh
rate. X selects the maximum refresh rate that the monitor will support given the resolution
you specify in other sections. Some X configuration utilities show a list of monitor models or
resolution and refresh rate combinations (such as “800 × 600 at 72 Hz”). You select an option
and the utility then computes the correct values based on that selection. This approach is often
simpler to handle, but it’s less precise than entering the exact horizontal and vertical sync val-
ues. You should enter these values from your monitor’s manual.

Don’t set random horizontal and vertical refresh rates; particularly on older
hardware, setting these values too high can actually damage a monitor. (Mod-
ern monitors ignore signals presented at too high a refresh rate.)

To settle on a resolution, X looks through a series of mode lines, which are specified via the
Modeline option. Computing mode lines is tricky, so I don’t recommend you try it unless you’re
skilled in such matters. The mode lines define combinations of horizontal and vertical timing that
can produce a given resolution and refresh rate. For instance, a particular mode line might define
a 1024 × 768 display at a 90Hz refresh rate, and another might represent 1024 × 768 at 72Hz.
The upcoming section “Fine-Tuning Video Modes” describes how to modify your monitor’s
mode line without recomputing the whole thing from scratch. The preceding example splits the
mode line across multiple lines, but more frequently it appears as a single line in the file.

Some mode lines represent video modes that are outside the horizontal or vertical sync ranges
of a monitor. X can compute these cases and discard the video modes that a monitor can’t sup-
port. If asked to produce a given resolution, X searches all the mode lines that accomplish the
job, discards those that the monitor can’t handle, and uses the remaining mode line that creates
the highest refresh rate at that resolution. (If no mode line supports the requested resolution, X
drops down to another specified resolution, as described shortly, and tries again.)

As a result of this arrangement, you’ll see a large number of Modeline entries in the XF86Config
file for XFree86 3.3.6 and earlier. Most end up going unused because they’re for resolutions you
don’t use or because your monitor can’t support them. You can delete these unused mode lines, but
it’s usually not worth the effort.

XFree86 4.x and X.org-X11 support a feature known as Data Display Channel (DDC).
This is a protocol that enables monitors to communicate their maximum horizontal and ver-
tical refresh rates and appropriate mode lines to the computer. The XFree86 -configure or
Xorg -configure command uses this information to generate mode lines, and on every start,

4425.book Page 230 Thursday, July 7, 2005 5:28 PM

Configuring Basic X Features 231

the system can obtain horizontal and vertical refresh rates. The end result is that an XFree86
4.x or X.org-X11 system can have a substantially shorter Monitor section than is typical with
XFree86 3.3.x.

Setting the Video Card

Your monitor is usually the most important factor in determining your maximum refresh rate
at any given resolution, but X sends data to the monitor only indirectly, through the video card.
Because of this, it’s important that you be able to configure this component correctly. An incor-
rect configuration of the video card is likely to result in an inability to start X.

Choosing the Server or Driver

XFree86 4.x and X.org-X11 use driver modules that are stored in separate files from the main
X server executable. The server can’t determine what module is required automatically, how-
ever. Instead, you must give it that information in the XF86Config or xorg.conf file. In par-
ticular, the driver module is set by a line in the Device section, which resembles the following:

Driver "r128"

This line sets the name of the driver. The drivers reside in the /usr/X11R6/lib/modules/
drivers/ directory. Most of the drivers’ filenames end in _drv.o, and if you remove this por-
tion, you’re left with the driver name. For instance, r128_drv.o corresponds to the r128 driver.

The xf86cfg utility provides a large list of chipsets and specific video card mod-
els, so you can select the chipset or board from this list to have the utility con-
figure this detail.

Setting Card-Specific Options

The Device section of the xorg.conf file sets various options related to specific X servers. A
typical Device section resembles the following:

Section "Device"

 Identifier "Videocard0"

 Driver "r128"

 VendorName "ATI"

 BoardName "Rage 128"

 VideoRam 32768

EndSection

The Identifier line provides a name that’s used in the subsequent Screen section to iden-
tify this particular Device section. (X configuration files frequently host multiple Device sec-
tions—for instance, one for a bare-bones VGA driver and one for an accelerated driver.) The
VendorName and BoardName lines provide information that’s useful mainly to people reading
the file.

4425.book Page 231 Thursday, July 7, 2005 5:28 PM

232 Chapter 5 � The X Window System

The VideoRam line is unnecessary with many servers and drivers because the driver can
detect the amount of RAM installed in the card. With some devices, however, you may need to
specify the amount of RAM installed in the card, in kilobytes. For instance, the preceding exam-
ple indicates a card with 32MB of RAM installed.

Many drivers support additional driver-specific options. They may enable support for fea-
tures such as hardware cursors (special hardware that enables the card to handle mouse pointers
more easily) or caches (using spare memory to speed up various operations). Consult the
XF86Config or xorg.conf man page or other driver-specific documentation for details.

Setting the Resolution and Color Depth

The Screen section tells X about the combination of monitors and video cards you’re using.
XFree86 4.x and X.org-X11 support multiple video cards and monitors on one system, and
even in XFree86 3.3.6 and earlier you can define several monitors or video cards and switch
between them by editing the Screen section. This could be handy if you’re testing a new mon-
itor or video card driver. In any event, the Screen section looks something like this:

Section "Screen"

 Identifier "Screen0"

 Device "Videocard0"

 Monitor "Monitor0"

 DefaultDepth 24

 SubSection "Display"

 Depth 24

 Modes "1024x768" "1024x600" "800x600" "640x480"

 EndSubSection

 SubSection "Display"

 Depth 8

 Modes "1024x768" "800x600" "640x480"

 EndSubSection

EndSection

The Device and Monitor lines refer to the Identifier lines in your Device and Monitor
sections, respectively. The Screen section includes one or more Display subsections, which
define the video modes that X may use. This example creates two such displays. The first uses
a color depth of 24 bits (Depth 24) and possible video mode settings of 1024x768, 1024x600,
800x600, and 640x480. (These video modes are actually names that refer to the mode lines
defined in the Monitor section, or to standard mode lines.) The second possible display uses an
8-bit color depth (Depth 8) and supports only 1024x768, 800x600, and 640x480 video modes.

To choose between the Display subsections, you include a DefaultDepth line. (This line is
called DefaultColorDepth in XFree86 3.3.6 and earlier.) In this example, X uses the 24-bit
display if possible, unless overridden by other options when starting X.

Graphical video modes require a certain amount of RAM on the video card itself. (On
some laptop computers and computers with video hardware integrated into the motherboard,

4425.book Page 232 Thursday, July 7, 2005 5:28 PM

Configuring Basic X Features 233

a portion of system RAM is reserved for this use by the BIOS.) The total amount of RAM
required is determined by an equation:

R = xres × yres × bpp ÷ 8,388,608

In this equation, R is the RAM in megabytes, xres is the x resolution in pixels, yres is the y
resolution in pixels, and bpp is the bit depth. For instance, consider a 1280 × 1024 display at
32-bit color depth:

R = 1280 × 1024 × 24 ÷ 8,388,608 = 3.75MB

All modern video cards have at least 8MB of RAM, usually much more. This is more than
enough to handle even very high resolutions at 32-bit color depth (the greatest depth possible).
Thus, video RAM shouldn’t be a limiting factor in terms of video mode selection, at least not
with modern video hardware. Very old video cards can impose limits, so you should be aware
of those limits.

Modern video cards ship with large amounts of RAM to support 3D acceleration
features. X supports such features indirectly through special 3D acceleration pack-
ages, but 3D acceleration support is limited compared to basic video card support.
If 3D acceleration is important to you, you should research the availability of this
support.

E X E R C I S E 5 . 1

Changing the X Resolution and Color Depth

In this lab, you will adjust the X resolution and color depth by editing the XF86Config or
xorg.conf file. To do so, follow these steps:

1. Log onto the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system.

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Session �
New Root Console from a Konsole, or by using sudo (if it’s configured) to run the following
commands.

4. Back up the current xorg.conf file by typing cp /etc/X11/xorg.conf /root. (Some distri-
butions may place this file in /etc rather than /etc/X11. If you’re using XFree86 rather than
X.org-X11, the file is called XF86Config or XF86Config-4. You may need to adjust this com-
mand as appropriate.)

5. Load the xorg.conf file into a text editor by typing the editor’s name followed by the com-
plete path to the file in the xterm. For instance, gedit /etc/X11/xorg.conf loads the file into
the gedit editor, which is part of GNOME. Other popular editor names include emacs, vi,
kedit, and nedit.

4425.book Page 233 Thursday, July 7, 2005 5:28 PM

234 Chapter 5 � The X Window System

Putting It All Together

XFree86 4.x and X.org-X11 require a section that’s not present in the XFree86 3.3.6 configuration
file: ServerLayout. This section links together all the other components of the X configuration:

Section "ServerLayout"

 Identifier "single head configuration"

 Screen "Screen0" 0 0

 InputDevice "Mouse0" "CorePointer"

 InputDevice "Keyboard0" "CoreKeyboard"

EndSection

6. Locate the Screen section of the file, identified by a line that reads Section "Screen".

7. Within the Screen section, locate a line that begins DefaultDepth. This line sets the default
color depth of the display, in bits. Adjust the value to one you want to use. Common values
include 8 (256 colors), 15 (32,768 colors), 16 (65,536 colors), 24 (16,777,216 colors), and 32
(over 4 million colors). Note that greater color depths often look better but may slow down
the display.

8. Examine the Display subsections, which begin with the line Subsection "Display". If a
Display subsection doesn’t exist for the color depth you’ve selected, create one by copy-
ing an existing Display subsection for another color depth and changing the Depth line to
match the color depth you selected. Copy all the lines from the Subsection "Display" line
to the matching EndSubSection line.

9. In the Display subsection for the color depth you’ve selected, locate the Modes line. This line
specifies the display modes (resolutions) that X will try to use, in order. A typical Modes line
lists one or more display modes, in order, as in Modes "1280x1024" "1024x768" "800x600".
In this case, X will try a 1280 × 1024 display first. If it can’t produce that resolution, X will try
a 1024 × 768 display. If X can’t produce that display, it tries 800 × 600.

10. Adjust the Modes line so that your desired resolution is first in the list. If you want to have
fallback resolutions, list them after the primary resolution. Be sure to enclose your mode
in quote marks. (You can’t list arbitrary display modes; for instance, "700x500" is unlikely
to work. X should recognize common display resolutions, though.)

11. Save the changes to the file and exit from your editor.

12. If X isn’t started, try starting it by typing startx at a text-mode command prompt.

13. If X is already running, log out of your session and, if necessary, select an option to restart
X or press Ctrl+Alt+Backspace to force X to quit and restart.

E X E R C I S E 5 . 1 (c o n t i n u e d)

4425.book Page 234 Thursday, July 7, 2005 5:28 PM

Configuring Basic X Features 235

Typically, this section identifies one Screen section and two InputDevice sections (for the
keyboard and the mouse). Other configurations are possible, though. For instance, XFree86 4.x
and X.org-X11 support multi-head displays, in which multiple monitors are combined to form a
larger desktop than either one alone would support. In these configurations, the ServerLayout
section would include multiple Screen sections.

Fine-Tuning Video Modes

Earlier, in “Setting the Monitor,” I described X mode lines. These lines tell X about the video timings
required to render particular video modes. In addition to the actual resolution and refresh rate, mode
lines affect the positioning of the image on the monitor, the image’s width, and the image’s height.
Sometimes, you might want to adjust these details. With modern monitors, the simplest approach
is usually to use the monitor’s controls; however, you might prefer to do it in software. A software
solution will enable you to match the video modes between Linux and another OS more precisely
or adjust the video display details for old monitors with insufficient front-panel controls. The tool
to do all of this is called xvidtune, and it ships as part of X.

You’re most likely to want to run xvidtune when you use a cathode ray tube
(CRT) monitor, which uses a bulky glass tube for the display. The slimmer liquid
crystal display (LCD) technology maps pixels in a one-to-one manner, and LCD
displays either use digital interfaces that don’t require tuning with xvidtune or
lock onto analog signals in such a way that xvidtune is unlikely to have any ben-
eficial effect. If an LCD monitor can’t seem to lock onto an analog signal properly,
though, using xvidtune might help.

To use xvidtune, type its name in an xterm or other command prompt window. (Do not run
xvidtune through a desktop environment or window manager’s program-launching tool; the
program displays some data to standard output—the console from which it’s launched—and
this will be inaccessible if you don’t run the program from a command prompt.) The running
xvidtune should resemble Figure 5.3.

F I G U R E 5 . 3 The xvidtune utility helps you tweak your mode lines for your monitor.

4425.book Page 235 Thursday, July 7, 2005 5:28 PM

236 Chapter 5 � The X Window System

Using xvidtune entails clicking its buttons: Left, Right, Wider, and Narrower to control the
horizontal position and size; and Up, Down, Shorter, and Taller to control the vertical position
and size. These changes won’t be immediately apparent, but clicking Test should temporarily
implement them so that you can see the effect.

Some X configurations disallow the sort of temporary changes that xvidtune
uses. Specifically, if you see a line in XF86Config or xorg.conf that reads
Option "DisableVidModeExtension" "yes", you may need to change yes to no
and restart X in order to see the xvidtune changes.

Once you’ve made changes that are satisfactory, click Show. The result should be a new
mode line on the xterm from which you launched the program. Copy this mode line to your
XF86Config or xorg.conf file’s Monitor section. You must add the Modeline keyword to the
start of the line, and you may want to change the video mode’s name to something distinctive—
say, changing 1280x1024 to my1280x1024. You can then change your Screen section’s Modes
line to refer to the new mode and restart X.

Configuring X Fonts
Fonts have long been a trouble spot for Linux (or more precisely, for X). X was created at a time
when available font technologies were primitive by today’s standards, and although X has been
updated in various ways to take advantage of newer technologies, these updates have been lack-
ing compared to the font subsystems in most competing OSs. X’s core font system can be con-
figured from the X configuration file. Alternatively, you can configure a font server—a program
that delivers fonts to one or many computers using network protocols—to handle the fonts. The
latest Linux font technology sets up fonts in a way that’s more independent of X and that pro-
duces more pleasing results, at least to most peoples’ eyes.

Font Technologies and Formats

Font technologies can be classified as falling into one of two broad categories:

Bitmap fonts The simplest type of font format is the bitmap font, which represents fonts much
like bitmap graphics, in which individual pixels in an array are either active or inactive. Bitmap
fonts are fairly easy to manipulate and display, from a programming perspective, which makes
them good for low-powered computers. The problem is that each font must be optimized for
display at a particular resolution. For instance, a font that’s 20 pixels high will appear one size
on the screen (typically 72 to 100 dots per inch, or dpi) but will be much smaller when printed
(typically at 300 to 600 dpi). Similarly, you need multiple files to display a single font at multiple
sizes (such as 9 point versus 12 point.) This means that a single font, such as Times, requires
potentially dozens of individual files for display at different sizes and on different display
devices. If you lack the correct font file, the result will be an ugly scaled display.

4425.book Page 236 Thursday, July 7, 2005 5:28 PM

Configuring X Fonts 237

Outline fonts Most modern fonts are distributed as outline fonts (aka scalable fonts). This
type of format represents each character as a series of lines and curves in a high-resolution
matrix. The computer can scale this representation to any font size or for any display resolution,
enabling a single font file to handle every possible use of the font. The main problem with out-
line fonts is that this scaling operation is imperfect; scalable fonts often look slightly worse than
bitmap fonts. Scaling and displaying the fonts also takes more CPU time than displaying a bit-
map font. This factor used to be important, but on modern CPUs it’s less of an issue.

Both bitmap and outline fonts come in several different formats. X ships with a number of
basic bitmap and outline fonts, and you’re unlikely to need to deal explicitly with bitmap fonts or
their formats, so I don’t describe them in any detail. Outline fonts are another matter, though. The
two main formats are Adobe’s PostScript Type 1 (or Type 1 for short) and Apple’s TrueType.
Fonts available on the Internet and on commercial font CDs come in one or both of these formats.

XFree86 3.3.6 and earlier supported Type 1 fonts but not TrueType fonts. XFree86 4.x and
X.org-X11 support both Type 1 and TrueType fonts. If you want to use TrueType fonts with
XFree86 3.3.6 or earlier, you must do so with the help of a font server, as described shortly, in
“Configuring a Font Server.”

Configuring X Core Fonts

X core fonts are those that are handled directly by X. To configure these fonts, you must do two
things: prepare a font directory that holds the fonts and add the font directory to X’s font path.

Preparing a Font Directory

The first step to installing fonts is to prepare a directory in which to store them. XFree86 has
traditionally stored its fonts in subdirectories of /usr/X11R6/lib/X11/fonts/, but X.org-X11
changes this to /usr/share/fonts. In either case, if you’re adding fonts you’ve downloaded
from the Internet or obtained from a commercial font CD-ROM, you might want to store your
fonts elsewhere, such as /opt/fonts or /usr/local/fonts. (Chapter 4, “Managing Files and
Filesystems,” includes information on the logic behind Linux’s directory system.) You may want
to create separate subdirectories for fonts in different formats or from different sources.

When you’re installing Type 1 fonts, Linux needs the font files with names that end in .pfa
or .pfb; these files contain the actual font data. (The .pfa and .pfb files store the data in
slightly different formats, but the two file types are equivalent.) Additional files distributed with
Type 1 fonts aren’t necessary for Linux. TrueType fonts come as .ttf files, and that’s all you
need for Linux.

Linux uses fonts in the same format that Windows, OS/2, and most other OSs
use. Mac OS uses font files in special Macintosh-only “suitcases,” which Linux
cannot use directly. If you want to use such fonts in Linux, you must convert
them. The FontForge program (http://fontforge.sourceforge.net) can do
this conversion, among other things.

4425.book Page 237 Thursday, July 7, 2005 5:28 PM

238 Chapter 5 � The X Window System

Once you’ve copied fonts to a directory, you must prepare a summary file that describes these
fonts. This file is called fonts.dir, and it begins with a line that specifies how many fonts are
described. Subsequent lines provide a font filename and an X logical font description (XLFD),
which is a rather tedious-looking description of the font. A complete fonts.dir line can look
rather intimidating:

courb.pfa -ibm-Courier-bold-r-normal--0-0-0-0-m-0-iso8859-1

Fortunately, you needn’t create this file manually; programs exist to do so automatically. In
XFree86 4.3 and later and in X.org-X11, the simplest way to do the job is to use mkfontscale
and mkfontdir:

mkfontscale

mkfontdir

The mkfontscale program reads all the fonts in the current directory and creates a fonts.scale
file, which is just like a fonts.dir file but describes only outline fonts. The mkfontdir program
combines the fonts.scale file with the fonts.dir file, creating it if it doesn’t already exist.

Other programs to perform this task also exist. Most notably, ttmkfdir creates a
fonts.dir file that describes TrueType fonts, while type1inst does the job for Type 1
fonts. The mkfontscale program is preferable because it handles both font types, but if
you’re using an older distribution that lacks this program, or if it’s not doing a satisfactory
job, you might try one of these alternative programs.

Adding Fonts to X’s Font Path

Once you’ve set up fonts in a directory and created a fonts.dir file describing them, you must
add the fonts to the X font path. You do this by editing the Files section of the XF86Config
or xorg.conf file:

Section "Files"

 FontPath "/usr/share/fonts/100dpi:unscaled"

 FontPath "/usr/share/fonts/Type1"

 FontPath "/usr/share/fonts/truetype"

 FontPath "/usr/share/fonts/URW"

 FontPath "/usr/share/fonts/Speedo"

 FontPath "/usr/share/fonts/100dpi"

EndSection

If your Files section contains FontPath lines that refer to unix:/7100 or unix:/-1
but that don’t list conventional directories, read the section “Configuring a Font
Server.” You may want to modify your font server configuration rather than
change the X core fonts directly.

4425.book Page 238 Thursday, July 7, 2005 5:28 PM

Configuring X Fonts 239

To add your new font directory to the font path, duplicate one of the existing FontPath lines
and change the directory specification to point to your new directory. The order of these directo-
ries is significant; when matching font names, X tries each directory in turn, so if two directories
hold fonts of the same name, the first one takes precedence. Thus, if you want your new fonts to
override any existing fonts, place it at the top of the list; if you want existing fonts to take prece-
dence, add your directory to the end of the list.

The :unscaled string in the first entry in the preceding example tells X to use
bitmap fonts from this directory only if they exactly match the requested font
size. Without this string, X will attempt to scale bitmap fonts from a font direc-
tory (with poor results). Typically, bitmap directories are listed twice, once
near the top of the font path with the :unscaled specification and again near
the bottom of the list without it. This produces quick display of matching bit-
mapped fonts, followed by any matching scalable fonts, followed by scaled
bitmap fonts.

Once you’ve added your font directory to X’s font path, you should test the configuration.
The safest way to do this is to shut down X and restart it. (If your system boots directly into X,
consult “Running an XDMCP Server” for information on doing this.) A quicker approach, but
one that presents some opportunity for error, is to add the font path to a running system by
using the xset program:

$ xset fp+ /your/font/directory

$ xset fp rehash

The first of these commands adds /your/font/directory to the end of the font path. (Sub-
stitute +fp for fp+ to add the directory to the start of the existing font path.) The second com-
mand tells X to re-examine all the font directories to rebuild the list of available fonts. The result
is that you should now be able to access the new fonts. (You’ll need to restart any programs that
should use the new fonts, though.) One program to quickly test the matter is xfontsel. This
program enables you to select an X core font for display so you can check to be sure that the
fonts you’ve added are available and display as you expect.

Configuring a Font Server

Prior to the release of XFree86 4.0, several Linux distributions began using TrueType-
enabled font servers to provide TrueType font support. These distributions, which include
Fedora, Mandriva (formerly Mandrake), and Red Hat, continue to use a font server for
local font delivery.

Font servers are also handy ways to deliver fonts to many computers from a central location.
This can be a great time-saver if you want to add fonts to many computers—set them up to use

4425.book Page 239 Thursday, July 7, 2005 5:28 PM

240 Chapter 5 � The X Window System

a font server and then tweak that server’s font configuration. To use a font server, X must list
that server in its font path:

Section "Files"

 FontPath "unix:/7100"

 FontPath "tcp/fount.pangaea.edu:7100"

EndSection

The first line in this example specifies a local font server. (Mandriva’s default configuration
uses unix:/-1 rather than unix:/7100.) The second line specifies that the font server on the
remote system fount.pangaea.edu is to be used. If your system is already configured to use a
font server, you needn’t change the X configuration to add or delete fonts; instead, you can
modify the font server’s configuration. (You can still modify the X font configuration directly,
but it may be cleaner to manage all the local fonts from one configuration file.)

To add fonts to a font server, you should first install the fonts on the system, as described earlier
in “Preparing a Font Directory.” You should then modify the font server’s configuration file, /etc/
X11/fs/config. Rather than a series of FontPath lines, as in the main X configuration file, the font
server’s configuration lists the font path using the catalogue keyword as a comma-delimited list:

catalogue = /usr/share/fonts/100dpi:unscaled,

 /usr/share/fonts/Type1,

 /usr/share/fonts/truetype,

 /usr/share/fonts/URW,

 /usr/share/fonts/Speedo,

 /usr/share/fonts/100dpi

The catalogue list may span several lines or just one. In either event, all of the entries are
separated by commas, but the final entry ends without a comma. You can add your new font
directory anywhere in this list.

Once you’ve saved your changes, you must restart the font server. Typically, this is done via
SysV startup scripts (described in more detail in Chapter 6):

/etc/init.d/xfs restart

At this point, you should restart X or type xset fp rehash to have X re-examine its font
path, including the fonts delivered via the font server.

Although X core fonts and font servers were once very important, most modern X applications
now emphasize an entirely different font system: Xft. You can add the same fonts as both X core
fonts and as Xft fonts, but the Xft configuration requires doing things in an entirely new way.

Configuring Xft Fonts

X core fonts (including fonts delivered via a font server) have several important drawbacks:
� X core fonts aren’t easy to integrate between the screen display and printed output. This

makes them awkward from the point of view of word processing or other applications that
produce printed output.

4425.book Page 240 Thursday, July 7, 2005 5:28 PM

Configuring X Fonts 241

� X core fonts are server based. This means that applications may not be able to directly
access the font files because the fonts could be stored on a different computer than the
application. This can exacerbate the printing integration problem.

� X core fonts provide limited or no support for kerning and other advanced typographic fea-
tures. Again, this is a problem for word processing programs and other programs that must
generate printed output.

� X core fonts don’t support font smoothing (aka anti-aliasing). This technology employs
gray pixels (rather than black or white pixels) along curves to create an illusion of greater
resolution than the display can produce.

These problems are deeply embedded in the X core font system, so developers have decided
to bypass that system entirely. The result is the Xft font system, which is based in part on the
Freetype library (http://www.freetype.org), an open-source library for rendering TrueType
and Type 1 fonts. Xft is a client-based system, meaning that applications access font files on the
computer on which they’re running. Xft also supports font smoothing and other advanced font
features. Overall, the result is greatly improved font support. The cost, though, is that Linux
now has two font systems: X core fonts and Xft fonts.

Fortunately, you can share the same font directories through both systems. If you’ve pre-
pared a font directory as described earlier, in “Preparing a Font Directory,” you can add it to
Xft. Load the /etc/fonts/local.conf file into a text editor. Look for any lines in this file that
take the following form:

<dir>/font/directory</dir>

If such lines are present, duplicate one of them and change it to point to your new font direc-
tory. If not, create such a line just before the </fontconfig> line. Be sure not to embed your
new font directory specification within a comment block, though. Comments begin with a line
that reads <!-- and end with a line that reads -->.

If you create a font directory that holds several subdirectories, you can add just
the main directory to local.conf. For instance, if you created /opt/fonts/tt
and /opt/fonts/type1, adding /opt/fonts to local.conf will be sufficient to
access all the fonts you installed on the system.

Once you’ve made these changes, type fc-cache as root. This command causes Xft to run
through its font directories and create index files. These files are similar to the fonts.dir file
in principle, but the details differ. If you fail to take this step, you’ll still be able to access these
fonts, but each user’s private Xft cache file will contain the lists of fonts. Generating these files
can take some time, degrading performance.

To test your Xft fonts, use any Xft-enabled program. The gnome-font-properties pro-
gram is a handy one for quickly checking that your fonts are installed.

4425.book Page 241 Thursday, July 7, 2005 5:28 PM

242 Chapter 5 � The X Window System

Managing GUI Logins
Linux can boot into a purely text-based mode in which the console supports text-based logins
and text-mode commands. This configuration is suitable for a system that runs as a server com-
puter or for a desktop system for a user who dislikes GUIs. Most desktop users, though, expect
their computers to boot into a friendly GUI. For such users, Linux supports a GUI login system
that starts X automatically and provides a GUI login screen. Configuring and managing this sys-
tem requires you to understand a bit of how the system works, how to run it, and how to change
the configuration.

The X GUI Login System

As described later in this chapter, in “Using X for Remote Access,” X is a network-enabled
GUI. This fact has many important consequences, and one of these relates to Linux’s GUI
login system. This system employs a network login protocol, the X Display Manager Con-
trol Protocol (XDMCP). To handle remote logins, an XDMCP server runs on a computer
and listens for connections from remote computers’ X servers. To handle local logins, an
XDMCP server runs on a computer and starts the local computer’s X server. The XDMCP
server then manages the local X server’s display—that is, it puts up a login prompt like that
shown in Figure 5.4.

Three XDMCP servers are common on Linux: the X Display Manager (XDM), the KDE
Display Manager (KDM), and the GNOME Display Manager (GDM). A few more exotic
XDMCP servers are also available, but these three are the most important. As you might guess
by their names, KDM and GDM are associated with the KDE and GNOME projects, respec-
tively, but neither limits your choice of desktop environment. (The upcoming section “Con-
figuring Linux to Run Your Desktop Environment” provides information on selecting which
desktop environment you want to run.) Most Linux distributions run either GDM or KDM
as the default XDMCP server, but you can change which one your system uses if you don’t
like the default.

F I G U R E 5 . 4 An XDMCP server manages local GUI logins to a Linux system.

4425.book Page 242 Thursday, July 7, 2005 5:28 PM

Managing GUI Logins 243

Running an XDMCP Server

Several methods exist to start an XDMCP server. The two most common are to launch it more
or less directly from init, via an entry in /etc/inittab, or to launch it as part of a runlevel’s
startup script set, via a SysV startup script. Chapter 6 describes both init and SysV startup
scripts in general, so consult it for information on these processes.

Whichever method is used, most distributions configure themselves to run their chosen
XDMCP server when they start up in runlevel 5 but not when they start in runlevel 3. In fact,
this is the only difference between these two runlevels in most cases. Thus, changing from run-
level 3 to runlevel 5 starts X and the XDMCP server on most distributions, and switching back
to runlevel 3 stops X and the XDMCP server. As described in more detail in Chapter 6, you can
change runlevels as root with the telinit command:

telinit 5

Permanently changing the runlevel requires editing the /etc/inittab file and, in particular,
its id line:

id:5:initdefault:

Change the number (5 in this case) to the runlevel you want to use as the default.
A few distributions—most notably Debian and Gentoo—attempt to start an XDMCP server

in all runlevels (or don’t do so at all). This is done through the use of a SysV startup script called
xdm, kdm, or gdm. Thus, you can temporarily start or stop the XDMCP server by running this
script and passing it the start or stop option. To permanently enable or disable the XDMCP
server, you should adjust your SysV startup scripts, as described in Chapter 6.

In addition to the question of whether to run an XDMCP server is the question of which
XDMCP server to run. Some distributions, such as Fedora, Mandriva, and Red Hat, use a script
called prefdm to do the job. Instead of launching the XDMCP server directly, the system runs
prefdm, which loads /etc/sysconfig/desktop to determine which XDMCP server to run.
Specifically, the DESKTOP line sets the default desktop environment (KDE or GNOME, most com-
monly), which in turn sets the default XDMCP server. Debian and some other distributions use
the choice of SysV startup script (xdm, kdm, or gdm) as a way to determine which XDMCP server
is run.

Configuring an XDMCP Server

XDMCP servers, like most programs, can be configured. Unfortunately, this configuration varies
from one server to another, although there are some commonalities.

Configuring XDM

XDM is the simplest of the major XDMCP servers. It accepts usernames and passwords but
doesn’t enable users to perform other actions, such as choose which desktop environment to
run. (This must be configured through user login files, as described later in “Configuring Linux
to Run Your Desktop Environment.”)

4425.book Page 243 Thursday, July 7, 2005 5:28 PM

244 Chapter 5 � The X Window System

XDM’s main configuration file is /etc/X11/xdm/xdm-config. Most distributions ship with
a basic xdm-config file that should work fine for a local workstation. If you want to enable the
system to respond to remote login requests, or if you want to verify that the system is not so con-
figured, you should pay attention to this line:

DisplayManager.requestPort: 0

This line tells XDM to not access a conventional server port. To activate XDM as a
remote login server, you should change 0 to 177, the traditional XDMCP port. You must
then restart XDM.

The /etc/X11/xdm/Xaccess file is another important XDM configuration file. If XDM is
configured to permit remote access, this file controls who may access the XDM server, and in
what ways. A wide-open system will contain lines that use an asterisk (*) to denote that any-
body may access the system:

*

* CHOOSER BROADCAST

The first line tells XDM that anybody may connect, while the second one tells XDM that
anybody may request a chooser—a display of local systems that accept XDMCP connections.
To limit the choices, you should list individual computers or groups of computers instead of
using the asterisk wildcard:

*.pangaea.edu

tux.example.com

*.pangaea.edu CHOOSER BROADCAST

This example lets any computer in the pangaea.edu domain connect or receive a chooser,
and it also lets tux.example.com connect but not receive a chooser.

Many additional options are set in the /etc/X11/xdm/Xresources file, which hosts X
resources, which are similar to environment variables but apply only to X-based programs. For
instance, you can change the text displayed by XDM by altering the xlogin*greeting resource
in this file.

Configuring KDM

KDM is based partly on XDM and so shares many of its configuration options. Unfortunately,
the location of the KDM configuration files is unpredictable; sometimes KDM uses the XDM
configuration files, other times they’re stored in /etc/X11/kdm, and sometimes they’re stored
in a truly strange location such as /usr/kde/3.3/share/config/kdm/.

If you can’t find the KDM configuration files, try using your package manage-
ment tools, described in Chapter 2, “Managing Software.” Try obtaining lists of
files in the kdebase package, or other likely candidates, and look for the KDM
configuration files.

4425.book Page 244 Thursday, July 7, 2005 5:28 PM

Configuring a Desktop Environment 245

KDM expands on XDM by enabling users to select a session type when they log in, to shut
down the computer from the main KDM prompt, and so on. Most of these extra options are set
in the kdmrc file, which appears in the same directory as the other KDM configuration files.
Some of these options override the more common XDM configuration options for the same fea-
tures. In particular, the [Xdmcp] section provides options relating to network operation. The
enable option in that section should be set to true if you want to support network logins.

Configuring GDM

GDM is more of a break from XDM than is KDM. GDM doesn’t use the conventional XDM
configuration files or similar files. Instead, it uses configuration files that are usually stored in
/etc/X11/gdm. The most important of these files is gdm.conf, and it has a format similar to the
kdmrc file. As with KDM, you should set the enable option to yes in the [xdmcp] section if
you want to enable remote logins.

A GUI control tool for GDM exists. Type gdmconfig as root to launch this pro-
gram, which enables you to set GDM options using a point-and-click interface.

Like KDM, GDM provides extra options over those of XDM. These options include the ability
to choose your login environment and shut down the computer. GDM is a bit unusual in that it
prompts for the username and only then presents a prompt for the password. (Figure 5.4 shows
the GDM username prompt.) XDM and KDM both present fields for the username and password
simultaneously.

Configuring a Desktop Environment
Getting X running and displaying a login prompt are important for basic X use, of course, but
beyond these steps lie various configuration options. Linux supports many different desktop envi-
ronments—sets of programs that provide tools that integrate with one another for a unified experi-
ence. The desktop environment you pick will be important in determining how your system
performs. (Desktop environment choice is a matter for individual users; each user can select a dif-
ferent desktop environment in a multi-user system, although of course the system administrator can
limit choices by installing only some desktop environments.) Beyond picking a desktop environ-
ment, you must be able to get it to run and to configure certain important X environment options.

Desktop Environment Choices

Prior to the late 1990s, true desktop environments were rare in Linux. Users typically used bare
window managers—programs that provide decorative and functional borders around windows
and that manage the screen as a whole. Users would then add programs that could be easily
launched from these window managers, such as file managers, calendar programs, mail readers,
and so on.

4425.book Page 245 Thursday, July 7, 2005 5:28 PM

246 Chapter 5 � The X Window System

Over time, fuller suites of programs have emerged. These desktop environments include
window managers and all the extra programs in one package. Desktop environments also add
integration between programs. For instance, programs might share a common address book,
as well as “look-and-feel” settings such as default font options. Common desktop environ-
ments include:

GNOME The GNU Network Object Model Environment (GNOME) is the favored desktop
environment in Fedora, Red Hat, and some other distributions. It’s a very large suite of pro-
grams that’s built atop the GIMP Tool Kit (GTK+) development library, and it has a tendency
to assimilate originally unaffiliated programs, adding their technological distinctiveness to its
own. You can learn more at http://www.gnome.org.

KDE The K Desktop Environment (KDE) is built around the Qt widget set. It tends to rely less
on assimilating other projects than does GNOME, but the two are similar in overall capabilities.
KDE is the favored desktop environment in Mandriva, Slackware, SuSE, and some other dis-
tributions. You can learn more at http://www.kde.org.

XFce GNOME and KDE are the dominant desktop environments in Linux, but both are huge
and resource hungry. XFce (http://www.xfce.org) is a much slimmer environment. Although
it’s based on the same GTK+ widget set as GNOME, XFce is very different. It’s a good choice
for those with weaker systems because it puts less of a load on the system than either GNOME
or KDE.

In addition to these major choices, several less popular desktop environments exist, such as
XPde (http://www.xpde.com, a desktop environment designed to mirror the Windows XP
“look and feel” as much as possible) and the Common Desktop Environment (CDE, a commer-
cial desktop environment after which XFce is loosely modeled). Furthermore, you can always
run a “bare” window manager in Linux, just as you could in the past. You can then build up
options by using the window manager’s configuration files or your X login files, as described in
the next section. Consult http://xwinman.org for pointers to many popular (and even more
less-popular) window managers.

Most Linux distributions ship with GNOME, KDE, and XFce, but some (particularly
smaller distributions) omit at least one of these. If one isn’t installed but you want to install it,
you can install it from your distribution’s installation medium or from files downloaded from
the environment’s website.

Configuring Linux to Run Your Desktop Environment

Installing a desktop environment or window manager is just a prerequisite for getting it to run.
Both GDM and KDM provide tools to enable users to select their desktop environment when
they log in, but you must ensure that the environment is available in the GDM or KDM menu.
For systems that run XDM or that start up in text mode, editing user configuration files will
determine which desktop environment is run. (Some GDM and KDM options also rely on user
configuration files.)

4425.book Page 246 Thursday, July 7, 2005 5:28 PM

Configuring a Desktop Environment 247

Configuring GDM and KDM Sessions

Modern versions of both GDM and KDM rely on files stored in /usr/share/xsessions to
determine what options to present for possible login sessions. This directory holds files with
names of the form environment.desktop, where environment is the environment name (such
as KDE or GNOME). The precise names vary from one distribution to another, but you should be
able to spot the session file for your environment of choice—if it exists.

If a session file doesn’t exist for your environment, you can create one. The simplest way to
do this is probably to copy an existing file and make appropriate changes. Listing 5.1 shows a
sample file. You should change the Name and Comment entries, which present a name and a com-
ment, both of which are visible to users. Just as important, you should change the Exec and
TryExec lines, which point to the program that’s used to launch the environment. KDE uses
startkde, GNOME uses gnome-session, XFce uses xfce-session, and most bare window
managers use their own names. (Listing 5.1’s IceWM window manager is an exception; it uses
icewm-session.)

Listing 5.1: Sample X Session File for GDM and KDM

[Desktop Entry]

Encoding=UTF-8

Name=IceWM

Comment=This session logs you into IceWM

Exec=icewm-session

TryExec=icewm-session

no icon yet, only the top three are currently used

Icon=

Type=Application

Most X session files include a large number of Name and Comment lines, each of
which includes a language code, such as Name[fr] for French. You can delete
all of these except for the language your system actually uses or even just leave
the bare Name and Comment lines, as in Listing 5.1.

Once you’ve added an X session file, you must restart your XDMCP server, as described ear-
lier in “Running an XDMCP Server.” When KDM or GDM starts up again, you should see your
new session in its list of available sessions and be able to select it. Ordinary users will be able
to do the same.

Many distributions remember users’ choices for login sessions and use those choices as their
defaults or give users the option of changing their defaults when they select a new session. Other
distributions, though, including the popular Fedora and Red Hat, require the user to run a spe-
cial program to make these changes explicit. For Fedora and Red Hat, this program is the Desk-
top Switching Tool (switchdesk).

4425.book Page 247 Thursday, July 7, 2005 5:28 PM

248 Chapter 5 � The X Window System

Configuring Environments to Run from XDM and startx

If your system runs XDM or boots into text mode, scripts control the environment that’s
started, as summarized in Table 5.1. (GDM and KDM may also use the XDM scripts, depend-
ing on their configuration.) These scripts run any commands that should be run globally or by
users for these login methods. Typically, the user startup script includes a call to the desktop
environment or window manager that the user wants to run. It may also launch an xterm or
other programs the user wants running at all times.

Chapter 6 describes scripting in more detail, but you can create an X login script without
knowing much about scripting. Such scripts typically just launch a few programs, as shown in
Listing 5.2. This listing begins with the string #!/bin/bash, which identifies the file as a script.
Subsequent lines are commands, much like commands typed at a command prompt. The aplay
commands play sounds using the Advanced Linux Sound Architecture (ALSA) sound system;
xterm launches an xterm window; and xfce-session begins an XFce session.

Listing 5.2: A Typical X Login Script

#!/bin/bash

aplay /usr/local/sounds/login.wav &

xterm &

xfce-session

aplay /usr/local/sounds/logout.wav

One important detail of login scripts is that all the commands up to, but not including, the
main desktop environment or window manager command (xfce-session in this example)
should end with an ampersand (&). As described in Chapter 1, “Linux Command-Line Tools,”
the ampersand signals that the program is to be run in the background. In scripts, it means that
execution should continue, without waiting for the program to terminate. Commands that
don’t end in an ampersand cause the script to stop running until the command completes. Thus,
Listing 5.2 runs until the xfce-session command runs, then it pauses until XFce terminates—
normally because the user has selected an exit option. The script then continues, playing the
logout sound and ultimately exiting itself. If you omit the ampersand on the final aplay com-
mand, execution will pause while the sound plays, which will slow down the login process
slightly. Omitting the ampersand on the xterm line, though, means that XFce won’t launch
until the user exits from the xterm window, which probably wasn’t the desired result.

T A B L E 5 . 1 Common X Startup Scripts

X Startup Method Global Startup Script User Startup Script

XDM /etc/X11/xdm/Xsession ~/.xsession

startx /etc/X11/xinit/xinitrc ~/.xinitrc

4425.book Page 248 Thursday, July 7, 2005 5:28 PM

Configuring a Desktop Environment 249

Once you’ve created the script, you must mark it as executable using chmod (described in
more detail in Chapter 4):

$ chmod ~/.xinitrc

You should now be able to log into your environment using XDM or by typing startx
after a text-mode login. (Of course, you must edit and adjust the correct login file for your
login method.)

Configuring the X Environment

Traditionally, X programs have relied on X resources to control various user interface details,
such as their default fonts, window colors, and so on. X resources are similar in concept to
environment variables (described in Chapter 6), but they’re used only by X-based programs
and details of how they’re controlled differ. In particular, X resources are set in users’
~/.Xresources and ~/.Xdefaults files. These files have the same format, and both are used
to set X resources; the main difference is that .Xresources is consulted when the window
manager starts up, whereas .Xdefaults can be used at any time. On some distributions, the
/etc/X11/app-defaults directory holds files with resources that are applied globally.
Whatever the name, resource files consist of lines that set resources by program name and
resource name:

ProgName*ResName: Value

The ProgName is the program name (or more precisely, the name that the program uses to
search for resources), the ResName is the resource name, and the Value is the value used for that
resource. For instance, consider the following resources:

XTerm*Background: linen

XTerm*Foreground: black

XTerm*font: 9x15

XTerm*saveLines: 1000

XTerm*geometry: +50+100

These resources set several xterm options, such as the background and foreground
colors, the font, the number of lines to save in the xterm scrollback buffer, and the size
of the window (in characters). Consult xterm’s man page for further information on all of
these resources.

Unfortunately, X resources aren’t entirely standardized across applications; you must
consult the documentation for each program to learn the names of the resources it supports
and what the effects of various values are. Furthermore, many modern programs don’t use
X resources at all. Instead, they rely on their own configuration files and the options you
set there. Increasingly, you can set these options using the programs’ own user interfaces,
which is an approach that’s more familiar to those who have used Windows or Mac OS.

4425.book Page 249 Thursday, July 7, 2005 5:28 PM

250 Chapter 5 � The X Window System

Configuring a Window Manager

Beyond the X environment, most desktop environments and window managers provide their
own configuration files. (Some provide directories with multiple configuration files.) Like most
program configuration files, these files are usually named after the programs they control, such
as ~/.icewm for IceWM, ~/.fvwm for FVWM, or .kde for KDE.

Depending on the window manager or desktop environment, you may be able to make
changes by directly editing the configuration file, by making changes using the environment’s
GUI tools and saving the changes from the GUI, or both. Details vary so much from one envi-
ronment to another that you must consult environment-specific documentation for details.
Indeed, even the features you can edit vary. Most window managers, though, provide the ability
to change the programs you can launch from a program-launch menu at a bare minimum. You
may also be able to configure virtual desktops, change the background color or image, add
small programs to a menu bar, and more.

Using X for Remote Access
As noted earlier, in “The X GUI Login System,” X is a network-enabled GUI. This fact enables
you to run Linux programs remotely—you can set up a Linux system with X programs and run
them from other Linux (or even non-Linux) computers. Similarly, you can use a Linux com-
puter as an access terminal for X programs that run on a non-Linux Unix computer, such as one
running Solaris. To do this, you should first understand something of X’s network model—
where the client and server systems are located, how X controls access to itself, and so on. You
can then proceed to perform the remote accesses.

X Client/Server Principles

Most people think of servers as powerful computers hidden away in machine rooms and of
clients as the desktop systems that ordinary people use. Although this characterization is often
correct, it’s very wrong when it comes to X. X is a server, meaning that the X server runs on the
computer at which the user sits. X clients are the programs that users run—xterm, xfontsel,
KMail, OpenOffice.org, and so on. In most cases, the X server and its clients reside on the same
computer, so this peculiar terminology doesn’t matter; however, when you use X for remote
access, you must remember that the X server runs on the user’s computer while the X clients run
on the remote system.

To make sense of this peculiarity, think of it from the program’s point of view. For instance,
consider a web browser such as Mozilla Firefox. This program accesses web pages stored on a
web server computer. The web server responds to requests to load files from Firefox. Just as
Firefox loads files, it displays files on the screen and accepts input from its user. From the pro-
gram’s point of view, this activity is much like retrieving web pages, but it’s handled by an X
server rather than a web server. This relationship is illustrated in Figure 5.5.

4425.book Page 250 Thursday, July 7, 2005 5:28 PM

Using X for Remote Access 251

F I G U R E 5 . 5 From a program’s point of view, the X server works much like a conventional
network server such as a web server.

Ordinarily, Linux is configured in such a way that its X server responds only to local access
requests as a security measure. Thus, if you want to run programs remotely, you must make
some changes to have Linux lower its defenses—but not too far lest you let anybody access the
X server, which could result in security breaches.

Using Remote X Clients

Suppose that your local network contains two machines. The computer called zeus is a pow-
erful machine that hosts important programs, like a word processor and data analysis utilities.
The computer called apollo is a much less powerful system, but it has an adequate monitor and
keyboard. Therefore, you want to sit at apollo and run programs that are located on zeus.
Both systems run Linux. To accomplish this task, follow these steps:

1. Log into apollo and, if it’s not already running X, start it.

2. Open a terminal (such as an xterm) on apollo.

3. Type xhost +zeus in apollo’s terminal. This command tells apollo to accept for display
in its X server data that originates on zeus.

4. Log into zeus from apollo. You might use Telnet or Secure Shell (SSH), for instance. The
result should be the ability to type commands in a shell on zeus.

5. On zeus, type export DISPLAY=apollo:0.0. (This assumes you’re using bash; if you’re
using tcsh, the command would be setenv DISPLAY apollo:0.0.) This command tells
zeus to use apollo for the display of X programs. (Chapter 6 describes environment vari-
ables, such as DISPLAY, in greater detail.)

6. Type whatever you need to type to run programs at the zeus command prompt. For
instance, you could type ooffice to launch OpenOffice.org. You should see the programs
open on apollo’s display, but they’re running on zeus—their computations use zeus’s
CPU, they can read files accessible on zeus, and so on.

7. After you’re done, close the programs you’ve launched, log off zeus, and type xhost
-zeus on apollo. This will tighten security so that a miscreant on zeus won’t be able
to modify your display on apollo.

Web Server
X Client and

Web Browser (Client) X Server

Stores
web pages

Runs user
programs

Provides display
and user input services

4425.book Page 251 Thursday, July 7, 2005 5:28 PM

252 Chapter 5 � The X Window System

Sometimes, you can skip some of these steps. For instance, depending on how it’s configured,
SSH can forward X connections, meaning that SSH intercepts attempts to display X informa-
tion and passes those requests on to the system that initiated the connection. When this hap-
pens, you can skip steps 3 and 5, as well as the xhost command in step 7. (See the Real-World
Scenario sidebar “Encrypting X Connections with SSH.”)

As an added security system, many Linux distributions today configure X to ignore true net-
work connections. If your distribution is so configured, the preceding steps won’t work; when
you try to launch an X program from the remote system, you’ll get an error message. To work
around this problem, you must make an additional change, depending on how X is launched:

GDM Check the GDM configuration file (typically /etc/X11/gdm/gdm.conf) and look for
the line DisallowTCP=true and change it to read DisallowTCP=false.

KDM or XDM These two XDMCP servers both rely on settings in the Xservers file
(in /etc/X11/xdm for XDM, and in this location or some other highly variable location for
KDM). Look for the line that begins with :0. This line contains the command that KDM or
XDM uses to launch the X server. If this line contains the string -nolisten tcp, remove that
string from the line. This will eliminate the option that causes X to ignore conventional net-
work connections.

X launched from a text-mode login If you log in using text mode and type startx to launch X,
you may need to modify the startx script itself, which is usually stored in /usr/bin. Search this
script for the string -nolisten tcp. Chances are this string will appear in a variable assignment
(such as to defaultserverargs) or possibly in a direct call to the X server program. Remove the
-nolisten tcp option from this variable assignment or program call.

Once you’ve made these changes, you’ll need to restart X as described earlier in “Running
an XDMCP Server.” Thereafter, X should respond to remote access requests.

Distribution maintainers disable X’s ability to respond to remote requests for
a reason. If X responds to remote network requests, the risk of an intruder
using a bug or misconfiguration to trick users by displaying bogus messages
on the screen is greatly increased. Thus, you should disable this protection
only if you’re sure it’s necessary. You may be able to use a Secure Shell (SSH)
link without disabling this protection. SSH has other benefits as well, as
described shortly.

Another option for running X programs remotely is to use the Virtual Network Computing
(VNC) system (http://www.realvnc.com). VNC runs a special X server on the computer
that’s to be used from a distance, and a special VNC client runs on the computer at which you
sit. You use the client to directly contact the server. This reversal of client and server roles over
the normal state of affairs with conventional X remote access is beneficial in some situations,
such as when you are trying to access a distant system from behind certain types of firewall.
VNC is also a cross-platform protocol; it’s possible to control a Windows or Mac OS system
from Linux using VNC, but this is not possible with X. (X servers for Windows and Mac OS
are available, allowing you to control a Linux system from these non-Linux OSs.)

4425.book Page 252 Thursday, July 7, 2005 5:28 PM

Summary 253

Summary
X is Linux’s GUI system. In part because of Linux’s modular nature, though, X isn’t a single
program; you have your choice of X servers to run on Linux. Fortunately, most Linux distri-
butions use the same X server as all others (X.org-X11), although another one (XFree86) was
the standard choice until 2004. Both of these servers are configured in much the same way,
using the xorg.conf (for X.org-X11) or XF86Config configuration file. Whatever its name,
this file consists of several sections, each of which controls one X subsystem, such as the mouse,
the keyboard, or the video card. This file also controls X’s core fonts system, but you can use
a font server in addition to this system, and most modern programs are now emphasizing an
entirely new font system, Xft, instead of X core fonts. For this reason, Linux font configuration
can be complex.

X’s GUI login system uses an XDMCP server, which starts X and manages the X display.
Three XDMCP servers are in common use in Linux: XDM, KDM, and GDM. These all perform
the same basic tasks, but configuration details differ. (XDM is also less sophisticated than KDM
or GDM.) After the login process, the system launches a user’s preferred window manager or
desktop environment. The details of how this is done depend on the XDMCP server in use, but
you may need to edit system or local configuration files to have the right programs launch.

X is a network-enabled GUI, which means you can use an X server to access programs run-
ning on another computer. Doing so requires performing a few steps for each login session. You
can also tunnel X accesses through SSH, which greatly improves the security of the connection.

Encrypting X Connections with SSH

The SSH protocol is a useful remote-access tool. Although it’s often considered a text-mode
protocol, SSH also has the ability to tunnel network connections—that is, to carry another pro-
tocol through its own encrypted connection. This feature is most useful for handling remote X
access. You can perform the steps described in “Using Remote X Clients” but omit steps 3, 5,
and the xhost command in step 7. This greatly simplifies the login process and adds the ben-
efits of SSH’s encryption, which X doesn’t provide. On the other hand, SSH’s encryption is
likely to slow down X access, although if you enable SSH’s compression features, this problem
might be reduced in severity. Overall, tunneling X through SSH is the preferred method of
remote X access, particularly when any network in the process isn’t totally secure.

SSH tunneling does require certain options be set, though. In particular, you must either use
the -X option to the ssh client program or set the ForwardX11 option to yes in /etc/ssh_config
on the client system. You must also set the X11Forwarding option to yes in the /etc/sshd_
config file on the SSH server system. These options enable SSH’s X forwarding feature; with-
out these options, SSH’s X forwarding won’t work.

4425.book Page 253 Thursday, July 7, 2005 5:28 PM

254 Chapter 5 � The X Window System

Exam Essentials
Name the major X servers for Linux. XFree86 has been the traditional standard Linux X
server, but in 2004 X.org-X11 (which was based on XFree86) rapidly gained prominence as the
new standard Linux X server. Accelerated-X is a commercial X server that sometimes supports
video cards that aren’t supported by XFree86 or X.org-X11.

Summarize the common X configuration tools. For XFree86 3.3.6, xf86config,
Xconfigurator, and XF86Setup were the most popular configuration tools. For XFree86 4.x
and X.org-X11, the X server itself, Xconfigurator, xf86cfg/xorgcfg, and distribution-spe-
cific tools are commonly used. In all cases, you can also edit the X configuration file manually
using a text editor.

Describe the X configuration file format. The XFree86 and X.org-X11 configuration file is
broken into multiple sections, each of which begins with the keyword Section and ends with
EndSection. Each section sets options related to a single X feature, such as loading modules,
specifying the mouse type, or describing the screen resolution and color depth.

Summarize the differences between X core fonts, a font server, and Xft fonts. X core fonts
are managed directly by X, and they lack modern font features such as font smoothing. Font
servers integrate with the X core fonts but run as separate programs and may optionally deliver
fonts to multiple computers on a network. Xft fonts bypass the X core font system to provide
client-side fonts in a way that supports modern features such as font smoothing.

Explain the role of an XDMCP server. An XDMCP server, such as XDM, KDM, or GDM,
launches X and controls access to X via a login prompt—that is, it serves as Linux’s GUI login
system. XDMCP servers are also network enabled, providing a way to log in remotely from
another X server.

Describe the methods users may employ to select a desktop environment or window manager.
If the computer runs KDM or GDM, users may select a login environment from a menu in the
login server—but the desired environment must be defined a file in the /usr/share/xsessions
directory. For systems running XDM, the ~/.xsession file is a login script that can be modi-
fied to launch the desired window manager or desktop environment. When X is started from
text mode via startx, the ~/.xinitrc file serves a function similar to that of ~/.xsession.

Summarize X’s client/server model. An X server runs on the user’s computer to control the
display and accept input from the keyboard and mouse. Client programs run on the same com-
puter or on a remote computer to do the bulk of the computational work. These client programs
treat the X server much as they treat other servers, requesting input from and sending output
to them.

Explain the benefits of using SSH for remote X access. SSH can simplify remote X-based net-
work access by reducing the number of steps required to run X programs from a remote com-
puter. More important, SSH encrypts data, which keeps information sent between the X client
and X server secure from prying eyes.

4425.book Page 254 Thursday, July 7, 2005 5:28 PM

Review Questions 255

Review Questions
1. You want to reconfigure X.org-X11 after changing a computer’s video card, so you type

XF86Setup as root and enter the new information in the program’s GUI. When you test the
X server, though, you find that your changes had no effect. Why not?

A. The XF86Setup program is designed to be run by an ordinary user, not by root.

B. You selected the wrong video card in the XF86Setup program.

C. You must copy the temporary configuration file created by XF86Setup to /etc/X11.

D. XF86Setup is a configuration tool for XFree86 3.3.6 and earlier, not for X.org-X11.

2. When you configure an X server, you need to make changes to configuration files and then start
or restart the X server. Which of the following can help streamline this process?

A. Shut down X by switching to a runlevel in which X doesn’t run automatically, and then
reconfigure it and use startx to test X startup.

B. Shut down X by booting into single-user mode, and then reconfigure X and use telinit to
start X running again.

C. Reconfigure X, and then unplug the computer to avoid the lengthy shutdown process before
restarting the system and X along with it.

D. Use the startx utility to check the X configuration file for errors before restarting the
X server.

3. Which of the following summarizes the organization of the XF86Config and xorg.conf files?

A. The file contains multiple sections, one for each screen. Each section includes subsections for
individual components (keyboard, video card, and so on).

B. Configuration options are entered in any order desired. Options relating to specific compo-
nents (keyboard, video card, and so on) may be interspersed.

C. The file begins with a summary of individual screens. Configuration options are preceded by
a code word indicating the screen to which they apply.

D. The file is broken into sections, one or more for each component (keyboard, video card, and
so on). The file also has one or more sections that define how to combine the main sections.

4. A monitor’s manual lists its range of acceptable synchronization values as 27–96kHz horizontal
and 50–160Hz vertical. What implications does this have for the resolutions and refresh rates
the monitor can handle?

A. The monitor can run at up to 160Hz vertical refresh rate in all resolutions.

B. The monitor can handle up to 160Hz vertical refresh rate depending on the color depth.

C. The monitor can handle up to 160Hz vertical refresh rate depending on the resolution.

D. The monitor can handle vertical resolutions of up to 600 lines (96,000 ÷ 160), but no more.

4425.book Page 255 Thursday, July 7, 2005 5:28 PM

256 Chapter 5 � The X Window System

5. In what section of XF86Config or xorg.conf do you specify the resolution that you want to run?

A. In the Screen section, subsection Display, using the Modes option

B. In the Monitor section, using the Modeline option

C. In the Device section, using the Modeline option

D. In the DefaultResolution section, using the Define option

6. The following line appears in your X server’s mouse configuration area. What can you conclude?

Option "Protocol" "PS/2"

A. The mouse is connected to the PS/2 hardware mouse port.

B. The mouse uses the PS/2 software communication standard.

C. The computer is an ancient IBM PS/2 system.

D. The mouse was designed for use with IBM’s OS/2.

7. Which of the following sections is present in the X configuration files for XFree86 4.x and
X.org-X11 but not for XFree86 3.3.6?

A. Monitor

B. ServerLayout

C. Pointer

D. Screen

8. What is an advantage of a font server?

A. It provides faster font displays than is otherwise possible.

B. It can simplify font maintenance on a network with many X servers.

C. It’s the only means of providing TrueType support for XFree86 4.x.

D. It enables the computer to turn a bitmapped display into an ASCII text file.

9. What methods do Linux distributions use to start X automatically when the system boots?
(Select all that apply.)

A. Start an XDMCP server from the Start folder

B. Start an XDMCP server from an ~/.xinitrc script

C. Start an XDMCP server via a SysV startup script

D. Start an XDMCP server from init

10. You find a reference to the prefdm program in /etc/inittab. What does this program do?

A. It reads /etc/sysconfig/desktop to determine which XDMCP server to run and then
runs the XDMCP server.

B. It’s an XDMCP server that provides preferential login treatment to important users, such
as root.

C. It displays a dialog box that enables you to select which XDMCP server you want to run as
the default.

D. It runs before the fdm program, preparing data directories to hold important login variables.

4425.book Page 256 Thursday, July 7, 2005 5:28 PM

Review Questions 257

11. How would you change the text displayed by XDM as a greeting?

A. Click Configure � Greeting from the XDM main menu and edit the text in the resulting
dialog box.

B. Edit the /etc/X11/xdm/Xresources file and change the text in the xlogin*greeting line.

C. Edit the /etc/X11/XF86Config file and change the Greeting option in the xdm area.

D. Run xdmconfig and change the greeting on the Login tab.

12. Which of the following features do KDM and GDM provide that XDM does not?

A. An encrypted remote X-based access ability, improving network security

B. The ability to accept logins from remote computers, once properly configured

C. The ability to select the login environment from a menu on the main login screen

D. A login screen that shows the username and password simultaneously rather than
sequentially

13. You want to enable remote access in GDM. Which of the following is one step you would take
in doing so?

A. Edit the /etc/X11/gdm/gdm-config file and set the DisplayManager.requestPort
option to 177.

B. Edit the /etc/ssh/sshd_config file’s X11Forwarding line to read yes.

C. Edit the /etc/X11/gdm/gdm.conf file and change the enable line in the [xdmcp] section
to yes.

D. You can’t; this feature isn’t supported by GDM, but it is supported by KDM and XDM.

14. Which of the following desktop environments is a commercial package?

A. KDE

B. GNOME

C. CDE

D. XFce

15. You want users to be able to select a new window manager you’ve installed from the GDM login
screen. In what directory should you create a configuration file to add this option?

A. /var/spool/logins

B. /etc/X11/gdm

C. /usr/share/xsessions

D. /etc/X11/xlogin

4425.book Page 257 Thursday, July 7, 2005 5:28 PM

258 Chapter 5 � The X Window System

16. The following .xinitrc script is present in a user’s home directory, with the correct permis-
sions. What will be the effect when the user types startx from a text-mode login?

#/bin/bash

xterm

startkde &

A. The xterm program will run, and once it’s started, KDE will start. The X session will ter-
minate when the user exits from KDE, whereupon the xterm will also close.

B. The xterm program will run and remain active, with no window manager, until the user termi-
nates it. At that time, KDE will begin to start, but X will terminate before KDE can fully load.

C. The xterm program will run, and once it’s started, KDE will start. The X session will ter-
minate when the user exits from both KDE and the xterm program; quitting either alone will
not terminate X.

D. The xterm program will run and immediately terminate, whereupon KDE will start. KDE
will remain active until the user exits from it, whereupon X will also stop.

17. What file should you edit to change the desktop environment or window manager launched
by XDM?

A. ~/.bashrc

B. ~/.xsession

C. ~/.xinitrc

D. ~/.Xresources

18. The X-based program MegaProg’s menu font has changed to Times, but you prefer Helvetica in
this role. The program’s in-window font was, and should remain, Times. In investigating this
problem, you discover several lines in your ~/.Xresources file that seem suspicious. Which one
should you edit to fix the problem?

A. MegaProg*mfont: Times

B. MegaProg*body: Times

C. MegaProg*font: Times

D. Possibly any or none of the above; consult the program’s documentation.

19. Which of the following commands tells the X server to accept connections from
penguin.example.com?

A. xhost +penguin.example.com

B. export DISPLAY=penguin.example.com:0

C. telnet penguin.example.com

D. xaccess penguin.example.com

4425.book Page 258 Thursday, July 7, 2005 5:28 PM

Review Questions 259

20. What is an advantage of using SSH to tunnel an X session compared to using X’s network fea-
tures more directly?

A. SSH supports a higher bit depth than do other network access methods.

B. SSH supports font smoothing, which isn’t possible with more direct connections.

C. SSH provides compression features to fit larger displays on smaller monitors.

D. SSH provides encryption features that improve the security of the connection.

4425.book Page 259 Thursday, July 7, 2005 5:28 PM

260 Chapter 5 � The X Window System

Answers to Review Questions
1. D. You must use an X configuration program for the X server you use, and in this case,

XF86Setup is the wrong tool for configuring X.org-X11, as stated in option D. X configuration
programs can sometimes be run by ordinary users, but this isn’t a requirement, and if they write
their changes directly to the configuration file, they must be run as root, contrary to option A.
Although it’s possible that you selected the wrong video card, as stated in option B, this isn’t the
most important problem, and even if you selected the right card, this problem would occur.
Some configuration tools do drop new configuration files in /root or some other directory, as
suggested by option C, but again, such placement isn’t the main problem in this scenario.

2. A. On most Linux systems, some runlevels don’t run X by default, so using one of them along
with the startx program (which starts X running) can be an effective way to quickly test
changes to an X configuration. The telinit program changes runlevels, which is a lengthy pro-
cess compared to using startx. Unplugging the computer to avoid the shutdown process is self-
defeating since you’ll have to suffer through a long startup (if you use a non-journaling filesys-
tem), and it can also result in data loss. The startx utility doesn’t check the veracity of an X
configuration file; it starts X running from a text-mode login.

3. D. The XF86Config and xorg.conf file design enables you to define variants or multiple com-
ponents and easily combine or recombine them as necessary.

4. C. The vertical refresh rate range includes a maximum value, but that value may be reduced when
the resolution and vertical refresh rate would demand a higher horizontal refresh rate than the
monitor can handle. In practice, it’s usually the horizontal limit that’s most important, at least
when running at typical resolutions. The color depth is irrelevant to the computation.

5. A. Option A describes the correct location for this option. The Modeline option in the Monitor
section (as described in option B) defines one possible resolution, but there are usually several
Modeline entries defining many resolutions. The Modeline option doesn’t exist in the Device
section (as suggested by option C), however, nor is that section where the resolution is set. There
is no DefaultResolution section (as referenced in option D).

6. B. “PS/2” can refer to both a hardware interface and a software protocol, but used in the context
of the Protocol option, it unambiguously refers to the software protocol. Option A might be
correct, but the specified line is insufficient evidence of that; USB mice generally use the PS/2 pro-
tocol or a variant of it, such as the Intellimouse PS/2 protocol. Although the PS/2 hardware port
and protocol originated with the IBM PS/2 computer mentioned in option C, many other com-
puters now use them. Mice that use the PS/2 protocol may be used with just about any OS, not
just IBM’s OS/2.

7. B. The ServerLayout section is unique to XFree86 4.x and its derivative, X.org-X11; this sec-
tion was not present in XFree86 3.3.6 and earlier. The Monitor and Screen sections are present
in all three X servers’ configuration files, while the Pointer section is unique to XFree86 3.3.6.

4425.book Page 260 Thursday, July 7, 2005 5:28 PM

Answers to Review Questions 261

8. B. By maintaining fonts on one font server and pointing other X servers to that font server, you
can reduce the administrative cost of maintaining the fonts on all the systems. Font servers do
not produce faster font displays than X’s local font handling; if anything, the opposite is true.
XFree86 4.x supports TrueType fonts directly, but XFree86 3.3.6 and earlier didn’t include this
support by default. Converting a bitmapped display into ASCII text is a function of optical char-
acter recognition (OCR) software, not a font server.

9. C, D. XDMCP servers are typically launched either from a SysV startup script or by init (as
specified in /etc/inittab), as described in options C and D. The XDMCP server then starts X.
The Start folder mentioned in option A is a Windows construct, not a Linux construct. The
~/.xinitrc script mentioned in option B is an X login script used when starting X from the
command line via startx; it’s not used to automatically start X when the system boots.

10. A. Some distributions, such as Fedora and Red Hat, use prefdm as a front end to the XDMCP
server, enabling init to call a single program (namely, prefdm), which in turn launches the
specific XDMCP server the system administrator has configured by editing /etc/sysconfig/
desktop. Options B, C, and D all describe completely fictitious programs.

11. B. The XDM greeting is a resource set in the /etc/X11/xdm/Xresources file, so option B is cor-
rect. XDM doesn’t offer many options on its main screen and certainly not one to change its
greeting, as described in option A. Although the XF86Config file mentioned in option C is real,
this file provides no XDM configuration options because XDM is a separate program from
XFree86. There is no standard xdmconfig program, as mentioned in option D.

12. C. KDM and GDM add many features, one of which is a menu that enables users to select their
desktop environment or window manager when they log in rather than specifying it in a con-
figuration file, as option C states. Option A describes one of the advantages of the Secure Shell
(SSH) as a remote-access protocol. Option B describes a feature common to all three XDMCP
servers. Option D describes the way both KDM and XDM function; GDM is the one that pre-
sents username and password fields in series rather than simultaneously.

13. C. Enabling remote access via GDM requires making the changes described in option C. Option A
describes the equivalent change that’s necessary in XDM (except for slight changes to the filename),
but GDM doesn’t use this method. Option B describes one change that may be necessary to use SSH’s
X forwarding feature, but this change doesn’t affect GDM. Contrary to option D, all three XDMCP
servers accept remote logins.

14. C. CDE is a commercial desktop environment. KDE, GNOME, and XFce are all open-source
packages.

15. C. The /usr/share/xsessions directory holds files that define login sessions, including their
names and the commands used to launch them. The remaining options are incorrect (options A
and D aren’t even standard directories).

4425.book Page 261 Thursday, July 7, 2005 5:28 PM

262 Chapter 5 � The X Window System

16. B. In an X startup script such as ~/.xinitrc, most program calls should terminate in an
ampersand (&), which indicates that execution should continue. An exception is the window
manager or desktop environment; execution of the script should stop at this point because if
it doesn’t, the script will terminate before the user is finished (and probably even before the
desktop environment can fully start). The ampersand placement is reversed in the sample
script, and option B correctly describes the events that will occur when this script is run as part
of the startx X startup procedure.

17. B. XDM runs the ~/.xsession file as part of its login procedure, so option B is correct. The
~/.bashrc file is one of the startup files for bash, not for XDM. The ~/.xinitrc file is used
when starting X from text mode via startx. The ~/.Xresources file holds X resources; it’s not
used to start a desktop environment or window manager.

18. D. Unfortunately, X resource names (as stored in ~/.Xresources) are not standardized.
Thus, you must consult the program’s documentation to learn which (if any) of the
resources controls the menu font.

19. A. The xhost command controls various aspects of the local X server, including from which
remote computers it will accept connections. Option B sets the DISPLAY environment variable,
which doesn’t directly affect the X server (it does tell X clients which X server to use, though).
Option C simply initiates a text-mode remote login session with penguin.example.com.
Option D’s xaccess is a fictitious program.

20. D. The Secure Shell (SSH) is a remote login tool that’s well known for its encryption and thus
for its improved security compared to other login methods. By tunneling an X session, you gain
the benefits of that security for all the X programs you run, as described in option D. X’s bit
depth isn’t affected by SSH tunneling, contrary to what option A suggests. Likewise, option B’s
font smoothing isn’t affected by SSH tunneling. Although SSH does provide compression fea-
tures, these features affect data transfer rates, not the size of the image displayed on the screen
as option C suggests.

4425.book Page 262 Thursday, July 7, 2005 5:28 PM

PART

II

The LPI 102 Exam
(99 Weights)

4425.book Page 263 Monday, July 11, 2005 10:46 AM

Chapter

6

The Boot Process
and Scripts

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.105.1: Manage/Query kernel and kernel modules at

runtime (weight: 4)

�

1.105.2: Reconfigure, build, and install a custom kernel and

kernel modules (weight: 3)

�

1.106.1 Booting the System (weight: 3)

�

1.106.2 Change runlevels and shutdown or reboot system

(weight: 3)

�

1.109.1 Customize and use the shell environment (weight: 5)

�

1.109.2 Customize or write simple scripts (weight: 3)

4425.book Page 265 Monday, July 11, 2005 10:46 AM

The kernel is at the core of every Linux system, and so being able
to manage the kernel is an important part of Linux system admin-
istration. The kernel is composed of both a main kernel file and

supplementary files (known as

kernel modules

) that provide extra drivers and functionality.
This chapter begins with a look at managing kernel modules, because this is the easiest way to
adjust the kernel’s features. A more sophisticated way to customize the kernel is to rebuild it
from source code, so that topic is up next. Once the kernel is rebuilt, you must reboot the com-
puter to use the new kernel, and for that you must be able to adjust your boot loader software.

When the computer boots, it runs a key program,

init

, which manages the startup of other
processes. Thus, managing

init

 provides the means to control the system startup process. A
key part of this process is a series of startup shell scripts, so this chapter also describes the Linux
shell environment and the shell scripts that they support.

Managing Kernel Modules

Early Linux kernels consisted of a single file, which was loaded into memory by the boot
loader. Although modern kernels still use this primary kernel file, Linux has supported kernel
modules for several years. Placing most drivers in modules helps keep the size of the main ker-
nel file down, enables the use of a single “generic” kernel on many computers without bloat-
ing the kernel’s size too much, and gives users control over when and how drivers are loaded.
This approach does require learning something about how modules are controlled, though.
To begin, you must know how to obtain information on your kernel version and the modules
that are currently loaded. Loading modules is also important for their use, and this task can
be accomplished both by configuring boot files for modules you want to be used frequently
and by using one-off commands. Similarly, unloading kernel modules can be important in
some cases. Finally, some tools can help you maintain your kernel modules, such as changing
default options and updating system information about available modules.

Obtaining Information about the Kernel and Its Modules

Before tweaking your kernel modules, you should know something about the kernel and the
already installed modules. This information can be helpful because it can inform your decision
of whether or not loading a new module is necessary, what modules are being used by other
modules, and so on.

4425.book Page 266 Monday, July 11, 2005 10:46 AM

Managing Kernel Modules

267

Learning about the Kernel

You can obtain the most important information about the kernel via the

uname

 command:

$

uname -a

Linux nessus 2.6.6 #12 Sun May 30 23:22:28 EDT 2004 x86_64

➥

AMD Athlon(tm) 64 Processor 3000+ AuthenticAMD GNU/Linux

This program provides several types of information, and you can tell it what information to
provide with various options:

All information

The

-a

 or

--all

 option, as used in this example, provides all available
information. This is usually a safe option to use, although if you know precisely what infor-
mation you need, you can create a less cluttered display by using a more specific option or set
of options.

Kernel name

The

-s

 or

--kernel-name

 option produces the name of the kernel, which is nor-
mally

Linux

.

Network hostname

The

-n

 or

--nodename

 displays the network node’s hostname (

nessus

 in
the preceding example). This name is the one that’s locally configured; depending on network
Domain Name System (DNS) server configurations and client options, the computer might or
might not actually be reachable by this name.

Kernel release number

The

-r

 or

--kernel-release

 option displays the kernel release
number (

2.6.6

 in the preceding example). This information is often very important because
it can influence what driver modules may be used with the kernel.

Kernel version information

The

-v

 or

--kernel-version

 option displays additional kernel
version information. This information does

not

 include the kernel version number, though, as
displayed by the

-r

 option. It does include the kernel build date and time (

#12 Sun May 30
23:22:28 EDT 2004

 in the preceding example).

Machine architecture code

The

-m

 or

--machine

 option displays a code for the CPU—

x86_64

in the preceding example, referring to an AMD64 (aka

x

86-64 or EM64T) CPU.

Machine CPU description

The

-p

 or

--processor

 option displays a description of the
CPU, as in

AMD Athlon(tm) 64 Processor 3000+

 in the preceding example. This infor-
mation is often quite helpful if you need to evaluate the CPU’s speed on a system with which
you’re unfamiliar.

Hardware platform

The

-i

 or

--hardware-platform

 option displays an identification string
provided by the CPU—

AuthenticAMD

 in the preceding example.

OS information

The

-o

 or

--operating-system

 option displays the name of the OS (

GNU/
Linux

 in the preceding example). This is distinct from the kernel name (the

-k

 option) because
it refers to the OS as a whole, not just the kernel.

Program information

The

--help

 option displays a summary of the program’s options, while

--version

 displays the

uname

 version number.

4425.book Page 267 Monday, July 11, 2005 10:46 AM

268

Chapter 6 �

The Boot Process and Scripts

Some of these options may seem odd. After all, you probably know per-
fectly well that you’re running Linux, so why use a

-k

 or

-o

 option? The

uname

 tool is available on non-Linux Unix-like OSs, though, and so it’s a
handy way for cross-platform scripts to learn something about the OS on
which they’re running. The scripts can then adjust themselves to work cor-
rectly on Linux, FreeBSD, Solaris, Mac OS X, or other environments. If you
write such a script, be aware that some OSs support only the long forms of
the options (say,

--operating-system

 rather than

-o

), so you should use the
long form in scripts that might run on non-Linux systems.

For your own information, the kernel release information is likely to be the most important.
Some third-party kernel modules come in precompiled forms that work only with certain ker-
nels, so if your kernel version doesn’t match, you may need to rebuild the right version, as
described later, in “Creating a Custom Kernel.” The architecture and CPU data can also be
important if you don’t already know this information. Some programs work only with certain
CPUs, and if you need to evaluate the speed of a system you’ve not used before, this can provide
you with some important basic data. Precompiled kernel modules also typically work only with
one type of CPU. For instance, you couldn’t load a binary module for an x86 CPU on an
AMD64 kernel such as the one that produced the preceding example output.

Learning about the Kernel Modules

You can learn about the modules that are currently loaded on your system by using lsmod,
which takes no options and produces output like this:

$ lsmod

Module Size Used by

isofs 35820 0

zlib_inflate 21888 1 isofs

floppy 65200 0

nls_iso8859_1 5568 1

nls_cp437 7296 1

vfat 15680 1

fat 49536 1 vfat

sr_mod 19236 0

ide_cd 42848 0

cdrom 39080 2 sr_mod,ide_cd

This output has been edited for brevity. Although outputs this short are possi-
ble with certain configurations, they’re rare.

4425.book Page 268 Monday, July 11, 2005 10:46 AM

Managing Kernel Modules 269

The most important column in this output is the first one, labeled Module; this column spec-
ifies the names of all the modules that are currently loaded. You can learn more about these
modules with modinfo, as described shortly, but sometimes their purpose is fairly obvious. For
instance, the floppy module provides access to the floppy disk drive.

The Used by column of the lsmod output describes what’s using the module. All the entries
have a number, which indicates the number of other modules or processes that are using the
module. For instance, in the preceding example, the isofs module (used to access CD-ROM
filesystems) is not currently in use, as revealed by its 0 value, but the vfat module (used to read
VFAT hard disk partitions and floppies) is being used, as shown by it value of 1. If one of the
modules is being used by another module, the using module’s name appears in the Used by col-
umn. For instance, the isofs module relies on the zlib_inflate module, so the latter mod-
ule’s Used by column includes the isofs module name. This information can be useful when
managing modules. For instance, if your system produced the preceding output, you couldn’t
directly remove the zlib_inflate module because it’s being used by the isofs module, but
you could remove the isofs module, and after doing so you could remove the zlib_inflate
module. (Both modules would need to be added back to read most CD-ROMs, though.)

The lsmod command only displays information on kernel modules, not on
drivers that are compiled directly into the Linux kernel. For this reason, a
module might need to be loaded on one system but not on another to use the
same hardware because the second system might compile the relevant driver
directly into the kernel.

You can learn still more about kernel modules with the help of the modinfo command. Nor-
mally, you type this command followed by the name of the module in which you’re interested:

$ modinfo vfat

author: Gordon Chaffee

description: VFAT filesystem support

license: GPL

depends: fat

vermagic: 2.6.6 preempt gcc-3.4

The information returned usually includes the author’s name, a brief description of the mod-
ule’s function, its license name, the names of any modules upon which it depends, and some ker-
nel and compiler version information. The exact information returned depends on the module,
though; some omit some of these fields or add others. If you’re only interested in one field, you
can specify it with the -F fieldname option, as in modinfo -F description vfat to obtain
the description for the vfat module.

The modinfo utility is most useful for learning a bit about modules you’ve seen in lsmod out-
put that you can’t readily identify. Unfortunately, many modules lack the helpful description
field, so in practice, modinfo is often less helpful than it might be.

4425.book Page 269 Monday, July 11, 2005 10:46 AM

270 Chapter 6 � The Boot Process and Scripts

Loading Kernel Modules

Linux enables you to load kernel modules with two programs: insmod and modprobe. The
insmod program inserts a single module into the kernel. This process requires that any modules
upon which the module you’re loading relies are already loaded. The modprobe program, by
contrast, automatically loads any depended-on modules and so is generally the preferred way
to do the job.

In practice, you may not need to use insmod or modprobe to load modules
because Linux can load them automatically. This ability relies on the kernel’s
module auto-loader feature, which must be compiled into the kernel, and on
various configuration files, which are also required for modprobe and some
other tools. Using insmod and modprobe can be useful for testing new modules
or for working around problems with the auto-loader, though.

In practice, insmod is a fairly straightforward program to use; you type it followed by the
module filename:

insmod /lib/modules/2.6.6/kernel/drivers/block/floppy.ko

This command loads the floppy.ko module, which you must specify by filename. Modules
have module names, too, which are usually the same as the filename but without the extension,
as in floppy for the floppy.ko file. Unfortunately, insmod requires the full module name.

You can pass additional module options to the module by adding them to the command line.
Module options are highly module-specific, so you must consult the documentation for the
module to learn what to pass. Examples include options to tell an RS-232 serial port driver what
interrupt to use to access the hardware or to tell a video card framebuffer driver what screen res-
olution to use.

Some modules depend on other modules. In these cases, if you attempt to load a module that
depends on others and those other modules aren’t loaded, insmod will fail. When this happens,
you must either track down and manually load the depended-upon modules or use modprobe.
In the simplest case, you can use modprobe just as you use insmod, by passing it a module name:

modprobe floppy

As with insmod, you can add kernel options to the end of the command line. Unlike
insmod, you specify a module by its module name rather than its module filename when you
use modprobe. Generally speaking, this helps make modprobe easier to use, as does the fact
that modprobe automatically loads dependencies. This greater convenience means that
modprobe relies on configuration files, as described in “Maintaining Kernel Modules.” It
also means that you can use options (placed between the command name and the module
name) to modify modprobe’s behavior:

Be verbose The -v or --verbose option tells modprobe to display extra information on its
operations. Typically, this includes a summary of every insmod operation it performs.

4425.book Page 270 Monday, July 11, 2005 10:46 AM

Managing Kernel Modules 271

Change configuration files The modprobe program uses a configuration file called /etc/
modprobe.conf. You can change the file by passing a new file with the -C filename option,
as in modprobe -C /etc/mymodprobe.conf floppy.

Perform a dry run The -n or --dry-run option causes modprobe to perform checks and all
other operations except for the actual module insertions. You might use this option in conjunc-
tion with -v to see what modprobe would do without actually loading the module. This might
be helpful in debugging, particularly if inserting the module is having some detrimental effect,
such as disabling disk access.

Remove modules The -r or --remove option reverses modprobe’s usual effect; it causes the
program to remove the specified module and any upon which it depends. (Depended-upon
modules are not removed if they’re in use, though.)

Force loading The -f or --force option tells modprobe to force the module loading even if
the kernel version doesn’t match what the module expects. This action is potentially dangerous,
but it’s occasionally required when using third-party binary-only modules.

Show dependencies The --show-depends option shows all the modules upon which the
specified module depends. This option doesn’t install any of the modules; it’s purely infor-
mative in nature.

Show available modules The -l or --list option displays a list of available options whose
names match the wildcard you specify. For instance, typing modprobe -l v* displays all mod-
ules whose names begin with v. If you provide no wildcard, modprobe displays all available
modules. Like --show-depends, this option doesn’t cause any modules to be loaded.

This list of options is incomplete. The others are relatively obscure, so you’re
not likely to need them very often. Consult the modprobe man page for more
information.

Removing Kernel Modules

In most cases, you can leave modules loaded indefinitely; the only harm that a module does
when it’s loaded but not used is to consume a small amount of memory. (The lsmod program
shows how much memory each module consumes.) Sometimes, though, you might want to
remove a loaded module. Reasons include reclaiming that tiny amount of memory, unloading
an old module so that you can load an updated replacement module, and removing a module
that you suspect is unreliable.

The actual work of unloading a kernel module is done by the rmmod command, which is
something of the opposite of insmod. The rmmod command takes a module name as an option,
though, rather than a module filename:

rmmod floppy

4425.book Page 271 Monday, July 11, 2005 10:46 AM

272 Chapter 6 � The Boot Process and Scripts

This example command unloads the floppy module. You can modify the behavior of rmmod
in various ways:

Be verbose Passing the -v or --verbose option causes rmmod to display some extra informa-
tion about what it’s doing. This might be helpful if you’re troubleshooting a problem.

Force removal The -f or --force option forces module removal even if the module is marked
as being in use. Naturally, this is a very dangerous option, but it’s helpful sometimes if a module
is misbehaving in some way that’s even more dangerous. This option has no effect unless the
CONFIG_MODULE_FORCE_UNLOAD kernel option is enabled.

Wait until unused The -w or --wait option causes rmmod to wait for the module to become
unused, rather than return an error message, if the module is in use. Once the module is no
longer being used (say, after a floppy disk is unmounted if you try to remove the floppy mod-
ule), rmmod then unloads the module and returns. Until then, rmmod doesn’t return, making it
look like it’s not doing anything.

A few more rmmod options exist; consult the rmmod man page for details.
Like insmod, rmmod operates on a single module. If you try to unload a module that’s

depended upon by other modules or is in use, rmmod will return an error message. (The -w
option modifies this behavior, as just described.) If the module is depended upon by other
modules, those modules are listed, so you can decide whether to unload them. If you want
to unload an entire module stack—that is, a module and all those upon which it depends—
you can use the modprobe command and its -r option, as described earlier in “Loading Ker-
nel Modules.”

Maintaining Kernel Modules

Tools such as lsmod, modprobe, and rmmod are very useful for managing kernel modules. These
tools rely on configuration files, though, and knowing how to maintain these files is important
for keeping your modules operating smoothly. Most of these files, and the tools that help mod-
ify them, need only be touched after you add or remove a module to your collection. Sometimes,
though, you might want to change the way a module operates by passing it kernel options; this
can be done even if you’ve not recompiled, added, replaced, or removed a module.

Kernel Module Maintenance Tools and Files

Two files help manage some important kernel module features:

Module dependencies Module dependencies are stored in the modules.dep file, which resides
in your main modules directory, /lib/modules/version, where version is the kernel version
number. (This number sometimes includes distribution-specific codes.) You don’t normally edit
this file directly; instead, you use depmod to work on it. Typing depmod, with no options, as
root will rebuild the modules.dep file for the modules in the current kernel’s modules direc-
tory. This action also occurs automatically when you install kernel modules, as described later
in “Putting Everything in Its Place.”

4425.book Page 272 Monday, July 11, 2005 10:46 AM

Managing Kernel Modules 273

Module configuration The main module configuration file is /etc/modules.conf. This file
holds module aliases (that is, alternate names for modules), module options, and more. This
file’s format is surprisingly complex, but most changes can be relatively simple, as described
shortly in “Passing Options to Kernel Modules.” Very old distributions called this file /etc/
conf.modules, but this name has fallen out of favor.

Some distributions, such as Debian and Gentoo, use a tool called modules-update
to dynamically build the /etc/modules.conf file from files in the /etc/modules.d
directory. If you use such a distribution and want to change /etc/modules.conf,
you should do so by editing the appropriate file in /etc/modules.d or by creating
a new file there and then typing modules-update.

Passing Options to Kernel Modules

You can pass options to kernel modules via insmod or modprobe; however, Linux will usually
load a module automatically when it determines that you’re trying to use a device. When this
happens, you can’t manually pass options to the kernel module. Instead, you must edit /etc/
modules.conf (or a file in /etc/modules.d) to tell the system about the options you want to
pass. To do so, you must add an options line, such as this:

options sisfb mode=1280x1024 rate=75

This line specifies options for the sisfb module, which is the SiS framebuffer driver—that
is, it handles unusual text-based video modes for certain SiS video chipsets. (Framebuffer drivers
can also be used by X via the X framebuffer driver, but X more often drives the video hardware
more directly.) This example passes two options to the sisfb module: mode=1280x1024 and
rate=75. These options tell the driver to run at a resolution of 1280 × 1024 with a refresh rate
of 75Hz.

Unfortunately, driver options are very driver-centric. For instance, if you were to use the
vesafb video driver (which works with many VESA-compatible video cards) rather than the
sisfb driver, you wouldn’t use mode= and rate= options; instead, you’d use a vga= option,
which takes a numeric code to set the video mode. Your best bet to learn about the options
you might want to use is to consult the driver’s documentation. For standard kernel drivers,
peruse the /usr/src/linux/Documentation directory and its subdirectories. If you need to
pass options to a driver that didn’t ship with a standard kernel, consult the documentation
that came with it.

Once you make changes to this file, you should type depmod, and if the module whose behav-
ior you want to affect is loaded, unload it. When you reload it, the new options should take
effect. A few modules, such as framebuffer video drivers, cannot be easily removed once loaded,
so you might need to reboot the computer to see your changes take effect.

4425.book Page 273 Monday, July 11, 2005 10:46 AM

274 Chapter 6 � The Boot Process and Scripts

Creating a Custom Kernel
Because Linux is an open-source OS, it’s possible to completely rebuild the kernel from
scratch. Many new Linux administrators are intimidated by this task; it sounds complex
and potentially dangerous. If you take a few precautions, though, rebuilding a kernel isn’t
particularly risky (see “Putting Everything in Its Place”). Picking the right components is
somewhat complex, though; to do a good job, you need to know a lot about your hard-
ware—the type of CPU you’ve got, the brand of hard disk controller, and so on. Still, if you
make conservative choices, you can be reasonably sure the new kernel will work correctly,
and you should have the old one as a fallback.

To build a custom kernel, you must first understand something about how Linux kernels are
numbered, lest you download the wrong one. The next tasks are to obtain the kernel source
code, configure it, compile it, and store files in their places. Of these tasks, configuring the ker-
nel is definitely the hardest part. Once all of this is done, you must add the kernel to your boot
loader, as described later in “Configuring a Boot Loader.”

Kernel Version Numbering

Because the kernel is arguably the most important software component in a Linux computer,
it’s particularly important that you understand how Linux kernel version numbers work.
There’s a definite system to the Linux kernel version numbers, and understanding it can help
you determine when you might want to upgrade the kernel. Unfortunately, the kernel version
numbering system has changed with the 2.6.x kernel tree, so different rules apply to older and
newer kernels.

Don’t confuse the Linux kernel version number with the Linux distribution version
number. The two are unrelated. For instance, Fedora Linux 3.0 (a distribution)
ships with kernel 2.6.9. Some new Linux administrators merge the two and say
they’re running (for instance) “Linux 3.0.” There is no such thing—at least, not cur-
rently. “Linux 2.6.9” unambiguously refers to the kernel version 2.6.9, but when
referring to a distribution, you must specify its name.

Pre-2.6.x Kernel Version Numbers

Linux kernel versions up to the 2.6.x series all have three numbers, separated by dots (.):
� The first number is the major version number. In 2005, this number is 2. A change

in the major version number typically indicates a fairly substantial change in the way
the kernel works.

� The second number carries special meaning in pre-2.6.x kernels. When this number is even,
it indicates a stable kernel or release kernel—one that the kernel developers believe to be
fairly bug free and ready for use by the public at large. An odd second number indicates a

4425.book Page 274 Monday, July 11, 2005 10:46 AM

Creating a Custom Kernel 275

development kernel. Such a kernel is experimental—it contains major new drivers, major
rewrites of existing code, and so on. You should use a development kernel only if you’re
desperate for some feature it provides—and even then, you can often find a backport (the
transfer of newer drivers to older kernels) of such features to a stable kernel.

� The final number indicates a minor upgrade. In the case of stable kernels, these numbers
typically indicate small bug fixes and occasionally the addition of an important but well-
tested new driver. In the case of development drivers, the final number indicates progres-
sion in adding features, fixing bugs, and (being realistic) adding new bugs along with the
new features.

Traditionally, when a new stable kernel was released, the former development kernel was
abandoned and work was begun on a new line—2.5.x after the release of 2.4.0, for instance.

Major Linux distributions always ship with stable kernels. As a general rule, it’s best to use
a kernel in the same series that the distribution uses. Changes to the second value of the kernel
number tend to introduce changes to kernel interfaces required by some low-level utilities, mod-
ifications to filesystem formats, new driver names, and the like. Although most distributions
continue to function with such an upgraded kernel, there may be a few glitches, such as drivers
that don’t load automatically.

Within a single series, upgrades are usually safe. The most common reason to upgrade is if
a new version fixes a bug that’s been found in an older version. Another reason to upgrade is
if a new version adds a driver.

2.6.x and Later Kernel Version Numbers

The traditional kernel version numbering scheme just described has its problems. For instance,
the delay between new stable kernel branches (2.2.x to 2.4.x) has often been quite long. As a
result, important new features, such as support for USB devices, have often been backported
from the development branch to the stable branch—that is, the new code has been adapted and
merged into the older kernel. Such backports have often been included in distributions’ kernels,
but less often included in the official kernel release. The result has been a lot of variability in pre-
cisely what features exist in a compiled stable kernel, depending on from where it was obtained.

As a result, with the 2.6.x kernels, a new numbering system has been adopted, with the goal
of speeding up the uptake of new features in stable kernels. This new system involves four num-
bers—a.b.c.d, as in 2.6.11.10. In this system, the first two numbers (a and b) have the same
meaning as in the traditional system, except that the even or odd status of the second number
(b) is unimportant. An increment to the third number (c) represents significant changes to the
kernel, as maintained by Linus Torvalds himself. Increments within this series (to the fourth
number, d) represent “trivial” patches. Despite the word trivial in the official discussions of
these matters, these changes can be quite important, such as bug fixes and security patches. The
word trivial refers more to the size and scope of the change from a programming perspective
than to its importance to end users.

Under this new system, the stable/unstable distinction is essentially lost. This fact may make
it harder for administrators to pick a kernel that will be suitable for a production system; how-
ever, the new naming scheme is new enough at press time that its long-term practical effects are
still uncertain.

4425.book Page 275 Monday, July 11, 2005 10:46 AM

276 Chapter 6 � The Boot Process and Scripts

Obtaining the Kernel

Before you can compile your own kernel, you must obtain the kernel source code. One good
source for the “official” kernel is http://www.kernel.org. This site maintains a set of ker-
nels as released by the Linux kernel developers, without any third-party add-ons. If this is the
first time you’ve obtained a kernel, or if you haven’t done so in a while, follow the links to
the HTTP or FTP repository (either one works), to the Linux Repository, to the kernel, and
to the kernel version (such as v2.6 for the 2.6.x.y kernels). You’ll see a directory filled with
files, most with names of the form linux-version.tar.* and patch-version.*, where
version is the version number and * is an extension indicating the compression tool used.
Some filenames end in .sign, indicating digital signatures verifying the authenticity of the
files with similar names but without the .sign extension. Download an appropriate linux-
version.tar.bz2 file. The patch-version.* files contain patches, which you can use to
upgrade the immediately preceding kernel source code if you’ve already got it. The files with
.bz2 extensions are compressed with bzip2, which is more efficient than the older gzip com-
pression, indicated by a .gz extension.

Complete Linux kernel files are quite large. The 2.6.11.10 kernel that’s current
as I write is 35MB, even with bzip2 compression. (It’s 44MB with gzip compres-
sion.) If your network connection is slow, you could spend several minutes
downloading the file. Also, be sure that you’ve got enough free disk space to
hold the kernel.

Once you’ve downloaded the kernel, you may also want to download the matching .sign
file. You can then verify the authenticity of the main kernel file. To do so, you must first import
the public key used by the kernel maintainers:

$ gpg --keyserver wwwkeys.pgp.net --recv-keys 0x517D0F0E

If you’ve not used gpg before, the utility will deliver messages relating to the
creation of its directories and key rings. Whether or not you’ve run it before, it
will produce several lines out output summarizing its actions.

Be sure to type this command exactly as it’s shown here. The key number (0x517D0F0E) is
particularly important because it identifies the key that’s to be used. Once this is done, you can
verify the file’s authenticity:

$ gpg --verify linux-2.6.11.10.tar.bz2.sign linux-2.6.11.10.tar.bz2

gpg: Signature made Mon May 16 14:28:22 2005 EDTusing DSA key ID

 ➥517D0F0E

gpg: Good signature from "Linux Kernel Archives Verification Key

 ➥<ftpadmin@kernel.org>"

4425.book Page 276 Monday, July 11, 2005 10:46 AM

Creating a Custom Kernel 277

These lines confirm that the file is valid. You’ll also probably see a warning to the effect that
the key isn’t certified with a trusted signature. This warning relates to the fact that the GNU Pri-
vacy Guard (GPG) program can’t verify the identity of the public key site (wwwkeys.pgp.net).
Unless a miscreant has managed to compromise both that site and the Linux kernel site, though,
this shouldn’t be a problem. If you’re paranoid, you can set up a trust path to this site, but this
task is beyond the scope of this book.

Another possible source for kernel source code is your distribution. Distribution-provided
kernels frequently include patches to the kernel—non-standard drivers and other tweaks that
the distribution’s maintainers have collected from various sources. These tweaks can sometimes
help a kernel work well, but they also make the distribution’s kernels slightly non-standard,
which can complicate troubleshooting if a problem is related to such changes. Perhaps the big-
gest advantage of using a kernel from the distribution maintainer is that its default configura-
tion will match that of the distribution’s original kernel, which presumably works well enough
to get your system running. This can simplify the configuration process.

Now that you’ve obtained the kernel and verified its validity, you can extract the files and prepare
to configure it. Traditionally, the Linux kernel resides in /usr/src/linux, but this location is usu-
ally a symbolic link to another directory, such as /usr/src/linux-2.6.11.10. (Some versions of
Fedora and Red Hat include the beginnings of a version number in their main links, as in /usr/src/
linux-2.6 rather than /usr/src/linux. For brevity, I won’t mention this variation again in this
chapter.) You can extract the kernel file by changing into the /usr/src directory and using tar:

$ cd /usr/src

$ tar xvjf ~/linux-2.6.11.10.tar.bz2

$ rm linux

$ ln -s linux-2.6.11.10 linux

Chapter 2, “Managing Software,” describes the use of tar in more detail.

As presented, these commands will work only if you have write permission to /usr/src.
This directory is usually owned by root, and only root may write to it, so you’ll either need to
do this job as root or change the permissions on /usr/src so that you can write to it as an ordi-
nary user. Alternatively, you could extract the kernel source code to another directory (say,
/home/yourdir/kernels) and create a symbolic link from /usr/src/linux to the kernel
directory in /home/yourdir/kernels. Because most of the kernel compilation process doesn’t
require root privileges, it’s a bit safer to do as much of it as possible as an ordinary user.

If the existing /usr/src/linux directory is a true directory and not a symbolic link, you
should rename it rather than remove it with rm. Using rm, as just shown, is appropriate if /usr/
src/linux is a symbolic link.

At this point, your kernel should be extracted and ready to configure and compile. Check the
/usr/src/linux directory. It should contain about two dozen files and directories, such as
kernel, arch, drivers, and of course README. Naturally, you should read the README file, or
at least skim it. This file contains information on compiling the kernel, and it might have impor-
tant notes about changes from the procedures described here.

4425.book Page 277 Monday, July 11, 2005 10:46 AM

278 Chapter 6 � The Boot Process and Scripts

Configuring the Kernel

The most time-consuming part of kernel compilation is likely to be configuring it. To do so, you
must first understand the basic tools you use to compile the kernel. With that knowledge in
hand, you can begin examining the kernel configuration options, which are quite numerous.

Using Kernel Configuration Tools

To begin configuring the kernel, change into the kernel source directory and type a make com-
mand to configure the kernel in any of several ways:

Adapt old configuration The first option is to adapt an old configuration. To do so, you must
first copy the kernel configuration file (.config) from an existing kernel directory to the new
one. The existing directory could be your distribution’s older kernel source or a kernel you’ve
previously compiled. Either way, type make oldconfig and the system will run through a text-
mode configuration (described next), but it will only ask you about new or changed options.
This approach is particularly handy if you’ve already compiled an earlier kernel or if you want
to duplicate your distribution’s configuration.

Text-mode configuration The basic configuration is done by typing make config. The result
is a series of questions asking you about how to configure every option in the kernel, omitting
only those options that are moot because of earlier answers. (For instance, you won’t be asked
about SCSI card drivers if you tell the system you don’t want SCSI support.) If you make a mis-
take, you can’t go back and correct it with this method; it simply plows through the questions
with no way to change the order or revisit an option. This approach is very tedious, and it’s best
used as a last-ditch method.

Text-mode menu configuration Typing make menuconfig produces a menu-based text-mode
configuration tool. You can scroll through the menu items, enter those you want to enter, ignore
those you want to ignore, and go forward or back to configure components in any order you
want. This is a flexible approach to configuration that works in text-mode logins or in xterm
or similar command prompt windows within X.

GUI configuration If you’re running X, you can type make xconfig to get an X-based con-
figuration window, as shown in Figure 6.1. This system is functionally identical to typing make
menuconfig, but it uses mouse clicks and the GUI display.

Linux kernel options are divided into several layers of categories and subcategories. In
Figure 6.1, these categories are displayed in the pane on the left of the window. Click a category
to see the specific options it contains in the top-right pane. Click one of these options to see a
description. The box to the left of the option name is empty if the option won’t be compiled,
holds a check if the option is to be compiled into the main kernel file, or contains a dot if the
option is to be compiled as a kernel module. Clicking within the box changes the build status
between these three options. (Some options support only modular or only in-kernel compilation
or change their available choices depending on other choices you’ve made.) If you’re using a
text-mode tool, pressing the spacebar selects how the option is to be compiled; an asterisk (*)
stands for in-kernel compilation and an M stands for modular compilation.

4425.book Page 278 Monday, July 11, 2005 10:46 AM

Creating a Custom Kernel 279

F I G U R E 6 . 1 The most convenient method of Linux kernel configuration uses a GUI to
enable you to select kernel options.

Picking the Kernel Configuration Method

In practice, using make xconfig is usually the best approach to configuring the kernel if you’re
running X. The X-based kernel configuration interface is the easiest to use if you’re comfortable
with an X-based environment. Sometimes, though, this method doesn’t work because of miss-
ing development libraries. If you run into this problem, you can either track down whatever
libraries are reported as missing and install them or fall back on a text-mode configuration
method. Generally speaking, make menuconfig is not too tedious, but make config is very pain-
ful, so you should use it only as a last resort.

Occasionally, make menuconfig fails when run from an xterm or other GUI command window. If this
happens, try expanding the size of the window—they’re sometimes resized to be slightly smaller
than make menuconfig requires, so increasing the window size works around this problem.

4425.book Page 279 Monday, July 11, 2005 10:46 AM

280 Chapter 6 � The Boot Process and Scripts

Picking Kernel Options

Linux kernel options are far too numerous to describe them all. Many options are highly hard-
ware-specific—they’re drivers for particular disk controllers, sound cards, and so on, or they’re
options related to supported CPUs or other architectural features. In fact, the precise options
you see depend on your CPU, as detected by the configuration routines.

As a general rule, it’s best to start with a known working configuration, in the form of a
.config file copied from the kernel directory of the kernel you’re using. (If necessary, install
your distribution’s kernel source package to get this file.) You can then use make oldconfig,
as just described, to update the file for the new kernel. If you like, you can then run make
menuconfig or make xconfig to peruse and adjust both new and old kernel options. If you
don’t understand an option, leave it alone or set it at the default setting suggested in the option
description. Options that deserve special attention include:

CPU settings The Processor Type and Features area contains options relating to the CPU. For
best performance, set your CPU type correctly. On 32-bit x86 systems, many distributions ship
with simple 386 optimizations, which work on all systems but don’t take best advantage of
modern CPUs. Setting your CPU type correctly will enable optimizations that can slightly
increase system performance.

Hard disk controllers Most systems use Advanced Technology Attachment (ATA) hard disks,
which interface via an ATA controller. Linux ATA drivers are enabled in the ATA/ATAPI/
MFM/RLL Support area. A generic ATA driver supports all ATA controllers in a very slow leg-
acy mode, but to get good performance, you must activate the driver for your ATA controller.
It’s best to compile this driver into the main kernel file rather than compile it as a module,
because if it’s compiled as a module, you must take extra steps to place that module in an initial
RAM disk, which the boot loader can pass to the kernel at boot time. You should also enable
the ATA hard disk support (again, ideally in the main kernel file) and probably the CD-ROM
option. Some new Serial ATA (SATA) controllers have drivers in the main ATA section, but the
trend is to put this in the Serial ATA Support section under the SCSI area, so if you’re using an
SATA hard drive, you may want to look there. (If you use the SCSI SATA driver, the drive will
look like a SCSI drive to Linux.) Likewise, if you’re using a real SCSI hard disk, you must acti-
vate the SCSI support and support for your SCSI host adapter.

Sound options Linux provides two main classes of sound drivers: the Open Sound System (OSS)
and the Advanced Linux Sound Architecture (ALSA). OSS is the traditional Linux sound system,
but it’s being phased out; new development is focused on ALSA. Thus, I recommend that you try
to get the ALSA drivers working; fall back on the OSS drivers only if you have problems with
ALSA or perhaps if you already have a working OSS configuration and want to carry it forward.

Filesystems Linux supports several filesystems, as described in Chapter 3, “Configuring Hard-
ware.” Be sure you compile support for all the filesystems you’re using, including Linux native
filesystems, non-Linux disk filesystems (such as FAT, NTFS, and HFS), optical disc filesystems
(such as ISO-9660 and UDF), and network filesystems (such as NFS and SMB). Most of these
can be compiled as modules, but support for the type you are using for your root (/) filesystem
should be compiled into the main kernel file. If you don’t do this, you must prepare a separate
boot RAM disk, which is a nuisance.

4425.book Page 280 Monday, July 11, 2005 10:46 AM

Creating a Custom Kernel 281

Many other kernel options are available, and some may even be critical for your system. For
instance, if you use a USB keyboard, you must compile basic USB support and USB human input
device (HID) support into the kernel. If you’re uncertain about whether to include an option, I
recommend you do so, at least as a module. Unused modules do little harm aside from taking
some time to compile and consuming a few kilobytes of disk space.

Compiling the Kernel

Actually compiling the kernel is fairly straightforward: Type make. The system will begin dis-
playing process messages on the screen as it compiles each file, combines files into modules, and
so on. The entire compilation process is likely to take anywhere from a few minutes to over an
hour, depending on how many options you’ve selected and how fast your computer is.

With kernels prior to the 2.6.x series, you had to type make modules to compile
modules; the main make command only compiled the main kernel file. With the
2.6.x kernel, though, typing make also compiles the modules.

The result of kernel compilation is a kernel file. On x86 systems, this file is /usr/src/
linux/arch/i386/boot/bzImage. On other architectures, the file may be called something
else, such as vmlinux or vmlinuz, and will be located in another subdirectory of /usr/src/
linux/arch, named after the CPU.

Distributions often call their stock kernels vmlinuz or vmlinuz-version, where
version is a version number, even on x86 systems. Although you can call your
kernel this, or anything else you like, this naming is unconventional for locally
compiled kernels on the x86 architecture.

Compiling the kernel also creates a large number of module files. You needn’t be too con-
cerned about them as individual files, though; as described shortly, a simple command will
install them all.

Putting Everything in Its Place

Once the kernel is compiled, you must put it and its module files in the appropriate locations.
This is the part of the kernel compilation process that requires root privilege, because you’ll be
copying files to locations to which ordinary users cannot (and should not be allowed to) write.

The first job is to copy the main kernel file to /boot. This can be done with a single cp command:

cp /usr/src/linux/arch/i386/boot/bzImage /boot/bzImage-2.6.11.10

This example moves the file and renames it to include the kernel’s version number. This
practice enables you to keep several kernel files in /boot. (If you want to keep kernels with
the same version but different options, try adding additional information to the filename,
such as bzImage-2.6.11.10-scsi for a SCSI-enabled kernel.)

4425.book Page 281 Monday, July 11, 2005 10:46 AM

282 Chapter 6 � The Boot Process and Scripts

Merely copying the kernel file to /boot isn’t enough to use it. You must also
configure your boot loader to boot the kernel, as described shortly, in “Config-
uring a Boot Loader.”

Another file you may want to copy to /boot is the System.map file, which appears in the
/usr/src/linux directory after you compile the kernel. This file isn’t absolutely critical, but
it contains kernel driver information that can be helpful in debugging problems.

Installing the kernel module requires typing another make command:

make modules_install

Note the underscore (_) in the make target; if you replace it with a space, the command
won’t work! This command copies all the kernel modules to a subdirectory of /lib/
modules named after the kernel version, such as /lib/modules/2.6.11.10 for the
2.6.11.10 kernel.

At this point, the kernel is set up and ready to be booted. To actually boot the system,
though, you must reconfigure your boot loader.

Configuring a Boot Loader
In order to be useful, the Linux kernel must be moved from disk to RAM. This process doesn’t
happen magically; it’s the job of the boot loader, which is a program that’s loaded by the com-
puter’s Basic Input/Output System (BIOS) when the computer boots. Specifically, the CPU exe-
cutes the BIOS, which performs some initial checks and then loads the boot loader from disk.
The boot loader can launch other boot loaders (potentially creating a chain of several boot load-
ers) or load an OS kernel. Thus, to get a kernel you’ve just compiled to load, you must alter your
boot loader’s configuration.

Under Linux, two boot loaders are common: the Linux Loader (LILO) and the
Grand Unified Boot Loader (GRUB). GRUB is slowly becoming the standard Linux boot
loader, but many distributions still use LILO by default, and most provide at least the
option of using LILO. Thus, you should be familiar with at least the basics of using both
boot loaders.

Both LILO and GRUB are primarily boot loaders for the x86 and x86-64 (aka
AMD64 or EM64T) architectures. Other CPUs, such as PowerPC or Alpha,
have their own boot loaders. These boot loaders are sometimes modeled
after LILO, but sometimes they’re not. If you’re using Linux on such a sys-
tem, you should consult your distribution’s documentation to learn about
its boot loader.

4425.book Page 282 Monday, July 11, 2005 10:46 AM

Configuring a Boot Loader 283

Using LILO as the Boot Loader

LILO was once the default boot loader for Linux on the x86 architecture. Although LILO has
since been usurped in popularity by GRUB, it is still a small, useful boot loader. To use LILO,
you must configure it and install it in your boot sector—the part of the disk that the BIOS (or
an earlier boot loader) reads to load the boot loader. Once it’s installed, you can reboot the com-
puter and tell LILO which OS or kernel you want to boot.

The term LILO can denote one of two things. The uppercased LILO refers to the
boot loader that is installed into your boot sector. The lowercased lilo refers
to the program that is used to install the LILO boot loader.

Configuring the LILO Boot Loader

LILO is configured through the use of the /etc/lilo.conf file. This file is generally broken
into two main sections: global and per-image options. (The latter are kept in sections known as
stanzas.) Some per-image options are further separated depending on whether they are for a
Linux kernel or another OS. To further confound the matter, many of the per-image options
may be used at the global level to indicate a default value.

Essential LILO Global Options

Listing 6.1 shows a typical /etc/lilo.conf file, including both global options and three stan-
zas for booting two Linux kernels and a non-Linux OS. Most configuration lines take the form
option or option=value, but lines that begin with hash marks (#) are comments and are
ignored. All but the first line of each stanza are traditionally indented. This practice makes it
easy to spot where a new stanza begins.

Listing 6.1: A Typical LILO Configuration File

lilo.conf

#

Global Options:

#

boot=/dev/hda

prompt

timeout=150

default=fedora

lba32

vga=normal

root=/dev/hda5

read-only

#

Kernel Options (may have multiple):

4425.book Page 283 Monday, July 11, 2005 10:46 AM

284 Chapter 6 � The Boot Process and Scripts

#

image=/boot/vmlinuz-2.6.9

 label=fedora

 initrd=/boot/initrd-2.6.9

 append="mem=512M"

image=/boot/bzImage-2.6.11.10-experimental

 label=debian

 root=/dev/hda6

#

Other Operating Systems Options (may have multiple):

#

other=/dev/hda2

 label=dos

The system described by Listing 6.1 contains DOS, Fedora Linux, and Debian
GNU/Linux. DOS resides on /dev/hda2, Fedora Linux resides on /dev/hda5,
and Debian GNU/Linux resides on /dev/hda6. Fedora and Debian share a sep-
arate /boot partition, /dev/hda1.

The lilo.conf file supports many options. Most of these are fairly obscure; chances are
you’ll only need to use a handful of them in order to achieve specific common goals:

Boot loader location The boot= option specifies the name of the device that contains the
boot sector (/dev/hda in the case of Listing 6.1). In this example, the first sector (also known
as the master boot record, or MBR) of the first ATA hard drive is used as the boot sector. In
this configuration, LILO functions as the primary boot loader—it’s the first one loaded by the
BIOS. If you wanted LILO to reside in a partition on /dev/hda, you would give a specific par-
tition identifier, such as /dev/hda1. In this configuration, the BIOS would load a standard
x86 MBR boot loader, which would then load LILO. This less direct approach is sometimes
helpful on multi-boot systems because Windows tends to overwrite the MBR’s boot loader
when it’s installed or upgraded. You can then get LILO back by making LILO’s partition
bootable using Windows partitioning tools. Placing LILO in the MBR can be simpler in
Linux-only installations, though.

Default stanza The default= setting specifies the default kernel or OS that will boot. If this
option is omitted, the first image listed in lilo.conf will be used as the default.

Boot prompt The prompt line instructs LILO to issue the boot: prompt and wait for user
input. This option is usually desirable, but it can be omitted if you want the system to directly
boot a single configuration.

Boot timeout The timeout= setting specifies the amount of time, in tenths of a second, that
LILO will wait for keyboard input before booting the default kernel image. You must use the
prompt option to enable the timeout. Listing 6.1’s setting of 150 indicates a 15-second timeout.

4425.book Page 284 Monday, July 11, 2005 10:46 AM

Configuring a Boot Loader 285

Large disk support The lba32 option enables LILO to boot from disks where the kernel
image resides on a partition that is past the 1,024th cylinder. This option is almost always desir-
able, but you might omit it if you’re using a very old computer.

Video options The vga= line selects the VGA text mode that is used when booting. Choices
include normal, extended, ask, or a number. Unless you’re having problems with the video dis-
play during the boot process, you should probably leave this alone.

Linux root partition The root= option’s value is passed to the Linux kernel to tell it what par-
tition to use as its root (/) partition. You can set a default value for this option and override it
in individual stanzas, as Listing 6.1 does.

Boot in read-only mode The read-only option indicates that the root file system should be
mounted read-only. Usually, the operating system will remount the file system to read-write.

Want to password protect your booting process? Look into the password,
restricted, mandatory, and bypass options, which are documented in the
man page for lilo.conf.

Essential LILO Per-image Options

LILO supports two main types of stanzas: those for Linux kernels and those for other OSs. The
image= option is used to indicate a Linux kernel and the other= option is used to indicate some
other OS. Either type of line begins a stanza, and subsequent lines are conventionally indented until
the next stanza or the end of the file. You may want to adjust several types of per-image options:

Linux boot image The image= line indicates the Linux kernel file to use when booting. You
must pass the complete path to the Linux kernel image file.

Non-Linux boot partition An other= line indicates the partition that contains its own boot
loader. When this option is selected, LILO passes control to the boot loader in that partition.
DOS, Windows, OS/2, BeOS, FreeBSD, and other OSs can all place their own boot loaders in
their partitions, so this tool enables you to pass control to these OSs.

OS label The label= option provides a name for LILO to use. When you boot, you type the
name of the label or press the Tab key to get a list of available labels, as described later in “Inter-
acting with LILO.”

RAM disk The initrd= line points to an initial RAM disk. This is a small filesystem in a file that
the boot loader loads into memory and delivers to the kernel as a RAM-based substitute for a disk
drive. Linux distributions frequently use RAM disks like this to store kernel drivers as a way of
keeping the kernel size down while still supporting a wide range of drivers. When you build your
own kernel, it’s usually simpler to build drivers that are necessary to the boot process (such as
those for your hard disk controller and the root filesystem) into the main kernel file.

Extra kernel options You can pass arbitrary options to the kernel with the append= option.
For instance, Listing 6.1’s fedora stanza passes the mem=512M option to the kernel in this way.
(This specific option tells the computer that is has 512MB of RAM. Linux usually detects avail-
able RAM correctly, but sometimes this or some other option is necessary.)

4425.book Page 285 Monday, July 11, 2005 10:46 AM

286 Chapter 6 � The Boot Process and Scripts

In addition, some of the options described in the section “Essential LILO Global Options”
can be used in per-image stanzas. In particular, vga=, root=, and read-only are often found
in per-image stanzas. If they aren’t used in stanzas, the global options apply.

Adding a Kernel to LILO

To add a new kernel to LILO, follow these steps as root:

1. Load /etc/lilo.conf into your favorite text editor.

2. Copy a working Linux stanza.

3. In the copied stanza, modify the label= line to give the copy a new name. The name should
be a string of letters, numbers, or both, without spaces.

4. Change the image= line to point to the new kernel file.

5. Change any other options that may need changing. For instance, if you’ve prepared a new
RAM disk, change the initrd= line to point to it. If your new configuration doesn’t use
a RAM disk, you can eliminate any initrd= line that’s present in the stanza.

6. Save your changes and exit from the text editor.

7. At a root command prompt, type lilo. This command installs LILO in the MBR or boot
partition’s boot sector. You should see a list of stanza names echo to the screen. Ensure that
your new configuration is present.

Remember to perform step #7! It’s easy to overlook this step, and if you do so,
your changes won’t take effect. If you forget and reboot before typing lilo, you
should boot using a working kernel, log in as root, type lilo, and reboot again.

A similar procedure can be used to add a new non-Linux OS; however, you would then copy
and modify a working other= configuration (or copy the one shown in Listing 6.1).

Don't remove old image= or other= configurations until you are certain that the
new images are working. This will allow you to boot to the old kernel image in
case of failure. Another alternative is to install LILO with your new configura-
tion onto a temporary device such as a floppy disk or a USB memory stick. To
do this, change the boot= line to point to the test boot device, such as boot=
/dev/fd0 to install LILO to a floppy disk.

You can pass some options to lilo to modify what it does:

Specify an alternate configuration file The -C config-file option specifies an alternate
configuration file to use rather than /etc/lilo.conf.

Test the configuration The -t option tests the configuration; it doesn’t actually write any-
thing to the boot sector.

4425.book Page 286 Monday, July 11, 2005 10:46 AM

Configuring a Boot Loader 287

Produce verbose output The -v option produces verbose output when lilo is run. This is use-
ful with the -t option to see how your changes will work out.

Specify a boot device The -b bootdev option specifies a boot device, overriding the boot=
option in lilo.conf.

It is possible to install a new LILO boot loader and still have it fail when trying
to use it. The lilo man page describes the errors that may occur. LILO prints the
letters L, I, L, and O to indicate how it is progressing.

Interacting with LILO

Sometimes you will need to boot with options that you did not place into the /etc/lilo.conf
file. If you’ve configured LILO to provide a boot: (or sometime lilo:) prompt, you may pass
extra options to the boot loader on that command line.

One thing that you may wish to do is boot into single user mode. Assuming that the image
that you want to use is called linux, you would type something like this:

boot: linux 1

Instead of supplying the number 1 for single user mode, you can specify the let-
ter s or S or the word single.

It is also possible that your init program (usually /sbin/init) is corrupt, missing, or incor-
rectly configured. At times like this, it is possible to specify an alternate init program. A com-
mon technique is to use a regular shell program like bash in place of init. You would do this
at the boot: prompt like this:

boot: linux init=/bin/sh

Using GRUB as the Boot Loader

GRUB has taken over as the default boot loader for many Linux distributions because it offers
many features that LILO lacks. For example, you do not have to reinstall GRUB after editing
its configuration and you have many more interactive options while booting. As with LILO, you
must still explicitly add a new kernel to the GRUB configuration if you intend to use that kernel.
If GRUB isn’t already installed in your boot sector, you must also install it, although this step
isn’t necessary if GRUB is already working. As with LILO, you can interact with GRUB during
the boot process, passing options to control how the system boots.

4425.book Page 287 Monday, July 11, 2005 10:46 AM

288 Chapter 6 � The Boot Process and Scripts

Configuring the GRUB Boot Loader

The usual location for the GRUB boot loader’s configuration file is /boot/grub/menu.lst.
Some distributions (such as Fedora, Red Hat, and Gentoo) use the filename grub.conf rather
than menu.lst, though. GRUB is able to read its configuration file at boot time, which means
that you needn’t reinstall the boot loader to the boot sector when you change the configuration
file. As with LILO, the GRUB configuration file is broken down into global and per-image sec-
tions, each of which has its own options. Before getting into section details, though, you should
understand a few GRUB quirks.

GRUB Nomenclature and Quirks

Listing 6.2 shows a sample GRUB configuration file. This file is roughly equivalent to the LILO
configuration file shown in Listing 6.1. In particular, it can boot the same OSs using the same
kernels—Fedora on /dev/hda5, Debian on /dev/hda6, and DOS on /dev/hda2. Fedora and
Debian share a /boot partition (/dev/hda1), on which the GRUB configuration resides.

Listing 6.2: A Sample GRUB Configuration File

grub.conf/menu.lst

#

Global Options:

#

default=0

timeout=15

splashimage=/grub/bootimage.xpm.gz

#

Kernel Image Options:

#

title Fedora (2.6.9)

 root (hd0,0)

 kernel /vmlinuz-2.6.9 ro root=/dev/hda5 mem=512M

 initrd /initrd-2.6.9

title Debian (2.6.11.10-experimental)

 root (hd0,0)

 kernel (hd0,0)/bzImage-2.6.11.10-experimental ro root=/dev/hda6

#

Other operating systems

#

title DOS

 rootnoverify (hd0,1)

 chainloader +1

4425.book Page 288 Monday, July 11, 2005 10:46 AM

Configuring a Boot Loader 289

The GRUB boot loader does not refer to disk drives by device filename the way that Linux
does. GRUB numbers drives so that instead of /dev/hda, GRUB uses (hd0). Similarly, /dev/
hdb would be (hd1). GRUB doesn’t distinguish between ATA and SCSI drives, so on a SCSI-
only system, the first SCSI drive will be (hd0). On a mixed ATA-and-SCSI system, ATA drives
normally receive the lower numbers, although this isn’t always the case.

Additionally, GRUB numbers partitions on a drive starting at 0 instead of the 1 that is used
by Linux. GRUB separates partition numbers from drive numbers with a comma, as in (hd0,0)
for the first partition on the first disk (normally Linux’s /dev/hda1) or (hd0,4) for the first
logical partition on the first disk (normally Linux’s /dev/hda5). Floppy devices are referred to
as (fd0), or conceivably (fd1) or above if you have more than one floppy drive. Floppy disks
aren’t partitioned, so they don’t receive partition numbers.

GRUB defines its own root partition, which can be different from the Linux root partition.
GRUB’s root partition is the partition in which GRUB’s configuration file (menu.lst or grub.conf)
resides. Because this file is normally in Linux’s /boot/grub/ directory, the GRUB root directory will
be the same as Linux’s root directory if you do not use a separate /boot or /boot/grub partition.
If you split off /boot into its own partition, though, as is fairly common, GRUB’s root partition will
be the same as Linux’s /boot partition. You must keep this difference in mind when referring to files
within the GRUB configuration directory.

Essential Global GRUB Options

GRUB’s global section precedes its per-image configurations. Typically, you’ll find fewer
options in this global section than in a LILO global configuration:

Default OS The default= option tells GRUB which OS to boot. Listing 6.2’s default=0
causes the first listed OS to be booted (remember GRUB indexes from 0). If you wanted to boot
the second listed operating system, use default=1, and so on through all your OSs.

Timeout The timeout= option defines how long, in seconds, to wait for user input before
booting the default operating system. Note that GRUB measures its timeout period in seconds,
whereas LILO uses tenths of a second.

Background graphic The splashimage= line points to a graphics file that’s displayed as the
background for the boot process. This line is optional, but most Linux distributions point to
an image to spruce up the boot menu. The filename reference is relative to the GRUB root par-
tition, so if /boot is on a separate partition, that portion of the path is omitted. Alternatively,
the path may begin with a GRUB device specification, such as (hd0,5) to refer to a file on
that partition.

Essential GRUB Per-Image Options

GRUB’s per-image options are typically indented after the first line, much as are LILO’s, but
this is a convention, not a requirement of the file format. The options begin with an identifica-
tion and continue with options that tell GRUB how to handle the image:

Title The title line begins a per-image stanza and specifies the label to display when the boot
loader runs. Unlike LILO’s label option, the GRUB title can accept spaces and is conven-
tionally much more descriptive, as shown in Listing 6.2.

4425.book Page 289 Monday, July 11, 2005 10:46 AM

290 Chapter 6 � The Boot Process and Scripts

GRUB root The root option specifies the location of GRUB’s root partition. This would be
the /boot partition if a separate one exists; otherwise it’s usually the Linux root (/) partition.
(GRUB can reside on a FAT partition, on a floppy disk, or on certain other OSs’ partitions,
though, so GRUB’s root could conceivably be somewhere more exotic.)

Kernel specification The kernel setting describes the location of the Linux kernel as well
as any kernel options that are to be passed to it. Paths are relative to GRUB’s root partition.
As an alternative, you can specify devices using GRUB’s syntax, such as kernel (hd0,5)/
vmlinuz ro root=/dev/hda5. Note that you pass most kernel options on this line. LILO
splits off kernel options on separate lines, such as the append= line, the root= line, and the
read-only option. In GRUB, you incorporate these options onto the kernel line. The ro
option tells the kernel to mount its root filesystem read-only (it’s later remounted read/write),
and the root= option specifies the Linux root filesystem. Because these options are being
passed to the kernel, they use Linux-style device identifiers, when necessary, unlike other
options in the GRUB configuration file.

Initial RAM disk Use the initrd option to specify an initial RAM disk, much like the option
of the same name in LILO.

Non-Linux root The rootnoverify option is similar to the root option except that GRUB
will not try to access files on this partition. It’s used to specify a boot partition for OSs for which
GRUB can’t directly load a kernel, such as DOS and Windows.

Chain loading The chainloader option tells GRUB to pass control to another boot loader.
Typically, it’s passed a +1 option to load the first sector of the root partition (usually specified
with rootnoverify) and to hand over execution to this secondary boot loader.

To add a kernel to GRUB, follow these steps:

1. As root, load the menu.lst or grub.conf file into a text editor.

2. Copy a working configuration for a Linux kernel.

3. Modify the title line to give your new configuration a unique name.

4. Modify the kernel line to point to the new kernel. If you need to change any kernel
options, do so.

5. If you’re adding, deleting, or changing a RAM disk, make appropriate changes to the
initrd line.

6. If desired, change the global default line to point to the new kernel.

7. Save your changes and exit from the text editor.

At this point, GRUB is configured to boot your new kernel. When you reboot, you should
see it appear in your menu and you should be able to boot it. If you have problems, boot a work-
ing configuration to debug the issue.

Don’t eliminate a working configuration for an old kernel until you’ve deter-
mined that your new kernel works correctly.

4425.book Page 290 Monday, July 11, 2005 10:46 AM

Configuring a Boot Loader 291

Installing the GRUB Boot Loader

Installation of GRUB is a little different than for LILO. The command for installing GRUB is
grub-install. Also, you must specify the boot sector by device name when you install the boot
loader. The basic command looks like

grub-install /dev/hda

or

grub-install '(hd0)'

Either command will install GRUB into the first sector (or the MBR) of your first hard drive.
In the second example, you need single quotes around the device name. If you want to install
GRUB in the boot sector of a partition rather than in the MBR, you would include a partition
identifier, as in /dev/hda1 or (hd0,0).

Remember that you do not need to reinstall GRUB after making changes to its configuration
file! You’ll only need to install GRUB in this way if you make certain changes to your disk con-
figuration, such as resizing or moving the GRUB root partition, moving your entire installation
to a new hard disk, or possibly reinstalling Windows (which tends to wipe out MBR-based boot
loaders). In some of these cases, you may need to boot Linux via a backup boot loader, such as
LILO or GRUB installed to floppy disk. (Type grub-install /dev/fd0 to create one, and
then label it and store it in a safe place.)

Interacting with GRUB

The first screen the GRUB boot loader shows you is a list of all of the operating systems that you
specified with the title option in your GRUB configuration file. You can wait for the timeout
to expire for the default operating system to boot. To select an alternative, you have to highlight
the operating system that you want to have boot by using your arrow keys. Once your choice
is highlighted, press the Enter key to start booting.

Follow these steps when you want to change or pass additional options to your operating system:

1. Use your arrow keys to highlight the operating system that most closely matches what you
want to boot.

2. Press the E key to edit this entry. You will now see a new screen listing all of the options
for this entry.

3. Use your arrow keys to highlight the kernel option line.

4. Press the E key to edit the kernel options.

5. Edit the kernel line to add any options, such as 1 to boot to single user mode. GRUB will
pass the extra option to the kernel.

6. Press the Enter key to complete the edits.

7. Press the B key to start booting.

You can make whatever changes you like in step 5, such as using a different init program.
You do this by appending init=/bin/bash (or whatever program you want to use) to the end
of the kernel line.

4425.book Page 291 Monday, July 11, 2005 10:46 AM

292 Chapter 6 � The Boot Process and Scripts

Understanding the Boot Process
Any time that you modify the way your computer boots, there is the possibility that you will not
get the results that you expect. In these cases, it is useful to know where you can turn to for more
information on what is happening during startup. The reports you receive on a particular boot
can better guide you once you understand something about what’s supposed to happen when
a Linux system boots.

Extracting Information on the Boot Process

Certain Linux kernel and module log information is stored in what is called the kernel ring
buffer. By default, Linux displays messages destined for the kernel ring buffer during the boot
process—they’re those messages that scroll past too quickly to read. (Some distributions hide all
but the earliest of these messages unless you select a special option during the boot process.) You
may inspect this information with this command:

dmesg

This command generates a lot of output, so you may want to pipe it through the less pager
or redirect it to a file. Here are some examples of these commands:

dmesg | less

dmesg > boot.messages

Many Linux distributions store the kernel ring buffer to /var/log/dmesg soon
after the system boots. Because new information is logged to the kernel ring
buffer as the system operates, and because the kernel ring buffer’s size is finite,
you may need to consult this log file to learn about the boot process once the
system has been operating for a while.

Another source of logging information is from the system logger (syslogd). The most useful
syslogd file to look at is usually /var/log/messages, but /var/log/syslog and other log
files in /var/log can also hold useful information.

Some Linux distributions also log boot time information to other files. Debian
uses a daemon called bootlogd that, by default, will log any messages that go
to /dev/console to the /var/log/boot file. Fedora and Red Hat make use of
syslogd services to log information to /var/log/boot.log.

4425.book Page 292 Monday, July 11, 2005 10:46 AM

Understanding the Boot Process 293

The Boot Process

The process of taking an x86 computer from its initial state when the power is turned on to hav-
ing a working operating system running is complex due to the way that modern personal com-
puters have evolved. The steps that a computer goes through in order to boot an operating
system are as follows:

1. The system is given power and a special hardware circuit causes the CPU to look at a pre-
determined address and execute the code that is stored in that location. The BIOS resides
at this location, so the CPU runs the BIOS.

2. The BIOS code performs some tasks. These include checking for hardware, configuring
hardware, and looking for a boot sector. This boot sector contains more code that needs to
be loaded into memory in order to continue the boot process. This code is called a boot
loader or, if it is a multi-staged loader, a primary boot loader.

The boot loader may be found in the first sector of a hard drive (the MBR) or on
the first sector of another device, such as a floppy disk or CD-ROM. In these
cases, the location is simply referred to as a boot sector, not an MBR. The dif-
ference is that an MBR contains partition definitions in addition to the boot
loader code.

3. When the boot loader takes over from the BIOS, if it is a multi-staged loader, it looks for a
secondary loader. Some boot loaders go straight to a secondary loader in a hard drive’s active
partition. Other boot loaders, like LILO and GRUB, can do much more. For example, these
boot loaders allow you to set extra boot-time options and load other boot loaders.

Active partitions are simply partitions that are marked with a special flag. Some
boot loaders and OSs, such as DOS and Windows, use the active flag as a way
of determining which OS to boot. Linux and its boot loaders ignore the active
flag for most purposes. That doesn't stop Linux from being able to mark a par-
tition as active. Use disk partitioning tools such as fdisk, cfdisk, and sfdisk
for this task. Each hard drive should have only one active partition.

4. The final goal of the boot loader is to find a kernel (Linux or otherwise), load it into mem-
ory, and execute it.

5. Once the Linux kernel takes over, it performs tasks such as initializing devices, mounting
the root partition, and finally loading and executing the initial program for your system. By
default, this is the program /sbin/init.

6. The initial program gets the process ID (PID) of 1 since it is the first program to run on
the system. Assuming that /sbin/init is the initial program, it reads a file called /etc/

4425.book Page 293 Monday, July 11, 2005 10:46 AM

294 Chapter 6 � The Boot Process and Scripts

inittab to determine what other programs to run. Other programs usually include getty
programs for console logins, system initialization scripts for mounting more partitions or
starting up system services, and an X Display Manager (XDM) program to give you a
graphical login.

How the init program and the initialization scripts work is covered next, in “Dealing with
Runlevels and the Initialization Process.”

If you would like more details on this boot process, read http://www
.linuxdevcenter.com/pub/a/linux/excerpts/linux_kernel/how_computer_
boots.html. This page describes the process from the computer being powered
up to the kernel being loaded and launching /sbin/init.

Dealing with Runlevels and the
Initialization Process
Linux relies on runlevels to determine what features are available. Runlevels are numbered from
0 to 6, and each one is assigned a set of services that should be active. Upon booting, Linux
enters a predetermined runlevel, which you can set. Knowing what these functions are, and how
to manage runlevels, is important if you are to control the Linux boot process and ongoing oper-
ations. To this end, you must understand the purpose of runlevels, be able to identify the ser-
vices that are active in a runlevel, be able to adjust those services, be able to check your default
and current runlevels, and be able to change the default and current runlevels.

Runlevel Functions

Earlier in this chapter, I described single user mode. To get to this mode when booting Linux,
you use the number 1, the letter S or s, or the word single as an option passed to the kernel
by the boot loader. Single user mode is simply an available runlevel for your system. The avail-
able runlevels on most systems are the numbers 0 through 6. The letters S and s are synonymous
with runlevel 1 as far as many utilities are concerned.

Runlevels 0, 1, and 6 are reserved for special purposes and the remaining runlevels are avail-
able for whatever purpose you or your Linux distribution provider decide. Table 6.1 summa-
rizes the conventional uses of the runlevels. Other assignments—and even runlevels outside the
range of 0 to 6—are possible, but such configurations are rare. (Gentoo, described shortly, uses
an unusual runlevel system.) If you run into odd runlevel numbers, consult /etc/inittab—it
defines them, and often contains comments explaining the various runlevels.

4425.book Page 294 Monday, July 11, 2005 10:46 AM

Dealing with Runlevels and the Initialization Process 295

Don’t configure your default runlevel to 0 or 6. If you do, your system will
immediately shut down or reboot once it finishes powering up. Runlevel 1
could conceivably be used as a default, but chances are you want to use 2,
3, or 5 as your default runlevel, depending on your distribution and use for
the system.

As a general rule, distributions have been drifting toward Red Hat’s runlevel set; however,
there are some exceptions and holdouts, such as Debian. Gentoo also deserves special attention.
Although it uses numbered runlevels at its core, Gentoo builds upon this by enabling an arbitrary
number of named runlevels. The default runlevel is called, appropriately enough, default. Gen-
too’s system permits you to create named runlevels for, say, connecting a laptop to half a dozen
different networks, each with its own unique network configuration requirements. When you
move from one network to another, simply enter the appropriate runlevel, as described later in
“Changing Runlevels on a Running System.”

T A B L E 6 . 1 Runlevels and Their Purposes

Runlevel Purpose

0 This is a transitional runlevel, meaning that it’s used to shift the system from one
state to another. Specifically, it shuts down the system. On modern hardware, the
system should completely power down. If not, you would be expected to either
reboot the computer manually or power it off.

1, s, or S Single user mode. What services, if any, are started at this runlevel varies by
distribution. It’s typically used for low-level system maintenance that could be
impaired by normal system operation, such as resizing partitions.

2 On Debian systems, this is a full multi-user mode with X running and a graphical
login. Most other distributions leave this runlevel undefined.

3 On Fedora, Mandrake, Red Hat, and most other distributions, this is a full multi-
user mode with a console (non-graphical) login screen.

4 Usually undefined by default.

5 On Fedora, Mandrake, Red Hat, and most other distributions, this is the same behav-
ior as runlevel 3 with the addition of having X run with an XDM (graphical) login.

6 Used to reboot the system. This runlevel is also a transitional runlevel. Your
system will be completely shut down and then the computer will reboot auto-
matically.

4425.book Page 295 Monday, July 11, 2005 10:46 AM

296 Chapter 6 � The Boot Process and Scripts

Identifying the Services in a Runlevel

There are two main ways to affect what programs run when you enter a new runlevel. The first
way is to add or delete entries in your /etc/inittab file. There are many entries in a typical
/etc/inittab file, and except for a couple of special cases, inspecting or changing the contents
of this file is best left to experts.

Once all of the entries in /etc/inittab for your runlevel are executed, your
boot process is complete and you can log in.

Basics of the /etc/inittab File

Entries in /etc/inittab follow a simple format. Each line consists of four colon-delimited fields:

id:runlevels:action:process

Each of these fields has a specific meaning:

Identification code The id field consists of a sequence of 1–4 characters that identifies its
function.

Applicable runlevels The runlevels field consists of a list of runlevels for which this entry
applies. For instance, 345 means that the entry is applicable to runlevels 3, 4, and 5.

Action to be taken Specific codes in the action field tell init how to treat the process. For
instance, wait tells init to start the process once when entering a runlevel and to wait for the
process’s termination, and respawn tells init to restart the process whenever it terminates
(which is great for login processes). Several other actions are available; consult the man page for
inittab for details.

Process to run The process field is the process to run for this entry, including any options and
arguments that are required.

The part of /etc/inittab that tells init how to handle each runlevel looks like this:

grep "rc [0-6]" /etc/inittab

l0:0:wait:/etc/init.d/rc 0

l1:1:wait:/etc/init.d/rc 1

l2:2:wait:/etc/init.d/rc 2

l3:3:wait:/etc/init.d/rc 3

l4:4:wait:/etc/init.d/rc 4

l5:5:wait:/etc/init.d/rc 5

l6:6:wait:/etc/init.d/rc 6

These lines begin with codes that begin with an l (that is, a lowercase letter L, not a number 1)
followed by the runlevel number—for instance, l0 for runlevel 0, l1 for runlevel 1, and so on.

4425.book Page 296 Monday, July 11, 2005 10:46 AM

Dealing with Runlevels and the Initialization Process 297

These lines specify scripts or programs that are to be run when the specified runlevel is entered.
In the case of this example (which was taken from a Fedora 3 system), all of the scripts are the
same (/etc/init.d/rc), but the script is passed the runlevel number as an argument. Some dis-
tributions, though, call specific programs for certain runlevels, such as shutdown for runlevel 0.

The upcoming section “Checking and Changing Your Default Runlevel”
describes how to tell init what runlevel to enter when the system boots.

The SysV Startup Scripts

The /etc/init.d/rc script performs the crucial task of running all of the scripts associated
with the runlevel. These scripts are stored in /etc/rc.d/rc?.d, /etc/init.d/rc?.d, /etc/
rc?.d, or a similar location. (The precise location varies between distributions.) In all these
cases, ? is the runlevel number. When entering a runlevel, rc passes the start parameter to all
the scripts with names that begin with a capital S and the stop parameter to all the scripts with
names that begin with a capital K. These System V (SysV) startup scripts start or stop services
depending on the parameter they’re passed, so the naming of the scripts controls whether
they’re started or stopped when a runlevel is entered. These scripts are also numbered, as in
S10network and K35smb. The rc program runs the scripts in numeric order. This feature
enables distribution designers to control the order in which scripts run by giving them appro-
priate numbers. This control is important because some services depend on others. For instance,
network servers must normally be started after the network is brought up.

In reality, the files in the SysV runlevel directories are symbolic links to the main scripts,
which are typically stored in /etc/rc.d, /etc/init.d, or /etc/init.d/rc.d (again, the
exact location depends on the distribution). These original SysV startup scripts have names that
lack the leading S or K and number, as in smb instead of K35smb.

You can also start services by hand. Run them with the start option, as in
/etc/init.d/smb start to start the smb (Samba) server. Other useful options
are stop, restart and status. Most scripts support all of these options.

To determine which services are active in a runlevel, examine the appropriate SysV startup
script directory in search of scripts with filenames that begin with an S. Alternatively, you can
use a runlevel management tool, as described next.

Managing Runlevel Services

The SysV startup scripts in the runlevel directories are symbolic links back to the original script.
This is done so that you don’t need to copy the same script into each runlevel directory. Instead,
you can modify the original script without having to track down its copies in all of the SysV run-
level directories. You can also modify which programs are active in a runlevel by editing the link
filenames. Numerous utility programs are available to help you manage these links, such as

4425.book Page 297 Monday, July 11, 2005 10:46 AM

298 Chapter 6 � The Boot Process and Scripts

chkconfig, ntsysv, update-rc.d, and rc-update. I describe the first two of these tools
because they’re supported on most distributions. If your distribution doesn’t support these
tools, you should check distribution-centric documentation.

Managing Runlevel Services with chkconfig

To list the services and their applicable runlevels with chkconfig, use the --list option. The
output looks something like this but is likely to be much longer:

chkconfig --list

pcmcia 0:off 1:off 2:on 3:on 4:on 5:on 6:off

nfs-common 0:off 1:off 2:off 3:on 4:on 5:on 6:off

xprint 0:off 1:off 2:off 3:on 4:on 5:on 6:off

setserial 0:off 1:off 2:off 3:off 4:off 5:off 6:off

This output shows the status of the services in all seven runlevels. For instance, you can see
that nfs-common is inactive in runlevels 0–2, active in runlevels 3–5, and inactive in runlevel 6.

On Red Hat, Fedora, and some other distributions, chkconfig can manage serv-
ers that are handled by xinetd as well as SysV startup scripts. The xinetd-
mediated servers appear at the end of the chkconfig listing.

If you are interested in a specific service, you can specify its name:

chkconfig --list nfs-common

nfs-common 0:off 1:off 2:off 3:on 4:on 5:on 6:off

To modify the runlevels in which a service runs, use a command like this:

chkconfig --level 23 nfs-common on

The previous example is for Debian-based systems. On Red Hat and similar
systems, you would probably want to target runlevels 3, 4, and 5 with some-
thing like --level 345 rather than --level 23.

You can set the script to be on (to activate it), off (to deactivate it), or reset (to set it to its
default value).

If you’ve added a startup script to the main SysV startup script directory, you can have
chkconfig register it and add appropriate start and stop links in the runlevel directories.
When you do this, chkconfig inspects the script for special comments to indicate default run-
levels. If these comments are in the file and you are happy with the suggested levels, you can
add it to these runlevels with a command like this:

chkconfig --add nfs-common

4425.book Page 298 Monday, July 11, 2005 10:46 AM

Dealing with Runlevels and the Initialization Process 299

This command adds the nfs-common script to those managed by chkconfig. You would, of
course, change nfs-common to your script’s name. This approach may not work if the script
lacks the necessary comment lines with runlevel sequence numbers for chkconfig’s benefit.

Managing Runlevel Services with ntsysv

The ntsysv utility is an interactive text-mode tool. It was created by Red Hat, and is used
mainly on Red Hat and related distributions, such as Fedora and Mandrake. If you run ntsysv
without any arguments, you can configure your current runlevel. If you want to specify alter-
nate runlevels to configure, run it with the --level option, as in ntsysv --level 1 to con-
figure runlevel 1 or ntsysv --level 23 to configure runlevels 2 and 3. In either event, the
result resembles Figure 6.2, which shows ntsysv running within an xterm window.

F I G U R E 6 . 2 The ntsysv program enables you to control services from a menu of
available services.

To adjust services, use your keyboard’s arrow keys to select a service and press the spacebar
to toggle the service on or off. An asterisk in the square brackets indicates that the service is on.
No asterisk means that the service will not execute for the runlevels you’ve selected. When
you’re done, press the Tab key to highlight the OK button and then press the Enter key.

Checking Your Runlevel

Sometimes it’s necessary to check your current runlevel. Typically, you’ll do this prior to chang-
ing the runlevel or to check the status if something’s not working correctly. Two different run-
level checks are possible: checking your default runlevel and checking your current runlevel.

Checking and Changing Your Default Runlevel

You can determine your default runlevel by inspecting the /etc/inittab file with the less
command or opening it in an editor. Alternatively, you may use the grep command to look

4425.book Page 299 Monday, July 11, 2005 10:46 AM

300 Chapter 6 � The Boot Process and Scripts

for the line specifying the initdefault action. On a Fedora system, you would see some-
thing like this:

grep :initdefault: /etc/inittab

id:5:initdefault:

On Debian, you would probably see this:

grep :initdefault: /etc/inittab

id:2:initdefault:

You may notice that neither system defines a process to run. In the case of the initdefault
action, the process field is ignored.

If you want to change the default runlevel for the next time you boot your system, edit the
initdefault line in /etc/inittab and change the runlevel field to the value that you want.

Determine Your Current Runlevel

If your system is up and running, you can determine your runlevel information with the
runlevel command:

runlevel

N 2

The first character is the previous runlevel. When the character is N, this means that the sys-
tem has not switched runlevels since booting. It is possible to switch to different runlevels on a
running system with the init and telinit programs, as described next. The second character
in the runlevel output is your current runlevel.

Changing Runlevels on a Running System

Sometimes you may want to change runlevels on a running system. You might do this to get
more services, such as going from a console to a graphical login runlevel, or to shut down or
reboot your computer. This can be accomplished with the init (or telinit), shutdown,
halt, reboot, and poweroff commands.

Changing Runlevels with init or telinit

The init process is the first process run by the Linux kernel, but you can also use it to have the
system reread the /etc/inittab file and implement changes it finds there or to change to a new
runlevel. The simplest case is to have it change to the runlevel you specify. For instance, to
change to runlevel 1 (the runlevel reserved for single user or maintenance mode), you would
type this command:

init 1

4425.book Page 300 Monday, July 11, 2005 10:46 AM

Dealing with Runlevels and the Initialization Process 301

To reboot the system, you can use init to change to runlevel 6 (the runlevel reserved
for reboots):

init 6

A variant of init is telinit. This program can take a runlevel number just like init to
change to that runlevel, but it can also take the Q or q option to have the tool reread /etc/
inittab and implement any changes it finds there. Thus, if you’ve made a change to the run-
level in /etc/inittab, you can immediately implement that change by typing telinit q.

The man pages for these commands indicate slightly different syntaxes, but
telinit is usually a symbolic link to init, and in practice init responds just
like telinit to the Q and q options.

Changing Runlevels with shutdown

Although you can shut down or reboot the computer with init, doing so has some problems.
One issue is that it’s simply an unintuitive command for this action. Another is that changing
runlevels with init causes an immediate change to the new runlevel. This may cause other users
on your system some aggravation because they’ll be given no warning about the shutdown.
Thus, it’s better to use the shutdown command in a multi-user environment when you want to
reboot, shut down, or switch to single user mode. This command supports extra options that
makes it friendlier in such environments.

The shutdown program will send a message to all users who are logged into your system and
prevent other users from logging in during the process of changing runlevels. The shutdown
command also lets you specify when to effect the runlevel change so that users have time to exit
editors and safely stop other processes they may have running.

When the time to change runlevels is reached, shutdown will signal the init process for you.
In the most simple form, shutdown is invoked with a time argument like:

shutdown now

This will change the system to runlevel 1, the single user or maintenance mode. The now
parameter causes the change to occur immediately. Other possible time formats include hh:mm,
for a time in 24-hour clock format (such as 6:00 for 6:00 AM or 13:30 for 1:30 PM), and +m for
a time m minutes in the future.

You can add extra parameters to specify that you want to reboot or halt (that is, power off)
the computer. Specifically, -r reboots the system and -h (for halt) powers it off. For instance,
you might type shutdown -r +10 to reboot the system in 10 minutes.

To give people some warning about the impending shutdown, add a message to the end of
the command:

shutdown -h +15 system going down for maintenance

If you schedule a shutdown but then change your mind, you can use the -c option to cancel it:

shutdown -c "never mind"

4425.book Page 301 Monday, July 11, 2005 10:46 AM

302 Chapter 6 � The Boot Process and Scripts

Changing Runlevels with halt, reboot, and poweroff Commands

Three additional shortcut commands are halt, reboot, and poweroff. (In reality, reboot and
poweroff are usually symbolic links to halt. This command behaves differently depending on
the name with which it’s called.) As you might expect, these commands halt the system (shut it
down without powering it off), reboot it, or shut it down and (on hardware that supports this
feature) turn off the power, respectively.

Ordinarily, halt and its variants call shutdown to do the bulk of their work. You can over-
ride this behavior with the -f option, which causes the program to force a shutdown without
going through the usual steps taken by shutdown. This option can be handy if the system is mis-
behaving so badly that shutdown doesn’t work.

Don’t use the -f option on a routine basis to shut down the system. The
shutdown command (or init, if you use it) goes through steps to cleanly stop
programs, unmount filesystems, and so on. Typing halt -f shuts down the
system in a somewhat less clean way, which could have negative conse-
quences in the form of unsaved files or other problems.

Managing the Shell Environment
Once the computer boots or reboots, you’re normally presented with a login prompt, where-
upon you can begin using the computer. (Of course, servers can work without anybody using
the console.) The simplest case is a text-mode login, which causes Linux to launch a shell pro-
gram. (Shell programs are also launched by xterm and similar GUI command-prompt win-
dows.) Shell programs accept commands that you type and in response take actions, such as
launching programs or changing their own environment for the benefit of subsequent com-
mands. Linux supports several shell programs, so knowing about a few of them can be helpful.
You should know something about built-in shell functions and environment variables, both of
which are useful tools when using shells. Environment variables may also be used to help con-
trol programs launched from the shell. Configuring shells requires knowing about the names
and formats of their configuration files; you can then use shell functions and environment vari-
ables to configure the shell.

Shell Options

As with many key software components, Linux provides a range of options for shells. A com-
plete list would be quite long, but the more common choices include the following:

bash The GNU Bourne Again Shell (bash) is based on the earlier Bourne shell but extends it
in several ways. In Linux, bash is the most common default shell for user accounts, and it’s the
one emphasized in this book and on the LPI exam.

4425.book Page 302 Monday, July 11, 2005 10:46 AM

Managing the Shell Environment 303

bsh The Bourne shell upon which bash is based also goes by the name bsh. It’s not often used
in Linux, although the bsh command is usually a symbolic link to bash.

tcsh This shell is based on the earlier C shell (csh). It’s a fairly popular shell in some circles,
but no major Linux distributions make it the default shell. Although it’s similar to bash in many
respects, some operational details differ. For instance, you don’t assign environment variables
in the same way in tcsh as in bash.

csh The original C shell isn’t much used on Linux, but if a user is familiar with csh, tcsh
makes a good substitute.

ksh The Korn Shell (ksh) was designed to take the best features of the Bourne shell and the
C shell and extend them further. It’s got a small but dedicated following among Linux users.

zsh The Z shell (zsh) takes shell evolution further than the Korn Shell, incorporating features
from earlier shells and adding still more.

In addition to these shells, dozens more obscure ones are available. In Linux, most users run
bash because it’s the default. Some other OSs use csh or tcsh as the default, so if your users
have backgrounds on non-Linux Unix-like OSs, they may be more familiar with these other
shells. You can change a user’s default shell by editing the account, as described in Chapter 8,
“Administering the System.”

The file /bin/sh is a symbolic link to the system’s default shell—normally /bin/bash for
Linux. This practice enables you to point to a shell (say, at the start of a simple shell script) and
be assured that a shell will be called, even if the system’s available shells change. This feature is
particularly important when developing shell scripts that might be run on other computers.
(The upcoming section “Linux Scripting” describes shell script creation and revision.)

Built-in Shell Functions

Shells accept typed commands and respond in various ways to those commands. Broadly speak-
ing, shells accept two types of commands: internal and external. Internal commands are those that
are implemented by the shell itself. External commands are programs that the shell launches.
Many common Linux commands, such as ls and mv, are external commands. This means that
these commands work the same way in any shell. Built-in shell commands, though, differ from one
shell to another, although most shells implement a similar basic set of commands. Some of the
most important internal commands in bash are as follows:

alias This command creates an alternate means of accessing another command. For instance,
typing alias lls='ls -l' causes the shell to respond to your subsequently typing lls as if you’d
typed ls -l.

cd The cd command, used to change the current directory, is one of the commands that’s built
into most shells. To use it, type the name of the target directory, as in cd papers to change into
the papers directory.

exit This command exits from a shell. It’s generally used in place of logout to close
xterm windows.

4425.book Page 303 Monday, July 11, 2005 10:46 AM

304 Chapter 6 � The Boot Process and Scripts

export This command makes an environment variable available to programs launched from
the shell. An environment variable is a piece of data addressable by name that describes something
about the system or the current working environment. Environment variables are described in
more detail shortly, in “Using Environment Variables.”

logout This command exits from login shells, much like exit. It won’t work with non-login
shells such as xterm windows, though.

set In its most basic form, set displays a wide variety of options relating to bash operation.
These options are formatted much like environment variables, but they aren’t the same things.
You can pass various options to set to have it affect a wide range of shell operations.

unset This command removes an option from those used by bash, as displayed or modified
by set.

These are just a few of the built-in bash functions. To learn about more, type man builtins.
This command displays the man page for all of the built-in functions.

 Using Environment Variables

People exist in certain environments—office buildings, homes, streets, forests, airplanes, and so
on. These environments provide us with, among other things, certain information. For instance,
we can tell by reading a street sign that we’re at the intersection of State and Main Streets or that
there’s an old mill a short distance away. Just as we humans live in an environment, so do the
programs we run on computers.

The features that are salient to people, though, aren’t the same as the ones that are important
to computer programs. Computer programs must be concerned with issues such as the amount of
free disk space or the availability of memory. Linux also provides programs with a set of supple-
mentary information known as environment variables. Like street signs, environment variables
convey information about the resources available to the program. Therefore, understanding how
to set and use environment variables is important for both system administrators and users.

Programs query environment variables to learn about the state of the computer as a whole, or
what resources are available. These variables contain information such as the location of the user’s
home directory, the computer’s Internet hostname, and the name of the command shell that’s in use.
Individual programs may also use program-specific environment variables to tell them where their
configuration files are located, how to display information, or how to use other program-specific
options. As a general rule, though, environment variables provide information that’s useful to mul-
tiple programs. Program-specific information is more often found in program configuration files.

Where to Set Environment Variables

If you’re using the bash shell, you can set an environment variable from a command prompt for a spe-
cific login by typing the variable name followed by an equal sign (=) and the variable’s value and then
typing export and the variable name on the next line. For instance, you could type the following:

$ NNTPSERVER=news.abigisp.com

$ export NNTPSERVER

4425.book Page 304 Monday, July 11, 2005 10:46 AM

Managing the Shell Environment 305

The first line sets the environment variable in your shell, and the second makes it available
to programs you launch from the shell. You can shorten this syntax to a single line by typing
export at the start of the first line:

$ export NNTPSERVER=news.abigisp.com

The former syntax is sometimes preferable when setting multiple environment variables
because you can type each variable on a line and then use a single export command to make them
all available. This can make shorter line lengths than you would get if you tried to export multiple
variables along with their values on a single line. For instance, you could type the following:

$ NNTPSERVER=news.abigisp.com

$ YACLPATH=/usr/src/yacl

$ export NNTPSERVER,YACLPATH

This syntax is the same as that used for setting environment variables in shell
configuration files, as described in “Shell Configuration Files.” When setting
environment variables in a shell script and configuration files, you should
ignore the command prompts ($) shown in these examples.

The preceding examples assigned values to environment variables. In other contexts, though,
the environment variable is preceded by a dollar sign ($). You can use this notation to refer to
an environment variable when setting another. For instance, in bash, the following command
adds :/opt/bin to the existing PATH environment variable:

$ export PATH=$PATH:/opt/bin

The Meanings of Common Environment Variables

You may encounter many common environment variables on your system. You can find out
how environment variables are configured by typing env. This command is used to run a pro-
gram with a changed set of environment variables, but when it is typed alone, it returns all the
environment variables that are currently set, in a format similar to that of bash environment
variable assignments:

NNTPSERVER=news.abigisp.com

Of course, the variables you see and their values will be unique to your system and even your
account—that’s the whole point of environment variables. Table 6.2 summarizes variables you
may see in this output.

4425.book Page 305 Monday, July 11, 2005 10:46 AM

306 Chapter 6 � The Boot Process and Scripts

T A B L E 6 . 2 Common Environment Variables and Their Meanings

Variable Name Explanation

USER This is your current username. It’s a variable that’s maintained by
the system.

SHELL This variable holds the path to the current command shell.

PWD This is the present working directory. This environment variable is main-
tained by the system. Programs may use it to search for files when you
don’t provide a complete pathname.

HOSTNAME This is the current TCP/IP hostname of the computer.

PATH This is an unusually important environment variable. It sets the path for
a session, which is a colon-delimited list of directories in which Linux
searches for executable programs when you type a program name. For
instance, if PATH is /bin:/usr/bin and you type ls, Linux looks for an exe-
cutable program called ls in /bin and then in /usr/bin. If the command
you type isn’t on the path, Linux responds with a command not found error.
The PATH variable is typically built up in several configuration files, such
as /etc/profile and the .bashrc file in the user’s home directory.

HOME This variable points to your home directory. Some programs use it to
help them look for configuration files or as a default location in which to
store files.

LD_LIBRARY_PATH A few programs use this environment variable to indicate directories in
which library files may be found. It works much like PATH.

PS1 This is the default prompt in bash. It generally includes variables of its
own, such as \u (for the username), \h (for the hostname), and \W (for the
current working directory). This value is frequently set in /etc/profile,
but it is often overridden by users.

NNTPSERVER Some Usenet news reader programs use this environment variable to
specify the name of the news server system. This value might be set in
/etc/profile or in the user’s configuration files.

TERM This variable is the name of the current terminal type. To move a text-
mode cursor and display text effects for programs like text-mode editors,
Linux has to know what commands the terminal supports. The TERM envi-
ronment variable specifies the terminal in use. This information is com-
bined with data from additional files to provide terminal-specific code
information. TERM is normally set automatically at login, but in some cases
you may need to change it.

4425.book Page 306 Monday, July 11, 2005 10:46 AM

Managing the Shell Environment 307

The PATH variable often includes the current directory indicator (.) so that pro-
grams in the current directory can be run. This practice poses a security risk,
though, because a miscreant could create a program with the name of some
other program (such as ls) and trick another user into running it by simply leav-
ing it in a directory the victim frequents. Even the root user may be victimized
in this way. For this reason, it’s best to omit the current directory from the PATH
variable, especially for the superuser. If it’s really needed for ordinary users,
put it at the end of the path.

Any given system is likely to have several other environment variables set, but these are fairly
esoteric or relate to specific programs. If a program’s documentation says that it needs certain
environment variables set, you can set them system-wide in /etc/profile or some other suit-
able file, or you can set them in user configuration files, as you deem appropriate.

Although you can see the entire environment by typing env, this output can be long enough
to be intimidating. If you just want to know the value of one variable, you can use the echo com-
mand, which echoes what you type to the screen. If you pass it a variable name preceded by a
dollar sign ($), echo returns the value of the variable. Here’s an example:

$ echo $PS1

[\u@\h \W]\$

This command reveals that the PS1 environment variable is set to [\u@\h \W]\$, which in
turn produces a bash prompt like [david@penguin homes]$.

DISPLAY This variable identifies the display used by X. It’s usually :0.0, which
means the first (numbered from 0) display on the current computer.
When you use X in a networked environment, though, this value may
be preceded by the name of the computer at which you’re sitting, as in
machine4.threeroomco.com:0.0. This value is set automatically when
you log in, but you may change it if necessary. You can run multiple X
sessions on one computer, in which case each one gets a different
DISPLAY number—for instance, :0.0 for the first session and :1.0 for
the second.

EDITOR Some programs launch the program pointed to by this environment variable
when they need to call a text editor for you to use. Thus, changing this vari-
able to your favorite editor can help you work in Linux. It’s best to set this
variable to a text-mode editor, though; GUI editors might cause problems if
they’re called from a program that was launched from a text-mode login.

T A B L E 6 . 2 Common Environment Variables and Their Meanings (continued)

Variable Name Explanation

4425.book Page 307 Monday, July 11, 2005 10:46 AM

308 Chapter 6 � The Boot Process and Scripts

Shell Configuration Files

Configuring shells requires editing shell configuration files. These files can be classified in a cou-
ple of ways. First, files may be global files that affect all users of a shell or local files that affect
just one user. Second, files may be login files that are launched only by a login process (such as
a text-mode console login) or non-login files that are launched by other processes (such as when
starting an xterm window). The result is a 2 × 2 matrix of configuration files, as shown in
Table 6.3. (This table shows only bash configuration files; consult your shell’s documentation
if you’re using another shell.)

Precisely which of these files are used differs from one distribution to another. No matter the
name, though, these files are shell scripts. Shell scripting is described in more detail later, in

E X E R C I S E 6 . 1

Changing Your bash Prompt

This exercise describes how to change your bash prompt to show the current time and number
of jobs managed by the shell rather than whatever your distribution’s default is. To accomplish
this task, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Type export PS1="\T; \j jobs> ". The backslash (\) is an escape character that denotes
special data to be inserted into the prompt when used in the PS1 environment variable. A
\T is expanded into the current time in 12-hour format, and \j is expanded into the number
of jobs the shell manages. The man page for bash has a complete list of expansions the PS1
variable accepts. The result of typing this command should be an immediate change in
your prompt to resemble something like 04:42; 0 jobs>.

4. Wait for a minute and then run a program in the background by typing its name and
appending an ampersand (&). For instance, you might type xeyes & to run the xeyes
program from an xterm. You should see the number of jobs increase, and the time
should change.

5. To make this change permanent, edit the .bashrc file in your home directory. Load this file
into your favorite editor and add a line to its end that reads export PS1="\T; \j jobs>".
Save the file and exit from the editor.

6. To test your change to .bashrc, log out and then log back in again. Instead of your distri-
bution’s default prompt, you should see the new one.

7. If you don’t like the new prompt, edit .bashrc again and delete the line you added in step 5.

4425.book Page 308 Monday, July 11, 2005 10:46 AM

Managing the Shell Environment 309

“Linux Scripting,” but most bash startup scripts contain a series of bash commands. These
commands may include both built-in commands and external commands.

Just as shells have startup scripts, they may also have logout scripts—scripts that run when
the user logs out. For bash, this script is ~/.bash_logout. Most distributions don’t create this
script as part of users’ default home directories, but individual users can do so. The logout script
might execute programs to clean up temporary directories, remove security keys from memory,
or perform other tasks that are appropriate when a user logs out.

One problem with logout strips is that they may not work well when users
log in multiple times. If you regularly have multiple sessions open, such as
logins in multiple Linux virtual terminals, be careful about what you do in a
logout script lest you wipe out important temporary files when you log out
of one session.

Another bash configuration file is ~/.inputrc, which helps customize your keyboard con-
figuration. It consists of lines that look like this:

M-Control-u: universal-argument

This line maps the Meta-Ctrl-U keystroke to the universal-argument action. The Meta
key is usually the Esc key on x86 systems, and the universal-argument action is one of many
possible actions defined by the readline library, which is one of the basic text-mode input librar-
ies used by Linux.

In most cases, there’s no need to adjust the ~/.inputrc file, because the default readline
mappings work well for x86 systems with standard keyboards. If you find that certain key-
strokes don’t work the way they should in text mode, though, you may want to research this
configuration file further.

X uses its own keyboard input routines, so ~/.inputrc doesn’t affect programs
run in X, even text-mode programs run inside xterm windows.

T A B L E 6 . 3 Common bash Configuration Files

Type of File Login File Location Non-Login File Location

Global /etc/profile and files in /etc/
profile.d

/etc/bashrc or /etc/bash.bashrc

User ~/.bash_login, ~/.profile, or
~/.bash_profile

~/.bashrc

4425.book Page 309 Monday, July 11, 2005 10:46 AM

310 Chapter 6 � The Boot Process and Scripts

Linux Scripting
You’ll do much of your work on a Linux system by typing commands at a shell prompt. As you
use Linux, though, you’re likely to find some of these tasks to be quite repetitive. If you need
to add a hundred new users to the system, for instance, typing useradd a hundred times can be
tedious. Fortunately, Linux includes a way to cut through the tedium: shell scripts. These are
simple programs written in an interpreted computer language that’s embedded in the Linux
shell you use to type commands.

Most Linux systems use the bash shell by default, so shell scripts are often written in the
bash shell scripting language, but the tcsh and other shell scripting languages are quite similar.
In fact, it’s not uncommon to see shell scripts that run in any common Linux shell. You’re not
restricted to running shell scripts written in your default shell, however; the first line of a shell
script identifies the shell that should be used to run it.

Many Linux startup scripts, including SysV startup scripts, are in fact shell
scripts. Therefore, understanding shell scripting is necessary if you want to
modify a Linux startup script.

Like any programming task, shell scripting can be quite complex. Conse-
quently, this chapter barely scratches the surface of what can be accomplished
through shell scripting. Consult a book on the topic, such as Learning the Bash
Shell, 2nd Edition, by Cameron Newham and Bill Rosenblatt (O’Reilly, 1998),
for more information.

To use a shell script, you must first know how to start one. Once you start one, you’ll find
that one of the easiest tasks to do is to call external commands. More advanced tasks include
using variables and using conditional expressions.

Beginning a Shell Script

Shell scripts are plain-text files, so you create them in text editors. A shell script begins with a
line that identifies the shell that’s used to run it, such as the following:

#!/bin/sh

The first two characters are a special code that tells the Linux kernel that this is a script and
to use the rest of the line as a pathname to the program that’s to interpret the script. Shell script-
ing languages use a hash mark (#) as a comment character, so the script utility itself ignores this
line, although the kernel doesn’t. On most systems, /bin/sh is a symbolic link that points to
/bin/bash, but it could point to some other shell. Specifying the script as using /bin/sh guar-
antees that any Linux system will have a shell program to run the script, but if the script uses

4425.book Page 310 Monday, July 11, 2005 10:46 AM

Linux Scripting 311

any features specific to a particular shell, you should specify that shell instead—for instance, use
/bin/bash or /bin/tcsh instead of /bin/sh.

When you’re done writing the shell script, you should modify it so that it’s executable. You
do this with the chmod command, as described in Chapter 4, “Managing Files and Filesystems.”
Specifically, you use the +x option to add execute permissions, probably in conjunction with a
to add these permissions for all users. For instance, to make a file called my-script executable,
you’d issue the following command:

$ chmod a+x my-script

You’ll then be able to execute the script by typing its name, possibly preceded by ./ to tell
Linux to search in the current directory for the script. If you fail to make the script executable,
you can still run the script by running the shell program followed by the script name (as in bash
my-script), but it’s generally better to make the script executable. If the script is one you run
regularly, you may want to move it to a location on your path, such as /usr/local/bin. When
you do that, you won’t have to type the complete path or move to the script’s directory to exe-
cute it; you can just type my-script.

Using Commands

One of the most basic features of shell scripts is the ability to run commands. You can use both shell
internal commands, such as those described earlier, in “Built-in Shell Functions,” and external com-
mands. Most of the commands you type in a shell prompt are in fact external commands—they’re
programs located in /bin, /usr/bin, and other directories on your path. You can run such pro-
grams, as well as internal commands, by including their names in the script. You can also specify
parameters to such programs in a script. For instance, suppose you want to start a script that
launches two xterm windows and the KMail mail reader program. Listing 6.3 presents a shell script
that accomplishes this goal.

Listing 6.3: A Simple Script That Launches Three Programs

#!/bin/bash

/usr/bin/xterm &

/usr/bin/xterm &

/usr/bin/kmail &

Aside from the first line that identifies it as a script, the script looks just like the commands
you might type to accomplish the task manually except for one fact: The script lists the complete
paths to each program. This is usually not strictly necessary, but listing the complete path
ensures that the script will find the programs even if the PATH environment variable changes.
Also, each program-launch line in Listing 6.3 ends in an ampersand (&). This character tells the
shell to go on to the next line without waiting for the first to finish. If you omit the ampersands
in Listing 6.3, the effect will be that the first xterm will open but the second won’t open until
the first is closed. Likewise, KMail won’t start until the second xterm terminates.

4425.book Page 311 Monday, July 11, 2005 10:46 AM

312 Chapter 6 � The Boot Process and Scripts

Although launching several programs from one script can save time in startup scripts and some
other situations, scripts are also frequently used to run a series of programs that manipulate data
in some way. Such scripts typically do not include the ampersands at the ends of the commands
because one command must run after another or may even rely on output from the first. A com-
prehensive list of such commands is impossible because you can run any program you can install
in Linux as a command—even another script. A few commands that are commonly used in scripts
include the following:

Normal file manipulation commands The file manipulation commands, such as ls, mv, cp,
and rm, are often used in scripts. You can use these commands to help automate repetitive file
maintenance tasks.

grep This command is described in Chapter 1, “Linux Command-Line Tools.” It locates files
that contain specific strings.

find Where grep searches for patterns within the contents of files, find does so based on file-
names, ownership, and similar characteristics. This command is described in Chapter 4, “Man-
aging Files and Filesystems.”

cut This command extracts text from fields in a file. It’s frequently used to extract variable
information from a file whose contents are highly patterned. To use it, you pass it one or more
options that control what it cuts followed by one or more filenames. For instance, users’ home
directories appear in the sixth colon-delimited field of the /etc/passwd file. You could there-
fore type cut -f 6 -d ":" /etc/passwd to extract this information.

sed This program is described in Chapter 1. It provides many of the capabilities of a con-
ventional text editor but via commands that can be typed at a command prompt or entered
in a script.

echo Sometimes a script must provide a message to the user; echo is the tool to accomplish
this goal. You can pass various options to echo or just a string to be shown to the user. For
instance, echo "Press the Enter key" causes a script to display the specified string.

mail The mail command can be used to send e-mail from within a script. Pass it the -s
subject parameter to specify a subject line and give it an e-mail address as the last argument.
If used at the command line, you would then type a message and terminate it with a Ctrl+D. If
used from a script, you might omit the subject entirely, pass it an external file as the message
using input redirection, or use a here document to pass text to the mail command as input.
(Chapter 1 describes input redirection and here documents.) You might want to use this com-
mand to send mail to the superuser about the actions of a startup script or a script that runs on
an automated basis.

Many of these commands are extremely complex, and completely describing
them is beyond the scope of this chapter. You can consult these commands’
man pages for more information.

4425.book Page 312 Monday, July 11, 2005 10:46 AM

Linux Scripting 313

Even if you have a full grasp of how to use some key external commands, simply executing
commands you might type at a command prompt is of limited utility. Many administrative tasks
require you to modify what you type at a command, or even what commands you enter, depend-
ing on information from other commands. For this reason, scripting languages include addi-
tional features to help you make your scripts useful.

Using Variables

Variables can help you expand the utility of scripts. A variable is a placeholder in a script
for a value that will be determined when the script runs. Variables’ values can be passed
as parameters to scripts, generated internally to the scripts, or extracted from the script’s
environment.

Variables that are passed to the script are frequently called parameters. They’re repre-
sented by a dollar sign ($) followed by a number from 0 up—$0 stands for the name of the
script, $1 is the first parameter to the script, $2 is the second parameter, and so on. To
understand how this might be useful, consider the task of adding a user. As described in
Chapter 8, creating an account for a new user typically involves running at least two
commands—useradd and passwd. You might also need to run additional site-specific com-
mands, such as commands that create unusual user-owned directories aside from the user’s
home directory.

As an example of how a script with a parameter variable can help in such situations, consider
Listing 6.4. This script creates an account and changes the account’s password (you’ll be
prompted to enter the password when you run the script). It creates a directory in the /shared
directory tree corresponding to the account, and it sets a symbolic link to that directory from
the new user’s home directory. It also adjusts ownership and permissions in a way that may be
useful, depending on your system’s ownership and permissions policies.

Listing 6.4: A Script That Reduces Account-Creation Tedium

#!/bin/sh

useradd -m $1

passwd $1

mkdir -p /shared/$1

chown $1.users /shared/$1

chmod 775 /shared/$1

ln -s /shared/$1 /home/$1/shared

chown $1.users /home/$1/shared

Chapter 8 describes account maintenance in more detail.

4425.book Page 313 Monday, July 11, 2005 10:46 AM

314 Chapter 6 � The Boot Process and Scripts

If you use Listing 6.4, you need type only three things: the script name with the desired username
and the password (twice). For instance, if the script is called mkuser, you might use it like this:

mkuser ajones

Changing password for user ajones

New password:

Retype new password:

passwd: all authentication tokens updated successfully

Most of the scripts’ programs operate silently unless they encounter problems, so the inter-
action (including typing the passwords, which don’t echo to the screen) is a result of just the
passwd command. In effect, Listing 6.4’s script replaces seven lines of commands with one.
Every one of those lines uses the username, so by using this script, you also reduce the chance
of an error.

Another type of variable is assigned within scripts themselves—for instance, they can be set
from the output of a command. These variables are also identified by leading dollar signs, but
they’re typically given names that at least begin with a letter, such as $Addr or $Name. (When
values are assigned to variables, the dollar sign is omitted, as illustrated shortly.) You can then
use these variables in conjunction with normal commands as if they were command parameters,
but the value of the variable is passed to the command.

For instance, consider Listing 6.5, which implements simple firewall rules using the
ipchains utility. This script uses two variables. The first is $ip, which is extracted from the
output of ifconfig using grep and cut commands. (The trailing backslash on the second
line of the script indicates that the following line is a continuation of the preceding line.)
When assigning a value to a variable from the output of a command, that command should
be enclosed in back-quote characters (`), which appear on the same key as the tilde (~) on
most keyboards. These are not ordinary single quotes, which appear on the same key as the
regular quote character (") on most keyboards. The second variable, $ipchains, simply
points to the ipchains program. It could as easily be omitted, with subsequent uses of
$ipchains replaced by the full path to the program. Variables like this are sometimes used
to make it easier to modify the script in the future. For instance, if you move the ipchains
program, you need only modify one line of the script. They can also be used in conjunction
with conditionals to ensure that the script works on more systems—for instance, if ipchains
were called something else on some systems.

Listing 6.5: Script Demonstrating Assignment and Use of Variables

#!/bin/sh

ip=`ifconfig eth0 | grep inet | cut -f 2 -d ":" | \

 cut -f 1 -d " "`

ipchains="/sbin/ipchains"

echo "Restricting access to $ip"

$ipchains -A input -p tcp -s 0/0 -d $ip 25 -j REJECT

$ipchains -A input -p tcp -s 0/0 -d $ip 80 -j REJECT

4425.book Page 314 Monday, July 11, 2005 10:46 AM

Linux Scripting 315

Listing 6.5 is a poor firewall. It blocks only two ports and omits many other fea-
tures useful in a firewall. It is, however, an accessible demonstration of the use
of variables in a script.

Scripts like Listing 6.5, which obtain information from running one or more commands,
are useful in configuring features that rely on system-specific information or information that
varies with time. You might use a similar approach to obtain the current hostname (using the
hostname command), the current time (using date), the total time the computer’s been run-
ning (using uptime), free disk space (using df), and so on. When combined with conditional
expressions (described shortly), variables become even more powerful because then your
script can perform one action when one condition is met and another in some other case. For
instance, a script that installs software could check free disk space and abort the installation
if there’s not enough disk space available.

One special type of variable was mentioned earlier in this chapter: environment variables,
described in “Using Environment Variables.” Environment variables are assigned and accessed
just like shell script variables. The difference is that the script or command that sets an environ-
ment variable uses the export command (in bash) to make the value of the variable accessible
to programs launched from the shell or shell script that made the assignment. Environment vari-
ables are most often set in shell startup scripts, but the scripts you use can access them. For
instance, if your script calls X programs, it might check for the presence of a valid $DISPLAY
environment variable and abort if it finds that this variable isn’t set. By convention, environ-
ment variable names are all uppercase, whereas nonenvironment shell script variables are all
lowercase or mixed case.

Using Conditional Expressions

Scripting languages support several types of conditional expressions. These enable a script to
perform one of several actions contingent on some condition—typically the value of a variable.
One common command that uses conditional expressions is if, which allows the system to take
one of two actions depending on whether some condition is true. The if keyword’s conditional
expression appears in brackets after the if keyword and can take many forms. For instance,
-f file is true if file exists and is a regular file; -s file is true if file exists and has a size
greater than 0; and string1 = string2 is true if the two strings have the same values.

To better understand the use of conditionals, consider the following code fragment:

if [-s /tmp/tempstuff]

 then

 echo "/tmp/tempstuff found; aborting!"

 exit

fi

4425.book Page 315 Monday, July 11, 2005 10:46 AM

316 Chapter 6 � The Boot Process and Scripts

This fragment causes the script to exit if the file /tmp/tempstuff is present. The then
keyword marks the beginning of a series of lines that execute only if the conditional is true,
and fi (if backwards) marks the end of the if block. Such code might be useful if the script
creates and then later deletes this file, since its presence indicates that a previous run of the
script didn’t succeed.

An alternative form for a conditional expression uses the test keyword rather than square
brackets around the conditional:

if test -s /tmp/tempstuff

You can also test a command’s return value by using the command as the condition:

if [command]

 then

 additional-commands

fi

In this example, the additional-commands will be run only if command completes success-
fully. If command returns an error code, the additional-commands won’t be run.

Conditional expressions are sometimes used in loops as well. Loops are structures that tell
the script to perform the same task repeatedly until some condition is met (or until some con-
dition is no longer met). For instance, Listing 6.6 shows a loop that plays all the .wav audio files
in a directory.

Listing 6.6: A Script That Executes a Command on Every Matching File in a Directory

#!/bin/bash

for d in `ls *.wav` ;

 do play $d ;

done

The for loop as used here executes once for every item in the list generated by ls *.wav.
Each of those items (filenames) is assigned in turn to the $d variable and so is passed to the
play command.

Another type of loop is the while loop, which executes for as long as its condition is true.
The basic form of this loop type is like this:

while [condition]

do

 commands

done

The until loop is similar, in form, but it continues execution for as long as its condition is
false—that is, until the condition becomes true.

4425.book Page 316 Monday, July 11, 2005 10:46 AM

Linux Scripting 317

Using Functions

A function is a part of a script that performs a specific sub-task and that can be called by name
from other parts of the script. Functions are defined by placing parentheses after the function
name and enclosing the lines that make up the function within curly braces:

myfn() {

 commands

}

The keyword function may optionally precede the function name. In either event, the func-
tion is called by name as if it were an ordinary internal or external command.

Functions are very useful in helping to create modular scripts. For instance, if your script
needs to perform half a dozen distinct computations, you might place each computation in a
function and then call them all in sequence. Listing 6.7 demonstrates the use of functions in
a simple program that copies a file but aborts with an error message if the target file already
exists. This script accepts a target and a destination filename and must pass those filenames to
the functions.

Listing 6.7: A Script Demonstrating the Use of Functions

#/bin/bash

doit() {

 cp $1 $2

}

function check() {

 if [-s $2]

 then

 echo "Target file exists! Exiting!"

 exit

 fi

}

check $1 $2

doit $1 $2

If you enter Listing 6.7 and call it safercp, you might use it like this, assuming the file
original.txt exists and dest.txt does not:

$./safercp original.txt dest.txt

$./safercp original.txt dest.txt

Target file exists! Exiting!

4425.book Page 317 Monday, July 11, 2005 10:46 AM

318 Chapter 6 � The Boot Process and Scripts

The first run of the command succeeded because dest.txt did not exist. When the com-
mand was run a second time, though, the destination file did exist, so the program terminated
with the error message.

Note that the functions are not run directly and in the order in which they appear in the
script. They’re run only when called in the main body of the script (which in Listing 6.7 consists
of just two lines, each corresponding to one function call).

E X E R C I S E 6 . 2

Creating a Simple Script

Shell scripts are useful tools, and effectively creating them requires practice. This lab begins
your exploration of shell scripts, but in the long run, you’ll need to learn to design your own
shell scripts. This lab presents a shell script that extracts the IP address of your network’s router
from the route command’s output and then pings the router three times. To begin with this
script, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Start an editor and tell it to edit a file called testscript.

4. Type the following lines into the editor:

#!/bin/bash
ip=`route -n | grep UG | cut -b 17-32`
ping -c 3 $ip

Be sure that you’ve typed every character correctly; any mistake may cause the script to
misbehave. One common error is mistyping the back-tick characters (`) as ordinary single
quote characters ('). Also, note that the range of characters in the cut command (17–32) is
fixed and could conceivably change if the route command’s output were to change with
future versions of the command.

5. Save the file and exit from the editor.

6. Type chmod a+x testscript to add the executable bit to the file’s permissions.

7. Type ./testscript to run the script. If all goes well, you should see the system ping your
network’s router three times.

This exercise employs networking commands that are more fully described in Chapter 9. Con-
sult it for details on the route and ping commands.

4425.book Page 318 Monday, July 11, 2005 10:46 AM

Exam Essentials 319

Summary
Linux kernel configuration and booting can be complex and intimidating to new adminis-
trators. Linux is a modular kernel, so you must know how to identify and manage kernel
modules—how to identify loaded modules, load new ones for the hardware you use, and disable
loaded modules. If modifying existing modules isn’t adequate to get new hardware or a new ker-
nel feature to work, you may need to recompile a kernel. This task requires adjusting a poten-
tially very large number of options, so plan to spend an afternoon doing it. Once the kernel is
recompiled, you must boot it, which involves adjusting your boot loader configuration. Details
vary depending on the boot loader you’re using—LILO or GRUB—but generally speaking, you
can duplicate an existing entry and then modify it for your new kernel.

Once you reboot with your new kernel (or boot with an old one), managing the boot process
can be important. The kernel normally runs the init program as the first process, and init in
turn runs a series of SysV startup scripts to start critical services running. Tapping into this chain
enables you to fine-tune your Linux system’s default boot-time configuration, enabling or dis-
abling components to best match your needs. To dig very deep into this process, though, you
must understand shells and the shell scripts that are used to build the SysV startup scripts. This
knowledge is also quite useful outside of the startup process; shell scripts can help automate
many day-to-day administrative tasks, and of course a lot of your interactions with Linux are
through the bash (or some other) shell.

Exam Essentials
Explain the function of Linux kernel modules. Kernel modules are kernel drivers and other
routines that reside in files that are separate from the main kernel file. Using kernel modules
helps keep the size of the main kernel file manageable, which is most important for distribu-
tion maintainers.

Summarize the tools used to manage kernel modules. The lsmod program displays the mod-
ules that are currently loaded. The insmod and modprobe programs are used to install modules,
while rmmod removes modules that are loaded.

Describe why you might want to recompile your kernel. Recompiling your kernel enables
you to upgrade to the latest kernel and optimize your kernel for your system. Locally compiled
kernels can include precisely those drivers and other features that you need and can also be com-
piled with CPU features to suit your system.

Summarize the kernel compilation process To compile a kernel, you must download the
kernel source code, extract the source code, type make xconfig (or a similar command) to
configure the kernel for your system, type make to build the kernel, type make modules_
install to install the kernel modules, and then copy the kernel file to a convenient location
(typically /boot). You must then reconfigure your boot loader to boot the new kernel and
reboot the system.

4425.book Page 319 Monday, July 11, 2005 10:46 AM

320 Chapter 6 � The Boot Process and Scripts

Explain how LILO is configured and used. LILO uses the /etc/lilo.conf configuration
file. This file contains global options and per-image options. Use the lilo program to install the
LILO boot loader in your boot sector. When the system boots, LILO presents a boot: prompt
at which you type the name of the kernel or OS you want to boot.

Describe how GRUB is configured and used. GRUB uses the menu.lst or grub.conf
configuration file in /boot/grub. This file contains global and per-image options. Use the
grub-install program to install the boot loader. When GRUB boots, it presents a menu of OS
options that you select using keyboard arrow keys.

Describe the boot process. The CPU runs the BIOS, the BIOS loads and runs a boot loader, the
boot loader loads and runs secondary boot loaders (if needed) and the Linux kernel, the Linux
kernel loads and runs the initial system program (init), and init starts the rest of the system ser-
vices via SysV and other startup scripts. The BIOS looks for boot loaders in various boot sectors,
including the MBR of a hard drive or the boot sector of a disk partition of floppy disk.

Summarize where to look for boot-time log information. The dmesg command prints out
logs from the kernel ring buffer, which holds boot-time and other kernel messages. Other useful
log information can be found in /var/log/messages and other files in /var/log.

Summarize the role of /sbin/init. The init program is responsible for starting many pro-
grams and services on your Linux operating system. This is done by running processes that are
listed in /etc/inittab, including an rc script that runs the SysV initialization scripts.

Explain how runlevels are configured. The default runlevel is specified with a line like
id:2:initdefault: in the /etc/inittab file. Use commands such as chkconfig,
update-rc.d, and ntsysv to change which services are started when switching to specific
runlevels. Runlevels 0, 1, and 6 are reserved for shutdown, single user mode, and rebooting,
respectively. Runlevels 3, 4, and 5 are the common user runlevels on Red Hat and most
other distributions, and runlevel 2 is the usual user runlevel on Debian systems.

Describe how to change runlevels. The programs init and telinit can be used to change to
other runlevels. shutdown, halt, poweroff, and reboot are also useful when shutting down,
rebooting, or switching to single user mode.

Explain the function of environment variables Environment variables are used to store infor-
mation on the system for the benefit of running programs. Examples include the PATH environ-
ment variable, which holds the locations of executable programs, and HOSTNAME, which holds
the system’s hostname.

Describe how a shell script can be useful. A shell script combines several commands, possibly
including conditional expressions, variables, and other programming features, to make the
script respond dynamically to a system. Therefore, a shell script can reduce administrative effort
by performing a series of repetitive tasks at one command.

4425.book Page 320 Monday, July 11, 2005 10:46 AM

Review Questions 321

Review Questions
1. What would you expect to see if you type uname -a?

A. Information on the username of the current user, including the user’s real name

B. Information on the running system, such as the OS, the kernel version, and the CPU type

C. Information on the computer’s hostname, as it’s defined locally

D. Information on the loaded kernel modules, including the modules upon which they depend

2. What is the most important practical difference between insmod and modprobe?

A. insmod unloads a single module, whereas modprobe loads a single module.

B. insmod loads a single module, whereas modprobe loads a module and all those upon which
it depends.

C. insmod isn’t a real Linux command, but modprobe loads a module and all those upon which
it depends.

D. insmod loads a single module, whereas modprobe displays information about modules.

3. You type the command rmmod ide_core, but the system responds with the message ERROR:
Module ide_core is in use by via82cxxx,ide_cd,ide_disk. What is the meaning of
this response?

A. The via82cxxx, ide_cd, and ide_disk modules all rely on ide_core, so ide_core can’t
be unloaded without first unloading these other modules.

B. The ide_core module relies on via82cxxx, ide_cd, and ide_disk modules, so they can’t
be unloaded without first unloading ide_core.

C. The ide_core module is a core module, meaning that it can never be unloaded once
it’s loaded.

D. The ide_core module is buggy or the rmmod utility is broken; it should never return an
error message.

4. What file or files might you edit to change the options that are automatically passed to kernel
modules? (Select all that apply.)

A. Files in the /etc/modules.d directory

B. modules.dep in the modules directory

C. .config in the kernel directory

D. /etc/modules.conf

5. Which of the following commands would you type to configure a Linux kernel using an inter-
active text-mode tool?

A. make xconfig

B. make menuconfig

C. make config

D. make textconfig

4425.book Page 321 Monday, July 11, 2005 10:46 AM

322 Chapter 6 � The Boot Process and Scripts

6. Which of the following kernel features should you compile into the main kernel file of a regular
disk-based installation to simplify booting the system? (Select all that apply.)

A. Drivers for your boot disk’s ATA controller or SCSI host adapter

B. Support for your root (/) filesystem

C. Drivers for your RS-232 serial port

D. Drivers for your CD-ROM drive

7. What is the conventional name for a locally compiled Linux kernel on an x86 system?

A. /boot/kernel-version

B. /boot/vmlinuz

C. /boot/bzImage-version

D. /usr/src/linux-version

8. Where might the BIOS find a boot loader?

A. RAM

B. /dev/boot

C. MBR

D. /dev/kmem

9. Which of the following is the LILO boot loader configuration file?

A. /dev/lilo

B. The MBR

C. /boot/lilo/lilo.conf

D. /etc/lilo.conf

10. Which command is used to install GRUB into the MBR of your first ATA hard drive?

A. grub (hd0,1)

B. grub-install /dev/hda1

C. lilo /dev/hda

D. grub-install /dev/hda

11. What line in /etc/inittab would indicate that your default runlevel is 5?

A. ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

B. id:5:initdefault:

C. si:5:sysinit:/etc/init.d/rcS

D. l5:5:wait:/etc/init.d/rc 5

4425.book Page 322 Monday, July 11, 2005 10:46 AM

Review Questions 323

12. Which runlevels are reserved by init for reboot, shutdown, and single user mode purposes?
(Select all that apply.)

A. 0

B. 1

C. 5

D. 6

13. You type the following command:

$ runlevel

5 3

What can you tell about your runlevel status? (Select all that apply.)

A. The current runlevel is 5.

B. The current runlevel is 3

C. The previous runlevel is 5.

D. The previous runlevel is 3.

14. Where is the best location for the current directory indicator (.) to reside in root’s PATH envi-
ronment variable?

A. Before all other directories.

B. After all other directories.

C. Nowhere; it shouldn’t be in root’s path.

D. Wherever is convenient.

15. You want to create a shortcut for the command cd ~/papers/trade. Which of the following
lines, if entered in a bash startup script, will accomplish this goal?

A. alias cdpt='cd ~/papers/trade'

B. export cdpt='cd ~/papers/trade'

C. cd ~/papers/trade

D. shortcut cdpt "cd ~/papers/trade"

16. In what environment variable is the current working directory stored?

A. PATH

B. CWD

C. PWD

D. PRESENT

4425.book Page 323 Monday, July 11, 2005 10:46 AM

324 Chapter 6 � The Boot Process and Scripts

17. Which of the following commands, if typed in a bash shell, will create an environment variable
called MYVAR with the contents mystuff?

A. export MYVAR='mystuff'

B. MYVAR='mystuff'

C. $MYVAR==mystuff

D. echo $MYVAR mystuff

18. After using a text editor to create a shell script, what step should you take before trying to use
the script?

A. Set one or more executable bits using chmod.

B. Copy the script to the /usr/bin/scripts directory.

C. Compile the script by typing bash scriptname, where scriptname is the script’s name.

D. Run a virus checker on the script to be sure it contains no viruses.

19. Describe the effect of the following short script, cp1, if it’s called as cp1 big.c big.cc:

#!/bin/sh

cp $2 $1

A. It has the same effect as the cp command—copying the contents of big.c to big.cc.

B. It compiles the C program big.c and calls the result big.cc.

C. It copies the contents of big.cc to big.c, eliminating the old big.c.

D. It converts the C program big.c into a C++ program called big.cc.

20. What is the purpose of conditional expressions in shell scripts?

A. They prevent scripts from executing if license conditions aren’t met.

B. They display information on the script’s computer environment.

C. They enable the script to take different actions in response to variable data.

D. They enable scripts to learn in a manner reminiscent of Pavlovian conditioning.

4425.book Page 324 Monday, July 11, 2005 10:46 AM

Answers to Review Questions 325

Answers to Review Questions
1. B. The uname command displays system information, and the -a option to that command causes

it to display all the information it’s designed to summarize. Options A, C, and D are all incorrect,
although other utilities will produce these results: whoami, hostname, and lsmod do the jobs
described by options A, C, and D, respectively.

2. B. Option B correctly summarizes the main actions of both of these commands. Option A
states that modprobe loads a single module. This is only partially correct; modprobe loads the
module you specify and those upon which it depends. Option A also states that insmod
unloads a module, when in fact it loads a module. Option C says that insmod isn’t a real com-
mand, but it is. Option D says that modprobe displays information about modules, but it
doesn’t; that function is handled by modinfo.

3. A. The rmmod utility can only remove modules that are not being used by other modules or by
other system software. The error message in this case indicates that the other specified modules
rely on ide_core, so you can’t unload ide_core until that dependency is broken by unloading
these other modules. Option B specifies this dependency backwards. Although some modules
are hard to remove once loaded, they aren’t called “core modules,” as option C specifies. The
rmmod utility can and does return error messages when you ask it to do something it can’t do,
contrary to what option D says.

4. A, D. The /etc/modules.conf file controls automatic module loading and options passed to
modules automatically. On most distributions, you edit this file directly; however, some require
you to edit files in /etc/modules.d and then type modules-update to have the system update
modules.conf itself. The modules.dep file referred to in option B specifies module dependen-
cies, not module options passed to the modules. The kernel’s .config file controls what kernel
features are compiled; it doesn’t specify options passed to the modules.

5. B. The make menuconfig kernel configuration command starts a text-based interactive menu
configuration tool. This tool provides the same capabilities as the X-based tool that’s started by
make xconfig. Both of these tools are more flexible than the bare-bones text-mode make
config. There is no make textconfig target.

6. A, B. The Linux kernel needs to be able to access your hard disk to continue past the most basic
boot stage, so it needs drivers for your hard disk’s ATA controller or SCSI host adapter as well
as support for whatever filesystem you use on your root (/) partition in the kernel itself. Alter-
natively, these drivers can be placed on an initial RAM disk, but this configuration requires more
work. Both the RS-232 serial port and the CD-ROM drive aren’t needed during the boot pro-
cess. (CD-ROM drivers are, of course, needed for CD-ROM-based distributions, but the ques-
tion specified a hard-disk-based installation.)

7. C. Locally-compiled Linux kernels are usually called /boot/bzImage or /boot/bzImage-version,
where version is the version number. There is no standard /boot/kernel-version file. The
/boot/vmlinuz or /boot/vmlinuz-version file is the stock distribution’s kernel, not a locally
compiled kernel. The /usr/src/linux-version name is held by the Linux kernel source directory,
not a compile kernel file.

4425.book Page 325 Monday, July 11, 2005 10:46 AM

326 Chapter 6 � The Boot Process and Scripts

8. C. The Master Boot Record (MBR) can contain a boot loader that is up to 512 bytes in size. If
more space is required, the boot loader would have to load a secondary boot loader. Although
the boot loader is loaded into RAM, it’s not stored there permanently because RAM is volatile
storage. Both /dev/boot and /dev/kmem are references to files on Linux filesystems; they’re
meaningful only after the BIOS has found a boot loader and run it and lots of other boot pro-
cesses have occurred.

9. D. Option D is the correct LILO configuration file. Option A is a fictitious file; it doesn’t exist.
Although LILO’s boot loader code may be written to the MBR, as implied by option B, this isn’t
the location of the LILO configuration file. Option C is reminiscent of the location of the GRUB
configuration file; it’s not the location of the LILO configuration file.

10. D. You use grub-install to install the GRUB boot loader code into an MBR or boot sector.
When using grub-install, you specify the boot sector on the command line. The MBR is the
first sector on a hard drive, so you give it the Linux device identifier for the entire hard disk,
/dev/hda. Option A specifies using the grub utility, which is an interactive tool, and the device
identifier shown in option A is a GRUB-style identifier for what would probably be the /dev/
hda3 partition in Linux. Option B is almost correct but installs GRUB to the /dev/hda1 parti-
tion’s boot sector rather than the hard disk’s MBR. Option C is the command to install LILO
to the MBR rather than to install GRUB.

11. B. It is the initdefault action that specifies the default runlevel.

12. A, B, D. Runlevel 0 is the reserved runlevel for halting the system. Runlevel 1 is reserved for single
user mode. Runlevel 6 is reserved for rebooting. Runlevel 5 is a regular, user-configurable runlevel.
(Many systems use it for a regular boot with a GUI login prompt.)

13. B, C. The first number in the runlevel output is the previous runlevel (the letter N is used to
indicate that the system has not changed runlevels since booting). The second number is the cur-
rent runlevel.

14. C. The current directory indicator is particularly dangerous in root’s PATH environment variable
because it can be used by unscrupulous local users to trick root into running programs of the
unscrupulous user’s design.

15. A. The alias built-in command creates a duplicate name for a (potentially much longer) com-
mand. Option A shows the correct syntax for using this built-in command; it causes the new
alias cdpt to work like the much longer cd ~/papers/trade. The export command in option B
creates an environment variable called cdpt that holds the value cd ~/papers/trade. This will
have no useful effect. Option C, if placed in a bash startup script, will cause the user’s current
directory to shift to ~/papers/trade immediately after the user logs in. There is no standard
shortcut command, so option D is meaningless.

16. C. The PWD environment variable holds the present working directory. The PATH environment
variable holds a colon-delimited list of directories in which executable programs are stored so
that they may be run without specifying their complete pathnames. There are no standard CWD
or PRESENT environment variables.

4425.book Page 326 Monday, July 11, 2005 10:46 AM

Answers to Review Questions 327

17. A. Option A creates the desired environment variable. Option B creates a local variable—but
not an environment variable—called MYVAR holding the value mystuff. After typing option B,
you could also type export MYVAR to achieve the desired goal, but option B by itself is insuffi-
cient. Option C isn’t a valid bash shell command. Option D displays the contents of the MYVAR
variable and also echoes mystuff to the screen, but it doesn’t change the contents of any envi-
ronment variable.

18. A. Scripts, like binary programs, normally have at least one executable bit set, although they can
be run in certain ways without this feature. There is no standard /usr/bin/scripts directory,
and scripts can reside in any directory. Scripts are interpreted programs, which means they don’t
need to be compiled. Typing bash scriptname will run the script. Viruses are extremely rare
in Linux, and because you just created the script, the only ways it could possibly contain a virus
would be if your system was already infected or if you wrote it as a virus.

19. C. The cp command is the only one called in the script, and that command copies files. Because
the script passes the arguments ($1 and $2) to cp in reverse order, their effect is reversed—where
cp copies its first argument to the second name, the cp1 script copies the second argument to the
first name. The cp command has nothing to do with compiling C or C++ programs, so neither
does the script.

20. C. Conditional expressions return a “true” or “false” response, enabling the script to execute
one set of instructions or another or to terminate or continue a loop.

4425.book Page 327 Monday, July 11, 2005 10:46 AM

Chapter

7

Documentation
and Security

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.108.1 Use and manage local system documentation

(weight: 4)

�

1.108.2 Find Linux documentation on the Internet (weight: 3)

�

1.108.5 Notify users on system-related issues (weight: 1)

�

1.114.1 Perform security administration tasks (weight: 4)

�

1.114.2 Setup host security (weight: 3)

�

1.114.3 Setup user level security (weight: 1)

4425.book Page 329 Monday, July 11, 2005 10:46 AM

This book, although it’s a good introduction to Linux, cannot
cover everything Linux-related. For this reason, you should know
how to learn more about Linux. Fortunately, most Linux programs

ship with documentation in a couple of forms. You can also find a lot of help on the Internet.
Knowing how to use both local and Internet-based documentation can make all the difference in
getting a program (or even Linux as a whole) up and running, so I describe where to find such doc-
umentation and how to make effective use of it. Another documentation-related issue, particularly
on large multi-user systems, is communicating important system events to users, so you should
understand Linux’s tools for handling these tasks.

In today’s network environment, in which network break-ins are common, security is an impor-
tant topic. This chapter covers several security issues: restricting access to the computer by port num-
ber, managing the security of individual programs, managing passwords, and setting miscellaneous
account security options. Understanding these basics will help you begin to secure your computer.

There is no such thing as a 100 percent secure computer. You can take steps to
improve security, but no one step or set of steps will absolutely guarantee that
you’ll have no problems. You must decide for yourself (or the organization for
which you work must decide) just how much effort to put into securing your
systems and live with the level of threat that remains. This chapter’s security
information can help you start securing your system, but if you need more than

very basic security, you’ll have to learn and do more than I can describe here.

Using Local System Documentation

Local Linux documentation comes in several forms. One of the most accessible of these is manual
pages (or

man

 pages for short, after the utility used to read them). Typically,

man

 pages are fairly
terse reference materials, though. Most packages also ship with more tutorial-style documenta-
tion that’s stored in any of several formats in the

/usr/doc

 or

/usr/share/doc

 directory tree.

Using Linux Manual Pages

The first Linux documentation system was introduced in Chapter 1, “Linux Command-Line
Tools.” The

man

 program gives access to basic documentation on most Linux commands, file for-
mats, system calls, and so on. In addition to

man

 itself, a few additional

man

-related programs are
available. All of these programs rely on some configuration features that you should understand.

4425.book Page 330 Monday, July 11, 2005 10:46 AM

Using Local System Documentation

331

Using

man

 Pages

Table 1.1 in Chapter 1 summarizes the various manual sections, each of which holds a certain
class of information, such as commands or file formats. As described in Chapter 1, you can use

man

 by typing the command name followed by the topic:

$

man passwd

This example calls up the

man

 page for the

passwd

 command, which is used to change a user’s
password, as described later in this chapter (in “Passwords”) and in Chapter 8, “Administering
the System.” You can include the section in the call in case a keyword applies to multiple sections:

$

man 5 passwd

This example displays information on the

/etc/passwd

 file, because

man

 section 5 covers file for-
mats. The default command (

man passwd

) brings up the section 1 (commands and programs)
page because section 1 comes before section 5 in the

MANSECT

 configuration option, described
later, in “Configuring the Manual System.”

The convention for

man

 pages is a succinct style that employs several headings. Common
headings include the following:

Name

A

man

 page begins with a statement of the command, call, or file that’s described, along
with a few words of explanation. For instance, the

man

 page for

man

 (section 1) has a Name
heading that reads

man — an interface to the on-line reference manuals

.

Synopsis

The synopsis provides a brief description of how a command is used. This synopsis
uses a summary format similar to that used to present synopses in this book, showing optional
parameters in square brackets (

[]

), for instance.

Description

The description is an English-language summary of what the command, file, or
other element does. The description can vary from a very short summary to something many
pages in length.

Options

This area summarizes the options outlined in the Synopsis area. Typically, each
option appears in a list, with a one-paragraph explanation indented just below it.

Files

This heading introduces files that are associated with the

man

 page’s subject. These might
be configuration files for a server or other program, related configuration files for a configura-
tion file, or what have you.

See also

This heading introduces pointers to related information in the

man

 system, typically
with a section number appended. For instance,

less(1)

 refers to the section 1

man

 page for

less

.

Bugs

Many

man

 pages provide a Bugs heading, after which the author describes any known
bugs or states that no known bugs exist.

History

Some

man

 pages provide a summary of the program’s history, citing project start dates
and major milestones between then and the current version. This history isn’t nearly as com-
prehensive as the changes file that ships with most programs’ source code.

Author

Most

man

 pages end with an Author section, which tells you how to contact the author
of the program.

4425.book Page 331 Monday, July 11, 2005 10:46 AM

332

Chapter 7 �

Documentation and Security

Specific manual pages may contain fewer, more, or different parts than these. For instance,
the Synopsis part is typically omitted from

man

 pages on configuration files. If a

man

 page has
a particularly verbose description, it’s often split into several parts, each with its own title.

Although

man

 pages can be an extremely helpful resource, you must understand their pur-
pose and limitations. Unlike the help systems in some OSs, Linux

man

 pages are not supposed
to be either comprehensive or tutorial in nature; they’re intended as quick references to help
somebody who’s already at least somewhat familiar with a command. They’re most useful
when you need to know the options to use with a command, the format of a configuration file,
or similar summary information. If you need to learn a new program from scratch, other doc-
umentation is often a better choice. The quality of

man

 pages is also variable; some are very
good, but others are frustratingly terse, and even occasionally inaccurate. For the most part,
they’re written by the programmers who wrote the software in question, and programmers sel-
dom place a high priority on user documentation.

Although

man

 is a text-mode command, GUI variants exist. The

xman

 program,
for instance, provides a point-and-click method of browsing through

man

pages. You can’t type a subject on the command line to view it as you would
with

man

, though—you must launch

xman

 and then browse through the manual

sections to a specific subject.

Additional Help Programs

One of the problems with

man

 pages is that it can be hard to locate help on a topic unless you
know the name of the command, system call, or file you want to use. Fortunately, methods of
searching the manual database exist and can help lead you to an appropriate

man

 page:

Summary search

The

whatis

 command searches summary information contained in

man

pages for the keyword you specify. The command returns a one-line summary (the Name sec-
tion of the

man

 page, in fact) for every matching

man page. You can then use this information
to locate and read the man page you need. This command is most useful for locating all the man
pages on a topic. For instance, typing whatis man returns lines confirming the existence of the
man page entries for man, in sections 1, 7, and 1p. (The precise hits returned by whatis will vary
from one system to another.)

Thorough search The apropos command performs a more thorough search, of both
the Name and Description sections of man pages. The result looks much like the results
of a whatis search except that it’s likely to contain many more results. In fact, doing an
apropos search on a very common word, such as the, is likely to return so many hits as to
make the search useless. A search on a less common word is likely to be more useful. For
instance, typing apropos samba returns fewer than a dozen entries, including those for
cupsaddsmb, smbpasswd, and lmhosts—all tools related to the Samba file- and printer-
sharing tool. (The exact number of hits returned by apropos will vary from system to sys-
tem, depending on the packages installed.)

4425.book Page 332 Monday, July 11, 2005 10:46 AM

Using Local System Documentation 333

Configuring the Manual System

On most Linux systems, the man system works correctly as delivered; however, like most Linux
tools, it’s configurable. The man configuration file is /etc/man.conf, and like most Linux con-
figuration files, you can edit it in a text editor. The default options work well, and as a general
rule, you shouldn’t idly edit these entries.

One type of man option you might want to adjust is the man path, which is the list of direc-
tories in which man searches for man files. This feature is set with a series of MANPATH entries:

MANPATH /usr/share/man

MANPATH /usr/local/share/man

MANPATH /usr/X11R6/man

MANPATH /usr/local/man

MANPATH /usr/man

Each entry consists of one directory, and man searches for files in the order in which they’re
presented. Sometimes you might want to add directories—say, because you’ve installed a pro-
gram that places man pages in an odd location, such as /opt/oddprog/man. You can add a
MANPATH line pointing to this directory. You can even use the asterisk (*) as a wildcard, just as
you can on the command line. For instance, /opt/*/man causes man to search every subdirec-
tory of /opt for a man subdirectory.

Actually, the directories you specify on the MANPATH lines contain subdirectories,
one for each man section. (In some cases, additional subdirectories for man pages
in non-English languages also exist.)

If you want to set the man path on a one-time basis, you can do so with the --path option,
as in man --path /opt/oddprog/man oddprog. This command brings up the man page for
oddprog, stored in the /opt/oddprog/man directory tree. Alternatively, you can run a specific
file through the man system by specifying its complete path, as in man /opt/oddprog/man/
man1/oddprog.1.gz.

Another man feature you might want to adjust in the configuration file is the MANSECT line:

MANSECT 1:1p:8:2:3:3p:4:5:6:7:9:0p:tcl:n:l:p:o

This line tells man in which order it should search the manual sections. The default usually works
fine, but if you or your users find you’re constantly pulling up the wrong manual page because you
use certain sections more than others, you can adjust this order to correct the problem.

Most man pages come in a compressed form. The /etc/man.conf file includes lines to map
various filename extensions to the compression programs that created them:

.gz /bin/gunzip -c

.bz2 /bin/bzip2 -c -d

.Z /bin/zcat

4425.book Page 333 Monday, July 11, 2005 10:46 AM

334 Chapter 7 � Documentation and Security

Given these entries, man tries to pass files with extensions of .gz through the /bin/gunzip
program, passing it the -c option. Files with .bz2 and .Z extensions are also supported by the
bzip2 and zcat commands, respectively. In most cases, there’s no need to adjust these map-
pings; however, if you install a program that uses a peculiar compression tool for its man pages,
you must either uncompress and then recompress the man pages yourself or add a mapping in
/etc/man.conf.

Using Package Documentation

Most programs ship with documentation that’s more extensive than the man pages alone. In most
cases, this documentation installs in subdirectories of /usr/doc, /usr/share/doc, and /usr/
X11R6/doc and similar locations with doc in their path names. Most packages install documenta-
tion files in subdirectories named after themselves in these directories. For instance, you might have
a /usr/share/doc/samba-3.0.10 directory holding Samba documentation. In most cases, these
directory names include program version numbers, so they’ll change when you upgrade the package.

If you’re looking for documentation but can’t find it, try using your package
manager’s file-listing option to search for the string doc. For instance, using
rpm, you might type rpm -ql mystery | grep doc to obtain a list of files in the
mystery package and search that list for any files that contain the string doc.

The info Page System

Some developers and organizations, including the Free Software Foundation (FSF; http://
www.fsf.org), favor the info program to the man program. Like man pages, info pages contain
the official reference manuals for programs. The info system, though, supports a hierarchical
structure with hyperlinks, similar to web pages. In theory, this enables info pages to be larger
without overwhelming their users and helps users to quickly locate information. In practice, the
info browser can be a bit intimidating until you’re used to it.

To use info pages, you should type the command followed by the topic, much as you do to use
man pages, as in info ls to learn about the ls command. You can then move between nodes
(that is, individual pages) by moving the cursor over a link (denoted by an asterisk) and press-
ing the Enter key or by using various keystrokes. The N, P, U, L, and T keys, in particular, move
to the next topic, the previous topic, up in the hierarchy, to the last page you read, or to the top
of a topic tree, respectively. The Q key exits from the info reader.

In addition to reading info pages, the info reader can display man pages, although it won’t con-
vert man pages into documents that follow the hierarchical info system structure. Thus, you can
use the info reader in place of the man program if you like.

4425.book Page 334 Monday, July 11, 2005 10:46 AM

Finding Linux Documentation and Help on the Internet 335

In most cases, the /usr/share/doc documentation consists of the README file and other mis-
cellaneous files that ship with the program’s source code. Package maintainers simply shunt
these files into the program’s /usr/share/doc subdirectory and forget about them. For this
reason, this documentation is sometimes a bit odd; it describes the build process and often refers
to the location of the program files in the /usr/local directory tree, which usually isn’t where
you’ll actually find them.

On the other hand, this additional documentation sometimes includes files in the Hypertext
Markup Language (HTML), PostScript, and other formats. Such documentation sometimes
includes tutorial information not found in man pages, example configuration files, and other
useful data.

Overall, /usr/share/doc files are the “mystery surprise” of the Linux documentation
world. Sometimes they’re next to useless, but other times they’re just what you need to learn
how to use a program. The only way to know which is the case is to peruse the files.

The /usr/share/doc files are usually installed with the main package. Some packages,
though, deliver a separate documentation package. This practice is most common when
large amounts of supplemental documentation are available for a program; delivering doc-
umentation in a separate package enables you to choose whether or not to devote the space
to the documentation. To learn which is the case, use your package manager to identify the
package to which the documentation subdirectory belongs, as in rpm -qf /usr/share/
doc/samba-3.0.10 for RPM-based systems. If the result is clearly a documentation pack-
age, you can use your package manager to delete it. If the result is the main package for the
program, you can delete the documentation directory using ordinary file-management
tools, but only at the cost of invalidating that part of your package database. This problem
won’t be debilitating, but it does slightly degrade the value of the package database. In most
cases, you’re better off leaving the documentation files in place; they do no harm other than
consuming a small amount of disk space.

Finding Linux Documentation and
Help on the Internet
The Internet is both the greatest boon and the greatest hindrance to learning about anything,
including Linux. The Internet is wonderful because it’s a treasure trove of information. It’s ter-
rible because much of the information is outdated or just plain wrong and because it can be so
hard to find the information that’s available.

One of the best starting points in doing Internet research on Linux is the Linux Documen-
tation Project (LDP; http://tldp.org). You’ll find lots of documentation here, as you
might guess by the name. Other online resources can also be valuable, though, so you should
be aware of them.

4425.book Page 335 Monday, July 11, 2005 10:46 AM

336 Chapter 7 � Documentation and Security

The Linux Documentation Project

The LDP is dedicated to providing more tutorial information than is commonly available with
most Linux programs. You’ll find several types of information at this site:

HOWTOs Linux HOWTO documents are short and medium-length tutorial pieces
intended to get you up to speed with a topic or technology. In the past, smaller HOWTOs
were classified separately, as mini-HOWTOs; however, the distinction between the two
types of document has diminished greatly in recent years. HOWTOs have varying focus—
some describe particular programs, whereas others are more task oriented and cover a vari-
ety of tools in service to the task. As the name implies, they’re generally designed to tell you
how to accomplish some goal.

Guides Guides are longer documents, often described as book-length. (In fact, some of them
are available in printed form.) Guides are intended as thorough tutorial or reference works on
large programs or general technologies, such as Linux networking as a whole.

FAQs A Frequently Asked Question (FAQ) is, as the name implies, a question that comes up
often—or more precisely, in the sense of the LDP category, a question and an answer to it. LDP
FAQs are organized into categories, such as the Ftape FAQ or the WordPerfect on Linux FAQ.
Each contains multiple questions and their answers, often grouped in subcategories. If you have
a specific question about a program or technology, an appropriate FAQ can be a good place to
look first for an answer.

LDP documents vary greatly in their thoroughness and quality. Some (particularly some of
the Guides) are incomplete; you can click on a section heading and see an empty page or a
comment that the text has yet to be written. Some LDP documents are very recent, but others
are outdated, so be sure to check the date of any document before you begin reading—if you
don’t, you might end up doing something the hard way, or in a way that no longer works.
Despite these flaws, the LDP can be an excellent resource for learning about specific programs
or about Linux generally. The better LDP documents are excellent, and even those of mar-
ginal quality often present information that’s not obvious from man pages, info pages, or
official program documentation.

Additional Online Help Resources

In addition to the LDP, several additional online resources exist to provide documentation and
help. Each of these sources has its own unique strengths and weaknesses:

Program web pages Most Linux programs have associated web pages, and these web pages fre-
quently include documentation. This resource is particularly helpful if you want to evaluate com-
peting products or read up on one before installing it. Program information included in package
files often points you to a program’s web page. For instance, type rpm -qpi packagename.rpm
to find information on packagename in an RPM system.

4425.book Page 336 Monday, July 11, 2005 10:46 AM

Finding Linux Documentation and Help on the Internet 337

Most Linux distributions include the LDP documents in one or more special
documentation packages. Check your distribution’s package list to locate them.
If you have fast always-up Internet access, though, you might want to use the
online versions of LDP documents because you can be sure they’re the latest
available. Those that ship with a distribution can be weeks or months out of
date by the time you read them.

Vendor web pages Companies often provide Linux information on their web pages. These are
usually identical to the program web pages just described in the case of commercial programs, but
sometimes they’re not. For instance, you might be able to locate Linux information relating to a
video card or printer on the manufacturer’s website. Also, don’t forget your distribution main-
tainer’s website. These are particularly useful when dealing with distribution-specific issues.

Web searches Random websites often host useful information, but the trick is in locating
them. You can use search engines such as Google (http://www.google.com) and Yahoo!
(http://www.yahoo.com) to search the Web for keywords you specify. With luck, this will
turn up a helpful website.

Web forums A web forum is a website that enables people to post messages to it. Many dis-
tributions support web forums in which users discuss issues related to the distribution. These
forums can be very useful resources and are often the first place you’ll see new problems dis-
cussed, as well as fixes for those problems.

Usenet newsgroups Usenet news is a forum that’s similar in concept to a web forum, but Usenet
was around long before web forums. Usenet posts are similar to e-mail messages in many ways
except that they’re public. Most ISPs and organizations such as universities maintain Usenet news
servers, and you as an individual can access these using Linux programs like tin (http://
www.tin.org) or Pan (http://pan.rebelbase.com). The Google Groups website (http://
groups.google.com) maintains a database of newsgroup postings, so you can search for help in
the form of previous queries about your problem. You should probably do this before posting a
new cry for help; a quick search often turns up an answer much more quickly than does a new
posting. Usenet is the most open of the major forum systems, which unfortunately means that it
attracts more in the way of verbally abusive posts and off-topic discussions.

Mailing lists Mailing lists are similar to web forums and Usenet newsgroups except that discus-
sions are carried out via e-mail messages. (In fact, some forums are carried in multiple forms, so
you can choose which you prefer.) Check vendor websites, distribution websites, and the websites
for specific programs for information on mailing lists related to the product in question.

IRC Internet Relay Chat (IRC) is a system for real-time interactions with other users. It’s sim-
ilar to the instant messaging systems that are also quite popular, but IRC involves public dis-
cussions. To use IRC, you must install an IRC client, such as Xchat (http://www.xchat.org).
You then point the client to an IRC server, which links with other servers in an IRC network,

4425.book Page 337 Monday, July 11, 2005 10:46 AM

338 Chapter 7 � Documentation and Security

and join an IRC channel (which is a specific discussion forum, similar to a Usenet newsgroup).
Check http://www.irchelp.org/irchelp/networks/ for information on IRC networks.

By taking advantage of any or all of these resources, you can learn a great deal about Linux
in a short period of time or solve almost any Linux problem. Not all resources are appropriate
for solving all problems, though.

Even if you don’t make extensive use of any given information resource, you
should at least take some time to familiarize yourself with the type of informa-
tion to be found in each of these sources. Knowing what information a resource
can provide can be very valuable if and when you need to locate that type of
information.

Communicating with Users
Sometimes the information doesn’t need to flow to you; it needs to flow from you. Specifically,
you may need to notify users of important system events, upcoming changes, and so on. Several
mechanisms exist to facilitate such communication:

Local login messages The /etc/issue file holds a message that’s displayed above the login:
prompt at a text-mode console. Typically, this message identifies the computer. It can contain
variables that are replaced with the computer’s hostname, the kernel version number, the time,
and so on, as described shortly.

Network login messages The /etc/issue.net file is similar to /etc/issue, but it holds infor-
mation that’s displayed by the Telnet server just before it presents the login: prompt to the
remote Telnet client. This file does not influence logins via the Secure Shell (SSH) server, though.

Message of the day The message of the day (MOTD) is a message that’s stored in /etc/motd.
This file, if it exists, typically holds information you want to communicate to users about upcom-
ing events or changes, such as scheduled downtime for system upgrades or changes to system use
policies. Because users see its contents only when they log in, it’s not very useful for notifying users
of events that will occur in a matter of minutes. Most text-mode login methods, including console
logins, Telnet, and SSH, display the MOTD. GUI login methods typically don’t display it, though.

Fortunes Some system administrators like to spice up the login experience with a pithy saying.
You can do this with the help of the fortune program. Add a call to this program to the /etc/
bashrc file to give users a new saying each day. You should be sure to call fortune only within
an if clause, though, as shown in Listing 7.1; a direct call will interfere with some programs,
such as scp. Note that the fortune program doesn’t ship with all distributions.

Shutdown alerts One particularly important type of user communication is the shutdown
alert. You can pass a message to all text-mode users when you shut down the system via the
shutdown command, as described in Chapter 6. Specifically, text after all other parameters is

4425.book Page 338 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 339

treated as a shutdown alert message. For instance, shutdown -h +10 "System going down
for maintenance" displays the message “System going down for maintenance” to all users
with increasing frequency until the system shuts down.

Listing 7.1: Code to Call fortune from /etc/bashrc

if [$TERM != "dumb"]; then

 fortune

fi

The /etc/issue and /etc/issue.net files support variables that you can use to substitute
information that might vary from one login to another or from one system to another (thus enabling
you to use one file on multiple systems). These include \n (the computer’s hostname), \r (the kernel
version number), \s (the OS name—Linux), \m (the platform, such as x86), and \t (the time when
the message is printed).

Be sure not to put too much information in system messages, and particularly
in /etc/issue and /etc/issue.net. Advertising too much about your system,
such as its kernel version number and platform, can give information to attack-
ers that they can abuse to gain entry to your system.

One problem with all of these communication methods is that they’re all geared toward text-
mode users. If your system supports remote X-based users, these methods won’t help you com-
municate with them. Likewise for users of servers, such as Web servers or mail servers. Of
course, you can always employ more generic communication techniques, such as e-mail, instant
messaging tools, bulletin boards, paper memos, and even word of mouth.

Restricting Access by Ports
Linux systems are often used as server computers, or at least they’re connected to the Inter-
net more or less directly. On such systems, network security is particularly important,
because incorrectly configured servers can provide miscreants with a way into your system
to do whatever damage they like. One of the first lines of defense against such problems is
limiting access by port. In this context, a port is a numbered access point for your computer,
much like a telephone extension number in a business phone system. (Chapter 9, “Basic
Networking,” describes networking concepts in more detail.) Ports are related to sockets,
which are programming abstractions of network connection endpoints. Typically, you
won’t deal with sockets per se as a system administrator, though. You can protect access by
port in three main ways: by configuring a firewall, by using restrictions built into super
servers, and by disabling servers you’re not actively using. First, though, you must know a
bit about ports.

4425.book Page 339 Monday, July 11, 2005 10:46 AM

340 Chapter 7 � Documentation and Security

The popular media uses the term hacker to refer to computer criminals. This
word has an older meaning, though: It refers to individuals who are skilled with
computers (and particularly with programming), who enjoy these activities,
and who use their skills to productive and legal ends. Many Linux program-
mers consider themselves hackers in this positive sense. Therefore, I use
another term, cracker, to refer to computer criminals.

Common Server Ports

Many firewalls and other network security devices operate by blocking or enabling access
to specific ports. For instance, a firewall might block outside access to the SSH ports but let
through traffic to the Simple Mail Transfer Protocol (SMTP) mail server port. In order to con-
figure a firewall in this way, of course, you must know the port numbers. Linux systems contain
a file, /etc/services, that lists service names and the ports with which they’re associated.
Lines in this file look something like this:

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

24 - private

smtp 25/tcp

The first column contains a service name (ssh, telnet, or smtp in this example). The second
column contains the port number and protocol (such as 22/tcp, meaning TCP port 22). Any-
thing following a hash mark (#) is a comment and is ignored. The /etc/services file lists port
numbers for both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
ports. (These two types of protocol are both important in TCP/IP networking; each carries dif-
ferent types of traffic.) Typically, a single service is assigned use of the same TCP and UDP port
numbers (as in the ssh service in this example), although in practice most protocols use just one
or the other. When configuring a firewall, it’s generally best to block both TCP and UDP ports;
this ensures you won’t accidentally block the wrong port type.

Table 7.1 summarizes the port numbers used by the most important protocols run on Linux
systems. This list is, however, incomplete; it only hits some of the most common protocols. In
fact, even /etc/services is incomplete and may need to be expanded for certain obscure serv-
ers. (Their documentation describes how to do so, if necessary.)

Table 7.1 shows the ports used by the servers for the specified protocols. In
most cases, clients can and do use other port numbers to initiate connections.
For instance, a mail client might use port 43411 on client.pangaea.edu to con-
nect to port 143 on mail.pangaea.edu. Client port numbers are assigned by the
kernel on an as-needed basis, so they aren’t fixed. (Clients can request specific
port numbers, but this practice is rare.)

4425.book Page 340 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 341

T A B L E 7 . 1 Port Numbers Used by Some Common Protocols

Port Number TCP/UDP Protocol Example Server Programs

20 and 21 TCP FTP ProFTPd, WU FTPd

22 TCP SSH OpenSSH, lsh

23 TCP Telnet in.telnetd

25 TCP SMTP sendmail, Postfix, Exim, qmail

53 TCP and UDP DNS BIND

67 UDP DHCP DHCP

69 UDP TFTP in.tftpd

80 TCP HTTP Apache, thttpd

88 TCP Kerberos MIT Kerberos, Heimdal

109 and 110 TCP POP (versions 2 and 3) UW IMAP

111 TCP and UDP Portmapper NFS, NIS, other RPC-based services

113 TCP auth/ident identd

119 TCP NNTP INN, Leafnode

123 UDP NTP NTP

137 UDP NetBIOS Name Ser-
vice

Samba

138 UDP NetBIOS Datagram Samba

139 TCP NetBIOS Session Samba

143 TCP IMAP 2 UW IMAP

161 UDP SNMP Net-SNMP

177 UDP XDMCP XDM, KDM, GDM

220 TCP IMAP 3 UW IMAP

4425.book Page 341 Monday, July 11, 2005 10:46 AM

342 Chapter 7 � Documentation and Security

One key distinction in TCP/IP ports is that between privileged ports and unprivileged ports.
The former have numbers below 1024. Unix and Linux systems restrict access to privileged
ports to root. The idea is that a client can connect to a privileged port and be confident that the
server running on that port was configured by the system administrator and can therefore be
trusted. Unfortunately, on today’s Internet, this trust would be unjustified based solely on the
port number, so this distinction isn’t very useful. Port numbers above 1024 may be accessed by
ordinary users.

Configuring a Firewall

The first line of defense in network security is a firewall. This is a computer that restricts access
to other computers or software that runs on a single computer to protect it alone. Broadly
speaking, two types of firewalls exist: packet-filter firewalls, which work by blocking or per-
mitting access based on low-level information in individual data packets (such as source and
destination IP addresses and ports), and proxy filters, which partially process a transaction
(such as a web page access) and block or deny access based on high-level features in this trans-
action (such as the filename of an image in the web page). This chapter describes Linux’s packet-
filter firewall tools, which can be very effective at protecting a single computer or an entire net-
work against certain types of attack.

389 TCP LDAP OpenLDAP

443 TCP HTTPS Apache

445 TCP Microsoft DS Samba

514 UDP Syslog syslogd

515 TCP Spooler BSD LPD, LPRng, cups-lpd

636 TCP LDAPS OpenLDAP

749 TCP Kerberos Admin MIT Kerberos, Heimdal

5800–5899 TCP VNC via HTTP RealVNC, TightVNC

5900–5900 TCP VNC RealVNC, TightVNC

6000–6099 TCP X X.org-X11, XFree86

T A B L E 7 . 1 Port Numbers Used by Some Common Protocols (continued)

Port Number TCP/UDP Protocol Example Server Programs

4425.book Page 342 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 343

Where a Firewall Fits in a Network

Traditionally, firewalls have been routers that block undesired network transfers between two
networks. Typically, one network is a small network under one management, and the other net-
work is much larger, such as the Internet. Figure 7.1 illustrates this arrangement. (More com-
plex firewalls that use multiple computers are also possible.) Dedicated external firewalls are
available and can be good investments in many cases. In fact, it’s possible to turn an ordinary
computer into such a device by using Linux—either with a special-purpose distribution like the
Linux Embedded Appliance Firewall (http://leaf.sourceforge.net) or by using an ordi-
nary distribution and configuring it as a router with firewall features.

F I G U R E 7 . 1 Firewalls can selectively pass some packets but not others, using
assorted criteria.

As described in more detail shortly, servers operate by associating themselves with particular
network ports. Likewise, client programs bind to ports, but client port bindings aren’t standard-
ized. Packet filter firewalls block access by examining individual network packets and deter-
mining whether to let them pass based on the source and destination port number, the source
and destination IP address, and possibly other low-level criteria, such as the network interface
in a computer with more than one interface. For instance, in the arrangement in Figure 7.1, you
might run a Samba file server internally, but outside computers have no business accessing that
server. Therefore, you’d configure the firewall to block external packets directed at the ports
used by Samba.

In addition to running a firewall on a router that serves an entire network, it’s possible
to run a firewall on an individual system. This approach can provide added protection to
a sensitive computer, even if an external firewall protects that computer. It’s also useful on
computers that don’t have the protection of a separate firewall, such as many broadband-
connected systems.

Linux Firewall Software

Linux uses the ipfwadm, ipchains, and iptables tools to configure firewall functions. These
tools are designed for the 2.0.x, 2.2.x, and 2.4.x kernels, respectively. The 2.6.x kernels con-

Desired access (passed by firewall)

Undesired access (blocked by firewall)

Internet

Firewall

Local network

4425.book Page 343 Monday, July 11, 2005 10:46 AM

344 Chapter 7 � Documentation and Security

tinue to use the iptables tool as well. (The 2.4.x and later kernel series include the ability to
use the older tools, but only as a compile-time option.) You can configure a firewall in any of
several ways:

Manually You can read up on the syntax of the tool used to configure your kernel and write
your own script. This approach is described in the upcoming section, “Using iptables.”

For more information on this approach, consult a book on the subject, such as
Robert L. Ziegler’s Linux Firewalls, 2nd Edition (New Riders, 2001).

With the help of a GUI configuration tool A few GUI configuration tools are available for
Linux firewall configuration, such as Firestarter (http://firestarter.sourceforge.net)
and Guarddog (http://www.simonzone.com/software/guarddog). Linux distributions
often incorporate such tools as well, although the distribution-provided tools are often very
simple. These tools let you specify certain basic information, such as the network port and the
client and server protocols you wish to allow, and they generate firewall scripts that can run
automatically when the system boots.

With the help of a website Robert Ziegler, the author of Linux Firewalls, has made a website
available that functions rather like the GUI configuration tools but via the Web. You enter
information on your system, and the website generates a firewall script. This tool is available at
http://linux-firewall-tools.com/linux/.

If you use a GUI tool or website, be sure it supports the firewall tool your kernel requires.
Most tools support iptables, and some support older tools or tools used in non-Linux OSs.
Also, you shouldn’t consider a firewall to be perfect protection. You might create a configura-
tion that actually contains flaws, or flaws might exist in the Linux kernel code that implements
the firewall rules.

One of the advantages of a firewall, even to protect just one computer, is that
it can block access attempts to any server. Most other measures are more lim-
ited. For instance, TCP Wrappers (described later, in “Using Super Server
Restrictions”) protects only servers configured to be run via TCP Wrappers
from inetd and a few other servers that directly support TCP Wrappers. Pass-
words are good only to protect the servers that are coded to require them.

Using iptables

The iptables program is the utility that manages firewalls on recent Linux kernels (from 2.4.x
through at least 2.6.x). Although these kernels can also use the older ipchains tool when so
configured using kernel compile-time options, iptables is the more flexible tool and is there-
fore the preferred way of creating and managing packet-filter firewalls.

4425.book Page 344 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 345

When using iptables, you should first understand how Linux’s packet filter architecture
works—you can create several types of rules, which have differing effects, so understanding
how they interact is necessary before you begin creating rules. Actually creating the rules
requires understanding the iptables command syntax and options. Finally, it’s helpful to look
at a sample firewall script and to know how it’s installed and called by the system.

The Linux Packet Filter Architecture

In the 2.4.x and later kernels, Linux uses a series of “tables” to process all network packets it
generates or receives. Each table consists of several “chains,” which are series of pattern-match-
ing rules—when a packet matches a rule, the rule can discard the packet, forward it to another
chain, or accept the packet for local delivery. Figure 7.2 illustrates the filter table, which is
the one you normally modify when creating a firewall. Other tables include the nat table, which
implements Network Address Translation (NAT) rules, and the mangle table, which modifies
packets in specialized ways.

F I G U R E 7 . 2 Linux uses a series of rules, which are defined in chains that are called at
various points during processing, to determine the fate of network packets.

As shown in Figure 7.2, the filter table consists of three chains: INPUT, OUTPUT, and
FORWARD. These chains process traffic destined to local programs, generated by local programs,
and forwarded through a computer that’s configured as a router, respectively. You can create
rules independently for each chain. For instance, consider a rule that blocks all access directed
at port 80 (the HTTP port, used by web servers) on any IP address. Applied to the INPUT chain,
this rule blocks all access to a web server running on the local computer but doesn’t affect out-
going traffic or traffic that’s forwarded by a router. Applied to the OUTPUT chain, this rule
blocks all outgoing traffic directed at web servers, effectively rendering web browsers useless,
but it doesn’t affect incoming traffic directed at a local web server or traffic forwarded by a
router. Applied to the FORWARD chain, this rule blocks HTTP requests that might otherwise be
forwarded by a computer that functions as a router but doesn’t affect traffic from local web
browsers or to local web servers.

Outgoing DataIncoming Data

Routing
Decision

INPUT
Chain

FORWARD
Chain

OUTPUT
Chain

Local Processes

4425.book Page 345 Monday, July 11, 2005 10:46 AM

346 Chapter 7 � Documentation and Security

Much of the task of creating a firewall involves deciding which chains to modify. Generally
speaking, when you want to create a separate firewall computer (as illustrated in Figure 7.1), you
modify the FORWARD chain (to protect the computers behind the firewall) and the INPUT chain (to
protect the firewall system itself). When implementing a firewall to protect a server or workstation,
you modify the INPUT chain and perhaps the OUTPUT chain. Blocking output packets can have the
effect of preventing abuse of other systems or use of protocols you don’t want being used. For
instance, you might block outgoing traffic directed to a remote system’s port 23, effectively disal-
lowing use of Telnet clients on the system you’re configuring.

All of the chains implement a default policy. This policy determines what happens to a packet
if no rule explicitly matches it. The default for a default policy is ACCEPT, which causes packets to
be accepted. This policy is sensible in low-security situations, but for a more secure configuration,
you should change the default policy to DROP or REJECT. The former causes packets to be ignored.
To the sender, it looks as if a network link was down. The REJECT policy causes the system to
actively refuse the packet, which looks to the sender as if no server is running on the targeted port.
This option requires explicit kernel support. Both DROP and REJECT have their advantages. DROP
reduces network bandwidth use and reduces the system’s visibility on the network, whereas
REJECT can improve performance for some protocols, such as auth/ident, which may retry a con-
nection in the event a packet is lost. Using either DROP or REJECT as a default policy means that
you must explicitly open ports you want to use. This is more secure than using a default policy of
ACCEPT and explicitly closing ports because you’re less likely to accidentally leave a port open
when it should be closed. Setting a default policy is described next, in “Creating Firewall Rules.”

Creating Firewall Rules

To create firewall rules, you use the iptables command. You should probably start with the
-L option, which lists the current configuration:

iptables -L -t filter

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

You can obtain similar information from files in the /proc/net filesystem.
For instance, ip_fwchains and ip_fwnames hold data on ipchains firewall rules;
ip_tables_matches, ip_tables_names, and ip_tables_targets hold informa-
tion relating to iptables firewalls; and ip_masquerade holds information on
IP masquerading—a technique in which a router can “hide” a whole network
from view, making all the systems look like one computer to the outside world.
It’s usually easier to use the iptables (or ipchains, for older systems) utility to
access this information.

4425.book Page 346 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 347

The -t filter part of this command specifies that you want to view the filter table. This
is actually the default table, so you can omit this part of the command if you like. In any event,
the result is a list of the rules that are defined for the specified (or default) table. In this case, no
rules are defined and the default policy is set to ACCEPT for all three chains in the table. This is
a typical starting point, although depending on your distribution and your installation options,
it’s possible yours will have rules already defined. If so, you should track down the script that
sets these rules and change or disable it. Alternatively, or if you just want to experiment, you can
begin by flushing the table of all rules by passing -F CHAIN to iptables, where CHAIN is the
name of the chain. You can also use -P CHAIN POLICY to set the default policy:

iptables -t filter -F FORWARD

iptables -t filter -P FORWARD DROP

These two commands flush all rules from the FORWARD chain and change the default policy
for that chain to DROP. Generally speaking, this is a good starting point when configuring a fire-
wall, although using REJECT rather than DROP has its advantages, as described earlier. You can
then add rules to the chain, each of which matches some selection criterion. To do so, you use
an iptables command of the following form:

iptables [-t table] -A CHAIN selection-criteria -j TARGET

When modifying the filter table, you can omit the -t table option. The TARGET is the pol-
icy target, which can take the same values as the default policy (typically ACCEPT, REJECT, or
DROP). In most cases, you’ll use ACCEPT when the default policy is REJECT or DROP and REJECT
or DROP when the default policy is ACCEPT. The CHAIN is, as you might expect, the chain to be
modified (INPUT, OUTPUT, or FORWARD for the filter table). Finally, the selection-criteria
can be one or more of several options that enable you to match packets by various rules:

Protocol The --protocol or -p option lets you specify the low-level protocol used. You pass
the protocol name (tcp, udp, icmp, or all) to match packets of the specified protocol type. The
all name matches all protocol types.

Source port The --source-port or --sport option matches packets that originate from the
port number that you specify. (You can also provide a list of port numbers by separating them
with colons, as in 1024:2048 to specify ports from 1024 to 2048, inclusive.) Note that the orig-
inating port number is the port number for the server program for packets that come from the
server system, but it’s the port number used by the client program for packets that come from
the client system.

Destination port The --destination-port or --dport option works much like the
--source-port option, but it applies to the destination of the packet.

Source IP address The --source or -s option filters on the source IP address. You can specify
either a single IP address or an entire subnet by appending the netmask as a number of bits, as
in -s 172.24.1.0/24.

Destination IP address The --destination or -d option works just like the --source
option, but it filters based on a packet’s destination address.

4425.book Page 347 Monday, July 11, 2005 10:46 AM

348 Chapter 7 � Documentation and Security

Input hardware interface You can use the interface on which the packet arrives with
the --in-interface or -I option, which accepts an interface name as an argument. For
instance, -I eth0 matches packets that arrive on the eth0 interface. This option works
with the INPUT and FORWARD chains but not with the OUTPUT chain.

Output hardware interface The --out-interface or -o option works much like the
--in-interface option, but it applies to the interface on which packets will leave the com-
puter. As such, it works with the FORWARD and OUTPUT chains but not with the INPUT chain.

State Network connections have states—they can be used to initiate a new connection, continue
an existing connection, be related to an existing connection (such as an error message), or be
potentially forged. The --state option can match based on these states, using codes of NEW,
ESTABLISHED, RELATED, or INVALID. You must precede this option with the -m state option on
the same iptables command line. This feature implements stateful packet inspection, which
enables you to block connection attempts to certain ports while enabling you to initiate connec-
tions from those same ports. This feature is most useful in blocking connection attempts to unpriv-
ileged ports, thus denying crackers the ability to run unauthorized servers on those ports.

You can combine multiple items to filter based on several criteria. For instance, in a default-
deny configuration, you can open traffic to TCP port 445 from the 172.24.1.0/24 network with
a single command:

iptables -A INPUT -p tcp --dport 445 -s 172.24.1.0/24 -j ACCEPT

In this case, the selection-criteria consist of three rules. Packets that match all of these
rules will be accepted; those that fail to match even a single rule will be denied (assuming this
is the default configuration) unless they match some other rule in the chain.

A complete chain is created by issuing multiple iptables commands, each of which defines
a single rule. You can then view the result by typing iptables -L, as described earlier.

A Sample iptables Configuration

Because iptables creates a complete firewall configuration only through the use of multiple
calls to the utility, Linux packet-filter firewalls are frequently created via shell scripts that
repeatedly call iptables. (Chapter 6 describes shell scripts.) These scripts may be called as
SysV startup scripts or in some other way as part of the startup procedure. For learning pur-
poses, you may want to create a script that’s not called in this way, though. Listing 7.2 shows
a sample script that demonstrates the key points of firewall creation.

Listing 7.2: Sample Linux Firewall Script

#!/bin/bash

iptables -F INPUT

iptables -F FORWARD

iptables -F OUTPUT

4425.book Page 348 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 349

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT DROP

Let traffic on the loopback interface pass

iptables -A OUTPUT -d 127.0.0.1 -o lo -j ACCEPT

iptables -A INPUT -s 127.0.0.1 -i lo -j ACCEPT

Let DNS traffic pass

iptables -A OUTPUT -p udp --dport 53 -j ACCEPT

iptables -A INPUT -p udp --sport 53 -j ACCEPT

Let clients' TCP traffic pass

iptables -A OUTPUT -p tcp --sport 1024:65535 -m state \

 --state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -p tcp --dport 1024:65535 -m state \

 --state ESTABLISHED,RELATED -j ACCEPT

Let local connections to local SSH server pass

iptables -A OUTPUT -p tcp --sport 22 -d 172.24.1.0/24 -m state \

 --state ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -p tcp --dport 22 -s 172.24.1.0/24 -m state \

 --state NEW,ESTABLISHED,RELATED -j ACCEPT

Listing 7.2 consists of three broad parts. The first three calls to iptables clear out all pre-
existing firewall rules. This is particularly important in a script that you’re creating or debug-
ging because you don’t want to simply add new rules to existing ones; the result would likely
be a confusing mishmash of old and new rules. The next three calls to iptables set the default
policy to DROP on all three chains. This is a good basic starting point for a firewall. The remain-
ing calls to iptables configure Linux to accept specific types of traffic:

Loopback traffic The script sets the system to accept traffic to and from the loopback
interface (that is, 127.0.0.1). Certain Linux tools expect to be able to use this interface, and
because it’s purely local, the security risk in accepting such traffic is very slim. Note that the
lines that enable this access use both the IP address (via the -d and -s options) and the lo
interface name (via the -o and -i options). This configuration protects against spoofing the
loopback address—an attacker pretending to be 127.0.0.1 from another computer. This con-
figuration, like most iptables configurations, requires two iptables rules: one to enable
incoming traffic and one to enable outgoing traffic.

DNS traffic The second block of rules enables UDP traffic to and from port 53, which
handles DNS traffic. A configuration like this one is necessary on most systems to enable
the computer to use its local DNS server. You could strengthen this configuration by

4425.book Page 349 Monday, July 11, 2005 10:46 AM

350 Chapter 7 � Documentation and Security

specifying only your local DNS server’s IP address. (If you have multiple DNS servers, you’d
need one pair of rules for each one.)

Client traffic Listing 7.2 enables TCP packets to be sent from unprivileged ports (those used
by client programs) to any system. This configuration uses stateful inspection to enable new,
established, or related outgoing traffic but to allow only established or related incoming traffic.
This configuration effectively blocks the ability to run servers on unprivileged ports. Thus, an
intruder or malicious authorized user won’t be able to log into an unauthorized server that runs
on such a port—at least not without root access to change the configuration.

SSH server traffic The final block of options enables access to the SSH server (TCP port 22).
This access, though, is restricted to the 172.24.1.0/24 network (presumably the local network for
the computer). This configuration uses stateful packet inspection to outgoing traffic from the SSH
server for established and related data but not for new or invalid packets. Incoming packets to the
server are permitted for new, existing, or related traffic, but not for invalid packets.

A configuration such as the one in Listing 7.2 is suitable for a workstation that runs an SSH
server for remote administration but that otherwise runs no servers. For a computer that runs
many servers, you might need to add several additional blocks of rules similar to the SSH block,
each one customized to a particular server. For a dedicated router with firewall features, the
emphasis would be on the FORWARD chain rather than the INPUT and OUTPUT chains, although
such a system would likely need to perform some INPUT and OUTPUT chain configuration to sup-
port its own administration and use.

E X E R C I S E 7 . 1

Create a Firewall Script

This exercise guides you through the process of creating a simple iptables firewall script. The
goal of this script is to protect a network of workstations; the firewall runs on a small router that
handles this network’s traffic. (This system should already be configured as a router.) Because
the network being protected runs no servers that should be accessible from outside sites, all
incoming connection attempts are blocked, but outgoing connection attempts are permitted.
To configure this firewall, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Session �
New Root Console from a Konsole, or by using sudo (if it’s configured) to run the following
commands.

4. Create a firewall script file using your favorite editor. This file is called /usr/local/firewall.

5. Type the code after step 10 into the firewall file as the firewall script. Change the value
of the LocalNet variable for your network.

4425.book Page 350 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 351

6. Save the firewall script and exit from the editor.

7. Make the firewall script executable by typing chmod a+x /usr/local/firewall.

8. Run the firewall script by typing /usr/local/firewall.

9. Verify that the firewall rules are active by typing iptables -L.

10. Configure the system to run the firewall script at startup. This can be done by calling the
script from a local startup script (such as /etc/rc.d/rc.local), by creating a new SysV
startup script that calls the firewall script, or by replacing an existing firewall startup script
with a call to the new one.

#!/bin/bash

LocalNet=172.24.21.0/24

iptables -F INPUT

iptables -F FORWARD

iptables -F OUTPUT

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT DROP

Let traffic on the loopback interface pass

iptables -A OUTPUT -d 127.0.0.1 -o lo -j ACCEPT

iptables -A INPUT -s 127.0.0.1 -i lo -j ACCEPT

Let DNS traffic pass

iptables -A OUTPUT -p udp --dport 53 -j ACCEPT

iptables -A INPUT -p udp --sport 53 -j ACCEPT

E X E R C I S E 7 . 1 (c o n t i n u e d)

4425.book Page 351 Monday, July 11, 2005 10:46 AM

352 Chapter 7 � Documentation and Security

Let traffic from the local systems to the outside pass

iptables -A FORWARD -p tcp --sport 1025:65535 -s $LocalNet -j ACCEPT

iptables -A FORWARD -p udp --sport 1025:65535 -s $LocalNet -j ACCEPT

iptables -A FORWARD -p icmp -s $LocalNet -j ACCEPT

Let only established incoming connections pass

iptables -A FORWARD -p tcp --dport 1025:65535 -d $LocalNet \

 -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -p udp --dport 1025:65535 -d $LocalNet \

 -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -p icmp -d $LocalNet \

 -m state --state ESTABLISHED,RELATED -j ACCEPT

Let local connections to local SSH server pass

iptables -A OUTPUT -p tcp --sport 22 -d $LocalNet -m state \

 --state ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -p tcp --dport 22 -s $LocalNet -m state \

 --state NEW,ESTABLISHED,RELATED -j ACCEPT

This firewall script configures forwarding (on the FORWARD chain) to pass TCP and UDP traf-
fic from the local network only if it originates on unprivileged ports and to forward traffic
to the local network only if it’s destined to unprivileged ports and if it’s not a new connec-
tion (the --state option omits the NEW option). ICMP traffic (used by ping and traceroute,
among others) is also permitted to pass. This configuration also protects the computer on
which it runs, but it provides a couple of exceptions. One opens traffic to and from DNS
servers and the other opens traffic to and from the system’s own SSH server, provided that
traffic originates on the local network. These openings are required for administration of
the router from anywhere but its own console.

E X E R C I S E 7 . 1 (c o n t i n u e d)

4425.book Page 352 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 353

Using Super Server Restrictions

Beyond firewalls, the first layer of access controls for many servers lies in the super server that
launches the server in question. Chapter 9 describes the basics of configuring the inetd and
xinetd super servers. You can use a package called TCP Wrappers with either super server, but
it’s more commonly used with inetd. The xinetd super server includes functionality that’s sim-
ilar to TCP Wrappers in its basic feature set.

Whenever possible, apply redundant access controls. For instance, you can use
both a firewall and TCP Wrappers or xinetd to block unwanted access to partic-
ular servers. Doing this helps protect against bugs and misconfiguration—if a
problem emerges in the firewall configuration, for instance, the secondary block
will probably halt the intruder. If you configure the system carefully, such an
access will also leave a log file message that you’ll see, so you’ll be alerted to the
fact that the firewall didn’t do its job.

Controlling Access via TCP Wrappers

One popular means of running servers is via inetd, a server that listens for network connections
on behalf of other servers and then launches the target servers as required. This approach can
reduce the RAM requirements on a server computer when the server programs are seldom in use
because only inetd need be running at all times. Chapter 9 covers inetd in more detail.

Using ipchains

The 2.2.x kernel doesn’t support iptables; it used ipchains as its firewall tool. Even if you’re
using a 2.4.x or later kernel, you might want to use ipchains because you have legacy firewall
scripts that work to your satisfaction. When designing a new firewall, though, you should prob-
ably use iptables because it’s more flexible.

If you must use ipchains, you should be aware of its major differences from iptables. For one
thing, as the name implies, ipchains works on chains of firewall rules; these chains are not
grouped into tables. In practice, ipchains works much like iptables on its default filter table;
you can modify input, output, and forward chains.

Another important difference is that ipchains doesn’t support stateful packet inspection (as
implemented by the --state option to iptables). This feature is an important one for many
firewalls, and is one of the reasons iptables is preferred to ipchains.

Many ipchains options are similar or identical to those of iptables. For instance, the -P, -A,
-p, -s, -d, and -j options all work in more or less the same way in both tools. One notable dif-
ference is in the port specification (--sport and --dport in iptables). This information is folded
into the -s and -d options in ipchains, as in -d 192.168.27.72 23 to specify port 23 on
192.168.27.72.

4425.book Page 353 Monday, July 11, 2005 10:46 AM

354 Chapter 7 � Documentation and Security

Not all Linux systems use inetd. Fedora, Mandriva, Red Hat, and SuSE have all
switched to xinetd, which includes its own access control features. TCP Wrap-
pers isn’t normally used in conjunction with xinetd.

One further advantage of inetd is that it can be used in conjunction with another package,
known as TCP Wrappers. This package provides a program known as tcpd. Instead of having
inetd call a server directly, inetd calls tcpd, which does two things: It checks whether a client is
authorized to access the server, and if the client has this authorization, tcpd calls the server program.

TCP Wrappers is configured through two files: /etc/hosts.allow and /etc/hosts.deny.
The first of these specifies computers that are allowed access to the system in a particular way,
the implication being that systems not listed are not permitted access. By contrast, hosts.deny
lists computers that are not allowed access; all others are granted access to the system. If a com-
puter is listed in both files, hosts.allow takes precedence.

Both files use the same basic format. The files consist of lines of the following form:

daemon-list : client-list

The daemon-list is a list of servers, using the names for the servers that appear in /etc/
services. Wildcards are also available, such as ALL for all servers.

The client-list is a list of computers to be granted or denied access to the specified dae-
mons. You can specify computers by name or by IP address, and you can specify a network by
using a leading or trailing dot (.) when identifying networks by name or IP address block,
respectively. For instance, .luna.edu blocks all computers in the luna.edu domain, and
192.168.7. blocks all computers in the 192.168.7.0/24 network. You can also use wildcards
in the client-list, such as ALL (all computers). EXCEPT causes an exception. For instance,
when placed in hosts.deny, 192.168.7. EXCEPT 192.168.7.105 blocks all computers in the
192.168.7.0/24 network except for 192.168.7.105.

The man pages for hosts.allow and hosts.deny (they’re actually the same document) pro-
vide additional information on more advanced features. You should consult them as you build
TCP Wrappers rules.

Remember that not all servers are protected by TCP Wrappers. Normally, only
those servers that inetd runs via tcpd are so protected. Such servers typically
include, but are not limited to, Telnet, FTP, TFTP, rlogin, finger, POP, and
IMAP servers. A few servers can independently parse the TCP Wrappers con-
figuration files, though; consult the server’s documentation if in doubt.

Controlling Access via xinetd

In 2000 and 2001, the shift began from inetd to xinetd. Although xinetd can use TCP Wrap-
pers, it normally doesn’t because it incorporates similar functionality of its own. The distributions
that use xinetd use a main configuration file called /etc/xinetd.conf, but this file is largely

4425.book Page 354 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 355

empty because it calls separate files in the /etc/xinetd.d directory to do the real work. This
directory contains separate files for handling individual servers. Chapter 9 includes information
on basic xinetd configuration. For now, know that security is handled on a server-by-server basis
through the use of configuration parameters, some of which are similar to the function of
hosts.allow and hosts.deny:

Network interface The bind option tells xinetd to listen on only one network interface for the
service. For instance, you might specify bind = 192.168.23.7 on a router to have it listen only
on the Ethernet card associated with that address. This feature is extremely useful in routers, but
it is not as useful in computers with just one network interface. (You can use this option to bind
a server only to the loopback interface, 127.0.0.1, if a server should be available only locally. You
might do this with a configuration tool like the Samba Web Administration Tool, or SWAT.) A
synonym for this option is interface.

Allowed IP or network addresses You can use the only_from option to specify IP addresses,
networks (as in 192.168.78.0/24), or computer names on this line, separated by spaces. The
result is that xinetd will accept connections only from these addresses, similar to TCP Wrap-
pers’ hosts.allow entries.

Disallowed IP or network addresses The no_access option is the opposite of only_from; you
list computers or networks here that you want to blacklist. This is similar to the hosts.deny file
of TCP Wrappers.

Access times The access_times option sets times during which users may access the server.
The time range is specified in the form hour:min-hour:min, using a 24-hour clock. Note that
this option only affects the times during which the server will respond. If the xinetd access_
times option is set to 8:00-17:00 and somebody logs in at 4:59 PM (one minute before the end
time), that user may continue using the system well beyond the 5:00 PM cutoff time.

You should enter these options into the files in /etc/xinetd.d that correspond to the
servers you want to protect. Place the lines between the opening brace ({) and closing brace
(}) for the service. If you want to restrict all your xinetd-controlled servers, you can place the
entries in the defaults section in /etc/xinetd.conf.

Some servers provide access control mechanisms similar to those of TCP
Wrappers or xinetd by themselves. For instance, Samba provides hosts allow
and hosts deny options that work much like the TCP Wrappers file entries, and
NIS includes similar configuration options. These options are most common
on servers that are awkward or impossible to run via inetd or xinetd.

Disabling Unused Servers

Quite a few server programs ship with most Linux distributions, which can be a great advan-
tage—you don’t need to go hunting for any servers you want to run. On the other hand, this
very advantage can be a drawback—if you’re not careful, you can end up running a server and

4425.book Page 355 Monday, July 11, 2005 10:46 AM

356 Chapter 7 � Documentation and Security

not even realize it’s installed! For this reason, you should periodically search for servers and shut
down any that you find that aren’t really necessary. Several tools and techniques can help you
find unused servers. These include perusing your configuration files, using local network activ-
ity tools, and using remote network scanners. Disabling unused servers can be done by unin-
stalling the package or by reconfiguring the server.

Examining Configuration Files

One way of spotting unused server programs is to examine your configuration files. On most
systems, two classes of files are important: those controlling SysV startup scripts and those con-
trolling your super server. Slackware is a bit odd because it doesn’t use SysV startup scripts per
se; instead, it uses one startup script for each runlevel. For Slackware, therefore, you must skim
the relevant runlevel startup script looking for suspicious calls.

SysV startup scripts are described in detail in Chapter 6, so review that chapter for details of
how they’re managed. Generally speaking, you’ll look in /etc/rc?.d, /etc/init.d/rc?.d, or
/etc/rc.d/rc?.d, where ? is your default runlevel number, for scripts whose names take the
form S##server, where ## is a number and server is the name of the server. If you find such
a script for a server you know you don’t want to run, you should disable it using your SysV startup
script editing tools, as described in Chapter 6.

Be aware that many SysV startup scripts start entire subsystems that aren’t directly network-
related. Thus, you’ll probably see SysV startup scripts that you don’t recognize. You shouldn’t
automatically disable these scripts because they may be necessary even if you don’t recognize the
name. If in doubt, leave it in place until you can research the matter further.

Try doing a Web search on the name of the SysV startup script (minus the S and
sequence number), possibly in conjunction with “Linux” or “startup script.”
Chances are you’ll find a helpful reference.

The other major configuration file class you should examine is the super server configuration.
These are described in detail in Chapter 9, so consult it for details concerning the inetd and
xinetd configuration file formats. In both cases, you should look for servers you know shouldn’t
be running. Also, unlike SysV startup scripts, super servers only launch network servers. There-
fore, you should take a more aggressive approach to disabling entries you don’t recognize from
your super server configuration than you do with SysV startup scripts.

Using Local Network Activity Tools

Beyond checking basic SysV and super server configuration, you can employ Linux tools to help
find stray servers. One such tool is netstat. This program is the Swiss Army knife of network
status tools; it provides many different options and output formats to deliver information on
routing tables, interface statistics, and so on. For spotting unnecessary servers, you can use
netstat with its -a and -p options, as shown here:

netstat -ap

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

4425.book Page 356 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 357

➥PID/Program name

tcp 0 0 *:ftp *:* LISTEN

➥690/inetd

tcp 0 0 teela.rodsbooks.com:ssh nessus.rodsbooks.:39361 ESTABLISHED

➥787/sshd

I’ve trimmed most of the entries from this output to make it manageable as
an example.

The Local Address and Foreign Address columns specify the local and remote addresses,
including both the hostname or IP address and the port number or associated name from /etc/
services. The first of the two entries shown here isn’t actively connected, so the local address,
the foreign address, and the port number are all listed as asterisks (*). This entry does specify the
local port, though: ftp. This line indicates that a server is running on the ftp port (TCP port 21).
The State column specifies that the server is listening for a connection. The final column in this
output, under the PID/Program name heading, indicates that the process with a process ID (PID)
of 690 is using this port. In this case, it’s inetd.

The second output line indicates that a connection has been established between
teela.rodsbooks.com and nessus.rodsbooks.com (the second hostname is truncated).
The local system (teela) is using the ssh port (TCP port 22), and the client (nessus) is
using port 39361 on the client system. The process that’s handling this connection on the
local system is sshd, running as PID 787.

It may take some time to peruse the output of netstat, but doing so will leave you with a
much improved understanding of your system’s network connections. If you spot servers listen-
ing for connections that you didn’t realize were active, you should investigate the matter further.
Some servers may be innocent or even necessary. Others may be pointless security risks.

When you use the -p option to obtain the name and PID of the process using
a port, the netstat output is wider than 80 columns. You may want to open an
extra-wide xterm window to handle this output or redirect it to a file that you
can study in a text editor capable of displaying more than 80 columns. To
quickly spot servers listening for connections, type netstat -lp rather than
netstat -ap. The result will show all servers that are listening for connections,
omitting client connections and specific server instances that are already con-
nected to clients.

Using Remote Network Scanners

Network scanners, such as Nmap (http://www.insecure.org/nmap/) or Nessus (http://
www.nessus.org), can scan for open ports on the local computer or on other computers. The
more sophisticated scanners, including Nessus, will check for known vulnerabilities, so they can
tell you if a server might be compromised should you decide to leave it running.

4425.book Page 357 Monday, July 11, 2005 10:46 AM

358 Chapter 7 � Documentation and Security

Network scanners are used by crackers for locating likely target systems,
as well as by network administrators for legitimate purposes. Many organi-
zations have policies forbidding the use of network scanners except under
specific conditions. Therefore, you should check these policies and obtain
explicit permission, signed and in writing, to perform a network scan. Failure
to do so could cost you your job or even result in criminal charges, even if
your intentions are honorable.

E X E R C I S E 7 . 2

Monitor Network Port Use

This exercise explores the use of netstat to monitor network port use. To do so, follow
these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Type netstat -ap | less and page through the output. Chances are you’ll see quite a
few entries for servers that are listening for connections and for established connections
to local servers or from local clients to remote servers. Pay particular attention to servers
that are listening for new connections—that is, those that list LISTEN in the State column
of the output.

4. Type netstat -ap | grep ssh to find connections involving SSH. Depending on your
configuration and the servers you have running, you might see no output or many lines
of output.

5. In another login session or xterm window, initiate an SSH connection to another computer.
For instance, type ssh remote.luna.edu to connect to remote.luna.edu.

6. Type netstat -ap | grep ssh in your original session (that is, not in your SSH connection).
Compare the output to that which you obtained in step 4. The output should have an addi-
tional line, reflecting the session you initiated in step 5.

7. Log out of the SSH session you initiated.

8. Type netstat -ap | grep ssh again. The output should now be missing the line for the
session you’ve now closed.

If you’re using a multi-user system, additional SSH sessions could come and go during the
course of this lab, reflecting the activities of other users.

4425.book Page 358 Monday, July 11, 2005 10:46 AM

Restricting Access by Ports 359

Nmap is capable of performing a basic check for open ports. Pass the -sT parameter and the
name of the target system to it, as shown here:

$ nmap -sT teela.rodsbooks.com

Starting nmap V. 3.55 (www.insecure.org/nmap/) at 2004-12-21 12:11 EDT

Interesting ports on teela.rodsbooks.com (192.168.1.2):

(The 1581 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

22/tcp open ssh

As with the output of netstat shown in “Using Local Network Activity Tools,”
this output has been trimmed for brevity’s sake.

This output shows two open ports—21 and 22, used by ftp and ssh, respectively. If you
weren’t aware that these ports were active, you should log into the scanned system and inves-
tigate further, using netstat or ps to locate the programs using these ports and, if desired, shut
them down. The -sT option specifies a scan of TCP ports. A few servers, though, run on UDP
ports, so you need to scan them by typing nmap -sU hostname. (This usage requires root priv-
ileges, unlike scanning TCP ports.)

Nmap is capable of more sophisticated scans, including “stealth” scans that aren’t likely to be
noticed by most types of firewalls, ping scans to detect which hosts are active, and more. The
Nmap man page provides details. Nessus, which is built atop Nmap, provides a GUI and a means
of performing automated and still more sophisticated tests. Nessus comes as separate client and
server components; the client enables you to control the server, which does the actual work.

When you use a network scanner, you should consider the fact that the ports you see from your
test system may not be the same as those that might be visible to an attacker. This issue is particularly
important if you’re testing a system that resides behind a firewall from another system that’s behind
the same firewall. Your test system is likely to reveal accessible ports that would not be accessible
from the outside world. On the other hand, a cracker on your local network would most likely have
access similar to your own, so you shouldn’t be complacent because you use a firewall. Nonetheless,
firewalls can be important tools for hiding servers without shutting them down.

Uninstalling or Reconfiguring Servers

Once you’ve identified an unnecessary server, your task becomes one of shutting it down.
Broadly speaking, two options exist:
� You can disable the server by changing its SysV configuration or disabling it in your sys-

tem’s super server. Consult Chapters 6 and 9 for details on how to perform these tasks. Dis-
abling the server in this way has the advantage that you can easily reactivate the server in
the future if you decide to do so. It has the disadvantage that the server’s files will continue
to consume disk space, and the server might be accidentally reactivated in the future.

4425.book Page 359 Monday, July 11, 2005 10:46 AM

360 Chapter 7 � Documentation and Security

� You can completely uninstall the server using your distribution’s package management
tools or by otherwise deleting its files. Chapter 2, “Managing Software,” describes this
task. Completely uninstalling software has the advantage of reducing the risk of accidental
reactivation, but it has the drawback that you won’t be able to easily reactivate the server
intentionally should you decide to do so.

Overall, completely removing the server is generally preferable unless you merely want to
temporarily disable a server. If you decide to reactivate the server in the future, you can always
re-install it.

Package and Program Security
Security isn’t limited to networking. Many security issues relate to local programs—program
bugs, misconfiguration, and other problems can lead to security breaches. Keeping ahead of
potential problems with packages and programs is therefore important to maintaining the over-
all security of your system. Three tasks are particularly important in this respect: tracking down
(and, if necessary, reconfiguring) set user ID (SUID) and set group ID (SGID) programs, veri-
fying the integrity of programs, and keeping programs up-to-date.

Tracking Down SUID/SGID Programs

Chapter 4, “Managing Files and Filesystems,” describes the SUID and SGID bits. In brief, these
are special flags that may be applied to executable program files, causing Linux to treat the pro-
gram as if it were run by the program file’s owner (for SUID) or by the file’s group (for SGID)
rather than by the individual who actually ran the program. For instance, if a program’s SUID bit
is set and if the program file is owned by bruce, the program, when run by anybody, will be able
to access all the files owned by bruce and otherwise behave as if bruce had run it.

The SUID and SGID bits are frequently associated with the root account in order to enable
them to perform tasks that require special privilege. For instance, the passwd program (described
in Chapter 8) is SUID root because only root may modify the Linux password database. Thus,
for an ordinary user to change a password, some mechanism must exist to run a process as root.
That mechanism, in the case of passwd, is the SUID bit.

The problem with all of this is that the SUID and SGID bits can be security risks. For instance,
suppose that the rm program’s SUID bit was set. This program is normally owned by root, so setting
the SUID bit on rm would mean that any user could delete any file on the system. Although no Linux
distribution sets the SUID bit on rm by default, the SUID bit can be set inappropriately. This can hap-
pen by accident (say, a mistyped command by root), by malice (if a cracker gains access to the sys-
tem), or because of a more subtle misconfiguration by the distribution maintainer (the SUID bit set
unnecessarily on a program for which it’s less blatantly inappropriate than rm). Even if the SUID or
SGID bit is set appropriately, a bug in the program can become more serious because the bug exe-
cutes as root. If the bug enables users to write files, for example, any user can exploit the bug to
overwrite critical system configuration files. For these reasons, you should periodically review your
system to find all the SUID programs and, if appropriate, change their configuration.

4425.book Page 360 Monday, July 11, 2005 10:46 AM

Package and Program Security 361

To do this, you can use the find command, which is described in detail in Chapter 4. In par-
ticular, you can use the -perm mode option, which searches for files with the specified permis-
sion mode. To search for SUID and SGID files, you should pass a mode of +6000. The symbolic
representation for the SUID and SGID bits is 6000, and the plus sign (+) tells find to locate any
file with any of the specified bits set. (You could search for SUID files alone by passing +4000
or SGID alone by passing +2000.) You might also want to pass -type f, which restricts the
search to regular files. (Directories use the SUID and SGID bits differently, as described in Chap-
ter 4.) Thus, to search the entire computer for SUID and SGID programs, you would type this:

find / -perm +6000 -type f

The result will be a list of files, one per line, that have either the SUID or the SGID bits set.
Programs that are likely to be present in this list include su, ping, mount, passwd, umount, and
sudo. These programs all have a legitimate need to be so configured. Most systems have addi-
tional SUID and SGID programs. If you have doubts about whether the program really needs
this status, you should investigate further. Try verifying the package integrity, as described in
the next section, and perform a Web search on the program name and “SUID” or “SGID,”
as appropriate. You might also try changing the SUID status of the program using chmod, as
described in Chapter 4, and see if it still works as it should when run by a normal user.

Programs that are SUID or SGID root but that should not be can be a sign of
system compromise. Crackers might reconfigure programs in this way in order
to more easily do their dirty work. Thus, if you find such programs, investigate
the overall integrity of the system. On the other hand, if a distribution main-
tainer set the SUID or SGID bit unnecessarily, this isn’t cause for concern. Like-
wise, accidental misconfiguration by you or another administrator isn’t cause
for massive system upheaval—but you’ll need to dig a bit deeper to ascertain
whether such a change was accidental or a sign of a deeper problem.

Verifying Package Integrity

Crackers sometimes modify system files in order to simplify subsequent break-ins, capture other
users’ passwords, and otherwise do their bidding. For this reason, you should periodically
review the integrity of your distribution’s packages. Several tools exist to help in this task. These
tools include Tripwire, chkrootkit, and your package manager.

Using Tripwire

Should somebody manage to break into your computer, Tripwire (http://www.tripwire.org)
may be your best bet to detect that fact. This utility records a set of information about all the
important files on a computer, including various types of checksums and hashes—short digital
“signatures” that enable you to quickly determine whether or not a file has been changed. (These
can also be used in other ways; for instance, Linux uses hashes to store passwords.) With this data-
base stored in a secure location, you can check your system periodically for alteration. If an

4425.book Page 361 Monday, July 11, 2005 10:46 AM

362 Chapter 7 � Documentation and Security

intruder has modified any of your files, Tripwire will alert you to this fact. If you like, you can run
a Tripwire verification on a regular basis—say, once a week in a cron job.

Many distributions ship with Tripwire, but it may not be installed by default. The utility is
controlled through two configuration files: tw.cfg and tw.pol, which often reside in /etc/
tripwire. The tw.cfg file controls overall configuration options, such as where tw.pol
resides, how Tripwire sends reports to the system administrator, and so on. The tw.pol file
includes information on the files Tripwire should monitor, among other things. Both files are
binary files created from text-mode files called twcfg.txt and twpol.txt, respectively. You
may need to edit twpol.txt to eliminate references to files that you don’t have on your system
and to add information on files that you do have but that the default file doesn’t reference. Use
the twinstall.sh program (which often resides in /etc/tripwire) to generate the binary
configuration files and other critical database files. This utility will ask you to set a pair of pass-
phrases, which are like passwords but are typically longer, to control access to the Tripwire util-
ities. You’ll then need to enter these passphrases to have the utility do its encoding work.

Once you’ve generated the basic setup files, type tripwire --init to have it generate initial
checksums and hashes on all the files it’s configured to monitor. This process is likely to take a
few minutes. Thereafter, typing tripwire --check will check the current state of the system
against the database, and typing tripwire --update will update the database (say, in case you
upgrade a package). The --init and --update operations require you to enter the passphrase,
but --check doesn’t. Therefore, you can include an automated Tripwire check in a cron job.
(Chapter 8 describes cron jobs in more detail.)

Tripwire is best installed and initialized on a completely fresh system, before
connecting the computer to the Internet but after all programs have been con-
figured. Although it’s possible to install it on a system that’s been up and run-
ning for some time, if that computer has already been compromised without
your knowledge, Tripwire won’t detect that fact.

Using chkrootkit

The chkrootkit program (http://www.chkrootkit.org) is something of a last-resort method of
detecting intrusion and is the closest thing in the Linux world to Windows virus scanners. (Linux
virus scanning programs also exist, but they’re intended mainly to check for Windows viruses on
Samba shares. Linux viruses are not a problem in the real world, at least not as of mid-2005.)

Many crackers use root kits, which are prepackaged intrusion tools. When an intruder runs a
root kit against a target, the root kit software probes for known weaknesses (such as servers with
known security bugs), breaks in, and installs software to enable simpler access by the intruder.
The intruder can then log in using Telnet, SSH, or the like and gain full control of the system.

Intruders who use root kits are often referred to as script kiddies. These miscre-
ants have minimal skill; they rely on the root kit to do the real work of the intru-
sion. Some people prefer to reserve the term cracker for more skilled intruders,
but others consider script kiddies to be crackers with minimal expertise.

4425.book Page 362 Monday, July 11, 2005 10:46 AM

Package and Program Security 363

Using chkrootkit is fairly straightforward: Type its name. The result is a series of lines sum-
marizing checks that the software performs. These lines should all end with not infected, no
suspect files found or a similar reassuring messages. If any message alerts you to an intru-
sion, you should take immediate corrective measures.

Using Package Manager Checksums

Package managers—most notably the RPM Package Manager (RPM)—maintain checksums on
all their installed packages. As such, they can be used as intrusion detection tools. In particular,
the -V (or --verify) option to rpm performs a package verification:

rpm -V postfix

S.5....T c /etc/postfix/main.cf

S.5....T c /etc/postfix/sasl_passwd

S.5....T c /etc/postfix/sender_canonical

Each line of output reports files that have changed in some way. The first eight characters of
the output lines report what’s changed: the file size, the mode, the MD5 sum, device major or
minor numbers (for device files), link path mismatch, user ownership, group ownership, or time.
A dot (.) in a position indicates that a test passed; any other character denotes a change (the char-
acter used depends on the test and is intended to be mnemonic). Following the eight-character
block may be another character that denotes the file type—c for configuration files, d for docu-
mentation, g for “ghost” files (those not included in the actual package), l for a license file, or r
for a README file. Files that haven’t changed are not displayed in the output.

In the preceding example, three files have changed: main.cf, sasl_passwd, and sender_
canonical. All three files are marked as configuration files (the c characters preceding the file-
names), and all three have changed file sizes, MD5 sums, and times. Because these are config-
uration files, these changes aren’t particularly suspicious, but a similar pattern of changes in
program executables would be cause for concern. Changes to the MD5 sum (the form of check-
sum used by RPM) are particularly likely to be the result of tampering; they indicate that the
file’s contents have changed compared to the file in the original package. Time stamp changes
can sometimes be completely innocent. Ownership and permissions changes might be the result
of unwanted tampering or could be innocent in some cases (say, if you’ve deliberately removed
world execute permission to improve security).

You can verify an individual package by providing a package name, as in the preceding
example. You can also verify all the packages installed on a system by passing the -a option.
The result is likely to be a very long list, though, because so many packages include configura-
tion files and other ancillary files that are normally changed. You might want to pass the output
to a file that you can peruse later, as in rpm -Va > rpm-test.txt.

One major limitation of a package manager’s checksums for detecting intrud-
ers is that it’s very easily overcome. Unlike Tripwire’s database, the RPM data-
base isn’t password-protected. In fact, intruders can easily cover their tracks by
using RPM itself to install their modified tools. When you attempt to use RPM
to verify the package, RPM will merrily report no problems.

4425.book Page 363 Monday, July 11, 2005 10:46 AM

364 Chapter 7 � Documentation and Security

Keeping Packages Up-to-Date

Program bugs are discovered every day. Some of these bugs have security implications. Some-
times the bug is in a server and enables remote users to do things they shouldn’t be able to do;
other times the bug is in a local program and can be exploited by local users to acquire privileges
they should not have. In either case, upgrading programs with such bugs in a timely manner is
extremely important, particularly on server systems and multi-user computers. Fortunately, sev-
eral resources exist to help keep you abreast of problems, and many distributions provide tools
that can be helpful in this regard.

Resources to Review for Update Information

You should get into the habit of reviewing several security websites and other resources to learn
about new threats:

CERT/CC The Computer Emergency Response Team Coordination Center (http://
www.cert.org) hosts general security information, including information on the latest threats.
Periodically reviewing this site will help you keep up-to-date with security developments.

US-CERT The United States Computer Emergency Readiness Team (http://www.
us-cert.gov) has taken over some of the duties formerly held by CERT/CC. In practice,
both sites are worth monitoring.

CIAC The Computer Incident Advisory Capability (http://ciac.llnl.gov/ciac/),
run by the U.S. Department of Energy, is similar to CERT/CC and US-CERT in many
respects, but its web page gives greater emphasis to current threats and less coverage of
general security practices.

CVE The Computer Vulnerabilities and Exposures (http://cve.mitre.org) site is dedi-
cated to maintaining a dictionary of vulnerability names. This information can be useful in facil-
itating communication about problems. The CVE contains less in the way of descriptions of the
vulnerabilities and exploits it names, though.

SecurityFocus and Bugtraq The SecurityFocus website (http://www.securityfocus.com)
is yet another general security site. One of its important features is that it hosts the Bugtraq mail-
ing list (http://www.securityfocus.com/archive/1), which can be a good way to keep
informed—subscribe, and alerts about new threats will be delivered to your e-mail account soon
after they’re made public.

Linux Security The Linux Security site, http://www.linuxsecurity.com, is very similar to
CERT/CC, US-CERT, CIAC, and SecurityFocus in many ways. Linux Security, though, caters
to Linux in particular and so may be more helpful in addressing Linux-specific issues or in
pointing to Linux-specific fixes.

Distributions’ websites Most Linux distributions maintain security information on their web-
sites. Go to your distribution’s main page and look for links relating to security. These sites can
provide specific upgrade instructions for your distribution in particular.

4425.book Page 364 Monday, July 11, 2005 10:46 AM

Package and Program Security 365

Product web pages and mailing lists Many programs have web pages and mailing lists, and
these can be good resources for learning of security problems related to these programs. Of
course, regularly perusing all of the pages related to the hundreds of programs that make up a
Linux system can be a full-time job. You might want to keep an eye on the web pages or mailing
lists for any high-profile server programs that you run, such as the Apache web server or the
sendmail mail server.

Security newsgroups Several Usenet newsgroups are devoted to security. Of particular interest
are the groups in the comp.security hierarchy.

I recommend you investigate most or all of these resources and then keep up with a few of
them. For instance, you might check the CERT/CC and Linux Security websites on a daily basis,
subscribe to the Bugtraq mailing list, and check your distribution’s security page on a weekly
basis. Keeping up with security developments in this way will alert you to potential problems
quickly—with any luck, quickly enough to avoid problems caused by crackers who might try
to exploit weaknesses soon after they’re discovered.

Many of these resources offer RDF Site Summary (RSS) feeds of their con-
tent. This protocol enables you to use a news aggregator program, such
as AmphetaDesk (http://www.disobey.com/amphetadesk/) or BlogBridge
(http://www.blogbridge.com), to track security problems and learn about
them as soon as possible.

Tools to Help Update Your System

Most distributions provide tools that can help you keep your system up-to-date. In particular,
your package manager (RPM or Debian) probably supports tools that will enable you to easily
download and install updates to your system software soon after they become available from
your distribution maintainer. For instance, the Advanced Packaging Tool (APT) described in
Chapter 2 enables you to upgrade all your software by typing two commands:

apt-get update

apt-get dist-upgrade

Substituting upgrade for dist-upgrade performs a system upgrade in a some-
what more conservative way, which can reduce the risk of running into depen-
dency problems.

Although APT originated as a Debian tool, it’s been ported to work with RPM-based dis-
tributions, as described in Chapter 2. Most modern RPM-based distributions provide their
own tools, such as Fedora and Red Hat’s Update Agent and SuSE’s YaST. These tools are
highly distribution-centric, so you should consult the distribution’s documentation for details
of their use. Most of these tools are X-based programs that are aimed at desktop users, but

4425.book Page 365 Monday, July 11, 2005 10:46 AM

366 Chapter 7 � Documentation and Security

you can certainly use them on servers if you run X on the server (even just for an update ses-
sion) or if you log in from a remote system that’s running X.

Because APT is a text-based tool, you can call it in a cron job to have it run on a regular basis.
(Chapter 8 describes cron jobs in more detail.) This is reasonably safe for upgrading the data-
base (via the update option to apt-get), but I recommend against automatically updating the
system (via upgrade or dist-upgrade). Doing so creates the potential for upgrades to go
wrong when you’re not around to fix the problem. You could, though, run these options in con-
junction with -s, which simulates the action. If done in a cron job with proper e-mail redirec-
tion, the result will be an e-mailed report of the packages for which updates are available being
sent to you on a regular basis. You can then decide whether or not to upgrade the packages.

Passwords
A default Linux configuration relies heavily on passwords. Users’ passwords are their keys into the
system, and if users are careless with their passwords, security breaches can result. Understanding
these risks is critical to maintaining system security, but this is one task for which you must enlist
the help of your users; after all, they’re the ones who are in possession of their passwords! You
should also be aware of some of the tools Linux provides to help keep passwords secure. (Most
of the details concerning password-related commands are described in Chapter 8.)

Password Risks

Passwords can end up in crackers’ hands in various ways, and you must take steps to minimize
these risks. Steps you can take to improve your system’s security include the following:

Use strong passwords. Users should employ good passwords, as described shortly, in
“Choosing a Good Password.” This practice won’t eliminate all risk, though.

Change passwords frequently. You can minimize the chance of damage due to a compromised
password by changing passwords frequently. Some Linux tools can help to enforce such changes,
as described briefly in “Tools for Managing Passwords” and in more detail in Chapter 8.

Use shadow passwords. If a cracker who’s broken into your system through an ordinary user
account can read the password file, or if one of your regular users is a cracker who has access
to the password file, that individual can run any of several password-cracking programs on the
file. For this reason, you should use shadow passwords stored in /etc/shadow whenever pos-
sible. Most Linux distributions use shadow passwords by default. If yours doesn’t, consult the
upcoming section “Tools for Managing Passwords” for information on enabling this feature.

Keep passwords secret. You should remind your users not to reveal their passwords to others.
Such trust is sometimes misplaced, and sometimes even a well-intentioned password recipient
might slip up and let the password fall into the wrong hands. This can happen by writing the pass-
word down, storing it in electronic form, or sending it by e-mail or other electronic means. Indeed,
users shouldn’t e-mail their own passwords even to themselves because e-mail can be intercepted.

4425.book Page 366 Monday, July 11, 2005 10:46 AM

Passwords 367

Use secure remote login protocols. Certain remote login protocols are inherently insecure; all
data traverse the network in an unencrypted form. Intervening computers can be configured to
snatch passwords from such sessions. Because of this, it’s best to disable Telnet, File Transfer
Protocol (FTP), and other protocols that use cleartext passwords in favor of protocols that
encrypt passwords, such as SSH.

Be alert to shoulder surfing. If your users log in using public terminals, as is common on col-
lege campuses, in Internet cafes, and the like, it’s possible that others will be able to watch them
type their passwords (a practice sometimes called “shoulder surfing”). Users should be alert to
this possibility and minimize such logins if possible.

Use each password on just one system. If one computer’s password database is compromised,
and if users of that system reuse their passwords on other systems, those other systems can be com-
promised. For this reason, it’s best to use each password just once. Unfortunately, the prolifera-
tion of websites that require passwords for access makes this rule almost impossible to enforce, at
least without violating the rule of not writing the password down. (Modern web browsers can
remember passwords for you, but this is done by storing them in a file—essentially, writing them
down.) A reasonable compromise might be to use one password for the least-sensitive websites
(such as online newspapers) and unique passwords for sensitive websites (such as banking sites)
and login accounts.

Be alert to social engineering. Crackers often use social engineering to obtain passwords. This
practice involves tricking individuals into giving up their passwords by pretending to be a sys-
tem administrator or by otherwise misleading victims. Amazingly, a large percentage of people
fall for this ploy. A related practice is phishing, in which an attacker puts up a fake website or
sends an e-mail pretending to be from somebody else. The victim is then lured into revealing sen-
sitive data (often credit card numbers).

Some of these steps are things you can do, such as replacing insecure remote login protocols
with encrypted ones. Others are things your users must do. This illustrates the importance of
user education, particularly on systems with many users.

Choosing a Good Password

As a general rule, people tend to be lazy when it comes to security. In computer terms, this
means that users tend to pick passwords that are easy to guess, and they change them infre-
quently. Both these conditions make a cracker’s life easier, particularly if the cracker knows the
victim. Fortunately, Linux includes tools to help make your users select good passwords and
change them regularly.

Common (and therefore poor) passwords include those based on the names of family mem-
bers, friends, and pets; favorite books, movies, television shows, or the characters in any of these;
telephone numbers, street addresses, or Social Security numbers; or other meaningful personal
information. Any single word that’s found in a dictionary (in any language) is a poor choice for
a password. The best possible passwords are random collections of letters, digits, and punctua-
tion. Unfortunately, such passwords are difficult to remember. A reasonable compromise is to
build a password in two steps: First, choose a base that’s easy to remember but difficult to guess.
Second, modify that base in ways that increase the difficulty of guessing the password.

4425.book Page 367 Monday, July 11, 2005 10:46 AM

368 Chapter 7 � Documentation and Security

One approach to building a base is to use two unrelated words, such as bun and pen. You
can then merge these two words (bunpen). Another approach, and one that’s arguably better
than the first, is to use the first letters of a phrase that’s meaningful to the user. For instance, the
first letters of “yesterday I went to the dentist” become yiwttd. In both cases, the base should
not be a word in any language. As a general rule, the longer the password the better. Older ver-
sions of Linux had password length limits of eight characters, but those limits have been lifted
by the use of the MD5 password hash, which is the standard on modern Linux distributions.
Many Linux systems require passwords to be at least four to six characters in length; the passwd
utility won’t accept anything shorter than the distribution’s minimum.

With the base in hand, it’s time to modify it to create a password. The user should apply at
least a couple of several possible modifications:

Adding numbers or punctuation The single most important modification is to insert random
numbers or punctuation in the base. This step might yield, for instance, bu3npe&n or y#i9wttd.
As a general rule, add at least two symbols or numbers.

Mixing case Linux uses case-sensitive passwords, so jumbling the case of letters can improve
security. Applying this rule might produce Bu3nPE&n and y#i9WttD, for instance.

Order reversal A change that’s very weak by itself but that can add somewhat to security
when used in conjunction with the others is to reverse the order of some or all letters. You
might apply this to just one word of a two-word base. This could yield Bu3nn&EP and
DttW9i#y, for instance.

Your best tool for getting users to pick good passwords is to educate them. Tell them that
passwords can be guessed by malicious individuals who know them or even who target them
and look up personal information in telephone books, on web pages, and so on. Tell them
that, although Linux encrypts its passwords internally, programs exist that feed entire dictio-
naries through Linux’s password encryption algorithms for comparison to encrypted pass-
words. If a match is found, the cracker has found the password. Therefore, using a password
that’s not in a dictionary, and that isn’t a simple variant of a dictionary word, improves secu-
rity substantially. Tell your users that their accounts might be used as a first step toward com-
promising the entire computer or as a launching point for attacks on other computers.
Explain to your users that they should never reveal their passwords to others, even people
claiming to be system administrators—this is a common scam, but real system administrators
don’t need users’ passwords. You should also warn them not to use the same password on
multiple systems because doing so quickly turns a compromised account on one system into
a compromised account on all the systems. Telling your users these things will help them
understand the reasons for your concern, and it is likely to help motivate at least some of them
to pick good passwords.

If your users are unconcerned after being told these things (and in any large installation,
some will be), you’ll have to rely on the checks possible in passwd. Most distributions’
implementations of this utility require a minimum password length (typically four to six
characters). They also usually check the password against a dictionary, thus weeding out
some of the absolute worst passwords. Some require that a password contain at least one
or two digits or punctuation.

4425.book Page 368 Monday, July 11, 2005 10:46 AM

Passwords 369

Password-cracking programs, such as Crack (http://www.crypticide.org/
users/alecm/), are easy to obtain. You might consider running such programs
on your own encrypted password database to spot poor passwords, and in
fact, this is a good policy in many cases. It’s also grounds for dismissal in many
organizations and can even result in criminal charges being brought, at least if
done without authorization. If you want to weed out bad passwords in this way,
discuss the matter with your superiors and obtain written permission from a
person with the authority to grant it before proceeding. Take extreme care with
the files involved, too; it’s best to crack the passwords on a computer with no
network connections.

Another password security issue is password changes. Frequently changing passwords mini-
mizes the window of opportunity for crackers to do damage; if a cracker obtains a password but
it changes before the cracker can use it (or before the cracker can do further damage using the
compromised account), the password change has averted disaster. As described shortly, you can
configure accounts to require periodic password changes. When so configured, an account will
stop accepting logins after a time if the password isn’t changed periodically. (You can configure
the system to warn users when this time is approaching.) This is a very good option to enable on
sensitive systems or those with many users. Don’t set the expire time too low, though—if users
have to change their passwords too frequently, they’ll probably just switch between a couple of
passwords, or pick poor ones. Precisely what “too low” a password change time is depends on the
environment. For most systems, one to four months is probably a reasonable change time, but for
some it might be longer or shorter.

Tools for Managing Passwords

Most Linux distributions use shadow passwords by default, and for the most part, this chapter
is written with the assumption that this feature is active. In addition to providing extra security
by moving hashed passwords out of the world-readable /etc/passwd file and into the more
secure /etc/shadow file, shadow passwords add extra account information.

If you happen to be using a system that hasn’t enabled shadow passwords but you want
to add that support, you can do so. Specifically, the pwconv and grpconv programs do this
job for /etc/passwd and /etc/group, respectively. These programs take no parameters;
simply type their names to create /etc/shadow and /etc/gshadow files that hold the pass-
words and related account control information, based on the contents of the unprotected
files. You can run these programs even if most accounts already use shadow passwords;
when used in this way, any accounts that do not yet use shadow passwords are converted,
and those that already exist are left untouched. This feature can be handy when duplicating
accounts from one system on another—you can cut and paste /etc/passwd entries from an
old system that doesn’t use shadow passwords and then type pwconv to create appropriate
shadow password entries.

4425.book Page 369 Monday, July 11, 2005 10:46 AM

370 Chapter 7 � Documentation and Security

The pwconv and grpconv utilities can loop forever or otherwise misbehave if
their source files are malformed. You may want to check the format of these
files with pwck and grpck. These programs look for errors such as an incorrect
number of fields, missing home directories, and duplicate names, and report
any problems to you.

Although converting a system so that it no longer uses shadow passwords is generally inadvis-
able, you can do so with the pwunconv and grpunconv commands, which merge the contents
from the shadow files back into /etc/passwd and /etc/group, respectively. In practice, you’re
most likely to need to do this if you must move Linux account information over to a computer that
doesn’t support shadow passwords. If you do this, you may want to first back up the /etc/
passwd and /etc/shadow (or /etc/group and /etc/gshadow) files. You can then copy the
backups back to /etc when you’re done, reversing the process. This procedure will preserve some
shadow information, such as account expiration data, that will be lost in the conversion process.

One of the advantages of shadow passwords is that they support password aging and
account expiration features. These features enable you to enforce password changes at regular
intervals or to automatically disable an account after a specified period of time. You can enable
these features and set the times using the chage command, which is described in more detail in
Chapter 8.

Configuring User-Level Security
Several security measures apply to individual users. These tools can help improve system secu-
rity by reducing the need to log in under sensitive usernames (such as root) or by limiting the
system resources that a single individual may consume.

Configuring Mail Aliases

Most Linux systems (even desktop computers) run mail servers. If nothing else, these server pro-
grams handle local mail delivery. Such deliveries can originate from automatic processes. For
instance, the cron utility (described in Chapter 8) can send e-mail reports of its activities to the
user who runs cron jobs. In many cases, such e-mail is sent to the root account, which can pose
a problem: The e-mail will either go unnoticed and unread or somebody will have to log in as
root to read the mail. Reading mail as root is a security no-no because the power of root
should be used sparingly lest a typo wipe out the system. Thus, it’s desirable to redirect mail to
root (and perhaps other system accounts, if any receive mail) to another user.

You can redirect e-mail by creating a mail aliases file. This file is usually called aliases
and is located in /etc or a subdirectory of /etc devoted to your mail server, such as /etc/
postfix for the Postfix mail server or /etc/mail for sendmail. This file’s format is fairly
straightforward: It consists of lines, each of which is either a comment (denoted by a hash

4425.book Page 370 Monday, July 11, 2005 10:46 AM

Configuring User-Level Security 371

mark, #) or an alias line. Alias lines consist of a name to be aliased, a colon, and a comma-
separated list of addresses to which the mail should be redirected:

postmaster: root

root: benf

This example sets up two aliases: Mail sent to postmaster is redirected to root, and mail
sent to root is redirected to benf. This example illustrates the fact that mail can be redirected
more than once. In this example, mail sent to postmaster will ultimately be sent to benf.

The addresses (such as benf) can be local accounts, local filenames, commands preceded by
a pipe (such as |processor to send the message through processor), or remote e-mail
addresses (such as benf@pangaea.edu).

Once you’ve configured this file, it must be converted to binary format (typically stored in
aliases.db) by typing newaliases. If you fail to do this, your changes will have no effect.

This aliasing system works with major Linux mail servers, such as sendmail and Postfix. If
you’re using a particularly exotic mail server, you should consult its documentation to see if it
supports this mechanism or uses something else.

Setting Login, Process, and Memory Limits

Sometimes you may want to impose limits on how many times users may log in, how much CPU
time they can consume, how much memory they can use, and so on. Imposing such limits is best
done through a Pluggable Authentication Modules (PAM) module called pam_limits. Most
major Linux distributions use this module as part of their standard PAM configuration, so
chances are you won’t need to add it; however, you will still need to configure pam_limits.
This is done by editing its configuration file, /etc/security/limits.conf. This file contains
comments (denoted by a hash mark, #) and limit lines that consist of four fields:

domain type item value

Each of these fields specifies a particular type of information:

The domain The domain describes the entity to which the limit applies. It can be a user-
name; a group name, which takes the form @groupname; or an asterisk (*) wildcard, which
matches everybody.

Hard or soft limits The type field specifies the limit as hard or soft. A hard limit is imposed
by the system administrator and cannot be exceeded under any circumstances, whereas a soft
limit may be temporarily exceeded by a user. You can also use a dash (-) to signify a limit is both
hard and soft.

The limited item The item field specifies what type of item is being limited. Examples include
core (the size of core files), data (the size of a program’s data area), fsize (the size of files created
by the user), nofile (the number of open data files), rss (the resident set size), stack (the stack
size), cpu (the CPU time of a single process in minutes), nproc (the number of concurrent pro-
cesses), maxlogins (the number of simultaneous logins), and priority (the process priority). The

4425.book Page 371 Monday, July 11, 2005 10:46 AM

372 Chapter 7 � Documentation and Security

data, rss, and stack items all relate to memory consumed by a program. These and other mea-
sures of data capacity are measured in kilobytes.

The value The final field specifies the value that’s to be applied to the limit.

As an example, consider a system on which certain users should be able to log in and perform
a limited number of actions but not stay logged in indefinitely and consume vast amounts of
CPU time. You might use a configuration like this one:

@limited hard cpu 2

This configuration applies a hard CPU limit of two minutes to the limited group. Members
of this group will be able to log in and run programs, but if one of those programs consumes
more than two minutes of CPU time, it will be terminated.

CPU time and total system access time are two entirely different things. CPU
time is calculated based on the amount of time that the CPU is actively process-
ing a user’s data. Idle time (for instance, when a user’s shell is active but no
CPU-intensive tasks are running) doesn’t count. Thus, a user can log in and
remain logged in for hours even with a very low hard CPU time limit. This limit
is intended to prevent problems caused by users who run very CPU-intensive
programs on systems that should not be used for such purposes.

One particularly radical approach to security is to use the /etc/nologin file. If this file is
present, only root may log into the computer. In many respects, this is like setting critical sys-
tem limits to 0 for all other users. This file is most likely to be useful on dedicated server systems
that have no regular console or remote shell users.

Summary
Linux documentation and information resources are varied. The traditional Unix documenta-
tion system has long been the man page, and Linux has adopted this system; but other documen-
tation tools coexist with man pages. Some projects have shifted their emphasis to the competing
info tool. Most projects also provide additional documentation that doesn’t fit in the man
(or info) page format, such as tutorial documents. You can often find such documentation on
your system or on the Internet, either on the package’s main web page or at the LDP site.

Maintaining system security is both important and time-consuming. A great deal of security
emphasis is on network security, and for this, configuring firewalls and your super server will
go a long way by restricting access to specific ports. You should also disable unused servers, ver-
ify package integrity, and keep your packages up-to-date. You must know where to look to find
the latest security information (several websites and other Internet resources are helpful, such
as the CERT/CC and CIAC sites and various Usenet newsgroups). Attending to passwords and
performing miscellaneous tasks to keep your local accounts from becoming security risks are
also important security tasks.

4425.book Page 372 Monday, July 11, 2005 10:46 AM

Exam Essentials 373

Exam Essentials
Summarize commands for obtaining help in Linux. The man and info commands both dis-
play summary information on how to use commands, configuration files, system calls, and so
on. The whatis and apropos commands both search the man database for the keyword you
specify, the apropos command searching more fields than whatis.

Describe where packages store their documentation. Aside from man pages and in-program
help files, most Linux packages store documentation in the /usr/doc, /usr/share/doc, /usr/
X11R6/doc, or similar directories. This documentation may consist of README and similar files
from the source code distribution, formatted manuals, and other miscellaneous documentation.

Summarize the three main types of documentation maintained by the LDP. The Linux Doc-
umentation Project (LDP) hosts HOWTOs, Guides, and FAQs. HOWTOs are task-oriented
introductions to programs or topics. Guides are longer (often book-length) tutorial documents.
FAQs provide quick answers to common questions.

Describe some of the tools you can use to deliver messages to text-mode login users. The /etc/
issue and /etc/issue.net files hold messages that are displayed prior to the login: prompt on
the console and by Telnet, respectively. The /etc/motd file holds the message of the day, which is
displayed immediately after login. The shutdown command enables you to deliver a message to
users as a scheduled shutdown time approaches, warning them of the impending event.

Explain the function of a firewall. A firewall blocks access to specific ports on a computer,
which can be a router (thus protecting an entire network) or an individual server or workstation.
Firewalls block all access to specific ports no matter what program might be using those ports.

Summarize Linux firewall tools. Modern Linux systems use the iptables program to imple-
ment firewall rules. Typically, a script calls iptables many times, once for each rule you want
to implement. Older Linux systems used the ipchains or ipfwadm programs in a similar way,
although details differ. (Modern Linux systems can still use these tools to implement legacy fire-
wall scripts.)

Explain the function of super server port access controls. Super servers or programs called by
them (such as TCP Wrappers) can restrict access to ports for the servers they manage. These
restrictions occur at a higher level than a firewall’s restrictions, and they apply only to the servers
managed by the super server.

Describe why SUID and SGID programs are potentially risky. The set user ID (SUID) and set
group ID (SGID) bits tell Linux to run the program as the user or group that owns the file. This
is particularly risky when root owns the program file because it essentially elevates all users to
root for the purposes of running the file, making bugs in the program more dangerous and rais-
ing the possibility of a clever user abusing the program to acquire full root privileges or other-
wise wreaking havoc.

Summarize methods of verifying package integrity. The most thorough way of checking pack-
age integrity is via the Tripwire program, which was designed as a secure method of checking that

4425.book Page 373 Monday, July 11, 2005 10:46 AM

374 Chapter 7 � Documentation and Security

files haven’t been modified. Linux package systems can do the same, but they weren’t designed
with security in mind and so aren’t as trustworthy in this role. The chkrootkit program can scan
a system for known suspicious files, much like a Windows virus scanner.

Explain how to generate a good password. Ideally, passwords should be random. Failing
that, one good approach is to generate a base that’s hard to guess and then modify it by adding
digits and punctuation, changing the case of some characters, and changing letter order.

4425.book Page 374 Monday, July 11, 2005 10:46 AM

Review Questions 375

Review Questions
1. Which of the following statements is a fair comparison of HOWTO documents to man pages?

A. HOWTOs do not require Internet access to be read; man pages do.

B. HOWTOs are a type of electronic documentation; man pages are printed.

C. HOWTOs are programmers’ documents; man pages describe software from a user’s point
of view.

D. HOWTOs are tutorial in nature; man pages are briefer reference documents.

2. Which of the following commands searches the man page database for entries or descriptions
that include a specified keyword?

A. info

B. apropos

C. grep

D. apackage

3. What file would you edit to change the man path?

A. /etc/man.conf

B. /etc/conf.man

C. /etc/paths.conf

D. /etc/conf.paths

4. Which of the following is a difference between man pages and info pages?

A. man pages are designed to be translated by machine translation programs for reading in over
a dozen languages; info pages lack this feature.

B. man pages are the preferred documentation system of the Free Software Foundation; the FSF
shuns the info page system.

C. man pages are “flat” text files, much like ASCII text files; info pages are structured with
hyperlinks, much like HTML documents.

D. man pages describe only system calls and other programming tools; info pages describe only
user programs and configuration files.

5. What information is certain to appear in a package’s /usr/share/doc subdirectory?

A. A PDF reference manual.

B. An HTML reference manual.

C. A sample configuration file.

D. None of the above is certain to appear.

4425.book Page 375 Monday, July 11, 2005 10:46 AM

376 Chapter 7 � Documentation and Security

6. What are the three main classes of documents hosted by the Linux Documentation Project?

A. RFCs

B. HOWTOs

C. FAQs

D. Guides

7. What do you need to read Usenet newsgroups? (Select all that apply.)

A. A newsreader

B. A password to the Reuters website

C. Access to a news server

D. The Usenet network stack in your kernel

8. You recently “chatted” with a group of people online to help fix a problem in real-time with the
PatheticMail program. What type of Internet help resource did you use?

A. A web forum

B. IRC

C. Usenet news

D. A mailing list

9. You want to deliver a message to would-be Telnet users that your system is for official use by
employees of your company. What file would you edit to deliver this message before Telnet users
see a login: prompt?

A. /etc/profile.net

B. /etc/profile

C. /etc/issue.net

D. /etc/issue

10. In reviewing files in /etc, you find that /etc/motd is completely empty. What does this mean?

A. The system won’t display a message of the day after users log in.

B. Morton’s Own Temporary Documentation is not installed on the system.

C. The motd.conf file’s name has become corrupted and its contents lost.

D. Users will see no witty aphorisms appear on the screen after logging in.

11. Which of the following are firewall tools that may be used with 2.6.x kernels? (Select all
that apply.)

A. ipfwadm

B. ipfire

C. ipchains

D. iptables

4425.book Page 376 Monday, July 11, 2005 10:46 AM

Review Questions 377

12. A server/computer combination appears in both hosts.allow and hosts.deny. What’s the
result of this configuration when TCP Wrappers runs?

A. TCP Wrappers refuses to run and logs an error in /var/log/messages.

B. The system’s administrator is paged to decide whether to allow access.

C. hosts.deny takes precedence; the client is denied access to the server.

D. hosts.allow takes precedence; the client is granted access to the server.

13. When is the bind option of xinetd most useful?

A. When you want to run two servers on one port

B. When you want to specify computers by name rather than IP address

C. When xinetd is running on a system with two network interfaces

D. When resolving conflicts between different servers

14. What is the best way to remain abreast of security developments?

A. Read the CERT/CC website on a regular basis.

B. Subscribe to and read the Bugtraq mailing list.

C. Check your distribution’s security web page on a regular basis.

D. All of the above

15. At what point during system installation should you configure Tripwire?

A. Prior to installing major servers like Apache

B. After installing major servers but before configuring them

C. After installing and configuring major servers but before connecting the computer to
the Internet

D. After connecting the computer to the Internet and running it for one to four weeks

16. Of the following, which is the best password?

A. Odysseus

B. iA71Oci^My

C. pickettomato

D. Denver2Colorado

17. Which of the following types of attacks involves sending bogus e-mail to lure unsuspecting indi-
viduals into divulging sensitive financial or other information?

A. Phishing

B. Script kiddies

C. Spoofing

D. Ensnaring

4425.book Page 377 Monday, July 11, 2005 10:46 AM

378 Chapter 7 � Documentation and Security

18. You want to configure a system so that e-mail addressed to root is sent to hires@sassafras
.example.com. Which file might you edit to accomplish this goal?

A. /etc/mail/forwarding-rules

B. /var/spool/mail/root

C. /etc/aliases

D. None of the above

19. You’ve discovered that your system is not using shadow passwords. What action should
you take?

A. Browbeat your users to get them to use shadow passwords.

B. Run the Crack program to verify that your passwords are still good.

C. Run the shadow-suite program to generate shadow password files.

D. Run the pwconv and grpconv programs to generate shadow password files.

20. Your login server is using PAM and you want to limit users’ access to system resources. Which
configuration file will you need to edit?

A. /etc/limits.conf

B. /etc/pam/limits.conf

C. /etc/security/limits.conf

D. /etc/security/pam/limits.conf

4425.book Page 378 Monday, July 11, 2005 10:46 AM

Answers to Review Questions 379

Answers to Review Questions
1. D. HOWTOs are intended as introductions to packages or broad topics. On the other hand, man

pages are intended to give you quick information on commands, configuration files, or the like.

2. B. The apropos utility searches the man page database for entries or descriptions that include a
specified keyword. The info utility simply returns help information on a utility, while grep is an
all-purpose searching tool not focused on man pages. There is no standard utility called apackage.

3. A. The man configuration file is /etc/man.conf. Among other things, this file sets the man path.
Options B, C, and D all refer to fictitious files.

4. C. The man page system provides no hyperlinks; individual documents are “flat.” The info page
system, by contrast, uses hyperlinks to help organize its documents. In principle, you can pass
either man pages or info pages through machine translation software, but neither system was
designed with this use in mind. Option B is essentially backwards; the FSF prefers info pages
to man pages. Both man pages and info pages describe system calls, programming tools, user
programs, and configuration files; Option D describes a nonexistent distinction.

5. D. Although options A, B, and C are all possible contents of a package’s documentation direc-
tory, none of these is certain to appear. These directories’ contents are inherently uncertain, but
they often contain whatever documentation doesn’t fit elsewhere on the system.

6. B, C, D. The LDP hosts three main classes of documents: HOWTOs, which are tutorial documents
designed to help you learn how to use a program or perform a task; FAQs, which are collections of
common questions and answers about Linux; and guides, which are book-length tutorial and refer-
ence documents. RFCs are Requests for Comments, which are networking standards documents that
are not maintained by the LDP.

7. A, C. Usenet newsgroups are distributed via a global collection of news servers, which
exchange messages with one another. To read Usenet news, you need a newsreader program
and access to one of these news servers, which are run by ISPs, universities, and businesses.
Usenet news has nothing to do with the Reuters news service or its website, as option B sug-
gests. Usenet is also not a network stack, as option D suggests.

8. B. Internet Relay Chat (IRC) is a real-time system for communicating with a group of people. It
can be used to get real-time help in solving problems. Web forums, Usenet news, and mailing
lists can all be mediums for obtaining help, and often fairly quickly, but not in real time.

9. C. The /etc/issue.net file contains text that’s sent by the Telnet server to the remote Telnet
client prior to Telnet’s sending the login: prompt—precisely what the question requires. There
is no standard /etc/profile.net configuration file, and /etc/profile is a configuration file
for the bash shell, which won’t help achieve the question’s goals. The /etc/issue file is similar
to /etc/issue.net, but it controls the message that’s displayed on the local text-mode console.

4425.book Page 379 Monday, July 11, 2005 10:46 AM

380 Chapter 7 � Documentation and Security

10. A. The /etc/motd file holds the message of the day, which is displayed after users log in using
text-mode tools such as text-mode consoles or SSH. An empty /etc/motd file simply means that
no such message will appear, as option A describes. There is no such thing as Morton’s Own
Temporary Documentation, referred to in option B. There is no standard /etc/motd.conf file,
as described in option C. Witty aphorisms are created by the fortune program, which is usually
called in ways that don’t involve /etc/motd. Although they might not be displayed, as option D
suggests, there’s no linkage between this and the empty /etc/motd file; fortunes are enabled or
disabled in other ways.

11. A, C, D. The ipfwadm and ipchains programs were the preferred firewall tools for pre-2.4.x
Linux kernels, but they remain as options up to at least the 2.6.x kernel series. The iptables
program was introduced along with the 2.4.x kernel and is the preferred firewall tool for use
with the 2.6.x kernel. There is no standard ipfire program.

12. D. TCP Wrappers uses this feature to allow you to override broad denials by adding more
specific explicit access permissions to hosts.allow, as when setting a default deny policy
(ALL : ALL) in hosts.deny.

13. C. The bind option of xinetd lets you tie a server to just one network interface rather than link
to them all. It has nothing to do with running multiple servers on one port, specifying computers
by hostname, or resolving conflicts between servers.

14. D. To obtain the best possible view of security developments, you should consult as many sources
as possible. The CERT/CC website, the Bugtraq mailing list, and your distribution’s security page
are three good sources of information (but by no means the only three available). Consulting just
one of these sources may not be adequate because an obscure issue that’s important to you might
escape notice on a single source.

15. C. Tripwire records checksums and hashes of major files, including server executables and con-
figuration files. Thus, these files should be in place and properly configured before you configure
Tripwire. Once the system has been running on the Internet, there’s a chance that it’s been com-
promised; you should install Tripwire prior to connecting the computer to the Internet in order
to reduce the risk that its database reflects an already-compromised system.

16. B. Ideally, passwords should be completely random but still memorable. Option B’s password
was generated from a personally meaningful acronym and then modified to change the case of
some letters and add random numbers and symbols. This creates a password that’s close to ran-
dom but still memorable. Option A uses a well-known mythological figure, who is likely to be
in a dictionary. Option C uses two common words, which is arguably better than option A, but
not by much. Option D uses two closely related words separated by a single number, which is
also a poor choice for a password.

17. A. Phishing involves sending bogus e-mail or setting up fake websites that lure unsuspecting
individuals into divulging sensitive financial or other information. Script kiddies are intruders
who use root kits. Spoofing involves pretending data is coming from one computer when it is
coming from another. Ensnaring is not a type of attack.

4425.book Page 380 Monday, July 11, 2005 10:46 AM

Answers to Review Questions 381

18. C. The aliases file, commonly found in /etc, /etc/mail, or a server-specific subdirectory
of /etc, holds mail aliases—addresses or other forwarding rules to use for accounts whose
mail should be permanently forwarded elsewhere. There is no standard /etc/mail/
forwarding-rules file. Although /var/spool/mail/root may exist (it’s the root mail
spool file on many systems), you wouldn’t edit it to adjust forwarding for the root (or any
other) account.

19. D. The pwconv and grpconv programs convert the /etc/passwd and /etc/group files, respec-
tively, into forms that use shadow password files (/etc/shadow and /etc/gshadow, respectively).
Because shadow passwords are desirable, taking this action is also desirable. Users have no control
over whether the system uses shadow passwords, so option A will be unproductive. The Crack
program attempts to discover poorly chosen passwords, but such passwords can exist on either
shadowed or non-shadowed systems, so option B won’t affect the system’s shadow password sta-
tus. There is no standard shadow-suite program, as referenced in option C.

20. C. The /etc/security/limits.conf file holds the configuration settings that will allow you
to limit users’ access. The other options listed do not give the correct path to this file.

4425.book Page 381 Monday, July 11, 2005 10:46 AM

Chapter

8

Administering
the System

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.111.1 Manage users and group accounts and related

system files (weight: 4)

�

1.111.2 Tune the user environment and system environment

variables (weight: 3)

�

1.111.3 Configure and use system log files to meet

administrative and security needs (weight: 3)

�

1.111.4 Automate system administration tasks by scheduling

jobs to run in the future (weight: 4)

�

1.111.5 Maintain an effective data backup strategy (weight: 3)

�

1.111.6 Maintain system time (weight: 4)

4425.book Page 383 Monday, July 11, 2005 10:46 AM

Much of Linux system administration deals with handling mundane
day-to-day tasks. Many of these tasks relate to users and groups:
adding them, deleting them, configuring the environments, and so

on. On a small system, you might perform such tasks infrequently, but on a busy system, you might
adjust accounts frequently. In any event, you must know how to do these things. Another class
of day-to-day tasks involves managing and reviewing

log files.

 These are files that record details of
system operations, such as remote logins. Log files can be invaluable debugging resources, but even
if you aren’t experiencing a problem, you should review them periodically to be sure everything’s
working as it should.

Many Linux tasks relate to time. Linux keeps time somewhat differently than some other
OSs, and understanding how Linux treats time is important. So are the skills needed to set the
time in Linux. (Some automated tools can be very helpful, but you must know how to configure
them.) You can also tell Linux to run particular jobs at specific times in the future. This can be
handy to help automate repetitive tasks, such as synchronizing data with other systems on a reg-
ular basis. You may even want to schedule backups on an automated basis. In fact, backups are
very important, but they’re often neglected.

Managing Users and Groups

Linux is a multi-user system, meaning that it relies on

accounts

—data structures and
procedures used to identify individual users of a computer. Managing these accounts is a
basic but important system administration skill. Before delving into the details, I describe
a few basic concepts you should understand about user and group administration. With that
out of the way, I describe the tools and configuration files that you employ to manage users
and groups.

User and Group Concepts

Chances are you have a good basic understanding of accounts already. Fundamentally, Linux
accounts are like accounts on Windows, Mac OS, and other OSs. Some websites use accounts,
too. Nonetheless, a few details deserve explanation. These include Linux username conven-
tions, the nature of Linux groups, and the way Linux maps the numbers it uses internally to the
usernames and group names that people generally use.

4425.book Page 384 Monday, July 11, 2005 10:46 AM

Managing Users and Groups

385

Linux Usernames

Linux is fairly flexible about its usernames. Most versions of Linux support usernames con-
sisting of any combination of upper- and lowercase letters, numbers, and many punctuation
symbols, including periods and spaces. Some punctuation symbols, however, such as spaces,
cause problems for certain Linux utilities, so it’s generally best to avoid using punctuation in
Linux usernames. Underscores (

_

) and periods (

.

) are relatively unlikely to cause problems
and so are occasionally used. Also, usernames must begin with a letter, so a username such
as

45u

 is invalid, although

u45

 is fine. Although usernames may consist of up to 32 characters,
many utilities truncate usernames longer than 8 characters or so in their displays, so many
administrators try to limit username length to 8 characters.

Linux treats usernames in a case-sensitive way. Therefore, a single computer can support
both

ellen

 and

Ellen

 as separate users. This practice can lead to a great deal of confusion,
however, so it’s best to avoid creating accounts whose usernames differ only in case. In fact, the
traditional practice is to use entirely lowercase letters in Linux usernames, such as

sally

,

sam

,

ellen

, and

george

. Usernames don’t need to be based on first names, of course—you could use

sam_jones

,

s.jones

,

sjones

,

jones

,

jones17

, or

u238

, to name just a few possibilities. Most
sites develop a standard method of creating usernames, such as using the first initial and the last
name. Creating and following such a standard practice can help you locate an account that
belongs to a particular individual. If your computer has many users, though, you may find a
naming convention produces duplicates, particularly if your standard is to use initials to shorten
usernames. You may therefore be forced to deviate from the standard or incorporate numbers
to distinguish between all the Davids or Smiths of the world.

Groups: Linking Users Together for Productivity

Linux uses

groups

 as a means of organizing users. In many ways, groups parallel users. In par-
ticular, they’re defined in similar configuration files, have names similar to usernames, and are
represented internally by numbers (as are accounts).

Groups are

not

 accounts, however. Rather, groups are a means of organizing collections
of accounts, largely as a security measure. Every file on a Linux system is associated with
a specific group, and various permissions can be assigned to members of that group. For
instance, group members (such as faculty at a university) might be allowed to read a file, but
others (such as students) might be disallowed such access. Because Linux provides access to
most hardware devices (such as serial ports and tape backup units) through files, this same
mechanism can be used to control access to hardware.

Every group has anywhere from no members to as many members as there are users on the
computer. Group membership is controlled through the

/etc/group

 file. This file contains a
list of groups and the members belonging to each group. The details of this file’s contents are
described in the section “Configuring Groups.”

In addition to membership defined in

/etc/group

, each user has a default or primary group.
The user’s primary group is set in the user’s configuration in

/etc/passwd

 (the file that defines
accounts). When users log onto the computer, their group membership is set to their primary
groups. When users create files or launch programs, those files and running programs are asso-
ciated with a single group—the current group membership. A user can still access files belonging

4425.book Page 385 Monday, July 11, 2005 10:46 AM

386

Chapter 8 �

Administering the System

to other groups as long as the user belongs to that group and the group access permissions per-
mit the access. To run programs or create files with other than the primary group membership,
however, the user must run the

newgrp

 command to switch current group membership. For
instance, to change to the

project2

 group, you might type the following:

$

newgrp project2

If the user typing this command is listed as a member of the

project2

 group in

/etc/group

,
the user’s current group membership will change. Thereafter, files created by that user will be
associated with the

project2

 group. Alternatively, users can change the group associated with
an existing file by using the

chgrp

 or

chown

 command, as described in Chapter 4.
This group structure enables you to design a security system that permits different collections

of users to easily work on the same files while simultaneously keeping other users of the same
computer from prying into files they should not be able to access. In a simple case, you might
create groups for different projects, classes, or workgroups, with each user restricted to one of
these groups. A user who needs access to multiple groups could be a member of each of these
groups—for instance, a student who takes two classes could belong to the groups associated
with each class, or a supervisor might belong to all the supervised groups.

Mapping UIDs and GIDs to Users and Groups

As mentioned earlier, Linux defines users and groups by numbers, referred to as

user IDs
(UIDs)

 and

group IDs (GIDs)

, respectively. Internally, Linux tracks users and groups by these
numbers, not by name. For instance, the user

sam

 might be tied to UID 523, and

ellen

 might
be UID 609. Similarly, the group

project1

 might be GID 512, and

project2

 might be GID
523. For the most part, these details take care of themselves—you use names, and Linux uses

/etc/passwd

 or

/etc/group

 to locate the number associated with the name. You may occa-
sionally need to know how Linux assigns numbers when you tell it to do something, though.
This is particularly true when you are troubleshooting or if you have cause to manually edit

/etc/passwd

 or

/etc/group

.
Linux distributions reserve the first hundred user and group IDs (0–99) for system use. The

most important of these is 0, which corresponds to

root

 (both the user and the group). Subse-
quent low numbers are used by accounts and groups that are associated with specific Linux util-
ities and functions. For instance, UID 2 and GID 2 are generally the

daemon

 account and group,
respectively, which are used by various servers, and UID 8 and GID 12 are usually the

mail

account and group, which can be used by mail-related servers and utilities. Not all account and
group numbers from 0 to 99 are in use; there are usually only one or two dozen accounts and
a dozen or so groups used in this way. You can check your

/etc/passwd

 and

/etc/group

 files
to determine which user and group IDs are so used.

Aside from UID 0 and GID 0, UID and GID numbers aren’t fully standardized. For
instance, although UID 2 and GID 2 map to the

daemon

 account and

daemon

 group
on Red Hat and SuSE, on Debian UID 2 and GID 2 map to the

bin

 account and

bin

group; the

daemon

 account and group correspond to UID 1 and GID 1. If you need

to refer to a particular user or group, use the name rather than the number.

4425.book Page 386 Monday, July 11, 2005 10:46 AM

Managing Users and Groups

387

Beyond 100, user and group IDs are available for use by ordinary users and groups. Many
distributions, however, reserve up to 500 or even 1000 for special purposes. Frequently, there-
fore, the first normal user account is assigned a UID of 500 or 1000. When you create additional
accounts, the system typically locates the next-highest unused number, so the second user you
create is UID 501, the third is 502, and so on. When you remove an account, that account’s ID
number may be reused, but the automatic account-creation tools typically don’t do so if subse-
quent numbers are in use, leaving a gap in the sequence. This gap causes no harm unless you
have so many users that you run out of ID numbers. (The limit is 65,536 users with the 2.2.

x

kernels and over 4.2 billion with the 2.4.

x

 and later kernels, including

root

 and other system
accounts. The limit can be set lower in configuration files or because of limits in support pro-
grams.) In fact, reusing an ID number can cause problems if you don’t clear away the old user’s
files—the new user will become the owner of the old user’s files, which can lead to confusion.

Typically, GID 100 is

users

—the default group for some distributions. On any but a
very small system with few users, you’ll probably want to create your own groups. Because
different distributions have different default ways of assigning users to groups, it’s best that
you familiarize yourself with your distribution’s way of doing this and plan your own
group-creation policies with this in mind. For instance, you might want to create your own
groups within certain ranges of IDs to avoid conflicts with the distribution’s default user-
and group-creation processes.

It’s possible to create multiple usernames that use the same UID or multiple group names
that use the same GID. In some sense, these are different accounts or groups; they have dif-
ferent entries in /etc/passwd or /etc/group, so they can have different home directories,
different passwords, and so on. Because these users or groups share IDs with other users or
groups, though, they’re treated identically in terms of file permissions. Unless you have a
compelling reason to do so, you should avoid creating multiple users or groups that share
an ID.

Intruders sometimes create accounts with UID 0 to give themselves root priv-
ileges on the systems they invade. Any account with a UID of 0 is effectively the
root account, with all the power of the superuser. If you spot a suspicious
account in your /etc/passwd file with a UID of 0, your system has probably
been compromised.

Configuring User Accounts

How frequently you’ll do user maintenance depends on the nature of the system you administer.
Some systems, such as small personal workstations, need changes very rarely. Others, such as
large systems in environments in which users are constantly coming and going, may require
daily maintenance. The latter situation would seem to require more knowledge of user account
configuration tools, but even in a seldom-changing system, it’s useful to know how to do these
things so that you can do them quickly and correctly when you do need to add, modify, or delete
user accounts.

4425.book Page 387 Monday, July 11, 2005 10:46 AM

388 Chapter 8 � Administering the System

Some security-related account issues, such as the pwconv and related utilities,
are covered in Chapter 7, “Documentation and Security.”

Adding Users

Adding users can be accomplished through the useradd utility. (This program is called
adduser on some distributions.) Its basic syntax is as follows:

useradd [-c comment] [-d home-dir] [-e expire-date] [-f inactive-days]

➥[-g initial-group] [-G group[,...]] [-m [-k skeleton-dir] | -M]

➥[-p password] [-s shell] [-u UID [-o]] [-r] [-n] username

Some of these parameters modify settings that are valid only when the system
uses shadow passwords. This is the standard configuration for most distribu-
tions today.

In its simplest form, you may type just useradd username, where username is the username
you want to create. The rest of the parameters are used to modify the default values for the sys-
tem, which are stored in the file /etc/login.defs.

The parameters for the useradd command modify the program’s operation in various ways:

Comment The -c comment parameter passes the comment field for the user. Some adminis-
trators store public information like a user’s office or telephone number in this field. Others
store just the user’s real name or no information at all.

Home directory You specify the account’s home directory with the -d home-dir parameter.
This defaults to /home/username on most systems.

Account expiration date Set the date on which the account will be disabled, expressed in the
form YYYY-MM-DD, with the -e expire-date option. (Many systems will accept alternative
forms, such as MM-DD-YYYY, as well.) The default is for an account that does not expire.

Inactive days An account becomes completely disabled a certain number of days after a pass-
word expires. The -f inactive-days parameter sets the number of days. A value of -1 disables
this feature and is the default.

Default group You set the name or GID of the user’s default group with the -g default-
group option. The default for this value varies from one distribution to another.

Additional groups The -G group[,...] parameter sets the names or GIDs of one or more
groups to which the user belongs. These groups need not be the default group, and more than
one may be specified by separating them with commas.

Home directory options The system automatically creates the user’s home directory if
-m is specified. Normally, default configuration files are copied from /etc/skel, but you

4425.book Page 388 Monday, July 11, 2005 10:46 AM

Managing Users and Groups 389

may specify another template directory with the -k skeleton-dir option. Many distribu-
tions use -m as the default when running useradd.

Do not create a home directory The -M option forces the system to not automatically create a
home directory, even if /etc/login.defs specifies that this action is the default.

Encrypted password specification The -p encrypted-password parameter passes the pre-
encrypted password for the user to the system. The encrypted-password value will be added,
unchanged, to the /etc/passwd or /etc/shadow file. This means that if you type an unen-
crypted password, it won’t work as you probably expected. In practice, this parameter is most
useful in scripts, which can encrypt a password (using crypt) and then send the encrypted result
through useradd. The default value disables the account, so you must run passwd to change the
user’s password.

Default shell Set the name of the user’s default login shell with the -s shell option. On most
systems, this defaults to /bin/bash.

Specify a UID The -u UID parameter creates an account with the specified user ID value
(UID). This value must be a positive integer, and it is normally above 500 for user accounts. Sys-
tem accounts typically have numbers below 100. The -o option allows the number to be reused
so that two usernames are associated with a single UID.

System account creation The -r parameter specifies the creation of a system account—an
account with a value lower than UID_MIN, as defined in /etc/login.defs. (This is normally
100, 500, or 1000.) useradd also doesn’t create a home directory for system accounts.

No user group In some distributions, such as Red Hat, the system creates a group with the
same name as the specified username. The -n parameter disables this behavior.

Suppose you’ve added a hard disk and mounted it as /home2. You want to create an account
for a user named Sally in this directory and place her home directory on the new disk. You want
to make the new user a member of the project1 and project4 groups, with default member-
ship in project4. The user has also requested tcsh as her default shell. You might use the fol-
lowing commands to accomplish this goal:

useradd -d /home2/sally -g project4 -G project1,project4 -s /bin/tcsh sally

passwd sally

Changing password for user sally

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

The passwd command asks for the password twice, but it does not echo what
you type. This prevents somebody who sees your screen from reading the
password off it. passwd is described in more detail in shortly, in “Setting
a Password.”

4425.book Page 389 Monday, July 11, 2005 10:46 AM

390 Chapter 8 � Administering the System

Modifying User Accounts

User accounts may be modified in many ways: You can directly edit critical files such as /etc/
passwd, modify user-specific configuration files in the account’s home directory, or use sys-
tem utilities like those used to create accounts. You usually modify an existing user’s account
at the user’s request or to implement some new policy or system change, such as moving home
directories to a new hard disk. Sometimes, though, you must modify an account immediately
after its creation in order to customize it in ways that aren’t easily handled through the
account-creation tools or because you realize you forgot a parameter to useradd.

Setting a Password

Although useradd provides the -p parameter to set a password, this tool is not very useful
when directly adding a user because it requires a pre-encrypted password. Therefore, it’s usually
easiest to create an account in disabled form (by not using -p with useradd) and set the pass-
word after creating the account. This can be done with the passwd command, which has the fol-
lowing syntax:

passwd [-k] [-l] [-u [-f]] [-d] [-S] [username]

The parameters to this command enable you to modify its behavior:

Update expired accounts The -k parameter indicates that the system should update an
expired account.

Lock accounts The -l parameter locks an account by prefixing the encrypted password with
an exclamation mark (!). The result is that the user can no longer log into the account, but the
files are still available and the change can be easily undone. This parameter is particularly handy
if you want to temporarily suspend user access to an account—say, because you’ve spotted some
suspicious activity involving the account or because you know a user won’t be using the account
for a while and you want to minimize the chance of it being abused in the interim.

Unlock accounts The -u parameter unlocks an account by removing a leading exclamation
mark. useradd creates accounts that are locked and have no password, so using this command
on a fresh account would result in an account with no password. Normally, passwd doesn’t
allow this—it returns an error if you attempt it. Adding -f forces passwd to turn the account
into one with no password.

Create accounts without passwords The -d parameter removes the password from an
account, rendering it password-less.

Display account information The -S option displays information on the password for an
account—whether or not it’s set and what type of encryption it uses.

Ordinary users may use passwd to change their passwords, but many passwd parameters may
only be used by root. Specifically, -l, -u, -f, -d, and -S are all off-limits to ordinary users. Sim-
ilarly, only root may specify a username to passwd. When ordinary users run the program, they
should omit their usernames and passwd will change the password for the user who ran the pro-
gram. As a security measure, passwd asks for a user’s old password before changing the password

4425.book Page 390 Monday, July 11, 2005 10:46 AM

Managing Users and Groups 391

when an ordinary user runs the program. This precaution is not taken when root runs the pro-
gram so that the superuser may change a user’s password without knowing the original password.
This is necessary because the administrator normally doesn’t know the user’s password.

Linux passwords may consist of letters, numbers, and punctuation. Linux distinguishes
between upper- and lowercase letters in passwords, which means you can use mixed-case pass-
words to improve security.

Chapter 7 provides information on selecting good passwords.

E X E R C I S E 8 . 1

Creating User Accounts

This exercise explores the process of creating user accounts. After performing this exercise,
you should be familiar with the text-mode Linux account-creation tools and be able to create
new accounts, including preparing new users’ home directories. To add and test a new
account, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI login
method.

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Session �
New Root Console from a Konsole, or by using sudo (if it’s configured) to run the com-
mands in the following steps.

4. Type useradd -m username, where username is the name you want to be associated with
the account. This command creates an account. The -m parameter tells Linux to create a
home directory for the user and fill it with default account configuration files.

5. Type passwd username. You’ll be asked to enter a password for the user and to type it a sec-
ond time. Enter a random string or select a password as described in “Setting a Password.”

6. Press Ctrl+Alt+F2 to go to a fresh text-mode login screen. (If you’re already using multiple
virtual terminals, you may need to use a higher function key number than F2.)

7. Try logging in as the new user to verify that the account works properly.

In practice, creating accounts on a production system may require variations on this procedure.
You may need to use additional options in step 4, for instance; consult the section “Adding Users”
or the useradd man page for details on these options. Furthermore, setting the password may
require changes. On a small system with few users, you may be able to create accounts in the pres-
ence of their future users, in which case the user can type the password in step 5. On other systems,
you may need to generate passwords yourself and then give them to users in some way.

4425.book Page 391 Monday, July 11, 2005 10:46 AM

392 Chapter 8 � Administering the System

Using usermod

The usermod program closely parallels useradd in its features and parameters. This utility
changes an existing account instead of creating a new one, though. The major differences
between useradd and usermod are as follows:
� usermod allows the addition of a -m parameter when used with -d. The -d parameter alone

changes the user’s home directory, but it does not move any files. Adding -m causes
usermod to move the user’s files to the new location.

� usermod supports a -l parameter, which changes the user’s login name to the specified value.
For instance, typing usermod sally -l sjones changes the username from sally to sjones.

� You may lock or unlock a user’s password with the -L and -U options, respectively. This
duplicates functionality provided by passwd.

The usermod program changes the contents of /etc/passwd or /etc/shadow, depending on
the option used. If -m is used, usermod also moves the user’s files, as already noted.

Changing an account’s characteristics while the owner is logged in can have
undesirable consequences. This is particularly true of the -d -m combination,
which can cause the files a user is working on to move. Most other changes,
such as changes to the account’s default shell, simply don’t take effect until the
user has logged out and back in again.

If you change the account’s UID, this action does not change the UIDs stored with a user’s
files. Because of this, the user may lose access to these files. You can manually update the UIDs
on all files by using the chown command, as described in Chapter 4. Specifically, a command
like the following, issued after changing the UID on the account sally, will restore proper own-
ership on the files in sally’s home directory:

chown -R sally /home/sally

This action does not change the ownership of files that aren’t in sally’s home directory. If
you believe such files exist, you may need to track them down with the find command, as you’ll
see in the upcoming section “Deleting Accounts.” Also, this command blindly changes owner-
ship of all files in the /home/sally directory. This is probably desirable, but it’s conceivable
that some files in that directory should be owned by somebody else—say, because sally and
another user are collaborating on a project.

When using the -G option to add a user to new groups, be aware that any groups not listed
will be removed. The gpasswd command, described in the upcoming section “Using gpasswd,”
provides a way to add a user to one or more specific groups without affecting existing group
memberships, and so it is generally preferable for this purpose.

Using chage

The chage command allows you to modify account settings relating to account expiration. It’s pos-
sible to configure Linux accounts so that they automatically expire if either of two conditions is true:
� The password hasn’t been changed in a specified period of time.
� The system date is past a predetermined time.

4425.book Page 392 Monday, July 11, 2005 10:46 AM

Managing Users and Groups 393

These settings are controlled through the chage utility, which has the following syntax:

chage [-l] [-m mindays] [-M maxdays] [-d lastday] [-I inactivedays]

➥[-E expiredate] [-W warndays] username

The program’s parameters modify the command’s actions:

Display information The -l option causes chage to display account expiration and password
aging information for a particular user.

Set minimum time between password changes The -m mindays parameter sets the minimum
number of days between password changes. 0 indicates that a user can change a password mul-
tiple times in a day; 1 means that a user can change a password once a day; 2 means that a user
may change a password once every two days; and so on.

Set maximum time between password changes The -M maxdays parameter sets the maximum
number of days that may pass between password changes. For instance, 30 would require a pass-
word change approximately once a month.

If the user changes a password before the deadline, the counter is reset from
the password change date.

Set last password change date The -d lastday parameter sets the last day a password was
changed. This value is normally maintained automatically by Linux, but you can use this parameter
to artificially alter the password change count. lastday is expressed in the format YYYY/MM/DD or as
the number of days since January 1, 1970.

Maximum inactive days The -I inactivedays parameter sets the number of days between
password expiration and account disablement. An expired account may not be used or may
force the user to change the password immediately upon logging in, depending on the distribu-
tion. A disabled account is completely disabled, however.

Set expiration date You can set an absolute expiration date with the -E expiredate option.
For instance, you might use -E 2006/05/21 to have an account expire on May 21, 2006. The
date may also be expressed as the number of days since January 1, 1970. A value of -1 repre-
sents no expiration date.

Set number of warning days The -W warndays option sets the number of days before
account expiration that the system will warn the user of the impending expiration. It’s
generally a good idea to use this feature to alert users of their situation, particularly if you
make heavy use of password change expirations. Note that these warnings are usually only
shown to text-mode login users; GUI login users, file share users, and so on usually don’t
see these messages.

The chage command can normally only be used by root. The one exception to this rule
is if the -l option is used; this feature allows ordinary users to check their account expiration
information.

4425.book Page 393 Monday, July 11, 2005 10:46 AM

394 Chapter 8 � Administering the System

Directly Modifying Account Configuration Files

User configuration files can be modified directly. The /etc/passwd and /etc/shadow files con-
trol most aspects of an account’s basic features. Both files consist of a set of lines, one line per
account. Each line begins with a username and continues with a set of fields, delimited by colons
(:). Many of these items may be modified with usermod or passwd. A typical /etc/passwd
entry resembles the following:

sally:x:529:100:Sally Jones:/home/sally:/bin/bash

Each field has a specific meaning, as follows:

Username The first field in each /etc/passwd line is the username (sally in this example).

Password The second field has traditionally been reserved for the password. Most Linux sys-
tems, however, use a shadow password system in which the password is stored in /etc/shadow.
The x in the example’s password field is an indication that shadow passwords are in use. In a
system that does not use shadow passwords, an encrypted password will appear here instead.

UID Following the password is the account’s user ID (529 in this example).

Primary GID The default login group ID is next in the /etc/passwd line for an account. The
example uses a primary GID of 100.

Comment The comment field may have different contents on different systems. In the preced-
ing example, it’s the user’s full name. Some systems place additional information here, in a
comma-separated list. Such information might include the user’s telephone number, office num-
ber, title, and so on.

Home directory The user’s home directory is next up in the list.

Default shell The default shell is the final item on each line in /etc/passwd. This is normally
/bin/bash, /bin/tcsh, or some other common command shell. It’s possible to use something
unusual here, though. For instance, many systems include a shutdown account with /bin/
shutdown as the shell. If you log into this account, the computer immediately shuts down. You
can create user accounts with a shell of /bin/false, which prevents users from logging in as
ordinary users but leaves other utilities intact. Users can still receive mail and retrieve it via a
remote mail retrieval protocol like POP or IMAP, for instance. A variant on this scheme uses
/bin/passwd so that users may change their passwords remotely but cannot actually log in
using a command shell.

You can directly modify any of these fields, although in a shadow password system, you
probably do not want to modify the password field; you should make password-related changes
via passwd so that they can be properly encrypted and stored in /etc/shadow. As with changes
initiated via usermod, it’s best to change /etc/passwd directly only when the user in question
isn’t logged in, to prevent a change from disrupting an ongoing session.

Like /etc/passwd, /etc/shadow may be edited directly. An /etc/shadow line resembles
the following:

sally:E/moFkeT5UnTQ:12269:0:-1:7:-1:-1:

4425.book Page 394 Monday, July 11, 2005 10:46 AM

Managing Users and Groups 395

Most of these fields correspond to options set with the chage utility, although some are set with
passwd, useradd, or usermod. The meaning of each colon-delimited field of this line is as follows:

Username Each line begins with the username. Note that the UID is not used in /etc/shadow;
the username links entries in this file to those in /etc/passwd.

Password The password is stored in encrypted form, so it bears no obvious resemblance to the
actual password. An asterisk (*) or exclamation mark (!) denotes an account with no password
(that is, the account doesn’t accept logins—it’s locked). This is common for accounts used by
the system itself.

If you’ve forgotten the root password for a system, you can boot with an emer-
gency recovery system and copy the contents of a password field for an account
whose password you do remember. You can then boot normally, log in as root,
and change the password. In a real pinch, you can delete the contents of the
password field, which results in a root account with no password (that is, none
is required to log in). Be sure to immediately change the root password after
rebooting if you do this, though!

Last password change The next field (12269 in this example) is the date of the last password
change. This date is stored as the number of days since January 1, 1970.

Days until change allowed The next field (0 in this example) is the number of days before a
password change is allowed.

Days before change required This field is the number of days after the last password change
before another password change is required.

Days warning before password expiration If your system is configured to expire passwords,
you may set it to warn the user when an expiration date is approaching. A value of 7, as in the
preceding example, is typical.

Days between expiration and deactivation Linux allows for a gap between the expiration of
an account and its complete deactivation. An expired account either cannot be used or requires
that the user change the password immediately after logging in. In either case, its password
remains intact. A deactivated account’s password is erased, and the account cannot be used
until it’s reactivated by the system administrator.

Expiration date This field shows the date on which the account will be expired. As with the
last password change date, the date is expressed as the number of days since January 1, 1970.

Special flag This field is reserved for future use and is normally not used or contains a mean-
ingless value. This field is empty in the preceding example.

For fields relating to day counts, values of -1 or 99999 typically indicate that the relevant
feature has been disabled. The /etc/shadow values are generally best left to modification
through the usermod or chage commands because they can be tricky to set manually—for
instance, it’s easy to forget a leap year or the like when computing a date as the number of
days since January 1, 1970. Similarly, because of its encrypted nature, the password field

4425.book Page 395 Monday, July 11, 2005 10:46 AM

396 Chapter 8 � Administering the System

cannot be edited effectively except through passwd or similar utilities. (You could cut and
paste a value from a compatible file or use crypt yourself, but it’s generally easier to use
passwd. Copying encrypted passwords from other systems is also somewhat risky because
it means that the users will have the same passwords on both systems, and this fact will be
obvious to anybody who’s acquired both encrypted password lists.)

The /etc/shadow file is normally stored with very restrictive permissions, such as
rw-------, with ownership by root. This fact is critical to the shadow password
system’s utility since it keeps non-root users from reading the file and obtaining
the password list, even in an encrypted form. Therefore, if you manually modify
/etc/shadow, be sure it has the correct permissions when you’re done.

Network Account Databases

Many networks employ network account databases. Such systems include the Network Informa-
tion System (NIS), an update to this system called NIS+, the Lightweight Directory Access Proto-
col (LDAP), Kerberos realms, Windows NT 4.0 domains, and Active Directory (AD) domains. All
of these systems move account database management onto a single centralized computer (often
with one or more backup systems). The advantage of this approach to account maintenance is
that users and administrators need not deal with maintaining accounts independently on multi-
ple computers. A single account database can handle accounts on dozens (or even hundreds or
thousands) of different computers, greatly simplifying day-to-day administrative tasks and sim-
plifying users’ lives. Using such a system, though, means that most user accounts won’t appear
in /etc/passwd and /etc/shadow and groups may not appear in /etc/group. (These files will still
hold information on local system accounts and groups, though.)

Linux can participate in these systems. In fact, some distributions provide options to enable
such support at OS installation time. Typically, you must know the name or IP address of the
server that hosts the network account database, and you must know what protocol that system
uses. You may also need a password or some other protocol-specific information, and the
server may need to be configured to accept accesses from the Linux system you’re configuring.

Activating use of such network account databases after installing Linux is a complex topic. It
involves installing appropriate software, modifying the /etc/nsswitch.conf file, and modifying
the Pluggable Authentication Module (PAM) configuration files in /etc/pam.d. Such systems
often alter the behavior of tools such as passwd and usermod in subtle or not-so-subtle ways. If you
need to use such a system, you’ll have to consult documentation specific to the service you
intend to use. My book Linux in a Windows World (2005) covers this topic for Windows NT 4.0
domains, LDAP, and Kerberos, and Mark Minasi and Dan York’s Linux for Windows Administra-
tors (Sybex, 2002) covers this topic for Windows NT 4.0 domains and NIS.

4425.book Page 396 Monday, July 11, 2005 10:46 AM

Managing Users and Groups 397

Deleting Accounts

On the surface, deleting user accounts is easy. You may use the userdel command to do the job
of removing a user’s entries from /etc/passwd and, if the system uses shadow passwords, /etc/
shadow. The userdel command takes just one parameter: -r. This parameter causes the system
to remove all files from the user’s home directory, as well as the home directory itself. Thus,
removing a user account such as sally is easily accomplished with the following command:

userdel -r sally

You may omit the -r parameter if you want to preserve the user’s files. There is one potential
complication, however: Users may create files outside their home directories. For instance,
many programs use the /tmp directory as “scratch space,” so user files often wind up there.
These files will be deleted automatically after a certain period, but you may have other direc-
tories in which users might store files. To locate all such files, you can use the find command
with its -uid parameter. For instance, if sally had been UID 529, you might use the following
command to locate all her files:

find / -uid 529

The result will be a list of files owned by UID 529 (formerly sally). You can then go through
this list and decide what to do with the files—change their ownership to somebody else, delete
them, back them up to floppy, or what have you. It’s wise to do something with these files,
though, or else they may be assigned ownership to another user if Sally’s UID is reused. This
could become awkward if the files exceed the new user’s disk quota or if they contain informa-
tion that the new user should not have—such a person might mistakenly be accused of indis-
cretions or even crimes.

A few servers—most notably Samba—may keep their own list of users. If you run such a
server, it’s best to remove the user’s entry from that server’s user list when you remove the user’s
main account. In the case of Samba, this is normally done by manually editing the smbpasswd
file (usually located in /etc, /etc/samba, or /etc/samba.d) and deleting the line correspond-
ing to the user in question or using the smbpasswd command and its -x option, as in smbpasswd
-x sally to delete the sally account from Samba’s database.

Configuring Groups

Linux provides group configuration tools that parallel those for user accounts in many ways.
Groups are not accounts, however, so many features of these tools differ. Likewise, you can create
or modify groups by directly editing the configuration files in question. Their layout is similar to
that for account control files, but the details differ.

Adding Groups

Linux provides the groupadd command to add a new group. This utility is similar to useradd
but has fewer options. The groupadd syntax is shown here:

groupadd [-g GID [-o]] [-r] [-f] groupname

4425.book Page 397 Monday, July 11, 2005 10:46 AM

398 Chapter 8 � Administering the System

The parameters to this command enable you to adjust its operation:

Specify a GID You can provide a specific GID with the -g GID parameter. If you omit this
parameter, groupadd uses the next available GID. Normally, the GID you specify must be
unused by other groups, but the -o parameter overrides this behavior, allowing you to create
multiple groups that share one GID.

Create a sub-500 GID The -r parameter instructs groupadd to create a group with a GID of
less than 500. Not all distributions support this option; it was added by Red Hat and has been
used on some related distributions. Red Hat uses GIDs of 500 and above for user private groups
(that is, groups named after individual users), hence the -r parameter.

Force creation Normally, if you try to create a group that already exists, groupadd returns an
error message. The -f parameter suppresses that error message. Not all versions of groupadd
support this parameter.

In most cases, you’ll create groups without specifying any parameters except for the group
name itself:

groupadd project3

This command creates the project3 group, giving it whatever GID the system finds conve-
nient—usually the highest existing GID plus 1. Once you’ve done this, you can add users to the
group, as described in the next section. When you add new users, you can add them directly to
the new group with the -g and -G parameters to useradd, described earlier.

Modifying Group Information

Group information, like user account information, may be modified either using utility pro-
grams or by directly editing the underlying configuration file, /etc/group. As with creation,
there are fewer options for modifying groups than for modifying accounts, and the utilities and
configuration files are similar. In fact, usermod is one of the tools that’s used to modify groups.

Using groupmod and usermod

The groupmod command modifies an existing group’s settings. Its syntax is shown here:

groupmod [-g GID [-o]] [-n newgroupname] oldgroupname

The options to this command modify its operation:

Specify a GID Specify the new group ID using the -g GID option. groupmod returns an error
if you specify a new group ID that’s already in use, unless you include the -o parameter, in
which case you can create two groups that share a single GID.

Specify a group name Specify a new group name with the -n newgroupname option.

One of the most common group manipulations you’ll perform, however, is not handled
through groupmod; it’s done with usermod. Specifically, usermod allows you to add a user to
a group with its -G parameter. For instance, the following command sets sally to be a member
of the users, project1, and project4 groups, and it removes her from all other groups:

usermod -G users,project1,project4 sally

4425.book Page 398 Monday, July 11, 2005 10:46 AM

Managing Users and Groups 399

Be sure to list all the user’s current groups in addition to any groups to which
you want to add the user. Omitting any of the user’s current groups will remove
the user from those groups. You can discover the groups to which a user cur-
rently belongs with the groups command, as in groups sally. To avoid acci-
dentally omitting a group, many system administrators prefer to modify the
/etc/group file in a text editor or use gpasswd. Both options allow you to add
users to groups without specifying a user’s existing group memberships.

Using gpasswd

The gpasswd command is the group equivalent to passwd. The gpasswd command also enables you
to modify other group features and to assign group administrators—users who may perform some
group-related administrative functions for their groups. The basic syntax for this command is:

gpasswd [-a user] [-d user] [-R] [-r] [-A user[,...]] [-M user[,...]]

➥group

The options for this command modify its actions:

Add a user The -a user option adds the specified user to the specified group.

Delete a user The -d user option deletes the specified user from the specified group.

Disallow newgrp additions The -R option configures the group to not allow anybody to
become a member through newgrp.

Remove password The -r option removes the password from a group.

Add group administrators The root user may use the -A user[,...] parameter to specify
group administrators. Group administrators may add members to and remove members from
a group and change the group password. Using this parameter completely overwrites the list of
administrators, so if you want to add an administrator to an existing set of group administra-
tors, you must specify all of their usernames.

Add users The -M user[,...] option works like -A, but it also adds the specified user(s) to
the list of group members.

If entered without any parameters except a group name, gpasswd changes the password
for the group. Group passwords enable you to control temporary membership in a group, as
granted by newgrp. Ordinarily, members of a group may use newgrp to change their current
group membership (affecting the group of files they create). If a password is set, even those
who aren’t members of a group may become temporary group members; newgrp prompts for
a password that, if entered correctly, gives the user temporary group membership.

Unfortunately, some of these features are not implemented correctly in all distributions. In par-
ticular, password entry by non-group members sometimes does not give group membership—the
system responds with an access denied error message. The -R option also sometimes doesn’t
work correctly—group members whose primary group membership is with another group may
still use newgrp to set their primary group membership.

4425.book Page 399 Monday, July 11, 2005 10:46 AM

400 Chapter 8 � Administering the System

Directly Modifying Group Configuration Files

Group information is stored primarily in the /etc/group file. Like account configuration files,
the /etc/group file is organized as a set of lines, one line per group. A typical line in this file
resembles the following:

project1:x:501:sally,sam,ellen,george

Each field is separated from the others by a colon. The meanings of the four fields are as follows:

Group name The first field (project1 in the preceding example) is the name of the group.

Password The second field (x in the preceding example) is the group password. Distributions
that use shadow passwords typically place an x in this field; others place the encrypted password
directly in this field.

GID The group ID number (in this example’s case, 501) goes in this field.

User list The final field is a comma-separated list of group members.

Users may also be members of a group based on their own /etc/passwd file primary group
specification. For instance, if user george had project1 listed as his primary group, he need
not be listed in the project1 line in /etc/group. If user george uses newgrp to change to
another group, though, he won’t be able to change back to project1 unless he’s listed in the
project1 line in /etc/group.

Systems with shadow passwords also use another file, /etc/gshadow, to store shadow pass-
word information on groups. This file stores the shadow password and information on group
administrators, as described earlier in “Using gpasswd.”

If you configure Linux to use a network account database, the /etc/group file
will be present and may define groups important for the system’s basic oper-
ation. As with /etc/passwd and /etc/shadow, though, important user groups
are likely to be defined only on the network account server, not in /etc/group.

Deleting Groups

Deleting groups is done via the groupdel command, which takes a single parameter: a group
name. For instance, groupdel project3 removes the project3 group. You can also delete a
group by editing the /etc/group file (and /etc/gshadow, if present) and removing the relevant
line for the group. It’s generally better to use groupdel, though, because groupdel checks to
see if the group is any user’s primary group. If it is, groupdel refuses to remove the group; you
must change the user’s primary group or delete the user account first.

As with deleting users, deleting groups can leave “orphaned” files on the computer. You can
locate them with the find command, which is described in more detail in Chapter 2. For instance,
if the deleted group had used a GID of 503, you can find all the files on the computer with that
GID by using the following command:

find / -gid 503

4425.book Page 400 Monday, July 11, 2005 10:46 AM

Tuning User and System Environments 401

Once you’ve found any files with the deleted group’s ownership, you must decide what to do
with them. In some cases, leaving them alone won’t cause any immediate problems, but if the GID
is ever reused, it could lead to confusion and even security breaches. Therefore, it’s usually best to
delete the files or assign them other group ownership using the chown or chgrp command.

Tuning User and System Environments
Chapter 6 described bash configuration files, such as /etc/profile, /etc/bashrc, ~/.profile,
and ~/.bashrc. These files control the various bash options, including environment variables—
named variables that hold data for the benefit of many programs. For instance, you might set the
EDITOR environment variable to the name of your favorite text editor. Some (but not all) programs
that launch editors will pay attention to this environment variable and launch the editor you specify.

As a system administrator, you can change the system-wide bash configuration files to add,
remove, or change the environment variables that all users receive. Generally speaking, you should
do so because the documentation for a specific programs indicates that it uses particular environ-
ment variables; however, you might want to peruse Chapter 6’s Table 6.2 to see what common envi-
ronment variables you might want to adjust. You can also see all your current environment variables
by typing env. (The list is rather long, so you may want to pipe it through less, as in env | less.)

Various programs set environment variables themselves, and some are main-
tained automatically by bash. For instance, bash maintains the PWD environment
variable, so you shouldn’t try to set it in a configuration script. Also, be aware
that adjusting the bash configuration files only affects bash. If a user’s default
shell is something else, or if a user doesn’t use a text-mode shell (say, if the
user logs into X and launches programs from a GUI menu), setting environ-
ment variables in the bash configuration files will do no good.

In addition to setting default environment variables and otherwise modifying users’ text-mode
login environment by adjusting their bash configuration files, you can adjust the default set of files
created by useradd. As described earlier, in “Adding Users,” useradd copies files from the skel-
eton directory (/etc/skel by default) into a newly created home directory. Typically, /etc/skel
contains a handful of user configuration files, such as .bashrc. You can add any files (and even
directories) to this directory that you like, including user configuration files, a starting directory
tree, a README file for new users, and anything else you like. Because these files are copied into
users’ own home directories and they’re given ownership of the copies, users will be able to read,
change, and even delete their copies of these files. Thus, you shouldn’t place any options in these
files that are sensitive from a security point of view or that users should not be able to change. (In
truth, entries you place in global bash configuration files can easily be overridden by individual
users, as well.) Also, be aware that any changes you make to the global files won’t automatically
be moved into existing users’ copies of these files; changes will affect only the files received by new
users. This fact makes the global files (such as /etc/profile) preferable to /etc/skel for any
changes to system defaults you want to implement systemwide, particularly if you expect you’ll
ever want to modify your changes.

4425.book Page 401 Monday, July 11, 2005 10:46 AM

402 Chapter 8 � Administering the System

Using System Log Files
Linux maintains log files that record various key details about system operation. You may be
able to begin using log files immediately, but knowing how to change the log file configuration
can also be important. You do this by configuring the syslogd daemon (a daemon is a program
that runs continuously in the background waiting for some event to trigger it to perform some
action). Some servers and other programs perform their own logging and so must be configured
independently of syslogd. You may even want to configure one computer to send its log files
to another system as a security measure. You should also be aware of issues surrounding log file
rotation; if your computer doesn’t properly manage existing log files, they can grow to consume
all your available disk space, at least on the partition on which they’re stored. In addition to
configuring logging, you must be able to use the log files that the system generates.

Understanding syslogd

Most Linux systems employ a special daemon to handle log maintenance in a unified way. The tra-
ditional Linux system logger is syslogd, which is often installed from a package called sysklogd.
The syslogd daemon handles messages from servers and other user-mode programs. It’s usually
paired with a daemon called klogd, which is usually installed from the same sysklogd package as
syslogd. The klogd daemon manages logging of kernel messages.

Other choices for system loggers exist. For instance, syslog-ng is a replacement
that supports advanced filtering options, and metalog is another option. This
chapter describes the traditional syslogd logger. Others are similar in principle,
and even in some specific features, but differ in many details.

The basic idea behind a system logger is to provide a unified means of handling log files. The dae-
mon runs in the background and accepts data delivered from servers and other programs that are
configured to use the log daemon. The daemon can then use information provided by the server to
classify the message and direct it to an appropriate log file. This configuration enables you to con-
solidate messages from various servers in a handful of standard log files, which can be much easier
to use and manage than potentially dozens of log files from the various servers running on the system.

In order to work, of course, the log daemon must be configured. In the case of syslogd, this
is done through the /etc/syslog.conf file. The next section describes this file’s format in
more detail.

Setting Logging Options

The format of the /etc/syslog.conf file is conceptually simple but provides a great deal of
power. Comment lines, as in many Linux configuration files, are denoted by a hash mark (#).
Noncomment lines take the following form:

facility.priority action

4425.book Page 402 Monday, July 11, 2005 10:46 AM

Using System Log Files 403

In this line, the facility is a code word for the type of program or tool that has generated
the message to be logged; the priority is a code word for the importance of this message; and the
action is a file, remote computer, or other location that’s to accept the message. The facility and
priority are often referred to collectively as the selector.

Valid codes for the facility are auth, authpriv, cron, daemon, kern, lpr, mail, mark,
news, security, syslog, user, uucp, and local0 through local7. Many of these names refer
to specific servers or program classes. For instance, mail servers and other mail-processing tools
typically log using the mail facility. Most servers that aren’t covered by more specific codes use
the daemon facility. The security facility is identical to auth, but auth is the preferred name. The
mark facility is reserved for internal use. An asterisk (*) refers to all facilities. You can specify mul-
tiple facilities in one selector by separating the facilities with commas (,).

Valid codes for the priority are debug, info, notice, warning, warn, error, err, crit,
alert, emerg, and panic. The warning priority is identical to warn, error is identical to err,
and emerg is identical to panic. The error, warn, and panic priority names are deprecated; you
should use their equivalents instead. Other than these identical pairs, these priorities represent
ascending levels of importance. The debug level logs the most information; it’s intended, as the
name implies, for debugging programs that are misbehaving. The emerg priority logs the most
important messages, which indicate very serious problems. When a program sends a message to
the system logger, it includes a priority code; the logger logs the message to a file if you’ve con-
figured it to log messages of that level or higher. Thus, if you specify a priority code of alert,
the system will log messages that are classified as alert or emerg but not messages of crit or
below. An exception to this rule is if you precede the priority code by an equal sign (=), as in
=crit, which describes what to do with messages of crit priority only. An exclamation mark (!)
reverses the meaning of a match. For instance, !crit causes messages below crit priority to be
logged. A priority of * refers to all priorities.

You can specify multiple selectors for a single action by separating the selectors by a semi-
colon (;). Note that commas are used to separate multiple facilities within a single selector,
whereas semicolons are used to separate multiple selectors as a whole. Examples of complete
selectors appear shortly.

Most commonly, the action is a filename, typically in the /var/log directory tree. Other
possibilities include a device filename for a console (such as /dev/console) to display data on
the screen, a remote machine name preceded by an at sign (@), and a list of usernames of indi-
viduals who should see the message if they’re logged in. For the last of these options, an asterisk
(*) means all logged-in users.

Some examples should help clarify these rules. First is a fairly ordinary and simple entry:

mail.* /var/log/mail

This line sends all log entries identified by the originating program as related to mail to the
/var/log/mail file. Most of the entries in a default /etc/syslog.conf file resemble this one.
Together, they typically cover all of the facilities mentioned earlier. Some messages may be han-
dled by multiple rules. For instance, another rule might look like this one:

*.emerg *

4425.book Page 403 Monday, July 11, 2005 10:46 AM

404 Chapter 8 � Administering the System

This line sends all emerg-level messages to the consoles of all users who are logged into the com-
puter using text-mode tools. If this line and the earlier mail.* selector are both present, emerg-level
messages related to mail will be logged to /var/log/mail and displayed on users’ consoles.

A more complex example logs kernel messages in various ways, depending on their priorities:

kern.* /var/log/kernel

kern.crit @logger.pangaea.edu

kern.crit /dev/console

kern.info;kern.!err /var/log/kernel-info

The first of these rules logs all kernel messages to /var/log/kernel. The next two lines relate
to high-priority (crit or higher) messages from the kernel. The first of these lines sends such mes-
sages to logger.pangaea.edu. (This system must be configured to accept remote logs, which is
a topic not covered in this book.) The second of these lines sends a copy of these messages to /dev/
console, which causes them to be displayed on the computer’s main text-mode console display.
Finally, the last line sends messages that are between info and err in priority to /var/log/
kernel-info. Because err is the priority immediately above crit, and because info is the lowest
priority, these four lines cause all kernel messages to be logged two or three times: once to /var/
log/kernel as well as to either the remote system and the console or to /var/log/kernel-info.

Most distributions ship with reasonable system logger settings, but you may want to examine
these settings, and perhaps adjust them. If you change them, though, be aware that you may
need to change some other tools. For instance, all major distributions ship with tools that help
rotate log files. If you change the files to which syslogd logs messages, you may need to change
your log file rotation scripts as well. This topic is covered in the next section.

In addition to the system logger’s options, you may be able to set logging options in individual
programs. For instance, you might tell programs to record more or less information or to log rou-
tine information at varying priorities. Some programs also provide the means to log via the system
log daemon or via their own mechanisms. Details vary greatly from one program to another, so
you should consult the program’s documentation for details.

Most programs that use the system log daemons are servers and other system
tools. Programs that individuals run locally seldom log data via the system log
daemon, although there are some exceptions to this rule, such as the Fetchmail
program for retrieving e-mail from remote servers.

Rotating Log Files

Log files are intended to retain information on system activities for a reasonable period of time; how-
ever, system logging daemons provide no means to control the size of log files. Left unchecked, log
files can therefore grow to consume all the available space on the partition on which they reside. To
avoid this problem, Linux systems employ log file rotation tools. These tools rename and optionally
compress the current log files, delete old log files, and force the logging system to begin using new
log files.

4425.book Page 404 Monday, July 11, 2005 10:46 AM

Using System Log Files 405

The most common log rotation tool is a package called logrotate. This program is typically
called on a regular basis via a cron job. (The upcoming section “Running Jobs in the Future”
describes cron jobs in more detail.) The logrotate program consults a configuration file called
/etc/logrotate.conf, which includes several default settings and typically refers to files in /etc/
logrotate.d to handle specific log files. A typical /etc/logrotate.conf file includes several
comment lines, denoted by hash marks (#), as well as lines to set various options, as illustrated by
Listing 8.1.

Listing 8.1: Sample /etc/logrotate.conf File

Rotate logs weekly

weekly

Keep 4 weeks of old logs

rotate 4

Create new log files after rotation

create

Compress old log files

compress

Refer to files for individual packages

include /etc/logrotate.d

Set miscellaneous options

notifempty

nomail

noolddir

Rotate wtmp, which isn't handled by a specific program

/var/log/wtmp {

 monthly

 create 0664 root utmp

 rotate 1

}

Most of the lines in Listing 8.1 set options that are fairly self-explanatory or that are well
explained by the comments that immediately precede them—for instance, the weekly line sets
the default log rotation interval to once a week. If you see an option in your file that you don’t
understand, consult the man page for logrotate.

4425.book Page 405 Monday, July 11, 2005 10:46 AM

406 Chapter 8 � Administering the System

Because log file rotation is handled by cron jobs that typically run late at night,
it won’t happen if a computer is routinely turned off at the end of the day. This
practice is common with Windows workstations but is uncommon with serv-
ers. Either Linux workstations should be left running overnight as a general
practice or some explicit steps should be taken to ensure that log rotation
occurs despite routine shutdowns. The anacron utility, described in the upcom-
ing section “Using anacron,” is particularly well suited to this task.

The last few lines of Listing 8.1 demonstrate the format for the definition for a specific log
file. These definitions begin with the filename for the file (multiple filenames may be listed, sep-
arated by spaces), followed by an open curly brace ({). They end in a close curly brace (}). Inter-
vening lines set options that may override the defaults. For instance, the /var/log/wtmp
definition in Listing 8.1 sets the monthly option, which tells the system to rotate this log file
once a month, overriding the default weekly option. Such definitions are common in the indi-
vidual files in /etc/logrotate.d, which are typically owned by the packages whose log files
they rotate. Examples of features that are often set in these definitions include:

Rotated file naming Ordinarily, rotated log files acquire numbers, such as messages.1 for
the first rotation of the messages log file. Using the dateext option causes the rotated log
file to obtain a date code instead, as in messages-20051005 for the rotation performed on
October 5, 2005.

Compression options As already noted, compress causes logrotate to compress log files
to save space. This is done using gzip by default, but you can specify another program with
the compresscmd keyword, as in compresscmd bzip2 to use bzip2. The compressoptions
keyword enables you to pass options to the compression command (say, to improve the com-
pression ratio).

Creating new log files The create option causes logrotate to create a new log file for use by the
system logger or program. This option takes a file mode, owner, and group as additional options.
Some programs don’t work well with this option, though. Most of them use the copytruncate
option instead, which tells logrotate to copy the old log file to a new name and then clear all the
data out of the original file.

Time options The daily, weekly, and monthly options tell the system to rotate the log files
at the specified intervals. These options aren’t always used, though; some configurations use a
size threshold rather than a time threshold for when to rotate log files.

Size options The size keyword sets a maximum size for a log file. It takes a size in bytes as
an argument (adding k or M to the size changes it to kilobytes or megabytes, respectively). For
instance, size 100k causes logrotate to rotate the file when it reaches 100KB in size.

Rotation options The rotate x option causes x copies of old log files to be maintained. For
instance, if you set rotate 2 for the /var/log/messages file, logrotate will maintain /var/
log/messages.1 and /var/log/messages.2 in addition to the active /var/log/messages
file. When that file is rotated, /var/log/messages.2 is deleted, /var/log/messages.1 is

4425.book Page 406 Monday, July 11, 2005 10:46 AM

Using System Log Files 407

renamed to /var/log/messages.2, /var/log/messages becomes /var/log/messages.1,
and a new /var/log/messages is created.

Mail options If you use mail address, logrotate will e-mail a log file to the specified
address when it’s rotated out of existence. Using nomail causes the system to not send any
e-mail; the log is quietly deleted.

Scripts The prerotate and postrotate keywords both begin a series of lines that are treated
as scripts to be run immediately before or after log file rotation, respectively. In both cases, these
scripts end with the endscript keyword. These commands are frequently used to force syslogd
or a server to begin using a new log file.

In most cases, servers and other programs that log data either do so via the system logging
daemon or ship with a configuration file that goes in /etc/logrotate.d to handle the server’s
log files. These files usually do a reasonable job; however, you might want to double-check
them. For instance, you might discover that your system is configured to keep too many or too
few old log files for your taste, in which case adjusting the rotate option is in order. You
should also check the /var/log directory and its subdirectories every now and then. If you see
huge numbers of files accumulating, or if files are growing to unacceptable size, you may want
to check the corresponding logrotate configuration files. If an appropriate file doesn’t exist,
create one. Use a working file as a template, modifying it for the new file. Pay particular atten-
tion to the prerotate or postrotate scripts; you may need to consult the documentation for
the program that’s creating the log file to learn how to force that program to begin using a new
log file.

In most cases, log files remain on the computer that recorded them. Sometimes, though, you
may want to copy such files off-site. The easiest way to do this may be to reconfigure the log
daemon to send the messages you want to archive to another system, as described in “Setting
Logging Options.” Another possibility is to create a cron job (as described later, in “foo”) to
copy files to another system using a network share, ssh, or some other network tool. You can
also manually copy log files onto removable disks, if you like. There are few technical reasons
to archive log files for more than a few weeks—only if a problem escapes your notice for a long
time will they be useful. Managers or lawyers might want to keep them around for the long term
for business or legal reasons, though.

Reviewing Log File Contents

Log files do no good if they simply accumulate on the system. Their purpose is to be used as a
means of identifying problems. When a server isn’t responding as you expect, when a computer
refuses logins it should be accepting (or accepting logins it should be refusing), or when a sys-
tem’s network interface isn’t coming up (to name just three types of problems), you should
check your log files as part of your troubleshooting procedures. Several procedures, many of
which involve tools described elsewhere in this book, can help you do so:

Paging through whole log files You can use a pager program, such as less (described in
Chapter 1), to view the entire contents of a log file. A text editor can fill the same role.

4425.book Page 407 Monday, July 11, 2005 10:46 AM

408 Chapter 8 � Administering the System

Searching for keywords You can use grep (described in Chapter 1) to pull lines that contain
keywords out of log files. This can be particularly handy when you don’t know which log file
is likely to hold an entry. For instance, typing grep eth0 /var/log/* locates all lines in all files
in the /var/log directory that contain the string eth0.

Examining the start or end of a file You can use the head or tail command (described in
Chapter 1) to examine the first or last several lines of a log file. The tail command is partic-
ularly handy; you can use it to look at the last few entries just after you take some action that
you expect to produce some diagnostic log file entries.

Monitoring log files In addition to checking the last few lines of a log file, tail can monitor
a file on an ongoing basis, echoing lines to the screen as they’re added to the file. You do this
with the -f option to tail, as in tail -f /var/log/messages.

Advanced log analysis tools Various packages exist expressly for the purpose of analyzing
log files. For instance, there’s Logcheck, which is part of the Sentry Tools package (http://
sourceforge.net/projects/sentrytools/). This package comes with some distribu-
tions, such as Mandriva and Debian. Unfortunately, it requires a fair amount of customiza-
tion for your own system, so it’s most easily implemented if it comes with your distribution,
preconfigured for its log file format.

Log file analysis is a skill that’s best learned through experience. Many log file messages are
cryptic, and they can be cryptic in different ways for different programs. For instance, consider
these entries:

Apr 14 23:17:00 speaker /USR/SBIN/CRON[6026]: (george) CMD

➥ (/usr/bin/fetchmail -f /home/george/.fetchmailrc > /dev/null)

Apr 14 23:17:52 speaker sshd[6031]: Accepted publickey for george from

➥ ::ffff:192.168.1.3 port 48139 ssh2

These two lines relate to two entirely different events, but they have a similar format. Both entries
begin with a time stamp and the name of the computer on which the activity occurred (speaker in
this example). Next on each line is an identifier for the program that logged the activity, including
its process ID (PID) number: /USR/SBIN/CRON[6026] and sshd[6031] in this example. Note that
these names are generated by the programs that create the activity, so they aren’t necessarily consis-
tent or even fully accurate. For instance, there is no /USR/SBIN/CRON program, although there is a
/usr/sbin/cron program. (Recall that Linux has a case-sensitive filesystem.)

All of this information helps you identify what program logged the entry and when it did so.
The rest of the log entry contains the actual logged data. The first entry in this example is from
the cron utility, and it identifies a program run on behalf of george—specifically, cron ran the
fetchmail program, passed it the name of a configuration file via the -f option, and redirected
the output to /dev/null. The second entry (for sshd) identifies a login from 192.168.1.3 on
port 38139, again involving the user george.

You can use entries like these to help identify malfunctioning servers, spot security breaches,
and otherwise debug your system. Doing so, though, requires at least some familiarity with the
normal log file contents, as well as other system details. For instance, in the preceding example,

4425.book Page 408 Monday, July 11, 2005 10:46 AM

Maintaining the System Time 409

if your system has no george account, these entries should both be suspicious; however, you
must be familiar enough with the format of the entries to spot that george is a username (or be
able to work it out). You must also know that your system should have no george account.

Overall, you should probably examine your log files from time to time to become familiar
with their contents. This will help you spot abnormalities when the system begins misbehaving
or when you want to use log files to help track down an unwelcome visitor.

Log file entries can be conspicuous by their absence as well as by suspicious
content within them. Intruders often try to cover their tracks by editing log files
to remove the entries that betray their unauthorized accesses. Sometimes,
though, they’re sloppy about this and they just delete all the log entries from
the time in question. If you notice unusual gaps in your log files, such as a gap
of an hour with no entries on a system that normally logs a couple dozen
entries in that period, you may want to investigate further.

Maintaining the System Time
Linux depends on its system clock more than many OSs. Tools such as cron and at (described
later, in “Running Jobs in the Future”) run programs at specified times, the make development
tool uses files’ time stamps to determine which ones need attention, and so on. Thus, you should
be familiar with how Linux deals with time, how to set the time zone, how to set the time, and
how to keep the clock accurate.

Linux Time Concepts

The x86 computers that most often run Linux, as well as most other computers of this general
class, have two built-in clocks. The first of these clocks, sometimes called the hardware clock,
maintains the time while the computer is turned off. When you boot Linux, it reads the hard-
ware clock and sets the software clock to the value it retrieves. The software clock is what Linux
uses for most purposes while it’s running.

Most desktop OSs, such as Windows and pre-X versions of Mac OS, set their clocks to the
local time. This approach is simple and convenient for people who are used to dealing mainly
with local time; however, for purposes of networking, it’s inadequate. When it’s 4:00 in New
York, it’s 1:00 in Los Angeles, so network protocols that rely even partly on time can become
confused (or at the very least, create confusing log entries) when they operate across time zones.
Linux, like other Unix-like OSs, sets its clock to Coordinated Universal Time (UTC), which for
most purposes is identical to Greenwich Mean Time (GMT)—the time in Greenwich, England,
unadjusted for Daylight Saving Time. This approach means that Linux systems in New York
and Los Angeles (and London and Moscow and Beijing) should have identical times, assuming
all are set correctly. For communicating with users, though, these systems need to know their

4425.book Page 409 Monday, July 11, 2005 10:46 AM

410 Chapter 8 � Administering the System

time zones. For instance, when you type ls -l to see a file listing complete with time stamps,
Linux reads the time stamp in UTC and then adds or subtracts the appropriate amount of time
so that the time stamp appears in your local time. Of course, all of this means that you must be
able to set the computer’s time zone. On most systems, this is done at system installation; the
distribution’s installer asks you for your time zone and sets things up correctly. If you erred dur-
ing installation or if you need to change the time zone for any reason, the upcoming section,
“Setting the Time Zone,” describes how to fix things.

Linux’s internal use of UTC can complicate setting the hardware clock. Ideally, the hardware
clock should be set to UTC; however, if your system multi-boots between Linux and an OS that
expects the hardware clock to be in local time, you’ll have to set the hardware clock to local time
and configure Linux to deal with this fact. For the most part, this configuration works well, but
you may have to watch the clock the first time you reboot in the spring or fall after changing
your clocks because of a Daylight Saving Time adjustment. Depending on your Linux and other
OS’s settings, your hardware clock might be reset in a way one OS or the other doesn’t expect.

Both the hardware clock and the software clock are notoriously unreliable on standard x86
hardware; both clocks tend to drift, so your clock can easily end up being several minutes off
the correct time within a month or two of being set. To deal with this problem, Linux supports
various network protocols for setting the time. The most popular of these is the Network Time
Protocol (NTP), which is described in the upcoming section “Using NTP.”

Setting the Time Zone

Linux looks to the /etc/localtime file for information on its local time zone. (This file is
called /etc/timezone on some systems, so look for both names.) This file is one of the rare
configuration files that’s not a plain-text file, so you shouldn’t try editing it with a text editor.
This file could be a file of its own or it could be a symbolic or hard link to another file. If it’s a
symbolic link, you should be able to determine your time zone by performing a long file listing
to see the name of the file to which localtime links:

$ ls -l /etc/localtime

lrwxrwxrwx 1 root root 36 May 14 2004 /etc/localtime ->

➥ /usr/share/zoneinfo/America/New_York

If /etc/localtime is a regular file and not a symbolic link, or if you want further confir-
mation of your time zone, try using the date command by itself:

$ date

Fri Apr 15 14:17:56 EDT 2005

The result includes a standard three-letter time zone code (EDT in this example). Of course,
you’ll need to know these codes, or at least the code for your area. For a list of time zone abbre-
viations, consult http://www.timeanddate.com/library/abbreviations/timezones/.
Note that the time zone codes vary depending on whether or not Daylight Saving Time is active,
but the Linux time zone files don’t change with this detail. In fact, part of what these files do
is describe when to change the clock for Daylight Saving Time. If you need to change your time

4425.book Page 410 Monday, July 11, 2005 10:46 AM

Maintaining the System Time 411

zone, you should copy or link a sample file from a standard directory location to the /etc/
localtime file:

1. Log in as root or acquire root privileges.

2. Change to the /etc directory.

3. View the contents of the /usr/share/zoneinfo directory. This directory contains files for
certain time zones named after the zones or the regions to which they apply, such as GMT,
Poland, and Japan. Most users will need to look in subdirectories, such as /usr/share/
zoneinfo/US for the United States or /usr/share/zoneinfo/America for North and
South America. These subdirectories contain zone files named after the regions or cities to
which they apply, such as Eastern or Los_Angeles. (The US subdirectory contains files
named after time zones or states, whereas the America subdirectory holds files named after
cities.) Identify the file for your time zone. Note that you might use a zone file named after
a city other than the one in which you reside but that’s in the same time zone as you. For
instance, the New_York file works fine if you’re in Boston, Philadelphia, Cincinnati,
Detroit, or any other city in the same (Eastern) time zone as New York.

4. If a localtime file exists in /etc, delete it or rename it. (For instance, type rm localtime.)

5. Create a symbolic link from your chosen time zone file to the /etc/localtime file. For
instance, you might type ln -s /usr/share/zoneinfo/US/Eastern localtime to set
up a computer in the U.S. Eastern time zone. Alternatively, you can copy a file (cp) rather
than create a symbolic link (ln -s). If /etc and your target file are on the same filesystem,
you could create a hard link rather than a symbolic link if you like.

At this point, your system should be configured to use the time zone you’ve selected. If you
changed time zones, you should be able to see the difference by typing date, as described earlier.
The time zone code on your system should change compared to issuing this command before
you changed the /etc/localtime file or link. The time should also change by the number of
hours between the time zones you’ve selected (give or take a bit for the time it took you to
change the time zone files).

Some distributions provide text-mode or GUI tools to help make time zone changes. Look
for a program called tzsetup, tzselect, or something similar. Typically, these programs ask
you for your location in several steps (starting with your continent, then your nation, and per-
haps then your state or city) and create an appropriate symbolic link.

Manually Setting the Time

With the time zone set, you can set your system’s clock—or more precisely, its clocks, because as
noted earlier, Linux maintains two clocks: the hardware clock and the software clock. The main
tool to set the software clock is date, which has the following syntax when setting the clock:

date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

Used without any options, this command displays the current date, as described in the previous
section. If you pass a time to the program, it sets the clock to that time. This format contains a

4425.book Page 411 Monday, July 11, 2005 10:46 AM

412 Chapter 8 � Administering the System

month, a day, an hour, and a minute at a minimum, all in two-digit codes (MMDDhhmm). You can
optionally add a 2- or 4-digit year and the seconds within a minute if you like. You should specify
the time in a 24-hour format. For instance, to set the time to 3:02 PM on October 27, 2005, you’d
type the following command:

date 102715022005

By default, date assumes you’re specifying the time in local time. If you want to set the clock
in UTC, include the -u, --utc, or --universal option.

Because x86 hardware maintains both software and hardware clocks, Linux provides tools
to synchronize the two. Specifically, the hwclock utility enables you to set the hardware clock
from the software clock or vice versa, as well as do a few other things. Its syntax is fairly
straightforward:

hwclock [options]

You can specify options to accomplish several goals:

Show the hardware clock To view the hardware clock, pass the -r or --show option. The
time is displayed in local time, even if the hardware clock is set to UTC.

Set the hardware clock manually To set the hardware clock to a date you specify, you need
two options: --set and --date=newdate. The newdate is in the date format that the date pro-
gram accepts.

Set the hardware clock based on the software clock If you’ve set the software clock, you can
synchronize the hardware clock to the same value with the --systohc option.

Set the software clock based on the hardware clock If your hardware clock is accurate but
your software clock isn’t, you can use the --hctosys option to set the software clock to the
hardware clock’s value. This option is often used in a SysV startup script to set the system clock
when the computer first boots.

Specify UTC or local time You can tell Linux to treat the hardware clock as storing UTC by
using the --utc option or to treat it as holding local time by using the --localtime option. The
default is whichever was last used when the hardware clock was set.

Ordinarily, you won’t use hwclock directly very often. You might need to use it after a Day-
light Saving Time shift if you maintain your hardware clock in local time, but some distributions
include scripts that manage this task automatically. You might also want to use it once in a
while to keep the hardware clock from drifting too far from an accurate time, but again, some
distributions do this automatically as part of the system shutdown procedure.

You can also set the hardware clock via your computer’s BIOS setup utility.
Consult your motherboard or computer hardware manual for details. You must
reboot the system to do this, typically pressing the Delete or some other key at
a critical time. You must then find the time option and set it appropriately. If
Linux is using UTC, remember to set the clock to UTC rather than local time.

4425.book Page 412 Monday, July 11, 2005 10:46 AM

Maintaining the System Time 413

Using NTP

Typically, a clock on an isolated computer needn’t be set with any great precision. It doesn’t
really matter if the time is off by a few seconds, or even a few minutes, so long as the time is
reasonably consistent on that one computer for the purpose of cron, other scheduling tools,
and time stamps. Sometimes, though, maintaining a truly accurate system time is important.
This is true for a few scientific, business, or industrial applications (such as astronomical mea-
surements or a system that determines the start and stop times for television broadcasts). In
a networked environment, maintaining the correct time can be more important. Time stamps
on files might become confused if a file server and its clients have different times, for instance.
Worse, a few protocols, such as the Kerberos security suite, embed time stamps in their pack-
ets and rely on those time stamps for normal system functioning. If two systems using Ker-
beros have wildly different times, they might not be able to communicate. For these reasons,
several protocols exist to synchronize the clocks of multiple systems. Of these, NTP is the
most popular and flexible, so I describe it. You should first understand the basic principles of
NTP operation. You can then go on to configuring an NTP server for your network and set-
ting up other systems as NTP clients.

NTP Basics

One of the most popular, flexible, and accurate network time tools is NTP. This protocol cre-
ates a tiered hierarchy of time sources, as illustrated in Figure 8.1. At the top of the structure
are one or more highly accurate time sources—typically atomic clocks or radio receivers that
pull their times from broadcast time signals based on atomic clocks. These are referred to as
stratum 0 time servers, but they aren’t directly accessible to any but the stratum 1 time servers
to which they’re connected. These stratum 1 computers run NTP servers that deliver the time
to stratum 2 servers, which deliver the time to stratum 3 servers, and so on for an arbitrary
number of strata.

Other time-setting protocols include one built into the Server Message
Block/Common Internet File System (SMB/CIFS) used for Windows file shar-
ing and implemented in Linux by Samba and a protocol used by the rdate
utility in Linux.

The key to NTP is the fact that each server can deliver time to an expanding number of cli-
ents. For instance, if a stratum 1 server has 1,000 clients, each of which has 1,000 clients, and
so on, stratum 3 will consist of 1,000,000 systems and stratum 4 will contain 1,000,000,000
systems. Each increase in the stratum number slightly decreases the accuracy of the time signal,
but not by much; even a stratum 4 system’s clock should be accurate to well under a second,
which is accurate enough for almost all purposes. More important, if you run a network, you
can set aside one computer as an NTP server and set all your other computers’ clocks from that
one server. Even if your primary NTP server’s clock is off by a second, all the clocks on your net-
work should be set to within a tiny fraction of each other, which is the most important consid-
eration for time-dependent network protocols such as Kerberos.

4425.book Page 413 Monday, July 11, 2005 10:46 AM

414 Chapter 8 � Administering the System

F I G U R E 8 . 1 NTP enables an expanding pyramid of computers to set their clocks to a
highly accurate source signal.

NTP works by measuring the round-trip time for packets between the server and the client.
The two systems exchange packets with embedded time stamps and the client then adjusts its
time so that it will be synchronized with the source’s time stamp but adds a bit to the time
reported by the source to account for this round-trip delay. For this reason, when you select an
NTP source (as described next, in “Locating a Time Source”), you should pick one with the
shortest possible network time delay, all other things being equal. (In truth, several measures of
reliability exist, and the NTP programs try to take them all into account.)

The main Linux NTP server program functions as both a server and a client; it sets its clock
based on the time of the server to which it’s pointed, and it enables other systems to set their clocks
based on its own. Even the end points in the NTP hierarchy (the stratum 4 and some stratum 3
servers in Figure 8.1) often run the full NTP server package. The reason is that this software runs
constantly and can monitor for and adjust the clock drift that’s common in x86 and other com-
puters’ clocks, resulting in much more consistent timekeeping than is possible with a program that
simply sets the clock and then ignores it until the next time it’s run. In other words, NTP doesn’t
just reset the system clock periodically; the server improves the accuracy of the system clock. In
part, this is done through the ntp.drift file, which is usually buried in /var/lib/ntp, but is

Stratum 0

Stratum 1

Stratum 2

Stratum 3

Stratum 4

4425.book Page 414 Monday, July 11, 2005 10:46 AM

Maintaining the System Time 415

sometimes stored in /etc. This file holds information on the software clock’s inaccuracies, and
so can be used to correct for them. A full NTP server, even when it’s functioning only as an NTP
client, periodically checks with its source systems to keep the system time set correctly and to
update the ntp.drift file.

Locating a Time Source

You might think that locating an NTP server with a low stratum number (such as stratum 1) is
ideal. Although it’s true that your own system will have a minutely more accurate clock when
using such a source, the best approach in most cases is to synchronize with a stratum 2 or lower
system. The reason is that this practice will help keep the load on the stratum 1 servers low, thus
improving the overall performance of the NTP network as a whole. An exception might be if
you’re configuring an NTP server that will itself deliver the time to hundreds or more computers.

To locate an NTP server, you should consult one or more of several sources:

Your ISP Many Internet service providers (ISPs), including business networks and universi-
ties, operate NTP servers for the benefit of their users. These servers are usually very close to
your own in a network sense, making them good choices for NTP. You should consult your ISP
or the networking department at your organization to learn if such a system is available.

Your distribution’s NTP server Some Linux distributions operate NTP servers for their users.
If you happen to be close to these servers in a network sense, they can be good choices; however,
chances are this isn’t the case, so you might want to look elsewhere.

Public NTP server lists Lists of public NTP servers are maintained at http://ntp.isc.org/
bin/view/Servers/WebHome. These servers can be good choices, but you’ll need to locate the
one closest to you in a network sense, and perhaps contact the site you choose to obtain per-
mission to use it.

The closest server in a network sense might not be the closest computer in a geo-
graphic sense. For instance, a national ISP might route all traffic through just one
or two hub sites. The result can be that traffic from, say, Atlanta Georgia to Tampa
Florida might go through Chicago Illinois. Such a detour is likely to increase round-
trip time and decrease the accuracy of NTP. In such a situation, a user in Atlanta
might be better off using a Chicago NTP server than one in Tampa, even though
Tampa is much closer geographically.

Once you’ve located a few possible time servers, try using ping to determine the round-trip
time for packets to this system. If any systems have very high ping times, you may want to
remove them from consideration.

Configuring NTP Servers

When setting up a network to use NTP, select one system (or perhaps two for a network with
several dozen or more computers) to function as the primary NTP server. This computer needn’t
be a very powerful one, but it must have always-up access to the network. You can then install
the NTP server and configure it.

4425.book Page 415 Monday, July 11, 2005 10:46 AM

416 Chapter 8 � Administering the System

Most Linux distributions ship the NTP software in a package called ntp, xntp, ntpd, or
xntpd. Look for this package and, if it’s not already installed, install it. If you can’t find this
package, check http://ntp.isc.org/bin/view/Main/SoftwareDownloads. This site hosts NTP
source code, which you can compile and install as described in Chapter 2. Alternatively, you can
look for a binary package for another distribution. Either way, if you don’t install your distri-
bution’s own NTP package, you’ll need to create your own SysV startup script or start the NTP
daemon in some other way.

Once NTP is installed, look for its configuration file, /etc/ntp.conf. This file contains var-
ious NTP options, but the most important are the server lines:

server clock.example.com

server ntp.pangaea.edu

server time.luna.edu

Each of these lines points to a single NTP server. When your local NTP daemon starts up, it will
contact all the servers specified in /etc/ntp.conf, measure their accuracy against each other, and
settle on one as its primary time source. Typically, you list about three upstream time servers for a sys-
tem that’s to serve many other computers. This practice enables your server to weed out any servers
that deliver a bad time signal, and it also gives automatic fallback in case an upstream server becomes
temporarily or permanently unavailable. If your NTP server won’t be serving many computers itself,
you might want to configure it for three servers initially and then drop the ones your system isn’t
using as its primary time source after a day or two. This will reduce the load on these servers.

You may want to peruse your configuration file for entries you might want to remove. For
instance, the configuration file might contain references to servers you’d rather not use or other
odd options with associated comments that make you think they’re inappropriate. Generally
speaking, you shouldn’t adjust other entries in the ntp.conf file, but of course special circum-
stances or odd starting files may require you to make changes.

Once you’ve made your changes, start or restart your NTP daemon. Typically, this is done
via a SysV startup script:

/etc/init.d/ntpd restart

You may need to change the path to the file, the SysV script filename, or the option (change
restart to start if you’re starting NTP for the first time). Most distributions configure NTP
to start whenever the system boots once you install the server. Consult Chapter 6 for details of
changing this configuration.

To verify that NTP is working, you can use the ntpq program, which is an interactive pro-
gram that accepts various commands. Figure 8.2 shows it in operation, displaying the output of
the peers command, which displays the servers to which your NTP server is connected. In Fig-
ure 8.2, three external servers are listed, plus LOCAL(0), which is the last-resort reference source
of the computer’s own clock. The refid column shows the server to which each system is syn-
chronized, the st column shows the stratum of the server, and additional columns show more
technical information. The server to which yours is synchronized is denoted by an asterisk (*),
other servers with good times are indicated by plus signs (+), and most other symbols (such as
x and -) denote servers that have been discarded from consideration for various reasons. Con-
sult ntpq’s man page for more information on its operation.

4425.book Page 416 Monday, July 11, 2005 10:46 AM

Maintaining the System Time 417

F I G U R E 8 . 2 The ntpq program enables you to verify that an NTP server is functioning
correctly.

You won’t see a server selected as the source until a few minutes after you
restart the NTP daemon. The reason is that your local NTP process takes a
while to determine which of the sources is providing the best signal.

Configuring NTP Clients

Once you’ve configured one or more NTP servers, you can configure the rest of your systems
to point to them. Their configuration is done just like the NTP server configuration, with a cou-
ple of exceptions:
� You set your NTP clients to refer to the NTP server (or servers) you’ve just configured

rather than to an outside NTP source. This way, your local systems won’t put an additional
burden on the outside NTP server you’ve selected.

� You may want to ensure that your NTP clients can’t be accessed as servers. This is a security
measure. You can do this with an iptables firewall rule, as described in Chapter 7 (block
port 123), or by using the restrict default ignore line in ntp.conf. This line tells the
server to ignore all incoming NTP requests. Ideally, you should use both methods.

Once you’ve configured a client, restart its NTP daemon. You can then use ntpq to check its status.
You should see that it refers only to your network’s own NTP server or servers. These systems should
be listed as belonging to a stratum with a number one higher than the servers to which they refer.

In some cases, a simpler way to set the time on a client is to use ntpdate. This program is
part of the NTP suite, and it performs a one-time clock setting. To use it, type the command
name followed by the hostname or IP address of an NTP server:

ntpdate clock.example.com

Some NTP packages include a call to ntpdate in their NTP daemon startup scripts in order
to ensure that the system is set to the correct time when it starts. The ntpdate command, how-
ever, has been deprecated and could disappear from the NTP package at any time. Instead, you
can start ntpd with its -g option, which enables it to perform a one-time clock setting to a value
that’s wildly divergent from the current time. (Ordinarily, ntpd exits if the time server’s time dif-
fers from the local time by more than a few minutes.)

4425.book Page 417 Monday, July 11, 2005 10:46 AM

418 Chapter 8 � Administering the System

Running Jobs in the Future
Some system maintenance tasks should be performed at regular intervals and are highly auto-
mated. For instance, the /tmp directory (which holds temporary files created by many users)
tends to collect useless data files. Linux provides a means of scheduling tasks to run at specified
times to handle such issues. This tool is the cron program, which runs what are known as cron
jobs. A related tool is at, which enables you to run a command on a one-time basis at a specified
point in the future as opposed to doing so on a regular basis, as cron does.

The Role of cron

The cron program is a daemon, so it runs continuously, looking for events that cause it to
spring into action. Unlike most daemons, which are network servers, cron responds to tempo-
ral events. Specifically, it “wakes up” once a minute, examines configuration files in the /var/
spool/cron and /etc/cron.d directories and the /etc/crontab file, and executes commands
specified by these configuration files if the time matches the time listed in the files.

There are two types of cron jobs: system cron jobs and user cron jobs. System cron jobs are
run as root and perform system-wide maintenance tasks. By default, most Linux distributions
include system cron jobs that clean out old files from /tmp, perform log rotation (as described
earlier, in “Rotating Log Files”), and so on. You can add to this repertoire, as described shortly.
Ordinary users can create user cron jobs, which might run some user program on a regular
basis. You can also create a user cron job as root, which might be handy if you need to perform
some task at a time not supported by the system cron jobs, which are scheduled rather rigidly.

Serving Time to Windows Systems

If your network hosts both Linux and Windows systems, you may want to use a Linux system as a
time source for Windows clients or conceivably even use a Windows server as a time source for
Linux clients. One way to do this is to run NTP on Windows. Consult http://geodsoft.com/howto/
timesync/wininstall.htm or perform a Web search to locate NTP software for Windows systems.
For Windows NT/200x/XP, you can type NET TIME /SETSNTP:time.server, where time.server is
the name of your local NTP time server. This command performs a one-time setting of the clock but
doesn’t run in the background as the full NTP package does on Linux. Running this command in a
Windows login script may be adequate for your purposes.

For older Windows 9x/Me systems, you can type NET TIME \\SERVER /SET /YES to have the sys-
tem set the time to the time maintained by SERVER, which must be a Windows or Samba file or
print server. This command doesn’t use NTP, but if you’ve got a Linux system that runs both
NTP and Samba, it can be a good way to get the job done.

4425.book Page 418 Monday, July 11, 2005 10:46 AM

Running Jobs in the Future 419

One of the critical points to remember about cron jobs is that they run unsupervised. There-
fore, you shouldn’t call any program in a cron job if that program requires user input. For
instance, you wouldn’t run a text editor in a cron job. You might, however, run a script that
automatically manipulates text files, such as log files.

Creating System cron Jobs

The /etc/crontab file controls system cron jobs. This file normally begins with several lines
that set environment variables, such as PATH and MAILTO (the former sets the path, and the latter
is the address to which programs’ output is mailed). The file then contains several lines that
resemble the following:

02 4 * * * root run-parts /etc/cron.daily

This line begins with five fields that specify the time. The fields are, in order, the minute (0–59),
the hour (0–23), the day of the month (1–31), the month (1–12), and the day of the week (0–7;
both 0 and 7 correspond to Sunday). For the month and day of the week values, you can use the
first three letters of the name rather than a number, if you like.

In all cases, you can specify multiple values in several ways:
� An asterisk (*) matches all possible values.
� A list separated by commas (such as 0,6,12,18) matches any of the specified values.
� Two values separated by a dash (-) indicate a range, inclusive of the end points. For

instance, 9-17 in the hour field specifies a time of from 9:00 AM to 5:00 PM

� A slash, when used in conjunction with some other multi-value option, specifies stepped
values—a range in which some members are skipped. For instance, */10 in the minute field
indicates a job that’s run every 10 minutes.

After the first five fields, /etc/crontab entries continue with the account name to be used
when executing the program (root in the preceding example) and the command to be run
(run-parts /etc/cron.daily in this example). The default /etc/crontab entries gener-
ally use run-parts, cronloop, or a similar utility that runs any executable scripts within a
directory. Thus, the preceding example runs all the scripts in /etc/cron.daily at 4:02 AM
every day. Most distributions include monthly, daily, weekly, and hourly system cron jobs,
each corresponding to scripts in a directory called /etc/cron.interval, where interval is
a word associated with the run frequency. Others place these scripts in /etc/cron.d/
interval directories.

The exact times chosen for system cron jobs to execute vary from one distri-
bution to another. Normally, though, daily and longer-interval cron jobs run
early in the morning—between midnight and 6:00 AM. Check your /etc/
crontab file to determine when your system cron jobs run.

4425.book Page 419 Monday, July 11, 2005 10:46 AM

420 Chapter 8 � Administering the System

To create a new system cron job, you may create a script to perform the task you want per-
formed (as described in Chapter 6) and copy that script to the appropriate /etc/cron.interval
directory. When the runtime next rolls around, cron will run the script.

Before submitting a script as a cron job, test it thoroughly. This is particularly
important if the cron job will run when you’re not around. You don’t want a bug
in your cron job script to cause problems by filling the hard disk with useless
files or producing thousands of e-mail messages when you’re not present to
quickly correct the problem.

If you need to run a cron job at a time or interval that’s not supported by the standard /etc/
crontab, you can either modify that file to change or add the cron job runtime or create a user
cron job, as described shortly. If you choose to modify the system cron job facility, model your
changes after an existing entry, changing the times and script storage directory as required.

System cron job storage directories should be owned by root, and only root
should be able to write to them. If ordinary users can write to a system cron
directory, unscrupulous users could write scripts to give themselves superuser
privileges and place them in the system cron directory. The next time cron runs
those scripts, the users will have full administrative access to the system.

Creating User cron Jobs

To create a user cron job, you use the crontab utility, not to be confused with the /etc/
crontab configuration file. The syntax for crontab is as follows:

crontab [-u user] [-l | -e | -r] [file]

If given without the -u user parameter, crontab modifies the cron job associated with the cur-
rent user. (User cron jobs are often called crontabs, but with the word already used in reference to
the system-wide configuration file and the utility itself, this usage can be perplexing.) The crontab
utility can become confused by the use of su to change the current user identity, so if you use this
command, it’s safest to also use -u user, even when you are modifying your own cron job.

If you want to work directly on a cron job, use one of the -l, -e, or -r options. The -l option
causes crontab to display the current cron job; -r removes the current cron job; and -e opens
an editor so that you can edit the current cron job. (Vi is the default editor, but you can change
this by setting the VISUAL or EDITOR environment variables, as described in Chapter 1.)

Alternatively, you can create a cron job configuration file and pass the filename to crontab
using the file parameter. For instance, crontab -u tbaker my-cron causes crontab to use
my-cron for tbaker’s cron jobs.

Whether you create the cron job and submit it via the file parameter or edit it via -e, the format
of the cron file is similar to that described earlier. You can set environment variables by using the
form VARIABLE=value, or you can specify a command preceded by five numbers or wildcards to

4425.book Page 420 Monday, July 11, 2005 10:46 AM

Running Jobs in the Future 421

indicate when the job is to run. In a user cron job, however, you do not specify the username used
to execute the job, as you do with system cron jobs. That information is derived from the owner of
the cron job. Listing 8.2 shows a sample cron job file. This file runs two programs at different inter-
vals: The fetchmail program runs every 30 minutes (on the hour and half hour), and clean-
adouble runs on Mondays at 2:00 AM. Both programs are specified via complete paths, but you
could include a PATH environment variable and omit the complete path specifications.

Listing 8.2: A Sample User cron Job File

SHELL=/bin/bash

MAILTO=tbaker

HOME=/home/tbaker

0,30 * * * * /usr/bin/fetchmail -s

0 2 * * mon /usr/local/bin/clean-adouble $HOME

Ultimately, user cron job files are stored in the /var/spool/cron/tabs directory. (Some
distributions use crontabs rather than tabs in this path.) Each file in this directory is named
after the user under whose name it will run, so for example, tbaker’s file will be called /var/
spool/cron/tabs/tbaker. You shouldn’t directly edit the files in this directory, though;
instead, use crontab to make changes.

Access to the cron facility may be restricted in several ways:

Executable permissions The permissions on the cron and crontab programs may be
restricted using standard Linux permissions mechanisms, as described in Chapter 4. Not all dis-
tributions configure themselves in this way, but for those that do, users who should be able to
schedule jobs using cron should be added to the appropriate group. This group is often called
cron, but you should check the group owner and permissions on the /usr/sbin/cron and
/usr/bin/crontab program files to be sure.

Allowed users list The /etc/cron.allow file contains a list of users who should be permitted
access to cron. If this file is present, only users whose names appear in the file may use cron;
all others are denied access. If this file is not present, anybody may use cron, assuming access
isn’t restricted by executable permissions or a disallowed users list.

Disallowed users list The /etc/cron.deny file contains a list of users who should be denied
access to cron. If this file is present, any user whose name appears in the file is denied access to
cron, but all others may use it, assuming executable permissions and the allowed users list don’t
restrict access.

Using anacron

Although cron is a great tool for performing certain tasks, such as rotating log files, on systems
that are up most or all of the time, it’s a much less useful tool on systems that are frequently shut
down, such as notebook computers or even many desktop systems. Frequently, late-night cron
jobs are never executed on such systems, which can lead to bloated log files, cluttered /tmp
directories, and other problems.

4425.book Page 421 Monday, July 11, 2005 10:46 AM

422 Chapter 8 � Administering the System

One solution to such problems is anacron (http://anacron.sourceforge.net). This
program is designed as a supplement to cron to ensure that regular maintenance jobs are exe-
cuted at reasonable intervals. It works by keeping a record of programs it should execute and
how frequently it should do so, in days. Whenever anacron is run, it checks to see when it last
executed each of the programs it’s configured to manage. If a period greater than the pro-
gram’s execution interval has passed, anacron runs the program. Typically, anacron itself is
run from a system startup script, and perhaps from a cron job. You can then reconfigure your

E X E R C I S E 8 . 2

Creating User cron Jobs

cron jobs can be a useful way to run programs at regular times. In this exercise, you’ll create
a simple user cron job that will mail you the output of an ifconfig command on a daily basis.
This exercise assumes that you’re authorized to use cron as an ordinary user. To configure your
cron job, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI login
method.

3. Create and edit a file called cronjob in your home directory. Use your favorite text editor
for this purpose. The file should contain the following lines:

SHELL=/bin/bash
MAILTO=yourusername
00 12 * * * /sbin/ifconfig

Be sure to type these lines exactly; a typo will cause problems. One exception: Substitute
your e-mail address on the Linux system or elsewhere for yourusername; cron uses the
MAILTO environment variable to determine to whom to e-mail the output of cron jobs.

4. Type crontab cronjob to install the cronjob file as a cron job. Note that this command
replaces any existing user cron jobs that might exist. If you’ve already defined user cron
jobs for your account, you should edit your existing cronjob file to add the line calling
ifconfig rather than create a new file.

5. Wait for 12:00 noon (00 12 in the cron time format). When this time rolls around, you
should have a new e-mail waiting for you with the contents of the ifconfig output.

Instead of waiting for 12:00 noon, you can substitute a time that’s a couple of minutes in the
future. Remember that cron specifies minutes first, followed by the hour in a 24-hour format. For
instance, if you create the file at 3:52 PM, you might enter 54 15 as the first two numbers on the
final line of the file; this will cause the cron job to execute at 15:54 on a 24-hour clock, or 3:54 PM.

4425.book Page 422 Monday, July 11, 2005 10:46 AM

Running Jobs in the Future 423

regular system cron jobs as anacron jobs and be sure they’ll execute even on systems that are
regularly shut down for long stretches of time.

Like cron, anacron is controlled through a configuration file named after itself: /etc/
anacrontab. This file consists of three main types of lines: comment lines (denoted by a leading
hash mark, #), environment variable assignments (as in SHELL=/bin/bash), and job definition
lines. This last type of line contains four fields:

period delay identifier command

The period is how frequently, in days, the command should be run. The delay is a delay
period, in minutes, between the time anacron starts and the time the command is run, if it should
be run. This feature is intended to help keep the system from being overloaded if anacron deter-
mines it needs to run many commands when it starts up. The identifier is a string that identifies
the command. You can pass it to anacron on the command line to have anacron check and, if
necessary, run only that one command. Finally, command is the command to be run. This is a single
command or script name, optionally followed by any parameters it might take.

Listing 8.3 shows a sample /etc/anacrontab file. This file sets a couple of environment
variables; PATH is particularly important if any scripts call programs without specifying their
complete paths. The three job definition lines tell anacron to run the run-parts command,
passing it the name of a different directory for each line. This command is used on some distri-
butions to run cron jobs, so the effect of calling it from anacron is to take over cron’s duties.
The first line, run once a day, causes anacron to run (via run-parts) the scripts in /etc/
cron.daily; the second line causes the scripts in /etc/cron.weekly to be run once a week;
and the third, run once every 30 days, runs the scripts in /etc/cron.monthly.

Listing 8.3: Sample /etc/anacrontab File

SHELL=/bin/bash

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

format: period delay job-identifier command

1 5 cron.daily run-parts /etc/cron.daily

7 10 cron.weekly run-parts /etc/cron.weekly

30 15 cron.monthly run-parts /etc/cron.monthly

Of course, to do any good, anacron must be called itself. This is typically done in one
of two ways:

Via a startup script You can create a startup script to run anacron. A simple SysV startup
script that takes no options but that runs anacron should do the job if configured to run from
your regular runlevel. Alternatively, you could place a call to anacron in a local startup script,
such as Fedora and Red Hat’s /etc/rc.d/rc.local or SuSE’s /etc/boot.d/boot.local.

Via a cron job You can create a cron job to run anacron. Typically, this call will replace
your regular system cron job entries (in /etc/crontab), and you’ll probably want to call
anacron on a daily basis or more frequently.

4425.book Page 423 Monday, July 11, 2005 10:46 AM

424 Chapter 8 � Administering the System

The startup script approach is best employed on systems that are shut down and started up
frequently, such as laptops or desktop systems that are regularly shut down at the end of the
day. One drawback to this approach is that it can cause sluggish performance when the system
is booted if anacron needs to run a time-consuming task. Calling anacron via a cron job can
shift the burden to off hours, but if cron can reliably run anacron, cron could as easily and reli-
ably run the jobs that anacron runs. Typically, you’d use a cron job if the system is sometimes,
but not always, left running overnight. This will ensure that anacron and the jobs it handles are
run fairly frequently, if not on a completely regular basis. Alternatively, you could call anacron
more frequently than once a day. For instance, if it’s called once every six hours, it will almost
certainly be called during a typical eight-hour workday.

For a desktop system, you might try calling anacron via a cron job at the user’s
typical lunch break. This will help minimize the disruption caused by any
resource-intensive programs that anacron must run.

No matter how you run anacron, you should be sure to disable any cron jobs that anacron
now handles. If you don’t do so, those tasks will be performed twice, which may needlessly bur-
den your system. Because anacron measures its run intervals in days, it’s not a useful utility for
running hourly cron jobs. Thus, you shouldn’t eliminate any hourly system cron jobs when you
edit your cron configuration for anacron.

Using at

Sometimes cron and anacron are overkill. You might simply want to run a single command at a
specific point in the future on a one-time basis rather than on an ongoing basis. For this task, Linux
provides another command: at. In ordinary use, this command takes a single option (although
options to fine-tune its behavior are also available): a time. This time can take any of several forms:

Time of day You can specify the time of day as HH:MM, optionally followed by AM or PM if you
use a 12-hour format. If the specified time has already passed, the operation is scheduled for the
next occurrence of that time—that is, for the next day.

noon, midnight, or teatime These three keywords stand for what you’d expect (teatime is
4:00 PM).

Day specification To schedule an at job more than 24 hours in advance, you must add a day
specification after the time of day specification. This can be done in numeric form, using the for-
mats MMDDYY, MM/DD/YY, or DD.MM.YY. Alternatively you can specify the date as month-name
day or month-name day year.

A specified period in the future You can specify a time using the keyword now, a plus sign (+),
and a time period, as in now + 2 hours to run a job in two hours.

The at command relies on a daemon, atd, to be running. If your system doesn’t
start atd automatically, you may need to configure a SysV startup script to do so.

4425.book Page 424 Monday, July 11, 2005 10:46 AM

Backing Up the System 425

When you run at and give it a time specification, the program responds with its own prompt,
at>, which you can treat much like your normal bash or other command shell prompt. When
you’re done typing commands, press Ctrl+D to terminate input. Alternatively, you can pass a
file with commands by using the -f parameter to at, as in at -f commands.txt noon to use
the contents of commands.txt as the commands you want to run at noon.

The at command has several support tools. The most important of these is atd, the at dae-
mon. This program must be running for at to do its work. If it’s not, check for its presence using
ps. If it’s not running, look for a SysV startup script and ensure that it’s enabled, as described
in Chapter 6.

Other at support programs include atq, which lists pending at jobs; atrm, which removes
an at job from the queue; and batch, which works much like at but executes jobs when the sys-
tem load level drops below 0.8. These utilities are all fairly simple. To use atq, simply type its
name. (The program does support a couple of options, but chances are you won’t need them;
consult atq’s man page for details.) To use atrm, type the program name and the number of the
at job, as returned by atq. For instance, you might type atrm 12 to remove at job number 12.

The at facility supports access restrictions similar to those of cron. Specifically, the
/etc/at.allow and /etc/at.deny files work analogously to the /etc/cron.allow and /etc/
cron.deny files. There are a few wrinkles with at, though. Specifically, if neither at.allow nor
at.deny exists, only root may use at. If at.allow exists, the users it lists are granted access
to at; if at.deny exists, everybody except those mentioned in this file is granted access to at. This
differs from cron, in which everybody is granted access if neither access-control file is present.
This tighter default security on at means that the program is seldom installed with restrictive exe-
cute permissions, but of course you could use program file permissions to deny ordinary users the
ability to run at if you want an extra layer of security.

Backing Up the System
Many things can go wrong on a computer that might cause it to lose data. Hard disks can fail,
you might accidentally enter some extremely destructive command, a cracker might break into
your system, or a user might accidentally delete a file, to name just a few possibilities. To protect
against such problems, it’s important that you maintain good backups of the computer. To do
this, select appropriate backup hardware, choose a backup program, and implement backups
on a regular schedule. You should also have a plan in place to recover some or all of your data
should the need arise.

Common Backup Hardware

Just about any device that can store computer data and read it back can be used as a backup
medium. The best backup devices are inexpensive, fast, high in capacity, and reliable. They
don’t usually need to be random access devices, though. Random access devices are capable of
quickly accessing any piece of data. Hard disks, floppy disks, and CD-ROMs are all random
access devices. These devices contrast with sequential access devices, which must read through

4425.book Page 425 Monday, July 11, 2005 10:46 AM

426 Chapter 8 � Administering the System

all intervening data before accessing the sought-after component. Tapes are the most common
sequential-access devices.

Traditionally, tapes have been the backup medium of choice. Although they’re sequential-
access devices, they’re inexpensive on a per-gigabyte basis, and tapes have usually had capacities
that match or exceed the capacities of typical computer hard disks. In the past few years, though,
the price gap between tapes and other media—particularly recordable DVDs and hard disks—has
been narrowing. Thus, these devices are now often used for backups. Typically, recordable DVDs
(or the lower-capacity CD-R or CD-RW media) are used for backing up basic system installations
or particular projects, while hard disks mounted in special removable drive bays are used for com-
plete system backups. Tapes can fill either role.

If you restrict computers’ main installation partitions to about 1 to 1.4GB, those
entire partitions will most likely fit, when compressed, on standard 700MB CD-Rs.
This can simplify backup and recovery efforts.

It’s generally wise to keep multiple backups and to store some of them away from the comput-
ers they’re meant to protect. Such offsite storage protects your data in case of fire, vandalism, or
other major physical traumas. Keeping several backups makes it more likely you’ll be able to
recover something, even if it’s an older backup, should your most recent backup medium fail.

If you decide to use a tape drive, your choices aren’t over. Several competing tape formats are
in common use. These include Travan, which dominates the low end of the spectrum; digital
audio tape (DAT), which is generally considered a step up; digital linear tape (DLT) and Super
DLT, which are well respected for use on servers and networks; 8mm, which is similar to DAT
but has higher capacities; and Advanced Intelligent Tape (AIT), which is a high-end tape
medium. Each of these competes at least partially with some of the others. Travan drives tend
to be quite inexpensive (typically $200–$500), but the media are pricey. The other formats fea-
ture more costly drives ($500–$4000 for a single drive), but the media cost less. Maximum
capacities vary: under 1GB for obsolete forms of Travan, 20GB for top-of-the-line Travan, and
160GB for the largest Super DLT drives. Overall, Travan is a good solution for low-end work-
stations; DAT is best used on high-end workstations, small servers, and small networks; and the
other formats are all good for high-end workstations, servers, and networks.

If you decide to use hard disks in removable mounts as a backup medium, you’ll need ordi-
nary internal drives and mounting hardware. The hardware comes in two parts: a mounting bay
that fits in the computer and a frame in which you mount the hard drive. To use the system, you
slide the frame with hard drive into the mounting bay. You can get by with one of each com-
ponent, but it’s best to buy one frame for each hard drive, which effectively raises the media
cost. From a Linux software point of view, removable hard disk systems work like regular hard
disks or other removable disk systems, like Zip disks. Most of these systems use ATA disks,
which you’ll access as /dev/hdb, /dev/hdc, or some other ATA device identifier. The disks are
likely to be partitioned, and the partitions are likely to hold ordinary Linux filesystems.

Optical media (recordable DVDs, CD-Rs, and CD-RWs) are odd from a software interface
perspective: You must use tools such as cdrecord to write to them rather than accessing their
device files directly. CD-R and CD-RW drives and media are very well standardized, both from

4425.book Page 426 Monday, July 11, 2005 10:46 AM

Backing Up the System 427

a software and a hardware perspective, so buy these based on price and features. Several com-
peting recordable DVD formats exist, though, and the market is constantly changing. If you
need the higher capacity of a recordable DVD, you should research the current market and for-
mats before buying. (You should be able to use cdrecord or similar Linux programs to write
to any recordable DVD drive, though.)

Common Backup Programs

Linux supports several backup programs. Some are tools designed to back up individual files,
directories, or computers. Others build on these simpler tools to provide network backup facil-
ities. Basic backup programs include tar, cpio, and dump. In some cases, using dd to back up
a small partition can make sense as well.

The tar Utility

The tar program’s name stands for “tape archiver.” Despite this fact, tar can be used to back
up data to other media. In fact, tarballs (archive files created by tar and typically compressed
with gzip or bzip2) are often used for transferring multiple files between computers in one
step, such as when distributing source code.

The tar program is a complex package with many options. Most of what you’ll do with the
utility, however, can be covered with a few common commands. Table 8.1 lists the primary tar
commands, and Table 8.2 lists the qualifiers that modify what the commands do. Whenever you
run tar, you use exactly one command and you usually use at least one qualifier.

T A B L E 8 . 1 tar Commands

Command Abbreviation Description

--create c Creates an archive

--concatenate A Appends tar files to an archive

--append r Appends non-tar files to an archive

--update u Appends files that are newer than those in
an archive

--diff or --compare d Compares an archive to files on disk

--list t Lists archive contents

--extract or --get x Extracts files from an archive

4425.book Page 427 Monday, July 11, 2005 10:46 AM

428 Chapter 8 � Administering the System

Of the commands listed in Table 8.1, the most commonly used are --create, --extract,
and --list. The most useful qualifiers from Table 8.2 are --file, --listed-incremental,
--one-file-system, --same-permissions, --gzip, --bzip2, and --verbose. (--bzip2 is
a fairly recent addition, so it may not work if you’re using an older version of tar.) If you fail
to specify a filename with the --file qualifier, tar will attempt to use a default device, which
is often (but not always) a tape device file.

The upcoming section “Backing Up a Computer” describes how to use tar in practice.

T A B L E 8 . 2 tar Qualifiers

Command Abbreviation Description

--directory dir C Changes to directory dir before performing
operations

--file [host:]file f Uses file called file on computer called host
as the archive file

--listed-incremental file g Performs incremental backup or restore, using
file as a list of previously archived files

--one-file-system l Backs up or restores only one filesystem
(partition)

--multi-volume M Creates or extracts a multitape archive

--tape-length N L Changes tapes after N kilobytes

--same-permissions p Preserves all protection information

--absolute-paths P Retains the leading / on filenames

--verbose v Lists all files read or extracted; when used
with --list, displays file sizes, ownership, and
time stamps

--verify W Verifies the archive after writing it

--exclude file (none) Excludes file from the archive

--exclude-from file X Excludes files listed in file from the archive

--gzip or --ungzip z Processes archive through gzip

--bzip2 j (some older
versions used
I or y)

Processes archive through bzip2

4425.book Page 428 Monday, July 11, 2005 10:46 AM

Backing Up the System 429

The cpio Utility

The cpio program is similar in principle to tar, but the details of its operation differ. As with
tar, you can direct its output straight to a tape device. This can be a convenient way to back
up the computer because it requires no intermediate storage. To restore data, you use cpio to
read directly from the tape device file.

The cpio utility has three operating modes:

Copy-out mode This mode, activated by use of the -o or --create option, creates an archive
and copies files into it.

Copy-in mode You activate copy-in mode by using the -i or --extract option. This mode
extracts data from an existing archive. If you provide a filename or a pattern to match, cpio
will extract only the files whose names match the pattern you provide.

Copy-pass mode This mode is activated by the -p or --pass-through option. It combines
the copy-out and copy-in modes, enabling you to copy a directory tree from one location
to another.

The copy-out and copy-in modes are named confusingly.

In addition to the options used to select the mode, cpio accepts many other options, the most
important of which are summarized in Table 8.3. To back up a computer, you’ll combine the
--create (or -o) option with one or more of the options in Table 8.3; to restore data, you’ll
do the same, but use --extract (or -i). In either case, cpio acts on filenames that you type at
the console. In practice, you’ll probably use the redirection operator (<) to pass a filename list
to the program.

T A B L E 8 . 3 Options for Use with cpio

Option Abbreviation Description

--reset-access-time -a Resets the access time after reading a file
so that it doesn’t appear to have been read.

--append -A Appends data to an existing archive.

--pattern-file=filename -E filename Uses the contents of filename as a list of
files to be extracted in copy-in mode.

--file=filename -F filename Uses filename as the cpio archive file; if
this parameter is omitted, cpio uses stan-
dard input or output.

4425.book Page 429 Monday, July 11, 2005 10:46 AM

430 Chapter 8 � Administering the System

The dump and restore Utilities

One traditional Unix backup tool is called dump. This program operates on a somewhat lower
level than tar and cpio; where these programs read and write files like most programs, dump
uses low-level filesystem access to back up and restore data on the inode level. One result of this
difference is that a dump utility is tied to the filesystem it services. The main Linux dump utility
works only with ext2 and ext3 filesystems; it can’t be used to back up ReiserFS, XFS, JFS, or
any other type of filesystem. XFS provides its own dump utility (xfsdump), but ReiserFS and JFS
lack dump utilities.

Quite a few dump options exist, but a basic backup uses the -f file option to specify a
backup file and passes the files or directories to be backed up:

dump -f /dev/st0 /home

--format=format -H format Uses a specified format for the archive file.
Common values for format include bin
(the default, an old binary format), crc
(a newer binary format with a checksum),
and tar (the format used by tar).

N/A -I filename Uses the specified filename instead of
standard input. (Unlike -F, this option does
not redirect output data.)

--no-absolute-filenames N/A In copy-in mode, extracts files relative to
the current directory, even if filenames in the
archive contain full directory paths.

N/A -O filename Uses the specified filename instead of
standard output. (Unlike -F, this option
does not redirect input data.)

--list -t Displays a table of contents for the input.

--unconditional -u Replaces all files without first asking for
verification.

--verbose -v Displays filenames as they’re added to or
extracted from the archive. When used
with -t, displays additional listing infor-
mation (similar to ls -l).

T A B L E 8 . 3 Options for Use with cpio (continued)

Option Abbreviation Description

4425.book Page 430 Monday, July 11, 2005 10:46 AM

Backing Up the System 431

This command backs up the /home directory tree to /dev/st0 (a SCSI tape drive). For more
details on dump options, consult its man page.

The dump utility, despite the fact that it doesn’t work on many Linux filesystems, holds
a special place in Linux because the next-to-the-last entry in /etc/fstab lines tells dump
whether it should automatically back up a filesystem when called in certain ways. Chapter 4
describes /etc/fstab in more detail.

To restore data from a dump backup, you must use the restore program. Like dump, restore
takes a large number of options, so consult its man page for details. Be aware that you can restore
files only to the same filesystem type on which they were originally stored—for instance, you can’t
restore files from an ext2 or ext3 filesystem to an XFS partition.

As a general rule, the dump and restore utilities should not be used because they aren’t
reliable on 2.4.x and later kernels. (Linus Torvalds himself has cautioned against its use; see
http://lwn.net/2001/0503/a/lt-dump.php3.)

The dd Utility

A backup program that operates on an even lower level than dump is dd. This program is a low-
level copying program, and when it’s given the device file for a partition as input, it copies that
partition’s contents to the output file you specify. This output file could be another partition
identifier, a tape device, or a regular file, to name three possibilities. The input and output files
are passed with the if=file and of=file options:

dd if=/dev/hda3 of=/dev/st0

This command backs up the /dev/hda3 disk partition to /dev/st0 (a SCSI tape drive). The
result is a very low-level backup of the partition that can be restored by swapping the if= and
of= options:

dd if=/dev/st0 of=/dev/hda3

The dd utility can be a good way to create exact backups of entire partitions, but as a general
backup tool, it has serious problems. It backs up the entire partition, including any empty space. For
instance, a 2GB partition that holds just 5MB of files will require 2GB of storage space. Restoring
individual files is also impossible unless the target device is a random access device that can be
mounted; if you back up to tape, you must restore everything (at least to a temporary file or parti-
tion) to recover a single file. Finally, you can’t easily restore data to a partition that’s smaller than
the original partition, and when restoring to a larger partition, you’ll end up wasting some of the
space available on that partition.

Despite these problems, dd can be handy in some situations. It can be a good way to make
an exact copy of a floppy disk, for instance, including its boot sector. You can use dd to copy
a disk for which Linux lacks filesystem drivers. For instance, you can back up and restore a Win-
dows New Technology File System (NTFS) partition using dd. If you need to create multiple
identical Linux installations, you can do so by using dd to copy a working installation to mul-
tiple computers, so long as they’ve got hard disks of the same size.

4425.book Page 431 Monday, July 11, 2005 10:46 AM

432 Chapter 8 � Administering the System

Backing Up a Computer

The tar command is generally considered the lowest common denominator backup program.
Tapes created with tar can be read on non-Linux systems, and all mainstream Linux distribu-
tions ship with tar.

On the downside, cpio and tar have a compression problem: These programs don’t com-
press data themselves. To do this, these programs rely on an external program, such as gzip or
bzip2, to compress an entire cpio or tar archive. The problem with this approach is that if an
error occurs while restoring the compressed archive, all the data from that error onward will be
lost. This makes compressed cpio or tar archives risky for backup. Fortunately, most tape
drives support compression in their hardware, and these use more robust compression algo-
rithms. Therefore, if your tape drive supports compression, you should not compress a cpio or
tar backup. Let the tape drive do that job, and if there’s a read error at restore, you’ll probably
lose just one or two files. If your tape drive doesn’t include built-in compression features, you
should either not compress your backups or use another utility, most of which don’t suffer from
this problem.

To back up a computer with tar, you provide a list of files or directories on the command
line, along with the --create (c) command and several qualifiers:

tar cvlpf /dev/st0 /home / /boot /var

This command lists directories in a particular order. Because tape is a sequential-access
medium, the system will restore items in the order in which they were backed up. Therefore, for
the fastest partial restores, list the filesystems that you most expect to have to restore first. In this
example, /home is listed first because users sometimes delete files accidentally. Backing up
/home first, therefore, results in quicker restoration of such files.

The --verbose (v) option displays a list of files as they’re backed up. Ordinarily, tar descends
the directory tree, including mounted filesystems; the --one-file-system (l) option prevents
tar from descending into filesystems mounted within the specified directory tree. The --same-
permissions (p) option ensures that all permission information is backed up. The --file (f)
option is required to specify the output device (/dev/st0 in this example).

After creating a backup with tar, you may want to use the tar --diff (also known as
--compare, or d) command to verify the backup you’ve just written against the files on
disk. Alternatively, you can include the --verify (W) qualifier to have this done automat-
ically. Verifying your backup doesn’t guarantee it will be readable when you need it, but it
should at least catch major errors caused by severely degraded tapes. On the other hand, the
verification will almost certainly return a few spurious errors because of files whose con-
tents have legitimately changed between being written and being compared. This may be
true of log files, for instance.

Planning a Backup Schedule

Regular computer backup is important, but precisely how regularly is a matter that varies from
one system to another. If a computer’s contents almost never change (as might be true of a dedi-
cated router or a workstation whose user files reside on a file server), backups once a month or

4425.book Page 432 Monday, July 11, 2005 10:46 AM

Backing Up the System 433

even less often might be in order. For critical file servers, once a day is not too often. You’ll have
to decide for yourself just how frequently your systems require backup. Take into consideration
factors such as how often the data change, the importance of the data, the cost of recovering the
data without a current backup, and the cost of making a backup. Costs may be measured in
money, your own time, users’ lost productivity, and perhaps lost sales.

Even the most zealous backup advocate must admit that creating a full backup of a big system
on a regular basis can be a tedious chore. A backup can easily take several hours, depending on
backup size and hardware speed. For this reason, most backup packages, including tar, support
incremental backups. You can create these using the --listed-incremental file qualifier to
tar, as shown in this example:

tar cvplf /dev/st0 --listed-incremental /root/inc / /home

This command stores a list of the files that have been backed up (along with identifying infor-
mation to help tar determine when the files have changed) in /root/inc. The next time the
same command is issued, tar will not back up files that have already been backed up; it will
back up only new files. Thus, you can create a schedule in which you do a full backup of the
entire computer only occasionally—say, once a week or once a month. You’d do this by deleting
the increment file and running a backup as usual. On intervening weeks or days, you can per-
form an incremental backup, in which only new and changed files are backed up. These incre-
mental backups will take comparatively little time.

Backing Up Using Optical Media

Optical media require special backup procedures. Normally, cdrecord accepts input from a pro-
gram like mkisofs, which creates an ISO-9660 filesystem—the type of filesystem that’s most
often found on CD-ROMs.

One option for backing up to optical discs is to use mkisofs and then cdrecord to copy files to
the disc. If you copy files “raw” in this way, though, you’ll lose some information, such as write
permission bits. You’ll have better luck if you create a tar (or other backup program) file on
disk, much as you would when you back up to tape. You would then use mkisofs to place that
archive in an ISO-9660 filesystem, and then you would burn the ISO-9660 image file to the opti-
cal disc. The result will be a CD-R that you can mount and that will contain an archive you can
read with tar.

A somewhat more direct option is to create an archive file and burn it directly to the optical disc
using cdrecord, bypassing mkisofs. Such a disc won’t be mountable in the usual way, but you
can access the archive directly by using the CD-ROM device file. On restoration, this works
much like a tape restore except that you specify the CD-ROM device filename (such as /dev/
cdrom) instead of the tape device filename (such as /dev/st0).

4425.book Page 433 Monday, July 11, 2005 10:46 AM

434 Chapter 8 � Administering the System

Performing incremental backups has a couple of drawbacks. One is that they complicate res-
toration. Suppose you do a full backup on Monday and incremental backups every other day.
If a system fails on Friday, you’ll need to restore the full backup and several incremental back-
ups. Second, after restoring an incremental backup, your system will contain files that you’d
deleted since the full backup. If files have short life spans on a computer, this can result in a lot
of “dead” files being restored when the time comes to do so.

Despite these problems, incremental backups can be an extremely useful tool for helping
make backups manageable. They can also reduce wear and tear on tapes and tape drives, and
they can minimize the time it takes to restore files if you know that the files you need to restore
were backed up on an incremental tape.

Whether you perform incremental backups or nothing but complete backups,
you should maintain multiple backups. Murphy’s Law guarantees that your
backup will fail when you need it most, so having a backup for your backup
(even if it’s from a week or a month earlier) can help immensely. A typical
backup plan includes a rotating set of backup tapes. For instance, you might
have two tapes per week—one for a full backup on one day and one to hold sev-
eral incremental backups. Eight tapes will then hold backups for four weeks.

Preparing for Disaster: Backup Recovery

Creating backups is advisable, but doing this isn’t enough. You must also have some way to
restore backups in case of disaster. This task involves two aspects: partial restores and emer-
gency recovery.

Partial restores involve recovering just a few noncritical files. For instance, users might come
to you and ask you to restore files from their home directories. You can do so fairly easily by
using the --extract (x) tar command, as in the following lines:

cd /

tar xvlpf /dev/st0 home/username/filename

This sequence involves changing to the root directory and issuing a relative
path to the file or directory that must be restored. This is required because tar
normally strips away the leading / in files it backs up, so the files are recorded
in the archive as relative filenames. If you try to restore a file with an absolute
filename, it won’t work.

With most backup programs, you’ll need to know the exact name of the file or directory you
want to restore in order to do this. If you don’t know the exact filename, you may need to use
the --list (t) command to tar to examine the entire contents of the tape, or at least everything
until you see the file you want to restore.

4425.book Page 434 Monday, July 11, 2005 10:46 AM

Backing Up the System 435

If you use incremental backups, you can use the incremental file list to locate
the name of the file you want to restore.

A much more serious problem is that of recovering a system that’s badly damaged. If your
hard disk has crashed or your system has been invaded by crackers, you must restore the
entire system from scratch, without the benefit of your normal installation. You can take any
of several approaches to this problem, including the following:

Distribution’s installation disk Most Linux distributions’ installation disks have some sort of
emergency recovery system. These may come as separate boot floppy images or as options to
type during the boot process. In any event, these images are typically small but functional Linux
systems with a handful of vital tools, such as fdisk, mkfs, Vi, and tar. Check your distribu-
tion’s documentation or boot its boot media and study its options to learn more.

CD-based Linux system Several Linux systems are now available that boot from CD-
ROM. One example is Knoppix (http://www.knoppix.com); another is a demo version of
SuSE (http://www.suse.com; but the site is being transitioned to Novell’s site, http://
www.novell.com). Both of these systems can be used to help recover or restore a corrupted
Linux installation.

Emergency system on removable disk You can create your own emergency system on a
removable disk. If you have a moderately high-capacity removable disk, like a Zip or LS-120
disk, you can create a moderately comfortable Linux system on this disk. The ZipSlack distri-
bution (a variant of Slackware, http://www.slackware.com) is particularly handy for this
purpose because it’s designed to fit on a 100MB Zip disk. You can use this even if your regular
installation is of another version of Linux.

Emergency recovery partition If you plan ahead, you might create a small emergency installation
of your preferred distribution alongside the regular installation. You should not automatically
mount this system in /etc/fstab. This system can be useful for recovering from some problems,
like software filesystem corruption, but it’s not useful for others, like a total hard disk failure.

Partial reinstallation You can reinstall a minimal Linux system and then use it to recover your
original installation. This approach is much like the emergency recovery partition approach, but
it takes more time at disaster recovery. On the other hand, it will work even if your hard disk
is completely destroyed.

Whatever approach you choose to use, you should test it before you need it. Learn at least
the basics of the tools available in any system you plan to use. If you use unusual backup tools
(such as commercial backup software), be sure to copy those tools to your emergency system or
have them available on a separate floppy disk. If you’ll need to recover clients via network links,
test those setups as well.

You may not be able to completely test your emergency restore tools. Ideally, you should
boot the tools, restore a system, and test that the system works. This may be possible if you have
spare hardware on which to experiment, but if you lack this luxury, you may have to make do
with performing a test restore of a few files and testing an emergency boot procedure—say,

4425.book Page 435 Monday, July 11, 2005 10:46 AM

436 Chapter 8 � Administering the System

using LOADLIN (a DOS-based boot loader that can boot a Linux system when LILO or GRUB
isn’t installed or working). Note that a freshly restored system will not be bootable; you’ll need
a kernel on a DOS boot floppy and LOADLIN, or some other emergency boot system, to boot the
first time. You can then reinstall LILO or GRUB to restore the system’s ability to boot from the
hard disk.

Summary
Routine system administration involves a variety of tasks, many of which center around user
management. Adding, deleting, and modifying user accounts and groups are critical tasks that
all system administrators must master. Also related to users, you should know where to go to
modify the default user environment.

System log files are critical troubleshooting tools that are maintained by the system. You
should be able to configure what data is logged to what files and know how to use these log files.

Time management is important in Linux. Setting the Linux clocks (both hardware and soft-
ware) and configuring NTP to keep the software clock accurate are important tasks. Tools that
rely on the time include cron, anacron, and at, which enable the system to run programs in the
future. These tools are used for many common system tasks, including rotating log files.

Finally, backing up Linux is an important but often overlooked duty. Without backups, data
that took weeks, months, or even years to generate could be lost in an instant. Various backup
tools, such as tar and cpio, are useful for handling backups, but you must be able to design a
backup schedule to make backups. Restoring data is also important, so you should have an
emergency recovery plan at the ready.

Exam Essentials
Summarize methods of creating and modifying user accounts. Accounts can be created or
modified with the help of tools designed for the purpose, such as useradd and usermod. Alter-
natively, you can directly edit the /etc/passwd and /etc/shadow files, which hold the account
information.

Describe the function of groups in Linux. Linux groups enable security features to be applied
to arbitrary groups of users. Each group holds an arbitrary collection of users, and group per-
missions can be set on files giving all group members the same access rights to the files.

Explain the purpose of the skeleton files. Skeleton files provide a core set of configuration
files that should be present in users’ home directories when those directories are created. They
provide a starting point for users to modify their important shell and other configuration files.

Summarize how to configure system logging. System logging is controlled via the /etc/
syslog.conf file. Lines in this file describe what types of log data, generated by programs,
are sent to log files and to which log files the log messages should go.

4425.book Page 436 Monday, July 11, 2005 10:46 AM

Exam Essentials 437

Describe how log rotation is managed. Log rotation is controlled via the /etc/logrotate
.conf file (which typically refers to files in /etc/logrotate.d). Entries in these files tell the
system whether to rotate logs at fixed intervals or when they reach particular sizes. When a log
rotates, it’s renamed (and possibly compressed), a new log file is created, and the oldest archived
log file may be deleted.

Explain the two types of clocks in x86 hardware. The hardware clock retains time when the
system is powered down, but it isn’t used by most programs while the system is running. Such pro-
grams refer to the software clock, which is set from the hardware clock when the computer boots.

Summarize the function of NTP The Network Time Protocol (NTP) enables a computer to
set its clock based on the time maintained by an NTP server system. NTP can function as a tiered
protocol, enabling one system to function as a client to an NTP server and as a server to addi-
tional NTP clients. This structure enables a single highly accurate time source to be used by any-
where from a few to (theoretically) billions of computers via a tiered system of links.

Describe the difference between cron and anacron. The cron utility is Linux’s traditional
tool for running programs in the future. It enables you to schedule jobs to run at specific repeat-
ing times, but it requires the computer to be up at that time for the job to run. The anacron util-
ity runs jobs at repeating times, but jobs may be run late if the computer is powered down or
the utility isn’t turned on, making anacron a better choice for laptops or desktop systems that
are regularly turned off.

Explain the difference between system and user cron jobs. System cron jobs are controlled
from /etc/crontab, are created by root, and may be run as any user (but most commonly as
root). Systen cron jobs are typically run at certain fixed times on an hourly, daily, weekly, or
monthly basis. User cron jobs may be created by any user (various security measures permit-
ting), are run under the authority of the account with which they’re associated, and may be run
at just about any repeating interval desired.

Summarize the common Linux backup programs. The tar and cpio programs are both file-
based backup tools that create archives of files using ordinary file access commands. The dump
program backs up files on an inode basis, which ties dump to just one filesystem. The dd program
is a file-copy program, but when it’s fed a partition device file, it will copy the entire partition
on a very low-level basis, which is useful for creating low-level image backups of Linux or non-
Linux filesystems.

Describe some approaches to restoring a complete Linux system from backup. Complete
restores require careful preparation and planning before an emergency occurs. You may use
your distribution’s installation media, a bootable CD-ROM distribution such as Knoppix, a
small-disk distribution such as ZipSlack, a small prepared emergency partition, or a partial
installation of a regular distribution to perform the restore.

4425.book Page 437 Monday, July 11, 2005 10:46 AM

438 Chapter 8 � Administering the System

Review Questions
1. Which of the following are legal Linux usernames? (Select all that apply.)

A. larrythemoose

B. 4sale

C. PamJones

D. Samuel_Bernard_Delaney_the_Fourth

2. Why are groups important to the Linux user administration and security models?

A. They can be used to provide a set of users with access to files without giving all users access
to the files.

B. They allow you to set a single login password for all users within a defined group.

C. Users may assign file ownership to a group, thereby hiding their own creation of the file.

D. By deleting a group, you can quickly remove the accounts for all users in the group.

3. An administrator types chage -M 7 time. What is the effect of this command?

A. The time account’s password must be changed at least once every seven days.

B. All users must change their passwords at least once every seven days.

C. All users are permitted to change their passwords at most seven times.

D. The time account’s age is set to seven months.

4. What is wrong with the following /etc/passwd file entry? (Select all that apply.)

4sally:x:529:Sally Jones:/home/myhome:/bin/passwd

A. The default shell is set to /bin/passwd, which is an invalid shell.

B. The username is invalid; Linux usernames can’t begin with a number.

C. The home directory doesn’t match the username.

D. Either the UID or the GID field is missing.

5. You want sally, tom, and dale to be members of the group managers (GID 501). How would
you edit the managers entry in /etc/group to accomplish this goal?

A. managers:501:sally tom dale

B. managers:501:sally:tom:dale

C. managers:x:501:sally:tom:dale

D. managers:x:501:dale,sally,tom

6. What types of files might be reasonable files to include in /etc/skel? (Select all that apply.)

A. A copy of the /etc/shadow file

B. An empty set of directories to encourage good file management practices

C. A README or similar welcome file for new users

D. A starting .bashrc file

4425.book Page 438 Monday, July 11, 2005 10:46 AM

Review Questions 439

7. Which of the following system logging codes represents the highest priority?

A. emerg

B. warning

C. crit

D. debug

8. Which of the following configuration files does the logrotate program consult for its settings?

A. /etc/logrotate.conf

B. /usr/sbin/logrotate/logrotate.conf

C. /usr/src/logrotate/logrotate.conf

D. /etc/logrotate/.conf

9. Your manager has asked that you configure logrotate to run on a regular, unattended basis.
What utility/feature should you configure to make this possible?

A. at

B. logrotate.d

C. cron

D. inittab

10. You’re configuring a Linux system that does not boot any other OS. What is the recommended
time to which the computer’s hardware clock should be set?

A. Helsinki time

B. Local time

C. US Pacific time

D. UTC

11. What does the following command and its output reveal about the computer?

$ ls -l /etc/localtime

lrwxrwxrwx 1 root root 30 Apr 15 14:24 /etc/localtime ->

➥ /usr/share/zoneinfo/US/Eastern

A. The time zone is misconfigured; there is no /usr/share/zoneinfo/US/Eastern time
zone file.

B. The computer’s security could easily be breached; this file should not have rwxrwxrwx
permissions.

C. The computer is configured to use the U.S. Eastern time zone as the local time.

D. The current time in the U.S. Eastern time zone is 14:24 (2:24 PM).

4425.book Page 439 Monday, July 11, 2005 10:46 AM

440 Chapter 8 � Administering the System

12. You’ve set your system (software) clock on a Linux-only computer to the correct time, and
now you want to set the hardware clock to match. What command might you type to accom-
plish this goal?

A. date --sethwclock

B. ntpdate

C. hwclock --utc --systohc

D. time --set --hw

13. You’ve configured one computer on your five-computer network, gateway.pangaea.edu, as
an NTP server that obtains its time signal from ntp.example.com. What computer(s) should
your network’s other computers use as their time source(s)?

A. You should consult a public NTP server list to locate the best server for you.

B. Both gateway.pangaea.edu and ntp.example.com.

C. Only ntp.example.com.

D. Only gateway.pangaea.edu.

14. Which of the following tasks is likely to be handled by a cron job? (Select all that apply.)

A. Starting an important server when the computer boots

B. Finding and deleting old temporary files

C. Scripting supervised account creation

D. Monitoring the status of servers and e-mailing a report to the superuser

15. Which of the following lines, if used in a user cron job, will run /usr/local/bin/cleanup
twice a day?

A. 15 7,19 * * * tbaker /usr/local/bin/cleanup

B. 15 7,19 * * * /usr/local/bin/cleanup

C. 15 */2 * * * tbaker /usr/local/bin/cleanup

D. 15 */2 * * * /usr/local/bin/cleanup

16. You’re installing Linux on a laptop computer. Which of the following programs might you want
to add to ensure that log rotation is handled correctly?

A. tempus

B. anacron

C. crontab

D. ntpd

4425.book Page 440 Monday, July 11, 2005 10:46 AM

Review Questions 441

17. What do the following commands accomplish? (The administrator presses Ctrl+D after typing
the second command.)

at teatime

at> /usr/local/bin/system-maintenance

A. Nothing; these commands aren’t valid.

B. Nothing; teatime isn’t a valid option to at.

C. Nothing; you may only type valid bash built-in commands at the at> prompt.

D. The /usr/local/bin/system-maintenance program or script is run at 4:00 PM.

18. Which of the following commands are commonly used to back up Linux systems? (Select all
that apply.)

A. restore

B. tar

C. tape

D. cpio

19. You need to restore some files that were accidentally deleted. Which of the following commands can
be used to list the contents of an archive stored on a SCSI tape prior to actually restoring the files?

A. tar uvf /dev/st0

B. tar cvf /dev/st0

C. tar xvf /dev/st0

D. tar tvf /dev/st0

20. You arrive at work on Monday morning to find that the server has crashed. All indications point
to the crash as occurring after midnight on Monday morning. Scripts automatically do a full
backup of the server every Friday night and an incremental backup all other nights. Which tapes
do you need to restore the data on a new server? (Select all that apply.)

A. Thursday’s tape

B. Friday’s tape

C. Saturday’s tape

D. Sunday’s tape

4425.book Page 441 Monday, July 11, 2005 10:46 AM

442 Chapter 8 � Administering the System

Answers to Review Questions
1. A, C. A Linux username must contain fewer than 32 characters and start with a letter, and it

may consist of letters, numbers, and certain symbols. Options A and C both meet these criteria.
(Option C uses mixed upper- and lowercase characters, which is legal but discouraged.)
Option B begins with a number, which is invalid. Option D is longer than 32 characters.

2. A. Groups provide a good method of file-access control. Although they may have passwords,
these are not account login passwords; those passwords are set on a per-account basis. Files do
have associated groups, but these are in addition to individual file ownership and so they cannot
be used to mask the file’s owner. Deleting a group does not delete all the accounts associated
with the group.

3. A. The chage command changes various account expiration options. The -M parameter sets the
maximum number of days for which a password is valid, and in the context of the given command,
time is a username. Thus, option A is correct. Options B, C, and D are all simply made up.

4. B, D. As stated in option B, Linux usernames may not begin with numbers, so the username is
invalid. The /etc/passwd entries have third and fourth fields of the UID and the GID, but this
line has only one of those fields (which one is intended is impossible to determine); this example
line’s fourth field is clearly the fifth field of a valid entry. Option A is incorrect because, although
/bin/passwd is an unorthodox login shell, it’s perfectly valid. This configuration might be used
on, say, a Samba file server or a POP mail server to enable users to change their passwords via
SSH without granting login shell access. Option C is a correct observation but an incorrect
answer; the username and the user’s home directory name need not match.

5. D. Option D shows a valid /etc/group entry that has the desired effect. (Note that the order of
users in the comma-separated user list is unimportant.) Option A has two problems: It’s missing
a password field (x in the correct entry) and the usernames are separated by spaces rather than
commas. Option B also has two problems: It’s missing a password field and its usernames are sep-
arated by colons rather than commas. Option C has just one problem: Its usernames are separated
by colons rather than commas.

6. B, C, D. Files in /etc/skel are copied from this directory to new users’ home directories by
certain account-creation tools. Thus, files you want in all new users’ home directories should
reside in /etc/skel. Options B, C, and D all describe reasonable possibilities, although none
is absolutely required. Including a copy of /etc/shadow in /etc/skel would be a very bad
idea, though, because this would give all users access to all other users’ encrypted passwords,
at least as of the moment of account creation.

7. A. The emerg priority code is the highest code available and so is higher than all the other
options. (The panic code is equivalent to emerg but isn’t one of the options.) From highest to
lowest priorities, the codes given as options are emerg, crit, warning, and debug.

8. A. The logrotate program consults a configuration file called /etc/logrotate.conf, which
includes several default settings and typically refers to files in /etc/logrotate.d to handle spe-
cific log files.

4425.book Page 442 Monday, July 11, 2005 10:46 AM

Answers to Review Questions 443

9. C. The logrotate program can be started automatically—and unattended—on a regular basis
by adding an entry for it in cron. The at utility would be used if you wanted the program to run
only once, while logrotate.d defines how the program is to handle specific log files. The
inittab file is used for services and startup and not for individual programs.

10. D. Linux, like Unix, maintains its time internally in Coordinated Universal Time (UTC), so set-
ting the computer’s hardware clock to UTC is the recommended procedure for computers that
run only Linux. Although Linus Torvalds spent time at the University of Helsinki, Helsinki time
(as in option A) has no special place in Linux. Local time (as in option B) is appropriate if the
computer dual-boots to an OS, such as Windows, that requires the hardware clock to be set to
local time, but this is the second-best option for a Linux-only system. Option C’s US Pacific time,
like Helsinki time, has no special significance in Linux.

11. C. The /etc/localtime file holds time zone information and is frequently a symbolic link
pointing to a time zone file in the /usr/share/zoneinfo directory tree. The US/Eastern file
in this directory configures the system for the U.S. Eastern time zone, so option C is correct. This
file is a common one, so option A is incorrect. Although the permissions on the link do look
alarming at first glance, this is not a problem for symbolic links, which always have these per-
missions, so option B is incorrect. Although it’s possible that the computer’s time happens to be
2:24 PM, the time in the listing is the time the /etc/localtime link was created, not the current
time, so option D is incorrect.

12. C. The hwclock utility is used to view or set the hardware clock. The --utc option tells it to use
UTC, which is appropriate for a Linux-only system, while --systohc sets the hardware clock
based on the current value of the software clock. Thus, option C is correct. Option A’s date utility
can be used to set the software clock but not the hardware clock; it has no --sethwclock option.
Option B’s ntpdate is used to set the software clock to the time maintained by an NTP server; it
doesn’t directly set the hardware clock. Option D’s time command is used to time how long a
command takes to complete; it has no --set or --hw options and does not set the hardware clock.

13. D. Once you’ve configured one computer on your network to use an outside time source and
run NTP, the rest of your computers should use the first computer as their time reference. This
practice reduces the load on the external time servers, as well as your own external network
traffic. Thus, option D is correct. (Very large networks might configure two or three internal
time servers that refer to outside servers for redundancy, but this isn’t necessary for the small
network described in the question.) Option A describes the procedure to locate a time server
for the first computer configured (gateway.pangaea.edu) but not for subsequent computers.
Although configuring other computers to use ntp.example.com instead of or in addition to
gateway.pangaea.edu is possible, doing so will needlessly increase your network traffic and
the load on the ntp.example.com server.

14. Answers: B, D. The cron utility is a good tool for performing tasks that can be done in an unsu-
pervised manner, like deleting old temporary files or checking to see that servers are running cor-
rectly. Tasks that require interaction, like creating accounts, are not good candidates for cron
jobs, which must execute unsupervised. Although a cron job could restart a crashed server, it’s
not normally used to start a server when the system boots; that’s done through SysV startup
scripts or a super server.

4425.book Page 443 Monday, July 11, 2005 10:46 AM

444 Chapter 8 � Administering the System

15. B. User cron jobs don’t include a username specification (tbaker in options A and C). The
*/2 specification for the hour in options C and D causes the job to execute every other hour;
the 7,19 specification in options A and B causes it to execute twice a day, on the 7th and 19th
hours (in conjunction with the 15 minute specification, that means at 7:15 AM and 7:15 PM).

16. B. The anacron program is a supplement to cron that helps ensure that log rotation, /tmp direc-
tory cleanup, and other traditional cron tasks are handled even when the computer is shut down
(and, hence, when cron isn’t running) for extended periods of time. Thus, this is the program to
add to the system to achieve the stated goal. There is no common Linux utility called tempus.
Option C’s crontab is the name of a file or program for controlling cron, which is likely to be an
unreliable means of log rotation on a laptop computer. The ntpd program is the NTP daemon,
which helps keep the system clock in sync with an external source. Although running ntpd on a
laptop computer is possible, it won’t directly help with the task of scheduling log rotation.

17. D. The at command runs a specified program at the stated time in the future. This time may be
specified in several ways, one of which is teatime, which stands for 4:00 PM. Thus, option D
is correct. The objections stated in options A, B, and C are all invalid.

18. B, D. The tar and cpio programs are common Linux archive-creation utilities that are frequently
used for backing up the computer. The restore command restores (but does not back up) data;
its backup counterpart command is dump, but dump is no longer a recommended backup tool on
Linux. There is no standard tape command in Linux.

19. D. With the tar utility, the --list (t) command is used to read the archive and display its
contents. The --verbose (v) option creates a verbose file listing, while --file (f) specifies the
filename—/dev/st0 for a SCSI tape device. Option D uses all of these features. Options A, B,
and C all substitute other commands for --list, which is required by the question.

20. B, C, D. In order to restore the data, you must restore the most recent full backup—which was
done on Friday night. After the full restore, you must restore the incremental backups in the
order in which they were done. In this case, two incremenatals (Saturday’s and Sunday’s) were
done after the full backup and they must be restored as well.

4425.book Page 444 Monday, July 11, 2005 10:46 AM

Chapter

9

Basic Networking

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.107.2 Manage printers and print queues (weight: 1)

�

1.107.3 Print files (weight: 1)

�

1.107.4 Install and configure local and remote printers

(weight: 1)

�

1.112.1 Fundamentals of TCP/IP (weight: 4)

�

1.112.3 TCP/IP configuration and troubleshooting (weight: 7)

�

1.112.4 Configure Linux as a PPP client (weight: 3)

�

1.113.1 Configure and manage

inetd

,

xinetd

, and related

services (weight: 4)

4425.book Page 445 Tuesday, July 12, 2005 10:43 PM

Most Linux systems are connected to a network, either as clients
or as servers (and often as both). For this reason, understanding
how to configure Linux’s basic networking tools is necessary for

fully configuring Linux. To begin with this task, you must first understand the basics of modern
networking, such as the nature of network addresses and the types of tools that are commonly
used on networks. From there, you can move on to Linux network configuration, both for local
networks and using a modem to connect Linux to the Internet. Part of this task is configuring
a

super server,

 which manages the connections for other servers. (Server configuration generally
is covered in more detail in Chapter 10, “Managing Servers.”)

You might not think of printing as being a network topic, but in Linux, printing involves net-
work protocols, even when printing locally. For this reason, this chapter also covers printer con-
figuration, including local printer configuration, sharing printers with other computers, and
tools used to manage print jobs.

Understanding TCP/IP Networking

Networking involves quite a few components that are built atop one another. These include net-
work hardware, data packets, and protocols for data exchange. Together, these components
make up a

network stack.

 The most common network stack today is the

Transmission Control
Protocol/Internet Protocol (TCP/IP)

 stack, but this isn’t the only stack available. Nonetheless,
understanding the basics of TCP/IP theory will help you to configure and manage networks.

Basic Functions of Network Hardware

Network hardware is designed to enable two or more computers to communicate with one
another. Most network hardware comes as a card you plug into a computer, although some
devices are external and interface through an ordinary port like a USB port and other network
“cards” are built into computer motherboards. Many networks rely on wires or cables to trans-
mit data between machines as electrical impulses, but network protocols that use radio waves
or even light to do the job are growing rapidly in popularity.

Sometimes the line between network hardware and peripheral interface ports can be blurry.
For instance, a parallel port is normally not considered a network port, but when it is used with
the Parallel Line Interface Protocol (PLIP;

http://tldp.org/HOWTO/PLIP.html

), the parallel
port becomes a network device. More commonly, a USB or RS-232 serial port can become a net-
work interface when used with the

Point-to-Point Protocol (PPP)

, as described in the upcoming
section “Configuring Linux as a PPP Client.”

4425.book Page 446 Tuesday, July 12, 2005 10:43 PM

Understanding TCP/IP Networking

447

At its core, network hardware is hardware that facilitates the transfer of data between com-
puters. Hardware that’s most often used for networking includes features that help this transfer
in various ways. For instance, such hardware may include ways to address data intended for spe-
cific remote computers, as described later in the section “Hardware Addresses.” When basically
non-network hardware is pressed into service as a network medium, the lack of such features may
limit the utility of the hardware or require extra software to make up for the lack. If extra software
is required, you’re unlikely to notice the deficiencies as a user or system administrator because the
protocol drivers handle the work, but this makes the hardware more difficult to configure and
more prone to sluggishness or other problems than other types of network hardware.

Types of Network Hardware

Aside from traditionally non-network ports like USB, RS-232 serial, and parallel ports, Linux sup-
ports several types of common network hardware. The most common of these is Ethernet, which
comes in several varieties. Most modern Ethernet hardware uses

twisted-pair

 cabling, which consists
of pairs of wires twisted around each other to minimize interference. Such varieties of Ethernet are
identified by a

-T

 suffix to the Ethernet variety name, as in 10Base-T or 100Base-T. The numbers
denote the speed of the protocol in megabits per second (Mbps). In the late 1990s, 100Base-T took
over from 10Base-T as the standard in office and even home networks. More recently, 1000Base-T
and Ethernet variants that use optical cabling and that are capable of 1000Mbps speeds (that is,

gigabit Ethernet

) have been growing in popularity.
Other types of network hardware exist, but most are less common than Ethernet. These include

Token Ring, LocalTalk, Fiber Distributed Data Interface (FDDI), High-Performance Parallel
Interface (HIPPI), and Fibre Channel. Token Ring was common on some IBM-dominated net-
works in the 1990s but has been steadily losing ground to Ethernet for years. Likewise, LocalTalk
was the favored medium for early Macintoshes, but new Macs ship with Ethernet instead of
LocalTalk. FDDI, HIPPI, and Fibre Channel are all high-speed interfaces that are used in high-
performance applications. Some of these protocols support significantly greater maximum cable
lengths than does Ethernet, which makes them suitable for linking buildings that are many yards,
or even miles, apart.

Wireless networking is an exception to Ethernet’s increasing dominance. Common wireless
protocols include 802.11b (aka Wi-Fi), 802.11a, and 802.11g. These protocols support speeds of
11Mbps (for 802.11b) and up. Wireless networking is particularly useful for laptop computers,
but it’s even handy for homes and small offices that don’t have adequate wired network infra-
structures in place.

If you use a wireless protocol, your data are transmitted via radio waves, which
are easily intercepted. Wireless protocols include optional encryption, but this
feature is often disabled by default, and it’s also notoriously poor. Thus, you
should be extremely careful about transferring sensitive data, such as pass-
words and credit card numbers, over a wireless link. If you must do so, use a
strong encryption protocol, such as the Secure Shell (SSH) login tool or Secure

Sockets Layer (SSL) encryption on a web page.

4425.book Page 447 Tuesday, July 12, 2005 10:43 PM

448

Chapter 9 �

Basic Networking

In addition to the network cards you place in your computers, you need network hardware
outside of the computer. With the exception of wireless networks, you’ll need some form of net-
work cabling that’s unique to your hardware type. (For 100Base-T Ethernet, get cabling that
meets at least Category 5, or Cat-5, specifications.) Many network types, including twisted-pair
Ethernet, require the use of a central device known as a

hub

 or

switch.

 You plug every computer
on a local network into this central device, as shown in Figure 9.1. The hub or switch then
passes data between the computers.

As a general rule, switches are superior to hubs. Hubs mirror all traffic to all computers,
whereas switches are smart enough to send packets only to the intended destination.
Switches also allow

full-duplex

 transmission, in which both parties can send data at the
same time (like two people talking on a telephone). Hubs permit only

half-duplex

 trans-
mission, in which the two computers must take turns (like two people using walkie-talkies).
The result is that switches let two pairs of computers engage in full-speed data transfers
with each other; with a hub, these two transfers would interfere with each other.

Network Packets

Modern networks operate on discrete chunks of data known as

packets.

 Suppose you want to send
a 100KB file from one computer to another. Rather than send the file in one burst of data, your com-
puter breaks it down into smaller chunks. The system might send 100 packets of 1KB each, for
instance. This way, if there’s an error sending one packet, the computer can resend just that one
packet rather than the entire file. (Many network protocols include error-detection procedures.)

When the recipient system receives packets, it must hold on to them and reassemble them in
the correct order to re-create the complete data stream. It’s not uncommon for packets to be
delayed or even lost in transmission, so error-recovery procedures are critical for protocols that
handle large transfers. Some types of error recovery are handled transparently by the network-
ing hardware.

F I G U R E 9 . 1

Many networks link computers together via a central device known as a hub

or switch.

Hub or switch

4425.book Page 448 Tuesday, July 12, 2005 10:43 PM

Understanding TCP/IP Networking

449

There are several types of packets, and they can be stored within each other. For instance,
Ethernet includes its own packet type (known as a

frame

), and the packets generated by net-
working protocols that run atop Ethernet, such as those described in the next section, are stored
within Ethernet frames. All told, a data transfer can involve several layers of wrapping and
unwrapping data. With each layer, packets from the layer above may be merged or split up.

Network Protocol Stacks

It’s possible to think of network data at various levels of abstractness. For instance, at one level,
a network carries data packets for a specific network type (such as Ethernet); the data packets are
addressed to specific computers on a local network. Such a description, while useful for under-
standing a local network, isn’t very useful for understanding higher-level network protocols, such
as those that handle e-mail transfers. These high-level protocols are typically described in terms of
commands sent back and forth between computers, frequently without reference to packets. The
addresses used at different levels also vary, as explained in the upcoming section “Types of Net-
work Addresses.”

A

protocol stack

 is a set of software that converts and encapsulates data between layers of
abstraction. For instance, the stack can take the commands of e-mail transfer protocols, and the
e-mail messages that are transferred, and package them into packets. Another layer of the stack
can take these packets and repackage them into Ethernet frames. There are several layers to any
protocol stack, and they interact in highly specified ways. It’s often possible to swap out one
component for another at any given layer. For instance, at the top of each stack is a program
that uses the stack, such as an e-mail client. You can switch from one e-mail client to another
without too much difficulty; both rest atop the same stack. Likewise, if you change a network
card, you have to change the driver for that card, which constitutes a layer very low in the stack.
Applications above that driver can remain the same.

Each computer in a transaction requires a compatible protocol stack. When they communicate,
the computers pass data down their respective stacks and then send data to the partner system,
which passes the data up its stack. Each layer on the receiving system sees the data as packaged
by its counterpart on the sending computer.

Protocol stacks are frequently represented graphically in diagrams like Figure 9.2, which shows
the configuration of the TCP/IP protocol stack that dominates the Internet today. As shown in Fig-
ure 9.2, client programs at the application layer initiate data transfers. These requests pass through
the transport, internet, and link layers on the client computer, whereupon they leave the client sys-
tem and pass to the server system. (This transfer can involve a lot of complexity not depicted in Fig-
ure 9.2.) On the server, the process reverses itself, with the server program running at the application
layer replying to the client program. This reply reverses the journey, travelling down the server com-
puter’s stack, across the network, and up the stack on the client. A full-fledged network connection
can involve many back-and-forth data transfers.

Each component layer of the sending system is equivalent to a layer on the receiving system, but
these layers need not be absolutely identical. For instance, you can have different models of net-
work card at the link layer, or you can even use entirely different network hardware types, such
as Ethernet and Token Ring, if some intervening system translates between them. The computers
may run different OSs entirely and hence use different—but logically equivalent—protocol stacks.
What’s important is that the stacks operate in compatible ways.

4425.book Page 449 Tuesday, July 12, 2005 10:43 PM

450

Chapter 9 �

Basic Networking

F I G U R E 9 . 2

Information travels “down” and “up” protocol stacks, being checked and

packed at each step of the way.

Linux was designed with TCP/IP in mind, and the Internet is built atop TCP/IP. Other pro-
tocol stacks are available, though, and you might occasionally run into them. In particular, Net-
BEUI was the original Microsoft and IBM protocol stack for Windows, AppleTalk was Apple’s
initial protocol stack, and the Internet Packet Exchange/Sequenced Packet Exchange (IPX/SPX)
was Novell’s favored protocol stack. All three are now fading in importance, but you might still
run into them. Linux supports AppleTalk and IPX/SPX but not NetBEUI.

TCP/IP Protocol Types

Within TCP/IP, several different protocols exist. Each of these protocols can be classified as falling
on one of the four layers of the TCP/IP stack, as shown in Figure 9.2. The most important of
the internet- and transport-layer protocols are the building blocks for the application-layer pro-
tocols with which you interact more directly. These important internet- and transport-layer
protocols include the following:

IP

The

Internet Protocol (IP)

 is the core protocol in TCP/IP networking. Referring to Figure 9.2,
IP is an internet-layer (aka a network-layer or layer 2) protocol. IP provides a “best effort” method
for transferring packets between computers—that is, the packets aren’t guaranteed to reach their
destination. Packets may also arrive out of order or corrupted. Other components of the TCP/IP
stack must deal with these issues, and have their own ways of doing so. IP is also the portion of
TCP/IP with which IP addresses are associated. (The Real-World Scenario sidebar, “The Coming
of IPv6,” describes a change in the IP portion of TCP/IP that’s underway.)

Application

Transport

Internet

Link

Client

Reply

Request

Application

Transport

Internet

Link

Server

4425.book Page 450 Tuesday, July 12, 2005 10:43 PM

Network Addressing

451

ICMP

The

Internet Control Message Protocol (ICMP)

 is a simple protocol for communicat-
ing data. ICMP is most often used to send error messages between computers—for instance, to
signal that a requested service isn’t available. This is often done by modifying an IP packet and
returning it to its sender, which means that ICMP is technically an internet-layer protocol,
although it relies upon IP. In most cases, you won’t use programs that generate ICMP packets
on demand; they’re created behind the scenes as you use other protocols. One exception is the

ping

 program, which is described in more detail in “Testing Basic Connectivity.”

UDP

The

User Datagram Protocol (UDP)

 is the simplest of the common transport-layer
(aka layer 3) TCP/IP protocols. It doesn’t provide sophisticated procedures to correct for out-
of-order packets, guarantee delivery, or otherwise improve the limitations of IP. This fact can
be a problem, but it also means that UDP can be faster than more sophisticated tools that pro-
vide such improvements to IP. Common application-layer protocols that are built atop UDP
include the Domain Name System (DNS), the Network File System (NFS), and many stream-
ing media protocols.

TCP

The

Transmission Control Protocol (TCP)

 may be the most widely-used transport-layer
protocol in the TCP/IP stack. Unlike UDP, TCP creates full connections with error checking and
correction as well as other features. These features simplify the creation of network protocols
that must exchange large amounts of data, but the features come at a cost: TCP imposes a small
performance penalty. Most of the application-layer protocols with which you may already be
familiar, including the Simple Mail Transfer Protocol (SMTP), the Hypertext Transfer Protocol
(HTTP), and the File Transfer Protocol (FTP), are built atop TCP.

You might notice that the name of the TCP/IP stack is built up of two of the TCP and
IP protocol names. This is because these two protocols are so important for TCP/IP net-
working generally. TCP/IP, though, is much more than just these two protocols; it includes
additional protocols, most of which (below the application layer) are rather obscure. On the
other hand, a TCP/IP exchange need not use both TCP and IP—it could be a UDP or ICMP
exchange, for instance.

Network Addressing

In order for one computer to communicate with another over a network, the computers need
to have some way to refer to each other. The basic mechanism for doing this is provided by a
network address, which can take several different forms, depending on the type of network
hardware, protocol stack, and so on. Large and routed networks pose additional challenges to
network addressing, and TCP/IP provides answers to these challenges. Finally, to address a spe-
cific program on a remote computer, TCP/IP uses a

port number,

 which identifies a specific run-
ning program, something like the way a telephone extension number identifies an individual in
a large company. The following sections describe all these methods of addressing.

4425.book Page 451 Tuesday, July 12, 2005 10:43 PM

452

Chapter 9 �

Basic Networking

Types of Network Addresses

Consider an Ethernet network. When an Ethernet frame leaves one computer, it is normally
addressed to another Ethernet card. This addressing is done using low-level Ethernet features,
independent of the protocol stack in question. Recall, however, that the Internet is composed of
many different networks that use many different low-level hardware components. A user might
have a dial-up telephone connection (through a serial port) but connect to one server that uses
Ethernet and another that uses Token Ring. Each of these devices uses a different type of low-level
network address. TCP/IP requires something more to integrate across different types of network
hardware. In total, three types of addresses are important when you are trying to understand net-
work addressing: network hardware addresses, numeric IP addresses, and text-based hostnames.

Hardware Addresses

One of the characteristics of dedicated network hardware such as Ethernet or Token Ring cards
is that they have unique

hardware addresses,

 also known as

Media Access Control (MAC)
addresses,

 programmed into them. In the case of Ethernet, these addresses are 6 bytes in length,
and they’re generally expressed as hexadecimal (base 16) numbers separated by colons. You can
discover the hardware address for an Ethernet card by using the

ifconfig

 command. Type

ifconfig eth

n

, where

n

 is the number of the interface (

0

 for the first card,

1

 for the second,
and so on). You’ll see several lines of output, including one like the following:

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

The Coming of IPv6

Another alternative protocol stack is actually an extension of TCP/IP. The current version of the
IP portion of TCP/IP is 4. A major upgrade to this is in the works, however, and it goes by the name

IPv6,

 for IP version 6. IPv6 adds several features and improvements to TCP/IP, including standard
support for more secure connections and support for many more addresses. Check

http://

playground.sun.com/pub/ipng/html/ipng-main.html

 or

http://www.ipv6forum.com

 for
detailed information on IPv6.

TCP/IP supports a theoretical maximum of about 4 billion addresses. Although this may sound
like plenty, those addresses have not been allocated as efficiently as possible. Therefore, as the
Internet has expanded, the number of truly available addresses has been shrinking at a rapid
rate. IPv6 raises the number of addresses to 2

128

, or 3.4

×

 10

38

. This is enough to give every
square millimeter of land surface on Earth 2.2

×

 10

18

 addresses.

IPv6 is starting to emerge as a real networking force in many parts of the world. The United
States, though, is lagging behind on IPv6 deployment. The Linux kernel includes IPv6 support,
so you can use it if you need to. Chances are that by the time the average office will need IPv6,
it will be standard. Configuring a system for IPv6 is somewhat different from configuring it for
IPv4, which is what this chapter describes.

4425.book Page 452 Tuesday, July 12, 2005 10:43 PM

Network Addressing

453

This line tells you that the device is an Ethernet card and that its hardware address is
00:A0:CC:24:BA:02. What use is this, though? Certain low-level network utilities and
hardware use the hardware address. For instance, network switches use it to direct data
packets. The switch learns that a particular address is connected to a particular wire, and
so it sends data directed at that address

only

 over the associated wire. The

Dynamic Host
Configuration Protocol (DHCP),

 which is described in the upcoming section “DHCP Con-
figuration,” is a means of automating the configuration of specific computers. It has an
option that uses the hardware address to consistently assign the same IP address to a given
computer. In addition, advanced network diagnostic tools are available that let you exam-
ine packets that come from or are directed to specific hardware addresses.

For the most part, though, you don’t need to be aware of a computer’s hardware address.
You don’t enter it in most utilities or programs. It’s important for what it does in general.

IP Addresses

Earlier, I said that TCP/IP, at least in its IPv4 incarnation, supports about 4 billion addresses.
This figure is based on the size of the

IP address

 used in TCP/IP: 4 bytes (32 bits). Specifically,
2

32

 = 4,294,967,296. Not all of these addresses are usable; some are overhead associated with
network definitions, and some are reserved.

The 4-byte IP address and 6-byte Ethernet address are mathematically unrelated. Instead, the
TCP/IP stack converts between the two using the

Address Resolution Protocol (ARP).

 This pro-
tocol enables a computer to send a

broadcast

 query—a message that goes out to all the com-
puters on the local network. This query asks the computer with a given IP address to identify
itself. When a reply comes in, it includes the hardware address, so the TCP/IP stack can direct
traffic for a given IP address to the target computer’s hardware address.

The procedure for computers that aren’t on the local network is more complex.
For such computers, a router must be involved. Local computers send packets
destined to distant addresses to routers, which send the packets on to other

routers or to their destination systems.

IP addresses are usually expressed as four base-10 numbers (0–255) separated by periods, as
in 192.168.29.39. If your Linux system’s protocol stack is already up and running, you can dis-
cover its IP address by using

ifconfig, as described earlier. The output includes a line like the
following, which identifies the IP address (inet addr):

inet addr:192.168.29.39 Bcast:192.168.29.255 Mask:255.255.255.0

Although not obvious from the IP address alone, this address is broken down into two
components: a network address and a computer address. The network address identifies a
block of IP addresses that are used by one physical network, and the computer address iden-
tifies one computer within that network. The reason for this breakdown is to make the job of
routers easier—rather than record how to direct packets destined for each of the 4 billion IP
addresses, routers can be programmed to direct traffic based on packets’ network addresses,
which is a much simpler job.

4425.book Page 453 Tuesday, July 12, 2005 10:43 PM

454 Chapter 9 � Basic Networking

The network mask (also known as the subnet mask or netmask) is a number that identifies the
portion of the IP address that’s a network address and the part that’s a computer address. It’s help-
ful to think of this in binary (base 2) because the netmask uses binary 1 values to represent the net-
work portion of an address and binary 0 values to represent the computer address. The network
portion ordinarily leads the computer portion. Expressed in base 10, these addresses usually con-
sist of 255 or 0 values, 255 being a network byte and 0 being a computer byte. If a byte is part net-
work and part computer address, it will have some other value. Another way of expressing a
netmask is as a single number representing the number of network bits in the address. This num-
ber usually follows the IP address and a slash. For instance, 192.168.29.39/24 is equivalent to
192.168.29.39 with a netmask of 255.255.255.0—the last number shows the network portion
to be three solid 8-bit bytes, hence 24 bits. The longer notation showing all 4 bytes of the netmask
is referred to as dotted quad notation.

On modern networks, netmasks are often described in Classless Inter-Domain Routing
(CIDR) form. Such network masks can be broken at any bit boundary for any address. For
instance, 192.168.1.7 could have a netmask of 255.255.0.0, 255.255.255.0, 255.255.255.128, or
various other values. (Keeping each byte at 0 or 255 reduces the odds of human error causing
problems but sometimes isn’t practical, depending on the required or desired sizes of subnets.)
Traditionally, though, networks have been broken into one of several classes, as summarized in
Table 9.1. Classes A, B, and C are for general networking use. Class D addresses are reserved for
multicasting—sending data to multiple computers simultaneously. Class E addresses are reserved
for future use. There are a few special cases within most of these ranges. For instance, the 127.x.y.z
addresses are reserved for use as loopback (aka localhost) devices—these addresses refer to the
computer on which the address is entered. Addresses in which all the machine bits are set to 1 refer
to the network block itself—they’re used for broadcasts. The ultimate broadcast address is
255.255.255.255, which sends data to all computers on a network segment. (Routers normally
block packets directed to this address. If they didn’t, the Internet could easily be brought to its
knees by a few people flooding the network with broadcast packets.)

T A B L E 9 . 1 Network Classes and Private Network Ranges

Class Address Range Reserved Private Addresses

A 1.0.0.0–127.255.255.255 10.0.0.0–10.255.255.255

B 128.0.0.0–191.255.255.255 172.16.0.0–172.31.255.255

C 192.0.0.0–223.255.255.255 192.168.0.0–192.168.255.255

D 224.0.0.0–239.255.255.255 none

E 240.0.0.0–255.255.255.255 none

4425.book Page 454 Tuesday, July 12, 2005 10:43 PM

Network Addressing 455

Within each of the three general-use network classes is a range of addresses reserved for pri-
vate use. Most IP addresses must be assigned to individual computers by a suitable authority,
lest two systems on the Internet both try to use a single address. The reserved private address
spaces, however, can be used by anybody. (These address blocks are sometimes referred to as
RFC1918 addresses, after the standards document—RFC1918—in which they’re defined.) The
caveat is that routers normally drop packets sent to these addresses, effectively isolating them
from the Internet as a whole. The idea is that these addresses may be safely used by small private
networks. Today, they’re often used behind Network Address Translation (NAT) routers,
which enable arbitrary numbers of computers to “hide” behind a single system. The NAT
router substitutes its own IP address on outgoing packets and then directs the reply to the cor-
rect system. This is very handy if you want to connect more computers to the Internet than you
have IP addresses.

I generally use reserved private addresses for examples in this book. Unless
otherwise specified, these examples work equally well on conventional
assigned (non-private) IP addresses.

IP address classes were designed to simplify routing; however, as the Internet evolved, they
became restrictive. Thus, today they serve mainly as a way to set default netmasks, such as
255.0.0.0 for Class A addresses or 255.255.255.0 for Class C addresses. Most configuration
tools set these netmasks automatically, but you can override the settings, if necessary.

IP addresses and netmasks are extremely important for network configuration. If your net-
work doesn’t use DHCP or a similar protocol to assign IP addresses automatically, you must
configure your system’s IP address manually. A mistake in this configuration can cause a com-
plete failure of networking or more subtle errors, such as an inability to communicate with just
some computers.

Non-TCP/IP stacks have their own addressing methods. NetBEUI uses machine
names; it has no separate numeric addressing method. AppleTalk uses two 16-bit
numbers. These addressing schemes are independent from IP addresses.

Broadcasts

Earlier, I mentioned broadcasts. This is a type of network transmission that’s sent to all the com-
puters on a local network, or occasionally all of the computers on a remote network. Under
TCP/IP, a broadcast is done by specifying binary 1 values in all of the machine bits of the IP
address. The network portion of the IP address may be set to the network’s regular value, and
this is required for directed broadcasts—that is, those that are sent to a remote network. (Many
routers drop directed broadcasts, though.) In many cases, broadcasts are specified by the use of
255.255.255.255 as an IP address. Packets directed at this address are sent to all the machines
on a local network.

4425.book Page 455 Tuesday, July 12, 2005 10:43 PM

456 Chapter 9 � Basic Networking

Because the broadcast address for a network is determined by the IP address and netmask,
you can convert between the broadcast address and netmask, given one of these and a com-
puter’s IP address. If the netmask happens to consist of whole-byte values (expressed as 0 or 255
in dotted quad notation), the conversion is easy: Replace the IP address components that have
0 values in the dotted quad netmask with 255 values to get the broadcast address. For instance,
consider a computer with an IP address of 172.24.21.201 and a netmask of 255.255.0.0. The
final two elements of the netmask have 0 values, so you swap in 255 values for these final two
elements in the IP address to obtain a broadcast address of 172.24.255.255.

In the case of a CIDR address that has non-255 and non-0 values in the netmask, the situa-
tion is more complex because you must resort to binary (base 2) numbers. For instance, consider
a computer with an IP address of 172.24.21.201 with a netmask of 255.255.128.0 (that is,
172.24.21.201/17). Expressed in binary, these numbers are:

10101100 00011000 00010101 11001001

11111111 11111111 10000000 00000000

To create the broadcast address, you must set the top (network address) values to 1 when the
bottom (netmask) value is 0. In this case, the result is:

10101100 00011000 01111111 11111111

Converted back into base 10 notation, the resulting broadcast address is 172.24.127.255.
Fortunately, you seldom need to perform such computations. When configuring a computer,
you can enter the IP address and netmask and let the computer do the binary computations.

Hostnames

Computers work with numbers, so it’s not surprising that TCP/IP uses numbers as computer
addresses. People, though, work better with names. For this reason, TCP/IP includes a way to
link names for computers (known as hostnames) to IP addresses. In fact, there are several ways
to do this, some of which are described in the next section, “Resolving Hostnames.”

As with IP addresses, hostnames are composed of two parts: machine names and domain
names. The former refers to a specific computer and the latter to a collection of computers.
Domain names are not equivalent to the network portion of an IP address, though; they’re com-
pletely independent concepts. Domain names are registered for use by an individual or organi-
zation, which may assign machine names within the domain and link those machine names to
any arbitrary IP address desired. Nonetheless, there is frequently some correspondence between
domains and network addresses because an individual or organization that controls a domain
is also likely to want a block of IP addresses for the computers in that domain.

Internet domains are structured hierarchically. At the top of the hierarchy are the top-level
domains (TLDs), such as .com, .edu, and .uk. These TLD names appear at the end of an Inter-
net address. Some correspond to nations (such as .uk and .us, for the United Kingdom and the
United States, respectively), but others correspond to particular types of entities (such as .com
and .edu, which stand for commercial and educational organizations, respectively). Within
each TLD are various domains that identify specific organizations, such as sybex.com for
Sybex or loc.gov for the Library of Congress. These organizations may optionally break their
domains into subdomains, such as cis.upenn.edu for the Computer and Information Science

4425.book Page 456 Tuesday, July 12, 2005 10:43 PM

Network Addressing 457

department at the University of Pennsylvania. Even subdomains may be further subdivided into
their own subdomains; this structure can continue for many levels but usually doesn’t. Domains
and subdomains include specific computers, such as www.sybex.com, Sybex’s web server.

When you configure your Linux computer, you may need to know its hostname. This will be
assigned by your network administrator and will be a machine within your organization’s domain.
If your computer isn’t part of an organizational network (say, if it’s a system that doesn’t connect
to the Internet at all, or if it connects only via a dial-up account), you’ll have to make up a hostname.
Alternatively, you can register a domain name, even if you don’t use it for running your own servers.
Check http://www.icann.org/registrars/accredited-list.html for pointers to accredited
domain registrars. Most registrars charge between $10 and $15 per year for domain registration. If
your network uses DHCP, it may or may not assign your system a hostname automatically.

If you make up a hostname, choose an invalid TLD, such as .invalid. This will
guarantee that you don’t accidentally give your computer a name that legiti-
mately belongs to somebody else. Such a name conflict could prevent you
from contacting that system, and it could cause other problems as well, such as
misdirected e-mail.

Resolving Hostnames

The Domain Name System (DNS) is a distributed database of computers that convert between
IP addresses and hostnames. Every domain must maintain at least two DNS servers that can
either provide the names for every computer within the domain or redirect a DNS query to
another DNS server that can better handle the request. Therefore, looking up a hostname
involves querying a series of DNS servers, each of which redirects the search until the server
that’s responsible for the hostname is found. In practice, this process is hidden from you because
most organizations maintain DNS servers that do all the dirty work of chatting with other DNS
servers. You need only point your computer to your organization’s DNS servers. This detail
may be handled through DHCP, or it may be information you need to configure manually, as
described later in the section “Configuring Linux for a Local Network.”

Sometimes, you need to look up DNS information manually. You might do this if you know
the IP address of a server through non-DNS means and suspect your DNS configuration is deliv-
ering the wrong address or to check whether a DNS server is working at all. Several programs
can be helpful in performing such checks:

nslookup This program performs DNS lookups (on individual computers by default) and
returns the results. It also sports an interactive mode in which you can perform a series of queries.
This program is officially deprecated, meaning that it’s no longer being maintained and will even-
tually be dropped from its parent package (bind-utils or bind-tools on most distributions).
Thus, you should get in the habit of using host or dig instead of nslookup.

host This program serves as a replacement for the simpler uses of nslookup, but it lacks an
interactive mode, and of course many details of its operation differ. In the simplest case, you can

4425.book Page 457 Tuesday, July 12, 2005 10:43 PM

458 Chapter 9 � Basic Networking

type host target.name, where target.name is the hostname or IP address you want to look up.
You can add various options that tweak its basic operation; consult host’s man page for details.

dig This program performs more complex DNS lookups than host. Although you can use it
to find the IP address for a single hostname (or a hostname for a single IP address), it’s more
flexible than host.

whois You can look up information on a domain as a whole with this command. For instance,
typing whois sybex.com reveals who owns the sybex.com domain, who to contact in case of
problems, and so on. You may want to use this command with -H, which omits the lengthy legal
disclaimers that many domain registries insist on delivering along with whois information.
Check the man page for whois for information on additional options.

Sometimes DNS is overkill. For instance, you might just need to resolve a handful of host-
names. This might be because you’re configuring a small private network that’s not connected
to the Internet at large or because you want to set up a few names for local (or even remote)
computers that aren’t in the global DNS database. For such situations, /etc/hosts may be just
what you need. This file holds mappings of IP addresses to hostnames, on a one-line-per-
mapping basis. Each mapping includes at least one name, and sometimes more:

127.0.0.1 localhost

192.168.7.23 apollo.luna.edu apollo

In this example, the name localhost is associated with the 127.0.0.1 address and the names
apollo.luna.edu and apollo are tied to 192.168.7.23. The first of these linkages is standard;
it should exist in any /etc/hosts file. The second linkage is an example that you can modify
as you see fit. The first name is a full hostname, including the domain portion; subsequent
names on the line are aliases—typically the hostname without its full domain specification.

Once you’ve set up an /etc/hosts file, you can refer to computers listed in the file by name,
whether or not those names are recognized by the DNS servers the computer uses. One major
drawback to /etc/hosts is that it’s a purely local file; setting a mapping in one computer’s
/etc/hosts file only affects name lookups performed by that computer. Thus, to do good on an
entire network, you must modify the /etc/hosts files on all of the computers on the network.

Linux normally performs lookups in /etc/hosts before it uses DNS. You can, however, mod-
ify this behavior by editing the /etc/nsswitch.conf file, and specifically the hosts line, which
lists the order of the files and dns options, which stand for /etc/hosts and DNS, respectively.
Very old programs that use libc4 or libc5 rather than glibc look to the /etc/host.conf file and
its order line instead of nsswitch.conf. Change the order of the hosts and bind items in this
file to match the order of the files and dns items in /etc/nsswitch.conf.

In addition to /etc/hosts, Linux supports a file called /etc/networks. It works much like
/etc/hosts, but it applies to network addresses, and it reverses the order of the names and the
IP address on each line:

loopback 127.0.0.0

mynet 192.168.7.0

4425.book Page 458 Tuesday, July 12, 2005 10:43 PM

Network Addressing 459

This example sets up two linkages: the loopback name to the 127.0.0.0/8 network and
mynet for the 192.168.7.0/24 network. It’s seldom necessary to edit this file.

Network Ports

Contacting a specific computer is important, but one additional type of addressing is still left:
The sender must have an address for a specific program on the remote system. For instance, sup-
pose you’re using a web browser. The web server computer may be running more servers than
just a web server—it might also be running an e-mail server or an FTP server, to name just two
of many possibilities. Another number beyond the IP address enables you to direct traffic to a
specific program. This number is a network port number, and programs that accesses a TCP/
IP network typically do so through one or more ports.

Port numbers are features of the UDP and TCP protocols. Some protocols, such
as ICMP, do not use port numbers.

When they start up, servers tie themselves to specific ports, which by convention are associ-
ated with specific server programs. For instance, port 25 is associated with e-mail servers, and
port 80 is used by web servers. Thus, a client can direct its request to a specific port and expect
to contact an appropriate server. The client’s own port number isn’t fixed; it’s assigned by the
OS. Because the client initiates a transfer, it can include its own port number in the connection
request, so clients don’t need fixed port numbers. Assigning client port numbers dynamically
also enables one computer to easily run several instances of a single client because they won’t
compete for access to a single port.

Clients and Servers

One important distinction is the one between clients and servers. A client is a program that
initiates a network connection to exchange data. A server listens for such connections and
responds to them. For instance, a web browser, such as Mozilla or Opera, is a client program.
You launch the program and direct it to a web page, which means that the web browser sends
a request to the web server at the specified address. The web server sends back data in reply
to the request. Clients can also send data, however, as when you enter information in a web
form and click a Submit or Send button.

The terms client and server can also be applied to entire computers that operate mostly in one
or the other role. Thus, a phrase such as web server is somewhat ambiguous—it can refer
either to the web server program or to the computer that runs that program. When this distinc-
tion is important and unclear from context, I clarify it (for instance, by referring to “the web
server program”).

4425.book Page 459 Tuesday, July 12, 2005 10:43 PM

460 Chapter 9 � Basic Networking

Fortunately, for basic functioning, you need to do nothing to configure ports on a Linux sys-
tem. You may have to deal with this issue if you run unusual servers, though, because you may
need to configure the system to link the servers to the correct ports. This can sometimes involve
editing the /etc/services file, which maps port numbers to names, enabling you to use names
in super server configurations and elsewhere. This file consists of lines that begin with a name
and end with a port number, including the type of protocol it uses (TCP or UDP):

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp

Chapter 7’s Table 7.1 summarizes the standard uses of many important
servers’ ports.

Configuring Linux for a Local Network
Now that you know something about how networking functions, the question arises: How do
you implement networking in Linux? Most Linux distributions provide you with the means to
configure a network connection during system installation. Therefore, chances are good that
networking already functions on your system. In case it doesn’t, though, the following sections
summarize what you must do to get the job done. Actual configuration can be done using either
the automatic DHCP tool or static IP addresses. Linux’s underlying network configuration
mechanisms rely on startup scripts and their configuration files, but you may be able to use GUI
tools to do the job instead.

Network Hardware Configuration

The most fundamental part of network configuration is getting the network hardware up and run-
ning. In most cases, this task is fairly automatic—most distributions ship with system startup scripts
that auto-detect the network card and load the correct driver module. If you recompile your kernel,
building the correct driver into the main kernel file will also ensure that it’s loaded at system startup.

If your network hardware isn’t correctly detected, though, subsequent configuration (as
described in the upcoming sections, “DHCP Configuration” and “Static IP Address Configu-
ration”) won’t work. To correct this problem, you must load your network hardware driver.
You can do this with the modprobe command:

modprobe tulip

You must know the name of your network hardware’s kernel module, though (tulip in this
example). Chapter 3, “Configuring Hardware,” describes the task of hardware configuration
and activation in more detail.

4425.book Page 460 Tuesday, July 12, 2005 10:43 PM

Configuring Linux for a Local Network 461

DHCP Configuration

One of the easiest ways to configure a computer to use a TCP/IP network is to use DHCP, which
enables one computer on a network to manage the settings for many other computers. It works
like this: When a computer running a DHCP client boots up, it sends a broadcast in search of a
DHCP server. The server replies (using nothing but the client’s hardware address) with the con-
figuration information the client needs to enable it to communicate with other computers on the
network—most importantly the client’s IP address and netmask and the network’s gateway and
DNS server addresses. The DHCP server may also give the client a hostname. The client then con-
figures itself with these parameters. The IP address is not assigned permanently; it’s referred to as
a DHCP lease, and if it’s not renewed, the DHCP server may give the lease to another computer.
Therefore, from time to time the client checks back with the DHCP server to renew its lease.

Three DHCP clients are in common use on Linux: pump, dhclient, and dhcpcd (not to be con-
fused with the DHCP server, dhcpd). Some Linux distributions ship with just one of these, but
others ship with two or even all three. All distributions have a default DHCP client, though—the
one that’s installed when you tell the system you want to use DHCP at system installation time.
Those that ship with multiple DHCP clients typically enable you to swap out one for another sim-
ply by removing the old package and installing the new one.

Ideally, the DHCP client runs at system bootup. This is usually handled either by its own SysV
startup file, as described in Chapter 6, “The Boot Process and Scripts,” or as part of the main net-
work configuration startup file (typically a SysV startup file called network or networking). The
system often uses a line in a configuration file to determine whether to run a DHCP client. For
instance, Red Hat Linux sets this option in a file called /etc/sysconfig/network-scripts/
ifcfg-eth0 (this filename may differ if you use something other than a single Ethernet interface).
The line in question looks like this:

BOOTPROTO=dhcp

If the BOOTPROTO variable is set to something else, changing it as shown here will con-
figure the system to use DHCP. It’s usually easier to use a GUI configuration tool to set this
option, however.

Once a DHCP client is configured to run when the system boots, the configuration task is done—
at least, if everything works as it should. On very rare occasion, you may need to tweak DHCP
settings to work around client/server incompatibilities or to have the DHCP client do something
unusual. Consult the man page for your DHCP client if you need to make changes. You’ll then have
to modify its SysV startup script or a file to which it refers in order to change its operation.

Static IP Address Configuration

If a network lacks a DHCP server, you must provide basic network configuration options
manually. You can set these options using interactive commands, as described shortly, but
to set them in the long term, you adjust a configuration file such as /etc/sysconfig/
network-scripts/ifcfg-eth0. Listing 9.1 shows a typical ifcfg-eth0 file, configured
to use a static IP address. (Note that this file’s exact location and name may vary from one
distribution to another.)

4425.book Page 461 Tuesday, July 12, 2005 10:43 PM

462 Chapter 9 � Basic Networking

Listing 9.1: A Sample Network Configuration File

DEVICE=eth0

BOOTPROTO=static

IPADDR=192.168.29.39

NETMASK=255.255.255.0

NETWORK=192.168.29.0

BROADCAST=192.168.29.255

GATEWAY=192.168.29.1

ONBOOT=yes

Several specific items are required, or at least helpful, for static IP address configuration:

IP address You can set the IP address manually via the ifconfig command (described in
more detail shortly) or via the IPADDR item in the configuration file.

Network mask The netmask can be set manually via the ifconfig command or via the
NETMASK item in a configuration file.

Gateway address You can manually set the gateway via the route command. To set it perma-
nently, you need to adjust a configuration file, which may be the same configuration file that holds
other options or another file, such as /etc/sysconfig/network/routes. In either case, the
option is likely to be called GATEWAY. The gateway isn’t necessary on a system that isn’t connected
to a wider network—that is, if the system works only on a local network that contains no routers.

DNS settings In order for Linux to use DNS to translate between IP addresses and hostnames,
you must specify at least one DNS server in the /etc/resolv.conf file. Precede the IP address
of the DNS server by the keyword nameserver, as in nameserver 192.168.29.1. You can
include up to three nameserver lines in this file. Adjusting this file is all you need to do to set
the name server addresses; you don’t have to do anything else to make the setting permanent.

The network configuration script may hold additional options, but most of these are related
to others. For instance, Listing 9.1 has an option specifying the interface name (DEVICE=eth0),
another that tells the computer to assign a static IP address (BOOTPROTO=static), and a third
to bring up the interface when the computer boots (ONBOOT=yes). The NETWORK and BROADCAST
items in Listing 9.1 are derived from the IPADDR and NETMASK items, but you can change them
if you understand the consequences.

If you aren’t sure what to enter for the basic networking values (the IP address, network mask,
gateway address, and DNS server addresses), you should consult your network administrator. Do
not enter random values or values you make up that are similar to those used by other systems on
your network. Doing so is unlikely to work at all, and it could conceivably cause a great deal of
trouble—say, if you mistakenly use an IP address that’s reserved for another computer.

As just mentioned, the ifconfig program is critically important for setting both the IP
address and netmask. This program can also display current settings. Basic use of ifconfig to
bring up a network interface resembles the following:

ifconfig interface up addr netmask mask

4425.book Page 462 Tuesday, July 12, 2005 10:43 PM

Configuring Linux for a Local Network 463

For instance, the following command brings up eth0 (the first Ethernet card) using the
address 192.168.29.39 and the netmask 255.255.255.0:

ifconfig eth0 up 192.168.29.39 netmask 255.255.255.0

This command links the specified IP address to the card so that the computer will respond
to the address and claim to be that address when sending data. It doesn’t, though, set up a route
for traffic beyond your current network. For that, you need to use the route command:

route add default gw 192.168.29.1

Substitute your own gateway address for 192.168.29.1. (Routing and the route command
are described in more detail shortly, in “Configuring Routing.”) Both ifconfig and route can
display information on the current network configuration. For ifconfig, omit up and every-
thing that follows; for route, omit add and everything that follows. For instance, to view inter-
face configuration, you might issue the following command:

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

 inet addr:192.168.29.39 Bcast:192.168.29.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:10469 errors:0 dropped:0 overruns:0 frame:0

 TX packets:8557 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:1017326 (993.4 Kb) TX bytes:1084384 (1.0 Mb)

 Interrupt:10 Base address:0xc800

When configured properly, ifconfig should show a hardware address (HWaddr), an IP
address (inet addr), and additional statistics. There should be few or no errors, dropped packets,
or overruns for both received (RX) and transmitted (TX) packets. Ideally, few (if any) collisions
should occur, but some are unavoidable if your network uses a hub rather than a switch. If colli-
sions total more than a few percent of the total transmitted and received packets, you may want
to consider replacing a hub with a switch. To use route for diagnostic purposes, you might try
the following:

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.29.0 * 255.255.255.0 U 0 0 0 eth0

127.0.0.0 * 255.0.0.0 U 0 0 0 lo

default 192.168.29.1 0.0.0.0 UG 0 0 0 eth0

This shows that data destined for 192.168.29.0 (that is, any computer with an IP address
between 192.168.29.1 and 192.168.29.254) goes directly over eth0. The 127.0.0.0 network is a
special interface that “loops back” to the originating computer. Linux uses this for some internal

4425.book Page 463 Tuesday, July 12, 2005 10:43 PM

464 Chapter 9 � Basic Networking

networking purposes. The last line shows the default route, which describes what to do with every-
thing that doesn’t match any other entry in the routing table. This line specifies the default route’s
gateway system as 192.168.29.1. If it’s missing or misconfigured, some or all traffic destined for
external networks, such as the Internet, won’t make it beyond your local network segment.

As with DHCP configuration, it’s almost always easier to use a GUI configuration tool to
set up static IP addresses, at least for new administrators. The exact locations of the config-
uration files differ from one distribution to another, so the examples listed earlier may not
apply to your system.

Configuring Routing

As explained earlier, routers pass traffic from one network to another. You configure your
Linux system to directly contact systems on the local network. You also give the computer
a router’s address, which your system uses as a gateway to the Internet at large. Any traffic
that’s not destined for the local network is directed at this router, which passes it on to its
destination. In practice, there are likely to be a dozen or more routers between you and most
Internet sites. Each router has at least two network interfaces and keeps a table of rules
concerning where to send data based on the destination IP address. Your own Linux
computer has such a table, but it’s likely to be very simple compared to those on major
Internet routers.

Linux can function as a router, which means it can link two or more networks together,
directing traffic between them on the basis of its routing table. This task is handled, in part,
by the route command. This command can be used to do much more than just specify a single
gateway system, though, as was described earlier. A simplified version of the route syntax is
as follows:

route {add | del} [-net | -host] target [netmask nm] [gateway gw]

 ➥[reject] [[dev] interface]

That is, you specify add or del along with a target (a computer or network address) and
optionally other parameters. The -net and -host options force route to interpret the target as
a network or computer address, respectively. The netmask option lets you set a netmask as you
desire, and gateway lets you specify a router through which packets to the specified target
should go. (Some versions of route use gw rather than gateway.) The reject keyword installs
a blocking route, which refuses all traffic destined for the specified network. (This is not a fire-
wall, though.) Finally, although route can usually figure out the interface device (for instance,
eth0) on its own, you can force the issue with the dev option.

As an example, consider a network in which packets destined for the 172.20.0.0/16 subnet
should be passed through the 172.21.1.1 router, which is not the default gateway system. You
could set up this route with the following command:

route add -net 172.20.0.0 netmask 255.255.0.0 gw 172.21.1.1

4425.book Page 464 Tuesday, July 12, 2005 10:43 PM

Configuring Linux for a Local Network 465

Incorrect routing tables can cause serious problems because some or all com-
puters won’t respond. You can examine your routing table by typing route
alone and compare the results to what your routing table should be. (Consult
a network administrator if you’re not sure what your routing table should con-
tain.) You can then delete incorrect routes and add new ones to replace them,
if necessary. Ultimately, of course, changing your configuration files is the
best solution, but typing a couple of route commands will do the trick in the
short term.

One more thing you may need to do if you’re setting up a router is enabling routing. Ordi-
narily, a Linux system will not forward packets it receives from one system that are directed at
another system. If Linux is to act as a router, though, it must accept these packets and send them
on to the destination network (or at least to an appropriate gateway). To enable this feature,
you must modify a key file in the /proc filesystem:

echo "1" > /proc/sys/net/ipv4/ip_forward

This command enables IP forwarding. Permanently setting this option requires modifying a
configuration file. Some distributions set it in /etc/sysctl.conf:

net.ipv4.ip_forward = 1

Other distributions use other configuration files and options, such as /etc/sysconfig/
sysctl and its IP_FORWARD line. If you can’t find it, try using grep to search for ip_forward
or IP_FORWARD, or enter the command to perform the change manually in a local startup script.

Using GUI Configuration Tools

Most distributions include their own GUI configuration tools for network interfaces. For
instance, Fedora and Red Hat ship with a custom GUI tool called Network Configuration and
a text-mode tool called netconfig, and SuSE has a text-mode and GUI tool called YaST. The
details of operating these programs differ, but the GUI configuration tool provides a means to
enter the information described earlier.

Although the LPI exam doesn’t cover GUI network configuration tools, they’re generally
easier to locate and use than the configuration files in which settings are stored. Thus, you
may want to look for your distribution’s tool and learn to use it. Once you understand the
principles of network configuration (IP addresses, DHCP, and so on), you shouldn’t have
trouble entering the necessary information in the GUI fields.

The precise details of how to configure a Linux system using GUI tools differ from one dis-
tribution to another. For instance, SuSE’s YaST doesn’t lay out its options in precisely the same
way as Fedora’s Network Configuration tool. The basic principles are the same, though; you
must choose whether to use static IP address assignment or an automatic system such as DHCP
and enter a number of key options, depending on what configuration method you choose.

4425.book Page 465 Tuesday, July 12, 2005 10:43 PM

466 Chapter 9 � Basic Networking

Hostname Configuration

The hostnames described earlier (in “Hostnames”) are configured in a couple of ways:

On DNS Your network administrator should be able to add an entry for your system to your
network’s DNS server. This entry should make your computer addressable by name by other
computers on your local network, and perhaps on the Internet at large. Alternatively, remote
systems’ /etc/hosts files can be modified to include your system. Chapter 10 provides some
basics on DNS server configuration.

On your local computer Various local programs should know your computer’s name. For
instance, you might want to have your hostname displayed as part of a command prompt or
entered automatically in e-mail programs. For this task, you must set your hostname locally.
Note that this is entirely independent of your DNS hostname. In theory, you can set the two to
very different values, but this practice is likely to lead to confusion and perhaps even failure of
some programs to operate properly.

The most basic tool for setting your hostname locally is called, appropriately enough,
hostname. Type the command alone to see what your hostname is, or type it with a new name
to set the system’s hostname to that name:

hostname nessus.example.com

Similar commands, domainname and dnsdomainname, display or set the computer’s domain
name (such as example.com). The domainname command sets the domain name as used by Net-
work Information System (NIS), whereas dnsdomainname sets the domain name as used by
DNS. These commands don’t affect remote servers, though, just the name given to programs
that use calls designed for these servers.

Many Linux distributions look in the /etc/hostname or /etc/HOSTNAME file for a hostname
to set at boot time. Thus, if you want to set your hostname permanently, you should look for these
files, and if one is present, you should edit it. If your system has neither file, consult its documen-
tation; it’s conceivable that your distribution stores its hostname in some unusual location.

E X E R C I S E 9 . 1

Configuring a Network Connection

In this exercise, you’ll familiarize yourself with some of the tools used to configure basic net-
work settings. You’ll use these tools both to study and to change your network configuration.
The assumption going into this exercise is that the system is correctly configured to use an
Ethernet network, including both local network access and access to a larger network (probably
the Internet) via a router.

Some of the procedures in this exercise can easily break your network connectivity if some-
thing goes wrong. If this happens, rebooting the computer is the simplest, albeit a radical, way
to recover.

4425.book Page 466 Tuesday, July 12, 2005 10:43 PM

Configuring Linux for a Local Network 467

To study and modify your system’s network configuration, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Session �
New Root Console from a Konsole, or by using sudo (if it’s configured) to run the com-
mands in the following steps.

4. Type ifconfig. This command displays information on your local network settings for all
your network interfaces. Most systems will have both a loopback interface (lo) and an
Ethernet interface (eth0). Look for a line in the Ethernet section that includes the string inet
addr:. The following 4-byte number is your IP address. Write it down, as well as the value
of your netmask (Mask:). Study the other information in this output, too, such as the num-
ber of received (RX) and transmitted (TX) packets, the number of errors, the number of col-
lisions, and the Ethernet adapter’s hardware address.

5. Type route -n. The output is your computer’s routing table information. This normally
includes information on the loopback network address (127.0.0.0/24), the local network
address, and a default route (identified as the route for 0.0.0.0). Some systems may display
fewer or additional lines, depending on local configuration. The default route includes an
IP address under the Gateway column. Write that address down.

6. Use ping to test connectivity to both local and remote computers. (This command is described
in more detail shortly, in “Testing Basic Connectivity.”) You’ll need the name or IP address of
at least one local computer and at least one distant computer (beyond your local router). Type
ping address, where address is the name or IP address of each test machine. Perform this test
for localhost or 127.0.0.1, your own machine (use the IP address you noted in step 4), your
local router (use the IP address you noted in step 5), and a distant computer (if you’re con-
nected to the Internet, you can use an Internet-accessible site, such as www.linux.org). All of
these ping tests should be successful. Note, however, that some systems are configured to
ignore packets sent by ping. Thus, some of these tests may fail if you run into such systems.
You can learn the configuration of local systems from their administrators, but for Internet
sites, you might want to simply try another site if the first one you test fails.

7. Bring down the local Ethernet connection by typing ifconfig eth0 down.

8. Repeat steps 4–6. Note that the eth0 interface is no longer shown when you type ifconfig,
all routes associated with it have been removed from the routing table, and pinging sys-
tems accessible from the interface will no longer work. (Linux retains some information
about its former Ethernet link, though, so you may still be able to ping the computer itself
via its former eth0 address.)

E X E R C I S E 9 . 1 (c o n t i n u e d)

4425.book Page 467 Tuesday, July 12, 2005 10:43 PM

468 Chapter 9 � Basic Networking

Configuring Linux as a PPP Client
A conventional telephone modem is the low end of network connectivity. This device turns the
public telephone system into a computer networking medium, linking precisely two points
together. In its simplest form, a modem can be used to initiate a text-mode connection using a
terminal program—a program that enables remote text-based logins but nothing else. Today,
though, a modem is more often used in conjunction with PPP. PPP establishes a TCP/IP link
between the two computers, so you can use any of the many TCP/IP-based tools. Most PPP
accounts, though, are designed to be used for brief periods at a time, not continuously. Modem
connections are also much slower than most other types of network connection. Therefore, run-
ning servers on PPP-connected systems is usually inadvisable because most servers require
always-on Internet connections, and many need more speed than a PPP link can provide. Some
Internet service providers (ISPs) do offer full-time PPP links, though.

To initiate a PPP connection, you must have PPP software installed on your Linux sys-
tem. The most important PPP package is known as pppd, for “PPP daemon.” This utility
can both initiate PPP links and respond to attempts to initiate them. The following sections
describe the former. In addition to the basic PPP utilities, another tool, wvdial, adds extra
features to PPP.

Making Basic PPP Connections

In Linux, a PPP connection usually requires an entry in a file called /etc/ppp/pap-secrets
or /etc/ppp/chap-secrets. Both files use the same format. They provide information that’s
passed between the PPP client and server for authentication using the Password Authentication
Protocol (PAP) or Challenge-Handshake Authentication Protocol (CHAP). Because PPP was

9. Bring the local Ethernet connection back up by typing ifconfig eth0 up address netmask
mask, where address is the original IP address and mask is the original netmask, both as
identified in step 4.

10. Repeat steps 4–6. Note that the ifconfig command automatically added back your local net-
work to the routing table but that the default route is still missing. As a result, you can’t con-
tact any systems that are located off the local network. If your DNS server is such a system,
this means your ability to contact even local machines by name may be impaired as well.

11. Restore the default route by typing route add default gw gateway, where gateway is the
router address you identified in step 5.

12. Repeat steps 4–6. If your network configuration is typical, all connectivity should be
restored. (Some more exotic systems may still be lacking certain routes, though.)

E X E R C I S E 9 . 1 (c o n t i n u e d)

4425.book Page 468 Tuesday, July 12, 2005 10:43 PM

Configuring Linux as a PPP Client 469

designed for use over public dial-up telephone lines, the caller must normally present a user-
name and password to the other system; PAP and CHAP are merely protocols for doing this in
a standard way. The format of lines in the secrets files is as follows:

username server password IP_address

The username and password values are your username and password, respectively, on the
remote PPP system. Enter the values obtained from your ISP. The server value is the name of
the system to which you’re connecting. Normally, it’s an asterisk (*), signifying that pppd will
connect to any computer. IP_address is the IP address that pppd expects to get. This will nor-
mally be blank, meaning that the system will accept any IP address.

The PAP/CHAP secrets file contains a password in clear text, which is poten-
tially dangerous. Ensure that the file is readable only to those users who must
be able to read it—possibly only root, or perhaps root and whoever must be
able to initiate PPP connections. Don’t use your ISP’s PPP password for any
other purpose, such as for authenticating yourself on your Linux system or on
any other system.

Connecting from the command line requires modifying certain connection scripts. These are
called ppp-on, ppp-on-dialer, and ppp-off. The first two start a connection, and the third
breaks it. These scripts are often stored in a documentation directory, such as /usr/share/
doc/ppp-2.4.2/scripts. Copy them to a convenient binary directory that’s on your path,
such as /usr/local/bin. You must then modify them with information relevant to your ISP:
� In ppp-on, locate the lines that begin TELEPHONE=, ACCOUNT=, and PASSWORD=, and modify

them so that they’re appropriate for your ISP and account. (The ACCOUNT and PASSWORD vari-
ables should contain dummy values if you use PAP or CHAP, as is almost always the case.)

� Check that the DIALER_SCRIPT variable in ppp-on points to the correct location of ppp-
on-dialer. The default location is /etc/ppp.

� Check the call to pppd in the last lines of ppp-on. Most of the parameters to this call
are quite cryptic, but you should at least be able to confirm that it’s using the correct
modem device filename and speed. RS-232 serial modems generally use /dev/ttyS0 or
/dev/ttyS1 as the filename. 115200 is an appropriate speed in most cases, but the
default is 38400.

� Check the ppp-on-dialer script. This script includes a “chat” sequence—a series of
strings the program expects to see from the modem or remote system in one column and
a series of responses in another column. Listing 9.2 shows a typical chat sequence from a
ppp-on-dialer script. You may need to log on using a terminal program like Seyon or
minicom and then capture to disk the prompts your ISP uses to ask for your username and
password; you’ll then need to modify the last two lines of the script in order to make it
work. Alternatively, you may have to comment out the last two lines by preceding them
with hash marks (#) and remove the backslash (\) from the CONNECT line if your ISP uses
PAP or CHAP.

4425.book Page 469 Tuesday, July 12, 2005 10:43 PM

470 Chapter 9 � Basic Networking

The chat program expects a single line; its input is formatted in columns in
ppp-on-dialer only for the convenience of humans. The backslashes ending
most lines signify line continuations so that chat interprets multiple input lines
as a single line. Only the final line should lack a backslash.

Listing 9.2: A Typical Chat Sequence

exec chat -v \

 TIMEOUT 3 \

 ABORT '\nBUSY\r' \

 ABORT '\nNO ANSWER\r' \

 ABORT '\nRINGING\r\n\r\nRINGING\r' \

 '' \rAT \

 'OK-+++\c-OK' ATH0 \

 TIMEOUT 30 \

 OK ATDT$TELEPHONE \

 CONNECT '' \

 ogin:--ogin: $ACCOUNT \

 assword: $PASSWORD

Although you can set many pppd options in the last lines of the ppp-on script, as just
described, another approach is to edit the /etc/ppp/options file. This file contains pppd
options, one per line.

When you’re done making these changes, type ppp-on (preceding it with a complete path, if nec-
essary) as root to test the connection. If all goes well, your system should dial the modem, link up,
and give you Internet access. If this fails to occur, check the last few lines of /var/log/messages
with a command such as tail -n 20 /var/log/messages. You should see some sort of error mes-
sages, which may help you to diagnose the problem. To terminate a connection, type ppp-off.

The /etc/ppp/ip-up and /etc/ppp/ip-down scripts referred to in the LPIC
objectives are executed automatically by pppd behind the scenes. You
shouldn’t need to edit these files or call them directly.

Using Supplemental PPP Tools

The pppd daemon, as well as the ppp-on and related scripts, are adequate tools for initiating
and managing a PPP connection—but they’re little more than adequate. Configuring a system
to connect using pppd and its regular scripts is tedious because you must edit these scripts and
because a wide variety of problems can crop up. These problems can be tricky to debug, making
the process of configuring PPP a frustrating one.

4425.book Page 470 Tuesday, July 12, 2005 10:43 PM

Configuring Linux as a PPP Client 471

One possible solution to this problem is wvdial. This program serves as a text-mode front
end to pppd. You can think of it as a ppp-on script with some degree of intelligence. When run,
wvdial checks its configuration files (described shortly), dials your ISP, and automatically fig-
ures out how to initiate a PPP connection. For instance, if your ISP prompts for a username and
password, wvdial sends them automatically; but if your ISP uses PAP or CHAP, wvdial detects
this fact and exchanges the password using the appropriate protocol. In most cases, therefore,
wvdial is simpler to configure and use than the traditional ppp-on and related tools.

Of course, wvdial does require some configuration. You must give it a telephone number,
your username, and your password, for instance. You can also set various other options. These
details are handled in the global /etc/wvdial.conf file and in individual users’ ~/.wvdialrc
files. Both files have the same format, which consists of section names in square brackets ([])
followed by lines containing option assignments that use equal signs (=). The most important
section is Dialer Defaults, which sets the defaults that are to be used if wvdial is called with-
out any other options:

[Dialer Defaults]

Modem = /dev/ttyS1

Baud = 57600

Init = ATZ

Init2 = AT S11=50

Phone = 555-4425

Username = agbell

Password = yi3Wt#TD

This configuration sets options using names that are easy to interpret—Modem is the modem’s
device filename, Baud is the RS-232 serial port’s speed, and so on. The Init and Init2 strings
set the initialization strings that are sent to the modem prior to dialing. In most cases, setting
Init = ATZ and omitting the Init2 string is sufficient. Some modems work better with addi-
tional options, though, as shown in the Init2 string in this example. Although it’s not specified
explicitly, wvdial also automatically reconnects if your connection drops unexpectedly. (You
can change this behavior by setting the Auto Reconnect = off option.)

Because the wvdial configuration file usually contains a password, you should
protect it very carefully, just as you’d protect the PAP or CHAP secrets file.

Additional wvdial configuration sections typically take the name Dialer ID, where ID is an
arbitrary name, such as Modem2 or RoamingISP. You can then change any number of options
from those set in the Dialer Defaults section. For instance, you can set a new phone number,
username, and password if you have accounts with two ISPs.

To use wvdial, you normally just type the program’s name: wvdial. If you’ve configured
additional Dialer sections, you can add the section name, as in wvdial Modem2 to use the
Modem2 configuration section.

4425.book Page 471 Tuesday, July 12, 2005 10:43 PM

472 Chapter 9 � Basic Networking

Several other tools are available to help with PPP configuration and use. Most notable are
GUI tools, such as KPPP, which is part of the K Desktop Environment (KDE). These programs
enable you to manage a PPP session using a point-and-click interface that’s similar to the one
provided by Windows. In fact, a GUI front end to wvdial is available: QtWvDialer (http://
www.mtoussaint.de/qtwvdialer.html).

Diagnosing Local and PPP Connections
Network configuration is a complex topic, and unfortunately, things don’t always work as
planned. Fortunately, there are a few commands you can use to help diagnose a problem. Four
of these are ping, traceroute, netstat, and tcpdump. Each of these commands exercises the

Using PPP with ISDN or DSL

PPP has traditionally been used over RS-232 serial ports, usually in conjunction with a modem. PPP
has been adapted to several other uses, though. Two of these are Integrated Services Digital Net-
work (ISDN) and Digital Subscriber Line (DSL) connections. DSL is available in several variants,
such as Symmetric DSL (SDSL) and Asymmetric DSL (ADSL).

Using PPP with ISDN works much like using it with an RS-232 serial port. The main difference
is that you must change the device identifier to that of your ISDN port. This port might be an
RS-232 serial port, but it’s more likely to be a specialized port provided by your ISDN adapter.
Consult the driver documentation for your ISDN adapter for details.

Using PPP with DSL is a bit different. Most commonly, PPP over Ethernet (PPPoE) is used. The
Roaring Penguin PPPoE client (RP-PPPoE; http://www.roaringpenguin.com/penguin/open_
source_rp-pppoe.php) is a common PPPoE client for Linux. This software works best with
external Ethernet-based DSL modems rather than internal or USB-interfaced modems. It
includes a configuration script that collects necessary information and creates dialing scripts
that you can call manually or run as part of your system startup process.

An alternative to using RP-PPPoE is to purchase an external broadband router. These devices
manage the PPPoE connection to your ISP on one interface and present ordinary TCP/IP Ether-
net, including their own DHCP servers, on the other interface. The result is that you can con-
figure your system just as you would for an ordinary Ethernet network with a DHCP server.
These routers enable you to link multiple systems to a single DSL connection. They also work
with cable modem systems (which typically use DHCP and normal Ethernet configurations).
Broadband routers have security advantages because they block all incoming connection
attempts—they’re NAT routers, as described earlier, in “IP Addresses.”

4425.book Page 472 Tuesday, July 12, 2005 10:43 PM

Diagnosing Local and PPP Connections 473

network in a particular way and provides information that can help you track down the source
of a problem. You can also use some common network programs that aren’t primarily debug-
ging tools in your debugging efforts.

Testing Basic Connectivity

The most basic network test is the ping command, which sends a simple ICMP packet to the
system you name (via IP address or hostname) and waits for a reply. In Linux, ping continues
sending packets once every second or so until you interrupt it with a Ctrl+C keystroke. (You can
instead specify a limited number of tests via the -c num option.) Here’s an example of its output:

$ ping -c 4 speaker

PING speaker (192.168.1.1) 56(84) bytes of data.

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=1 ttl=64 time=0.194ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=2 ttl=64 time=0.203ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=3 ttl=64 time=0.229ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=4 ttl=64 time=0.217ms

--- speaker ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3002ms

rtt min/avg/max/mdev = 0.194/0.210/0.229/0.022 ms

This command sent four packets and waited for their return, which occurred quite quickly
(in an average of 0.210ms) because the target system was on the local network. By pinging
systems on both local and remote networks, you can isolate where a network problem occurs.
For instance, if you can ping local systems but not remote systems, the problem is most prob-
ably in your router configuration. If you can ping by IP address but not by name, the problem
is with your DNS configuration.

Tracing a Route

A step up from ping is the traceroute command, which sends a series of three test packets to each
computer between your system and a specified target system. The result looks something like this:

$ traceroute -n 10.1.0.43

traceroute to 10.1.0.43 (10.1.0.43), 30 hops max, 52 byte packets

 1 192.168.1.254 1.021 ms 36.519 ms 0.971 ms

 2 10.10.88.1 17.250 ms 9.959 ms 9.637 ms

 3 10.9.8.173 8.799 ms 19.501 ms 10.884 ms

 4 10.9.8.133 21.059 ms 9.231 ms 103.068 ms

 5 10.9.14.9 8.554 ms 12.982 ms 10.029 ms

 6 10.1.0.44 10.273 ms 9.987 ms 11.215 ms

 7 10.1.0.43 16.360 ms * 8.102 ms

4425.book Page 473 Tuesday, July 12, 2005 10:43 PM

474 Chapter 9 � Basic Networking

The -n option to this command tells it to display target computers’ IP addresses rather than
their hostnames. This can speed up the process a bit, particularly if you’re having DNS problems,
and it can sometimes make the output easier to read—but you might want to know the hostnames
of problem systems because that can help you pinpoint who’s responsible for a problem.

This sample output shows a great deal of variability in response times. The first hop, to
192.168.1.254, is purely local; this router responded in 1.021, 36.519, and 0.971 milliseconds
(ms) to its three probes. (Presumably the second probe caught the system while it was busy with
something else.) Probes of most subsequent systems are in the 8–20ms range, although one is at
103.068ms. The final system only has two times; the middle probe never returned, as the asterisk
(*) on this line indicates.

Using traceroute, you can localize problems in network connectivity. Highly variable
times and missing times can indicate a router that’s overloaded or that has an unreliable link to
the previous system on the list. If you see a dramatic jump in times, it typically means that the
physical distance between two routers is great. This is common in intercontinental links. Such
jumps don’t necessarily signify a problem, though, unless the two systems are close enough that
a huge jump isn’t expected.

What can you do with the traceroute output? Most immediately, traceroute is helpful in
determining whether a problem in network connectivity exists in a network for which you’re
responsible. For instance, the variability in the first hop of the preceding example could indicate
a problem on the local network, but the lost packet associated with the final destination most
likely is not a local problem. If the trouble link is within your jurisdiction, you can check the status
of the problem system, nearby systems, and the network segment in general.

Checking Network Status

Another useful diagnostic tool is netstat. This is something of a Swiss Army knife of network
tools because it can be used in place of several others, depending on the parameters it is passed.
It can also return information that’s not easily obtained in other ways. Some examples include
the following:

Interface information Pass netstat the --interface or -i parameter to obtain information
on your network interfaces similar to what ifconfig returns. (Some versions of netstat
return information in the same format, but others display the information differently.)

Routing information You can use the --route or -r parameter to obtain a routing table
listing similar to what the route command displays.

Masquerade information Pass netstat the --masquerade or -M parameter to obtain infor-
mation on connections mediated by Linux’s NAT features, which often go by the name “IP mas-
querading.” NAT enables a Linux router to “hide” a network behind a single IP address. This
can be a good way to stretch limited IP addresses.

Program use Some versions of netstat support the --program or -p parameters, which
attempt to provide information on the programs that are using network connections.
This attempt isn’t always successful, but it often is, so you can see what programs are
making outside connections.

4425.book Page 474 Tuesday, July 12, 2005 10:43 PM

Diagnosing Local and PPP Connections 475

Open ports When used with various other parameters, or without any parameters at all,
netstat returns information on open ports and the systems to which they connect.

Keep in mind that netstat is a very powerful tool, and its options and output aren’t entirely
consistent from one distribution to another. You may want to peruse its man page and experi-
ment with it to learn what it can do.

Examining Raw Network Traffic

One advanced network troubleshooting tool is tcpdump. This program is a packet sniffer,
which is a program that can intercept network packets and log them or display them on the
screen. Packet sniffers can be useful diagnostic tools because they enable you to verify that a
computer is actually receiving data from other computers. They also enable you to examine the
data in its raw form, which can be useful if you understand enough of the protocol’s implemen-
tation details to spot problems.

Although packet sniffers are useful diagnostic tools, they can also be abused.
For instance, unscrupulous individuals can run packet sniffers to capture pass-
words that others send over the network. Depending on your network config-
uration, this trick can work even if the packet sniffer isn’t running on either the
sending or the receiving computer. For this reason, many organizations have
policies forbidding the use of packet sniffers except under limited circum-
stances. Thus, before running a packet sniffer, you should obtain written per-
mission to use such a program from an individual who is authorized to grant
such permission. Failure to do so could lead you into serious trouble, possibly
up to losing your job or even being sued.

In its most basic form, you can use tcpdump by typing its name:

tcpdump

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

19:31:55.503759 IP speaker.example.com.631 > 192.168.1.255.631: UDP,

 ➥length: 139

19:31:55.505400 IP nessus.example.com.33513 > speaker.example.com.domain:

 ➥46276+ PTR? 255.1.168.192.in-addr.arpa. (44)

19:31:55.506086 IP speaker.example.com.domain > nessus.example.com.33513:

 ➥46276 NXDomain* 0/1/0 (110)

The first thing to note about this command is that you must run it as root; ordinary users aren’t
allowed to monitor network traffic in this way. Once it’s run, tcpdump summarizes what it’s doing
and then begins printing lines, one line for each packet it monitors. (Some of these lines can be quite
long and so may take more than one line on your display.) These lines include a time stamp, a stack
identifier (IP in all of these examples), the origin system name or IP address and port, the destination

4425.book Page 475 Tuesday, July 12, 2005 10:43 PM

476 Chapter 9 � Basic Networking

system name or IP address and port, and packet-specific information. Ordinarily, tcpdump keeps
displaying packets indefinitely, so you must terminate it by pressing Ctrl+C. Alternatively, you can
pass it the -c num option to have it display num packets and then quit.

Even this basic output can be very helpful. For instance, consider the preceding example
of three packets, which was captured on nessus.example.com. This computer successfully
received one broadcast packet (addressed to 192.168.1.255) from speaker.example.com’s
UDP port 631, sent a packet to speaker.example.com, and received a packet from that system
directed at nessus.example.com rather than sent as a broadcast. This sequence verifies that at
least minimal communication exists between these two computers. If you were having problems
establishing a connection, you could rule out a whole range of possibilities based on this evi-
dence, such as faulty cables or a firewall that’s blocking traffic.

If you need more information, tcpdump provides several options that enhance or modify its out-
put. These include -A to display packet contents in ASCII, -D to display a list of interfaces to which
tcpdump can listen, -n to display all addresses numerically, -v (and additional -v options, up to
-vvv) to display additional packet information, and -w file to write the capture packets to the spec-
ified file. Consult tcpdump’s man page for more details on these options and for additional options.

Using Additional Tools

In addition to specialized network diagnostic programs, you can use some common user pro-
grams as debugging tools. One of the most useful of these may be Telnet. This program and
protocol is mainly a remote login tool; type the program name followed by the name of a
remote system to receive a login prompt on that system:

$ telnet speaker

Trying 192.168.1.1...

Connected to speaker.

Escape character is '^]'.

speaker login: harry

Password:

Last login: Mon Apr 25 21:48:44 from nessus.example.com

Have a lot of fun...

harry@speaker:~>

Telnet is a poor choice as a remote login protocol because it’s entirely unen-
crypted. As a general rule, you should remove the Telnet server from your sys-
tem’s configuration (it’s usually launched from a super server) and never use
the telnet client program. It can be a useful lowest-common-denominator pro-
tocol on sufficiently protected private networks, though, and it can also be a
handy tool for debugging, as described next. Chapter 10 describes the Secure
Shell (SSH), which is a much safer alternative to Telnet.

4425.book Page 476 Tuesday, July 12, 2005 10:43 PM

Diagnosing Local and PPP Connections 477

You can also use Telnet to debug network protocols; if you give it a port number after the
remote hostname, the telnet program connects to that port, enabling you to interact with
the server:

$ telnet speaker 25

Trying 192.168.1.1...

Connected to speaker.

Escape character is '^]'.

220 speaker.example.com ESMTP Postfix

HELO nessus.example.com

250 speaker.example.com

This example connects to port 25, which is used by mail servers. After connecting, I entered a
HELO command, which is used by the Simple Mail Transfer Protocol (SMTP) to identify a client,
and the remote system responded with a 250 code, which indicates an accepted command.

Of course, to use Telnet in this way, you must know a great deal about the protocol. Even with-
out this knowledge, though, you can use Telnet to test whether or not a server is running: If you
try to connect but get a Connection refused error message, you know that a remote server is
not running or is inaccessible for some reason (say, because it’s being blocked by a firewall). If you
get in (to the Escape character message shown in the earlier examples or beyond), the server
is running, although it might not be working correctly. This test will only work for protocols that
use TCP, though. Some simple tools use UDP instead, and Telnet won’t connect with them.

Sometimes the File Transfer Protocol (FTP) can be a useful diagnostic tool, as well. This
program, as its name suggests, enables you to transfer files between systems. To use it, type
the program name followed by the FTP server’s name. You’ll then see a login prompt and be
able to issue FTP commands:

$ ftp speaker

Connected to speaker.

220 (vsFTPd 1.2.1)

Name (speaker:harry): harry

530 Please login with USER and PASS.

SSL not available

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> get zathras.wav

local: zathras.wav remote: zathras.wav

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for zathras.wav (109986 bytes).

4425.book Page 477 Tuesday, July 12, 2005 10:43 PM

478 Chapter 9 � Basic Networking

226 File send OK.

109986 bytes received in 0.104 secs (1e+03 Kbytes/sec)

ftp> quit

221 Goodbye.

This example retrieves a single file, zathras.wav, from the remote computer. In addition to
get, which retrieves files, you can issue commands such as put, to upload a file; ls or dir, to
display the remote system’s directory contents; cd, to change directories on the remote system;
delete, to remove a file; and quit or exit, to exit from the program. You can use the help
or ? command to see a list of available ftp commands.

As with Telnet, FTP is a poor choice of protocol for security reasons. The same SSH protocol
that can substitute for Telnet can also handle most FTP duties. One important exception exists
to the rule not to use FTP, though: Anonymous FTP sites are a common tool for distributing
public files on the Internet. You can download Linux itself from anonymous FTP sites. These
sites typically take a username of anonymous and any password (your e-mail address is the con-
ventional reply) and give you read access to their contents. In most cases, you can’t upload files
to anonymous FTP sites, though, and you can only access a limited number of files.

Using a Super Server
A super server is an unusual type of server. Instead of handling one network protocol itself,
a super server functions as an intermediary for other servers, as described next in “The Role
of a Super Server.” The end result is increased flexibility, but not all servers need or work well
with super servers. In Linux, two super servers are in common use: inetd and xinetd. Most
systems run only one of these super servers, which play similar roles but do things differently
from one another.

The Role of a Super Server

Super servers sit between calling client systems and some or all of the individual server pro-
grams they’re attempting to access, as shown in Figure 9.3. As illustrated by this figure,
though, super servers often do not manage all of the individual server programs run on a
particular computer—some server programs don’t work well via a super server and so man-
age their own connections.

A single super server can manage connections from multiple client computers, just as most
server programs can. A single client computer can connect to multiple servers on a single server
system, with or without a super server intermediary. From the point of view of the client com-
puter, the super server effectively does not exist; it looks just like the target server program that
it manages. In fact, the super server does minimal direct “talking” to the client; it listens for the
initial connection and, once that connection has been detected and passes certain preliminary
tests, passes it on to the target server program.

4425.book Page 478 Tuesday, July 12, 2005 10:43 PM

Using a Super Server 479

F I G U R E 9 . 3 Super servers manage connections between clients and individual server
programs.

What, then, does a super server do? That is, why use one? Super servers offer several advan-
tages over letting target servers listen for their connections directly:

Reduced overhead Every program that a computer runs consumes resources, such as memory
and CPU time. By running a super server, that overhead can be minimized, particularly for
memory—a single super server can stand in for several target servers. This advantage is greatest
for seldom-used servers, though; if a server is used frequently, it will be running most of the time
whether or not a super server mediates access.

Unified configuration Super servers can help simplify configuration by providing a single con-
trol point for multiple servers. You can go through the super server configuration file to enable
or disable all the servers it manages. This advantage is limited, though, because many servers do
not use super servers. That is, you can’t assume that a server isn’t running just because it’s not
listed in the super server configuration file.

Access control Super servers can provide unified security features. For instance, they can
restrict access to the servers based on time of day, calling IP address, and so on. The inetd super
server does this with the help of another package, TCP Wrappers; xinetd implements these
controls itself.

Of course, super servers aren’t without their drawbacks. The most important of these is that
servers launched via super servers typically respond slightly more slowly than do servers that run
directly. The cause is simple: The super server must launch the server program every time it’s
accessed, and this process takes time. This effect is greatest for large servers; it can be trivial for

LPD client

Super server

CUPS LPD server

Web browser

SWAT server

Server Computer

Mail client

Mail server

Client computer 1 Client computer 2

4425.book Page 479 Tuesday, July 12, 2005 10:43 PM

480 Chapter 9 � Basic Networking

small servers. Another problem with super servers is that they can’t manage every server program;
some have requirements that super servers can’t handle. For instance, a server might need to main-
tain information in memory between accesses, and if the super server launches a new instance for
every access, this maintenance won’t work.

In practice, you’ll need to consult a server program’s documentation to learn whether to
launch it directly or via a super server. Some programs can be launched in either way, but most
work best in one way or another. Most Linux distributions provide server packages with appro-
priate startup scripts to enable a server to launch in the correct way, although you may need to
edit these scripts, particularly for servers that are handled by super servers.

Configuring inetd

Linux distributions have been slowly shifting from inetd to xinetd. Nonetheless, you may still
find inetd in use on some systems. Type ps ax | grep inetd to see which super server is run-
ning on your system—the output should include a line with either the inetd or the xinetd com-
mand. Some systems run neither super server, though.

You control servers that launch via inetd through the /etc/inetd.conf file. This file con-
sists of a series of lines, one for each server. A typical line resembles the following:

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd -l

This and several subsequent examples refer to in.ftpd, an FTP server that was
once quite popular but that’s being replaced on many systems by other FTP
servers. Some of these servers cannot be run from a super server, so using
another server might not work in all of these cases.

Each line consists of several fields separated by one or more spaces. The meanings of these
fields are as follows:

Service name The first field (ftp in the preceding example) is the name of the service as it
appears in the /etc/services file.

Socket type The socket type entry tells the system what type of connection to expect—a reliable
two-way connection (stream), a less reliable connection with less overhead (dgram), a low-level
connection to the network (raw), or various others. The differences between these types are highly
technical; your main concern in editing this entry should be to correctly type the value specified
by the server’s documentation.

Protocol This is the TCP/IP transport-layer protocol used, usually tcp or udp.

Wait/no wait For dgram socket types, this entry specifies whether the server connects to its client
and frees the socket (nowait) or processes all its packets and then times out (wait). Servers that use
other socket types should specify nowait in this field.

User This is the username used to run the server. The root and nobody users are common choices,
but others are possible as well. As a general rule, you should run servers with a low-privilege user

4425.book Page 480 Tuesday, July 12, 2005 10:43 PM

Using a Super Server 481

whenever possible as a security precaution. Some servers require root access, though. Consult the
server’s documentation for details.

Server name This is the filename of the server. In the preceding example, the server is specified
as /usr/sbin/tcpd, which is the TCP Wrappers binary. This program provides some security
checks, enabling you to restrict access to a server based on the origin and other factors. Chapter 7,
“Documentation and Security,” covers TCP Wrappers in more detail.

Parameters Everything after the server name consists of parameters that are passed to the
server. If you use TCP Wrappers, you pass the name of the true target server (such as /usr/
sbin/in.ftpd) in this field, along with its parameters.

The hash mark (#) is a comment symbol for /etc/inetd.conf. Therefore, if a server is
running via inetd and you want to disable it, you can place a hash mark at the start of the
line. If you want to add a server to inetd.conf, you’ll need to create an entry for it. Most
servers that can be run from inetd include sample entries in their documentation. Many
distributions ship with inetd.conf files that include entries for common servers as well,
although many of them are commented out; remove the hash mark at the start of the line
to activate the server.

After modifying inetd.conf, you must restart the inetd super server itself. This super
server normally runs as a standard SysV server, so you can restart it by typing something similar
to the following:

/etc/rc.d/init.d/inetd restart

Alternatively, you can tell inetd to reload its configuration by passing the SysV startup
script the reload parameter rather than restart. The restart option shuts down the server
and then starts it again. When you use reload, the server never stops running; it just rereads the
configuration file and implements any changes. As a practical matter, the two are quite similar.
Using restart is more likely to correctly implement changes, but it’s also more likely to disrupt
existing connections.

Instead of using the SysV startup scripts, you can use kill or killall (described in Chapter 1)
to pass the SIGHUP signal to inetd. This signal causes many servers, including inetd, to reload their
configuration files. For instance, you might type kill -HUP pid if you know the process ID (PID)
of inetd, or killall -HUP inetd to have all instances of inetd reload their configuration files.
(Ordinarily, only one instance of inetd runs on a system.) In practice, this should work very much
like the reload option to the SysV startup script—in fact, such scripts often use this technique to
implement this option.

It’s generally wise to disable as many servers as possible in inetd.conf (or
the xinetd configuration files, if you use xinetd). As a general rule, if you
don’t understand what a server does, disable it. This will improve the security
of your system by eliminating potentially buggy or misconfigured servers
from the equation.

4425.book Page 481 Tuesday, July 12, 2005 10:43 PM

482 Chapter 9 � Basic Networking

E X E R C I S E 9 . 2

Adding a Server to inetd

This exercise investigates configuring inetd to handle a new server. (Distributions that use
xinetd typically ship xinetd configuration files for a server in the server’s package.) To add a
server to inetd, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI login
method.

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Session �
New Root Console from a Konsole, or by using sudo (if it’s configured) to run the com-
mands in the following steps.

4. Load the /etc/inetd.conf file into your favorite editor.

5. Look for an existing line in the inetd.conf file for your server. Most default inetd.conf
files include sample lines for many popular servers. If such a line is present, comment it
out by deleting the hash mark (#) at the start of the line and skip ahead to step 7.

6. Add a line like the following to the file:

telnet stream tcp nowait telnetd.telnetd /usr/sbin/tcpd /usr/sbin/in.telnetd

This line runs the /usr/sbin/in.telnetd server via TCP Wrappers (/usr/sbin/tcpd). The
first column is the server’s name, as listed in /etc/services; it determines the port on
which inetd is to listen on behalf of the server. The second, third, and fourth entries in the
line contain server-specific information. The values shown here are typical, but you should
consult a server’s documentation to learn what to enter. The fifth entry (telnetd.telnetd)
is the account and group that’s to own the running process.

7. Save the file and exit from the editor.

8. Type /etc/rc.d/init.d/inetd reload to have inetd reread its configuration file and
implement the changes. (Some distributions place the script in another location, such as
/etc/init.d. Some may not support the reload option, so you may need to use restart
instead.)

9. Test your server. In the case of a Telnet server, type telnet localhost on the server com-
puter itself, or type telnet servername, where servername is the server’s hostname or IP
address, on another computer.

This exercise uses the Telnet server as an example simply because it’s a common server that’s
likely to be installed on your system. As noted earlier, though, Telnet suffers from serious secu-
rity problems and so should not be left running on most production systems.

4425.book Page 482 Tuesday, July 12, 2005 10:43 PM

Using a Super Server 483

Configuring xinetd

The xinetd program is an extended super server. It provides the functionality of inetd plus
security options that are similar to those of TCP Wrappers. Modern versions of Fedora, Man-
driva, Red Hat, SuSE, and a few other distributions use xinetd by default. Other distributions
may use it in the future. If you like, you can replace inetd with xinetd on any distribution.

The /etc/xinetd.conf file controls xinetd. On distributions that use xinetd by default,
though, this file contains only global default options and a directive to include files stored in
/etc/xinetd.d. Each server that should run via xinetd then installs a file in /etc/xinetd.d
with its own configuration options.

Whether the entry for a service goes in /etc/xinetd.conf or a file in /etc/xinetd.d, it
contains information similar to that in the inetd.conf file. The xinetd configuration file,
though, spreads the information across multiple lines and labels it more explicitly. Listing 9.3
shows an example that’s equivalent to the earlier inetd.conf entry. This entry provides pre-
cisely the same information as the inetd.conf entry except that it doesn’t include a reference
to /usr/sbin/tcpd, the TCP Wrappers binary. Because xinetd includes similar functionality,
it’s generally not used with TCP Wrappers.

Chapter 7 covers xinetd security features.

Listing 9.3: Sample xinetd Configuration Entry

service ftp

{

 socket_type = stream

 protocol = tcp

 wait = no

 user = root

 server = /usr/sbin/in.ftpd

 server_args = -l

}

One additional xinetd.conf parameter is important: disable. If you include the line
disable = yes in a service definition, xinetd ignores the entry. Some servers install startup
files in /etc/xinetd.d that have this option set by default; you must edit the file and change
the entry to read disable = no to enable the server. You can also disable a set of servers by
listing their names in the defaults section of the main xinetd.conf file on a line called
disabled, as in disabled = ftp shell.

As with inetd, after you make changes to xinetd’s configuration, you must restart the super
server. You do this by typing a command similar to the one used to restart inetd. As with that
command, you can use either reload or restart, with similar effects:

/etc/rc.d/init.d/xinetd restart

4425.book Page 483 Tuesday, July 12, 2005 10:43 PM

484 Chapter 9 � Basic Networking

Also as with inetd, you may pass the SIGHUP signal to xinetd via the kill or killall com-
mand to have it reload its configuration file. This approach may be preferable if you’re using a dis-
tribution, such as Slackware, that doesn’t use a conventional SysV startup script to launch xinetd.

Configuring Printing
Printing in Linux is a cooperative effort involving several tools. A system administrator must be
familiar with what each of the tools in this collection does, as well as how they interact. As with
many other programs that are part of Linux, some of these tools have several versions, which
can lead to confusion or incompatibilities if you’re not aware of how the system as a whole func-
tions. The basic Linux printing architecture is the same in all cases. One key component of this
architecture is the presence of PostScript printers or the use of a program called Ghostscript to
convert PostScript into a format that the printer can understand. Whether you use PostScript or
non-PostScript printers, one of two broad classes of printing systems is common in Linux: the
traditional BSD Line Printer Daemon (LPD) system or one of its derivatives, or the newer Com-
mon Unix Printing System (CUPS) utility. In either case, the commands used to print files and
to monitor print jobs are similar across all systems, which minimizes problems for end users
moving between systems using different printing systems.

The Linux Printing Architecture

Linux printing is built around the concept of a print queue. This is a sort of holding area
where files wait to be printed. A single computer can support many distinct print queues.
These frequently correspond to different physical printers, but it’s also possible to configure
several queues to print in different ways to the same printer. For instance, you might use one
queue to print single-sided and another queue for double-sided printing on a printer that
supports duplexing.

Users submit print jobs by using a program called lpr. Users can call this program directly,
or they may let another program call it. In either case, lpr sends the print job into a specified
queue. This queue corresponds to a directory on the hard disk, typically in a subdirectory of the
/var/spool/lpd or /var/spool/cups directory. The traditional Linux printing tool is called
lpd; it runs in the background watching for print jobs to be submitted. A shift to use of another
printing system, CUPS, is nearly complete, but it works in a similar manner, at least when con-
sidered broadly. Whatever it’s called, the printing system accepts print jobs from lpr or from
remote computers, monitors print queues, and serves as a sort of “traffic cop,” directing print
jobs in an orderly fashion from print queues to printers.

The LPI exam covers the older BSD LPD printing system, but in the real world
you’re more likely to encounter CUPS, at least on reasonably new systems.

4425.book Page 484 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 485

One important and unusual characteristic of Linux printing is that it’s highly network oriented.
As just noted, Linux printing tools can accept print jobs that originate from remote systems as well
as from local ones. In fact, even local print jobs are submitted via network protocols, although they
don’t normally use network hardware, so even a computer with no network connections can print.
In addition to being a server for print jobs, lpd or CUPS can function as a client, passing print jobs
on to other computers that run the same protocols.

One of the deficiencies of the traditional lpd printing system is that it’s essentially
unidirectional—print jobs originate in an application, which blindly produces PostScript
(as described shortly) without knowing anything about the printer to which it’s printing.
The print queue takes this output and sends it on to the printer, which must deal with it as
best it can. There’s no way for a Linux application to directly query a printer concerning
its capabilities, such as whether it supports multiple paper trays or wide forms. This is one
of the deficiencies that CUPS aims to correct. Applications can query CUPS about a
printer’s capabilities—its paper sizes, whether it supports color, and so on. Support for
these features is still rare, but this support is likely to become more common as CUPS takes
over as the standard Linux printing software.

One confusing aspect of Linux printing is that Linux supports several competing printing
systems. In the past, the two most popular have been the original Berkeley Standard Distribu-
tion (BSD) LPD printing system and the newer LPRng package. Both work according to the out-
line just presented, but they differ in some details, some of which are described in the upcoming
sections. Between 2001 and 2003, most distributions switched to CUPS as their primary print-
ing systems, although many distributions give a choice of which printing system to use. Even for
those distributions that don’t give you a choice at installation time, you can rip out one printing
system and install another if you like.

Understanding PostScript and Ghostscript

If you’ve configured printers under Windows, Mac OS, OS/2, or certain other OSs, you’re prob-
ably familiar with the concept of a printer driver. In these OSs, the printer driver stands between
the application and the printer queue. In Linux, the printer driver is part of Ghostscript (http://
www.cs.wisc.edu/~ghost/), which exists as part of the printer queue, albeit a late part. This
relationship can be confusing at times, particularly because not all applications or printers need
Ghostscript. Ghostscript serves as a way to translate PostScript, a common printer language,
into forms that can be understood by many different printers. Understanding Ghostscript’s
capabilities, and how it fits into a printer queue, can be important for configuring printers.

PostScript: The De Facto Linux Printer Language

Laser printers began to become popular in the 1980s. The first laser printers were very expen-
sive devices, and many of them supported what was at that time a new and powerful printer lan-
guage: PostScript. PostScript printers became quite popular as accessories for the Unix systems
of the day. Unix print queues were not designed with Windows-style printer drivers in mind, so
Unix programs that took advantage of laser printer features were typically written to produce
PostScript output directly. As a result, PostScript developed into the de facto printing standard

4425.book Page 485 Tuesday, July 12, 2005 10:43 PM

486 Chapter 9 � Basic Networking

for Unix and, by inheritance, Linux. Where programs on Windows systems were built to inter-
face with the Windows printer driver, similar programs on Linux generate PostScript and send
the result to the Linux printer queue.

A few programs violate this standard. Most commonly, many programs can produce raw text
output. Such output seldom poses a major problem for modern printers, although some Post-
Script-only models choke on raw text. Some other programs can produce either PostScript or
Printer Control Language (PCL) output for Hewlett-Packard laser printers or their many imita-
tors. A very few programs can generate output that’s directly accepted by other types of printers.

The problem with PostScript as a standard is that it’s uncommon on the low- and mid-priced
printers with which Linux is often paired. Therefore, to print to such printers using traditional
Unix programs that generate PostScript output, you need a translator and a way to fit that trans-
lator into the print queue. This is where Ghostscript fits into the picture.

Ghostscript: A PostScript Translator

When it uses a traditional PostScript printer, a computer sends a PostScript file directly to the
printer. PostScript is a programming language, albeit one that’s oriented toward the goal of pro-
ducing a printed page as output. As a result, a PostScript printer needs a fair amount of RAM and
CPU power. In fact, in the 1980s it wasn’t uncommon for PostScript printers to have more RAM
and faster CPUs than the computers to which they were connected. Today, though, printers fre-
quently have little RAM and anemic CPUs—particularly on inexpensive ink-jet models.

Ghostscript is a PostScript interpreter that runs on a computer, offloading some of the need for
RAM and CPU power. It takes PostScript input, parses it, and produces output in any of dozens of
different bitmap formats, including formats that can be accepted by many non-PostScript printers.
This makes Ghostscript a way to turn many inexpensive printers into Linux-compatible PostScript
printers at very low cost. Ghostscript is available as open source software (GNU Ghostscript), with
a more advanced variant (Aladdin Free Public License, or AFPL, Ghostscript) available for free.
AFPL Ghostscript is not freely redistributable in any commercial package, though. Because all Linux
distributions are available on CD-ROMs sold for a price, they ship with the older GNU Ghostscript,
which works well enough for most users.

One of Ghostscript’s drawbacks is that it produces large output files. A PostScript file that
produces a page filled with text may be just a few kilobytes in size. If this page is to be printed
on a 600 dots per inch (dpi) printer using Ghostscript, the resulting output file could be as large
as 4MB—assuming it’s black and white. If the page includes color, the size could be much
larger. In some sense, this is unimportant because these big files will be stored on your hard disk
for only brief periods of time. They do still have to get from the computer to the printer, though,
and this process can be slow. Also, some printers (particularly laser printers) may require mem-
ory expansion to operate reliably under Linux.

Squeezing Ghostscript into the Queue

Printing to a non-PostScript printer in Linux requires fitting Ghostscript into the print queue.
This is generally done through the use of a smart filter. This is a program that’s called as part
of the printing process. The smart filter examines the file that’s being printed, determines its
type, and passes the file through one or more additional programs before the printing software

4425.book Page 486 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 487

sends it on to the printer. The smart filter can be configured to call Ghostscript with whatever
parameters are appropriate to produce output for the queue’s printer.

When your system uses BSD LPD or LPRng, the smart filter is specified with the if field in
/etc/printcap, as described shortly, in “Configuring the /etc/printcap File.” Several smart
filter packages are available for Linux, including rhs-printfilters (used in older Red Hat
distributions and some of its derivatives), Apsfilter (used in several other distributions), and
magicfilter. CUPS ships with its own set of smart filters, which it calls automatically when you
tell the system what model printer you’re using.

Configuration of the smart filter can be tricky, but most distributions include setup tools that
help immensely. The upcoming section “Using a Configuration Tool” describes the use of one
such tool for BSD LPD or LPRng printing systems. CUPS uses its own Web-based configuration
tool, as described in the upcoming section “Using the Web-Based CUPS Utilities.” I highly rec-
ommend that you use such programs when configuring your system to print.

The end result of a typical Linux printer queue configuration is the ability to treat any sup-
ported printer as if it were a PostScript printer. Applications that produce PostScript output can
print directly to the queue. The smart filter detects that the output is PostScript and runs it
through Ghostscript. The smart filter can also detect other file types, such as plain-text and var-
ious graphics files, and it can send them through appropriate programs instead of or in addition
to Ghostscript in order to create a reasonable printout.

If you have a printer that can process PostScript itself, the smart filter is usually still involved,
but it doesn’t pass PostScript through Ghostscript. In this case, the smart filter passes PostScript
directly to the printer, but it still sends other file types through whatever processing is necessary
to turn them into PostScript.

Choosing an Appropriate Printer for Linux

If you want a speedy printer for Linux, choose a model with built-in PostScript. This is particularly true
for textual and line-art output, which suffers the most in terms of size expansion going from Post-
Script to bitmap. In my experience, Ghostscript-driven printers work well enough for 600dpi black-
and-white printers with speeds of up to about six pages per minute (ppm), although theoretically
both the parallel port and USB 1.x port should be able to handle speeds of three to five times that
value. If the printer’s speed is greater than that, the parallel or USB 1.x port may not be able to deliver
the necessary performance, although you may be able to tweak it to get somewhat better speed.

Color ink-jet printers are generally limited more by the speed of the print head than by the
speed of the data coming over their ports. Few such printers directly support PostScript, either.
Some models come with Windows-based PostScript engines that are conceptually similar to
Ghostscript, but such software is useless under Linux. There are a few PostScript ink-jets on the
market, as well as color PostScript printers that use other printing technologies.

For information on what printers are supported by Ghostscript, check the Ghostscript web page
or the GNU/Linux Printing web page (http://www.linuxprinting.org/printer_list.cgi).

4425.book Page 487 Tuesday, July 12, 2005 10:43 PM

488 Chapter 9 � Basic Networking

Running a Printing System

Because Linux printing systems run as daemons, they must be started before they’re useful. This
task is normally handled automatically via startup scripts in /etc/rc.d or /etc/rc?.d (where
? is a runlevel number). Look for startup scripts that contain the strings lpd, lprng, or cups in
their names to learn what your system is running. If you’re unsure if a printing system is cur-
rently active, use the ps utility to search for running processes by these names, as in:

$ ps ax | grep cups

 3713 ? S 0:00 cupsd

This example shows that cupsd, the CUPS daemon, is running, so the system is using CUPS
for printing. If you can’t find any running printing system, consult your distribution’s docu-
mentation to learn what is available and check that the appropriate package is installed. All
major distributions include startup scripts that should start the appropriate printing daemon
when the computer boots.

Configuring BSD LPD and LPRng

Fortunately, basic printer configuration for both the original BSD printing tools and LPRng is sim-
ilar. You can configure everything by hand by directly editing configuration files, but certain crit-
ical details—namely, how your smart filter is set up—differ from one distribution to another, and
they can be tedious to locate. Therefore, direct file editing is best reserved for cases where you can
forgo the smart filter or if you’re willing to track down the documentation for whatever smart fil-
ter your system uses. In most cases, it’s easier to use a configuration tool to do the initial printer
configuration, and then you can tweak that configuration by hand if necessary. Either way, the
printing daemon runs in the background and accepts print jobs submitted via lpr.

Configuring the /etc/printcap File

The /etc/printcap file is at the heart of both the BSD and LPRng printing systems. Listing 9.4
illustrates the format of /etc/printcap by showing an entry for a single printer. You can
define multiple printers in /etc/printcap; just be sure to use different names.

Listing 9.4: A Sample /etc/printcap File

lp|hp4000:\

 :lp=/dev/lp0:\

 :br#57600:\

 :rm=:\

 :rp=:\

 :sd=/var/spool/lpd/lp:\

 :mx#0:\

 :sh:\

 :if=/var/spool/lpd/lp/printfilter:

4425.book Page 488 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 489

Technically, each printer definition is one line long. The /etc/printcap entries, however,
traditionally make heavy use of the common Linux convention of using a backslash (\) to signal
a line continuation. (Note that every line in Listing 9.4 except the last one ends in a backslash.)
This makes the printer definitions easier to read. Each component within the /etc/printcap
entry is separated from the others by colons (:). Common components of a print queue defini-
tion include the following:

Printer name Each printer definition begins with one or more names for the printer. If the
printer has multiple names, they’re separated from each other by vertical bars (|). Traditionally,
the default printer is called lp. Listing 9.4’s example expands on this by adding the name
hp4000. Users may print using either name with the same results.

Printer device filename The lp=/dev/lp0 entry defines the device filename for the printer. In
the case of Listing 9.4, the printer device is /dev/lp0, which corresponds to the first parallel port.
Many modern printers support USB interfaces, which use the /dev/usb/lpn devices, where n is
a number from 0 up. A few printers use the old RS-232 serial ports, which may be accessed as
/dev/ttySn. This entry may be omitted if the printer is shared from another computer.

Baud rate The br parameter’s name stands for “baud rate”; it defines the communications
speed for RS-232 serial printers. This option is normally omitted for parallel port, USB, and net-
work printers. It doesn’t do any harm to leave it in, however, as in Listing 9.4.

Remote machine If you’re defining a printer queue for a printer that’s connected to another
computer or that’s connected directly to the network, you specify its machine name with the rm
option. Like br, it can be omitted if not used.

Remote print queue The rp option is used in conjunction with rm, but it specifies the name of
the print queue on the remote system. For instance, your local epson queue might print to a
queue called inkjet on a remote system. Your local users will use the name epson, and your
lpd will pass the job on to the remote system’s lpd, which will print to the remote inkjet
queue. This option may be omitted if the printer is local, but leaving it blank in this case (as in
Listing 9.4) does no harm.

Although you can use different local and remote names, using the same name
for both will help avoid confusion.

Spool directory The sd parameter name stands for spool directory. This is the location of the print
queue on your hard disk. By convention, this is a subdirectory of the /var/spool/lpd directory,
named after the print queue’s primary name. If you create print queues by hand, you’ll need to create
this directory. It should normally have fairly restrictive permissions (such as rwx------ and own-
ership by root) so that people can’t read or delete each other’s print jobs.

Maximum print job size The mx option sets the maximum size of a print job, in bytes. You can
use this option to restrict abuses, but be aware that the print job size in bytes and its size in pages
are poorly correlated. If it is set to 0, there’s no limit on job size. This option uses a hash mark
(#) rather than an equal sign (=) to set its value.

4425.book Page 489 Tuesday, July 12, 2005 10:43 PM

490 Chapter 9 � Basic Networking

Suppress header The sh option takes no value. It stands for suppress header, and if it’s
present, Linux does not print a header page with information on the user who printed the job.
This configuration makes sense for workstations, but on multiuser systems and print servers,
omitting the sh option and using the resultant headers can help you organize printouts from
multiple users.

Input filter This option sets the input filter filename, which is part of the smart filter associated
with the queue. This is frequently a script located within the spool directory. The script sets var-
ious options (such as the name of the Ghostscript driver to be used) and calls the smart filter files
located elsewhere on the disk.

The /etc/printcap file is fairly complex and supports many options. You can learn about
more of them from the file’s man page (type man printcap). The preceding options cover what
you’re likely to do with the queue, however, aside from smart filter configuration.

After reconfiguring your print queues, you may need to restart your printer daemon. On
most systems, you can do this by passing the restart parameter to the LPRng or BSD LPD
printing startup script. The following is an example of how this might be done:

/etc/rc.d/init.d/lpd restart

The exact name and location of this file will vary from one distribution to another. You
should use this command only when your system isn’t actively printing.

Using a Configuration Tool

Much of the challenge of printing in Linux doesn’t come from the /etc/printcap file; it comes
from telling the system about your printer—that is, smart filter and Ghostscript configuration.
GNU Ghostscript comes standard with all major Linux distributions, and it is probably ade-
quate for your system. In a few cases, though, you may need to upgrade to the more recent AFPL
Ghostscript or obtain a version with some unusual drivers compiled into it. The GNU/Linux
Printing web page (http://www.linuxprinting.org/printer_list.cgi) can be an
extremely useful resource in tracking down appropriate drivers.

In most cases, the easiest way to configure a print queue with a smart filter for a specific non-
PostScript printer is to use a printer configuration tool. Most major Linux distributions come
with these tools, although which ones come with which distribution varies substantially. This
section describes the use of one popular printer configuration tool, Apsfilter (http://
www.apsfilter.org).

Because most distributions now use CUPS as their primary printing system,
distribution-specific tools frequently handle CUPS configuration, not BSD LPD
or LPRng configuration. Apsfilter is distribution neutral but ships with many
distributions to handle both BSD LPD and LPRng configuration. The package
also includes a smart filter that it inserts into print queues to detect PostScript
and other file types.

4425.book Page 490 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 491

To use Apsfilter for printer configuration, you must first install the package. Look for it on
your distribution’s installation media or download and install it from the Apsfilter web page.
If Apsfilter doesn’t ship with your distribution and you download it from the website, you’ll
need to compile and install the software; consult the Apsfilter documentation for details. Aps-
filter configuration involves following a series of configuration steps. Begin by typing /usr/
share/apsfilter/SETUP as root. This action launches the text-based configuration tool.
(Some distributions put the SETUP program in another directory, so consult your distribution’s
documentation if you can’t find this program.)

The Apsfilter SETUP program requires you to identify your printer model, set the port or
remote queue the printer is to use, set the paper size, and so on. Before you exit from this pro-
gram, be sure to use its test option; this should produce a legible test printout to verify that the
configuration works. If it doesn’t produce output or if the system prints reams of gibberish, you
should review your configuration.

Gibberish as output usually indicates that you’ve selected the wrong printer.
No output at all could mean an incorrect printer selection, an incorrect printer
device file selection, or various other problems.

If your system uses another printer configuration tool, such as magicfilter, the configuration
details will differ, but you must still enter the same basic information. Consult the filter’s doc-
umentation for details.

All magic filter programs store configuration files somewhere. For Apsfilter,
the location is /etc/apsfilter, with the apsfilterrc file holding the actual
configurations. For magicfilter, it’s /etc/magicfilter. You can edit these files
directly, but doing so can be tedious.

You can create several print queues, even if you have just one printer. For instance, you might
create one queue that prints at high resolution and another that prints at a lower resolution. Your
users can then pick the desired print resolution by choosing a different print queue, as described
shortly—for instance, you might call one epson360 and the other epson720. You can even create
one queue that prints with the normal print filters and another that doesn’t use a filter—that is,
a raw queue. A raw print queue can be useful if you have programs that can print directly to the
printer type you use. For instance, the GIMP includes drivers for many specific printer models,
and so they can do without Ghostscript in many cases.

Configuring CUPS

Although CUPS plays the same role in Linux as BSD LPD or LPRng, and uses Ghostscript in a
conceptually similar way, CUPS configuration is quite different from BSD LPD or LPRng con-
figuration. CUPS doesn’t rely on an /etc/printcap file (although it generates a simple one on-
the-fly for the benefit of programs that refer to it to learn what printers are available). Instead,
it uses various configuration files in the /etc/cups directory and its subdirectories. You can

4425.book Page 491 Tuesday, July 12, 2005 10:43 PM

492 Chapter 9 � Basic Networking

edit these files directly, and you may need to do so if you want to share printers or use printers
shared by other CUPS systems. The simplest way to add printers to CUPS, though, is to use the
tool’s Web-based configuration utility.

CUPS isn’t mentioned in the LPI objectives, but it’s now the dominant printing
system for Linux. Thus, you should know how to deal with CUPS.

Editing the CUPS Configuration Files

You can add or delete printers by editing the /etc/cups/printers.conf file, which consists
of printer definitions. Each definition begins with the name of a printer, identified by the string
DefaultPrinter (for the default printer) or Printer (for a nondefault printer) in angle brack-
ets (<>), as in the following:

<DefaultPrinter okidata>

This line marks the beginning of a definition for a printer queue called okidata. The end of
this definition is a line that reads </Printer>. Intervening lines set assorted printer options,
such as identifying strings, the printer’s location (its local hardware port or network location),
its current status, and so on. Additional options are stored in a PostScript Printer Definition
(PPD) file that’s named after the queue and stored in the /etc/cups/ppd subdirectory. PPD
files follow an industry-standard format. For PostScript printers, you can obtain a PPD file from
the printer manufacturer, typically from a driver CD-ROM or from the manufacturer’s website.
CUPS and its add-on driver packs also ship with a large number of PPD files that are installed
automatically when you use the Web-based configuration utilities.

As a general rule, you’re better off using the CUPS Web-based configuration tools to add printers
rather than adding printers by directly editing the configuration files. If you like, though, you can
study the underlying files and tweak the configurations using a text editor to avoid having to go
through the full Web-based tool to make a minor change.

One exception to this rule relates to configuring the CUPS Web-based interface tool itself and
CUPS’s ability to interface with other CUPS systems. One of the great advantages of CUPS is
that it uses a new network printing protocol, known as the Internet Printing Protocol (IPP), in
addition to the older LPD protocol used by BSD LPD and LPRng. IPP supports a feature it calls
browsing, which enables computers on a network to automatically exchange printer lists. This
feature can greatly simplify configuring network printing. You may need to change some set-
tings in the main CUPS configuration file, /etc/cups/cupsd.conf, to enable this support.

The /etc/cups/cupsd.conf file, which is structurally similar to the Apache web server
configuration file, contains a number of configuration blocks that specify which other systems
should be able to access it. Each block controls access to a particular location on the server.
These blocks look like this:

<Location /printers>

Order Deny,Allow

Deny from All

BrowseAllow from 127.0.0.1

4425.book Page 492 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 493

BrowseAllow from 192.168.1.0/24

BrowseAllow from @LOCAL

Allow from 127.0.0.1

Allow from 192.168.1.0/24

Allow from @LOCAL

</Location>

If you’re configuring a workstation with a local printer that you don’t want to
share, or if you want to configure a workstation to use printers shared via LPD
or some other non-IPP printing protocol, you shouldn’t need to adjust /etc/
cups/cupsd.conf. If you want to access remote IPP printers, however, you
should at least activate browsing by setting the directive Browsing On, as
described shortly. You shouldn’t have to modify your location definitions
unless you want to share your local printers.

The /printers location, shown here, controls access to the printers themselves. The follow-
ing list includes features of this example:

Directive order The Order Deny,Allow line tells CUPS in which order it should apply allow
and deny directives—in this case, allow directives modify deny directives.

Default policy The Deny from All line tells the system to refuse all connections except those
that are explicitly permitted.

Browsing control lines The BrowseAllow lines tell CUPS from which other systems it should
accept browsing requests. In this case, it accepts connections from itself (127.0.0.1), from sys-
tems on the 192.168.1.0/24 network, and from systems connected to local subnets (@LOCAL).

Access control lines The Allow lines give the specified systems non-browse access to printers—
that is, those systems can print to local printers. In most cases, the Allow lines will be the same as
the BrowseAllow lines.

You can also create a definition that uses Allow from All and then creates BrowseDeny and
Deny lines to limit access. As a general rule, though, the approach shown in this example is safer.
Locations other than the /printers location can also be important. For instance, there’s a root
(/) location that specifies default access permissions to all other locations and an /admin loca-
tion that controls access to CUPS administrative functions.

Before the location definitions in cupsd.conf are a few parameters that enable or disable
browsing and other network operations. You should look for the following options specifically:

Enabling browsing The Browsing directive accepts On and Off values. The CUPS default is to
enable browsing (Browsing On), but some Linux distributions disable it by default.

Browsing access control The BrowseAddress directive specifies the broadcast address to which
browsing information should be sent. For instance, to broadcast data on your printers to the
192.168.1.0/24 subnet, you’d specify BrowseAddress 192.168.1.255.

Once you’ve configured a CUPS server to give other systems access to its printers via appro-
priate location directions, and once you’ve configured the client systems to use browsing via

4425.book Page 493 Tuesday, July 12, 2005 10:43 PM

494 Chapter 9 � Basic Networking

Browsing On, all the systems on the network should auto-detect all the printers on the network.
There’s no need to configure the printer on any computer except the one to which it’s directly
connected. All printer characteristics, including their network locations and PPD files, are prop-
agated automatically by CUPS. This feature is most important in configuring large networks
with many printers or networks on which printers are frequently added and deleted.

Obtaining CUPS Printer Definitions

The basic version of CUPS ships with smart filter support for just a few printers, including raw
queues that do no processing and a few models from Hewlett-Packard, Epson, and Okidata. If
you use another printer, you should obtain extra CUPS printer definitions. These definitions may
consist of PPD files, appropriate behind-the-scenes “glue” to tell CUPS how to use them, and pos-
sibly Ghostscript driver files. These printer definitions can be obtained from several sources:

Your Linux distribution Many distributions ship extra printer definitions in a package called
cups-drivers or something similar, so check your distribution for such a package. In truth,
this package is likely to be the Foomatic or GIMP Print package under another name.

Foomatic The Linux Printing website hosts a set of utilities and printer definitions known col-
lectively as Foomatic (http://www.linuxprinting.org/foomatic.html). These provide
many additional printer definitions for CUPS (as well as for other printing systems).

GIMP Print The GNU Image Manipulation Program (GIMP) is a major Linux bitmap graph-
ics program that supports its own printer drivers. These in turn have been spawned off into a
package called GIMP Print, which can be integrated with CUPS to provide additional printer
options. Check http://gimp-print.sourceforge.net for more information.

ESP Print Pro Easy Software Products (ESP) is the company that first developed CUPS.
Although CUPS is open source, ESP offers a variety of printer definitions for CUPS for a price.
See http://www.easysw.com/printpro/ for more details.

If you’re printing to one of the basic printers supported by the standard CUPS definitions,
you may not need to add anything else. You might also find that your distribution has installed
a set of definitions as part of the main CUPS package or in an add-on package, such as cups-
drivers, without explicit instruction. In either of these cases, you’re set and need not do any-
thing else. If you start configuring printers and can’t find your model, though, you should look
for an additional printer definition set from one of the preceding sources.

Using the Web-Based CUPS Utilities

The CUPS IPP printing system is closely related to the Hypertext Transfer Protocol (HTTP) used
on the Web. The protocol is so similar, in fact, that you can access a CUPS daemon by using a
web browser. You need only specify that you want to access the server on port 631—the normal
printer port. To do so, enter http://localhost:631 in a web browser on the computer run-
ning CUPS. (You may be able to substitute the hostname or access CUPS from another com-
puter by using the other computer’s hostname, depending on your cupsd.conf settings.) This
action brings up a list of administrative tasks you can perform. Click Manage Printers to open
the printer management page, as shown in Figure 9.4.

4425.book Page 494 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 495

F I G U R E 9 . 4 CUPS provides its own Web-based configuration tool.

If you’re configuring a stand-alone computer or the only one on a network to
use CUPS, the printer list will be empty, unlike the one shown in Figure 9.4. If
other computers on your network use CUPS, you may see their printers in the
printer list, depending on their security settings.

You can add, delete, or modify printer queues using the CUPS Web control system. To add
a printer, follow these steps:

1. Scroll to the bottom of the page and click Add Printer. (This option isn’t visible in Figure 9.4
because it’s too far down the existing printer list.) You’re likely to be asked for a username
and password.

2. Type root as the username and the administrative password as the password, and then
click OK.

CUPS doesn’t normally encrypt its data, so you shouldn’t use it to administer
printers remotely. Doing so would be a security risk, as the passwords would
be exposed to sniffing.

4425.book Page 495 Tuesday, July 12, 2005 10:43 PM

496 Chapter 9 � Basic Networking

3. The system displays a page asking for the printer’s name, location, and description. Enter
appropriate information in the Name, Location, and Description fields. These fields are all
entirely descriptive, so enter anything you like. (Users will use your entry in the Name field
to access the printer, though.) When you click Continue, CUPS asks for the printer device.

4. The printer device may be a local hardware port (such as a parallel printer port or a USB
port), a remote LPD printer, a remote SMB/CIFS (Samba) printer, or other devices. The pre-
cise options available vary from one distribution to another. Select the appropriate one
from the pop-up list and click Continue.

USB printers must be turned on and connected to the computer when CUPS
starts in order to be configured or used. If your printer was turned off or dis-
connected when your system booted, you may need to restart CUPS via its
SysV startup script and then start over again to configure it.

5. If you entered a network printer, the result is a page in which you enter the complete path
to the device. Type the path, such as lpd://printserv/brother to print to the brother
queue on the printserv computer. Click Continue when you’re done.

6. If you entered a local device in step 4 or after you’ve entered the complete path in step 5,
you’ll see a list of driver classes, such as PostScript and HP. Select one and click Continue.

7. CUPS now displays a complete list of printer models within the class you selected in step 6.
Select an appropriate model and click Continue.

8. CUPS informs you that the printer has been added.

If you click the Printers item at the top of the page, you should be returned to the printers list
(Figure 9.4), but your new printer should be listed among the existing queues. You can print a
test page by clicking Print Test Page. If all goes well, a test page will emerge from your printer.
If it doesn’t, go back and review your configuration by clicking Modify Printer. This action
takes you through the steps for adding a printer but with your previous selections already
entered as the defaults. Try changing some settings until you get the printer to work.

From the printer queue list, you can also click Configure Printer to set various printer options.
What options are available depends on the printer, but common options include the resolution,
color dithering options, the paper size, whether or not to enable double-sided printing, and the
presence of banner pages.

Printing to Windows or Samba Printers

If your network hosts many Windows computers, you may use the Server Message Block/Common
Internet File System (SMB/CIFS) for file and printer sharing among Windows systems. Linux’s
Samba server also implements this protocol and so can be used for sharing printers from Linux.

Chapter 10 describes the basics of configuring a Linux Samba server, so con-
sult it if you want to share an existing printer queue with Windows clients.

4425.book Page 496 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 497

On the flip side, you can print to an SMB/CIFS printer queue from a Linux system. To do so,
you select an SMB/CIFS queue in the printer configuration tool (such as Apsfilter or the CUPS
configuration option). Apsfilter lists the SMB/CIFS queue option as Windows / NT (samba).
Under CUPS, it’s called Windows Printer via SAMBA in step 4 in the preceding procedure.

Precisely how you proceed with configuration depends on the tool you’re using. Most guide
you through the process by asking for a hostname, share name, username, and password. Some
servers enable you to omit the username or password or to enter random values for these fields.
Others require all four components to work. For CUPS, you must provide this information, but
the format is not obvious from the Web-based configuration tool:

smb://username:password@SERVER/SHARE

This is a uniform resource identifier (URI) for an SMB/CIFS share. You must substitute appro-
priate values for username, password, SERVER, and SHARE, of course. Once this is done and
you’ve finished the configuration, you should be able to submit print jobs to the SMB/CIFS share.

SMB/CIFS printers hosted by Windows systems are usually non-PostScript
models, so you must select a local Linux smart filter and Ghostscript driver, just
as you would for a local printer. Printers hosted by Linux systems running
Samba, though, are frequently configured to act like PostScript printers, so you
should select a PostScript driver when connecting to them.

In practice, you may be faced with a decision: Should you use LPD, IPP, or SMB/CIFS for
submitting print jobs? To be sure, not all print servers support all three protocols, but a Linux
server might support them all. As a general rule, IPP is the simplest to configure because it sup-
ports browsing, which means that CUPS clients shouldn’t need explicit configuration to han-
dle specific printers. This makes IPP the best choice for Linux-to-Linux printing, assuming
both systems run CUPS. When CUPS isn’t in use, LPD is generally easier to configure than
SMB/CIFS, and it has the advantage of not requiring the use of a username or password to
control access. Because SMB/CIFS security is password-oriented, clients typically store pass-
words in an unencrypted form on the hard disk. This fact can become a security liability, par-
ticularly if you use the same account for printing as for other tasks. On the other hand,
sometimes use of a password on the server provides more of a security benefit than the risk
of storing that password on the client. Generally speaking, if clients are few and well pro-
tected, while the server is exposed to the Internet at large, using passwords can be beneficial.
If clients are numerous and exposed to the Internet while the print server is well protected,
though, a password-free security system that relies on IP addresses may be preferable.

Monitoring and Controlling the Print Queue

Several utilities can be used to submit print jobs and to examine and manipulate a Linux print
queue. These utilities are lpr, lpq, lprm, and lpc. All of these commands can take the -P
parameter to specify that they operate on a specific print queue.

4425.book Page 497 Tuesday, July 12, 2005 10:43 PM

498 Chapter 9 � Basic Networking

Printing Files with lpr

Once you’ve configured the system to print, you probably want to start printing. As mentioned
earlier, Linux uses the lpr program to submit print jobs. This program accepts many options
that you can use to modify the program’s action:

Specify a queue name The -Pqueuename option enables you to specify a print queue. This is
useful if you have several printers or if you’ve defined several queues for one printer. If you omit
this option, the default printer is used.

In the original BSD version of lpr, there should be no space between the -P and
the queuename. LPRng and CUPS are more flexible in this respect; you can insert
a space or omit it as you see fit.

Delete original file Normally, lpr sends a copy of the file you print into the queue, leaving the
original unharmed. Specifying the -r option causes lpr to delete the original file after printing it.

Suppress banner The -h option suppresses the banner for a single print job. It’s not available
in CUPS.

Job name specification Print jobs have names to help identify them, both while they’re in the
queue and once printed (if the queue is configured to print banner pages). The name is normally
the name of the first file in the print job, but you can change it by including the -J jobname option.

User e-mail notification The -m username option causes lpd to send e-mail to username
when the print job is complete. It’s not available in CUPS.

Number of copies You can specify the number of copies of a print job by including the number
after a dash, as in -3 to print three copies of a job.

Suppose you have a file called report.txt that you want to print to the printer attached
to the lexmark queue. This queue is often quite busy, so you want the system to send e-mail to
your account, ljones, when it’s done so that you know when to pick up the printout. You
could use the following command to accomplish this task, at least with the BSD LPD and LPRng
versions of lpr:

$ lpr -Plexmark -m ljones report.txt

The lpr command is accessible to ordinary users as well as to root, so anybody may print
using this command. It’s also called from many programs that need to print directly, such as
graphics programs and word processors. These programs typically give you some way to adjust
the print command so that you can enter parameters such as the printer name. For instance, Fig-
ure 9.5 shows Mozilla Firefox’s Print dialog box, which features a pop-up list button that lets
you select the print queue. This is the Printer field in Figure 9.5, but some programs call it some-
thing else. Some programs also provide a text entry field in which you type some or all of an lpr
command instead of selecting from a pop-up list of available queues. Consult the program’s
documentation if you’re not sure how it works.

4425.book Page 498 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 499

F I G U R E 9 . 5 Most Linux programs that can print do so by using lpr, but many hide the
details of the lpr command behind a dialog box.

Sometimes you want to process a file in some way prior to sending it to the printer. Chapter 1
covers some commands that can do this, such as fmt and pr. Another handy program is mpage,
which reads plain-text or PostScript files and reformats them so that each printed sheet contains
several reduced-size pages from the original document. This can be a good way to save paper
if you don’t mind a reduction in the document size. In the simplest case, you can use mpage
much as you’d use lpr:

$ mpage -Plexmark report.ps

This command prints the report.ps file reduced to fit four pages per sheet. You can change
the number of source pages to fit on each printed page with the -1, -2, -4, and -8 options,
which specify one, two, four, or eight input pages per output page, respectively. Additional
mpage options exist to control features such as the paper size, the font to be used for plain-text
input files, and the range of input file pages to be printed. Consult the man page for mpage for
more details.

Displaying Print Queue Information with lpq

The lpq utility displays information on the print queue—how many files it contains, how large
they are, who their owners are, and so on. By entering the user’s name as an argument, you can
also use this command to check on any print jobs owned by a particular user. To use lpq to
examine a queue, you might issue a command like the following:

$ lpq -Plexmark

Printer: lexmark@speaker

 Queue: 1 printable job

 Server: pid 14817 active

4425.book Page 499 Tuesday, July 12, 2005 10:43 PM

500 Chapter 9 � Basic Networking

 Unspooler: pid 14822 active

 Status: printing 'rodsmith@speaker+787', file 1 'Insight.ps', size 672386,

 ➥format 'l' at 14:57:10

 Rank Owner/ID Class Job Files Size Time

active rodsmith@speaker+787 A 787 Insight.ps 672386 14:56:22

This example shows the output of LPRng’s lpq. Systems that use the original
BSD LPD and CUPS display less information, but the most important informa-
tion (such as the job number, job owner, job filename, and job size) are present
in all cases.

Of particular interest is the job number—787 in this example. You can use this number to
delete a job from the queue or reorder it so that it prints before other jobs. Any user may use
the lpq command.

Removing Print Jobs with lprm

The lprm command removes one or more jobs from the print queue. There are several ways to
issue this command:
� If it’s issued with a number, that number is understood to be the job ID (as shown in lpq’s

output) of the job that’s to be deleted.
� If root runs lprm and passes a username to the program, it removes all the jobs belonging

to that user.
� If a user runs the BSD lprm and passes a dash (-) to the program, it removes all the jobs

belonging to the user. LPRng uses all instead of a dash for this purpose.
� If root runs the BSD lprm and passes a dash (-) to the program, it removes all print jobs

belonging to all users. Again, LPRng uses all for this purpose.

This program may be run by root or by an ordinary user, but as just noted, its capabilities
vary depending on who runs it. Ordinary users may remove only their own jobs from the queue,
but root may remove anybody’s print jobs.

Controlling the Print Queue with lpc

The lpc utility starts, stops, and reorders jobs within print queues. The lpc utility takes com-
mands, some of which require additional parameters. You can pass the printer name with -P,
as with other printer utilities, or you can pass this information without the -P parameter. In the
latter case, the print queue name appears immediately after the command. The following are the
most useful actions you can take with lpc:

Abort printing The abort command stops printing the current job and any other jobs in the
queue but leaves those jobs intact. Subsequently issuing the start command will resume printing.

Disable future printing The disable command sets the queue to reject further print jobs but
does not halt printing of jobs currently in the queue.

4425.book Page 500 Tuesday, July 12, 2005 10:43 PM

Configuring Printing 501

Disable all printing The down command stops printing to the queue and sets the queue to
reject further print jobs.

Enable future printing You can enable the queue so that it begins accepting print jobs again
by using the enable command. This is the opposite of disable.

Exit from the program If lpc is started in interactive mode (described shortly), the exit
command will terminate this mode, returning you to a shell prompt.

Start printing The start command begins printing and starts an lpd process for the queue.

Stop printing The stop command stops lpd so further printing is disabled after the current
job completes.

Reorder print jobs The topq jobid command moves the job whose ID is jobid to the start
of the queue (after the currently printing document). Use this command to reprioritize your
print queue.

Enable all printing The up command enables the specified print queue; this is the opposite
of down.

Obtain status information You can display status information on all of the print queues, or on
the one selected via -P, by using the status command.

Although CUPS ships with an lpc command, its functionality is very limited; its
only useful command is status. The next section, “Controlling CUPS Print
Queues,” describes some alternatives in CUPS.

You can run lpc in interactive mode, in which you issue one command after another, or you
can have it execute a single command and then exit by specifying the command on the same
command line you use to launch lpc. As an example, suppose you want to adjust the printing
of job 945 on the brother queue (identified through a previous lpq command) so that it’s next
to print. You could issue the following command to do this:

lpc topq brother 945

Although ordinary users may run lpc, for the most part, they can’t do anything with it. Typ-
ical lpc operations require superuser privileges.

Controlling CUPS Print Queues

The version of lpc that ships with CUPS is quite limited, so most of the lpc commands just
described don’t work with it. You can, though, control a CUPS print queue in a couple of ways:
� You can disable a queue by clicking the Stop Printer link for the printer on the CUPS Web

interface (Figure 9.4). When you do so, this link changes to read Start Printer, which
reverses the effect. The Jobs link also provides a way to cancel and otherwise manage spe-
cific jobs.

4425.book Page 501 Tuesday, July 12, 2005 10:43 PM

502 Chapter 9 � Basic Networking

� You can use a series of commands, such as enable, disable, start, and stop, to control
the queue. Most of these commands have the same names as their lpc command counter-
parts, but you type them at a bash shell prompt. One unusual addition to the list is lpmove,
which enables you to move a print job from one queue to another. This can be handy if you
must shut down a queue for maintenance and want to redirect the queue’s existing jobs to
another printer.

Summary
Linux is a network-enabled OS, and it relies on its networking features more than do most OSs.
This networking is built around TCP/IP, so you should understand the basics of this protocol
stack, including IP addresses, hostnames, and routing. Most Linux distributions provide tools
to configure networking during system installation, but if you want to temporarily or perma-
nently change your settings, you can do so. Tools such as ifconfig and route can temporarily
change your network configuration, and editing critical files or running distribution-specific
utilities enable you to make your changes permanent. If your system isn’t connected to a local
network, you can use a modem in conjunction with PPP to initiate a connection to the Internet.
Most of the same networking tools, including basic diagnostic programs, work on both local
networks and PPP connections.

Once your basic network configuration is up and running, you can begin looking into net-
work clients and servers. One important class of server is a super server, which manages other
servers. The inetd and xinetd super servers handle this task in Linux. Another important
server is Linux’s printing system, which is likely to be BSD LPD, LPRng, or CUPS. These sys-
tems all use daemons that use network protocols to accept print jobs, Ghostscript to convert
PostScript to printer-specific formats, and assorted tools to submit and manage print jobs.

Exam Essentials
Describe the information needed to configure a computer on a static IP network. Four pieces
of information are important: the IP address, the netmask (aka the network mask or subnet mask),
the network’s gateway address, and the address of at least one DNS server. The first two are
required, but if you omit either or both of the latter two, you won’t be able to connect to the Inter-
net or use most DNS hostnames.

Determine when using /etc/hosts over DNS makes the most sense. The /etc/hosts file
provides a static mapping of hostnames to IP addresses on a single computer. As such, main-
taining this file on a handful of computers for a small local network is fairly straightforward,
but when the number of computers rises beyond a few or when IP addresses change frequently,
running a DNS server to handle local name resolution makes more sense.

4425.book Page 502 Tuesday, July 12, 2005 10:43 PM

Exam Essentials 503

Summarize tools you can use to translate between hostnames and IP addresses. The nslookup
program can perform these translations in both directions using either command-line or interac-
tive modes, but this program has been deprecated. You’re better off using host for simple lookups
or dig for more complex tasks.

Describe the function of network ports. Network ports enable packets to be directed to spe-
cific programs; each network-enabled program attaches itself to one or more ports, sending
data from that port and receiving data directed to the port. Certain ports are assigned to be used
by specific servers, enabling client programs to contact servers by directing requests at specific
port numbers on the server computers.

Explain when you should use static IP addresses or DHCP. Static IP address configurations
involve manually entering the IP address and other information and is used when a network
lacks a Dynamic Host Configuration Protocol (DHCP) server or when a computer shouldn’t be
configured by that server (say, because the computer is the DHCP server). DHCP configuration
is easier to set up on the client but will only work if the network has a DHCP server system.

Explain what the route command accomplishes. The route command displays or modifies
the routing table, which tells Linux how to direct packets based on their destination IP addresses.

Summarize the function of PPP. The Point-to-Point Protocol negotiates a TCP/IP connection,
typically acquiring requisite information from the PPP server. It’s used to connect computers via
telephone lines and is used in modified form for some broadband links.

Describe some basic network diagnostic tools. The ping program tests basic network con-
nectivity, and traceroute performs similar but more complex tests that can help you localize
where on a route between two systems a problem exists. Packet sniffers such as tcpdump pro-
vide detailed information on the network packets “seen” by a computer, which can be a useful
way to verify that certain packet types are actually being sent or received.

Identify the purpose of a super server. Super servers, such as inetd and xinetd, manage
incoming network connections for multiple servers. They can add security and convenience fea-
tures and they can help minimize the memory load imposed by seldom-accessed servers.

Describe the role of lpd and CUPS in Linux printing. The line printer daemon (lpd) and
CUPS play similar roles. Both accept local and remote print jobs, maintain the local print queue,
call smart filters, and pass data to the printer port in an orderly fashion. CUPS is rapidly taking
over from lpd as the standard Linux printing system.

Explain the role of Ghostscript in Linux printing. PostScript is the standard Linux printing
language, and Ghostscript converts PostScript into bitmap formats that are acceptable to non-
PostScript printers. Thus, Ghostscript is a critical translation step in most Linux print queues.

Summarize how print jobs are submitted and managed under Linux. You use lpr to submit
a print job for printing, or an application program may call lpr itself or implement its func-
tionality directly. The lpq utility summarizes jobs in a queue, lprm can remove print jobs from
a queue, and lpc can otherwise control a print queue.

4425.book Page 503 Tuesday, July 12, 2005 10:43 PM

504 Chapter 9 � Basic Networking

Review Questions
1. Which types of network hardware does Linux support? (Select all that apply.)

A. Token Ring

B. Ethernet

C. DHCP

D. Fibre Channel

2. Which of the following is a valid IP address for a computer on a TCP/IP network?

A. 202.9.257.33

B. 63.63.63.63

C. 107.29.5.3.2

D. 98.7.104.0/24

3. You want to set up a computer on a local network via a static TCP/IP configuration, but you lack
a gateway address. Which of the following is true?

A. Because the gateway address is necessary, no TCP/IP networking functions will work.

B. TCP/IP networking will function, but you’ll be unable to convert hostnames to IP addresses
or vice versa.

C. You’ll be able to communicate with machines on your local network segment but not with
other systems.

D. The computer won’t be able to tell which other computers are local and which are remote.

4. Which of the following is not a Linux DHCP client?

A. pump

B. dhcpcd

C. dhcpd

D. dhclient

5. Which of the following types of information is returned by typing ifconfig eth0? (Select all
that apply.)

A. The names of programs that are using eth0

B. The IP address assigned to eth0

C. The hardware address of eth0

D. The hostname associated with eth0

6. Which of the following programs can be used to perform a DNS lookup?

A. host

B. dnslookup

C. pump

D. ifconfig

4425.book Page 504 Tuesday, July 12, 2005 10:43 PM

Review Questions 505

7. Which of the following entries are found in the /etc/hosts file?

A. A list of hosts allowed to remotely access this one

B. Mappings of IP addresses to hostnames

C. A list of users allowed to remotely access this host

D. Passwords for remote web administration

8. Which of the following commands should you use to add to host 192.168.0.10 a default gate-
way to 192.168.0.1?

A. route add default gw 192.168.0.10 192.168.0.1

B. route add default gw 192.168.0.1

C. route add 192.168.0.10 default 192.168.0.1

D. route 192.168.0.10 gw 192.168.0.1

9. Which of the following pieces of information are usually required to initiate a PPP connection
over an analog telephone line? (Select all that apply.)

A. The ISP’s telephone number

B. The client IP address

C. An account name (username)

D. A password

10. What is the purpose of PAP and CHAP?

A. They’re tools to manage multiple servers, thus reducing the memory load of running many
server programs.

B. They’re methods of converting IP addresses to hostnames,) or vice versa, for applications.

C. They’re protocols for exchanging username and password data in a standardized way in a
PPP connection.

D. They’re competing systems for managing printers on a Linux system, with PAP being the
more common one today.

11. What tool might you use to simplify PPP configuration, letting the tool figure out how to enter
your authentication information?

A. netstat

B. ppp-off

C. wvdial

D. pppd

12. Which of the following are potential benefits of running a server via a super server? (Select all
that apply.)

A. Reduced memory load when running many small servers

B. Improved server response speed

C. Increased security from the super server’s options

D. Better capacity to retain data between connections to the server

4425.book Page 505 Tuesday, July 12, 2005 10:43 PM

506 Chapter 9 � Basic Networking

13. You have just finished editing and changing the inetd.conf file. Which of the following com-
mands will cause some Linux distributions to read the changed file?

A. /etc/inetd restart

B. /etc/bin/inetd restart

C. /etc/sbin/inetd restart

D. /etc/rc.d/init.d/inetd restart

14. You’ve installed a new server that includes its own xinetd configuration file in /etc/xinetd.d.
This new server is not responding, even after you restart your distribution’s standard xinetd.
Which of the following is one of the first things you should check when debugging this problem?

A. Type inetd verify to review the super server configuration to be sure that the new server
is properly configured.

B. Look for a line for the server in /etc/inetd.conf. If it’s present but begins with a hash
mark (#), remove the hash mark.

C. Use nslookup to verify that xinetd is listening on the port for the new server. If it’s not, type
xinetd listen to fix the problem.

D. Look for a disable = yes line in the configuration file in /etc/xinetd.d. If you find it,
change it to read disable = no.

15. You need to add a printer definition to a stand-alone workstation running LPRng. Which file
should you edit to add the printer?

A. /etc/cups/printers.conf

B. /etc/printcap

C. /etc/cups/cupsd.conf

D. /etc/rc.d/init.d/lpd

16. Which of the following describes the function of a smart filter?

A. It detects the type of a file and passes it through programs to make it printable on a given
model of printer.

B. It detects information in print jobs that might be confidential as a measure against industrial
espionage.

C. It sends e-mail to the person who submitted the print job, obviating the need to wait around
the printer for a printout.

D. It detects and deletes prank print jobs that are likely to have been created by miscreants trying
to waste your paper and ink.

17. What information about print jobs does the lpq command display? (Select all that apply.)

A. The name of the application that submitted the job

B. A numerical job ID that can be used to manipulate the job

C. The amount of ink or toner left in the printer

D. The username of the person who submitted the job

4425.book Page 506 Tuesday, July 12, 2005 10:43 PM

Review Questions 507

18. You’ve submitted several print jobs, but you’ve just realized that you mistakenly submitted a huge
document that you didn’t want to print. Assuming you can identify which job this was, that it’s not
yet printing, and that its job ID number is 749, what command would you type to delete it from
the okidata print queue?

A. The answer depends on whether you’re using BSD LPD, LPRng, or CUPS.

B. lpdel -Pokidata 749

C. lprm -Pokidata 749

D. None of the above; the task is impossible.

19. Which of the following is generally true of Linux programs that print?

A. They send data directly to the printer port.

B. They produce PostScript output for printing.

C. They include extensive collections of printer drivers.

D. They can print only with the help of add-on commercial programs.

20. What tool might you use to print a four-page PostScript file on a single sheet of paper?

A. PAM

B. mpage

C. 4Front

D. route

4425.book Page 507 Tuesday, July 12, 2005 10:43 PM

508 Chapter 9 � Basic Networking

Answers to Review Questions
1. A, B, D. Ethernet is currently the most common type of network hardware for local networks.

Linux supports it very well, and Linux also includes support for Token Ring and Fibre Channel
network hardware. DHCP is a protocol used to obtain a TCP/IP configuration over a TCP/IP net-
work. It’s not a type of network hardware, but it can be used over hardware that supports TCP/IP.

2. B. IP addresses consist of four 1-byte numbers (0–255). They’re normally expressed in base 10 and
separated by periods. 63.63.63.63 meets these criteria. 202.9.257.33 includes one value (257)
that’s not a 1-byte number. 107.29.5.3.2 includes five 1-byte numbers. 98.7.104.0/24 is a network
address—the trailing /24 indicates that the final byte is a machine identifier, and the first 3 bytes
specify the network.

3. C. The gateway computer is a router that transfers data between two or more network segments.
As such, if a computer isn’t configured to use a gateway, it won’t be able to communicate beyond
its local network segment. (If your DNS server is on a different network segment, name resolu-
tion via DNS won’t work, although other types of name resolution, such as /etc/hosts file
entries, will still work.)

4. C. Option C, dhcpd, is the Linux DHCP server. The others are all DHCP clients. Most distri-
butions ship with just one or two of the DHCP clients.

5. B, C. When used to display information on an interface, ifconfig shows the hardware and IP
addresses of the interface, the protocols (such as TCP/IP) bound to the interface, and statistics
on transmitted and received packets. This command does not return information on programs
using the interface or the hostname associated with the interface.

6. A. The host program is a commonly used program to perform a DNS lookup. There is no standard
dnslookup program, although the nslookup program is a deprecated program for performing DNS
lookups. pump is a DHCP client, while ifconfig is used for configuration of networking parameters
and cards.

7. B. The /etc/hosts file holds mappings of IP addresses to hostnames, on a one-line-per-mapping
basis. It does not list the users or other hosts allowed to remotely access this one or affect remote
administration through a web browser.

8. B. To add a default gateway of 192.168.0.1, the command would be route add default gw
192.168.0.1. Specifying the IP address of the host system is not necessary and in fact will con-
fuse the route command.

9. A, C, D. You need a telephone number to dial the call (although this is not needed for
a PPPoE or PPPoA broadband connection). Most ISPs use a username and password to
authenticate access. Although you can specify an IP address, this option is only used in spe-
cialized circumstances.

10. C. Option C correctly describes the purpose of PAP and CHAP. Option A describes the function
of super servers, such as inetd or xinetd. Option B describes the purpose of DNS or the /etc/
hosts file. Option D describes the function of the BSD LPD, LPRng, and CUPS daemons.

4425.book Page 508 Tuesday, July 12, 2005 10:43 PM

Answers to Review Questions 509

11. C. The wvdial program simplifies PPP configuration and use by providing a somewhat
“brainier” front end to pppd than the standard scripts. The netstat command of option
A is a general-purpose network diagnostic and configuration tool, but it’s not useful in auto-
mating PPP configuration. The ppp-off utility of option B is used to terminate a PPP connec-
tion, not to simplify the creation of such a connection. Option D’s pppd is used to initiate a
PPP connection, but by itself it’s not a very friendly or simple tool; it’s generally used with the
help of a dialing script (ppp-on), wvdial, or a GUI dialing program.

12. A, C. Super servers can reduce memory load and have the potential to improve security by
applying extra security checks on incoming connections. Super servers do not improve response
speed or improve servers’ ability to retain data between connections; if anything, these are ben-
efits of running the server directly, without the help of a super server.

13. D. The inetd SysV startup script is usually located in /etc/rc.d/init.d , /etc/init.d, or
/etc/rc.d. After changing the inetd.conf file, you can run this startup script with the restart
or reload option to tell the inetd super server to implement the changes you’ve made. The other
options all refer to the inetd SysV startup script in locations in which it never resides.

14. D. Many servers that ship with xinetd configuration files include the disable = yes line in these
files as a security precaution. This configuration prevents the server from being active until the user
explicitly activates it by changing yes to no on this line. Option A describes a nonexistent option to
inetd, which isn’t the right super server for this question. Option B’s inetd.conf file is also the
wrong configuration file, although this would be a reasonable thing to check if the system were run-
ning inetd rather than xinetd. The nslookup program is used to translate hostnames to IP
addresses and vice versa; it’s not a useful diagnostic tool in this situation.

15. B. You can add or delete printers by editing the /etc/printcap file, which consists of printer
definitions for BSD LPD or LPRng. The /etc/cups/printers.conf file holds printer defini-
tions for CUPS, and although you can directly edit this file to add a printer, doing so is tricky.
/etc/cups/cupsd.conf is the main CUPS configuration file, /etc/rc.d/init.d/lpd is the
BSD LPD printing startup script.

16. A. The smart filter makes a print queue “smart” in that it can accept different file types (plain text,
PostScript, graphics, etc.) and print them all correctly. It does not detect confidential information
or prank print jobs. The lpr program in the BSD, LPD, and LPRng printing systems can be given
a parameter to e-mail a user when the job finishes, but the smart filter doesn’t do this.

17. B, D. The job ID and job owner are both displayed by lpq. Unless the application embeds its
own name in the filename, that information won’t be present. Most printers lack Linux utilities
to query ink or toner status; certainly lpq can’t do this.

18. C. The lprm command deletes a job from the print queue. It can take the -Pqueue option to
specify the queue and a print job number or various other parameters to specify which jobs to
delete. BSD LPD, LPRng, and CUPS all implement the lprm command, so you can use it with
any of these systems. Option B presents the correct syntax but the wrong command name; there
is no standard lpdel command.

4425.book Page 509 Tuesday, July 12, 2005 10:43 PM

510 Chapter 9 � Basic Networking

19. B. PostScript is the de facto printing standard for Unix and Linux programs. Linux programs
generally do not send data directly to the printer port; on a multi-tasking, multi-user system, this
would produce chaos because of competing print jobs. Although a few programs include printer
driver collections, most forgo this in favor of generating PostScript. Printing utilities come stan-
dard with Linux; add-on commercial utilities aren’t required.

20. B. The mpage utility prints multiple input pages on a single output page, so it’s ideally suited to
the specified task. PAM is the Pluggable Authentication Modules, a tool for helping to authen-
ticate users. 4Front is the name of a company that produces commercial sound drivers for Linux.
The route command is used to display or configure a Linux routing table.

4425.book Page 510 Tuesday, July 12, 2005 10:43 PM

Chapter

10

Managing Servers

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

�

1.113.2 Operate and perform basic configuration of sendmail

(weight: 4)

�

1.113.3 Operate and perform basic configuration of Apache

(weight: 4)

�

1.113.4 Properly manage the NFS, smb, and nmb daemons

(weight: 4)

�

1.113.5 Setup and configure basic DNS services (weight: 4)

�

1.113.7 Set up secure shell (OpenSSH) (weight: 4)

4425c10.fm Page 511 Tuesday, July 12, 2005 10:58 PM

Many Linux systems function as network server computers.
These computers run one or more server programs as their pri-
mary reason for being. Even many computers that don’t fit this

description often run one or more server programs—say, to enable a workstation’s primary user
to log in remotely or to share files. For these reasons, this chapter covers six major Linux server
programs and protocols: the

sendmail

 mail server, the

Apache

 web server, the

Network File Sys-
tem (NFS)

 file server, the

Samba

 file server, the

Berkeley Internet Name Domain (BIND)

 name
server, and the

Secure Shell (SSH)

 protocol (and specifically the OpenSSH server).

All of the servers described in this chapter are major Linux servers with many
options and quirks. Entire books are devoted to each of them. Thus, this chap-
ter can cover only the basics of getting these servers up and running and
describe a few common options. If you need to know more, you must consult
additional documentation, be it the documentation that ships with the server,
web pages on the server, or books on the server. I provide pointers to addi-

tional documentation in each server’s section.

Configuring Sendmail

E-mail is a very important part of networking. Many organizations rely on e-mail for day-
to-day operations; without it, they’d grind to a halt. Naturally, Linux provides e-mail serv-
ers, which communicate with end-user systems and with other e-mail servers to manage
your e-mail needs. Even workstations sometimes run e-mail servers in order to manage the
e-mail that’s generated locally. Thus, understanding at least the basics of how to configure
an e-mail server will help you keep a Linux system running and may be extremely important
if you must ever dabble in maintaining an organization’s primary mail server system. This knowl-
edge begins with a basic understanding of e-mail in general. You can then apply this knowledge
to setting some basic mail server options. In addition to configuring the server, you should know
a bit about how to manage the mail queue. Finally, an understanding of some e-mail security
issues will help you avoid potentially disruptive configuration blunders.

4425c10.fm Page 512 Tuesday, July 12, 2005 10:58 PM

Configuring Sendmail

513

These sections focus on the sendmail mail server (

http://www.sendmail.org

),
which is the most popular mail server on the Internet. Several Linux distributions
now favor other mail servers, though, such as Postfix (

http://www.postfix.org

)
or Exim (

http://www.exim.org

). Although the basic principles for all of these
servers are identical, configuration details differ greatly. To learn more, consult
the server’s documentation or a book, such as Craig Hunt’s

Linux Sendmail

Administration

 (Sybex, 2001).

E-Mail Basics

Several protocols exist to manage e-mail. The most common of these is the

Simple Mail Transfer
Protocol (SMTP),

 which is designed as a push mail protocol, meaning that the sending system ini-
tiates the transfer. This design is good for sending data, so SMTP is used through most of a mail
delivery system. The final stage, though, often employs a pull mail protocol, such as the Post
Office Protocol (POP) or the Internet Message Access Protocol (IMAP). With these protocols, the
receiving system initiates the transfer. This is useful when the receiving system is an end user’s
workstation, which might not be powered on at all times or able to receive incoming connections.

SMTP was designed to enable a message to be relayed through an arbitrary number of comput-
ers. For instance, an end user might compose a message, which is sent to the local SMTP server. This
server looks up a recipient system using the

Domain Name System (DNS)

 and sends the message to
that system. This system might use its own internal routing table to redirect the message to another
local system, from which the message might be read, either directly or via a POP or IMAP server.
This arrangement is illustrated in Figure 10.1. Bear in mind that the number of links in this chain is
variable and depends on how each system is configured. In the simplest case, local e-mail stays on
just one system. In theory, an arbitrarily large number of computers can be involved in an e-mail
exchange, although in practice it’s rare to see e-mail pass through more than half a dozen systems.

At each step in a relay chain, e-mail is altered. Most importantly, each server adds a

header

to the e-mail, which is a line that provides information about the message. In particular, mail
servers add

Received:

 headers to document the path the mail has taken. In theory, this enables
you to trace the e-mail back to its source. Unfortunately, spammers and other e-mail abusers
have learned to forge e-mail headers, which greatly complicates such analysis.

F I G U R E 1 0 . 1

E-mail typically traverses several links between sender and recipient.

smtp.pangaea.edu

inbox.pangaea.edumail.example.com

franklin.pangaea.educlient.example.com

POP or
IMAPSMTPSMTPSMTP

4425c10.fm Page 513 Tuesday, July 12, 2005 10:58 PM

514

Chapter 10 �

Managing Servers

Because an SMTP server can function as both a server (receiving mail from other systems)
and a client (sending mail to other systems), you must deal with both sides of the configura-
tion equation, as described next, in “Setting Sendmail Options for Your System.” Sometimes
a system will never function in one role or the other, which can simplify matters—but you
must then be careful not to accidentally configure the system incorrectly. In particular,

open
relay

 configurations, in which a mail server relays mail from anybody, should be avoided.
This and other security implications of running an SMTP server are covered in “Sendmail
Security Considerations.”

Setting Sendmail Options for Your System

Linux distributions that use sendmail typically ship with configuration files that enable the
server to function in a minimal way. Unfortunately, this may not include the ability to send mail
to outside systems. To make changes, you must first understand the sendmail configuration
files, which are complex. You can then set options to adjust your hostname, adjust from whom
the server will accept mail, configure an outgoing relay, and make appropriate name substitu-
tions on selected messages.

Sendmail Configuration Files

Sendmail uses a number of configuration files, each with its own unique purpose:

sendmail.cf

This file is the official primary sendmail configuration file. It includes informa-
tion relating to relaying options, the server’s hostname, and so on. Unfortunately, its syntax is
very difficult for most people to understand, so in practice, it’s usually created from another file
that’s easier to edit. You can usually find

sendmail.cf

 in

/etc/mail

.

If your system lacks a

sendmail.cf

 file, it’s possible that your computer is run-
ning Postfix, Exim, or some other mail server program, or your system might

not be running any mail server at all.

The

m4

 file

The file that’s used to generate the

sendmail.cf

 file is called an

m4

 file, after the

m4

 program that does the translation. This file’s name varies from one system to another, but
it usually ends in

.mc

. Examples include Red Hat’s

/etc/mail/sendmail.mc

 and Slackware’s

/usr/share/sendmail/cf/cf/linux.smtp.mc

. This file is sometimes not installed with the
main sendmail package; you may need to install it from its own package, such as

sendmail-cf

.

aliases

The

/etc/aliases

 file (which sometimes appears in

/etc/mail

 instead of

/etc

)
holds username translations, as described in “Redirecting Mail.” Sendmail actually reads a
binary version of this file,

aliases.mc

, which is generated via the

newaliases

 program, as
described later.

access

The

access

 file (which is usually stored in

/etc

 or

/etc/mail

) controls mail relay-
ing, as described later, in “Sendmail Security Considerations.”

4425c10.fm Page 514 Tuesday, July 12, 2005 10:58 PM

Configuring Sendmail

515

local-host-names

This file contains a list of hostnames that sendmail will treat as local.
That is, if the server receives mail addressed to a user at one of these names, the server
will attempt to deliver that mail to a local user of that name. If this file isn’t used (its use
can be disabled in

sendmail.cf

), or if it’s empty, sendmail accepts mail addressed only to
its own name.

If you check the

/etc/mail

 directory, you’ll see several additional configuration files. These
files are important for more advanced configurations, but for the basic configuration tasks
described in this chapter, you can ignore them.

To configure sendmail, you’ll edit an

m4

 file and then convert it to a

sendmail.cf

 file with

m4

:

m4 < myconfig.mc > sendmail.cf

If you issue this command in the same directory in which the original

sendmail.cf

 file resides, the command copies over the existing

sendmail.cf

file. For added safety, back up that file first. You can then restore it from the

backup if something goes wrong.

Generally speaking, you’ll want to start with the

m4

 file provided by your distribution but
rename it to something appropriate. After you make a change and create a new

sendmail.cf

file, you must pass the

reload

 or

restart

 parameter to the sendmail SysV startup script, as
described in Chapter 6, “The Boot Process and Scripts”:

/etc/init.d/sendmail reload

You should be aware that the

m4

 file specifies comments in an unusual way: The string

dnl

stands for a comment. Thus, if a line begins with

dnl

, it’s a comment line. If you want to use
that line in your configuration, remove the

dnl characters.

Hostname Options

All mail servers must know their own hostnames. This information is used in a variety of ways, such
as when initiating communications with other servers and as identification to be added to usernames
for the benefit of clients that don’t provide this detail. Ordinarily, sendmail retrieves its hostname
from system calls designed for this purpose. (In most cases, these calls deliver the name that was in
/etc/HOSTNAME or /etc/hostname at boot time.) Sometimes, though, you might want to override
this hostname. For instance, your mail server might be known by multiple names and you want to
set one for the system and another for sendmail alone. Sometimes you want outgoing e-mail to omit
the machine name, as in ben@pangaea.edu rather than ben@franklin.pangaea.edu. To make
such a change, look for lines like the following in the m4 file:

MASQUERADE_AS(`pangaea.edu')

FEATURE(masquerade_envelope)

4425c10.fm Page 515 Tuesday, July 12, 2005 10:58 PM

516 Chapter 10 � Managing Servers

The MASQUERADE_AS line includes two types of single-quote marks. The first one
(`) is a backtick, which appears to the left of the 1 key on most keyboards. The
second (') is an ordinary single quote, which is to the left of the Enter key on
most keyboards. Be sure to get these right or your configuration won’t work!

If you don’t see such lines in your file, add them. You can then change the MASQUERADE_AS
address to whatever you like. This change will add the specified hostname to any addresses in
the From: header of outgoing mail that lack this information. The FEATURE(masquerade_
envelope) line takes things further, substituting the specified address for those that users spec-
ify in their mail clients.

Accepting Mail

Recently, sendmail configurations have begun to include a line like the following in their
m4 files:

DAEMON_OPTIONS(`Port=SMTP,Addr=127.0.0.1, Name=MTA')dnl

This line has the effect of limiting sendmail to listening on the 127.0.0.1 (localhost) address.
The result is that the server is available to local programs but not to other programs. This is a
desirable configuration for most workstations and even non-mail servers. If you want sendmail
to accept incoming mail or to function as a mail relay, though, you should remove this line. Ide-
ally, you should comment it out by adding dnl to the start of the line. You can then rebuild your
sendmail.cf file and have the server reload its configuration.

If you want sendmail to accept mail addressed to users of a whole domain or to a hostname
other than the one the computer has, you should add those domain names or hostnames to the
/etc/mail/local-host-names file. You should also ensure that the following line is present
in your m4 file:

FEATURE(use_cw_file)

Outgoing Relay Configuration

Many Linux mail servers, particularly on workstations and small networks, should be config-
ured to use an outgoing mail relay, aka a smart relay. To do so, enable outgoing relaying in your
m4 file:

FEATURE(`nullclient', `relay.mail.server')

Change relay.mail.server to the hostname of the computer that should relay the mail.
You should also remove or comment out two other lines, if they’re present:

MAILER(local)dnl

MAILER(smtp)dnl

4425c10.fm Page 516 Tuesday, July 12, 2005 10:58 PM

Configuring Sendmail 517

Another way to make similar changes is to use the SMART_HOST feature:

define(`SMART_HOST', `relay.mail.server')

The difference between the two is that the nullclient configuration is intended for very simple
configurations that contain few other options. A workstation that should send all its e-mail via
the outgoing relay might use this option. SMART_HOST, by contrast, can be used in more complex
configurations in which some mail remains local and some is relayed.

When you’ve made these changes, rebuilt sendmail.cf, and restarted or reloaded sendmail,
the server should send all non-local mail to the specified mail server. This is handy if your ISP
blocks direct outgoing SMTP connections (as many home-oriented ISPs do as an anti-spam
measure) or if you want your organization’s mail to be filtered through a single powerful mail
server system.

In addition to sending its mail to a relay system, Linux running sendmail can
function as a relay system. In most cases, this configuration is extremely unde-
sirable. This topic is covered in more detail shortly, in “Sendmail Security Con-
siderations.”

Redirecting Mail

E-mail aliases enable one address to stand in for another one. For instance, all mail servers are
supposed to maintain an account called postmaster. E-mail to this account should be read by
somebody who’s responsible for maintaining the system. One way to do this is to set up an alias
linking the postmaster name to the name of a real account. You can do this by editing the
aliases file, which usually resides in /etc or sometimes in /etc/mail.

The aliases file format is fairly straightforward. Comment lines begin with hash marks (#)
and other lines take the following form:

name: addr1[,addr2[,...]]

The name that leads the line is a local name, such as postmaster. Each address (addr1,
addr2, and so on) can be a local account name to which the messages are forwarded, the name
of a local file into which messages are stored (denoted by a leading slash), a command through
which messages are piped (denoted by a leading vertical bar character), the name of a file whose
contents are treated as a series of addresses (denoted by a leading :include: string), or a full
e-mail address (such as fred@example.com).

A typical default configuration includes a few useful aliases for accounts such as postmaster.
Most such configurations map most of these aliases to root. Reading mail as root is inadvisable,
though—doing so increases the odds of a security breach or other problem because of a typo or
bug in the mail reader. Thus, you may want to set up an alias line like the following:

root: yourusername

4425c10.fm Page 517 Tuesday, July 12, 2005 10:58 PM

518 Chapter 10 � Managing Servers

This redirects all of root’s mail, including mail directed to root via another alias, to
yourusername. Once you make this, or any other, change to the aliases file, you must
rebuild its binary counterpart, aliases.db. To do so, use the newaliases command:

newaliases

Another approach to redirecting mail is to do so on the user level. In particular, you can edit
the ~/.forward file in a user’s home directory to have mail for that user sent to another address.
Specifically, the ~/.forward file should contain the new address—either a username on the cur-
rent computer or an entire e-mail address on another computer. This approach has the advan-
tage that it can be employed by individual users—say, to consolidate e-mail from multiple
systems into one account without bothering system administrators. A drawback is that it can’t
be used to set up aliases for nonexistent accounts or for accounts that lack home directories. The
~/.forward file could also be changed or deleted by the account owner, which might not be
desirable if you want to enforce a forwarding rule that the user shouldn’t be able to override.

Managing the Mail Queue

Ideally, mail sent through sendmail leaves the originating system and arrives at its destina-
tion quickly. Unfortunately, this doesn’t always happen. The recipient system (or the entire
link to the Internet) could be temporarily down, or the network connection could be slow
and the message large, or the mail server might be processing a large mass of e-mail mes-
sages. For these reasons, sendmail maintains a mail queue, which is similar in principle to
the print queue maintained by the Linux printing system. When sendmail accepts a message
for delivery to another system, the server stores it in a file. Sendmail makes an initial
attempt to deliver the mail as soon as it can—but if sendmail is processing a lot of mail, this
might not be instantly. If sendmail is unable to deliver the message because it can’t reach the
remote system, the message stays in the queue and sendmail eventually tries again. After a
while (typically a few days; this detail can be adjusted), sendmail bounces the message—that
is, it returns the message to the sender with a notice about the failure. Some types of failures
result in an immediate bounce, as well.

You can check on the mail queue with the mailq command. In most cases, simply typing
mailq is all that’s necessary. The program responds with a summary of the messages in the
queue. (Consult mailq’s man page for information on its options.) This information can be a
useful diagnostic tool. On a system that uses sendmail solely for local mail delivery and as an
outgoing mail tool for local programs, the mail queue should have few or no messages in it at
any given time. If lots of messages reside in the queue, it could be a sign of misconfiguration or
of network problems.

If you’ve sent a message and it’s not gone out, and if you believe you’ve corrected a problem
that was preventing it from being sent, you can force sendmail to try sending all the messages
in the mail queue. To do so, type sendmail -q. Depending on the number and sizes of the mes-
sages in the queue and your network connection speed, your mail queue will probably clear
within a few seconds. If mailq shows that one or more messages haven’t cleared, the problem
may be at the receiving end. Sendmail will periodically attempt to send the message again.

4425c10.fm Page 518 Tuesday, July 12, 2005 10:58 PM

Configuring Sendmail 519

Sendmail Security Considerations

Like any server, sendmail is a potential security risk. Broadly speaking, this risk takes two forms:

Bugs Bugs in sendmail could expose your system to danger. In theory, a bug might enable
somebody to gain access to your system by sending an e-mail or by connecting to the SMTP port
(25) via a Telnet client and typing SMTP commands to trigger the bug. This is one reason many
Linux distributions today limit access to sendmail to the local computer only.

Misconfiguration Poor configuration of sendmail can cause problems. Sendmail wasn’t
designed as a way to give login access to a system, so you’re unlikely to give an intruder full
access to your system by a sendmail configuration. Instead, the big risk is a configuration that
will make your system a menace to the Internet. The most common misconfiguration of this
nature is an open relay, which is a computer that will relay mail from any computer to any other
computer. In the past, spammers made heavy use of open relays as a way to help hide their true
identities, but spammers today have largely moved on to other techniques. Nonetheless, some
spammers still abuse open relays, so you should ensure that your system isn’t configured as one.

All modern Linux distributions configure themselves so that they do not relay mail by
default—or at least, they configure themselves so that they only relay mail for a very limited
set of computers. The most common type of relay configuration in sendmail uses the follow-
ing control line (or one similar to it) in the m4 file:

FEATURE(`access_db')

This line tells the system to read the access file (stored in /etc or /etc/mail) for infor-
mation on who may relay messages. Listing 10.1 shows a typical access file. This example
file enables relaying for the local computer (as localhost.localdomain, localhost, and
127.0.0.1) and for the local network (172.25.98.0/24). Most default configurations omit this
last option, which appears in Listing 10.1 only to show that it’s possible. If your system
shouldn’t be relaying mail, the access file should lack any line like this one.

Listing 10.1: A Typical access File for Controlling Mail Relaying

by default we allow relaying from localhost...

localhost.localdomain RELAY

localhost RELAY

127.0.0.1 RELAY

Relay for the local network

172.25.98 RELAY

Some other m4 file relaying options are also available in sendmail. Most of these include the
word relay in their names, such as relay_entire_domain. Unless you’ve learned a great deal
about e-mail configuration and management, I recommend you avoid using such options. In
fact, one of these options, promiscuous_relay, should never be used. It tells the computer to
indiscriminately relay all mail. In the days before spam, such configurations were considered a
courtesy. Today, they’re madness!

4425c10.fm Page 519 Tuesday, July 12, 2005 10:58 PM

520 Chapter 10 � Managing Servers

Because open relays are such a threat, you should explicitly check for them. Review your
access file and look for any option with the word relay in the m4 configuration file. You can
also use services that will connect to your mail server and attempt to relay mail as a way of test-
ing your system, then give you a report of the results. One of these is hosted at http://
www.abuse.net/relay.html. Be careful, though—it’s conceivable that a spammer somewhere
has set up such a service as a way of locating open relays to abuse, so you should only use a
trusted service.

Configuring Apache
The World Wide Web (WWW or Web for short) is arguably the highest-profile part of the Inter-
net. As such, it should come as no surprise that Linux provides servers to deliver Web content.
The most popular of these, Apache (http://httpd.apache.org), is an extremely flexible web
server. Fortunately, it’s also fairly straightforward to configure for simple sites, although doing
complex things with it requires far more information than I can present in this chapter. Consult
Apache’s own documentation or a book on the subject, such as Charles Aulds’ Linux Apache
Web Server Administration, 2nd Edition (Sybex, 2002) for more details.

To get started, though, you should understand a bit of how Apache works. You can then dig
into the Apache configuration files to get the server working as it should. Finally, as with all
servers, you should be aware of Apache’s security implications so that you don’t open the door
to miscreants when you run Apache.

Apache Basics

A web server listens on a port (typically port 80) for connection requests and communicates
with clients using the Hypertext Transfer Protocol (HTTP), hence the string http:// that
begins URLs for web pages. Web servers primarily deliver files to clients rather than receive files
from them, although some web pages and server configurations permit users to upload files to
the server, as well. In most cases, another protocol, such as the File Transfer Protocol (FTP), is
used to upload the web pages themselves to the web server computer. If users have direct login
access to the web server, though, web pages could be created on the web server system itself.

Most web pages use the Hypertext Markup Language (HTML), typically indicated by a .htm
or .html filename extension. Web servers can deliver other types of files, though, and in fact
most web pages refer to graphics files in various formats, which web browsers display automat-
ically. This chapter doesn’t describe the creation of HTML or other web documents, though,
just the configuration of the web server that delivers them to clients.

Apache’s configuration file takes on various names depending on the distribution. The most
common are httpd.conf, httpd2.conf, apache.conf, and apache2.conf. (The names that
include a 2 are used by Apache 2.0 and later.) Similarly, the name of the Apache executable can
vary, but is usually httpd. The location of the Apache configuration file also varies from one
system to another, but common places include /etc/apache, /etc/apache2, /etc/httpd,
/etc/httpd2, or the conf subdirectory of any of these.

4425c10.fm Page 520 Tuesday, July 12, 2005 10:58 PM

Configuring Apache 521

If you can’t find your Apache configuration file, use your package manager
to find it. For instance, if you installed Apache on an RPM-based system as
apache, you could type rpm -ql apache | grep conf. This command lists all the
files in the apache package and narrows the list to those that include the string
conf. Chapters 2 and 1 describe package management and grep, respectively.

Whatever its name, the Apache configuration file consists of comments, denoted by hash
marks (#), and directive lines that take the following form:

Directive Value

The Directive is simply an option name or command, such as LoadModule, Listen, or
MaxClients. In most cases, the Value is a filename, number, or other single value that’s
assigned to the Directive. Sometimes the Value consists of multiple items; for instance,
LoadModule takes a two-part directive that consists of a module name and a module file-
name. The parts of such a multi-part Value are separated by spaces.

Some option lines are grouped together in blocks, which are identified by beginning and end-
ing lines in angle brackets (<>), with the name of the ending angle bracket line beginning with
a slash (/):

<IfModule perchild.c>

NumServers 5

StartThreads 5

MaxThreadsPerChild 20

</IfModule>

Typically, these blocks apply only if a particular condition exists. For instance, the
<IfModule perchild.c> block shown here applies only if the perchild.c module is
available and loaded. (Modules are described shortly.)

Like most big servers, Apache is usually run via SysV startup scripts, which are described in
Chapter 6. After making changes to an Apache configuration, you should pass the restart or
reload option to the Apache startup script:

/etc/init.d/apache reload

Alternatively, on some systems you may use the apachectl program, which takes the same
arguments as most SysV startup scripts—start, restart, reload, status, and so on. Not all
distributions ship their Apache packages with the apachectl program, though, presumably
because it’s redundant with SysV startup scripts.

You do not need to restart or reload Apache after you change your web pages.
Apache should begin delivering the new files as soon as they replace the old
ones. Most browsers, though, cache web pages and so may not immediately
show a change.

4425c10.fm Page 521 Tuesday, July 12, 2005 10:58 PM

522 Chapter 10 � Managing Servers

Prior to version 2.0, Apache could be run from a super server. (Chapter 9, “Basic Network-
ing,” describes super server configuration.) Running Apache in this way could be handy if
Apache is seldom accessed, but it slows down the server’s responses to clients. With version 2.0,
the ability to run from a super server was removed from Apache.

Setting Apache Options for Your System

Apache is an extremely complex server, so in the few pages devoted to it in this chapter, I can
only provide information on a few Apache options. In most cases, an Apache package installed
on a Linux system works in a minimal way as soon as it’s run. That is, the server delivers web
pages to clients when they contact the server. These configurations typically include a default
web page to serve as a placeholder page until you store your own website’s HTML files in the
default file location. (You can adjust this location, as described shortly.) If you load your
Apache configuration file into a text editor, you might want to search for, and possibly modify,
several directives:

LoadModule Apache supports modules, which are pieces of Apache support code stored in
separate files. Using modules enables you to load just those modules you want, minimizing the
memory impact of running Apache. As a general rule, you should leave the LoadModule direc-
tives in your Apache configuration file alone. You might find documentation indicating that
you must enable or disable a particular module to achieve a particular effect, though. If so, fol-
low the directions you find.

Include An Include directive loads another file as if it were part of the main Apache con-
figuration file. Some distributions break certain Apache options into separate files as a way of
managing them.

User and Group These options set the user and group that Apache uses to run. Typically,
they’re set to low-privilege values, perhaps associated specifically with Apache.

DocumentRoot This directive sets the root of the document tree that Apache delivers. For
instance, if DocumentRoot on www.example.com is set to /var/www/htdocs, and if a user
enters http://www.example.com/products/mega2.htm as a URL, Apache returns the file
/var/www/htdocs/products/mega2.htm (if it exists). Even if you don’t want to change this
location, you must know what it is so that you can place your own web pages in that location.
With the exception of user files (described next), Apache will return only files within the
DocumentRoot directory tree or files linked to this tree.

You may need to change the ownership or permissions on the DocumentRoot
directory so that authorized individuals may add web pages to that location.
If a particular group already has write privileges to the location, adding users
to that group, as described in Chapter 8, “Administering the System,” may do
the trick.

4425c10.fm Page 522 Tuesday, July 12, 2005 10:58 PM

Configuring Apache 523

UserDir On a multi-user system, individuals can have their own web pages. These are
typically accessed by preceding the username with a tilde (~) in the URL, as in http://
www.example.com/~sally/ to access sally’s home page. The UserDir directive tells
Apache which directory to use as the root for these user directories. For instance, setting
UserDir public_html causes Apache to look in a user’s public_html subdirectory for
user web pages. This directive relies on the userdir_module module, either compiled
directly into Apache or loaded via a LoadModule directive.

BindAddress This directive specifies the network interface to which the server listens. Setting
it to an asterisk (*) causes Apache to bind to all interfaces, which is desirable on most true
Apache servers. If you’re running Apache for purely local purposes (say, to gain access to
HTML documentation files on a workstation), setting BindAddress to 127.0.0.1 can
improve security by preventing outsiders from accessing the server.

Listen This directive tells Apache which port it should use. The default value of 80 is appropriate
in most cases, but if you have cause to run Apache on a peculiar port, you can change this directive.

Apache supports many more options, but these are the ones you’re most likely to want to
adjust for a small Apache server used to serve content to the computer on which it runs or to a
small network. If you want to run Apache on the Internet as a whole, you should research the
server in much greater depth. You may need to use more advanced options to achieve particular
effects or to improve security. This is particularly true if you want to use Common Gateway Inter-
face (CGI) scripting features, which enable Apache to run programs at the request of clients. If
improperly configured, CGI scripts can quickly lead to security breaches, but they’re helpful and
even necessary for some web server functions.

CGI scripting relies on a module called cgi_module. Commenting out the
LoadModule line that activates this module can reduce the risk of a security
breach if you don’t intend to use CGI scripting on your web server.

Apache Security Considerations

Web servers as a class are vulnerabilities because they’re very high in visibility. This fact
makes them a target for crackers who want to break in to deface a website, or perhaps to
do other things. Web servers also necessarily give greater access to the host computer than do
mail servers or certain other types of servers. Although limiting access to the DocumentRoot
directory does reduce the risk, it doesn’t eliminate the risk, particularly if the system is mis-
configured with an unfortunate link between a file in this directory and a more sensitive sys-
tem file. Finally, as noted earlier, CGI scripts can be a major risk factor.

Several of the options described earlier, in “Setting Apache Options for Your System,”
can help you keep your Apache server secure. Of particular import are the User, Group, and
BindAddress directives. (The BindAddress directive can improve security on workstations
that run Apache for local use only and on systems with multiple network interfaces, but isn’t
likely to be helpful for typical Apache servers that should be accessible to the outside world.)

4425c10.fm Page 523 Tuesday, July 12, 2005 10:58 PM

524 Chapter 10 � Managing Servers

You can also use non-Apache tools to help improve Apache security. In particular, you can use
a firewall (described in Chapter 7, “Documentation and Security”) to restrict what systems can
access your Apache server. This technique is most likely to be helpful for internal Web servers—
those that you run for the benefit of your local network’s users rather than for the public at large.

Configuring an NFS Server
A mainstay of local network servers is the file server, which is a server that’s intended to enable
storage of files from the client. Many file servers can be made to look like local filesystems to
clients. The result is that users can access their files from any client on the network and they can
share files with other users. This can help save money by reducing the need for large hard drives
on client computers. It also greatly simplifies backup—rather than back up user data files scat-
tered across dozens of client systems, you can back up the files from a single server computer.

In the Unix and Linux worlds, the most common file server protocol is NFS. Before embark-
ing on NFS configuration, you should understand its basic principles of operation. You can then
configure an NFS server and an NFS client. As with all servers, you should be aware of the secu-
rity implications of running an NFS server. Although NFS is simpler to configure than most of
the servers covered in this chapter, its complexity is greater than I can describe here. For more
information, consult a book on the subject, such as Erez Zadok’s Linux NFS and Automounter
Administration (Sybex, 2001).

Another important file-sharing protocol is SMB/CIFS, which is described later,
in “Configuring Samba.”

NFS Basics

The Network File System (NFS) was developed by Sun as the file-sharing protocol for its Solaris
OS and has been widely adopted among other Unix and Unix-like OSs. Because NFS was
designed with Unix in mind, it’s a good match to Unix (and hence Linux) requirements. In par-
ticular, NFS supports file ownership (both user and group) and permissions much as does
Linux. NFS also supports hard and symbolic links and other special file types.

NFS was developed at a time when network security wasn’t as complicated as it is today.
Instead of requiring a password to authenticate users, NFS relies on a trusted hosts model of
security: The server maintains a list of computers that are trusted to access files. If one of these
trusted hosts accesses the server, the server grants more-or-less complete access to the files, rely-
ing on the client’s own local security measure to restrict access appropriately according to the
owner, group, and mode of the files. This isn’t to say that NFS gives full access to all the files
on the server computer, though; like Apache, NFS restricts access to specified directories
(known as exports). NFS also provides some limited tools for restricting access on a per-user
basis, as described shortly, in “Creating File Exports.”

4425c10.fm Page 524 Tuesday, July 12, 2005 10:58 PM

Configuring an NFS Server 525

One potential problem with NFS is that, like Linux filesystems, NFS identifies all users and
groups by number. The mapping from these user ID (UID) and group ID (GID) numbers to user-
names and group names occurs on the client. This can work fine, but if two clients have different
mappings, problems can ensue. For instance, suppose that two users, ben and sally, have
accounts on two client systems, client1 and client2. If ben’s UID on client1 is 527 and his
UID on client2 is 528, ben may not be able to access files he created on client1 when using
client2 and vice versa. Worse, if sally’s UIDs on client1 and client2 are 528 and 527,
respectively, their ownership of files could end up being reversed, with files created by ben from
client1 appearing to be owned by sally when accessed from client2.

This potential for UID and GID problems means that if you use NFS, you should take what-
ever steps are necessary to ensure that UID and GID numbers are synchronized across clients.
On a small network with a handful of clients, this can be done manually, by taking care when
creating new user accounts. On a larger network, you might need to use a centralized login
server system, such as the Network Information System (NIS) or a Lightweight Directory Access
Protocol (LDAP) server. Such configurations are beyond the scope of this book, though.

Over its history, Linux has supported several different NFS servers. The latest crop of servers
relies on support in the Linux kernel to optimize performance. This server, like earlier Linux
NFS servers, is traditionally run via SysV startup scripts, as described in Chapter 6. The startup
script name is usually nfs or nfsserver.

Creating File Exports

In Linux, NFS server configuration is handled through a file called /etc/exports. This file
contains lines that begin with a directory that’s to be shared followed by a list of hostnames or
IP addresses that may access it, with their options in parentheses:

/home taurus(rw,async) littrow(ro)

/opt taurus(ro)

These examples share two directories: /home and /opt. Two computers (taurus and littrow)
may access /home, but only taurus may access the /opt export. You can also specify hosts using
wildcards (such as *.luna.edu, which matches all systems in the luna.edu domain), using IP
addresses (as in 192.168.1.24), using an IP address/netmask pair (as in 192.168.1.0/24), or as an
NIS netgroup if your network supports NIS (as in @agroup). The options in parentheses specify
security restrictions and other server features, such as the following:

secure and insecure The default operation is secure, which denies access requests from
port numbers above 1024. On Unix and Linux systems, only root may initiate connections
using these secure ports, so this is a security feature—but not a very effective one in today’s envi-
ronment. You can disable this protection by specifying the insecure option.

ro and rw These options specify read-only or read/write access to the export, respectively.
The default has changed over time; most current servers use ro as the default, but some older
ones used rw. I recommend you set this option explicitly to avoid any potential for confusion.

4425c10.fm Page 525 Tuesday, July 12, 2005 10:58 PM

526 Chapter 10 � Managing Servers

sync and async Ordinarily, an NFS server is supposed to complete certain operations by
writing data to disk before responding to the client. This configuration is denoted by the sync
option. You can improve performance by specifying async instead, which allows the server to
respond to clients before the disk operation is completed. The drawback is that data loss is more
likely in the event of a server crash.

root_squash and no_root_squash By default, NFS treats accesses from the client’s root
user (UID 0) as if they were coming from a local anonymous user, as set by the anonuid and
anongid options, described shortly. This squashing is a security measure that can be overridden
by specifying the no_root_squash option. Ordinarily, you shouldn’t use this option because it
opens the door to abuses should a client system be compromised. It might be necessary in some
cases, though.

all_squash and no_all_squash Just as root access can be squashed, access by other
users can be squashed. Specifying all_squash does so, giving access by all users a low priv-
ilege status. This configuration can be useful if you want to share a public directory to which
users should be unable to write.

anonuid and anongid You can set the UID and GID of the anonymous account used for
squashing operations.

In most cases, just a few options are necessary for most exports. You should always specify
rw or ro, simply to avoid the possibility of confusion, since the default for this option has
changed in the past. The async option can be a useful one if you want the best possible perfor-
mance, but it increases the risk of losing data in the event of a server crash. As an added security
measure, you might want to use the all_squash option on publicly accessible NFS exports—
say, an export that holds clip art that should be accessible to everybody on your network.

You can specify different options for different computers. For instance, you might give one
system full read/write access to the server but deliver read-only access to others. This configu-
ration enables one person or a group of people (the users of the read/write systems) to change
the contents of an export—for instance, to update that clip art collection. After making changes
to /etc/exports, you must tell the server to implement these changes. You can do this by typing
exportfs -ra as root to do the trick. Many distributions’ SysV startup scripts for NFS also
do this when you pass the reload option.

Mounting NFS Exports

NFS exports may be mounted in either of two ways:
� You can mount the share using the mount command, much as you can mount a filesystem

stored on a local partition.
� You can add an entry to the /etc/fstab file, much as you can create an entry for a file-

system stored on a local partition.

Chapter 4, “Managing Files and Filesystems,” describes the mount command and /etc/fstab
file in detail, so consult it for general information on both of these topics. In either event, mounting
an NFS export works much like mounting a local filesystem. The main difference is that you must

4425c10.fm Page 526 Tuesday, July 12, 2005 10:58 PM

Configuring an NFS Server 527

specify the NFS server name and the export name using the format server:/export rather than
specify a local device filename. For instance, to mount the /opt export at /share/opt from the
system challenger.luna.edu, you might type the following command:

mount -t nfs challenger.luna.edu:/opt /share/opt

This example specifies the filesystem type code of nfs, which is used for NFS exports; how-
ever, in most cases Linux can figure this detail out, so you can omit it. Depending on the client’s
domain name and domain search options, you may also be able to omit the domain portion of
the server’s name, as in changing challenger.luna.edu to challenger.

To have Linux automatically mount an NFS export at boot time, add an entry to /etc/fstab:

challenger:/opt /share/opt nfs defaults 0 0

You use the same format for the export specification in /etc/fstab as you do with the
mount command. This example shortens the hostname portion. This example also specifies
defaults as the mount options, but you can tweak how the client handles the export by spec-
ifying various options, including:

rsize=value and wsize=value These options specify the size of the read and write blocks
transferred with the server. The default for value in both cases is 4096, but increasing the value
to 8192 may improve performance.

hard By default, Linux’s NFS client implementation returns no error code when the server
doesn’t respond. This causes programs to hang when a problem occurs but to continue working
once the server comes back online. To reiterate this default, specify the hard option.

soft This option changes Linux’s error procedure. If the server doesn’t respond, the kernel
returns an error code to the user program, which typically causes the program to deliver an error
message to the user. This option can cause spurious error messages in the event of a minor net-
work glitch but might be preferable to a prolonged program hang in some cases.

udp and tcp Ordinarily, NFS operates using the User Datagram Protocol (UDP) low-level
protocol. You can reiterate this by specifying the udp option. If you prefer, you can specify tcp,
which causes NFS to use the Transmission Control Protocol (TCP) instead. TCP includes extra
error checking and correction systems, which can make for more reliable connections; but these
features also add overhead, which can degrade performance slightly. Many older NFS servers
only support UDP operation.

NFS Security Considerations

NFS is a useful protocol, but like all network protocols, it’s not without its risks. One of the more
unusual security features of NFS is its trusted-hosts security model. Unlike most servers that provide
the level of access that NFS provides, NFS doesn’t use passwords or any other authentication tool
to verify the client’s identity. This makes the specification of authorized clients in /etc/exports
extremely critical. If you authorize inappropriate clients in this file, you’ll be risking unauthorized
access to NFS-served files. To minimize this risk, you should specify hosts individually whenever

4425c10.fm Page 527 Tuesday, July 12, 2005 10:58 PM

528 Chapter 10 � Managing Servers

possible rather than by using NIS netgroups, wildcards, or IP address blocks. Furthermore, using IP
addresses is generally preferable to using hostnames. If you use hostnames, your NFS server’s secu-
rity becomes partially dependent upon the security of the DNS server. If the DNS server is compro-
mised, the intruder could alter its entries to gain access to the NFS server. Of course, all of these
precautions amount to nothing if an authorized client is compromised or if an intruder gains phys-
ical access to your network wiring. Because wireless networks can be compromised fairly easily, NFS
is rather risky to use on such networks. Be aware that NFS doesn’t encrypt the data it transfers, so
if an intruder can monitor your network activity, all the files stored on an NFS server can become
visible as they are used.

NFS is best employed for storing user data files and executable program files that are needed
on many computers on a network, thus simplifying backup and reducing disk space require-
ments. To these ends, you might export directories such as /home, /usr, and /opt. You should
not generally export sensitive system-specific directories, such as /etc. In the event of a server
bug or misconfiguration, exporting such a directory could enable an intruder to change critical
system files such as /etc/passwd.

Configuring Samba
The Server Message Block/Common Internet File System (SMB/CIFS) protocol serves a role in
the Windows world similar to that played by NFS in the Unix world. Fortunately, Linux can
interact with Windows systems using SMB/CIFS; the tool enabling this interaction is known as
Samba (http://www.samba.org). In fact, Samba works so well that many network adminis-
trators have replaced Windows NT/200x file servers with Linux systems running Samba. Its
security implications are different from those of NFS—in fact, for this reason you might con-
sider using SMB/CIFS rather than NFS even on a Linux-only network!

Samba is a server that’s comparable in complexity to Apache or sendmail. As
such, I can only provide a brief overview in this chapter. For more details, con-
sult the documentation on the Samba website or a book on the topic, such as
my Linux Samba Server Administration (Sybex, 2000) or my Definitive Guide to
Samba 3 (Apress, 2004).

Samba Basics

SMB/CIFS is primarily a DOS and Windows file-sharing protocol, although a few features are
geared toward other OSs. This orientation provides certain challenges for a Linux SMB/CIFS
server. For instance, Samba must be able to manage DOS and Windows filename conventions,
which differ from those of Unix and Linux. For the most part, Samba handles these differences
transparently, but you can tweak various configuration options to change how Samba manages
such features.

4425c10.fm Page 528 Tuesday, July 12, 2005 10:58 PM

Configuring Samba 529

The SMB/CIFS security model is quite different from that of NFS. Like most servers that pro-
vide extensive access to the system, SMB/CIFS works around a username and a password.
(Some configurations can omit these, but for the most part, they’re used.) Samba can use either
encrypted or unencrypted passwords. Unfortunately, the encryption methods used by SMB/
CIFS are incompatible with the standard form of Linux’s encrypted password database, which
means that if you use encrypted passwords, Samba must maintain its own password database
independent of the standard Linux password database. Keeping the two synchronized can be a
challenge, but Samba provides tools to help. Alternatively, you can use advanced Pluggable
Authentication Module (PAM) features to enable Linux to use the Samba password database
instead of the regular Linux passwords.

Unlike NFS, which is strictly a file-sharing tool, Samba provides for both file and printer
sharing, as well as several ancillary tools. File and printer shares can be configured in nearly
identical ways in Samba.

SMB/CIFS was originally designed to be used over a non-TCP/IP networking protocol
known as NetBEUI. NetBEUI was designed as a purely local networking tool, though, so as the
Internet (and the TCP/IP protocol upon which it’s built) grew in popularity, using SMB/CIFS
over TCP/IP became the norm. Samba uses SMB/CIFS over TCP/IP. Nonetheless, a few Net-
BEUI-related quirks exist in the SMB/CIFS way of looking at things. One of these is in computer
naming; SMB/CIFS uses its own naming system (NetBIOS names) that’s independent of the
TCP/IP naming system. In most cases it’s best to try to synchronize the two naming schemes. If
you don’t, you can run into some odd problems when you try to use a TCP/IP hostname in a tool
that expects NetBIOS names or vice versa.

The Samba server suite consists of several individual server programs and an assortment
of configuration files and support utilities. The two main server programs are smbd, which
handles the main file- and printer-sharing duties, and nmbd, which handles NetBIOS name res-
olution and various other ancillary functions. In addition, the swat server provides a Web-
accessible GUI configuration tool. The smbd and nmbd servers are usually run via SysV startup
scripts, although they can be run from a super server. The swat server is almost always run
via a super server.

Using Samba as a Server

The main role for Samba is as a server. Configuring a Samba server requires setting two
main types of options: global options and options for individual shares (file shares and
printer shares). Ultimately, these options are set in the main Samba configuration file,
smb.conf. (This file usually resides in /etc/samba, although some older distributions used
/etc/samba.d or some other location.) If you like, though, you can use the Samba Web
Administration Tool (SWAT) to configure Samba using a point-and-click interface.

The man page for smb.conf is unusually complete. Consult it for information on
smb.conf options.

4425c10.fm Page 529 Tuesday, July 12, 2005 10:58 PM

530 Chapter 10 � Managing Servers

Setting Global Samba Options

The smb.conf file is split into multiple sections, each of which begins with a section name in
square brackets, such as [global], [homes], or [bigshare]. Most sections define file or
printer shares, as described shortly, in “Creating File Shares” and “Creating Printer Shares.”
The [global] section, though, sets default values for all file and printer shares as well as
options that make sense only to the server as a whole.

Within each section, Samba parameters take the following form:

parameter = Value

The parameter is an option name and the Value is the value that should be assigned to the
parameter. Comments are indicated by hash marks (#) or semicolons (;).

Most distributions ship with smb.conf files that serve as reasonable starting points for
Samba configuration. Nonetheless, chances are you’ll need to tweak at least a few global
options to get a working system:

workgroup The workgroup parameter sets the name of the NetBIOS workgroup or domain
to which the system belongs. This parameter must be set to the correct value for the Samba
server to be visible to most Windows clients. If you don’t know what value to use, consult your
network administrator. If you’re setting up a new network, you can use just about any name you
like. Note that a NetBIOS domain, if you use one, is unrelated to an Internet domain. You can
certainly use your Internet domain name as a NetBIOS workgroup or domain name if you’re
setting up a new network, but you don’t need to do so.

netbios name By default, Samba uses your TCP/IP hostname (minus the domain portion)
as its NetBIOS name. You can override this behavior by specifying a name with the netbios
name parameter.

security The security parameter tells Samba how to authenticate users. For a simple con-
figuration, setting security = User makes sense. This corresponds to normal authentication
using the local account database (either Samba’s or Linux’s, depending on other options). More
advanced configurations might use Server or Domain, but such configurations require that
your network have a domain controller and are beyond the scope of this chapter’s Samba cov-
erage. Setting security = Share eliminates the need to maintain individual user accounts, but
you must then link each share to a set of local Linux usernames. The rules for doing so are com-
plex, but if you must try this option, set one or more account names with the users parameter.

encrypt passwords This parameter tells Samba whether or not to support encrypted pass-
words. In most cases, setting this parameter to Yes is appropriate because all recent versions of
Windows expect to use encrypted passwords. Unfortunately, doing this means that you must
maintain a local Samba password database. You can do so with the smbpasswd utility, which
works similarly to the regular Linux passwd utility. The default for this parameter changed with
Samba 3.0, from No to Yes. Thus, I recommend you set it explicitly to avoid confusion.

local master and domain master These options both relate to master browser configura-
tion, which is a NetBIOS tool for locating servers from clients. Samba can serve as a master
browser, but proper configuration is an advanced topic, and incorrect configuration can cause

4425c10.fm Page 530 Tuesday, July 12, 2005 10:58 PM

Configuring Samba 531

network disruptions. Thus, you should ensure that both of these options are set to No unless you
research this topic more and want to set up Linux as a master browser.

wins server This option specifies the IP address of the Windows Internet Naming Service
(WINS) server, which is the NetBIOS name service tool. It’s important for some Samba client
tools, and setting this option lets these tools operate as WINS clients.

name resolve order This option specifies the order in which various tools should be used to
resolve names. Possible options are wins (for WINS), bcast (for NetBIOS-style broadcast name
resolution), lmhosts (for the /etc/samba/lmhosts file), and host (for Linux’s standard TCP/IP
name resolution). You can specify from one to all four of these, separated by spaces, as in name
resolve order = wins bcast host. This option is most important for client functions.

Many other global Samba options exist and may be important for certain configurations, but
are beyond the scope of this chapter. Consult additional Samba documentation for details.

Creating File Shares

File shares are fairly simple to configure. A basic share looks like this:

[sample]

This single line creates a share called SAMPLE. This share isn’t likely to be very useful, though,
because it uses defaults for many important parameters you’re likely to want to customize. In
particular, this default share provides read-only access to the /tmp directory. A more useful
share looks something like this:

[useful]

 comment = User Programs

 read only = Yes

 write list = ecernan

 path = /samba/userprogs

The comment parameter provides a comment field that’s visible in Windows file browsers; it
can be used to help identify the purpose of a share. The read only = Yes line reiterates the default
state of a share as being read-only; it’s not strictly necessary, but specifying it makes your intent
in creating the share plain. The write list parameter specifies users who should be able to write
to the share even though it’s read-only. The intent in this case is that ecernan should be able to
maintain the files in the share. Finally, and in some ways most importantly, the path parameter
specifies the directory that corresponds to the share. In this case, users who access the USEFUL
share will be reading from (or possibly writing to, for ecernan) the /samba/userprogs directory.

Linux’s normal file-access controls apply to Samba access. For instance, in the
preceding share, ecernan must be able to write to /samba/userprogs (or its sub-
directories) in order to maintain the USEFUL share. Furthermore, if a file in that
directory has permissions that prevent certain users from reading it, those
users will be unable to read the file via Samba.

4425c10.fm Page 531 Tuesday, July 12, 2005 10:58 PM

532 Chapter 10 � Managing Servers

Many Samba parameters have synonyms, and a few have antonyms. For instance, read
only = Yes, writeable = No, and writable = No all have identical effects. Similarly, the path
and directory parameters have the same meaning.

One file share has special meaning: the [homes] share. This share normally lacks a path
parameter because that parameter is set to the user’s home directory. This share may also be
accessed by each user’s username. For instance, if ecernan accesses the ECERNAN share, Samba
uses /home/ecernan (or whatever directory is specified in /etc/passwd). Most sample
smb.conf files include a working [homes] share. If you want users to be able to store files in
their home directories, this configuration may not require any changes. If your Samba server
isn’t to be used for storing personal files, though, you might want to remove that share.

You can quickly deactivate a share by setting the available = No parameter in
the share. This deactivates the share, but you can easily make the share active
again by removing this line or changing No to Yes.

E X E R C I S E 1 0 . 1

Create a Samba File Share

In this exercise, you’ll create a new Samba file share, which can be accessed by Windows,
Linux, and other systems on your local network. This share will hold files that should be read-
able by all local Samba users. Perhaps this will be a share for your organization’s document
templates. This exercise assumes that Samba is already up and running on your system. To
create a new share, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI login
method.

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Session �
New Root Console from a Konsole, or by using sudo (if it’s configured) to run the com-
mands in the following steps.

4. Create a directory that you’ll share, such as /home/samba/templates. For instance, you
might type mkdir -p /home/samba/templates.

5. Set permissions on the directory you’ve just created so that all users can read from it but
only the owner can write to it. Typing chmod 0755 /home/samba/templates will do this.

6. Assign ownership of the new directory to an appropriate account. For instance, if ecernan
will be maintaining the files in this directory, type chown ecernan /home/samba/templates.

4425c10.fm Page 532 Tuesday, July 12, 2005 10:58 PM

Configuring Samba 533

Creating Printer Shares

Printer shares are just like file shares in most respects. The most important difference is that
printer shares include the printable = Yes parameter (or its synonym, print ok = Yes). If
this parameter is present, Samba looks for a local printer queue with the same name as the share
definition. For instance, consider the following share:

[okidata]

 comment = Okidata printer

 printable = Yes

 path = /samba/okidata

This share appears as a printer share on Windows clients. When a client submits a print job
to the share, Samba looks for a local printer queue called okidata and tries to send the print
job to it. If you want the printer to appear under a different name to Samba clients than the local
queue name, you can use the printer or printer name parameter to specify the local queue
name. For instance, printer = oki causes Samba to submit the print job to the oki queue, no
matter what the share name.

7. Type ls -ld /home/samba/templates to verify that the ownership and permissions are set
correctly on this directory.

8. Load the /etc/samba/smb.conf file into your favorite text editor.

9. Review the existing shares. Pay particular attention to the share names; you don’t want to
use an existing name for your new share.

10. At the end of the file, enter lines to create a new file share:

[templates]
comment = Templates share
path = /home/samba/templates
read only = No

11. Save the smb.conf file and exit from the editor.

12. Type /etc/init.d/smb reload to force Samba to reload its configuration file. (Some sys-
tems store the Samba SysV startup script in another directory or call it something else, so
you may need to modify this command.)

At this point, the new share should be accessible. You can test it with smbclient, as in
smbclient //localhost/templates. (Type this command as an ordinary user with a Samba
account, not as root.) The result is an FTP-like exchange, enabling you to copy files back and
forth, rename files, delete files, and so on.

E X E R C I S E 1 0 . 1 (c o n t i n u e d)

4425c10.fm Page 533 Tuesday, July 12, 2005 10:58 PM

534 Chapter 10 � Managing Servers

Printer shares don’t need to be explicitly configured as read/write shares; this
feature is implicit with their status as printer shares.

Printer shares have the equivalent to the [homes] file share: the [printers] share. If this
share is present (as it is in many sample smb.conf files), it creates a printer share for every
locally defined printer (in /etc/printcap or as defined in CUPS, depending on your local
printing system). In many cases, this share is all you need to share your printers. If you explicitly
create a share with the same name as one that would be created by [printers], your explicitly
created share takes precedence. You can use this fact to override an automatically created share,
say to specify unusual options.

As described in Chapter 9, Linux treats printers as PostScript devices. Thus, you should nor-
mally install Samba-shared printers in Windows as if they were PostScript printers. Typically,
Apple LaserWriter drivers work well for monochrome printers and QMS magicolor drivers
work well for color printers. If you create a raw queue under Linux, though, the Linux printing
system won’t force the print job to be treated as PostScript. You can then install the printer man-
ufacturer’s drivers under Windows. Both approaches have their advantages. The PostScript
road is typically easier to configure and can produce lighter network loads but may block access
to advanced printer features. The raw queue approach is more likely to give full access to all
printer features but is likely to generate more network traffic.

Using SWAT

Although you can configure Samba via its smb.conf file, you might prefer to use a GUI interface.
Some distributions provide such interfaces as part of their system administration tools, such as
SuSE’s YaST2. With all distributions, though, you can use SWAT, which ships with Samba.
SWAT uses HTTP, so you can access SWAT using a web browser. SWAT typically runs on port
901, so it won’t interfere with a web server if you want to run both on the same computer.

In order to use SWAT, you must first configure it to run. SWAT is normally launched from
a super server (inetd or xinetd), so consult Chapter 9 for general super server information. If
your distribution uses xinetd, look for a file called /etc/xinetd.d/swat and be sure it does
not include a line that reads disable = yes. If your distribution uses inetd, check your /etc/
inetd.conf file for a line like the following:

swat stream tcp nowait root /usr/sbin/swat swat

If this line, or one similar to it, is present but commented out by a hash mark (#), uncomment
the line. If it’s not present, add it. You might want to consider replacing the direct call to /usr/
sbin/swat with a call to /usr/sbin/tcpd, the TCP Wrappers binary, which is described in
Chapter 9. This will enable you to restrict access to SWAT by IP address; such restrictions are
described in Chapter 7.

Whether you use inetd or xinetd, if you make changes to activate SWAT, you must reload
or restart the super server, as described in Chapter 9. Typically, typing /etc/inetd.d/xinetd
reload or something similar will do the trick.

4425c10.fm Page 534 Tuesday, July 12, 2005 10:58 PM

Configuring Samba 535

Once SWAT is up and running, you can access it from a web browser running on the Samba
server computer itself by entering a URL of http://localhost:901. The result is a prompt for
a username and password. To configure Samba, you must type root and the root password.
If you enter a normal username and password, you can view some information about the Samba
server and change that user’s Samba password, but you won’t be able to do much else.

Once you’re authenticated, SWAT presents a page with a series of documentation links and,
near the top, a series of icons for performing various configuration actions: Home, Globals,
Shares, Printers, Wizard, Status, View, and Password. The Home icon brings you back to the
main page; the Globals, Shares, and Printers options let you configure global settings, file
shares, and printer shares, respectively; the Wizard icon steps you through configuration in a
friendly fashion; Status shows the status of the server; View presents the raw smb.conf file; and
Password lets you change Samba passwords.

To configure global settings, file shares, or printer shares, click the appropriate link. The
result is a page similar to the one shown in Figure 10.2, which shows the Shares page displaying
information on a share. To select a share, pick it from the drop-down list next to the Choose
Share button and then click that button, or create a new share by typing a name in the field next
to the Create Share button and then clicking that button. You can then enter information on the
share in the remaining fields. For still more options, click the Advanced button. When you’ve
made all the changes you want to make, click Commit Changes. Nothing you enter will have
any effect until you do so.

F I G U R E 1 0 . 2 SWAT enables you to configure Samba using a point-and-click interface.

4425c10.fm Page 535 Tuesday, July 12, 2005 10:58 PM

536 Chapter 10 � Managing Servers

The SWAT options are named after the smb.conf parameters they control, so the earlier
descriptions of smb.conf parameters should help you perform basic configuration with SWAT.
If you’re not sure what an option does, click the Help link next to the option. This action will
open a new browser displaying the man page for smb.conf, scrolled to the relevant entry.

Keep in mind that SWAT, although a convenient way to administer Samba, is itself a server
and therefore poses certain security risks. The password sent to SWAT is not encrypted, which
makes it very risky to use it over the network, although using it from the Samba server computer
itself is not so dangerous. You should definitely look into TCP Wrappers or xinetd options to
restrict access to SWAT to the Samba server computer itself. You should only use SWAT for
remote Samba administration on the most secure local networks.

Samba Security Considerations

Samba is a very powerful server and so can be a security liability if it’s not administered prop-
erly. Some of the same caveats apply to Samba as apply to NFS. In particular, you should be
wary about creating file shares to any sensitive directories, such as /etc. Such shares, if broken
into, could be easily abused to give the intruder full access to the entire computer.

Samba’s main form of access control is a username/password pair, unlike the IP address restric-
tions of NFS. This fact makes Samba somewhat less susceptible to intrusion merely because a

Using WINS for Name Resolution

If your network is dominated by Windows computers, you might want to consider adding
WINS to your regular Linux name resolution system. This will enable you to refer to computers
by their NetBIOS names from Linux, even for TCP/IP applications such as e-mail clients. To do
so, look for a line like the following in your /etc/nsswitch.conf file:

hosts: files dns

Add wins to this line:

hosts: files dns wins

Ordinarily, this is all you’ll need to do, assuming you’ve set the correct workgroup name in your
smb.conf file. This configuration does require that your system have the libnss_wins.so library
installed (and a symbolic link called libnss_wins.so.2). Most distributions install this library, but
a few don’t or omit the symbolic link.

Once you’ve configured your system in this way, you should be able to access other systems
by their NetBIOS names, even if they aren’t listed by those names in a DNS server. This can be
particularly handy if your network uses DHCP for IP address assignment and so there’s no static
mapping of IP addresses to hostnames.

4425c10.fm Page 536 Tuesday, July 12, 2005 10:58 PM

Using a Forwarding DNS Server 537

cracker has gained access to your local network wires. The usual configuration of using encrypted
passwords also offers some protection against password cracking, even if an intruder manages to
record the password exchange between two systems. Depending on the client and certain advanced
Samba options, though, the encryption of SMB/CIFS encrypted passwords can be quite weak, so
you shouldn’t rely too much on the SMB/CIFS password encryption. As with NFS, non-password
data is not encrypted, so you should be aware that potentially all the files stored on a Samba server
(and files printed via Samba) could be intercepted. Overall, Samba is best used on at least moderately
well protected local networks, not over the Internet at large or on a wireless network.

The Samba server itself is complex, and certain types of configuration can improve or degrade
its security. Options related to passwords, IP-based access restrictions, and more are available. For
more information, consult the main Samba documentation or a book on the server.

Using a Forwarding DNS Server
Chapter 9 described the basics of network configuration, including pointing a Linux system to
a local DNS server. In some cases, though, you might want to run your own DNS server. A full-
fledged DNS server is generally configured only to handle a domain you manage on the Internet,
but smaller setups can be useful in other situations. Most notably, you might want to set up a
caching (aka a forwarding) DNS server for a small network or even for a single system. Such a
server receives DNS lookup requests, forwards them to another server, and caches the results for
subsequent use. To enable such a server, you should first understand enough of the DNS pro-
tocol and of Linux DNS server software to know what you’re managing. You can then set the
options needed in the software to get a forwarding DNS server working. You must also be able
to configure computers to use your caching name server. Finally, as with all servers, you should
understand the security implications of running them.

DNS Server Basics

Most people don’t give much thought to the DNS lookup process, but in fact, a great deal of
complexity lurks just beneath the surface. This complexity involves both the structure of the
DNS system and the design of the servers that manage it all.

Internet DNS Structure

In some sense, the complexity of DNS begins with the domain registration process. In order to avoid
confusion, domain names can’t simply be made up and used immediately. Imagine the chaos if
several organizations tried to use a single domain name, such as sybex.com or whitehouse.gov.
Perhaps different users would end up being directed to different sites or errors would result from
conflicting lookups.

In order to impose order on the potential for chaos, domain names must be registered with
a domain name registrar. Many registrars exist, but ultimately, each top-level domain (TLD),
such as .com and .gov, has a single governing body that serves as a clearinghouse for all the
domains within that TLD, such as sybex.com and whitehouse.gov.

4425c10.fm Page 537 Tuesday, July 12, 2005 10:58 PM

538 Chapter 10 � Managing Servers

Anybody with a few dollars can register an Internet domain. A list of registrars is available
at http://www.icann.org/registrars/accredited-list.html. Go to one of the regis-
trars on this list, enter the domain name you’d like to register on a form, and if the domain isn’t
already taken, pay the fee. Registration is typically about $15 per year (some registrars charge
more, some less, and the fee often varies depending on the TLD you want). You may need to
pay extra for DNS services for your domain if you don’t provide your own DNS servers.

Name resolution involves a series of servers, each with detailed knowledge about different
levels in the DNS hierarchy. At the top of this hierarchy are the root servers, which have IP
addresses that change very infrequently. The root servers know the IP addresses of the DNS
servers for the TLDs—.com, .gov, .us, and so on. When one computer (typically a DNS server)
wants to know the IP address of another computer (say, www.sybex.com), the querying com-
puter can ask one of the root servers to resolve that name. In most cases, the root server will
reply with a message to the effect that it doesn’t know the full name but that another computer
(the .com DNS server, in this example) should know more. The querying computer then resub-
mits the original request to the .com DNS server. Chances are this server will also reply that it
doesn’t know the IP address, but that it has the address of a server with more information—the
sybex.com DNS server, in this example. Upon querying this server, the original system will
learn the IP address.

This process is known as a recursive lookup, and it can vary in its length. In theory, the root
server could know the IP address of www.sybex.com and return it directly, or the lookup could
involve more than the three DNS servers specified in this example, particularly for domains with
more than three elements in the name (say, challenger.taurus.littrow.apollo.luna.edu).

The DNS server whose IP address you give to a computer as part of a static IP address con-
figuration, as described in Chapter 9, typically performs a full recursive lookup. A shortcut,
though, is to enable another DNS server to do the bulk of the work. If a DNS server is config-
ured as a caching name server, it can pass the requests on to another server and ask that server
to do the full lookup. The first DNS server then sits back, waits for the response, and passes it
on to the client that asked for it. This approach can actually reduce network traffic and improve
response times for a couple of reasons. First, small networks, such as those in small businesses,
are often linked by relatively slow Internet connections. These networks’ ISPs’ network connec-
tions are usually much faster, so the ISPs’ DNS servers can usually do the lookup much more
quickly. Second, by caching popular results, the small networks’ DNS servers can reply imme-
diately rather than perform any lookup at all.

BIND Features

The most common name server in Linux is the Berkeley Internet Name Domain (BIND), which
is also known as named (the name of the executable program). BIND is a very complex program,
and entire books have been written about it. Consult a book such as Paul Albitz’s and Cricket
Liu’s DNS and BIND, 4th Edition (O’Reilly, 2001) for full details.

BIND is controlled through several files. One entire set of files is related to domains that
BIND is to manage. These files map hostnames to IP addresses and vice versa. This function
of BIND, though, is beyond the scope of this book and of the LPIC exam, so you don’t need
to be very concerned with these files. Configuring a forwarding-only name server, though,

4425c10.fm Page 538 Tuesday, July 12, 2005 10:58 PM

Using a Forwarding DNS Server 539

requires adjusting the primary BIND configuration file. For recent versions of BIND (version
8.x and 9.x), this file is called named.conf, and it’s usually stored in /etc. For older versions
of BIND (numbered 4.x and earlier; there were no versions between 4.x and 8.x), the main
configuration file is called named.boot.

As described in the upcoming section “BIND Security Considerations,” many
distributions now run BIND in a way that may affect the placement of its con-
figuration file. If you don’t see named.conf in /etc but you’re sure the server is
installed, use your package management tools to track it down.

Setting DNS Options for Your Network

Once you’ve installed BIND on your system, you can make a few small edits to configure the
program as a forwarding-only server. With BIND 8.x or 9.x, load the /etc/named.conf file
into your favorite editor and look for the options section, which probably resides at or near
the start of the file. A forwarding configuration specifies one or more upstream DNS servers
using the forwarders keyword:

options {

 directory "/var/named";

 forwarders {

 10.9.16.30;

 10.13.16.30;

 };

 forward only;

};

Chances are your configuration will lack the forwarders keyword, the two IP addresses sur-
rounded by curly braces ({}), and the forward only line. Add these elements, but substitute
the IP addresses of your upstream DNS servers, such as the IP addresses given to you by your
ISP. (You can use just one server or several, but adding more servers can actually degrade per-
formance in certain types of error conditions, so you should probably stick to two or three at
most.) Pay careful attention to the punctuation in this example. With the exception of lines that
end with an opening curly brace, all lines end in semicolons (;). The amount of white space is
not critical, though, and in fact it’s possible to list the IP addresses and closing curly brace on
the same line as the forwarders keyword. (If the configuration is so compressed, you must still
use semicolons after each IP address.)

The forward only line tells BIND to query the specified name servers and to return an error
message if they fail to respond or return an error message themselves. An alternative is to specify
forward first. Configured in this way, BIND attempts a lookup via the specified servers, but
if they don’t respond, BIND attempts a full recursive lookup. This configuration can be helpful in
the event that a problem is isolated to the upstream DNS servers; however, it can impose further

4425c10.fm Page 539 Tuesday, July 12, 2005 10:58 PM

540 Chapter 10 � Managing Servers

delays in returning error codes to programs in the event of a more substantial problem, such as a
complete failure of your upstream Internet connection.

You’re unlikely to encounter a system that’s so old that it runs the BIND 4.x server but the
LPI objectives still refer to them. This old software uses the /etc/named.boot configuration
file, and its syntax is different from that of /etc/named.conf. In particular, you can specify for-
warding systems using a single punctuation-free line and forwarding options on another line:

forwarders 10.9.16.30 10.13.16.30

options forward-only

Of course, you should change the IP addresses to those for your upstream DNS server. You can
omit the options line to implement the equivalent of a BIND 8/9 forward first configuration.

Once you’ve made these changes, you should reload or restart your BIND system. Because
BIND is typically started via SysV startup scripts, you can do this by passing the reload or
restart option to the appropriate script, as in /etc/init.d/named reload.

Using a Forwarding DNS Server

To do any good, clients must be able to access your forwarding DNS server. Chapter 9
describes basic Linux network configuration. The easiest case is static IP address assignment.
If your network has no DHCP server, you can simply substitute the IP address of your for-
warding server for the IP addresses of your upstream DNS servers in your local network sys-
tems’ configurations. As described in Chapter 9, this is done by specifying nameserver lines
in /etc/resolv.conf:

nameserver 192.168.1.1

If you’ve configured BIND as a caching-only name server for just one computer, you would
point it to itself on this line.

If your network uses DHCP to assign IP addresses, you should reconfigure your DHCP
server to deliver the IP address of your BIND server. If your DHCP server is the popular Linux
Internet Software Consortium (ISC) DHCP server, you can edit the /etc/dhcpd.conf file.
Look for a line like the following:

option domain-name-servers 10.9.16.30;

Change the IP address (or IP addresses, if more than one is listed) to point to your local net-
work’s new forwarding DNS server.

However the DNS server is set, you should also be aware of the importance of the /etc/
nsswitch.conf file. This file controls the Name Service Switch (NSS), which manages certain
types of system lookups, including hostname/IP address translations. As described in the sidebar
“Using WINS for Name Resolution” earlier in this chapter, it’s possible to reconfigure what
tools are used for performing name lookups. Most configurations include a hosts line that
specifies files and dns for name lookups. The dns entry is the critical one for performing DNS
lookups, while files refers to the /etc/hosts file, which is described in Chapter 9.

4425c10.fm Page 540 Tuesday, July 12, 2005 10:58 PM

Configuring SSH 541

NSS is designed to be expandable. It’s possible that some future system will
replace files or dns on the hosts line but still use DNS for hostname resolu-
tion. If you find something you don’t recognize on this line but DNS resolution
seems to work, I recommend you don’t try to adjust the entry until you learn
what the entries you see are supposed to do.

BIND Security Considerations

BIND provides relatively limited access to the computer—it reads just a few files and doesn’t
give most users any ability to write to the local filesystem. (Exceptions exist for some advanced
features, such as automated domain updates.) These factors tend to limit the possibility for
abuse via BIND. On the other hand, like Apache, BIND requires no authentication, and BIND
is a very complex server. These factors tend to increase the risk associated with BIND.

For a forwarding-only name server, the single most important security concern is to isolate the
server from the Internet. Use firewall rules (on the BIND server itself or on your router) to prevent
outside systems from initiating contact with the BIND ports (TCP and UDP port 53). This pro-
cedure should help prevent the server from being abused by miscreants on the Internet at large.

To reduce the risks associated with BIND, many distributions now ship the server to run
from something known as a chroot jail. This is a way of running a server so that it doesn’t have
full access to the computer’s filesystem, even as root. The server “thinks” that some directory
(say, /var/lib/named) is actually the root directory (/). Configuring a chroot jail is beyond the
scope of this book; I mention it mainly because you may need to look for your BIND configu-
ration files in a peculiar location, such as /var/lib/named/etc, if your system is configured in
this way. Some distributions set up links to make this process easier, but this isn’t guaranteed.

Configuring SSH
In the past, Telnet has been the remote text-mode login protocol of choice on Linux and Unix
systems. Unfortunately, Telnet is severely lacking in security features. Thus, in recent years SSH
has grown in popularity, and is in fact the preferred remote login tool. SSH can also handle file
transfer tasks similar to those of the File Transfer Protocol (FTP). For these reasons, knowing
how to configure SSH can be very helpful. This task requires knowing a bit about SSH generally
and about the SSH configuration file under Linux. As is usual in this chapter, I conclude the
look at SSH with information on the security implications of running the server.

SSH is not as complex as some servers described in this chapter, but it’s still
complex enough that I can’t cover more than its basics in this chapter. Consult
OpenSSH’s own documentation or a book on the topic, such as SSH, The
Secure Shell: The Definitive Guide, Second Edition, by Daniel J. Barrett, Rich-
ard Silverman, and Robert G. Byrnes (O’Reilly, 2005), for more details.

4425c10.fm Page 541 Tuesday, July 12, 2005 10:58 PM

542 Chapter 10 � Managing Servers

SSH Basics

Linux supports remote login access through several different servers, including Telnet, Virtual
Network Computing (VNC), and even X. Unfortunately, most of these methods suffer from a
major drawback: They transfer all data over the network in unencrypted form. This fact means
that anybody who can monitor network traffic can easily snatch sensitive data, often including
passwords. (VNC and a few other protocols encrypt passwords but not other data, though.)
This limitation puts a serious dent in the utility of these remote login tools; after all, if using a
remote access protocol means you’ll be giving away sensitive data or even compromising your
entire computer, it’s not a very useful protocol.

Non-encrypting remote access tools are particularly risky for performing work
as root, either by logging in directly as root or by logging in as an ordinary user
and then using su, sudo, or other tools to acquire root privileges.

SSH was designed to close this potentially major security hole by employing strong encryp-
tion techniques for all parts of the network connection. SSH encrypts the password exchange
and all subsequent data transfers, making it a much safer protocol for remote access.

In addition to encryption, SSH provides file transfer features and the ability to tunnel other
network protocols—that is, to enable non-encrypted protocols to “piggyback” their data over
an SSH connection, thus delivering SSH’s encryption advantages to other protocols. This fea-
ture is frequently employed in conjunction with X, enabling encrypted remote GUI access, as
described in Chapter 5, “The X Window System.”

Of course, SSH’s advantages don’t come without a price. The main drawback of SSH is that
the encryption and decryption consume CPU time. This fact slows down SSH connections com-
pared to those of direct connections and can degrade overall system performance. This effect is
modest, though, particularly for plain text-mode connections. If you tunnel a protocol that
transfers much more data, such as X, you may see a greater performance drop when using SSH.
Even in this case, the improved security is generally worth the slight performance drop.

Several SSH servers are available for Linux, but the most popular by far is the OpenSSH
server (http://www.openssh.org). This program was one of the first open-source implemen-
tations of the SSH protocol, which was developed by the commercial SSH Communications
(http://www.ssh.com), whose server is now sold under the name SSH Tectia. OpenSSH, SSH
Tectia, and other SSH products can interoperate with one another, assuming they’re all config-
ured to support at least one common level of the SSH protocol. OpenSSH 4.0, the latest version
as I write, supports SSH levels 1.3, 1.5, and 2.0, with 2.0 being the preferred level because of
known vulnerabilities in the earlier versions.

OpenSSH is closely associated with the OpenBSD OS, so its website has an Open-
BSD bias. If you visit the site, you may want to click the Linux link under the Other
OSs heading. You can find Linux-compatible source code and binaries from that
site, and OpenSSH now ships with most Linux distributions.

4425c10.fm Page 542 Tuesday, July 12, 2005 10:58 PM

Configuring SSH 543

OpenSSH may be launched via either a super server (inetd or xinetd) or a SysV startup script.
The latter method is preferred, though, because the server may need to perform some CPU-intensive
tasks upon starting, so if it’s started from a super server, OpenSSH may be sluggish to respond to
connection requests, particularly on systems with weaker CPUs. Most distributions deliver SysV
startup scripts with their SSH packages. If you make changes to your SSH configuration, you may
need to pass the reload or restart option to the startup script, as in /etc/init.d/sshd reload.
(Chapter 6 covers SysV startup scripts in more detail.) However it’s launched, the OpenSSH server
binary name is sshd—the same as the binary name for SSH Tectia.

Setting SSH Options for Your System

For the most part, SSH works reasonably well when it’s first installed, so you may not need to make
any changes to its configuration. If you do need to make changes, though, these are mostly handled
through the main SSH configuration file, /etc/ssh/sshd_config. You can also edit some addi-
tional files to limit access to the SSH server or to change how SSH manages the login process.

Configuring Basic SSH Features

The /etc/ssh/sshd_config file consists mainly of option lines that take the following form:

Option value

Don’t confuse the sshd_config file with the ssh_config file. The former controls
the OpenSSH server, whereas the latter controls the SSH client program, ssh.

In addition to configuration lines, the sshd_config file holds comments, which are denoted
by hash marks (#). Most sample configuration files include a large number of SSH options that
are commented out; these lines specify the default values, so uncommenting the lines without
otherwise changing them will have no effect. If you want to change an option, uncomment the
line and change it. Most options’ default values are suitable for most systems. The following list
includes some that you might want to check and, perhaps, change:

Protocol This option specifies the protocol levels OpenSSH understands. Possible values
are 1 and 2. You can configure OpenSSH to support both protocols by separating them by a
comma, as in 1,2 or 2,1, which are equivalent. Given the fact that OpenSSH protocol level 1
has been compromised, the safest configuration is to set Protocol 2. This will limit the server’s
ability to communicate with older clients, though.

PermitRootLogin By default, this option is set to yes, which enables OpenSSH to accept
direct logins by root. This is safer than a similar configuration under Telnet, but for a bit of
added security, set this value to no. The result will be that anybody wanting to perform remote
work as root will need to first log in as an ordinary user, which means that an intruder who has
somehow acquired the root password will also need a regular username and its password.

4425c10.fm Page 543 Tuesday, July 12, 2005 10:58 PM

544 Chapter 10 � Managing Servers

X11Forwarding This option specifies whether or not OpenSSH’s X tunneling features should
be active. If you want to enable remote users to run X programs via SSH, you must set this
option to yes. Doing so can slightly degrade security of the client’s X display, though, depend-
ing on certain other options, hence the conservative default value of no.

For information on additional options, consult the man page for sshd_config. If you make
changes to the SSH configuration, remember to restart it using the server’s SysV startup script.

SSH Keys

Part of SSH’s security involves encryption keys. Each server system and each user has a unique
number, or key, for identification purposes. In fact, SSH uses a security system that involves
two keys: a public key and a private key. These two keys are mathematically linked in such
a way that data encrypted with a particular public key may be decrypted only with the match-
ing private key. When establishing a connection, each side sends its public key to the other.
Thereafter, each side encrypts data with the other side’s public key, ensuring that the data can
be decrypted only by the intended recipient. In practice, this is just the first step of the process,
but it’s a very critical one. What’s more, SSH clients typically retain the public keys of servers
they’ve contacted. This enables them to spot changes to the public key. Such changes can be
signs of tampering.

Most OpenSSH server SysV startup scripts include code that looks for stored public and
private keys and, if they’re not present, generate them. In total, six keys are needed: public
and private keys for three encryption tools SSH supports. These keys are normally stored
in /etc/ssh and take filenames of the form /etc/ssh/ssh_host*key and /etc/ssh/ssh_
host*key.pub for private and public keys, respectively. If your system doesn’t have these
keys and you can’t seem to get the SSH server to start up, you can try generating the keys
with the ssh-keygen command:

ssh-keygen -q -t rsa1 -f /etc/ssh/ssh_host_key -C '' -N ''

ssh-keygen -q -t rsa -f /etc/ssh/ssh_host_rsa_key -C '' -N ''

ssh-keygen -q -t dsa -f /etc/ssh/ssh_host_dsa_key -C '' -N ''

Each of these commands generates both a private key (named in the -f parameter) and a
public key (with the same name but with .pub appended).

Do not run these ssh-keygen commands if the SSH key files already exist. Replacing the
working files will cause clients who’ve already connected to the SSH server to complain about
the changed keys and possibly refuse to establish a connection.

Be sure that the non-public keys are suitably protected; if an intruder obtains
one of these keys, the intruder can impersonate your system. Typically, these
files should have 0600 (-rw-------) permissions and be owned by root. The
public key files (with .pub filename extensions) should be readable to all
users, though.

4425c10.fm Page 544 Tuesday, July 12, 2005 10:58 PM

Configuring SSH 545

When you configure a client system, you might want to consider creating a global cache of
host keys. As already noted, the ssh program records host keys for each individual user. (It
stores these in the ~/.ssh/known_hosts file.) When you set up the client, though, you can pop-
ulate the global ssh_known_hosts file, which is normally stored in /etc or /etc/ssh. Doing
so will ensure that the public key list is as accurate as the sources you use to populate the global
file. It will also eliminate confirmation messages when users connect to the hosts whose keys
you’ve selected to include in the global file.

How do you create this file, though? One simple way is to copy the file from a user account
that’s been used to connect to the servers you want to include. For instance, you might type cp
/home/ecernan/.ssh/known_hosts /etc/ssh/ssh_known_hosts to use ecernan’s file.
You may want to manually review this file before copying it, though. It consists of one line per
host. Each line begins with a hostname, IP address, or both, and continues with the key type and
the key. You can ignore most of this information, but pay attention to the hostnames and IP
addresses. Ensure that the list includes all the SSH servers your client is likely to want to use and
that it does not include inappropriate or unnecessary servers. You can remove lines in your text
editor, if necessary. To add entries, use the account whose file you’re copying to connect to the
system you want to add. Chances are ssh will display a warning about connecting to an
unknown system. Confirm that you want to do so. Once you do this and reload the file, you
should see an entry for the server.

Controlling SSH Access

You can limit who may access an SSH server in various ways. The most obvious and basic
method is via password authentication. The usual SSH authentication method is to employ
a username and password, much as Telnet does. (The ssh client program sends the username
automatically or as part of the command line, though, so you won’t see a username prompt
when logging in via ssh.)

Beyond password authentication, SSH supports several other types of limitations:

TCP Wrappers If you run SSH from a super server or if the server was compiled with TCP
Wrappers support, you can use the /etc/hosts.allow and /etc/hosts.deny files to limit
access by IP address. Chapter 7 describes TCP Wrappers in more detail. Note that if you launch
SSH via a SysV startup script, this approach only works if the server was compiled to support
it. This support might or might not be present in your distribution’s standard SSH package.

Firewalls As with all servers, you can restrict access by using a firewall, as described in Chap-
ter 7. SSH uses TCP port 22. Technically, this isn’t an SSH feature, but it’s certainly useful for
protecting an SSH server.

/etc/nologin If this file is present, SSH honors it. As described in Chapter 7, this file’s pres-
ence means that only root may log in. Ordinarily, the file’s contents are displayed as an error
message; however, OpenSSH doesn’t do this.

SSH Login Scripts

Ordinarily, an SSH text-mode login session runs the user’s configured shell, which runs the
shell’s defined login scripts, as described in Chapter 6. The OpenSSH server also supports its

4425c10.fm Page 545 Tuesday, July 12, 2005 10:58 PM

546 Chapter 10 � Managing Servers

own login script, sshrc (normally stored in /etc or /etc/ssh). The OpenSSH server runs this
script using /bin/sh, which is normally a symbolic link to bash, so you can treat it as an ordi-
nary bash script.

SSH Security Considerations

SSH is intended to solve security problems rather than create them. Indeed, on the whole using SSH
is superior to using Telnet for remote logins, and SSH can also take over FTP-like functions and tun-
nel other protocols. Thus, SSH is a big security plus compared to using less-secure tools.

Like all servers, though, SSH can be a security liability if it’s run unnecessarily or inappropri-
ately. Ideally, you should configure SSH to accept only protocol level 2 connections and to refuse
direct root logins. If X forwarding is unnecessary, you should disable this feature. If possible, use
TCP Wrappers or a firewall to limit the machines that can contact an SSH server. As with all serv-
ers, you should keep SSH up-to-date; there’s always the possibility of a bug causing problems.

You should consider whether or not you really need a remote text-mode login server. Such
a server can be a great convenience—often enough to justify the modest risk involved. For
extremely high-security systems, though, using the computer exclusively from the console may
be an appropriate approach to security.

One unusual security issue with SSH is its keys. As noted earlier, the private key files are
extremely sensitive and should be protected from prying eyes. Remember to protect the backups
of these files, as well—don’t leave a system backup tape lying around where it can be easily stolen.

Summary
Linux can be a powerful server OS. Common server programs for Linux include the sendmail
mail server, Apache web server, NFS and Samba file servers, BIND (aka named) DNS server, and
SSH remote login server. Each of these servers has its own unique configuration files, options,
and security risks. Most share certain commonalities, though, such as the fact that bugs or mis-
configuration can lead to compromised systems. You should always be cautious when config-
uring a server and keep the server software up-to-date lest an intruder take advantage of a
problem to gain control of the server or, worse, of the entire computer.

Exam Essentials
Summarize the procedure for configuring sendmail. Sendmail must be configured through its
/etc/mail/sendmail.cf file, but this file’s format is very tedious. Therefore, most administra-
tors create another type of file that has a more manageable structure and create a sendmail.cf
file using the m4 utility.

4425c10.fm Page 546 Tuesday, July 12, 2005 10:58 PM

Exam Essentials 547

Explain why an open mail relay configuration is undesirable. Open mail relays are comput-
ers that are configured to accept e-mail from any system and deliver it to any other system.
These systems can be abused by spammers to help hide their identities.

Describe common locations of the Apache configuration files. Apache configuration files are
usually called http.conf, httpd2.conf, apache.conf, or apache2.conf. These files are usu-
ally located in /etc/apache, /etc/apache2, /etc/httpd, /etc/httpd2, or the conf subdirec-
tory of any of these. Unfortunately, cross-distribution consistency on this matter remains elusive.

Determine where Apache looks for files it delivers to clients. The DocumentRoot directive
tells Apache where to look for files on the main site; this directive specifies the complete path
to the root of the directory tree used for the files it delivers. You can also tell Apache where to
look within users’ home directories for user web pages with the UserDir directive.

Summarize the format of the /etc/exports file. The /etc/exports file controls the directo-
ries that are shared via NFS. It consists of one line per directory. Each line begins with a directory
path and includes the name or IP address of every client or group of clients that should have access
to the export, with options enclosed in parentheses after the IP address or hostname.

Describe the difference between configuring Samba file and printer shares. Samba file and
printer shares are virtually identical from a configuration point of view; the main difference is
the printable = Yes or print ok = Yes parameter, which identifies a printer share. Although
printer shares are in some sense read/write shares, they need not be explicitly configured as such.

Explain where Samba and NFS are best deployed. Samba is an implementation of the SMB/
CIFS protocol suite, which is most often used for file and printer sharing by Windows systems;
thus, Samba is best used as a server for Windows clients. NFS, by contrast, was designed as a file-
sharing protocol for Unix systems, so it’s best used for sharing files with Unix or Linux clients.

Describe the purpose of root DNS servers. Root DNS servers deliver information on the IP
addresses of servers responsible for handling top-level domains (TLDs)—.com, .net, .uk, and
so on. Finding this information is the first step in your local DNS server’s job of converting a
hostname into an IP address.

Summarize the advantages of running a forwarding DNS server. A forwarding DNS server
passes whole DNS requests from a local network (or even just one computer) to an upstream
DNS server. The main advantage is that the forwarding DNS server can then cache the results,
improving lookup speed on subsequent requests.

Explain why SSH is preferred to Telnet for remote text-mode logins. The Secure Shell
(SSH) protocol provides encryption for all traffic, including both the password exchange and
all subsequent data exchanges, whereas Telnet does not. This makes SSH much safer (if not
100 percent safe) for the exchange of sensitive data, particularly over untrusted networks
such as the Internet.

Identify the most important SSH configuration file. The SSH server is controlled through the
/etc/ssh/sshd_config file. The SSH client configuration file is /etc/ssh/ssh_config;
don’t confuse the two.

4425c10.fm Page 547 Tuesday, July 12, 2005 10:58 PM

548 Chapter 10 � Managing Servers

Review Questions
1. Which of the following commands would you type to see if the mail service is functioning and

view a backlog of old messages?

A. postfix

B. traceroute

C. sendmail

D. mailq

2. What will be the effect of the following lines in a sendmail m4 configuration file?

MASQUERADE_AS(`example.org')

FEATURE(masquerade_envelope)

A. Mail addressed to users in the example.org domain will be hidden from view until the post-
master can examine it.

B. The server will change all domain name references in all e-mail headers to example.org, for
both incoming and outgoing e-mail.

C. Mail sent through the server will be identified as coming from example.org, but only if the
mail’s return address omits a domain name.

D. Mail sent through the server will be identified as coming from example.org, even if the user
has set another address in a mail client.

3. Which file might you edit to have mail addressed to gertrude redirected to gerty? (Select all
that apply.)

A. /var/spool/mail/gertrude

B. newnames in /etc or /etc/mail

C. aliases in /etc or /etc/mail

D. .forward in gertrude’s home directory

4. Your network’s Internet connection went down an hour ago and has only recently come back
up. How would you check to see how many outgoing mail messages have been stuck on your
local sendmail server because of this problem?

A. Type sendmail -q.

B. Type mailq.

C. Type xmqueue and click the Queued Messages button.

D. Log in as postmaster and type pqcheck.

5. What is the name of the protocol Apache uses to communicate with clients?

A. The Patchy Server Protocol

B. The Hypertext Transfer Protocol

C. The File Transfer Protocol

D. The Hypertext Markup Language

4425c10.fm Page 548 Tuesday, July 12, 2005 10:58 PM

Review Questions 549

6. In what directory will you find the files delivered by an Apache server to its clients?

A. /var/www/htdocs

B. /var/www/localhost/htdocs

C. /var/apache/htmlfiles

D. The location is not consistent across systems.

7. What port should you block with a firewall if you want to limit access to a web server running
on its standard port?

A. TCP port 22

B. TCP port 25

C. TCP port 80

D. TCP port 901

8. How does an NFS server determine who may access files it’s exporting?

A. It uses the local file ownership and permission in conjunction with the client’s user authen-
tication and a list of trusted client computers.

B. It uses a password that’s sent in unencrypted form across the network.

C. It uses a password that’s sent in encrypted form across the network.

D. It uses the contents of individual users’ .rlogin files to determine which client computers
may access a share.

9. What is the effect of the following line in /etc/fstab?

share:/server /mnt/samba nfs defaults 0 0

A. It mounts the SMB/CIFS share called server from the server called share at /mnt/samba.

B. It mounts the SMB/CIFS share called share from the server called server at /mnt/samba.

C. It mounts the NFS export called share from the server called server at /mnt/samba.

D. It mounts the NFS export called server from the server called share at /mnt/samba.

10. Which of the following parameters should you definitely check and, if necessary, adjust in the
[global] section of your smb.conf file when configuring Samba?

A. path

B. workgroup

C. comment

D. write list

11. Joe is editing an smb.conf file and spots the line print ok = Yes in a share definition. He changes
this line to read printable = Yes. What effect will this change have on the operation of the share?

A. It converts a printer share into a file share.

B. It converts a file share into a printer share.

C. It makes Samba report errors correctly when they occur.

D. None of the above.

4425c10.fm Page 549 Tuesday, July 12, 2005 10:58 PM

550 Chapter 10 � Managing Servers

12. Why might you want to run SWAT?

A. It provides name resolution using NetBIOS protocols.

B. It provides Web-based GUI administration of a Samba server.

C. It’s run from the inetd or xinetd super server, unlike many servers.

D. It helps to find and correct bugs in a wide variety of servers.

13. How many individual queries are involved in a full recursive DNS lookup?

A. 1

B. 3

C. 7

D. A variable number

14. You compare two /etc/named.conf files and find that they differ in only one line. The first
includes a line in the options section that reads forward first;, while the second contains a
line that reads forward only;. Assuming the rest of the forwarding name server configurations
in these files are correct, what is the effect of this small difference?

A. The forward first; configuration performs a forwarding lookup and then does a full
recursive lookup if the forwarding lookup fails; the forward only; configuration performs
a forwarding lookup but never attempts a full recursive lookup.

B. The forward first; configuration forwards DNS information to clients before logging the
data; the forward only; configuration forwards DNS information to clients without log-
ging information on the lookup.

C. The forward first; configuration does a forwarding lookup and checks the results against
a full recursive lookup; the forward only; configuration performs a forwarding lookup but
never attempts a full recursive lookup.

D. None of the above; neither configuration is valid.

15. In what file would you enter the following line to use a forwarding DNS server you’ve set up on
192.168.1.1?

nameserver 192.168.1.1

A. /etc/named.conf

B. /etc/nameservers.conf

C. /etc/resolv.conf

D. /etc/dnsrc

16. Under what circumstances should a forwarding-only name server be accessible to the Internet
at large?

A. Rarely or never

B. Almost always

C. Only when your domain already has two other DNS servers on the Internet

D. Only when you use BIND 8.x or later

4425c10.fm Page 550 Tuesday, July 12, 2005 10:58 PM

Review Questions 551

17. Which servers might you consider retiring after activating an SSH server? (Select all that apply.)

A. SMTP

B. Telnet

C. FTP

D. NFS

18. You find that the ssh_host_dsa_key file in /etc/ssh has 0666 (-rw-rw-rw) permissions.
Your SSH server has been in operation for several months. Should you be concerned?

A. Yes

B. No

C. Only if the ssh_host_dsa_key.pub file is also world-readable

D. Only if you’re launching SSH from a super server

19. For best SSH server security, how should you set the Protocol option in /etc/ssh/sshd_config?

A. Protocol 1

B. Protocol 2

C. Protocol 1,2

D. Protocol 2,1

20. Why is it unwise to allow root to log on directly using SSH?

A. Somebody with the root password but no other password could then break into the computer.

B. The root password should never be sent over a network connection; allowing root logins
in this way is inviting disaster.

C. SSH stores all login information, including passwords, in a publicly readable file.

D. When logged on using SSH, root’s commands can be easily intercepted and duplicated by
undesirable elements.

4425c10.fm Page 551 Tuesday, July 12, 2005 10:58 PM

552 Chapter 10 � Managing Servers

Answers to Review Questions
1. D. The mailq utility can display a backlog of old messages and show you if the mail service is

functioning. Postfix and sendmail are both mail server programs, and their executable com-
mands won’t perform this function. The traceroute program is an enhanced version of ping
that shows the route data takes to reach a target, as described in Chapter 9.

2. D. Option D correctly describes the effect of these lines. Option A describes the effect of some
advanced spam- and virus-fighting tools, but not of the specified lines. Option B goes too far; host-
name masquerading applies only to the From: address line on outgoing mail, not to all headers.
Option C correctly describes the effect of the first line alone but not of both lines together.

3. C, D. The aliases file in /etc or /etc/mail sets up e-mail aliases, which are effectively alter-
native e-mail names for accounts. A user’s ~/.forward file holds information that causes mes-
sages to the account to be forwarded to another account or address. Both approaches can
accomplish the stated goal, although the ~/.forward file requires that the gertrude account
exists and has a home directory. The /var/spool/mail/gertrude file is one possible location
for mail addressed to gertrude to be stored by the mail server, but editing this file won’t do any
good. The newnames file of option B is fictitious.

4. B. The mailq program returns information on the mail queue, including how many messages
are awaiting delivery. You might type sendmail -q, as in option A, to clear the queue quickly,
but this command won’t actually tell you how many messages are waiting in the queue. The
xmqueue and pqcheck commands of options C and D are both fictitious.

5. B. The Hypertext Transfer Protocol (HTTP) is the name of the protocol Apache uses and is the
source of the http:// code in front of web page names. Option A is fictitious, although it’s
related to a pun that gave rise to the server name Apache (because the server had been greatly
patched). Option C, the File Transfer Protocol (FTP), is the name of a common protocol for
transferring files, but it’s not one that’s implemented by Apache. Option D, the Hypertext
Markup Language (HTML), is a common format for files delivered by Apache, but this isn’t the
protocol used by the server.

6. D. No one directory is a correct answer to this question because the directory is set with the
DocumentRoot directive in the Apache configuration file.

7. C. Web servers run on TCP port 80 by default. TCP port 22 is the Secure Shell (SSH) port, TCP
port 25 is the Simple Mail Transfer Protocol (SMTP) port, and TCP port 901 is used by the
Samba Web Administration Tool (SWAT).

8. A. NFS uses a “trusted host” policy to let clients police their own users, including access to
the NFS server’s files. NFS does not use a password, nor does it use the .rlogin file in users’
home directories.

4425c10.fm Page 552 Tuesday, July 12, 2005 10:58 PM

Answers to Review Questions 553

9. D. Option D correctly describes the effect of this /etc/fstab entry. The server, share, and
mount point names are all deceptive in this example. Options A and B both incorrectly state that
the share is an SMB/CIFS share, when in fact it’s an NFS export, as indicated by both the format
of the server identification and by the use of an nfs filesystem type code. Option C is closer to
correct, but it confuses the role of the server and export; in an NFS specification, the server name
comes first, followed by a :/ symbol pair and the name of the export.

10. B. The workgroup parameter identifies the name of the workgroup or domain to which the
Samba server belongs. This is a global option that must be set correctly for Samba to interact
normally with other SMB/CIFS clients and servers. The path, comment, and write list param-
eters are all share-level parameters that describe individual shares. Although you could theoret-
ically find any of them in the [global] section as a way of setting defaults for subsequent shares,
they aren’t as necessary for basic Samba functioning, and they can all be overridden within indi-
vidual share definitions.

11. D. The print ok and printable parameters are synonyms, so Joe’s change has no effect on the
operation of the share. Both before and after the change, the share was a printer share. Errors
are handled in precisely the same way, no matter which parameter name is used.

12. B. SWAT is the Samba Web Administration Tool, which provides local or remote GUI administra-
tion for a Samba server. Option A describes certain configuration changes to /etc/nsswitch.conf,
but SWAT is unnecessary for making these changes. Option C is a true statement, but the fact that
SWAT is run from a super server is not sufficient reason to run it. Option D is simply a made-up
description; it doesn’t describe SWAT.

13. D. Recursive DNS lookups take an unknown number of queries to various DNS servers that han-
dle different parts of the DNS name space.

14. A. Option A correctly describes the difference between these two configuration options. Option
B is a completely fictitious description. Option C is almost correct, but forward first; does
not result in a full recursive lookup unless the forwarding lookup fails in certain ways. Both con-
figurations are valid, at least within the context of an otherwise valid BIND 8/9 configuration.

15. C. The /etc/resolv.conf file holds the IP addresses of the DNS servers your system should use,
in the format of the specified line; thus, option C is correct. Option A, /etc/named.conf, is the
main BIND configuration file on the DNS server itself. Options B and D are both fictitious files.

16. A. A forwarding-only name server is normally intended for use only by the systems on a local net-
work. Exposing such a system to the Internet at large is almost certainly an unnecessary security
risk, so option A is correct. Option B is the exact opposite of the correct answer. Option C is incor-
rect because the number of existing DNS servers you have serving your domain is irrelevant to the
question of forwarding DNS servers. The version of BIND, as mentioned in option D, is also unim-
portant to the question, at least as a matter of principle. (As with all servers, some versions have
known security bugs, of course.)

17. B, C. SSH is most directly a replacement for Telnet, but SSH also includes file transfer features
that enable it to replace FTP in many situations. SSH is not a direct replacement for either SMTP
or NFS.

4425c10.fm Page 553 Tuesday, July 12, 2005 10:58 PM

554 Chapter 10 � Managing Servers

18. A. The ssh_host_dsa_key file holds one of three critical private keys for SSH. The fact that this
key is readable (and writeable!) to the entire world is disturbing. In principle, a miscreant who
has acquired this file might be able to redirect traffic and masquerade as your system, duping
users into delivering passwords and other sensitive data.

19. B. SSH protocol level 2 is more secure than protocol level 1; thus, option B (specifying accep-
tance of level 2 only) is the safest approach. Option A is the least safe approach because it pre-
cludes the use of the safer level 2. Options C and D are exactly equivalent in practice; both
support both protocol levels.

20. A. Allowing only normal users to log in via SSH effectively requires two passwords for any remote
root maintenance, improving security. SSH encrypts all connections, so it’s unlikely that the pass-
word, or commands issued during an SSH session, will be intercepted. (Nonetheless, some admin-
istrators prefer not to take even this small risk.) SSH doesn’t store passwords in a file.

4425c10.fm Page 554 Tuesday, July 12, 2005 10:58 PM

Glossary

4425.book Page 555 Tuesday, July 12, 2005 10:43 PM

556

Glossary

Numbers

8.3 filename

A filename that consists of no more than eight characters plus an optional dot (

.

)
and three-character extension. This file naming limit exists in DOS and the original File Allo-
cation Table (FAT) filesystem it uses.

A

access control list (ACL)

A security system that provides a list of usernames or groups and
their permissions to access a resource. ACLs are expanding and supplementing traditional Unix-
style permissions on new filesystems. Ext2fs, ext3fs, JFS, and XFS all support ACLs natively,
and ACL extensions for ReiserFS are available.

account

Stored information and a reserved directory that allows one individual to use a
computer. The term is often used and thought of as if it were a distinct virtual component of
a computer that a person can use, as in “Sam logged into his account,” or “Miranda’s account
isn’t working.”

ACL

See

access control list (ACL)

.

active partition

The partition that’s marked as bootable in the Master Boot Record
(MBR). Some boot loaders, such as the standard DOS/Windows boot loader, boot the
active partition.

Address Resolution Protocol (ARP)

A protocol used to learn a network hardware address
based on an IP address.

Advanced Linux Sound Architecture (ALSA)

One of two major sets of sound drivers in
Linux. Added as a standard part of the 2.6.

x

 kernel series, but available as an add-on package
for earlier kernels. See also

Open Sound System (OSS)

.

Advanced Technology Attachment (ATA)

A type of interface for hard disks, CD-ROM
drives, tape drives, and other mass storage devices. Also often referred to as

EIDE.

ALSA

See

Advanced Linux Sound Architecture (ALSA)

.

anti-aliasing

A technique for rendering fonts that uses shades of gray along curved or angled
edges in order to improve the legibility and aesthetic appeal of individual characters.

Apache

A common web server package for Linux.

ARP

See

Address Resolution Protocol (ARP)

.

ATA

See

Advanced Technology Attachment (ATA)

.

4425.book Page 556 Tuesday, July 12, 2005 10:43 PM

Glossary

557

B

backport

The practice of moving more advanced features into less advanced versions of a
package. This has been common to add hardware support from development kernels into
stable kernels.

Basic Input/Output System (BIOS)

A low-level software component included on a com-
puter’s motherboard in read-only memory (ROM) form. The CPU runs BIOS code when it first
starts up, and the BIOS is responsible for locating and booting an OS or OS loader.

baud

A measure of data transmission speed, commonly used over serial lines, corresponding
to the number of signal elements transmitted per second. This term is often used as a synonym
for “bits per second,” but many modems encode more than one bit per signal element, so the
two aren’t always synonymous.

Berkeley Internet Name Domain (BIND)

A common Domain Name System (DNS) server
for Linux.

BIND

See

Berkeley Internet Name Domain (BIND)

.

BIOS

See

Basic Input/Output System (BIOS).

bitmap font

A font whose characters are defined in terms of the activation or inactivation of
individual pixels. Bitmap fonts are quick to display but inflexible. See also

scalable font.

boot loader

A program that directs the boot process. The BIOS calls the boot loader, which
loads the Linux kernel or redirects the boot process to another boot loader. Also known as a

boot manager.

boot manager

See

boot loader.

broadband

1. High-speed (greater than 200Kbps) Internet connections delivered to homes
and small businesses. 2. Networking technologies that support simultaneous transmission of
data, voice, and video.

broadcast

A type of network access in which one computer sends a message to many com-
puters (typically all the computers on the sender’s local network segment).

build number

A number identifying minor changes made to a binary package by its main-
tainer rather than changes implemented by the program’s author, which are reflected in the ver-
sion number.

C

C library (libc)

Standard programming routines used by many programs written in the C pro-
gramming language. The most common Linux C library is also referred to as

GNU libc (glibc).

4425.book Page 557 Tuesday, July 12, 2005 10:43 PM

558

Glossary

cathode ray tube (CRT)

A type of computer display that uses a glass screen with an electron
gun that shoots charged particles at the screen to make images. CRTs are similar to conven-
tional television sets, but they’re declining in popularity in favor of LCD monitors.

central processing unit (CPU)

The main chip on a computer; it handles the bulk of its com-
putational tasks.

CGI

See

Common Gateway Interface (CGI).

checksum

A simple file integrity check in which the values of individual bits or bytes are
summed up and compared to a stored value for a reference version of the file.

chroot jail

A method of running a program (particularly a server) so that it’s access to the
computer is limited to a particular directory tree. A chroot jail is a useful security measure for
certain types of servers.

CHS geometry

See

cylinder/head/sector (CHS) geometry.

CIDR

See

classless inter-domain routing (CIDR).

classless inter-domain routing (CIDR)

A method of breaking down IP addresses into subnets
for routing purposes that does not rely on the traditional Class A/B/C distinctions. CIDR is more
flexible than the class system but requires certain Internet routers to have larger routing tables.

client

1. A program that initiates data transfer requests using networking protocols. 2. A com-
puter that runs one or more client programs.

CMOS

See

complementary metal oxide semiconductor (CMOS)

.

command completion

A feature of many Linux shells that simplifies typing long commands.
Pressing the Tab key causes the shell to search for possible commands or filenames that would
complete the command. If only one command or filename matches the characters typed so far,
the shell completes the entry. If not, the shell enters the characters up to the point where the user
must specify another character.

Common Gateway Interface (CGI)

A system for running scripts or programs from a web
server at the request of web clients.

Common Unix Printing System (CUPS)

A relatively recent printing system for Linux and
other Unix-like systems. CUPS adds several features that had been missing from the earlier BSD
LPD and LPRng printing systems.

complementary metal oxide semiconductor (CMOS)

A part of the BIOS that gives the user
the ability to control key chipset features, such as enabling or disabling built-in ports.

conditional expression

A construct of computer programming and scripting languages used
to express a condition, such as the equality of two variables or the presence of a file on a disk.
Conditional expressions enable a program or script to take one action in one case and another
action in the other case.

Coordinated Universal Time (UTC)

A time closely related to

Greenwich Mean Time (GMT).

4425.book Page 558 Tuesday, July 12, 2005 10:43 PM

Glossary

559

CPU

See

central processing unit (CPU).

cracker

An individual who breaks into computers. Crackers may do this out of curiosity,
malice, for profit, or for other reasons.

cron

 job

A program or script that’s run at a regular interval by the

cron

 daemon. See also

system cron job

 and

user cron job

.

CRT

See

cathode ray tube (CRT).

CUPS

See

Common Unix Printing System (CUPS)

.

cylinder/head/sector (CHS) geometry

A method of hard disk addressing in which a triplet
of numbers (a cylinder, a head, and a sector) are used to identify a specific sector. CHS geometry
addressing contrasts with linear block addressing (LBA).

D

daemon

A program that runs constantly, providing background services. Linux servers are
typically implemented as daemons, although there are a few nonserver daemons.

Data Display Channel (DDC)

A protocol that enables a computer to query a monitor for its
maximum horizontal and vertical refresh rates and other vital statistics.

DDC

See

Data Display Channel (DDC).

Debian package

A package file format that originated with the Debian distribution but is
now used on several other distributions. Debian packages feature excellent dependency tracking
and easy installation and removal procedures.

default route

The route that network packets take if a more specific route doesn’t direct them
in some other way. The default route typically involves a gateway or router system that can fur-
ther redirect the packets.

dependency

A requirement of one software package that another one be installed. For
instance, most Linux programs include a dependency on the C library.

desktop environment

A set of programs that provide a friendly graphical environment for a
Linux user.

development kernel

A kernel with an odd middle number, such as 2.5.67. These kernels incor-
porate experimental features and are not as stable as release kernels. See also

release kernel.

DHCP

See

Dynamic Host Configuration Protocol (DHCP).

DHCP lease

A temporary assignment of an IP address to a DHCP client by a DHCP server.
Clients must periodically renew their DHCP leases or risk losing the right to use the address.

digital subscriber line (DSL)

A type of broadband network access provided over telephone lines.
Several subtypes of DSL exist, including Asymmetric DSL (ADSL) and Symmetric DSL (SDSL).

4425.book Page 559 Tuesday, July 12, 2005 10:43 PM

560

Glossary

direct memory addressing (DMA)

A means of transferring data between devices (such as
sound cards or SCSI host adapters) and memory without directly involving the CPU.

disk quota

A limit on the amount of disk space that an individual or group may use.

DMA

See

direct memory addressing (DMA).

DNS

See

Domain Name System (DNS).

Domain Name System (DNS)

A distributed set of computers that run servers to convert
between computer names (such as

ns.example.com

) and IP addresses (such as 192.168.45.204).
DNS servers are organized hierarchically and refer requests to systems responsible for successively
more specific domains.

domain name

A name assigned to a group of computers, such as

example.com

. Individual
computers have hostnames that include the domain name, such as

jupiter.example.com

.

dot file

A Linux or Unix file whose name begins with a dot (

.

). Most Linux shells and pro-
grams hide such files from the user, so user configuration files usually come in this form so as
to be unobtrusive in directory listings.

dotted quad

A method of referring to an IP address or netmask that uses four 1-byte numbers
separated by dots (

.

), as in 192.168.72.27 or 255.255.255.0.

DSL

See

digital subscriber line (DSL).

Dynamic Host Configuration Protocol (DHCP)

A protocol used on local networks for dis-
semination of network configuration information. A single DHCP server can maintain infor-
mation for many DHCP clients, reducing overall configuration effort.

dynamic library

A type of library that’s stored as a separate file from an executable program
but that’s loaded along with the main program file. Dynamic libraries save disk space and RAM
compared to static libraries. See also

library

 and

static library.

E

EEPROM See electronically erasable programmable read-only memory (EEPROM).

EHCI See Enhanced Host Controller Interface (EHCI).

electronically erasable programmable read-only memory (EEPROM) A type of data
storage chip that retains data when power has been turned off but that can be erased and
rewritten electronically. Frequently used to store a computer’s or plug-in card’s BIOS.

encryption key A number that’s used in conjunction with an algorithm to scramble data in a
way that can be descrambled only with the use of the same or a related number.

Enhanced Host Controller Interface (EHCI) A type of controller for USB 2.0 ports.

4425.book Page 560 Tuesday, July 12, 2005 10:43 PM

Glossary 561

environment variable A setting that’s available to any program running in a session. Envi-
ronment variables can define features such as the terminal type being used, the path to search
for executable programs, and the location of an X server for GUI programs.

export 1. As a noun, a directory that’s shared via the Network File System (NFS) server. 2. As
a verb, the act of sharing a directory via NFS.

ext2 See Second Extended File System (ext2fs or ext2).

ext2fs See Second Extended File System (ext2fs or ext2).

ext3 See Third Extended File System (ext3fs or ext3).

ext3fs See Third Extended File System (ext3fs or ext3).

extended partition A type of disk partition used on x86 systems. Extended partitions are
placeholders for one or more logical partitions.

Extents File System (XFS) One of several journaling filesystems for Linux. XFS was developed
by Silicon Graphics (SGI) for its IRIX OS and then ported to Linux.

F

FAQ See Frequently Asked Question (FAQ).

FAT See File Allocation Table (FAT).

FHS See Filesystem Hierarchy Standard (FHS).

File Allocation Table (FAT) 1. A type of filesystem used as a native filesystem by DOS and
Windows and also supported as a non-native filesystem by Linux and most other OSs. 2. On the
FAT filesystem, a data structure after which the filesystem is named.

file globbing The process of wildcard expansion—for instance, matching the existing file
glossary.txt when the string glos*.txt is typed. Also called globbing.

file server A computer or program that delivers files to other computers via network protocols
upon request. Examples of file server programs include NFS, Samba, and FTP.

file type code A special code that identifies the type of a file, such as a regular file, a directory,
or a device file.

Filesystem Hierarchy Standard (FHS) A standard that defines the names and contents of crit-
ical directories in a Linux filesystem (meaning 2).

Filesystem Standard (FSSTND) An early attempt to define the names and contents of critical
directories in a Linux filesystem (meaning 2). The FSSTND has been supplanted by the FHS.

4425.book Page 561 Tuesday, July 12, 2005 10:43 PM

562 Glossary

filesystem 1. The low-level data structures recorded on a disk in order to direct the placement of file
data. The filesystem determines characteristics like the maximum partition size, the file-naming rules,
and what extra data (time stamps, ownership, and so on) may be associated with a file. 2. The overall
layout of files and directories on a computer. For instance, a Linux filesystem includes a root directory
(/), several directories falling off this (/usr, /var, /boot, etc.), subdirectories of these, and so on.

firewall 1. A program or kernel configuration that blocks access to specific ports or network
programs on a computer. 2. A computer that’s configured as a router and that includes firewall
software that can restrict access between the networks it manages.

font server A program that provides font bitmaps to client programs on the same or (some-
times) other computers. The font server may work directly from font bitmaps, or it may gen-
erate the bitmaps from outline fonts such as PostScript Type 1 or TrueType fonts.

font smoothing See anti-aliasing.

frame In networking, a data packet associated with network hardware (such as Ethernet) as
opposed to the software (such as TCP/IP).

Frequently Asked Question (FAQ) 1. A question that’s asked frequently, particularly on
Usenet newsgroups or other online discussion forums. 2. A document that collects many FAQs
(meaning 1) and their answers.

FSSTND See Filesystem Standard (FSSTND).

full duplex A mode of communication in which data can be transferred in two directions at
the same time.

function In the context of programming or scripting, a section of code that can be called by
name from other sections of code in order to perform some specific task or set of computations.

G

GID See group ID (GID).

gigabit Ethernet A variety of Ethernet that can transfer 1,000 megabits (1 gigabit) per second.

glibc See GNU C library (glibc).

globbing See file globbing.

GMT See Greenwich Mean Time (GMT).

GNOME See GNU Network Object Model Environment (GNOME).

GNU C library (glibc) A specific type of C library used on Linux systems since the late 1990s.
See also C library (libc).

GNU Network Object Model Environment (GNOME) A common desktop environment for
Linux, headquartered at http://www.gnome.org.

4425.book Page 562 Tuesday, July 12, 2005 10:43 PM

Glossary 563

Grand Unified Boot Loader (GRUB) A popular boot loader for Linux. GRUB can boot a
Linux kernel or redirect the boot process to another boot loader in a non-Linux partition, thus
booting other OSs. Similar to the competing Linux Loader (LILO). See also boot loader.

graphical user interface (GUI) A method of human/computer interaction characterized by
a graphical display, a mouse to move a pointer around the screen, and the ability to perform
actions by pointing at objects on the screen and clicking a mouse button.

Greenwich Mean Time (GMT) The time in Greenwich, England, unadjusted for Daylight
Saving Time. Linux systems use this time internally and adjust to local time by knowing the
system’s time zone. See also Coordinated Universal Time (UTC).

group A collection of users. Files are owned by a user and a group, and group members may
be given access to files independent of the owner and all other users. This feature may be used
to enhance collaborative abilities by giving members of a group read/write access to particular
files while still excluding those who aren’t members of the group. It can also be used by system
administrators to control access to system files and resources.

group administrator A person with administrative authority over a group. A group adminis-
trator can add or delete members from a group and perform similar administrative tasks.

group ID (GID) A number associated with a particular group. Similar to a user ID (UID).

GRUB See Grand Unified Boot Loader (GRUB).

GUI See graphical user interface (GUI).

H

hacker 1. An individual who is skilled at using or programming computers and who enjoys
using these skills in constructive ways. Many Linux programmers consider themselves hackers in
this sense of the term. 2. A cracker (see also cracker). This use of the term is more prevalent in the
mass media, but it is frowned upon in the Linux community.

half-duplex A type of data transmission in which data can be sent in only one direction at
a time.

hard link A directory entry for a file that has another directory entry. All hard links are equally
valid ways of accessing a file, and all must be deleted in order to delete a file. See also soft link.

hardware address A code that uniquely identifies a single network interface. This address is
built into the device itself rather than assigned in Linux.

hardware clock A clock that’s built into x86 (and most other computers’) hardware. The
hardware clock maintains the time when the system is powered down. See also software clock.

hashes An encryption method in which a file or string is encoded in a manner that cannot be
reversed. Hashes are commonly used for password storage and as a more secure variant on
checksums, among other things. See also checksum.

4425.book Page 563 Tuesday, July 12, 2005 10:43 PM

564 Glossary

header In e-mail, a line that contains information about a message’s delivery path, sender,
recipient, or other meta-information.

header file File that contains interface definitions for software routines contained in a library.
Program source code that uses a library must refer to the associated header files.

here document A form of redirection, denoted by <<, which takes the following lines of input
to be passed to a program as standard input. Most often used to pass fixed input to a program
as standard input in scripts, obviating the need for separate support files.

HFS See Hierarchical File System (HFS).

Hierarchical File System (HFS) A filesystem used on Mac OS.

high-level formatting A type of disk formatting that writes the data that define a filesystem.
Also called making a filesystem. See also low-level formatting.

hostname A computer’s human-readable name, such as persephone.example.com.

hot-pluggable Hardware that can be safely added or removed while the computer is powered up
and running. USB and FireWire are examples of protocols that support hot-plugging hardware.

HTTP See Hypertext Transfer Protocol (HTTP).

hub A type of network hardware that serves as a central exchange point in a network. Each
computer has a cable that links to the hub, so all data pass through the hub. Hubs echo all data
they receive to all the other computers to which they connect. See also switch.

hung Term used to describe a program that’s stopped responding to user input, network
requests, or other types of input to which it should respond. Hung processes sometimes con-
sume a great deal of CPU time.

Hypertext Transfer Protocol (HTTP) A protocol used for transferring web pages from a web
server to a web browser.

I

ICMP See Internet Control Message Protocol (ICMP).

incremental backup A type of backup in which only files that have changed since the last
backup are backed up. This is used to reduce the time required to back up a computer, at the
cost of potentially greater restoration complexity.

Industry Standard Architecture (ISA) The expansion bus used on the original IBM PC. Most
manufacturers began dropping ISA from their motherboards around 2001. ISA is inferior to
PCI in most respects, but it has a huge installed base.

4425.book Page 564 Tuesday, July 12, 2005 10:43 PM

Glossary 565

inode A filesystem (meaning 1) data structure that contains critical information on the file,
such as its size and location on the disk.

Integrated Services Digital Network (ISDN) A type of digital telephone service and
Internet access. ISDN supports a total data transfer speed of 128Kbps, plus some extra for
control features.

Internet Control Message Protocol (ICMP) A type of network packet that’s commonly used
to signal error conditions, such as corrupted packets.

Internet Printing Protocol (IPP) A relatively new protocol for printing on a network. Used by
CUPS on Linux.

Internet Protocol (IP) An internet-layer protocol that’s an important part of the TCP/IP net-
work stack.

Internet Relay Chat (IRC) An Internet-based real-time group communication system. IRC
enables users to “chat” in forums devoted to particular topics. This can be handy for real-time
debugging of Linux problems if you can find an appropriate forum.

interrupt request (IRQ) A method by which peripherals (SCSI host adapters, sound cards,
etc.) signal that they require attention from the CPU. An IRQ also refers to a specific interrupt
signal line. The x86 architecture supports 16 IRQs, numbered 0–15, but IRQs 2 and 9 are
linked, so in practice, there are only 15 IRQs, and many of these are used by basic hardware like
floppy disks.

IP See Internet Protocol (IP).

IP address A computer’s numeric TCP/IP address, such as 192.168.45.203.

IP masquerading See Network Address Translation (NAT).

IPP See Internet Printing Protocol (IPP).

IPv6 The “next-generation” Internet Protocol. This upgrade to TCP/IP allows for a theoretical
maximum of approximately 3.4 × 1038 addresses, as opposed to the 4 billion addresses possible
with the IPv4 that’s in common use in 2005.

IRC See Internet Relay Chat (IRC).

IRQ See interrupt request (IRQ).

ISA See Industry Standard Architecture (ISA).

ISDN See Integrated Services Digital Network (ISDN).

ISO-9660 The most common filesystem on CD-ROM and related optical media. ISO-9660 is
often paired with Rock Ridge extensions or a Joliet filesystem in order to support long filenames
and other features.

4425.book Page 565 Tuesday, July 12, 2005 10:43 PM

566 Glossary

J

JFS See Journaled File System (JFS).

Joliet A filesystem commonly used on CD-ROMs and related optical media. Joliet supports
Microsoft-style long filenames and is almost always used in conjunction with an ISO-9660
filesystem.

journal An advanced filesystem feature that records data on pending disk operations. See also
journaling filesystem.

Journaled File System (JFS) One of several journaling filesystems for Linux. JFS was devel-
oped by IBM for its AIX OS. A subsequent implementation was created for OS/2, and Linux’s
JFS is derived from this code.

journaling filesystem A type of filesystem that maintains a record of its operations. Such file-
systems can typically recover quickly after a power failure or system crash. Common Linux
journaling filesystems are ext3fs, ReiserFS, JFS, and XFS. See also filesystem.

K

K Desktop Environment (KDE) A common desktop environment for Linux, headquartered at
http://www.kde.org.

KDE See K Desktop Environment (KDE).

kernel module A driver or other kernel-level program that may be loaded or unloaded
as required.

kernel ring buffer A record of recent messages generated by the Linux kernel. Immediately
after a Linux system boots, this buffer contains the bootup messages generated by drivers and
major kernel subsystems. This buffer may be viewed with the dmesg command.

L

LBA See logical block addressing (LBA).

LCD See liquid crystal display (LCD).

libc See C library (libc).

library A collection of code that’s potentially useful to many programs. This code is stored in
special files to save disk space and RAM when running programs that use the library. See also
static library and dynamic library.

LILO See Linux Loader (LILO).

4425.book Page 566 Tuesday, July 12, 2005 10:43 PM

Glossary 567

linear block addressing (LBA) See logical block addressing (LBA).

link A way of providing multiple names to reference a single file. Links are created with the
ln command.

Linmodem A software modem for which Linux drivers are available. See also software
modem.

Linux Loader (LILO) A popular Linux boot loader. Can boot a Linux kernel or redirect the
boot process to another boot loader in a non-Linux partition, thus booting other OSs. Similar
to the competing Grand Unified Boot Loader (GRUB). See also boot loader.

liquid crystal display (LCD) A type of flat-panel display that’s common on laptops and is
becoming more common on desktop systems. LCDs are lightweight and consume little elec-
tricity, but they’re more expensive to produce than are conventional monitors.

load average A measure of the demands for CPU time by running programs. A load average
of 0 means no demand for CPU time; 1 represents a single program placing constant demand
on the CPU; and values higher than 1 represent multiple programs competing for CPU time. The
top and uptime commands both provide load average information.

localhost A name for the local computer.

log file A text file, maintained by the system as a whole or by an individual server, in which
important system events are recorded. Log files typically include information on user logins,
server access attempts, and automatic routine maintenance.

log file rotation A routine maintenance process in which the computer suspends recording
data in log files, renames them, and opens new log files. This process keeps log files available
for a time, but ultimately it deletes them, preventing them from growing to consume all avail-
able disk space. Also called log rotation.

log rotation See log file rotation.

logical block addressing (LBA) A method of accessing data on a disk that uses a single sector
number to retrieve data from that sector. LBA contrasts with cylinder/head/sector (CHS)
addressing. Some sources refer to LBA as linear block addressing.

logical partition A type of x86 hard disk partition that has no entry in the primary partition
table. Instead, logical partitions are carried within an extended partition.

loop A programming or scripting construct enabling multiple executions of a segment of code.
Typically terminated through the use of a conditional expression.

loopback A name that refers to a network interface or address that points back to the com-
puter itself. This is typically the 127.0.0.1 IP address.

low-level formatting Creating data structures on a disk that define the locations of individual
sectors and tracks. Hard disks are low-level formatted at the factory and should not normally
be low-level formatted by end users. Floppy disks may need to be low-level formatted by end
users via the Linux fdformat command. See also high-level formatting.

4425.book Page 567 Tuesday, July 12, 2005 10:43 PM

568 Glossary

M

MAC address See Media Access Control (MAC) address.

machine name The portion of a hostname that identifies a computer on a network, as
opposed to the network as a whole (for instance, gingko is the machine name portion of
gingkgo.example.com). The machine name is sometimes used in reference to the entire
hostname.

major version number The first number in a program’s version number. For instance, if a
program’s version number is 1.2.3, the major version number is 1.

master boot Record (MBR) The first sector of a hard disk. The MBR contains code that the
BIOS runs during the boot process as well as the primary partition table.

MBR See master boot record (MBR).

Media Access Control (MAC) address A low-level address associated with a piece of net-
work hardware. The MAC address is usually stored on the hardware itself, and it is used for
local network addressing only. Addressing between networks (such as on the Internet) uses
higher-level addresses, such as an IP address.

mode The permissions of a file. In conjunction with the file’s owner and group, the mode
determines who may access a file and in what ways.

mode lines Definition of the timings required by particular video resolutions running at par-
ticular refresh rates.

modem This word is short for modulator/demodulator. It’s a device for transferring digital
data over an analog transmission medium. Traditionally, the analog transmission medium has
been the normal telephone network, but the word modem is increasingly being applied to
devices used for broadband Internet access as well.

module A kernel driver or other kernel component that’s stored in a separate file. Linux can
load modules on demand or on command, saving RAM when modules aren’t in use and
reducing the size of the kernel.

module stack A set of modules that build up to provide some set of features. For instance,
to deliver sound, you might need to load several sound driver modules that make up a
module stack.

mount 1. The process of adding a filesystem (meaning 1) to a directory tree. 2. A command
of the same name that performs this task.

mount point A directory to which a new filesystem (meaning 1) is attached. Mount points are
typically empty directories before their host filesystems are mounted.

mounted The status of a filesystem that has been linked to a directory tree using the mount
command.

4425.book Page 568 Tuesday, July 12, 2005 10:43 PM

Glossary 569

multi-head display A display that’s made up of two or more physical monitors that together
show a wider view on a larger virtual workspace.

multicast A method of sending network data to multiple remote sites. Multicasts differ from
broadcasts in that multicasts are more focused whereas broadcasts are typically sent to all the
computers on a network.

N

NAT See Network Address Translation (NAT).

netmask See network mask.

Network Address Translation (NAT) A technique in which a router can “hide” a whole net-
work from view, making all the systems look like one computer to the outside world.

Network File System (NFS) A file sharing protocol used among Linux and Unix computers.

network mask A bit pattern that identifies the portion of an IP address that’s an entire net-
work and the part that identifies a computer on that network. The pattern may be expressed
in dotted quad notation (as in 255.255.255.0) or as the number of network bits following an
IP address and a slash (as in 192.168.45.203/24). The network mask is also referred to as the
netmask or subnet mask.

network stack See protocol stack.

Network Time Protocol (NTP) A network protocol and server enabling one computer to set
its clock based on the value maintained by another clock.

New Technology File System (NTFS) The favored filesystem on Windows NT/200x/XP
systems. Linux supports NTFS, but this support is limited.

NFS See Network File System (NFS).

NTFS See New Technology File System (NTFS).

NTP See Network Time Protocol (NTP).

O

OHCI See Open Host Controller Interface (OHCI).

Open Host Controller Interface (OHCI) One of two common hardware standards for man-
aging USB 1.x ports. The other is the Universal Host Controller Interface (UHCI).

open relay An SMTP mail server that’s configured to relay mail from anywhere to anywhere.
Open relays are frequently abused by spammers to obfuscate their messages’ true origins.

4425.book Page 569 Tuesday, July 12, 2005 10:43 PM

570 Glossary

Open Sound System (OSS) One of two common sound systems for Linux, the other being
the Advanced Linux Sound Architecture (ALSA). OSS is available in all versions of the Linux
kernel, but ALSA is preferred in the 2.6.x kernel series.

OSS See Open Sound System (OSS).

outline font See scalable font.

P

package A collection of files stored in a single carrier file, ready for installation using a
package management system such as RPM or the Debian package system.

packet A limited amount of data collected together with addressing information and sent over
a network.

packet filter firewall A type of firewall that operates on individual network data packets,
passing or rejecting packets based on information such as the source and destination addresses
and ports.

packet sniffer A program that monitors network traffic at a low level, enabling diagnosis of
problems and capturing data. Packet sniffers can be used both for legitimate network diagnosis
and for data theft.

parallel ATA (PATA) The traditional form of ATA interface, in which several bits are trans-
ferred at once. See also serial ATA (SATA).

PATA See parallel ATA (PATA).

path A colon-delimited list of directories in which program files may be found. (Similar lists
define the locations of directories, fonts, and other file types.)

PCI See Peripheral Component Interconnect (PCI).

PCL See Printer Control Language (PCL).

Peripheral Component Interconnect (PCI) An expansion bus capable of much higher speeds
than the older ISA bus. Modern computers usually include several PCI slots.

permission bit A single bit used to define whether a given user or class of users has a partic-
ular type of access to a file. For instance, the owner’s execute permission bit determines whether
the owner can run a file as a program. The permission bits together make up the file’s mode.

phishing The process of sending bogus e-mail or putting up fake websites with the goal of col-
lecting sensitive personal information (typically credit card numbers).

pipe A method of executing two programs so that one program’s output serves as the second
program’s input. Piped programs are separated in a Linux shell by a vertical bar (|).

4425.book Page 570 Tuesday, July 12, 2005 10:43 PM

Glossary 571

pipeline See pipe.

Plug and Play (PnP) A set of hardware standards enabling automated, or at least software-
based, configuration of hardware. This term applies mostly to ISA devices, although PCI and
other devices are sometimes described as being PnP devices.

PnP See Plug and Play (PnP).

Point-to-Point Protocol (PPP) A method of initiating a TCP/IP connection between two com-
puters over an RS-232 serial line or modem. See also PPP over Ethernet (PPPoE).

port See port number.

port number A number that identifies the program from which a data packet comes or to
which it’s addressed. When a program initiates a network connection, it associates itself with
one or more ports, enabling other computers to uniquely address the program.

POST See power-on self-test (POST).

PostScript A programming language used on many high-end printers. PostScript is optimized
for displaying text and graphics on the printed page. The Linux program Ghostscript converts
from PostScript to bitmapped formats understood by many low-end and mid-range printers.

PostScript Printer Definition (PPD) A configuration file that provides information on a
printer’s capabilities—its paper size, whether it prints in color, and so on.

PostScript Type 1 An outline font format associated with PostScript but useable under Linux
with or without a PostScript printer. See also TrueType.

power-on self-test (POST) A series of basic hardware checks performed by the BIOS when
the computer is first powered on and before the boot loader or OS boots. The POST can detect
some, but not all, serious hardware problems before the OS boots.

PPD See PostScript Printer Definition (PPD).

PPP See Point-to-Point Protocol (PPP).

PPP over Ethernet (PPPoE) A variant of the Point-to-Point Protocol (PPP) that’s optimized for
use over Ethernet rather than RS-232 serial connections. PPPoE is used by some DSL providers.

PPPoE See PPP over Ethernet (PPPoE).

primary partition A type of x86 partition that’s defined in a data structure contained in the
hard disk’s partition table in the MBR. An x86 computer can host only four primary partitions
per hard disk.

print queue A storage place for files waiting to be printed.

Printer Control Language (PCL) A language developed by Hewlett-Packard for controlling
printers. (Many of Hewlett-Packard’s competitors now use PCL.) PCL is most commonly found
on mid-range laser printers, but some ink-jet printers also support the language. Several PCL
variants exist, the most common ranging from PCL 3 to PCL 6.

4425.book Page 571 Tuesday, July 12, 2005 10:43 PM

572 Glossary

printer driver A software component that converts printable data generated by an application
into a format that’s suitable for a specific model of printer. In Linux, printer drivers usually
reside in Ghostscript, but some applications include a selection of printer drivers to print
directly to various printers.

private key One of two keys used in certain types of cryptography. The private key should be
carefully guarded against theft. See also encryption key and public key.

privileged port A port (see port number) that’s numbered below 1024. Linux restricts access
to such ports to root. In networking’s early days, any program running on a privileged port
could be considered trustworthy because only programs configured by professional system
administrators could be run on such ports. Today, that’s no longer the case. See also unprivi-
leged port.

process A piece of code that’s maintained and run by the Linux kernel separately from other
pieces of code. Most processes correspond to programs that are running. One program can be
run multiple times, resulting in several processes.

protocol stack A collection of drivers, kernel procedures, and other software that implements
a standard means of communicating across a network. Two computers must support compat-
ible protocol stacks to communicate. The most popular protocol stack today is TCP/IP. Also
called a network stack.

public key One of two keys used in certain types of cryptography. The public key is frequently
given to the other side in a communication link. See also encryption key and private key.

R

random access A method of access to a storage device (RAM, hard disk, etc.) by which infor-
mation may be stored or retrieved in an arbitrary order with little or no speed penalty. See also
sequential access.

RAM See random access memory (RAM).

random access memory (RAM) Memory that can be randomly accessed. More specifi-
cally, RAM can be read and written with ease and makes up the bulk of the memory in
modern computers.

real-time clock (RTC) See software clock.

recursive lookup A method of name resolution in which the DNS server queries a series of
DNS servers, each of which has information on more and more specific networks, in order to
locate the IP address associated with a hostname.

redirection A procedure in which a program’s standard output is sent to a file rather than to
the screen or in which the program’s standard input is obtained from a file rather than from the
keyboard. See also standard input and standard output.

4425.book Page 572 Tuesday, July 12, 2005 10:43 PM

Glossary 573

regular expression A method of matching textual information that may vary in important
ways but that contains commonalities. The regular expression captures the commonalities and
uses various types of wildcards to match variable information.

ReiserFS One of several journaling filesystems for Linux. ReiserFS was developed from
scratch for Linux.

release kernel A kernel with an even second number, such as 2.4.22 or 2.6.1. Release kernels
should have few bugs, but they sometimes lack drivers for the latest hardware. See also devel-
opment kernel.

release number See build number.

Rock Ridge extensions A set of extensions to the ISO-9660 filesystem that enable storage of
Unix-style long filenames, ownership, permissions, and other filesystem features on an ISO-9660
filesystem. See also ISO-9660 and Joliet.

root directory The directory that forms the base of a Linux filesystem (meaning 2). All other
directories are accessible from the root directory, either directly or via intermediate directories.

root filesystem See root directory.

root kit A set of scripts and other software that enable script kiddies to break into computers.

root servers A set of DNS servers that deliver information to other DNS servers about top-
level domains (.com, .net, .us, and so on). DNS servers consult the root DNS servers first
when performing full recursive DNS lookups.

RPM See RPM Package Manager (RPM).

RPM Package Manager (RPM) A package file format and associated utilities designed by Red
Hat but now used on many other distributions as well. RPM features excellent dependency
tracking and easy installation and removal procedures.

RTC See real-time clock (RTC).

runlevel A number associated with a particular set of services that are being run. Changing
runlevels changes services or can shut down or restart the computer.

S

Samba A server that implements the SMB/CIFS file sharing protocols for Linux.

SAS See Serial Attached SCSI (SAS).

SATA See Serial ATA.

scalable font A font whose characters are defined in terms of a series of lines and curves. Scal-
able fonts are easily scaled to fit any display, printer, or other output device, but this scaling
operation consumes CPU time. Also known as an outline font. See also bitmap font.

4425.book Page 573 Tuesday, July 12, 2005 10:43 PM

574 Glossary

script kiddies Individuals with little knowledge or skill who break into computers using
scripts created by others. Such break-ins often leave obvious traces, and script kiddies fre-
quently cause collateral damage that produces system instability.

SCSI See Small Computer System Interface (SCSI).

Second Extended File System (ext2fs or ext2) The most common filesystem (meaning 1) in
Linux from the mid-1990s through approximately 2001.

Secure Shell (SSH) A remote login protocol and program that uses encryption to ensure that
intercepted data packets cannot be used by an interloper. Generally regarded as the successor
to Telnet on Linux systems.

sendmail A popular SMTP mail server for Linux.

sequential access A method of accessing a storage medium; sequential access requires
reading or writing data in a specific order. The most common example is a tape; to read data
at the end of a tape, you must wind past the interceding data. See also random access.

Serial ATA (SATA) A type of ATA interface that uses serial data transfer rather than the par-
allel data transfers used in older forms of ATA. See also parallel ATA (PATA).

Serial Attached SCSI (SAS) A type of SCSI interface that uses serial data transfer rather than
the parallel data transfers used in older forms of SCSI.

Serial Line Internet Protocol (SLIP) A method of initiating a TCP/IP connection between two
computers over an RS-232 serial line or modem. Although once common, SLIP is seldom used
today; instead, the Point-to-Point Protocol (PPP) is used.

set group ID (SGID) A special type of file permission used on program files to make the pro-
gram run with the permissions of its group. (Normally, the user’s group permissions are used.)

set user ID (SUID) A special type of file permission used on program files to make the pro-
gram run with the permissions of its owner rather than those of the user who runs the program.

SGID See set group ID (SGID).

shareable files Files that can be reasonably shared with another computer, as in users’ home
directory files and program files in /opt or /usr.

shared library See dynamic library.

shell A program that provides users with the ability to run programs, manipulate files, and so on.

shell history A log of commands typed at a shell. The shell history enables easy repetition of
a previously typed command.

shell script A program written in a language that’s built into a shell.

signal In reference to processes, a signal is a code that the kernel uses to control the termina-
tion of the process or to tell it to perform some task. Signals can be used to kill processes.

4425.book Page 574 Tuesday, July 12, 2005 10:43 PM

Glossary 575

Simple Mail Transfer Protocol (SMTP) The most common push mail protocol on the Internet.
SMTP is implemented in Linux by servers such as sendmail, Postfix, Exim, and qmail.

skeleton directory A directory, typically /etc/skel, that holds files that should be copied to
each new user’s home directory as the user’s account is created.

SLIP See Serial Line Internet Protocol (SLIP).

Small Computer System Interface (SCSI) An interface standard for hard disks, CD-ROM
drives, tape drives, scanners, and other devices.

smart filter A program, run as part of a print queue, that determines the type of a file and
passes it through appropriate programs to convert it to a format that the printer can handle.

smart relay A mail server configuration that involves sending all outgoing mail to a specific
upstream mail server rather than directly to the destination system. Such configurations are
common on small networks in which the ISP blocks direct SMTP connections to any but its own
mail server as an anti-spam measure or when you want one of your own systems to handle all
of a network’s outgoing mail as a tracking measure.

SMTP See Simple Mail Transfer Protocol (SMTP).

social engineering The practice of convincing individuals to disclose sensitive information
without arousing suspicion. Social engineers may pretend to be system administrators to ask for
passwords, for instance. See also phishing.

socket A programming construct enabling connection to network connection endpoints (the
combination of IP addresses and port numbers).

soft link A type of file that refers to another file on the computer. When a program tries to
access a soft link, Linux passes the contents of the linked-to file to the program. If the linked-
to program is deleted, the soft link stops working. Deleting the soft link doesn’t affect the orig-
inal file. Also referred to as a symbolic link. See also hard link.

software clock A type of clock maintained by a running Linux system and used by most soft-
ware programs that must refer to the time. See also hardware clock.

software modem A modem that implements key functionality in software that must be run
by the host computer. These modems require special drivers, which are uncommon in Linux.

spool directory A directory in which print jobs, mail, or other files wait to be processed.
Spool directories are maintained by specific programs, such as the printing system or SMTP
mail server.

squashing In the context of the NFS file server, this refers to changing the effective UID or
GID of an access request to limit the system’s vulnerability. The root account on the client is
often squashed to the nobody account on the server.

SSH See Secure Shell (SSH).

4425.book Page 575 Tuesday, July 12, 2005 10:43 PM

576 Glossary

stable kernel See release kernel.

standard error An output stream that’s reserved for high-priority messages, such as errors.
See also standard output.

standard input The default method of delivering input to a program. It normally corresponds
to the keyboard at which you type.

standard output The default method of delivering purely text-based information from a pro-
gram to the user. It normally corresponds to a text-mode screen, xterm window, or the like. See
also standard error.

stateful packet inspection A firewall tool in which a packet’s state (that is, whether it’s
marked to begin a transaction, to continue an existing exchange, and so on) is considered in the
filtering process.

static file A file that seldom changes. Partitions that hold nothing but static files may be
mounted read-only to minimize the risk of accidental or malicious changes to the partition’s files.

static library A type of library that’s compiled into the program’s main executable file. This
contrasts with a dynamic library.

sticky bit A special file permission bit that’s most commonly used on directories. When set,
only a file’s owner may delete the file, even if the directory in which it resides can be modified
by others.

stratum In the context of the Network Time Protocol (NTP), the distance of a server from an
atomic clock or other original time source. Stratum 0 servers are such sources but cannot be con-
tacted directly except by a stratum 1 server. Stratum 2 servers set their clocks from stratum 1
servers, stratum 3 servers set their clocks from stratum 2 servers, and so on.

stream Text or other input or output as processed by a program. Examples include files, key-
board input, and output to a screen.

subdomain A subdivision of a domain. A subdomain may contain computers or subdomains
of its own.

subnet mask See network mask.

SUID See set user ID (SUID).

super server A server that listens for network connections intended for other servers and
launches those servers. Examples on Linux are inetd and xinetd.

superuser A user with extraordinary rights to manipulate critical files on the computer. The
superuser’s username is normally root.

swap file A disk file configured to be used as swap space.

swap partition A disk partition configured to be used as swap space.

4425.book Page 576 Tuesday, July 12, 2005 10:43 PM

Glossary 577

swap space Disk space used as an extension to a computer’s RAM. Swap space enables a
system to run more programs or to process larger data sets than would otherwise be possible.

switch A type of network hardware that serves as a central exchange point in a network. Each
computer has a cable that links to the switch, so all data pass through the switch. A switch usu-
ally sends data only to the computer to which it’s addressed. See also hub.

symbolic link See soft link.

system clock See hardware clock.

system cron job A cron job that handles system-wide maintenance tasks, like log rotation or
deletion of unused files from /tmp. See also user cron job.

System V (SysV) A form of AT&T Unix that defined many of the standards used on modern
Unix systems and Unix clones, such as Linux.

SysV See System V (SysV).

SysV startup script A type of startup script that follows the System V startup standards. Such
a script starts one service or related set of services.

T

tarball A package file format based on the tar utility. Tarballs are easy to create and are read-
able on any version of Linux and on most non-Linux systems. They contain no dependency
information and the files they contain are not easy to remove once installed, however.

TCP See Transmission Control Protocol (TCP).

TCP/IP See Transmission Control Protocol/Internet Protocol (TCP/IP).

terminal program A program that’s used to initiate a simple text-mode connection between
two computers, especially via a modem or RS-232 serial connection.

terminated In the context of SCSI devices, this refers to the presence of a resistor pack that
prevents signals from bouncing back from the end of a SCSI chain. The devices on both ends of
a SCSI chain must be terminated, but other devices must not be terminated.

Third Extended File System (ext3fs or ext3) A variant of the Second Extended Filesystem
(ext2 or ext2fs) that adds a journal to reduce startup times after a power failure or system crash.
See also journaling filesystem.

Transmission Control Protocol (TCP) A major transport-layer protocol type in modern net-
working. TCP supports error correction and other features that are helpful in maintaining a link
between two computers.

Transmission Control Protocol/Internet Protocol (TCP/IP) The most important protocol
stack in common use today, and the basis for the Internet.

4425.book Page 577 Tuesday, July 12, 2005 10:43 PM

578 Glossary

TrueType A font format developed by Apple and dominant in the Mac OS and Windows
worlds. TrueType support in Linux is provided by certain font servers, by XFree86 4.x, by
X.org-X11, and by Xfs. See also PostScript Type 1.

trusted hosts A security system in which the server trusts a specified set of clients to manage
key aspects of the security. The trusted hosts model is used by NFS and some other Linux servers
but is risky on the Internet at large.

tunnel The process of using one protocol to carry another protocol’s traffic. Tunneling
enables you to gain the advantages of one protocol when using another. For instance, the Secure
Shell (SSH) may be used to tunnel various other protocols, thus adding encryption to a non-
encrypted protocol.

twisted-pair A type of wiring in which pairs of wires are wrapped around each other (and typ-
ically enclosed in a plastic sheath). Twisted-pair cabling is commonly used for Ethernet and cer-
tain other network cabling. Many telephone wires also use twisted-pair cabling.

U

UDF See Universal Disc Format (UDF).

UDP See User Datagram Protocol (UDP).

UHCI See Universal Host Controller Interface (UHCI).

UID See user ID (UID).

umask See user mask (umask).

Universal Disc Format (UDF) A next-generation optical disc filesystem, frequently used on
DVD-ROMs.

Universal Host Controller Interface (UHCI) One of two common hardware standards for
managing USB 1.x ports. The other is the Open Host Controller Interface (OHCI).

Universal Serial Bus (USB) A type of interface for low- to medium-speed external devices, such
as keyboards, mice, cameras, modems, scanners, and removable disk drives. Linux added USB
support with the 2.2.18 and 2.4.x kernels. USB 2.0 increases the speed to the point that USB is use-
able for hard disks in less-demanding applications.

unprivileged port A port (see port number) that’s numbered above 1024. Such ports may be
accessed by any user and so are commonly used by client programs and by a few servers that
may legitimately be run by ordinary users. See also privileged port.

unshareable file A file that should not be shared with other computers. Examples include
system-specific configuration files (such as most of /etc) and system-specific queue directories
in certain subdirectories of /var.

4425.book Page 578 Tuesday, July 12, 2005 10:43 PM

Glossary 579

USB See Universal Serial Bus (USB).

USB hub A piece of hardware that enables connecting multiple USB devices to a single USB
connector on a computer.

user cron job A cron job created by an individual user to handle tasks for that user, such as
running a CPU-intensive job late at night when other users won’t be disturbed by the job’s CPU
demands. See also system cron job.

User Datagram Protocol (UDP) A transport-layer protocol used on the TCP/IP stack. UDP is
a simple and efficient protocol, but it lacks error checking and other advanced features that can
be helpful in maintaining a connection.

user ID (UID) A number associated with a particular account. Linux uses the UID internally for
most operations, and it converts to the associated username only when interacting with people.

user mask (umask) A bit pattern representing the permission bits that are to be removed from
files created from a process.

username The name associated with an account, such as theo or miranda. Linux usernames
are case sensitive and may be from 1 to 32 characters in length, although they’re usually entirely
lowercase and no longer than 8 characters.

UTC See Coordinated Universal Time (UTC).

V

variable In computer programming or scripting, a “placeholder” for data. Variables may
change from one run of a program to another, or even during a single run of a program.

variable file A file whose data may change at any time. Examples include user data files and
queues maintained by servers.

virtual filesystem A filesystem that doesn’t correspond to a real disk partition, removable
disk, or network export. A common example is /proc, which provides access to information on
the computer’s hardware.

W

widget set A collection of programming tools that help programmers create GUI displays,
such as dialog boxes, menus, and scroll bars.

widget A control or decoration in a GUI display, such as a button or menu.

4425.book Page 579 Tuesday, July 12, 2005 10:43 PM

580 Glossary

wildcard A character or group of characters that, when used in a shell as part of a filename,
match more than one character. For instance, b??k matches book, back, and buck, among
many other possibilities.

window manager A program that provides decorative and functional additions to the plain
windows provided by X. Linux supports dozens of window managers.

Winmodem See software modem.

X

X See X Window System.

X.org-X11 The most common X server for Linux. Derived from XFree86.

X core fonts Fonts managed by the X server.

X Display Manager Control Protocol (XDMCP) A protocol for managing X connections
across a network. XDMCP is also used for displaying a local GUI login screen for Linux work-
stations. Common XDMCP servers for Linux include the X Display Manager (XDM), the
GNOME Display Manager (GDM), and the KDE Display Manager (KDM).

X logical font description (XLFD) A format for describing X core fonts. Programs use the
XLFD when telling X to display a font, and the XLFD also appears in X core font config-
uration files.

X server A program that implements X for a computer; especially the component that inter-
acts most directly with the video hardware.

X Window System The GUI environment for Linux. The X Window System is a network-
aware, cross-platform GUI that relies on several additional components (such as a window
manager and widget sets) to provide a complete GUI experience. See also X server, XFree86,
and X.org-X11.

XDMCP See X Display Manager Control Protocol (XDMCP).

XFree86 A set of X servers and related utilities for Linux and other OSs. Abandoned on most
distributions in favor of X.org-X11.

XFS See Extents File System (XFS).

XLFD See X logical font description (XLFD).

4425.book Page 580 Tuesday, July 12, 2005 10:43 PM

	LPIC-1 Study Guide
	Front Matter
	Contents
	Table of Exercises
	Introduction
	What Is Linux?
	Why Become LPI Certified?
	How to Become LPI Certified
	Who Should Buy This Book
	How This Book Is Organized
	Bonus CD-ROM Contents
	Conventions Used in This Book
	The Exam Objectives
	Exam 101
	Exam 102

	Assessment Test
	Answers to Assessment Test

	Linux Command-Line Tools
	Command-Line Basics
	Linux Shell Options
	Using a Shell
	Shell Configuration
	Using Environment Variables
	Getting Help

	Using Streams, Redirection, and Pipes
	Types of Streams
	Redirecting Input and Output
	Piping Data Between Programs
	Generating Command Lines

	Processing Text Using Filters
	File-Combining Commands
	File-Transforming Commands
	File-Formatting Commands
	File-Viewing Commands
	File-Summarizing Commands

	Using Regular Expressions
	Understanding Regular Expressions
	Using

	Editing Files with Vi
	Vi Modes
	Basic Text-Editing Procedures
	Saving Changes

	Managing Processes
	Examining Process Lists
	Foreground and Background Processes
	Managing Process Priorities
	Killing Processes

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Managing Software
	Package Concepts
	Using RPM
	RPM Distributions and Conventions
	Upgrades to RPM
	The
	Command Set
	Extracting Data from RPMs
	RPM Configuration Files
	RPM Compared to Other Package Formats

	Using Debian Packages
	Debian Distributions and Conventions
	The
	Command Set
	Using
	Reconfiguring Packages
	Debian Packages Compared to Other Package Formats
	Configuring Debian Package Tools

	Converting between Package Formats
	Package Dependencies and Conflicts
	Real and Imagined Package Dependency Problems
	Workarounds to Package Dependency Problems
	Startup Script Problems

	Installing Programs from Source
	Obtaining and Extracting Software
	Configuring Software
	Compiling and Installing Software
	Uninstalling Locally Compiled Software

	Managing Shared Libraries
	Library Principles
	Locating Library Files
	Library Management Commands

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Configuring Hardware
	Configuring the BIOS and Core Hardware
	Understanding the Role of the BIOS
	IRQs
	I/O Addresses
	DMA Addresses
	The Real-Time Clock
	Boot Disks and Geometry Settings

	Configuring Expansion Cards
	Configuring ISA Devices
	Configuring PCI Devices

	Configuring Modems
	Functions of Modems
	Setting the RS-232 Serial Port Characteristics
	Winmodem Detection and Avoidance
	Using Broadband Hardware

	Configuring USB Devices
	USB Basics
	Linux USB Drivers
	USB Manager Applications

	Configuring Sound Cards
	Configuring SCSI Devices
	Varieties of SCSI
	SCSI IDs
	SCSI Termination
	Identifying SCSI Hardware

	Designing a Hard Disk Layout
	Why Partition?
	Types of Disk Partitions
	Mount Points
	Common Partitions and Filesystem Layouts

	Creating Partitions and Filesystems
	Partitioning a Disk
	Preparing a Partition for Use

	Installing Boot Loaders
	Boot Loader Principles
	Using LILO or GRUB

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Managing Files and Filesystems
	Maintaining Filesystem Health
	Tuning Filesystems
	Maintaining a Journal
	Checking Filesystems
	Monitoring Disk Use

	Mounting and Unmounting Filesystems
	Temporarily Mounting or Unmounting Filesystems
	Permanently Mounting Filesystems

	Managing Files
	File Naming and Wildcard Expansion Rules
	File Commands
	Managing Links
	Directory Commands

	Managing File Ownership
	Assessing File Ownership
	Changing a FileÌs Owner
	Changing a FileÌs Group

	Controlling Access to Files
	Understanding Permissions
	Changing a FileÌs Mode
	Setting the Default Mode and Group
	Changing File Attributes

	Managing Disk Quotas
	Enabling Quota Support
	Setting Quotas for Users

	Locating Files
	The FHS
	Tools for Locating Files

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	The X Window System
	Configuring Basic X Features
	X Server Options for Linux
	Methods of Configuring X
	X Configuration Options
	Fine-Tuning Video Modes

	Configuring X Fonts
	Font Technologies and Formats
	Configuring X Core Fonts
	Configuring a Font Server
	Configuring Xft Fonts

	Managing GUI Logins
	The X GUI Login System
	Running an XDMCP Server
	Configuring an XDMCP Server

	Configuring a Desktop Environment
	Desktop Environment Choices
	Configuring Linux to Run Your Desktop Environment
	Configuring the X Environment
	Configuring a Window Manager

	Using X for Remote Access
	X Client/Server Principles
	Using Remote X Clients

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	The Boot Process and Scripts
	Managing Kernel Modules
	Obtaining Information about the Kernel and Its Modules
	Loading Kernel Modules
	Removing Kernel Modules
	Maintaining Kernel Modules

	Creating a Custom Kernel
	Kernel Version Numbering
	Obtaining the Kernel
	Configuring the Kernel
	Compiling the Kernel
	Putting Everything in Its Place

	Configuring a Boot Loader
	Using LILO as the Boot Loader
	Using GRUB as the Boot Loader

	Understanding the Boot Process
	Extracting Information on the Boot Process
	The Boot Process

	Dealing with Runlevels and the Initialization Process
	Runlevel Functions
	Identifying the Services in a Runlevel
	Managing Runlevel Services
	Checking Your Runlevel
	Changing Runlevels on a Running System

	Managing the Shell Environment
	Shell Options
	Built-in Shell Functions
	Using Environment Variables
	Shell Configuration Files

	Linux Scripting
	Beginning a Shell Script
	Using Commands
	Using Variables
	Using Conditional Expressions
	Using Functions

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Documentation and Security
	Using Local System Documentation
	Using Linux Manual Pages
	Using Package Documentation

	Finding Linux Documentation and Help on the Internet
	The Linux Documentation Project
	Additional Online Help Resources

	Communicating with Users
	Restricting Access by Ports
	Common Server Ports
	Configuring a Firewall
	Using Super Server Restrictions
	Disabling Unused Servers

	Package and Program Security
	Tracking Down SUID/SGID Programs
	Verifying Package Integrity
	Keeping Packages Up-to-Date

	Passwords
	Password Risks
	Choosing a Good Password
	Tools for Managing Passwords

	Configuring User-Level Security
	Configuring Mail Aliases
	Setting Login, Process, and Memory Limits

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Administering the System
	Managing Users and Groups
	User and Group Concepts
	Configuring User Accounts
	Configuring Groups

	Tuning User and System Environments
	Using System Log Files
	Understanding
	Setting Logging Options
	Rotating Log Files
	Reviewing Log File Contents

	Maintaining the System Time
	Linux Time Concepts
	Setting the Time Zone
	Manually Setting the Time
	Using NTP

	Running Jobs in the Future
	The Role of
	Creating System
	Jobs
	Creating User
	Jobs
	Using

	Backing Up the System
	Common Backup Hardware
	Common Backup Programs
	Backing Up a Computer
	Planning a Backup Schedule
	Preparing for Disaster: Backup Recovery

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Basic Networking
	Understanding TCP/IP Networking
	Basic Functions of Network Hardware
	Types of Network Hardware
	Network Packets
	Network Protocol Stacks
	TCP/IP Protocol Types

	Network Addressing
	Types of Network Addresses
	Resolving Hostnames
	Network Ports

	Configuring Linux for a Local Network
	Network Hardware Configuration
	DHCP Configuration
	Static IP Address Configuration
	Configuring Routing
	Using GUI Configuration Tools
	Hostname Configuration

	Configuring Linux as a PPP Client
	Making Basic PPP Connections
	Using Supplemental PPP Tools

	Diagnosing Local and PPP Connections
	Testing Basic Connectivity
	Tracing a Route
	Checking Network Status
	Examining Raw Network Traffic
	Using Additional Tools

	Using a Super Server
	The Role of a Super Server
	Configuring

	Configuring Printing
	The Linux Printing Architecture
	Understanding PostScript and Ghostscript
	Running a Printing System
	Configuring BSD LPD and LPRng
	Configuring CUPS
	Printing to Windows or Samba Printers
	Monitoring and Controlling the Print Queue

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Managing Servers
	Configuring Sendmail
	E-Mail Basics
	Setting Sendmail Options for Your System
	Managing the Mail Queue
	Sendmail Security Considerations

	Configuring Apache
	Apache Basics
	Setting Apache Options for Your System
	Apache Security Considerations

	Configuring an NFS Server
	NFS Basics
	Creating File Exports
	Mounting NFS Exports
	NFS Security Considerations

	Configuring Samba
	Samba Basics
	Using Samba as a Server
	Samba Security Considerations

	Using a Forwarding DNS Server
	DNS Server Basics
	Setting DNS Options for Your Network
	Using a Forwarding DNS Server
	BIND Security Considerations

	Configuring SSH
	SSH Basics
	Setting SSH Options for Your System
	SSH Security Considerations

	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Glossary

