
STUDY GUIDE

Roderick W. Smith

Covers All Exam Objectives

Linux+

Includes Real-World Scenarios and Leading-Edge
Exam Prep Software Featuring:

• Linux-Compatible Custom Test Engine

• Hundreds of Sample Questions

• Electronic Flashcards

• Entire Book in PDF

Exam XK0-003

SERIOUS SKILLS.

CompTIA

®

C
om

pT
IA L

inux+
®

STUDY GUIDE

Smith

FEATURED ON THE CD

ISBN: 978-0-470-50384-3

As the Linux server and desktop markets continue to grow, so
does the need for qualifi ed Linux administrators. CompTIA’s new
Linux+ (Exam XK0-003) includes the very latest enhancements
to the popular open source operating system. This detailed guide
not only covers all key exam topics—including installation and
confi guration, system maintenance and operations, application
and services, networking and security—it also builds your practical
Linux skills with real-world examples. Inside, you’ll fi nd:

Full coverage of all exam objectives in a systematic approach, so you
can be confi dent you’re getting the instruction you need for the exam

Real-world scenarios that put what you’ve learned into practical context

Challenging review questions in each chapter to prepare you for
exam day

Exam Essentials, a key feature in each chapter that identifi es critical
areas you must become profi cient in before taking the exam

A handy tear card that maps every offi cial exam objective to the
corresponding chapter in the book, so you can track your exam prep
objective by objective

Roderick W. Smith, Linux+, LPIC-1, is a Linux consultant and author. His areas
of expertise include Linux networking, fi lesystems, and cross-platform confi guration.
He has written over 20 books on open source technologies, including the LPIC-1: Linux
Professional Institute Certifi cation Study Guide, 2nd Edition and Linux Administrator Street
Smarts, both from Sybex.

Prepare for the new 2009
Linux+ exam

$49.99 US
$59.99 CN

A B O U T T H E A U T H O R

Look inside for complete coverage
of all exam objectives.

www.sybex.com

SYBEX TEST ENGINE:
Test your knowledge with advanced
testing software. Includes all chapter
review questions and bonus exams.
Runs on both Windows and Linux.

ELECTRONIC FLASHCARDS:
Reinforce your understanding with
electronic fl ashcards.

Also on CD, you’ll fi nd the entire
book in searchable and printable PDF.
Study anywhere, any time, and
approach the exam with confi dence.

C A T E G O R Y
COMPUTERS/Certifi cation Guides

Exam XK0-003

spine=1.344”

03843ffirs.indd 2 8/24/09 7:22:25 AM

CompTIA
Linux+™

Study Guide

03843ffirs.indd 1 8/24/09 7:22:25 AM

03843ffirs.indd 2 8/24/09 7:22:25 AM

CompTIA
Linux+™

Study Guide

Roderick W. Smith

03843ffirs.indd 3 8/24/09 7:22:26 AM

Acquisitions Editor: Jeff Kellum
Development Editor: Stephanie Barton
Technical Editors: Elizabeth Zinkann, Beau Sanders
Production Editor: Elizabeth Britten
Copy Editor: Kim Wimpsett
Editorial Manager: Pete Gaughan
Production Manager: Tim Tate
Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde
Media Associate Project Manager: Laura Moss-Hollister
Media Associate Producers: Marilynn Hummel, Shawn Patrick
Media Quality Assurance: Josh Frank
Book Designers: Judy Fung, Bill Gibson
Compositor: Craig Woods, Happenstance Type-O-Rama
Proofreader: Jen Larsen, Word One New York
Indexer: Ted Laux
Project Coordinator, Cover: Lynsey Stanford
Cover Designer: Ryan Sneed

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-50384-3

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or Web site may provide or recommendations
it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data:
Smith, Roderick W.
 CompTIA Linux+ study guide / Roderick W. Smith. — 1st ed.
 p. cm.
 ISBN 978-0-470-50384-3 (paper/cd-rom)
 1. Electronic data processing personnel—Certification. 2. Operating systems (Computers)—Examinations—Study
guides. 3. Computer networks—Examinations—Study guides. 4. Linux. I. Title.
 QA76.3.S4765 2009
 005.4’32—dc22
 2009027779

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written per-
mission. CompTIA Linux+ is a trademark of the Computing Technology Industry Association. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor men-
tioned in this book.

10 9 8 7 6 5 4 3 2 1

03843ffirs.indd 4 8/24/09 7:22:26 AM

The logo of the CompTIA Authorized Quality Curriculum (CAQC) program and the status of this or other
training material as “Authorized” under the CompTIA Authorized Quality Curriculum program signifies
that, in CompTIA’s opinion, such training material covers the content of the CompTIA’s related certification
exam. CompTIA has not reviewed or approved the accuracy of the contents of this training material and
specifically disclaims any warranties of merchantability or fitness for a particular purpose. CompTIA makes
no guarantee concerning the success of persons using any such “Authorized” or other training material in
order to prepare for any CompTIA certification exam.

The contents of this training material were created for the CompTIA Linux+ exam covering CompTIA
certification objectives that were current as of 2009.

How to become CompTIA certified:
This training material can help you prepare for and pass a related CompTIA certification exam or
exams. In order to achieve CompTIA certification, you must register for and pass a CompTIA certifica-
tion exam or exams.

In order to become CompTIA certified, you must:

1. Select a certification exam provider.

2. Register for and schedule a time to take the CompTIA certification exam(s) at a
convenient location.

3. Read and sign the Candidate Agreement, which will be presented as the time of the exam(s).

4. Take and pass the CompTIA certification exam(s).

For more information about CompTIA’s certifications, such as its industry acceptance, benefits or
program news, please visit http://www.comptia.org/certifications.

CompTIA is a not-for-profit trade information technology (IT) trade association. CompTIA’s
certifications are designed by subject matter experts from across the IT industry. Each CompTIA cer-
tification is vendor-neutral, covers multiple technologies, and requires demonstration of skills and
knowledge widely sought after by the IT industry.

To contact CompTIA with any questions or comments, please call 630-678-8300 or email
question@comptia.org.

03843ffirs.indd 5 8/24/09 7:22:26 AM

Dear Reader,

Thank you for choosing CompTIA Linux+™ Study Guide. This book is part of a family
of premium-quality Sybex books, all of which are written by outstanding authors who
combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing
consistently exceptional books. With each of our titles, we’re working hard to set a new
standard for the industry. From the paper we print on to the authors we work with, our
goal is to bring you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your com-
ments and get your feedback on how we’re doing. Feel free to let me know what you think
about this or any other Sybex book by sending me an e-mail at nedde@wiley.com. If you
think you’ve found a technical error in this book, please visit http://sybex.custhelp.com.
Customer feedback is critical to our efforts at Sybex.

 Best regards,

 Neil Edde
 Vice President and Publisher
 Sybex, an Imprint of Wiley

03843ffirs.indd 6 8/24/09 7:22:26 AM

From one writer to another: Lola, keep writing your stories!

03843ffirs.indd 7 8/24/09 7:22:26 AM

Acknowledgments
Although one person’s name is most prominent on the cover, this book, like most,
involves many people’s input. At every point along the way from project beginning to
finished product, many people other than the author have had their influence. Jeff Kel-
lum, acquisitions editor, helped set the book on course at its inception. Stephanie Barton,
development editor, guided the book’s development throughout the process. Liz Britten,
as production editor, coordinated the work of the many others who contributed their
thoughts to the book. Copy editor Kim Wimpsett helped keep my grammar and spelling
on track. Elizabeth Zinkann, the technical editor, scrutinized the text for technical errors
and made sure it was complete. I’d also like to thank Neil Salkind and others at Studio B,
who helped get the project off the ground.

03843ffirs.indd 8 8/24/09 7:22:26 AM

Contents at a Glance

Introduction xix

Assessment Test xxix

Chapter 1 Getting Started with Linux 1

Chapter 2 Using Text-Mode Commands 47

Chapter 3 Managing Processes and Editing Files 107

Chapter 4 Managing System Services 147

Chapter 5 Managing Users 187

Chapter 6 Managing Disks 237

Chapter 7 Managing Packages and System Backups 293

Chapter 8 Configuring Basic Networking 349

Chapter 9 Configuring Advanced Networking 391

Chapter 10 Configuring Network Servers I 437

Chapter 11 Configuring Network Servers II 473

Chapter 12 Securing Linux 513

Appendix About the Companion CD 555

Glossary 559

Index 597

03843ffirs.indd 9 8/24/09 7:22:26 AM

03843ffirs.indd 10 8/24/09 7:22:26 AM

Contents

Introduction xix

Assessment Test xxix

Chapter 1 Getting Started with Linux 1

Selecting an Installation Method 2
Choosing a Distribution 2
Selecting an Installation Medium 3
Interacting with the Installer 5
Performing the Installation 5

Configuring Boot Loaders 7
The Role of the Boot Loader 7
Available Boot Loaders 8
Configuring GRUB 9

Troubleshooting Boot Problems 14
Setting Kernel Options in GRUB 14
Using Rescue Discs 15
Resetting the root Password 16
Examining Boot Messages with dmesg 16

Configuring X 17
Selecting an X Server 17
Setting Up X 20
Managing GUI Logins 25
Using Window Managers and Desktop Environments 29
Using Terminal Programs 29

Managing Hardware 30
Finding Compatible Hardware 30
Identifying Hardware in Linux 31
Managing Kernel Modules 35

Summary 38
Exam Essentials 38
Review Questions 40
Answers to Review Questions 44

Chapter 2 Using Text-Mode Commands 47

Using a Command Shell 48
Starting a Shell 49
Using Virtual Terminals 50
Launching Programs 50
Using Shell Shortcuts 51
Using the Shell’s History 52

03843ftoc.indd 11 8/22/09 3:24:34 PM

xii Contents

Manipulating Files and Directories 53
Navigating the Linux Filesystem 54
Manipulating Files 58
Manipulating Directories 62
Locating Files 63
Examining Files’ Contents 66
Using Redirection and Pipes 69
Generating Command Lines 70
Using Device Files 71

Using File Permissions 72
Understanding Accounts and Ownership 72
Using File Access Permissions 72
Changing File Ownership and Permissions 78
Setting Default Permissions 82
Using ACLs 83

Setting Environment Variables 84
Where to Set Environment Variables 85
The Meanings of Common Environment Variables 86

Using Shell Scripts 89
Getting Help 91

Using Man Pages 91
Using Info Pages 94
Using Miscellaneous Program Documentation 95
Using Internet-Based Help Resources 96

Summary 97
Exam Essentials 98
Review Questions 99
Answers to Review Questions 103

Chapter 3 Managing Processes and Editing Files 107

Managing Processes 108
Understanding Processes 108
Examining Process Lists with ps 109
Restricting Processes’ CPU Use 116
Killing Processes 117
Controlling Foreground and Background Processes 119
Monitoring System Statistics 119

Setting Process Permissions 123
Understanding the Risks of SUID and SGID Programs 123
Knowing When to Use SUID or SGID 123
Finding SUID or SGID Programs 124

Running Jobs at Specific Times 125
Understanding the Role of Cron 125
Creating System Cron Jobs 126
Creating User Cron Jobs 127
Using at 128

03843ftoc.indd 12 8/22/09 3:24:34 PM

Contents xiii

Getting and Setting Kernel Information 129
Obtaining Kernel Version Information 129
Setting System Control Data 131

Editing Files with Vi 133
Using Vi Modes 134
Editing Text 134
Saving Changes 137

Summary 138
Exam Essentials 138
Review Questions 139
Answers to Review Questions 143

Chapter 4 Managing System Services 147

Starting and Stopping Services 148
Methods of Starting and Stopping Services 149
Starting and Stopping via SysV Scripts 149
Using Super Servers 153
Using Custom Startup Files 158

Setting the Runlevel 159
Understanding the Role of the Runlevel 159
Using init or telinit to Change the Runlevel 160
Permanently Changing the Runlevel 162

Configuring Log Files 163
Understanding syslogd 163
Setting Logging Options 164
Rotating Log Files 166
Using a Remote Server for Log Files 169

Using Log Files 170
Which Log Files Are Important? 170
Using Log Files to Identify Problems 171
Using Tools to Help Scan Log Files 172

Summary 178
Exam Essentials 178
Review Questions 180
Answers to Review Questions 184

Chapter 5 Managing Users 187

Understanding Multiuser Concepts 188
User Accounts: The Core of a Multiuser System 188
Linking Users Together for Productivity via Groups 193
Mapping UIDs and GIDs to Users and Groups 194
Understanding Home Directories 196

Configuring User Accounts 197
Adding Users 197
Modifying User Accounts 200

03843ftoc.indd 13 8/22/09 3:24:34 PM

xiv Contents

Deleting Accounts 207
Verifying Account Use 208

Configuring Groups 212
Adding Groups 212
Modifying Group Information 213
Deleting Groups 216

Using Common User and Group Strategies 216
Using User Private Groups 217
Using Project Groups 217
Assigning Users to Multiple Groups 218

Improving Account Security 219
Enforcing User Password Security 219
Steps for Reducing the Risk of Compromised Passwords 221
Disabling Unused Accounts 222
Using Shadow Passwords 223

Controlling System Access 224
Accessing Common Servers 224
Controlling root Access 225

Summary 227
Exam Essentials 227
Review Questions 229
Answers to Review Questions 233

Chapter 6 Managing Disks 237

Storage Hardware Identification 238
Types of Storage Devices 239
Linux Storage Hardware Configuration 240

Planning Disk Partitioning 242
Understanding Partitioning Systems 242
Linux Partition Requirements 244
Common Optional Partitions 245
Linux Filesystem Options 248
Partitioning Tools 250

Partition Management and Maintenance 251
Creating Partitions 251
Creating New Filesystems 256
Checking a Filesystem for Errors 258
Adding Swap Space 259
Setting Filesystem Quotas 263

Partition Control 265
Identifying Partitions 265
Mounting and Unmounting Partitions 266
Using Network Filesystems 271
Using df 273

03843ftoc.indd 14 8/22/09 3:24:35 PM

Contents xv

Defining Standard Filesystems 274
Using RAID 276
Using LVM 280

Summary 282
Exam Essentials 283
Review Questions 285
Answers to Review Questions 289

Chapter 7 Managing Packages and System Backups 293

Understanding Package Concepts 294
File Collections 294
The Installed File Database 295
Using Network Repositories 296
Rebuilding Packages 297

Installing and Removing Packages 298
Handling RPM Packages 298
Handling Debian Packages 307
Handling Tarballs 314
Compiling Source Code 318

Managing Package Dependencies and Conflicts 322
Real and Imagined Package Dependency Problems 322
Workarounds to Package Dependency Problems 323

Backing Up and Restoring a Computer 324
Common Backup Hardware 324
Common Backup Programs 326
Performing Network Backups with rsync 333
Planning a Backup Schedule 334
Preparing for Disaster: Backup Recovery 335

Writing to Optical Discs 336
Linux Optical Disc Tools 336
A Linux Optical Disc Example 337
Creating Cross-Platform Discs 338

Summary 339
Exam Essentials 340
Review Questions 341
Answers to Review Questions 345

Chapter 8 Configuring Basic Networking 349

Understanding Networks 350
Basic Functions of Network Hardware 350
Types of Network Hardware 351
Network Packets 353
Network Protocol Stacks 354

03843ftoc.indd 15 8/22/09 3:24:35 PM

xvi Contents

Network Addressing 358
Types of Network Addresses 359
Resolving Hostnames 363
Network Ports 364

Basic Network Configuration 365
Network Hardware Configuration 366
Setting Wireless Options 366
DHCP Configuration 368
Static IP Address Configuration 369
Using GUI Configuration Tools 373

Diagnosing Network Problems 375
Examining the ARP Cache 376
Testing Basic Connectivity 377
Tracing a Route 377
Checking Network Status 378
Name Server Troubleshooting 379
Using General Network Tools 380

Summary 382
Exam Essentials 382
Review Questions 384
Answers to Review Questions 388

Chapter 9 Configuring Advanced Networking 391

Routing Between Networks 392
Firewall Configuration 393

Where a Firewall Fits in a Network 394
Linux Firewall Software 395
Common Server Ports 396
Using iptables 398

Managing Remote Logins 405
Setting Up a Remote Access Server 405
Using Text-Mode Logins 406
Generating SSH Keys 408
Using X Programs Remotely 409
Remote GUI Logins 412

Configuring Basic Printing 414
The Linux Printing Architecture 414
Understanding PostScript and Ghostscript 415
Running a Printing System 416
Configuring CUPS 417
Printing to Network Printers 423
Monitoring and Controlling Print Queues 424

Summary 428
Exam Essentials 428
Review Questions 430
Answers to Review Questions 434

03843ftoc.indd 16 8/22/09 3:24:35 PM

Contents xvii

Chapter 10 Configuring Network Servers I 437

Delivering Network Information 438
Delivering IP Addresses with DHCP 438
Delivering Hostnames with DNS 441
Delivering the Time with NTP 448
Authenticating Users on the Network 454

Using E-mail 455
Understanding E-mail Protocols 456
Configuring SMTP Servers 457
Using Aliases and Forwarding E-mail 460
Choosing a POP or IMAP Server 461

Summary 462
Exam Essentials 463
Review Questions 464
Answers to Review Questions 469

Chapter 11 Configuring Network Servers II 473

Delivering Files Over the Network 474
Delivering Files with Samba 474
Delivering Files with NFS 480
Delivering Files with FTP 483
Configuring Web Servers 489

Using Windows Remote Access Tools 496
Using rdesktop 496
Using VNC 497

Deploying MySQL 499
Picking a SQL Package 499
Using MySQL 500

Summary 503
Exam Essentials 503
Review Questions 505
Answers to Review Questions 509

Chapter 12 Securing Linux 513

Sources of Security Vulnerability 514
Physical Access Problems 515
Stolen Passwords 516
Local Program Bugs 516
Server Bugs 517
Denial-of-Service Attacks 518
Encryption Issues 518
The Human Element 519

Authenticating Users 520
Understanding How Linux Authenticates Users 520
Configuring PAM 521

03843ftoc.indd 17 8/22/09 3:24:35 PM

xviii Contents

Using Network Authentication 523
Using Two-Factor Authentication 526

Using GNU Privacy Guard (GPG) 526
Generating and Importing Keys 527
Encrypting and Decrypting Data 528
Signing Messages and Verifying Signatures 529

SELinux 529
Principles of SELinux 529
Configuring SELinux Running Modes 530

Security Auditing 531
Checking for Open Ports 531
Reviewing Accounts 535
Verifying Installed Files and Packages 537

Intrusion Detection 537
Symptoms of Intrusion 537
Using Snort 538
Using PortSentry 540
Using Wireshark 541
Using Tripwire 542
Generating Checksums Manually 543
Using Package Manager Checksums 544
Using chkrootkit 545
Monitoring Log Files 545

Summary 546
Exam Essentials 547
Review Questions 548
Answers to Review Questions 552

Appendix About the Companion CD 555

What You’ll Find on the CD 556
Sybex Test Engine 556
PDF of the Book 556
Adobe Reader 556
Electronic Flashcards 557

System Requirements 557
Using the CD 557
Troubleshooting 558

Customer Care 558

Glossary 559

Index 597

03843ftoc.indd 18 8/22/09 3:24:35 PM

Introduction
Why should you learn about Linux? It’s a fast-growing operating system, and it is inexpen-
sive and flexible. Linux is also a major player in the small and midsize server field, and it’s
an increasingly viable platform for workstation and desktop use as well. By understanding
Linux, you’ll increase your standing in the job market. Even if you already know the Win-
dows or Mac operating system and your employer uses these systems exclusively, under-
standing Linux will give you an edge when you are looking for a new job or when you are
looking for a promotion. Knowing Linux will also help you to make an informed decision
about if and when you should deploy Linux.

The Computing Technology Industry Association (CompTIA) has developed its Linux+
exam as an introductory certification for people who want to enter careers involving Linux.
The exam is meant to certify that an individual has the skills necessary to install, operate,
and troubleshoot a Linux system and is familiar with Linux-specific concepts and basic
hardware.

The purpose of this book is to help you pass the 2009 version of the Linux+ exam
(XK0-003). Because this exam covers basic Linux installation, configuration, maintenance,
applications, networking, and security, those are the topics that are emphasized in this
book. You’ll learn enough to get a Linux system up and running and how to configure it
for many common tasks. Even after you’ve taken and passed the Linux+ exam, this book
should remain a useful reference.

The original Linux+ exam was released in 2001, but in the fast-changing
world of computers, updates became desirable within a few years. Thus,
CompTIA released an updated version of the Linux+ exam in 2005 and
again in 2009. This book covers this latest Linux+ exam, rather than earlier
versions. Earlier editions of this book covered the earlier Linux+ exams.

What Is Linux?
Linux is a clone of the Unix OS that has been popular in academia and many business
environments for years. Formerly used exclusively on large mainframes, Unix and Linux
can now run on small computers—which are actually far more powerful than the main-
frames of just a few years ago. Because of its mainframe heritage, Unix (and hence also
Linux) scales well to perform today’s demanding scientific, engineering, and network
server tasks.

Linux consists of a kernel, which is the core control software, and many libraries and
utilities that rely on the kernel to provide features with which users interact. The OS is
available in many different distributions, which are bundlings of a specific kernel with
specific support programs. These concepts are covered at greater length in Chapter 1.

03843flast.indd 19 8/25/09 7:18:28 AM

xx Introduction

Why Become Linux+ Certified?
Several good reasons to get your Linux+ certification exist. The CompTIA Candidates
Information packet lists five major benefits:

Provides proof of professional achievement Certifications are quickly becoming status
symbols in the computer service industry. Organizations, including members of the com-
puter service industry, are recognizing the benefits of certification, such as Linux+. Orga-
nizations are pushing for their members to become certified. Every day, more people are
putting the CompTIA official certification logo on their business cards.

Increases your marketability Linux+ certification makes individuals more marketable to
potential employers. Also, Linux+ certified employees might receive a higher salary base
because employers won’t have to spend as much money on vendor-specific training.

Provides an opportunity for advancement Most raises and advancements are based on
performance. Linux+ certified employees work faster and more efficiently. The more pro-
ductive employees are, the more money they will make for their company; and, of course,
the more money they make for the company, the more valuable they will be to the company.
So, if employees are Linux+ certified, their chances of getting promoted will be greater.

Fulfills training requirements Each year, more and more major computer hardware ven-
dors, including (but not limited to) IBM, Hewlett-Packard, and Novell, are recognizing
CompTIA’s certifications as prerequisites in their own respective certification programs.
The use of outside certifications like Linux+ has the side benefit of reducing training costs
for employers. Because more and more small companies are deploying the flexible and
inexpensive OS we call Linux, the demand for experienced users is growing. CompTIA
anticipates that the Linux+ exam, like the A+ exam, will find itself integrated into various
certification programs as well.

Raises customer confidence As the IT community, users, small business owners, and the
like become more familiar with the Linux+ certified professional moniker, more of them
will realize that the Linux+ professional is more qualified to work in their Linux environ-
ment than is a noncertified individual.

How to Become Linux+ Certified
The Linux+ certification is available to anyone who passes the test. You don’t have to work
for a particular company. It’s not a secret society. It is, however, an elite group.

The exam is administered by Thomson Prometric and Pearson VUE. The exam can be
taken at any Thomson Prometric or Pearson VUE testing center. If you pass, you will get a
certificate in the mail from CompTIA saying that you have passed, and you will also receive
a lapel pin and business cards. To find the Thomson Prometric testing center nearest you,
call (800) 755-EXAM (755-3926). Contact (877) 551-PLUS (551-7587) for Pearson VUE
information.

03843flast.indd 20 8/25/09 7:18:28 AM

Introduction xxi

To register for the exam with Thomson Prometric, call (800) 776-MICRO (776-4276),
or register online at http://securereg3.prometric.com. To register with Pearson VUE,
call (877) 551-PLUS (551-7587), or register online at http://www.vue.com/comptia/. How-
ever you do it, you’ll be asked for your name, mailing address, phone number, employer,
when and where you want to take the test (i.e., which testing center), and your credit card
number (arrangement for payment must be made at the time of registration).

Who Should Buy This Book
Anybody who wants to pass the Linux+ exam may benefit from this book. If you’re new to
Linux, this book covers the material you will need to learn the OS from the beginning, and
it continues to provide the knowledge you need up to a proficiency level sufficient to pass
the Linux+ exam. You can pick up this book and learn from it even if you’ve never used
Linux before, although you’ll find it an easier read if you’ve used Linux at least casually for
a few days. If you’re already familiar with Linux, this book can serve as a review and as a
refresher course for information with which you might not be completely familiar. In either
case, reading this book will help you pass the Linux+ exam.

This book is written with the assumption that you know at least a little bit about Linux
(what it is and possibly a few Linux commands). This book also assumes that you know
some basics about computers in general, such as how to use a keyboard, how to insert a
CD-ROM or DVD-ROM into an optical drive, and so on. Chances are you have used com-
puters in a substantial way in the past—perhaps even Linux, as an ordinary user, or maybe
you have used Windows or Mac OS. This book does not assume that you have extensive
knowledge of Linux system administration, but if you’ve done some system administration,
you can still use this book to fill in gaps in your knowledge.

How This Book Is Organized
This book consists of 12 chapters plus supplementary information, including a glossary,
this introduction, and the assessment test after the introduction. The chapters are organized
as follows:

Chapter 1, “Getting Started with Linux,” covers issues you should consider before NN

you install Linux on a computer, as well as low-level hardware, boot, and X (GUI) con-
figuration. Because there are so many Linux distributions, each of which has its own
installation method, neither this book nor the Linux+ exam covers Linux installation
in great detail.

Chapter 2, “Using Text-Mode Commands,” provides a grounding in using Linux at the NN

command line. The chapter begins with a look at command shells generally and moves
on to commands used to manipulate files. The chapter also describes environment
variables and introduces the basics of creating shell scripts, which can help automate
otherwise tedious tasks.

03843flast.indd 21 8/25/09 7:18:28 AM

xxii Introduction

Chapter 3, “Managing Processes and Editing Files,” begins with information on NN

Linux’s tools for managing processes—that is, running programs. You’ll learn how to
terminate misbehaving programs and run jobs at scheduled times, among other things.
This chapter concludes with a look at editing text files in Linux.

Chapter 4, “Managing System Services,” covers methods used to start, stop, and oth-NN

erwise control the many programs that run constantly on a Linux system. These pro-
grams include servers and nonserver programs that run in the background to provide
necessary Linux features. This chapter also covers log files, which record information
from system services, such as login attempts and the loading of kernel drivers.

Chapter 5, “Managing Users,” describes how to create and maintain user accounts; it NN

also covers some basic user-related security issues. Because Linux is a clone of Unix,
it includes extensive support for multiple users, and understanding Linux’s model for
user accounts is critical to many aspects of Linux’s operation.

Chapter 6, “Managing Disks,” covers Linux’s approach to hard disks, partitions, and the NN

filesystems they contain. Specific topics include how to create and manage filesystems,
how to create and use a RAID array, and how to create and use LVM volumes.

Chapter 7, “Managing Packages and System Backups,” describes Linux’s tools for main-NN

taining installed software. This chapter covers common package management tools, pro-
cedures for compiling software from source code, and tools for backing up and restoring
that software (and user files) for security in case of disk errors or other problems.

Chapter 8, “Configuring Basic Networking,” covers how to use Linux on a network. NN

This chapter includes an overview of what a network is, including the popular TCP/IP
networking tools on which the Internet is built. The subject of network diagnostics is
also covered.

Chapter 9, “Configuring Advanced Networking,” describes more advanced network NN

topics. These include router configuration, firewalls, remote logins, and printer con-
figuration. (Linux’s printing tools are inherently network-enabled.)

Chapter 10, “Configuring Network Servers I,” is the first of two chapters devoted to NN

network servers. This chapter covers Dynamic Host Configuration Protocol (DHCP),
Domain Name System (DNS), Network Time Protocol (NTP), and e-mail servers.

Chapter 11, “Configuring Network Servers II,” continues the look at network servers. NN

It covers file servers (Samba, the Network File System [NFS], the File Transfer Protocol
[FTP], and the Apache Web server), Windows remote-access tools, and the Structured
Query Language (SQL) database server.

Chapter 12, “Securing Linux,” covers the important topic of keeping your system NN

secure. Specific topics covered here include authentication, personal encryption tools,
SELinux, security auditing, and intrusion detection.

Each chapter begins with a list of the CompTIA Linux+ objectives that are covered in
that chapter. (The book doesn’t cover objectives in the same order as CompTIA lists them,

03843flast.indd 22 8/25/09 7:18:28 AM

Introduction xxiii

and a few numbered objectives are split across multiple chapters, so don’t be alarmed when
you notice gaps or repeats in the sequence.) At the end of each chapter, you’ll find two sec-
tions you can use to help prepare for the exam:

Exam Essentials This section summarizes important information that was covered in the
chapter. You should be able to perform each of the tasks or convey the information requested.

Review Questions Each chapter concludes with 20 review questions. You should answer
these questions and check your answer against the one provided after the questions. If you
can’t answer at least 80 percent of these questions correctly, go back and review the chapter,
or at least those sections that seem to be giving you difficulty.

The review questions, assessment test, and other testing elements
included in this book are not derived from the CompTIA Linux+ exam
questions, so don’t memorize the answers to these questions and assume
that doing this will enable you to pass the Linux+ exam. You should learn
the underlying topic, as described in the text of the book. This will let you
answer the questions provided with this book and pass the exam. Learn-
ing the underlying topic is also the approach that will serve you best in the
workplace—the ultimate goal of a certification such as Linux+.

To get the most out of this book, you should read each chapter from start to finish and
then check your memory and understanding with the chapter-end elements. Even if you’re
already familiar with a topic, you should skim the chapter; Linux is complex enough that
there are often multiple ways to accomplish a task, so you may learn something even if
you’re already competent in an area.

Bonus CD-ROM Contents
This book comes with a CD-ROM that contains several additional elements. Items available
on the CD-ROM include the following:

Book contents as a PDF file The entire book is available as a fully searchable PDF that
can be read on most OSs, including Linux and Windows.

Electronic “flashcards” The CD-ROM includes 150 questions in “flashcard” format (a
question followed by a single correct answer). You can use these to review your knowledge
of the Linux+ exam objectives.

Sample tests All of the questions in this book appear on the CD-ROM—both the
30-question assessment test at the end of this introduction and the 240 questions that
consist of the twelve 20-question “Review Questions” sections for each chapter. In addi-
tion, there are two 65-question bonus exams.

03843flast.indd 23 8/25/09 7:18:28 AM

xxiv Introduction

Conventions Used in This Book
This book uses certain typographic styles in order to help you quickly identify important
information and avoid confusion over the meaning of words such as on-screen prompts.
In particular:

Italicized textNN indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

A monospaced fontNN indicates the contents of configuration files, messages displayed
at a text-mode Linux shell prompt, filenames, text-mode command names, and Inter-
net URLs.

Italicized monospaced textNN indicates a variable—information that differs from one
system or command run to another, such as the name of a client computer or a process
ID number.

Bold monospaced textNN is information that you’re to type into the computer, usually
at a Linux shell prompt. This text can also be italicized to indicate that you should
substitute an appropriate value for your system. (When isolated on their own lines,
commands are preceded by nonbold monospaced $ or # command prompts.)

In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text.

A note indicates information that’s useful or interesting but that’s somewhat
peripheral to the main text. A note might be relevant to a small number of
networks, for instance, or it may refer to an outdated feature.

A tip provides information that can save you time or frustration and that
may not be entirely obvious. A tip might describe how to get around a
limitation or how to use a feature to perform an unusual task.

Warnings describe potential pitfalls or dangers. If you fail to heed a warning,
you may end up spending a lot of time recovering from a bug, or you may
even end up restoring your entire system from scratch.

Sidebar

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text.

03843flast.indd 24 8/25/09 7:18:29 AM

Introduction xxv

Example

A real world scenario is a sidebar that provides information that’s particularly grounded
in the real world. Such text might be based on my own experiences or provide practical
information that might not be obvious from reading the basic facts about a topic.

The Exam Objectives
Behind every computer industry exam you can be sure to find exam objectives—the broad
topics in which exam developers want to ensure your competency. The official CompTIA
objectives for the Linux+ exam are listed here. (They’re also printed at the start of the
chapters in which they’re covered.)

Exam objectives are subject to change at any time without prior notice and
at CompTIA’s sole discretion. Please visit the Linux+ Certification page of
CompTIA’s Web site (http://www.comptia.org/certifications/listed/
linux.aspx) for the most current listing of exam objectives.

Domain 1.0 Installation and Configuration

1.1 Compare and contrast installation sources (Physical installation media: CD-ROM,
DVD; Network types: HTTP, FTP, NFS).

1.2 Implement partitioning schemes and filesystem layout using the following tools and
practices (LVM, RAID, fdisk, parted, mkfs).

1.3 Explain the purpose for using each of the following filesystem types (Local: EXT2,
EXT3, Reiser, FAT, NTFS, VFAT, ISO9660. Network: NFS, SMBFS/CIFS).

1.4 Conduct routine mount and unmount of filesystems (mount, umount, /etc/fstab).

1.5 Explain the advantages of having a separate partition or volume for any of the fol-
lowing directories (/boot, /home, /tmp, /usr, /var, /opt).

1.6 Explain the purpose of the following directories (/, /bin, /dev, /etc, /mnt, /proc,
/root, /sbin, /user/bin, /usr/local, /usr/lib, /usr/lib64, /usr/share,
/var/log).

1.7 Configure the boot process including the following (GRUB: /boot/grub/grub.conf,
/boot/grub/menu.lst, grub-install, grub).

03843flast.indd 25 8/25/09 7:18:29 AM

xxvi Introduction

1.8 Perform the following package management functions (Install, remove and update
programs: rpm [rpm -Uvh, rpm -qa, rpm -e, yum], deb [dpkg -i, dpkg - r, apt-get,
apt-cache search], source [./configure, make, make install, make uninstall, tar,
make clean, autoconf, make test, tar.gz, INSTALL, bzip, gzip]; Resolve dependen-
cies; Add and remove repositories).

1.9 Configure profile and environment variables system-wide and at the user level (PS1,
PS2, PATH, EDITOR, TERM, PAGER, HOME, PRINTER).

1.10 Troubleshoot boot issues using the following tools (kernel options, single user mode
[including recovering the root user], Rescue—live CDs, DVDs, and USB keys, dmesg).

1.11 Manage devices using the following tools (lsusb, lspcsi, lsmod, /sys, modprobe,
/proc, /etc/modules.conf, /etc/modprobe.conf, Hardware Compatibility List [HCL]).

Domain 2.0 System Maintenance and Operations

2.1 Given a scenario, use the following fundamental Linux tools, techniques, and
resources (Directory navigation: cd, ls,pushd, popd,pwd; File commands: file, test,
find, locate, slocate, which, whereis, ln, ls -F, mknod, touch, mkdir, mv, cp, rm, cd;
file types [hard links, soft links, directory, device file, regular file, named pipe]; File
editing with Vi; Process management: ps, kill, top, iostat, pstree, nice, renice,
signals, PID, PPID; I/O redirection: <, >, =, ==, |, ;, tee, xargs, STDIN, STDOUT,
STDERR; Special devices: /dev/null, /dev/random, /dev/zero, /dev/urandom; System
documentation: Man pages [man#, apropos, makewhatis, whatis], Info pages, /usr/
share/docs]; Virtual consoles; Kernel/architecture information: cat, /proc/version,
uname, common sysctl settings, /etc/sysctl.conf).

2.2 Conduct basic tasks using BASH (Basics of scripting [only: execute permission,
#!/bin/bash, sh script]; Shell features: history, tab completion).

2.3 Given a scenario, analyze system and application logs to troubleshoot Linux systems
(Common log files: /var/log/messages, /var/log/syslog, /var/log/maillog, /var/
log/secure, /var/log/lastlog; Rotated logs; Searching and interpreting log files: grep,
tail -f, awk, sed).

2.4 Conduct and manage backup and restore operations (Copying data: rsync and
ftp; Archive and restore commands: cpio, tar, dump, restore, dd; Write to removable
media: CD-RW, DVD-RW).

2.5 Explain the following features and concepts of X11 (Starting and stopping X11,
Differences between the X11 client and server, Window managers and display managers
[KDM, GDM], Multiple desktops, X11 configuration file [xorg.conf], Terminal emula-
tors [xterm, etc.]).

2.6 Explain the difference in runlevels and their purpose (Command: init; Runlevels:
0 – Halt, 1 – single-user mode, 2 – single-user mode with networking, 3 – networked
multi-user mode, 4 – user configurable, 5 – X11 multi-user mode, 6 – reboot).

03843flast.indd 26 8/25/09 7:18:29 AM

Introduction xxvii

2.7 Manage filesystems using the following (Check disk usage: df, du; Quotas: edquota,
repquota, quotacheck; Check and repair filesystems: fsck; Loopback devices: ISO file-
systems; NFS: configuration, mount, exportfs, fstab, /etc/exports, showmount; Swap:
mkswap, swapon, swapoff).

2.8 Implement task scheduling using the following tools (cron: cron.allow, cron.deny,
crontab command syntax, crontab file format, at: atq).

2.9 Utilize performance monitoring tools and concepts to identify common problems
(Commands: sar, iostat, vmstat, uptime, top. Load average).

Domain 3.0 Application and Services

3.1 Manage Linux system services using the following (/etc/init.d: start, stop,
restart; inetd; xinetd; chkconfig).

3.2 Implement interoperability with Windows using the following (rdesktop—client,
vnc—server and client, Samba—server and client [smb.conf, winbind, lmhosts]; Security
and authentication [Kerberos]).

3.3 Implement, configure and maintain Web and FTP services (Apache: maintain PHP
settings [php.ini]; edit Apache configuration files : enable and disable modules; contain-
ers: virtual hosts, directories; access control : [.htaccess]; CGI: ExecCGI, ScriptAlias;
commands: apachectl [-t, -S, graceful, restart]; configuring apache logs, FTP services:
configure FTP users [/etc/ftpusers, chroot]; configure anonymous access).

3.4 Given a scenario, explain the purpose of the following web-related services (Tomcat,
Apache, Squid).

3.5 Troubleshoot web-related services using the following utilities (Commands: curl,
wget, ftp, telnet).

3.6 Given a scenario, troubleshoot common FTP problems (Active vs. passive, ASCII
vs. binary).

3.7 Given a scenario, perform the following MySQL administrative tasks (Locate con-
figuration file, Starting and stopping, Test the configuration).

3.8 Explain the purpose of each of the following mail services, protocols, and fea-
tures (Protocols: SMTP, IMAP, POP3; MTA: Postfix, Sendmail; Email aliases: /etc/
aliases, newaliases).

3.9 Deploy and manage CUPS print services (enable and disable queues, Web manage-
ment interface [port 631], Printing commands: lpr, lp, lpq, lpstat, cancel).

3.10 Set up, install, configure, and maintain a BIND DNS server and related services
(DNS utilities: named, rndc; Config file locations [/var/named]; Forward zones, reverse
zones, root hints).

03843flast.indd 27 8/25/09 7:18:30 AM

xxviii Introduction

3.11 Perform basic administration of the DHCP server (/etc/dhcpd.conf, dhcpd.leases).

3.12 Given a scenario, troubleshoot NTP related issues (/etc/ntp.conf, ntpdate, date,
ntpq -p).

Domain 4.0 Networking

4.1 Identify common networking ports and the associated service (20, 21, 22, 23, 25,
53, 80, 110, 123, 143, 443, 631, 3306, /etc/services).

4.2 Execute network interface configuration using the following (dhclient, dhcpcd,
ifconfig, iwconfig, route, ifup, ifdown, network configuration files).

4.3 Implement configurations and/or configuration changes for the following (Packet
filtering: iptables; Hostname lookup: /etc/hosts, /etc/nsswitch.conf, /etc/
resolv.conf).

4.4 Explain the different DNS record types and the process of DNS resolution (Local
resolution, TTL/caching, Root name servers, A, MX, PTR, CNAME, NS, TXT).

4.5 Troubleshoot basic connectivity issues using the following tools (netstat, ping,
traceroute, arp, telnet, route).

4.6 Troubleshoot name resolution issues using the following tools (dig, host, nslookup,
hostname).

Domain 5.0 Security

5.1 Manage and monitor user and group accounts using the following (Tools: useradd,
userdel, usermod, groupadd, groupdel, groupmod, lock, who, w, last, whoami. Files: /etc/
skel, /etc/passwd, /etc/shadow, /etc/group).

5.2 Given a scenario, select the appropriate file permissions and ownership and
troubleshoot common problems (Tools: chmod, chown, chroot, chgrp, lsattr, chattr,
umask. Special permissions: setuid, setgid, sticky bit).

5.3 Explain the basics of SELinux (Running modes [Enabled, Disabled, Permissive]).

5.4 Given a scenario, implement privilege escalation using the following (sudo, su).

5.5 Explain the appropriate use of the following security related utilities (nmap,
Wireshark, NESSUS, Snort, Tripwire).

5.6 Use checksum and file verification utilities (md5sum, sha1sum, gpg).

5.7 Deploy remote access facilities using the following (SSH: Secure tunnels, SFTP,
X11 forwarding, Keygen; VNC).

5.8 Explain the methods of authentication (PAM, LDAP, NIS, RADIUS, Two-factor
authentication).

03843flast.indd 28 8/25/09 7:18:30 AM

Assessment Test
1. Where may GRUB be installed?

A. The MBR, a Linux partition’s boot sector, or a floppy disk

B. The MBR, a Linux partition’s boot sector, or a Windows partition’s boot sector

C. A Linux partition’s boot sector or a Windows partition’s boot sector

D. The MBR, a floppy disk, or a swap partition

2. Which of the following tools is it most important to have available on an emergency
recovery disk?

A. fdformat

B. OpenOffice.org

C. mkfs

D. traceroute

3. Which of the following types of information are you likely to see in log files? (Choose all
that apply.)

A. Information about a user launching a text editor to edit a file in the user’s directory

B. Successful uses of the su command to acquire root privileges

C. Failed attempts to log in to a server controlled through xinetd

D. Failed attempts by a user to read another user’s files via the cat command

4. What does the -t parameter to telinit control?

A. The time between a polite shutdown of unneeded servers (via SIGTERM) and a forceful
shutdown (via SIGKILL)

B. The time between issuing the telinit command and the time the runlevel change
takes place

C. The runlevel that’s to be entered on completion of the command

D. The message sent to users before the runlevel change is enacted

5. You type ifconfig eth0 and see the following line in the output. What does this
output mean?
Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

A. The Ethernet card is malfunctioning, with an error code of 00:A0:CC:24:BA:02.

B. The Ethernet card has a hardware address of 00:A0:CC:24:BA:02.

C. The hardware is incapable of establishing an Ethernet link with other devices.

D. The 00 at the start of the HWaddr indicates that the interface is not yet active.

03843flast.indd 29 8/25/09 7:18:30 AM

xxx Assessment Test

6. Which of the following is it wise to do when deleting an account with userdel?

A. Ensure that the user’s password isn’t duplicated in /etc/passwd or /etc/shadow.

B. Search the computer for stray files owned by the former user.

C. Change permissions on system files to prevent the user from accessing them remotely.

D. Delete the user’s files with a utility that overwrites former file contents with random data.

7. An ls -l command reveals that the loud file has a permission string of crw-rw---- and
ownership by the user root and group audio. Which of the following is a true statement
about this file?

A. Only root and the account that created it may read or write the file.

B. The file is a directory, as indicated by the leading c.

C. Anybody in the audio group may read from and write to the file.

D. The command chmod 660 loud will make it accessible to more users.

8. Which of the following is commonly found in /etc/inetd.conf entries for servers but not
in the equivalent entries in /etc/xinetd.conf or a file in /etc/xinetd.d?

A. A call to tcpd

B. A specification of the protocol, such as tcp

C. A specification of the user, such as nobody

D. Arguments to be passed to the target server

9. Under which of the following circumstances will a chmod command not work?

A. The user issuing the command doesn’t own the file but does own and have write per-
mission to the directory in which the file resides.

B. The root user issues the command on a file that resides in a read/write filesystem,
although the file itself has no write permissions active.

C. The owner of the file issues the command, but the file’s permissions don’t grant the
owner write access to the file.

D. The owner of the file issues the command, but the file resides in a directory to which
the owner has read but not write access.

10. What is the function of the su command?

A. It gives the named user superuser privileges.

B. It acquires the named user’s privileges, or the superuser’s if no username is specified.

C. It acquires superuser privileges for the user who runs the command.

D. It gives everybody currently logged in superuser privileges.

03843flast.indd 30 8/25/09 7:18:30 AM

Assessment Test xxxi

11. Under which of the following circumstances would you be most likely to need to edit the
/etc/fstab file’s contents?

A. You’ve added a hard disk to the computer.

B. You’ve inserted a Zip disk into the computer’s Zip drive.

C. The system performs a disk check and reports no errors.

D. You’ve changed /boot/grub/menu.lst boot options.

12. Which category of attack denies you the use of your equipment?

A. DoS

B. Core

C. Rooted

D. Phish

13. You want to set up a firewall on a Linux computer. Which of the following tools might you
use to accomplish this task?

A. Apache

B. iptables

C. wall

D. TCP Wrappers

14. Which of the following is the intended purpose of the rc.local or boot.local startup script?

A. It sets the system’s time zone and language defaults.

B. It holds startup commands created for its specific computer.

C. It displays startup messages to aid in debugging.

D. It verifies that all other startup scripts are operating correctly.

15. What role does BIND fill?

A. It allows programs to use dynamic library files.

B. It translates between hostnames and IP addresses.

C. It ties together POP and SMTP servers.

D. It binds an IP address to a network interface.

16. You suspect that a router between you and ftp.abigisp.net is malfunctioning and pre-
venting a connection. What tool might you use to track down which system is the problem?

A. nslookup

B. ping

C. traceroute

D. netstat

03843flast.indd 31 8/25/09 7:18:30 AM

xxxii Assessment Test

17. Which of the following commands is most likely to stop a runaway process with PID 2939?

A. kill -s SIGHUP 2939

B. kill -s SIGTERM 2939

C. kill -s SIGKILL 2939

D. kill -s SIGDIE 2939

18. Which of the following is not one of the responsibilities of CUPS?

A. Maintaining the printer queues

B. Accepting print jobs from remote systems

C. Managing the scanner hardware on combination scanner/printers

D. Sending data to printers

19. Which of the following commands displays the contents of a tarball, including file sizes and
time stamps?

A. tar xzf theprogram-1.2.3.tgz

B. tar tzf theprogram-1.2.3.tgz

C. tar tvzf theprogram-1.2.3.tgz

D. tar x theprogram-1.2.3.tgz

20. Which of the following commands replaces jpertwee’s current cron job with my-cron?

A. crontab -r my-cron

B. crontab -e my-cron

C. crontab jpertwee my-cron

D. crontab -u jpertwee my-cron

21. How would you direct the output of the uptime command to a file called uptime-stats.txt?

A. echo uptime uptime-stats.txt

B. uptime > uptime-stats.txt

C. uptime | uptime-stats.txt

D. uptime < uptime-stats.txt

22. A workstation ordinarily runs with a load average of 0.25. Suddenly, its load average is 1.25.
Which of the following might you suspect, given this information? (Choose all that apply.)

A. The workstation’s user may be running more programs or more CPU-intensive pro-
grams than usual.

B. A process may have hung—locked itself in a loop consuming CPU time but doing no
useful work.

C. A process may have begun consuming an inordinate amount of memory.

D. The CPU may be malfunctioning and require replacement.

03843flast.indd 32 8/25/09 7:18:30 AM

Assessment Test xxxiii

23. You’ve installed Linux on a new computer, but you’ve been unable to get X to function in
anything better than 640 × 480 (VGA) video mode. After you investigate, you learn that the
video card’s chipset is unsupported by the standard drivers in XFree86 3.3.6, XFree86 4.x,
or X.org-X11. Which of the following is not an option you might consider to resolve the
situation?

A. Replace the video card.

B. Obtain an XFree86 4.x driver from the card’s manufacturer.

C. Replace your distribution’s X server with Accelerated-X.

D. Upgrade the card’s memory to allow higher video resolutions.

24. The final step of your company’s procedures for creating a new server requires you to store
information on /dev/hda’s MBR partition table in an ASCII file named documentation.
txt. Which of the following commands will allow you to accomplish this action?

A. df /dev/hda > documentation.txt

B. parted -l /dev/hda > documentation.txt

C. fdisk -l /dev/hda > documentation.txt

D. du /dev/hda > documentation.txt

25. You are configuring your company firewall and have been told that TCP and UDP data to
port 53 must be allowed through. By default, what server uses this port?

A. NNTP

B. PortMapper

C. NetBIOS

D. BIND

26. Your company makes computer hardware, and you want to enable customers to download
Linux, Windows, and MacOS drivers and documentation files for this hardware. Which of
the following are the best choices to enable users to retrieve such files? (Choose two.)

A. SMTP

B. FTP

C. HTTP

D. NFS

27. Which of the following statements are true of SSH? (Choose all that apply)

A. Most default configurations allow root to log in directly.

B. Encryption makes SSH safer than Telnet.

C. The default port used is 53.

D. By default, SSH uses UDP.

03843flast.indd 33 8/25/09 7:18:30 AM

xxxiv Assessment Test

28. Where may the Linux root (/) partition reside?

A. On a primary or logical partition

B. On a logical partition only

C. On a primary partition only

D. On a partition that falls below the 1,024th cylinder

29. What tool can diagnose and fix many common Linux filesystem problems?

A. mkfs

B. fsck

C. chkdsk

D. scandisk

30. Which of the following tools enables you to digitally “sign” e-mail messages as a way of
proving to recipients that you were the true sender?

A. GPG

B. SSH

C. BIND

D. Winbind

03843flast.indd 34 8/25/09 7:18:31 AM

Answers to Assessment Test xxxv

Answers to Assessment Test
1. A. GRUB may reside in any of the locations listed in option A. If you install it in a FAT or

NTFS partition (used by DOS or Windows), these partitions will be damaged, and if you
install GRUB in a swap partition that is then used, GRUB will be wiped out. See Chapter 1
for more information.

2. C. Option C, mkfs, is a tool for creating a new filesystem, which is something you’re likely
to need to do in an emergency recovery situation. The first option, fdformat, does a low-
level format on a floppy disk, OpenOffice.org is an office productivity suite, and traceroute
helps diagnose network connectivity problems. You’re unlikely to need to use any of these
tools from an emergency disk. See Chapter 1 for more information.

3. B, C. Log files record messages generated by the kernel, servers, and certain security-
related system utilities. The su command typically records a summary of its actions in log
files, and xinetd typically records login failures, although these defaults can be changed.
Text editors seldom log information, nor do simple file-viewing utilities, even if they’re
asked to violate file security measures. See Chapter 4 for more information.

4. A. When shutting down certain servers, telinit first tries asking them to shut themselves
down by sending a SIGTERM signal. The server can then close open files and perform other
necessary shutdown housekeeping. If the servers don’t respond to this signal, telinit becomes
more forceful and passes a SIGKILL signal, which is more likely to work but doesn’t give the
server a chance to shut itself down in an orderly fashion. The -t parameter specifies the time
between these two signals. See Chapter 4 for more information.

5. B. The Link encap: Ethernet portion of the output indicates that the device uses Ether-
net to establish links with other systems. HWaddr 00:A0:CC:24:BA:02 specifies the hard-
ware address (aka the Media Access Control, or MAC, address). Ethernet cards use these
addresses to “talk” to each other; Linux’s TCP/IP stack locates a MAC address when given
a TCP/IP address, if the target system is on the same network segment. (If not, Linux locates
the gateway system and passes data through it.) See Chapter 8 for more information.

6. B. Tracking down and removing or changing the permissions of a former user’s files can
prevent confusion or possibly even spurious accusations of wrongdoing in the future. Unless
the user was involved in system cracking, there’s no reason to think that the user’s password
would be duplicated in the password database. No system file’s ownership or permissions
should need changing when deleting a user. Although overwriting deleted files with random
data may be useful in some high-security environments or with unusually sensitive data, it’s
not a necessary practice on most systems. See Chapter 5 for more information.

7. C. The second set of permission bits (rw-) indicates that the file’s group (audio) may read
from and write to the file. This permission string ensures that, if audio has more than one
member, multiple users may access the file. The leading c indicates that the file is a char-
acter device file, not a directory. The command chmod 660 loud will not change the file’s
permissions; 660 is equivalent to rw-rw----. See Chapter 2 for more information.

03843flast.indd 35 8/25/09 7:18:31 AM

xxxvi Answers to Assessment Test

8. A. The TCP Wrappers program, tcpd, includes security features that are largely provided
directly by xinetd, so most systems that use xinetd don’t call tcpd from xinetd. The other
options appear in both types of files, although arguments for the server aren’t required for
either super server. See Chapter 4 for more information.

9. A. Only the file’s owner and root may change permissions on a file via chmod. Whether the
file is writeable by the owner is irrelevant, as is whether the directory in which the file resides
is writeable. See Chapter 2 for more information.

10. B. Typing su username gives the person who runs the command the privileges associated
with that username, assuming that the person who runs the command successfully enters
the user’s password. When the username isn’t specified, root is assumed. The su command
also runs a program as the specified user. Normally, this is a shell, but you can specify
another program using a command-line argument. Although option C describes part of
what su can do, option C is incomplete; option B is a more complete answer. The su com-
mand does not give superuser privileges to the named user, nor does it give everybody who’s
logged in superuser privileges. See Chapter 5 for more information.

11. A. To use disk space on a new computer, you must add one or more /etc/fstab entries
for the new disk partitions (unless you intend to manually mount the new disk’s partitions
as root whenever you need them). A Zip disk is just like any other removable medium;
/etc/fstab can contain an entry for the drive, which doesn’t need changing to read a new
disk. Disk checks don’t change partition tables, and so they don’t require /etc/fstab to be
edited. The /boot/grub/menu.lst boot configuration won’t alter partition layouts either.
See Chapter 6 for more information.

12. A. A denial of service (DoS) attack is any type of attack that denies you the use of your
equipment. Core is not a type of attack. Rooted is a term used to describe root access being
obtained by a hacker, while phishing involves sending bogus e-mails or setting up fake Web
sites that lure unsuspecting individuals into divulging sensitive financial or other informa-
tion. See Chapter 12 for more information.

13. B. Option B, iptables, is a tool for configuring the 2.4.x and 2.6.x Linux kernel’s fire-
wall features. (The ipfwadm and ipchains programs perform these tasks for the 2.0.x and
2.2.x kernels, respectively.) Apache is a Web server, and wall sends messages to all currently
logged-on users. TCP Wrappers controls access to specific servers, but it isn’t a firewall per se.
See Chapter 9 for more information.

14. B. These scripts hold startup commands individualized for their host (“local”) computer, as
opposed to those that are provided with the distribution. In principle, these scripts could be
used for any of the other listed purposes, but this isn’t their usual function. See Chapter 4
for more information.

15. B. BIND is the Berkeley Internet Name Domain—a name server. Normally, BIND runs
only on your network’s name servers; other computers on your network point to a DNS
server that runs BIND or similar software. See Chapter 10 for more information.

16. C. You can use traceroute to check the time for data transfers to, and the reliability of,
every router between you and a destination system. This data should help you identify a
failure point on a connection. See Chapter 8 for more information.

03843flast.indd 36 8/25/09 7:18:31 AM

Answers to Assessment Test xxxvii

17. C. Many servers use SIGHUP as a code to reread their configuration files; this signal doesn’t
normally terminate the process. SIGTERM is a polite way to stop a process; it lets the process
control its own shutdown, including closing open files. SIGKILL is a more forceful method
of termination; it’s more likely to work than SIGTERM, but open files won’t be saved. There
is no SIGDIE signal. See Chapter 3 for more information.

18. C. The Common Unix Printing System (CUPS) accepts print jobs from local and remote
systems, maintains print queues, and sends data to printers (both local and remote). It does
not, however, manage the scanner side of combination scanner/printer hardware; that task
is handled by Scanner Access Now Easy (SANE) or other scanner software. See Chapter 9
for more information.

19. C. Option A extracts files from the archive without displaying their names. Option B lists
the files in the archive, but without the --verbose (v) option, it doesn’t list file sizes or time
stamps. Option D will cause tar to attempt to extract the named file from its standard tape
device. See Chapter 7 for more information.

20. D. The -r option removes a user’s cron job, and the -e option edits the user’s cron job.
Any parameter following either of these is interpreted as a username, so both options A
and B interpret my-cron as the username. Option C is malformed, but it will have the effect
of installing the file jpertwee as the cron job for the user who types the command. The
-u jpertwee parameter in option D correctly specifies the user as jpertwee, and the last
parameter (my-cron) is the file holding the cron job specification. See Chapter 3 for more
information.

21. B. The output redirection operator is >, so option B sends the output of uptime to
uptime-stats.txt. The echo command displays information on the screen, so option A
simply causes uptime uptime-stats.txt to appear. Option C uses a pipe. If uptime-
stats.txt were a program, it would process the output of uptime, but the result of this
command will probably be a file not found or permission denied error. Option D
uses an input redirection operator, so uptime receives the contents of uptime-stats.txt
as its input. See Chapter 2 for more information.

22. A, B. Sudden jumps in load average indicate that programs are making heavier demands
on the CPU than is normal. This may be because of legitimate factors such as users running
more programs or more demanding programs, or it could mean that a program has locked
itself into an unproductive loop. Memory use isn’t reflected in the load average. A malfunc-
tioning CPU is likely to manifest itself in system crashes, not a change in the load average.
See Chapter 3 for more information.

23. D. Upgrading the video memory won’t overcome an unsupported chipset, although it might
help if the board works at up to some resolution but no higher. Some manufacturers pro-
vide XFree86 or X.org-X11drivers on their Web sites. Replacing the video card or replacing
XFree86 or X.org-X11 are also possible courses of action, but you should investigate com-
patibility before you make a purchase. See Chapter 1 for more information.

24. C. The command fdisk -l /dev/hda > documentation.txt will store information on
/dev/hda’s partition table in the file documentation.txt. The other utilities listed will not
show the information about the partition table that you would want to record in this file.
See Chapter 6 for more information.

03843flast.indd 37 8/25/09 7:18:31 AM

xxxviii Answers to Assessment Test

25. D. The Berkeley Internet Name Domain (BIND) server, which performs DNS name resolu-
tion, uses port 53 by default. The Network News Transfer Protocol (NNTP) uses port 119,
PortMapper uses 111, and NetBIOS uses ports 137 through 139. See Chapter 8 for more
information.

26. B, C. The question requires a publicly-accessible file download system using a widely-used
network protocol. Both the File Transfer Protocol (FTP) and the Hypertext Transfer Protocol
(HTTP; the Web’s main protocol) fit the bill, although an FTP server will need to be config-
ured for anonymous access. You might want to run option A’s Simple Mail Transfer Protocol
(SMTP) to receive e-mail from customers, but it won’t help to achieve the stated goals. The
Network File System (NFS) is a file-sharing protocol that could, in principle, be used to
achieve the question’s goals; however, Windows-using clients are unlikely to be able to easily
access an NFS server and most Web browsers don’t support NFS, making it a more awkward
choice in this role even for Linux users. Thus, option D is a poor choice, and since the ques-
tion asks for precisely two answers, B and C are both superior responses. See Chapter 11 for
more information.

27. A, B. Most default SSH configurations allow root to log in directly. Although SSH’s encryp-
tion makes this practice much safer than the equivalent when using Telnet, you can gain the
added benefit of requiring two passwords by disabling direct root logins via SSH. The default
port used by SSH is 22, and it is a TCP protocol. See Chapter 9 for more information.

28. A. Linux isn’t fussy about primary versus logical partition types, even for the root partition.
On old BIOSs or with old versions of LILO, the kernel must reside below the 1,024th cylinder,
but this isn’t a requirement of the root partition. See Chapter 6 for more information.

29. B. Option B, fsck, is Linux’s filesystem check utility. It’s similar in purpose to the DOS
and Windows CHKDSK and ScanDisk utilities, but these DOS and Windows utilities don’t
work on Linux filesystems like ext2fs or ReiserFS. Option A, mkfs, creates new filesystems;
it doesn’t diagnose or fix filesystem problems. See Chapter 6 for more information.

30. A. The GNU Privacy Guard (GPG) package provides the feature described in the question.
(It also supports encrypting files and e-mail messages.) The Secure Shell (SSH) program is a
remote login tool; although it’s also an encryption tool, it wasn’t designed to do as the ques-
tion states. The Berkeley Internet Name Domain (BIND) daemon is a DNS name server; it
can’t do as the question suggests. The Winbind package is a network authentication tool that
permits Linux systems to use a Windows domain controller for authentication. It doesn’t
enable digital signing of files or e-mail messages. See Chapter 12 for more information.

03843flast.indd 38 8/25/09 7:18:31 AM

Chapter

1
Getting Started
with Linux

The FoLLowinG CompTiA objeCTiveS
Are Covered in ThiS ChApTer:

1.1 Compare and contrast installation sources.ÛÛ

1.7 Configure the boot process including the following ÛÛ
(GRUB: /boot/grub/grub.conf, /boot/grub/menu.lst,
grub-install, grub).

1.10 Troubleshoot boot issues using the following ÛÛ
tools (kernel options, single user mode [including
recovering the root user], Rescue—live CDs, DVDs,
and USB keys, dmesg).

1.11 Manage devices using the following tools (ÛÛ lsusb,
lspci, lsmod, /sys, modprobe, /proc, /etc/modules.conf,
/etc/modprobe.conf, Hardware Compatibility List [HCL]).

2.5 Explain the following features and concepts of X11 ÛÛ
(Starting and stopping X11, Differences between the X11
client and server, Window managers and display manag-
ers (KDM, GDM), Multiple desktops, X11 configuration file
(xorg.conf), Terminal emulators (xterm, etc.).

03843c01.indd 1 8/25/09 7:20:09 AM

Before you can begin using Linux, you must have a computer
that runs the OS. Although computers pre-loaded with Linux
exist, many people choose to install the OS themselves. Thus,

this book begins with an examination of this topic. You should be aware, however, that Linux
isn’t a single OS, but rather a family of OSs, so this book doesn’t provide a step-by-step descrip-
tion of Linux installation, but only an overview of some of the important concepts and choices
available.

This chapter also covers some critical low-level Linux configuration issues. These are
the boot process, the graphical user interface (GUI), and Linux hardware management tools.
Booting Linux is done with a tool known as a boot loader, which can be configured to boot
with a variety of options. Linux’s GUI is known as the X Window System (X or X11 for
short). It’s different from the GUIs in Microsoft Windows or Mac OS, so it requires special
attention. Managing hardware, although in some respects an advanced topic, is very funda-
mental to the computer’s operation, so this chapter concludes with a look at this topic.

Selecting an Installation Method
If you’re installing Linux yourself, you have several choices to make even before you sit
down at the computer to do the job. The first of these is choosing a distribution. This is a
collection of all the software that makes up a working computer; several different Linux
distributions are available. Once you select a distribution, you may need to choose what
installation method to use and how to interact with the installer. Once this is done, you
can actually perform the installation.

Choosing a Distribution
Any OS consists of a series of software components that interact with one another to produce
a working system. The lowest-level component is known as the kernel. The kernel interacts
directly with the hardware and manages all the other programs. Technically, the name Linux
applies only to the Linux kernel; everything else that makes up a working Linux system
is outside of the Linux kernel, and most of these tools run on non-Linux systems, such as
FreeBSD, Solaris, Mac OS, and even Windows.

The collection of a specific Linux kernel along with specific versions of other tools
(servers, shells, e-mail clients, and so on) and configuration files to glue everything

03843c01.indd 2 8/25/09 7:20:09 AM

Selecting an Installation Method 3

together makes up a distribution. Dozens of Linux distributions exist, but the following
handful are the most popular general-purpose distributions:

Debian If you want a distribution that conforms strictly to free software principles, Debian
may be what you want. It uses less in the way of flashy GUI front-ends to configuration tools
than do many other distributions. See http://www.debian.org for more information.

Fedora This distribution is a free variant of Red Hat. It’s very popular among hobbyists
and small organizations that don’t need extensive support. See http://fedoraproject.org
for more information.

Mandriva Two older distributions, Mandrake and Conectiva, merged to become Mandriva.
This distribution, headquartered at http://www.mandriva.com, includes variants intended to
run from USB flash drives.

Red Hat This distribution is among the oldest of the popular distributions. It is the commer-
cial variant of Fedora, and it’s a popular choice among businesses that want official support.
See http://www.redhat.com for more information.

SUSE This distribution is a general-purpose distribution with both commercial (SUSE;
see http://www.novell.com/linux) and fully open source (OpenSUSE; see http://www
.opensuse.org/en) variants.

Ubuntu You can find this distribution at http://www.ubuntu.com. It’s a variant of Debian
that adds more in the way of GUI tools and other features that appeal to less geeky users.
It’s very popular among hobbyists and home users.

This list is by no means comprehensive; distributions such as Gentoo, Slackware, and
others all appeal to certain people. Others are highly specialized—say, for scientific data
collection or use on old hardware. If you need to select a Linux distribution, I recommend
you peruse the Web sites for the six distributions in the preceding list to decide what to run.
Factors you might consider include cost, hardware requirements, paid support, popularity
(for ease of finding free support on the Internet), and what your friends and colleagues run.

Most modern distributions, including Fedora, Mandriva, Red Hat, and SUSE, use the
RPM Package Manager (RPM; a recursive acronym) for software installation. Debian and
Ubuntu use Debian packages for this purpose. This detail is important because it deter-
mines what software you’ll use for maintaining your software—a topic that’s covered in
detail in Chapter 7, “Managing Packages and System Backups.” If you don’t know what to
select, don’t worry too much about it, but be sure that any distribution you pick uses one of
these two methods. Other methods, such as the Portage system used by Gentoo, may work
perfectly well, but they aren’t covered by the Linux+ exam. If you can install two distribu-
tions, pick one that uses RPMs and another that uses Debian packages, since the Linux+
exam covers both tools.

Selecting an Installation Medium
Linux can be booted and installed from any of several different media—floppy disks,
CD-ROMs, network connections, and so on. For both booting and installing files, differ-
ent media offer different advantages and disadvantages.

03843c01.indd 3 8/25/09 7:20:09 AM

4 Chapter 1 n Getting Started with Linux

The Boot Method
Linux installer programs run within Linux itself. This means that in order to install Linux,
you must be able to boot a small Linux system, which is provided by the distribution
maintainer. This system is useful only for installing Linux and sometimes for doing emer-
gency maintenance. It typically fits on one or two floppy disks or can boot from a bootable
CD-ROM.

Modern BIOSs include options for the selection of a boot medium. Typical choices
include the floppy disk, CD-ROM drive, PATA hard disk, SATA hard disk, SCSI hard disk,
and USB media. In addition, some network cards include BIOSs that enable a computer
to boot from files stored on a server. In theory, any of these media can be used to boot a
Linux installer.

Although many boot methods are possible, the most common method by far is to use a
bootable CD-ROM or DVD-ROM. If you buy a boxed Linux package, it will come with
a bootable disc; or you can download an image from the distribution’s Web site, burn it,
and boot it.

In the past, floppy disks and booting from DOS or Windows were common methods of
launching an installer. These methods have fallen by the wayside, but it’s conceivable you’ll
still run into them, particularly on old, small, or specialized distributions.

Ultimately, the boot method is unimportant, because the same installation programs run
no matter what method you choose. Pick the boot method that’s most convenient for your
hardware and the form of installation medium you’ve chosen.

Installation Media
The installation medium is the physical form of the source of the Linux files. These are the
most common choices:

Optical discs If you buy Linux in a store or from an online retailer, chances are you’ll
get an optical disc. In fact, most distributions come on multiple CD-ROMs or a single
DVD-ROM. Optical disc installations tend to be quick. Most distribution maintainers
offer CD-ROM and DVD-ROM image files that you can burn to CD-Rs yourself. To find
optical disc image files, check http://iso.linuxquestions.org, ftp://sunsite.unc
.edu/pub/linux/distributions or your chosen distribution’s Web or FTP site.

Network If you have a fast network connection, many distributions enable you to install via
network connections. You must typically download a small image file for a boot CD-ROM,
burn that image to disc, and boot it. This boot disc has only a minimal software set, so when
you install from the network, you’ll download only what you want to install. The drawback
to network installations is that they tend to be slower than installs from CD-ROMs. They
require more information from the user, and so they can be more difficult for a new user to
get working. They can also fail midway if a network connection goes down or a server stops
responding. Network installations may use any of several protocols to transfer files, including
FTP, HTTP (Web), SMB (Windows file sharing), and NFS (Unix/Linux file sharing). Precisely
which protocols are supported varies from one distribution to another.

03843c01.indd 4 8/25/09 7:20:10 AM

Selecting an Installation Method 5

Not all distributions support all of these installation options. All mainstream distributions
support installation from optical discs, and most support at least one form of network instal-
lation. Beyond this, you should check the documentation for the distribution.

As a general rule of thumb, installing from DVD-ROMs makes the most sense on
modern systems, since these computers invariably have DVD-ROM drives, and using
DVD-ROMs means you won’t be asked to swap discs mid-installation, as is likely if you
use CD-ROMs. CD-ROMs are useful on older computers, though.

For network installation, FTP and HTTP are common choices for direct installation from
remote servers. Both methods work well, but if your network has a firewall that requires use
of a proxy server, you may need to enter extra information to have the installer use the proxy
server. SMB and NFS are more commonly used on local networks. If you host a distribution’s
files on a local system, you could use these protocols (or FTP or HTTP) to perform network
installations from your local server.

Interacting with the Installer
Most methods of Linux installation require you to make decisions during the process. You
may need to tell the system how to partition your hard disk, what your network settings
are, and so on. To handle such interactions, distribution maintainers have developed three
methods of data entry:

GUI interactions Most Linux distributions employ a GUI installer; the system boots up
into a basic GUI display, automatically configures the keyboard and mouse, and then pro-
ceeds to offer options. This method of installation is relatively comfortable to most new
Linux users; however, the installer may fail to correctly identify the video display and may
therefore revert to a text-mode interface.

Text-based interactions Some distributions default to a text-based installer, in which
the computer asks questions that require keyboard responses. Typically, you select options
from a text-based menu system, so you don’t need to know Bash (described in more detail
in Chapter 2, “Using Text-Mode Commands”) or be otherwise familiar with Linux details.
If a GUI installer behaves strangely, or if you prefer a text-based installer, you may be able
to enter one even on distributions that use a GUI installer by default. Typically, the boot
disc provides a menu early in the boot process with a prompt that explains how to enter the
text-mode installer.

Scripted installations If you plan to install Linux many times on identical hardware,
a scripted install may be just the ticket. In this type of install, you create a configuration
file that describes precisely what you want to do. You then provide this file to the installer,
which can do the rest of the job without pestering you with questions. Using a scripted
installer requires highly distribution-specific knowledge.

Performing the Installation
Unfortunately, Linux distributions’ installers vary substantially in how they work. You
should consult your distribution’s documentation to learn the details. Generally speaking,

03843c01.indd 5 8/25/09 7:20:10 AM

6 Chapter 1 n Getting Started with Linux

the installer guides you through several steps, each of which sets options for particular
OS features:

Language options You’ll typically be asked to confirm your language. In fact, you may be
asked to do this twice, in order to set the display language and the layout of your keyboard.

Disk partitioning Hard disks are typically split into multiple sections, or partitions, which
hold data of different types. If you’re installing Linux on a blank hard disk, you can probably
get by with the default partitioning options. If you need Linux to coexist with another OS or
if you have specialized needs, you may want to consult Chapter 6, “Managing Disks,” before
installing Linux.

Boot options You may be asked to set various boot options, such as enabling the computer
to boot another OS in addition to Linux. The upcoming section “Configuring Boot Loaders”
describes this topic in more detail.

Network configuration Linux installers typically enable you to set basic network options.
Chapter 8, “Configuring Basic Networking,” covers this topic in detail. For now, you should
know that most networks employ the Dynamic Host Configuration Protocol (DHCP) to set
most network options. If your network uses DHCP, setting the DHCP option should get basic
network features working. If your network doesn’t use DHCP, you’ll need to ask your network
administrator for advice. If in doubt, you can leave network configuration until later—at least,
if you’re installing from an optical disc or other local media.

X configuration Modern Linux distributions typically detect your video display hardware
and set it up reasonably for use by the X Window System, Linux’s GUI environment; how-
ever, you may want or need to fine-tune your monitor’s resolution or enter other technical
data. If this step gives you problems, you can put it off until later. The upcoming section
“Configuring X” covers this topic in detail.

Time options You can set the current time and time zone as part of the system installation.
One unusual feature of Linux relates to the choice of Universal Coordinated Time (UTC) vs.
local time. Linux computes times based on UTC (which is closely related to Greenwich Mean
Time, or GMT) and then converts those times to local time based on your time zone. DOS
and Windows, however, use local time internally. For this reason, the hardware clock in com-
puters is often set to local time. Linux handles daylight saving time changes more easily if you
set your hardware clock to UTC. Thus, you have the option of using either approach. Gener-
ally speaking, you should use UTC if Linux is the only OS on the computer or if you only
multiboot to other UTC-using OSs, such as FreeBSD or Mac OS. If your system multiboots
with Windows, though, you may want to set the hardware clock to local time.

Package selection All distributions install a base set of programs (or packages). Some
distributions give you options during installation about what additional software to install.
This task can sometimes be overwhelming. If you’re in doubt, leave the defaults; you can
always install software later, as described in Chapter 7.

Account creation You’ll usually have to set a password for root, which is the Linux
administrative account. Most installers also give you the option of creating one or more user
accounts during installation. Account management is covered in more detail in Chapter 5,
“Managing Users.”

03843c01.indd 6 8/25/09 7:20:10 AM

Configuring Boot Loaders 7

These tasks may be performed in almost any order, and some distributions add more
tasks or omit some of them.

Once the basic installation is done, the installer will reboot the computer. With any luck,
you’ll be greeted by a text-mode or GUI login prompt. You can then enter your username
and password to see a working Linux system. Chapter 2 describes the commands used at a
text-mode Linux shell. After a GUI login, you’ll see a screen from which you can run vari-
ous programs via a point-and-click interface similar to that in Windows or Mac OS.

The rest of this chapter covers various topics related to booting and hardware configura-
tion. Some of the tasks described in these sections require you to work at a text-mode com-
mand shell. You can either log into a text-mode session or locate an option called xterm,
Konsole, shell, terminal, or something similar from the GUI menu.

If X is running on your computer, you can access a full-screen text-mode
session by pressing Ctrl+Alt+Fn, where n is a number, typically from 1
through 6. To switch back to X, you can press Alt+F7 (Fedora uses Alt+F1
for this purpose). These keystrokes switch between virtual terminals, which
enable you to run multiple text-mode programs, each with its own display.
X occupies one virtual terminal of its own.

Configuring Boot Loaders
The Linux kernel is at the heart of a Linux computer; in fact, technically speaking, the
kernel is Linux—everything else is support programs. Because the kernel must run before
Linux is completely booted, the kernel must be loaded into memory in a unique way. A pro-
gram known as a boot loader handles this task. Several boot loaders are available, some of
which can boot a Linux kernel directly, and others of which require help to do the job.

This section describes boot loaders for x86 and x86-64 systems using a
legacy BIOS. If you’re using Linux on another architecture, such as PowerPC
or Alpha, the available boot loaders will be different. Consult your distribu-
tion’s documentation for details.

The Role of the Boot Loader
When it’s first powered up, an x86 CPU checks a specific area of memory for code to
execute. This code is the BIOS in most systems. You’re probably familiar with the BIOS
through your computer’s BIOS setup screens, which enable you to configure features such as
RAM timing and whether or not onboard ports are active. The BIOS also provides code that
allows the computer to boot. The BIOS checks the first sector of your hard disk (or of your

03843c01.indd 7 8/25/09 7:20:11 AM

8 Chapter 1 n Getting Started with Linux

floppy disk, CD-ROM, or other disk devices, depending on the BIOS’s capabilities and con-
figuration) for a small boot loader program. This program normally resides on the master
boot record (MBR) of a hard disk or the boot sector of a floppy disk. The MBR resides on
the first sector of a hard disk and controls the boot process. A boot sector is the first sector
of a floppy or of a hard disk partition and also controls the boot process. (In the case of a
partition’s boot sector, it’s used after the MBR.)

The BIOS, as it currently exists, is extremely old and limited. A new system,
known as the Extensible Firmware Interface (EFI), is poised to replace the
BIOS. Intel-based Macintoshes already use EFI, as do a few other systems;
however, EFI is not yet common on commodity PCs. If your system uses
EFI, its boot process will differ from that described here.

In the case of a PC that runs nothing but Windows, the boot loader in the MBR is
hard-coded to check for a secondary boot loader in the active primary partition—that
is, a partition that’s been marked as holding a bootable OS. This secondary boot loader
directly loads the Windows kernel. The approach in Linux is similar, but standard Linux
boot loaders are more complex. The Linux Loader (LILO) and the Grand Unified Boot-
loader (GRUB) are the most common Linux boot loaders. Both programs enable you to
boot the Linux kernel or to redirect the boot process to another OS.

In some cases, a system uses multiple boot loaders. One resides in the MBR, and another
resides in the boot sector of an individual disk partition. (OSs on different partitions can
each have their own boot sector–based boot loaders.) In this configuration, the MBR-based
boot loader is the primary boot loader, and the one in a partition’s boot sector is a second-
ary boot loader. Some boot loaders work in only one of these positions. It’s often possible
for a secondary boot loader to redirect the boot process to a different partition, in which
case that partition’s boot loader becomes the tertiary boot loader, although the configura-
tion is the same as for secondary status.

Available Boot Loaders
Many OSs ship with their own boot loaders, and others are available from third parties.
These are some of the most common boot loaders:

LILO This boot loader can directly boot a Linux kernel, and it can function as either a
primary or a secondary boot loader. It may also be installed on a floppy disk. LILO can
redirect the boot process to non-Linux partitions, and so it can be used to select Linux
or Windows in a dual-boot system. Although once very popular, LILO has been largely
eclipsed by GRUB as the boot loader of choice for Linux.

GRUB This boot loader is more or less the standard Linux boot loader. GRUB can be
installed in the same locations as LILO—a floppy disk, the MBR, or the boot sector of a
Linux partition. It can directly load the Linux kernel, as well as some other OS kernels, or
it can redirect the boot process to another boot loader to load other OSs, such as Windows.

03843c01.indd 8 8/25/09 7:20:11 AM

Configuring Boot Loaders 9

OS Loader This is one name by which Windows NT/200x/XP/Vista’s boot loader goes.
Another is NTLDR. This is a secondary boot loader that cannot directly boot Linux, but it
can boot a disk file that can contain LILO or GRUB and hence boot Linux indirectly. It’s
common on some dual-boot installations.

LOADLIN This is an unusual boot loader in that it’s neither a primary nor a secondary boot
loader. Rather, it’s a DOS program that can be used to boot Linux after DOS has already
loaded. It’s particularly useful for emergency situations because it enables you to boot a Linux
kernel using a DOS boot floppy, and you can also use it to pass kernel parameters to influence
the booted system’s behavior. LOADLIN comes with most Linux distributions, generally in a
directory on the main installation CD-ROM.

Many additional third-party boot loaders are available, most of which cannot directly
boot a Linux kernel but can boot a partition on which LILO or GRUB is installed. For this
reason, this chapter emphasizes configuring GRUB—this boot loader can be used to boot
Linux, whether it functions as the primary, secondary, or tertiary boot loader. If you opt to
use GRUB as a secondary boot loader, you’ll need to consult the documentation for your
primary boot loader to learn how to configure it.

On a Linux-only system, there’s no need to deal with a third-party boot
loader; LILO or GRUB can function as a primary boot loader without trouble
on such systems. Third-party boot loaders are most useful when you have
two or more OSs installed and particularly when LILO or GRUB has trouble
redirecting the boot process to the other OSs, which is rare.

The usual configuration for GRUB is to place it in the MBR. Even in a Linux-only situa-
tion, however, it’s sometimes desirable to place GRUB in the Linux boot partition. Used in
this way, a standard DOS/Windows MBR will boot Linux if the Linux boot partition is a
primary partition that’s marked as active. This configuration can be particularly helpful in
Windows/Linux dual-boot configurations because Windows tends to overwrite the MBR at
installation. Therefore, putting GRUB in the Linux boot sector keeps it out of harm’s way,
and you can get GRUB working after installing or reinstalling DOS or Windows by using
the DOS or Windows FDISK program and marking the Linux partition as active. If GRUB
is on the MBR and is wiped out, you’ll need to boot Linux in some other way, such as by
using LOADLIN, and then rerun grub-install to restore GRUB to the MBR.

Configuring GRUB
GRUB is a collection of several components, including the boot loader code proper, a con-
figuration file, and a set of utilities for installing and manipulating the boot loader code. The
boot loader code can read the configuration file, so there’s no need to reinstall the boot loader
code whenever you change your GRUB configuration. You can even place the configuration
file on a non-Linux partition, which can be handy for quickly reconfiguring GRUB from
another OS.

03843c01.indd 9 8/25/09 7:20:11 AM

10 Chapter 1 n Getting Started with Linux

GRUB wasn’t developed exclusively for Linux. It can be installed from, and
used to boot, a wide variety of OSs. Its Web page is http://www.gnu.org/
software/grub. Most Linux distributions use GRUB Legacy (version 0.97
or earlier). GRUB 2 is currently in development.

The 1024-Cylinder Limit

One bane of the PC world that reared its ugly head twice in the 1990s was the so-called
1024-cylinder limit. This limit is derived from the fact that the x86 BIOS uses a three-
number scheme for addressing hard disk sectors. Each sector is identified by a cylinder
number, a head number, and a sector number, known collectively as the sector’s CHS
address. The problem is that each of these values is limited in size. The cylinder number,
in particular, is allotted only 10 bits and so cannot exceed 210, or 1,024, values. In con-
junction with the limits for sectors and heads, this restricted addressable ATA hard disk
size to 504MB in the early 1990s.

When disks larger than 504MB became common, BIOSs were adjusted with CHS translation
schemes, which allowed them to juggle numbers between cylinders, heads, and sectors.
This increased the limit to just under 8GB. A similar scheme abandoned CHS addressing for
BIOS-to-disk communications but retained it for BIOS-to-software communications. This
was known as linear block addressing (LBA) mode.

These limits never affected Linux once it had booted, because Linux could handle more
than 10-bit cylinder values, and it could access disks directly using LBA mode. The Linux
boot process was limited, however, because LILO (this was pre-GRUB) relied on CHS
addressing via the BIOS to boot the kernel. Therefore, the Linux kernel has traditionally
had to reside below the 1,024-cylinder mark.

Today, all new BIOSs include support for so-called extended INT13 calls, which bypass the
CHS addressing scheme. These BIOSs support booting an OS from past the 1,024-cylinder
mark on a hard disk, but only if the boot loader and OS support this feature. Recent versions
of LILO and GRUB support extended INT13 calls, so new Linux distributions can be installed
anywhere on a hard disk—if the BIOS supports this feature.

Setting Global GRUB Options
The traditional location for the GRUB configuration file is /boot/grub/menu.lst. Fedora,
Gentoo, and Red Hat, though, ship with a version of GRUB that uses /boot/grub/grub.conf
as the configuration file. Whatever the name, the GRUB configuration file has the same basic
form, as illustrated in Listing 1.1.

03843c01.indd 10 8/25/09 7:20:12 AM

Configuring Boot Loaders 11

Listing 1.1: Sample menu.lst File

default=0

timeout=4

splashimage=(hd0,3)/grub/splash.xpm.gz

title Linux (2.6.29)

 root (hd0,3)

 kernel /bzImage-2.6.29 ro root=/dev/hda9 mem=256M

 boot

title Windows

 rootnoverify (hd0,1)

 chainloader +1

 boot

Chapter 3, “Managing Processes and Editing Files,” describes one of many
text editors available for Linux.

Because GRUB wasn’t designed exclusively for Linux, it introduces a new way of referring
to hard disks and their partitions. Linux refers to hard disks using files in the /dev directory,
such as /dev/hda and /dev/hda9. Disks may have names beginning with hd (for most PATA
disks) or sd (for SCSI disks and most SATA disks). Following that string is a letter that refers
to the physical disk, so a system could have, for instance, /dev/sda and /dev/sdb. Partitions
on disks are given numbers starting with 1, as in /dev/sda1 or /dev/sdb7.

GRUB uses strings of the form (hdx,y) to identify disks, where x is a disk number and y is a
partition number. (The y and preceding comma may be omitted to refer to an entire disk or its
MBR.) Both the x and the y are numbered starting from 0, which contrasts with Linux’s num-
bering partitions starting with 1. Thus, Linux’s /dev/hda9 is GRUB’s (hd0,8). GRUB doesn’t
distinguish between PATA and SCSI disks; hd0 is the first disk recognized by the BIOS, hd1 is
the second disk, and so on.

The first three lines of Listing 1.1 set global options:

Default OS The default=0 line tells GRUB to boot the first OS defined in the file by
default. If this line read default=1, the default would be the second OS, and so on.

Timeout period The timeout=4 line sets the timeout before booting the default OS to
4 seconds.

Splash image The third line in Listing 1.1 sets a splash image—an image that’s displayed
as part of the boot process. Many Linux distributions ship a splash image with their GRUB
files to make for a fancier boot loader menu, but you can omit this line if you like. This
example uses a GRUB-style hard disk specification to point to the image file. In this case,
it’s the grub/splash.xpm.gz file on the fourth partition on the first disk (probably /dev/
hda4 or /dev/sda4). Depending on where this partition is mounted, that could be /grub/
splash.xpm.gz, /boot/grub/splash.xpm.gz, or some other location.

03843c01.indd 11 8/25/09 7:20:12 AM

12 Chapter 1 n Getting Started with Linux

Setting OS Boot Options
The two OS definitions in Listing 1.1 both begin with the keyword title, which provides a
label for the OS that’s displayed by GRUB when it boots. Subsequent lines may be indented
to help distinguish between the OS definitions, but this indentation is optional. Important
features of OS definitions include the following:

Root partition The root option identifies the GRUB root partition, which is the partition
on which the GRUB configuration files reside. If you did not set aside a separate partition for
/boot when you installed Linux, this line will identify the Linux root (/) partition, and sub-
sequent file references will be relative to the Linux root partition. If you used a separate /boot
partition, though, chances are the GRUB root partition will be the Linux /boot partition, and
GRUB references to files in Linux’s /boot directory will omit that directory name. Listing 1.1
identifies the GRUB root partition as (hd0,3), which is /dev/hda4 on a PATA system.

GRUB can read files from several filesystems, including ext2fs, ext3fs,
ReiserFS, FAT, and FFS. You can use any of these filesystems as your GRUB
root partition. If you want to use another filesystem, such as JFS or XFS,
as your Linux root partition, you should split off your GRUB root partition
from the Linux root partition.

Linux kernel The kernel option identifies a Linux kernel or a kernel for certain other
Unix-like OSs, such as a GNU Hurd kernel. This reference is relative to the GRUB root
partition, as defined by root. You can also pass kernel options on this line. Note that the
root option passed to the Linux kernel identifies the Linux root partition using a Linux
device filename, but the root option in the GRUB OS definition identifies the GRUB root
partition. The two might be the same, but they might not be. In the case of Listing 1.1, they
aren’t the same—the GRUB root partition is (hd0,3), or /dev/hda4, whereas the Linux
root partition is /dev/hda9. Chances are /dev/hda4 is the Linux /boot partition. The ro
option passed on the kernel line tells the kernel to mount the root partition in read-only
mode initially, just as the read-only line does in lilo.conf.

Root partition without verification The rootnoverify option works just like the root
option, except that it tells GRUB it shouldn’t try to access files on the partition in question.
It’s most often found when booting non-Linux and non-Unix OSs, such as DOS or Windows.

Chain loader The chainloader +1 line in Listing 1.1 tells the system to load the first
sector of the root partition and pass execution to it. This option is common when booting
DOS, Windows, or other OSs that place boot loader code in their boot sectors.

Boot directive The boot line tells GRUB to actually boot the kernel or boot sector for the
OS in this definition. In practice, it can often be omitted.

In order to boot, the GRUB boot loader code must reside in the MBR, the boot parti-
tion’s boot sector, or a floppy disk. You can do this by using the grub utility, which you
launch from a text-mode login or xterm:

grub

grub> root (hd0,3)

03843c01.indd 12 8/25/09 7:20:12 AM

Configuring Boot Loaders 13

grub> setup (hd0)

grub> quit

These commands set the GRUB root partition (the same as the one defined in your menu
.lst or grub.conf file), install the boot loader code to the MBR of the hard disk (that is,
to hd0), and exit from the utility. If you want to install the boot loader to a partition, you’d
use setup (hd0,3) or some other partition identifier rather than using setup (hd0). The
grub-install program provides a simplified method of performing these steps:

grub-install (hd0)

This command installs GRUB to the MBR of the first disk. It should be able to locate
the GRUB root partition automatically.

If you installed a distribution that uses GRUB by default, you shouldn’t have to perform
any of these steps; GRUB should already be installed and working. You might need to rein-
stall GRUB from an emergency boot system if it becomes corrupted, though, and you might
want to replace the installed system if you learn of a serious GRUB bug. If you just want to
add a new kernel or OS to your existing GRUB installation, you do not need to reinstall the
boot loader code; you need only edit the menu.lst or grub.conf file.

Adding a New Kernel or OS to GRUB
You can add a new kernel or OS to GRUB by copying an existing entry (or using one in
Listing 1.1 as a model) and modifying it to suit your needs. When trying a new kernel,
don’t replace your old kernel; instead, add the new kernel to the /boot directory, and add
a description of the new kernel to the GRUB configuration file. Remember to change the
title line so that you can tell your two kernels apart. When you reboot the computer, you
should be able to select the new kernel or OS from the list; there’s no need to reinstall the
GRUB boot loader code using the grub or grub-install tool.

naming Kernel Files

A good practice when adding a new kernel is to give it a name that includes its
version number or other identifying information. For instance, Listing 1.1’s kernel is
called bzImage-2.6.29, identifying it as a 2.6.29 kernel. If you had such a kernel and
wanted to try adding a new feature (say, XFS support), you might call this new kernel
bzImage2.6.29-xfs. There are no hard-and-fast rules for such naming, so use whatever
system you like. As a general rule, though, the base of the name begins with vmlinux
(for a “raw” kernel file), vmlinuz (for a kernel compressed with gzip), zImage (another
name for a kernel compressed with gzip), or bzImage (for a kernel compressed in a way
that supports booting larger kernel images). Most distributions use vmlinuz for their
kernels, but locally compiled kernels usually go by the bzImage name.

03843c01.indd 13 8/25/09 7:20:13 AM

14 Chapter 1 n Getting Started with Linux

Troubleshooting Boot Problems
Linux normally boots correctly immediately after installation; however, sometimes it
doesn’t. What’s more, boot problems can develop after installation. Knowing how to han-
dle such problems can be a necessary skill. You can interact with GRUB to enter options at
boot time and use rescue discs to modify your working system. You can use several differ-
ent methods to reset the root password, should you forget what it is—an extremely impor-
tant skill, should the need arise! Finally, you can examine boot messages to help identify
and debug boot problems.

Setting Kernel Options in GRUB
When GRUB loads, it normally presents a series of kernel and OS options, as defined in the
menu.lst or grub.conf configuration file. You highlight the line with the title of the kernel
or OS you want to boot and press the Enter key to boot.

Rather than accept the default options, though, you can edit them: instead of pressing
the Enter key, you can type e (without pressing Enter) to edit the entry. Once you do this,
GRUB presents the options from the configuration file related to the entry you’ve selected.
You can use the keyboard’s arrow keys to select a line and then type e again to edit that
line. Alternatively, you can type O or o to create a new blank line before or after the selected
one. Once you’ve made any changes you desire, type b to boot the entry.

When you edit a GRUB entry during the boot process, the changes you
make are temporary. If you want to make permanent changes, you must
edit the configuration file as described earlier in “Configuring GRUB.”

Ordinarily, Linux boots into a full multiuser mode in which any authorized user may log
in. Sometimes, though, you may want Linux to boot into a simpler mode in which just the
root user may access the system. This single-user mode is useful for performing recovery
and system maintenance tasks because the processes run by ordinary users, including sys-
tem software that may run automatically when the system boots in the normal multiuser
mode, can interfere with maintenance tasks such as low-level disk checks. To enter single-
user mode, follow these steps:

1. Select the Linux entry you want to boot in the GRUB menu.

2. Type e, as described earlier, to edit the entry.

3. Select the line that begins with the word kernel and type e to edit it.

4. Use the arrow keys to move to the end of the line.

5. Press the spacebar, type single, and then press the Enter key to accept this change.
(Typing 1 will also work.)

6. Type b to begin booting the system.

03843c01.indd 14 8/25/09 7:20:13 AM

Troubleshooting Boot Problems 15

When the computer boots, it will boot directly into a text-mode root Bash prompt. You
can use this prompt to change configuration files or otherwise manage the system. When
you’re done, you can reboot the system or type telinit 2, telinit 3, or telinit 5 to
start normal system services. (Which number you use depends on your distribution. The
telinit command is described in more detail in Chapter 4, “Managing System Services.”)

If your system boots normally, you may enter single-user mode from a nor-
mal boot by typing telinit 1 at a root Bash prompt. Using GRUB to enter
single-user mode is most useful if the system doesn’t boot normally.

Using Rescue Discs
If Linux won’t boot at all, even into single-user mode, you can use a Linux rescue disc to
boot a working Linux installation and use it to recover your normal system. Rescue discs
are available on CD-ROMs, DVD-ROMs, USB flash drives, and other removable media.
They enable you to boot from the removable medium and make changes to your nonwork-
ing installation on your hard disk. Examples of Linux rescue discs include the following:

Your distribution’s installation media Most distributions’ installation media include some
form of rescue mode. Check your documentation, or study the options presented by the
boot disc when you boot it. Sometimes distributions provide a separate rescue disc, so you
may want to check your distribution’s Web site.

Knoppix This package, based at http://www.knoppix.net, is a full-fledged Linux instal-
lation based on Debian. You can download images that can be burned to CD-R or DVD-R
media. Once booted, Knoppix is an unusually complete Linux system, although it’s rather
sluggish when run from optical media.

SystemRescueCd This package is a dedicated rescue system available as a CD-R image.
In many respects it’s similar to Knoppix, but it’s targeted explicitly as a rescue system,
whereas Knoppix serves a broader purpose. SystemRescueCd is based on Gentoo Linux.
Check http://www.sysresccd.org/Main_Page for more details.

You can use a rescue disc that’s based on a distribution other than the
one you use—for instance, Knoppix works fine to recover a Fedora system.
Some files’ ownership may seem to change when you use a rescue disc,
though. Don’t try to correct such changes, since they’re probably artifacts
of different configurations of the rescue disc and your normal installation.

Once your rescue disc boots, you’ll probably be presented with a root shell, in either a
text-mode session or a GUI login. The rescue disc might or might not detect and mount
your normal Linux system, so you may need to perform this task manually. (Chapter 6
describes how to do this.) Once your normal system is mounted, you can edit configuration
files to overcome whatever problem is preventing your normal installation from booting.

03843c01.indd 15 8/25/09 7:20:13 AM

16 Chapter 1 n Getting Started with Linux

Resetting the root Password
One common problem that may prompt use of single-user mode or a rescue disc is if you’ve
forgotten the root password. If you can boot your system into single-user mode, you can
reset the root password using the normal passwd utility:

passwd

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Chapter 5 describes the passwd utility in more detail. For now, know that you can use it
to reset the root password; however, you must have root access to do so. Ordinarily, this
requires you to have the root password. If you can enter single-user mode, though, you
don’t need the root password to reset it.

Another approach to resetting the root password is to edit the /etc/shadow file, which is
described in more detail in Chapter 5. Locate the line that begins with root (normally the
first line):

root:$1$6iwFIKHV$nDkOsd1bW2iGKsaAoxu87t:14329:0:99999:7:::

Delete all the text between the first and second colons (:) on this line. This string,
which looks like gibberish, is the encrypted password. Deleting this string sets a null pass-
word so that no password is required to log into the account. Alternatively, you can copy
the encrypted password from an account whose password you do remember to the root
account’s entry.

After setting a null password, particularly on the root account, you should
immediately log in and set a real password on that account. Leaving a null
password in place is a very serious security hole. Resetting the root pass-
word by directly editing /etc/shadow is handy if you need to boot into a
rescue disc for some reason, but it’s generally safer to boot into single-user
mode and use the passwd command.

Examining Boot Messages with dmesg
Linux records data on various critical actions as it works. Some of these records end up
in log files stored in the /var/log directory tree, as described in Chapter 4. One class of
data is recorded in a different way, though, and this information is particularly relevant
when you want to investigate boot problems. This information is generated by the ker-
nel and is stored in the kernel ring buffer. You can examine this buffer with the dmesg
command.

03843c01.indd 16 8/25/09 7:20:13 AM

Configuring X 17

At a command prompt, type dmesg to see the contents of the ring buffer. Ordinarily, the
result will be hundreds of lines of text. If you need to study the ring buffer in detail, you
may want to employ the less pager:

$ dmesg | less

This command passes the output of dmesg through less, which is a program that
enables you to page forward and backward through a long text file. (Both less and the
pipe, |, are described in more detail in Chapter 2.)

The kernel ring buffer’s contents change over time, so if you want to use dmesg to debug
boot problems, you should use dmesg as soon after booting as possible. What you see will
most likely seem cryptic at first. I recommend you examine the kernel ring buffer on a work-
ing Linux system to get a feel for what it contains. As you learn about Linux, its hardware,
and how Linux names its hardware, the dmesg output will become less cryptic.

If you know or suspect that a problem is related to a particular hardware device or soft-
ware configuration, you can search the ring buffer for information on that hardware or
software. For instance, if a USB device isn’t being detected, you could search for the string
USB (or usb) or search for the name of the device or its driver. You may discover an error
message that will point you toward a solution. Even the absence of information may be rel-
evant; for instance, if you find no mention of USB devices, it could mean that the USB driv-
ers aren’t being loaded at all.

Configuring X
With Linux installed and booting, you can begin turning your attention to specific con-
figuration tasks. One of the first of these tasks is setting up X. Although X usually works
acceptably on a stock installation, sometimes you must change the X software you’re using
or tweak the X configuration. You should also know how to start and stop X, both tempo-
rarily and by setting a default mode.

In addition to the basics of X configuration, you should be familiar with the X envi-
ronment. Typically, a desktop environment runs in X, providing you with an easy way to
launch GUI programs, a file manager, and other tools. You should also be familiar with a
tool that was mentioned earlier: an xterm or similar program that you can use to run text-
mode programs in X.

Selecting an X Server
X is a network-enabled GUI system. It consists of an X server, which displays information
on its local monitor and sends back user input from a keyboard and mouse; and an X client,
which is a program that relies on the X server for user interaction. Although these two pro-
grams frequently run on the same computer, they don’t need to do so. Chapter 9, “Configur-
ing Advanced Networking,” includes additional information on using X over a network. The

03843c01.indd 17 8/25/09 7:20:14 AM

18 Chapter 1 n Getting Started with Linux

rest of this chapter assumes you’ll be running X programs on the same system that runs the
X server, but you don’t install X differently if you’ll be running X programs remotely.

The X server includes the driver for your video card, as well as support for your mouse
and keyboard. Therefore, it’s important that you know something about your video card
when you install and configure your X server.

Determining Your Video Card Chipset
To properly configure X for your system, you must know what video chipset your system
uses. Today, three companies—ATI, nVidia, and Intel—dominate the video chipset market,
and most video cards and computers are marketed with fairly prominent claims of who
made the video chipset. If you’re using an oddball or older card, though, you may have
trouble finding this information. You have several ways of approaching this problem:

Autodetection Linux can often autodetect the chipset, either during system installation or
by running an X configuration tool after installation.

Video card documentation It’s worthwhile to check the product’s documentation. This
documentation might not use the word “chipset,” though; it could use a phrase such as
“powered by” or “based on.”

Windows driver report If the computer dual-boots to Windows or if you’ve just bought
a Windows system and intend to convert it to Linux, you can use the Windows Control
Panel to find out what video hardware is installed. In Windows Vista, double-click the
Device Manager icon in the Control Panel. Click the plus sign next to the Display Adapt-
ers item. This will produce a list of the video cards installed in the computer, as shown in
Figure 1.1. (Normally, there’ll be just one, but Figure 1.1 shows a computer with two video
cards: an nVidia GeForce 6100 and an nVidia GeForce 7300.) Double-click the entry for
more information; this produces the Properties dialog box for the video card. The driver
and manufacturer name may be that of the video card or of the chipset.

F i Gu r e 1.1 The Windows Device Manager may provide information on the video
card hardware.

03843c01.indd 18 8/25/09 7:20:14 AM

Configuring X 19

Linux identification tools The dmesg utility, described earlier, may provide clues as to the
video card chipset. You can also type lspci at a command prompt to obtain identifying
information on most of your installed hardware devices, including the video card. Both
methods require you to wade through information on nonvideo devices.

One point to keep in mind when identifying the video card chipset is that video cards
and video card chipsets are often made by different manufacturers. For instance, nVidia
produces chipsets that are used in boards made by ASUS, Biostar, Gigabyte, and others.
Linux and X don’t care about who made the video card; only the chipset manufacturer
is important.

Increasingly, video functions are built into computer motherboards.
Nonetheless, it’s still common to refer to “video cards” as if they were
physically distinct cards, as they once universally were.

Choosing an X Server
All major Linux distributions ship with a free X server. In the past, a server known as
XFree86 was common, but most distributions have switched to X.org-X11 instead, because
of changes to the XFree86 licensing terms. These two servers are very similar, though;
X.org-X11 6.7.0 was based on XFree86 4.3.99. You can learn more about XFree86 at
http://www.xfree86.org, and X.org-X11 is headquartered at http://www.x.org. As I
write, the current versions are XFree86 4.8.0 and X.org-X11 7.4.

Linux distributions from 2001 and before used XFree86 3.3.6 or earlier, but more
recent distributions use XFree86 4.x or X.org-X11. Some major architectural modifications
marked the change to XFree86 4.x, and some configuration files changed with this release.
By the time X.org-X11 was forked off the XFree86 project, XFree86 3.3 had become largely
obsolete. Thus, I don’t cover this old version of XFree86. If you encounter it or must use it
because of poor support for an obscure video card in more recent X servers, though, you
should be aware that some configuration options changed between XFree86 3.3.6 and 4.0.

Some video card and chipset manufacturers have made XFree86- and X.org-X11-
compatible drivers available for their products. Thus, it’s worth checking the Web sites
maintained by your board and chipset manufacturers to see if drivers are available. This is
definitely true if the main XFree86 or X.org-X11 release doesn’t include appropriate driv-
ers, and it may be true even if there are drivers—the manufacturers’ offerings often offer
improved performance, particularly in the realms of 3D and full-motion video acceleration.

XFree86 or X.org-X11 occasionally doesn’t support a device at all. You have three choices
in this case:

Use the frame buffer device. The Linux kernel has some video drivers of its own. These
can be accessed via the frame buffer X driver. For this to work, your kernel must include
frame buffer support for your video chipset.

03843c01.indd 19 8/25/09 7:20:14 AM

20 Chapter 1 n Getting Started with Linux

Use another X server. It’s conceivable that XFree86 will work where X.org-X11 doesn’t, or
vice versa. In addition, a company called Xi Graphics (http://www.xig.com) produces a com-
mercial X server for Linux, known as Accelerated-X. This server occasionally works on hard-
ware that’s not supported by XFree86 or X.org-X11, and sometimes it produces better speed.

Replace the hardware. If you have a recalcitrant video card, the final option is to replace
it. You may be able to swap with a Windows system that uses a different card, or you may
need to buy a new card. Unfortunately, this isn’t always an option; you can’t replace the
video card on a notebook computer, for instance.

Installing an X Server or Driver
Actually installing an X server is usually not very difficult; it’s a matter of using your dis-
tribution’s package management tools to install the software, much as you would any other
software (described in Chapter 7). In most cases, this will be done during system installa-
tion. You’ll have to manually install a server only if you failed to install X during system
installation or if you need to install a new server.

X normally comes in several packages. Only one package contains the X
server proper; others provide support libraries, fonts, utilities, and so on.

One server package supports all video chipsets. The name of this package varies from one
distribution to another, but it’s likely to be called XFree86, XFree86-server, xserver-xfree86,
or something similar for XFree86; or xorg-x11 or something similar for X.org-X11. Consult
Chapter 7 for details of how to locate and install packages.

The main X server program is called X or Xorg, which is usually stored in /usr/X11R6/
bin or /usr/bin. This program is a generic X server. It relies on separate driver modules,
which are installed along with the main package in most cases.

If you’re using an X driver provided by a video card manufacturer, follow the manufac-
turer’s directions for installing the driver. In most cases you’ll be told to run a program that
you download from the manufacturer’s Web site. Some distributions provide packages with
these drivers so you can install them more easily.

Setting Up X
XFree86 is configured through the XF86Config file, which is usually located in /etc or /etc/
X11. For XFree86 4.x, this file is sometimes called XF86Config-4. X.org-X11 calls its configu-
ration file xorg.conf; it’s located in the same location and has the same format. (For simplicity,
I refer to both files as xorg.conf from now on.) Consult your server’s documentation if you’re
using something other than X.org-X11 or XFree86.

Configuring X requires editing the configuration file in any of several ways. You can
adjust settings related to input devices (the keyboard and mouse), the video card, and the
monitor.

03843c01.indd 20 8/25/09 7:20:14 AM

Configuring X 21

Methods of Configuring X
XFree86 can be configured via either of two methods: by using configuration tools and by
configuring manually. Configuration tools prompt you for information or obtain it directly
from the hardware and then write the xorg.conf file, which is a standard plain-text file
like other Linux configuration files. Because this file is relatively complex, it’s usually wise
to begin with an automatic configuration, even if it’s a flawed one. Manual configuration
involves opening xorg.conf in a text editor and changing its settings using your own know-
how. You can use this method to tweak a working configuration for better performance or
to correct one that’s not working at all. Either way, you may need to configure X, test it,
reconfigure X, test it, and so on, for several iterations until you find a configuration that
works correctly. (The upcoming section “Starting and Stopping X” describes how to start
or restart X to test a new configuration.)

Several utilities can help in X configuration:

The X server The XFree86 or Xorg server itself includes the capacity to query the hardware
and produce a configuration file. To do so, type XFree86 -configure or Xorg -configure
when no X server is running. The result should be a file called /root/XF86Config.new or
/root/xorg.conf.new. This file might not produce optimal results, but it is at least a starting
point for manual modifications.

Distribution-specific tools Many modern distributions ship with their own custom X
configuration tools. These tools frequently resemble the distribution’s install-time X con-
figuration tools, which can vary substantially. Increasingly, these tools rely on automatic X
detection of hardware and settings, so these tools can be extremely limited; they may give
only screen resolution and color depth options, for instance. They can usually be accessed
from the desktop’s menu system.

In the past, tools such as xf86config, Xconfigurator, and XF86Setup could be used to
configure X. These programs are seldom installed on modern systems, though. Therefore,
if you need to perform serious changes to your X configuration, chances are you’ll need to
edit xorg.conf in a text editor.

The xorg.conf file consists of a number of labeled sections, each of which begins with
the keyword Section, followed by the section name in quotes, and ends with the keyword
EndSection. Between these two lines are lines that define features relevant to the configu-
ration of that feature. There may also be comments, which are lines that begin with hash
marks (#). For instance, here’s a section that defines where the computer can find certain
critical files:

Section “Files”

 RgbPath “/usr/X11R6/lib/X11/rgb”

 # Multiple FontPath entries are allowed

 FontPath “/usr/X11R6/lib/X11/fonts/75dpi”

 FontPath “/usr/X11R6/lib/X11/fonts/Type1”

EndSection

03843c01.indd 21 8/25/09 7:20:15 AM

22 Chapter 1 n Getting Started with Linux

If you have a working configuration, be sure to back up xorg.conf before
modifying it. If you mistakenly delete or modify some critical line, you can
easily end up with a system that won’t start X, and without a backup, it
can be difficult to restore even a partially functioning system.

Many xorg.conf sections include Identifier, ModelName, VendorName, or BoardName
lines. The Identifier provides a name for the section that can be used by other sections to
refer to the first one. The ModelName, VendorName, or BoardName line, if present, is intended
for human consumption, so you can put anything there you like. A Driver line, by contrast,
points X to a driver for the device. This is extremely important, so you shouldn’t change it
unless you’re positive that the current entry is wrong.

Setting Miscellaneous Options
Some sections of the xorg.conf file relate to miscellaneous options or those that require just
a handful of lines. Nonetheless, getting these settings right is important to a functioning
X system. Specific sections in this category include the following:

Files The Files section hosts information on the locations of important files. The entries
you’re most likely to change relate to the locations of X’s fonts. These are handled through
the FontPath option line. Modern distributions often omit this section and instead rely
on default settings. If you need to add fonts to your system, though, you may need to add
FontPath entries that point to your existing and new font directories.

The keyboard One InputDevice section defines the operation of the keyboard in X. This
section normally has a Driver “kbd” line. In most cases, the default settings (or those set
automatically based on your install-time choices) work fine. You may want to adjust the
XkbLayout or XkbModel option to use a different layout or model if these features were set
incorrectly. The AutoRepeat option sets the delay before keyboard repeat begins and the
repeat rate, both in milliseconds (thousandths of a second). This feature is usually overrid-
den in desktop environment configurations, so it may not have any practical effect.

The mouse A second InputDevice section, with a Driver “mouse” line, defines the
mouse. The default settings autodetect the mouse, which works for the vast majority of PS/2
and USB mice. If you use a particularly obscure model, you may need to set Protocol and
Device options, as in Option “Protocol” “Logitech” or Option “Device” “/dev/ttyS1”.

X programs frequently use the middle button; for instance, text editors use
it for pasting text. Therefore, any Linux workstation should be equipped
with a genuine three-button mouse rather than a two-button device. Scroll
wheels on mice that are so equipped can usually function as a middle
button, as well as handling wheel duty. The Option “Emulate3Buttons”
“yes” option enables you to use a two-button mouse in Linux, but doing
so is awkward.

03843c01.indd 22 8/25/09 7:20:15 AM

Configuring X 23

Setting Monitor Options
Some of the trickiest aspects of X configuration relate to the monitor options. You set these
in the Monitor section, which looks like this:

Section “Monitor”

 Identifier “Iiyama”

 ModelName “VisionMaster Pro 450”

 HorizSync 27.0-115.0

 VertRefresh 50.0-160.0

 # My custom 1360x1024 mode

 Modeline “1360x1024” 197.8 \

 1360 1370 1480 1752 \

 1024 1031 1046 1072 -HSync -VSync

EndSection

The HorizSync and VertRefresh lines are extremely critical; they define the range of
horizontal and vertical refresh rates that the monitor can accept, in kilohertz (kHz) and hertz
(Hz), respectively. Together, these values determine the maximum resolution and refresh rate
of the monitor. X won’t exceed these limits, since doing so can theoretically damage the mon-
itor. (All monitors made since the mid-1990s have circuitry to protect them from such abuse,
so this concern isn’t as important as it once was.)

Some X configuration utilities show a list of monitor models or resolution and refresh rate
combinations (such as “1024 × 768 at 72 Hz”) to obtain this information. This approach is
often simpler to handle, but it’s less precise than entering the exact horizontal and vertical
sync values.

To settle on a resolution, X looks through a series of mode lines, which are specified
via the Modeline option. Computing mode lines is tricky, so I don’t recommend you try it
unless you’re skilled in such matters. The mode lines define combinations of horizontal and
vertical timing that can produce a given resolution and refresh rate. For instance, a particu-
lar mode line might define a 1024 × 768 display at a 90Hz refresh rate, and another might
represent 1024 × 768 at 72Hz.

When asked to produce a given resolution, X searches all the mode lines that accomplish
the job, discards those that the monitor can’t handle, and uses the remaining mode line that
creates the highest refresh rate at that resolution. (If no mode line supports the requested
resolution, X drops down to another specified resolution and tries again.)

Modeline entries were common in XFree86 3.3.x. Although they’re still supported in
XFree86 4.x and X.org-X11, these versions of X include standard mode lines that obviate
the need for Modeline entries in the configuration file unless you want to use an unusual
resolution or refresh rate.

Setting Video Card Options
XFree86 4.x and X.org-X11 use driver modules that are stored in separate files from
the main X server executable. You must tell the server which driver module to use in

03843c01.indd 23 8/25/09 7:20:15 AM

24 Chapter 1 n Getting Started with Linux

the xorg.conf file. In particular, the driver module is set by a line in the Device section,
which resembles the following:

Section “Device”

 Identifier “On-Board Video”

 VendorName “ATI”

 BoardName “Radeon HD3200”

 Driver “fglrx”

 BusID “PCI:1:5:0”

EndSection

The Driver line is the most important one in this section. Driver files reside in an
X drivers directory, such as /usr/X11R6/lib/modules/drivers/ or /usr/lib/xorg/
modules/drivers/. Most of the drivers’ filenames end in _drv.o, and if you remove this
portion, you’re left with the driver name. For instance, fglrx_drv.o corresponds to the
fglrx driver.

The BusID line in this example uniquely identifies the video card by the slot in which it’s
inserted. (This number is fixed in the case of video hardware built into the motherboard.)
Using this line may be necessary if your computer has two video cards, particularly if
they’re from the same manufacturer.

Many drivers support additional driver-specific options. Consult the xorg.conf man
page or other driver-specific documentation for details.

Setting Screen Options
The Screen section ties together the other sections. Here’s a short example:

Section “Screen”

 Identifier “screen1”

 Device “On-Board Video”

 Monitor “Iiyama”

 DefaultDepth 16

 Subsection “Display”

 Depth 8

 Modes “1280x1024” “1024x768” “640x400”

 EndSubsection

 Subsection “Display”

 Depth 16

 Modes “1024x768” “800x600” “640x480”

 Virtual 1280 1024

 ViewPort 0 0

 EndSubsection

EndSection

03843c01.indd 24 8/25/09 7:20:15 AM

Configuring X 25

Several key points in this section should be emphasized:

The Ûn Identifier specifies an overall configuration. A configuration file can hold
multiple Screen sections, as described shortly.

The Ûn Device and Monitor lines point to specific Device and Monitor sections, respectively.

The Ûn DefaultDepth line specifies the number of bits per pixel to be used by default. For
instance, the preceding example sets this value to 16, so a 16-bit color depth is used,
resulting in 216, or 65,536, possible colors.

Each Ûn Subsection defines a particular display type. They have associated color depths
(specified by the Depth line) and a series of resolutions (specified by the Modes line). The
system tries each resolution specified by the Modes line in turn, until it finds one that
works. There are also various optional parameters, such as Virtual (which defines a
virtual screen that can be larger than the one that’s actually displayed) and ViewPort
(a point within that virtual display at which the initial display is started).

One final section is required: the ServerLayout section. This section consists of lines that
identify the default Screen section and link it to mouse and keyboard definitions. For instance,
a typical configuration will include a ServerLayout section resembling the following:

Section “ServerLayout”

 Identifier “layout1”

 Screen “screen1”

 InputDevice “Mouse1” “CorePointer”

 InputDevice “Keyboard1” “CoreKeyboard”

EndSection

Although I describe the ServerLayout section last because it ties together
all the other sections, it can appear earlier in the file—perhaps even first.
The order of sections in the xorg.conf file is arbitrary.

Normally, an xorg.conf file will have just one ServerLayout section, but by passing the
-layout name parameter to the server program, you can tell the server to use a different
ServerLayout section, if one is present. You might use this to start X using a different mouse,
for instance—say, a USB mouse on a notebook rather than the built-in PS/2 touch pad.

Managing GUI Logins
Linux can boot into a purely text-based mode in which the console supports text-based logins
and text-mode commands. This configuration is suitable for a system that runs as a server
computer or for a desktop system for a user who dislikes GUIs. Most desktop users, though,
expect their computers to boot into a friendly GUI. For such users, Linux supports a login
system that starts X automatically and provides a GUI login screen. Configuring and manag-
ing this system requires you to understand a bit of how it works, how to run it, and how to
change the configuration.

03843c01.indd 25 8/25/09 7:20:15 AM

26 Chapter 1 n Getting Started with Linux

Understanding GUI Logins
X is a network-enabled GUI. This fact has many important consequences, and one of these
relates to Linux’s GUI login system. This system employs a network login protocol, the X
Display Manager Control Protocol (XDMCP). To handle remote logins, an XDMCP server
runs on a computer and listens for connections from remote computers’ X servers. To handle
local logins, an XDMCP server runs on a computer and starts the local computer’s X server.
The XDMCP server then manages the local X server’s display—that is, it puts up a login
prompt like that shown in Figure 1.2.

F i Gu r e 1. 2 An XDMCP server manages local GUI logins to a Linux system.

Three XDMCP servers are common on Linux: the X Display Manager (XDM), the KDE
Display Manager (KDM), and the GNOME Display Manager (GDM). A few more XDMCP
servers are also available, but these three are the most important. As you may guess by their
names, KDM and GDM are associated with the KDE and GNOME projects, respectively,
but neither limits your choice of desktop environment. Most Linux distributions run either
GDM or KDM as the default XDMCP server, but you can change which one your system
uses if you don’t like the default.

03843c01.indd 26 8/25/09 7:20:16 AM

Configuring X 27

Running an XDMCP Server
Several methods exist to start an XDMCP server. These two are the most common:

Launching the XDMCP server more or less directly from Ûn init, via an entry in /etc/
inittab or its ancillary configuration files. (The init program is the first one the ker-
nel launches; it controls the rest of the system startup process through various means.)

Launching the XMDCP server as part of a runlevel’s startup script set, via a SysV Ûn

startup script. (A runlevel is a set of programs that run concurrently. Several runlevels
exist so as to support multiple configurations—such as booting with or without an
XDMCP server.)

Chapter 4 describes both init and SysV startup scripts in general, so consult it for infor-
mation about these processes.

Whichever method is used, many distributions configure themselves to run their chosen
XDMCP server when they start in runlevel 5 but not when they start in runlevel 3. This is
the only difference between these two runlevels in most cases. Thus, changing from run-
level 3 to runlevel 5 starts X and the XDMCP server on many distributions, and switching
back to runlevel 3 stops X and the XDMCP server. As described in more detail in Chapter 4,
you can change runlevels as root with the telinit command:

telinit 5

Permanently changing the runlevel requires editing the /etc/inittab file and, in
particular, its id line:

id:5:initdefault:

Change the number (5 in this case) to the runlevel you want to use as the default.
A few distributions—most notably Gentoo, Debian, and Debian’s derivatives (including

the popular Ubuntu)—attempt to start an XDMCP server in all runlevels (or don’t do so
at all). This is done through the use of a SysV startup script called xdm, kdm, or gdm. Thus,
you can temporarily start or stop the XDMCP server by running this script and passing it
the start or stop option. To permanently enable or disable the XDMCP server, you should
adjust your SysV startup scripts, as described in Chapter 5.

In addition to the question of whether to run an XDMCP server is the question of which
XDMCP server to run. Most distributions set a default XDMCP server in one way or another.
Two common methods exist:

Selection via configuration file Some distributions hide the XDMCP server choice in a
configuration file, often in the /etc/sysconfig directory. In Fedora, the /etc/sysconfig/
desktop file, if present, sets the DISPLAYMANAGER variable to XDM, KDM, or GDM. In OpenSUSE,
/etc/sysconfig/displaymanager sets the DISPLAYMANAGER variable in a similar way, but
using lowercase display manager names.

Selection via SysV script In Debian and derivative distributions, such as Ubuntu, the dis-
play manager is set via choice of SysV startup script—use the gdm script to use GDM, kdm

03843c01.indd 27 8/25/09 7:20:16 AM

28 Chapter 1 n Getting Started with Linux

to use KDM, and so on. By default, only one XDMCP server (and associated SysV startup
script) is installed, so if you want to change your XDMCP server, you may need to install
your desired server. Chapter 4 describes how to configure specific SysV startup scripts to
run automatically.

Unfortunately, distribution maintainers have had a habit of changing the details of how
XDMCP servers are launched from time to time, and the settings are often buried in poorly
documented configuration files. Thus, you may need to go digging through the files in your
/etc directory to find the correct setting.

Configuring an XDMCP Server
XDMCP servers, like most programs, can be configured. Unfortunately, this configuration
varies from one server to another, although there are some commonalities.

Configuring XDM

XDM is the simplest of the major XDMCP servers. It accepts usernames and passwords but
doesn’t enable users to perform other actions, such as choose which desktop environment
to run. (This must be configured through user login files.)

XDM’s main configuration file is /etc/X11/xdm/xdm-config. Most distributions ship
with a basic xdm-config file that should work fine for a local workstation. You can edit
this and other XDM configuration files; however, chances are you won’t have to do so. One
case when you would want to make changes is to enable remote network access to X. This
topic is covered in Chapter 10, “Configuring Network Servers.”

Configuring KDM

KDM is based partly on XDM and so shares many of its configuration options. Unfortunately,
the location of the KDM configuration files is unpredictable; sometimes KDM uses the XDM
configuration files, other times they’re stored in /etc/X11/kdm or /etc/kde/kdm, and some-
times they’re stored in a truly strange location such as /usr/share/kde4/config/kdm/kdmrc.

If you can’t find the KDM configuration files, try using your package man-
agement tools, described in Chapter 7. Try obtaining lists of files in the
kdebase package or other likely candidates, and look for the KDM configu-
ration files.

KDM expands on XDM by enabling users to select a session type when they log in,
to shut down the computer from the main KDM prompt, and so on. Most of these extra
options are set in the kdmrc file, which appears in the same directory as the other KDM
configuration files. Some of these options override the more common XDM configuration
options for the same features.

Configuring GDM

GDM is more of a break from XDM than is KDM. GDM doesn’t use the conventional XDM
configuration files or similar files. Instead, it uses configuration files that are usually stored in
/etc/X11/gdm or /etc/gdm. The most important of these files is gdm.conf, and it has a format

03843c01.indd 28 8/25/09 7:20:16 AM

Configuring X 29

similar to the kdmrc file. (Recent versions of GDM use a file called custom.conf, which holds
only the overrides of default settings stored elsewhere.)

Like KDM, GDM provides extra options over those of XDM. These options include
the ability to choose your login environment and shut down the computer. GDM is a bit
unusual in that it prompts for the username and only then presents a prompt for the pass-
word. (The GDM username prompt was shown in Figure 1.2 earlier in the chapter.) XDM
and KDM both present fields for the username and password simultaneously.

Using Window Managers and Desktop Environments
X is a fairly bare-bones environment; it can display windows without borders, it can dis-
play text or graphics in those windows, and it can handle some fairly minimal operations
beyond that. X does not itself provide menus, buttons, file managers, or other advanced
tools. These features are provided by other tools, known as window managers and desktop
environments.

A window manager provides decorative and functional borders around X windows.
When you resize or drag a window, it’s the window manager that you’re using. Most window
managers also control the root window—that is, the screen as a whole. If you right-click the
desktop’s background, chances are you’ll see a menu pop up; that’s a window manager tool.
Common window managers include fvwm, tvwm, IceWM, Blackbox, and Metacity.

Some minimalist Linux users run a window manager in their X sessions but little else,
aside from whatever programs they actively use. Most users, though, run a desktop envi-
ronment atop the window manager. This is a set of software tools that facilitates launching
programs, adjusting user interface settings, and so on. Desktop environments also typically
include a file manager, which provides drag-and-drop file manipulation. The most popular
Linux desktop environments are the GNU Network Object Model Environment (GNOME),
the K Desktop Environment (KDE), and Xfce.

If you use KDM or GDM as your XDMCP server, you can select which desktop environ-
ment to use when you log in. Look for a menu or option button that enables you to choose the
session type. On modern distributions, installing a window manager or desktop environment
automatically adjusts the XDM and GDM configurations to present the new environment as a
login option.

Once you’ve logged in, the desktop environment will present menu bars and options that
are similar to those of Windows or Mac OS. You’ll be able to launch programs by picking
them out of menus, you’ll be able to access your disks, and so on.

Using Terminal Programs
One of the most important programs you can access from an X session is an xterm program
or something similar. These programs are sometimes referred to collectively as terminal pro-
grams or consoles. They enable you to run text-mode commands and programs from within a
GUI environment. Since so many Linux tools are text-based, knowing how to use a terminal
program is a critical skill for any Linux administrator.

03843c01.indd 29 8/25/09 7:20:16 AM

30 Chapter 1 n Getting Started with Linux

The term terminal program is often applied to a second type of program.
This type of terminal program opens a text-mode data transfer session
over a communications device, such as an RS-232 serial port or a modem.
In years past, terminal programs of this type were commonly used for
communicating with remote computers or for linking two or more nearby
computers together. With the advent of modern networks and the Internet,
terminal programs of this type have become much less important, so the
words terminal program now usually refer to xterm-type programs.

The main trick in running a terminal program is to find one. Most Linux window
managers and desktop environments provide one or more entries in their program lists
to launch terminal programs. Check your menus, and particularly any submenus entitled
Accessories, System, or System Tools, for entries called Terminal, Konsole, or xterm. These
are the names of three common terminal programs.

If you can’t find an entry for a terminal program, try to find an entry entitled Run, Run
Other, or something similar. Such an entry should enable you to run an arbitrary program.
Type terminal, konsole, or xterm into its text-entry field to launch a terminal.

Once it’s running, a terminal program normally launches a shell, which is a Linux tool
for entering text-mode commands. (Chapter 2 describes shells in more detail.)

Managing Hardware
Most hardware manufacturers ensure that their products work properly under Windows.
Some do the same for Linux, but you’re usually on your own when you use Linux. For-
tunately, tools and resources exist to help with these tasks. You can check for hardware
compatibility before you even buy it, using Internet resources. Once hardware is installed,
Linux provides tools to help you identify that hardware and to configure it properly.

Finding Compatible Hardware
When you shop for hardware for use on a Linux computer, you must remember that not all
hardware works with Linux. Several resources exist to help in this regard:

The Hardware Compatibility List (HCL) This resource, located at http://www
.linuxquestions.org/hcl, is the closest thing to a comprehensive source for Linux
hardware compatibility. You can use it to check on the compatibility of a specific
product or to find products in a category that are known to be compatible.

The OpenPrinting Database This site (http://www.linuxprinting.org/printer_list.cgi)
maintains a list of printers along with comments on their compatibility with Linux.

The SANE Database The Scanner Access Now Easy (SANE) project maintains a database
of scanners, with information on their compatibility with the SANE software, which is the
main scanner package for Linux. Check http://www.sane-project.org for more details.

03843c01.indd 30 8/25/09 7:20:17 AM

Managing Hardware 31

The ALSA Project The Advanced Linux Sound Architecture (ALSA) project maintains the
mainstream Linux sound drivers. Its Web page, http://alsa-project.org, includes notes
on compatibility with specific devices.

These databases are maintained by driver developers and end users. As such, they’re
necessarily incomplete and therefore of limited value. Even limited value is better than no
value, though, so you should definitely check these sites before buying hardware or to eval-
uate the compatibility of hardware you already own.

Another resource you may want to consult is your hardware’s manufacturer.
Check both the Web site for the company that made the product and, if you know it,
the company that made the chipset that drives the product. To Linux, the chipset is
what’s important, but the hardware’s manufacturer may have information or even
drivers available for download.

Broadly speaking, products that are most likely to give problems are those that include
circuitry that requires specialized drivers—video cards, network cards, scanners, printers,
and so on. Some products, by contrast, are extremely standardized and so seldom cause
problems. Examples in this category include RAM, hard disks, CD-ROM and DVD-ROM
drives, keyboards, mice, and monitors.

Identifying Hardware in Linux
If you’ve installed Linux on a computer and aren’t sure what hardware is available or if
you’ve just installed a device and want to verify that it’s accessible, you can use various Linux
tools to help identify the hardware. Tools to identify PCI cards and USB devices exist. You
can also query the kernel drivers that are loaded and examine a special directory to locate
hardware information.

Identifying PCI Devices
The Peripheral Component Interconnect (PCI) standard defines a physical and logical set
of parameters that enable plug-in cards to be used in any PCI-supporting computer. PCI
devices plug into the computer’s motherboard or are built into the motherboard directly. In
Linux, the lspci command displays information on PCI devices. Table 1.1 summarizes the
options to this command.

TA b Le 1.1 Options for lspci

Option Effect

-v Increases verbosity of output. This option may be doubled (-vv)
or tripled (-vvv) to produce yet more output.

-n Displays information in numeric codes rather than translating
the codes to manufacturer and device names.

03843c01.indd 31 8/25/09 7:20:17 AM

32 Chapter 1 n Getting Started with Linux

TA b Le 1.1 Options for lspci (continued)

Option Effect

-nn Displays both the manufacturer and device names and their
associated numeric codes.

-x Displays the PCI configuration space for each device as a hexa-
decimal dump. This is an extremely advanced option. Tripling
(-xxx) or quadrupling (-xxxx) this option displays information
about more devices.

-b Shows IRQ numbers and other data as seen by devices rather
than as seen by the kernel.

-t Displays a tree view depicting the relationship
between devices.

-s [[[[domain]:]bus]:]
[slot][.[func]]

Displays only devices that match the listed specification.

-d [vendor]:[device] Shows data on the specified device.

-i file Uses the specified file to map vendor and device IDs to names.
(The default is /usr/share/misc/pci.ids.)

-m Dumps data in a machine-readable form, intended for use
by scripts. A single -m uses a backward-compatible format,
whereas doubling (-mm) uses a newer format.

-D Displays PCI domain numbers. These numbers normally aren’t
displayed.

-M Performs a scan in bus-mapping mode, which can reveal
devices hidden behind a misconfigured PCI bridge. This is an
advanced option that can be used only by root.

--version Displays version information.

Identifying USB Devices
Universal Serial Bus (USB) devices normally attach externally to the computer. You can
check to see what USB devices are connected using the lsusb command, which is similar
in many ways to lspci. Table 1.2 summarizes lsusb options.

03843c01.indd 32 8/25/09 7:20:17 AM

Managing Hardware 33

TA b Le 1. 2 Options for lsusb

Option Effect

-v Increases verbosity of output

-t Displays a tree view depicting the relationship between devices

-s [[bus]:][devnum] Displays only devices that match the listed specification

-d [vendor]:[device] Shows data on the specified device

-D device Displays information on the specified device, which is a device
file in the /dev directory tree

--version or -V Displays version information

Note that lsusb displays information on both the devices that are attached to your com-
puter and on the USB controller in the computer itself.

Identifying Kernel Drivers
Hardware in Linux is handled by kernel drivers, many of which come in the form of kernel
modules. These are stand-alone driver files, typically stored in the /lib/modules directory
tree, that can be loaded and unloaded to provide access to hardware. Typically, Linux loads
the modules it needs when it boots, but you may need to load additional modules yourself.

You can learn about the modules that are currently loaded on your system by using
lsmod, which takes no options and produces output like this:

$ lsmod

Module Size Used by

isofs 35820 0

zlib_inflate 21888 1 isofs

floppy 65200 0

nls_iso8859_1 5568 1

nls_cp437 7296 1

vfat 15680 1

fat 49536 1 vfat

sr_mod 19236 0

ide_cd 42848 0

cdrom 39080 2 sr_mod,ide_cd

The example output for lsmod has been edited for brevity. Although outputs
this short are possible with certain configurations, they’re rare.

03843c01.indd 33 8/25/09 7:20:17 AM

34 Chapter 1 n Getting Started with Linux

The most important column in this output is the first one, labeled Module; this column
specifies the names of all the modules that are currently loaded. You can learn more about
these modules with modinfo, as described shortly, but sometimes their purpose is fairly
obvious. For instance, the floppy module provides access to the floppy disk drive.

The Used by column of the lsmod output describes what’s using the module. All the
entries have a number, which indicates the number of other modules or processes that
are using the module. For instance, in the preceding example, the isofs module (used to
access CD-ROM filesystems) isn’t currently in use, as revealed by its 0 value; but the vfat
module (used to read VFAT hard disk partitions and floppies) is being used, as shown by
its value of 1. If one of the modules is being used by another module, the using module’s
name appears in the Used by column. For instance, the isofs module relies on the zlib_
inflate module, so the latter module’s Used by column includes the isofs module name.
This information can be useful when you’re managing modules. For instance, if your
system produced the preceding output, you couldn’t directly remove the zlib_inflate
module because it’s being used by the isofs module; but you could remove the isofs mod-
ule, and after doing so you could remove the zlib_inflate module. (Both modules would
need to be added back to read most CD-ROMs, though.)

The lsmod command displays information only about kernel modules, not
about drivers that are compiled directly into the Linux kernel. For this reason,
a module may need to be loaded on one system but not on another to use the
same hardware because the second system may compile the relevant driver
directly into the kernel.

Using the /proc Filesystem
Linux uses a special filesystem, /proc, to control and provide information about much of the
hardware on the computer. Although lspci, lsusb, lsmod, and some other tools provide use-
ful information about specific subsystems, you can use /proc to obtain information on still
more hardware. For instance, the /proc/scsi subdirectory hosts information on SCSI devices
(as well as devices that look like SCSI devices, such as most SATA disks), /proc/cpuinfo
delivers information on your CPU, and /proc/interrupts displays the interrupts used by
hardware devices.

You may want to peruse your /proc filesystem to see what sorts of information it can
provide. You can use the cat command to display the contents of a file, as in cat /proc/
interrupts. Be aware that many of the files contained in this directory tree hold extremely
technical information that may be mystifying unless you have a deep understanding of the
hardware involved.

Don’t try to modify the files in /proc. Writing to these files can cause your
hardware to malfunction. In extreme cases you could wipe out your Linux
installation!

03843c01.indd 34 8/25/09 7:20:18 AM

Managing Hardware 35

Managing Kernel Modules
The lsmod command, described earlier, tells you what kernel modules are installed; how-
ever, you may need to load kernel modules, remove them, or configure how they operate.
To perform these tasks, you must use other tools, such as insmod, modprobe, and rmmod.

Loading Kernel Modules
Linux enables you to load kernel modules with two programs: insmod and modprobe. The
insmod program inserts a single module into the kernel. This process requires you to have
already loaded any modules on which the module you’re loading relies. The modprobe pro-
gram, by contrast, automatically loads any depended-on modules and so is generally the
preferred way to do the job.

In practice, you may not need to use insmod or modprobe to load modules
because Linux can load them automatically. This ability relies on the ker-
nel’s module autoloader feature, which must be compiled into the kernel,
and on various configuration files, which are also required for modprobe and
some other tools. Using insmod and modprobe can be useful for testing new
modules or for working around problems with the autoloader, though.

In practice, insmod is a fairly straightforward program to use; you type it followed by
the module filename:

insmod /lib/modules/2.6.29/kernel/drivers/block/floppy.ko

This command loads the floppy.ko module, which you must specify by filename.
Modules have module names, too, which are usually the same as the filename but without
the extension, as in floppy for the floppy.ko file.

You can pass additional module options to the module by adding them to the command
line. Module options are highly module-specific, so you must consult the documentation
for the module to learn what to pass. Examples include options to tell an RS-232 serial
port driver what interrupt to use to access the hardware or to tell a video card framebuffer
driver what screen resolution to use.

Some modules depend on other modules. In these cases, if you attempt to load a module
that depends on others and those other modules aren’t loaded, insmod will fail. When this
happens, you must either track down and manually load the depended-on modules or use
modprobe. In the simplest case, you can use modprobe much as you use insmod, by passing it
a module name:

modprobe floppy

As with insmod, you can add kernel options to the end of the command line. Unlike
insmod, you specify a module by its module name rather than its module filename when
you use modprobe. This helps make modprobe easier to use, as does the fact that modprobe

03843c01.indd 35 8/25/09 7:20:18 AM

36 Chapter 1 n Getting Started with Linux

automatically loads dependencies. This greater convenience means that modprobe relies on
configuration files. It also means that you can use options (placed between the command
name and the module name) to modify modprobe’s behavior, as summarized in Table 1.3.

TA b Le 1. 3 Options for modprobe

Option Effect

-v or --verbose This option tells modprobe to display extra information about its
operations. Typically, this includes a summary of every insmod
operation it performs.

-C filename The modprobe program uses a configuration file called /etc/
modprobe.conf. You can change the file by passing a new file with
this option, as in modprobe -C /etc/mymodprobe.conf floppy.

-n or --dry-run This option causes modprobe to perform checks and all other
operations except the actual module insertions. You might use
this option in conjunction with -v to see what modprobe would do
without loading the module. This may be helpful in debugging
problems.

-r or --remove This option reverses modprobe’s usual effect; it causes the program
to remove the specified module and any on which it depends.
(Depended-on modules are not removed if they’re in use.)

-f or --force This option tells modprobe to force the module loading even if
the kernel version doesn’t match what the module expects. This
action is potentially dangerous, but it’s occasionally required
when using third-party binary-only modules.

--show-depends You can see all the modules on which the specified module depends
by using this option. It doesn’t install any of the modules; it’s purely
informative in nature.

-l or --list This option displays a list of available options whose names
match the wildcard you specify. For instance, typing modprobe
-l v* displays all modules whose names begin with v. If you
provide no wildcard, modprobe displays all available modules.
Like --show-depends, this option doesn’t cause any modules to
be loaded.

Table 1.3 is incomplete. Other modprobe options are relatively obscure, so
you’re not likely to need them often. Consult the modprobe man page for
more information.

03843c01.indd 36 8/25/09 7:20:18 AM

Managing Hardware 37

Kernel modules can take options that modify their behavior. These options can be specified
in the /etc/modules.conf file. (Some distributions use files in /etc/modules.d instead.)

Removing Kernel Modules
In most cases, you can leave modules loaded indefinitely; the only harm that a module
does when it’s loaded but not used is to consume a small amount of memory. (The lsmod
program shows how much memory each module consumes.) Sometimes, though, you may
want to remove a loaded module. Reasons include reclaiming that tiny amount of memory,
unloading an old module so you can load an updated replacement module, and removing a
module that you suspect is unreliable.

The work of unloading a kernel module is done by the rmmod command. This command
takes a module name as an option:

rmmod floppy

This example command unloads the floppy module. You can modify the behavior of
rmmod in various ways, as summarized by Table 1.4. A few more rmmod options exist; con-
sult the rmmod man page for details.

TA b Le 1. 4 Options for rmmod

Option Effect

-v or --verbose This option tells rmmod to display extra information about its
operations.

-f or --force This option forces module removal even if the module is marked
as being in use. Naturally, this is a very dangerous option, but
it’s sometimes helpful if a module is misbehaving in some way
that’s even more dangerous. This option has no effect unless the
CONFIG_MODULE_FORCE_UNLOAD kernel option is enabled.

-w or --wait This option causes rmmod to wait for the module to become
unused, rather than return an error message, if the module is in
use. Once the module is no longer being used (say, after a floppy
disk is unmounted if you try to remove the floppy module), rmmod
unloads the module and returns. Until then, rmmod doesn’t return,
making it look like it’s not doing anything.

Like insmod, rmmod operates on a single module. If you try to unload a module that’s
depended on by other modules or is in use, rmmod will return an error message. (The -w
option modifies this behavior, as described in Table 1.4.) If the module is depended on by
other modules, those modules are listed, so you can decide whether to unload them. If
you want to unload an entire module stack—that is, a module and all those upon which
it depends—you can use the modprobe command and its -r option, as described earlier in
“Loading Kernel Modules.”

03843c01.indd 37 8/25/09 7:20:19 AM

38 Chapter 1 n Getting Started with Linux

Summary
Before installing Linux, you should take some time to plan the implementation. This begins
with determining which Linux distribution to use, and it continues with planning what
installation media you want to use.

After installing Linux, you may need to attend to certain details. One of these is boot
loader configuration. Although the installer usually gets this detail correct, particularly for
single-OS systems, you may want to tweak the settings or add other OSs to the boot loader.
You’ll also need to understand this process when you install a new kernel down the road. In
case you have problems booting your system, you should know how to troubleshoot boot
problems by entering single-user mode, examining dmesg output, and using rescue discs.

Another common post-installation configuration detail is getting X working. Again,
Linux distributions usually configure X correctly during installation, but you may need to
tweak the settings or change them at a later date.

Finally, certain hardware management tools are vital to Linux administrators. You must be
able to locate compatible hardware, identify the hardware you have installed, and configure it.

Exam Essentials

Summarize the concept of a Linux distribution. A distribution is a collection of software
developed by diverse individuals and groups, bound by an installation routine. Linux dis-
tributions can differ in many details, but they all share the same heritage and the ability to
run the same programs.

Describe when it’s most appropriate to use CD-ROM and network installations. CD-ROM
installations are most convenient when installing to systems with poor network connectivity
or when you have a CD-ROM and want to install quickly. Network installations are conve-
nient when you are installing several systems simultaneously or when you don’t have a Linux
CD-ROM or a CD-ROM drive on the target system.

Summarize the x86 boot process. The CPU executes code stored on the BIOS, which
redirects the CPU to load and execute a boot loader from the MBR. This boot loader may
load the OS kernel or redirect the boot process to another boot loader, which in turn loads
the kernel and starts the OS running.

Explain the purpose of single-user mode. In single-user mode, Linux runs without most
of the background processes or support for multiuser logins that are hallmarks of a normal
Linux boot. Relieving the system of these processes enables you to perform low-level main-
tenance tasks that might not otherwise be possible.

Describe why you might use an emergency disc. An emergency disc enables you to boot
a computer into Linux even when the Linux system installed on the computer is too badly
damaged to boot. You can then use the disc-based system to perform data recovery or
reconfigure the system on the hard disk.

03843c01.indd 38 8/25/09 7:20:19 AM

Exam Essentials 39

Determine what video chipset your system uses. Many manufacturers document the video
card chipset in their manuals or on the product boxes. You can also check the Microsoft
Windows System Control Panel, if the manufacturer did not make the information readily
available.

Summarize how X determines the monitor’s refresh rate. X uses the monitor’s maximum
horizontal and vertical refresh rates and a series of fixed mode lines, which define particu-
lar timings for various video resolutions. X picks the mode line that produces the highest
refresh rate supported by the monitor at the specified resolution.

Explain the purpose of an XDMCP server. XDM, KDM, and GDM are the three main
Linux XDMCP servers. Each of them enables users to log into the system with X running,
thus bypassing the text-mode login that many users find off-putting.

Summarize some tools for identifying hardware in Linux. The lspci and lsusb com-
mands display information on PCI and USB hardware, respectively. The lsmod command
displays the kernel driver modules that are loaded. The /proc filesystem is a treasure trove
of hardware information, although many of its files contain highly technical information
that can be difficult to interpret.

03843c01.indd 39 8/25/09 7:20:19 AM

40 Chapter 1 n Getting Started with Linux

Review Questions

1. In what ways do Linux distributions differ from one another? (Choose all that apply.)

A. Package management systems

B. Kernel development history

C. Installation routines

D. The ability to run popular Unix servers

2. Which of the following best describes a typical Linux distribution’s method of installation?

A. The installation program is a small Linux system that boots from floppy, CD-ROM, or
hard disk to install a larger system on the hard disk.

B. The installation program is a set of DOS scripts that copies files to the hard disk, fol-
lowed by a conversion program that turns the target partition into a Linux partition.

C. The installation program boots only from a network boot server to enable installation
from CD-ROM or network connections.

D. The installation program runs under the Minix OS, which is small enough to fit on a
floppy disk but can copy data to a Linux partition.

3. Which of the following is an advantage of a GUI installation over a text-based installation?

A. GUI installers support more hardware than do their text-based counterparts.

B. GUI installers can provide graphical representations of partition sizes, package browsers,
and so on.

C. GUI installers can work even on video cards that support only VGA graphics.

D. GUI installers better test the system’s hardware during the installation.

4. What is an advantage of a network installation over a DVD-ROM installation from a
downloaded image file?

A. A network installation can result in less material downloaded.

B. A network installation will proceed more quickly once started.

C. A network installation will result in fewer disc swaps.

D. A network installation will work even if there’s a DHCP error.

5. Where might the BIOS find a boot loader?

A. RAM

B. /dev/boot

C. MBR

D. /dev/kmem

03843c01.indd 40 8/25/09 7:20:19 AM

Review Questions 41

6. Which command is used to install GRUB into the MBR of your first ATA hard drive?

A. grub (hd0,1)

B. grub-install /dev/hda1

C. lilo /dev/hda

D. grub-install /dev/hda

7. Which of the following files might you edit to configure GRUB? (Choose all that apply.)

A. /boot/grub/menu.lst

B. /etc/grub.conf

C. /boot/grub/grub.conf

D. /boot/menu.conf

8. The string root (hd1,5) appears in your /boot/grub/menu.lst file. What does this mean?

A. GRUB tells the kernel that its root partition is the fifth partition of the first disk.

B. GRUB looks for files on the sixth partition of the second disk.

C. GRUB looks for files on the fifth partition of the first disk.

D. GRUB installs itself in /dev/hd1,5.

9. What string would you add to the end of a GRUB kernel line to boot into single-user
mode? (Choose all that apply.)

A. 1

B. single

C. emerg

D. one

10. You want to examine the kernel ring buffer to debug a hardware problem. How would you
do this?

A. Type ringbuffer at a command prompt.

B. Type dmesg at a command prompt.

C. Reboot and add the string ring to the kernel line in GRUB.

D. Install a Token Ring device and examine its output.

11. What is an advantage of using an emergency disc versus using single-user mode?

A. An emergency disc may work even if Linux won’t boot into single-user mode.

B. An emergency disc may work even if you’ve lost the root password.

C. An emergency disc may work even if multiple users are logged in.

D. An emergency disc may work even if the CPU is defective.

03843c01.indd 41 8/25/09 7:20:19 AM

42 Chapter 1 n Getting Started with Linux

12. To reset a root password that you’ve forgotten, you blank the second field in root’s entry
in /etc/shadow. What should you do then?

A. Copy /etc/shadow so that you don’t forget the password again.

B. Type shadow-update to update the shadow passwords.

C. Delete the entry for root in /etc/passwd.

D. Use passwd to set a new password for root.

13. Which of the following is the most useful information in locating an X driver for a video card?

A. The interrupt used by the video card under Microsoft Windows

B. The name of the driver used by the card under Microsoft Windows

C. Whether the card uses the ISA, VLB, PCI, or AGP bus

D. The name of the video card’s manufacturer

14. Which of the following summarizes the organization of the xorg.conf file?

A. The file contains multiple sections, one for each screen. Each section includes subsections
for individual components (keyboard, video card, and so on).

B. Configuration options are entered in any order desired. Options relating to specific
components (keyboard, video card, and so on) may be interspersed.

C. The file begins with a summary of individual screens. Configuration options are preceded
by a code word indicating the screen to which they apply.

D. The file is broken into sections, one or more for each component (keyboard, video
card, and so on). The end of the file has one or more sections that define how to
combine the main sections.

15. In what section of xorg.conf do you specify the resolution that you want to run?

A. In the Screen section, subsection Display, using the Modes option

B. In the Monitor section, using the Modeline option

C. In the Device section, using the Modeline option

D. In the DefaultResolution section, using the Define option

16. Which of the following features do KDM and GDM provide that XDM doesn’t?

A. An encrypted remote X-based access ability, improving network security

B. The ability to accept logins from remote computers, once properly configured

C. The ability to select the login environment from a menu on the main login screen

D. A login screen that shows the username and password simultaneously rather than
sequentially

03843c01.indd 42 8/25/09 7:20:20 AM

Review Questions 43

17. You’ve installed a new PCI Ethernet card, but it doesn’t seem to be working. What can you
do to verify that the hardware is visible to Linux?

A. Type ping 127.0.0.1 to check connectivity.

B. Check that the Ethernet cable is firmly plugged in.

C. Type cat /proc/ethernet at a command prompt.

D. Type lspci at a command prompt.

18. An administrator types lsusb at a Linux command prompt. What type of information
will appear?

A. Basic identifying information on USB devices, including the USB controllers and all
attached devices

B. Information on the drivers and detailed capabilities of all USB devices attached to
the computer

C. A report on the success or failure to load the USB driver stack

D. A summary of the amount of data that’s been transferred to and from USB devices
since the computer was booted

19. Which of the following commands loads a kernel module? (Choose all that apply.)

A. rmmod

B. modprobe

C. lsmod

D. insmod

20. You use a USB flash drive and, while the drive is still mounted, type lsmod, but you see
no entries for kernel modules that you know are required to access a USB flash drive. Why
might this be?

A. The lsmod command displays information only on drivers that are in use by the user
who typed the command.

B. The lsmod command displays information only on drivers that are doing work at the
moment the command is typed.

C. The lsmod command displays information only on drivers that are built as modules,
not those that are built directly into the kernel.

D. The lsmod command displays information only on drivers that are used by hardware
devices internal to the computer.

03843c01.indd 43 8/25/09 7:20:20 AM

44 Chapter 1 n Getting Started with Linux

Answers to Review Questions

1. A, C. Different Linux distributions use different package management systems and instal-
lation routines. Although they may ship with slightly different kernel versions, they use fun-
damentally the same kernel. Likewise, they may ship with different server collections but
can run the same set of servers.

2. A. Most Linux distributions use installation programs written in Linux, not in DOS or
Minix. The system usually boots from floppy or CD-ROM, although other boot media
(such as hard disk or even network) are possible.

3. B. A bitmapped display, as used by a GUI installer, can be used to show graphical represen-
tations of the system’s state that can’t be done in a text-mode display. Text-based installers
actually have an edge in hardware support because they can run on video cards that aren’t
supported by X.

4. A. When you download a DVD-ROM image file, you’re almost certain to download pro-
grams you won’t install, whereas with a direct network installation, the installer won’t
bother to download packages it doesn’t install. Thus, option A is correct. Although it’s
conceivable that a network install will be faster than one from a DVD-ROM drive, this is
not certain and probably isn’t even likely; thus, option B is incorrect. Network installs and
installs from a DVD-ROM are both likely to require no disc swaps, so option C is incor-
rect. A DHCP error refers to an inability to assign a computer an address on the network,
so a network install might fail if this occurs, and option D is incorrect.

5. C. The master boot record (MBR) can contain a small boot loader. If more space is
required, the boot loader must load a secondary boot loader. Although the boot loader is
loaded into RAM, it’s not stored there permanently because RAM is volatile storage. Both
/dev/boot and /dev/kmem are references to files on Linux filesystems; they’re meaningful
only after the BIOS has found a boot loader and run it and lots of other boot processes have
occurred.

6. D. You use grub-install to install the GRUB boot loader code into an MBR or boot sec-
tor. When using grub-install, you specify the boot sector on the command line. The MBR
is the first sector on a hard drive, so you give it the Linux device identifier for the entire hard
disk, /dev/hda. Option A specifies using the grub utility, which is an interactive tool, and
the device identifier shown in option A is a GRUB-style identifier for what would probably
be the /dev/hda3 partition in Linux. Option B is almost correct but installs GRUB to the
/dev/hda1 partition’s boot sector rather than the hard disk’s MBR. Option C is the com-
mand to install LILO to the MBR rather than to install GRUB.

7. A, C. The official GRUB configuration filename is /boot/grub/menu.lst; however, some
distributions use /boot/grub/grub.conf instead. Thus, options A and C are both correct.
Options B and C are fictitious.

03843c01.indd 44 8/25/09 7:20:20 AM

Answers to Review Questions 45

8. B. The root keyword in a GRUB configuration file tells GRUB where to look for files,
including its own configuration files, kernel files, and so on. Because GRUB numbers start
from 0, (hd1,5) refers to the sixth partition on the second disk. Option A is incorrect
because you pass the Linux root partition to the kernel on the kernel line. Options A and C
both misinterpret the GRUB numbering scheme. The GRUB installation location is specified
on the grub-install command line, and /dev/hd1,5 isn’t a standard Linux device file.

9. A, B. Linux recognizes both 1 and single as codes to enter single-user mode in this context.
Neither emerg nor one is a correct answer.

10. B. The dmesg command displays the contents of the kernel ring buffer, which holds kernel
messages. There is no standard ringbuffer command. Adding ring to the kernel options
when booting will not have the desired effect. Token Ring is a network hardware standard,
not a way to examine the kernel ring buffer.

11. A. If Linux is so badly damaged that it won’t boot into single-user mode, there’s a chance
that an emergency disc will give you sufficient access to the computer to fix the problem.
Single-user mode bypasses the usual login procedures, so it can work even if you’ve lost the
root password, so option B is incorrect. Both emergency discs and single-user mode require
ordinary users to log out, so option C is incorrect. If the CPU is defective, as option D spec-
ifies, chances are that neither single-user mode nor an emergency disc will help.

12. D. Blanking the password field as specified in the question results in a null password—no
password is required to access the account. This is extremely dangerous, so you should imme-
diately set a new password for the root account using passwd, as option D specifies. Copying
/etc/shadow is not required and might pose a security risk, depending on where and how
you copy it. There is no standard shadow-update utility. Deleting root from /etc/passwd
would likely have disastrous consequences, since this file holds basic account information.

13. B. The driver used under Windows should provide useful information on the video card’s
chipset, which will help you locate a Linux driver for the card. The video card’s manufac-
turer name might or might not be useful information. If it proves to be useful, you’d also
need a model number. The interrupt used by the video card in Windows is irrelevant. The
card’s bus can narrow the range of possibilities, but it isn’t extremely helpful.

14. D. The xorg.conf file design enables you to define variants or multiple components and
easily combine or recombine them as necessary.

15. A. The Modeline option in the Monitor section defines one possible resolution, but there
are usually several Modeline entries defining many resolutions. The Modeline option
doesn’t exist in the Device section, however, nor is that section where the resolution is set.
There is no DefaultResolution section.

16. C. KDM and GDM add many features, one of which is a menu that enables users to select
their desktop environment or window manager when they log in rather than specifying it
in a configuration file, as option C states. Option A describes one of the advantages of the
Secure Shell (SSH) as a remote-access protocol. Option B describes a feature common to all
three XDMCP servers. Option D describes the way both KDM and XDM function; GDM
is the one that presents username and password fields in series rather than simultaneously.

03843c01.indd 45 8/25/09 7:20:20 AM

46 Chapter 1 n Getting Started with Linux

17. D. The lspci command lists all the detected PCI devices, so if the card is installed cor-
rectly and working, it should show up in the lspci output. Thus, option D is correct.
Although ping can be a useful network diagnostic tool, option A’s use of it doesn’t test
Ethernet cards, so that option is incorrect. Option B provides sound basic network debug-
ging advice, but it won’t help to verify that the card is visible to Linux. There is no /proc/
ethernet file, so option C won’t help.

18. A. The lsusb command summarizes the USB devices that are available to the computer, as
option A says.

19. B, D. The modprobe command loads a module and, if necessary, all those upon which it
depends. The insmod command loads a module, but only if all its dependencies are met.
Thus, options B and D are correct. The rmmod command removes a module, and lsmod lists
the loaded modules, so options A and C are incorrect.

20. C. If a driver is built into the main kernel file, lsmod won’t display information on it. Thus,
if the relevant drivers are built into the kernel, the observed behavior would occur because
option C is a correct statement. The lsmod command does display information on drivers
that are used to service other users’ needs, that are loaded but not actively working, and on
some types of external hardware devices, contrary to options A, B, and D, respectively.

03843c01.indd 46 8/25/09 7:20:20 AM

Chapter

2
Using Text-Mode
Commands

The Following CoMpTiA objeCTives
Are Covered in This ChApTer:

1.9 Configure profile and environment variables system-ÛÛ
wide and at the user level (PS1, PS2, PATH, EDITOR, TERM,
PAGER, HOME, PRINTER).

2.1 Given a scenario, use the following fundamental Linux ÛÛ
tools, techniques, and resources (Directory navigation: cd,
ls,pushd, popd,pwd; File commands: file, test, find, locate,
slocate, which, whereis, ln, ls -F, mknod, touch, mkdir, mv, cp,
rm, cd; file types [hard links, soft links, directory, device file,
regular file, named pipe; I/O redirection: <, >, =, ==, |, ;, tee,
xargs, STDIN, STDOUT, STDERR; Special devices: /dev/
null, /dev/random, /dev/zero, /dev/urandom; System docu-
mentation: Man pages [man#, apropos, makewhatis, whatis],
Info pages, /usr/share/docs])

2.2 Conduct basic tasks using BASH (Basics of scripting ÛÛ
[only: execute permission, #!/bin/bash, sh script]; Shell
features: history, tab completion; Special devices: /dev/
null, /dev/random, /dev/zero, /dev/urandom).

5.2 Given a scenario, select the appropriate file permis-ÛÛ
sions and ownership and troubleshoot common problems
(Tools: chmod, chown, chroot, chgrp, lsattr, chattr, umask.
Special permissions: setuid, setgid, sticky bit).

03843book.indb 47 8/21/09 12:04:37 PM

Linux can trace its intellectual heritage, if not its source code,
to the Unix OS. Unix was developed before GUI environments
were much more than pipe dreams. Thus, Unix (and hence

Linux) provides a wide array of flexible text-mode commands. In fact, even many GUI
tools are built atop the text-mode commands—the GUI tools simply translate mouse clicks
into options passed to the text-mode tools and display any output in a flashier way than the
originals. In any event, because of Linux’s strong text-mode heritage, Linux administrators,
and even some nonadministrative Linux users, must understand how to use these text-mode
tools. This chapter serves as an introduction to this topic.

The most fundamental text-mode tool is a command shell, which accepts typed com-
mands from a user. Thus, this chapter begins with a look at shells. It then moves on to a
look at many commands that are used to manipulate files in various ways—to display their
contents, move them, and so on. One of the features of files is that they have access controls
(that is, permissions), and understanding these permissions and the commands to manipu-
late them is critical for many Linux tasks, so this chapter covers this important topic. Linux
also provides various tools for manipulating text files, so that topic is also covered in this
chapter. Many commands rely on environment variables, which store small amounts of
data that can be used by multiple commands, so knowing how to set environment variables
can be important. This chapter continues with a basic examination of scripts, which enable
the automation of common tasks. This chapter concludes with information on system docu-
mentation and help resources, so you can get help on using a command if you forget a criti-
cal detail.

Objective 2.1 is covered partly in this chapter and partly in Chapter 3.

Using a Command Shell
A shell is a program that enables you to interact with the computer by launching programs,
manipulating files, and issuing commands. A shell is sometimes referred to as a command-
line interface (CLI). Shells aren’t the same as the GUI desktop environments with which
you may already be familiar, though; traditional Linux shells are text-mode tools. Even
if you prefer to use a GUI environment, it’s important that you understand basic shell use
because the shell provides the user interface that’s most consistent across distributions and

03843book.indb 48 8/21/09 12:04:38 PM

Using a Command Shell 49

other environments. You can also use text-based shells through text-mode network connec-
tions. Once you’ve started a shell, you can view and manipulate files and launch programs.

Starting a Shell
Linux supports many different shells, although precisely which ones might be installed
varies from one distribution to another. The vast majority of Linux systems include Bash,
which is usually the default shell for new users. Another common shell is known as tcsh,
and many others, such as zsh, csh, and ash, are also available. Most shells are similar in
broad strokes, but some details differ.

You can start a shell in many different ways, most of which are at least partially automatic.
The following are the most common methods:

Logging in at the text-mode console If you log into the computer using a text-mode con-
sole, you’ll be greeted by your default shell, as it is set in your user account information (see
Chapter 5, “Managing Users”).

Logging in remotely Logging in remotely via Telnet, the Secure Shell (SSH), or some other
remote text-mode login tool will start a shell. (Despite its name, SSH is not a shell in the
sense described here, but it will start one automatically.)

Starting an xterm An xterm is a GUI program in which text-based programs can run. By
default, an xterm usually starts your default shell unless told to do otherwise.

Explicitly launching a shell You can start one shell from within another. This can be
helpful if you find you need features of one shell but are running another. Type the new
shell’s name to start it.

When you start a shell, you’ll see a command prompt. This is one or more characters that
indicate the shell is waiting for input. Command prompts often (but not always) include your
username, the computer’s hostname, or the directory in which the shell is operating. For
instance, a command prompt might resemble the following:

[rodsmith@nessus /mnt]$

Although not a universal convention (it can be set in a user’s shell configuration files),
the final character is often a dollar sign ($) or greater-than symbol (>) for ordinary users
or a hash mark (#) for root. This serves as an indication of superuser status; you should be
cautious when entering commands in a root shell, because it’s easy to damage the system
from such a shell.

This book includes command examples on separate lines. When the
command is one that an ordinary user might issue, it’s preceded by a
$ prompt; when only root should be issuing the command, it’s preceded
by a # prompt. Because the username, computer name, and directory are
usually unimportant, this information is omitted from the prompts printed
in this book. The prompts are omitted from command examples within a
paragraph of text.

03843book.indb 49 8/21/09 12:04:38 PM

50 Chapter 2 n Using Text-Mode Commands

Using Virtual Terminals
Linux implements a feature, known as virtual terminals (VTs), that can greatly help you
when you want to run multiple programs from a text-mode login or when you want to
switch between text-mode and GUI sessions. A single computer can support multiple VTs.
You can switch to a new VT from a text-mode login by pressing Alt+Fn, where n is the VT
number. For instance, if you’re in VT1 and you want to switch to VT2, press Alt+F2. To
switch out of a VT in which X is running, you must add Ctrl to the keystroke; so, to switch
to VT2 from X, you’d press Ctrl+Alt+F2.

Typically, VT1 through VT6 are text-mode VTs, while X runs in VT7. Some distribu-
tions deviate from this convention, though. For instance, Fedora 10 (but not earlier versions
of Fedora) run X in VT1.

VTs enable you to log into the computer multiple times and run different programs in
different VTs. You can then switch between the VTs to switch between different programs
running in each VT.

X sometimes misbehaves and becomes unresponsive. If this happens, you
may be able to recover by switching to a text-mode VT and shutting down
and restarting X, as described in Chapter 1, “Getting Started with Linux.”

Launching Programs
You can launch a program from a shell by typing its name. In fact, many shell “commands”
are actually external programs that the shell runs. Most of these standard commands reside
in the /bin directory, but shells search all directories specified by the PATH environment
variable (described in more detail later, in “Setting Environment Variables”) for commands
to run. If you type the name of a program that resides in any directory on the path, the
shell runs that program. You can also pass parameters to a program—optional information
that the program can use in a program-specific way. For instance, the names of the files and
directories are parameters to commands like ls and cd, which are described later, in “Nav-
igating the Linux Filesystem.” Many programs accept parameters that are preceded by one
or two dashes and a code, as in -r or -t time. Most parameters are case sensitive; in fact,
many programs use upper- and lowercase versions of a parameter in different ways.

Most text-based programs take over the display (the text-mode login, Telnet session,
xterm, or what have you). Many show little or no information before returning control to
the shell, so you don’t really notice this fact. Some programs, such as text-mode editors,
truly control the display; they may clear all the information that has previously appeared
and fill the display with their own information. Other programs may not clear the screen
entirely, or even display their own information, but they may take a long time to operate.
In some cases, you may want to retain control of your shell while the program does its
thing in the background. To do this, follow the command with an ampersand (&). When
you do this, the program you launch will still be attached to the display from which it

03843book.indb 50 8/21/09 12:04:38 PM

Using a Command Shell 51

was launched, but it shares that display with the shell. This works well for noninteractive
programs but very poorly for interactive tools. For instance, suppose you have a program
called supercrunch that performs some lengthy computation but requires no interaction
from the user. You could launch it like this:

$ supercrunch &

If supercrunch produces text-based output, it will appear on the screen, but you’ll still
be able to use the shell for other purposes. If you’ve already launched a program and want
to move it into the background, press Ctrl+Z. This suspends the currently running program
and returns you to the shell. At this point, the program you’ve suspended will not be doing
any work. This may be fine for a text editor you wanted to momentarily suspend, but if
the program was performing computations that should continue, you must take additional
steps to see that this happens. You can type fg to return to the suspended program or type
bg to start it running again in the background. The latter is much like appending an amper-
sand to the command name when you launched it.

If you try to launch an X-based program, you must be running the shell in an xterm, or
possibly in some other way that allows X programs to run, such as from another computer
with its own X server and all appropriate environment variables set to permit remote X
program operation, as described in Chapter 9, “Configuring Advanced Networking.” If you
try to launch an X program from a text-only login, you’ll receive an error message along
the lines of Can’t open display.

Although X-based programs don’t normally produce text output, they
do take over the terminal from which they were launched. If you want to
continue to use a terminal after launching an X-based program, follow its
name with an ampersand (&), as just described.

Using Shell Shortcuts
Linux shells permit some important shortcuts. One of these is the use of the Tab key for
filename completion. Suppose you want to move a file that’s called shareholder-report-
for-2009.txt. You could type the entire filename, but that can be tedious. Most Linux
shells, including the popular Bash, support a feature in which hitting the Tab key completes
an incomplete command or filename, as long as you’ve typed enough characters to uniquely
define the file or command. For instance, suppose that ls (described in more detail shortly,
in “Listing Files”) reveals two files in a directory:

$ ls

share-price-in-2009.txt shareholder-report-for-2009.txt

If you want to edit the second file with the Emacs editor (using the command name
emacs), you could type emacs shareh and then press the Tab key. The shell will complete
the filename.

03843book.indb 51 8/21/09 12:04:39 PM

52 Chapter 2 n Using Text-Mode Commands

What happens when the characters you enter are not unique? In this case, the shell
completes as much of the job as it can. For instance, if you type emacs sh and then press
the Tab key, Bash fills out the next three characters so that the command line reads emacs
share. Some configurations also summarize the possible completions at this point. (For
those that don’t, pressing Tab again usually displays these completions.) If you then type
either h or - and press Tab again, Bash completes the filename.

Command and filename completion details vary; you may need to
press Tab multiple times and there may be fewer or more beeps than
described here.

Another shortcut is the use of the up and down arrow keys to scroll through previous
commands. If you need to type two similar commands in a row, you can type one and then
press the up arrow key to retrieve the previous command. You can go back through several
commands in this way, and if you overshoot, you can use the down arrow key to retrieve
more recent commands. Once you find the command you want, you can use the left arrow
or Backspace key to move back in the line to edit it (Backspace deletes characters, but the
left arrow key doesn’t). Pressing Ctrl+A moves the cursor to the start of the line, and press-
ing Ctrl+E moves the cursor to the end of the line. Edit the line, and press the Enter key to
enter the new command.

These shortcuts, and other basic shell commands, are extremely helpful. You can perform
many tasks with a file manager, of course, but text-based utilities were designed to be used
from shells.

Using the Shell’s History
Another helpful shell shortcut is the history, which keeps a record of every command you
type (stored in ~/.bash_history in the case of Bash), up to a configurable number of com-
mands. If you’ve typed a long command recently and want to use it again, or use a minor
variant of it, you can pull the command out of the history. The simplest way to do this is to
press the up and down arrow keys on your keyboard, as described in the previous section.
The Ctrl+P and Ctrl+N keystrokes double for the up and down arrow keys, respectively.

Another way to use the command history is to search through it. Press Ctrl+R to begin
a backward (reverse) search, and begin typing characters that should be unique to the com-
mand you want to find. The characters you type need not be the ones that begin the com-
mand; they can exist anywhere in the command. You can either keep typing until you find
the correct command or, after you’ve typed a few characters, press Ctrl+R repeatedly until
you find the one you want. The Ctrl+S keystroke works similarly but searches forward in
the command history, which might be handy if you’ve used a backward search or the up
arrow key to look back and have overshot. In either event, if you can’t find the command
you want or change your mind and want to terminate the search, press Ctrl+G.

Frequently, after finding a command in the history, you want to edit it. Bash, like many
shells, provides editing features modeled after those of the Emacs editor:

03843book.indb 52 8/21/09 12:04:39 PM

Manipulating Files and Directories 53

Move within the line. Press Ctrl+A or Ctrl+E to move the cursor to the start or end of the
line, respectively. The left and right arrow keys move within the line a character at a time.
Ctrl+B and Ctrl+F do the same, moving backward and forward within a line. Pressing Ctrl
plus the left or right arrow key moves backward or forward a word at a time, as does press-
ing Esc and then B or F.

Delete text. Pressing Ctrl+D or the Delete key deletes the character under the cursor,
whereas pressing the Backspace key deletes the character to the left of the cursor. Pressing
Ctrl+K deletes all text from the cursor to the end of the line. Pressing Ctrl+X and then Back-
space deletes all the text from the cursor to the beginning of the line.

Transpose text. Pressing Ctrl+T transposes the character before the cursor with the
character under the cursor. Pressing Esc and then T transposes the two words immedi-
ately before (or under) the cursor.

Change case. Pressing Esc and then U converts text from the cursor to the end of the word
to uppercase. Pressing Esc and then L converts text from the cursor to the end of the word to
lowercase. Pressing Esc and then C converts the letter under the cursor (or the first letter of
the next word) to uppercase, leaving the rest of the word unaffected.

Invoke an editor. You can launch a full-fledged editor to edit a command by pressing
Ctrl+X followed by Ctrl+E. Bash attempts to launch the editor defined by the FCEDIT or
EDITOR environment variable or Emacs as a last resort. (The upcoming section “Setting
Environment Variables” describes environment variables.)

These editing commands are just the most useful ones supported by Bash; consult its
man page to learn about many more obscure editing features. In practice, you’re likely to
make heavy use of command and filename completion, the command history, and perhaps
a few editing features.

The history command provides an interface to view and manage the history. Typing
history alone displays all the commands in the history (typically the latest 500 commands);
adding a number causes only that number of the latest commands to appear. Typing history
-c clears the history, which can be handy if you’ve recently typed commands you’d rather
not have discovered by others (such as commands that include passwords). You can rerun a
specific command by typing its number preceded by an exclamation mark (!), as in !227 to
rerun the command that’s numbered 227 in the list.

Manipulating Files and Directories
Linux provides traditional Unix commands to manipulate files. These commands can
be classified into several categories: filesystem navigation, file manipulation, directory
manipulation, file location, and file examination. A couple of closely related features are
redirection and pipes, which let you redirect a program’s input or output from or to a file
or another program.

03843book.indb 53 8/21/09 12:04:39 PM

54 Chapter 2 n Using Text-Mode Commands

Navigating the Linux Filesystem
Moving about the Linux filesystem involves a few commands. It’s also helpful to understand
some features of common Linux shells that can help in this navigation. Important tasks
include taking directory listings, using wildcards, and manipulating the current directory.

Listing Files
To manipulate files, it’s helpful to know what they are. This is the job of the ls command,
whose name is short for “list.” The ls command displays the names of files in a directory.
Its syntax is simple:

ls [options] [files]

The command supports a huge number of options, which are documented in its man
page. (See the upcoming section “Getting Help” for information on man pages.) Table 2.1
summarizes the most useful options.

TA b le 2 .1 Common ls Options

Option Name Option Abbreviation Meaning

--all -a Normally, ls omits files whose names begin with
a dot (.). These dot files are often configuration
files that aren’t usually of interest. Adding the -a
or --all parameter displays dot files.

--color None This option produces a color-coded listing that
differentiates directories, symbolic links, and so
on, by displaying them in different colors. (A few
types of displays don’t support color, though.)

--directory -d Normally, if you type a directory name as one of
the files, ls displays the contents of that direc-
tory. The same thing happens if a directory name
matches a wildcard (described in the next section,
“Using Wildcards”). Adding the -d or --directory
parameter changes this behavior to list only the
directory name, which is sometimes preferable.

None -l The ls command normally displays filenames
only. The -l parameter (a lowercase L) produces
a long listing that includes information such as
the file’s permission string (described later, in
“Using File Permissions”), owner, group, size,
and creation date.

03843book.indb 54 8/21/09 12:04:39 PM

Manipulating Files and Directories 55

TA b le 2 .1 Common ls Options (continued)

Option Name Option Abbreviation Meaning

--classify -F This option appends an indicator code to the end
of each name so you know what type of file it is.
The meanings are as follows:

/ directory
@ symbolic link
= socket
| pipe

--recursive -R This option causes ls to display directory con-
tents recursively. That is, if the target directory
contains a subdirectory, ls displays both the files
in the target directory and the files in its subdirec-
tory. The result can be a huge listing if a directory
has many subdirectories.

Both the options list and the files list are optional. If you omit the files list, ls displays
the contents of the current directory. You may instead give one or more file or directory
names, in which case ls displays information on those files or directories; for instance:

$ ls -F /usr /bin/ls

/bin/ls

/usr:

X11R6/ games/ include/ man/ src/

bin/ i386-glibc20-linux/ lib/ merge@ tmp@

doc/ i486-linux-libc5/ libexec/ sbin/

etc/ i586-mandrake-linux/ local/ share/

This output shows both the /bin/ls program file and the contents of the /usr directory.
The latter consists mainly of subdirectories, but it includes a couple of symbolic links as well.
By default, ls creates a listing that’s sorted by filename, as shown in this example. Note,
though, that uppercase letters (as in X11R6) always appear before lowercase letters (as in bin).

Linux uses a slash (/) to separate elements of a directory. Windows uses
a backslash (\) for this purpose, and Mac OS Classic uses a colon (:). (Mac
OS X is Unix-based and uses a slash, just like Linux.)

03843book.indb 55 8/21/09 12:04:40 PM

56 Chapter 2 n Using Text-Mode Commands

One of the most common ls options is -l, which creates a listing like this:

$ ls -l n*

-rw-r--r-- 1 rodsmith users 198629 2008-12-23 13:25 ndiswrapper-1.53.tar.gz

-rw-r--r-- 1 rodsmith users 1138860 2009-03-13 11:09 nedit-5.5-1.i386.rpm

-rw-r--r-- 1 rodsmith users 113747 2009-06-13 22:11 ntp.pdf

This output includes the permission strings, ownership, file sizes, and file creation dates
in addition to the filenames. This example also illustrates the use of the * wildcard, which
matches any string—thus, n* matches any filename that begins with n.

Using Wildcards
You can use wildcards with ls (and with many other commands as well). A wildcard is a
symbol or set of symbols that stand in for other characters. Three classes of wildcards are
common in Linux:

? A question mark (?) stands in for a single character. For instance, b??k matches book,
balk, buck, or any other four-letter filename that begins with b and ends with k.

* An asterisk (*) matches any character or set of characters, including no character. For
instance, b*k matches book, balk, and buck, just as does b??k. b*k also matches bk, bbk,
and backtrack.

Bracketed values Characters enclosed in square brackets ([]) normally match any charac-
ter in the set. For instance, b[ao][lo]k matches balk and book but not buck. It’s also pos-
sible to specify a range of values; for instance, b[a-z]ck matches any back, buck, and other
four-letter filenames of this form whose second character is a lowercase letter. This differs
from b?ck—because Linux treats filenames in a case-sensitive way, b[a-z]ck doesn’t match
bAck, although b?ck does.

Wildcards are actually implemented in the shell and passed to the command you call.
For instance, if you type ls b??k and that wildcard matches the three files balk, book, and
buck, the result is precisely as if you’d typed ls balk book buck.

The way wildcards are expanded can lead to some undesirable conse-
quences. For instance, suppose you want to copy two files, specified via
a wildcard, to another directory but you forget to give the destination
directory. The cp command (described shortly) will interpret the com-
mand as a request to copy one of the files over the other.

Finding and Changing the Current Directory
Linux command shells implement the concept of a current directory, a directory that’s
displayed by default if ls or some other command doesn’t specify a directory. You can
discover what your current directory is by typing pwd. This command’s name stands for
“print working directory,” and it can be useful if you don’t know in what directory you’re
currently operating.

03843book.indb 56 8/21/09 12:04:40 PM

Manipulating Files and Directories 57

You may specify either an absolute directory name or a relative directory name when
giving a filename or directory name. The former indicates the directory name relative to the
root directory. An absolute directory name uses a leading slash, as in /usr/local or /home.
Relative directory names are specified relative to the current directory. They lack the lead-
ing slash. Relative directory names sometimes begin with a double dot (..). This is a code
that stands for a directory’s parent. For instance, if your current directory is /usr/local,
then .. refers to /usr. Similarly, a single dot (.) as a directory name refers to the current
directory. As an example, if you’re in /home/sally, the filename specifications document
.odt, ./document.odt, and /home/sally/document.odt all refer to the same file. The single
dot can often be omitted, but including it is sometimes helpful when you’re specifying com-
mands. Without the dot, Linux tries searching your path, and if the dot isn’t on the path
and you aren’t in a directory on the path, you won’t be able to run programs in your cur-
rent working directory.

Another important shortcut character is the tilde (~). This character is a stand-in for
your home directory. For instance, ~/document.odt refers to the document.odt file within
the user’s home directory. This might be /home/sally/document.odt for the user sally,
for instance.

To change to another directory, use the cd command. Unlike most commands, cd is built
into the shell. Its name stands for “change directory,” and it alters the current directory to
whatever you specify. Type the command followed by your target directory, as in:

$ cd somedir

You may use either absolute or relative directory names with the cd command—or with
other commands that take filenames or directory names as input.

An alternative to cd is pushd, which changes to another directory and adds it to a list of
directories maintained by the shell. You can view the list with the dirs command (the list is
also displayed after every call to pushd), and you can also rotate the list and therefore change
to a specified directory by passing a number to the list, indexed from 0, with positive num-
bers counting from the left and negative numbers counting from the right. For instance:

$ pushd /tmp

/tmp ~

$ pushd /usr/local

/usr/local /tmp ~

$ pushd +2

~ /usr/local /tmp

$ pwd

/home/rodsmith

To remove a directory from the list, use popd, which removes the first directory from the
list or the numbered directory (using positive or negative values, as in pushd):

$ dirs

~ /usr/local /tmp

03843book.indb 57 8/21/09 12:04:40 PM

58 Chapter 2 n Using Text-Mode Commands

$ popd -0

~ /usr/local

Manipulating Files
A few file-manipulation commands are extremely important to everyday file operations.
These commands enable you to copy, move, rename, and delete files.

Copying Files
The cp command copies a file. Its basic syntax is as follows:

cp [options] source destination

source is normally one or more files, and destination may be a file (when the source is a
single file) or a directory (when the source is one or more files). When copying to a directory,
cp preserves the original filename; otherwise, it gives the new file the filename indicated by
destination. The command supports a large number of options; consult its man page for
more information. (The upcoming section “Getting Help” describes man pages.) Some of
the more useful options enable you to modify the command’s operation in helpful ways, as
summarized in Table 2.2.

TA b le 2 . 2 Common cp Options

Option Name Option Abbreviation Meaning

--force -f This option forces the system to overwrite
any existing files without prompting.

--interactive -i This option causes cp to ask you before over-
writing any existing files.

--preserve -p Normally, a copied file is owned by the user
who issues the cp command and uses that
account’s default permissions. This option pre-
serves ownership and permissions, if possible.

--recursive -R (and sometimes -r) If you use this option and specify a directory
as source, the entire directory, including its
subdirectories, will be copied. Although -r also
performs a recursive copy, its behavior with
files other than ordinary files and directories is
unspecified. Most cp implementation use -r as
a synonym for -R, but this isn’t guaranteed.

--update -u This option tells cp to copy the file only if the
original is newer than the target or if the target
doesn’t exist.

03843book.indb 58 8/21/09 12:04:41 PM

Manipulating Files and Directories 59

As an example, the following command copies the /etc/fstab configuration file
to a backup location in /root, but only if the original /etc/fstab is newer than the
existing backup:

cp -u /etc/fstab /root/fstab-backup

Moving and Renaming Files
The mv command (short for “move”) is commonly used both to move files and directories
from one location to another and to rename them. Linux doesn’t distinguish between these
two types of operations, although many users do. The syntax of mv is similar to that of cp:

mv [options] source destination

The command takes many of the same options as cp does. From Table 2.2, --preserve
and --recursive don’t apply to mv, but the others do.

To move one or more files or directories, specify the files as source and specify a directory
or (optionally for a single file move) a filename for destination:

$ mv document.odt important/purchases/

This command copies the document.odt file into the important/purchases subdirectory.
If the copy occurs on one low-level filesystem, Linux does the job by rewriting directory
entries; the file itself doesn’t need to be read and rewritten. This makes mv fast. When the
target directory is on another partition or disk, though, Linux must read the original file,
rewrite it to the new location, and delete the original. This slows down mv. Also, mv can
move entire directories within a filesystem, but not between filesystems.

The preceding example used a trailing slash (/) on the destination direc-
tory. This practice can help avoid problems caused by typos. For instance,
if the destination directory were mistyped as important/purchase (miss-
ing the final s), mv would move document.odt into the important directory
under the filename purchase. Adding the trailing slash makes it explicit
that you intend to move the file into a subdirectory. If it doesn’t exist, mv
complains, so you’re not left with mysterious misnamed files. You can also
use filename completion to avoid such problems.

Renaming a file with mv works much like moving a file, except that the source and
destination filenames are in the same directory, as in:

$ mv document.odt washer-order.odt

This renames document.odt to washer-order.odt in the same directory. You can combine
these two forms as well:

$ mv document.odt important/purchases/washer-order.odt

This command simultaneously moves and renames the file.

03843book.indb 59 8/21/09 12:04:41 PM

60 Chapter 2 n Using Text-Mode Commands

Removing Files
To delete a file, use the rm command, whose name is short for “remove.” Its syntax is simple:

rm [options] files

The rm command accepts many of the same options as cp or mv. Of those described in
Table 2.2, --preserve and --update do not apply to rm, but all the others do. With rm, -r
is synonymous with -R.

By default, Linux doesn’t provide any sort of “trash-can” functionality for
its rm command; once you’ve deleted a file with rm, it’s gone and cannot be
recovered without retrieving it from a backup or performing low-level disk
maintenance. Therefore, you should be cautious when using rm, especially
as root. This is particularly true when you’re using the -R option—typing
rm -R / will destroy an entire Linux installation! Many Linux GUI file man-
agers implement trash-can functionality so that you can easily recover files
moved to the trash (assuming you haven’t emptied the trash), so you may
want to use a file manager for removing files.

Touching Files
The touch command has two purposes: it can create a new empty file or it can
adjust the last-modification and last-access times of an existing file. Using touch in
the first way is helpful if you need to create an empty file for some reason (say, if another
program expects a file to exist, but that file doesn’t need to have any content). Changing
the file’s timestamp is useful if a program relies on this information and you need
to change it. Programmers sometimes employ this feature to force development tools
to recompile a source code file even if it hasn’t been modified since it was last compiled,
for instance.

Creating Links
The ln command creates hard links and soft links (aka symbolic links). Its syntax is similar
to that of cp:

ln [options] source link

source is the original file, while link is the name of the link you want to create. This
command supports options that have several effects, as summarized in Table 2.3.

03843book.indb 60 8/21/09 12:04:41 PM

Manipulating Files and Directories 61

TA b le 2 . 3 Common ln Options

Option Name
Option
Abbreviation Meaning

--force -f This option causes ln to remove any existing links or
files that have the target link name.

--directory -d or -F Ordinarily, you can’t create hard links to directories.
The root user can attempt to do so, though, by passing
this option to ln. (Symbolic links to directories are not a
problem. This distinction is described shortly.) In prac-
tice, this option is unlikely to work, since few filesystems
support hard links to directories.

--symbolic -s The ln command creates hard links by default. To create
a symbolic link, pass this option to the command.

A few other options exist to perform more obscure tasks; consult the ln man page for
details. The default type of link created by ln, hard links, are produced by creating two
directory entries that point to the same file. Both filenames are equally valid and promi-
nent; neither is a “truer” filename than the other, except that one was created first
(when creating the file) and the other was created second. To delete the file, you must
delete both hard links to the file. Because of the way hard links are created, all the links
to a single file must exist on one low-level filesystem; you can’t create a hard link from,
say, your root (/) filesystem to a separate filesystem you’ve mounted on it, such as your
/home filesystem (if it’s on a separate partition). The underlying filesystem must support
hard links. All Linux native filesystems support this feature, but some non-Linux filesys-
tems don’t.

Symbolic links, by contrast, are special file types. The symbolic link is a separate file
whose contents point to the linked-to file. Linux knows to access the linked-to file when
you try to access the symbolic link, so in most respects accessing a symbolic link works just
like accessing the original file. Because symbolic links are basically files that contain file-
names, they can point across low-level filesystems—you can point from the root (/) filesys-
tem to a file on a separate /home filesystem, for instance. The lookup process for accessing
the original file from the link consumes a tiny bit of time, so symbolic link access is slower
than hard link access—but not by enough that you’d notice in any but very bizarre condi-
tions or artificial tests. Long directory listings show the linked-to file:

$ ls -l alink.odt

lrwxrwxrwx 1 rodsmith users 8 Dec 2 15:31 alink.odt -> test.odt

03843book.indb 61 8/21/09 12:04:41 PM

62 Chapter 2 n Using Text-Mode Commands

Manipulating Directories
Files normally reside in directories. Even normal users frequently create, delete, and otherwise
manipulate directories. Some of the preceding commands can be used with directories—you
can move or rename directories with mv, for instance. The rm command won’t delete a direc-
tory unless used in conjunction with the -R parameter. Linux provides additional commands
for manipulating directories.

Creating Directories
The mkdir command creates (or makes, which is the reason for the command name) a
directory. This command’s official syntax is as follows:

mkdir [options] directory-names

In most cases, mkdir is used without options, but a few are supported, as summarized
in Table 2.4.

TA b le 2 . 4 Common mkdir Options

Option Name Option Abbreviation Meaning

--mode=mode -m mode This option causes the new directory to have
the specified permission mode, expressed
as an octal number. (The upcoming section
“Using File Permissions” describes permis-
sion modes.)

--parents -p Normally, if you specify the creation of
a directory within another directory that
doesn’t exist, mkdir responds with a No
such file or directory error and doesn’t
create the directory. If you include this
option, though, mkdir creates the necessary
parent directory.

Removing Directories
The rmdir command is the opposite of mkdir; it destroys a directory. Its syntax is similar:

rmdir [options] directory-names

Like mkdir, rmdir supports few options, the most important of which are described in
Table 2.5.

03843book.indb 62 8/21/09 12:04:42 PM

Manipulating Files and Directories 63

TA b le 2 .5 Common rmdir Options

Option Name Option Abbreviation Meaning

--ignore-fail-on-non-empty None Normally, if a directory
contains files or other direc-
tories, rmdir won’t delete
it and returns an error mes-
sage. With this option, rmdir
still won’t delete the direc-
tory, but it doesn’t return an
error message.

--parents -p This option causes rmdir to
delete an entire directory tree.
For instance, typing rmdir -p
one/two/three causes rmdir
to delete one/two/three, then
one/two, and finally one, pro-
vided no other files or directo-
ries are present.

When you’re deleting an entire directory tree filled with files, rm -R is a
better choice than rmdir because rm -R deletes files within the specified
directory but rmdir doesn’t.

Locating Files
You use file location commands to locate a file on your computer. Most frequently, these
commands help you locate a file by name or sometimes by other criteria, such as modifica-
tion date. These commands can search a directory tree (including root, which scans the
entire system) for a file matching the specified criteria in any subdirectory.

Using the find Command
The find utility implements a brute-force approach to finding files. This program finds files
by searching through the specified directory tree, checking filenames, file creation dates,
and so on, to locate the files that match the specified criteria. Because of this method of
operation, find tends to be slow, but it’s very flexible and is very likely to succeed, assum-
ing the file for which you’re searching exists. The find syntax is as follows:

find [path...] [expression...]

03843book.indb 63 8/21/09 12:04:42 PM

64 Chapter 2 n Using Text-Mode Commands

You can specify one or more paths in which find should operate; the program will
restrict its operations to these paths. expression is a way of specifying what you want to
find. The find man page includes information on these expressions, but some of the more
common enable you to search by popular criteria, as summarized in Table 2.6.

TA b le 2 .6 Common find Expressions

Expression Name Meaning

--name pattern You can search for a filename using this expression. Doing so
finds files that match the specified pattern. If pattern is an ordi-
nary filename, find matches that name exactly. You can use wild-
cards if you enclose pattern in quotes, and find will locate files
that match the wildcard filename.

--perm mode If you need to find files that have certain permissions, you can do
so by using this expression. The mode may be expressed either
symbolically or in octal form. If you precede mode with a +, find
locates files in which any of the specified permission bits are set.
If you precede mode with a -, find locates files in which all the
specified permission bits are set. (The upcoming section “Using
File Permissions” describes file modes.)

--size n You can search for a file of a given size with this expression. Nor-
mally, n is specified in 512-byte blocks, but you can modify this
by trailing the value with a letter code, such as c for bytes or k for
kilobytes.

--gid GID This expression searches for files whose group ID (GID) is set to GID.

--uid UID This expression searches for files owned by the user whose user
ID (UID) is UID.

--maxdepth levels If you want to search a directory and, perhaps, some limited
number of subdirectories, you can use this expression to limit
the search.

There are many variant and additional options; find is a very powerful command. As an
example of its use, consider the task of finding all C source code files, which normally have
names that end in .c, in all users’ home directories. If these home directories reside in /home,
you might issue the following command:

find /home -name “*.c”

The result will be a listing of all the files that match the search criteria.

03843book.indb 64 8/21/09 12:04:42 PM

Manipulating Files and Directories 65

Ordinary users may use find, but it doesn’t overcome Linux’s file permis-
sion features. If you lack permission to list a directory’s contents, find will
return that directory name and the error message Permission denied.

Using the locate Command
The locate utility works much like find if you want to find a file by name, but it differs in
two important ways:

The Ûn locate tool is far less sophisticated in its search options. You normally use it to
search only on filenames, and the program returns all files that contain the specified
string. For instance, when searching for rpm, locate will return other programs, like
gnorpm and rpm2cpio.

The Ûn locate program works from a database that it maintains. Most distributions auto-
matically call locate with options that cause it to update its database periodically, such
as once a night or once a week. (You can also use the updatedb command to do this
task at any time.) For this reason, locate may not find recent files, or it may return the
names of files that no longer exist. If the database update utilities omit certain directo-
ries, files in them won’t be returned by a locate query.

Because locate works from a database, it’s typically much faster than find, particularly
on system-wide searches. It’s likely to return many false alarms, though, especially if you
want to find a file with a short name. To use it, type locate search-string, where search-
string is the string that appears in the filename.

Some Linux distributions use slocate rather than locate. The slocate
program includes security features to prevent users from seeing the
names of files in directories they should not be able to access. On most
systems that use slocate, the locate command is a link to slocate, so
locate implements slocate’s security features. A few distributions don’t
install either locate or slocate by default.

Using the whereis Command
The whereis program searches for files in a restricted set of locations, such as standard
binary file directories, library directories, and man page directories. This tool does not
search user directories or many other locations that are easily searched by find or locate.
The whereis utility is a quick way to find program executables and related files like docu-
mentation or configuration files.

The whereis program returns filenames that begin with whatever you type as a search
criterion, even if those files contain extensions. This feature often turns up configuration

03843book.indb 65 8/21/09 12:04:42 PM

66 Chapter 2 n Using Text-Mode Commands

files in /etc, man pages, and similar files. To use the program, type the name of the program
you want to locate. For instance, the following command locates ls:

$ whereis ls

ls: /bin/ls /usr/share/man/man1/ls.1.bz2

The result shows both the ls executable (/bin/ls) and the ls man page. The whereis
program accepts several parameters that modify its behavior in various ways. These are
detailed in the program’s man page.

Examining Files’ Contents
Locating files by name, owner, or other surface characteristics is very convenient, but
sometimes you need to locate files based on their contents or quickly examine files without
loading them into a text editor. Naturally, Linux provides tools to perform these tasks.

Finding Files by Content
The grep command is extremely useful. It searches for files that contain a specified string
and returns the name of the file and (if it’s a text file) a line of context for that string. The
basic grep syntax is as follows:

grep [options] pattern [files]

Like find, grep supports a large number of options. Table 2.7 summarizes some of the
more common options.

TA b le 2 .7 Common grep Options

Option Name Option Abbreviation Meaning

--count -c Instead of displaying context lines, grep
displays the number of lines that match the
specified pattern.

--file=file -f file This option takes pattern input from the
specified file, rather than from the com-
mand line.

--ignore-case -i You can perform a case-insensitive search,
rather than the default case-sensitive
search, by using this option.

--recursive -r This option searches in the specified
directory and all subdirectories, rather
than simply the specified directory.

03843book.indb 66 8/21/09 12:04:43 PM

Manipulating Files and Directories 67

pattern is a regular expression, which can be a complex specification that can match
many different strings. Alphabetic and numeric characters are interpreted in a literal way in
a regular expression, but some others have special meaning. For instance, if you enclose a
series of letters or numbers in square braces ([]), the system matches any one of those char-
acters. Suppose you want to locate all the files in /etc that contain the strings tty1 or tty2.
You could enter the following command:

grep tty[12] /etc/*

You can use grep in conjunction with commands that produce a lot of output in order
to sift through that output for the material that’s important to you. (Several examples
throughout this book use this technique.) Suppose you want to find the process ID (PID) of
a running xterm. You can use a pipe (described shortly in the section “Using Redirection
and Pipes”) to send the result of a ps command (described in Chapter 3, “Managing Pro-
cesses and Editing Files”) through grep; thus:

ps ax | grep xterm

The result is a list of all running processes called xterm, along with their PIDs. You can
even do this in series, using grep to further restrict the output on some other criterion,
which can be useful if the initial pass still produces too much output.

Viewing Short Text Files and Combining Text Files
The cat program has nothing to do with feline pets. Rather, it’s short for the word “concat-
enate,” and it’s a tool for combining files, one after the other, and sending them to standard
output (that is, your screen, GUI terminal, or remote login session; sometimes called stdout).
One common use for cat is to forgo the multifile aspect of the command and display a single
file. For instance, the following command displays the contents of /etc/fstab:

$ cat /etc/fstab

This can be a good way to quickly view a short file. It’s much less effective for large files,
though, because the start of the file will scroll off the top of the display. For very long files, it
may also take a long time to display the entire file.

Another use of cat is to quickly combine two files into one. This is best achieved in
conjunction with the redirection operator (>), which is described in more detail shortly. For
instance, suppose you want to combine /etc/fstab with /etc/fstab-addition. You might
issue the following command:

cat /etc/fstab fstab-addition > fstab-plus

You could then examine the resulting file, fstab-plus. If fstab-addition contains a new
entry you wanted to add to /etc/fstab, copying fstab-plus over the old /etc/fstab will
accomplish the job. In fact, cat can even serve as a quick-and-dirty way to create a text file:

$ cat - > text.txt

03843book.indb 67 8/21/09 12:04:43 PM

68 Chapter 2 n Using Text-Mode Commands

The - character from which cat is reading is a shorthand for standard input (sometimes
called stdin)—normally your keyboard. Anything you type after this point will be entered
into text.txt, until you press Ctrl+D. This keystroke terminates the cat program, at which
point text.txt will contain your desired text. This can be a particularly useful trick if
you’re using an extremely spare emergency system and need to quickly create a short con-
figuration file.

Viewing Long Text Files
A program that’s used in many OSs to enable users to view information in a controlled way
is known as more. Typing more filename results in a screen-by-screen display of filename’s
contents. You can press the Enter key to move down one line of text, or you can press the
spacebar to move forward by one screen. When you’re done, press the Q key to exit. This
can be a convenient way to view configuration or other text files.

Although more is useful, the original program has many limitations. For instance, there’s
no way to page backward through a file or search for text within the file. These needs
spawned a better version of more, which is known as less in a twist of humor. In addition
to paging forward, less enables you to type in various keystrokes to do other things. Some
of these are modeled after the keystrokes used in the Emacs editor, such as Ctrl+V to move
forward by a screen and Esc followed by V to move backward by a screen. You can also
search for text by typing / followed by the search pattern. Typing q exits from less. You
can learn more from the less man page.

Most Linux systems use less to display man pages, so you can practice
the less commands while viewing the less man page.

Viewing the Ends of Files
Sometimes you want to view the last few lines of a file but not the beginning of the file.
For instance, you might want to check a log file to see whether an action you’ve just per-
formed has created an entry. Because programs log actions at the ends of log files, a way
to quickly check the end of the file is convenient. This was the purpose for which tail
was written. It displays the last 10 lines of a file (or if you include the -n num parameter,
the last num lines). For instance, to view the last 20 lines of /var/log/messages, you
could type the following command:

tail -n 20 /var/log/messages

You can also use tail to view a file as it’s updated by another process. To do this, you
use the -f or --follow option. This feature is useful for monitoring log files as you test the
function of a program that you expect to write to the log file; you’ll see its logged messages
as soon as they appear in the log file.

03843book.indb 68 8/21/09 12:04:43 PM

Manipulating Files and Directories 69

Using Redirection and Pipes
Several of the preceding examples have used redirection and pipes (aka pipelines). These are
mechanisms that you can use to redirect the input to a process or the output from a process.
Redirection passes input to or from a file, and a pipe enables you to tie two or more programs
together so that one uses the output of another as input.

Normally, the standard output of a program goes to the display you used to launch it.
The output redirection operator, >, changes this, sending standard output to a file that you
specify. For instance, suppose you want to capture the output of ifconfig in a file called
iface.txt. You could use the following command to do this:

$ ifconfig > iface.txt

This operator wipes out the current iface.txt file, if it exists. If you want to append
information rather than overwrite it, you can use the >> operator instead of >.

Many programs produce a second type of text-mode output, known as standard error
(sometimes abbreviated stderr). This type of output carries error messages that should not
be ignored, and so it’s redirected separately from standard output. You use 2> to redirect
standard error, or 2>> to append standard error to a file rather than replace that file. You
can redirect both standard error and standard output by using &>.

You can replace standard input by using the input redirection operator, <. This is most
useful when you must routinely provide the same information to a program time after time.
You can create a file with that information and pass it to the program with the input redi-
rection operator; thus:

$ superscript < script-input.txt

To have one program take another’s output as input, you use a pipe, which is represented
by a vertical bar (|). An earlier example illustrated this process: the output of ps may con-
tain too much information to be quickly parsed, so you can pass its output through grep to
locate just the information you want; thus:

ps ax | grep xterm

This command searches for the string xterm in the ps output and displays all the lines
that match. The output of ps goes into grep, and grep’s output appears on your screen.
(You could use another pipe or redirect grep’s output, if you prefer.)

In addition to these basic redirection operators, you can use the tee command to create
multiple copies of a program’s output. It’s typically used to send output both to standard
output and to a file. To use it, pipe a program’s output through tee, and give tee an output
filename:

$ ps ax | tee processes.txt

This example displays the output of the ps ax command on the screen and stores it in
the processes.txt file.

03843book.indb 69 8/21/09 12:04:43 PM

70 Chapter 2 n Using Text-Mode Commands

If you want to execute two commands in sequence but don’t want to pipe them together,
you can do so by separating the commands with a semicolon (;).

For instance, suppose you want to run script1 followed immediately by script2. You
could type the following command to do this:

$ script1 ; script2

Generating Command Lines
Sometimes you’ll find yourself constructing a series of commands that are similar to each
other but not similar enough to enable you to use their normal options to substitute a single
command. For instance, suppose you want to remove every file in a directory tree with a
name that ends in a tilde (~). (This filename convention denotes backup files created by
certain text editors.) With a large directory tree, this task can be daunting; the usual file-
deletion command (rm, described in more detail in Chapter 4, “Managing System Services”)
doesn’t provide an option to search for and delete every file in a directory tree that matches
such a specific criterion. One command that can do the search part of the job, though, is
find, which is also described in more detail in Chapter 4. This command displays all the
files that match criteria you provide. If you could combine the output of find to create a
series of command lines using rm, the task would be solved. This is precisely the purpose of
the xargs command.

The xargs command builds a command from its standard input. The basic syntax for
this command is as follows:

xargs [options] [command [initial-arguments]]

command is the command you want to execute, and initial-arguments is a list of argu-
ments you want to pass to the command. options are xargs options; they aren’t passed
to command. When you run xargs, it runs command once for every word passed to it on
standard input, adding that word to the argument list for command. If you want to pass
multiple options to the command, you can protect them by enclosing the group in quota-
tion marks.

For instance, consider the task of deleting all those backup files, denoted by tilde characters.
You can do this by piping the output of find to xargs, which then calls rm:

$ find ./ -name “*~” | xargs rm

The first part of this command (find ./ -name “*~”) finds all the files in the current
directory (./) or its subdirectories with a name that ends in a tilde (*~). This list is then
piped to xargs, which adds each one to its own rm command.

A tool that’s similar to xargs in many ways is the backtick (̀), which is a character to
the left of the 1 key on most keyboards. The backtick is not the same as the single quote
character (‘), which is located to the right of the semicolon (;) on most keyboards.

03843book.indb 70 8/21/09 12:04:44 PM

Manipulating Files and Directories 71

Text within backticks is treated as a separate command whose results are substituted
on the command line. For instance, to delete those backup files, you can type the follow-
ing command:

$ rm `find ./ -name “*~”`

Using Device Files
A special class of files requires special attention: Device files are files that provide access to
hardware. These files are typically located in /dev and its subdirectories. They include files
to access hard disk devices (/dev/sd* and /dev/hd*), terminals (/dev/tty*), mice (/dev/
input/mouse*), and so on.

A few device files are sometimes useful with redirection operators. The /dev/null file is not
connected to anything, so data sent to /dev/null disappears forever. It’s intended as a way to
quickly discard unwanted output produced by a program. For instance, if the whine program
is generating spurious error messages, you can redirect its standard error to /dev/null:

$ whine 2> /dev/null

The result is that you’ll no longer see the spurious error messages—or any legitimate
error messages!

The /dev/zero file generates an endless stream of 0 values. This is sometimes useful
when you want to create a blank file. You’d typically use it with the dd utility, which copies
a specified amount of data from one source to another. For instance, to create a 1MB blank
file, you might type this:

$ dd if=/dev/zero of=empty.file bs=1024 count=1024

The if and of options to dd specify the input and output files, respectively. The bs and
count options set the block size (the number of bytes read per operation) and the number of
blocks, so setting both to 1024 copies 1024 × 1024 bytes, or 1MB.

The /dev/random and /dev/urandom files are another couple of special device files; they
generate streams of random numbers, based on the random “noise” generated by physical
hardware in the system. These files differ in that /dev/random will wait for more randomness
to accumulate in the source hardware whenever it runs out, whereas /dev/urandom will not
wait, which can produce an inferior random number stream. These files are of use to pro-
grams that need to generate random numbers (say, for cryptographic purposes).

Most Linux distributions use a dynamic device file directory tree, located at /dev. In most
cases, you won’t need to adjust these device files, since they’re created automatically by a spe-
cialized device filesystem. On very old systems, though, or if you want to create device files
outside of /dev, you can create device files with the mknod command, which has the following
syntax:

mknod [options] name type [major minor]

03843book.indb 71 8/21/09 12:04:44 PM

72 Chapter 2 n Using Text-Mode Commands

The name you pass to mknod is the device filename, type is the hardware type (normally
b for a block device, or c or u for a character device; but p is also valid, and creates a FIFO),
and major and minor are the major and minor device numbers, respectively. A handful of
options are valid and are described by the mknod man page.

Ordinarily, you’ll only use mknod if you’re an expert with device files. At the very least,
you’ll need to know the device type, major number, and minor number. This information is
device-dependent, so you’ll need to consult documentation on the device’s kernel driver to
learn what to use.

Using File Permissions
Linux uses a set of file permissions, or the file’s mode, to determine how a file may be
accessed. File permissions are an important part of Linux’s user security, as described
further in Chapter 5. To use these features, you must understand how Linux treats file
permissions and what tools the OS provides for permission manipulation.

Understanding Accounts and Ownership
Chapter 5 describes Linux accounts in detail; however, file permissions interact with
accounts, so before proceeding, you should understand the basics of Linux accounts. A
Linux account is a set of data structures that programs and the kernel treat in a particular
way in order to control access to the system. An account includes an alphanumeric user-
name, a user ID (UID) number, a group ID (GID) number, information on the user’s default
shell, and so on. When you log into a Linux computer, you provide a username, and Linux
thereafter associates all actions you perform with the account that matches the username
you provided. File permissions enable you to specify what accounts may access your files, as
well as what files and programs you may access as a given user.

In addition to accounts, Linux supports groups, which are collections of accounts. The
system administrator defines a set of users who belong to a specific group. In addition to
being owned by a particular user, each file is associated with a specific group, and permis-
sions to the file may be defined for that group. This feature can be used to define different
sets of users, such as people who are working together on a specific project, in order to give
them access to project-related files while keeping other users from accessing those files.

Using File Access Permissions
File access permissions in Linux involve several components, which combine to determine
who may access a file and in what way. These components also help you determine precisely
what a file is—an ordinary data file, a program file, a subdirectory, or something else. You
must understand this setup if you want to manipulate file permissions.

03843book.indb 72 8/21/09 12:04:44 PM

Using File Permissions 73

Understanding File Access Components
Linux’s file permission handling has three components:

Username (or UID) A username (or UID, as it’s stored in this form) is associated with each
file on the computer. This is frequently referred to as the file owner.

Group (or GID) Every file is associated with a particular GID, which links the file to a
group. This is sometimes referred to as the group owner. Normally, the group of a file is
one of the groups to which the file’s owner belongs, but root may change the file’s group
to one unassociated with the file’s owner.

File access permissions The file access permissions (or file permissions or mode for short)
are a code that represents who may access the file, relative to the file’s owner, the file’s group,
and all other users.

You can see all three elements by using the ls -l command on a file:

$ ls -l /usr/sbin/lsof

-rwxr-xr-x 1 root kmem 84124 Oct 3 02:37 /usr/sbin/lsof

The output of this command has several components, each with a specific meaning:

Permission string The first component, -rwxr-xr-x, is the permission string. Along with
the user and group names, it’s what determines who may access a file. As displayed by
ls -l, the permission string is a series of codes, which are described in more detail in the
upcoming section “Interpreting File Access Codes.” Sometimes the first character of this
string is omitted, particularly when describing ordinary files, but it’s always present in an
ls -l listing.

Number of hard links Internally, Linux uses a data structure known as an inode to keep
track of the file, and multiple filenames may point to the same inode, in the form of a hard
link. The number 1 in the preceding example output means that just one filename points to
this file; it has no hard links. Larger numbers indicate that hard links exist—for instance, 3
means that the file may be referred to by three different filenames.

Soft links are not referenced in the linked-to file’s directory listing.

Owner The next field, root in this example, is the owner of the file. In the case of long
usernames, the username may be truncated.

Group The example file belongs to the kmem group. Many system files belong to the root
owner and root group; for this example, I picked a file that belongs to a different group.

File size The next field, 84124 in the preceding example, is the size of the file in bytes.

03843book.indb 73 8/21/09 12:04:44 PM

74 Chapter 2 n Using Text-Mode Commands

Creation time The next field contains the file creation date and time (Oct 3 02:37 in this
example). If the file is older than a year, you’ll see the year rather than the creation time,
although the time is still stored with the file.

Filename The final field is the name of the file. Because the ls command in the preceding
example specified a complete path to the file, the complete path appears in the output. If the
command had been issued without that path but from the /usr/sbin directory, lsof would
appear alone.

Although information such as the number of hard links and file-creation date may be
useful on occasion, it’s not critical for determining file access rights. For this, you need the
file’s owner, group, and file access permission string.

linux Filesystem data structures

Linux filesystems store several types of data. Most of the space is consumed by file
data—the contents of word processing documents, spreadsheets, program executable
files, and so on. In order to give you access to file data, though, the system also uses
directories, which are lists of filenames. (In fact, directories are stored as ordinary files
with special file attributes set.)

In order to link between a directory entry and a file, Linux filesystems use an inode. This
is a special filesystem data structure that holds assorted data about the file, including a
pointer to the location of the data on the disk, the file’s mode, the UID, the GID, and so on.
The directory entry points to the inode, which in turn points to the file data proper.

Filesystems also have free space bitmaps, which let the OS know which sectors on a
disk have and have not been used. When storing a new file or expanding an existing one,
Linux checks the free space bitmap to see where free space is available.

Not all filesystems use actual inodes. For instance, the File Allocation Table (FAT) file-
system used by DOS and Windows doesn’t use inodes; instead, it places the information
that’s in Linux filesystems’ inodes in the directory and in the free space bitmap. When
Linux uses such a filesystem, it creates virtual inodes from the FAT data structures.

Interpreting File Access Codes
The file access control string is 10 characters in length. The first character has special
meaning—it’s the file type code. The type code determines how Linux will interpret the
file—as ordinary data, a directory, or a special file type. Table 2.8 summarizes Linux
type codes.

03843book.indb 74 8/21/09 12:04:44 PM

Using File Permissions 75

TA b le 2 . 8 Linux File Type Codes

Code Meaning

- Normal data file; may be text, an executable program, graphics, compressed
data, or just about any other type of data.

d Directory; disk directories are files just like any others, but they contain file-
names and pointers to disk inodes.

l Symbolic link; the file contains the name of another file or directory. When
Linux accesses the symbolic link, it tries to read the linked-to file.

p Named pipe; a pipe enables two running Linux programs to communicate
with each other. One opens the pipe for reading, and the other opens it for
writing, enabling data to be transferred between the programs.

s Socket; a socket is similar to a named pipe, but it permits network and
bidirectional links.

b Block device; a file that corresponds to a hardware device to and from which
data is transferred in blocks of more than one byte. Disk devices (hard disks,
floppies, CD-ROMs, and so on) are common block devices.

c Character device; a file that corresponds to a hardware device to and from
which data is transferred in units of one byte. Examples include text-mode
terminals, printers, and sound cards.

The remaining nine characters of the permission string (rwxr-xr-x in the example in the
earlier section “Understanding File Access Components”) are broken up into three groups
of three characters. The first group controls the file owner’s access to the file, the second
controls the group’s access to the file, and the third controls all other users’ access to the file
(often referred to as world permissions).

In each of these three cases, the permission string determines the presence or absence of
each of three types of access: read, write, and execute. Read and write permissions are fairly
self-explanatory, at least for ordinary files. If the execute permission is present, it means
that the file may be run as a program. (Of course, this doesn’t turn a nonprogram file into a
program; it means only that a user may run a program if it is a program. Setting the execute
bit on a nonprogram file will probably cause no real harm, but it could be confusing.) The
absence of the permission is denoted by a hyphen (-) in the permission string. The presence of
the permission is indicated by a letter—r for read, w for write, or x for execute.

Thus, the example permission string of rwxr-xr-x means that the file’s owner, members
of the file’s group, and all other users can read and execute the file. Only the file’s owner
has write permission to the file. You can easily exclude those who don’t belong to the file’s
group, or even all but the file’s owner, by changing the permission string, as described
shortly in “Changing File Ownership and Permissions.”

03843book.indb 75 8/21/09 12:04:45 PM

76 Chapter 2 n Using Text-Mode Commands

Individual permissions, such as execute access for the file’s owner, are often referred to as
permission bits. This is because Linux encodes this information in binary form. Because it is
binary, the permission information can be expressed as a single 9-bit number. This number
is usually expressed in octal (base 8) form because a base-8 number is 3 bits in length, which
means that the base-8 representation of a permission string is 3 digits long, one digit for each
of the owner, group, and world permissions. The read, write, and execute permissions each
correspond to one of these bits. The result is that you can determine owner, group, or world
permissions by adding base-8 numbers: 1 for execute permission, 2 for write permission, and
4 for read permission.

Table 2.9 shows some examples of common permissions and their meanings. This
table is necessarily incomplete, though; with 9 permission bits, the total number of pos-
sible permissions is 29, or 512. Most of those possibilities are peculiar, and you’re not
likely to encounter or create them except by accident.

TA b le 2 . 9 Example Permissions and Their Meanings

Permission String Octal Code Meaning

rwxrwxrwx 777 Read, write, and execute permissions for all users.

rwxr-xr-x 755 Read and execute permission for all users. The file’s
owner also has write permission.

rwxr-x--- 750 Read and execute permission for the owner and
group. The file’s owner also has write permission.
Users who are not the file’s owner or members of the
group have no access to the file.

rwx------ 700 Read, write, and execute permissions for the file’s
owner only; all others have no access.

rw-rw-rw- 666 Read and write permissions for all users. No execute
permissions to anybody.

rw-rw-r-- 664 Read and write permissions to the owner and
group. Read-only permission to all others.

rw-rw---- 660 Read and write permissions to the owner and group.
No world permissions.

rw-rw---- 660 Read and write permissions to the owner and group.
No world permissions.

rw-r--r-- 644 Read and write permissions to the owner. Read-only
permission to all others.

03843book.indb 76 8/21/09 12:04:45 PM

Using File Permissions 77

TA b le 2 . 9 Example Permissions and Their Meanings (continued)

Permission String Octal Code Meaning

rw-r----- 640 Read and write permissions to the owner, and
read-only permission to the group. No permission
to others.

rw------- 600 Read and write permissions to the owner. No permis-
sion to anybody else.

r-------- 400 Read permission to the owner. No permission to
anybody else.

Execute permission makes sense for ordinary files, but it’s meaningless for most other
file types, such as device files. Directories, though, make use of the execute bit in another
way. When a directory’s execute bit is set, that means that the directory’s contents may be
searched. This is a highly desirable characteristic for directories, so you’ll almost never find
a directory on which the execute bit is not set in conjunction with the read bit.

Directories can be confusing with respect to write permission. Recall that directories
are files that are interpreted in a special way. As such, if a user can write to a directory,
that user can create, delete, or rename files in the directory, even if the user isn’t the owner
of those files and does not have permission to write to those files. The sticky bit (described
shortly) can alter this behavior.

Symbolic links are unusual with respect to permissions. This file type always has 777
(rwxrwxrwx) permissions, thus granting all users full access to the file. This access applies
only to the link file itself, however, not to the linked-to file. In other words, all users can
read the contents of the link to discover the name of the file to which it points, but the
permissions on the linked-to file determine its file access. Attempting to change the permis-
sions on a symbolic link affects the linked-to file.

Many of the permission rules do not apply to root. The superuser can read or write
any file on the computer—even files that grant access to nobody (that is, those that have
000 permissions). The superuser still needs an execute bit to be set to run a program
file, but the superuser has the power to change the permissions on any file, so this limi-
tation isn’t very substantial. Some files may be inaccessible to root but only because of
an underlying restriction—for instance, even root can’t access a hard disk that’s not
installed in the computer.

A few special permission options are also supported, and they may be indicated by
changes to the permission string:

Set user ID (SUID) The set user ID (SUID) option is used in conjunction with executable
files, and it tells Linux to run the program with the permissions of whoever owns the file,
rather than with the permissions of the user who runs the program. For instance, if a file
is owned by root and has its SUID bit set, the program runs with root privileges and can

03843book.indb 77 8/21/09 12:04:45 PM

78 Chapter 2 n Using Text-Mode Commands

therefore read any file on the computer. Some servers and other system programs run in this
way, which is often called SUID root. SUID programs are indicated by an s in the owner’s
execute bit position of the permission string, as in rwsr-xr-x. (As described in Chapter 3,
SUID programs can pose a security risk.)

Set group ID (SGID) The set group ID (SGID) option is similar to the SUID option, but
it sets the group of the running program to the group of the file. It’s indicated by an s in the
group execute bit position of the permission string, as in rwxr-sr-x.

Sticky bit The sticky bit has changed meaning during the course of Unix history. In
modern Linux implementations (and most modern versions of Unix), it’s used to protect
files from being deleted by those who don’t own the files. When this bit is present on
a directory, the directory’s files can be deleted only by their owners, the directory’s
owner, or root. The sticky bit is indicated by a t in the world execute bit position, as
in rwxr-xr-t.

Determining File Types
Although the long form of ls displays some file type information, in the form of executable
bits and the file type codes shown in Table 2.8, this information is limited. You can some-
times tell the type of a file from its filename extension—for instance, files with .jpg exten-
sions are normally Joint Photographic Experts’ Group (JPEG) graphics files, whereas .txt
files are ordinarily American Standard Code for Information Interchange (ASCII; aka plain
text) files. You must be familiar with the filename extensions to make this determination,
though, and of course the filenames might be misnamed.

To help work around these problems, the file command examines a file and reports on
the type of data it contains:

$ file disks.jpg

disks.jpg: ASCII text

$ file snowy-park.txt

snowy-park.txt: JPEG image data, JFIF standard 1.01

In this example, both these files are misnamed: the JPEG file has a .txt extension, whereas
the ASCII file has a .jpg extension. The file command isn’t fooled by this discrepancy. This
command isn’t infallible, though. It works from a database of file types, so any file type that’s
not in its database won’t be correctly identified.

The test command is another tool for testing the status of a file. It can test for a file’s
existence, compare two files’ creation times, and so on. This tool, however, is mainly used
in shell scripts, rather than as an interactive tool.

Changing File Ownership and Permissions
Changing who can read, write, or execute a file can be done using several programs, depend-
ing on the desired effect. Specifically, chown changes a file’s owner and, optionally, its group;
chgrp changes the file’s group; and chmod changes the permissions string.

03843book.indb 78 8/21/09 12:04:45 PM

Using File Permissions 79

Modifying Ownership
To begin, chown’s syntax is as follows:

chown [options] [newowner][:newgroup] filename...

The variables newowner and newgroup are, of course, the new owner and group of the
file. One or both are required. If both are included, there must be no space between them,
only a single colon (:). For instance, the following command gives ownership of the file
report.tex to sally, and it sets the file’s group to project2:

chown sally:project2 report.tex

Old versions of chown used a period (.) instead of a colon. Current versions
(through at least 6.1.0) still accept periods in this role, but they may com-
plain about your use of an unfashionably old syntax.

The chown command supports a number of options, such as --dereference (which changes
the referent of a symbolic link) and --recursive (which changes all the files within a directory
and all its subdirectories). The latter is probably the most useful option for chown.

The chgrp command is similar to chown, except that it doesn’t change or alter the file’s
owner—it works only on the group. The group name is not preceded by a period. For instance,
to change the group of report.tex to project2, you could issue the following command:

chgrp project2 report.tex

The chgrp command takes the same options as chown does. One caveat to the use of both
commands is that even the owner of a file may not be able to change the ownership or group
of a file. The owner may change the group of a file to any group to which the file’s owner
belongs, but not to other groups. Normally, only root may change the owner of a file.

Modifying Permissions
The chmod command changes a file’s permissions. This command may be issued in many
different ways to achieve the same effect. Its basic syntax is as follows:

chmod [options] [mode[,mode...]] filename...

The chmod options are similar to those of chown and chgrp. In particular, --recursive
(or -R) will change all the files within a directory tree.

Most of the complexity of chmod comes in the specification of the file’s mode. There are
two basic forms in which you can specify the mode: as an octal number or as a symbolic
mode, which is a set of codes related to the string representation of the permissions.

The octal representation of the mode is the same as that described earlier and summa-
rized in Table 2.9. For instance, to change permissions on report.tex to rw-r--r--, you
could issue the following command:

chmod 644 report.tex

03843book.indb 79 8/21/09 12:04:46 PM

80 Chapter 2 n Using Text-Mode Commands

In addition, it’s possible to precede the three digits for the owner, group, and world per-
missions with another digit that sets special permissions. Three bits are supported (hence
values between 0 and 7): adding octal 4 sets the set user ID (SUID) bit, adding octal 2 sets
the set group ID (SGID) bit, and adding octal 1 sets the sticky bit. If you omit the first digit
(as in the preceding example), Linux clears all three bits. Using four digits causes the first to
be interpreted as the special permissions code. For instance, suppose you’ve created a script
called bigprogram in a text editor. You want to set both SUID and SGID bits (6); to make
the script readable, writeable, and executable by the owner (7); to make it readable and
executable by the group (5); and to make it completely inaccessible to all others (0). The
following commands illustrate how to do this; note the difference in the mode string before
and after executing the chmod command:

$ ls -l bigprogram

-rw-r--r-- 1 rodsmith users 10323 Oct 31 18:58 bigprogram

$ chmod 6750 bigprogram

$ ls -l bigprogram

-rwsr-s--- 1 rodsmith users 10323 Oct 31 18:58 bigprogram

A symbolic mode, by contrast, consists of three components: a code indicating the permis-
sion set you want to modify (the owner, the group, and so on); a symbol indicating whether
you want to add, delete, or set the mode equal to the stated value; and a code specifying what
the permission should be. Table 2.10 summarizes all these codes. Note that these codes are all
case sensitive.

TA b le 2 .10 Codes Used in Symbolic Modes

Permission
Set Code Meaning

Change
Type Code Meaning

Permission to
Modify Code Meaning

u Owner + Add r Read

g Group - Remove w Write

o World = Set equal to x Execute

a All X Execute only if file
is directory or
already has execute
permission

s SUID or SGID

t Sticky bit

u Existing owner’s
permissions

03843book.indb 80 8/21/09 12:04:46 PM

Using File Permissions 81

TA b le 2 .10 Codes Used in Symbolic Modes (continued)

Permission
Set Code Meaning

Change
Type Code Meaning

Permission to
Modify Code Meaning

g Existing group
permissions

o Existing world
permissions

To use symbolic permission settings, you combine one or more of the codes from the
first column of Table 2.10 with one symbol from the third column and one or more codes
from the fifth column. You can combine multiple settings by separating them by commas.
Table 2.11 provides some examples of chmod using symbolic permission settings.

TA b le 2 .11 Examples of Symbolic Permissions with chmod

Command Initial Permissions End Permissions

chmod a+x bigprogram rw-r--r-- rwxr-xr-x

chmod ug=rw report.tex r-------- rw-rw----

chmod o-rwx bigprogram rwxrwxr-x rwxrwx---

chmod g=u report.tex rw-r--r-- rw-rw-r--

chmod g-w,o-rw report.tex rw-rw-rw- rw-r-----

As a general rule, symbolic permissions are most useful when you want to make a simple
change (such as adding execute or write permissions to one or more class of users) or when
you want to make similar changes to many files without affecting their other permissions (for
instance, adding write permissions without affecting execute permissions). Octal permissions
are most useful when you want to set some specific absolute permission, such as rw-r--r--
(644). In any event, you should be familiar with both methods of setting permissions.

A file’s owner and root are the only users who may adjust a file’s permissions. Even if
other users have write access to a directory in which a file resides and write access to the
file itself, they may not change the file’s permissions (but they may modify or even delete
the file). To understand why this is so, you need to know that the file permissions are stored
as part of the file’s inode, which isn’t part of the directory entry. Read/write access to
the directory entry, or even the file itself, doesn’t give a user the right to change the inode
structures (except indirectly—for instance, if a write changes the file’s size or a file deletion
eliminates the need for the inode).

03843book.indb 81 8/21/09 12:04:46 PM

82 Chapter 2 n Using Text-Mode Commands

In addition to chmod and its file permissions, you can view and manipulate more fundamental
permissions when using an ext2, ext3, or ext4 filesystem.

The lsattr command displays file attributes, and chattr enables you to change them. Attri-
butes adjustable in this way include automatic kernel compression (c), a flag to prevent backup by
dump (d), zeroing of allocated data upon file deletion (s), and various other highly technical attri-
butes. Consult the lsattr and chattr man pages for more information.

These two commands are useless on XFS, JFS, ReiserFS, or any other filesystem except for the
ext2 family.

Setting Default Permissions
When a user creates a file, that file has default ownership and permissions. The default
owner is, understandably, the user who created the file. The default group is the user’s pri-
mary group. The default permissions, however, are configurable. These are defined by the
user mask (umask), which is set by the umask command. This command takes as input an
octal value that represents the bits to be removed from 777 permissions for directories, or
from 666 permissions for files, when creating a new file or directory. Table 2.12 summarizes
the effect of several possible umask values.

TA b le 2 .12 Sample Umask Values and Their Effects

Umask Created Files Created Directories

000 666 (rw-rw-rw-) 777 (rwxrwxrwx)

002 664 (rw-rw-r--) 775 (rwxrwxr-x)

022 644 (rw-r--r--) 755 (rwxr-xr-x)

027 640 (rw-r-----) 750 (rwxr-x---)

077 600 (rw-------) 700 (rwx------)

277 400 (r--------) 500 (r-x------)

Note that the umask isn’t a simple subtraction from the values of 777 or 666; it’s a bit-
wise removal. Any bit that’s set in the umask is removed from the final permission for new
files, but if the execute bit isn’t set (as in ordinary files), its specification in the umask doesn’t
do any harm. For instance, consider the 7 values in several entries of Table 2.12’s “Umask”
column. This corresponds to a binary value of 111. An ordinary file might have rw- (110) per-
missions, but applying the umask’s 7 (111) eliminates 1 values but doesn’t touch 0 values, thus
producing a 000 (binary) value—that is, --- permissions, expressed symbolically.

03843book.indb 82 8/21/09 12:04:47 PM

Using File Permissions 83

Ordinary users can enter the umask command to change the permissions on new files they
create. The superuser can also modify the default setting for all users by modifying a system
configuration file. Typically, /etc/profile contains one or more umask commands. Setting the
umask in /etc/profile might or might not actually have an effect, because it can be overrid-
den at other points, such as a user’s own configuration files. Nonetheless, setting the umask in
/etc/profile or other system files can be a useful procedure if you want to change the default
system policy. Most Linux distributions use a default umask of 002 or 022.

To find what the current umask is, type umask alone, without any parameters. Typing
umask -S displays the umask expressed symbolically, rather than in octal form. You may
also specify a umask in this way when you want to change it, but in this case, you specify
the bits that you do want set. For instance, typing umask u=rwx,g=rx,o=rx is equivalent to
typing umask 022.

Using ACLs
The Unix file permission system used by Linux was designed long ago. As frequently happens,
real-world needs highlight limitations in early designs, and this is true of Unix permissions.
For instance, using Unix permissions to provide fine-grained access control on a user-by-user
basis is difficult or impossible. That is, if you want to enable the users amy, david, theo, and
lola to read a file, but no other users, you must create a group that holds just those four users
and no others, assign group ownership of the file to that group, and set group and world per-
missions appropriately. If you want only amy and david to be able to read another file, you
must repeat this process, creating another group. What’s more, because only root can ordi-
narily create groups, users have little control over these matters.

A more flexible approach is to use access control lists (ACLs). These are permissions
that can be assigned on a user-by-user basis. For instance, you can create ACLs allowing
amy and david to access a file without creating or modifying any groups. In Linux, ACLs
can provide separate read, write, and execute access; they are effectively an extension of
the normal Unix-style permissions.

One problem with ACLs is that they’re not yet universally supported. The filesys-
tem you use must support ACLs. In modern Linux kernels, the ext2fs, ext3fs, ext4fs,
ReiserFS, JFS, and XFS filesystems all support ACLs. This support may not be present in
more obscure filesystems or in older kernels, though. ACL support is optional with all of
the filesystems that support it; it must be enabled when the kernel is compiled, and this
isn’t always done.

Assuming your Linux filesystem supports ACLs, both root and ordinary users may cre-
ate ACLs using the setfacl command:

setfacl [options] [{-m | -x} acl_spec] [{-M | -X} acl_file] file

The -m and -M parameters set an ACL, while the -x and -X parameters remove an ACL.
The uppercase variants take an ACL out of a file, whereas the lowercase variants require
you to enter the ACL on the command line. The ACL format itself takes this form:

scope:ID:perms

03843book.indb 83 8/21/09 12:04:47 PM

84 Chapter 2 n Using Text-Mode Commands

In this case, scope is the type of entity to which the ACL applies—typically u or user for
a user, but g or group for a group is also possible, as is o or others to set a world ACL. The
ID is a UID, GID, username, or group name. (This component is omitted if you use a scope
of other.) The perms field specifies the permissions, either in octal form (as a single digit
from 0 to 7) or in symbolic form (for instance, rw- or r-x).

As an example, consider a user who wants to create an ACL to enable another user (theo)
to be able to read a file:

$ setfacl -m user:theo:r-- dinosaur.txt

Once this command is issued, theo can read the dinosaur.txt file, even if the file’s ordi-
nary Unix permissions would not permit this access. Because ordinary users may create and
modify ACLs on their own files, the system administrator need not be bothered to create
new groups. Users can create and modify ACLs only on files they own, though, much as
they can modify the Unix permissions only on their own files.

If you want to see the ACLs on a file, you can use the getfacl command:

$ getfacl dinosaur.txt

file: dinosaur.txt

owner: amy

group: users

user::rw-

user:theo:rw-

group::---

mask::rw-

other::---

Many Linux systems still have no need for ACLs; Unix-style permissions are adequate
for many purposes. As more Linux tools are written to take full advantage of ACLs, they’re
likely to become more important.

Setting Environment Variables
Computer programs, like people, exist in certain environments. The environments for com-
puter programs are defined by features such as the current working directory, the user’s
preferred language, and the type of terminal in use. In order to deliver this information to
programs, Linux maintains environment variables. Like street signs in the physical world,
environment variables convey information about the virtual “location” of the program and
the resources that are available to it. Therefore, understanding how to set and use environ-
ment variables is important for both system administrators and users.

Programs query environment variables to learn about the state of the computer as a
whole or what resources are available. These variables contain information such as the

03843book.indb 84 8/21/09 12:04:47 PM

Setting Environment Variables 85

location of the user’s home directory, the computer’s Internet hostname, and the name of
the command shell that’s in use. Individual programs may also use program-specific envi-
ronment variables to tell them where their configuration files are located, how to display
information, or how to use other program-specific options. As a general rule, though, envi-
ronment variables provide information that’s useful to multiple programs. Program-specific
information is more often found in program configuration files.

Where to Set Environment Variables
If you’re using Bash, you can set an environment variable from a command prompt for a
specific login by typing the variable name followed by an equal sign (=) and the variable’s
value and then typing export and the variable name on the next line. For instance, you
could type the following:

$ NNTPSERVER=news.abigisp.com

$ export NNTPSERVER

The first line sets the environment variable in your shell, and the second makes it available
to programs you launch from the shell. You can shorten this syntax to a single line by typing
export at the start of the first line:

$ export NNTPSERVER=news.abigisp.com

The former syntax is sometimes preferable when setting multiple environment variables
because you can type each variable on a line and then use a single export command to
make them all available. This can make shorter line lengths than you would get if you tried
to export multiple variables along with their values on a single line. For instance, you could
type the following:

$ NNTPSERVER=news.abigisp.com

$ YACLPATH=/usr/src/yacl

$ export NNTPSERVER,YACLPATH

This syntax is the same as that used for setting environment variables in /etc/
profile. This system-wide configuration file is a Bash shell script, which means it
contains commands that could be typed at a command prompt.

When setting environment variables in a shell script such as /etc/
profile, you should ignore the command prompts ($) shown in these
examples.

The preceding examples assigned values to environment variables. In other contexts,
though, the environment variable is preceded by a dollar sign ($). You can use this notation

03843book.indb 85 8/21/09 12:04:47 PM

86 Chapter 2 n Using Text-Mode Commands

to refer to an environment variable when setting another. For instance, in Bash, the following
command adds :/opt/bin to the existing PATH environment variable:

$ export PATH=$PATH:/opt/bin

In addition to the system-wide files, individual users may set environment variables by
editing their local configuration files, such as .bashrc or .bash_profile for Bash.

The Meanings of Common Environment Variables
You may encounter many common environment variables on your system. You can find out
how environment variables are configured by typing env. This command is used to run a
program with a changed set of environment variables, but when it is typed alone, it returns
all the environment variables that are currently set, in a format similar to that of Bash envi-
ronment variable assignments:

NNTPSERVER=news.abigisp.com

Of course, the variables you see and their values will be unique to your system and even
your account—that’s the whole point of environment variables. Table 2.13 summarizes
important variables you may see in this output.

environment variables in tcsh

Not all Linux users like Bash; some prefer tcsh, and a few use still other shells. The
syntax used to set environment variables in Bash doesn’t work for tcsh. For this shell,
the appropriate command to set an environment variable is setenv. It’s used much like
export in its single-line form but without an equal sign:

$ setenv NNTPSERVER news.abigisp.com

When modifying an existing variable, you must add quotes around the new value and use
curly braces around the original variable reference:

$ setenv PATH “${PATH}:/opt/bin”

Instead of using /etc/profile, tcsh uses the /etc/csh.cshrc and /etc/csh.login
files for its system-wide configuration. Therefore, if your system has both Bash and tcsh
users, you’ll need to modify both files, using the appropriate syntax for each file. The user
configuration files for tcsh are .tcshrc, .cshrc, or .login (tcsh tries each of these files
in turn until it finds one that exists.)

03843book.indb 86 8/21/09 12:04:48 PM

Setting Environment Variables 87

TA b le 2 .13 Common Environment Variables and Their Meanings

Variable Name Explanation

USER This is your current username. It’s a variable that’s maintained by
the system.

SHELL This variable holds the path to the current command shell.

PWD This is the present working directory. This environment variable is
maintained by the system. Programs may use it to search for files
when you don’t provide a complete pathname.

HOSTNAME This is the current TCP/IP hostname of the computer.

PATH This is an unusually important environment variable. It sets the path,
which is a colon-delimited list of directories in which Linux searches for
executable programs when you type a program name. For instance, if
PATH is /bin:/usr/bin and you type ls, Linux looks for an executable
program called ls in /bin and then in /usr/bin. If the command you
type isn’t on the path, Linux responds with a command not found error.
The PATH variable is typically built up in several configuration files, such
as /etc/profile and the .bashrc file in the user’s home directory.

HOME This variable points to your home directory. Some programs use it
to help them look for configuration files or as a default location in
which to store files.

LD_LIBRARY_PATH A few programs use this environment variable to indicate directories
in which library files may be found. It works much like PATH.

PS1 This is the default prompt in Bash. It generally includes variables of
its own, such as \u (for the username), \h (for the hostname), and
\W (for the current working directory). This value is frequently set in
/etc/profile, but it is often overridden by users.

PS2 This is the prompt for a command completion. That is, if you press the
Enter key and the shell recognizes that the command is incomplete
(say, because you included an open quote but not the matching close
quote), the shell will present the value of this environment variable as
a prompt for you to complete typing the command.

PAGER Programs that use a pager typically use the pager referred to by this
environment variable. It usually refers to less, but you can redefine
it if you like.

NNTPSERVER Some Usenet news reader programs use this environment variable
to specify the name of the news server system. This value might be
set in /etc/profile or in the user’s configuration files.

03843book.indb 87 8/21/09 12:04:48 PM

88 Chapter 2 n Using Text-Mode Commands

TA b le 2 .13 Common Environment Variables and Their Meanings (continued)

Variable Name Explanation

TERM To handle more than basic text-mode effects, Linux has to know
what commands the terminal supports. The TERM environment
variable specifies the terminal in use, which is combined with
information from additional files to provide terminal-specific code
information. TERM is normally set automatically at login, but in some
cases you may need to change it.

DISPLAY This variable identifies the display used by X. It’s usually :0.0, which
means the first (numbered from 0) display on the current computer.
When you use X in a networked environment, though, this value may
be preceded by the name of the computer at which you’re sitting, as
in machine4.example.com:0.0. This value is set automatically when
you log in, but you may change it if necessary. You can run multiple
X sessions on one computer, in which case each one gets a unique
DISPLAY number—for instance, :0.0 for the first session and :1.0 for
the second.

EDITOR Some programs launch the program pointed to by this environment
variable when they need to call a text editor for you to use. Thus,
changing this variable to your favorite editor can help you work in
Linux. It’s best to set this variable to a text-mode editor; GUI edi-
tors might cause problems if they’re called from a program that was
launched from a text-mode login.

PRINTER You can set the default printer using this environment variable. (You
can also set the default printer for the computer as a whole using the
printing system, but this variable overrides the system-wide default
when individual users set it.)

The PATH variable sometimes includes the current directory indicator (.)
so that programs in the current directory can be run. This practice poses a
security risk, though, because a miscreant could create a program with the
name of some other program (such as ls) and trick another user into run-
ning it by leaving it in a directory the victim frequents. Even the root user
may be victimized in this way. For this reason, it’s best to omit the current
directory from the PATH variable, especially for the superuser. If it’s really
needed for ordinary users, put it at the end of the path.

Any given system is likely to have several other environment variables set, but these
are fairly esoteric or relate to specific programs. If a program’s documentation says that it
needs certain environment variables set, you can set them system-wide in /etc/profile or
some other suitable file, or you can set them in user configuration files.

03843book.indb 88 8/21/09 12:04:48 PM

Using Shell Scripts 89

Although you can see the entire environment by typing env, this output can be long
enough to be intimidating. If you just want to know the value of one variable, you can use
the echo command, which echoes what you type to the screen. If you pass it a variable
name preceded by a dollar sign ($), echo returns the value of the variable. For instance:

$ echo $PS1

[\u@\h \W]\$

This command reveals that the PS1 environment variable is set to [\u@\h \W]\$, which
in turn produces a Bash prompt like [david@penguin homes]$.

Bash is a very advanced tool with some very esoteric features. In fact, Bash includes pro-
gramming features (a topic touched upon briefly in the next section). One of these features
is the equality operator, ==, which you can use to test the equality of two variables, or a
variable and a constant. For instance, suppose you want to execute a command only under
certain conditions. You could do so like this:

$ if [[$YOURVAR == “something”]] ; then ls ; fi

This example executes the ls command if $YOURVAR is equal to something.
Advanced Bash users may employ conditional expressions in this way on a single com-

mand line, but this feature is more often used in shell scripts.

Using Shell Scripts
Bash, like most Linux shells, enables you to create shell scripts. A script is a program that’s
run directly from its source code (that is, the file created by the programmer) by an inter-
preter. This differs from a compiled program, which is converted from source code into a
binary or executable form, which can be interpreted by the computer’s CPU. Scripts tend to
be quick to program because there’s no need to compile them; but because the interpreter
program must translate between source code and an executable form on the fly, scripts run
more slowly than do compiled programs.

Shell scripts (scripts run by a shell) are popular for automating simple administrative
tasks. For instance, you might write a shell script to create a large number of new accounts
based on usernames in a text file or to configure the network in a particular way. Many
of Linux’s startup procedures are handled by shell scripts. On most distributions, /etc/
rc.d, /etc/init.d, or subdirectories of these directories contain startup scripts that launch
important system components, such as the printing subsystem and the GUI login prompt.
(These startup scripts are covered in more detail in Chapter 4.)

Most Linux systems use the Bash shell by default, so shell scripts are often written in
the Bash shell scripting language, but the tcsh and other shell scripting languages are quite
similar. In fact, it’s not uncommon to see shell scripts that run in any common Linux shell.
You’re not restricted to running shell scripts written in your default shell; the first line of a
shell script identifies the shell that should be used to run it.

03843book.indb 89 8/21/09 12:04:48 PM

90 Chapter 2 n Using Text-Mode Commands

Like any programming task, shell scripting can be quite complex. The Linux+
2009 exam, and therefore this chapter, covers only enough of this topic for
you to write a very rudimentary shell script. Consult a book on the topic,
such as Mastering Unix Shell Scripting: Bash, Bourne, and Korn Shell Script-
ing for Programmers, System Administrators, and UNIX Gurus by Randal K.
Michael (Wiley, 2008), for more information.

Shell scripts are plain-text files, so you create them in text editors. A shell script begins
with a line that identifies the shell that’s used to run it, such as the following:

#!/bin/sh

The first two characters are a special code that tells the Linux kernel that this is a script
and to use the rest of the line as a pathname to the program that’s to interpret the script.
Shell scripting languages use a hash mark (#) as a comment character, so the script utility
itself ignores this line, although the kernel doesn’t. On most systems, /bin/sh is a symbolic
link that points to /bin/bash, but it could point to some other shell. Specifying the script as
using /bin/sh guarantees that any Linux system will have a shell program to run the script,
but if the script uses any features specific to a particular shell, you should specify that shell
instead—for instance, use /bin/bash or /bin/tcsh instead of /bin/sh.

When you’re done writing the shell script, you should modify it so that it’s executable.
You do this with the chmod command, as described earlier in “Modifying Permissions.”
Specifically, you use the +x option to add execute permissions, probably in conjunction
with a to add these permissions for all users. For instance, to make a file called my-script
executable, you’d issue the following command:

$ chmod a+x my-script

You’ll then be able to execute the script by typing its name, possibly preceded by ./ to
tell Linux to search in the current directory for the script. If you fail to make the script
executable, you can still run the script by running the shell program followed by the script
name (as in bash my-script or sh my-script), but it’s generally better to make the script
executable. If the script is one you run regularly, you may want to move it to a location on
your path, such as /usr/local/bin. When you do that, you won’t have to type the com-
plete path or move to the script’s directory to execute it; you can just type the script’s name.

Shell scripts are composed of commands that the shell would recognize if typed at a
command prompt. These can include both internal and external commands. You can even
call other shell scripts from your own. For instance, suppose you want to start a script that
launches two xterms and the KMail mail reader program. Listing 2.1 presents a shell script
that accomplishes this goal.

listing 2.1: A Simple Script That Launches Three Programs

#!/bin/bash

/usr/bin/xterm &

03843book.indb 90 8/21/09 12:04:49 PM

Getting Help 91

/usr/bin/xterm &

/usr/bin/kmail &

Aside from the first line that identifies it as a script, the script looks just like the com-
mands you might type to accomplish the task manually, except for one fact: the script lists
the complete paths to each program. This is usually not strictly necessary, but listing the
complete path ensures that the script will find the programs even if the PATH environment
variable changes. Also, each program-launch line in Listing 2.1 ends in an ampersand (&).
This character tells the shell to run the program in the background and go on to the next
line without waiting for the first program to terminate. If you omit the ampersands in List-
ing 2.1, the effect will be that the first xterm will open, but the second won’t open until the
first is closed. Likewise, KMail won’t start until the second xterm is stopped.

Shell scripts can be much more complex than Listing 2.1—they can use all the usual pro-
gramming tools, such as variables, loops, and conditional expressions. If you want to write
such complex scripts (as, sooner or later, you will if you administer a Linux system profes-
sionally), you should consult additional documentation on this topic.

Getting Help
Nobody can know everything there is to know about Linux—the number of programs, each
with its own set of options and features, is simply too great. For this reason, documentation
and help resources come with Linux and are available online. One of the oldest forms on help
is the manual page system, referred to as man pages for short. A somewhat newer tool for
accessing similar documentation is known as info pages. Both of these systems are designed to
provide you with quick summary information about a program. Neither system is intended
to provide comprehensive tutorial information; for that, you must typically turn to other docu-
mentation that ships with programs or to third-party documentation. Some of these resources
are available on the Internet, so knowing where to look for such help is critical.

Using Man Pages
Man pages provide succinct summaries of program functions. In the simplest case, they can
be accessed by typing man followed by the name of a command, configuration file, system
call, or other keyword. Each man page falls into one of nine categories, as summarized in
Table 2.14. Some keywords lead to entries in multiple sections. In such instances, the man
utility returns the entry for the lowest-numbered matching section by default. You can over-
ride this behavior by passing a section number before the keyword. For instance, typing man
passwd returns information from manual section 1, on the passwd command, but typing
man 5 passwd returns information from manual section 5, on the /etc/passwd file format.
Some man pages have entries in sections with variant numbers that include the suffix p, as in
section 1p. These refer to POSIX standard man pages, as opposed to the Linux man pages,
which are, for the most part, written by the people who wrote the open source Linux pro-
grams the man pages describe.

03843book.indb 91 8/21/09 12:04:49 PM

92 Chapter 2 n Using Text-Mode Commands

TA b le 2 .14 Manual Sections

Section Number Description

1 Executable programs and shell commands

2 System calls provided by the kernel

3 Library calls provided by program libraries

4 Device files (usually stored in /dev)

5 File formats

6 Games

7 Miscellaneous (macro packages, conventions, and so on)

8 System administration commands (programs run mostly or
exclusively by root)

9 Kernel routines

The convention for man pages is a succinct style that employs several sections. Common
sections include the following:

Name A man page begins with a statement of the command, call, or file that’s described,
along with a few words of explanation. For instance, the man page for man (section 1) has a
“Name” section that reads man - an interface to the on-line reference manuals.

Synopsis The synopsis provides a brief description of how a command is used. This synopsis
uses a summary format similar to that used to present synopses in this book, showing optional
parameters in square brackets ([]), for instance.

Description The description is an English-language summary of what the command, file,
or other element does. The description can vary from a very short summary to something
many pages in length.

Options This section summarizes the options outlined in the “Synopsis” section. Typically,
each option appears in a list, with a one-paragraph explanation indented just below it.

Files This section lists files that are associated with the man page’s subject. These might
be configuration files for a server or other program, related configuration files for a con-
figuration file, or what have you.

See also This section provides pointers to related information in the man system, typi-
cally with a section number appended. For instance, less(1) refers to the section 1 man
page for less.

03843book.indb 92 8/21/09 12:04:49 PM

Getting Help 93

Bugs Many man pages provide a “Bugs” section in which the author describes any known
bugs or states that no known bugs exist.

History Some man pages provide a summary of the program’s history, citing project start
dates and major milestones between then and the current version. This history isn’t nearly
as comprehensive as the changes file that ships with most programs’ source code.

Author Most man pages end with an “Author” section, which tells you how to contact the
author of the program.

Specific manual pages may contain fewer, more, or different sections than these. For
instance, the “Synopsis” section is typically omitted from man pages on configuration files.
Man pages with particularly verbose descriptions often split the “Description” section into
several parts, each with its own title.

Man pages can be an extremely helpful resource, but you must understand their purpose
and limitations. Unlike the help systems in some OSs, Linux man pages are not supposed
to be either comprehensive or tutorial in nature; they’re intended as quick references to help
somebody who’s already at least somewhat familiar with the subject. They’re most useful
when you need to know the options to use with a command, the format of a configuration
file, or similar summary information. If you need to learn a new program from scratch,
other documentation is often a better choice. Man pages also vary greatly in quality; some
are very good, but others are frustratingly terse and even occasionally inaccurate. For the
most part, they’re written by the programmers who wrote the software in question, and
programmers seldom place a high priority on user documentation.

Linux’s man pages use the less pager to display information. This pager’s operation is
covered earlier in this chapter, in “Viewing Long Text Files.” Of course, you can also con-
sult the less man page by typing man less. The upshot of using less is that you can page
forward and backward, perform searches, and use other less functions when reading man
pages. When you’re done using the man page system, press the Q key. This breaks you out
of the less browser and returns you to your shell prompt.

Although man is a text-mode command, GUI variants exist. The xman
program, for instance, provides a point-and-click method of browsing
through man pages. You can’t type a subject on the command line to
view it as you would with man, though—you must launch xman and then
browse through the manual sections to a specific subject.

One of the problems with man pages is that it can be hard to locate help on a topic unless
you know the name of the command, system call, or file you want to use. Fortunately, meth-
ods of searching the manual database exist and can help lead you to an appropriate man page:

Summary search The whatis command searches summary information contained in man
pages for the keyword you specify. The command returns the “Name” section of every
matching man page. You can then use this information to locate and read the man page you
need. This command is most useful for locating all the man pages on a topic. For instance,

03843book.indb 93 8/21/09 12:04:49 PM

94 Chapter 2 n Using Text-Mode Commands

typing whatis man returns lines confirming the existence of the man page entries for man,
in sections 1, 5, 7, and 1p on a Fedora 10 system. (The entries available may vary from one
distribution or installation to another.) The whatis command’s database is updated by the
makewhatis command. This command is normally run automatically on a regular basis, but
you can run it manually if the need arises.

Thorough search The apropos command performs a more thorough search, of both the
“Name” and “Description” sections of man pages. The result looks much like the results
of a whatis search, except that it’s likely to contain many more results. In fact, doing an
apropos search on a very common word, such as the, is likely to return so many hits as to
make the search useless. A search on a less common word is likely to be more useful. For
instance, typing apropos samba returns just over a dozen entries on a Fedora 10 system,
including those for cupsaddsmb, smbpasswd, and smbstatus—all tools related to the Samba
file- and printer-sharing tool. (The exact number of hits returned by apropos will vary from
system to system, depending on the packages installed.)

Using Info Pages
Linux’s info page system is conceptually similar to its man page system, and info pages
tend to be written in a similar terse style. The primary difference is that the info system
uses a more sophisticated tool for presenting the documentation. Rather than a simple less
browser on a linear file, the info command uses a more sophisticated hyperlinked format,
conceptually similar to Web pages. The standard info browser, though, runs in text mode,
so instead of clicking help items with your mouse, you must select them with the cursor
keys or move about using keyboard shortcuts.

Some tools for reading info pages support mouse operations. The
Emacs editor, for instance, includes a mouse-aware info reading tool.
The tkinfo program (http://math-www.uni-paderborn.de/~axel/
tkinfo/) is a general-purpose X-based info browser.

Info pages are written in nodes, which are similar to the individual pages of Web sites.
These nodes are arranged hierarchically. To move from one node to another in the standard
text-based info browser, you use any of several commands or procedures:

Next page Press the N key to move to the next node in a linked series of nodes on a single
hierarchical level. This action may be required if the author intended several nodes to be
read in a particular sequence.

Previous page Pressing the P key moves you back in a series of nodes on a single hierarchical
level. This can be handy if you’ve moved forward in such a series but find you need to review
earlier material.

Moving up Pressing the U key moves you up in the node hierarchy.

03843book.indb 94 8/21/09 12:04:50 PM

Getting Help 95

Selecting a topic To move down in the list of nodes, you select a topic and move into it. In
the text-mode info browser, topics have asterisks (*) to the left of their names. You use your
cursor keys to highlight the topic and press the Enter key to read that topic.

Last topic Pressing the L key displays the last info page you read. This action can move
you up, down, or sideways in the info tree hierarchy.

Top page You can return to the top page for a topic (typically the one on which you entered
the system) by pressing the T key.

Exiting When you’re done using the info system, press the Q key.

On the whole, info pages can be more difficult to navigate than man pages, at least for
the uninitiated; however, the hierarchical organization of information in info pages can
make them superior tools for presenting information—there’s less need to scroll through
many pages of potentially uninteresting information looking for some tidbit. If the info
page hierarchy was constructed sensibly, you should be able to find the information you
need very efficiently.

Broadly speaking, programs sponsored by the Free Software Foundation (FSF) use info
pages in preference to man pages. Many FSF programs now ship with minimal man pages
that point the user to the programs’ info pages. Non-FSF programmers have been slower
to embrace info pages, though; many such programs don’t ship with info pages at all and
instead rely on traditional man pages. The info browser, though, can read and display man
pages, so using info exclusively can be an effective strategy for reading Linux’s standard
documentation.

Using Miscellaneous Program Documentation
Most Linux programs ship with their own documentation, even aside from man or info pages.
In fact, some programs have so much documentation that it’s installed as a separate package,
typically with the word documentation or doc in the package name, such as samba-doc.

The most basic and traditional form of program documentation is a file called README,
readme.txt, or something similar. Precisely what information this file contains varies
greatly from one program to another. For some, the file is so terse it’s nearly useless. For
others, it’s a treasure trove of help. These files are almost always plain-text files, so you can
read them with less or your favorite text editor.

If you downloaded the program as a source code tarball from the package maintainer’s
site, the README file typically appears in the main build directory extracted from the tarball.
If you installed the program from a binary package file, though, the README file could be in
any of several locations. The most likely places are /usr/doc/packagename, /usr/share/doc/
packagename, and /usr/share/doc/packages/packagename, where packagename is the name
of the package (sometimes including a version number, but more often not). If you can’t find a
README or similar file, use your distribution’s package management system to locate documen-
tation. For instance, on an RPM-based system, you might type rpm -ql apackage | grep
doc to locate documentation for apackage. Using grep to search for the string doc in the file
list is a good trick because documentation directories almost always contain the string doc.
Chapter 7 describes rpm and other package-management commands in more detail.

03843book.indb 95 8/21/09 12:04:50 PM

96 Chapter 2 n Using Text-Mode Commands

README files often contain information on building the package or make
assumptions about binary file locations that don’t apply to binaries pro-
vided with a distribution. Distribution maintainers seldom change such
information in their README files, though.

In addition to or instead of the README file, many programs provide other documenta-
tion files. These may include a file that documents the history of the program in fine detail,
descriptions of compilation and installation procedures, information on configuration file
formats, and so on. Check the source code’s build directory or the directory in which you
found the README file for other files.

Some larger programs ship with extensive documentation in PostScript, Portable Docu-
ment Format (PDF), Hypertext Markup Language (HTML), or other formats. Depending
on the format and package, you might find a single file or a large collection of files. As with
the README files, these files are well worth consulting, particularly if you want to learn to
use a package to its fullest.

Using Internet-Based Help Resources
In addition to the documentation you find on your computer, you can locate documentation
on the Internet. Most packages have associated Internet Web sites, which may be referred
to in man pages, info pages, README files, or other documentation. Frequently, online docu-
mentation ships with the software, so you might be able to find it on your local hard disk;
however, sometimes the local documentation is old or sparse compared to what’s available
online. Of course, if your local documentation is old, your local software may be old, too.

Another online resource that’s extremely helpful is the Linux Documentation Project
(LDP; http://tldp.org). The LDP is dedicated to providing more tutorial information
than is commonly available with most Linux programs. You’ll find several types of infor-
mation at this site:

HOWTOs Linux HOWTO documents are short and medium-length tutorial pieces intended
to get you up to speed with a topic or technology. HOWTOs have varying focus—some
describe particular programs, whereas others are more task-oriented and cover a variety of
tools in service to the task. As the name implies, they’re generally designed to tell you how to
accomplish some goal.

Guides Guides are longer documents, often described as book-length. (In fact, some of
them are available in printed form.) Guides are intended as thorough tutorials or reference
works on large programs or general technologies, such as Linux networking as a whole.

FAQs A Frequently Asked Question (FAQ) is, as the name implies, a question that comes
up often—or more precisely, in the sense of the LDP category, that question and an answer
to it. LDP FAQs are organized into categories, such as the Ftape FAQ or the WordPerfect
on Linux FAQ. Each contains multiple questions and their answers, often grouped in sub-
categories. If you have a specific question about a program or technology, looking for an
appropriate FAQ can be a good place to look first for an answer.

03843book.indb 96 8/21/09 12:04:50 PM

Summary 97

LDP documents vary greatly in their thoroughness and quality. Some (particularly
some of the guides) are incomplete; you can click a section heading and see an empty page
or a comment that the text has yet to be written. Some LDP documents are very recent,
but others are outdated, so be sure to check the date of any document before you begin
reading—if you don’t, you might end up doing something the hard way, or in a way that
no longer works. (Most of the FAQs seem to be languishing; many have last-revision dates
in the 1990s!) Despite these flaws, the LDP can be an excellent resource for learning about
specific programs or about Linux generally. The better LDP documents are excellent, and
even those of marginal quality often present information that’s not obvious from man
pages, info pages, or official program documentation.

Most Linux distributions include the LDP documents in one or more special
documentation packages. Check your /usr/doc and /usr/share/doc direc-
tories for these files. If they’re not present, look for likely packages on your
installation media. If you have fast always-up Internet access, though, you
might want to use the online versions of LDP documents because you can
be sure they’re the latest available. Those that ship with a distribution can be
weeks or months out of date by the time you read them.

Summary
Linux has strong historical ties to text-mode commands, and in fact Linux systems can be
administered entirely from a text-mode login. Furthermore, even GUI tools in Linux are
often front-ends to text-mode commands. For these reasons, familiarity with text-mode
Linux tools is important for any Linux system administrator, and even for some users.

Text-mode use begins with an understanding of text-mode shells, such as Bash and tcsh.
Shells accept text-mode commands and display their results, so knowing how to use a shell
is necessary for effective use of a Linux system.

Once you’ve mastered shell basics, you can move on to basic file manipulation commands.
These commands support navigating through Linux directories, moving and copying files,
manipulating directories, locating files, and examining files. Using redirection and pipes with
such commands is also a useful skill to possess.

Environment variables represent another key in text-mode Linux use. They can be set
on a system-wide basis to control certain aspects of a user’s Linux experience, such as the
default prompt. Users can adjust their environment variables by typing appropriate com-
mands or by editing their personal startup files.

Many system administration tasks involve repetitive actions. For this reason, most admin-
istrators learn to write at least basic shell scripts, which can combine many commands in one,
frequently using variables and conditional expressions to improve the flexibility of the scripts.

03843book.indb 97 8/21/09 12:04:50 PM

98 Chapter 2 n Using Text-Mode Commands

Exam Essentials

Summarize how redirection operators and pipes can be useful. Redirection operators
send a program’s output to a file or send a file’s contents to a program as input, enabling
you to save a diagnostic tool’s output for later perusal or give consistent input to a program.
Pipes enable you to link together multiple programs, giving you more flexible and powerful
multicommand tools.

Describe how files are moved and renamed in Linux. The mv command performs both
of these tasks. When used on a single low-level filesystem, it changes disk pointers so that
a file’s location or name is changed, without altering or copying the file’s data. When used
across low-level filesystems, mv must copy the data, though.

Explain how directories are created and deleted in Linux. The mkdir command creates
directories. Empty directories can be deleted with rmdir, or directory trees (including any
files they contain) can be deleted with rm, by passing it the -r parameter.

Describe the differences between hard and symbolic links. Hard links are multiple direc-
tory entries that point to a single file. Symbolic links are special files that point to other files
by filename.

Summarize the Linux ownership and permissions system. Files are owned by an individual
account and are also associated with one group. Permission bits enable the file’s owner to
control separately the read, write, and execute access for the file’s owner, members of the file’s
group, and all other users.

Describe when you might use find versus grep. The find command locates files based
on surface features—the filename, file creation date, owner, and so on. The grep command
reads the file’s contents and enables you to search for files based on those contents.

Summarize the purpose of environment variables. Environment variables provide infor-
mation that should be invariant across programs, such as the user’s name and the path to
be searched for program files.

Describe how a shell script can be useful. A shell script combines several commands,
possibly including conditional expressions, variables, and other programming features
to make the script respond dynamically to a system. Therefore, a shell script can reduce
administrative effort by performing a series of repetitive tasks at one command.

03843book.indb 98 8/21/09 12:04:51 PM

Review Questions 99

Review Questions

1. Which of the following will add /usr/local/bigprog/bin to the end of the PATH environ-
ment variable, if placed in /etc/profile?

A. export PATH=/usr/local/bigprog/bin

B. setenv PATH=$PATH:/usr/local/bigprog/bin

C. export PATH=$PATH:/usr/local/bigprog/bin

D. setenv PATH “${PATH}:/usr/local/bigprog/bin”

2. Who may set default environment variables for an ordinary user?

A. Either root or the user, with the user’s settings taking precedence

B. Either root or the user, with root’s settings taking precedence

C. root only

D. The user only

3. Where is the best location for the current directory indicator (.) to reside in root’s PATH
environment variable?

A. Before all other directories

B. After all other directories

C. Nowhere; it shouldn’t be in root’s path

D. Wherever is convenient

4. After using a text editor to create a shell script, what step should you ordinarily take before
using the script?

A. Set one or more executable bits using chmod.

B. Copy the script to the /usr/bin/scripts directory.

C. Compile the script by typing bash scriptname, where scriptname is the script’s name.

D. Run a virus checker on the script to be sure it contains no viruses.

5. Which of the following wildcards will match the filenames scan.txt, Skin.txt, and
skin.txt but not scan.odt, skin.TXT, or skinny.txt?

A. *.*

B. s*.txt

C. [Ss]*n.txt

D. s??n*

03843book.indb 99 8/21/09 12:04:51 PM

100 Chapter 2 n Using Text-Mode Commands

6. To simplify access to a directory with a long path, /opt/clipart/standard/office/
products, you want to create a link. You type ln /opt/clipart/standard/
office/products ./ca, but you receive an error message. How must you change
this command to make it work?

A. Change ln to mv.

B. Change ./ca to ./products.

C. Add -s after ln.

D. Add / after products, with no intervening space.

7. Which of the following procedures normally launches a shell? (Choose all that apply.)

A. Starting an xterm window.

B. Typing shell at a command prompt.

C. Logging in using SSH.

D. You can’t; the shell is started automatically at boot time.

8. What key does the Bash shell use to complete filenames based on the first few characters?

A. End

B. Tab

C. Enter

D. Insert

9. What command would you type to change the ownership of somefile.txt from ralph
to tony?

A. chown ralph:tony somefile.txt

B. chmod somefile.txt tony

C. chown somefile.txt tony

D. chown tony somefile.txt

10. Which of the following umask values will result in files with rw-r----- permissions?

A. 640

B. 210

C. 022

D. 027

11. You want to discover the sizes of several dot files in a directory. Which of the following
commands might you type to do this?

A. ls -la

B. ls -p

C. ls -R

D. ls -d

03843book.indb 100 8/21/09 12:04:51 PM

Review Questions 101

12. You want to move a file from your hard disk to a floppy disk. Which of the following is true?

A. You’ll have to use the --preserve option to mv to keep ownership and permissions set
correctly.

B. The mv command will adjust filesystem pointers without physically rewriting data if
the floppy uses the same filesystem type as the hard disk partition.

C. You must use the same filesystem type on both media to preserve ownership and
permissions.

D. The mv command will delete the file on the hard disk after copying it to the floppy.

13. You type mkdir one/two/three and receive an error message that reads, in part, No such
file or directory. What can you do to overcome this problem? (Choose all that apply.)

A. Add the --parents parameter to the mkdir command.

B. Issue three separate mkdir commands: mkdir one, then mkdir one/two, then mkdir
one/two/three.

C. Type touch /bin/mkdir to be sure the mkdir program file exists.

D. Type rmdir one to clear away the interfering base of the desired new directory tree.

14. A program you’re using logs errors to the ~/.someprog/errors.txt file. You’ve seen
cryptic error messages in this file, and you want to determine what function of the pro-
gram is generating these messages. What command would you type to enable you to see
these messages as they’re written to the file?

A. tail -f ~/.someprog/errors.txt

B. vi ~/.someprog/errors.txt

C. chmod 644 ~/.someprog/errors.txt

D. monitor-logs

15. You want to learn about the /dev/tty device file, so you type man tty. This action, how-
ever, produces information on the tty command, which displays the name of the terminal
device from which it was called. How would you obtain the documentation you wanted?

A. Type man /dev/tty.

B. Type man 2 tty.

C. Type man 4 tty.

D. Type man tty device.

16. Which of the following file-location commands is likely to take the most time to find a file
that might be located anywhere on the computer?

A. The find command.

B. The locate command.

C. The whereis command.

D. They’re all equal in speed.

03843book.indb 101 8/21/09 12:04:51 PM

102 Chapter 2 n Using Text-Mode Commands

17. Which of the following commands is an improved version of more?

A. grep

B. tail

C. cat

D. less

18. You want to find the documentation for a Linux scanner program, but you can’t remember
the name of the software. What command might you type to help you track down the docu-
mentation?

A. info scanner

B. help scanner

C. apropos scanner

D. find scanner

19. Which of the following commands would you type to change the group associated with the
modes.tex file to marketing?

A. chgrp modes.tex marketing

B. chgrp marketing modes.tex

C. group modes.tex marketing

D. newgrp modes.tex marketing

20. Which of the following commands would you type to print lines from the file world.txt
that contain matches to changes and changed?

A. grep change[ds] world.txt

B. sed change[d-s] world.txt

C. find “change’d|s’“ world.txt

D. search world.txt changes changed

03843book.indb 102 8/21/09 12:04:52 PM

Answers to Review Questions 103

Answers to Review Questions

1. C. Option A sets the path to contain only the /usr/local/bigprog/bin directory, rather
than adding that directory to the existing path. Options B and D use the tcsh syntax for
setting the path, and option B uses it incorrectly (/etc/profile is used for setting environ-
ment variables in Bash, not tcsh).

2. A. The root user may set environment variables in /etc/profile or other system-wide
configuration files, and users may set their own environment variables in .bashrc or other
user-level configuration files or by typing them in manually. Because the user’s settings
come later, they override system defaults, if in conflict.

3. C. The current directory indicator is particularly dangerous in root’s PATH environment
variable because it can be used by unscrupulous local users to trick root into running pro-
grams of the unscrupulous user’s design.

4. A. Scripts, like binary programs, normally have at least one executable bit set, although
they can be run in certain ways without this feature. There is no standard /usr/bin/
scripts directory, and scripts can reside in any directory. Scripts are interpreted programs,
which means they don’t need to be compiled. Typing bash scriptname will run the script.
Viruses are extremely rare in Linux, and because you just created the script, the only ways
it could possibly contain a virus would be if your system were already infected or if you
wrote it as a virus.

5. C. The [Ss] matching set matches both the uppercase S in Skin.txt and the lowercase
s in scan.txt and skin.txt. This is necessary to match all of the required filenames,
but it also matches all of the unwanted filenames. The following * matches any number
of intervening characters. The trailing n.txt of matches the ends of all three of the target
filenames but does not match any of the unwanted filenames. Thus, option C is correct.
Option A matches all of the files (both wanted and unwanted). Option B doesn’t match
Skin.txt and it does match skinny.txt; thus, it won’t do. Because option D begins with
a lowercase s, it doesn’t match Skin.txt. This option also incorrectly matches all of the
unwanted filenames.

6. C. By default, ln creates hard links, but most filesystems don’t permit hard links between
subdirectories. Furthermore, if the current directory and the target directory are on differ-
ent low-level filesystems, you can’t create hard links between them. Thus, the command will
likely fail. The -s option to ln, as specified in option C, creates a symbolic link rather than
a hard link. Since symbolic links to directories and across filesystems are legal, this com-
mand is likely to succeed. Changing ln to mv, as in option A, turns the command into an
attempt to move the directory, which might or might not work, but is definitely not what’s
desired. Option B’s change will have no effect; links need not have the same name as the
linked-to file or directory. Option D is an attempt to explicitly define the linked-to directory
as a directory. It will also have no effect.

03843book.indb 103 8/21/09 12:04:52 PM

104 Chapter 2 n Using Text-Mode Commands

7. A, C. Shells are started automatically when you log in or start xterm windows unless you
configure your account strangely or specify another program to run when you launch an
xterm. Typing shell won’t start a shell, because no standard shell is called shell. (Typing
the shell name will do the job, though.) Shells aren’t normally started when the computer
boots; you must first log in.

8. B. When you press the Tab key when you are typing a command or filename, Bash checks to
see whether the characters you’ve typed so far are enough to uniquely identify the command
or filename. If they are, Bash completes the command or filename, saving you keystrokes.

9. D. Typing chown ralph:tony somefile.txt sets the owner of the file to ralph and the
group to tony. The chmod command is used to change file permissions, not ownership.
Option C reverses the order of the filename and the owner. Answer D uses the correct
command and options.

10. D. Option D, 027, removes write permissions for the group and all world permissions. (Files
normally don’t have execute permissions set, but explicitly removing write permissions when
removing read permissions ensures reasonable behavior for directories.) Option A, 640, is the
octal equivalent of the desired rw-r----- permissions, but the umask sets the bits that are
to be removed from permissions, not those that are to be set. Option B, 210, would remove
write permission for the owner, but it would not remove write permission for the group,
which is incorrect. This would also leave all world permissions open. Finally, option C, 022,
would not remove world read permission.

11. A. The -l parameter produces a long listing, including file sizes. The -a parameter produces
a listing of all files in a directory, including the dot files. Combining the two produces the
desired information (along with information on other files).

12. D. When moving from one partition or disk to another, mv must necessarily read and copy the
file and then delete the original if that copy was successful. If both filesystems support own-
ership and permissions, they’ll be preserved; mv doesn’t need an explicit --preserve option
to do this, and this preservation does not rely on having exactly the same filesystem types.
Although mv doesn’t physically rewrite data when moving within a single low-level filesystem,
this approach cannot work when you are copying to a separate low-level filesystem (such as
from a hard disk to a floppy disk); if the data isn’t written to the new location, it won’t be
accessible should the disk be inserted in another computer.

13. A, B. If you try to create a directory inside a directory that doesn’t exist, mkdir responds
with a No such file or directory error. The --parents parameter tells mkdir to
automatically create all necessary parent directories in such situations. You can also manu-
ally do this by creating each necessary directory separately. (It’s possible that mkdir one
wouldn’t be necessary in this example, if the directory one already exists. No harm will
come from trying to create a directory that already exists, although mkdir will return a
File exists error.)

14. A. The tail command’s -f (or --follow) option sets it to monitor a file and display addi-
tions to the file as they’re made. Thus, option A does the specified job. The vi command is
a text editor, and chmod changes permissions on a file; thus, neither option B nor C will do
what’s wanted. Option D’s monitor-logs command is fictitious.

03843book.indb 104 8/21/09 12:04:52 PM

Answers to Review Questions 105

15. C. The Linux man page system is divided into numbered sections, and section 4 is devoted
to device files. Specifying the section number before the search term restricts the search to
that section, so option C will produce the desired documentation, if it’s available. Specify-
ing the complete pathname to the device, as in option A, will most likely produce an error.
Option B specifies the incorrect section number of 2 (system calls). Option D will look up
the default (incorrect) tty entry and then attempt to find an entry for device.

16. A. The find utility operates by searching all files in a directory tree, so it is likely to take
a long time to search all a computer’s directories. The locate program uses a precompiled
database, and whereis searches a limited set of directories, so these commands will take
less time.

17. D. The less program, like more, displays a text file a page at a time. The less utility also
includes the ability to page backward in the text file, search its contents, and more.

18. C. The apropos command searches through certain sections of man pages to find the
specified keyword and returns the names of the man pages in which that keyword was
found. The info command of option A is an alternative to man, so unless your system
happens to have a program called scanner, it’s unlikely to help. There is no standard
Linux command called help, so option B is also incorrect. Although the find command
could conceivably be used to help find scanner-related tools, the command specified in
option D searches only the current directory for a file called scanner, so it won’t help.

19. B. The chgrp utility is used to change the group associated with a file, just as chown is used
to change the owner associated with the file. The correct syntax requires the first parameter
given be the name of the group to be associated with the file, followed by the name of the
file. There is no group utility, and newgrp does not perform this function.

20. A. The grep utility is used to find matching text within a file and print those lines. It
accepts regular expressions, which allow for the placing of the two characters you are
looking for within brackets. The syntax for sed and find would not perform the needed
task, and there is no standard Linux utility named search.

03843book.indb 105 8/21/09 12:04:52 PM

03843book.indb 106 8/21/09 12:04:52 PM

Chapter

3
Managing Processes
and Editing Files

ThE Following CoMPTiA objECTivEs
ArE CovErEd in This ChAPTEr:

2.1 Given a scenario, use the following fundamental ÛÛ
Linux tools, techniques and resources (File editing with
Vi; Process management: ps, kill, top, iostat, pstree,
nice, renice, signals, PID, PPID; Kernel/architecture infor-
mation: cat, /proc/version, uname, common sysctl set-
tings, /etc/sysctl.conf)

2.8 Implement task scheduling using the following tools ÛÛ
(cron: cron.allow, cron.deny, crontab command syntax,
crontab file format, at: atq)

2.9 Utilize performance monitoring tools and concepts ÛÛ
to identify common problems (Commands: sar, iostat,
vmstat, uptime, top; Load average)

03843book.indb 107 8/21/09 12:05:06 PM

A running Linux system consists largely of processes—that
is, programs that are active. Linux provides tools that enable
you to view, start, stop, change the priority of, and otherwise

manipulate processes. The ability to do this enables you to keep the computer running
smoothly and to correct problems that can be caused by processes that misbehave.

In addition to the basic process manipulation tools, this chapter covers timed process
activation, both on an ongoing basis (running a program once a week, for instance) and on
a one-time basis (running a program once on next Thursday, for instance). The kernel is
arguably the most important Linux process of all, because the kernel is the software com-
ponent that interfaces between the hardware and all other software. The kernel also con-
trols other processes by allocating memory, assigning CPU time, and so on.

This chapter concludes with a look at editing text files. Although many text editors are
available in Linux, the Linux+ objectives mention only one: Vi. This editor is a simple but
powerful editor. Most users find it strange, so it requires some learning to master.

Objective 2.1 is covered partly in this chapter and partly in Chapter 2,
“Using Text-Mode Commands.”

Managing Processes
For the most part, files are fairly static; once created, a file is likely to remain unchanged for
minutes, hours, days, or longer. A running program, or process, is a much more dynamic
entity; it’s stored in memory and directs the computer’s CPU to perform some task. Because
of this fact, processes present different management challenges than do files.

Understanding Processes
Processes are started in various ways. These include being launched from a shell, as described
in Chapter 2, and being started from a system startup script, as described in more detail in
Chapter 4, “Managing System Services.” However a process is started, it can be controlled in
various ways. You can obtain lists of running processes, restrict their CPU use, and even kill
a process you don’t want to have running.

03843book.indb 108 8/21/09 12:05:06 PM

Managing Processes 109

Before proceeding, it’s important that you understand a bit of terminology. In Linux, a
process is more or less synonymous with a running program. Because Linux is a multiuser,
multitasking OS, it’s possible for one program to be running as more than one process at a
time. For instance, suppose that tbaker and smccoy both use Vi to edit text files. The com-
puter will have two Vi processes running at once. Indeed, a single user can do this. It’s also
possible for a single program to create (or fork) subprocesses. For instance, Vi can launch
a spell checker program. In fact, this is what happens when you launch a program from a
shell—the shell forks the program you’re launching. When one process forks another, the
original process is known as the parent process, and the forked process is known as the
child process. This parent/child relationship produces a tree-like hierarchy that ultimately
leads back to init, the first process run by the kernel when it boots. Figure 3.1 shows a
simplified example. In Figure 3.1, init forks the login processes, which in turn fork bash
processes, which fork additional processes. (It’s actually slightly more complex than this;
init doesn’t directly fork login but instead does this by using another process, such as
getty.) This can continue for an arbitrary number of layers, although many programs
aren’t able to fork others.

F i gu r E 3 .1 Linux processes have parents, leading back to init, the first program the
Linux kernel runs.

Examining Process Lists with ps
One of the most important tools in process management is ps. This program displays pro-
cesses’ status (which is why it’s called ps). It sports many useful options, and it’s helpful
in monitoring what’s happening on a system. This can be particularly critical when the
computer isn’t working as it should be—for instance, if it’s unusually slow. The ps program
supports an unusual number of options, but just a few of them will take you a long way.
Likewise, interpreting ps output can be tricky because so many options modify what’s
available. Some ps-like programs, most notably top, also deserve some attention.

03843book.indb 109 8/21/09 12:05:07 PM

110 Chapter 3 n Managing Processes and Editing Files

Examining ps Options
The official syntax for ps is fairly simple:

ps [options]

This simplicity of form hides considerable complexity because ps supports three differ-
ent types of options, as well as many options within each type. The three types of options
are as follows:

Unix98 options These single-character options may be grouped together and are preceded
by a single dash (-).

BSD options These single-character options may be grouped together and must not be
preceded by a dash.

GNU long options These multicharacter options are not grouped together. They’re pre-
ceded by two dashes (--).

Options that may be grouped together may be clustered without spaces between them.
For instance, rather than typing ps -a -f, you can type ps -af. The reason for so much
complexity is that the ps utility has historically varied a lot from one Unix OS to another.
The version of ps that ships with major Linux distributions attempts to implement most fea-
tures from all these different ps versions, so it supports many different personalities. In fact,
you can change some of its default behaviors by setting the PS_PERSONALITY environment
variable to posix, old, linux, bsd, sun, digital, or various others. (Chapter 2 describes how
to set environment variables.) The rest of this section describes the default ps behavior on
most Linux systems. Table 3.1 summarizes some of the more useful ps features.

TA b lE 3 .1 Common ps Options

Unix98 Option(s) BSD Option(s) GNU Long Option(s) Description

--help This option displays a summary
of some of the more common
ps options.

-A, -e x By default, ps displays only
processes that were run from
its own terminal (xterm, text-
mode login, or remote login).
The -A and -e options cause it
to display all the processes on
the system, and x displays all
processes owned by the user
who gives the command. The
x option also increases the
amount of information that’s
displayed about each process.

03843book.indb 110 8/21/09 12:05:07 PM

Managing Processes 111

TA b lE 3 .1 Common ps Options (continued)

Unix98 Option(s) BSD Option(s) GNU Long Option(s) Description

-u user U user --User user You can obtain a list of pro-
cesses owned by a specified
user with this option. The user
variable may be a username or
a user ID (UID) number.

-f, -l j, l, u, v These options display extra
information. The details of what
is displayed vary with the spe-
cific option used.

-H, -f --forest These options group processes
and use indentation to show
the hierarchy of relationships
between processes. They’re
useful if you’re trying to trace
the parentage of a process.

-w w The ps command output can
be more than 80 columns wide.
Normally, ps truncates its out-
put so that it will fit on your
screen or xterm. The -w and w
options tell ps not to do this,
which can be useful if you direct
the output to a file, as in ps w >
ps.txt. You can then examine
the output file in a text editor
that supports wide lines.

You can combine these ps options in many ways to produce the output you want. You’ll
probably need to experiment to learn which options produce the desired results because
each of these options modifies the output in some way. Even those that would seem to influ-
ence just the selection of processes to list sometimes modify the information that’s provided
about each process.

Interpreting ps Output
Listing 3.1 and Listing 3.2 show a couple of examples of ps in action. Listing 3.1 shows
the output from typing ps -u rodsmith --forest, and Listing 3.2 shows the output from
typing ps u U rodsmith.

03843book.indb 111 8/21/09 12:05:07 PM

112 Chapter 3 n Managing Processes and Editing Files

listing 3.1: Output of ps -u rodsmith --forest

$ ps -u rodsmith --forest

 PID TTY TIME CMD

 2451 pts/3 00:00:00 bash

 2551 pts/3 00:00:00 ps

 2496 ? 00:00:00 kvt

 2498 pts/1 00:00:00 bash

 2505 pts/1 00:00:00 _ nedit

 2506 ? 00:00:00 _ csh

 2544 ? 00:00:00 _ xeyes

19221 ? 00:00:01 dfm

listing 3.2: Output of ps u U rodsmith

$ ps u U rodsmith

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

rodsmith 19221 0.0 1.5 4484 1984 ? S May07 0:01 dfm

rodsmith 2451 0.0 0.8 1856 1048 pts/3 S 16:13 0:00 -bash

rodsmith 2496 0.2 3.2 6232 4124 ? S 16:17 0:00 /opt/kd

rodsmith 2498 0.0 0.8 1860 1044 pts/1 S 16:17 0:00 bash

rodsmith 2505 0.1 2.6 4784 3332 pts/1 S 16:17 0:00 nedit

rodsmith 2506 0.0 0.7 2124 1012 ? S 16:17 0:00 /bin/cs

rodsmith 2544 0.0 1.0 2576 1360 ? S 16:17 0:00 xeyes

rodsmith 2556 0.0 0.7 2588 916 pts/3 R 16:18 0:00 ps u U

The output produced by ps normally begins with a heading line, which displays the
meaning of each column. Important information that might be displayed (and labeled)
includes the following:

Username The name of the user who runs the programs. Listings 3.1 and 3.2 restricted
this output to one user to limit the size of the listings.

Process ID The process ID (PID) is a number that’s associated with the process. This item
is particularly important because you need it to modify or kill the process, as described
later in this chapter.

Parent process ID The parent process ID (PPID) identifies the process’s parent. (Neither
Listing 3.1 nor Listing 3.2 shows the PPID, though.)

TTY The teletype (TTY) is a code used to identify a terminal. As illustrated by Listings
3.1 and 3.2, not all processes have TTY numbers—X programs and daemons, for instance,
do not. Text-mode programs do have these numbers, though, which point to a console,
xterm, or remote login session.

CPU time The TIME and %CPU headings are two measures of CPU time used. The first indi-
cates the total amount of CPU time consumed, and the second represents the percentage

03843book.indb 112 8/21/09 12:05:08 PM

Managing Processes 113

of CPU time the process is using when ps executes. Both can help you spot runaway pro-
cesses—those that are consuming too much CPU time. Unfortunately, just what constitutes
“too much” varies from one program to another, so it’s impossible to give a simple rule to
help you spot a runaway process.

CPU priority As described shortly, in “Restricting Processes’ CPU Use,” it’s possible to
give different processes different priorities for CPU time. The NI column, if present (it’s not
in the preceding examples) lists these priority codes. The default value is 0. Positive values
represent reduced priority, while negative values represent increased priority.

Memory use Various headings indicate memory use—for instance, RSS is resident set size
(the memory used by the program and its data), and %MEM is the percentage of memory the
program is using. Some output formats also include a SHARE column, which is memory that’s
shared with other processes (such as shared libraries). As with CPU use measures, these col-
umns can help point you to the sources of difficulties, but because legitimate memory needs
of programs vary so much, it’s impossible to give a simple criterion for when a problem exists.

Command The final column in most listings is the command used to launch the process.
This is truncated in Listing 3.2 because this format lists the complete command, but so
much other information appears that the complete command won’t usually fit on one line.
(This is where the wide-column options can come in handy.)

As you can see, a lot of information can be gleaned from a ps listing—or perhaps that
should be the plural listings, because no one format includes all of the available informa-
tion. For the most part, the PID, username, and command are the most important pieces of
information. In some cases, though, you may need specific other components. If your sys-
tem’s memory or CPU use has skyrocketed, for instance, you’ll want to pay attention to the
memory or CPU use columns.

It’s often necessary to find specific processes. You might want to find the
PID associated with a particular command in order to kill it, for instance.
This information can be gleaned by piping the ps output through grep, as
in ps ax | grep bash to find all the instances of Bash.

Although you may need a wide screen or xterm to view the output, you may find ps -A
--forest to be a helpful command in learning about your system. (The pstree command
produces a similar display.) Processes that don’t fall off others were either started directly
by init or have had their parents killed, and so they have been “adopted” by init. Most of
these processes are fairly important—they’re servers, login tools, and so on. Processes that
hang off several others in this tree view, such as xeyes and nedit in Listing 3.1, are mostly
user programs launched from shells.

Viewing Processes Dynamically
If you want to know how much CPU time various processes are consuming relative to one
another, or if you simply want to quickly discover which processes are consuming the most
CPU time, a tool called top is the one for the job. The top tool is a text-mode program,

03843book.indb 113 8/21/09 12:05:08 PM

114 Chapter 3 n Managing Processes and Editing Files

but of course it can be run in an xterm, as shown in Figure 3.2, and there are also GUI
variants, like kpm and gnome-system-monitor. By default, top sorts its entries by CPU use,
and it updates its display every few seconds. This makes it a very good tool for spotting
runaway processes on an otherwise lightly loaded system—those processes almost always
appear in the first position or two, and they consume an inordinate amount of CPU time.
By looking at Figure 3.2, you might think that mencoder is such a process, but in fact, it’s
legitimately consuming a lot of CPU time. You’ll need to be familiar with the purposes and
normal habits of programs running on your system in order to make such determinations;
the legitimate needs of different programs vary so much that it’s impossible to give a simple
rule for judging when a process is consuming too much CPU time.

F i gu r E 3 . 2 The top command shows system summary information and information
on the most CPU-intensive processes on a computer.

Like many Linux commands, top accepts several options. Table 3.2 summaries the most
useful of these options.

TA b lE 3 . 2 Common top Options

Option Name Meaning

-d delay This option specifies the delay between updates, which is normally
5 seconds.

-p pid If you want to monitor specific processes, you can list them using
this option. You’ll need the PIDs, which you can obtain with ps, as
described earlier. You can specify up to 20 PIDs by using this option
multiple times, once for each PID.

03843book.indb 114 8/21/09 12:05:08 PM

Managing Processes 115

TA b lE 3 . 2 Common top Options (continued)

Option Name Meaning

-n iter You can tell top to display a certain number of updates (iter) and
then quit. (Normally, top continues updating until you terminate
the program.)

-b This option specifies batch mode, in which top doesn’t use the
normal screen update commands. You might use this to log CPU
use of targeted programs to a file, for instance.

You can do more with top than watch it update its display. When it’s running, you can
enter any of several single-letter commands, some of which prompt you for additional
information. Table 3.3 summarzies these commands.

TA b lE 3 . 3 Common top Interactive Commands

Option Name Meaning

h or ? These keystrokes display help information.

k You can kill (terminate) a process with this command. The top pro-
gram will ask for a PID number and signal number, and if it’s able
to kill it, it will do so. (The upcoming section “Killing Processes”
describes other ways to kill processes.)

q This option quits from top.

r You can change a process’s priority with this command. You’ll have
to enter the PID number and a new priority value—a positive value
will decrease its priority, and a negative value will increase its pri-
ority, assuming it has the default 0 priority to begin with. Only root
may increase a process’s priority. The renice command (described
shortly, in “Restricting Processes’ CPU Use”) is another way to
accomplish this task.

s This command changes the display’s update rate, which you’ll be
asked to enter (in seconds).

p This sets the display to sort by CPU usage, which is the default.

M You can change the display to sort by memory usage with this
command.

03843book.indb 115 8/21/09 12:05:09 PM

116 Chapter 3 n Managing Processes and Editing Files

More commands are available in top (both command-line options and interactive com-
mands) than can be summarized here; consult the top man page for more information.

One of the pieces of information provided by top is the load average, which is a measure of
the demand for CPU time by applications. In Figure 3.2, you’ll see three load-average estimates
on the top line; these correspond to the load average in the previous one minute, five minutes,
and 15 minutes. A system on which no programs are demanding CPU time will have a load
average of 0. A system with one program running CPU-intensive tasks will have a load average
of 1.0. Higher load averages reflect programs competing for available CPU time. You can also
find the current load average via the uptime command, which displays the load average along
with information on how long the computer has been running. The load average can be useful
in detecting runaway processes. For instance, if a system normally has a load average of 0.5 but
it suddenly gets stuck at a load average of 2.5, there may be a couple of CPU-hogging processes
that have hung—that is, become unresponsive. Hung processes sometimes needlessly consume
a lot of CPU time. You can use top to locate these processes and, if necessary, kill them.

You might think that a load average of 1.0 or below is optimal, since a higher load aver-
age means that the computer must divide its attention between competing processes. This
is sometimes true, but sometimes it’s not. Modern computers often have two or more CPUs
(or CPU cores), which means that the system can divide its CPU time between as many
processes as it has cores with almost no slowdown. For instance, on a dual-core system, a
load average of up to 2.0 will produce almost no speed reduction. Furthermore, modern
CPUs are fast enough that the slowdown caused by the division of a CPU’s time between
processes may be unimportant. Using nice (described in the next section) can interact with
this factor. This effect is hard to quantify, though. Sometimes processes competing for
CPU time will cause noticeable slowdown, as in the slow completion of a lengthy multime-
dia encoding job. Other times the slowdown will cause a barely noticeable effect, as in a
fraction-of-a-second difference in the time required to display a program’s menu bar. Some
Linux systems are intended to be run with greater-than-1.0 load averages, but with CPUs
that are fast enough that the slowdown caused by these high load averages will be unim-
portant. This might be true of a multiuser server, for instance.

Restricting Processes’ CPU Use
There may be times when you’ll want to prioritize your programs’ CPU use. For instance,
you might be running a program that’s very CPU-intensive but that will take a long time to
finish its work, and you don’t want that program to interfere with others that are of a more
interactive nature. Alternatively, on a heavily loaded computer, you might have a job that’s
more important than others that are running, so you might want to give it a priority boost.
In either case, the usual method of accomplishing this goal is through the nice and renice
commands. You can use nice to launch a program with a specified priority or use renice to
alter the priority of a running program.

You can assign a priority to nice in any of three ways: by specifying the priority pre-
ceded by a dash (this works well for positive priorities but makes them look like negative
priorities), by specifying the priority after a -n parameter, or by specifying the priority after

03843book.indb 116 8/21/09 12:05:09 PM

Managing Processes 117

an --adjustment= parameter. In all cases, these parameters are followed by the name of the
program you want to run:

nice [argument] [command [command-arguments]]

For instance, the following three commands are all equivalent:

$ nice -12 number-crunch data.txt

$ nice -n 12 number-crunch data.txt

$ nice --adjustment=12 number-crunch data.txt

All three of these commands run the number-crunch program at priority 12 and pass
it the data.txt file. If you omit the adjustment value, nice uses 10 as a default. The range
of possible values is –20 to 19, with negative values having the highest priority. Only root
may launch a program with increased priority (that is, give a negative priority value), but
any user may use nice to launch a program with low priority. The default priority for a
program run without nice is 0.

If you’ve found that a running process is consuming too much CPU time or is being
swamped by other programs and so should be given more CPU time, you can use the
renice program to alter its priority without disrupting the program’s operation. The
syntax for renice is as follows:

renice priority [[-p] pids] [[-g] pgrps] [[-u] users]

You must specify the priority, which takes the same values as with nice. In addition,
you must specify one or more PIDs (pids), one or more group IDs (pgrps), or one or more
usernames (users). In the latter two cases, renice changes the priority of all programs that
match the specified criterion—but only root may use renice in this way. Also, only root
may increase a process’s priority. If you give a numeric value without a -p, -g, or -u option,
renice assumes the value is a PID. You may mix and match these methods of specification.
For instance, you might enter the following command:

renice 7 16580 -u pdavison tbaker

This command sets the priority to 7 for PID 16580 and for all processes owned by
pdavison and tbaker.

Killing Processes
Sometimes reducing a process’s priority isn’t a strong enough action. A program may have
become totally unresponsive, or you might want to terminate a process that shouldn’t be
running at all. In these cases, the kill command is the tool to use. This program sends a
signal (a method that Linux uses to communicate with processes) to a process. The signal
is usually sent by the kernel, the user, or the program itself to terminate the process. Linux
supports many numbered signals, each of which is associated with a specific name. You can
see them all by typing kill -l. If you don’t use -l, the syntax for kill is as follows:

kill -s signal pid

03843book.indb 117 8/21/09 12:05:09 PM

118 Chapter 3 n Managing Processes and Editing Files

Although Linux includes a kill program, many shells, including Bash and
csh, include built-in kill equivalents that work in much the same way as
the external program. If you want to be sure you’re using the external pro-
gram, type its complete path, as in /bin/kill.

The -s signal parameter sends the specified signal to the process. You can specify the
signal using either a number (such as 9) or a name (such as SIGKILL). The signals you’re most
likely to use are 1 (SIGHUP, which causes many server programs to reread their configuration
files), 9 (SIGKILL, which causes the process to exit without performing routine shutdown
tasks), and 15 (SIGTERM, which causes the process to exit but allows it to close open files and
so on). If you don’t specify a signal, the default is 15 (SIGTERM). You can also use the short-
ened form -signal. If you do this and use a signal name, you should omit the SIG portion of
the name—for instance, use KILL rather than SIGKILL. The pid option is, of course, the PID
for the process you want to kill. You can obtain this number from ps or top.

The kill program will kill only those processes owned by the user who
runs kill. The exception is if that user is root; the superuser may kill any
user’s processes.

A variant on kill is killall, which has the following form:

killall [options] [--] name [...]

This command kills a process based on its name rather than its PID number. For
instance, killall vi kills all the running processes called vi. You may specify a signal in
the shortened form (-signal) or by preceding the signal number with -s or --signal. As
with kill, the default is 15 (SIGTERM). One potentially important option to killall is -i,
which causes it to ask for confirmation before sending the signal to each process. You might
use it like this:

$ killall -i vi

Kill vi(13211) ? (y/n) y

Kill vi(13217) ? (y/n) n

In this example, two instances of the Vi editor were running, but only one should have
been killed. As a general rule, if you run killall as root, you should use the -i parameter;
if you don’t, it’s all too likely that you’ll kill processes that you should not, particularly if
the computer is being used by many people at once.

Some versions of Unix provide a killall command that works very differ-
ently from Linux’s killall. This alternate killall kills all the processes
started by the user who runs the command. This is a potentially much
more destructive command, so if you ever find yourself on a non-Linux
system, do not use killall until you’ve discovered what that system’s
killall does, say by reading the killall man page.

03843book.indb 118 8/21/09 12:05:10 PM

Managing Processes 119

Controlling Foreground and Background Processes
Less extreme process management tools enable you to control whether a process is running
in the foreground or the background—that is, whether or not it’s monopolizing the use of
the terminal from which it was launched. Normally, when you launch a program, it takes
over the terminal, preventing you from doing other work in that terminal. (Some programs,
though, release the terminal. This is most common for servers and some GUI programs.)

If a program is running but you decide you want to use that terminal for something else,
pressing Ctrl+Z normally pauses the program and gives you control of the terminal. (An
important point is that this procedure pauses the program, so if it’s performing real work,
that work stops!) This can be handy if, say, you’re running a text editor in a text-mode
login and you want to check a filename so you can mention it in the file you’re editing.
You’d press Ctrl+Z and type ls to get the file listing. To get back to the text editor, you’d
then type fg, which restores the text editor to the foreground of your terminal. If you’ve
suspended several processes, you’d add a job number, as in fg 2 to restore job 2. You can
obtain a list of jobs associated with a terminal by typing jobs, which displays the jobs and
their job numbers.

Job numbers are not the same as PIDs. PIDs are used by the kernel to track
processes, and many utilities, such as ps, top, and kill, report PIDs or use
them. Job numbers are linked to the terminal from which the process was
launched and are used by fewer programs. Don’t try to use a PID in place
of a job number, or vice versa.

A variant on fg is bg. Where fg restores a job to the foreground, bg restores a job to run-
ning status, but in the background. You might use this command if the process you’re running
is performing a CPU-intensive task that requires no human interaction but you want to use
the terminal in the meantime. Another use of bg is in a GUI environment—after launching a
GUI program from an xterm or similar window, that shell is tied up servicing the GUI pro-
gram, which probably doesn’t really need the shell. Pressing Ctrl+Z in the xterm window will
enable you to type shell commands again, but the GUI program will be frozen. To unfreeze
the GUI program, type bg in the shell, which enables the GUI program to run in the back-
ground while the shell continues to process your commands.

An alternative to launching a program, using Ctrl+Z, and typing bg is to append an amper-
sand (&) to the command when launching the program. For instance, rather than edit a file
with the NEdit GUI editor by typing nedit myfile.txt, you could type nedit myfile.txt &.
This command launches the nedit program in the background from the start, leaving you able
to control your xterm window for other tasks.

Monitoring System Statistics
In addition to ps, top, and similar tools for checking on specific processes, several tools
help you to monitor the health of the system as a whole. In particular, sar, iostat, and
vmstat all provide overall system statistics.

03843book.indb 119 8/21/09 12:05:10 PM

120 Chapter 3 n Managing Processes and Editing Files

The sar tool requires that you launch the sysstat SysV startup script. Only
activities that occur after this script is launched will be recorded.

Obtaining General-Purpose System Statistics
The sar utility is extremely powerful; it can report on a wide range of system use measures
over time. Its basic format is as follows:

sar [options] [interval [count]]

interval is the interval between measurements, in seconds; and count is the
number of measurements to report. Table 3.4 summarizes some of the more useful
sar options; however, there are many more. You should consult the program’s man
page for details. If you don’t pass any options to sar, it produces a CPU utilization
report. If you omit the interval and count options, sar produces information on recent
activity; otherwise, it waits and displays information on the next few time periods, as
specified by those options.

TA b lE 3 . 4 Common sar Options

Option Name Meaning

-A Summarizes a wide variety of information.

-b Displays I/O and transfer rate information.

-B Summarizes paging (virtual memory) statistics.

-c Displays information on process creation—how many processes
are started per second.

-d Reports on block device activity.

-e [hh:mm:ss] Sets the ending time for the report; without this option, the
program continues reporting indefinitely.

-i interval Reports data as close as possible to the specified interval
(in seconds); used when reporting already-recorded data.

-I irq Reports on use of the specified interrupt (IRQ).

-n code Reports on network use. The code keyword can be DEV, NFS, or
various other values to report on specific types of network activity.
Consult the man page for details.

03843book.indb 120 8/21/09 12:05:10 PM

Managing Processes 121

TA b lE 3 . 4 Common sar Options (continued)

Option Name Meaning

-o filename Saves data to the specified file in binary form.

-P cpu Displays CPU use data. The cpu code may be a CPU number or ALL.

-r Reports memory and swap space use information. This information
is more detailed than that reported by the free utility.

-s [hh:mm:ss] Sets the start time for data display.

-u Reports CPU use data. This is the default.

-W Displays swap statistics.

The sar utility is useful for tracking down the source of system slowdowns. If you
receive complaints that the computer slows down at particular times of the day, you can
use sar to examine the load on memory, CPU, devices, and so on, throughout the day to
look for patterns of what might be causing the slowdown. The tool is most helpful if you’re
familiar with normal operations, so you may want to use it on a regular basis for a while,
preferably on several Linux systems that perform different types of tasks, to see what sorts
of loads occur on a variety of Linux systems.

Obtaining Input/Output Statistics
The iostat utility is more specialized than sar, but it can still produce a wide range of
system statistics. These include reports on CPU utilization, block device input/output, and
Network File System (NFS) activity. Its syntax is similar to that of sar:

iostat [options] [interval [count]]

Table 3.5 summarizes some of the more common iostat options. If used without
options, iostat produces a CPU report followed by a report on block devices, similar to
what typing iostat -cd produces.

TA b lE 3 .5 Common iostat Options

Option Name Meaning

-c Creates a CPU utilization report

-d Creates a device utilization report

03843book.indb 121 8/21/09 12:05:11 PM

122 Chapter 3 n Managing Processes and Editing Files

TA b lE 3 .5 Common iostat Options (continued)

Option Name Meaning

-k Displays statistics in kilobytes per second rather than blocks
per second

-m Displays statistics in megabytes per second rather than blocks
per second

-n Creates an NFS utilization report

You can use iostat for many of the same purposes as you’d use sar—to track down
the sources of problems when they’re reported. As with sar, you’ll find this task easier
if you’re familiar with the usual output of iostat, so you should study its output one as
many normally functioning systems as you can.

Obtaining Virtual Memory Statistics
The vmstat utility is similar to sar and iostat in broad strokes, but it specializes in
reporting on virtual memory (swap space) data. Its syntax is similar to that of sar:

vmstat [options] [interval [count]]

Table 3.6 summarizes some of the more common vmstat options. If used without
options, vmstat produces a CPU report followed by a report on block devices, similar to
what typing vmstat -cd produces.

TA b lE 3 .6 Common vmstat Options

Option Name Meaning

-a Reports on active and inactive memory use

-f Displays the number of process forks since the system
booted

-s Displays a variety of memory and virtual memory statistics,
including pages swapped in and out, total available memory,
and so on

-S [unit] Changes reporting units to 1000 bytes (k), 1024 bytes (K),
1,000,000 bytes (m), or 1,048,576 bytes (M)

03843book.indb 122 8/21/09 12:05:11 PM

Setting Process Permissions 123

Setting Process Permissions
Most Linux programs run with the permissions of the user who executed them. For
instance, if jane runs a program, that program can read precisely the same files that jane
can read. A few programs, though, need additional privileges. For instance, su, which
allows one user to take on another’s identity, requires root privileges to do this identity
switching. Such programs use the set user ID (SUID) bit to have the program run with the
privileges of the program file’s owner. That is, the SUID bit alters the effective user ID.
The set group ID (SGID) bit works in a similar manner, but it sets the group with which
the process is associated. Although these features are useful and even occasionally neces-
sary, they’re also at least potential security risks, so you should be sure that as few pro-
grams use these features as possible.

Understanding the Risks of SUID and SGID Programs
There are two major potential risks with SUID and SGID programs:

If the program allows users to do something potentially dangerous, ordinary users Ûn

might abuse the program. For instance, Linux’s fdisk program can modify a disk’s
partitions, potentially leading to a completely destroyed system if abused. Even com-
paratively innocuous programs like cp could be abused if set to be SUID root—if so
configured, any user could copy any file on the computer, which is clearly undesir-
able in the case of sensitive files. For these reasons, neither fdisk nor cp is normally
installed as an SUID program.

Bugs in SUID and SGID programs can cause damage with greater than normal privi-Ûn

leges. If some random program contains a bug that causes it to try to recursively
remove all files on the computer, and if an ordinary user encounters this bug, Linux’s
filesystem security features will minimize the damage. If this program were SUID
root, though, the entire system would be wiped out.

For these reasons, only programs that absolutely require SUID or SGID status should
be so configured. Typically, these are programs that ordinary users might reasonably be
expected to use and that require privileged access to the system. The programmers who
write such programs take great pains to ensure they’re bug free. The root user may set any
program’s SUID or SGID bit, though.

Knowing When to Use SUID or SGID
SUID and SGID are necessary when a program needs to perform privileged operations but
may also legitimately be run by ordinary users. Some common programs that meet this
description include passwd, gpasswd, crontab, su, sudo, mount, umount, and ping. This list
is not complete, however.

03843book.indb 123 8/21/09 12:05:11 PM

124 Chapter 3 n Managing Processes and Editing Files

You can remove the SUID bits on some of these programs, but that may mean that ordi-
nary users won’t be able to use them. Sometimes this may be acceptable—for instance, you
might not want ordinary users to be able to mount and unmount filesystems. Other times,
ordinary users really do need access to these facilities. The su utility is the best way for you
to acquire root privileges in many cases, for instance; and ordinary users should be able to
change their passwords with passwd.

Some programs have SUID or SGID bits set, but they aren’t SUID or SGID root. These
programs may need special privilege to access hardware device files or the like, but they
don’t need full root privilege to do so. For instance, some older distributions configured
their xterm programs in this way. Such configurations are much less dangerous than SUID
root programs because these special users typically don’t have unusual privileges except to
a handful of device or configuration files.

You should be aware of the fact that SUID and SGID bits can be set on directories, as
well as on ordinary files. Used in this way, the bits have different meanings than they do
on program files: an SUID bit on a directory means that only a file’s owner may delete files
in the directory (as opposed to anybody with write permission to the directory), and an
SGID bit means that files created in the directory will have group ownership assigned to
the directory’s owner (as opposed to ownership by the user who created the file).

Finding SUID or SGID Programs
You can use the find command to locate files with their SUID or SGID bits set. Specifi-
cally, you need to use the -perm parameter to this command and specify the s permission
code in the user or group. For instance, the following command locates all SUID or SGID
files on a computer:

find / -perm +ug+s

Controlling daemon Process Permissions

Servers are run in various ways, as described in Chapter 4. Some of these allow you to
set the effective user IDs of the server processes. For instance, both inetd and xinetd
allow you to specify the user under whose name the server runs. Sometimes a server
needs to run with root permissions, but other times that’s not necessary. You should
consult a server’s documentation to learn what its requirements are.

Some servers let you adjust their process ownership through configuration files. For
instance, Apache lets you adjust the username used on most of its processes with the
User option in its httpd.conf file. (In the case of Apache, one process still runs as root,
but it spawns children that run with the ownership you specify.)

03843book.indb 124 8/21/09 12:05:12 PM

Running Jobs at Specific Times 125

You may want to run this command and study the results for your system. If you’re
uncertain about whether a program should have its SUID or SGID bit set, check its man
page and try to verify the integrity of its package using RPM, if your system uses RPM. For
instance, type rpm -V packagename. This will turn up changes to the permissions of files
in packagename, including changes to SUID or SGID bits. (Chapter 7, “Managing Packages
and System Backups,” describes the rpm command in more detail.) Of course, it’s conceiv-
able that a program might have had its SUID or SGID bit set inappropriately even in the
original package file.

Running Jobs at Specific Times
Some system maintenance tasks should be performed at regular intervals and are highly
automated. For instance, the /tmp directory (which holds temporary files created by many
users) tends to collect useless data files. Linux provides a means of scheduling tasks to run
at specified times to handle such issues. This tool is the cron program, which runs what are
known as cron jobs. A related tool is at, which enables you to run a command on a one-
time basis at a specified point in the future, as opposed to doing so on a regular basis, as
cron does.

Understanding the Role of Cron
Cron is a daemon, which means that it runs continuously, looking for events that cause
it to spring into action. Unlike many daemons, which are network servers, cron responds
to temporal events. Specifically, it “wakes up” once a minute, examines configuration
files in the /var/spool/cron and /etc/cron.d directories and the /etc/crontab file, and
executes commands specified by these configuration files if the time matches the time
listed in the files.

There are two types of cron jobs: system cron jobs and user cron jobs. System cron jobs
are run as root and perform system-wide maintenance tasks. By default, most Linux dis-
tributions include system cron jobs that clean out old files from /tmp, perform log rotation
(renaming log files and deleting old ones so that they don’t grow to fill the disk), and so on.
You can add to this repertoire, as described shortly. Ordinary users can create user cron
jobs, which might run some user program on a regular basis. You can also create a user
cron job as root, which might be handy if you need to perform some task at a time not
supported by the system cron jobs, which are scheduled rather rigidly.

One of the critical points to remember about cron jobs is that they run unsupervised.
Therefore, you shouldn’t call any program in a cron job if that program requires user input.
For instance, you wouldn’t run a text editor in a cron job. You might, however, run a script
that automatically manipulates text files, such as log files.

03843book.indb 125 8/21/09 12:05:12 PM

126 Chapter 3 n Managing Processes and Editing Files

Creating System Cron Jobs
The /etc/crontab file controls system cron jobs. This file normally begins with several
lines that set environment variables, such as PATH and MAILTO (the former sets the path, and
the latter is the address to which programs’ output is mailed). The file then contains several
lines that resemble the following:

02 4 * * * root run-parts /etc/cron.daily

This line begins with five fields that specify the time. The fields are, in order, the minute
(0–59), the hour (0–23), the day of the month (1–31), the month (1–12), and the day of the
week (0–7; both 0 and 7 correspond to Sunday). For the month and day of the week values,
you can use the first three letters of the name rather than a number, if you like.

In all cases, you can specify multiple values in several ways:

An asterisk (Ûn *) matches all possible values.

A list separated by commas (such as Ûn 0,6,12,18) matches any of the specified values.

Two values separated by a dash (Ûn -) indicate a range, inclusive of the end points. For
instance, 9-17 in the hour field specifies a time of from 9 a.m. to 5 p.m.

A slash, when used in conjunction with some other multivalue option, specifies stepped Ûn

values—a range in which some members are skipped. For instance, */10 in the minute
field indicates a job that’s run every 10 minutes.

After the first five fields, /etc/crontab entries continue with the account name to be
used when executing the program (root in the preceding example) and the command to be
run (run-parts /etc/cron.daily in this example). The default /etc/crontab entries gener-
ally use run-parts, cronloop, or a similar utility that runs any executable scripts within a
directory. Thus, the preceding example runs all the scripts in /etc/cron.daily at 4:02 a.m.
every day. Most distributions include monthly, weekly, daily, and hourly system cron jobs,
each corresponding to scripts in a directory called /etc/cron.interval, where interval is
a word associated with the run frequency. Others place these scripts in /etc/cron.d/
interval directories.

The exact times chosen for system cron jobs to execute vary from one dis-
tribution to another. Normally, though, daily and longer-interval cron jobs
run early in the morning—between midnight and 6 a.m. Check your /etc/
crontab file to determine when your system cron jobs run.

To create a new system cron job, you may create a script to perform the task you want
performed and copy that script to the appropriate /etc/cron.interval directory. When the
runtime next rolls around, cron will run the script.

03843book.indb 126 8/21/09 12:05:12 PM

Running Jobs at Specific Times 127

Before submitting a script as a cron job, test it thoroughly. This is particu-
larly important if the cron job will run when you’re not around. You don’t
want a bug in your cron job script to cause problems by filling the hard disk
with useless files or producing thousands of e-mail messages when you’re
not present to quickly correct the problem.

If you need to run a cron job at a time or interval that’s not supported by the standard
/etc/crontab, either you can modify that file to change or add the cron job runtime or
you can create a user cron job, as described in the next section. If you choose to modify the
system cron job facility, model your changes after an existing entry, changing the times and
script storage directory as required.

System cron job storage directories should be owned by root, and only
root should be able to write to them. If ordinary users can write to a sys-
tem cron directory, unscrupulous users could write scripts to give them-
selves superuser privileges and place them in the system cron directory.
The next time cron runs those scripts, the users will have full administra-
tive access to the system.

Creating User Cron Jobs
To create a user cron job, you use the crontab utility, not to be confused with the /etc/
crontab configuration file. The syntax for crontab is as follows:

crontab [-u user] [-l | -e | -r] [file]

If given without the -u user parameter, crontab modifies the cron job associated with
the current user. (User cron jobs are often called crontabs, but with that word also used in
reference to the system-wide configuration file and the utility itself, this usage can be per-
plexing.) The crontab utility can become confused by the use of su to change the current
user identity, so if you use this command, it’s safest to also use -u user, even when you are
modifying your own cron job.

If you want to work directly on a cron job, use one of the -l, -e, or -r options. The -l
option causes crontab to display the current cron job, -r removes the current cron job, and
-e opens an editor so that you can edit the current cron job. (Vi is the default editor, but
you can change this by setting the VISUAL or EDITOR environment variable, as described in
Chapter 2.)

Alternatively, you can create a cron job configuration file and pass the filename to
crontab using the file parameter. For instance, typing crontab -u tbaker my-cron
causes crontab to use my-cron for tbaker’s cron jobs.

Whether you create the cron job and submit it via the file parameter or edit it via -e,
the format of the cron file is similar to that described earlier. You can set environment

03843book.indb 127 8/21/09 12:05:12 PM

128 Chapter 3 n Managing Processes and Editing Files

variables by using the form VARIABLE=value, or you can specify a command preceded by five
numbers or wildcards to indicate when the job is to run. In a user cron job, however, you
do not specify the username used to execute the job, as you do with system cron jobs. That
information is derived from the owner of the cron job. Listing 3.3 shows a sample cron job
file. This file runs two programs at different intervals: the fetchmail program runs every
30 minutes (on the hour and half hour), and clean-adouble runs on Mondays at 2:00 a.m.
Both programs are specified via complete paths, but you could include a PATH environment
variable and omit the complete path specifications.

listing 3.3: A Sample User Cron Job File

SHELL=/bin/bash

MAILTO=tbaker

HOME=/home/tbaker

0,30 * * * * /usr/bin/fetchmail -s

0 2 * * mon /usr/local/bin/clean-adouble $HOME

User access to cron can be controlled via the /etc/cron.allow and /etc/cron.deny files.
Add a username to cron.allow to explicitly allow that user to use cron; add a username to
cron.deny to explicitly deny that user the ability to use cron. The keyword ALL in either file
stands for all users, so you can make access to cron very selective by placing ALL in cron.deny
and then adding only trusted users to cron.allow.

Using at
Sometimes cron is overkill. You might simply want to run a single command at a specific
point in the future on a onetime basis, rather than on an ongoing basis. For this task,
Linux provides another command: at. In ordinary use, this command takes a single option
(although options to fine-tune its behavior are also available): a time. This time can take
any of several forms:

Time of day You can specify the time of day as HH:MM, optionally followed by AM or PM if
you use a 12-hour format. If the specified time has already passed, the operation is sched-
uled for the next occurrence of that time—that is, for the next day.

noon, midnight, or teatime These three keywords stand for what you’d expect (teatime
is 4:00 p.m.).

Day specification To schedule an at job more than 24 hours in advance, you must add a day
specification after the time of day specification. You can do this in numeric form, using the
format MMDDYY, MM/DD/YY, or DD.MM.YY. Alternatively, you can specify the date as month-name
day or month-name day year.

now + count time-units You can specify a time using the keyword now, a plus sign (+),
and a time period, as in now + 2 hours to run a job in two hours.

When you run at and give it a time specification, the program responds with its
own prompt, at>, which you can treat much like your normal Bash or other command

03843book.indb 128 8/21/09 12:05:13 PM

Getting and Setting Kernel Information 129

shell prompt. When you’re done typing commands, press Ctrl+D to terminate input.
Alternatively, you can pass a file with commands by using the -f parameter to at, as in
at -f commands.txt noon to use the contents of commands.txt as the commands you
want to run at noon.

The at command has several support tools. The most important of these is atd, the at
daemon. This program must be running for at to do its work. If it’s not, check for its presence
using ps, as described earlier, in “Examining Process Lists with ps.” If it’s not running, look
for a SysV startup script and ensure it’s enabled, as described in Chapter 4.

Other at support programs include atq, which lists pending at jobs; atrm, which
removes an at job from the queue; and batch, which works much like at but executes jobs
when the system load level drops below 0.8.

Getting and Setting Kernel Information
The processes described thus far are ordinary user-mode processes—that is, those run by users
(including root). The Linux kernel, however, is a special type of process. The kernel is the
lowest-level code that runs as part of Linux. (In fact, technically Linux is the kernel; every-
thing else in a Linux OS runs atop the Linux kernel.) The kernel manages memory, is respon-
sible for doling out CPU time, controls access to hardware, and so on.

Because of the importance of the kernel, various utilities give you the ability to query
and configure the kernel in various ways. Simply knowing what kernel you’re running is
sometimes very important, so you should understand the tools that provide this informa-
tion. You can also view or modify various kernel control variables. These variables enable
you to fine-tune how the kernel works.

Obtaining Kernel Version Information
The uname command is the traditional way to learn about your kernel. Table 3.7 summa-
rizes the options available to this command.

TA b lE 3 .7 Common uname Options

Option Name Option Abbreviation Meaning

--all -a You can obtain a display of all the available
information with this option.

--kernel-name -s This option prints the kernel name. On a
Linux system, the result is Linux.

--nodename -n This option displays the computer’s TCP/IP
network hostname.

03843book.indb 129 8/21/09 12:05:13 PM

130 Chapter 3 n Managing Processes and Editing Files

TA b lE 3 .7 Common uname Options (continued)

Option Name Option Abbreviation Meaning

--kernel-release -r You can learn the kernel version number,
such as 2.6.28, with this option. Note that
many distributions add additional code
numbers to the kernel version number, as in
2.6.18-92.1.22.el5 for the stock kernel pro-
vided with CentOS 5.

--kernel-version -v This option presents ancillary compilation
information, such as the compilation date
and perhaps one or two compilation options.
(SMP refers to a kernel that supports multiple
CPUs or CPU cores, for example.)

--machine -m The computer’s machine name, in uname par-
lance, is the CPU architecture for which the
kernel was compiled. When run on a 32-bit
x86 system, uname is likely to return i686 or
something similar; on a 64-bit x86-64 sys-
tem, the result will be x86_64. Note that this
refers to the CPU for which the kernel was
compiled, not necessarily the CPU on which
it’s running. It’s possible to run a 32-bit ker-
nel on a 64-bit x86-64 CPU, for instance, in
which case uname -m will return i686.

--processor -p You can obtain the type of CPU hardware
in use with this option. Sometimes this will
be the same as what -m returns; other times
it will be a new code, such as athlon; and
occasionally the result will be unknown.

--hardware-
platform

-i This option produces yet another code
related to the CPU type. This one is a more
general CPU family code. For x86 systems
(including 32-bit kernels run on x86-64
CPUs), it’s likely to be i386; for x86-64 sys-
tems in 64-bit mode, it should be x86-64.
This option sometimes returns unknown.

--operating-
system

-o This option normally returns GNU/Linux on
a Linux system.

03843book.indb 130 8/21/09 12:05:13 PM

Getting and Setting Kernel Information 131

The simplest way to use uname is generally to pass it the -a option:

$ uname -a

Linux halrloprillalar.rodsbooks.com 2.6.28 #17 PREEMPT Thu Jan 15 12:39:27 EST➥

2009 i686 athlon i386 GNU/Linux

This option enables you to examine all of the data that can be obtained from uname.
You can, of course, pass uname a different option if you know you want a specific piece of
information. Scripts often use uname in this way to help them adapt to different systems.
For instance, a script might use uname -s to determine whether it’s running on a Linux or
FreeBSD system and then customize its actions accordingly.

A tool that’s similar to uname in many ways is the /proc/version file. You can use cat to
display this file:

$ cat /proc/version

Linux version 2.6.28 (rodsmith@halrloprillalar.rodsbooks.com) (gcc version➥

4.3.2 20081105 (Red Hat 4.3.2-7) (GCC)) #17 PREEMPT Thu Jan 15 12:39:27 EST➥

2009

This example is from the same system that produced the preceding uname -a output.
As you can see, the two tools provide similar, but not quite identical, information. The
/proc/version file includes the username of the user who compiled the kernel and the
name and version of the compiler that did the job, for instance; but /proc/version omits
some of the detailed hardware information that uname provides.

Setting System Control Data
The /proc directory is an interesting one if you want to learn about your computer. As just
described, /proc/version provides information on your kernel. Other files in /proc can be
equally informative. This directory doesn’t actually point to files on your hard disk, but to
pseudo-files that the kernel maintains. These files provide information on the kernel and
its subsystems. The /proc/sys subdirectory is particularly important because it provides
information on an assortment of low-level hardware features.

Rather than dig through the files in the /proc/sys directory tree, though, you can use a
utility known as sysctl to do the job. This program enables you to view and set options in
this tree using a key, which is a named variable, and a value, which is the setting associated
with the key. Keys come in multiple parts, separated by dots (.) or slashes (/). These parts
correspond to the subdirectories and files in the /proc/sys directory tree. For instance, the
kernel.ostype (or kernel/ostype) key refers to the /proc/sys/kernel/ostype file. This
key (or file) normally contains the value Linux on a Linux system.

The syntax for sysctl is as follows:

sysctl [options] [key | key=value | filename]

03843book.indb 131 8/21/09 12:05:13 PM

132 Chapter 3 n Managing Processes and Editing Files

Table 3.8 summarizes the options available for sysctl.

TA b lE 3 . 8 Common sysctl Options

Option Name Meaning

-a This option displays all the keys and their associated values. It’s
used without a key or filename.

-A This option works much like the -a option. The man page specifies a
table form.

-n You can disable the display of key names with this option.

-N This option disables display of values.

-q This option is much like -N, but it affects only standard output.

-e This option disables the display of errors should sysctl encounter
an unknown key.

-w You can change a setting with this option. You must then pass
key=value, where key is a key name and value is the value you want
to set.

-p You can change multiple settings at once by specifying them in a
file, whose name you must pass to sysctl.

Most of these options refer to read activity. If you pass -a as the first parameter, you can
view all of the keys, values, or both. If you don’t use -a, you’ll normally pass a key name
to see the associated value or use the -w or -p option to change one or a set of values. For
instance, suppose you want to verify and then reset the computer’s hostname and reset vari-
ous options to their startup values. You might type this:

sysctl kernel.hostname

kernel.hostname = diana.luna.edu

sysctl -w kernel.hostname=artemis.luna.edu

kernel.hostname = artemis.luna.edu

sysctl -p /etc/sysctl.conf

The final command in this example will be followed by lines that echo the keys and values
that are being set from the specified file. In fact, the /etc/sysctl.conf file is the name of a

03843book.indb 132 8/21/09 12:05:14 PM

Editing Files with Vi 133

file that holds the computer’s startup kernel options. You can peruse and edit this file if you
want to make permanent changes to your computer’s configuration.

Most of the options that can be set via sysctl can also be set via more
specialized tools. For instance, the hostname command (described in
Chapter 8, “Configuring Basic Networking”) displays or sets the com-
puter’s hostname, much as the kernel.hostname key in sysctl does.
The main advantage of sysctl, or of the /etc/sysctl.conf file, is that it
enables you to set a variety of options using one tool or from one location.

Some kernel configuration tasks require a much more intrusive approach than sysctl
offers. Most notably, it’s sometimes necessary to recompile your kernel. In broad strokes,
you can do this by downloading the kernel source code from http://www.kernel.org
or other sites, uncompressing the tarball, configuring the kernel, compiling it, installing
it, and rebooting. This task is more tedious than it is difficult, but it does require a good
understanding of your hardware and of the features you need. The advantage of compiling
a custom kernel is that, if you do it correctly, you’ll have a kernel that’s fine-tuned for your
computer and its needs. You can include precisely the drivers you need, fine-tune multitask-
ing options, and remove features you know you won’t use. Web sites such as http://www
.cyberciti.biz/tips/compiling-linux-kernel-26.html and http://www.freeos.com/
articles/2589/ describe the process in more detail. The CompTIA Linux+ objectives do
not explicitly mention kernel compilation.

Editing Files with Vi
Vi was the first full-screen text editor written for Unix. It’s designed to be small and
simple. Vi is small enough to fit on tiny, floppy-based emergency boot systems. For this
reason alone, Vi is worth learning; you may need to use it in an emergency recovery situ-
ation. Vi is, however, a bit strange, particularly if you’re used to GUI text editors. To use
Vi, you should first understand the three modes in which it operates. Once you under-
stand those modes, you can begin learning about the text-editing procedures Vi imple-
ments. This section also examines how to save files and exit from Vi.

Most Linux distributions actually ship with a variant of Vi known as Vim,
or “Vi Improved.” As the name implies, Vim supports more features than
the original Vi does. The information presented here applies to both Vi and
Vim. Most distributions that ship with Vim support launching it by typing
vi, as if it were the original Vi.

03843book.indb 133 8/21/09 12:05:14 PM

134 Chapter 3 n Managing Processes and Editing Files

Using Vi Modes
At any given moment, Vi is running in one of three modes:

Command mode This mode accepts commands, which are usually entered as single letters.
For instance, i and a both enter edit mode, although in somewhat different ways, as described
shortly, and o opens a line below the current one.

Ex mode To manipulate files (including saving your current file and running outside pro-
grams), you use ex mode. You enter ex mode from command mode by typing a colon (:),
typically directly followed by the name of the ex mode command you want to use. After
you run the ex mode command, Vi returns automatically to command mode.

Edit mode You enter text in edit mode. Most keystrokes result in text appearing on the
screen. One important exception is the Esc key, which exits from edit mode back to com-
mand mode.

If you’re not sure what mode Vi is in, press the Esc key. This will return you
to command mode, from which you can reenter edit mode, if necessary.

Vi terminology concerning modes is inconsistent. Ex mode is sometimes
called line mode or command-line mode, and edit mode is sometimes
referred to as text mode. Some sources don’t refer to ex mode as a separate
mode at all, but instead refer to extended commands or use similar terms.

Editing Text
As a method of learning Vi, consider the task of editing /boot/grub/menu.lst to add a
new kernel. (Some distributions call this file /boot/grub/grub.conf.) Listing 3.4 shows the
original menu.lst file used in this example. If you want to follow along, enter it using a text
editor with which you’re already familiar, and save it to a file on your disk.

listing 3.4: Sample /boot/grub/menu.lst File

default=0

timeout=10

splashimage=(hd1,5)/grub/splash.xpm.gz

title Fedora 10 (2.6.28)

 root (hd1,5)

 kernel /bzImage-2.6.28 ro root=/dev/sda4 rhgb

 initrd /initrd-2.6.28.img

03843book.indb 134 8/21/09 12:05:14 PM

Editing Files with Vi 135

Don’t try editing your real /boot/grub/menu.lst file as a learning exercise;
a mistake could render your system unbootable! You might put your test
menu.lst file in your home directory for this exercise.

The first step to using Vi is to launch it and have it load the file. In this example, type
vi menu.lst while in the directory holding the file. The result should resemble Figure 3.3,
which shows Vi running in a Konsole (xterm-like) window. The tildes (~) down the left
side of the display indicate the end of the file. The bottom line shows the status of the last
command—an implicit file load command because you specified a filename when launching
the program.

F i gu r E 3 . 3 Vi’s text-mode display provides few “bells and whistles”; the GUI
decorations shown here belong to the Konsole window in which Vi is running.

Adding a new entry to menu.lst involves duplicating the lines beginning with the
title line and modifying the duplicates. Therefore, the first editing task is to duplicate
these four lines. To do this, follow these steps:

1. Move the cursor to the beginning of the title line by using the down arrow key; you
should see the cursor resting on the t.

2. You must now “yank” four lines of text. This term is used much as “copy” is used in
most text editors—you copy the text to a buffer from which you can later paste it back
into the file. To yank text, you use the yy command, preceded by the number of lines
you want to yank. Thus, type 4yy (do not press the Enter key, though). Vi responds
with the message 4 lines yanked on its bottom status line. The dd command works
much like yy, but it deletes the lines as well as copying them to a buffer.

03843book.indb 135 8/21/09 12:05:14 PM

136 Chapter 3 n Managing Processes and Editing Files

3. Move the cursor to the last line of the file by using the arrow keys. (The cursor may be
resting on the line beginning initrd or on a line below that, depending on whether the
file contains any empty lines.)

4. Type p (again, without pressing the Enter key). Vi pastes the contents of the buffer
starting on the line after the cursor. The file should now have two identical title
stanzas. The cursor should be resting at the start of the second one. If you want to
paste the text into the document starting on the line before the cursor, use an upper-
case P command.

Now that you’ve duplicated the necessary lines, you must modify one copy to point to
your new kernel. To do so, follow these steps:

1. Move the cursor to the F in Fedora on the second title line. You’re about to begin
customizing this second stanza.

2. Up until now, you’ve operated Vi in command mode. You can use several different
commands to enter edit mode. At this point, the most appropriate is R, which enters
edit mode so that it is configured for text replacement rather than insertion. If you pre-
fer insert mode, you could use i or a (the latter advances the cursor one space, which is
sometimes useful at the end of a line). For the purposes of these instructions, type R to
enter edit mode.

3. Type a new title to replace the current one. For instance, if you’re adding a 2.6.29 kernel,
you might call this stanza Fedora 10 (2.6.29).

4. Press Esc to return to command mode. You can now use the arrow keys to position the
cursor two lines down on the kernel name (/bzImage-2.6.28 in this example). Type R
again to enter edit mode. (On some systems, it’s possible to reposition the cursor with-
out leaving edit mode, but sometimes attempting to do so causes spurious text entry.)

5. Type a new kernel name, such as /bzImage-2.6.29. This label should replace the
existing linux label.

6. Perform steps similar to the previous two to edit the initrd entry for the new kernel’s
initial RAM disk.

7. Exit from edit mode by pressing the Esc key.

8. Save the file and quit by typing :wq. This is actually an ex mode command, as
described shortly.

Many additional commands are available that you might want to use in some situations.
Here are some of the highlights:

Case changes Suppose you need to change the case of a word in a file. Instead of entering
edit mode and retyping the word, you can use the tilde (~) key in command mode to change
the case. Position the cursor on the first character you want to change, and press ~ repeat-
edly until the task is done.

Undo To undo any change, type u in command mode.

03843book.indb 136 8/21/09 12:05:15 PM

Editing Files with Vi 137

Searches To search forward for text in a file, type / in command mode, followed immedi-
ately by the text you want to locate. Typing ? will search backward rather than forward.

Global replacement To replace all occurrences of one string by another, type :%s/original/
replacement, where original is the original string and replacement is its replacement. Change
% to a starting line number, comma, and ending line number to perform this change on just a
small range of lines.

There’s a great deal more depth to Vi than is presented here; the editor is quite capable,
and some Linux users are very attached to it. Entire books have been written about Vi.
Consult one of these, or a Vi Web page like http://www.vim.org, for more information.

Saving Changes
To save changes to a file, type :w from command mode. This enters ex mode and runs the
w ex-mode command, which writes the file using whatever filename you specified when you
launched Vi. Related commands enable other functions:

Edit new file The :e command edits a new file. For instance, :e /etc/inittab loads
/etc/inittab for editing. Vi won’t load a new file unless the existing one has been saved
since its last change or unless you follow :e with an exclamation mark (!).

Include existing file The :r command includes the contents of an old file in an existing one.

Quit Use the :q command to quit from the program. As with :e, this command won’t
work unless changes have been saved or you append an exclamation mark to the command.

You can combine ex commands such as these to perform multiple actions in sequence.
For instance, typing :wq writes changes and then quits from Vi.

More linux Text Editors

For most day-to-day uses, you may prefer to use an editor other than Vi. Emacs is a com-
mon choice for this use. Emacs is a very full-featured editor, with plug-ins that handle
many traditionally noneditor tasks, such as reading e-mail. Emacs runs both in text mode
and in an X window. Like Vi, though, Emacs is a bit strange and intimidating to the uniniti-
ated. Stripped-down text-mode Emacs-like programs, such as jed and nano, are popu-
lar among those who like Emacs but want a slimmer editor. GUI editors, such as KEdit,
gedit, and NEdit, are helpful for those who are used to GUI editors in Windows or Mac
OS. You can try any of these editors for day-to-day use if you don’t like Vi; but be aware
that only Vi is mentioned among the Linux+ objectives.

03843book.indb 137 8/21/09 12:05:15 PM

138 Chapter 3 n Managing Processes and Editing Files

Summary
Many Linux system administration tasks are performed by manipulating files. Linux file-
manipulation commands include those for navigating through directories, moving and copying
files, manipulating directories, locating files, and examining files. Using redirection and pipes
with such commands is also a useful skill to possess. Beyond basic file manipulation commands
are commands to actually edit files, such as the Vi editor. Vi is particularly important for sys-
tem administration because it’s a popular editor for inclusion on emergency Linux systems.

Additional system administration tasks involve the manipulation of processes—that
is, running programs. You can use tools such as ps and top to view lists of processes and
important process characteristics. Additional tools, such as nice and renice, enable you to
adjust the priorities of processes. You can even terminate errant processes using kill. Pro-
cesses normally run as the user who launched them; however, the SUID and GUID bits on
program files enable programs to run as the user or group that owns the file.

The kernel is, in some sense, the master process of a Linux system. Thus, you should be
able to learn some details about your kernel and adjust some of its characteristics.

Exam Essentials

Evaluate the need for SUID or SGID programs. Some programs, such as su and passwd,
must have enhanced privileges in order to operate. Most programs, though, do not require
these privileges and so should not have their SUID or SGID bits set.

Summarize how to obtain process information. The ps command is the premiere tool for
producing process listings. Its many options enable you to customize what processes appear
in the listing and what information about the processes is displayed. For a dynamically
updated process listing, the top command does the job.

Understand how to limit the CPU time used by a process. You can launch a program with
nice, or you can use renice to alter its priority in obtaining CPU time. If a process is truly
out of control, you can terminate it with the kill command.

Know how to create a cron job. You create a system cron job by placing a script in an
appropriate directory, such as /etc/cron.daily. You can create a user cron job by using
the crontab command, which enables you to edit a configuration file or pass one to the
utility for appropriate handling.

Describe how to identify the kernel a Linux system is running. The uname command
returns basic kernel and system information, such as the kernel type, version, and target
platform. You can obtain specific information using particular options, or you can obtain
all the data that uname can determine by passing it the -a option.

Summarize Vi’s three editing modes. You enter text using edit mode, which supports text
entry and deletion. The command and ex modes are used to perform more complex com-
mands or run outside programs to operate on the text entered or changed in edit mode.

03843book.indb 138 8/21/09 12:05:15 PM

Review Questions 139

Review Questions

1. Which of the following commands creates a display of processes, showing the parent/child
relationships through links between their names?

A. ps --forest

B. ps aux

C. ps -e

D. All of the above

2. What programs might you use to learn what your system’s load average is? (Choose all
that apply.)

A. ld

B. load

C. top

D. uptime

3. You use top to examine the CPU time being consumed by various processes on your sys-
tem. You discover that one process, dfcomp, is consuming more than 90 percent of your
system’s CPU time. What can you conclude?

A. Very little; dfcomp could be legitimately consuming that much CPU time, or it could be
an unauthorized or malfunctioning program.

B. No program should consume 90 percent of available CPU time; dfcomp is clearly
malfunctioning and should be terminated.

C. This is normal; dfcomp is the kernel’s main scheduling process, and it consumes any
unused CPU time.

D. This behavior is normal if your CPU is less powerful than a 2.5GHz EM64T Pentium;
but on newer systems, no program should consume 90 percent of CPU time.

4. You type jobs at a Bash command prompt and receive a new command prompt with no
intervening output. What can you conclude?

A. The total CPU time used by your processes is negligible (below 0.1).

B. No processes are running under your username except the shell you’re using.

C. The jobs shell is installed and working correctly on the system.

D. No background processes are running that were launched from the shell you’re using.

5. Which two of the following commands are equivalent to one another? (Choose two.)

A. nice --value 10 crunch

B. nice -n -10 crunch

C. nice -10 crunch

D. nice crunch

03843book.indb 139 8/21/09 12:05:15 PM

140 Chapter 3 n Managing Processes and Editing Files

6. Which of the following are restrictions on ordinary users’ abilities to run renice? (Choose
all that apply.)

A. Users may not modify the priorities of processes that are already running.

B. Users may not modify the priorities of other users’ processes.

C. Users may not decrease the priority (that is, increase the priority value) of their own
processes.

D. Users may not increase the priority (that is, decrease the priority value) of their own
processes.

7. You discover that a process with PID 27319 is running out of control, consuming most of
the system’s CPU time when it shouldn’t be. As root, you type kill -15 27319, but the
process continues to run. What might you try next? (Choose all that apply.)

A. Type kill -9 27319.

B. Type kill -TERM 27319.

C. Type kill -KILL 27319.

D. Type killall 27319.

8. Which of the following are risks of SUID and SGID programs? (Choose all that apply.)

A. The program files are large and thus may cause a disk to run out of space.

B. Bugs in the programs may cause more damage than they would in ordinary programs.

C. Users may be able to abuse a program’s features, thus doing more damage than would
otherwise be possible.

D. Because the programs require password entry, running them over an insecure network
link runs the risk of password interception.

9. Which of the following commands would you type to locate all SUID or SGID programs
installed on the computer?

A. find / -suid -sgid

B. find / -perm +u+s

C. find / -perm +suid+sgid

D. find / -perm +ug+s

10. Which of the following lines, if used in a user cron job, will run /usr/local/bin/cleanup
twice a day?

A. 15 7,19 * * * tbaker /usr/local/bin/cleanup

B. 15 7,19 * * * /usr/local/bin/cleanup

C. 15 */2 * * * tbaker /usr/local/bin/cleanup

D. 15 */2 * * * /usr/local/bin/cleanup

03843book.indb 140 8/21/09 12:05:15 PM

Review Questions 141

11. Which of the following tasks is likely to be handled by a cron job? (Choose all that apply.)

A. Starting an important server when the computer boots

B. Finding and deleting old temporary files

C. Scripting supervised account creation

D. Monitoring the status of servers and e-mailing a report to the superuser

12. What is wrong with the following system cron job entry (in /etc/crontab)?
17 * * * * run-parts /etc/cron.hourly

A. This command should run hourly but will run only at 5:00 p.m.

B. There is no run-parts command in Linux.

C. The time specification is incomplete.

D. It’s missing a user specification.

13. A user creates a cron job to retrieve e-mail from a remote server using the fetchmail
program. What is true of this cron job, if it’s properly configured?

A. The fetchmail process runs with the UID of the user who created the cron job.

B. The fetchmail process runs with the root UID

C. The fetchmail process runs with the crontab UID.

D. The fetchmail process runs with the nobody UID.

14. At 10:07 a.m., you type at 9:00, press the Enter key, and type a command at the at>
prompt. What will happen, assuming at is correctly configured?

A. The command you typed will never execute.

B. The command you typed will execute at 9:00 a.m. in one year.

C. The command you typed will execute at 9:00 p.m.

D. The command you typed will execute at 9:00 a.m. the following day.

15. What is the purpose of the /etc/sysctl.conf file?

A. It holds miscellaneous system configuration options that are set via the sysctl utility
when the system boots.

B. It specifies the order in which system services are started when the computer boots.

C. It specifies the filesystems that are mounted at boot time or that may be mounted man-
ually by ordinary users.

D. It identifies system services that are started directly by the init process when the com-
puter boots.

03843book.indb 141 8/21/09 12:05:16 PM

142 Chapter 3 n Managing Processes and Editing Files

16. You type uname -a at a Bash prompt and receive the following output. Which of the fol-
lowing is not true of the computer that produced this output?

Linux aldrin.luna.edu 2.6.28 #6 SMP PREEMPT Wed Jan 14 14:26:19 EST 2009➥

x86_64 GNU/Linux

A. The kernel supports multiple CPUs (or a multicore CPU).

B. The computer’s hostname is aldrin.luna.edu.

C. The computer is running a 32-bit Linux kernel.

D. The system is running a 2.6.28 Linux kernel.

17. You edit a file using Vi. When you’re done, you hit the Esc key to exit from edit mode, and
you type :q in command mode to exit from Vi. Vi then complains. Why?

A. The :q command was incomplete; you must type :q! to exit from Vi.

B. The :q command doesn’t exit from Vi; it attempts to spell-check the document, but
you didn’t specify a spell-check dictionary.

C. You didn’t save your changes; :q exits from Vi, but Vi recognizes there are unsaved
changes and warns you of this fact.

D. You can exit from Vi only using ex mode, which you must enter by typing :ex before
you type :q.

18. You’ve finished typing a document in Vi, and you want to save it. How would you do this?

A. Press Esc to enter command mode, and then type :w to write the file.

B. Select File Save from the menu.

C. Press Ctrl+X and then Ctrl+S.

D. Any of the above.

19. Which mode in Vi would you use to type text?

A. Ex mode

B. Command mode

C. Type mode

D. Edit mode

20. How would you remove two lines of text from a file using Vi?

A. In command mode, position the cursor on the first line, and type 2dd.

B. In command mode, position the cursor on the last line, and type 2yy.

C. In edit mode, position the cursor at the start of the first line, hold the Shift key down
while pressing the down arrow key twice, and hit the Delete key on the keyboard.

D. In edit mode, position the cursor at the start of the first line, and press Ctrl+K twice.

03843book.indb 142 8/21/09 12:05:16 PM

Answers to Review Questions 143

Answers to Review Questions

1. A. The --forest option to ps shows parent/child relationships by creating visual links
between process names in the ps output. (Listing 3.1 shows this effect.) Options B and C
are both valid ps commands, but neither creates the specified effect.

2. C, D. The top utility displays a dynamic list of processes ordered according to their CPU
use along with additional system information, including load averages. If you want only the
load average at a specific moment, uptime may be better because it presents less extraneous
information—it shows the current time, the time since the system was booted, the number
of active users, and the load averages. The ld command has nothing to do with displaying
load averages (it’s a programming tool that links together program modules into an execut-
able program). There is no standard Linux program called load.

3. A. CPU-intensive programs routinely consume 90 percent or more of available CPU time,
but not all systems run such programs. Furthermore, some types of program bugs can
create such CPU loads. Thus, you must investigate the matter more. What is dfcomp? Is it
designed as a CPU-intensive program? Is it consuming this much CPU time consistently, or
was this a brief burst of activity?

4. D. The jobs command summarizes processes that were launched from your current shell.
When no such processes are running, jobs returns nothing, so option D is correct. The
jobs command doesn’t check or summarize CPU load, so option A is incorrect. The jobs
command also doesn’t check for processes run from shells other than the current one, so
option B is incorrect (processes running under your username could have been launched
from another shell or from a GUI environment). There is no standard jobs shell in Linux,
so option C is incorrect.

5. C, D. The nice command launches a program (crunch in this example) with increased
or decreased priority. The default priority when none is specified is 10, and the nice -10
crunch command also sets the priority to 10, so options C and D are equivalent. Option A
isn’t a valid nice command because nice has no --value option. Option B is a valid nice
command, but it sets the priority to –10 rather than 10.

6. B, D. Linux insulates users’ actions from one another, and this rule applies to renice; only
root may modify the priority of other users’ processes. Similarly, only root may increase
the priority of a process, in order to prevent users from setting their processes to maximum
priority, thus stealing CPU time from others. Option A correctly describes nice, but not
renice; the whole point of renice is to be able to change the priorities of existing pro-
cesses. Option C also describes an action that renice permits.

03843book.indb 143 8/21/09 12:05:16 PM

144 Chapter 3 n Managing Processes and Editing Files

7. A, C. Signal 15, passed to process 27319 by typing kill -15 27319, terminates well-
behaved processes but sometimes fails when processes are out of control. Options A and
C both pass signal 9 (aka SIGKILL) to the process, which is more likely to work with an
out-of-control process but gives the process no chance to shut down cleanly. Another name
for signal 15 is SIGTERM, so option B is exactly equivalent to the original command
that failed to work. The killall command of option D terminates processes by name, so
option D will attempt to terminate any process with a name (but not a PID) of 27319. Fur-
thermore, killall (like kill) sends a signal 15 by default, so even if PID 27319 happens
to be named 27319, option D won’t have any more effect than the original command or
option B.

8. B, C. SUID and SGID programs run with effective permissions other than those of the per-
son who runs the program—frequently as root. Therefore, bugs or abuses perpetrated by
the user may do more damage than could be done if the programs were not SUID or SGID.
These programs don’t consume more disk space than otherwise identical ordinary pro-
grams. Although some SUID and SGID programs ask for passwords (such as passwd and
su), this isn’t true of all such programs (such as mount and ping).

9. D. The -perm parameter to find locates files with particular permissions, and the +ug+s
option to -perm specifies a permission with the user or group ID bit set; hence, option
D will do the job. Option A is incorrect because there are no -suid or -sgid options to
find. Option B is almost correct; it will find all files with the SUID bit set, but it won’t find
files with the SGID bit set (unless the SUID bit is also set). Option C is incorrect because
+suid+sgid is an invalid option to the -perm parameter.

10. B. User cron jobs don’t include a username specification (tbaker in options A and C). The
*/2 specification for the hour in options C and D causes the job to execute every other hour;
the 7,19 specification in options A and B causes it to execute twice a day, on the 7th and 19th
hours (in conjunction with the 15 minute specification, that means at 7:15 a.m. and 7:15 p.m.).

11. B, D. Cron is a good tool for performing tasks that can be done in an unsupervised man-
ner, like deleting old temporary files or checking to see that servers are running correctly.
Tasks that require interaction, such as creating accounts, are not good candidates for cron
jobs, which must execute unsupervised. Although a cron job could restart a crashed server,
it’s not normally used to start a server when the system boots; that’s done through SysV
startup scripts or a super server.

12. D. System cron jobs require a user specification after the time specification and before the
command to be executed, and this entry is missing in this specification. (This entry would
be legal for a user cron job, though, assuming the user could run the command.) Option A
is incorrect because the time specification runs the job at 17 minutes past the hour, every
hour; and even if it did run at 5:00 p.m., the entry would be legal, if confusingly named.
Option B is incorrect because run-parts, although not present on all Linux distributions,
is used on several distributions. Cron is also capable of running user-written scripts and
programs, so even if run-parts weren’t a standard Linux utility, the entry would still work
if you’d written your own run-parts script. Option C is incorrect because the time specifi-
cation is complete; it includes a minute value (17) and asterisks (*) denoting a run at every
hour, day of the month, month, and day of the week.

03843book.indb 144 8/21/09 12:05:16 PM

Answers to Review Questions 145

13. A. User cron jobs run as the user who created them, so option A is correct.

14. D. The at command uses a 24-hour clock, unless you specify AM or PM suffixes to times, so
at will interpret 9:00 as being 9:00 a.m. and schedule execution for the next occurrence
of this time—that is, 9:00 a.m. the following day, as specified in option D. The at utility
won’t discard the command, schedule execution for a year from now, or schedule execution
for 9:00 p.m., as specified by option A, B, or C, respectively.

15. A. Option A correctly describes the purpose of /etc/sysctl.conf. Option B is a partial
description of the purpose of SysV init scripts. Option C describes the function of the /etc/
fstab file. Option D describes the purpose of the /etc/inittab file.

16. C. The -a option to uname returns all the information that uname can provide. Multiple-
CPU support is indicated by the SMP code in the output, the hostname is provided as
aldrin.luna.edu, and the fact that a Linux kernel with version 2.6.28 is running is evi-
dent from those strings in the output. Option C is the correct choice (that is, it’s untrue)
because the output specifies the machine type as x86_64, meaning that the kernel was com-
piled for an x86-64 CPU, such as an AMD64 or EM64T CPU.

17. C. Vi is smart enough to warn you when you’re about to discard changes to your docu-
ment, such as exiting without saving your changes, as specified in option C. Typing :q!, as
specified in option A, overrides this check, with the result that your changes will be lost!
Option B is fictitious; :q has nothing to do with spell-checking. The :q command is an
ex-mode command, as suggested by option D; however, these commands are entered from
command mode by preceding them with colons (:).

18. A. Option A correctly describes how to save a file in Vi. (Some other key sequences have
similar effects; for instance, you can save and exit from Vi by typing ZZ or :wq rather
than :w.) Option B describes the method of saving files in many GUI text editors, but this
method doesn’t work with Vi. Option C describes the method of saving files in Emacs, but
this method doesn’t work with Vi.

19. D. Edit mode is used for entering text. Ex mode is used for file operations (including
loading, saving, and running external programs). Command mode is used for entering
commands of various sorts. There is no “type mode” in Vi.

20. A. In Vi, dd is the command-mode command that deletes lines. Preceding this command by
a number deletes that number of lines. Although yy works similarly, it copies (“yanks”) text
rather than deleting it. Option C works in many more modern text editors, but not in Vi.
Option D works in Emacs and similar text editors, but not in Vi.

03843book.indb 145 8/21/09 12:05:16 PM

03843book.indb 146 8/21/09 12:05:17 PM

Chapter

4
Managing System
Services

The Following CoMpTiA objeCTiveS
Are Covered in ThiS ChApTer:

2.3 Given a scenario, analyze system and application logs ÛÛ
to troubleshoot Linux systems (Common log files: /var/
log/messages, /var/log/syslog, /var/log/maillog, /var/log/
secure, /var/log/lastlog; Rotated logs; Searching and inter-
preting log files: grep, tail -f, awk, sed).

2.6 Explain the difference in runlevels and their purpose ÛÛ
(Command: init; Runlevels: 0 – Halt, 1 – single-user
mode, 2 – single-user mode with networking, 3 – net-
worked multi-user mode, 4 – user configurable, 5 – X11
multi-user mode, 6 – reboot).

3.1 Manage Linux system services using the following ÛÛ
(/etc/init.d: start, stop, restart; inetd; xinetd; chkconfig).

03843book.indb 147 8/21/09 12:05:33 PM

Chapter 3, “Managing Processes and Editing Files,” described
how you can start, stop, and otherwise control ordinary Linux
programs. You launch many programs from a Linux shell.

Other programs, though, are launched in other ways. This chapter begins with an exami-
nation of this topic, and in particular those programs that are launched automatically when
the computer boots. Such processes include server programs, which respond to network
access requests, but nonserver programs also run automatically. (Chapter 10, “Configuring
Network Servers,” covers server programs in more detail.)

Because system service programs run without user interaction, they use special files,
known as log files, to record messages for you, the system administrator. This chapter
therefore covers Linux’s log files, including both configuring them and using them. A
pair of programs that are particularly useful in examining log files, sed and awk, are also
described in this chapter.

Starting and Stopping Services
Using a command prompt to start every program a Linux system runs is impractical.
Programs such as network servers, local login prompts, and the cron utility run con-
stantly and should be started automatically with Linux. Such programs are often referred
to as system services. Several means exist to start and stop such services, including SysV
startup scripts, super servers (inetd or xinetd), and local startup scripts. When such
a service runs constantly in the background, it’s referred to as a daemon. Programs
intended to run as daemons often have program names that end in d, as in syslogd (the
system log daemon) or sshd (a server for the Secure Shell protocol, SSH). Some servers
are themselves run by another server, which is known generically as a super server. This
practice has certain advantages over running a server directly, as described later in the
“Using Super Servers” section.

Linux normally runs any given server using just one of the methods
described here, and most distributions provide a single default method
of launching a server. This fact is particularly important for SysV startup
scripts and xinetd, because both of these methods rely on the presence
of configuration files that won’t be present if the package maintainer
intended that the server be run in some other way.

03843book.indb 148 8/21/09 12:05:34 PM

Starting and Stopping Services 149

Methods of Starting and Stopping Services
Before proceeding further, you should understand the basics of three methods of starting
and stopping services: SysV startup scripts, super servers, and local startup scripts. Each
approach has its advantages and disadvantages.

SysV startup scripts are named after Unix System V, in which this method first appeared.
Each service has a script that controls the service. Depending on the options passed to the
script, the script may start the service, shut it down, restart it, or do other things. These
scripts are run with specific options when the computer boots or when certain other events
occur, as described in the next few sections. SysV startup scripts are typically provided by
distribution maintainers with service packages—so a script to launch the Samba server is
included with the Samba package. These scripts can launch both network servers and non-
server services (such as the cron daemon). They’re generally used for services that must be
running continuously, rather than started on an as-needed basis.

Super servers, by contrast, run continuously, listen for network connections, and launch
network servers on an as-needed basis. This approach can reduce the memory load of seldom-
used servers, and it also enables the super server, or its helper programs, to perform extra
security checks. Super servers impose a speed penalty, though: when a connection request
arrives, the super server must launch the program that actually responds to the request, and
this takes time, so the computer may take a second or two to respond. Super servers are also
useful only for launching network servers, not for non-network services.

Local startup scripts are like SysV startup scripts in that they can launch both network
servers and non-network services. These startup scripts are intended to be modified by sys-
tem administrators to handle local needs, such as unusual configurations or the launching
of locally compiled programs for which no SysV startup scripts are available.

The terms server and service are used in different ways by different people.
In this book, I use server to refer either to a program that responds to net-
work access requests or to the computer on which a server program runs;
I use service to refer to any program that runs in the background to handle
either network or non-network tasks. Some people, however, restrict the
term server to computer hardware and use service to refer to what I call
server programs.

Starting and Stopping via SysV Scripts
When Linux starts, it enters one of several runlevels, each of which corresponds to a spe-
cific set of running services, as described in more detail in the upcoming section “Setting
the Runlevel.” You can start and stop services controlled through SysV startup scripts
either temporarily by running the scripts manually or permanently by setting appropriate
links to have the system start or stop the service when it reboots.

03843book.indb 149 8/21/09 12:05:34 PM

150 Chapter 4 n Managing System Services

The Gentoo distribution uses named runlevels rather than numbered run-
levels. This configuration can be handy if you want to define many
runlevels and switch to them by name—say, for using a laptop on any
of several networks.

Temporarily Starting or Stopping a Service
SysV startup scripts reside in particular directories—normally /etc/rc.d/init.d or /etc/
init.d. You may run one of these scripts, followed by an option like start, stop, or restart,
to affect the server’s run status. (Some startup scripts support additional options, such as
status. Type the script name without any parameters to see a list of its options.) For instance,
the following command starts the Samba server on an Ubuntu 8.04 system:

/etc/init.d/samba start

You’ll usually see some indication that the service is starting up. If the script responds
with a FAILED message, it typically means that something about the configuration is incor-
rect, or the service may already be running. You should keep a few things in mind when
manually starting or stopping a service in this way:

The name of the startup script is usually related to the package in question, but it’s not Ûn

fully standardized. For instance, some Samba server packages call their startup scripts
samba, but others use smb. A few startup scripts perform fairly complex operations and
start several programs. For instance, many distributions include a network or networking
script that initializes many network functions.

SysV startup scripts are designed for specific distributions and may not work if you Ûn

install a package on another distribution. For instance, a Red Hat SysV startup script
is unlikely to work properly on a SUSE system.

A startup script occasionally appears to work when in fact the service doesn’t operate Ûn

correctly. You can often find clues to failure in the /var/log/messages file (type tail
/var/log/messages to see the last few entries). The upcoming section “Using Log
Files” covers these files in more detail.

One way to reinitialize a server so that it rereads its configuration files is to use the Ûn

restart startup script command. Some server packages provide a reload command
that makes the server reload its configuration file without shutting down, which is
preferable to using restart if users are currently using the server. Some startup scripts
don’t include a restart or reload command, though. With these, you may need to
manually issue the stop command followed by the start command when you change
configuration options. Some servers provide commands you can issue directly to have
them reread their configuration options without explicitly restarting them as well; con-
sult the server’s documentation for details.

03843book.indb 150 8/21/09 12:05:34 PM

Starting and Stopping Services 151

Temporarily starting or stopping a service is useful when you need to adjust a configura-
tion or when you first install a server. It’s almost always possible to reconfigure a running
Linux system without rebooting it by reconfiguring and restarting its services.

Permanently Starting or Stopping a Service
If you want to permanently change the mix of services your system runs, you may need to
adjust which SysV startup scripts the computer runs. As described earlier, Linux determines
which services to run by using the runlevel. In addition to the /etc/rc.d/init.d or /etc/
init.d directory in which the SysV startup scripts reside, Linux systems host several direc-
tories that contain symbolic links to these scripts. These directories are typically named
/etc/rc.d/rcn.d or /etc/rcn.d, where n is a runlevel number. For instance, /etc/rc.d/
rc3.d is the directory associated with runlevel 3. Gentoo uses named subdirectories of
/etc/runlevels to define its runlevels—for instance, /etc/runlevels/default defines
the default runlevel, which the system enters when it boots.

In most distributions, the links in these directories use filenames of the form Knnservice
or Snnservice, where nn is a two-digit number and service is the name of a service. When
the computer enters a given runlevel, it executes the K* and S* scripts in the associated direc-
tory. The system passes the start command to the scripts that begin with S, and it sends
the stop command to the scripts that begin with K. Thus, the key to controlling the starting
and stopping of services is in the naming of the files in these SysV script directories—if you
rename a script whose name starts with S so that it starts with K, it will stop running the
next time the system enters the affected runlevel.

The numbers that come after the S and K codes control the order in which various ser-
vices are started and stopped. The system executes these scripts from the lowest-numbered
to the highest-numbered. This factor can be quite important. For instance, you’ll normally
want to start network servers like Samba or Apache after basic networking is brought up.

Gentoo is an exception to this rule. Its SysV startup script links are not named in any
special way. Instead, the Gentoo startup scripts incorporate dependency information,
enabling them to start the services on which they rely. This design greatly simplifies SysV
administration on Gentoo systems.

Various tools exist to help you adjust what services run in various runlevels. Not all dis-
tributions include all these tools, though. The following are some of the tools for adjusting
services:

chkconfig This command-line utility is most common on Red Hat and related distribu-
tions; some don’t include it. Pass it the --list parameter to see a summary of services and
whether they’re enabled in each runlevel. You can add or delete a service in a given runlevel
by using the --level parameter, as in chkconfig --level 5 smb on, which enables Samba
in runlevel 5. (Pass it off rather than on to disable a service.)

rc-update This tool is Gentoo’s equivalent of chkconfig. To add a script to a runlevel,
type rc-update add script runlevels, where script is the name of the SysV startup script
and runlevels is one or more runlevel names. Replace add with del to remove a script from
a runlevel. For instance, typing rc-update add samba default adds the samba startup
script to the default runlevel, causing Samba to run when the system boots.

03843book.indb 151 8/21/09 12:05:35 PM

152 Chapter 4 n Managing System Services

ntsysv This is a text-mode utility that, like chkconfig, is most common on Red Hat and
related distributions. It presents a menu of services run at the runlevel specified with the
--level parameter. You can enable or disable a service by moving the cursor to the run-
level and pressing the spacebar.

ksysv Figure 4.1 shows this GUI utility. It supports enabling or disabling services in any
runlevel from 0 through 6. Locate and select the service in the Start or Stop section of
the given runlevel, right-click the entry, and then select Cut from the pop-up menu. This
removes its start or stop entry. You can then drag the service from the Available Services
list to the runlevel’s Start or Stop list. The system will create an entry in that runlevel and
give it a sequence number based on the location to which you dropped it.

F i gu r e 4 .1 The ksysv program provides a GUI interface to runlevel service
management.

Distribution-specific tools Many distributions’ general system administration tools, such
as Red Hat’s Service Configuration tool and SUSE’s YaST, provide the means to start and
stop SysV services in specific runlevels. Details vary from one distribution to another, so
consult your distribution’s documentation to learn more.

Once you’ve modified a service’s SysV startup script listings, that service will run (or
not run, if you’ve disabled it) the next time you restart the computer or change runlevels,
as described in the upcoming section “Setting the Runlevel.” Setting the startup script
runlevel information, however, does not immediately run or shut down a service. For that,
you’ll need to manually enable or disable the service, as described earlier.

03843book.indb 152 8/21/09 12:05:35 PM

Starting and Stopping Services 153

One additional method of permanently disabling a service deserves mention:
removing it completely from the computer. You can use a package manage-
ment system, or you can track down the program’s binary files and delete
them to ensure that a service never runs. This is certainly the best way to
accomplish the task if the computer never needs to run a program, because it
saves on disk space and makes it impossible to misconfigure the computer to
run an unwanted server—at least, short of reinstalling the server.

Using Super Servers
Super servers are often used to launch smaller and infrequently used servers. Two super
servers are popular on Linux: inetd and xinetd. You should know both systems, including
both basic configurations and security issues related to them.

Be sure you edit the appropriate configuration file! Administrators familiar
with one tool are often confused when they work on a system that uses the
other super server. The administrator may edit the wrong configuration
file and find that changes have no effect. Ideally, a system won’t have a
configuration file for an uninstalled super server, but sometimes these do
exist, particularly when a distribution has been upgraded to a new version
that changes the super server.

Editing inetd.conf or inetd.d Files
You control servers that launch via inetd through the /etc/inetd.conf file or files in the
/etc/inetd.d subdirectory. The inetd.conf file consists of a series of lines, one for each
server. A typical line resembles the following:

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd -l

This and several subsequent examples refer to in.ftpd, an FTP server
that was once quite popular but that’s being replaced on many systems
by other FTP servers. Some of these servers cannot be run from a super
server, so using another server might not work in all of these cases.

Recent versions of inetd support splitting the inetd.conf file up into several files in
/etc/inetd.d. This approach enables software packages to include appropriate configu-
ration files, the result being that the server will be set up to work as soon as the package
is installed and inetd reloaded; there’s no need to manually edit /etc/inetd.conf after
installing a server if its package provides the necessary files. For brevity, the following para-
graphs refer to inetd.conf, but the format of files in /etc/inetd.d is the same.

03843book.indb 153 8/21/09 12:05:36 PM

154 Chapter 4 n Managing System Services

Each line consists of several fields separated by one or more spaces. Table 4.1 summarizes
the meanings of these fields. The basic format is as follows:

service socket protocol wait/no-wait user server parameters

TA b le 4 .1 inetd Configuration File Field Meanings

Field Meaning

service The first field (ftp in the preceding example) is the name of the service
as it appears in the /etc/services file.

socket The socket type entry tells the system what type of connection to
expect—a reliable two-way connection (stream), a less reliable connec-
tion with less overhead (dgram), a low-level connection to the network
(raw), or various others. The differences between these types are highly
technical; your main concern in editing this entry should be to correctly
type the value specified by the server’s documentation.

protocol This is the type of TCP/IP protocol used, usually tcp or udp.

wait/nowait For dgram socket types, this entry specifies whether the server connects
to its client and frees the socket (nowait) or processes all its packets
and then times out (wait). Servers that use other socket types should
specify nowait in this field.

user This is the username used to run the server. The root and nobody users
are common choices, but others are possible as well.

server This is the filename of the server. In the preceding example, the server is
specified as /usr/sbin/tcpd, which is the TCP Wrappers binary. This pro-
gram provides some security checks, enabling you to restrict access to a
server based on the origin and other factors. The upcoming section “Con-
trolling Super Server Security” describes TCP Wrappers in more detail.

parameters Everything after the server name consists of parameters that are
passed to the server. If you use TCP Wrappers, you pass the name of
the true target server (such as /usr/sbin/in.ftpd) in this field, along
with its parameters.

The hash mark (#) is a comment symbol for /etc/inetd.conf. Therefore, if a server is
running via inetd and you want to disable it, you can place a hash mark at the start of the
line. If you want to add a server to inetd.conf, you’ll need to create an entry for it. Most
servers that can be run from inetd include sample entries in their documentation. Many
distributions ship with inetd.conf files that include entries for common servers as well,
although many of them are commented out; remove the hash mark at the start of the line
to activate the server.

03843book.indb 154 8/21/09 12:05:36 PM

Starting and Stopping Services 155

After modifying inetd.conf, you must restart the inetd super server itself. This super
server normally runs as a standard SysV server, so you can restart it by typing something
similar to the following:

/etc/rc.d/init.d/inetd restart

Alternatively, you can tell inetd to reload its configuration by passing the SysV startup
script the reload parameter rather than restart. The restart option shuts down the
server and then starts it again. When you use reload, the server never stops running; it just
rereads the configuration file and implements any changes. As a practical matter, the two
are quite similar. Using restart is more likely to correctly implement changes, but it’s also
more likely to disrupt existing connections.

It’s generally wise to disable as many servers as possible in inetd.conf
(or the xinetd configuration files, if you use xinetd). As a general rule, if
you don’t understand what a server does, disable it. This will improve the
security of your system by eliminating potentially buggy or misconfigured
servers from the equation.

Editing xinetd.conf or xinetd.d Files
The xinetd (pronounced “zi-net-dee”) program is an extended super server. It provides
the functionality of inetd, plus security options that are similar to those of TCP Wrappers.
Distributions have been slowly shifting from inetd to xinetd, although some still use inetd
by default or at least provide it as an option. If you like, you can replace inetd with xinetd
on any distribution.

The /etc/xinetd.conf file controls xinetd. Typically, though, this file contains only
global default options and a directive to include files stored in /etc/xinetd.d. Each
server that should run via xinetd then installs a file in /etc/xinetd.d with its own con-
figuration options.

Whether the entry for a server goes in /etc/xinetd.conf or a file in /etc/xinetd.d, it
contains information similar to that in the inetd.conf file. The xinetd configuration file
spreads the information across multiple lines and labels it more explicitly. Listing 4.1 shows
an example that’s equivalent to the earlier inetd.conf entry. This entry provides precisely
the same information as the inetd.conf entry except that it doesn’t include a reference to
/usr/sbin/tcpd, the TCP Wrappers binary. Because xinetd includes similar functionality,
it’s generally not used with TCP Wrappers.

The upcoming section “Controlling Super Server Security” covers xinetd
security features.

03843book.indb 155 8/21/09 12:05:37 PM

156 Chapter 4 n Managing System Services

listing 4.1: Sample xinetd Configuration Entry

service ftp

{

 socket_type = stream

 protocol = tcp

 wait = no

 user = root

 server = /usr/sbin/in.ftpd

 server_args = -l

}

One additional xinetd.conf parameter is important: disable. If you include the line
disable = yes in a service definition, xinetd ignores the entry. Many servers install
startup files in /etc/xinetd.d that have this option set by default; you must edit the file
and change the entry to read disable = no to enable the server. You can also disable a set
of servers by listing their names in the defaults section of the main xinetd.conf file on a
line called disabled, as in disabled = ftp shell.

As with inetd, after you make changes to xinetd’s configuration, you must restart the
super server. You do this by typing a command similar to the one used to restart inetd. As
with that command, you can use either reload or restart, with similar effects. For instance:

/etc/rc.d/init.d/xinetd restart

Controlling Super Server Security
Chapter 12, “Securing Linux,” covers many Linux security issues. Because super servers are
described here, though, it’s appropriate to describe their security features in this chapter as
well. You can use a package called TCP Wrappers with either super server to improve security,
but it’s more commonly used with inetd. The xinetd super server includes functionality that’s
similar to TCP Wrappers in its basic feature set.

Whenever possible, apply redundant access controls. For instance, you can
use both a firewall and TCP Wrappers or xinetd to block unwanted access
to particular servers. Doing this helps protect against bugs and misconfigu-
ration—if a problem emerges in the firewall configuration, for instance, the
secondary block will probably halt the intruder. If you configure the system
carefully, such an access will also leave a log file message that you’ll see, so
you’ll be alerted to the fact that the firewall didn’t do its job.

Controlling Access via TCP Wrappers
The inetd super server can be used in conjunction with TCP Wrappers. This package uses
a program known as tcpd. Instead of having inetd call a server directly, inetd calls tcpd,
which does two things: it checks whether a client is authorized to access the server, and if
the client has this authorization, tcpd calls the server program.

03843book.indb 156 8/21/09 12:05:37 PM

Starting and Stopping Services 157

TCP Wrappers is configured through two files: /etc/hosts.allow and /etc/hosts.deny.
The first of these specifies computers that are allowed access to the system in a particular
way, the implication being that systems not listed are not allowed access. By contrast, hosts.
deny lists computers that are not allowed access; all others are given permission to use the
system. If a system is listed in both files, hosts.allow takes precedence.

Both files use the same basic format. The files consist of lines of the following form:

daemon-list : client-list

daemon-list is a list of servers, using the names for the servers that appear in /etc/
services. Wildcards are also available, such as ALL for all servers.

client-list is a list of computers to be granted or denied access to the specified dae-
mons. You can specify computers by name or by IP address, and you can specify a net-
work by using (respectively) a leading or trailing dot (.). (Chapter 8, “Configuring Basic
Networking,” describes network addressing in more detail.) For instance, .luna.edu
blocks all computers in the luna.edu domain, and 192.168.7. blocks all computers in
the 192.168.7.0/24 network. You can also use wildcards in the client-list, such as ALL
(all computers). EXCEPT causes an exception. For instance, when placed in hosts.deny,
192.168.7. EXCEPT 192.168.7.105 blocks all computers in the 192.168.7.0/24 network
except for 192.168.7.105.

The hosts.allow and hosts.deny man pages (they’re actually the same document)
provide additional information on more advanced features. You should consult them as
you build TCP Wrappers rules.

Remember that not all servers are protected by TCP Wrappers. Normally,
only those servers that inetd runs via tcpd are so protected. Such servers
typically include, but are not limited to, Telnet, FTP, TFTP, rlogin, finger,
POP, and IMAP servers. A few servers can independently parse the TCP
Wrappers configuration files, though; consult the server’s documentation
if in doubt.

Controlling Access via xinetd

Most modern Linux distributions use xinetd rather than inetd. Although xinetd can use
TCP Wrappers, it normally doesn’t because it incorporates similar functionality of its own.
Security is handled on a server-by-server basis through the use of configuration parameters
in the xinetd configuration files. Some of these parameters are similar to the function of
hosts.allow and hosts.deny:

Network interface The bind option tells xinetd to listen on only one network interface
for the server. For instance, you might specify bind = 192.168.23.7 on a router to have it
listen only on the Ethernet card associated with that address. This feature is extremely use-
ful in routers, but it is not as useful in computers with just one network interface. (You can
use this option to bind a server only to the loopback interface, 127.0.0.1, if a server should
be available only locally. You might do this with a configuration tool like the Samba Web
Administration Tool, or SWAT.) A synonym for this option is interface.

03843book.indb 157 8/21/09 12:05:37 PM

158 Chapter 4 n Managing System Services

Allowed IP or network addresses You can use the only_from option to specify IP
addresses, networks (as in 192.168.78.0/24), or computer names on this line, separated by
spaces. The result is that xinetd will accept connections only from these addresses, similar
to TCP Wrappers’ hosts.allow entries.

Disallowed IP or network addresses The no_access option is the opposite of only_from;
you list computers or networks here that you want to blacklist. This is similar to the hosts.
deny file of TCP Wrappers.

Access times The access_times option sets times during which users may access the
server. The time range is specified in the form hour:min-hour:min, using a 24-hour clock.
Note that this option affects only the times during which the service will respond. If the
xinetd access_times option is set to 8:00-17:00 and somebody logs in at 4:59 p.m. (one
minute before the end time), that user may continue using the system well beyond the
5:00 p.m. cutoff time.

You should enter these options into the files in /etc/xinetd.d that correspond to the
servers you want to protect. Place the lines between the opening brace ({) and closing brace
(}) for the service. If you want to restrict all your xinetd-controlled servers, you can place
the entries in the defaults section in /etc/xinetd.conf.

Some servers provide access control mechanisms similar to those of TCP
Wrappers or xinetd by themselves. For instance, Samba provides hosts
allow and hosts deny options that work much like the TCP Wrappers file
entries, and NIS includes similar configuration options. These options are
most common on servers that are awkward or impossible to run via inetd
or xinetd.

Using Custom Startup Files
Occasionally it’s desirable to start a service through some means other than a SysV script
or super server. This is most frequently the case when you’ve compiled a server yourself or
installed it from a package file intended for a distribution other than the one you’re using,
and when you don’t want to run it through a super server for performance reasons. In such
cases, the program may not come with a SysV startup script, or the provided SysV script
may not work correctly on your system.

Many Linux distributions include a startup script that runs after the other SysV startup
scripts. This script is generally called /etc/rc.d/rc.local, /etc/rc.d/boot.local, or
something similar. You can launch a server or other program from this script by entering the
command you would use to launch the program manually, as described in the program’s docu-
mentation. For instance, you might include the following line to launch an FTP server:

/usr/sbin/in.ftpd -l -D

Some programs must have an ampersand (&) added to the end of the line to have them
execute in the background. If you fail to add this, subsequent lines in the startup script may

03843book.indb 158 8/21/09 12:05:38 PM

Setting the Runlevel 159

not run. Programs intended to run as daemons often don’t need the ampersand, but check
the documentation to be sure.

One thing to keep in mind when running a server via the local startup script is that this
method provides no means to shut down a server, as you can do by passing the stop param-
eter to a SysV startup script. If you want to stop such a server, you’ll need to use the Linux
kill or killall command, possibly after locating the server’s process ID number via ps.
For instance, take a look at the following:

ps ax | grep ftp

 6382 ? S 0:00 in.ftpd -l -D

kill 6382

The ps and kill commands are covered in more detail in Chapter 3. The
grep command and the pipe (|) are covered in Chapter 2, “Using Text-
Mode Commands.”

Setting the Runlevel
One way to change the services a system offers en masse is to change the computer’s runlevel.
As with individual services, you can change the runlevel either temporarily or permanently.
Both can be useful. Temporary changes are useful in testing changes to a system, and perma-
nent changes are useful in creating a system that boots with the desired services running.

Understanding the Role of the Runlevel
As described earlier in this chapter, Linux enters a specific runlevel when it boots in order
to run some predetermined subset of the programs installed on the computer. For instance,
you might want to have two configurations for a computer: one that provides all the com-
puter’s usual array of network servers and another that provides a more limited set, which
you use when performing maintenance on the computer. By defining appropriate runlevels
and switching between them, you can easily enable or disable a large number of servers.

On many Linux systems, the runlevel also controls whether the computer provides a
GUI or text-mode login prompt. The former is the preferable default state for most work-
stations, but the latter is better for many server computers or in cases when the X configu-
ration is suspect.

The precise meanings of runlevels vary from one distribution to another. Fedora, Man-
driva, Red Hat, SUSE, and several others use the following meanings:

0. Halt the system.

1. Single-user mode.

2. Multiuser mode without networking.

3. Multiuser mode with networking.

03843book.indb 159 8/21/09 12:05:38 PM

160 Chapter 4 n Managing System Services

4. Unused (may be configured for site-specific purposes).

5. Multiuser mode with networking and an X Display Manager Control Protocol
(XDMCP) login.

6. Reboot the system.

Runlevels 0, 1, and 6 have the same meanings across most distributions, but runlevels 2
through 5 have meanings that vary. In particular, Debian and its derivatives, such as Ubuntu,
start the system in runlevel 2, which is equivalent to runlevel 3 or 5 in the Red Hat scheme.
(X and the XDMCP login are started by SysV startup scripts in these distributions.) Gentoo,
as mentioned earlier in this chapter, uses named runlevels.

Using init or telinit to Change the Runlevel
The init program is critical to Linux’s boot process because it reads the /etc/inittab file
that controls the boot process and implements the settings found in that file. Among other
things, init sets the system’s initial runlevel.

Once the computer has booted, you can use the telinit program to alter the runlevel.
(In practice, calling init directly also usually works.) When using telinit, the syntax is
as follows:

telinit [-t time] runlevel

You can discover what runlevel your computer is in with the runlevel
command. This command displays the previous and current runlevels as
output. A previous runlevel of N means that the runlevel hasn’t changed
since the system booted.

In most cases, runlevel is the runlevel to which you want the system to change. There
are, however, a few special codes you can pass as well. Most importantly, S or s brings the
system into a single-user mode, and Q or q tells the system to reexamine the /etc/inittab
file and implement any changes in that file.

It’s possible to misconfigure X so that it doesn’t start. If you do this and
your system is set to start X automatically, with some distributions, one
consequence is that the system will try to start X, fail, try again, fail, and so
on, ad infinitum. If the computer has network connections, one way to stop
this cycle is to log in remotely and change the runlevel to one that doesn’t
start X. This will stop the annoying screen flickering that results as X tries
to start and fails. You can then correct the problem from the remote login
or from the console, test X, and restore the default runlevel.

When switching runlevels, init must sometimes kill processes. It does so “politely”
at first by sending a SIGTERM signal, which is a way to ask a program to manage its own
shutdown. If that doesn’t work, though, init becomes imperious and sends a SIGKILL

03843book.indb 160 8/21/09 12:05:38 PM

Setting the Runlevel 161

signal, which is more likely to work but can be more disruptive because the program may
leave temporary files lying about and be unable to save changes to open files. The -t time
parameter tells telinit how long to wait between sending these two signals to a process.
The default is 5 seconds, which is normally plenty of time.

One special case of runlevel change happens when you are shutting down the computer.
Runlevel 0 shuts down the computer and halts it; depending on kernel options and hardware
capabilities, this may shut off power to the computer, or it may simply place the computer in a
state from which it’s safe to turn off system power. Runlevel 6 reboots the computer. You can
enter these runlevels using telinit, but it’s better to use a separate command called shutdown
to accomplish this task because it offers additional options. The syntax for this command is
as follows:

shutdown [-t sec] [-arkhcfF] time [warning-message]

Table 4.2 describes the meanings of the parameters.

TA b le 4 . 2 shutdown Options and Their Meanings

Option Meaning

-c If you initiate a shutdown sometime in the future but then change your
mind, issuing shutdown again with this parameter cancels it.

-h This parameter causes the system to halt or power off after a shutdown.
Which one occurs is up to the system. (When the system halts, the power
stays on, but the OS has terminated. You can typically then power down via
a power switch or use the Reset button to reboot the computer.)

-H This parameter causes the system to halt after a shutdown, but not power off.

-k This parameter “fakes” a shutdown—it sends a shutdown warning message
to users, but it doesn’t shut down the computer.

-P This parameter causes the system to power off after a shutdown.

-r This parameter causes a reboot after a shutdown. Essentially, it invokes a
change to runlevel 6.

time Shutdowns may be scheduled with this parameter, which can take many
different formats. One common value is now, which causes an immediate
shutdown. You can also specify a time in 24-hour hh:mm format, as in 13:15
for a shutdown at 1:15 p.m. A time in the format +m causes a shutdown in
m minutes.

warning-
message

When many people use a system for remote logins, it’s generally a good
idea to give these users advance warning of a shutdown. You can include a
message explaining why the system is going down or how long you expect
it to be down.

03843book.indb 161 8/21/09 12:05:39 PM

162 Chapter 4 n Managing System Services

The parameters to shutdown have changed over the years. Thus, you may
find that your version of shutdown has extra parameters or lacks some of
those specified in Table 4.2.

On a single-user system, shutdown -h now and shutdown -r now are perfectly reason-
able uses of shutdown. When the system has many users, you might be better off scheduling
a shutdown for 5, 10, or more minutes in the future and giving information on the expected
downtime, as in the following:

shutdown -h +10 “adding new hard disk; up again in 30 minutes”

Most modern distributions include commands called halt and reboot that
are equivalent to shutdown -h now and shutdown -r now, respectively.

Permanently Changing the Runlevel
You can permanently change the computer’s runlevel by editing the /etc/inittab file. This
file contains a line like the following:

id:3:initdefault:

This example shows a system configured for runlevel 3. To modify it, you’d change the
3 to whatever value is appropriate. After making this change, you can cause the system to
switch immediately to the new runlevel by running telinit, as described in the previous
section. Typing telinit Q will cause the system to read your changes directly, or you can
use the runlevel in place of Q.

Do not set the default runlevel to 0 or 6 since this will cause the system to
shut down or reboot as soon as it boots.

using upstart

The Linux init program is the first process that’s launched by the kernel. The traditional
version of this program is controlled by /etc/inittab and sets the runlevel, launches
the login process on several virtual terminals, and starts a few other low-level services.
Most Linux systems work fine with a default configuration, with the possible exception of
needing to change the runlevel.

03843book.indb 162 8/21/09 12:05:39 PM

Configuring Log Files 163

Recently, though, the traditional Linux init program has been replaced by a new version
in some distributions, including Ubuntu and Fedora. This new version, although it still
includes init and telinit commands, goes by a new package name: Upstart (http://
upstart.ubuntu.com). The Upstart versions of init and inittab work much like the
traditional versions of these tools for most purposes; however, for Upstart, the /etc/
inittab file is optional. If this file is present, it sets the default runlevel but is otherwise
unused. Thus, you can set the default runlevel using /etc/inittab on an Upstart-based
system, but if you’re accustomed to using /etc/inittab for other purposes, you’ll find
that your usual /etc/inittab tweaks no longer work.

Instead of using /etc/inittab to launch login consoles and other tools, Upstart uses the
/etc/event.d directory. This directory holds files, each of which describes the conditions
for starting and stopping particular init-managed services. Chances are you won’t need
to change these files, but you can do so if you need to alter your virtual terminal configu-
ration, change how the system responds to the Ctrl+Alt+D keystroke, or do other things
that were handled by /etc/inittab in the past.

Configuring Log Files
Linux maintains log files that record various key details about Linux operation. Using these
log files is described later, in “Using Log Files.” You may be able to begin using log files
immediately, but knowing how to change the log file configuration can also be important.
You do this by configuring the syslogd daemon, although some servers and other programs
perform their own logging and so must be configured independently. You may even want
to configure one computer to send its log files to another system as a security measure.
You should also be aware of issues surrounding log file rotation; if your computer doesn’t
properly manage existing log files, they can grow to consume all available disk space on the
partition on which they’re stored.

Understanding syslogd
Most Linux systems employ a special daemon to handle log maintenance in a unified way.
The traditional Linux system logger is syslogd, which is often installed from a package
called sysklogd. The syslogd daemon handles messages from servers and other user-mode
programs; it’s usually paired with a daemon called klogd, which handles kernel messages
and is usually installed from the same sysklogd package as syslogd.

Other choices for system loggers exist. For instance, syslog-ng is a replace-
ment that supports advanced filtering options, and metalog is another option.
This chapter describes the traditional syslogd logger. Others are similar in
principle, and even in some specific features, but differ in many details.

03843book.indb 163 8/21/09 12:05:40 PM

164 Chapter 4 n Managing System Services

The basic idea behind a system logger is to provide a unified means of handling log files.
The daemon runs in the background and accepts data delivered from servers and other
programs that are configured to use the log daemon. The daemon can then use information
provided by the server to classify the message and direct it to an appropriate log file. This
configuration enables you to consolidate messages from various servers in a handful of stan-
dard log files, which can be much easier to use and manage than potentially dozens of log
files from the various services running on the system.

As described in the upcoming section “Using a Remote Server for Log Files,” another
feature of log daemons is that they can pass the log information on to a log daemon run-
ning on another computer entirely. The advantage of this configuration is that it can help
protect the logs from tampering—if a computer is compromised, the intruder can’t elimi-
nate evidence of the intrusion from the log file without first breaking into the computer that
logs data for other systems. Administering a network on which all systems log to a single
system can also be simpler in some ways, because you can monitor log files on one com-
puter, rather than perform this task on many systems.

In order to work, of course, the log daemon must be configured. In the case of syslogd,
this is done through the /etc/syslog.conf file. The next section describes this file’s format
in more detail.

Setting Logging Options
The format of the /etc/syslog.conf file is conceptually simple but provides a great deal of
power. Comment lines, as in many Linux configuration files, are denoted by a hash mark
(#). Noncomment lines take the following form:

facility.priority action

In this line, facility is a code word for the type of program or tool that has generated
the message to be logged; priority is a code word for the importance of this message; and
action is a file, remote computer, or other location that’s to accept the message. The facility
and priority are often referred to collectively as the selector.

Valid codes for facility are auth, authpriv, cron, daemon, kern, lpr, mail, mark, news,
security, syslog, user, uucp, and local0 through local7. Many of these names refer to
specific servers or program classes. For instance, mail servers and other mail-processing tools
typically log using the mail facility. Most servers that aren’t covered by more specific codes
use the daemon facility. The security facility is identical to auth, but auth is the preferred
name. The mark facility is reserved for internal use. An asterisk (*) refers to all facilities. You
can specify multiple facilities in one selector by separating the facilities with commas (,).

Valid codes for priority are debug, info, notice, warning, warn, error, err, crit,
alert, emerg, and panic. The warning priority is identical to warn, error is identical to err,
and emerg is identical to panic. The error, warn, and panic priority names are deprecated;
you should use their equivalents instead. Other than these identical pairs, these priorities
represent ascending levels of importance. The debug level logs the most information; it’s
intended, as the name implies, for debugging programs that are misbehaving. The emerg
priority logs the most important messages, which indicate very serious problems. When a

03843book.indb 164 8/21/09 12:05:40 PM

Configuring Log Files 165

program sends a message to the system logger, it includes a priority code; the logger logs
the message to a file if you’ve configured it to log messages of that level or higher. Thus,
if you specify a priority code of alert, the system will log messages that are classified as
alert or emerg, but not messages of crit or below. An exception to this rule is if you pre-
cede the priority code by an equal sign (=), as in =crit, which describes what to do with
messages of crit priority only. An exclamation mark (!) reverses the meaning of a match.
For instance, !crit causes messages below crit priority to be logged. A priority
of * refers to all priorities.

You can specify multiple selectors for a single action by separating the selectors by a
semicolon (;). Examples appear shortly.

Most commonly, action is a filename, typically in the /var/log directory tree. Other
possibilities include a device filename for a console (such as /dev/console) to display data
on the screen, a remote machine name preceded by an at-sign (@), and a list of usernames
who should see the message if they’re logged in. For the last of these options, an asterisk (*)
means all logged-in users.

Some examples should help clarify these rules. First is a fairly ordinary and simple entry:

mail.* /var/log/mail

This line sends all log entries identified by the originating program as related to mail to
the /var/log/mail file. Most of the entries in a default /etc/syslog.conf file resemble this
one. Together, they typically cover all of the facilities mentioned earlier. Some messages
may be handled by multiple rules. For instance, another rule might look like this one:

*.emerg *

This line sends all emerg-level messages to the consoles of all users who are logged into
the computer using text-mode tools. If this line and the earlier mail.* selector are both
present, emerg-level messages related to mail will be logged to /var/log/mail and dis-
played on users’ consoles.

A more complex example logs kernel messages in various ways, depending on their
priorities:

kern.* /var/log/kernel

kern.crit @logger.pangaea.edu

kern.crit /dev/console

kern.info;kern.!err /var/log/kernel-info

The first of these rules logs all kernel messages to /var/log/kernel. The next two lines
relate to high-priority (crit or higher) messages from the kernel. The first of these lines
sends such messages to logger.pangaea.edu. (The upcoming section “Using a Remote
Server for Log Files” describes remote logging in more detail.) The second of these lines
sends a copy of these messages to /dev/console, which causes them to be displayed on
the computer’s main text-mode console display. Finally, the last line sends messages that
are between info and err in priority to /var/log/kernel-info. Because err is the prior-
ity immediately above crit and because info is the lowest priority, these four lines cause

03843book.indb 165 8/21/09 12:05:40 PM

166 Chapter 4 n Managing System Services

all kernel messages to be logged two or three times: once to /var/log/kernel as well as to
either the remote system and the console or to /var/log/kernel-info.

Most distributions ship with reasonable system logger settings, but you may want to
examine these settings and perhaps adjust them. If you change them, though, be aware that
you may need to change some other tools. For instance, all major distributions ship with
tools that help rotate log files. If you change the files to which syslogd logs messages, you
may need to change your log file rotation scripts as well.

In addition to the system logger’s options, you may be able to set logging options in indi-
vidual programs. For instance, you might tell programs to record more or less information
or to log routine information at varying priorities. Some programs also provide the means
to log via the system log daemon or via their own mechanisms. Details vary greatly from
one program to another, so you should consult the program’s documentation for details.

Most programs that use the system log daemons are servers and other
system tools. Programs that individuals run locally seldom log data via
the system log daemon, although there are some exceptions to this rule,
such as the Fetchmail program for retrieving e-mail from remote servers.

Rotating Log Files
Log files are intended to retain information on system activities for a reasonable period of
time; however, system logging daemons provide no means to control the size of log files.
Left unchecked, log files can therefore grow to consume all the available space on the parti-
tion on which they reside. To avoid this problem, Linux systems employ log file rotation
tools. These tools rename and optionally compress the current log files, delete old log files,
and force the logging system to begin using new log files.

The most common log rotation tool is a package called logrotate. This program is typi-
cally called on a regular basis via a cron job. (Cron jobs are described in Chapter 3.) The
logrotate program consults a configuration file called /etc/logrotate.conf, which includes
several default settings and typically refers to files in /etc/logrotate.d to handle specific log
files. A typical /etc/logrotate.conf file includes several comment lines, denoted by hash
marks (#), as well as lines to set various options, as illustrated by Listing 4.2.

Because log file rotation is handled by cron jobs that typically run late at
night, it won’t happen if a computer is routinely turned off at the end of the
day. This practice is common with Windows workstations, but is uncom-
mon with servers. Either Linux workstations should be left running over-
night as a general practice or some explicit steps should be taken to ensure
that log rotation occurs despite routine shutdowns. You might leave the
system up overnight from time to time, for instance, or reschedule the log
rotation to some time when the computer is likely to be powered on. The
Anacron package (http://anacron.sourceforge.net) is another option;
it supplements cron by running programs at intervals even when the com-
puter isn’t up at specific times.

03843book.indb 166 8/21/09 12:05:41 PM

Configuring Log Files 167

listing 4.2: Sample /etc/logrotate.conf File

Rotate logs weekly

weekly

Keep 4 weeks of old logs

rotate 4

Create new log files after rotation

create

Compress old log files

compress

Refer to files for individual packages

include /etc/logrotate.d

Set miscellaneous options

notifempty

nomail

noolddir

Rotate wtmp, which isn’t handled by a specific program

/var/log/wtmp {

 monthly

 create 0664 root utmp

 rotate 1

}

Most of these lines set options that are fairly self-explanatory or that are well explained
by the comments that typically immediately precede them—for instance, the weekly line
sets the default log rotation interval to once a week. If you see an option in your file that
you don’t understand, consult the logrotate man page.

The last few lines of Listing 4.2 demonstrate the format for the definition for a specific log
file. These definitions begin with the filename for the file (multiple filenames may be listed,
separated by spaces), followed by an open curly brace ({). They end in a close curly brace (}).
Intervening lines set options that may override the defaults. For instance, the /var/log/wtmp
definition in Listing 4.2 sets the monthly option, which tells the system to rotate this log file
once a month, overriding the default weekly option. Such definitions are common in the indi-
vidual files in /etc/logrotate.d, which are typically owned by the packages whose log files
they rotate. Examples of features that are often set in these definitions include the following:

Rotated file naming Ordinarily, rotated log files acquire numbers, such as messages.1 for
the first rotation of the messages log file. Using the dateext option causes the rotated log

03843book.indb 167 8/21/09 12:05:41 PM

168 Chapter 4 n Managing System Services

file to obtain a date code instead, as in messages-20100205 for the rotation performed on
February 5, 2010.

Compression options As already noted, compress causes logrotate to compress log files
to save space. This is done using gzip by default, but you can specify another program with
the compresscmd keyword, as in compresscmd bzip2 to use bzip2. The compressoptions
option enables you to pass options to the compression command (say, to improve the com-
pression ratio).

Creating new log files The create option causes logrotate to create a new log file for use
by the system logger or program. This option takes a file mode, owner, and group as addi-
tional options. Some programs don’t work well with the create option, though. Most of
them use the copytruncate option instead, which tells logrotate to copy the old log file to
a new name and then clear all the data out of the original file.

Time options The daily, weekly, and monthly options tell the system to rotate the log
files at the specified intervals. These options aren’t always used, though; some configura-
tions use a size threshold rather than a time threshold for when to rotate log files.

Size options The size keyword sets a maximum size for a log file. It takes a size in
bytes as an argument (adding k or M to the size changes it to kilobytes or megabytes). For
instance, size 100k causes logrotate to rotate the file when it reaches 100KB in size.

Rotation options The rotate x option causes x copies of old log files to be maintained. For
instance, if you set rotate 2 for the /var/log/messages file, logrotate will maintain /var/
log/messages.1 and /var/log/messages.2, in addition to the active /var/log/messages file.
When that file is rotated, /var/log/messages.2 is deleted, /var/log/messages.1 is renamed
to /var/log/messages.2, /var/log/messages becomes /var/log/messages.1, and a new
/var/log/messages is created.

Mail options If you use mail address, logrotate will e-mail a log file to the specified
address when it’s rotated out of existence. Using nomail causes the system to not send any
e-mail; the log is quietly deleted.

Scripts The prerotate and postrotate keywords both begin a series of lines that are
treated as scripts to be run immediately before or after log file rotation, respectively. In
both cases, these scripts end with the endscript keyword. These commands are frequently
used to force syslogd or a server to begin using a new log file.

In most cases, servers and other programs that log data either do so via the system logging
daemon or ship with a configuration file that goes in /etc/logrotate.d to handle the server’s
log files. These files usually do a reasonable job; however, you might want to double-check
them. For instance, you might discover that your system is configured to keep too many or
too few old log files for your taste, in which case adjusting the rotate option is in order. You
should also check the /var/log directory and its subdirectories every now and then. If you
see huge numbers of files accumulating, or if files are growing to unacceptable sizes, you may
want to check the corresponding logrotate configuration files. If an appropriate file doesn’t
exist, create one. Use a working file as a template, modifying it for the new file. Pay particular

03843book.indb 168 8/21/09 12:05:41 PM

Configuring Log Files 169

attention to the prerotate or postrotate scripts; you may need to consult the documentation
for the program that’s creating the log file to learn how to force that program to begin using a
new log file.

Using a Remote Server for Log Files
As noted earlier in “Setting Logging Options,” you can configure syslogd to send its logs
to a remote computer instead of or in addition to logging data locally. This configuration
is fairly straightforward on the system that’s doing the logging; in /etc/syslog.conf, you
provide a computer hostname preceded by an at-sign (@) rather than a local filename. For
instance, this line causes all kernel messages to be logged to logger.pangaea.edu:

kern.* @logger.pangaea.edu

You can use other selectors, of course, as described earlier in “Setting Logging Options.”
Using this feature enables you to search log files for problems from a central location and
provides an additional degree of tamper resistance, since an intruder would need to com-
promise the logging server as well as the primary target of a computer in order to erase
evidence of an intrusion from log files.

Ordinarily, syslogd 1.3 and later doesn’t accept logs sent to it from remote systems. Thus,
if you have two computers and configure one computer to send some or all of its logs to the
other computer, they won’t appear in the logging server’s logs by default. To have the logging
system accept such submissions, you must launch syslogd with its -r option. Precisely how
you do this varies from one distribution to another. This daemon is normally launched from
a SysV startup script, such as /etc/init.d/syslog. You may be able to modify this script to
pass the -r parameter to syslogd. Most syslogd SysV startup scripts, though, pass parame-
ters to the daemon using a variable, such as SYSLOGD_PARAMS. This variable is most frequently
set in another file, such as /etc/sysconfig/rsyslog (used by Fedora and Red Hat). Some dis-
tributions set the variable in the startup script itself; for instance, Debian and Ubuntu set the
SYSLOGD variable in the /etc/init.d/sysklogd startup script, enabling you to set this option
in the startup script. If you need to change these features, do so and then restart the syslogd
daemon using its own SysV startup script:

/etc/rc.d/init.d/syslog restart

The exact name of the SysV startup script varies from one system to another. You must
also restart the system logger on the system doing the logging after you make changes to its
/etc/syslog.conf file. Once this is done, the messages from all the computers configured
to log to the logging system should appear in its logs. They should normally be identified by
system name:

Feb 27 13:17:00 speaker /USR/SBIN/CRON[28223]: (rodsmith) CMD ➥

(/usr/bin/fetchmail -f /home/rodsmith/.fetchmailrc-powweb > /dev/null)

Feb 27 13:18:04 halrloprillalar ntpd[2036]: kernel time sync enabled 0001

03843book.indb 169 8/21/09 12:05:41 PM

170 Chapter 4 n Managing System Services

These lines indicate that the system speaker logged information about a run of /usr/
bin/fetchmail on February 27 at 13:17:00 (that is, 1:17 p.m.). Soon thereafter, at 13:18:04,
the system halrloprillalar recorded activity by the ntpd time server.

Using Log Files
Once you’ve configured logging on your system, this question arises: what can you do with
log files? Log files are primarily tools in problem solving—debugging servers that don’t
behave as you expect, locating evidence of system intrusions, and so on. You should first
know what log files to examine in any given situation. Understanding the problem-identi-
fication abilities of log files will help you use them effectively. Some tools can help in this
task, too; these tools can help you scan log files for information, summarize the (sometimes
overly verbose) log file information, and so on.

Which Log Files Are Important?
In using log files, you must first decide which ones are important. Unfortunately, the names
of log files aren’t completely standardized across distributions, so you may need to poke
around in your syslog configuration files, and perhaps in the log files themselves, to dis-
cover which files are important. Table 4.3 summarizes some common log files (all filenames
are relative to /var/log).

TA b le 4 . 3 Common Log Files

Log File Purpose

cron This file holds information on cron-related activity.

dmesg or boot.log Some distributions place the contents of the kernel ring buffer
(described in Chapter 1, “Getting Started with Linux”) in a log
file of this name immediately after booting. This ensures that the
boot-time kernel ring buffer contents will be accessible even after
the system has been running for a long time.

lastlog This is an unusual log file; it holds, in binary form, data on the
last login times for all users of the system. Type lastlog to see
this log file’s data in human-readable form.

messages This log file sometimes holds general-purpose log data, but on
many systems it emphasizes log data from the kernel.

maillog As you might guess by the name, this file holds messages related
to the e-mail system.

03843book.indb 170 8/21/09 12:05:41 PM

Using Log Files 171

TA b le 4 . 3 Common Log Files (continued)

Log File Purpose

secure This log file holds security-related information.

syslog General-purpose system log data typically ends up in this file.

Xorg.0.log This file holds information from the X server about its most recent
run. A new log is typically started each time the X server restarts.

To study your own system’s log files, you should begin by looking over your existing
/etc/syslog.conf file. Using the information presented earlier in “Setting Logging Options,”
you should be able to learn which log files syslogd is using on your system, as well as for
what purpose these files are being used. This isn’t the end of the story, though; some servers
log data without the help of syslogd, so you may need to consult the configuration files and
documentation for any programs you want to monitor. For instance, Samba frequently logs
data independently of syslogd, storing files in /var/log/samba or a similar directory.

If you’re uncertain of the purpose or importance of a log file, feel free to examine it. The
tools described shortly, in “Using Tools to Help Scan Log Files,” can be useful in this task.
For basic identification, less is likely to be very helpful, as in less /var/log/messages.
This command displays the file screen by screen, which should give you some clue about
the file’s contents.

Using Log Files to Identify Problems
You can use log files to monitor system loads (for instance, to determine how many pages
a Web server has served), to check for intrusion attempts, to verify the correct functioning
of a system, and to note errors generated by certain types of programs. To one extent or
another, all of these functions can be used to identify problems. Examples of information
that can be useful when you are troubleshooting include the following:

Verifying heavy loads If a server is running sluggishly, log files may contain clues in the form
of a large number of entries from the server. If a server has experienced a massive increase in
the number of clients it handles or the size of the files it transfers, you may need to increase
the server computer’s capacity to restore good performance. Most nonserver programs don’t
log their activities, though, so you probably won’t be able to diagnose similar load problems
caused by increasing workstation demands in this way. You’ll likely have an idea that worksta-
tion load has increased in a more direct way, though, because the workstation users should
know that they’re running more programs or more resource-intensive programs.

Sometimes the logging action itself can contribute substantially to a server’s
CPU and disk input/output requirements. If a server is behaving sluggishly,
try reducing its logging level (so that it records less information).

03843book.indb 171 8/21/09 12:05:42 PM

172 Chapter 4 n Managing System Services

Intrusion detection Some system problems are related to the presence of an intruder. Inter-
lopers frequently modify your system files or utilities, thus affecting your system’s perfor-
mance or reliability. Their actions are sometimes reflected in log files. Even the absence of
entries can sometimes be a clue—intruders often delete log files, or at least remove entries
for a period. You might not notice such log file discrepancies unless you examine the log
files soon after a break-in occurs, however.

Normal system functioning If a system is misbehaving, the presence of and information in
routine log file entries can sometimes help you pin down the problem, or at least eliminate
possibilities. For instance, suppose your system is working as a Dynamic Host Configura-
tion Protocol (DHCP) server for your network, dishing out IP addresses to other systems,
as described in Chapter 10. If your clients aren’t receiving IP addresses, you can check the
log file on the server. If that file indicates that the DHCP server has received requests and
given leases in response, you can focus your problem-solving efforts on the clients.

Missing entries If you know that a program should be logging information but you can’t
locate it, this may be evidence that the program is misconfigured or is not starting properly.
In some cases, missing entries may indicate problems outside the computer you’re examin-
ing. For instance, suppose you configure Samba to log access attempts. If you can’t access
the Samba server from another system, you can check for Samba log file entries. If those
entries aren’t present, it could mean that Samba isn’t running, that it’s misconfigured, or
that a network problem (such as a misconfigured router or firewall) is blocking access.

Error messages The most direct evidence of a problem in a log file is usually an error
message. A log file entry that reads authentication failure or FAILED LOGIN indicates an
authentication failure, for instance, that should help you focus your troubleshooting efforts.
(Users often see different messages than those that appear in log files, or even none at all.)
To improve this capacity, you can configure many servers and utilities to log more informa-
tion than usual; consult the program’s documentation for details. Be aware that different
subsystems produce error messages that vary greatly in form, so one program’s error mes-
sages will look quite different from another’s.

Log files are most useful when you are diagnosing software problems with the kernel, serv-
ers, user login tools, and miscellaneous other low-level utilities. Information routinely recorded
in log files includes kernel startup messages, kernel module operations, user logins, cron
actions, filesystem mounting and unmounting, and actions performed by many servers. This
information can reflect hardware, kernel, application, configuration, and even user problems.

Using Tools to Help Scan Log Files
Log files can sometimes be tricky to use because they often accumulate data at a rapid rate.
This is particularly true when many programs’ logs are sent to a single file or when you’ve
increased the logging level in a program in an effort to help identify problems. Therefore,
tools to help scan log files for important information are very helpful. You can think of
these tools as falling into one of three categories: those that examine the starts of files,
those that examine the ends of files, and those that can be used to search files. Some tools
can be used for two or even all three of these tasks.

03843book.indb 172 8/21/09 12:05:42 PM

Using Log Files 173

Most log files are owned by root, and many can be read only by root. Thus,
you may need to acquire root privileges before using any of these tools,
although the tools themselves can be used by other users on nonlog files.

Most of the commands described here are covered in greater detail in
Chapter 2.

Checking the Beginnings of Log Files
Sometimes you know that information you need appears at the start of a log file. For
instance, you might want to study the early stages of the boot process, as recorded in /var/
log/dmesg or a similar file. You can go about obtaining such information in any of several
ways. One tool that’s aimed specifically at displaying the beginning of a file is head. Used
with only a filename as an argument, head displays the first ten lines of that file. You can
change the number of lines with the -n argument, as in head -n 20 file.txt to display
the first 20 lines of file.txt.

If you know the information you want to review is near the beginning of a log file but
you’re not sure of its exact location, you might prefer to use a pager program, such as more
or less. The more program displays a file one screen at a time, whatever your screen size
is. You can press the spacebar to move forward in the file a screen at a time. The less pro-
gram’s name is a bit of a joke, because less is intended to be a better more; it does basically
the same thing but supports more options within the program, such as searching (described
shortly, in “Searching Log Files”). Both programs enable you to quickly check the first few
lines of a file, though.

Text editors can also be good ways to check the first few lines in a file. Most text editors
open the file and display its first few lines when you pass a filename on the command line.
Text editors do have some drawbacks, however. One is that you might accidentally alter the
log file, which is undesirable. Another drawback is that opening a log file in a text editor is
likely to take longer than using head or less to display the first few lines. This is particu-
larly true if either the text editor or the log file is unusually large.

Checking the Ends of Log Files
Information is added to the ends of log files. Thus, when you’re performing some operation
on a computer and you want to see whether it happened as you intended, that information
is likely to appear at the end of a log file, rather than at its start or somewhere in the mid-
dle. For instance, when you launch a new server, entries confirming the server’s successful
startup (or error messages relating to its failure to start) are likely to appear at the end of
the file. The ability to check the end of a log file is therefore very helpful.

The tail program is noteworthy in this respect because it’s designed to display the last
few lines (10 by default) of a file. This program is very similar to head in most ways, except
of course for the fact that it displays the end of a file rather than the beginning. The default

03843book.indb 173 8/21/09 12:05:42 PM

174 Chapter 4 n Managing System Services

action is sufficient for many purposes if you run the program on a log file immediately after
some information has been logged. Sometimes, though, you might need to display a num-
ber of lines other than the default of 10. To do this, you use the -n option, as in tail -n 15
/var/log/messages to display the last 15 lines of /var/log/messages.

Another feature of tail is real-time monitoring—you can use the program to keep an
eye on additions to log files as they occur. You might want to do this just before perform-
ing some action that you want to monitor; you’ll be able to see the relevant log entries as
they’re added to the log file. To do so, pass the -f or --follow option to tail, as in tail
-f /var/log/messages. The result is an initial display of the last few log entries, as usual;
however, tail doesn’t immediately terminate. Instead, it keeps monitoring the log file and
echoes new entries to the screen. When you’re done, press Ctrl+C to kill tail and regain
control of your shell.

Although it’s not quite as convenient as tail for displaying a fixed number of lines, the
less pager can be useful for checking the end of a log file. Type less filename to display
filename; then type G or press the Esc key followed by the greater-than symbol (>). This
will bring you to the end of the file. If you want to scroll upwards in the file, type b or press
Esc followed by V. You can scroll back down by typing f, pressing the spacebar, or pressing
Ctrl+V. Using these commands, you can quickly examine the final lines of any file, includ-
ing log files.

As with examining the start of a file, a text editor can be used to examine its end. Load
a log file into a text editor, and scroll to the end of the file in whatever way is appropriate.
As with examining the start of a file, though, this approach has the drawback that it might
result in accidental changes to the file being saved. It might also be slow, particularly on
large log files or with large editors. On the other hand, some editors notice when the log file
changes and enable you to quickly load the changes. This feature can be handy if you want
to monitor changes as they occur.

Searching Log Files
Sometimes you need to search log files for information. For instance, you might want to see
all entries created by Postfix or entries in which you know the string eth0 appears. You can
use any of several text searching tools to help out with such tasks. These tools can search
one or more text files and display matching lines, or they can take you to matching lines in
these files so that you can examine them in context.

The grep command is the most basic of the text-search tools. Type the command, a series
of options (including the search string), and a file specification (which typically includes a
wildcard) to have it search those files for the specified string. For instance, to find all log
entries created by the Postfix mail server, you might type grep postfix /var/log/*. The
result is a series of output lines, each of which begins with the name of the file from which
it’s taken and concludes with the line in question. (If the string was found in a binary file,
grep tells you so but doesn’t attempt to display the string in context.)

The grep command is most useful when searching for entries in multiple log files simul-
taneously—say, if you don’t know to which file a server is logging information. It can also

03843book.indb 174 8/21/09 12:05:42 PM

Using Log Files 175

be useful if you want to display the log entries from a particular server or those that involve
a single user or by some other criterion you can easily express as a searchable string.

If you use grep to search for a string that’s very common, the output is
likely to scroll off the top of your screen and possibly exceed the buffer of
a scrollable xterm window. This may prevent you from taking a complete
census of files in which the string occurs. You can pipe the output through
less, as in grep postfix /var/log/* | less, to enable you to scan
through the grep output in a more controlled way.

Another way to search log files is by using the less program. You can use this utility to
view a single log file. Once you’re viewing a file, press the slash key (/) followed by a search
string, as in /postfix to locate the first occurrence of the string postfix in the log file. If
that string is present in the file, less takes you to that point and highlights the string. Press-
ing the slash key again moves to the next line that contains the search string. This feature
can be handy if you need to see the full context of the line in question. If you want to locate
the last occurrence of a string, press Esc followed by the greater-than symbol (>) to move
to the end of the buffer, and then search backwards using a question mark (?; that is, the
slash key with a Shift modifier), as in ?postfix. You can use a text editor to perform simi-
lar searches, but with the same caveats described earlier, in “Checking the Beginnings of
Log Files”—text editors can be slower than tools such as less, and you might accidentally
alter the log file.

Using sed and awk
Two tools that are often used together are sed and awk. The command name sed stands
for “stream editor,” and it’s a text editor that uses command-line commands rather than
GUI operations or even Vi-style interactive commands to edit a file. The awk command
name is based on the names of its creators (Alfred J. Aho, Peter J. Weinberger, and Brian
W. Kernighan). It’s a scripting language that’s built around pattern matching. Thus, you
can use awk to control sed, making changes to files based on pattern matches in other files.

Most Linux distributions ship with GNU awk, or gawk. Although there are a few dif-
ferences between gawk and other awk implementations, for the most part they’re the same.
Most Linux distributions create a symbolic link called awk that points to the gawk binary.
The syntax for gawk follows one of two patterns:

gawk [options] -f program-file [files]

gawk [options] program-text [files]

In the first case, you pass an awk program in a separate file (program-file); in the second
case, you pass the awk program (program-text) on the same command line as the call to awk
itself. Typically, this program is enclosed in single quote marks (‘).

In the context of log file analysis, you might use grep to isolate lines of interest in a log
file and then use awk to isolate the relevant data from the file. For instance, suppose you

03843book.indb 175 8/21/09 12:05:43 PM

176 Chapter 4 n Managing System Services

want to find the recipients of e-mail processed by your mail server. A typical entry might
resemble the following:

Apr 2 23:52:45 nessus postfix/smtp[30147]: C4F1E6CDE:➥

to=<jennie@luna.edu>, relay=smtp.abigisp.com[68.1.17.4]:25, delay=0.56,➥

delays=0.02/0.04/0.23/0.27, dsn=2.0.0, status=sent (250 2.0.0 ➥

arsl1b0013cx0xk02rslGy mail accepted for delivery)

The recipient information begins with the string to=, so you can use grep to locate such
lines, eliminating other lines from the input that will be piped into awk. You can then use
awk to isolate the seventh space-delimited field—the one with the recipient information.
This is the command to do all of this:

$ grep “to=” /var/log/mail.log | awk ‘/.*/ {print $7}‘

You might need to adjust this command for your system’s log file name and the format
of its entries. The output will be a series of lines, such as the following:

to=<jennie@luna.edu>,

to=<franklin@example.com>,

The sed command more directly modifies the contents of files. Its syntax, like awk’s, can
take one of two forms:

sed [options] -f script-file [input-file]

sed [options] script-text [input-file]

In either case, input-file is the name of the file you want to modify. (Modifications
are actually temporary unless you save them in some way.) The script (script-text or the
contents of script-file) is the set of commands you want sed to perform. When passing
a script directly on the command line, script-text is typically enclosed in single quote
marks. Table 4.4 summarizes a few sed commands that can be used in its scripts.

TA b le 4 . 4 Common sed Commands

Command Meaning

= Display the current line number

a\text Append text to the file

i\text Insert text into the file

r filename Append text from filename into the file

s/regexp/replacement Replace text that matches the regular expression (regexp)
with replacement

03843book.indb 176 8/21/09 12:05:43 PM

Using Log Files 177

Table 4.4 is incomplete; sed (like awk) is quite complex, and this section
merely introduces it.

You can use sed to further clean up the output of the preceding grep/awk command.
For instance, if you want only the e-mail address and not the to= string and surrounding
punctuation, you could use the following command:

$ grep “to=” /var/log/mail.log | awk ‘/.*/ {print $7}‘ | sed {s/to=\<//} |➥

sed {s/\>\,//}

The backslash character (\) is used to signify that the following character
should be interpreted as a literal part of the regular expression rather than
as a special control character.

The result of the preceding command will be a series of e-mail addresses, one to a line,
as in:

jennie@luna.edu

franklin@example.com

Although they’re conceptually simple, both sed and awk are very complex tools; even a
modest summary of their capabilities would fill a chapter. You can consult their man pages
for basic information, but to fully understand these tools, you may want to consult a book
on the subject, such as Dale Dougherty and Arnold Robbins’ sed & awk, 2nd Edition
(O’Reilly, 1997).

Using Additional Log File Analysis Tools
Manually examining log files with tail, less, and similar tools can be informative, but
other tools exist to help you analyze your log files. One of these is Logcheck, which is part
of the Sentry Tools package (http://sourceforge.net/projects/sentrytools/). This
package comes with some distributions, such as Debian. Unfortunately, it requires a fair
amount of customization for your own system, so it’s most easily implemented if it comes
with your distribution, preconfigured for its log file format. If you want to use it on another
distribution, you must edit the logcheck.sh file that’s at the heart of the package. This
file calls the logtail utility that checks log file contents, so you must configure the script
to check the log files you want monitored. You can also adjust features such as the user
who’s to receive violation reports and the locations of files that contain strings for which
the utility should look in log files. Once it’s configured, you call logcheck.sh in a cron job.
Logcheck then e-mails a report concerning any suspicious system logs to the user defined in
logcheck.sh (root, by default).

03843book.indb 177 8/21/09 12:05:43 PM

178 Chapter 4 n Managing System Services

Summary
System services are those programs that run behind the scenes on any Linux system. Many
system services are network server programs, but others are purely local in action. Know-
ing how to start and stop system services, both on a temporary and a permanent basis, will
give you control over how your computer behaves—what network servers it provides to the
world, what local utilities it runs, and so on. Most system services are run via SysV startup
scripts or via a super server, but you may also use local startup scripts to do the job.

Because system services don’t attach themselves to a console, they don’t normally display
messages for you on your screen. Instead, they write messages to log files. These messages
can include warnings about security violations, complaints about unexpected events, and
more routine data about normal operations. Knowing how to examine and search log files
will enable you to keep an eye on your system’s operation, both to verify normal function-
ing and to investigate problems—with any luck before they become serious!

Exam Essentials

Describe the SysV startup procedure. The init process reads the /etc/inittab file or the
contents of the /etc/event.d directory, which controls programs that run when changing
from one runlevel to another. Scripts in directories corresponding to each runlevel (typically
/etc/rc#.d or /etc/rc.d/rc#.d, where # is the runlevel number) start and stop services
when the runlevel changes.

Explain the differences between SysV startup scripts and super servers for running
servers. SysV startup scripts start servers running on a computer at startup or when
changing runlevels so that the servers are always running and can respond quickly to
requests, but servers run in this way consume RAM at all times. Super servers run the
target servers only in response to requests from clients, thus reducing the memory burden
for infrequently used servers but at the cost of slower responses to incoming requests.

Summarize how TCP Wrappers or xinetd can improve security. These programs both
perform initial security checks on a connection, such as verifying that the IP address of a
client system is authorized to use the server. Only when a client passes any initial checks is
the server program launched and the connection handed off to the server program.

Describe the function of the runlevel. Sometimes you may want to run a Linux system
with a different set of services than you run at other times. The runlevel lets you define
several sets of services and switch quickly between them.

Describe the function of a system logger. A system logger is a daemon that accepts informa-
tion from servers and other programs that want to record information about their normal
operation in standardized log files. The system logger creates and manages these files on behalf
of the programs that generate the log entries.

03843book.indb 178 8/21/09 12:05:43 PM

Exam Essentials 179

Explain why using a remote system logger can be beneficial. A remote system logger is
a computer that accepts log entries for other systems. This practice improves overall net-
work security because it protects logs from tampering by intruders—to change a log file, the
intruder must compromise two computers rather than one. You can also search consolidated
log files much more easily than you can search them on multiple computers.

Summarize how tail and less differ as tools for examining log files. The tail command
displays the final few lines of a file, which is handy if you know an entry you want to see is
at the very end of a log file. The less command enables you to page through a file, search
its contents, and so on. It’s not as convenient as tail if you just want to see the last few
lines of a file, but it’s superior if you need to search for information or aren’t sure precisely
how many lines you need to examine.

03843book.indb 179 8/21/09 12:05:44 PM

180 Chapter 4 n Managing System Services

Review Questions

1. You’ve located a program that continuously monitors your disk activity in the background
and e-mails you if it detects problems. Which of the following methods is least appropriate
for launching this program?

A. Typing its name at a Bash prompt

B. A SysV startup script

C. A super server

D. A local startup script

2. A Linux system keeps its SysV startup scripts in the /etc/init.d directory. Which of the
following commands will temporarily stop the ProFTPd server on that computer, if it’s
started from these startup scripts?

A. /etc/init.d/proftpd stop

B. sysvstop /etc/init.d/proftpd

C. sysvstop proftpd

D. /etc/init.d/proftpd stop5m

3. You’ve installed a server by compiling it from source code. The source code included no
SysV startup script, and you don’t want to run it from a super server, so you start it in a
local startup script (/etc/rc.d/rc.local). You need to temporarily shut down the server.
How might you do this?

A. Type /etc/rc.d/rc.local stop.

B. Edit the startup script to remove the server, and rerun the script.

C. Remove the server’s entry from /etc/inetd.conf, and type /etc/rc.d/init.d/
inetd restart.

D. Find the server’s process ID number (pid) with ps, and then type kill pid.

4. You’ve discovered that the VitalServer package is installed on your Fedora system, but it’s
not running automatically when you start the computer into runlevel 5. Assuming this
package comes with a SysV startup script called vitald, what might you type to enable
this server in runlevel 5?

A. xinetd 5 vitald add

B. init vitald 5

C. rc-update add vitald 5

D. chkconfig --level 5 vitald on

03843book.indb 180 8/21/09 12:05:44 PM

Review Questions 181

5. Why might you use reload rather than restart as a parameter to a SysV startup script
after making changes to a server’s configuration file?

A. The reload option reloads an individual server, whereas the restart option causes
Linux to shut down and reboot.

B. For some servers, reload causes the server to reload the configuration file without
shutting down, whereas restart fully shuts down and restarts the server, which can
disconnect users.

C. The reload option rereads the configuration file using existing file handles, whereas
restart creates new file handles, increasing the risk of file corruption on the disk.

D. For some servers, reload works more reliably because it performs a more complete set
of changes to the configuration than does restart.

6. A new Linux system administrator edits /etc/inetd.conf to add a server. After making
this change, the administrator tests the new server, but a remote system can’t access the new
server. Why might this be? (Choose all that apply.)

A. The administrator may have forgotten to restart inetd.

B. The system might be using xinetd rather than inetd.

C. The administrator may have forgotten to edit the /etc/rc.d/init.d script for the new
server.

D. The administrator may have forgotten to start the new server manually for the first time.

7. A server/computer combination appears in both hosts.allow and hosts.deny. What’s the
result of this configuration when TCP Wrappers runs?

A. TCP Wrappers refuses to run and logs an error in /var/log/messages.

B. The system’s administrator is paged to decide whether to allow access.

C. hosts.deny takes precedence; the client is denied access to the server.

D. hosts.allow takes precedence; the client is granted access to the server.

8. When is the bind option of xinetd most useful?

A. When you want to run two servers on one port

B. When you want to specify computers by name rather than IP address

C. When xinetd is running on a system with two network interfaces

D. When resolving conflicts between different servers

9. To alter a Linux system’s default runlevel, what would you do?

A. Issue the telinit x command, where x is the desired runlevel.

B. Edit /etc/modules.conf, and enter the runlevel as an option to the runlevel module.

C. Issue the telinit Q command to have the system query you for a new runlevel.

D. Edit /etc/inittab and enter the correct runlevel in the initdefault line.

03843book.indb 181 8/21/09 12:05:44 PM

182 Chapter 4 n Managing System Services

10. Which of the following commands switches a running system into runlevel 3?

A. telnet 3

B. runlevel 3

C. telinit 3

D. switch-runlevel 3

11. What does the following command, when typed by a system administrator at noon,
accomplish?

shutdown -r 01:00 “Up again soon.”

A. Reboots the computer at 1:00 p.m. (in one hour) and displays the message Up again
soon as a warning to users

B. Shuts down (halts) the computer at 1:00 p.m. (in one hour) and displays the message Up
again soon as a warning to users

C. Shuts down (halts) the computer at 1:00 a.m. (in 13 hours) and displays the message Up
again soon as a warning to users

D. Reboots the computer at 1:00 a.m. (in 13 hours) and displays the message Up again
soon as a warning to users

12. What is the difference between runlevels 3 and 5 on a standard Red Hat system?

A. Runlevel 3 doesn’t start X, but runlevel 5 does.

B. Runlevel 3 doesn’t launch SysV init scripts, but runlevel 5 does.

C. Runlevel 3 launches into single-user mode, whereas runlevel 5 is multiuser.

D. All of the above.

13. You want to shut down X on an Ubuntu system, so you enter runlevel 3; however, X doesn’t
shut down. Why not?

A. Your X server is misconfigured to run in all runlevels.

B. Ubuntu doesn’t use runlevels to control when X runs.

C. You must also type stopx to stop X.

D. You must enter runlevel 4 on Ubuntu to shut down X.

14. Which of the following system logging codes represents the highest priority?

A. emerg

B. warning

C. crit

D. debug

03843book.indb 182 8/21/09 12:05:44 PM

Review Questions 183

15. Which of the following is an advantage of designating one well-protected computer to
record log files for several other computers?

A. Logging information in this way minimizes network use.

B. The logging system can analyze the logs using Tripwire.

C. Logs stored on a separate computer are less likely to be compromised by an intruder.

D. You can log information to a separate computer that you can’t log locally.

16. Why is a log file analysis tool like Logcheck useful?

A. Logcheck translates log file entries from cryptic comments into plain English.

B. Logcheck sifts through large log files and alerts you to the most suspicious entries.

C. Logcheck compares patterns of activity across several days or weeks and spots anomalies.

D. Logcheck uses information in log files to help identify a cracker.

17. Which of the following configuration files does the logrotate program consult for
its settings?

A. /etc/logrotate.conf

B. /usr/sbin/logrotate/logrotate.conf

C. /usr/src/logrotate/logrotate.conf

D. /etc/logrotate/.conf

18. Your manager has asked that you configure logrotate to run on a regular, unattended
basis. What utility/feature should you configure to make this possible?

A. at

B. logrotate.d

C. cron

D. inittab

19. Which of the following commands will change all occurrences of dog in the file
animals.txt to mutt in the screen display?

A. sed –s “dog” “mutt” animals.txt

B. grep –s “dog||mutt” animals.txt

C. sed ‘s/dog/mutt/‘ animals.txt

D. cat animals.txt | grep –c “dog” “mutt”

20. Which of the following is an advantage of xinetd over inetd?

A. xinetd can control SysV startup scripts; inetd can’t do this.

B. xinetd includes more built-in security features than does inetd.

C. xinetd provides a more succinct one-line-per-server configuration file format.

D. xinetd launches X; systems using inetd must launch X separately.

03843book.indb 183 8/21/09 12:05:44 PM

184 Chapter 4 n Managing System Services

Answers to Review Questions

1. C. Super servers listen for network connections and launch network servers in response to
connection attempts. They are useful for launching other servers, but the described program
isn’t a server and therefore would not normally be launched in this way, so option C is correct.
Option A is a reasonable way to launch the program for testing or occasional use, although it
would be awkward if you want to always use the program. Options B and D are both perfectly
reasonable ways to launch the described program on a regular and automatic basis.

2. A. There is no standard sysvstop command, so options B and C can’t be correct. Option D
uses a parameter (stop5m) that’s not standard, and so it won’t stop the server. Option A stops
the server, which can be manually restarted later or which will restart automatically when the
system is rebooted, if it’s configured to do so.

3. D. Killing the server with kill will stop a running server. Local startup scripts don’t
accept start and stop parameters like those used by SysV startup scripts. Rerunning the
startup script, even after editing it to remove references to the target server, won’t kill run-
ning processes. inetd is a super server, and since the server in question isn’t being run from
a super server, restarting inetd won’t kill the target server.

4. D. The chkconfig utility, present in Red Hat, Fedora, and several other distributions, may
be used to modify what services are launched by the SysV startup scripts. Option D pres-
ents the correct syntax for starting the vitald service in runlevel 5. Option A is incorrect
because xinetd is a super server; it doesn’t manage SysV startup scripts. Option B is incor-
rect because the init program is the first program run by the kernel. Although it may be
called subsequently to change runlevels, init doesn’t start or stop individual SysV services.
Option C is incorrect because rc-update is a Gentoo-specific tool for managing system ser-
vices, but the question specified a Fedora system. (On a Gentoo system, typing rc-update
add vitald default would have the desired effect.)

5. B. Option B correctly summarizes the difference between these two options, when both
are implemented. (Some SysV startup scripts lack a reload option.) Option A is incorrect
because no standard SysV startup script causes the system to restart. Option C is entirely
fictitious. Option D is, if anything, backwards; restart is more likely to work than reload
for some servers.

6. A, B. After editing /etc/inetd.conf, inetd should be restarted, typically by typing
/etc/rc.d/init.d/inetd restart or something similar. An unused /etc/inetd.conf
file can sometimes lure administrators used to configuring this file into editing it rather
than configuring xinetd on systems that run this alternative super server. Running or
editing the target server’s startup script is unnecessary in this scenario because the server
is started from the super server; it’s not run directly.

7. D. TCP Wrappers favors hosts.allow when a server/computer combination appears in
both hosts.allow and hosts.deny. TCP Wrappers uses this feature to allow you to over-
ride broad denials by adding more specific explicit access permissions to hosts.allow, as
when setting a default deny policy (ALL : ALL) in hosts.deny. Options A and B are both
simply wrong; TCP Wrappers does neither of these things. Option C is backwards.

03843book.indb 184 8/21/09 12:05:45 PM

Answers to Review Questions 185

8. C. The bind option of xinetd lets you tie a server to just one network interface, rather
than link to them all. It has nothing to do with running multiple servers on one port, speci-
fying computers by hostname, or resolving conflicts between servers.

9. D. The /etc/inittab file controls the default runlevel. Although telinit can be used
to temporarily change the runlevel, this change will not be permanent. The command
telinit Q tells the system to reread /etc/inittab, so it could be used to implement a
changed default after you’ve edited the file, but it will have no effect before editing this file.
The /etc/modules.conf file has nothing to do with runlevels, and there is no standard
runlevel module.

10. C. The telinit command changes runlevels. Option A, telnet, is Linux’s Telnet client
for initiating remote logins. Option B, runlevel, displays the current and previous runlevel
but doesn’t change the runlevel. There is no switch-runlevel command (option D).

11. D. The reboot time, when specified in hh:mm form, is given as a 24-hour clock time, so 01:00
corresponds to 1:00 a.m. The -r parameter specifies a reboot, not a halt. (-h specifies a halt.)

12. A. Option A correctly describes the meanings of these two runlevels. Contrary to option B,
SysV init scripts are used in all runlevels on Red Hat (and most other Linux systems). Option C
describes the difference between runlevels 1 and 2–5, not between 3 and 5.

13. B. Ubuntu runs X in all its multiuser runlevels by default, so entering runlevel 3 will have no
effect on X; you must use a SysV startup script to shut down X on Ubuntu. Option A is incor-
rect because Ubuntu’s standard configuration isn’t a misconfiguration, although it is different
from Red Hat’s system; and it’s not the X server that controls what runlevels it’s run in, but
your SysV and runlevel configuration. Option C is incorrect because there’s no stopx com-
mand, although there is a startx command that launches X from a text-mode login. Con-
trary to option B, X won’t shut down in runlevel 4 in a standard Ubuntu configuration.

14. A. The emerg priority code is the highest code available and so is higher than all the other
options. (The panic code is equivalent to emerg but isn’t one of the options.) From highest
to lowest priorities, the codes given as options are emerg, crit, warning, and debug.

15. C. Intruders often try to doctor system logs to hide their presence. Placing logs on another
computer makes it less likely that they’ll be able to achieve this goal, so you’re more likely
to detect the intrusion. Logging to a separate computer actually increases network use.
Tripwire doesn’t do log analyses; that job is done by Logcheck, and Logcheck can run on
any computer that stores logs. System loggers can record any information locally that can
be logged remotely.

16. B. Logcheck uses pattern-matching rules to extract log file entries containing keywords
associated with suspicious activity. Although the other options might be useful to have,
Logcheck and other common log file analysis tools cannot perform these tasks.

17. A. The logrotate program consults a configuration file called /etc/logrotate.conf,
which includes several default settings and typically refers to files in /etc/logrotate.d to
handle specific log files.

03843book.indb 185 8/21/09 12:05:45 PM

186 Chapter 4 n Managing System Services

18. C. The logrotate program can be started automatically—and unattended—on a regular
basis by adding an entry for it in cron. The at utility would be used if you wanted the pro-
gram to run only once, while logrotate.d defines how the program is to handle specific log
files. The inittab table is used for services and startup and not for individual programs.

19. B. The sed utility can be used to “stream” text and change one value to another. In this
case, the s option is used to replace dog with mutt. The syntax in option A is incorrect,
while options B and D are incorrect since grep does not include the functionality needed
to make the changes.

20. C. xinetd includes security features that enable you to control what remote systems can
connect to specific xinetd-managed servers. If you use inetd, you must add the separate
TCP Wrappers package to obtain similar functionality. Thus, option B is correct. Option
A is incorrect because neither inetd nor xinetd is used to control SysV startup scripts
(although both programs are typically launched from SysV scripts). Option C is incorrect
because inetd uses a one-line-per-server configuration file format; xinetd uses a more
verbose multi-line format. Which is better is a matter of personal preference. Option D
is incorrect because neither inetd nor xinetd launches X. (Either can launch certain
X-related tools, though, such as an XDMCP login server.)

03843book.indb 186 8/21/09 12:05:45 PM

Chapter

5
Managing Users

The Following CoMpTiA objeCTives
Are Covered in This ChApTer:

5.1 Manage and monitor user and group accounts using ÛÛ
the following (Tools: useradd, userdel, usermod, groupadd,
groupdel, groupmod, lock, who, w, last, whoami; Files: /etc/
skel, /etc/passwd, /etc/shadow, /etc/group).

5.4 Given a scenario, implement privilege escalation using ÛÛ
the following (sudo, su).

03843book.indb 187 8/21/09 12:05:56 PM

Traditional PC OSs, such as DOS and early versions of Win-
dows, are basically single-user OSs. Although it’s certainly
possible for two or more people to use computers running

these OSs, the OSs themselves provide no mechanisms to help keep users from reading or
even damaging one another’s files. Linux, on the other hand, is modeled after Unix, which
was designed as a multiuser OS. In Linux and Unix, the OS provides tools designed to help
keep users from harming one another’s files. The same mechanisms are used to provide
security and to keep users from damaging the OS as a whole. For these reasons, Linux sys-
tem administrators must understand how the OS handles users and what tools are available
to help you manage the users on your own system.

This chapter covers several specific user management topics, starting with an overview
of basic multiuser concepts. Next up is information on configuring users and groups of
users, as well as common strategies you can employ in managing users and groups. Because
Linux’s account system is a pillar in its security system, this chapter describes policies you
can use in account management to improve security, focusing on good password practices.
This chapter concludes with a look at access control—using accounts, encryption, and
server-specific options to limit access to the computer by particular users or computers.

Understanding Multiuser Concepts
Before dealing with the nitty-gritty details of administering user accounts on a Linux
system, you should understand the underlying concepts, including a few implementation
details. Knowing this information will help you plan an effective account structure or
expand an existing one to meet new needs. This information may also be critically impor-
tant when you’re moving accounts from one computer to another, adding a new hard disk,
or performing other types of system maintenance.

User Accounts: The Core of a Multiuser System
Linux user accounts are basically the same as user accounts in other Unix-like OSs. They
enable several people to use the same system, either at different times or at the same time,
without interfering with one another. A single user can even have several simultaneous log-
ins active, which is sometimes convenient. It’s important to understand what user accounts
allow you to do with a system and also how users are identified.

03843book.indb 188 8/21/09 12:05:57 PM

Understanding Multiuser Concepts 189

Accounts in a Multiuser System
Technically, a user is a person, whereas an account is a set of data structures and permissions
associated with that user. Frequently, though, the term user is used as if it were synonymous
with account, as in “you must delete this user.” Don’t take such language literally—delete the
account, not the user.

Several important features have been associated with Linux accounts, including the
following:

Username The username is the name by which the account is known to humans, such
as ellen. The characteristics of Linux usernames are described in more detail shortly, in
“Linux Usernames.”

Login privileges An account enables an individual to log into a Linux computer. Depending
on the system’s configuration, this could be a login at the console (that is, the keyboard and
monitor that are directly connected to the computer) or remotely (via serial line, modem, or
network). When an individual logs in, that person may use some or all of the programs and
resources available on the computer. Some other resources, like files delivered by a Web server,
don’t require a login.

Password protection Linux accounts are protected by passwords. A person attempting
to log in must provide both a username and a password. The username is generally public
knowledge, but the password is secret. Some forms of login bypass the password protec-
tion, usually by deferring to authentication performed by another computer.

Permissions Every account has permission to run certain programs and access certain
files. These permissions are controlled on a file-by-file basis, as described in Chapter 2,
“Using Text-Mode Commands.”

Home directory Every account has a home directory associated with it. This is a direc-
tory in which the user can store data files. Typically, each user has his or her own home
directory, although it’s possible to configure a system so that two or more users share a
home directory. It’s also possible, but seldom useful, to specify a home directory to which
a user cannot write. (You might use such a configuration if a user should be able to run
programs that don’t generate their own data but should not be able to store files on the
computer.)

User and group IDs Computers operate on numbers, not words—the words we see on
computer screens are encoded as numbers internally. Linux associates two numbers with
each account. The first is the user ID (UID), which is mapped to a specific username. The
second is the group ID (GID), which is mapped to a specific group of users. Both these pro-
cesses are described further in the section “Mapping UIDs and GIDs to Users and Groups.”

Default shell When using a Linux computer at a text-based login (say, at the console with-
out the X Window System running, or via a text-based network protocol like Telnet), Linux
presents users with a program known as a shell, as described in Chapter 2. Several shells
are available for Linux and can be set on an account-by-account basis.

03843book.indb 189 8/21/09 12:05:57 PM

190 Chapter 5 n Managing Users

Program-specific files Some programs generate files that are associated with a particular
user, in or out of that user’s home directory. Many programs create configuration files in the
user’s home directory, for instance. Another important example is the mail spool, in which a
Linux system stores incoming e-mail messages for a user. Assuming the basic mail software
is installed, creating a user account is usually necessary and sufficient for a user to receive
mail, although exceptions to this rule exist, particularly with some mail server packages.

Some of these features are defined in one or two critical system configuration files:
/etc/passwd and /etc/shadow. The /etc/passwd file is the traditional repository for criti-
cal account information, including the username, UID number, GID number, password,
home directory location, and default shell specification. Creating or modifying an account
is mostly a matter of modifying this one file. There are enough additional details, though,
that most administrators use special tools to perform these tasks, as described in the sec-
tion “Configuring User Accounts.”

Unfortunately, the needs of the system dictate that /etc/passwd be readable by all users.
This fact makes the placement of password information in /etc/passwd—even in encrypted
form—a risky proposition. For this reason, most Linux distributions since the late 1990s
ship with shadow password support. In this system, users’ passwords are stored in a sepa-
rate file, /etc/shadow. This file cannot be read by most users, making it more difficult for a
miscreant with an account on the computer to break into other users’ accounts.

Accounts in a Multitasking System
Linux is both a multiuser and a multitasking system. Linux’s multiuser nature allows multiple
people to use one computer without causing problems for one another. Linux’s multitasking
ability allows multiple programs to run at one time. Although single-user multitasking OSs
are available, combining the two has many advantages, particularly in a networked environ-
ment. Specifically, several people can be logged onto a Linux computer at one time, and they
can run the same or different programs simultaneously. For instance, Sally can run the Emacs
editor while Sam and Ellen both run the Mozilla Web browser and George runs a C compiler.

Although it’s possible to use a single account for multiple simultaneous logins, using
multiple accounts can be helpful, particularly when multiple individuals are involved. Each
account can be configured with its owner’s preferences in mind, and therefore, simultane-
ous logins can present different defaults for things like the placement of icons on a desktop
environment or the command shell to be used. Furthermore, if a user changes a default
value, that change will not affect other users currently logged on to the computer. If the
system were a single-user computer that allowed multiple logins, changes to system defaults
could adversely affect other users or be undone when other users logged out.

Of course, Linux’s multitasking ability doesn’t mean that the computer can support an
unlimited number of simultaneous users. Some activities, such as George’s C program com-
pilation, are likely to consume a great deal of RAM, CPU time, or disk I/O. If many users
try to run such resource-intensive programs simultaneously, all the users will see a perfor-
mance decrease. Just how many simultaneous users a Linux computer can support depends
on many factors, including the types of programs they’re likely to run and how much of
critical system resources (RAM, CPU speed, network speed, disk speed, and disk capacity)

03843book.indb 190 8/21/09 12:05:57 PM

Understanding Multiuser Concepts 191

the system has. If the applications used aren’t very resource intensive, a single modern com-
puter can support dozens or hundreds of simultaneous users, but if the programs are hogs
of one or more resources, one user per computer may seem like too many.

Simultaneous use of one computer by multiple users generally requires some form of net-
work connectivity, although it can also be handled through terminals connected to serial
ports. Typically, remote login protocols like Telnet or the Secure Shell (SSH) support text-
mode logins. Linux’s GUI environment, the X Window System (or X for short), is network-
enabled, so it permits remote use of GUI programs. Alternatively, the VNC program (http://
www.realvnc.com) supports similar connectivity.

Linux supports multiple simultaneous logins through its standard console via a feature
known as virtual terminals (VTs). From a text-mode login, hitting the Alt key along with a
function key from F1 to F6 typically switches to a different virtual screen, and you can log
into as many of these as you like. You can even run multiple X sessions at different resolu-
tions by issuing appropriate parameters to startx. Ordinarily, the first X session runs on
VT 7, although some distributions use other VTs for this purpose, such as VT 1 or VT 9.
When switching out of a VT that’s running X, you must add Ctrl to the key sequence—for
instance, you must press Ctrl+Alt+F1 to switch from X to the first text-mode VT. You can
run a second X session by logging into a text VT and issuing the following command:

$ startx -- :1 vt8

This command will run X in VT 8. You can switch back and forth between it and the
first X session by pressing Ctrl+Alt+F7 and Ctrl+Alt+F8.

Of course, this VT capability is most useful for a single-user workstation—two people
can’t make practical use of the same keyboard at the same time. Nonetheless, it’s still useful
if you as an administrator want to run Linux under multiple accounts or X configurations,
or if you want to easily switch between multiple text-based programs without running X.

The Superuser Account
One particularly important account on all Linux systems is that of the superuser. The
superuser is also referred to as the administrator. The account used by the superuser is
known as root.

Whenever you perform system administration tasks on a Linux computer, you’ll do so as
root. You can do this in any of several ways:

Direct administrative login You can log into the computer as root. Thereafter, any action
you perform will be done as the superuser. This can be a very dangerous way to use the sys-
tem, so it’s best to do so only for brief periods. Most systems contain restrictions on root
logins, so they can be done only from the console. This helps prevent outsiders from gaining
access to a system over a network by using a stolen password.

Switching identities after login The su program lets you temporarily acquire superuser privi-
leges or take on any other user’s identity. Type su and press the Enter key after logging on as
an ordinary user, and the system will prompt you for the root password. If you type that pass-
word correctly, subsequent commands will be executed as root. Type exit to return to your

03843book.indb 191 8/21/09 12:05:57 PM

192 Chapter 5 n Managing Users

normal user privileges. To take on a non-root user’s privileges, add that user’s name, as in su
george, to take on the george account’s role. If you’re already root, you can take on another
user’s identity without that user’s password; su doesn’t ask root for a password. This can be
useful when you’re debugging problems that may be related to a particular user’s configuration.

Running an individual program as the superuser Once configured, the sudo command
allows you to execute a single command as root. This limits the danger of running as root,
so it can be a good way to run the programs that you most frequently run as root. The
/etc/sudoers file contains a list of users who may use sudo, as well as the commands they
are allowed to run in this way. You can edit this file with the visudo command, which
invokes the Vi editor (as described in Chapter 3, “Managing Processes and Editing Files”) in
such a way that it helps you get the format of the configuration file right. To use sudo, you
type this command followed by the command you want to execute, as in sudo fdisk /dev/
hda to edit the partition table on /dev/hda without using su or some other method of acquir-
ing root privileges. The first time you run sudo in a given shell, or if you use the program
after you’ve not used it for a while, you’ll be asked for a password. This is normally your
ordinary user password, but some configurations require you to enter the root password.

SUID root files As described in the section “Interpreting File Access Codes” in Chapter 2,
it’s possible to set a file to execute as if run by root even when it’s run by another user. This
feature must be set on a program-by-program basis.

Program prompts Some configuration tools prompt you for the root password and then
run themselves as root. This setup is most common with the GUI configuration tools that
ship with many Linux distributions.

The danger of root power

The root account is special because it bypasses normal security features. Specifically,
the superuser may read, write, or delete any file on the computer, no matter who owns
that file or whether the owner has granted other users read or write access to it. This sort
of power is dangerous not just because of the ability to invade other users’ privacy, but
because it allows root to do serious damage to the OS. For instance, suppose you want
to delete a directory and its contents. You might issue the following command to do so:

rm -r /home/george/olddir

This command deletes the /home/george/olddir directory and all its files and subdirec-
tories. Unfortunately, a single typo can create a much more destructive command:

rm -r / home/george/olddir

Note the stray space between / and home/george/olddir. This typo causes the computer
to delete all files in the / directory—that is, all files on the computer, not just the files in
home/george/olddir. This is the sort of power that you should grant yourself only when
you absolutely need it.

03843book.indb 192 8/21/09 12:05:57 PM

Understanding Multiuser Concepts 193

Linux Usernames
Linux is fairly flexible about its usernames. Most versions of Linux support usernames
consisting of any combination of upper- and lowercase letters, numbers, and many punc-
tuation symbols, including periods and spaces. Some punctuation symbols, however, such
as spaces, cause problems for certain Linux utilities, so it’s generally best to avoid using
punctuation in Linux usernames. Underscores (_) and periods (.) are relatively unlikely to
cause problems and so are occasionally used. Also, usernames must begin with a letter, so
a username such as 45u is invalid, although u45 is fine. Although usernames may consist
of up to 32 characters, many utilities truncate usernames longer than 8 characters or so in
their displays, so many administrators try to limit username length to 8 characters.

Linux treats usernames in a case-sensitive way. Therefore, a single computer can support
both ellen and Ellen as separate users. This practice can lead to a great deal of confusion,
however, so it’s best to avoid creating accounts whose usernames differ only in case. In fact,
the traditional practice is to use entirely lowercase letters in Linux usernames, such as sally,
sam, ellen, and george. Usernames don’t need to be based on first names, of course—you
could use sam_jones, s.jones, sjones, jones, jones17, or u238, to name just a few possibili-
ties. Most sites develop a standard method of creating usernames, such as using the first ini-
tial and the last name. Creating and following such a standard practice can help you locate an
account that belongs to a particular individual. If your computer has many users, though, you
may find a naming convention produces duplicates, particularly if your standard uses initials
to shorten usernames. You may therefore be forced to deviate from the standard or incorpo-
rate numbers to distinguish between all the Davids or Smiths of the world.

Linking Users Together for Productivity via Groups
Linux uses groups as a means of organizing users. In many ways, groups parallel users.
Groups are similar to users in several ways:

Groups are defined in a single file, Ûn /etc/group, which has a structure similar to that
of /etc/passwd.

Groups have names similar to usernames.Ûn

Group names are tied to group IDs (GIDs).Ûn

Groups are not accounts, however. Rather, groups are a means of organizing collections of
accounts, largely as a security measure. As described in Chapter 2, every file on a Linux sys-
tem is associated with a specific group, and various permissions can be assigned to members
of that group. For instance, group members (such as faculty at a university) might be allowed
to read a file, but others (such as students) might be disallowed such access. Because Linux
provides access to most hardware devices (such as serial ports and tape backup units) through
files, this same mechanism can be used to control access to hardware.

Every group has anywhere from no members to as many members as there are users on the
computer. Group membership is controlled through the /etc/group file. This file contains a
list of groups and the members belonging to each group. The details of this file’s contents are
described in the section “Configuring Groups.”

03843book.indb 193 8/21/09 12:05:58 PM

194 Chapter 5 n Managing Users

In addition to membership defined in /etc/group, each user has a default or primary
group. The user’s primary group is set in the user’s configuration in /etc/passwd. When
users log onto the computer, their group membership is set to their primary groups. When
users create files or launch programs, those files and running programs are associated with
a single group—the current group membership. A user can still access files belonging to
other groups, as long as the user belongs to that group and the group access permissions
allow the access. To run programs or create files with other than the primary group mem-
bership, however, the user must run the newgrp command to switch current group member-
ship. For instance, to change to the project2 group, you might type the following:

$ newgrp project2

If the user typing this command is listed as a member of the project2 group in /etc/
group, the user’s current group membership will change. Thereafter, files created by that
user will be associated with the project2 group. Alternatively, users can change the group
associated with an existing file by using the chgrp or chown command, as described in
Chapter 2.

This group structure enables you to design a security system that permits different col-
lections of users to easily work on the same files while simultaneously keeping other users
of the same computer from prying into files they should not be able to access. In a simple
case, you might create groups for different projects, classes, or workgroups, with each
user restricted to one of these groups. A user who needs access to multiple groups could
be a member of each of these groups—for instance, a student who takes two classes could
belong to the groups associated with each class, or a supervisor might belong to all the
supervised groups. The section “Using Common User and Group Strategies” describes the
approaches taken by various Linux distributions by default, and it then explains how you
can expand and use these strategies to suit your own needs.

Mapping UIDs and GIDs to Users and Groups
As mentioned earlier, Linux defines users and groups by numbers (UIDs and GIDs,
respectively). Internally, Linux tracks users and groups by these numbers, not by name.
For instance, the user sam might be tied to UID 523, and ellen might be UID 609. Simi-
larly, the group project1 might be GID 512, and project2 might be GID 523. For the
most part, these details take care of themselves—you use names, and Linux uses /etc/
passwd or /etc/group to locate the number associated with the name. You may occasion-
ally need to know how Linux assigns numbers when you tell it to do something, though.
This is particularly true when you are troubleshooting or if you have cause to manually
edit /etc/passwd or /etc/group.

Linux distributions reserve the first 100 user and group IDs (0–99) for system use. The
most important of these is 0, which corresponds to root (both the user and the group). Sub-
sequent low numbers are used by accounts and groups that are associated with specific Linux
utilities and functions. For instance, UID 2 and GID 2 are generally the daemon account and
group, respectively, which are used by various servers; and UID 8 and GID 12 are usually

03843book.indb 194 8/21/09 12:05:58 PM

Understanding Multiuser Concepts 195

the mail account and group, which can be used by mail-related servers and utilities. Not all
account and group numbers from 0 to 99 are in use; there are usually only one or two dozen
accounts and a dozen or so groups used in this way. You can check your /etc/passwd and
/etc/group files to determine which user and group IDs are so used.

Aside from UID 0 and GID 0, UID and GID numbers aren’t fully standardized.
For instance, although UID 2 and GID 2 map to the daemon account and dae-
mon group on Fedora, on Ubuntu UID 2 and GID 2 map to the bin account and
bin group; the daemon account and group correspond to UID 1 and GID 1.
If you need to refer to a particular user or group, use the name rather than
the number.

Beyond 100, user and group IDs are available for use by ordinary users and groups.
Many distributions, however, reserve up to 500 or even 1000 for special purposes. Fre-
quently, therefore, the first normal user account is assigned a UID of 500 or 1000. When
you create additional accounts, the system typically locates the next-highest unused number,
so the second user you create is UID 501, the third is 502, and so on. When you remove
an account, that account’s ID number may be reused, but the automatic account-creation
tools typically don’t do so if subsequent numbers are in use, leaving a gap in the sequence.
This gap causes no harm unless you have so many users that you run out of ID numbers.
(The limit is 65,536 users with the 2.2.x kernels and more than 4.2 billion with the 2.4.x
and later kernels, including root and other system accounts. The limit can be set lower in
configuration files or because of limits in support programs.) In fact, reusing an ID number
can cause problems if you don’t clear away the old user’s files—the new user will become the
owner of the old user’s files, which can lead to confusion.

Typically, GID 100 is users—the default group for some distributions. (See “Using Com-
mon User and Group Strategies” later in this chapter.) On any but a very small system with
few users, you’ll probably want to create your own groups. Because different distributions
have different default ways of assigning users to groups, it’s best that you familiarize yourself
with your distribution’s way of doing this and plan your own group-creation policies with
this in mind. For instance, you might want to create your own groups within certain ranges
of IDs to avoid conflicts with the distribution’s default user- and group-creation processes.

It’s possible to create multiple usernames that use the same UID, or multiple group names
that use the same GID. In some sense, these are different accounts or groups; they have differ-
ent entries in /etc/passwd or /etc/group, so they can have different home directories, differ-
ent passwords, and so on. Because these users or groups share IDs with other users or groups,
though, they’re treated identically in terms of file permissions. Unless you have a compelling
reason to do so, you should avoid creating multiple users or groups that share an ID.

Intruders sometimes create accounts with UID 0 to give themselves root
privileges on the systems they invade. Any account with a UID of 0 is effec-
tively the root account, with all the power of the superuser. If you spot a
suspicious account in your /etc/passwd file with a UID of 0, your system
has probably been compromised.

03843book.indb 195 8/21/09 12:05:59 PM

196 Chapter 5 n Managing Users

Coordinating Uids and gids Across systems

If you maintain several Linux computers and want to set up Network Filesystem (NFS)
file sharing, one problem that can arise is keeping UIDs and GIDs synchronized across
systems. Because all Linux filesystems, including NFS, track numeric IDs rather than
the names that humans use, mismatched UIDs and GIDs can cause one person’s files to
appear to be owned by another person on an NFS mount. For instance, suppose that two
computers each have two users, ellen and george. On one computer, ellen has UID 500
and george has UID 501, but these numbers are reversed on the other. As a consequence,
when one computer mounts the other’s files via NFS, the UID values will indicate that
ellen owns files that are really owned by george, and vice versa.

One solution to this problem is to keep UIDs and GIDs consistent across computers. This
isn’t too difficult with a handful of small systems with few users, but it becomes tedious
with larger or more systems. Some versions of the Linux NFS clients and servers also sup-
port various mapping options, such as using a static map file or using a user ID mapping
server run on the client system. Unfortunately, these options are no longer being actively
supported. Another option is to use a centralized login database, such as one maintained
via the Network Information System (NIS) or the Lightweight Directory Access Protocol
(LDAP), to coordinate accounts on multiple computers. Chapter 12, “Securing Linux,”
describes the basics of NIS and LDAP configuration.

Understanding Home Directories
A user’s home directory is a directory on the disk that’s usually intended for one user alone.
On Linux systems, the standard placement of home directories is in the /home directory
tree, with each user’s home directory named after the user’s account name. For instance,
the home directory for the sally account would be /home/sally. This naming and place-
ment is only a convention, though—it’s not a requirement. The /etc/passwd file contains
the location of each user’s home directory, so you can modify this location by editing that
file. You can also specify an alternative location when you create an account (as described
shortly in the section “Adding Users”), or use the usermod utility to change it after the fact.

Typically, a user’s home directory belongs to that user only. Therefore, it’s created with
fairly restrictive permissions, particularly for writing to the directory. The exact permis-
sions used by default vary from one distribution to another, so you should check yours to
see how it’s done. If you want to create more stringent (or more lax) permissions, you’ll
have to do so yourself after creating an account, or you’ll need to create your own account-
creation scripts to automate the process.

You can create separate directories for shared projects, if you like. For instance, you
might want to have a directory in which group members can store files that belong to the

03843book.indb 196 8/21/09 12:05:59 PM

Configuring User Accounts 197

group as a whole, or in which group members may exchange files. Linux distributions don’t
create such directories automatically when creating groups, so you’ll have to attend to this
task yourself, as well as decide where to store them. (Somewhere in /home is a logical choice,
but it is up to you.)

One problem that’s commonly faced by Linux system administrators is the depletion
of available disk space. The /home directory frequently resides on a separate partition, and
sometimes an entirely separate physical hard disk, from other Linux files. This arrangement
can make the system more secure because it helps to isolate the data—filesystem corruption
on one partition need not affect data on another. It also limits room for expansion, how-
ever. If your users begin creating very large files or if the number of users you must support
grows and causes your initial estimates of required /home disk space to be exceeded, you’ll
need to take action to correct this matter. For instance, you might move home directories to
some other partition, enlarge the home partition with a tool like GNU Parted (http://www
.gnu.org/software/parted/), or add a new hard disk to store some or all of the user home
directories.

Configuring User Accounts
How frequently you’ll do user maintenance depends on the nature of the system you adminis-
ter. Some systems, such as small personal workstations, will need changes very rarely. Others,
such as large systems in environments in which users are constantly coming and going, may
require daily maintenance. The latter situation would seem to require more knowledge of user
account configuration tools, but even if you administer a seldom-changing system, it’s useful
to know how to do these things so that you can do them quickly and correctly when you do
need to add, modify, or delete user accounts.

Adding Users
You can add users through the useradd utility. (This program is called adduser on some
distributions.) Its basic syntax is as follows:

useradd [-c comment] [-d home-dir] [-e expire-date] [-f inactive-days]➥

[-g initial-group] [-G group[,...]] [-m [-k skeleton-dir] | -M]➥

[-p password] [-s shell] [-u UID [-o]] [-r] [-n] username

Some of these parameters modify settings that are valid only when the
system uses shadow passwords. This is the standard configuration for
most distributions today.

In its simplest form, you may type just useradd username, where username is the user-
name you want to create. The rest of the parameters are used to modify the default values
for the system, which are stored in the file /etc/login.defs.

03843book.indb 197 8/21/09 12:06:00 PM

198 Chapter 5 n Managing Users

The parameters for the useradd command modify the program’s operation in various
ways, as summarized in Table 5.1.

TA b le 5 .1 Options for useradd

Option Name
Option
Abbreviation Effect

--comment comment -c This parameter specifies the comment field for the
user. Some administrators store public informa-
tion such as a user’s office or telephone number in
this field. Others store just the user’s real name or
no information at all.

--home home-dir -d (or -h on
some versions
of useradd)

You specify the account’s home directory with this
parameter. It defaults to /home/username on most
systems.

--expiredate
expire-date

-e You set the date on which the account will be
disabled, expressed in the form YYYY-MM-DD, with
this option. (Many systems will accept alternative
forms, such as MM-DD-YYYY, or a single value repre-
senting the number of days since January 1, 1970.)
The default is for an account that does not expire.
This option is most useful in environments in
which user accounts are inherently time-limited,
such as accounts for students taking particular
classes or temporary employees.

--inactive
inactive-days

-f This parameter sets the number of days after a
password expires after which the account becomes
completely disabled. A value of -1 disables this
feature and is the default.

--gid
default-group

-g You set the name or GID of the user’s default
group with this option. The default for this
value varies from one distribution to another,
as described later, in “Using Common User and
Group Strategies.”

--groups
group[,...]

-G This parameter sets the names or GIDs of one or
more groups to which the user belongs. These
groups need not be the default group, and more
than one may be specified by separating them
with commas.

--create-home -m When this option is included, useradd creates a
home directory for the user. Many distributions
use -m as the default when running useradd.

03843book.indb 198 8/21/09 12:06:00 PM

Configuring User Accounts 199

TA b le 5 .1 Options for useradd (continued)

Option Name
Option
Abbreviation Effect

--skel
skeleton-dir

-k Normally, default configuration files are copied
from /etc/skel, but you may specify another
template directory with this option, which is valid
only in conjunction with -m.

None -M This option forces the system to not automatically
create a home directory, even if /etc/login.defs
specifies that this action is the default.

--password
encrypted-password

-p This parameter passes the preencrypted
password for the user to the system. The
encrypted-password value will be added,
unchanged, to the /etc/passwd or /etc/shadow
file. This means that if you type an unencrypted
password, it won’t work as you probably expected.
In practice, this parameter is most useful in scripts,
which can encrypt a password (using crypt) and
then send the encrypted result through useradd.
The default value disables the account, so you
must run passwd to change the user’s password.

--shell shell -s You set the name of the user’s default login shell
with this option. On most systems, this defaults to
/bin/bash, but Linux supports many alternatives,
such as /bin/tcsh and /bin/zsh.

--uid UID -u This parameter creates an account with the
specified user ID value (UID). This value must be
a positive integer, and it is normally 500 or above
for user accounts. System accounts typically
have numbers below 100.

--non-unique -o This parameter enables a single UID number to
be reused; this option is passed when creating the
second or subsequent account that reuses a UID.

--system -r This parameter specifies the creation of a system
account—an account with a value lower than
UID_MIN, as defined in /etc/login.defs. (This is
normally 100, 500, or 1000.) useradd also doesn’t
create a home directory for system accounts.

--no-user-group -n In some distributions, such as Red Hat, the system
creates a group with the same name as the specified
username. This parameter disables this behavior.

03843book.indb 199 8/21/09 12:06:00 PM

200 Chapter 5 n Managing Users

Some versions of useradd, and other utilities described in this chapter,
support only the one-character options in the “Option Abbreviation” col-
umns in this chapter.

Suppose you’ve added a new hard disk in which some users’ home directories are located
and mounted it as /home2. You want to create an account for a user named Sally in this direc-
tory and make the new user a member of the project1 and project4 groups, with default
membership in project4. The user has also requested tcsh as her default shell. You might use
the following commands to accomplish this goal:

useradd -d /home2/sally -g project4 -G project1,project4 -s /bin/tcsh sally

passwd sally

Changing password for user sally

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

The passwd command asks for the password twice, but it does not echo
what you type. This prevents somebody who sees your screen from read-
ing the password off it. The details of the program’s prompts and mes-
sages vary from one system to another. passwd is described in more detail
in the next section.

Modifying User Accounts
You can modify user accounts in many ways. You can directly edit critical files such as /etc/
passwd, modify user-specific configuration files in the account’s home directory, or use system
utilities like those used to create accounts. You usually modify an existing user’s account at
the user’s request or to implement some new policy or system change, such as moving home
directories to a new hard disk. Sometimes, though, you must modify an account immedi-
ately after its creation, in order to customize it in ways that aren’t easily handled through the
account-creation tools or because you realize you forgot a parameter to useradd.

Setting a Password
Although useradd provides the -p parameter to set a password, this tool is not very useful
when directly adding a user because it requires a preencrypted password. Therefore, it’s
usually easiest to create an account in disabled form (by not using -p with useradd) and
set the password after creating the account. This can be done with the passwd command,
which has the following syntax:

passwd [-k] [-l] [-u [-f]] [-d] [-S] [username]

03843book.indb 200 8/21/09 12:06:00 PM

Configuring User Accounts 201

The parameters to this command enable you to modify its behavior, as summarized in
Table 5.2.

TA b le 5 . 2 Options for passwd

Option Name Effect

-k This parameter indicates that the system should update an expired
account.

-l This parameter locks an account by prefixing the encrypted password
with an exclamation mark (!). The result is that the user can no longer
log into the account, but the files are still available and the change
can be easily undone.

-u This parameter unlocks an account by removing a leading exclama-
tion mark. useradd creates accounts that are locked and have no
password, so using this command on a fresh account would result in
an account with no password. Normally, passwd doesn’t allow this—it
returns an error if you attempt it.

-f Adding this parameter to -u forces passwd to turn an account into one
with no password.

-d This parameter removes the password from an account, rendering it
password-less.

-S You can have passwd display information on the password for an
account—whether or not it’s set and what type of encryption it uses—
with this option.

Ordinary users can use passwd to change their passwords, but many passwd parameters
can be used only by root. Specifically, -l, -u, -f, -d, and -S are all off-limits to ordinary
users. Similarly, only root can specify a username to passwd. When ordinary users run the
program, they should omit their usernames, and passwd will change the password for the user
who ran the program. As a security measure, passwd asks for a user’s old password before
changing the password when an ordinary user runs the program. This precaution is not taken
when root runs the program so that the superuser can change a user’s password without
knowing the original password. Since the administrator normally doesn’t know the user’s
password, this is necessary.

Linux passwords may consist of letters, numbers, and punctuation. Linux distinguishes
between upper- and lowercase letters in passwords, which means you can use mixed-case
passwords to improve security.

The section “Improving Account Security” later in this chapter includes
additional information on selecting good passwords.

03843book.indb 201 8/21/09 12:06:01 PM

202 Chapter 5 n Managing Users

Using usermod
The usermod program closely parallels useradd in its features and parameters, as summa-
rized in Table 5.2. This utility changes an existing account instead of creating a new one,
however. The major differences between useradd and usermod are as follows:

usermodÛn allows the addition of a -m parameter when used with -d. The -d parameter
alone changes the user’s home directory, but it does not move any files. Adding -m
causes usermod to move the user’s files to the new location.

usermodÛn supports a -l parameter, which changes the user’s login name to the specified
value. For instance, typing usermod sally -l sjones changes the username from sally
to sjones.

You may lock or unlock a user’s password with the Ûn -L and -U options, respectively.
This duplicates functionality provided by passwd.

The usermod program changes the contents of /etc/passwd or /etc/shadow, depending
on the option used. If -m is used, usermod also moves the user’s files, as already noted.

Changing an account’s characteristics while the owner is logged in can
have undesirable consequences. This is particularly true of the -d -m com-
bination, which can cause the files a user was working on to move. Most
other changes, such as changes to the account’s default shell, simply don’t
take effect until the user has logged out and back in again.

If you change the account’s UID, this action does not change the UIDs stored with a
user’s files. Because of this, the user may lose access to these files. You can manually update
the UIDs on all files by using the chown command (see the section “Changing File Owner-
ship and Permissions” in Chapter 2). Specifically, a command like the following, issued
after changing the UID on the account sally, will restore proper ownership on the files
in sally’s home directory:

chown -R sally /home/sally

This action does not change the ownership of files that aren’t in sally’s home directory.
If you believe such files exist, you may need to track them down with the find command,
as you’ll see in the upcoming section “Deleting Accounts.” Also, this command blindly
changes ownership of all files in the /home/sally directory. This is probably desirable, but
it’s conceivable that some files in that directory should be owned by somebody else—say,
because sally and another user are collaborating on a project.

When using the -G option to add a user to new groups, be aware that any groups
not listed will be removed. The gpasswd command, described in the upcoming section,
“Using gpasswd,” provides a way to add a user to one or more specific groups without
affecting existing group memberships, and therefore it is generally preferable for this
purpose.

03843book.indb 202 8/21/09 12:06:01 PM

Configuring User Accounts 203

Using chage
The chage command enables you to modify account settings relating to account expiration.
It’s possible to configure Linux accounts so that they automatically expire if either of two
conditions is true:

The password hasn’t been changed in a specified period of time.Ûn

The system date is past a predetermined time.Ûn

The first option is generally used to enforce password changes—say, to get users to
change their passwords once a month. The second option is useful when an account should
exist for a specific limited period of time, such as until the end of an academic semester or
until a temporary employee leaves. These settings are controlled through the chage utility,
which has the following syntax:

chage [-l] [-m mindays] [-M maxdays] [-d lastday] [-I inactivedays]➥

[-E expiredate] [-W warndays] username

The program’s parameters modify the command’s actions, as summarized in Table 5.3.

TA b le 5 . 3 Options for chage

Option Name
Option
Abbreviation Effect

--list -l This option causes chage to display account expira-
tion and password aging information for a particular
user.

--mindays days -m This parameter sets the minimum number of days
between password changes. 0 indicates that a user
can change a password multiple times in a day, 1
means that a user can change a password once a day,
2 means that a user may change a password once
every two days, and so on.

--maxdays days -M This parameter sets the maximum number of days that
may pass between password changes. For instance, 30
would require a password change approximately once a
month. If the user changes a password before this dead-
line, the counter is reset to the password change date.

--lastday date -d This parameter sets the last day a password was
changed. This value is normally maintained automati-
cally by Linux, but you can use this parameter to arti-
ficially alter the password change count. For instance,
you could use this to set the last changed date to force
a password change in some period of time you deter-
mine. date is expressed in the format YYYY-MM-DD, or
as the number of days since January 1, 1970.

03843book.indb 203 8/21/09 12:06:01 PM

204 Chapter 5 n Managing Users

TA b le 5 . 3 Options for chage (continued)

Option Name
Option
Abbreviation Effect

--inactive days -I This parameter sets the number of days between
password expiration and account disablement. An
expired account may not be used or may force the
user to change the password immediately upon log-
ging in, depending on the distribution. A disabled
account is completely disabled, however.

--expiredate date -E You can set an absolute expiration date with this
option. For instance, you might use -E 2010-05-21
to have an account expire on May 21, 2010. The date
may also be expressed as the number of days since
January 1, 1970. A value of -1 represents no expira-
tion date.

--warndays days -W This option sets the number of days before account
expiration that the system will warn the user of the
impending expiration. It’s generally a good idea to use
this feature to alert users of their situation, particularly if
you make heavy use of password change expirations.

The chage command can normally be used only by root. The one exception to this rule
is if the -l option is used; this feature allows ordinary users to check their account expira-
tion information.

Directly Modifying Account Configuration Files
You can modify user configuration files directly. /etc/passwd and /etc/shadow control most
aspects of an account’s basic features, but many files within a user’s home directory control
user-specific configuration; for instance, .bashrc can be used to set user-specific Bash fea-
tures. This latter class of configuration files is far too broad to cover here, but /etc/passwd
and /etc/shadow are not. Both files consist of a set of lines, one line per account. Each line
begins with a username and continues with a set of fields, delimited by colons (:). Many of
these items may be modified with usermod or passwd. A typical /etc/passwd entry resembles
the following:

sally:x:529:100:Sally Jones:/home/sally:/bin/bash

Each field has a specific meaning:

Username The first field in each /etc/passwd line is the username (sally in this example).

Password The second field has traditionally been reserved for the password. Most Linux
systems, however, use a shadow password system in which the password is stored in

03843book.indb 204 8/21/09 12:06:01 PM

Configuring User Accounts 205

/etc/shadow. The x in the example’s password field is an indication that shadow pass-
words are in use. In a system that does not use shadow passwords, an encrypted password
will appear here instead.

UID Following the password is the account’s user ID (529 in this example).

Primary GID The default login group ID is next in the /etc/passwd line for an account.
The example uses a primary GID of 100.

Comment The comment field may have different contents on different systems. In the pre-
ceding example, it’s the user’s full name. Some systems place additional information here,
in a comma-separated list. Such information might include the user’s telephone number,
office number, title, and so on.

Home directory The user’s home directory is next up in the list.

Default shell The default shell is the final item on each line in /etc/passwd. This is nor-
mally /bin/bash, /bin/tcsh, or some other common command shell. It’s possible to use
something unusual here, though. For instance, many systems include a shutdown account
with /bin/shutdown as the shell. If you log into this account, the computer immediately
shuts down. You can create user accounts with a shell of /bin/false, which prevents users
from logging in as ordinary users but leaves other utilities intact. Users can still receive mail
and retrieve it via a remote mail retrieval protocol like POP or IMAP, for instance. A vari-
ant on this scheme uses /bin/passwd so that users may change their passwords remotely
but may not log in using a command shell.

You can directly modify any of these fields, although in a shadow password system,
you probably do not want to modify the password field; you should make password-
related changes via passwd so that they can be properly encrypted and stored in /etc/
shadow. As with changes initiated via usermod, it’s best to change /etc/passwd directly
only when the user in question isn’t logged in, to prevent a change from disrupting an
ongoing session.

Like /etc/passwd, /etc/shadow may be edited directly. An example /etc/shadow line
resembles the following:

sally:E/moFkeT5UnTQ:14343:0:-1:7:-1:-1:

Most of these fields correspond to options set with the chage utility, although some are
set with passwd, useradd, or usermod. The meaning of each colon-delimited field of this line
is as follows:

Username Each line begins with the username. Note that the UID is not used in /etc/
shadow; the username links entries in this file to those in /etc/passwd.

Password The password is stored in encrypted form, so it bears no obvious resemblance
to the actual password. An asterisk (*) or exclamation mark (!) denotes an account with
no password (that is, the account doesn’t accept logins—it’s locked). This is common for
accounts used by the system itself.

03843book.indb 205 8/21/09 12:06:02 PM

206 Chapter 5 n Managing Users

If you’ve forgotten the root password for a system, you can boot with an
emergency recovery system and copy the contents of a password field for
an account whose password you do remember. You can then boot normally,
log in as root, and change the password. In a real pinch, you can delete the
contents of the password field, which results in a root account with no pass-
word (that is, none is required to log in). Be sure to immediately change the
root password after rebooting if you do this, though!

Last password change The next field (14343 in this example) is the date of the last pass-
word change. This date is stored as the number of days since January 1, 1970.

Days until change allowed The next field (0 in this example) is the number of days before
a password change is allowed.

Days before change required This field is the number of days after the last password
change before another password change is required.

Days warning before password expiration If your system is configured to expire passwords,
you may set it to warn the user when an expiration date is approaching. A value of 7, as in the
preceding example, is typical.

Days between expiration and deactivation Linux allows for a gap between the expiration
of an account and its complete deactivation. An expired account either cannot be used or
requires that the user change the password immediately after logging in. In either case, its
password remains intact. A deactivated account’s password is erased, and the account can-
not be used until it’s reactivated by the system administrator.

Expiration date This field shows the date on which the account will be expired. As
with the last password change date, the date is expressed as the number of days since
January 1, 1970.

Special flag This field is reserved for future use and is normally not used or contains a
meaningless value. This field is empty in the preceding example.

For fields relating to day counts, values of -1 or 99999 typically indicate that the
relevant feature has been disabled. The /etc/shadow values are generally best left to
modification through the usermod or chage commands because they can be tricky to set
manually—for instance, it’s easy to forget a leap year or the like when computing a date
as the number of days since January 1, 1970. Similarly, because of its encrypted nature,
the password field cannot be edited effectively except through passwd or similar utilities.
(You could cut and paste a value from a compatible file or use crypt yourself, but it’s
usually easier to use passwd. Copying encrypted passwords from other systems is also
somewhat risky because it means that the users will have the same passwords on both
systems, and this fact will be obvious to anybody who’s acquired both encrypted pass-
word lists.)

03843book.indb 206 8/21/09 12:06:02 PM

Configuring User Accounts 207

/etc/shadow is normally stored with very restrictive permissions, such
as rw-------, with ownership by root. This fact is critical to the shadow
password system’s utility since it keeps non-root users from reading the
file and obtaining the password list, even in an encrypted form. Therefore,
if you manually modify /etc/shadow, be sure it has the correct permis-
sions when you’re done.

network Account databases

Many networks employ network account databases. Such systems include the Network
Information System (NIS), an update to this system called NIS+, the Lightweight Direc-
tory Access Protocol (LDAP), Kerberos realms, Windows NT 4.0 domains, and Active
Directory (AD) domains. All of these systems move account database management onto
a single centralized computer (often with one or more backup systems). The advantage of
this approach to account maintenance is that users and administrators need not deal with
maintaining accounts independently on multiple computers. A single account database
can handle accounts on dozens (or even hundreds or thousands) of different computers,
greatly simplifying day-to-day administrative tasks and simplifying users’ lives. Using
such a system, though, means that most user accounts won’t appear in /etc/passwd and
/etc/shadow, and groups may not appear in /etc/group. (These files will still hold infor-
mation on local system accounts and groups, though.)

Linux can participate in these systems, naturally. Activating use of such network account
databases after installing Linux is a complex topic. Chapter 12 covers a few basics for NIS
and LDAP. My book Linux in a Windows World (O’Reilly, 2005) covers this topic for Win-
dows NT 4.0 domains, LDAP, and Kerberos.

Deleting Accounts
On the surface, deleting user accounts is easy. You may use the userdel command to do
the job of removing a user’s entries from /etc/passwd and, if the system uses shadow pass-
words, /etc/shadow. The userdel command takes just three parameters: --remove (or -r)
causes the system to remove all files from the user’s home directory, as well as the home
directory itself; --help (or -h) displays help information; and --force (-f) forces account
removal even if the user is currently logged in. Thus, removing a user account such as sally
is easily accomplished with the following command:

userdel -r sally

03843book.indb 207 8/21/09 12:06:02 PM

208 Chapter 5 n Managing Users

You can omit the -r parameter if you want to preserve the user’s files. There is one
potential complication, however: users might create files outside their home directories.
For instance, many programs use the /tmp directory as “scratch space,” so user files often
wind up there. These files will be deleted automatically after a certain period, but you may
have other directories in which users might store files. To locate all such files, you can use
the find command with its -uid parameter. For instance, if sally had been UID 529, you
might use the following command to locate all her files:

find / -uid 529

The result will be a list of files owned by UID 529 (formerly sally). You can then go
through this list and decide what to do with the files—change their ownership to some-
body else, delete them, back them up to a removable disk, or what have you. It’s wise to
do something with these files, though, or else they may be assigned ownership to another
user if Sally’s UID is reused. This could become awkward if the files exceed the new user’s
disk quota or if they contain information that the new user should not have—such a person
might mistakenly be accused of indiscretions or even crimes.

A few servers—most notably Samba—keep their own lists of users. If you run such a server,
it’s best to remove the user’s listing from that server’s user list when you remove the user’s main
account. In the case of Samba, this is normally done by manually editing the smbpasswd file
(usually located in /etc, /etc/samba, or /etc/samba.d) and deleting the line corresponding to
the user in question or by using the smbpasswd command and its -x option, as in smbpasswd
-x sally to delete the sally account from Samba’s database.

Verifying Account Use
Once accounts are created, you may have cause to check who’s using the computer. This
information can be useful for a variety of reasons—to see how many people might be
inconvenienced if you shut down the computer for maintenance or to verify that an account
is not in use if the user is away on vacation, for instance. Several tools are useful in this
task, including who, w, and last. The whoami command is also potentially useful if you
regularly use multiple accounts.

Checking Who’s Logged In
The who and w commands are similar in purpose. Both display information on who is
currently logged in. For instance, consider the following interactions:

$ who

paul :0 2009-04-08 17:26

paul pts/0 2009-04-08 17:26 (:0.0)

rhonda pts/5 2009-04-10 20:06 (tycho.luna.edu)

03843book.indb 208 8/21/09 12:06:03 PM

Configuring User Accounts 209

$ w

 20:10:18 up 2 days, 2:45, 7 users, load average: 0.00, 0.00, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

paul :0 - Wed17 ?xdm? 9:04 0.13s /usr/bin/gnome-

paul pts/0 :0.0 Wed17 1:29m 0.35s 0.08s bash

rhonda pts/5 tycho.luna.edu 20:06 0.00s 0.02s 0.01s w

Both of these interactions reveal three current logins: two by paul and one by rhonda.
The user paul appears to be logged in at the console, as revealed by the :0 and :0.0 fields
in the TTY and FROM columns of the w output and by the similar data in who’s output. These
identifiers refer to a local X server. The tycho.luna.edu field in rhonda’s data, on the other
hand, suggests that’s she’s logged in over a network, from the named remote computer.

The default output for who is fairly basic, so it’s a good tool if you just want a summary
of who’s logged on. Table 5.4 summarizes options to who that can increase or change the
information it presents. Some of these options overlap with the function of other tools, such
as runlevel and uptime.

TA b le 5 . 4 Options for who

Option Name Option Abbreviation Effect

--all -a Presents all the available information.

--boot -b Displays the system boot time instead of a list
of logged-in users.

--dead -d Displays dead processes, which can be useful
information when managing processes.

--heading -H Adds column headings, which are omitted
by default.

--ips None Causes remote systems to be identified by
IP address rather than hostname. Not all ver-
sions of who support this option.

--login -l Obtains a list of running system login pro-
cesses instead of a list of logged-in users.

--lookup None Looks up remote systems’ IP addresses to
obtain hostnames.

None -m Restricts the username list to the user who’s
using standard input.

--process -p Lists processes spawned by init.

03843book.indb 209 8/21/09 12:06:03 PM

210 Chapter 5 n Managing Users

TA b le 5 . 4 Options for who (continued)

Option Name Option Abbreviation Effect

--count -q Obtains the number of users who are logged in.

--runlevel -r Displays the current runlevel (similar to the run-
level command).

--short -s Displays only the username, access method,
and login time; it’s the default.

--time -t Finds when the system clock last changed.

--users -u Displays users who are logged in; it’s similar to
the default, but it adds a few fields.

The w command presents more information by default than does who. Like who, w has a
number of options, which are summarized in Table 5.5. You can also pass a username to w,
as in w paul, to obtain information about only that user’s logins.

TA b le 5 .5 Options for w

Option Name Effect

-h Prints output without the header.

-u Ignores the username when computing process and CPU times;
has a subtle effect when using su, sudo, and similar tools.

-s Use short format; omits several columns’ data from the output.

-f Toggles printing the FROM field; this field might or might not be
included by default, depending on compile-time options.

-o Use old-style display format. (Display format has changed
slightly recently.)

Both who and w are useful tools when you need to check on the current status of a com-
puter’s user loads—say to minimize the inconvenience caused by shutting down a system
for maintenance. The w command also gives you some idea of what your users are doing.
This last information is very limited, though; w was designed long before GUIs became
common, so it can’t show you information on the many independent windows a user may
have open. The ps command (described in Chapter 3) is more likely to be useful for finding
such information.

03843book.indb 210 8/21/09 12:06:03 PM

Configuring User Accounts 211

Checking Historical Login Data
When you need to find out who’s logged into your computer in the recent past, neither who
nor w will do the job. Instead, you need last, which displays a list of recent logins, most
recent first:

$ last -6

rhonda pts/6 tycho.luna.edu Fri Apr 10 20:59 still logged in

rhonda pts/5 tycho.luna.edu Fri Apr 10 20:06 still logged in

paul pts/4 :0.0 Fri Apr 10 15:53 still logged in

root pts/4 tranquility.luna Fri Apr 10 09:53 - 09:56 (00:02)

paul pts/4 tranquility.luna Fri Apr 10 08:15 - 08:46 (00:31)

paul pts/5 tycho.luna.edu Thu Apr 9 21:45 - 22:04 (00:18)

wtmp begins Tue Apr 7 06:20:29 2009

This output reveals that three logins are still active but that several others have been
terminated. (In fact, the -6 option limited the output; without that option, last’s output is
likely to go on for pages!) Table 5.6 summarizes last’s options.

TA b le 5 .6 Options for last

Option Name Effect

-f file Ordinarily, last gets its data from the /var/log/wtmp file. You
can specify another file with this option, which can be useful if
you’re studying login activity from an emergency boot system.

-num You can specify a number (num) to limit output to that many
logins.

-t YYYYMMDDHHMMSS You can find out who was logged in at a particular time
with this option, which requires a time specification down
to the second.

-R This option causes the hostname field to be omitted from
the output.

-a This option shifts the hostname to the final field.

-d This option causes the IP address of remote systems to be
looked up anew.

-i You can obtain the IP address of a remote system, rather than
its hostname, with this option.

03843book.indb 211 8/21/09 12:06:03 PM

212 Chapter 5 n Managing Users

TA b le 5 .6 Options for last (continued)

Option Name Effect

-o You can read old-style wtmp files, created by libc5 programs,
with this option. (libc5 was abandoned years ago, so this won’t
be useful unless you’re running some very old software.)

-x This option adds system runlevel changes, including
shutdowns, to the output.

Verifying Your Identity
As a system administrator, you may occasionally need to use su to run programs using other
users’ identities in order to debug problems or to acquire root privileges. You might also have
multiple login accounts, either on one system or on many. In any of these cases, you may for-
get what account you’re using. When this happens, whoami can come to the rescue:

$ whoami

c.farrell

Few options to whoami exist; just --help and --version, which are common ones on
many programs.

Configuring Groups
Linux provides group configuration tools that parallel those for user accounts in many
ways. Groups are not accounts, however, so many features of these tools differ. Likewise,
you can create or modify groups by directly editing the configuration files in question.
Their layout is similar to that for account control files, but the details differ.

Adding Groups
Linux provides the groupadd command to add a new group. This utility is similar to useradd
but has fewer options. The groupadd syntax is as follows:

groupadd [-g GID [-o]] [-r] [-f] groupname

The parameters to this command enable you to adjust its operation, as summarized in
Table 5.7.

03843book.indb 212 8/21/09 12:06:04 PM

Configuring Groups 213

TA b le 5 .7 Options for groupadd

Option Name Option Abbreviation Effect

--gid GID -g You can provide a specific GID with this param-
eter. If you omit it, groupadd uses the next
available GID.

--non-unique -o Normally, the GID you specify must be unused
by other groups, but the -o parameter overrides
this behavior, enabling you to create multiple
groups that share one GID.

--system -r This parameter instructs groupadd to create a
group with a GID of less than 500. Not all dis-
tributions support this option; it was added by
Red Hat, and has been used on some related
distributions, because Red Hat uses GIDs of
500 and greater for user private groups (as
described shortly, in the section “Using User
Private Groups”).

--force -f Normally, if you try to create a group that
already exists, groupadd returns an error mes-
sage. This parameter suppresses that error
message. Not all versions of groupadd support
this parameter.

In most cases, you’ll create groups without specifying any parameters except for the
group name itself, thus:

groupadd project3

This command creates the project3 group, giving it whatever GID the system finds
convenient—usually the highest existing GID plus 1. Once you’ve done this, you can add users
to the group, as described in the next section. When you add new users, you can add them
directly to the new group with the -g and -G parameters to useradd, described earlier.

Modifying Group Information
You can modify group information, such as user account information, either by using utility
programs or by directly editing the underlying configuration file, /etc/group. As with cre-
ation, there are fewer options for modifying groups than for modifying accounts, and the
utilities and configuration files are similar. In fact, usermod is one of the tools that’s used to
modify groups.

03843book.indb 213 8/21/09 12:06:04 PM

214 Chapter 5 n Managing Users

Using groupmod and usermod
The groupmod command modifies an existing group’s settings. Its syntax is as follows:

groupmod [-g GID [-o]] [-n newgroupname] oldgroupname

The options to this command modify its operation. The -g and -o options work just like
their counterparts in groupadd. The -n (or --new-name) option specifies a new group name,
should you want to change it.

One of the most common group manipulations you’ll perform, however, is not handled
through groupmod; it’s done with usermod. Specifically, usermod enables you to add a user
to a group with its --groups (or -G) parameter. For instance, the following command sets
sally to be a member of the users, project1, and project4 groups, and it removes her
from all other groups:

usermod -G users,project1,project4 sally

Be sure to list all the user’s current groups in addition to any groups to
which you want to add the user. Omitting any of the user’s current groups
will remove the user from those groups. You can discover the groups to
which a user currently belongs with the groups command, as in groups
sally. To avoid accidentally omitting a group, many system administrators
prefer to modify the /etc/group file in a text editor or to use gpasswd. Both
methods enable you to add users to groups without specifying a user’s
existing group memberships.

Using gpasswd
The gpasswd command is the group equivalent to passwd. The gpasswd command also
enables you to modify other group features and to assign group administrators—users who
may perform some group-related administrative functions for their groups. The basic syntax
for this command is as follows:

gpasswd [-a user] [-d user] [-R] [-r] [-A user[,...]] [-M user[,...]] group

The options for this command modify its actions, as summarized in Table 5.8. If
entered without any parameters except a group name, gpasswd changes the password for
the group. Group passwords enable you to control temporary membership in a group,
as granted by newgrp. Ordinarily, members of a group may use newgrp to change their
current group membership (affecting the group of files they create). If a password is
set, even those who aren’t members of a group may become temporary group members;
newgrp prompts for a password that, if entered correctly, gives the user temporary group
membership.

03843book.indb 214 8/21/09 12:06:04 PM

Configuring Groups 215

TA b le 5 . 8 Options for gpasswd

Option Name Effect

-a user This option adds the specified user to the specified group.

-d user This option deletes the specified user from the specified group.

-R This option configures the group to not allow anybody to
become a member through newgrp.

-r You can remove a password from a group using this option.

-A user[,...] The root user may use this parameter to specify group admin-
istrators. Group administrators may add and remove mem-
bers from a group and change the group password. Using this
parameter completely overwrites the list of administrators, so
if you want to add an administrator to an existing set of group
administrators, you must specify all of their usernames.

-M user[,...] This option works like -A, but it also adds the specified user(s)
to the list of group members.

Unfortunately, some of these features are not implemented correctly in all distribu-
tions. In particular, password entry by nongroup members sometimes does not give group
membership—the system responds with an access denied error message. The -R option
also sometimes doesn’t work correctly—group members whose primary group member-
ship is with another group may still use newgrp to set their primary group membership.

Directly Modifying Group Configuration Files
Group information is stored primarily in the /etc/group file. Like account configuration
files, the /etc/group file is organized as a set of lines, one line per group. A typical line in
this file resembles the following:

project1:x:501:sally,sam,ellen,george

Each field is separated from the others by a colon. The meanings of the four fields are
as follows:

Group name The first field (project1 in the preceding example) is the name of the group.

Password The second field (x in the preceding example) is the group password. Distributions
that use shadow passwords typically place an x in this field; others place the encrypted pass-
word directly in this field.

GID The group ID number (in this example’s case, 501) goes in this field.

User list The final field is a comma-separated list (with no spaces) of group members.

03843book.indb 215 8/21/09 12:06:04 PM

216 Chapter 5 n Managing Users

Users may also be members of a group based on the primary group specification of their
entries in the /etc/passwd file. For instance, if user george had project1 listed as his pri-
mary group, he need not be listed in the project1 line in /etc/group. If user george uses
newgrp to change to another group, though, he won’t be able to change back to project1
unless he’s listed in the project1 line in /etc/group.

Systems with shadow passwords also use another file, /etc/gshadow, to store shadow
password information on groups. This file stores the shadow password and information on
group administrators, as described earlier in “Using gpasswd.”

If you configure Linux to use a network account database, the /etc/group
file will be present and may define groups important for the system’s basic
operation. As with /etc/passwd and /etc/shadow, though, important user
groups are likely to be defined only on the network account server, not in
/etc/group.

Deleting Groups
Deleting groups is done via the groupdel command, which takes a single argument: a
group name. For instance, typing groupdel project3 removes the project3 group. You
can also delete a group by editing the /etc/group file (and /etc/gshadow, if present) and
removing the relevant line for the group. It’s generally better to use groupdel, though,
because groupdel checks to see whether the group is any user’s primary group. If it is,
groupdel refuses to remove the group; you must change the user’s primary group or delete
the user account first.

As with deleting users, deleting groups can leave “orphaned” files on the computer. You
can locate them with the find command, which is described in more detail in Chapter 2.
For instance, if the deleted group had used a GID of 503, you can find all the files on the
computer with that GID by using the following command:

find / -gid 503

Once you’ve found any files with the deleted group’s ownership, you must decide what to
do with them. In some cases, leaving them alone won’t cause any immediate problems, but
if the GID is ever reused, it could lead to confusion and even security breaches. Therefore,
it’s usually best to delete the files or assign them other group ownership using the chown or
chgrp command.

Using Common User and
Group Strategies
Linux’s tools for handling users and groups can be quite powerful, but until you have some
experience using them in a practical working environment, it’s not always easy to see how
best to use them. This is also one area of system configuration that can’t be preconfigured

03843book.indb 216 8/21/09 12:06:05 PM

Using Common User and Group Strategies 217

by distribution maintainers in a way that’s very helpful. After all, user accounts and groups
are necessarily local features—your system’s users and groups will almost certainly be dif-
ferent from those of a system across town. Nonetheless, Linux distributions need to have
some sort of default scheme for handling users and groups—what UIDs and GIDs to assign
and what groups to use for newly created users by default. Two such schemes are in com-
mon use, and each can be expanded in ways that may be useful to your system.

The strategies described here can be further modified by employing
access control lists (ACLs), as described in Chapter 2. These have the
effect of giving individual users fine-grained control over who may
access their files.

Using User Private Groups
The user private group scheme is used by Red Hat Linux and some of its derivative distri-
butions, such as Fedora and Mandriva. This scheme creates an initial one-to-one mapping
of users and groups. In this system, whenever a user account is created, a matching group is
created, usually of the same name. This matching group has one member—its correspond-
ing user. For instance, when you create the account sally, a group called sally is also
created. The account sally’s primary group is the group sally. When used without modi-
fication, the user private group strategy effectively eliminates groups as a factor in Linux
security—because each group has just one member, group permissions on files become
unimportant.

It’s possible to modify group membership to control file access, however. For instance,
if you want the user george to be able to read sally’s files, you can add george to the sally
group and set the sally user’s umask to provide group read access to new files created by
the user sally. Indeed, if you make all users group administrators of their own groups,
users may control who has access to their own files by using gpasswd themselves. Overall,
this approach provides considerable flexibility, particularly when users are sophisticated
enough to handle gpasswd. Giving users such power may run counter to your system’s secu-
rity needs, though. Even when security policy dictates against making users group adminis-
trators, a user private group strategy can make sense if you need to fine-tune file access on
a user-by-user basis. This approach can also provide asymmetrical file access. For instance,
george may be able to read sally’s files (at least, those with appropriate group permis-
sions), but sally might not have access to george’s files (unless george sets the world read
bit on his files).

Using Project Groups
A second approach to group configuration is to create separate groups for specific purposes
or projects. Therefore, I refer to this as the project group approach. Consider an example
of a company that’s engaged in producing three different products. Most employees work

03843book.indb 217 8/21/09 12:06:05 PM

218 Chapter 5 n Managing Users

on just one product, and for security reasons, you don’t want users working on one product
to have access to information relating to the other two products. In such an environment,
a Linux system may be well served by having three main user groups, one for each prod-
uct. Most users will be members of precisely one group. If you configure the system with a
umask that denies world access, those who don’t belong to a specific product’s group won’t
be able to read files relating to that product. You can set read or read/write group permis-
sion to allow group members to easily exchange files. (Individual users may use chmod to
customize permissions on particular files and directories, of course.) If a user needs access
to files associated with multiple products, you can assign that user to as many groups as
necessary to accommodate the need. For instance, a supervisor might have access to all
three groups.

The project group approach tends to work well when a system’s users can be easily bro-
ken down into discrete groups whose members must collaborate closely. It can also work
well when users need not (and even should not) have ready access to each other’s files, as
with students taking the same class. In such a case, you would set the umask to block group
access to users’ files. The logical grouping of users can still be helpful to you as an admin-
istrator, however, because you can track users according to their group—you can easily
find all files owned by users taking a particular class, for instance. (Keep in mind that this
tracking ability breaks down when users are members of multiple groups.)

Many Linux distributions default to using a type of project group approach. The default
primary group for new users on such systems is typically called users. You can, and in most
cases should, create additional groups to handle all your projects. You can leave the users
group intact but not use it, rename it to the first project group name, or use users as an over-
arching group for when you want to give access to a file to most ordinary users, but perhaps
not everyone (such as guest users on an FTP server).

Assigning Users to Multiple Groups
On any but very simple systems, it’s likely that at least some users will be members of multiple
groups. This means that these users will be able to do the following things:

Read files belonging to any of the user’s groups, provided that the file has group read Ûn

permission.

Write to existing files belonging to any of the user’s groups, provided that the file has Ûn

group write permission.

Run programs belonging to any of the user’s groups, provided that the file has group Ûn

execute permission.

Change the group ownership of any of the user’s own files to any of the groups to Ûn

which the user belongs.

Use Ûn newgrp to make any of the groups to which the user belongs the user’s primary
group. Files created thereafter will have the selected group as the group owner.

03843book.indb 218 8/21/09 12:06:05 PM

Improving Account Security 219

Multiple group membership is extremely important when using user private groups, as
described earlier—without this, it’s impossible to fine-tune access to users’ files. Even in a
project group configuration, though, multiple group membership is critical for users who
need access to multiple groups’ files.

You may find yourself creating a group membership scheme that’s some combination of
these two, or one that’s unique unto itself. For instance, you might create multiple overlap-
ping subgroups in order to fine-tune access control. It might be common in such a situation
for users to belong to multiple groups. Part of the problem with such configurations is in
teaching users to properly use the newgrp and chgrp commands—many less technically
savvy users prefer to simply create files and not worry about such details.

Improving Account Security
Creating, maintaining, and removing user accounts are obviously important activities
on a Linux system. One particularly essential account maintenance task (or set of tasks) is
maintaining account security. Crackers sometimes attack a system through vulnerable user
accounts. Once access to a normal account is achieved, bugs or lax internal security can be
exploited to enable the attacker to acquire root access, or the account can be used to attack
other systems. Therefore, it’s vital that you attend to this matter by periodically reviewing
your configuration to see that it remains secure.

The popular media uses the term hacker to refer to computer miscreants.
This term has an older meaning, however—somebody who enjoys pro-
gramming or doing other technically challenging work on computers, but
not in an illegal or destructive sense. Many Linux programmers consider
themselves hackers in this positive sense. Thus, I use the term cracker to
refer to those who break into computers.

Enforcing User Password Security
As a general rule, people tend to be lazy when it comes to security. In computer terms, this
means that users tend to pick passwords that are easy to guess, and they change them infre-
quently. Both these conditions make a cracker’s life easier, particularly if the cracker knows
the victim. Fortunately, Linux includes tools to help make your users select good passwords
and change them regularly.

Common (and therefore poor) passwords include those based on the names of family
members, friends, and pets; favorite books, movies, television shows, or the characters in any
of these; telephone numbers, street addresses, or Social Security numbers; or other meaning-
ful personal information. Any single word that’s found in a dictionary (in any language) is
a poor choice for a password. The best possible passwords are random collections of letters,

03843book.indb 219 8/21/09 12:06:05 PM

220 Chapter 5 n Managing Users

digits, and punctuation. Unfortunately, such passwords are difficult to remember. A rea-
sonable compromise is to build a password in two steps. First, choose a base that’s easy to
remember but difficult to guess. Second, modify that base in ways that increase the difficulty
of guessing the password.

One approach to building a base is to use two unrelated words, such as bun and pen.
You can then merge these two words (bunpen). Another approach, and one that’s arguably
better than the first, is to use the first letters of a phrase that’s meaningful to the user. For
instance, the first letters of “yesterday I went to the dentist” become yiwttd. In both cases,
the base should not be a word in any language. As a general rule, the longer the password,
the better. Older versions of Linux had password length limits of eight characters, but those
limits have been lifted by the use of the MD5 and SHA password hashes, which are stan-
dard on modern Linux distributions. Many Linux systems require passwords to be at least
four to six characters in length; the passwd utility won’t accept anything shorter than the
distribution’s minimum.

With the base in hand, it’s time to modify it to create a password. The user should apply
at least a couple of several possible modifications:

Adding numbers or punctuation The single most important modification is to insert
random numbers or punctuation in the base. This step might yield, for instance,
bu3npe&n or y#i9wttd. As a general rule, add at least two symbols or numbers.

Mixing case Linux uses case-sensitive passwords, so jumbling the case of letters can
improve security. Applying this rule might produce Bu3nPE&n and y#i9WttD, for instance.

Order reversal A change that’s very weak by itself but that can add somewhat to
security when used in conjunction with the others is to reverse the order of some or
all letters. You might apply this to just one word of a two-word base. This could yield
nu3BPE&n and DttW9i#y, for instance.

Your best tool for getting users to pick good passwords is to educate them. Tell them
that passwords can be guessed by malicious individuals who know them, or even who
target them and look up personal information in telephone books, on Web pages, and so
on. Tell them that, although Linux encrypts its passwords internally, programs exist that
feed entire dictionaries through Linux’s password encryption algorithms for comparison to
encrypted passwords. If a match is found, the cracker has found the password. Therefore,
using a password that’s not in a dictionary, and that isn’t a simple variant of a dictionary
word, improves security substantially. Tell your users that their accounts might be used as
a first step toward compromising the entire computer, or as a launching point for attacks
on other computers. Explain to your users that they should never reveal their passwords
to others, even people claiming to be system administrators—this is a common scam, but
real system administrators don’t need users’ passwords. You should also warn them not to
use the same password on multiple systems because doing so quickly turns a compromised
account on one system into a compromised account on all the systems. Telling your users
these things will help them understand the reasons for your concern, and it is likely to help
motivate at least some of them to pick good passwords.

03843book.indb 220 8/21/09 12:06:06 PM

Improving Account Security 221

If your users are unconcerned after being told these things (and in any large installation,
some will be), you’ll have to rely on the checks possible in passwd. Most distributions’ imple-
mentations of this utility require a minimum password length (typically four to six charac-
ters). They also usually check the password against a dictionary, thus weeding out some of
the absolute worst passwords. Some require that a password contain at least one or two digits
or punctuation.

Password-cracking programs, such as Crack (http://www.crypticide.com/
alecm/security/crack/), are easy to obtain. You might consider running
such programs on your own encrypted password database to spot poor
passwords, and in fact, this is a good policy in many cases. It’s also grounds
for dismissal in many organizations and can even result in criminal charges
being brought, at least if done without authorization. If you want to weed
out bad passwords in this way, discuss the matter with your superiors and
obtain written permission from a person with the authority to grant it before
proceeding. Take extreme care with the files involved, too; it’s probably best
to crack the passwords on a computer with no network connections.

Another password security issue is password changes. Changing passwords on a fre-
quent basis minimizes the window of opportunity for crackers to do damage; if a cracker
obtains a password but it changes before the cracker can use it (or before the cracker can do
further damage using the compromised account), the password change has averted disaster.
As described earlier in this chapter, you can configure accounts to require periodic pass-
word changes. When so configured, an account will stop accepting logins after a time if
the password isn’t changed periodically. (You can configure the system to warn users when
this time is approaching.) This is a very good option to enable on sensitive systems or those
with many users. Don’t set the expire time too low, though—if users have to change their
passwords too frequently, they’ll probably just switch between a couple of passwords, or
they’ll pick poor ones. Precisely what “too low” a password change time is depends on the
environment. For most systems, 1–4 months is probably a reasonable change time, but for
some it might be longer or shorter.

Steps for Reducing the Risk of Compromised Passwords
Passwords can end up in crackers’ hands in various ways, and you must take steps to mini-
mize these risks. Steps you can take to improve your system’s security include the following:

Use strong passwords. Users should employ good passwords, as just described. This practice
won’t eliminate all risk, though.

Change passwords frequently. As just mentioned, changing passwords frequently can
minimize the chance of damage due to a compromised password.

Use shadow passwords. If a cracker who’s broken into your system through an ordinary
user account can read the password file or if one of your regular users is a cracker who has

03843book.indb 221 8/21/09 12:06:06 PM

222 Chapter 5 n Managing Users

access to the password file, that individual can run any of several password-cracking pro-
grams on the file. For this reason, you should use shadow passwords stored in /etc/shadow
whenever possible. Most Linux distributions use shadow passwords by default.

Keep passwords secret. You should remind your users not to reveal their passwords to
others. Such trust is sometimes misplaced, and sometimes even a well-intentioned password
recipient might slip up and let the password fall into the wrong hands. This can happen by
writing the password down, storing it in electronic form, or sending it by e-mail or other
electronic means. Indeed, users shouldn’t e-mail their own passwords even to themselves,
because e-mail can be intercepted.

Use secure remote login protocols. Certain remote login protocols are inherently insecure;
all data traverse the network in an unencrypted form. Intervening computers can be con-
figured to snatch passwords from such sessions. Because of this, it’s best to disable Telnet,
FTP, and other protocols that use cleartext passwords, in favor of protocols that encrypt
passwords, such as SSH. Chapter 9, “Configuring Advanced Networking,” and Chapter 11,
“Configuring Network Servers II,” describe these protocols in more detail.

Be alert to shoulder surfing. If your users work on computers in public, as is common in
college computer centers, in Internet cafes, when using a laptop in public, and so on, it’s
possible that others will be able to watch them type their passwords. This practice is some-
times called shoulder surfing. Users should be alert to this possibility and minimize such
logins if possible.

Some of these steps are things you can do, such as replacing insecure remote login
protocols with encrypted ones. Others are things your users must do. Once again, this
illustrates the importance of user education, particularly on systems with many users.

Disabling Unused Accounts
Linux computers sometimes accumulate unused accounts. This occurs when employees leave
a company, when students graduate, and so on. You should be diligent about disabling such
accounts because they can easily be abused, either by the individual who’s left your organi-
zation or by others who discover the password through any of the means already described.
As covered in detail earlier in this chapter, you disable accounts with the userdel command.

If the individual has had legitimate access to the root account, you must carefully consider
how to proceed. If you have no reason to suspect the individual of wrongdoing, changing
the root password and deleting the user’s regular account are probably sufficient. If the indi-
vidual might have sabotaged the computer, though, you’ll have a hard time checking for every
possible type of damage, particularly if the individual was a competent administrator. In such
situations, you’re better off backing up user data and reinstalling from scratch, just as you
should if your system is compromised by an outsider.

Many Linux distributions create a number of specialized accounts that are normally not
used for conventional user logins. These may include daemon, lp, shutdown, mail, news, uucp,
games, nobody, and others. Some of these accounts have necessary functions. For instance,
daemon is used by some servers, lp is associated with Linux’s printing system, and nobody is

03843book.indb 222 8/21/09 12:06:06 PM

Improving Account Security 223

used by various programs that don’t need high-privilege access to the system. Other accounts
are likely to be unused on many systems. For instance, games is used by some games, and so it
isn’t of much use on most servers or true productivity workstations. You may be able to delete
some of these unused specialty accounts, but if you do so, you should definitely record details
on the accounts’ configurations so that you can restore them if you run into problems because
the account wasn’t quite as unnecessary as it first seemed.

Using Shadow Passwords
Most Linux distributions use shadow passwords by default, and for the most part, this
chapter is written with the assumption that this feature is active. In addition to providing
extra security by moving hashed passwords out of the world-readable /etc/passwd file and
into the more secure /etc/shadow file, shadow passwords add extra account information.
(The earlier section “Directly Modifying Account Configuration Files” describes the /etc/
shadow file’s contents in detail.)

If you happen to be using a system that hasn’t enabled shadow passwords
but you want to add that support, you can do so. Specifically, the pwconv and
grpconv programs do this job for /etc/passwd and /etc/group, respectively.
These programs take no parameters; simply type their names to create /etc/
shadow and /etc/gshadow files that hold the passwords and related account
control information, based on the contents of the unprotected files.

One of the advantages of shadow passwords is that the Linux shadow password system
enables use of more advanced password hashes. The earliest Linux systems used a Triple
Data Encryption Standard (3DES) hash. This hash, although good not too many years
ago, is outdated by today’s standards. Many Linux distributions today use the Message
Digest 5 (MD5) hash instead, but some have moved on even from that to use the Secure
Hash Algorithm (SHA), which is even more secure. Linux’s password tools support pass-
words longer than eight characters for MD5 or SHA hashes, but not for 3DES hashes. You
can tell which one your distribution uses by examining the password field in /etc/shadow
(or /etc/passwd, if you’re not using shadow passwords). MD5 passwords begin with the
string 1, SHA passwords begin with 5 or 6, and 3DES passwords don’t begin with
any of these strings.

You can’t convert existing passwords from one hash to another, except by reconfiguring
your system to use the new password and then having users reenter their passwords. You
can, though, tell Linux to use one tool or the other for new passwords. To do so, edit the
/etc/pam.d/passwd file. This file controls the Pluggable Authentication Modules (PAM)
configuration for the passwd utility—that is, it controls how passwd does its work. Locate a
line that looks something like this:

password required pam_unix.so nullok use_authtok

03843book.indb 223 8/21/09 12:06:06 PM

224 Chapter 5 n Managing Users

The line may look somewhat different on your system, but the key points
are that it begins with the string password and references the pam_unix.so
library file. PAM is described in more detail in Chapter 12.

To configure Linux to encode new passwords using MD5, add md5 to the list of param-
eters after pam_unix.so. To switch to SHA, add sha256 or sha512 to the parameter list (the
number refers to the number of bits used in the hash, with higher values being preferable).

If you can’t find a line that looks like this one in /etc/pam.d/passwd, look for it in /etc/
pam.d/system-auth. This file serves as a stand-in for several other configuration files in
some distributions, so making the change there may do the job.

Additional encryption and hashing functions exist, such as MD4 and blow-
fish. These are not commonly used in Linux password databases, but they
may be used in network account database systems, in encrypted data
transfer tools such as SSH, and elsewhere.

Controlling System Access
One of the many uses of accounts is as a tool to control access to a computer—that is,
to allow sally to log in remotely, but not sam, much less a cracker from halfway around
the world. Precisely how such tasks can be accomplished varies from one server program
to another; some provide better access controls than others, and each server has its own
methods of handling the matter. The root account is often handled in a unique way with
respect to access control, and for good reason—root is powerful enough that you may
want to restrict its access to local logins in order to minimize the chance of abuse by a
distant cracker.

Accessing Common Servers
Several common server programs provide some means to limit access by username, often
via PAM. Others don’t provide this facility but do provide a way to limit access by computer
hostname or IP address. Servers you’re particularly likely to want to limit in these ways
include login servers and the File Transfer Protocol (FTP) server.

All servers have their own security implications. Chapter 10 describes
some of these servers in brief, but you should be aware that running any
server has security consequences that can be subtle, making safe configu-
ration difficult. You should consult appropriate server-specific or security
documentation before running servers on the Internet.

03843book.indb 224 8/21/09 12:06:07 PM

Controlling System Access 225

Controlling Login Access
Remote login access is usually provided by a Telnet or SSH server. These servers provide
remote text-mode access, enabling users to run Bash or other shells and text-mode programs.
SSH also supports tunneling X connections, so if the user’s computer runs an X server, the
user can run X programs hosted on the login server computer.

Unfortunately, Telnet provides only very limited security options. The server uses the
login program to process user logins, so user-by-user login restrictions are those provided
by login.

Telnet servers are usually called from a super server (inetd or xinetd), so you can use
these servers’ features (or the features of programs they call, such as TCP Wrappers) to
restrict access to Telnet on the basis of the calling systems’ IP addresses. These options are
described in Chapter 4, “Managing System Services.”

SSH servers don’t normally use login to control the login process. These servers may
employ PAM, though, so you can configure PAM to limit who may log in via SSH.

In addition to these controls, other options can limit root access to these login servers,
as described later in “Controlling root Access.”

Controlling FTP Access
Most FTP servers use PAM to authenticate user access. Instead of or in addition to PAM,
some FTP servers use a file called /etc/ftpusers to limit who may access the computer.
This file contains a list of users who may not access the FTP server. Typically, it includes
root and various other system accounts, but you can add ordinary users to the list, if you
like. You cannot use this file to restrict access based on the remote system, though, unlike
the PAM-based restrictions.

The presence of an /etc/ftpusers file doesn’t mean that the file is actu-
ally in use. This file could be a relic from an earlier FTP server installed
on the system, or the FTP server might be configured to not use the file.
Before you rely on this file, you should test it by adding an ordinary user-
name to the file and then attempting to access your FTP server using that
username. If you succeed, try restarting the FTP server and testing it again.
If you can still access the FTP server, consult its documentation to learn
how to get it to use /etc/ftpusers or use PAM to limit access.

Controlling root Access
The root account is unusually powerful, so a compromise of that account is far more serious
than a compromise of an ordinary account. Furthermore, in many cases, root should not be
accessing a computer over a network, at least not in certain ways. For instance, a standard
Telnet server doesn’t encrypt its traffic, so its use for root access exposes the root password on
the network wires—or over radio waves, if you’re using wireless networking. What’s more, the

03843book.indb 225 8/21/09 12:06:07 PM

226 Chapter 5 n Managing Users

data transferred by root may be unusually sensitive. For instance, you might edit /etc/shadow
as root, thus exposing the data in that file, if you edit it via a Telnet link.

For these reasons, many servers and login protocols provide extra tools to help control
root access to the system. Frequently, these tools simply deny all access to direct root logins.
Administrators can still log in using a normal account and then use su, sudo, or similar tools
to perform administrative tasks. This approach requires two passwords, which means that a
miscreant is less likely to be able to get in than if direct root logins were accepted.

The default configuration for most Linux distributions is to deny direct root logins via
Telnet (or any other remote login server that uses the login program). Thus, you shouldn’t
need to change anything to keep this server from accepting root logins. If you do, the key
lies in the /etc/securetty file. This file holds a list of terminals from which root is permit-
ted to log in. It normally contains a list of local device filenames, one per line, minus the
leading /dev directory indicator. If this list is incomplete, you may not be able to log in as
root from the console. Adding appropriate specifications, such as tty1 through tty6 and
vc/1 through vc/6, should fix the problem. If you want to use a directly connected “dumb”
RS-232 serial terminal, you can add its device filename, such as ttyS0. (You’ll also need
to enable this terminal for normal logins by adding it to the /etc/inittab file or creating
a ttyS0 file with appropriate options in /etc/event.d, depending on the version of init
you’re using.)

Even if you log in using Telnet via a normal user account, using su and per-
forming administrative functions can be risky. The password you type after
you type su will be passed over the network in an unencrypted form, as
will all the data you type or see on your screen. Remote text-mode admin-
istration is best done via SSH or some other encrypted protocol.

Most default SSH configurations allow root to log in directly. Although SSH’s encryption
makes this practice much safer than the equivalent when using Telnet, you can gain the added
benefit of requiring two passwords by disabling direct root logins via SSH. To do so, you
must edit the server’s /etc/ssh/sshd_config file (not to be confused with ssh_config, which
controls the SSH client). Look for the PermitRootLogin line, and set it to no:

PermitRootLogin no

You may want to consult the documentation for other servers you run, as well. Some,
including remote administration tools such as the Samba Web Administration Tool (SWAT),
require root access to do more than display basic information and perhaps change user pass-
words. Others, such as the main Samba servers themselves, should ordinarily not give root
access—they simply aren’t designed for administrative functions, and root may be able to do
things with the server that you’d rather not be done. For the most part, remote root access
should be limited to SSH (ideally after a regular user login) or to tools that are explicitly
designed to support root access for administrative purposes.

03843book.indb 226 8/21/09 12:06:07 PM

Exam Essentials 227

Summary
Linux’s accounts and its security model are inextricably intertwined. A single Linux system
can support many users, who can be tied together in groups. Users can create files that they
own and that have permissions that define which other users may access the files and in what
ways. To manage these users, you’ll use a handful of commands, such as useradd, groupadd,
userdel, usermod, and passwd. These commands enable you to manage your user accounts to
suit your system’s needs.

Managing account security is critically important. You must educate your users about
the importance of good passwords, and about proper procedures for safeguarding their
passwords. Most importantly, users should know to never divulge their passwords to others.
They should also be alert to suspicious activities that might indicate shoulder surfing or other
methods crackers employ to obtain passwords. As a system administrator, you can disable or
delete unused accounts and manage shadow passwords.

Controlling access to a computer is an important part of security and user management.
Many programs also provide their own tools to accomplish these goals. Some servers pro-
vide special options to disable or limit root access to the computer, and you should often
take advantage of such options.

Exam Essentials

Describe why accounts are important on a Linux system. Accounts enable several users
to work on a computer with minimal risk that they’ll damage or (if you so desire) read one
another’s files. Accounts also enable you to control normal users’ access to critical system
resources, limiting the risk of damage to the Linux installation as a whole.

Summarize important files in controlling access to Linux. The /etc/passwd and /etc/
shadow files contain information on Linux accounts. Files in /etc/pam.d control PAM,
including defining how PAM authenticates users. Individual programs and servers often
have their own security files, such as /etc/sudoers to control sudo, /etc/ftpusers to con-
trol who may access an FTP server, and /etc/ssh/sshd_config to control the SSH server.

Describe the characteristics of a good password. Good passwords resemble random
strings of letters, numbers, and punctuation. To make them memorable to the account
holder, they can be generated by starting from a base built on a personally relevant acro-
nym or a pair of unrelated words and then modified by adding letters and punctuation,
mixing the case of letters, and reversing some sequences in the password.

Explain the importance of shadow passwords. The shadow password system stores pass-
word hashes in a file that can be read only by root, thus reducing the risk that a cracker can
read the file and use a password-cracking program to discover users’ passwords.

03843book.indb 227 8/21/09 12:06:07 PM

228 Chapter 5 n Managing Users

Summarize Linux password hashes. Linux has traditionally used 3DES, but modern dis-
tributions use the MD5 or SHA hash instead. Other password hashes are possible and are
sometimes used with network authentication tools.

Describe methods of deleting user accounts. Accounts can be deleted by deleting the
appropriate entries in /etc/passwd and /etc/shadow or by using utilities such as userdel.
You might also need to delete user files (userdel can optionally do at least part of this
job) and delete or change references to the user in other configuration files, such as /etc/
samba/smbpasswd.

Summarize why using root access is dangerous. Every time the root password is entered
is a chance for it to be discovered, so overusing the root account increases the odds that
your computer will be compromised. Commands can also contain typos or other errors,
and when this happens as root, the consequences can be far more damaging than is the
case when an ordinary user mistypes a command.

03843book.indb 228 8/21/09 12:06:07 PM

Review Questions 229

Review Questions

1. Which of the following are legal Linux usernames? (Choose all that apply.)

A. larrythemoose

B. 4sale

C. PamJones

D. Samuel_Bernard_Delaney_the_Fourth

2. Why are groups important to the Linux user administration and security models?

A. They can be used to provide a set of users with access to files, without giving all users
access to the files.

B. They allow you to set a single login password for all users within a defined group.

C. Users may assign file ownership to a group, thereby hiding their own creation of the file.

D. By deleting a group, you can quickly remove the accounts for all users in the group.

3. Which of the following actions allow one to perform administrative tasks? (Choose all
that apply.)

A. Logging in as an ordinary user and using the chgrp command to acquire superuser
privileges

B. Logging in at the console with the username root

C. Logging in as an ordinary user and using the su command to acquire superuser privileges

D. Logging in when nobody else is using the system, thus using it as a single-user computer

4. How may you limit the number of prior logins returned by the last command?

A. -i, to limit output to important (root and other administrative) logins

B. -since YYYYMMDD, where YYYYMMDD is a date

C. -limit num, where num is a number

D. -num, where num is a number

5. Which of the following is true of Linux passwords?

A. They are changed with the password utility.

B. They may consist of lowercase letters and numbers only.

C. They must be changed once a month.

D. They may be changed by the user who owns an account or by root.

6. Which of the following commands configures the laura account to expire on
January 1, 2005?

A. chage -I 2005-01-01 laura

B. userchange -e 2005-01-01 laura

C. usermod -e 2005 laura

D. chage -E 2005-01-01 laura

03843book.indb 229 8/21/09 12:06:08 PM

230 Chapter 5 n Managing Users

7. Which of the following does groupadd allow you to create?

A. One group at a time

B. An arbitrary number of groups with one call to the program

C. Only user private groups

D. Passwords for groups

8. Which of the following is true of the groupdel command? (Choose all that apply.)

A. It won’t remove a group if that group is any user’s default group.

B. It won’t remove a group if the system contains any files belonging to that group.

C. It removes references to the named group in /etc/group and /etc/gshadow.

D. It won’t remove a group if it contains any members.

9. Which of the following describes the user private group strategy?

A. It is a requirement of the Red Hat and Mandriva distributions.

B. It cannot be used with Debian GNU/Linux.

C. It lets users define groups independently of the system administrator.

D. It creates one group per user of the system.

10. Which of the following is true when a user belongs to the project1 and project2 groups?

A. The user must type newgrp project2 to read files belonging to project2 group
members.

B. If group read permissions are granted, any file created by the user will automatically be
readable to both project1 and project2 group members.

C. The user may use the newgrp command to change the default group associated with
files the user subsequently creates.

D. The user’s group association (project1 or project2) just after login is assigned
randomly.

11. How should you engage users in helping to secure your computer’s passwords?

A. Educate them about the importance of security, the means of choosing good passwords,
and the ways crackers can obtain passwords.

B. Give some of your users copies of the encrypted database file as backup in case a
cracker breaks in and corrupts the original.

C. Enforce password change rules, but don’t tell users how crackers obtain passwords
since you could be educating a future cracker.

D. Instruct your users to e-mail copies of their passwords to themselves on other systems
so that they’re readily available in case of an emergency.

12. Which of the following accounts is the most likely prospect for deletion on a mail server?

A. daemon

B. games

C. mail

D. nobody

03843book.indb 230 8/21/09 12:06:08 PM

Review Questions 231

13. While looking at the /etc/passwd file, you notice that an x appears in the second field for
every user. What does this indicate?

A. All passwords are set to expire.

B. Passwords do not expire.

C. Passwords are not required on the system.

D. Passwords are stored in the shadow file.

14. Which of the following utilities is used to convert conventional passwords to shadow
passwords?

A. skel

B. shadow

C. pwconv

D. crypt

15. Which commands can be used to discover which of a system’s users are currently logged in?
(Choose all that apply.)

A. login

B. who

C. which

D. w

16. In performing your administrative duties, you’ve made heavy use of the su command to
temporarily acquire various users’ identities, and you’ve forgotten with which account a
shell is currently associated. How might you resolve this question?

A. Type whoami.

B. Type cat /etc/passwd.

C. Select File User from the desktop environment’s menu.

D. Type bash to start a new shell.

17. You have recently been assigned administration of an older Linux server using 3DES pass-
word encryption. You want to send an e-mail to users encouraging them to change their
passwords. How long can their passwords be?

A. Eight characters

B. Fifteen characters

C. Thirty-two characters

D. Unlimited

03843book.indb 231 8/21/09 12:06:08 PM

232 Chapter 5 n Managing Users

18. You are trying to explain to management why developers should use Linux to debug their
applications. Which feature of Linux supports multiple simultaneous logins through the
standard console and could be useful in application development?

A. Multitasking

B. Multithreading

C. Virtual terminals

D. Concurrency

19. Which of the following commands can be used to delete a user named kristin and remove
all files from the user’s home directory, as well as the home directory itself?

A. userdel kristin

B. userdel –r kristin

C. userdel –a kristin

D. deluser –a kristin

20. Which is the safest method of performing administrative tasks, from a security point of view?

A. Logging in directly at the console as root

B. Using sudo after a console login as an ordinary user

C. Using su after a console login as an ordinary user

D. Logging in via Telnet as root

03843book.indb 232 8/21/09 12:06:08 PM

Answers to Review Questions 233

Answers to Review Questions

1. A, C. A Linux username must contain fewer than 32 characters and start with a letter, and
it may consist of letters, numbers, and certain symbols. Options A and C both meet these cri-
teria. (Option C uses mixed upper- and lowercase characters, which is legal but discouraged.)
Option B begins with a number, which is invalid. Option D is longer than 32 characters.

2. A. Groups provide a good method of file-access control. Although they may have pass-
words, these are not account login passwords; those passwords are set on a per-account
basis. Files do have associated groups, but these are in addition to individual file ownership,
so they cannot be used to mask the file’s owner. Deleting a group does not delete all the
accounts associated with the group.

3. B, C. Direct login as root and using su to acquire root privileges from an ordinary login
both allow a user to administer a system. The chgrp command is used to change group
ownership of a file, not to acquire administrative privileges. Although Linux does support a
single-user emergency rescue mode, this mode isn’t invoked simply by having only one user
logged on.

4. D. The -num parameter restricts last to the last num logins, as option D specifies. The -i
parameter of option A causes output to show IP numbers rather than hostnames; it doesn’t
change the number of logins shown. The last command doesn’t have -since or -limit
parameters.

5. D. Both the superuser and the account owner may change an account’s password. The util-
ity for doing this is called passwd, not password. Although an individual user might use
just lowercase letters and numbers for a password, Linux also supports uppercase letters
and punctuation. The system administrator may enforce once-a-month password changes,
but such changes aren’t required by Linux per se.

6. D. Either chage -E or usermod -e may be used for this task, followed by a date expressed
in YYYY/MM/DD or YYYY-MM-DD format. Option A uses the wrong parameter (-I), and option B
uses the nonexistent userchange command. Option C is actually a legal command, but it
specifies a date 2005 days after January 1, 1970—in other words, in mid-1975.

7. A. The groupadd command creates one group per call to the program. Such a group may
be a user private group, but need not be. Group passwords are created with gpasswd, not
groupadd.

8. A, C. The groupdel command modifies the group configuration files, and it checks the user
configuration files to be sure that it doesn’t “orphan” any users first. The group may contain
members, though, as long as none lists the group as its primary group. The groupdel com-
mand performs no search for files belonging to the group, but it’s a good idea for you to do
this manually either before or after removing the group.

03843book.indb 233 8/21/09 12:06:08 PM

234 Chapter 5 n Managing Users

9. D. Although Red Hat and Mandriva use the user private group strategy by default, you
can design and use another strategy. Likewise, you may use the user private group strategy
with any Linux distribution, even if it doesn’t use this strategy by default. Ordinary users
can’t create groups by themselves, although if they’re group administrators in a user private
group system, they may add other users to their own existing groups.

10. C. The newgrp command changes the user’s active group membership, which determines the
group associated with any files the user creates. This command is not required to give the user
access to files with other group associations if the user is a member of the other group and
the file has appropriate group access permissions. Files have exactly one group association, so
a user who belongs to multiple groups must specify to which group any created files belong.
This is handled at login by setting a default or primary group recorded with the user’s other
account defaults in /etc/passwd.

11. A. Education helps users to understand the reasons to be concerned, which can motivate
conformance with password procedures. Cracking procedures are common knowledge, so
withholding general information won’t keep that information out of the hands of those who
want it. Copying password files and sending unencrypted passwords through e-mail are
both invitations to disaster; encrypted files can be cracked, and e-mail can be intercepted.

12. B. One or both of daemon and mail might be required by the mail server or other system
software, so these are poor prospects for removal. Likewise, nobody is used by a variety of
processes that need only low-privilege access rights. The games account is most frequently
used by games for high-score files and the like and so is most likely unused on a mail server.

13. D. When an x appears for entries in the second field of the passwd file, it indicates that the
passwords are stored elsewhere—in the /etc/shadow file. Expiration information is stored
in /etc/shadow, not /etc/passwd. An account that does not require a password for login
has an empty password field in /etc/passwd or /etc/shadow.

14. C. The pwconv utility is used to convert conventional passwords to shadow passwords (the
opposite of this action is performed by pwunconv). skel is a file, not a utility, that holds a
“skeleton” of settings to be applied to newly created users. The shadow file (/etc/shadow)
is where the passwords are stored, but it is not a utility. crypt is a utility that hashes data;
it can be used to encrypt passwords, but doesn’t convert conventional to shadow passwords
or vice versa.

15. B, D. The who and w commands both display lists of currently logged-in users, as the question
specifies. The login program manages text-mode console logins and some types of remote
logins; it presents the login: and password: prompts and then, if the user is authenticated,
launches a shell. The which command tells you whether a command is internal to the shell, a
shell alias, or an external command; it has nothing to do with who’s logged in.

16. A. The whoami command displays the effective user ID—the username associated with the
command, which will in turn be the username associated with the current shell. Option B
will display the current account database file, but this information won’t help answer the
question of what account you’re using. Even if a desktop environment has a File User
menu item, that item won’t reliably tell you whose account you’re using at a command shell.
Any shell you launch from the current one will run with the current shell’s privileges, so
option D won’t be effective.

03843book.indb 234 8/21/09 12:06:09 PM

Answers to Review Questions 235

17. A. Linux’s password tools support passwords longer than eight characters for MD5 or SHA
hashes, but not for 3DES hashes. 3DES hashes are limited to passwords of eight characters
or less.

18. C. Linux supports multiple simultaneous logins through its standard console through the
use of virtual terminals (VTs). From a text-mode login, pressing the Alt key along with a
function key from F1 to F6 typically switches to a different virtual screen. Multitasking
allows the machine to do more than one task at a time, while multithreading simply means
that more than one thread can be executed at a time. Concurrency is not a common term
used other than describing how many different users can log on at one time.

19. B. While the userdel utility removes the user, the –r parameter causes the system to remove
all files from the user’s home directory, as well as the home directory itself. There is no –a
option for the userdel utility, and there is no standard utility in Linux named deluser.

20. B. The sudo program restricts root access to a single command at a time, thus minimizing
the risk of mistakenly running a command as root when an ordinary user account would
suffice. Of the options listed, options A and C are both somewhat less secure than using
sudo, while option D is downright dangerous because of the risk of data interception.

03843book.indb 235 8/21/09 12:06:09 PM

03843book.indb 236 8/21/09 12:06:09 PM

Chapter

6
Managing Disks

The Following CoMpTiA objeCTives
Are CovereD in This ChApTer:

1.2 Implement partitioning schemes and filesystem layout ÛÛ
using the following tools and practices (LVM, RAID, fdisk,
parted, mkfs).

1.3 Explain the purpose for using each of the following ÛÛ
filesystem types (Local: EXT2, EXT3, Reiser, FAT, NTFS,
VFAT, ISO9660. Network: NFS, SMBFS/CIFS).

1.4 Conduct routine mount and unmount of filesystems ÛÛ
(mount, umount, /etc/fstab).

1.5 Explain the advantages of having a separate partition ÛÛ
or volume for any of the following directories (/boot, /home,
/tmp, /usr, /var, /opt).

1.6 Explain the purpose of the following directories (ÛÛ /, /bin,
/dev, /etc, /mnt, /proc, /root, /sbin, /usr/bin, /usr/local,
/usr/lib, /usr/lib64, /usr/share, /var/log).

2.7 Manage filesystems using the following (check disk ÛÛ
usage [df, du], Quotas [edquota, repquota, quotacheck],
check and repair filesystems [fsck], Loopback devices
[ISO filesystems], NFS [configuration, mount], Swap
[mkswap, swapon, swapoff].

03843book.indb 237 8/21/09 12:06:22 PM

Most computers’ actions are tied very closely to their disk par-
titions and the files they contain. Web servers must be able to
deliver Web files stored on disk, workstations must be able to

run applications and store data on disk, and so on. Therefore, it’s important that you can
manage these files and the filesystems that contain them when you work with a Linux com-
puter. Much of this chapter is devoted to this topic, starting with a look at the underlying
hardware and Linux’s interfaces to it, then moving on to partition management, and finally
looking at the Linux filesystem layout.

Objective 2.7 is covered partly in this chapter and partly in Chapter 10,
“Configuring Network Servers.”

The term “filesystem” has two meanings. First, it may refer to an organized
collection of files, stored in some specific set of directories. For instance,
certain filesystem standards for Linux specify in what directories certain
types of files reside. Second, “filesystem” may refer to the low-level data
structures used to organize files on a hard disk partition or removable disk.
Several different filesystems of this second variety exist, such as ext3fs,
ReiserFS, and FAT. This chapter covers both types of filesystems; which
meaning is intended is usually clear from the context. When it isn’t, I clarify
by using terms such as “directory structure” or “directory tree” for the first
type or “low-level filesystem” for the second variety.

Storage Hardware Identification
Before delving into the details of how Linux manages partitions and files, you should
understand some of the basics of storage devices. Several types of storage devices exist,
and specific types have characteristics that can influence how Linux interacts with them.
Understanding how Linux interacts with the hardware (device filenames, for instance) is
also critically important.

Chapter 1, “Getting Started with Linux,” describes low-level hardware
concerns in more detail.

03843book.indb 238 8/21/09 12:06:22 PM

Storage Hardware Identification 239

Types of Storage Devices
Today, many storage devices are in common use on small computers:

Hard disks The most important form of storage for most desktop and server computers is
the hard disk. This device consists of one or more spinning platters with magnetic coatings
and a read/write head that accesses the data stored on the disk. Hard disks use Advanced
Technology Attachment (ATA) and Small Computer System Interface (SCSI) interfaces,
which are explained in more detail shortly, in “Linux Storage Hardware Configuration.”
Hard disks have high capacity and are reasonably fast and inexpensive, which means
they’re the ideal storage tool for the OS itself and for most user data files.

Removable magnetic disks Removable magnetic disks are much like hard disks, but they
can be easily removed from a computer. Examples include floppy disks and Zip disks. These
technologies were once extremely common, but they’ve been largely supplanted by remov-
able solid-state and optical devices, which are described shortly. A variant of this approach
is to mount normal ATA or SCSI disks in special drive bays to enable easy disk swaps. This
configuration can be useful for quick disk backups and recovery.

Optical media Optical media include Compact Disc Read-Only Memory (CD-ROM),
CD Recordable (CD-R), CD Re-Writable (CD-RW), DVD, and various recordable DVD
variants. These media all use entirely optical methods for storing and reading data. In prac-
tice, although they can be read much like removable magnetic disks, optical media require
special tools to be written. In fact, not all optical media are recordable—CD-ROMs and
DVDs are not recordable. Some media, including CD-Rs and some recordable DVD formats,
can be written just once; data cannot be changed once written.

Removable solid-state storage In recent years, solid-state storage devices have grown in
popularity. Examples include Compact Flash (CF) cards, Secure Digital (SD) cards, and USB
flash drives. These devices can interface with computers much like hard disks or removable
magnetic disks and can be treated much like these devices from a software perspective. They
differ in their underlying technologies, though; rather than store data on magnetized spin-
ning disks, solid-state storage devices use nonvolatile electronic storage, similar in some ways
to ordinary RAM. These technologies are expensive and low in capacity compared to most
other removable media, but they have the advantage of compact size and durability, which
make them ideal for use in various portable digital devices, such as digital cameras and music
players. USB flash cards are extremely popular as transportable storage for desktop and lap-
top computers; they’ve largely replaced floppy disks in this role.

NVRAM Nonvolatile RAM (NVRAM) is a way of storing small amounts of data in
chips. Although NVRAM is conceptually similar to removable solid-state storage, it’s used
in computers to store small amounts of fixed data, such as BIOS options. NVRAM is gener-
ally not removable from the computer and is quite limited in size. Linux provides the means
to read and write NVRAM. Typically, this requires use of specialized data access tools.

Magnetic tape Magnetic tape has long been an important storage medium for computers,
and it remains an important medium for backups. It has speed, cost, and access limitations

03843book.indb 239 8/21/09 12:06:23 PM

240 Chapter 6 n Managing Disks

that make it impractical for the day-to-day storage of ordinary files, however. Special soft-
ware (mt in Linux) is required to manipulate magnetic tapes.

Each of these classes of storage device has its own unique place on a Linux system. For
a typical laptop, desktop, or server, the hard disk plays the most important role in day-to-
day operations, although one or more solid-state and optical devices may be important as
well. Aside from tapes and NVRAM, all of these devices are most commonly accessed with
the help of a low-level filesystem, although the filesystems that are most useful vary from
one device to another. (The upcoming section “Linux Filesystem Options” describes these
options in more detail.)

Linux Storage Hardware Configuration
To use a storage device, programs must be able to access it. In most cases, this is done
through a low-level filesystem, which is then mounted to a directory—that is, the directory
serves as a way to access the files and directories on the filesystem.

The upcoming section “Mounting and Unmounting Partitions” describes
how to mount filesystems.

In other cases, you must know the device filename that corresponds to the device. By
reading from or writing to this device file, you may access data stored on the hardware. In
fact, device filenames are important even for mounted filesystems, because you tell Linux
what partition to mount by using a device filename.

Hard disk devices are identified as either ATA (with /dev/hdx device filenames, where
x is a letter from a onward) or SCSI (with /dev/sdx disk identifiers). This characterization,
however, is based on the state of hardware at the time this system was devised. Since that
time, both the hardware and the driver situation has become more complex.

Today, the ATA marketplace is divided between parallel ATA (PATA) and serial ATA
(SATA) drives. PATA drives are the original ATA technology, whereas SATA is a newer
standard. Most new computers today use SATA drives, but PATA drives are still available.
PATA devices usually (but not always) have /dev/hdx device filenames, whereas SATA
drives usually (but not always) have /dev/sdx device filenames. Which is used depends on
the driver that’s built into the kernel or loaded first. The general trend is to favor the SCSI-
style device filenames. True SCSI devices use the /dev/sdx identifiers, as do newer Serial
Attached SCSI (SAS) disks. Disks and disk-like devices that use neither ATA nor SCSI, such
as USB flash disks, generally acquire SCSI-style identifiers.

In the case of true PATA devices, the master disk on the first disk controller is /dev/hda,
the slave disk on that controller is /dev/hdb, the master disk on the second controller is /dev
/hdc, and so on. Device letters can be skipped, depending on how disks are configured. For
instance, if you have two hard disks, both masters on their chains, they might be known as
/dev/hda and /dev/hdc, with /dev/hdb unused.

SCSI disk devices are assigned letters sequentially, beginning with a; thus, a system with
two SCSI disks will identify them as /dev/sda and /dev/sdb, even if they have noncontiguous

03843book.indb 240 8/21/09 12:06:23 PM

Storage Hardware Identification 241

SCSI ID numbers. The same is true of devices that “pretend” to be SCSI disks, such as SATA
or USB flash drives.

Both ATA and SCSI hard disks are commonly broken into partitions. These are identi-
fied by numbers after the hardware identifier. For instance, /dev/hda3 identifies a specific
partition on /dev/hda, and /dev/sdb5 identifies a partition on /dev/sdb. Partitions are
numbered starting with 1. Additional rules and limitations depend on the partitioning sys-
tem, as described in the upcoming section “Understanding Partitioning Systems.”

The actual order of partitions on a disk need not correspond to their partition numbers. For
instance, /dev/hda3 might appear before /dev/hda2. Likewise, gaps may appear in the parti-
tion sequence—a disk might have /dev/hda1 and /dev/hda3 but not /dev/hda2 or /dev/hda4.

Most removable magnetic media and solid-state storage devices use hard disk device
files. These devices look almost exactly like hard disks from Linux’s point of view. One
exception is floppy disks. Typically, the first floppy disk is /dev/fd0, and the second (if it’s
present) is /dev/fd1. Most distributions also provide assorted specialized files, such as
/dev/fd0u1440, which enable you to force the OS to access the device at a given capacity.
This can be particularly useful when you’re performing a low-level disk format with the
fdformat utility, which prepares a floppy disk for use. (You must also create a filesystem on
the disk, using mkfs or a similar utility, as described later in “Creating New Filesystems.”)

Hard disks are almost always partitioned before use. This is also true of some types of
removable magnetic media, such as Zip disks, which use conventional ATA or SCSI disk
device files to access the hardware. Other removable magnetic media, such as floppy disks,
are conventionally not partitioned. This is just a convention, at least for devices that use
hard disk device files. (No device filenames for accessing partitioned floppy disks exist.)

Optical media are unusual because their access devices vary depending on the device
interface. ATA devices are handled just like hard disks. For instance, an ATA CD-RW
drive that’s configured as the slave device on the first disk controller will be accessed as
/dev/hdb, just as if it were a hard disk. SCSI optical drives, though, are identified with
filenames of the form /dev/scdx, where x is a number from 0 up. Thus, /dev/scd0 is
typically your SCSI optical device. Linux kernels provide SCSI emulation support, which
enables you to access an ATA optical drive as if it were a SCSI model. Thus, an ATA opti-
cal disc might look like a SCSI one, depending on your kernel configuration. Most dis-
tributions set up a symbolic link from /dev/cdrom to your primary optical media device,
so you may be able to use this filename when specifying your disc. Optical discs are not
conventionally partitioned.

Magnetic tape devices are identified using a pair of device files, whose names differ from
ATA to SCSI. For an ATA tape device, /dev/htx and /dev/nhtx, where x is a number from
0 up, identify the tape device. The /dev/htx file, when accessed, causes the tape to auto-
matically rewind after every operation; the /dev/nhtx file, by contrast, is nonrewinding,
which can be handy if you want to store multiple backups on a single tape. The SCSI device
filenames take a similar form: /dev/stx and /dev/nstx. Because few systems have multiple
tape devices, chances are you’ll see the 0-numbered ones only, such as /dev/st0 and /dev
/nst0. Typically, tape devices are accessed like ordinary files—you pass their filenames to
backup programs as if they were disk files.

03843book.indb 241 8/21/09 12:06:23 PM

242 Chapter 6 n Managing Disks

NVRAM is accessed through the /dev/nvram file. This file contains very precisely struc-
tured data, so you should not try to access it directly. Instead, you can use a utility, such as
NVRAM Wakeup (http://sourceforge.net/projects/nvram-wakeup) or tpb (http://
www.nongnu.org/tpb). These programs provide specialized functionality to read or write
some or all of the NVRAM data.

Never attempt to write a filesystem to /dev/nvram or otherwise write to it
without the help of a program designed to do so. Even using such a pro-
gram designed for a CPU or BIOS other than the one you’re using could
render your system unbootable!

Planning Disk Partitioning
Hard disks can be broken into logical chunks known as partitions. In Windows, partitions
correspond to drive letters (C:, D:, and so on). In Linux, partitions are mounted at particu-
lar points in the Linux directory tree, so they’re accessible as subdirectories. Before install-
ing Linux, it’s a good idea to give some thought to how you’ll partition your hard disk. A
poor initial partitioning scheme can become awkward because you’ll run out of space in
one partition when another has lots of available space or because the partition layout ties
your hands in terms of achieving particular goals.

Understanding Partitioning Systems
Partitions are defined by data structures that are written to specified parts of the hard disk.
Several competing systems for defining these partitions exist. On x86 and x86-64 hardware,
the most common method up until 2009 has been the master boot record (MBR) partitioning
system, so called because it stores its data in the first sector of the disk, which is also known
as the MBR. The MBR system, however, is limited to partitions and partition placement of
2 terabytes (TB), at least when using the nearly universal sector size of 512 bytes. The succes-
sor to MBR is the GUID partition table (GPT) partitioning system, which has much higher
limits and certain other advantages. The tools and methods for manipulating MBR and GPT
disks differ from each other, although there’s substantial overlap.

Still more partitioning systems exist, and you may run into them from
time to time. For instance, Macintoshes that use PowerPC CPUs generally
employ the Apple Partition Map (APM), and many Unix variants employ
Berkeley Standard Distribution (BSD) disk labels. You’re most likely to
encounter MBR and GPT disks, so those are the partitioning systems cov-
ered in this book. Details for other systems differ, but the basic principles
are the same.

03843book.indb 242 8/21/09 12:06:24 PM

Planning Disk Partitioning 243

MBR Partitions
The original x86 partitioning scheme allowed for only four partitions. As hard disks
increased in size and the need for more partitions became apparent, the original scheme
was extended in a way that retained backward compatibility. The new scheme uses three
partition types:

Primary partitionsÛn , which are the same as the original partition types

Extended partitionsÛn , which are a special type of primary partition that serves as a
placeholder for the next type

Logical partitionsÛn , which reside within an extended partition

For any one disk, you’re limited to four primary partitions, or three primary partitions
and one extended partition. Many OSs, such as DOS, Windows, and FreeBSD, must boot
from primary partitions, and because of this, most hard disks include at least one primary
partition. Linux, however, is not so limited, so you could boot Linux from a disk that con-
tains no primary partitions, although in practice few people do this.

The primary partitions have numbers in the range of 1–4, whereas logical partitions are
numbered 5 and up. Gaps can appear in the numbering of MBR primary partitions; how-
ever, such gaps cannot exist in the numbering of logical partitions. That is, you can have a
disk with partitions numbered 1, 3, 5, 6, and 7 but not 1, 3, 5, and 7—if partition 7 exists,
there must be a 5 and a 6.

In addition to holding the partition table, the MBR data structure also holds the primary
boot loader—the first disk-loaded code that the CPU executes when the computer boots.
Thus, the MBR is extremely important and sensitive. Because the MBR exists only in the
first sector of the disk, it’s vulnerable to damage; accidental erasure will make your disk
unusable unless you have a backup.

You can back up your MBR by typing dd if=/dev/sda of=~/sda-bu.img
bs=512 count=1 (or similar commands to specify another disk device or
backup file). You can then copy the backup file (~/sda-bu.img in this
example) to a removable disk or another computer for safekeeping. Be sure
to type this command correctly, though; reversing the if= and of= options
will destroy your MBR! Note that backing up your MBR in this way won’t
back up your logical partitions, just your primaries and the extended parti-
tion, if you have one.

Although the MBR data structure has survived for a quarter century, its days are num-
bered because it’s not easily extensible beyond 2TB disks. Thus, a new system is needed.

GPT Partitions
GPT is part of Intel’s Extensible Firmware Interface (EFI) specification, which is intended
as a replacement for the BIOS that most x86 and x86-64 computers use. GPT can be used
on computers that don’t use EFI, though, and GPT is the preferred partitioning system for
disks bigger than 2TB.

03843book.indb 243 8/21/09 12:06:24 PM

244 Chapter 6 n Managing Disks

GPT employs three data structures, two of which have backups:

Protective MBR An MBR exists on a GPT-partitioned disk, with the purpose of deterring
creation of ordinary MBR partitions. The protective MBR, as it’s called, defines a single
partition with a type code of 0xEE (EFI GPT). This partition spans the size of the disk or
2TB, whichever is smaller, thus signaling that the disk is a GPT disk and (it is hoped) mini-
mizing accidental damage should a GPT-unaware utility be used to access the disk. The
protective MBR may also hold a boot loader in its code area.

Header The header defines various GPT metadata, such as the size of the partition table,
the locations of the partition tables, and cyclic redundancy check (CRC) checksums to help
system software detect data corruption.

Partition table The partition table defines actual partitions. On most disks, the partition
table can define up to 128 partitions. GPT does away with the primary/extended/logical
distinction of MBR, which simplifies certain disk administration tasks. In Linux, GPT par-
titions are numbered starting with 1, and they need not be consecutive, so you could have
partitions numbered 2, 5, 23, and 120. (Many disk utilities will automatically change such
a sequence to 1, 2, 3, and 4, however.)

The GPT header and partition table are duplicated: one copy appears at the start of the
disk, and the other copy appears at the end of the disk. This redundancy, along with the
CRCs in the header, simplifies some types of data recovery.

GPT’s main drawback is that support for it is relatively immature. The fdisk utility
(described shortly in “Partitioning Tools”) doesn’t work with GPT disks. The old LILO
boot loader and some versions of GRUB also don’t support it. GPT support must also be
enabled in your kernel. (Most distributions do so by default.) The situation is worse in some
OSs—particularly older ones. Nonetheless, you should be at least somewhat familiar with
GPT because of MBR’s inability to handle disks larger than 2TB.

Linux Partition Requirements
To Linux, there’s very little difference between the primary and logical partitions or even
between MBR and GPT partitions. As noted earlier, there are numbering implications for
the different partitioning schemes, and you should be familiar with them.

Some administrators use a primary Linux boot partition because a conventional x86
boot loader can boot only from a primary partition. When the computer does so, it runs
code in the boot sector of the boot partition. Typically, Linux places a special boot loader
program in this location. The Grand Unified Boot Loader (GRUB) and the Linux Loader
(LILO) are the two boot loaders most commonly found on x86 Linux systems. Alterna-
tively, GRUB or LILO can reside directly in the MBR, which is more direct but leaves the
boot loader more vulnerable to being wiped out should some other utility rewrite the MBR.
Placing GRUB in the protective MBR is the only option if you’re booting a BIOS-based sys-
tem from a GPT disk.

03843book.indb 244 8/21/09 12:06:24 PM

Planning Disk Partitioning 245

Non-x86 distributions need boot loaders, too, but they’re different from x86
boot loaders in various details. Sometimes a boot loader such as GRUB or
LILO is ported or copied on non-x86 distributions. The IA-64 platform uses
a boot loader called ELILO, for instance. Other times, a completely new boot
loader is used, such as Yaboot for PowerPC systems.

At a bare minimum, Linux needs a single partition to install and boot. This partition is
referred to as the root partition, or /. This partition is so called because it holds the root
directory, which lies at the “root” of the directory “tree”—all files on the computer are
identified relative to the root directory. The root partition also stores directories, such as
/etc and /bin, that fall off the root directory and in which other files reside. Some of these
directories can serve as mount points—directories to which Linux attaches other parti-
tions. For instance, you might mount a partition on /home.

One important directory in Linux is /root, which serves as the system
administrator’s home directory—the system administrator’s default pro-
gram settings and so on go here. The /root directory is not to be confused
with the root (/) directory.

One partitioning strategy that’s common on high-performance systems is a Redundant
Array of Independent Disks (RAID). In a RAID configuration, partitions on separate physical
hard disks are combined together to provide faster performance, greater reliability, or both.
Some Linux distributions provide RAID options in their initial installation procedures, but
others don’t. RAID configuration is fairly advanced and is covered later in “Using RAID.”
If you’re new to Linux, it’s best to avoid RAID configurations on your first installation. You
might try implementing a RAID configuration on subsequent installations.

Common Optional Partitions
In addition to the root partition, many system administrators like creating other partitions.
These are some advantages that come from splitting an installation into multiple partitions
rather than leaving it as one monolithic root partition:

Multiple disks When you have two or more hard disks, you must create separate parti-
tions—at least one for each disk. For instance, one disk might host the root directory, and
the second might hold /home. Also, removable disks (floppies, CD-ROMs, and so on) must
be mounted as if they were separate partitions.

Better security options By breaking important directories into separate partitions, you
can apply different security options to different partitions. For instance, you might make
/usr read-only, which reduces the chance of accidental or intentional corruption of important
binary files.

03843book.indb 245 8/21/09 12:06:25 PM

246 Chapter 6 n Managing Disks

Data overrun protection Some errors or attacks can cause files to grow to huge sizes,
which can potentially crash the system or cause serious problems. Splitting key directories
into separate partitions guarantees that a runaway process in such a directory won’t cause
problems for processes that rely on the ability to create files in other directories. This makes
it easier to recover from such difficulties. On the downside, splitting partitions up makes it
more likely that a file will legitimately grow to a size that fills the partition.

Disk error protection Disk partitions sometimes develop data errors, which are data
structures that are corrupted or a disk that has developed a physically bad sector. If your
system consists of multiple partitions, such problems will likely be isolated to one relatively
small partition, which can make data recovery easier or more complete.

Backup If your backup medium is substantially smaller than your hard disk, breaking up
your disk into chunks that fit on a single medium can simplify your backup procedures.

Ideal filesystems Sometimes, one filesystem works well for some purposes but not for
others. You might therefore want to break the directory tree into separate partitions so
that you can use multiple filesystems.

So, what directories are commonly split off into separate partitions? Table 6.1 summa-
rizes some popular choices. Note that typical sizes for many of these partitions vary greatly
depending on how the computer is used. Therefore, it’s impossible to make recommenda-
tions on partition size that will be universally acceptable.

TA b le 6 .1 Common Partitions and Their Uses

Partition (Mount Point) Typical Size Use

Swap (not mounted) 1.5–2 times system
RAM size

Serves as an adjunct to system RAM; is slow
but enables the system to run more or larger
programs.

/home 200MB–1TB Holds users’ data files. Isolating it on a sepa-
rate partition preserves user data during a
system upgrade. Size depends on number of
users and their data storage needs.

/boot 50–200MB Holds critical boot files. Creating as a sepa-
rate partition allows for circumventing limi-
tations of older BIOSs and boot loaders on
hard disks over 8GB.

/usr 500MB–15GB Holds most Linux program and data files.

/usr/local 100MB–5GB Holds Linux program and data files that are
unique to this installation, particularly those
that you compile yourself.

03843book.indb 246 8/21/09 12:06:25 PM

Planning Disk Partitioning 247

TA b le 6 .1 Common Partitions and Their Uses (continued)

Partition (Mount Point) Typical Size Use

/opt 100MB–5GB Holds Linux program and data files that are
associated with third-party packages, espe-
cially commercial ones.

/var 100MB–500GB Holds miscellaneous files associated with
the day-to-day functioning of a computer.
These files are often transient in nature. This
directory is most often split off as a sepa-
rate partition when the system functions
as a server that uses the /var directory for
server-related files like mail queues.

/tmp 100MB–50GB Holds temporary files created by
ordinary users.

/mnt N/A /mnt isn’t itself a separate partition; rather,
it or its subdirectories are used as mount
points for removable media like USB flash
drives or CD-ROMs.

/media N/A Holds subdirectories that may be used as
mount points for removable media, much
like /mnt or its subdirectories.

Some directories—/etc, /bin, /sbin, /lib, and /dev—should never be placed on separate
partitions. These directories host critical system configuration files or files without which a
Linux system cannot function. For instance, /etc contains /etc/fstab, the file that specifies
what partitions correspond to what directories, and /bin contains the mount utility that’s used
to mount partitions on directories.

The 2.4.x and newer kernels include support for a dedicated /dev file-
system, which obviates the need for files in an actual /dev directory, so
in some sense, /dev can reside on a separate filesystem, although not a
separate partition.

In addition to the separate partitions specified in Table 6.1, you should be aware of the
existence and purpose of several other directories and subdirectories on a Linux system. Most
importantly, The /etc directory holds most system configuration files, /bin holds binary files
that may be run by any user, /sbin holds binary files that are typically run only by root, and
/lib holds libraries that may be used by programs stored in /bin or /sbin. (Some distribu-
tions include directories called /lib32 and /lib64, which hold 32-bit and 64-bit libraries,
respectively. This helps x86-64 distributions to support both 32-bit and 64-bit programs.) All

03843book.indb 247 8/21/09 12:06:25 PM

248 Chapter 6 n Managing Disks

of these directories, with the exception of /etc, have namesakes within /usr, as in /usr/bin
and /usr/lib. The binary and library directories that exist directly off of the root directory
hold critical system files—those that Linux needs to boot and operate as a bare-bones system.
The namesakes of these directories under /usr hold program files and libraries that are less
critical for basic functioning, such as word processors, Web browsers, and the X Window
System. The /usr/share directory also deserves mention; it holds miscellaneous shared data
files, such as fonts, as well as ancillary data files for specific programs. The /proc directory,
described in more detail in Chapter 3, holds pseudo-files that provide information on, and in
some cases a means to control, low-level hardware devices.

Linux Filesystem Options
Linux’s standard filesystem for most of the 1990s was the second extended filesystem (ext2
or ext2fs), which was the default filesystem for most distributions. Ext2fs supports all the
features required by Linux (or by Unix-style OSs in general) and is well tested and robust.

when to Create Multiple partitions

One problem with splitting off lots of separate partitions, particularly for new administra-
tors, is that it can be difficult to settle on appropriate partition sizes. As noted in Table 6.1,
the appropriate size of various partitions can vary substantially from one system to another.
For instance, a workstation is likely to need a fairly small /var partition (say, 100MB), but a
mail or news server might need a /var partition that’s gigabytes in size. Guessing wrong is
annoying. You’ll need to resize your partitions (which is tedious and dangerous) or set up
symbolic links between partitions so that subdirectories on one partition can be stored on
other partitions.

For this reason, I generally recommend that new Linux administrators try simple partition
layouts first. The root (/) partition is required, and swap is a very good idea. Beyond this,
/boot can be very helpful on hard disks of more than 8GB with older distributions or BIOSs
but is seldom needed with computers or distributions made since 2000. An appropriate size
for /home is often relatively easy for new administrators to estimate, so splitting it off gener-
ally makes sense. Beyond this, I recommend that new administrators proceed with caution.

As you gain more experience with Linux, you may want to break off other directories into
their own partitions on subsequent installations or when upgrading disk hardware. You can
use the du command to learn how much space is used by files within any given directory.

Ext2fs has one major problem, though: if the computer is shut down improperly (because
of a power outage, system crash, or the like), it can take several minutes for Linux to verify
an ext2fs partition’s integrity when the computer reboots. This delay is an annoyance at best,

03843book.indb 248 8/21/09 12:06:26 PM

Planning Disk Partitioning 249

and it is a serious problem on mission-critical systems such as major servers. The solution is
implemented in what’s known as a journaling filesystem. Such a filesystem keeps a record of
changes it’s about to make in a special journal log file. Therefore, after an unexpected crash,
the system can examine the log file to determine what areas of the disk might need to be
checked. This design makes for very fast checks after a crash or power failure—a few seconds
at most, typically. The following are the five most common journaling filesystems for Linux:

The Ûn third extended filesystem (ext3fs), which is derived from ext2fs and is the most
popular journaling filesystem for Linux in 2009

The Ûn fourth extended filesystem (ext4fs), which is the next generation in this filesystem
line, adds support for larger disks and other advanced features

ReiserFSÛn , which was added as a standard component to the 2.4.1 kernel

The Ûn Extent Filesystem, or XFS, which was originally designed for Silicon Graphics’
IRIX OS

The Ûn Journaled Filesystem, or JFS, which IBM developed for its AIX and OS/2

Of these five, XFS and JFS are the most advanced, but ext3fs and ReiserFS are the most
stable and popular. Ext4fs promises to be the best of both worlds, but it’s still fairly new—
it was added as a stable filesystem only with the 2.6.29 kernel. A derivative of the current
ReiserFS, Reiser4, is under development.

The Linux swap partition doesn’t use a filesystem per se. Linux does need
to write some basic data structures to this partition in order to use it as
swap space, but this isn’t technically a filesystem because no files are
stored within it.

Linux also supports many non-Linux filesystems, including the following:

The File Allocation Table (FAT) filesystem used by DOS and Windows and its long-Ûn

filename extension, Virtual FAT (VFAT)

The New Technology Filesystem (NTFS) used by Windows NT/200Ûn x/XP/Vista

The High-Performance Filesystem (HPFS) used by OS/2Ûn

The Unix Filesystem (UFS; also known as the Fast Filesystem, or FFS) used by various Ûn

versions of Unix

The Hierarchical Filesystem (HFS) used by Mac OSÛn

ISO-9660 and Joliet filesystems used on CD-ROMsÛn

The Universal Disk Format (UDF), which is the up-and-coming successor to ISO-9660 Ûn

for optical discs

Most of these filesystems are useful mainly in dual-boot configurations—for instance,
to share files between Linux and Windows. Some—particularly FAT, ISO-9660, Joliet, and
UDF—are useful for exchanging files between computers on removable media. As a general
rule, these filesystems can’t hold critical Linux files because they lack necessary filesystem
features. There are exceptions, though: Linux sports extensions for cramming necessary

03843book.indb 249 8/21/09 12:06:26 PM

250 Chapter 6 n Managing Disks

information into FAT and HPFS partitions, UFS was designed for storing Unix filesystem fea-
tures in the first place, and the Rock Ridge extensions add the necessary support to ISO-9660.

It’s usually best to use a journaling filesystem for Linux partitions. As a general rule, any
of the current crop of journaling filesystems works well, at least with recent (late 2.4.x or
newer) kernels. The best tested under Linux are ext3fs and ReiserFS. ReiserFS versions of
3.5 and older have a 2GB file-size limit, but this limit is raised to 16TB for ReiserFS 3.6 and
newer. XFS and ext3fs have the widest array of filesystem support tools, such as versions of
dump and restore for creating and restoring backups. All of the journaling filesystems sup-
port a flexible security system known as access control lists (ACLs), which are particularly
important if your computer functions as a Samba server to Windows NT/200x/XP/Vista
clients. All modern Linux distributions support ext2fs and ext3fs out of the box, and many
support at least one or two others as well. You can use filesystems that aren’t supported
by your distribution on any Linux system, but you’ll need to jump through some hoops by
installing software and perhaps recompiling your kernel. You should use non-Linux filesys-
tems mainly for data exchange with non-Linux systems.

Partitioning Tools
In order to create partitions, you use a partitioning tool. Dozens of such tools are available,
but only a few are reasonable choices when you’re installing a Linux system:

DOS’s FDISK Microsoft’s DOS and Windows ship with a simple partitioning tool known
as FDISK (for “fixed disk”). This program is inflexible and uses a crude text-based user
interface, but it’s readily available and can create partitions that Linux can use. (You’ll
probably have to modify the partition type codes using Linux tools in order to use DOS-
created partitions, though.)

Linux’s fdisk Linux includes a partitioning tool that’s named after the DOS program, but
the Linux tool’s name is entirely lowercase, whereas the DOS tool’s name is usually written
in uppercase. Linux’s fdisk is much more flexible than DOS’s FDISK, but it also uses a text-
based user interface. If you have an existing Linux emergency disk, you can use it to create
partitions for Linux before installing the OS.

GPT fdisk Linux’s fdisk is designed to manage MBR partitions. A similar tool for
handling GPT partitions is GPT fdisk (aka gdisk; http://www.rodsbooks.com/gdisk).
Note that the author of this Study Guide is the creator of GPT fdisk.

Linux install-time tools Most Linux installation utilities include partitioning tools. Some-
times the installers simply call fdisk, but other times they provide GUI tools that are much
easier to use. If you’re installing a Linux-only system, using the installer’s tools is probably
the best course of action.

GNU Parted GNU Parted (http://www.gnu.org/software/parted) is an open source
tool that can manage both MBR and GPT disks. It can create, resize, and move various
partition types, such as FAT, ext2fs, ext3fs, ReiserFS, and Linux swap. GNU Parted runs
from Linux and provides a text-only user interface.

03843book.indb 250 8/21/09 12:06:26 PM

Partition Management and Maintenance 251

QTParted This program, headquartered at http://qtparted.sourceforge.net, pro-
vides a GUI front-end to libparted, which is the “brains” behind GNU Parted. As such,
it has most of GNU Parted’s capabilities, including its capacity to handle both MBR and
GPT disks.

GNOME Partition Editor This program, which is also known as GParted, is another
GUI front-end to libparted. It’s based at http://gparted.sourceforge.net.

In theory, partitions created by any tool may be used in any OS, provided the tools and
OSs all use the same partition table type (MBR or GPT). In practice, though, OSs some-
times object to unusual features of partitions created by certain partitioning tools. There-
fore, it’s usually best to take one of two approaches to disk partitioning:

Use a cross-platform partitioning tool. Tools based on Ûn libparted are good in this
regard. Such tools tend to create partitions that are inoffensive to all major OSs.

Use each OS’s partitioning tool to create that OS’s partitions.Ûn

Partition Management and Maintenance
As just described, Linux systems store their data on disk partitions. Most partitions hold
low-level filesystems. Creating partitions and preparing them to hold data are critically
important tasks in using disks. To create partitions on a new disk, you use a disk partition-
ing tool, such as fdisk or GNU Parted. You then create a new low-level filesystem on the
partition using mkfs. (GNU Parted can do this, too.) Sometimes filesystems develop errors,
in which case checking their integrity with fsck is critically important.

Some partitions hold swap space rather than filesystems. Swap space can function as a
stand-in for RAM when the system runs out of physical memory. Having adequate swap
space is important for overall system functioning, and being able to manage it will help
your system work well.

Creating Partitions
Several tools for manipulating partitions exist, as described earlier in “Partitioning Tools.”
The Linux+ objectives emphasize fdisk and GNU Parted, and these are the most popular
text-based tools, so they’re the ones described here. If you prefer GUI tools, QTParted and
the GNOME Partition Editor implement GNU Parted’s functionality but with a GUI face.

If partitions are in use on a disk, it’s sometimes necessary to reboot the
computer after making changes to the disk’s partition table. Failure to do
so will cause Linux to continue to use the old partitions, potentially result-
ing in data loss. Partitioning tools typically warn you when they detect a
need to reboot, so watch for that message.

03843book.indb 251 8/21/09 12:06:26 PM

252 Chapter 6 n Managing Disks

Using fdisk to Create Partitions
The fdisk program is a fairly basic text-mode tool for manipulating partitions. If you use
fdisk, you’ll need to manually create filesystems, configure RAID or LVM, or set up swap
space afterward.

Linux on non-MBR systems may not use a tool called fdisk. For instance,
PowerPC versions of Linux, which employ the APM partitioning system,
use a tool called pdisk. Further complicating matters, some PowerPC
Linux distributions call their pdisk programs fdisk. If your computer uses
GPT, the gdisk program works much like fdisk, although a few details dif-
fer. If you’re using a non-MBR system, consult the documentation for your
distribution and its disk-partitioning tool. If you prefer, you can use GNU
Parted on a wide variety of partition table types, bypassing fdisk or its
workalikes entirely.

Linux’s fdisk is a text-based tool that requires you to type one-letter commands. You
can obtain a list of commands by typing ? or m at the fdisk prompt. Table 6.2 describes the
most important fdisk commands.

TA b le 6 . 2 fdisk Commands

Command Description

d Deletes a partition

l Lists partition type codes

m Displays available commands

n Creates a new partition

o Creates a new partition table, wiping out all current partitions

p Displays (prints) the partition layout

q Quits without saving changes

t Changes a partition’s type code

w Writes (saves) changes and quits

To start fdisk, type its name followed by the Linux device filename associated with
your disk device, as in fdisk /dev/hdb. When you first start fdisk, the program displays
its prompt. It’s often helpful to type p at this prompt to see the current partition layout,

03843book.indb 252 8/21/09 12:06:27 PM

Partition Management and Maintenance 253

as shown in Figure 6.1. This will help you verify that you’re operating on the correct disk,
if you have more than one hard disk. It will also show you the device IDs of the existing
disk partitions.

The fdisk program identifies the extended partition, if it’s present, in the System col-
umn of its output, as shown in Figure 6.1; these partitions may be labeled as Extended or
Win95 Ext’d (LBA); Linux treats both types identically. Primary and logical partitions are
not explicitly identified as such; you must use the partition number, as described earlier in
“Linux Storage Hardware Configuration,” to identify the partition type.

You can use the commands outlined in Table 6.2 to alter a disk’s partition layout, but
be aware that your changes are potentially destructive. Deleting partitions will make their
data inaccessible. Some commands require you to enter additional information, such as
partition numbers or sizes for new partitions. For instance, the following sequence illus-
trates the commands associated with adding a new logical partition that’s 2GB in size:

Command (m for help): n

Command action

 l logical (5 or over)

 p primary partition (1-4)

l

First cylinder (519-784, default 519): 519

Last cylinder or +size or +sizeM or +sizeK (519-784, default 784): +2G

F i gu r e 6 .1 As a text-based program, fdisk can be run in text mode or in a terminal
window, as shown here.

03843book.indb 253 8/21/09 12:06:27 PM

254 Chapter 6 n Managing Disks

You can enter the partition size in terms of cylinder numbers or as a size in bytes, kilo-
bytes, megabytes, or gigabytes (which isn’t mentioned in the prompt but does work). When
you’ve made your changes, type w to write them to disk and exit. If you make a mistake,
type q immediately; doing this will exit from fdisk without committing changes to disk.

Using GNU Parted to Create Partitions
GNU Parted is a more sophisticated partitioning tool than fdisk. GNU Parted supports
several partition table types, including both MBR and GPT; it enables creation of filesystems
during partition creation; and it can resize and move both partitions and the filesystems they
contain. GNU Parted doesn’t provide full support for all filesystems, though, and the details
of what filesystems it does support varies from one build to another. Ext2fs, ext3fs, and FAT
are almost always supported, but beyond that you may need to experiment.

To begin using GNU Parted, type the program name followed by the device filename
associated with the disk you want to modify, as in parted /dev/hdb. You’ll be greeted by
a (parted) prompt, at which you can type GNU Parted commands, the most important of
which are summarized in Table 6.3. Note that many commands have optional parameters.
In most cases, if you omit these, GNU Parted will prompt you for the relevant information.

TA b le 6 . 3 GNU Parted Commands

Command Description

help [COMMAND] Displays information on all commands or on the one
specified.

mklabel [type] Creates a new partition table. The type is a type code,
such as msdos for MBR or gpt for GPT.

mkfs [number [fstype]] Creates a new filesystem on an existing partition. You
can specify a partition number and a filesystem type
(fstype).

mkpart [type [fstype]]
[start [end]]

Creates a new partition. The type is primary, extended,
or logical; the fstype is the filesystem type the parti-
tion will hold; and the start and end values are specified
in bytes, kilobytes, megabytes, or gigabytes. (You use
letter suffixes, as in 2G, to specify units.)

mkpartfs [type [fstype]]
[start [end]]

Creates a new partition with a filesystem. This com-
mand works just like mkpart, but it creates a filesystem
in the partition.

move [number [start [end]]] Moves a partition.

name [number [name]] Names a partition. This option is not meaningful for
MBR disks, although it does set the partition name
for GPT disks.

03843book.indb 254 8/21/09 12:06:27 PM

Partition Management and Maintenance 255

TA b le 6 . 3 GNU Parted Commands (continued)

Command Description

print [free|number|all] Displays information. If given by itself, the partition table
is shown. The free suboption displays a summary of
free (unpartitioned) space on the disk. If you specify a
number, basic information on the filesystem in the speci-
fied partition is displayed. If you use the all suboption,
information on all disk devices is shown.

quit Exits from the program.

resize [number [start
[end]]]

Resizes the specified partition and its filesystem to the
new size (defined by the start and end points).

rm [number] Deletes the specified partition.

select [device] Switches from the current device to the specified one.

GNU Parted implements its changes immediately. With fdisk, if you make
a mistake, you can use the q command to exit without altering the disk.
With GNU Parted, you have no such way out. You should therefore be
extra careful when using GNU Parted.

As an example of GNU Parted in action, consider using it to create a new (second) partition
on a 2GB USB flash disk:

parted /dev/sdc

GNU Parted 1.7.1

Using /dev/sdc

Welcome to GNU Parted! Type ‘help’ to view a list of commands.

(parted) print

Disk /dev/sdc: 2038MB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Number Start End Size Type File system Flags

 1 0.51kB 1000MB 1000MB primary fat32 lba

(parted) mkpartfs

Partition type? primary/extended? primary

03843book.indb 255 8/21/09 12:06:28 PM

256 Chapter 6 n Managing Disks

File system type? [ext2]?

Start? 1000MB

End? 2038MB

(parted)

In this example, the print command displayed the current partition table to verify that
the correct disk was being used. Upon issuing the mkpartfs command without extra options,
GNU Parted prompted for values: the partition type, the file system type (giving no response
caused the default value of ext2 to be used), and the start and end points. Unlike fdisk, which
deals in cylinders by default, GNU Parted expects values in other units—megabytes in this
example, although kilobytes or gigabytes could have been used. Although the display was
eventually replaced by the final (parted) prompt, the program briefly displayed a summary
of what it did as it created the partition and then the filesystem within it.

Creating New Filesystems
Just creating partitions isn’t enough to make them useful in Linux. To make them useful,
you must create a filesystem on the partition (a task that’s also sometimes called “format-
ting” a partition). If you use GNU Parted, you may be able to create a filesystem when you
create a partition. If GNU Parted doesn’t support your filesystem type, if you prefer to do it
manually, or if you use fdisk to create partitions, you can use the mkfs program to do the
job. This tool has the following syntax:

mkfs [-V] [-t fstype] [options] device [blocks]

mkfs is actually just a front-end to tools that do the real work for specific file-
systems, such as mke2fs (also known as mkfs.ext2). You can call these tools
directly if you prefer, although their syntax may vary from that of mkfs.

The mkfs parameters can be used to perform several tasks, as summarized in Table 6.4.

TA b le 6 . 4 mkfs Options

Option Description

-V This option causes mkfs to generate verbose output, displaying
additional information on the filesystem-creation process.

-t fstype You specify the filesystem type with the -t fstype option. Common
values for fstype include ext2 (for ext2fs), ext3 (for ext3fs), ext4
(for ext4fs), reiserfs (for ReiserFS), xfs (for XFS), jfs (for JFS),
and msdos (for FAT). Some other options are available as well.

03843book.indb 256 8/21/09 12:06:28 PM

Partition Management and Maintenance 257

TA b le 6 . 4 mkfs Options (continued)

Option Description

filesystem-specific
options

Many of the underlying tools upon which mkfs relies support their
own options. You can pass these along, but details vary from one
filesystem to another. The -c and -v options are common; these per-
form low-level hardware checks when creating the filesystem and
generate verbose output, respectively.

device is the name of the device on which you want to create the filesystem, such as
/dev/sda5 or /dev/fd0. You should not normally specify an entire hard disk here (such as
/dev/sda or /dev/hdb). One exception might be if it’s a removable disk, but even these are
often partitioned.

The blocks parameter sets the size of the filesystem in blocks (usually 1,024 bytes in
size). You don’t normally need to specify this value, since mkfs can determine the filesys-
tem size from the size of the partition.

Depending on the size and speed of the disk device, the filesystem-creation process is
likely to take anywhere from under a second to a minute or two. If you specify a filesystem
check (which is often a good idea, particularly on new or very old disks), this process can
take several minutes or possibly over an hour. Once it’s done, you should be able to mount
the filesystem and use it to store files.

The filesystem-creation process is inherently destructive. If you acciden-
tally create a filesystem in error, it will be impossible to recover files from
the old filesystem unless you’re very knowledgeable about filesystem data
structures or you pay somebody with such knowledge. Recovery costs are
apt to be very high.

As noted earlier, mkfs is just a front-end to other utilities, which are sometimes called
directly instead. For instance, you might call the mkreiserfs utility to prepare a ReiserFS
partition, mkfs.ext3 to prepare an ext3fs partition, or mkdosfs to prepare a FAT partition
or floppy disk. Check the /sbin directory for files whose names begin with mkfs to see
what other filesystem-specific mkfs tools exist on your system.

The presence of a filesystem-creation tool on your computer doesn’t nec-
essarily mean that you’ll be able to read and write the filesystem on your
computer. Mounting a filesystem requires appropriate kernel support,
which can be compiled and installed independently of the filesystem’s
mkfs.fstype tool.

03843book.indb 257 8/21/09 12:06:28 PM

258 Chapter 6 n Managing Disks

Checking a Filesystem for Errors
Creating partitions and filesystems are tasks you’re likely to perform every once in a
while—say, when adding a new hard disk or making major changes to an installation.
Another task is much more common: checking a filesystem for errors. Bugs, power fail-
ures, and mechanical problems can all cause the data structures on a filesystem to become
corrupted. If these problems are left unchecked, they can cause severe data loss. For this
reason, Linux includes tools for verifying a filesystem’s integrity and for correcting any
problems that might exist. The main tool you’ll use for this purpose is called fsck. Like
mkfs, fsck is actually a front-end to other tools, such as e2fsck (aka fsck.ext2 and
fsck.ext3). The syntax for fsck is as follows:

fsck [-sACVRTNP] [-t fstype] [--] [fsck-options] filesystems

The more common parameters to this command enable you to perform useful actions, as
summarized in Table 6.5.

TA b le 6 .5 fsck Options

Option Description

-A This option causes fsck to check all the filesystems marked for
routine checks in /etc/fstab. This option is normally used in
system startup scripts.

-C This option displays a text-mode progress indicator of the check
process. Most filesystem check programs don’t support this feature,
but e2fsck does.

-V Verbose output can be produced by using this option.

-N This option tells fsck to display what it would normally do, without
actually doing it.

-t fstype Normally, fsck determines the filesystem type automatically. You
can force the type with this flag, though. If used in conjunction with
-A, this causes the system to check only the specified filesystem
types, even if others are marked to be checked. If fstype is prefixed
with no, then all filesystems except the specified type are checked.

Filesystem-specific
options

Filesystem check programs for specific filesystems often have their
own options. The fsck command passes options it doesn’t under-
stand, or those that follow a double dash (--), to the underlying
check program. Common options include -a or -p (perform an auto-
matic check), -r (perform an interactive check), and -f (force a full
filesystem check even if the filesystem initially appears to be clean).

03843book.indb 258 8/21/09 12:06:28 PM

Partition Management and Maintenance 259

Normally, you run fsck with only the filesystem name, as in fsck /dev/sda6. You can
add options as needed, however. Check the fsck man page for less common options.

Run fsck only on filesystems that are not currently mounted or that
are mounted in read-only mode. Changes written to disk during normal
read/write operations can confuse fsck and result in filesystem corruption.

Linux runs fsck automatically at startup on partitions that are marked for this in
/etc/fstab, as described later in the section “Defining Standard Filesystems.” The normal
behavior of e2fsck causes it to perform just a quick cursory examination of a partition if
it’s been unmounted cleanly. The result is that the Linux boot process isn’t delayed because
of a filesystem check unless the system wasn’t shut down properly. A couple of exceptions
to this rule exist, however: e2fsck forces a check if the disk has gone longer than a certain
amount of time without checks (normally six months) or if the filesystem has been mounted
more than a certain number of times since the last check (normally 20). Therefore, you will
occasionally see automatic filesystem checks of ext2fs, ext3fs, and ext4fs partitions even if
the system was shut down correctly.

Journaling filesystems do away with filesystem checks at system startup even if the system
was not shut down correctly. These filesystems keep a log of pending operations on the disk
so that in the event of a power failure or system crash the log can be checked and its opera-
tions replayed or undone to keep the filesystem in good shape. This action is automatic when
mounting such a filesystem. Nonetheless, these filesystems still require check programs to cor-
rect problems introduced by undetected write failures, bugs, hardware problems, and the like.
If you encounter odd behavior with a journaling filesystem, you might consider unmounting
it and performing a filesystem check—but be sure to read the documentation first. Some
Linux distributions do odd things with some journaling filesystem check programs. Most
notably, ReiserFS should not normally be checked at system startup, so distributions some-
times create special scripts or link /sbin/fsck.reiserfs to /bin/true to avoid problems.
Such configurations speed system boot times should ReiserFS partitions be marked for auto-
matic checks, but they can be confusing if you need to manually check the filesystem. If this is
the case, run /sbin/reiserfsck to do the job.

Adding Swap Space
Linux enables you to run programs that consume more memory than you have RAM in
your system. It does this through the use of swap space, which is disk space that Linux treats
as an extension of RAM. When your RAM fills with programs and their data, Linux moves
some of this information to its swap space, freeing actual RAM for other uses. This feature,
which is common on modern operating systems, is very convenient when your users run an
unusually large number of programs. If you rely on this feature too much, however, perfor-
mance suffers because disk accesses are far slower than are RAM accesses. It’s also impor-
tant that you have adequate swap space on your system. If the computer runs out of swap
space, programs may begin to behave erratically.

03843book.indb 259 8/21/09 12:06:29 PM

260 Chapter 6 n Managing Disks

Evaluating Swap Space Use
An invaluable tool in checking your system’s memory use is free. This program displays
information on your computer’s total memory use. Typically, you just type free to use it,
but it supports various options that can fine-tune its output. Consult its man page for more
information.

Listing 6.1 shows a sample output from free on a system with 256MB of RAM. (The
total memory reported is less than 256MB because of memory consumed by the kernel and
inefficiencies in the x86 architecture.)

listing 6.1: Sample Output from free

$ free

 total used free shared buffers cached

Mem: 256452 251600 4852 0 10360 130192

-/+ buffers/cache: 111048 145404

Swap: 515100 1332 513768

The Mem line shows the total RAM used by programs, data, buffers, and caches. (All
of these values are in kilobytes by default.) Unless you need information on memory used
by buffers or caches, this line isn’t too useful. The next line, -/+ buffers/cache, shows
the total RAM used without considering buffers and caches. This line can be very infor-
mative in evaluating your system’s overall RAM requirements and hence in determining
when it makes sense to add RAM. Specifically, if the used column routinely shows values
that approach your total installed RAM (or alternatively, if the free column routinely
approaches 0), then it’s time to add RAM. This information isn’t very helpful in planning
your swap space use, though.

when to Add swap, when to Add rAM

Swap space exists because hard disks are less expensive than RAM, on a per-megabyte
basis. With the price of both falling, however, it’s often wise to forgo expanding your
swap space in favor of adding extra RAM. RAM is faster than swap space, so all other
things being equal, RAM is better.

A general rule of thumb derived from the days of Unix mainframes is that swap space
should be 1.5–2 times as large as physical RAM. For instance, a system with 2GB of RAM
should have 3–4GB of swap space. If your swap space use regularly exceeds 1.5–2 times
your RAM size, your overall system performance will very likely be severely degraded.
Adding RAM to such a system will almost certainly improve its performance. It won’t hurt
to have extra swap space, though, aside from the fact that this reduces the disk space
available for programs and data files.

03843book.indb 260 8/21/09 12:06:29 PM

Partition Management and Maintenance 261

The final line shows swap space use. In the case of Listing 6.1, a total of 515,100KB of
swap space is available. Of that, 1,332KB is in use, leaving 513,768KB free. Given the small
amount of swap space used, it seems that the system depicted in Listing 6.1 has plenty of
swap space, at least assuming this usage is typical.

Adding a Swap File
One method of adding swap space is to create a swap file. This is an ordinary disk file that’s
configured to be used by Linux as swap space. To add a swap file, follow these steps:

1. Create an empty file of the appropriate size. You can do this by copying bytes from
/dev/zero (a device file that returns bytes containing the value 0) using the dd utility.
The dd program takes parameters of bs (block size, in bytes) and count (the number
of blocks to copy); the total file size is the product of these two values. You specify the
input file with if and the output file with of. For instance, the following command
creates a file called /swap.swp that’s 134,217,728 bytes (128MB) in size:

dd if=/dev/zero of=/swap.swp bs=1024 count=131072

2. Use the mkswap command to initialize the swap file for use. This command writes data
structures to the file to enable Linux to swap memory to disk, but mkswap does not
activate the swap file. For instance, the following command does this job:
mkswap /swap.swp

Don’t try to create a swap file on a network mount. Not only would perfor-
mance be very poor, but the Network File System (NFS) doesn’t support
swap files.

3. Use the swapon command to begin using the newly initialized swap space:

swapon /swap.swp

If you use free before and after performing these steps, you should see the total swap
space count increase, reflecting the addition of the new swap space. If you want to make
your use of this swap file permanent, you must add an entry to /etc/fstab (described later
in the section “Defining Standard Filesystems”). This entry should resemble the following:

/swap.swp swap swap defaults 0 0

One key point is to list the complete path to the swap file in the first column, including
the leading /. Once this entry is added, the system will use the swap file after you reboot. If
you want to use all of the swap spaces defined in /etc/fstab, type swapon -a, which causes
Linux to read /etc/fstab and activate all the swap partitions defined there.

To deactivate use of swap space, use the swapoff command:

swapoff /swap.swp

03843book.indb 261 8/21/09 12:06:29 PM

262 Chapter 6 n Managing Disks

This command may take some time to execute if the swap file has been used much
because Linux must move data to other swap areas or to RAM. To disable all swapping,
type swapoff -a, which deactivates all swap spaces—both those listed in /etc/fstab and
those you’ve added manually.

Adding swap space in the form of a swap file can be a convenient way to add swap space
quickly; however, this approach does have certain problems. Most importantly, if you create
a large swap file on a partition that’s already been heavily used, it’s likely that the swap file
will be fragmented; that is, the file’s contents will be spread across multiple groups of sectors
on the disk. Fragmentation of disk files slows performance, and this can be a major problem
in a swap file. The ability to quickly add a temporary swap file makes this method appealing
in many cases, though.

Adding a Swap Partition
Traditionally, Unix and Linux have used swap partitions for swap space. These are
entire disk partitions devoted to swap space. Most distributions create at least one swap
partition during installation. Therefore, chances are good you already have such a parti-
tion configured.

If you want to install multiple Linux distributions on one computer, they
may share a single swap partition.

What if your existing swap partition is too small, though? You can create a supplemen-
tary swap file, as described earlier. Another approach is to create a new swap partition.
This procedure works best if you’re adding a hard disk or want to repartition the disk for
some other reason. In this case, you’ll be adjusting your partition layout anyway, so you
might as well take the opportunity to add new swap space. The basic procedure for doing
this is as follows:

1. Clear space for the swap partition. This can be done by deleting existing partitions, by
shrinking existing partitions, or by using a previously unused hard disk.

2. Create a new partition. When using an MBR disk, give the new partition a type code
of 0x82 (“Linux swap”); with GPT, flag it as a Linux swap partition using whatever
method your partitioning software supports. Many OSs (but not Linux) use type codes
to help them identify their partitions. MBR type codes 0x82 and 0x83 stand for Linux
swap and filesystem partitions, respectively. The main reason to use these codes is to
keep other OSs from damaging the Linux partitions.

Solaris for x86 uses the 0x82 partition type code for its own filesystem
partitions. This fact can lead to confusion and perhaps even damage, so
be careful if your system dual-boots Linux and Solaris.

03843book.indb 262 8/21/09 12:06:29 PM

Partition Management and Maintenance 263

3. When you’re done partitioning or repartitioning, use mkswap to prepare the swap parti-
tion to be swap space. This operation works just like using mkswap on a file, except that
you apply it to a partition:

mkswap /dev/sdc6

4. Once the swap space has been prepared for use, you can add it manually using the
swapon command described earlier, but you’ll need to specify the swap partition’s
device rather than a swap file.

5. To use the swap partition permanently, add an entry for it to /etc/fstab, as described
earlier in reference to swap files.

This procedure glosses over several critically important details concerning partition
management. For one thing, when you modify an existing disk’s partitions, you may need
to adjust the device filenames for Linux filesystems in /etc/fstab. You’ll have to do this
either from an emergency boot or before you make the changes to the disk. It is at least as
important, if you delete any existing partitions, to back up their contents before you delete
the partition, even if you intend to re-create the partition with a smaller size. You may also
need to reinstall the LILO or GRUB boot loader if you modify your boot partition. In any
event, this procedure will require the use of a disk partitioning tool such as Linux’s fdisk
or a partition-resizing tool such as GNU Parted.

Setting Filesystem Quotas
Just one or two users of a multiuser system can cause serious problems for others by con-
suming too much disk space. If a single user creates huge files (say, multimedia recordings),
those files can prevent other users from creating their own files. To help manage this situ-
ation, Linux supports disk quotas—limits enforced by the OS on how many files or how
much disk space a single user may consume. The Linux quota system supports both quotas
for individual users and for Linux groups.

Quotas require support both in the kernel for the filesystem being used and in various
user-space utilities. As of the early 2.6.28 kernel, ext2fs, ext3fs, and ReiserFS support
quotas, but you must explicitly enable support via the Quota Support kernel option in the
filesystem area when recompiling your kernel. Many distributions ship with this support
precompiled, so recompiling your kernel may not be necessary, but you should be aware of
this option if you do recompile your kernel.

Two general quota support systems are available for Linux. The first was used through the
2.4.x kernels and is referred to as the quota v1 support. The second was added with the 2.6.x
kernel series and is referred to as the quota v2 system. This description applies to the latter
system, but the former works in a similar way.

Outside of the kernel, you need support tools to use quotas. For the quota v2 system,
this package is usually called quota, and it installs a number of utilities, configuration files,
SysV startup scripts, and so on.

03843book.indb 263 8/21/09 12:06:29 PM

264 Chapter 6 n Managing Disks

You must modify your /etc/fstab entries for any partitions on which you want to use
the quota support. In particular, you must add the usrquota filesystem mount option to
employ user quotas, and you must add the grpquota option to use group quotas. Entries
that are so configured resemble the following:

/dev/hdc5 /home ext3 usrquota,grpquota 1 1

This line activates both user and group quota support for the /dev/hdc5 partition, which
is mounted at /home. Of course, you can add other options if you like.

The format of the /etc/fstab file is described in more detail in later in this
chapter in “Defining Standard Filesystems.”

Depending on your distribution, you may need to configure the quota package’s SysV
startup scripts to run when the system boots. Chapter 4, “Managing System Services,”
describes SysV startup script management in detail.

After installing software and making configuration file changes, you must activate the
systems. The simplest way to do this is to reboot the computer, and this step is necessary if
you had to recompile your kernel to add quota support directly into the kernel. If you didn’t
do this, though, you should be able to get by with less disruptive measures: using modprobe to
install the kernel module, if necessary; running the SysV startup script for the quota tools; and
remounting the filesystems on which you intend to use quotas by typing mount -o remount
/mount-point, where /mount-point is the mount point in question.

At this point, quota support should be fully active on your computer, but the quotas
themselves are not set. You can set the quotas by using edquota, which starts the Vi editor
(described in Chapter 3, “Managing Processes and Editing Files”) on a temporary configura-
tion file (/etc/quotatab) that controls quotas for the user you specify. When you exit from
the utility, edquota uses the temporary configuration file to write the quota information to
low-level disk data structures that control the kernel’s quota mechanisms. For instance, you
might type edquota sally to edit sally’s quotas. The contents of the editor will show the
current quota information:

Quotas for user sally:

/dev/hdc5: blocks in use: 3209, limits (soft = 5000, hard = 6500)

 inodes in use: 403, limits (soft = 1000, hard = 1500)

The temporary configuration file provides information on both the number of disk blocks
in use and the number of inodes in use. (Each file or symbolic link consumes a single inode,
so the inode limits are effectively limits on the number of files a user may own. Disk blocks
vary in size depending on the filesystem and filesystem creation options, but they typically
range from 512 bytes to 8KB.) Changing the use information has no effect, but you can alter
the soft and hard limits for both blocks and inodes. The hard limit is the maximum number
of blocks or inodes that the user may consume; the kernel will not permit a user to surpass
these limits. Soft limits are somewhat less stringent; users may temporarily exceed soft limit

03843book.indb 264 8/21/09 12:06:30 PM

Partition Control 265

values, but when they do so, the system issues warnings. Soft limits also interact with a
grace period; if the soft quota limit is exceeded for longer than the grace period, the kernel
begins treating it like a hard limit and refuses to allow the user to create more files. You can
set the grace period by using edquota with its -t option, as in edquota -t. Grace periods are
set on a per-filesystem basis, rather than a per-user basis.

A couple more quota-related commands are useful. The first is quotacheck, which veri-
fies and updates quota information on quota-enabled disks. This command is normally run
as part of the quota package’s SysV startup script, but you may want to run it periodically
(say, once a week) as a cron job. (Chapter 3 describes cron jobs.) Although theoretically not
necessary if everything works correctly, quotacheck ensures that quota accounting doesn’t
become inaccurate. The second useful auxiliary quota command is repquota, which sum-
marizes the quota information on the filesystem you specify, or on all filesystems if you
pass it the -a option. This tool can be very helpful in keeping track of disk usage.

Partition Control
In addition to creating partitions and the filesystems they contain, system administrators
must be able to control where these low-level filesystems are mounted in the Linux directory
tree. If you want to make your changes permanent, you must modify a file called /etc/fstab.
On a high-performance system, you might also want to link two or more disks together to
improve performance or reliability.

Identifying Partitions
If you installed Linux on the system, chances are you told it what partitions to use. If you
don’t remember what Linux called your partitions at system installation, you can use the
fdisk program to find out. Pass it the -l parameter (that’s a lowercase L, not a number 1)
and the name of a disk device to obtain a listing of the partitions on that disk:

fdisk -l /dev/hdb

Disk /dev/hdb: 255 heads, 63 sectors, 1216 cylinders

Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System

/dev/hdb1 257 1216 7711200 5 Extended

/dev/hdb2 1 192 1542208+ fb Unknown

/dev/hdb3 193 256 514080 17 Hidden HPFS/ NTFS

/dev/hdb5 257 516 2088418+ 6 FAT16

/dev/hdb6 * 517 668 1220908+ 7 HPFS/NTFS

/dev/hdb7 669 1216 4401778+ 83 Linux

03843book.indb 265 8/21/09 12:06:30 PM

266 Chapter 6 n Managing Disks

This output shows the device name associated with each partition, the start and end
cylinder numbers, the number of 1024-byte blocks in each partition, each partition’s
hexadecimal (base 16) ID code, and the partition or OS type associated with that code.
The gdisk program creates a similar display for GPT disks.

If Linux boots, you can also use the df utility (described later in “Using df”) to identify
the partitions your system is using. This tool won’t identify partitions that aren’t mounted,
though, including swap partitions and partitions you simply aren’t using (such as those for
non-Linux OSs, unless they’re currently mounted).

Mounting and Unmounting Partitions
Linux provides the mount command to mount a filesystem to a mount point—that is, to
make the filesystem available as files and directories in the specified mount point, which is
an ordinary directory. The umount command reverses this process. (Yes, umount is spelled
correctly; it’s missing the first n.) In practice, using these commands is usually not too dif-
ficult, but they support a large number of options.

Syntax and Parameters for mount
The syntax for mount is as follows:

mount [-alrsvw] [-t fstype] [-o options] [device] [mountpoint]

Common parameters for mount support a number of features, as summarized in Table 6.6.
device is the device filename associated with the partition or disk device, and mountpoint is
the directory from which you want to access your files. Both parameters are normally
required, but you may omit one of them under certain circumstances, as described shortly.

TA b le 6 .6 mount Options

Option Description

-a This parameter causes mount to mount all the filesystems listed in
the /etc/fstab file, which specifies the most-used partitions and
devices. The upcoming section “Defining Standard Filesystems”
describes this file’s format.

-r This parameter causes Linux to mount the filesystem read-only,
even if it’s normally a read/write filesystem.

-v As with many commands, this option produces verbose output—the
program provides comments on operations as they occur.

-w This parameter causes Linux to attempt to mount the filesystem for
both read and write operations. This is the default for most filesys-
tems, but some experimental drivers default to read-only operation.

03843book.indb 266 8/21/09 12:06:30 PM

Partition Control 267

TA b le 6 .6 mount Options (continued)

Option Description

-t fstype Use this parameter to specify the filesystem type. Common filesys-
tem types are ext2 (for ext2fs), ext3 (for ext3fs), ext4 (for ext4fs),
reiserfs (for ReiserFS), jfs (for JFS), xfs (for XFS), vfat (for FAT
with VFAT long filenames), msdos (for FAT using only short DOS
filenames), iso9660 (for most CD-ROM filesystems), udf (for the
newer UDF CD-ROM/DVD-ROM filesystem), nfs (for NFS network
mounts), smbfs (for SMB/CIFS network shares), and cifs (a newer
driver for SMB/CIFS network shares). Linux supports many others.
If this parameter is omitted, Linux will attempt to autodetect the file-
system type.

-o You can add filesystem-specific options using the -o parameter.
See Table 6.7.

Linux requires support in the kernel or as a kernel module to mount a
filesystem of a given type. If this support is missing, Linux will refuse to
mount the filesystem in question.

Table 6.6 isn’t comprehensive; consult the mount man page for some of the more obscure
options. The most common applications of mount use few parameters, because Linux gener-
ally does a good job of detecting the filesystem type, and the default parameters work rea-
sonably well. For instance, consider this example:

mount /dev/sdb7 /mnt/shared

This command mounts the contents of /dev/sdb7 on /mnt/shared, autodetecting the
filesystem type and using the default options. Ordinarily, only root may issue a mount com-
mand; however, if /etc/fstab specifies the user, users, or owner option, an ordinary user
may mount a filesystem using a simplified syntax in which only the device or mount point
is specified, but not both. For instance, a user might type mount /mnt/cdrom to mount a
CD-ROM, if /etc/fstab specifies /mnt/cdrom as its mount point and uses the user, users,
or owner option.

Many Linux distributions ship with automounter support, which causes the
OS to automatically mount removable media when they’re inserted. In GUI
environments, a file browser may also open on the inserted disk. In order to
eject the disk, the user will need to unmount the filesystem by using umount,
as described in the upcoming section “Using umount,” or by selecting an
option in the desktop environment.

03843book.indb 267 8/21/09 12:06:30 PM

268 Chapter 6 n Managing Disks

When Linux mounts a filesystem, it ordinarily records this fact in /etc/mtab. This file has
a format similar to that of /etc/fstab and is stored in /etc, but it’s not a configuration file
that you should edit. You might examine this file to determine what filesystems are mounted,
though. (The df command, described in more detail in the section “Using df,” is another way
to learn what filesystems are mounted.)

Using mount Options
When you need to use special parameters, it’s usually to add filesystem-specific options.
Table 6.7 summarizes the most important filesystem options. Some of these are meaningful
only in the /etc/fstab file.

TA b le 6 .7 Important Filesystem Options for the mount Command

Option Supported Filesystems Description

defaults All Uses the default options for this filesys-
tem. It’s used primarily in the /etc/fstab
file to ensure that there’s an options col-
umn in the file.

loop All Uses the loopback device for this mount.
Enables you to mount a file as if it were a
disk partition. For instance, mount -t vfat
-o loop image.img /mnt/image mounts
the file image.img as if it were a disk.

auto or
noauto

All Mounts or does not mount the filesys-
tem at boot time or when root issues the
mount -a command. The default is auto,
but noauto is appropriate for removable
media. Used in /etc/fstab.

user or
nouser

All Allows or disallows ordinary users to
mount the filesystem. The default is
nouser, but user is often appropriate for
removable media. Used in /etc/fstab.
When included in this file, user allows
users to type mount /mountpoint, where
/mountpoint is the assigned mount
point, to mount a disk. Only the user who
mounted the filesystem may unmount it.

users All Similar to user, except that any user
may unmount a filesystem once it’s been
mounted.

03843book.indb 268 8/21/09 12:06:31 PM

Partition Control 269

TA b le 6 .7 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

owner All Similar to user, except that the user must
own the device file. Some distributions,
such as Red Hat, assign ownership of
some device files (such as /dev/fd0, for
the floppy disk) to the console user, so
this can be a helpful option.

remount All Changes one or more mount options
without explicitly unmounting a parti-
tion. To use this option, you issue a mount
command on an already-mounted file-
system, but with remount along with any
options you want to change. Can be used
to enable or disable write access to a par-
tition, for example.

ro All Specifies a read-only mount of the file-
system. This is the default for filesystems
that include no write access and for some
with particularly unreliable write support.

rw All read/write filesystems Specifies a read/write mount of the
filesystem. This is the default for most
read/write filesystems.

uid=value Most filesystems that don’t
support Unix-style permis-
sions, such as vfat, hpfs,
ntfs, and hfs

Sets the owner of all files. For instance,
uid=500 sets the owner to whoever has
Linux user ID 500. (Check Linux user IDs
in the /etc/passwd file.)

gid=value Most filesystems that don’t
support Unix-style permis-
sions, such as vfat, hpfs,
ntfs, and hfs

Works like uid=value but sets the group
of all files on the filesystem. You can find
group IDs in the /etc/group file.

umask=value Most filesystems that don’t
support Unix-style permis-
sions, such as vfat, hpfs,
ntfs, and hfs

Sets the umask for the permissions on
files. value is interpreted in binary as bits
to be removed from permissions on files.
For instance, umask=027 yields permis-
sions of 750, or rwxr-x---. Used in con-
junction with uid=value and gid=value,
this option lets you control who can
access files on many foreign filesystems.

03843book.indb 269 8/21/09 12:06:31 PM

270 Chapter 6 n Managing Disks

TA b le 6 .7 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

conv=code Most filesystems used on
Microsoft and Apple OSs:
msdos, umsdos, vfat, hpfs,
and hfs

If code is b or binary, Linux doesn’t mod-
ify the files’ contents. If code is t or text,
Linux autoconverts files between Linux-
style and DOS- or Macintosh-style end-
of-line characters. If code is a or auto,
Linux applies the conversion unless the
file is a known binary file format. It’s usu-
ally best to leave this at its default value
of binary because file conversions can
cause serious problems for some applica-
tions and file types.

norock iso9660 Disables Rock Ridge extensions for ISO-
9660 CD-ROMs.

nojoliet iso9660 Disables Joliet extensions for ISO-9660
CD-ROMs.

Some filesystems support additional options that aren’t described here. The mount
man page covers some of these, but you may need to look to the filesystem’s documenta-
tion for some filesystems and options. This documentation may appear in /usr/src/
linux/Documentation/filesystems or /usr/src/linux/fs/fsname, where fsname is the
name of the filesystem.

Using umount
The umount command is simpler than mount. The basic umount syntax is as follows:

umount [-afnrv] [-t fstype] [device | mountpoint]

Most of these parameters have similar meanings to their meanings in mount, but some
differences deserve mention, as summarized in Table 6.8.

TA b le 6 . 8 umount Options that Differ from mount Options

Option Description

-a Rather than unmount partitions listed in /etc/fstab, this param-
eter causes the system to attempt to unmount all the partitions
listed in /etc/mtab, the file that holds information on mounted
filesystems. On a normally running system, this operation is
likely to succeed only partly because it won’t be able to unmount
some key filesystems, such as the root partition.

03843book.indb 270 8/21/09 12:06:31 PM

Partition Control 271

TA b le 6 . 8 umount Options that Differ from mount Options (continued)

Option Description

-f With this option you can tell Linux to force an unmount opera-
tion that might otherwise fail. This feature is sometimes help-
ful when unmounting NFS mounts shared by servers that have
become unreachable.

-r This option tells umount that if it can’t unmount a filesystem, it
should attempt to remount it in read-only mode.

-t fstype This option tells the system to unmount only partitions of the
specified type. You can list multiple filesystem types by sepa-
rating them with commas.

device and mountpoint You need to specify only the device or only the mountpoint,
not both.

As with mount, normal users cannot ordinarily use umount. The exception is if the par-
tition or device is listed in /etc/fstab and specifies the user, users, or owner option, in
which case normal users can unmount the device. (In the case of user, only the user who
mounted the partition may unmount it; and in the case of owner, the user issuing the com-
mand must also own the device file, as with mount.) These options are most useful for
removable-media devices.

Be cautious when removing floppy disks, USB flash drives, and certain
other removable disks. Linux caches accesses to all disks, which means
that data may not be written to the disk until some time after a write com-
mand. Because of this, it’s possible to corrupt a removable disk by ejecting
it, even when the drive isn’t active. You must always issue a umount com-
mand before ejecting a mounted disk. This isn’t an issue for some remov-
able media because Linux can lock their eject mechanisms, preventing this
sort of problem.

Using Network Filesystems
Although they aren’t local disk partitions, network filesystems can be mounted using
the same commands used to mount local disk partitions and removable disks. They do
possess certain unique features, though. Two network filesystems are most common in
Linux: NFS, which is commonly used among Unix and Unix-like operating systems,
and the Server Message Block/Common Internet File System (SMB/CIFS), which is most
strongly associated with Windows systems, although the Samba server for Linux can also
deliver SMB/CIFS shares.

03843book.indb 271 8/21/09 12:06:32 PM

272 Chapter 6 n Managing Disks

Chapter 11 describes configuring NFS and Samba servers in Linux. This
chapter covers the client side.

Accessing SMB/CIFS Shares
Microsoft Windows uses SMB/CIFS for file and printer sharing. Linux includes tools
that provide the ability to interact with Windows systems that use SMB/CIFS. The main
package for this is called Samba, and it comes with all major Linux distributions. Samba
includes two major client programs: smbclient and smbmount. The smbclient program
is modeled after the ftp client program, which is described in Chapter 11. The smbmount
utility actually mounts the share in the Linux directory tree. The standard Linux mount
command can also mount SMB/CIFS shares.

To use smbmount, type smbmount //server/share /mount/point, where server and
share are the name of the server and the share you want to access, respectively, and /mount/
point is the local mount point you want to use. You’ll be asked to provide a password. (By
default, smbmount passes your login name as your username.) You can then use standard
Linux file-access commands on the share. When you’re done, you can use smbumount to
unmount the share.

One drawback to smbmount is that it assigns Linux ownership of all files on the
remote server to the user who ran the command, unless you use the -o uid=UID option,
which sets ownership to the user whose user ID is UID. You might also need to use the -o
username=name option to set the username used to access the shares.

For ordinary users to run smbmount and smbumount, the smbmnt and
smbumount programs must have their SUID bits set, which allows ordinary
users to run programs with root privileges. (smbmnt is a helper program to
smbmount.) If this isn’t the case when Samba is installed, type chmod a+s
/usr/bin/smbmnt /usr/bin/smbumount as root. Thereafter, ordinary
users will be able to use these programs, but they’ll need to own the
mount points they use.

Another way to mount SMB/CIFS shares is via the standard Linux mount command.
This requires you to pass a filesystem type of either smbfs or cifs with the -t parameter,
along with the server and share name rather than a local Linux device filename:

mount -t smbfs //apollo/hschmidt /mnt/a17

The smbfs filesystem type code is older than cifs and is being phased out in favor of
cifs, which adds support for Unix-specific extensions to SMB/CIFS. These extensions
enable cifs to provide limited support for ownership, permissions, symbolic links, and
other Linux-style filesystem information. These features are important only when the server
supports them, though. Windows servers do not do so, although Samba does. Thus, using
cifs may make sense when mounting shares from a Samba server. On the other hand,

03843book.indb 272 8/21/09 12:06:32 PM

Partition Control 273

some older clients, such as Windows 9x/Me, lack support for the protocols required by the
cifs driver. Therefore, if you want to mount shares from such systems, you must use smbfs
rather than cifs.

Accessing NFS Exports
Like SMB/CIFS, Sun’s NFS is a file sharing protocol, but it was designed with the needs
of Unix systems in mind. NFS includes Unix features, such as support for owners, groups,
and permission strings that aren’t well supported by SMB/CIFS. (The Unix CIFS exten-
sions narrow this gap, but NFS tends to handle these features better.) Because Linux
conforms closely to the Unix model, NFS is the preferred method for file sharing between
Linux systems.

In Linux, client access to NFS exports is tightly integrated into normal Linux file-access
utilities. Specifically, you use the mount command to mount the NFS exports, and you can
then access files stored on the NFS server as if they were ordinary files. To do so, you pro-
vide mount with a server hostname or IP address and a path to the directory on the server
you want to access, rather than a device filename. For instance, you might issue commands
like the following:

mount apollo:/home/hschmidt /mnt/a17

ls -l /mnt/a17

total 152

-rwxr-xr-x 1 rodsmith users 152576 Mar 29 13:01 drrock.wpd

drwxr-xr-x 1 rodsmith users 512 Apr 2 2000 geology

cp /mnt/a17/drrock.wpd ./

umount /mnt/a17

It’s important to note that you aren’t required to enter a password when you access NFS
exports. An NFS server allows a specified set of clients to access the exported directories
in a more-or-less unrestricted manner; the server relies on the client’s security policies to
prevent abuses.

Using df
If you need information on disk space used on an entire partition, the df command does
the job. This command summarizes total, used, and available disk space. You can provide
options to df to vary the data it produces, as summarized in Table 6.9.

TA b le 6 . 9 df Options

Option Option Abbreviation Description

--human-readable -h Normally, df provides output in 1024-byte
blocks. This option makes it provide listings
in labeled units of kilobytes (k), megabytes
(M), or gigabytes (G) instead.

03843book.indb 273 8/21/09 12:06:32 PM

274 Chapter 6 n Managing Disks

TA b le 6 . 9 df Options (continued)

Option Option Abbreviation Description

--inodes -i By default, df displays disk space used,
but this option causes df to display infor-
mation on the consumption of inodes.
Some filesystems, such as ext2fs, have a
fixed number of inodes when formatted.
Others, such as FAT and ReiserFS, don’t,
so this information is spurious or mean-
ingless with these filesystems.

--local -l This option causes df to ignore network
filesystems.

--print-type -T This option causes df to display the
filesystem type code along with other
information.

You can type df alone or in combination with options to obtain information on your
system’s mounted partitions. If you want information on just one partition, you can add
either the device on which it resides or any file or directory on the filesystem to restrict df’s
output to that one partition. In action, df works like this:

df -hT

Filesystem Type Size Used Avail Use% Mounted on

/dev/hda9 ext2 2.0G 1.8G 96M 95% /

/dev/hdb5 vfat 2.0G 1.4G 564M 72% /mnt/windows

speaker:/home nfs 4.5G 2.2G 2.3G 49% /mnt/speaker/home

/dev/hdb7 reiserfs 4.2G 1.9G 2.3G 45% /home

The df command is extremely useful in discovering how much free space is available on
a disk and how well distributed across partitions your files are.

Linux’s ext2, ext3, and ext4 filesystems normally reserve about 5 percent of
their available space for root. The intent is that if users come close to filling
the disk, there’ll be enough space for the system administrator to log in and
perform basic maintenance to correct problems. If a critical filesystem were
to fill completely, root might not be able to log in.

Defining Standard Filesystems
The /etc/fstab file controls how Linux provides access to disk partitions and removable
media devices. (The filename fstab is an abbreviation for “filesystem table.”) This file consists

03843book.indb 274 8/21/09 12:06:32 PM

Partition Control 275

of a series of lines, each of which contains six fields that are separated by one or more spaces
or tabs. A line that begins with a hash mark (#) is a comment and is ignored. Listing 6.2 shows
a sample /etc/fstab file.

listing 6.2: Sample /etc/fstab File

#device mount point filesystem options dump fsck

/dev/hda1 / ext3 defaults 1 1

LABEL=/home /home reiserfs defaults 0 0

/dev/hdb5 /windows vfat uid=500,umask=0 0 0

/dev/hdc /mnt/cdrom iso9660 user,noauto 0 0

/dev/fd0 /mnt/floppy auto user,noauto 0 0

server:/home /other/home nfs user,exec 0 0

//winsrv/shr /other/win smbfs user,credentials=/etc/creds 0 0

/dev/hda4 swap swap defaults 0 0

The meaning of each field in this file is as follows:

Device The first column specifies the mount device. These are usually device filenames
that reference hard disks, floppy drives, and so on. Alternatively, a label or globally unique
identifier (GUID) may be specified, as in LABEL=/home or GUID=2F9FDF9-121F-031C-C08B-
75B32AFBB108. (Most filesystems support labels and GUID numbers; using them can help
keep the system bootable in case partition table changes alter partition numbers.) It’s also
possible to list a network drive, as in server:/home, which is the /home export on the com-
puter called server.

Mount point The second column specifies the mount point. This should usually be an
empty directory in another filesystem. The root (/) filesystem is an exception. So is swap
space, which is indicated by an entry of swap.

Filesystem type The filesystem type code is the same as the type code used to mount a
filesystem with the mount command. You can use just about any filesystem type code you
can use directly with the mount command. A filesystem type code of auto causes the kernel
to autodetect the filesystem type, which can be a convenient option for removable media
devices. Autodetection doesn’t work with all filesystems, though.

Mount options You can specify mount options, separated by commas, in the fourth
field. Table 6.7 summarizes common options, although more are available. For instance,
uid=500,umask=0 for /windows in Listing 6.2 sets the user ID (owner) of all files to 500
and sets the umask to 0. Type man mount or consult filesystem-specific documentation to
learn more.

dump operation The next-to-last field contains a 1 if the dump utility should back up a
partition, or a 0 if it should not. If you never use the dump backup program, this option is
essentially meaningless. The dump program is a common backup tool, but it’s by no means
the only one.

03843book.indb 275 8/21/09 12:06:33 PM

276 Chapter 6 n Managing Disks

Filesystem check order The final column specifies the order in which the boot-time file-
system check occurs. A 0 means that fsck should not check a filesystem. Higher numbers
represent the check order. The root partition should have a value of 1, and all others that
should be checked should have a value of 2. Some filesystems, such as ReiserFS, should not
be automatically checked and so should have values of 0.

If you add a new hard disk or have to repartition the one you have, you’ll probably
need to modify /etc/fstab. You might also need to edit it to alter some of its options. For
instance, setting the user ID or umask on Windows partitions mounted in Linux may be
necessary to let ordinary users write to the partition.

The credentials option for the /other/win mount point in Listing 6.2 deserves greater
elaboration. Ordinarily, most SMB/CIFS shares require a username and password as a means
of access control. Although you can use the username=name and password=pass options to
smbfs or cifs, these options are undesirable, particularly in /etc/fstab, because they leave
the password vulnerable to discovery—anybody who can read /etc/fstab can read the pass-
word. The credentials=file option provides an alternative—you can use it to point Linux at
a file that holds the username and password. This file has labeled lines:

username=hschmidt

password=yiW7t9Td

Of course, the file you specify (/etc/creds in Listing 6.2) must be well protected—it
must be readable only to root and perhaps to the user whose share it describes.

Using RAID
Two problems with traditional disk subsystems plague high-performance computers such as
midsize and large servers:

Reliability Although modern hard disks are reliable enough for most uses, the consequences
of disk failure on truly mission-critical systems can be catastrophic. If the reliability of disk
storage can be improved, it should be.

Speed Systems that transfer large amounts of data often run into the speed limitations of
modern hard disks.

Both of these problems can be overcome, or at least minimized, by using a technology
known as redundant array of independent disks (RAID). Several different forms of RAID
exist, and using them requires additional Linux configuration.

Forms of RAID
RAID uses multiple disks and special drivers or controllers. Linux supports several varieties
of RAID, each with its own features and priorities:

Linear (append) The linear approach is very simple: it enables you to combine partitions from
multiple disks into a single large virtual partition. It’s more useful for creating partitions larger
than your individual disks support than for anything else; it provides no reliability or speed

03843book.indb 276 8/21/09 12:06:33 PM

Partition Control 277

benefits. Total capacity is identical to using the drives in a conventional configuration. Logical
volume management (LVM), described shortly, provides similar features.

RAID 0 (striping) The RAID 0 approach is similar to linear mode, but it interleaves
data intended for each physical disk—that is, the combined logical partition consists of
small strips from each component disk. The result is improved performance, because disk
accesses are spread across multiple physical disks. Reliability is not improved, however,
and could actually be degraded compared to using a single larger disk, because a failure of
any disk in the array will cause data loss. Total capacity is identical to using the drives in a
conventional configuration. Linux’s LVM subsystem can be configured to employ a similar
striping feature without using RAID.

RAID 1 (mirroring) A RAID 1 array uses one disk to exactly duplicate the data on
another disk—when you write data to the first disk, the data is actually written to both
disks. This provides redundancy that can protect against drive failures, but it slows per-
formance, at least when it’s implemented in the OS. (Some hardware RAID controllers can
perform this task without a performance hit.) Total capacity is the same as having a single
drive—the extra drives provide improved reliability, not capacity per se.

RAID 4/5/6 These RAID types combine the features of RAID 0 and RAID 1: they spread
data across multiple disks and provide redundancy. They do this by using parity bits, which
can be used to regenerate data should a single drive stop functioning. RAID 4 stores the
parity bits on a single drive, whereas RAID 5 stores them on all the drives. In both cases, a
set of N identical drives provides a capacity equal to N–1 drives for RAID 4 or 5. RAID 6
protects against the failure of two disks rather than just one, but with the disadvantage that
N disks provide the capacity of N–2 disks.

RAID versions of 1 and above support hot standby—a feature that enables an extra
drive to be automatically activated and used should one of the main drives fail. This
feature requires adding one more drive to the array, above and beyond the requirements
described earlier.

Designing a RAID Array
RAID configuration requires that you decide how to combine multiple partitions to best
effect. In theory, you can combine just about any partitions; however, some techniques will
help you get the most from your RAID array:

Ensure your computer is adequate. Old computers may lack the internal data-processing
capacity to make effective use of a RAID array of modern disks. Ideally, the disk controller
circuitry should be built into the motherboard’s chipset, which can improve its throughput.

Place disks on different controllers. For best performance, use different disk controllers or
host adapters for your disks. This advice is less important for SCSI or SATA than for PATA;
PATA support for multiple simultaneous transfers on a single controller is very limited, so
you shouldn’t attempt to combine the master and slave devices on one cable into a single
RAID array.

03843book.indb 277 8/21/09 12:06:33 PM

278 Chapter 6 n Managing Disks

Use hardware RAID. Some disk controllers support hardware RAID. These devices can
provide superior performance, particularly for RAID 1 and above. Unfortunately, identify-
ing these controllers can be tricky—many claim to support RAID, but they really provide
a few minimal hooks and Windows drivers. Such devices present no advantages in Linux
over conventional controllers. If you use a hardware RAID controller, consult its documen-
tation, and the documentation for its Linux drivers, for information on its use; the upcom-
ing section “Configuring Linux RAID” does not apply to such controllers.

Use disks of similar performance. You should use disks that are as similar as possible
in performance and capacity—ideally, all the disks in an array should be the same model.
If performance varies wildly between disks, you’d probably be better off simply using the
faster drive to hold critical filesystems than trying to use a RAID array, at least if your goal
is improved disk performance.

Use identically sized partitions. Linux’s RAID configuration combines partitions
together. This works best when the partitions are as close as possible in size. If you try
to combine partitions of different sizes, the “extra” space in the larger partition will
be wasted.

Configure the system to boot using RAID. Unless you use a hardware RAID controller,
your computer’s BIOS won’t understand your RAID configuration. Because the BIOS must
read the kernel, you must either place your kernel on a non-RAID partition or use RAID 1
for your kernel’s partition (which enables you to refer to an underlying Linux partition in
your boot loader). If you want a wholly RAID computer, you can create a separate /boot
partition as RAID 1 and use RAID 0 or RAID 4/5/6 for your remaining partitions.

You can mix and match RAID types on a single Linux RAID array and even use some
non-RAID partitions. (In the latter case, you must either create identically sized non-RAID
partitions on all the array’s disks or use disks of unequal size, filling the extra space in the
larger disks with non-RAID partitions.)

Configuring Linux RAID
To use RAID, you must compile support into your kernel. This support is provided by default
by most distributions, but if you need to activate it, look in the Device Drivers Multi-Device
Support (RAID and LVM) section of the kernel.

In addition to kernel support, using RAID requires one of two software packages:
raidtools or mdadm. Both tools ship with most distributions. The tools differ in their
approaches: raidtools uses a configuration file, /etc/raidtab, to define RAID arrays,
whereas mdadm is a command-line program in which you can create RAID arrays inter-
actively. This section emphasizes the use of raidtools. Whichever program you use, you
should use fdisk (described earlier in “Using fdisk to Create Partitions”) to convert the
partitions’ type codes to 0xFD, using the t command in fdisk; or you should set the RAID
flag using GNU Parted’s set command. The 0xFD MBR type code (or equivalent GPT type
code for GPT disks) identifies Linux RAID partitions. Upon boot, Linux will search these
partitions for RAID information and should combine them.

03843book.indb 278 8/21/09 12:06:33 PM

Partition Control 279

To actually define your RAID configuration using raidtools, you use a file called
/etc/raidtab. A simple RAID 1 configuration looks like this:

raiddev /dev/md0

 raid-level 1

 nr-raid-disks 2

 persistent-superblock 1

 nr-spare-disks 1

 device /dev/sda1

 raid-disk 0

 device /dev/sdb1

 raid-disk 1

 device /dev/sdc1

 spare-disk 0

This configuration creates a RAID 1 (raid-level) device that will subsequently be
accessed as /dev/md0 (raiddev). This configuration uses two disks (nr-raid-disks) and
enables a persistent superblock, which is how Linux stores its RAID information within
each RAID partition. The nr-spare-disks line defines the number of hot standby disks
that are held in reserve—if another disk fails, a spare disk may be automatically called up
by the RAID tools as a replacement. (Note that the spare disks, if used, are not counted
among the RAID disks on the nr-raid-disks line.) The following pairs of lines define the
partitions that are to be used in the RAID array. The main disks are identified by their
conventional device filenames (device) and given numbers starting with 0 (raid-disk). If a
spare disk is used, it’s identified and numbered using the spare-disk directive as well.

A RAID 5 configuration looks much the same but adds a few lines:

raiddev /dev/md1

 raid-level 5

 nr-raid-disks 3

 nr-spare-disks 0

 persistent-superblock 1

 parity-algorithm left-symmetric

 chunk-size 32

 device /dev/sda2

 raid-disk 0

 device /dev/sdb2

 raid-disk 1

 device /dev/sdc2

 raid-disk 2

The first main addition to this configuration is parity-algorithm, which sets how the
parity bits should be computed. Possible options are left-symmetric, right-symmetric,

03843book.indb 279 8/21/09 12:06:33 PM

280 Chapter 6 n Managing Disks

left-asymmetric, and right-asymmetric. The first of these options usually provides the
best performance. The chunk-size option sets the size of the stripes used in the array, in
kilobytes. This value must be a power of 2. Typical values range from 4 to 128. The best
value depends on your hardware, so if you must have the best performance, you’ll have to
experiment; otherwise, a value of 32 is reasonable.

Once you’ve created your /etc/raidtab file, you must initialize the system by using
mkraid, which takes one or more RAID device filenames as options:

mkraid /dev/md0 /dev/md1

This command reads /etc/raidtab and initializes the specified devices using the settings
in that file. If mkraid detects data on the partitions, it may complain; to force it to proceed
without complaint, include the -f option. Once this is done, you can treat these devices as
if they were ordinary disk partitions, creating filesystems and storing files on them. You can
even refer to them in /etc/fstab to mount them automatically when the system boots.

The mkraid command destroys all data on the partitions in question. You
should run it only on new RAID arrays, and you should double- and triple-
check your /etc/raidtab file to be sure you haven’t inadvertently speci-
fied non-RAID disks for inclusion in an array.

Using LVM
A second type of advanced volume tool, beyond RAID, is LVM. RAID is designed to improve
the speed and reliability of disks, but LVM is designed to increase the flexibility of partition
access by making it easier to create, delete, and resize low-level filesystems. You can use LVM
with or without using RAID. To employ LVM, you must set up three different levels of data
structures: physical volumes, volume groups, and logical volumes.

Understanding LVM
Partitions are defined in a crude and simple way compared to files on a filesystem, so chang-
ing your partition layout is potentially dangerous, slow, and awkward. For instance, suppose
a disk has four equally sized partitions, numbered 1–4. Consolidating partitions 2 and 4, if
that becomes desirable, is an awkward task, because you’ll need to move all the data on parti-
tion 3 to create a single contiguous space for the newly consolidated partition. Backing up the
contents of partition 2 or 4 and then restoring the partition may also be necessary.

LVM simplifies matters by creating logical volumes as substitutes for partitions. A logi-
cal volume is handled in a filesystem-like data structure known as a volume group. If you
want to consolidate logical volumes 2 and 4, you don’t need to touch logical volumes 1 and 3
(although you may still need to move data between the volumes that are to be consolidated).
You can resize logical volumes as desired, without regard to how they’re physically laid out
on the disk.

03843book.indb 280 8/21/09 12:06:34 PM

Partition Control 281

LVM also enables you to create a volume group from multiple partitions (known as
physical volumes in LVM-speak), even across physical disks. This ability, which is similar
to linear RAID, can help you create very large filesystems—larger than any one disk sup-
ports. You can even stripe the volume group across multiple physical volumes, which can
improve performance in a manner reminiscent of RAID 0.

Overall, LVM is a very useful tool on systems whose storage needs are uncertain or
likely to change. You can easily add disk space or rearrange how it’s allocated. LVM adds
complexity, though, and if you create volume groups that span multiple disks, your data
will become more vulnerable—if one disk fails, you may no longer be able to access any
data from the volume group, even if it was actually stored on the good disk. You should
also keep in mind that resizing a logical volume is useful only to the extent that you can
resize the underlying filesystem. You can grow or shrink ReiserFS, ext2, ext3, and ext4 file-
systems; but JFS and XFS may only be grown, not shrunk. Swap space is best handled by
using swapoff to disable it, resizing the logical volume, using mkswap to create a fresh swap
area, and then reactivating it with swapon.

Ordinarily, a Linux system that uses LVM will still have at least one non-LVM partition.
This partition holds the kernel so that your GRUB or LILO boot loader can read it. Typically,
/boot is set aside for this purpose, although you can put the entire root (/) filesystem in a con-
ventional partition, if you prefer. (In fact, you can use any mixture of conventional partitions
and logical volumes that you like, so long as you can get the computer booted in some way.)

Defining Physical Volumes
To implement an LVM, you begin by preparing your physical volumes—that is, your parti-
tions. You should mark MBR partitions with the 0x8E partition type code using fdisk. If
you use GNU Parted with MBR or GPT disks, set the LVM flag with the set command.

With the appropriate partition type code set, you can use the pvcreate command to set
up the low-level physical volume data structures within a partition:

pvcreate /dev/sda4

You can repeat this step with multiple partitions, if necessary.
Several additional commands, such as pvdisplay, pvresize, and pvsplit, enable you to

perform further physical volume manipulations or to obtain data on your physical volumes.

Defining Volume Groups
With one or more physical volumes defined, you can now create a volume group with the
vgcreate command:

vgcreate my_group /dev/sda4 /dev/sdb1

This command creates a volume group from /dev/sda4 and /dev/sdb1 and gives it the
name my_group. If you already have a volume group and you want to extend it (say, with a new
physical disk you’ve just added to the computer), you can do so with the vgextend command:

vgextend my_group /dev/sdc1

03843book.indb 281 8/21/09 12:06:34 PM

282 Chapter 6 n Managing Disks

This partition must have already been initialized with pvcreate. The pvcreate and
pvextend commands both support a number of options; consult their man pages for details.

Several additional commands, such as vgremove, vgrename, vgdisplay, vgscan, and
vgsplit, enable you to view data about or manipulate your volume group. Consult these
tools’ man pages for more information.

Defining Logical Volumes
With your volume group created, you can begin creating logical volumes within it. This is
done with the lvcreate command:

lvcreate -i 3 -L 100G -n home my_group

This example creates a 100GB (-L 100G) logical volume called home (-n home) within
the my_group volume group. This example is striped across three physical volumes (-i 3)
for improved performance. You could omit the -i 3 option, but as a practical matter, you
must specify the other options. The result of this command is a new Linux device file,
/dev/mapper/my_group-home, which points to 100GB of disk space in the volume group.
This device file may also be accessed as /dev/my_group/home, if you prefer.

Chances are you’ll want to run lvcreate multiple times to create several logical volumes—
perhaps one each for /home, /usr, /usr/local, /var, and a few other filesystems that you
might ordinarily put on separate partitions. If you use XFS or JFS, you may want to stop short
of filling your volume group; that way, you’ll have unallocated space you can use to expand
any logical volume if the need arises. With ReiserFS, ext2fs, ext3fs, or ext4fs, you can shrink
an underutilized volume if you must make room for expanding another logical volume.

The lvcreate man page describes many more options for this command, but for the
most part they’re very technical. There are also additional logical volume information and
management commands, such as lvdisplay, lvscan, lvresize, and lvremove. Consult
their man pages for more information.

Working with Logical Volumes
Once your logical volumes are created, you can use them as if they were partitions: use
their device filenames in place of partitions’ device filenames in commands such as mkfs
and mount, and place references to these device filenames in /etc/fstab. A logical volume
can hold either a filesystem or swap space.

Non-Linux OSs can’t access Linux LVMs, so you shouldn’t use them to hold shared
data on a computer that boots multiple OSs. There’s also little point in creating physical
volumes on removable disks.

Summary
Linux uses a unified filesystem, which means it doesn’t use drive letters as Windows does.
Instead, partitions are mounted within a single directory structure, starting at the root (/)
partition. You can create filesystems on partitions or removable disks, mount them, store

03843book.indb 282 8/21/09 12:06:34 PM

Exam Essentials 283

files on them, and back them up individually or across partitions. You can mount partitions
temporarily or create entries in /etc/fstab to make changes permanent, as you see fit. You
might also want to create a RAID array or LVM configuration, which can improve reliability,
speed, or flexibility.

Exam Essentials

Summarize how Linux’s filesystem (that is, its directory tree) is structured. Linux’s direc-
tory tree begins with the root (/) directory, which holds mostly other directories. Specific
directories may hold specific types of information, such as user files in /home and configura-
tion files in /etc. Some of these subdirectories and their subdirectories may in fact be sepa-
rate partitions, which helps isolate data in the event of filesystem corruption.

Describe Linux’s partitioning needs. Linux requires a single root partition and generally
uses a separate swap partition. Additional partitions, corresponding to directories such as
/boot, /home, and /var, are desirable on some systems but aren’t usually required.

Describe why you might pick particular filesystems for Linux installation. Ext3fs is a
popular choice and generally a good one. ReiserFS, XFS, and JFS are also good choices on
distributions that support them, but many don’t. The older ext2fs can be a good choice for
small partitions but is better avoided for large partitions. The new ext4fs offers the advan-
tages of many other filesystems.

Explain the operation of the mount command. In its basic form, mount takes a device
filename and directory and ties the two together so that files on the device may be accessed
in the specified directory. A number of parameters and options can modify its function or
how it treats the filesystem that it mounts.

Identify when swap space needs to be increased. The output of the free command shows
how much memory Linux is using—both RAM and swap space. When the amount of used
swap space approaches available swap space, it’s necessary to increase swap space or RAM.

Explain how Linux knows what partitions to mount when it boots. Linux looks to the
/etc/fstab file for information on the filesystems it should mount automatically (and per-
haps some that it shouldn’t mount automatically but that should be available for users to
mount manually).

Know how to create a new filesystem on a disk or partition. The mkfs program creates
new filesystems on removable media drives or hard disk partitions. This program is actually
a front-end to programs that do the actual work, such as mke2fs (aka mkfs.ext2 and mkfs
.ext3) for ext2fs and ext3fs.

Describe how to check a filesystem for errors. The fsck program checks a filesystem’s
internal consistency. Like mkfs, it’s a front-end to filesystem-specific programs, such as
e2fsck (aka fsck.ext2 and fsck.ext3) for ext2fs and ext3fs.

03843book.indb 283 8/21/09 12:06:34 PM

284 Chapter 6 n Managing Disks

Describe the purpose of a RAID array. A RAID array may be used to increase disk
speed, disk reliability, or both. The array uses multiple disks to work around individual
disk speed limitations or to store duplicate copies of (or checksums for) data.

Describe the purpose of LVM. LVM substitutes logical volumes for partitions, which
improves flexibility. Logical volumes can be resized much more easily than can partitions,
and this simplifies system reconfiguration in the future. LVM can also improve disk perfor-
mance by striping together multiple disks in a manner similar to that of RAID 0.

03843book.indb 284 8/21/09 12:06:34 PM

Review Questions 285

Review Questions

1. Typing fdisk -l /dev/hda on an x86 Linux computer produces a listing of four partitions:
/dev/hda1, /dev/hda2, /dev/hda5, and /dev/hda6. Which of the following is true?

A. The disk contains two primary partitions and two extended partitions.

B. Either /dev/hda1 or /dev/hda2 is an extended partition.

C. The partition table is corrupted; there should be a /dev/hda3 and a /dev/hda4 before
/dev/hda5.

D. If you add a /dev/hda3 with fdisk, /dev/hda5 will become /dev/hda6, and /dev/hda6
will become /dev/hda7.

2. Which of the following pieces of information can df not report?

A. How long the filesystem has been mounted

B. The number of inodes used on an ext3fs partition

C. The filesystem type of a partition

D. The percentage of available disk space used on a partition

3. A new Linux administrator plans to create a system with separate /home, /usr/local, and
/etc partitions. Which of the following best describes this configuration?

A. The system won’t boot because /etc contains configuration files necessary to mount
nonroot partitions.

B. The system will boot, but /usr/local won’t be available because mounted partitions
must be mounted directly off their parent partition, not in a subdirectory.

C. The system will boot only if the /home partition is on a separate physical disk from the
/usr/local partition.

D. The system will boot and operate correctly, provided each partition is large enough for
its intended use.

4. What mount point should you associate with swap partitions?

A. /

B. /swap

C. /boot

D. None

5. You run Linux’s fdisk and modify your partition layout. Before exiting from the program,
though, you realize that you’ve been working on the wrong disk. What can you do to correct
this problem?

A. Nothing; the damage is done, so you’ll have to recover data from a backup.

B. Type w to exit from fdisk without saving changes to disk.

C. Type q to exit from fdisk without saving changes to disk.

D. Type u repeatedly to undo the operations you’ve made in error.

03843book.indb 285 8/21/09 12:06:35 PM

286 Chapter 6 n Managing Disks

6. What does the following command accomplish?
mkfs -V -t ext2 /dev/sda4

A. It sets the partition table type code for /dev/sda4 to ext2.

B. It converts a FAT partition into an ext2fs partition without damaging the partition’s
existing files.

C. It creates a new ext2 filesystem on /dev/sda4, overwriting any existing filesystem
and data.

D. Nothing; the -V option isn’t valid, so it causes mkfs to abort its operation.

7. You want to allow Linux users running OpenOffice.org to directly edit files stored on a
Windows 2000 SMB/CIFS file server. Which of the following would you use to enable this?

A. Linux’s standard NFS file sharing support

B. An FTP server running on the Windows system

C. The Linux smbclient program

D. The Linux smbmount program

8. What is wrong with the following /etc/fstab file entry? (Choose all that apply.)
/dev/hda8 nfs default 0 0

A. The entry is missing a mount-point specification.

B. All /etc/fstab fields should be separated by commas.

C. The default option may be used only with ext2 filesystems.

D. /dev/hda8 is a disk partition, but nfs indicates a network filesystem.

9. Where may a swap file be located?

A. Only on the root (/) Linux filesystem

B. On local read/write Linux filesystems

C. On NFS or ext2 filesystems

D. On any partition with more than 512MB of free disk space

10. In which of the following situations would it be most reasonable to create a new swap
partition?

A. Your heavily used server is nearly out of swap space and needs no routine maintenance.

B. A workstation user has been using memory-hungry programs that exceed memory
capacity and needs a quick fix.

C. You’re adding a new hard disk to a multiuser system and expect several new users in
the next month or so.

D. A system has been experiencing slow performance because of excessive swapping.

03843book.indb 286 8/21/09 12:06:35 PM

Review Questions 287

11. You’ve added a new disk to a computer that already uses LVM. You’ve partitioned the new
disk and used pvcreate on its one partition in preparation for adding it to your existing LVM.
What command should you use to add this partition (/dev/sdb1) to your existing biglvm
volume group?

A. pvdisplay /dev/sdb1

B. vgcreate biglvm /dev/sdb1

C. vgextend biglvm /dev/sdb1

D. lvextend biglvm /dev/sdb1

12. Which of the following is a GUI tool that supports resizing several filesystems, including
FAT, ext2fs, and ReiserFS?

A. QTParted

B. GNU Parted

C. Part

D. cfdisk

13. Which of the following options is used with fsck to force it to use a particular filesystem type?

A. -A

B. -N

C. -t

D. -C

14. Which of the following utilities would create the following display?
 total used free shared buffers cached

Mem: 256452 251600 4852 0 10360 130192

-/+ buffers/cache: 111048 145404

Swap: 515100 1332 513768

A. mt

B. df

C. swapon

D. free

15. What will be the result of the root user running the following command?
mount /dev/sdc5 /home2

A. The contents of /home2 will be mounted on /dev/sdc5 with the default filesystem used
and a prompt for options will appear.

B. The contents of /home2 will be mounted on /dev/sdc5 with the filesystem type auto-
detected and default options used.

C. The contents of /dev/sdc5 will be mounted on /home2 with the filesystem type auto-
detected and default options used.

D. The contents of /dev/sdc5 will be mounted on /home2 with the default filesystem used
and a prompt for options will appear.

03843book.indb 287 8/21/09 12:06:35 PM

288 Chapter 6 n Managing Disks

16. As an administrator, you want to increase the security on a Linux SMB/CIFS client system.
You want to accomplish this by storing the authorization information in its own file, rather
than in /etc/fstab. When this is done, what /etc/fstab mount option must you use to
point to the file?

A. certs=

B. securefile=

C. authorization=

D. credentials=

17. A new server is arriving at the end of the week. It will have four 1TB hard drives installed
and be configured in a RAID 5 array with no hot standby spare drives. How much data can
be stored within this array?

A. 4TB

B. 3TB

C. 2TB

D. 1TB

18. You have been told by your manager that the server being moved from the test lab to produc-
tion must have the two drives within it mirrored. What level of RAID is used for mirroring?

A. RAID 6

B. RAID 5

C. RAID 1

D. RAID 0

19. Which of the following commands would you type to summarize the quota information on
all filesystems?

A. repquota

B. repquota -a

C. quotacheck

D. quotacheck -a

20. Which of the following tools may you use when creating partitions for Linux prior to
installation? (Choose all that apply.)

A. Linux’s fdisk from an emergency disk, run prior to the system installation

B. GNU Parted run from the system installation disk

C. A distribution-specific install-time utility

D. The DOS FORMAT utility, run prior to the system installation

03843book.indb 288 8/21/09 12:06:35 PM

Answers to Review Questions 289

Answers to Review Questions

1. B. Logical partitions are numbered from 5 and up, and they reside inside an extended par-
tition with a number between 1 and 4. Therefore, one of the first two partitions must be an
extended partition that houses partitions 5 and 6. Because logical partitions are numbered
starting at 5, their numbers won’t change if /dev/hda3 is subsequently added. The disk
holds one primary, one extended, and two logical partitions.

2. A. A default use of df reports the percentage of disk space used. The number of inodes
and filesystem types can both be obtained by passing parameters to df. This utility does
not report how long a filesystem has been mounted.

3. A. The /etc/fstab file contains the mapping of partitions to mount points, so /etc must
be an ordinary directory on the root partition, not on a separate partition. Options B and C
describe restrictions that don’t exist. Option D would be correct if /etc were not a separate
partition.

4. D. Swap partitions aren’t mounted in the way filesystems are, so they have no associated
mount points.

5. C. Linux’s fdisk doesn’t write changes to disk until you exit from the program by
typing w. Typing q exits without writing those changes, so typing q in this situation will
avert disaster. Typing w would be precisely the wrong thing to do. Typing u would do
nothing useful since it’s not an undo command.

6. C. The mkfs command creates a new filesystem, overwriting any existing data and there-
fore making existing files inaccessible. This command does not set the partition type code
in the partition table. The -V option is valid; it causes mkfs to be more verbose in reporting
its activities. The -t ext2 option tells mkfs to create an ext2 filesystem.

7. D. The smbmount program enables you to mount a remote SMB/CIFS share as if it were a
local disk. Linux’s NFS support would work if the Windows system were running an NFS
server, but the question specifies that it’s using SMB/CIFS, not NFS. An FTP server on the
Windows system would enable file transfers but not direct file access. The same would be
true for the Linux smbclient program.

8. A, D. A mount directory must be specified between the device entry (/dev/hda8) and the
filesystem type code (nfs). The nfs filesystem type code may be used only with an NFS
export specification of the form server:/export as the device specification. Fields in /etc
/fstab are separated by spaces or tabs, not commas (but commas are used between indi-
vidual options if several options are specified in the options column). The default option
may be used with any filesystem type.

9. B. A swap file may be located on local read/write filesystems. This includes, but is not
limited to, the root filesystem. Swap space may not exist on NFS mounts (which are very
slow compared to local disk partitions in any event). The amount of free disk space on the
partition is irrelevant, as long as it’s sufficient to support the swap file size.

03843book.indb 289 8/21/09 12:06:35 PM

290 Chapter 6 n Managing Disks

10. C. It’s easy to create a swap partition when adding a new disk, and in option C, the new
user load might increase the need for memory and swap space, so adding a new swap parti-
tion is prudent. In options A and B, adding a swap partition would require downtime while
juggling the partitions, and so it would disrupt use of the system. Adding a swap file makes
more sense in those cases. In option D, adding swap space won’t speed performance much
(unless it’s on a faster disk than the current swap space); a memory upgrade is in order to
reduce reliance on swap space.

11. C. The vgextend command is used to add new physical volumes to an existing volume
group, and option C shows the correct syntax for doing so with the specified volume group
and physical volume. The pvdisplay command displays information on physical volumes.
The vgcreate command of option B would create a new volume group called biglvm, but
that will fail with a volume group of that name already in existence. The lvextend com-
mand resizes a logical volume; you would use it as part of a resizing operation to add space
to a logical volume. Option D’s syntax for the use of this command is incorrect, and it’s not
the right command for the specified action, although it might be used not long thereafter to
make the new disk space accessible.

12. A. QTParted is a GUI variant of the GNU Parted program. This program supports resizing
several partition types, including FAT, ext2fs, ext3fs, and ReiserFS. (The GNOME Parti-
tion Editor, or GParted, is a similar tool but is not listed as an option.) GNU Parted is not a
GUI tool, Part is a made-up program name, and cfdisk is a Linux text-mode partitioning
tool that can’t resize filesystems.

13. C. The –t option is used to tell fsck what filesystem to use. Normally, fsck determines
the filesystem type automatically. The –A option causes fsck to check all the filesystems
marked to be checked in /etc/fstab. The –N option tells fsck to take no action and to
display what it would normally do, without actually doing it. The –C option displays a text-
mode progress indicator of the check process.

14. D. The free utility would create the display shown. The mt command controls a tape
device and does not produce output like this. The df utility is used to see the amount of free
disk space, not memory use. The swapon utility enables swap space but does not produce a
summary like this one.

15. C. The command given will cause the contents of /dev/sdc5 to be mounted on /home2
with the filesystem type autodetected and default options used.

16. D. Ordinarily, most SMB/CIFS shares require a username and password as a means of
access control. The credentials=file mount option can be used to point Linux at a file
that holds the username and sensitive password information.

17. B. In a RAID 5 array, the amount of data that can be stored is equal to the number of
disks minus 1, since that amount of space will be used for holding parity information. (Hot
standby spare drives further reduce available storage space, if used.) In this case, there are
a total of four drives. Subtracting one means the amount of data space available is equal to
three times the 1TB individual drive size, or a total of 3TB.

03843book.indb 290 8/21/09 12:06:36 PM

Answers to Review Questions 291

18. C. In a RAID 1 array, the disks are mirrored. RAID 5 and RAID 6 are both implementations
of disk striping with parity, while RAID 0 is disk striping without parity.

19. B. The repquota utility is used to summarize the quota information on the filesystem.
When used with the –a option, it will show this information for all filesystems. The
quotacheck utility checks quota information on a disk and writes corrections.

20. A, B, C. You can usually define partitions using just about any tool that can create them,
although with some tools (such as DOS’s FDISK), you may need to change the partition type
code using Linux tools. The DOS FORMAT utility is used to create a FAT filesystem, not to
define a partition.

03843book.indb 291 8/21/09 12:06:36 PM

03843book.indb 292 8/21/09 12:06:36 PM

Chapter

7
Managing Packages
and System Backups

The Following CoMPTiA oBjeCTiveS
Are Covered in ThiS ChAPTer:

1.8 Perform the following package management functions ÛÛ
(Install, remove and update programs: rpm [rpm -Uvh, rpm
-qa, rpm -e, yum], deb [dpkg -i, dpkg -r, apt-get, apt-cache
search], source [./configure, make, make install, make
uninstall, tar, make clean, autoconf, make test, tar.gz,
INSTALL, bzip, gzip]; Resolve dependencies; Add and
remove repositories).

2.4 Conduct and manage backup and restore operations ÛÛ
(Copying data: rsync and ftp; Archive and restore
commands: cpio, tar, dump, restore, dd).

03843c07.indd 293 8/25/09 7:22:01 AM

Managing installed software involves a wide variety of tasks,
many of which are specific to particular types of software or
even individual packages. Other chapters cover some specific

examples, such as network server configuration (Chapter 10, “Configuring Network Servers I”
and Chapter 11, “Configuring Network Servers II”). This chapter covers the mechanics of
package installation in general, using any of three common packaging schemes. This chapter
also covers tools and procedures you can use to protect both system packages and user data
by backing up the computer. Although they’re often overlooked, system backups are critical;
having good backups can greatly reduce downtime in the event of a disk failure, a system
break-in, or even just an accidental deletion of a critical file. Several backup options exist, in
terms of both the hardware used to back up data and the software you use to do the job.

Understanding Package Concepts
Any OS is defined largely by the files it installs on the computer. In the case of Linux, these
files include the Linux kernel; critical utilities stored in directories like /bin, /sbin, /usr/bin,
and /usr/sbin; and configuration files stored in /etc. How those files came to reside in their
locations is irrelevant to the identity of the computer as a Linux box, but this detail is critically
important to the day-to-day duties of a system administrator. When an updated version of a
program is released, it’s extremely helpful to be able to track down the installed version of
the program, determine just what version the installed program is, and update all the neces-
sary files. A failure to do all of this can leave a system with two copies of a program or its
support files, which can result in confusion. It’s also important that when you install a new
program, you avoid accidentally overwriting files that belong to another program.

To help you keep track of installed programs, documentation, and so on, various package
maintenance utilities have emerged. Some of these, such as the RPM Package Manager (RPM)
and Debian package tools, are tightly woven into various Linux distributions, thus providing a
centralized mechanism for program updates.

File Collections
Most programs today consist of several files. Many programs come with one or more docu-
mentation files, configuration files, and support programs. For this reason, it’s long been
common practice, on all platforms, to bundle related files together in one carrier file. This
carrier file typically uses compression to save disk space and download time, and it may
include information on the placement of specific files once they’re extracted and installed
on the computer.

03843c07.indd 294 8/25/09 7:22:01 AM

Understanding Package Concepts 295

Linux package file formats all provide these useful features. A package file may contain
a single program file or dozens (even hundreds or thousands) of files. A complete Linux
distribution, in turn, consists of hundreds of package files, all designed to coexist and even
work together to provide the features associated with Linux.

In addition to providing a common carrier mechanism for package transport, the RPM
and Debian package systems provide a means of recording additional information about
the package. This information includes a version number, a build number, the name of the
package maintainer, the date and time of the package’s last compilation, the hostname of
the computer that built the package, one or more descriptions of the package, and a few
other miscellaneous pieces of information. Typically, you can access all of this information
either before or after installing a package on the computer, which can be quite helpful—you
can read the package description to determine whether it’s really what you want to install,
before you do so.

The Installed File Database
One of the problems with a simple file-collection mechanism is that there’s no way to track
what files you’ve installed, what files are associated with other files, and so on. It’s easy for
a system using such a simple package mechanism to fall into chaos or collect stray files.
A partial solution to these problems is to maintain a centralized database of installed files,
known as the installed file database, package database, or similar terms. Both the RPM
and Debian systems provide this feature. With RPM, the database is stored in the /var/
lib/rpm directory; for Debian packages, the database is in /var/lib/dpkg. Tarballs don’t
support a package database, although it’s possible to have special programs track tarball
installations, as Slackware does.

Tarballs are file collections created by the tar utility program. Although they
lack some of the features of RPM and Debian packages, they’re more univer-
sally compatible, and they’re easier to create than RPM or Debian packages.

Most people don’t need to understand the details of how the installed file database
works; this information is most useful to those who write the tools or need to recover a
seriously corrupted system. What is important are the features that the database provides
to a Linux system, including the following:

Package information The supplementary information associated with a package—build
date, description, version number, and so on—is copied from the package file to the installed
file database when you install the package. This fact enables you to retrieve information even
if you delete the original package file.

File information The database includes information on all the files installed on the computer
via the package system. This information includes the name of the package to which the file
belongs so that you can track a file back to its owner. There’s also a checksum value and infor-
mation on file ownership and permissions, which make it possible to detect when a file has
been altered—assuming the database hasn’t been tampered with. This file information does

03843c07.indd 295 8/25/09 7:22:02 AM

296 Chapter 7 n Managing Packages and System Backups

not extend to any files users create or even to nonstandard configuration files for some pack-
ages. Standard configuration files are typically tracked, however.

Dependencies A dependency is a reliance of one package on another. For instance, many
programs rely on libc. Packages include information on the files or packages on which they
depend. This feature allows the package management system to detect these dependencies
and prevent installation of a package if its dependencies are unmet. The system can also
block the removal of a package if others depend on it.

Provision information Some packages provide features that are used by other packages. For
instance, a mail client may rely on a mail server, and various mail servers exist for Linux. In
this case, a simple file or package dependency can’t be used because more than one mail server
can be used to fulfill the client’s requirements. Nonetheless, this feature is essentially a type
of dependency.

Whenever you install, remove, or modify a package through a package management
system, that system updates its database to reflect the changes you’ve made. You can then
query the database about your installed packages, and the system can use the database
when you subsequently modify your installation. In this way, the system can head off
trouble—for instance, it can warn you and abort installation of a package if that package
contains files that would overwrite files belonging to another package.

The package database does not include information on files or packages installed in
any way but through the package management system. For this reason, it’s best not to mix
different types of packages. Although it’s possible to install both RPM and Debian pack-
age management systems on one computer, their databases remain separate, thus reducing
the benefits of conflict tracking, dependencies, and so on. For instance, you might install
an important library in Debian format, but RPM packages that rely on that library won’t
know the library is installed, and so they will not install unless you provide an override
switch. Further, you may not be warned that other programs require the library when you
remove or upgrade it, so you might inadvertently break the RPM packages.

Some programs are distributed only in tarball form. In such cases, you can attempt to
build an RPM or Debian package from the tarball or install from the tarball without the
benefit of a package management system. Although the latter option has the drawbacks just
outlined, it’s often simpler than trying to create an RPM or Debian package. If you install
only a few such programs, chances are you won’t have too much trouble, especially if you
keep good records on what you’re installing from tarballs. Typically, programs you compile
from source code go in the /usr/local directory tree, which isn’t used by most RPM or
Debian packages. This fact helps keep the two program types isolated, further reducing the
chance of trouble.

Using Network Repositories
Atop the local package database and package installation tools lies another layer. This
layer is network-enabled, and it communicates with network repositories that hold a wide
selection of software for your distribution. When you install software using such network-
enabled tools, they check the network repository and, if necessary, download and install

03843c07.indd 296 8/25/09 7:22:02 AM

Understanding Package Concepts 297

dependencies. For instance, if you want to install the MegaWord program but it depends on
the SuperSpell package, which you don’t have installed, the network tools will automatically
download and install SuperSpell.

You can also use network-enabled tools to check for updated software. Sometimes these
updates are of minor importance; they fix minor bugs that might not even affect you. Other
times, though, such updates fix security bugs. Thus, regularly using network-enabled tools
to check for updates is good security practice.

Rebuilding Packages
One of the features of package systems is that they enable you to either install a binary
package (sometimes referred to as a precompiled package) or recompile a source package
on your own system. The former approach is usually simpler and less time-consuming, but
the latter approach enables you to customize a program. This customization can include
both changes to the program source code and compile-time changes (such as compiling a
package on an unusual architecture). Recompilation is possible both with the sophisticated
RPM and Debian systems and with simpler tarballs—in fact, the primary means of source
code distribution is usually as a tarball.

If you find a tarball for a package that is not available in other forms, you have two basic
choices: you can compile or install the software as per the instructions in the tarball, which
bypasses your RPM or Debian database if your distribution uses one, or you can create an
RPM or Debian package from the original tarball and install the resulting binary package.
The former approach is usually simpler when you want to install the package on just one
system, despite the drawback of losing package database information. The latter approach is
superior if you need to install the package on many similar systems, but it takes more effort—
you must create special files to control the creation of a final RPM or Debian package and
then use special commands to create that package.

The upcoming section “Compiling Source Code” covers the basics of com-
piling programs from source code. Creating binary RPMs and Debian pack-
ages from source code tarballs, though, is beyond the scope of this book.
Consult the documentation for the package system for more information.
In particular, the RPM HOWTO (http://tldp.org/HOWTO/RPM-HOWTO) con-
tains this information for RPM. The book Red Hat RPM Guide by Eric Foster-
Johnson (Wiley, 2003) may also be useful for those who need to delve
deeply into the RPM system.

Source code is available in formats other than tarballs. Today, many program authors
take the time to create source RPMs, which are source code packages meant to be processed
by the RPM tools. Debian uses a control file, a patch file, and an original source code tarball
as an equivalent to a source RPM. These files are most commonly found on sites catering
specifically to Debian-based systems. A source RPM is easy to compile into a binary RPM
for any given computer; all you need to do is call the rpmbuild program with the --rebuild
argument and the name of the source package. (Sometimes additional arguments are needed,

03843c07.indd 297 8/25/09 7:22:02 AM

298 Chapter 7 n Managing Packages and System Backups

such as when you are cross-compiling for one platform on another). This recompilation usu-
ally takes somewhere between a few seconds and several minutes, but it can take hours for
large packages on slow computers. The result is one or more binary RPMs in the /usr/src/
redhat/RPMS/i386 directory or someplace similar (redhat may be something else on non-
Red Hat distributions, and i386 is likely to be something else on non-x86 platforms or on
distributions that optimize for Pentium or later CPUs).

However you do it, recompiling programs from source code has several advantages and dis-
advantages compared to using a ready-made binary package. One of the primary advantages
is that you can control various compilation options, and you can even modify the source code
to fix bugs or customize the program for your particular needs. Making such changes is much
easier when you start with a tarball than when you start with an RPM or Debian source pack-
age, however. Another advantage is that you can compile a program for an unusual distribu-
tion. You might not be able to find a package of a particular program for Alpha or PowerPC
architectures, for instance, but if a source package is available, you can compile it yourself.
Similarly, if you compile a package yourself, you can work around some library incompatibili-
ties you might encounter with prebuilt binaries, particularly if the binaries were created on a
distribution other than the one you use.

The primary drawback to compiling your own packages is that it takes time. This problem
is exacerbated if you need to install additional development libraries, compilers, or other tools
in order to make a package compile. (Many programs need particular utilities to compile but
not to run.) Sometimes a source package needs certain versions of other programs to compile,
but you may have an incompatible version, making compilation impossible until you change
the version you have. New Linux users also often have trouble with recompiling because of
unfamiliarity with the procedures.

The Gentoo Linux distribution was designed to enable users to recompile
the entire distribution relatively easily. This process takes many hours
(sometimes longer than a day), though.

Installing and Removing Packages
The three most common package formats in Linux are RPM packages, Debian packages, and
tarballs. Of these three, tarballs are the most primitive, but they are also the most widely sup-
ported. Most distributions use either RPMs or Debian packages as the basis for most installed
files. Therefore, it’s important to understand how to use at least one of these two formats for
most distributions, as well as tarballs. Compiling from source code has its own challenges.

Handling RPM Packages
The most popular package manager in the Linux world is RPM. The RPM system provides
all the basic tools described in the earlier section, “Understanding Package Concepts,” such
as a package database that allows for checking conflicts and ownership of particular files.

03843c07.indd 298 8/25/09 7:22:03 AM

Installing and Removing Packages 299

RPM Distributions and Conventions
RPM was developed by Red Hat for its own distribution, but it has since been adopted
by others, such as Fedora, Mandriva, SUSE, and Yellow Dog. These distributions vary in
many details other than their package management. This fact has consequences for package
installation, since a package intended for one distribution might or might not install cleanly
on another one.

Red Hat has splintered into two distributions: Fedora is the downloadable
version favored by home users, students, and businesses on a tight budget.
The Red Hat name is now reserved for the for-pay version of the distribution.

RPM is a cross-platform tool. Some non-Linux Unix systems can use RPM, although
most don’t use it as their primary package distribution system. RPM supports any CPU
architecture, and RPM-based distributions are available for x86, x86-64, IA-64, PowerPC,
and other CPUs. For the most part, source RPMs are transportable across architectures—
you can use the same source RPM to build packages for any CPU you like. Some programs
are actually composed of architecture-independent scripts, and so they need no recompila-
tion. There are also documentation and configuration packages that work on any CPU.

The convention for naming RPM package files is as follows:

packagename-a.b.c-x.arch.rpm

Each of the filename components has a specific meaning:

packagename  This is the name of the package, such as samba for the Samba file and
print server.

a.b.c This is the package version number, such as 3.2.4. The version number doesn’t have
to be three period-separated numbers, but that’s the most common form. The program
author assigns the version number.

x  The number following the version number is the build number (also known as the
release number). This number represents minor changes made by the package maintainer,
not by the program author. These changes may represent altered startup scripts or configu-
ration files, changed file locations, added documentation, or patches appended to the origi-
nal program to fix bugs or to make the program more compatible with the target Linux
distribution. Some distribution maintainers add a letter code to the build number to dis-
tinguish their packages from those of others. Note that these numbers are not comparable
across package maintainers—George’s build number 5 of a package is not necessarily an
improvement on Susan’s build number 4 of the same package.

arch  The final component preceding the .rpm extension is a code for the package’s architec-
ture. The i386 architecture code represents a file compiled for any x86 CPU from the 80386
onward. Some packages include optimizations for Pentiums or above (i586 or i686), x86-64
packages use the x86_64 code, and binary packages for other CPUs use codes for their CPUs,

03843c07.indd 299 8/25/09 7:22:03 AM

300 Chapter 7 n Managing Packages and System Backups

such as ppc for PowerPC CPUs. Scripts, documentation, and other CPU-independent pack-
ages generally use the noarch architecture code. The main exception to this rule is source
RPMs, which use the src architecture code.

Most RPM-based distributions for x86-64 CPUs can use RPMs for both
x86-64 and x86 CPUs. All other things being equal, you should favor
the x86-64 RPMs, but if you can only find an x86 package (i386 or similar
architecture codes), you can go ahead and install it. The software will
run in 32-bit mode rather than 64-bit mode.

For instance, the Fedora 10 distribution ships with a Samba package called
samba-3.2.4-0.22.fc10.i386.rpm, indicating that this is build 0.22.fc10 of Samba
3.2.4, compiled for any 80386 or above x86 CPU. These naming conventions are just
that, though—conventions. It’s possible to rename a package however you like, and
it will still install and work. The information in the filename is retained within the
package.

In an ideal world, any RPM package will install and run on any RPM-based distribution
that uses an appropriate CPU type. Unfortunately, compatibility issues can crop up from
time to time. Different dependencies, naming conventions, startup script requirements, and
other distribution-specific idiosyncrasies make using an RPM intended for one distribution
a bit risky on another one. You might be able to get away with it, particularly for simple
programs that don’t require SysV startup scripts; but whenever possible, you should try to
find RPMs built for your particular distribution.

Using rpm Commands
The main RPM utility program is known as rpm. Use this program to install or upgrade a
package at the shell prompt. The rpm command has the following syntax:

rpm [operation][options] [package-files|package-names]

Table 7.1 summarizes the most common rpm operations, and Table 7.2 summarizes the
most important options. Be aware, however, that rpm is a very complex tool, so this listing
is necessarily incomplete. Tables 7.1 and 7.2 do include information on the most common
rpm features, however. For information on operations and options more obscure than those
listed in Tables 7.1 and 7.2, see the rpm man pages. Many of rpm’s less-used features are
devoted to the creation of RPM packages by software developers.

TA B le 7.1 Common rpm Operations

Operation Description

-i Installs a package; system must not contain a package of the
same name

-U Installs a new package or upgrades an existing one

03843c07.indd 300 8/25/09 7:22:03 AM

Installing and Removing Packages 301

TA B le 7.1 Common rpm Operations (continued)

Operation Description

-F or --freshen Upgrades a package only if an earlier version already exists

-q Queries a package—finds if a package is installed, what files it
contains, and so on

-V or -y or --verify Verifies a package—checks that its files are present and
unchanged since installation

-e Uninstalls a package

-b Builds a binary package, given source code and configuration
files; moved to the rpmbuild program with RPM version 4.2

--rebuild Builds a binary package, given a source RPM file; moved to the
rpmbuild program with RPM version 4.2

--rebuilddb Rebuilds the RPM database to fix errors

TA B le 7. 2 Most Important rpm Options

Option
Used with
Operations Description

--root dir Any Modifies the Linux system having a root directory
located at dir. This option can be used to maintain
one Linux installation discrete from another one (say,
during OS installation or emergency maintenance).

--force -i, -U, -F Forces installation of a package even when it means
overwriting existing files or packages.

-h or --hash -i, -U, -F Displays a series of hash marks (#) to indicate the
progress of the operation.

-v -i, -U, -F Used in conjunction with the -h option to produce a
uniform number of hash marks for each package.

--nodeps -i, -U, -F, -e Performs no dependency checks. Installs or removes
the package even if it relies on a package or file that’s
not present or is required by a package that’s not
being uninstalled.

03843c07.indd 301 8/25/09 7:22:03 AM

302 Chapter 7 n Managing Packages and System Backups

TA B le 7. 2 Most Important rpm Options (continued)

Option
Used with
Operations Description

--test -i, -U, -F Checks for dependencies, conflicts, and other
problems without actually installing the package.

--prefix path -i, -U, -F Sets the installation directory to path (works only
for some packages).

-a or --all -q, -V Queries or verifies all packages.

-f file or
--file file

-q, -V Queries or verifies the package that owns file.

-p package-file -q Queries the uninstalled RPM package-file.

-i -q Displays package information, including the package
maintainer, a short description, and so on.

-R or --requires -q Displays the packages and files on which this
one depends.

-l or --list -q Displays the files contained in the package.

To use rpm, you combine one operation with one or more options. In most cases, you
include one or more package names or package filenames as well. (A package filename is
a complete filename, but a package name is a shortened version. For instance, a package
filename might be samba-3.2.4-0.22.fc10.i386.rpm, while the matching package name
is samba.) Either you can issue the rpm command once for each package or you can list
multiple packages, separated by spaces, on the command line. The latter is often preferable
when you’re installing or removing several packages, some of which depend on others in the
group. Issuing separate commands in this situation requires that you install the depended-
on package first or remove it last, whereas issuing a single command allows you to list the
packages on the command line in any order.

Some operations require that you give a package filename, and others require a package
name. In particular, -i, -U, -F, and the rebuild operations require package filenames; -q, -V,
and -e normally take a package name, although the -p option can modify a query (-q) opera-
tion to work on a package filename.

When installing or upgrading a package, the -U operation is generally the most useful
because it enables you to install the package without manually uninstalling the old one.
This one-step operation is particularly helpful when packages contain many dependencies
because rpm detects these and can perform the operation should the new package fulfill the
dependencies provided by the old one.

03843c07.indd 302 8/25/09 7:22:04 AM

Installing and Removing Packages 303

When upgrading your kernel, install the new one with the -i option rather
than -U. This ensures that you’ll still have the old kernel to boot, in case the
new one gives you troubles.

To use rpm to install or upgrade a package, issue a command similar to the following:

rpm -Uvh samba-3.2.11-0.30.fc10.i386.rpm

You could also use rpm -ivh in place of rpm -Uvh if you don’t already have a samba
package installed.

It’s possible to distribute the same program under different names. In
this situation, upgrading may fail, or it may produce a duplicate installa-
tion, which can yield bizarre program-specific malfunctions. Red Hat has
described a formal system for package naming to avoid such problems,
but they still occur occasionally. Therefore, it’s best to upgrade a package
using a subsequent release provided by the same individual or organiza-
tion that provided the original.

Verify that the package is installed with the rpm -qi command, which displays informa-
tion such as when and on what computer the binary package was built. Listing 7.1 demon-
strates this command. (rpm -qi also displays an extended plain-English summary of what
the package is, which has been omitted from Listing 7.1.)

listing 7.1: RPM Query Output

$ rpm -qi samba

Name : samba Relocations: (not relocatable)

Version : 3.2.11 Vendor: Fedora Project

Release : 0.30.fc10 Build Date: Sat 18 Apr 2009 07:41:23 PM EDT

Install Date: Thu 23 Apr 2009 11:43:36 PM EDT Build Host:➥

x86-7.fedora.phx.redhat.com

Group : System Environment/Daemons Source RPM:➥

samba-3.2.11-0.30.fc10.src.rpm

Size : 11247377 License: GPLv3+ and LGPLv3+

Signature : DSA/SHA1, Mon 20 Apr 2009 02:05:00 PM EDT, Key ID bf226fcc4ebfc273

Packager : Fedora Project

URL : http://www.samba.org/

Summary : The Samba Suite of programs

Using Yum
Yum (http://linux.duke.edu/projects/yum/) is one of several meta-packagers for
RPM—Yum enables you to easily install a package and all its dependencies using a single

03843c07.indd 303 8/25/09 7:22:04 AM

304 Chapter 7 n Managing Packages and System Backups

command line. When using Yum, you don’t even need to locate and download the package
files, because Yum does this for you by searching in one or more repositories (Internet sites
that host RPM files for a particular distribution).

Yum originated with the fairly obscure Yellow Dog Linux distribution, but it’s since been
adopted by Red Hat, Fedora, and some other RPM-based distributions. Yum isn’t used by
all RPM-based distributions, though; SUSE and Mandriva, to name just two, each use their
own meta-packagers. Debian-based distributions generally employ the Advanced Package
Tools (APT), as described later in “Using APT.” Nonetheless, because of the popularity of
Red Hat and Fedora, knowing Yum can be valuable.

The most basic way to use Yum is with the yum command, which has the following syntax:

yum [options] [command] [package...]

Which options are available depend on the command you use. Table 7.3 describes com-
mon yum commands.

TA B le 7. 3 Common yum Commands

Command Description

install Installs one or more packages by package name. Also installs depen-
dencies of the specified package or packages.

update Updates the specified package or packages to the latest available ver-
sion. If no packages are specified, yum updates every installed package.

check-update Checks to see whether updates are available. If they are, yum dis-
plays their names, versions, and repository area (updates or extras,
for instance).

upgrade Works like update with the --obsoletes flag set, which handles
obsolete packages in a way that’s superior when performing a distri-
bution version upgrade.

remove or erase Deletes a package from the system; similar to rpm -e, but yum also
removes depended-on packages.

list Displays information about a package, such as the installed version
and whether an update is available.

provides or
whatprovides

Displays information about packages that provide a specified pro-
gram or feature. For instance, typing yum provides samba lists all
the Samba-related packages, including every available update. Note
that the output can be copious.

search Searches package names, summaries, packagers, and descriptions
for a specified keyword. This is useful if you don’t know a package’s
name but can think of a word that’s likely to appear in one of these
fields but not in these fields for other packages.

03843c07.indd 304 8/25/09 7:22:05 AM

Installing and Removing Packages 305

TA B le 7. 3 Common yum Commands (continued)

Command Description

info Displays information about a package, similar to the rpm -qi
command.

clean Cleans up the Yum cache directory. Running this command from
time to time is advisable, lest downloaded packages chew up too
much disk space.

shell Enters the Yum shell mode, in which you can enter multiple Yum
commands one after another.

resolvedep Displays packages matching the specified dependency.

localinstall Installs the specified local RPM files, using your Yum repositories to
resolve dependencies.

localupdate Updates the system using the specified local RPM files, using your
Yum repositories to resolve dependencies. Packages other than those
updated by local files and their dependencies are not updated.

deplist Displays dependencies of the specified package.

In most cases, using Yum is easier than using RPM directly to manage packages,
because Yum finds the latest available package, downloads it, and installs any required
dependencies. Yum has its limits, though; it’s only as good as its repositories, so it can’t
install software that’s not stored in those repositories.

If you use Yum to automatically upgrade all packages on your system,
you’re effectively giving control of your system to the distribution main-
tainer. Although Red Hat or other distribution maintainers are unlikely
to try to break into your computer in this way, an automatic update with
minimal supervision on your part could easily break something on your
system, particularly if you’ve obtained packages from unusual sources in
the past.

If you don’t want to install the package but merely want to obtain it, you can use
yumdownloader. Type this command followed by the name of a package, and the latest
version of the package will be downloaded to the current directory. This can be handy
if you need to update a system that’s not connected to the Internet; you can use another
system that runs the same distribution to obtain the packages and then transfer them to
the target system.

03843c07.indd 305 8/25/09 7:22:05 AM

306 Chapter 7 n Managing Packages and System Backups

If you prefer to use GUI tools rather than command-line tools, you should be aware
that GUI front-ends to yum exist. Examples include Yum Extender (yumex) and kyum. You
can use the text-mode yum to install these front-ends, as in yum install yumex. Figure 7.1
shows Yum Extender in action. To use it, click the Updates, Available, Installed, or All but-
ton to show the relevant types of packages. You can enter a search term in the line below
these options (Figure 7.1 shows samba in this field) to restrict the package selection. You
can then check or uncheck the tick boxes next to specific package names to mark them for
installation or removal. When you’ve made your selections, click Process Queue to imple-
ment the changes.

F i gu r e 7.1 The Yum Extender (yumex) program provides a GUI front-end to Yum.

Yum is configured via the /etc/yum.conf file, with additional configuration files in the
/etc/yum.repos.d/ directory. The yum.conf file holds basic options, such as the directory
to which Yum downloads RPMs and where Yum logs its activities. Chances are you won’t
need to modify this file. The /etc/yum.repos.d/ directory, on the other hand, potentially
holds several files, each of which describes a Yum repository—that is, a site that holds
RPMs that may be installed via Yum. You probably shouldn’t directly edit these files;
instead, if you want to add a repository, manually download the RPM that includes the
repository configuration and install it using rpm. The next time you use Yum, it will access

03843c07.indd 306 8/25/09 7:22:05 AM

Installing and Removing Packages 307

your new repository along with the old ones. Several Yum repositories exist, mostly for Red
Hat and Fedora, such as the following:

Livna This repository (http://rpm.livna.org/rlowiki/) hosts multimedia tools, such as
additional codecs and video drivers.

KDE Red Hat Red Hat and Fedora favor the GNU Network Object Model Environment
(GNOME) desktop environment, although they ship with the K Desktop Environment
(KDE). The repository at http://kde-redhat.sourceforge.net provides improved KDE
RPMs for those who favor KDE.

Fresh RPMs This repository (http://freshrpms.net) provides additional RPMs, mostly
focusing on multimedia applications and drivers.

Many additional repositories exist. Try a Web search on terms such as yum repository,
or check any Web site that hosts unusual software you want to run to see whether it pro-
vides a Yum repository. If so, it should provide an RPM or other instructions on adding its
site to your Yum repository list.

The RPMFind Web site, http://rpmfind.net, is an extremely useful resource
when you want to find an RPM of a specific program, but it’s not accessible
as a Yum repository. RPMFind includes links to RPMs built by programs’
authors, specific distributions’ RPMs, and those built by third parties.

Handling Debian Packages
In their overall features, Debian packages are similar to RPMs, but the details of operation
for each differ, and Debian packages are used on different distributions than are RPMs.
Because each system uses its own database format, RPMs and Debian packages aren’t inter-
changeable without converting formats.

Debian Package Conventions
As the name implies, Debian packages originated with the Debian distribution. Since
that time, the format has been adopted by several other distributions, including Ubuntu
and Xandros. Such distributions are derived from the original Debian, which means that
packages from the original Debian are likely to work well on other Debian-based systems.
Although Debian doesn’t emphasize flashy GUI installation or configuration tools, its
derivatives add GUI configuration tools to the base Debian system, which makes these dis-
tributions more appealing to Linux novices. The original Debian favors a system that’s as
bug-free as possible, and it tries to adhere strictly to open source software principles rather
than invest effort in GUI configuration tools.

Like RPM, the Debian package format is neutral with respect to both OS and CPU type.
Debian packages are extremely rare outside Linux, though.

03843c07.indd 307 8/25/09 7:22:05 AM

308 Chapter 7 n Managing Packages and System Backups

The original Debian distribution has been ported to many different CPUs, including
x86, x86-64, IA-64, PowerPC, Alpha, 680x0, MIPS, and SPARC. The original architecture
was x86, and subsequent ports exist at varying levels of maturity. Derivative distributions
generally work only on x86 and x86-64 systems, but this could change in the future.

Debian packages follow a naming convention similar to those for RPMs, but Debian pack-
ages sometimes omit codes in the filename to specify a package’s architecture, particularly
on x86 packages. When these codes are present, they may differ from RPM conventions. For
instance, a filename ending in i386.deb indicates an x86 binary, amd64.deb is an x86-64
binary, and all.deb indicates a CPU-independent package, such as documentation or scripts.
As with RPM files, this file-naming convention is only that—a convention. You can rename a
file as you see fit. There is no code for Debian source packages because Debian source pack-
ages actually consist of several separate files.

To install an x86 Debian package on an x86-64 (aka AMD64) system, you
must use the --force-architecture option to dpkg. This contrasts with
RPM-based distributions, which usually permit such installation by default.

Using dpkg Commands
Debian packages are incompatible with RPM packages, but the basic principles of operation
are the same across both package types. Like RPMs, Debian packages include dependency
information, and the Debian package utilities maintain a database of installed packages,
files, and so on. You use the dpkg command to install a Debian package. This command’s
syntax is similar to that of rpm:

dpkg [options][action] [package-files|package-name]

action is the action to be taken; Table 7.4 summarizes common actions. The options
(Table 7.5) modify the behavior of the action, much like the options to rpm.

TA B le 7. 4 dpkg Primary Actions

Action Description

-i or --install Installs a package

--configure Reconfigures an installed package—runs the post-
installation script to set site-specific options

-r or --remove Removes a package but leaves configuration files intact

-P or --purge Removes a package, including configuration files

-p or --print-avail Displays information about an installed package

03843c07.indd 308 8/25/09 7:22:06 AM

Installing and Removing Packages 309

TA B le 7. 4 dpkg Primary Actions (continued)

Action Description

-I or --info Displays information about an uninstalled package file

-l pattern or --list pattern Lists all installed packages whose names match
pattern

-L or --listfiles Lists the installed files associated with a package

-S pattern or --search pattern Locates the package(s) that own the file(s) specified
by pattern

-C or --audit Searches for partially installed packages and suggests
what to do with them

TA B le 7.5 Options for Fine-Tuning dpkg Actions

Option Used with Actions Description

--root=dir All Modifies the Linux system using a root
directory located at dir. Can be used to
maintain one Linux installation discrete
from another one, say during OS instal-
lation or emergency maintenance.

-B or --auto-deconfigure -r Disables packages that rely on one that
is being removed.

--force-things Assorted Forces specific actions to be taken.
Consult the dpkg man page for details
of things this option does.

--ignore-depends=package -i, -r Ignores dependency information for
the specified package.

--no-act -i, -r Checks for dependencies, conflicts,
and other problems without actually
installing or removing the package.

--recursive -i Installs all packages that match the
package name wildcard in the speci-
fied directory and all subdirectories.

03843c07.indd 309 8/25/09 7:22:06 AM

310 Chapter 7 n Managing Packages and System Backups

TA B le 7.5 Options for Fine-Tuning dpkg Actions (continued)

Option Used with Actions Description

-G -i Doesn’t install the package if a newer
version of the same package is already
installed.

-E or --skip-same-version -i Doesn’t install the package if the same
version of the package is already
installed.

As with rpm, dpkg expects a package name in some cases and a package filename in
others. Specifically, --install (-i) and --info (-I) both require the package filename,
but the other commands take the shorter package name.

As an example, consider the following command, which installs the samba-
common_3.0.28a-1ubuntu4.7_amd64.deb package:

dpkg -i samba-common_3.0.28a-1ubuntu4.7_amd64.deb

If you’re upgrading a package, you may need to remove an old package before installing
the new one. To do this, use the -r option to dpkg:

dpkg -r samba

To find information on an installed package, use the -p parameter to dpkg, as shown in
Listing 7.2. This listing omits an extended English description of what the package does.

listing 7.2: dpkg Package Information Query Output

$ dpkg -p samba-common

Package: samba-common

Priority: optional

Section: net

Installed-Size: 7112

Maintainer: Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>

Architecture: amd64

Source: samba

Version: 3.0.28a-1ubuntu4.7

Replaces: samba (<< 3.0.20b-1)

Depends: debconf (>= 0.5) | debconf-2.0, libc6 (>= 2.4), libcomerr2➥

(>= 1.33-3), libkrb53 (>= 1.6.dfsg.2), libldap-2.4-2 (>= 2.4.7), libncurses5➥

(>= 5.6+20071006-3), libpam-modules, libpopt0 (>= 1.10), libreadline5➥

(>= 5.2), libuuid1, ucf

Size: 3058414

03843c07.indd 310 8/25/09 7:22:06 AM

Installing and Removing Packages 311

Debian-based systems often use a somewhat higher-level utility called dselect to
handle package installation and removal. The dselect utility provides a text-mode list
of installed packages and packages available from a specified source (such as a CD-ROM
drive or an FTP site), and it allows you to select which packages you want to install and
remove. This interface can be very useful when you want to install several packages, but
dpkg is often more convenient when manipulating just one or two packages. Because dpkg
can take package filenames as input, it’s also the preferred method of installing a package
that you download from an unusual source or create yourself.

Using APT
Advanced Package Tool utilities are another option for Debian package management.
These tools center around the apt-get utility, which enables you to perform easy
upgrades of packages, especially if you have a fast Internet connection. Debian-based
systems include a file, /etc/apt/sources.list, that specifies locations from which
important packages can be obtained. If you installed the OS from a CD-ROM drive,
this file will initially list directories on the installation CD-ROM in which packages
can be found. There are also likely to be a few lines near the top, commented out with
hash marks (#), indicating directories on an FTP or Web site from which you can obtain
updated packages. (These lines may be uncommented if you did a network install
initially.)

Although APT is most strongly associated with Debian systems, a port to
RPM-based systems is also available. Check http://apt4rpm.sourceforge
.net for information on this port.

The apt-get utility works by obtaining information on available packages from the
sources listed in /etc/apt/sources.list and then using that information to upgrade or
install packages. The syntax is similar to that of dpkg:

apt-get [options][command] [package-names]

Table 7.6 describes the apt-get commands, and Table 7.7 describes the most commonly
used options. In most cases, you won’t actually use any options with apt-get, just a single
command and possibly one or more package names. One particularly common use of this
utility is to keep your system up-to-date with any new packages. The following two com-
mands will accomplish this goal, if /etc/apt/sources.list includes pointers to up-to-date
file archive FTP sites:

apt-get update

apt-get dist-upgrade

03843c07.indd 311 8/25/09 7:22:06 AM

312 Chapter 7 n Managing Packages and System Backups

TA B le 7.6 apt-get Commands

Command Description

update Obtains updated information on packages available from the instal-
lation sources listed in /etc/apt/sources.list.

upgrade Upgrades all installed packages to the newest versions available,
based on locally stored information on available packages.

dselect-upgrade Performs any changes in package status (installation, removal, etc.)
left undone after running dselect.

dist-upgrade Similar to upgrade but performs “smart” conflict resolution to
avoid upgrading a package if that would break a dependency.

install Installs a package by the package name (not by package filename),
obtaining the package from the source that contains the most up-
to-date version.

remove Removes a specified package by the package name.

source Retrieves the newest available source package file by the package
filename, using information on available packages and installation
archives listed in /etc/apt/sources.list.

check Checks the package database for consistency and broken package
installations.

clean Performs housekeeping to help clear out information on retrieved
files from the Debian package database. If you don’t use dselect
for package management, run this from time to time in order to
save disk space.

autoclean Similar to clean but removes information only on packages that
can no longer be downloaded.

TA B le 7.7 Most Useful apt-get Options

Option Used with Commands Description

-d or --download-only upgrade, dselect-upgrade,
install, source

Downloads package files but does
not install them.

-f or --fix-broken install, remove Attempts to fix a system on which
dependencies are unsatisfied.

03843c07.indd 312 8/25/09 7:22:07 AM

Installing and Removing Packages 313

TA B le 7.7 Most Useful apt-get Options (continued)

Option Used with Commands Description

-m, --ignore-missing,
or --fix-missing

upgrade, dselect-upgrade,
install, remove, source

Ignores all package files that can’t
be retrieved (because of network
errors, missing files, or the like).

-q or --quiet All Omits some progress indicator
information. May be doubled (for
instance, -qq) to produce still less
progress information.

-s, --simulate,
--just-print,
--dry-run, --recon, or
--no-act

All Performs a simulation of the
action without actually modifying,
installing, or removing files.

-y, --yes, or
--assume-yes

All Produces a “yes” response to
any yes/no prompt in installation
scripts.

-b, --compile, or
--build

source Compiles a source package after
retrieving it.

--no-upgrade install Causes apt-get to not upgrade
a package if an older version is
already installed.

If you use apt-get to automatically upgrade all packages on your system,
you are effectively giving control of your system to the distribution main-
tainer. Although Debian or other distribution maintainers are unlikely to try
to break into your computer in this way, an automatic update with minimal
supervision on your part could easily break something on your system,
particularly if you’ve obtained packages from unusual sources in the past.

A GUI front-end to APT, Synaptic, is available. It presents a list of available packages; or
you can use the Search button to narrow the range. When you’ve found a package you want
to install or remove, click the box to the left of its name. When you’ve made all your selec-
tions, click Apply to have Synaptic make the changes. Figure 7.2 shows Synaptic in use.

Several additional tools are part of the APT suite, including apt-key, apt-sortpkgs,
and apt-cache. Most of these tools are highly technical; however, apt-cache has a use-
ful search function, activated by the search keyword, which searches the APT database’s
names and descriptions. For instance, typing apt-cache search samba finds all packages
that explicitly mention Samba.

03843c07.indd 313 8/25/09 7:22:07 AM

314 Chapter 7 n Managing Packages and System Backups

F i gu r e 7. 2 Synaptic provides a GUI front-end to the APT utilities.

Handling Tarballs
All distributions can use tarballs—files collected together with the tar utility and typically
compressed with compress, gzip, or bzip2. Like RPM and Debian packages, tarballs may
contain source code, binary files, or architecture-independent files such as documentation
or fonts. These files lack dependency information, however, and tar maintains no database
of installed files. Therefore, it’s harder to remove programs installed via tarballs than it
is to remove RPM or Debian packages. Slackware, though, maintains a database of files
installed via Slackware’s tarballs and the Slackware pkgtool utility.

The Role of tar and Tarballs
A multipurpose tool, tar was originally created for archiving files to tape—the name stands
for “tape archiver.” (The upcoming section “Backing Up and Restoring a Computer” describes
this role of tar in more detail.) Because Unix, and hence Linux, treats hardware devices as
files, a tape-archiving program like tar can be used to create archives as files on disk. These
files can then be compressed, copied to floppy disk or other removable media, sent over a net-
work, and so on.

03843c07.indd 314 8/25/09 7:22:07 AM

Installing and Removing Packages 315

In the Linux world, tarballs fill a role that’s similar to that of zip files in the Windows
world. There are differences, however. Zip utilities (including the zip and unzip commands
in Linux) compress files and then add them to the archive. By contrast, tar does not directly
support compression, so to compress files, the resulting archive is compressed with a second
utility, such as gzip, bzip2, or compress. The gzip and bzip2 programs are the most popu-
lar on Linux systems, although compress is still used on some older Unix systems. (The gzip
utility can uncompress old compress archives.) The resulting file may have two extensions
(such as .tar.gz or .tar.bz2), or that dual extension may be combined into a single, three-
character extension (.tgz or .tbz) for easy storage on filesystems (like DOS’s FAT) that
don’t support longer or multiple extensions. The older compress archives used an uppercase
Z extension, so these tarballs have .tar.Z extensions.

Considered as a package distribution mechanism, tarballs are used primarily by the
Slackware distribution, which is the oldest of the major Linux distributions still in common
use. Slackware eschews flashy configuration tools in favor of a bare-bones approach. In this
respect, Slackware resembles Debian, but Slackware uses custom extensions to tar as a way
of tracking package installations. As noted earlier, Debian also uses source tarballs as part
of its source package management system, but most administrators don’t need to be con-
cerned with this detail.

Although most other distributions don’t rely on tarballs, they can be used with any dis-
tribution. Tarballs are particularly likely to be useful when you’re faced with the task of
compiling a program from source code, and especially if you must modify that source code
for your system. The upcoming section “Compiling Source Code” describes how to compile
software delivered as source code in a tarball.

Binary tarballs contain precompiled programs. Sometimes the tarball contains the pro-
gram files in a form that enables you to expand the tarball directly into a target directory.
For instance, you could change to the /usr/local directory and uncompress the tarball to
have the program files dropped directly into /usr/local/bin, /usr/local/man, and so on.
Other times you may need to uncompress the tarball in a temporary directory and then run
an installation utility to install the software.

If you’re unsure of how to proceed with a tarball installation, extract it
into a temporary directory, and look for instructions. Sometimes you’ll
find separate installation instructions on the program’s Web site or on the
FTP site from which you obtained the software.

Using tar Commands
The tar program is a complex package with many options. Most of what you’ll do with the
utility, however, can be covered with a few common commands. Table 7.8 describes the pri-
mary tar commands, and Table 7.9 describes the qualifiers for these commands that modify
what the command does. Whenever you run tar, you use exactly one command, and you usu-
ally use at least one qualifier.

03843c07.indd 315 8/25/09 7:22:07 AM

316 Chapter 7 n Managing Packages and System Backups

TA B le 7. 8 tar Commands

Command Abbreviation Description

--create c Creates an archive

--concatenate A Appends tar files to an archive

--append r Appends non-tar files to an archive

--update u Appends files that are newer than
those in an archive

--diff or --compare d Compares an archive to files on disk

--list t Lists archive contents

--extract or --get x Extracts files from an archive

TA B le 7. 9 tar Qualifiers

Command Abbreviation Description

--directory dir C Changes to directory dir before
performing operations

--file [host:]file f Uses file called file on computer
called host as the archive file

--listed-incremental file g Performs incremental backup or
restore, using file as a list of previ-
ously archived files

--one-file-system l (on older
versions only)

Backs up or restores only one
filesystem (partition)

--multi-volume M Creates or extracts a multitape
archive

--tape-length N L Changes tapes after N kilobytes

--same-permissions p Preserves all protection information

--absolute-paths P Retains the leading / on filenames

03843c07.indd 316 8/25/09 7:22:08 AM

Installing and Removing Packages 317

TA B le 7. 9 tar Qualifiers (continued)

Command Abbreviation Description

--verbose v Lists all files read or extracted; when
used with --list, displays file sizes,
ownership, and time stamps

--verify W Verifies the archive after writing it

--exclude file (none) Excludes file from the archive

--exclude-from file X Excludes files listed in file from the
archive

--gzip or --ungzip z Processes archive through gzip

--bzip2 j (some older ver-
sions used I or y)

Processes archive through bzip2

Of the commands listed in Table 7.8, the most commonly used are --create, --extract,
and --list. The most useful qualifiers from Table 7.9 are --file, --listed-incremental,
--one-file-system, --same-permissions, --gzip, --bzip2, and --verbose. If you fail to
specify a filename with the --file qualifier, tar will attempt to use a default device, which
is often (but not always) a tape device file.

A typical tar command to extract files from a tarball looks like this:

tar --extract --verbose --gunzip --file samba-3.2.11.tar.gz

This command can be expressed somewhat more succinctly using command
abbreviations:

tar xvzf samba-3.2.11.tar.gz

In either form, this tar command extracts files from samba-3.2.11.tar.gz to the cur-
rent directory. Most tarballs include entire directory trees, so this command results in one
or more directories being created, if they don’t already exist, as well as files within the
directories.

Before extracting a tarball, use the --list command to find out what
files and directories it contains. This information can help you locate
the files stored in the tarball. In addition, it can help you spot problems
before they would occur in case a tarball does not contain a neat direc-
tory structure but instead contains files that would all be dropped in the
current directory.

03843c07.indd 317 8/25/09 7:22:08 AM

318 Chapter 7 n Managing Packages and System Backups

Creating Tarballs
One feature of tar that you may find valuable is that the program can be used to easily
create packages, as well as extract files from them. You can use this feature to move data
files, documentation, or programs you’ve written or built yourself. Of course, you can also
create RPM or Debian packages, but this process is more complex, and the usual method
of doing this requires that you provide a tarball of the source code to begin with. It’s easi-
est to create a tarball of all the files in a single directory:

tar cvzf my-stuff.tgz my-stuff-dir

You can then move the tarball to a removable medium, upload it to an Internet site, or
just leave it on your hard disk. When you extract the files from the tarball, tar will create
the original target directory and restore all the files and subdirectories from within it.

Compiling Source Code
Linux’s open source nature means that source code is available for most or all of the pro-
grams you run. This fact is a curiosity to some users, but it’s extremely valuable to others.
For instance, you might be able to fix a minor bug or change a default value by modifying
the source code and recompiling it. Other times, you may be forced to compile a program
from source code—say, if it’s an obscure program that’s not available in binary form for
your computer’s CPU.

Procedures for Compiling and Installing Source Code
Source code can be compiled either as part of a source package for your package format
(such as a source RPM) or from an original tarball provided by the program author. In
either case, you should see to several prerequisites before compiling a program:

Appropriate compilers Source code requires one or more compilers and related programs.
Most commonly, the GNU Compiler Collection (GCC) is needed, but sometimes other tools
are needed. The package’s documentation should detail these requirements. GCC is installed
by default on many Linux systems, but if it’s not installed on yours, use Yum, apt-get, or
similar tools to install it. Some programs are written in interpreted, rather than compiled,
languages. These require you to have an appropriate interpreter package, such as Perl or
Python, rather than a compiler.

make  Most compiled programs use a utility called make to direct the compilation process.
As with GCC, make is usually installed by default on Linux systems, but you may want to
double-check this detail.

Support libraries and header files All Linux programs rely on one or more libraries, which
provide support functions used by many different programs. Before you can compile a pro-
gram, your system must have all the libraries upon which it relies. What’s more, compiling a
program requires that you have a set of header files, which are files that tell a program how to
call library functions. On most distributions, the header files are installed separately from the

03843c07.indd 318 8/25/09 7:22:08 AM

Installing and Removing Packages 319

libraries themselves. Typically, the header file package name is similar to that for the library
but includes a term such as dev or devel in the package name. The documentation for the
program you’re compiling should detail the libraries it requires, but if you’re installing from a
source tarball, the documentation may not tell you the precise package name you’d install for
your distribution; you may need to hunt a bit and perhaps guess.

System resources Compiling a program takes disk space, CPU time, and RAM. For most
programs, the resources required aren’t huge by modern standards, but you may want to
check, particularly when compiling large programs. Disk space can become an issue with big
packages, and the CPU time consumed might interfere with other uses of the system. For this
reason, you may want to compile programs at off times, if the computer is normally used for
other tasks.

When compiling a source RPM, you pass the --rebuild option to rpmbuild, along with
the source RPM name. With luck, the process will complete without errors. If it doesn’t,
you face the daunting task of troubleshooting the problem. Most frequently, the issue is a
missing development library package (that is, library headers) or development tool. Scroll-
ing back over the output of the build process should yield a clue, such as a comment that a
library wasn’t present on your system.

Compiling a package from a source tarball cannot be easily summarized in a simple
procedure, because the procedure varies from one package to another. After uncompressing
the package, you should search for a file called README, INSTALL, CONFIGURE, or something
similar. This file should describe the configuration and installation process. Frequently, the
source package includes a script called configure, which is generated by the programmer
using a utility called autoconf. You type ./configure to have the package autodetect your
computer’s installed libraries and configure itself appropriately. You may be able to pass
options to this script to further customize it—say, to add or remove support for a particular
protocol or feature. Read the documentation to learn about such options, because they’re
highly package-specific.

Some packages are poorly documented. In such cases, reading
the configure script in a text editor may give you some idea about the
options it accepts.

Some programs have no configure script but provide similar functionality through some
other means. The Linux kernel itself is one such program—you type make config, make 
menuconfig, or make xconfig to configure it using text-mode, menu-based text-mode, or GUI
tools, respectively. This process is tedious. The upcoming section “Special Procedures for the
Kernel and Drivers” touches on this topic.

Some programs (particularly small ones) don’t use configuration scripts. To change their
options, you must typically edit a file called Makefile or makefile. Precisely what you might
want to change in this file is highly package-specific, so consult its documentation for details.

You can compile most programs by typing make in their source directories. This process
can take anywhere from a few seconds to several hours, depending on the package’s size
and the speed of your computer.

03843c07.indd 319 8/25/09 7:22:08 AM

320 Chapter 7 n Managing Packages and System Backups

As with compiling a source RPM, compiling source from a source tarball can fail.
This can occur either when configuring the package (via a configure script or any other
method) or during the actual compilation stage. Diagnosing and fixing such problems
requires troubleshooting. Typically, the process fails with an error message shortly
before the point at which it stopped. This message should provide you with a clue, but
it could be cryptic. If you see many lines of errors, scroll up until you find the first one.
This is typically the real problem; subsequent errors occur because of the first error and
are not themselves diagnostic.

Once you get the package to compile, you must install it. Most packages today
include a way to do this by typing a simple command—typically ./install or make 
install. This command installs all the package components in their default directories.
This process does not, though, use your distribution’s package management system. If
you subsequently install the same package via your distribution’s package system, you’ll
probably end up with two copies of the program. This can cause confusion, because
depending on features such as the order of directories in your PATH environment vari-
able, either version might be launched. Some packages include a way to uninstall a pro-
gram to avoid such problems, or simply to remove the package if you decide you don’t
want it. Typically, you do this by typing ./uninstall or make uninstall in the package
directory.

Many packages provide other make targets—that is, commands that can be run with
make. These may include make test (to test that the compile succeeded prior to installing
it) and make clean (to delete most of the files generated by the compile process to save
disk space).

Special Procedures for the Kernel and Drivers
Kernel compilation is particularly important because the kernel holds most Linux hard-
ware drivers and influences all other aspects of the system. Linux distributions normally
ship with kernels that work reasonably well; however, if you want to optimize the system’s
functioning, one way to do so is to recompile the kernel. In broad strokes, the procedure for
doing so is as follows:

1. Obtain kernel source code from http://www.kernel.org or some other trusted source.

2. Extract the kernel source code using tar. Typically, it resides in a subdirectory of
/usr/src named after the kernel version, such as linux-2.6.29 for Linux 2.6.29.

3. Create a symbolic link called /usr/src/linux that points to the directory in which the
kernel resides.

4. Change into the /usr/src/linux directory.

5. Configure the kernel by typing make config, make menuconfig, or make xconfig.
This procedure will present you with a huge number of options. Covering them all
here is impossible. You’ll need to know a lot about your hardware to select the cor-
rect options. If in doubt, compile the option as a module, if possible—that will make
it available if it’s needed but won’t increase the size of the main kernel file. It’s best if

03843c07.indd 320 8/25/09 7:22:08 AM

Installing and Removing Packages 321

your kernel contains drivers for your hard disk controller, so be sure to include the
appropriate driver.

6. Exit from the configuration utility.

7. Type make to build the new kernel. This process is likely to take several minutes and
possibly more than an hour.

8. With 2.4.x or earlier kernels, type make modules. This command builds the kernel
modules (the parts of the kernel it loads from independent files). This action is handled
automatically in step 7 with 2.6.x kernels.

9. As root, type make modules_install to install the kernel modules.

10. As root, copy the main kernel file to /boot. The file is stored as bzImage in the arch/
i386/boot subdirectory of the main kernel directory for x86 systems—change i386 to
an appropriate architecture code for other CPUs. I recommend adding the version num-
ber to the kernel name, as in cp arch/i386/boot/bzImage /boot/bzImage-2.6.29.

11. Add the kernel to your boot loader configuration, as described in Chapter 1. Do not
replace a working boot loader configuration; add the new kernel to your boot loader.
This way, you can fall back on your working configuration if there’s a problem with
the new kernel.

12. Reboot the computer to use the new kernel.

Most modern distributions rely on an initial RAM disk to deliver certain drivers to the
kernel. These drivers are needed for reading the hard disk, and an initial RAM disk is a
RAM-based pseudo-disk that the boot loader delivers to the kernel, enabling the kernel to
read the RAM disk files even if it can’t yet read the actual hard disk. When you recompile
a kernel yourself, it’s usually easier to compile the modules into the main kernel file rather
than compile them yourself and add them to a RAM disk. If you want or need to build
a RAM disk, though, you can do so by using a utility called mkinitrd, mkinitramfs, or
something similar. Details vary from one program or distribution to another, but typically,
you’ll use it something like this:

mkinitramfs -o /boot/initrd-2.6.29.img 2.6.29

This command creates an initial RAM disk called /boot/initrd-2.6.29.img using the
modules associated with the 2.6.29 kernel, which must already be compiled and ready on
your system. More advanced configuration options are available, but they require intimate
knowledge of the Linux boot process.

You do not need to use an initial RAM disk for most kernel drivers, just
for drivers that are needed to read files from the hard disk—low-level disk
drivers, LVM and RAID drivers, and filesystem drivers. Once the kernel has
all the drivers it needs to read your hard disk, it can read additional mod-
ules from the hard disk itself.

03843c07.indd 321 8/25/09 7:22:08 AM

322 Chapter 7 n Managing Packages and System Backups

Managing Package Dependencies
and Conflicts
Although package installation often proceeds smoothly, there are times when it doesn’t. The
usual sources of problems relate to unsatisfied dependencies or conflicts between packages.
The RPM and Debian package management systems are intended to help you locate and
resolve such problems, but on occasion (particularly when mixing packages from different
vendors), they can actually cause problems. In either event, it pays to recognize these errors
and know how to resolve them.

Although dependency and conflict problems are often described in terms of
RPM or Debian package requirements, they also occur with tarballs. These
more primitive packages lack the means to automatically detect these prob-
lems, although some systems, such as Slackware, add dependency checking
to their tarballs.

Real and Imagined Package Dependency Problems
Package dependencies and conflicts can arise for a variety of reasons, including the following:

Missing libraries or support programs One of the most common dependency problems is
caused by a missing support package. For instance, all KDE programs rely on Qt, a widget
set on which these programs are built. If Qt isn’t installed, you won’t be able to install any
KDE packages using RPMs or Debian packages. Libraries are particularly common sources
of problems in this respect.

Incompatible libraries or support programs Even if a library or support program is installed
on your system, it may be the wrong version. For instance, if a program requires Qt 4.5,
the presence of Qt 3.2 won’t do much good. Fortunately, Linux library naming conventions
enable you to install multiple versions of a library, in case you have programs with competing
requirements.

Duplicate files or features Conflicts arise when one package includes files that are already
installed and that belong to another package. Occasionally, broad features can conflict as
well, as in two Web server packages. Feature conflicts are usually accompanied by name
conflicts. Conflicts are most common when mixing packages intended for different distri-
butions because distributions may split files up across packages in different ways.

Mismatched names RPM and Debian package management systems give names to
their packages. These names don’t always match across distributions. For this reason,
if one package checks for another package by name, the first package may not install
on another distribution, even if the appropriate package is installed, because that target
package has a different name.

03843c07.indd 322 8/25/09 7:22:09 AM

Managing Package Dependencies and Conflicts 323

Some of these problems are very real and serious. Missing libraries, for instance, must
be installed. Other problems, like mismatched package names, are artifacts of the packag-
ing system and are likely symptoms of using packages from a variety of sources. Unfortu-
nately, it’s not always easy to tell into which category a conflict fits. When using a package
management system, you may be able to use the error message returned by the package
system, along with your own experience with and knowledge of specific packages, to make
a judgment.

When installing tarballs, and sometimes when compiling a program from source code,
you won’t get any error messages during installation; you’ll see problems only when you
try to run the program. These messages may relay an inability to locate a library or run
a file, or they may cause the program to crash or otherwise misbehave. Conflicts can
be particularly insidious with tarballs because you won’t be warned about conflicts, so
installing a package can break an existing one, and you might not notice the damage for
some time. You can use the --keep-old-files qualifier to keep tar from overwriting
existing files, though.

Workarounds to Package Dependency Problems
When you encounter a package dependency or conflict, what can you do about it? There
are several approaches to these problems. Some of these approaches work well in some
situations but not others, so you should review the possibilities carefully:

Forcing the installation One approach is to ignore the issue. Although this sounds risky,
in some cases involving failed dependencies, it’s appropriate. For instance, if the depen-
dency is on a package that you installed by compiling the source code yourself, you can
safely ignore the dependency. You can use rpm’s --nodeps option to force installation
despite dependency problems, or you can use --force to override some other issues. With
dpkg, --ignore-depend=package and --force-conflicts have similar effects. Network-
enabled meta-packagers make it difficult to use such options and may subsequently com-
plain about any overrides you make.

Upgrading or replacing the depended-on package Officially, the proper way to over-
come a package dependency problem is to install, upgrade, or replace the depended-on
package. If a program requires, say, Qt 4.5 or greater, you should upgrade an older ver-
sion (such as 4.4) to 4.5. To perform such an upgrade, you’ll need to track down and
install the appropriate package. This usually isn’t too difficult if the new package you
want comes from a Linux distribution; the appropriate depended-on package should
come with the same distribution.

Rebuilding the problem package Some dependencies result from the libraries and other
support utilities installed on the computer that compiled the package, not from requirements
in the underlying source code. If the software is recompiled on a system that has different
packages, the dependencies will change. Therefore, rebuilding a package from source code
can overcome at least some dependencies. The rpmbuild program does this job for RPM
systems, but you’ll need to track down a source RPM for the package.

03843c07.indd 323 8/25/09 7:22:09 AM

324 Chapter 7 n Managing Packages and System Backups

Source packages are also available for Debian systems, but aside from
sites devoted to Debian and related distributions, Debian source pack-
ages are rare. The sites that do have these packages provide them in
forms that typically install easily on appropriate Debian or related sys-
tems. For this reason, it’s less likely that you’ll rebuild a Debian package
from source.

Locating another version of the problem package Frequently, the simplest way to fix a
dependency problem or package conflict is to use a different version of the package you
want to install. This could be a newer or older official version (4.2.3 rather than 4.4.7,
say), or it might be the same official version but built for your distribution rather than for
another distribution.

Backing Up and Restoring
a Computer
Many things can go wrong on a computer that might cause it to lose data. Hard disks can
fail, you might accidentally enter some extremely destructive command, a cracker might
break into your system, or a user might accidentally delete a file, to name just a few possi-
bilities. To protect against such problems, it’s important that you maintain good backups of
the computer. To do this, select appropriate backup hardware, choose a backup program,
and implement backups on a regular schedule. You should also have a plan in place to
recover some or all of your data should the need arise.

Common Backup Hardware
Just about any device that can store computer data and read it back can be used as a backup
medium. The best backup devices are inexpensive, fast, high capacity, and reliable. They
don’t usually need to be random-access devices, though. Random-access devices are capable
of quickly accessing any piece of data. Hard disks, USB flash drives, and CD-ROMs are all
random-access devices. These devices contrast with sequential-access devices, which must read
through all intervening data before accessing the sought-after component. Tapes are the most
common sequential-access devices. Table 7.10 summarizes critical information about the most
common types of backup device. For some, such as tape, there are higher-capacity (and more-
expensive) devices for network backups. Numbers are approximate as of mid-2009. Costs are
likely to be lower, and capacities higher, in the future.

03843c07.indd 324 8/25/09 7:22:09 AM

Backing Up and Restoring a Computer 325

TA B le 7.10 Vital Statistics for Common Backup Devices

Device Cost of Drive Cost of Media
Uncompressed
Capacity Speed Access Type

Tape $200–$4,000 $0.15–$1.00/GB 24–800GB 1–120MB/s Sequential

Hard disks $10–$100
(for removable
mounting kit
or external
enclosure)

$0.15–$0.50/GB
(including mount-
ing frame)

80–2000GB 20–100MB/s Random

Optical
discs

$25–$350 $0.04–$0.50/GB 650MB–50GB 1–72MB/s Random

The types of devices that appear in Table 7.10 are those most often used for completely
backing up Linux systems. Removable disks (such as USB flash drives or Zip disks) are often
used for backing up a few files. Tapes are the traditional backup medium of choice, since
they’ve historically been inexpensive on a per-gigabyte basis. Hard disks and optical discs are
now cost-competitive with tape, though. Removable hard disks may provide greater capac-
ity and convenience. These drives may be installed either in special internal drive frames that
permit easy swapping or in external drive enclosures that plug into the computer via SCSI,
FireWire, or USB ports. Optical discs, depending on the exact format used (CD-R, recordable
DVD, or Blu-ray), may be even less expensive but are somewhat lacking in capacity compared
to hard disks or tapes.

You may want to design a backup system that uses multiple backup types. For instance,
you might perform full backups to a removable hard disk and then perform daily incremen-
tal backups onto optical discs. Such a plan can take advantage of the best features of each
backup medium.

If you restrict computers’ main installation partitions to about 8GB, those
entire partitions will most likely fit, when compressed, on standard single-
layer recordable DVDs. This can simplify backup and recovery efforts.

It’s generally wise to keep multiple backups and to store some of them away from the
computers they’re meant to protect. Such off-site storage protects your data in case of fire,
vandalism, or other major physical traumas. Keeping several backups makes it more likely
you’ll be able to recover something, even if it’s an older backup, should your most recent
backup medium fail.

If you decide to use hard disks in removable mounts as a backup medium, you’ll need
ordinary internal drives and mounting hardware. The hardware comes in two parts: a mount-
ing bay that fits in the computer and a frame in which you mount the hard drive. To use the

03843c07.indd 325 8/25/09 7:22:09 AM

326 Chapter 7 n Managing Packages and System Backups

system, you slide the frame with hard drive into the mounting bay. You can get by with one
of each component, but it’s best to buy one frame for each hard drive, which effectively raises
the media cost. From a Linux software point of view, removable hard disk systems work like
regular hard disks or other removable disk systems, like Zip disks. The disks are likely to be
partitioned, and the partitions are likely to hold ordinary Linux filesystems.

Tapes are accessed via special tape device files, such as /dev/st0 or /dev/nst0 (for
devices that use SCSI drivers) or /dev/ht0 or /dev/nht0 (for devices that use PATA drivers).
Many backup programs, such as tar, can access the tape device file directly.

Optical discs require special programs to write, but they can be mounted much like hard
disks. The programs used to write to optical discs are described in the upcoming section
“Writing to Optical Discs.”

Common Backup Programs
Linux supports several backup programs. Some are tools designed to back up individual
files, directories, or computers. Others build on these simpler tools to provide network
backup facilities. Basic backup programs include tar (described earlier in this chapter
in “Handling Tarballs”), dump, and cpio. ARKEIA (http://www.arkeia.com) and BRU
(http://www.tolisgroup.com) are two commercial backup packages that provide explicit
network support and GUI front-ends. AMANDA (http://www.amanda.org) is a network-
capable scripting package that helps tar or dump perform a backup of an entire network.
When dealing with tapes, the mt program is useful for controlling the tape hardware. This
section provides a look at the cpio, dump, restore, and mt tools for performing backups.

The cpio Utility
The cpio program is similar in principle to tar; it creates an archive file that contains copies
of the original files. You can create a cpio archive on your hard disk or direct cpio to create
the archive directly on a tape device. The cpio utility has three operating modes:

Copy-out mode This mode, activated by using the -o or --create option, creates an
archive and copies files into it.

Copy-in mode You activate copy-in mode by using the -i or --extract option. This mode
extracts data from an existing archive. If you provide a filename or a pattern to match, cpio
will extract only the files whose names match the pattern you provide.

Copy-pass mode This mode is activated by the -p or --pass-through option. It combines
the copy-out and copy-in modes, enabling you to copy a directory tree from one location
to another.

The names for the copy-out and copy-in modes are confusing.

In addition to the options used to select the mode, cpio accepts many other options,
the most important of which are summarized in Table 7.11. To back up a computer, you’ll

03843c07.indd 326 8/25/09 7:22:10 AM

Backing Up and Restoring a Computer 327

combine the --create (or -o) option with one or more of the options in Table 7.11; to
restore data, you’ll do the same but use --extract (or -i). In either case, cpio acts on file-
names that you type at the console. In practice, you’ll probably use the redirection operator
(<) to pass a filename list to the program.

TA B le 7.11 Options for use with cpio

Option Abbreviation Description

--reset-access-time -a Resets the access time after reading a file
so that it doesn’t appear to have been read.

--append -A Appends data to an existing archive.

--pattern-file=filename -E filename Uses the contents of filename as a list of
files to be extracted in copy-in mode.

--file=filename -F filename Uses filename as the cpio archive file; if
this parameter is omitted, cpio uses stan-
dard input or output.

--format=format -H format Uses a specified format for the archive
file. Common values for format include
bin (the default, an old binary format),
crc (a newer binary format with a check-
sum), and tar (the format used by tar).

N/A -I filename Uses the specified filename instead of
standard input. (Unlike -F, this option
does not redirect output data.)

--no-absolute-filenames N/A In copy-in mode, extracts files relative to
the current directory, even if filenames
in the archive contain full directory paths.

N/A -O filename Uses the specified filename instead of
standard output. (Unlike -F, this option
does not redirect input data.)

--list -t Displays a table of contents for the input.

--unconditional -u Replaces all files, without first asking for
verification.

--verbose -v Displays filenames as they’re added to or
extracted from the archive. When used
with -t, displays additional listing infor-
mation (similar to ls -l).

03843c07.indd 327 8/25/09 7:22:10 AM

328 Chapter 7 n Managing Packages and System Backups

Using cpio or tar to Back Up a Computer
The cpio and tar commands are generally considered the lowest common denominator
backup programs. Tapes created with cpio or tar can be read on non-Linux systems—
something that’s often not true of dump archives, whose format is tied to specific filesystems.
For this reason, dump must explicitly support whatever filesystem you intend to back up. In
mid-2009, dump supports Linux’s ext2fs, ext3fs, ext4fs, and an XFS-specific dump variant is
also available, but versions that support other filesystems, such as ReiserFS and JFS, are not
yet available.

To compress data, cpio and tar both rely on an external program, such as gzip or
bzip2, to compress an entire archive. Alternatively, most tape drives support compression
in their hardware. Therefore, if your tape drive supports compression, you should not com-
press a cpio or tar backup. Let the tape drive do that job.

To back up a computer with cpio, a command like the following will do the job:

find / | cpio -oF /dev/st0

Because cpio expects a list of files on standard input, this command uses the find com-
mand and a pipe to feed this information to cpio. The -o option then tells cpio to create an
archive, and -F specifies where it should be created—in this case, it uses /dev/st0 to create
the archive on the tape device.

Both the find command and pipes were described in more detail in
Chapter 2, “Using Text-Mode Commands.”

This command, though, has some negative effects. Most notably, it backs up everything,
including the contents of the /proc filesystem and any mounted removable disks that might
be present. You can use the -xdev option to find to have that program omit mounted direc-
tories from its search, but this means you’ll have to explicitly list each partition you want to
have backed up. For instance, you might use a command like the following to back up the
/home, root (/), /boot, and /var partitions:
find /home / /boot /var -xdev | cpio -oF /dev/st0

Because tape is a sequential-access medium, the system will restore items
in the order in which they were backed up. Therefore, for the fastest partial
restores, list the filesystems that you most expect to have to restore first.
In this example, /home is listed first because users sometimes delete files
accidentally. Backing up /home first, therefore, results in quicker restora-
tion of such files.

The procedure for backing up with tar is similar; however, tar doesn’t need a list of files
piped to it; you provide a list of files or directories on the command line:

tar cvpf /dev/st0 --one-file-system /home / /boot /var

03843c07.indd 328 8/25/09 7:22:10 AM

Backing Up and Restoring a Computer 329

Ordinarily, tar descends the directory tree; the --one-file-system option prevents this,
much like the -xdev option to find.

After creating a backup with tar, you may want to use the tar --diff (also known as
--compare, or d) command to verify the backup you’ve just written against the files on disk.
Alternatively, you can include the --verify (W) qualifier to have this done automatically.
Verifying your backup doesn’t guarantee it will be readable when you need it, but it should
at least catch major errors caused by severely degraded tapes. On the other hand, the veri-
fication will almost certainly return a few spurious errors because of files whose contents
have legitimately changed between being written and being compared. This may be true of
log files, for instance.

Backing up using optical Media

Optical media require special backup procedures. Normally, a program such as cdrecord
writes to disk using a disc image created by a program like mkisofs. This image file is nor-
mally an ISO-9660 filesystem—the type of filesystem that’s most often found on CD-ROMs.

One option for backing up to optical discs is to use mkisofs and then cdrecord to copy
files to the disc. If you copy files “raw” in this way, though, you’ll lose some information,
such as write permission bits. You’ll have better luck if you create a cpio or tar file on
disk, much as you would when you back up to tape. You would then use mkisofs to place
that archive in an ISO-9660 filesystem, and then you would burn the ISO-9660 image file
to the optical disc. The result will be an optical disc that you can mount and that will con-
tain an archive you can read with cpio or tar.

A somewhat more direct option is to create an archive file and burn it directly to the optical
disc using cdrecord, bypassing mkisofs. Such a disc won’t be mountable in the usual way,
but you can access the archive directly by using the CD-ROM device file. On restoration,
this works much like a tape restore, except that you specify the CD-ROM device filename
(such as /dev/cdrom) instead of the tape device filename (such as /dev/st0).

Using dump and restore to Back Up and Restore a Computer
The dump program can create a backup archive of an ext2, ext3, or ext4 filesystem, while
xfsdump performs a similar function for XFS. The restore program restores a dump archive,
while xfsrestore does the job for an xfsdump archive. These programs all work at a low level
compared to tar or cpio, which means that you can’t restore backups across filesystems—a
dump archive can be restored only to an ext2, ext3, or ext4 filesystem, not to an XFS, JFS,
FAT, or any other type of filesystem.

03843c07.indd 329 8/25/09 7:22:11 AM

330 Chapter 7 n Managing Packages and System Backups

The syntax for dump is as follows:

dump [options] files

Table 7.12 summarizes the most important dump options. The xfsdump program is similar,
but some details differ.

TA B le 7.12 dump Options

Option Description

-level# A backup level of 0 signifies a full backup, in which all files
are backed up. Higher levels indicate incremental backups, in
which only files modified since the last backup of a lower level
were backed up.

-A archive-file This option creates a table-of-contents file in the specified
file. This can be used to check a dump archive’s contents with-
out reading the whole archive.

-D file This option specifies the location of the file that holds data on
incremental backups. The default is /var/lib/dumpdates.

-f file You specify a file to hold the backup using this option. You
can back up to an ordinary disk file or to a tape device, such
as /dev/st0.

-jcompression-level You can specify the amount of compression to apply to the
backup with this option, which takes a number as an argu-
ment. Note that no space should appear between -j and
compression-level. The default value is 2.

-Q file This option can speed restore times by saving data on where
particular files are stored on the tape. The argument is the
name of the file that will hold this data.

-T date This option tells dump to back up all files created or modified
since the specified date

As an example of dump in action, consider backing up the root (/), /home, and /usr
directories to tape. The following command will do this:

dump -j5 -f /dev/st0 /home / /usr

The -j5 option specifies moderate compression. Other than this, the command is
fairly simple. You can apply additional options from Table 7.12 or from the dump man
page, of course.

03843c07.indd 330 8/25/09 7:22:11 AM

Backing Up and Restoring a Computer 331

To restore a dump archive, you use the restore command. This command can take the
-A, -f, or -Q options from Table 7.12. In addition, you must use an option to specify what
action you want restore to take, as specified in Table 7.13.

TA B le 7.13 restore Actions

Action Description

-C Compares archive to files on disk.

-i Interactive restore; reads index from the archive and then presents
an interactive shell. Consult the restore man page for details on
what the commands at this shell permit.

-P file Creates a new access file (similar to the one the -Q dump option
creates) from the archive without restoring the contents.

-R Restarts an interrupted restore operation.

-r Restores data to a pristine (completely empty) filesystem.

-t Lists the contents of the archive, or of particular files, if they’re
specified.

-x Restores the specified files from the archive.

Using mt to Control a Tape Drive
In cpio and tar terminology, each backup is a file. This file is likely to contain many files from
the original system, but like an RPM or Debian package file, the archive file is a single entity.
Sometimes an archive file is far smaller than the tape on which it’s placed. If you want to store
more than one archive file on a tape, you can do so by using the nonrewinding tape device file-
name. For instance, the following commands store multiple archives on a single tape:

tar cvlpf /dev/nst0 /home

tar cvlpf /dev/nst0 /

tar cvlpf /dev/nst0 /boot

tar cvlpf /dev/nst0 /var

After you issue these commands, the tape will contain four tar files, one for each of
the four directories. To access each file after writing them, you need to use a special utility
called mt. This program moves forward and backward among tape files and otherwise con-
trols tape features. Its syntax is as follows:

mt -f device operation [count] [arguments]

03843c07.indd 331 8/25/09 7:22:11 AM

332 Chapter 7 n Managing Packages and System Backups

The device parameter is the tape device filename. The mt utility supports many opera-
tions. Table 7.14 summarizes the most important ones.

TA B le 7.14 mt Operations

Operation Description

fsf Moves forward count files.

bsf Moves backward count files.

eod or seod Moves to the end of data on the tape.

rewind Rewinds the tape.

offline or rewoffl Rewinds and unloads the tape. (Unloading is meaningless
on some drives but ejects the tape on others.)

retension Rewinds the tape, winds it to the end, and then rewinds it
again. This action improves reliability with some types of
tape, particularly if the tape has been sitting unused for
several months.

erase Erases the tape. (This command usually doesn’t actually
erase the data; it just marks the tape as being empty.)

status Displays information on the tape drive.

load Loads a tape into the drive. Unnecessary with many drives.

compression Enables or disables compression by passing an argument of
1 or 0, respectively.

datcompression Also enables and disables compression.

The compression and datcompression operations aren’t identical; some-
times a tape drive works with one but not the other.

For instance, suppose you created a backup on a SCSI tape, but now you want to create
another backup on the same tape without eliminating the first backup. You could issue the
following commands to accomplish this task:

mt -f /dev/nst0 rewind

mt -f /dev/nst0 fsf 1

03843c07.indd 332 8/25/09 7:22:11 AM

Backing Up and Restoring a Computer 333

tar cvlpf /dev/nst0 /directory/to/back/up

mt -f /dev/nst0 offline

These commands rewind the tape, space past the first file, create a new backup, and
then unload the tape. Such commands are particularly useful when performing incremental
backups, as described shortly.

Performing Network Backups with rsync
Some sites implement network-enabled backup tools. Some programs, such as AMANDA,
are designed for this purpose; but in many cases simpler tools will do the job, particularly
for limited backups, such as backups of user data. One of these simpler tools is rsync.
This program synchronizes files on one computer with those on another, enabling painless
backup of specified directories. You might set up one system with a large hard disk and
tape backup drive to hold backups and then have several other computers use rsync to copy
critical user files onto the backup server. The syntax for the rsync client is as follows:

rsync [options] user-files destination

Table 7.15 summarizes the most important rsync options. user-files are files to be backed
up, and destination is a path to the destination. user-files or destination may be either local
files (indicated using a normal Linux pathname) or a remote system (indicated by a leading
hostname, and optionally a username, as in fred@back.luna.edu:/archives.

TA B le 7.15 rsync Operations

Operation Operation Abbreviation Description

--archive -a Archive mode; equivalent to -rlptgoD.

--recursive -r Recurses into subdirectories.

--dirs -d Transfers directories without recursing.

--links -l Copies symbolic links as such.

--copy-links -L Copies symbolic links as referent files.

--hard-links -H Copies hard links as such.

--perms -p Preserves permissions.

--executability -E Preserves execute permissions.

--owner -o Preserves ownership.

--group -g Preserves group ownership.

03843c07.indd 333 8/25/09 7:22:11 AM

334 Chapter 7 n Managing Packages and System Backups

TA B le 7.15 rsync Operations (continued)

Operation Operation Abbreviation Description

--times -t Preserves time stamps.

--devices none Preserves device files.

--special none Preserves special files.

none -D Same as --devices --special.

--dry-run -n Shows what would happen without
actually transferring files.

--one-file-system -X Copies from a single filesystem, not
from mounted filesystems.

--compress -z Compresses files during transfer. This
has no effect on file size on the server.

--progress none Shows progress indicator during
transfer.

Other protocols may be used for network backups, of course. The File Transfer Protocol
(FTP), the Secure Shell (SSH), Network Filesystem (NFS), and others can all handle basic
data transfer tasks. The main advantage of rsync is that it transfers only the data that must
be transferred to keep the remote archive up-to-date. This fact helps minimize network
bandwidth use, which can be an important factor when backing up many or large systems
over your network.

Planning a Backup Schedule
Regular computer backup is important, but precisely how regularly is a matter that varies
from one system to another. If a computer’s contents almost never change (as might be true
of a dedicated router or a workstation whose user files reside on a file server), backups once
a month or even less often might be in order. For critical file servers, once a day is not too
often. You’ll have to decide for yourself just how frequently your systems require backup.
Consider factors such as how often the data change, the importance of the data, the cost of
recovering the data without a current backup, and the cost of making a backup. Costs may
be measured in money, your own time, users’ lost productivity, and perhaps lost sales.

Even the most zealous backup advocate must admit that creating a full backup of a big sys-
tem on a regular basis can be a tedious chore. A backup can easily take several hours, depend-
ing on backup size and hardware speed. For this reason, most backup packages, including tar,
support incremental backups. You can create these using the --listed-incremental file
qualifier to tar. Subsequent backups back up only new or changed files.

03843c07.indd 334 8/25/09 7:22:12 AM

Backing Up and Restoring a Computer 335

You can create a schedule in which you do a full backup of the entire computer only
occasionally—say, once a week or once a month. You’d do this by deleting the increment
file and running a backup as usual. On intervening weeks or days, you can perform an
incremental backup, thus saving time.

With cpio, the key to incremental backups is in the list of files fed to the program. You
can perform an incremental backup by using find options to locate only new files or files
that have changed since the last backup. For instance, the -newer file option to find
causes that program to return only files that have been modified more recently than file.
Thus, you could create a file (perhaps a log of your backup activity) during each backup
and use it as a way of determining what files have been modified since the last backup.

Performing incremental backups has a couple of drawbacks. One is that they complicate
restoration. Suppose you do a full backup on Monday and incremental backups every other
day. If a system fails on Friday, you’ll need to restore the full backup and several incremen-
tal backups. Second, after restoring an incremental backup, your system will contain files
that you had deleted since the full backup. If files have short life spans on a computer, this
can result in a lot of “dead” files being restored when the time comes to do so.

Despite these problems, incremental backups can be extremely useful for helping make
backups manageable. They can also reduce wear and tear on tapes and tape drives, and
they can minimize the time it takes to restore files if you know that the files you need to
restore were backed up on an incremental tape.

Preparing for Disaster: Backup Recovery
Creating backups is advisable, but doing this isn’t enough. You must also have some way
to restore backups in case of disaster. This task involves two aspects: partial restores and
emergency recovery.

Partial restores involve recovering just a few noncritical files. For instance, users might
come to you and ask you to restore files from their home directories. You can do so fairly
easily by using the --extract (x) tar command:
cd /

tar xvpf /dev/st0 home/username/filename

This sequence involves changing to the root directory and issuing a relative
path to the file or directory that must be restored. This is required because
tar normally strips away the leading / in files it backs up, so the files are
recorded in the archive as relative filenames. If you try to restore a file with
an absolute filename, it won’t work.

When you’re using cpio, the procedure is similar, but you use the --extract (-i) option,
along with other options to feed the name of the archive, and perhaps do other things:

cd /

cpio -ivF /dev/st0 home/username/filename

03843c07.indd 335 8/25/09 7:22:12 AM

336 Chapter 7 n Managing Packages and System Backups

Whether you’re using tar or cpio, you’ll need to know the exact name of the file or
directory you want to restore in order to do this. If you don’t know the exact filename, you
may need to use the --list (t) command to cpio or tar to examine the entire contents of
the tape, or at least everything until you see the file you want to restore.

If you use incremental backups, you can use the incremental file list to
locate the filename you want to restore.

A much more serious problem is that of recovering a system that’s badly damaged. If your
hard disk has crashed or your system has been invaded by crackers, you must restore the entire
system from scratch, without the benefit of your normal installation. In most cases, an emer-
gency system, as described in Chapter 1, will do the job. You’ll need to ensure beforehand that
your emergency system has the tools you need to access your backups.

Whatever approach you choose to use, you should test it before you need it. Learn at
least the basics of the tools available in any system you plan to use. If you use unusual
backup tools (such as commercial backup software), be sure to copy those tools to your
emergency system or have them available on a separate removable disk. If you’ll need to
recover clients via network links, test those setups as well.

You may not be able to completely test your emergency restore tools. Ideally, you should
boot the tools, restore a system, and test that the system works. This may be possible if you
have spare hardware on which to experiment, but if you lack this luxury, you may have to
make do with performing a test restore of a few files and testing an emergency boot procedure.
Note that a freshly restored system will not be bootable; you’ll need a way to restore your boot
loader from an emergency boot.

Writing to Optical Discs
Optical media are an extremely popular means of exchanging moderately large files. Most
CD-R and CD-RW media hold 700MB of files (older discs held 650MB), recordable DVD
formats have capacities of 4.7–8.5GB, and Blu-ray discs hold 25–50GB. Plain write-once
CDs and DVDs cost $0.10 to $1 and are likely to remain readable for several years to
decades, given proper storage. You can’t simply mount an optical disc and write files to it
as you would a floppy disk, though; you must create a complete filesystem and then copy
(or “burn”) that filesystem to the disc. This process requires using two tools, mkisofs and
cdrecord, or requires variants of or front-ends to these tools.

Linux Optical Disc Tools
The Linux optical disc creation process involves three steps:

1. Collect source files. You must first collect source files in one location, typically a single
subdirectory of your home directory.

03843c07.indd 336 8/25/09 7:22:12 AM

Writing to Optical Discs 337

2. Create a filesystem. You point a filesystem-creation program, mkisofs, at your source
directory. This program generates an ISO-9660 filesystem in an image file. Alternatively,
you can create another filesystem in an appropriately sized partition or image file and
copy files to that partition or image file. This latter approach can be used to create ext2fs,
FAT, or other types of optical discs, but there’s seldom any advantage to doing this.

If you install an OS to a partition that’s less than your media’s size, you can
back it up by burning the partition directly to CD-R or recordable DVD. The
result is a disc that uses the OS’s native filesystem. You can restore the
backup by using dd, assuming the target partition is exactly the same size
as the original.

3. Burn the disc. You use an optical disc–burning program, such as cdrecord, to copy the
image file to the optical device.

Recent Linux distributions provide both mkisofs and cdrecord in a single
package called cdrtools.

The growisofs program combines the functionality of mkisofs and cdrecord, but
growisofs works only with DVDs and Blu-ray discs, not with the smaller CD-Rs. In
turn, many versions of cdrecord won’t work with the larger DVDs and Blu-ray discs!

Another approach to optical disc creation is to use GUI front-ends to the text-mode
tools. These GUI tools provide a point-and-click interface, eliminating the need to remember
obscure command-line parameters. Popular GUI Linux optical disc creation tools include
X-CD-Roast (http://www.xcdroast.org), GNOME Toaster (http://gnometoaster.rulez
.org), and K3B (http://k3b.sourceforge.net).

All of these optical disc tools provide a dizzying array of options. For the most part, the
default options work quite well, although you will need to provide information to identify
your drive and burn speed, as described in the next section. Some mkisofs options can
also be important in generating image files that can be read on a wide variety of OSs, as
described later in “Creating Cross-Platform Discs.”

A Linux Optical Disc Example
To begin creating optical discs, starting with mkisofs makes sense:

$ mkisofs -J -r -V “volume name” -o ../image.iso ./

This command creates an image file called image.iso in the parent of the current direc-
tory, placing files from the current working directory (./) in the resultant image file. The -J
and -r options enable Joliet and Rock Ridge extensions, respectively, and the -V option sets
the volume name to whatever you specify. Dozens of other options and variants on these
are available; check the mkisofs man page for details.

03843c07.indd 337 8/25/09 7:22:12 AM

338 Chapter 7 n Managing Packages and System Backups

Once you’ve created an image file, you can burn it with a command such as the
following:

$ cdrecord dev=/dev/dvdrw speed=4 ../image.iso

The device (dev=/dev/dvdrw) must exist and be your optical drive. (This may be /dev/
dvdrw or something similar even if you’re burning a CD-R. Details vary depending on your
distribution and hardware.) The speed is set using the speed option, and the final param-
eter specifies the source of the file to be burned. As with mkisofs, cdrecord supports many
additional options; consult its man page for details. If the SUID bit isn’t set on this pro-
gram, with ownership set to root, you must run it as root.

You can use the loopback option to verify the contents of an image file
before burning it. For instance, typing mount -t iso9660 -o loop  
image.iso /mnt/cdrom mounts the image.iso file to /mnt/cdrom. You can
then check that all the files that should be present are present. You must
be root to use this option, or you must have created an appropriate /etc/
fstab entry.

When burning DVDs or Blu-ray discs, you may need to use growisofs, which combines
the features of both mkisofs and cdrecord:

$ growisofs -speed=4 -Z /dev/dvdrw -J -r -V “volume name” ./

The -speed option of growisofs is equivalent to the speed option of cdrecord. You
specify the target device using -Z rather than dev=. Options following the device are the
same as those used by mkisofs. The growisofs approach eliminates the need for a tempo-
rary image file, which is particularly helpful with larger discs. If you prefer, though, you
can create such a file with mkisofs or some other utility and then burn it with growisofs
by adding the source file to the -Z option:

$ growisofs -speed=4 -Z /dev/dvdrw=source-file.iso

Creating Cross-Platform Discs
You may want to create a disc that works on many different OSs. If so, you may want to
use a wide range of filesystems and filesystem extensions. Such discs contain just one copy
of each file; the filesystems are written in such a way that they all point their unique direc-
tory structures at the same files. Thus, the extra space required by such a multiplatform
disc is minimal. Features you may want to use on such a disc include the following:

Following symbolic links The -f option to mkisofs causes the tool to read the files that
symbolic links point to and include them on the CD-R, rather than to write symbolic links
as such using Rock Ridge extensions. Following symbolic links can increase the disk space
used on a CD-R, but this option is required if you want symbolic links to produce reason-
able results on systems that don’t understand Rock Ridge, such as Windows.

03843c07.indd 338 8/25/09 7:22:12 AM

Summary 339

Long ISO-9660 filenames Normally, mkisofs creates only short filenames for the base
ISO-9660 filesystem. Long filenames are stored in Rock Ridge, Joliet, or other filesystem
extensions. You can increase the raw ISO-9660 name length to 31 characters with the -l
(that’s a lowercase L) option.

Joliet support The -J option to mkisofs, as noted earlier, creates an image with Joliet
extensions. These extensions do not interfere with reading the disc from OSs that don’t
understand Joliet.

Rock Ridge support The -R and -r options both add Rock Ridge extensions. The -R option
adds the extensions, but it doesn’t change ownership or permissions on files. Using -r works
the same, except that it changes ownership of all files to root, gives all users access to the files,
and removes write permissions. These features are usually desirable on a disc that’s to be used
on any but the original author’s computer.

UDF support You can add support for the Universal Disk Format (UDF) filesystem by
including the -udf option. UDF is the “up and coming” optical disc filesystem and is the
preferred filesystem for DVDs. Most modern OSs, including recent versions of Linux,
Windows, and Mac OS, understand UDF.

HFS support To create a disc that includes Mac OS HFS support, add the -hfs option.
When you insert the resulting disc into a Macintosh, the computer will read the HFS file-
names. A slew of options are related to this one.

Summary
One of your primary duties as a system administrator is to manage the packages installed
on a computer. To do this, you must often remove unused programs, install new ones, and
upgrade existing packages. You may also need to verify the integrity of installed programs
or track down what libraries or other programs another one uses. In all these tasks, the
RPM and Debian package management systems can be extremely helpful. These systems
track installed files and dependencies, giving you access to information that’s not otherwise
available. On occasion, though, you may need to use the simpler tarballs—particularly if
you use a tarball-based distribution such as Slackware.

Backup is critically important for most computers, but backup is also often neglected.
Traditionally, tapes have been used to back up computers, but the cost of hard disks has
dropped so much that removable disks are now a viable alternative for many installations.
Typically, systems are backed up using tools designed for this purpose, such as tar, cpio,
or dump. Such programs can write directly to tape devices, or they can be used to create
archive files on removable disks. You can also create an archive file that’s subsequently
stored on an optical disc using cdrecord.

Optical media can be very convenient, but they require special tools to be created. The
mkisofs program creates a filesystem for such media, while cdrecord stores the filesystem on
disk. The growisofs program combines these two tools’ functionality into one program. GUI
front-ends to these tools, such as X-CD-Roast, can simplify the creation of optical discs.

03843c07.indd 339 8/25/09 7:22:12 AM

340 Chapter 7 n Managing Packages and System Backups

Exam Essentials

Identify critical features of RPM and Debian package formats. RPM and Debian pack-
ages store all files for a given package in a single file that also includes information on what
other packages the software depends on. These systems maintain a database of installed
packages and their associated files and dependencies.

Describe the process of installing an RPM or Debian package. Use the rpm program or
Yum to install an RPM package, or use dpkg or apt-get to install a Debian package. These
programs install, upgrade, or remove all files associated with a package and maintain the
associated databases.

Summarize methods of working around package dependency problems. Dependency
problems can be overcome by forcing an installation, upgrading or installing the depended-
on package, recompiling the package, or installing another version of the target package.
Which approach is best depends on the specifics of the system involved.

Describe how to install a program from a source code tarball. Compiling a program
from source code depends greatly on the program in question. Most provide a configura-
tion script called configure or a configure target in the Makefile. Once that’s run, you
type make to build the package and then install it with an install script or an install
target in the Makefile.

Summarize backup hardware options. Backup hardware includes tapes, dedicated hard
disks, removable disks, and optical media. Tapes have been the most common type of backup
hardware in the past, but each of the others has its place for particular backup types, and hard
disks have dropped in price enough to make them appealing as an everyday backup medium.

Describe how Linux writes to optical media. Linux uses the mkisofs program to create
an ISO-9660 filesystem (and optionally other common optical disc filesystems), which is
then burned to the disc by cdrecord. These programs may be piped together, and common
GUI front-ends can help in this process by providing a friendlier user interface.

03843c07.indd 340 8/25/09 7:22:13 AM

Review Questions 341

Review Questions

1. You are installing a small program from source code and need to change a number of
options. You cannot find a specific configuration script for the program. In this case, what
file should you edit?

A. configfile

B. change

C. make

D. makefile

2. Which of the following is not an advantage of a source package over a binary package?

A. A single source package can be used on multiple CPU architectures.

B. By recompiling a source package, you can sometimes work around library incompat-
ibilities.

C. You can modify the code in a source package, altering the behavior of a program.

D. Source packages can be installed more quickly than binary packages can.

3. Which is true of using both RPM and Debian package management systems on one computer?

A. It’s generally inadvisable because the two systems don’t share installed file database
information.

B. It’s impossible because their installed file databases conflict with one another.

C. It causes no problems if you install important libraries once in each format.

D. It’s a common practice on Red Hat and Debian systems.

4. Which of the following statements is true about binary RPM packages that are built for a
particular distribution?

A. They can often be used on another RPM-based distribution for the same CPU
architecture, but this isn’t guaranteed.

B. They may be used in another RPM-based distribution only when you set the
--convert-distrib parameter to rpm.

C. They may be used in another RPM-based distribution only after you convert the
package with alien.

D. They can be recompiled for an RPM-based distribution running on another type of CPU.

5. Which is true of source RPM packages?

A. They consist of three files: an original source tarball, a patch file of changes, and a
PGP signature indicating the authenticity of the package.

B. They require programming knowledge to rebuild.

C. They can sometimes be used to work around dependency problems with a binary
package.

D. They are necessary to compile software for RPM-based distributions.

03843c07.indd 341 8/25/09 7:22:13 AM

342 Chapter 7 n Managing Packages and System Backups

6. Which of the following do RPM filenames conventionally include?

A. Single-letter codes indicating Red Hat–certified build sites

B. Build date information

C. Version number and CPU architecture information

D. A CRC code for the package’s contents

7. To use dpkg to remove a package called theprogram, including its configuration files,
which of the following commands would you type?

A. dpkg -P theprogram

B. dpkg -p theprogram

C. dpkg -r theprogram

D. dpkg -r theprogram-1.2.3-4.deb

8. Which of the following describes a difference between apt-get and dpkg?

A. apt-get provides a GUI interface to Debian package management; dpkg does not.

B. apt-get can install tarballs in addition to Debian packages; dpkg cannot.

C. apt-get can automatically retrieve and update programs from Internet sites; dpkg
cannot.

D. apt-get is provided only with the original Debian distribution, but dpkg comes with
Debian and its derivatives.

9. Which of the following is true of an attempt to use a Debian package from one distribution
on another Debian-derived distribution?

A. It’s unlikely to work because of library incompatibilities and divergent package-naming
conventions.

B. It’s guaranteed to work because of Debian’s strong package definition and enforcement
of standards for startup scripts and file locations.

C. It will work only when the distributions are built for different CPUs or when the alien
package is already installed on the target system.

D. It’s likely to work because of the close relationship of Debian-based distributions,
assuming the two distributions are for the same CPU architecture.

10. The tar program may be used to complete which of the following tasks? (Choose all
that apply.)

A. Install RPM and Debian packages.

B. Install software from binary tarballs.

C. Back up a computer to tape.

D. Create source code archive files.

03843c07.indd 342 8/25/09 7:22:13 AM

Review Questions 343

11. The tar program provides a much easier _________ process than RPM and Debian package
tools do.

A. dependency tracking

B. source code compilation

C. file ownership setting

D. package creation

12. What is wrong with the following commands, which are intended to record an incremental
backup on a tape that already holds one incremental backup?

mt -f /dev/st0 fsf 1

tar cvlpf /dev/st0 --listed-incremental /root/inc /home

A. The mt command should terminate in 2, rather than 1, to skip to the second position
on the tape.

B. When backing up /home, the incremental file must reside in /home, not in /root.

C. The device filename should be a nonrewinding name (such as /dev/nst0), not a
rewinding name (/dev/st0).

D. The incremental backup must include the root (/) directory; it cannot include
only /home.

13. What is an advantage of using rsync for network backups, as compared to FTP or NFS?

A. rsync can be used by any user.

B. rsync can reduce network bandwidth use.

C. rsync can back up across architectures (x86 to PowerPC, for instance).

D. rsync can back up from any filesystem type (XFS, ReiserFS, and so on).

14. Which of the following is a true statement concerning the ability to restore a backup used
making Linux’s dump to a partition that’s formatted with XFS?

A. You must use cpio’s -H dump option to do the job.

B. You must use the dump utility’s -r option to do the job.

C. You must use the xfsrestore utility to do the job.

D. This task cannot be directly and easily performed.

15. You need to restore some files that were accidentally deleted. Which of the following
commands can be used to list the contents of an archive stored on a SCSI tape?

A. cpio -itv > /dev/st0

B. cpio -otv > /dev/st0

C. cpio -otv < /dev/st0

D. cpio -itv < /dev/st0

03843c07.indd 343 8/25/09 7:22:13 AM

344 Chapter 7 n Managing Packages and System Backups

16. You arrive at work on Monday morning to find that the server has crashed. All indications
point to the crash as occurring after midnight on Monday morning. Scripts automatically
do a full backup of the server every Friday night and an incremental backup all other nights.
Which tapes do you need to restore the data on a new server? (Choose all that apply.)

A. Thursday’s tape

B. Friday’s tape

C. Saturday’s tape

D. Sunday’s tape

17. What is a disadvantage of optical discs compared to tapes as a backup medium?

A. Optical discs are sequential-access media; tapes are random access.

B. Optical discs require use of the awkward mt utility.

C. Optical discs are much more expensive than tapes.

D. Optical discs have lower capacity than tapes.

18. You create a backup of important files on CD-R by creating an uncompressed tarball and
then writing that tarball to disc by using cdrecord. How would you access these files in
the future?

A. Mount the disc as an ordinary CD-R using mount, and then read from the tarball file
on the mount point, as in tar xvf /mnt/dvd/backup.tar.

B. Pass the optical disc’s device filename to tar as the input file, as in tar xvf /dev/dvd.

C. Dynamically copy the optical disc to a tape using the dco command, and then access
the tape device using tar, as in tar xvf /dev/st0.

D. Use mkisofs to generate a loopback filesystem and mount it at /mnt/dvd, and then
access it with tar, as in tar xvf /mnt/dvd/backup.tar.

19. What option to mkisofs would you use if you want a computer running Microsoft Windows
Vista to be able to read long filenames on a CD-R or DVD created with Linux? (Choose all
that apply.)

A. -J

B. -r

C. -hfs

D. -udf

20. You’ve downloaded the latest version of your Linux distribution as a 4GB DVD image file
(distrib.iso). Which of the following commands will burn this file to a blank DVD,
assuming your DVD drive can be accessed as /dev/dvdrw?

A. growisofs -Z /dev/dvdrw distrib.iso

B. cdrecord -Z /dev/dvdrw distrib.iso

C. growisofs -Z /dev/dvdrw=distrib.iso

D. mkisofs -o /dev/dvdrw -i distrib.iso

03843c07.indd 344 8/25/09 7:22:14 AM

Answers to Review Questions 345

Answers to Review Questions

1. D. Some programs (particularly small ones) don’t use configuration scripts. To change their
options, you must typically edit a file called Makefile or makefile.

2. D. Because they must be compiled prior to installation, source packages require more time
to install than binary packages do.

3. A. Package management systems don’t share information, but neither do their databases
actively conflict. Installing the same libraries using both systems would almost guarantee
that the files served by both systems would conflict with one another. Actively using both
RPM and Debian packages isn’t common on any distribution, although it’s possible with
all of them.

4. A. RPMs are usually portable across distributions, but occasionally they contain incompat-
ibilities. There is no --convert-distrib parameter to rpm, nor is alien used to convert
from RPM format to RPM format. Binary packages can’t be rebuilt for another CPU archi-
tecture, but source packages may be rebuilt for any supported architecture, provided the
source code doesn’t rely on any CPU-specific features.

5. C. Some dependencies result from dynamically linking binaries to libraries at compile time,
and so they can be overcome by recompiling the software from a source RPM. Option A
describes Debian source packages, not RPM packages. Recompiling a source RPM requires
only issuing an appropriate command, although you must also have appropriate compilers
and libraries installed. Source tarballs can also be used to compile software for RPM sys-
tems, although this results in none of RPM’s advantages.

6. C. The package version number (as well as an RPM build number) and CPU architecture
code (or src for source code or noarch for architecture-independent files) are included in
most RPM package filenames. Red Hat does not provide certification for RPM maintainers.
Build dates are stored in the RPM, but not in the filename. CRC codes also don’t conven-
tionally appear in RPMs’ filenames.

7. A. An uppercase -P invokes the purge operation, which completely removes a package and
its configuration files. The lowercase -p causes dpkg to print information on the package’s
contents. The -r parameter removes a package but leaves configuration files behind. The
final variant (option D) also specifies a complete filename, which isn’t used for removing a
package—you should specify only the shorter package name.

8. C. You can specify Debian package archive sites in /etc/apt/sources.list, and then
you can type apt-get update and apt-get upgrade to quickly update a Debian system
to the latest packages. GUI package management tools for Debian and related distributions
exist, but they aren’t apt-get. Neither apt-get nor dpkg can directly install tarballs. Both
Debian and many of its derivatives ship with both apt-get and dpkg.

03843c07.indd 345 8/25/09 7:22:14 AM

346 Chapter 7 n Managing Packages and System Backups

9. D. Systems that use Debian are based on the same core OS, and so they share most compo-
nents, making package transplants likely—but not certain—to succeed. Library incompat-
ibilities could cause problems but aren’t likely to, especially if you use recent packages and
distributions. Although Debian has clearly defined key file locations, startup scripts, and so
on, these can’t guarantee success. Binary packages built for different CPUs are almost guar-
anteed not to work, although scripts or other nonbinary packages most likely will work
across CPU types.

10. B, C, D. The tar program can do all these things except for directly installing RPM or
Debian packages.

11. D. The tar --create command creates an archive from any specified directory; RPM
and Debian package creation tools are more complex than this. The tar utility provides
no dependency-tracking mechanisms at all, making you do that work. Although tar can
be used to distribute source code, it’s not used in compiling it per se. All the package tools
discussed in this chapter automatically set file ownership appropriately.

12. C. The /dev/st0 device (and /dev/ht0, for that matter) rewinds after every operation. There-
fore, the first command as given will wind past the first incremental backup, and then immedi-
ately rewind. The second command will therefore overwrite the first incremental backup.

13. B. rsync was designed to minimize network bandwidth use by figuring out which files
already exist on a backup server and therefore don’t need to be transferred. Thus, option B
describes an advantage of this tool for network backups. Options A, C, and D correctly
describe rsync features; however, they also describe features shared by FTP, NFS, and
many other tools that can be used for network backup, so these aren’t advantages of rsync.

14. D. The dump utility is filesystem-specific, so restores can be performed only to the same
filesystem format that was used on the source system. Thus, restoring a backup from ext2fs,
ext3fs, or ext4fs (the three filesystems supported by dump) to XFS is impossible, at least
directly, as option D states. (You could create a carrier filesystem image file, restore the data
to it, and then copy the files out of that file, but this is indirect and awkward, not direct
and easy.) Although cpio has a -H option that permits it to read various archive types, as
specified by option A, dump is not a supported value. Contrary to option B, dump is not used
to restore data. The xfsrestore program, mentioned in option C, exists, but it can read
only those archives created by xfsdump, not by dump.

15. D. With the cpio utility, the -i option is used to read in from an external source—in this
case coming in (<) from /dev/st0. The -tv options are used to show the files on the tape
and provide a listing of what is there.

16. B, C, D. To restore the data, you must restore the most recent full backup—which was
done on Friday night. After the full restore, you must restore the incremental backups in
the order in which they were done. In this case, two incrementals (Saturday’s and Sunday’s)
were done after the full backup, and they must be restored as well.

03843c07.indd 346 8/25/09 7:22:14 AM

Answers to Review Questions 347

17. D. The highest-capacity optical discs are dual-layer Blu-ray discs, which can store 50GB per
disc. Tapes can store up to 800GB per tape. (These values are likely to increase in the future
for both storage types.) Option A is backward; tapes are the sequential-access devices, and
optical discs are random access. Option B is also backward, and it’s deceptive; mt is a tape
control utility, and it’s not particularly awkward. The relative costs of optical discs and tapes
are similar; they might favor one or the other depending on specific products chosen, but con-
trary to option C, optical discs are not universally or significantly more expensive than tapes.

18. B. The question describes writing a tarball “raw” to the CD-R, without the benefit of a
filesystem. When written in this way, the tarball may be accessed in an equally “raw” way,
as described by option B. Option A describes the process you’d use if you’d created a filesys-
tem to hold the tarball (via mkisofs) and written that to disc rather than writing the tarball
directly. There is no standard dco command, so option C won’t work. Option D is, in a
sense, backward; you might use mkisofs to create a filesystem before writing the backup to
disc but not after doing so.

19. A, D. The -J option creates a disc with Joliet extensions, and -udf creates one with the
UDF filesystem. Recent versions of Windows understand both of these extensions. The -r
option creates a disc with Rock Ridge extensions, while -hfs creates one with an Apple
HFS filesystem. Windows won’t understand either of these without special drivers, although
Windows will still be able to read the underlying ISO-9660 filesystem (with 8.3 filenames).

20. C. The growisofs program is generally used to burn DVDs, since many versions of
cdrecord lack DVD support. Of the two growisofs command options, C presents the
correct syntax; option B is missing a critical equal sign (=) between the device filename and
the image filename. Even if your version of cdrecord supports DVDs, option B’s syntax
is incorrect; cdrecord uses dev= rather than -Z to specify the target device. The mkisofs
command is used to create an image file, not to burn one to disc; and option D’s syntax is
incorrect in any event.

03843c07.indd 347 8/25/09 7:22:14 AM

03843c07.indd 348 8/25/09 7:22:14 AM

Chapter

8
Configuring Basic
Networking

The FollowiNg CompTiA oBjeCTives
Are Covered iN This ChApTer:

4.2 Execute network interface configuration using the ÛÛ
following (dhclient, dhcpcd, ifconfig, iwconfig, route, ifup,
ifdown, network configuration files).

4.3 Implement configurations and/or configuration ÛÛ
changes for the following (Hostname lookup: /etc/hosts,
/etc/nsswitch.conf, /etc/resolv.conf).

4.5 Troubleshoot basic connectivity issues using ÛÛ
the following tools (netstat, ping, traceroute, arp,
telnet, route).

4.6 Troubleshoot name resolution issues using the ÛÛ
following tools (dig, host, nslookup, hostname).

03843c08.indd 349 8/25/09 7:23:11 AM

Networking is a complex topic that’s touched on in several
chapters of this book. This chapter provides an introduction to
basic Transmission Control Protocol/Internet Protocol (TCP/IP)

network configuration. Although most users perceive network connections as things that “just
work” (or “just don’t work” on bad days!), the reality is that even the basics of network con-
figuration require a certain amount of knowledge. You must understand the roles of several
different types of network addressing. Several tools can be involved in network configuration,
including both tools to manage the task manually and with the help of a network server.
When things go wrong, you must be able to resolve the problems, so this chapter also covers
network troubleshooting tools and techniques.

Objective 4.3 is covered partly in this chapter and partly in Chapter 9.

Understanding Networks
In the past three decades, computer networks have grown dramatically. Both local net-
works and larger networks exploded in importance as increasingly sophisticated network
applications were written. To understand these applications, it’s useful to know something
about network hardware and the most common network protocols. Both of these things
influence what a network can do.

Basic Functions of Network Hardware
Network hardware is designed to enable two or more computers to communicate with one
another. As described shortly, this hardware can take a variety of forms. Most commonly,
network hardware comes as a card you plug into a computer, as a device that plugs into a
USB or other external port, or as circuitry that’s built into a computer motherboard. Many
networks rely on wires or cables to transmit data between machines as electrical impulses,
but network protocols that use radio waves or even light to do the job are also common.

Sometimes the line between network hardware and peripheral interface ports can be blurry.
For instance, a parallel port is normally not considered a network port, but when it is used
with the Parallel Line Interface Protocol (PLIP; http://tldp.org/HOWTO/PLIP.html), the

03843c08.indd 350 8/25/09 7:23:11 AM

Understanding Networks 351

parallel port becomes a network device. More commonly, a USB or RS-232 serial port can
become a network interface when used with the Point-to-Point Protocol (PPP), which enables
network connections over these ports, typically used with a modem over a telephone line.

PPP was once an important networking tool, but with the rise of broadband
Internet connections, it’s falling in importance. Some digital subscriber line
(DSL) connections still use a PPP variant, called PPP over Ethernet (PPPoE).
Linux can handle PPPoE, or you can use a broadband router to make the
PPPoE connection, and Linux can then use an ordinary Ethernet link to
the broadband router.

At its core, network hardware is hardware that facilitates the transfer of data between
computers. Hardware that’s most often used for networking includes features that help
this transfer in various ways. For instance, such hardware may include ways to address
data intended for specific remote computers, as described later in the section “Hardware
Addresses.” When basically non-network hardware is pressed into service as a network
medium, the lack of such features may limit the utility of the hardware or require extra
software to make up for the lack. If extra software is required, you’re unlikely to notice the
deficiencies as a user or system administrator because the protocol drivers handle the work,
which makes them harder to configure and more prone to sluggishness or other problems.

Types of Network Hardware
Aside from traditionally non-network ports like USB, RS-232 serial, and parallel ports,
Linux supports several types of common network hardware:

Ethernet Ethernet is the most common type of network hardware on local networks today.
It comes in several varieties ranging from the old 10Base-2 and 10Base-5 (which use coaxial
cabling similar to cable TV cable) to 100Base-T and 1000Base-T (which use twisted-pair
cabling that resembles telephone wire but with broader connectors, which is the reason for
the “-T”) to the cutting-edge 10GBase-LR, 10GBase-SR, and other variants. The number
preceding the “Base” (short for “baseband,” a type of transmission medium) indicates the
technology’s maximum speed in megabits per second (Mbps). The G in 10GBase refers to a
speed in gigabits per second (Gbps). (1000Base-T is also referred to as gigabit Ethernet). Of
the versions in use in 2009, 100Base-T and 1000Base-T are the most common for existing
installations, but the latter is nearly universally supported in new hardware. Linux includes
excellent Ethernet support, including drivers for almost every Ethernet card on the market.

Token Ring At one time an important competitor to Ethernet, IBM’s Token Ring tech-
nology is today fairly uncommon. Speeds range from 4Mbps to 1Gpbs. Token Ring is
costlier than Ethernet and has less in the way of hardware support. For instance, fewer
printers support direct connection to Token Ring networks than to Ethernet networks.
Linux includes support for several Token Ring cards, so if you need to connect Linux to
a Token Ring network, you can do so.

03843c08.indd 351 8/25/09 7:23:12 AM

352 Chapter 8 n Configuring Basic Networking

FDDI Fiber Distributed Data Interface (FDDI) is a networking technology that’s compa-
rable to 100Base-T Ethernet in speed. FDDI uses fiber-optic cables, but a variant known as
CDDI works over copper cables similar to those of 100Base-T. Both technologies are sup-
ported by the Linux FDDI drivers.

HIPPI High-Performance Parallel Interface (HIPPI) provides 800Mbps or 1600Mbps
speeds. It’s most commonly used to link computer clusters or supercomputers over dozens
or hundreds of meters. Linux includes limited HIPPI support.

LocalTalk LocalTalk is a network hardware protocol developed by Apple for its Macintosh
line. It’s slow by today’s standards (2Mbps), and Apple no longer includes LocalTalk connec-
tors on modern Macintoshes.

Fibre Channel Fibre Channel supports both optical and copper media, with speeds of
between 133Mbps and 6800Mbps. The potential reach of a Fibre Channel network is unusu-
ally broad—up to 10 kilometers. Linux includes support for some Fibre Channel products.

Wireless protocols Several wireless networking standards (often called Wi-Fi) have
become popular, particularly in small offices, homes, and public areas. These protocols
vary in speed and range. The most popular of these standards are 802.11b, which supports
operation at up to 11Mbps, and 802.11g, which works at up to 54Mbps. The 802.11a
standard also works at up to 54Mbps but is less common. The 802.11n standard is not
yet finalized but is expected to support speeds of up to 600Mbps. Several products with
speeds in between those of 802.11g and 802.11n are in production, with varying degrees of
standardization. This area is evolving rapidly, so you should be particularly careful about
checking on Linux driver availability for any wireless networking products you buy.

If you’re putting together a new network for a typical office, chances are that 100Base-T
or gigabit Ethernet is the best choice. Wireless products are a good choice if running new
cabling is a hassle and speed isn’t vitally important or if you want to provide a network that
enables roaming use of notebook computers. If you need to connect to an existing network,
you should find out what type of hardware it uses. If necessary, consult with your local net-
work administrator to find out what type of network card you require.

Most modern computers ship with network hardware preinstalled. This
hardware is almost always Ethernet, although notebooks usually include
Wi-Fi hardware, as well.

In addition to the network cards you place in your computers, you need network hard-
ware outside of the computer. With the exception of wireless networks, you’ll need some
form of network cabling that’s unique to your hardware type. (For 100Base-T Ethernet, get
cabling that meets at least Category 5, or Cat-5, specifications. For 1000Base-T Ethernet,
get Cat-5e or better cabling.) Many network types, including twisted-pair Ethernet, require
the use of a central device known as a hub or switch. You plug every computer on a local
network into this central device, as shown in Figure 8.1. The hub or switch then passes
data between the computers.

03843c08.indd 352 8/25/09 7:23:12 AM

Understanding Networks 353

F i gu r e 8 .1 Many networks link computers together via a central device known as a
hub or switch.

Hub or switch

As a general rule, switches are superior to hubs. Hubs mirror all traffic to all computers,
whereas switches are smart enough to send packets only to the intended destination. The
result is that switches let two pairs of computers engage in full-speed data transfers with
each other; with a hub, these two transfers would interfere with each other. Switches also
allow full-duplex transmission, in which both parties can send data at the same time (like
two people talking on a telephone). Hubs permit only half-duplex transmission, in which
the two computers must take turns (like two people using walkie-talkies).

A hub or switch is located centrally in a logical sense, but it doesn’t have to
be so located geographically. An approximately central location may help
simplify wiring, but when you decide where to put the device, you should
take into account the layout of your computers, your rooms, and available
conduits between rooms.

Wireless networks typically rely on a wireless access point (WAP), which acts something
like a hub or switch in a wired network. WAPs also bridge together wired and wireless net-
works, enabling wired and wireless computers to communicate with each other. A step beyond
a WAP is a wireless router, which combines WAP, Ethernet switch, and broadband router
functions. Wireless routers are extremely popular in homes since they enable wired and wire-
less computers to share broadband Internet access, even when the Internet service provider
(ISP) provides only one network address.

Network Packets
Modern networks operate on discrete chunks of data known as packets. Suppose you want
to send a 100KB file from one computer to another. Rather than send the file in one burst of
data, you break it down into smaller chunks. You might send 100 packets of 1KB each, for

03843c08.indd 353 8/25/09 7:23:13 AM

354 Chapter 8 n Configuring Basic Networking

instance. This way, if there’s an error sending one packet, you can resend just that one packet
rather than the entire file. (Many network protocols include error-detection capabilities.)

Typically, each packet includes an envelope (which includes the sender address, the recipi-
ent address, and other housekeeping information) and a payload (which is the data intended
for transmission). When the recipient system receives packets, it must hold onto them and
reassemble them in the correct order to re-create the complete data stream. It’s not uncom-
mon for packets to be delayed or even lost in transmission, so error-recovery procedures are
critical for protocols that handle large transfers. Some types of error recovery are handled
transparently by the networking hardware, but others are done in software.

There are several types of packets, and they can be stored within each other. For instance,
Ethernet includes its own packet type (known as a frame), and the packets generated by
networking protocols that run atop Ethernet, such as those described in the next section,
“Network Protocol Stacks,” are stored within Ethernet frames. All told, a data transfer can
involve several layers of wrapping and unwrapping data. With each layer, packets from the
layer above may be merged or split up.

Network Protocol Stacks
The packing and unpacking of network data is frequently described in terms of a protocol
stack. Knowing how the pieces of such a stack fit together can help you understand net-
working as a whole, including the various network protocols used by Linux. Therefore, this
section presents this information; it starts with a description of protocol stacks in general
and moves on to the TCP/IP stack and alternatives to it.

What Is a Protocol Stack?
It’s possible to think of network data at various levels of abstractness. For instance, at one
level, a network carries data packets for a specific network type (such as Ethernet) that are
addressed to specific computers on a local network. Such a description, while useful for under-
standing a local network, isn’t very useful for understanding higher-level network protocols,
such as those that handle e-mail transfers. These high-level protocols are typically described in
terms of commands sent back and forth between computers, frequently without reference to
packets. The addresses used at different levels also vary, as explained in the upcoming section
“Types of Network Addresses.”

A protocol stack is a set of software that converts and encapsulates data between layers of
abstraction. For instance, the stack can take the commands of e-mail transfer protocols, and
the e-mail messages that are transferred, and package them into packets. Another layer of
the stack can take these packets and repackage them into Ethernet frames. There are several
layers to any protocol stack, and they interact in highly specified ways. It’s often possible to
swap out one component for another at any given layer. For instance, at the top of each stack
is a program that uses the stack, such as an e-mail client. You can switch from one e-mail
client to another without too much difficulty; both rest atop the same stack. Likewise, if you
change a network card, you have to change the driver for that card, which constitutes a layer
very low in the stack. Applications above that driver can remain the same.

03843c08.indd 354 8/25/09 7:23:14 AM

Understanding Networks 355

Each computer in a transaction requires a compatible protocol stack. When they com-
municate, the computers pass data down their respective stacks and then send data to the
partner system, which passes the data up its stack. Each layer on the receiving system sees
the data as packaged by its counterpart on the sending computer.

The OSI Model
The interactions of a protocol stack should become clearer with an example. A common
model used for describing protocol stacks generically is the Open System Interconnection
(OSI) model, illustrated in Figure 8.2. This model breaks networking tasks down into
seven layers, from the Application layer (in which users’ clients and the servers to which
they connect run) to the Physical layer (which consists of network hardware like Ethernet
cards). Each layer in between these does some task related to the packaging of data for
transport or its unpacking.

F i gu r e 8 . 2 Information travels “down” and “up” protocol stacks, being checked and
packed at each step of the way.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Request

Reply

Each component layer of the sending system is equivalent to a layer on the receiving sys-
tem, but these layers need not be absolutely identical. For instance, you can have different
models of network card at the Physical layer, or you can even use entirely different network
hardware types, such as Ethernet and Token Ring, if some intervening system translates
between them. The computers may run different OSs entirely and hence use different—but
logically equivalent—protocol stacks. What’s important is that the stacks operate in com-
patible ways.

03843c08.indd 355 8/25/09 7:23:14 AM

356 Chapter 8 n Configuring Basic Networking

The TCP/IP Protocol Stack
The OSI model describes an idealized protocol stack, although literal implementations of it
do exist. One of the most common real-world network stacks is the Transmission Control
Protocol/Internet Protocol (TCP/IP) stack. This stack is generally described using just four
layers (Application, Transport, Internet, and Link), as opposed to OSI’s seven (shown in
Figure 8.2). The principles are the same for both models; the differences are just a matter
of how the terms are applied and precisely how the stacks are implemented.

TCP/IP has several important features that make it a popular network protocol and the
one on which the Internet is based. These characteristics include the following:

Routable TCP/IP was designed so that computers configured in a particular manner could
route packets between two networks. These computers (known as gateways or routers)
make the Internet possible. A small network links to another one via a router, which links
to another, and so on. Such a collection of networks is known as an internet (without capi-
talization). The Internet (capitalized) is a particularly large globe-spanning internet.

Flexible addressing system TCP/IP supports two types of addresses, one based on numbers
and one based on text. The current most popular numeric system supports approximately
4 billion addresses, and the textual system supports multiple levels of names. Both features
support large and complex network structures.

Multiple connection types TCP/IP supports several types of connection, including the
Transmission Control Protocol (TCP) after which the stack is named, the User Datagram Pro-
tocol (UDP), and the Internet Control Message Protocol (ICMP). These connection protocols
support differing levels of complexity and error correction.

Standards-based The TCP/IP stack and many of the protocols that use it are described by
documents maintained by the Internet Engineering Task Force (IETF; http://www.ietf.org),
an international standards organization. IETF protocols are nonproprietary, so they may
be implemented by anybody who cares to examine and put to use the IETF standards docu-
ments, which are known as Requests for Comments (RFCs).

This combination has made TCP/IP a formidable protocol stack. It has been imple-
mented in a large array of OSs, ranging from DOS to Linux. A huge number of network
tools are built atop TCP/IP, including everything related to the Internet—Web browsers,
e-mail clients, and so on. A few networking programs, though, either don’t use TCP/IP or
use it only optionally. Other protocol stacks remain popular in certain environments, and
you should be aware of them and how they interact and compete with TCP/IP.

Alternatives to TCP/IP
TCP/IP was initially developed using Unix, but today it is supported by many other plat-
forms. Some of these other OSs have their own protocol stacks. Most of these have also
been implemented on other OSs, including Linux. These TCP/IP alternatives don’t support
as many networking applications, though, and they’re generally limited to use on much

03843c08.indd 356 8/25/09 7:23:14 AM

Understanding Networks 357

smaller networks than TCP/IP supports. Nonetheless, some sites still run these stacks,
which include the following:

NetBEUI IBM and Microsoft have been the driving forces behind NetBEUI, which is a
nonroutable protocol stack that was developed for local networks of DOS and, later, OS/2
and Windows systems. NetBEUI is closely associated with NetBIOS, on which Microsoft’s
file-sharing protocols are built. For this reason, many Windows networks make extensive
use of NetBEUI. It’s also possible to use NetBIOS over TCP/IP, and this is the approach
that Linux’s Samba file server package uses to interconnect with Windows clients. Linux
doesn’t include a NetBEUI stack of its own, although an old add-on stack for 2.4.x kernels
is available; see http://zhubr.tamb.ru for details. Chances are you won’t need to use this
stack because Samba works well over TCP/IP, and Samba is the only Linux package that
might use a NetBEUI stack.

IPX/SPX The Internet Packet Exchange (IPX) and Sequenced Packet Exchange (SPX)
protocols constitute a protocol stack that’s similar in broad strokes to TCP/IP or NetBEUI.
IPX/SPX was the core of Novell’s networking tools through NetWare 5.0, although later
versions use TCP/IP by default. Novell’s networking software competes for file and printer
sharing in DOS and Windows networks against NetBEUI and its associated tools. IPX/SPX
support is included in the Linux kernel, although it might not be compiled by default in all
kernels. File- and printer-sharing packages are also available that use the IPX/SPX stack.
IPX/SPX are routable, but they aren’t as amenable to creation of globe-spanning internet-
works as is TCP/IP.

AppleTalk Apple developed the AppleTalk stack for use with its LocalTalk network
hardware. Its main use is with the AppleShare file-sharing protocols. Although initially
tied to LocalTalk, AppleTalk can now be used over Ethernet (a combination that’s some-
times called EtherTalk). The Linux kernel includes support for AppleTalk, but this may not
be compiled in all kernels. The Linux package that supports AppleTalk and AppleShare is
Netatalk (http://netatalk.sourceforge.net). Netatalk supports not just the old Apple-
Talk, but AppleShare IP, which uses TCP/IP as the protocol stack for file sharing. Mac
OS X doesn’t rely on AppleTalk nearly as much as its predecessors did; thus, AppleTalk is
less important for modern Macintosh-dominated networks than it once was. You’re most
likely to need this support if you have very old (pre–OS X) versions of Mac OS or equally
old networked Apple printers.

These alternatives to TCP/IP are all used on local networks, not on the Internet at large,
which is a TCP/IP-based network. All of these alternatives are limited in ways that restrict
their expansion. For instance, they lack the capacity to handle more than a couple of levels
in their machine names. That is, as described in the upcoming section “Hostnames,” TCP/IP
supports a hierarchical name structure that reduces the chance of conflicts in names, enabling
every computer connected to the Internet to have a unique name. The naming schemes of
these alternative stacks are much simpler, making it extremely impractical to maintain a
worldwide naming system.

03843c08.indd 357 8/25/09 7:23:15 AM

358 Chapter 8 n Configuring Basic Networking

Different protocol stacks are incompatible in the sense that they aren’t completely inter-
changeable—for instance, you can’t run an FTP client using AppleTalk. (A few protocols,
like those used for Windows file sharing, can bind to multiple protocol stacks, though.) In
another sense, these protocol stacks are not incompatible. Specifically, you can run multiple
protocol stacks on one network or one computer. Many local networks today run two,
three, or more protocol stacks. For instance, an office with both Macintoshes and Windows
systems might run TCP/IP, NetBEUI, and AppleTalk.

The Coming of ipv6

Another alternative protocol stack is actually an extension of TCP/IP. In 2009, the most popu-
lar version of the IP portion of TCP/IP is 4. A major upgrade to this is in the works, however,
and it goes by the name IPv6, for IP version 6. IPv6 adds several features and improvements
to TCP/IP, including standard support for more secure connections and support for many
more addresses. Check http://www.ipv6.org for detailed information on IPv6.

Although the 4 billion addresses allowed by TCP/IP sounds like plenty, those addresses
have not been allocated as efficiently as possible. Therefore, as the Internet has expanded,
the number of truly available addresses has been shrinking at a rapid rate. IPv6 raises the
number of addresses to 2128, or 3.4 × 1038. This is enough to give every square millimeter
of land surface on Earth 2.2 × 1018 addresses.

IPv6 is starting to emerge as a real networking force in many parts of the world. The
United States, though, is lagging behind on IPv6 deployment. The Linux kernel includes
IPv6 support, so you can use it if you need to do so. Chances are that by the time the
average office will need IPv6, it will be standard. Configuring a system for IPv6 is some-
what different from configuring it for IPv4, which is what this chapter describes and what
the Linux+ exam requires you to understand.

Network Addressing
In order for one computer to communicate with another over a network, the computers
need to have some way to refer to each other. The basic mechanism for doing this is pro-
vided by a network address, which can take several different forms, depending on the type
of network hardware, protocol stack, and so on. Large and routed networks pose addi-
tional challenges to network addressing, and TCP/IP provides answers to these challenges.
Finally, to address a specific program on a remote computer, TCP/IP uses a port number,
which identifies a specific running program, something like the way a telephone extension
number identifies an individual in a large company. This section describes all these methods
of addressing.

03843c08.indd 358 8/25/09 7:23:15 AM

Network Addressing 359

Types of Network Addresses
Consider an Ethernet network. When an Ethernet frame leaves one computer, it is nor-
mally addressed to another Ethernet card. This addressing is done using low-level Ethernet
features, independent of the protocol stack in question. Recall, however, that the Inter-
net is composed of many different networks that use many different low-level hardware
components. A user might have a dial-up telephone connection (through a serial port) but
connect to one server that uses Ethernet and another that uses Token Ring. Each of these
devices uses a different type of low-level network address. TCP/IP requires something more
to integrate across different types of network hardware. In total, three types of addresses
are important when you are trying to understand network addressing: network hardware
addresses, numeric IP addresses, and text-based hostnames.

Hardware Addresses
At the lowest level of the OSI model is the Physical layer, which corresponds to network
hardware. One of the characteristics of dedicated network hardware such as Ethernet
or Token Ring cards is that they have unique hardware addresses, also known as Media
Access Control (MAC) addresses, programmed into them. In the case of Ethernet, these
addresses are 6 bytes in length, and they’re generally expressed as hexadecimal (base 16)
numbers separated by colons. You can discover the hardware address for an Ethernet card
by using the ifconfig command. Type ifconfig ethn, where n is the number of the inter-
face (0 for the first card, 1 for the second, and so on). You’ll see several lines of output,
including one like the following:

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

This line tells you that the device is an Ethernet card and that its hardware address is
00:A0:CC:24:BA:02. What use is this, though? Certain low-level network utilities and
hardware use the hardware address. For instance, network switches use it to direct data
packets. The switch learns that a particular address is connected to a particular wire, and
so it sends data directed at that address only over the associated wire. The Dynamic Host
Configuration Protocol (DHCP), which is described in the upcoming section “DHCP
Configuration,” is a means of automating the configuration of specific computers. It has an
option that uses the hardware address to consistently assign the same IP address to a given
computer. In addition, advanced network diagnostic tools are available that let you exam-
ine packets that come from or are directed to specific hardware addresses.

For the most part, though, you don’t need to be aware of a computer’s hardware address.
You don’t enter it in most utilities or programs. It’s important for what it does in general.

IP Addresses
Earlier, I said that TCP/IP, at least in its IPv4 incarnation, supports about 4 billion addresses.
This figure is based on the size of the IP address used in TCP/IP: 4 bytes (32 bits). Specifically,
232 = 4,294,967,296. For IPv6, 16-byte (128-bit) addresses are used. Not all of these addresses
are usable; some are overhead associated with network definitions, and some are reserved.

03843c08.indd 359 8/25/09 7:23:15 AM

360 Chapter 8 n Configuring Basic Networking

The 4-byte IPv4 (or 16-byte IPv6) address and 6-byte Ethernet address are mathemati-
cally unrelated. Instead, the TCP/IP stack converts between the two using the Address Reso-
lution Protocol (ARP) for IPv4 or the Neighbor Discovery Protocol (NDP) for IPv6. These
protocols enable a computer to send a broadcast query—a message that goes out to all the
computers on the local network. This query asks the computer with a given IP address to
identify itself. When a reply comes in, it includes the hardware address, so the TCP/IP stack
can direct traffic for a given IP address to the target computer’s hardware address.

The procedure for computers that aren’t on the local network is more com-
plex. For such computers, a router must be involved. Local computers send
packets destined to distant addresses to routers, which send the packets on
to other routers or to their destination systems.

IPv4 addresses are usually expressed as four base-10 numbers (0–255) separated by
periods, as in 192.168.29.39. If your Linux system’s protocol stack is already up and run-
ning, you can discover its IPv4 address by using ifconfig, as described earlier. The output
includes a line like the following, which identifies the IP address (inet addr):

inet addr:192.168.29.39 Bcast:192.168.29.255 Mask:255.255.255.0

Although it isn’t obvious from the IP address alone, this address is broken down into two
components: a network address and a computer address. The network address identifies a
block of IP addresses that are used by one physical network, and the computer address identi-
fies one computer within that network. The reason for this breakdown is to make the job of
routers easier—rather than record how to direct packets destined for each of the 4 billion IP
addresses, routers can be programmed to direct traffic based on packets’ network addresses,
which is a much simpler job.

IPv6 addresses work in a similar way, except that they’re larger. Specifically, IPv6
addresses consist of eight groups of four-digit hexadecimal numbers separated by colons,
as in fed1:0db8:85a3:08d3:1319:8a2e:0370:7334. If one or more groups of four digits is
0000, that group or those groups may be omitted, leaving two colons. Only one such group
of zeroes may be compressed in this way, because if you removed two groups, there would
be no way of telling how many sets of zeroes would have to be replaced in each group.

The network mask (also known as the subnet mask or netmask) is a number that identi-
fies the portion of the IP address that’s a network address and the part that’s a computer
address. It’s helpful to think of this in binary (base 2) because the netmask uses binary 1
values to represent the network portion of an address and binary 0 values to represent the
computer address. The network portion ordinarily leads the computer portion. Expressed
in base 10, these addresses usually consist of 255 or 0 values, 255 being a network byte and
0 being a computer byte. If a byte is part network and part computer address, it will have
some other value. Another way of expressing a netmask is as a single number representing
the number of network bits in the address. This number usually follows the IP address and
a slash. For instance, 192.168.29.39/24 is equivalent to 192.168.29.39 with a netmask of
255.255.255.0—the last number shows the network portion to be three solid 8-bit bytes,

03843c08.indd 360 8/25/09 7:23:16 AM

Network Addressing 361

in other words, 24 bits. The longer notation showing all four bytes of the network mask is
referred to as dotted quad notation. IPv6 netmasks work just like IPv4 netmasks, except
that larger numbers are involved, and IPv6 favors hexadecimal to decimal notation.

IP addresses and netmasks are extremely important for network configuration. If your
network doesn’t use DHCP or a similar protocol to assign IP addresses automatically, you
must configure your system’s IP address manually. A mistake in this configuration can
cause a complete failure of networking or more subtle errors, such as an inability to com-
municate with just some computers.

Non-TCP/IP stacks have their own addressing methods. NetBEUI uses
machine names; it has no separate numeric addressing method. AppleTalk
uses two 16-bit numbers. These addressing schemes are independent
from IP addresses.

Traditionally, IPv4 addresses have been broken into one of several classes, as shown
in Table 8.1. These classes vary in size, the intention being to assign address ranges in
particular classes to organizations based on an organization’s size. This arrangement was
intended to simplify the task of routers. In practice, though, IPv4 network classes are
often assigned using Classless Inter-Domain Routing (CIDR), in which any address range
may be assigned in an arbitrary way—for instance, networks with only 255 addresses
(that is, sized as Class C addresses) within the Class A address range. This distinction is
important mainly because some tools for assigning IP addresses set defaults based on the
apparent class of an address. You may need to change the default if your network doesn’t
conform to the usual class assignments. Classes A, B, and C are used for ordinary comput-
ers. Class D is intended for multicasting (sending the same data to multiple computers),
while Class E is reserved.

TA B le 8 .1 IPv4 Network Classes

Class Address Range Network Mask
Hosts per
Network

Reserved Private
Addresses

A 1.0.0.0–127.255.255.255 255.0.0.0 16,777,214 10.0.0.0–
10.255.255.255

B 128.0.0.0–191.255.255.255 255.255.0.0 65,534 172.16.0.0–
172.31.255.255

C 192.0.0.0–223.255.255.255 255.255.255.0 254 192.168.0.0–
192.168.255.255

D 224.0.0.0–239.255.255.255 Not defined Not defined None

E 240.0.0.0–255.255.255.255 Not defined Not defined None

03843c08.indd 361 8/25/09 7:23:16 AM

362 Chapter 8 n Configuring Basic Networking

A few addresses have special meanings. The reserved private addresses (also referred to
as RFC1918 addresses, after the standards document in which they’re defined) are not used
on the Internet at large, and most routers drop packets sent to these addresses. The inten-
tion is that these addresses may be used on local networks, for systems that don’t connect
to the Internet or that connect only via a network address translation (NAT) router, which
“hides” client systems using its own address. This is useful if you have more systems than
IP addresses. It also has security benefits, since it’s impossible for an outside system to initi-
ate a connection with an internal computer unless you explicitly configure the NAT router
to handle this task.

Addresses in the 127.0.0.0/8 netblock refer to the local computer. Typically, 127.0.0.1
is used for generic connections to the computer itself. A few protocols can use additional
addresses within that netblock for special purposes, but such uses are rare.

IPv6 has its equivalent to reserved private addresses. IPv6 site-local addresses may be
routed within a site but not off-site. They begin with the hexadecimal number fec, fed, fee,
or fef. Link-local addresses are restricted to a single network segment; they shouldn’t be
routed at all. These addresses begin with the hexadecimal number fe8, fe9, fea, or feb.

Hostnames
Computers work with numbers, so it’s not surprising that TCP/IP uses numbers as com-
puter addresses. People, though, work better with names. For this reason, TCP/IP includes
a way to link names for computers (known as hostnames) to IP addresses. In fact, there
are several ways to do this, some of which are described in the next section, “Resolving
Hostnames.”

As with IP addresses, hostnames are composed of two parts: machine names and
domain names. The former refers to a specific computer and the latter to a collection of
computers. Domain names are not equivalent to the network portion of an IP address,
though; they’re completely independent concepts. Domain names are registered for use
by an individual or organization, which may assign machine names within the domain
and link those machine names to any arbitrary IP address desired. Nonetheless, there is
frequently some correspondence between domains and network addresses because an indi-
vidual or organization that controls a domain is also likely to want a block of IP addresses
for the computers in that domain.

Internet domains are structured hierarchically. At the top of the hierarchy are the top-
level domains (TLDs), such as .com, .edu, and .uk. These TLD names appear at the end of
an Internet address. Some correspond to nations (such as .uk and .us, for the United King-
dom and for the United States, respectively), but others correspond to particular types of
entities (such as .com and .edu, which stand for commercial and educational organizations,
respectively). Within each TLD are various domains that identify specific organizations,
such as sybex.com for Sybex or loc.gov for the Library of Congress. These organizations
may optionally break their domains into subdomains, such as cis.upenn.edu for the Com-
puter and Information Science department at the University of Pennsylvania. Even subdo-
mains may be further subdivided into their own subdomains; this structure can continue
for many levels but usually doesn’t. Domains and subdomains include specific computers,
such as www.sybex.com, Sybex’s Web server.

03843c08.indd 362 8/25/09 7:23:17 AM

Network Addressing 363

When you configure your Linux computer, you may need to know its hostname. This
will be assigned by your network administrator and will be within your organization’s
domain. If your computer isn’t part of an organizational network (say, if it’s a system that
doesn’t connect to the Internet at all or if it connects only via a dial-up account), you’ll
have to make up a hostname. Alternatively, you can register a domain name, even if you
don’t use it for running your own servers. Check http://www.icann.org/en/registrars/
accredited-list.html for pointers to accredited domain registrars. Most registrars charge
between $10 and $15 per year for domain registration. If your network uses DHCP, it may
or may not assign your system a hostname automatically.

If you make up a hostname, choose an invalid TLD, such as .invalid. This
will guarantee that you don’t accidentally give your computer a name that
legitimately belongs to somebody else. Such a name conflict could prevent
you from contacting that system, and it could cause other problems as
well, such as misdirected e-mail.

Resolving Hostnames
The Domain Name System (DNS) is a distributed database of computers that convert between
IP addresses and hostnames. Every domain must maintain at least two DNS servers that can
either provide the names for every computer within the domain or redirect a DNS query to
another DNS server that can better handle the request. Therefore, looking up a hostname
involves querying a series of DNS servers, each of which redirects the search until the server
that’s responsible for the hostname is found. In practice, this process is hidden from you
because most organizations maintain DNS servers that do all the dirty work of chatting with
other DNS servers. You need only point your computer to your organization’s DNS servers.
This detail may be handled through DHCP, or it may be information you need to configure
manually, as described later in the section “Basic Network Configuration.”

Sometimes, you need to look up DNS information manually. You might do this if you
know the IP address of a server through non-DNS means and suspect your DNS configura-
tion is delivering the wrong address, or you might want to check whether a DNS server is
working at all. Several programs can be helpful in performing such checks:

nslookup This program performs DNS lookups (on individual computers, by default) and
returns the results. It also sports an interactive mode in which you can perform a series
of queries. This program is officially deprecated, meaning that it’s no longer being main-
tained and will eventually be dropped from its parent package (bind-utils or bind-tools
on most distributions). Thus, you should get in the habit of using host or dig instead of
nslookup.

host This program serves as a replacement for the simpler uses of nslookup, but it lacks
an interactive mode, and of course many details of its operation differ. In the simplest case,
you can type host target.name, where target.name is the hostname or IP address you want

03843c08.indd 363 8/25/09 7:23:17 AM

364 Chapter 8 n Configuring Basic Networking

to look up. You can add various options that tweak its basic operation; consult the host
man page for details.

dig This program performs more complex DNS lookups than host. It can be used to
obtain information on several critical systems within an entire domain. For instance, passing
MX after the domain name produces output that includes the identities of the domain’s mail
server computers. Although you can use it to find the IP address for a single hostname (or a
hostname for a single IP address), it’s more flexible—but also more complex—than host.

Sometimes DNS is overkill. For instance, you might just need to resolve a handful of
hostnames. This might be because you’re configuring a small private network that’s not con-
nected to the Internet at large or because you want to set up a few names for local (or even
remote) computers that aren’t in the global DNS database. For such situations, /etc/hosts
may be just what you need. This file holds mappings of IP addresses to hostnames, on a one-
line-per-mapping basis. Each mapping includes at least one name, and sometimes more:

127.0.0.1 localhost

192.168.7.23 apollo.luna.edu apollo

In this example, the name localhost is associated with the 127.0.0.1 address, and the
names apollo.luna.edu and apollo are tied to 192.168.7.23. The first of these linkages is
standard; it should exist in any /etc/hosts file. The second linkage is an example that you
can modify as you see fit. The first name is a full hostname, including the domain portion;
subsequent names on the line are aliases—typically the hostname without its full domain
specification.

Once you’ve set up an /etc/hosts file, you can refer to computers listed in the file by
name, whether or not those names are recognized by the DNS servers the computer uses.
One major drawback to /etc/hosts is that it’s a purely local file; setting a mapping in one
computer’s /etc/hosts file affects only those name lookups performed by that computer.
Thus, to be an effective tool on an entire network, the /etc/hosts files must be modified
on all of the computers on the network.

Linux normally performs lookups in /etc/hosts before it uses DNS. You can, however,
modify this behavior by editing the hosts line in the /etc/nsswitch.conf file, which lists
the order of the files and dns options, which stand for /etc/hosts and DNS, respectively.
Very old programs that use old versions of the C library (libc4 or libc5) rather than the
newer glibc look to the /etc/host.conf file and its order line instead of nsswitch.conf.
Change the order of the hosts and bind items in this file to match the order of the files
and dns items in /etc/nsswitch.conf.

Network Ports
Contacting a specific computer is important, but one additional type of addressing is still
left: the sender must have an address for a specific program on the remote system. For
instance, suppose you’re using a Web browser. The Web server computer may be running
more servers than just a Web server—it might also be running an e-mail server or an FTP

03843c08.indd 364 8/25/09 7:23:17 AM

Basic Network Configuration 365

server, to name just two of many possibilities. Another number beyond the IP address
enables you to direct traffic to a specific program. This number is a network port number,
and every program that accesses a TCP/IP network does so through one or more ports.

When they start up, servers tie themselves to specific ports, which by convention are
associated with specific server programs. For instance, port 25 is associated with e-mail
servers, and port 80 is used by Web servers. Thus, a client can direct its request to a specific
port and expect to contact an appropriate server. The client’s own port number isn’t fixed;
it’s assigned by the OS. Because the client initiates a transfer, it can include its own port
number in the connection request, so clients don’t need fixed port numbers. Assigning cli-
ent port numbers dynamically also enables one computer to easily run several instances of a
single client because they won’t compete for access to a single port.

Fortunately, for basic functioning, you need to do nothing to configure ports on a Linux
system. You may have to deal with this issue if you run unusual servers, though, because
you may need to configure the system to link the servers to the correct ports.

Clients and servers

One important distinction is the one between clients and servers. A client is a program
that initiates a network connection to exchange data. A server listens for such connec-
tions and responds to them. For instance, a Web browser, such as Mozilla Firefox or
Opera, is a client program. You launch the program and direct it to a Web page, which
means that the Web browser sends a request to the Web server at the specified address.
The Web server sends back data in reply to the request. Clients can also send data, how-
ever, as when you enter information in a Web form and click a Submit or Send button.

The terms “client” and “server” can also be applied to entire computers that oper-
ate mostly in one or the other role. Thus, a phrase such as “Web server” is somewhat
ambiguous—it can refer either to the Web server program or to the computer that runs
that program. When this distinction is important and unclear from context, I clarify it (for
instance, by referring to “the Web server program”).

Basic Network Configuration
Now that you know something about how networking functions, a question arises: how do
you implement networking in Linux? Most Linux distributions provide you with the means
to configure a network connection during system installation, as mentioned in Chapter 1,
“Getting Started with Linux.” Therefore, chances are good that networking already func-
tions on your system. In case it doesn’t, though, this section summarizes what you must

03843c08.indd 365 8/25/09 7:23:17 AM

366 Chapter 8 n Configuring Basic Networking

do to get the job done. Actual configuration can be done using either the automatic DHCP
tool or static IP addresses. Linux’s underlying network configuration mechanisms rely on
startup scripts and their configuration files, but you may be able to use GUI tools to do the
job instead.

Network Hardware Configuration
The most fundamental part of network configuration is getting the network hardware up
and running. In most cases, this task is fairly automatic—most distributions ship with sys-
tem startup scripts that autodetect the network card and load the correct driver module.
If you recompile your kernel, building the correct driver into the main kernel file will also
ensure that it’s loaded at system startup.

If your network hardware isn’t correctly detected, though, subsequent configuration
(as described in the upcoming sections “DHCP Configuration” and “Static IP Address
Configuration”) won’t work. To correct this problem, you must load your network hard-
ware driver. You can do this with the modprobe command:

modprobe tulip

You must know the name of your network hardware’s kernel module, though (tulip in
this example). This name may not be immediately obvious, because it varies greatly depend-
ing on your hardware, and the name is usually based on the chipset used in the network
card, rather than on the name of the network card or its manufacturer. Chapter 1 includes
information on identifying hardware, so consult it if you have problems with this task.

Once Linux has recognized the network hardware, you should be able to continue with
network configuration, as described in the next couple of sections. To make Linux recognize
your hardware at every boot, though, you may need to add the modprobe command to a
startup script. This task can be tricky; most distributions use very convoluted startup scripts.
These scripts should already be detecting and loading the network driver. If they don’t, the
best approach may be to recompile the kernel and build the driver into the main kernel file.
Alternatively, you can try adding a call to modprobe to an appropriate network startup script;
however, placing this call in a good location can be a difficult task. Chapter 4, “Managing
System Services,” includes information on system startup scripts.

Setting Wireless Options
If you’re using a wireless (Wi-Fi) device, you must use the iwconfig command to set
wireless-specific options before you use DHCP or manual tools to bring up the network
interface. This is necessary because wireless networks have their own unique features, such
as network names, broadcast frequencies, and encryption keys, that are not applicable to
wired networks. As with other network configuration tools, your distribution’s startup
scripts may launch iwconfig as part of a general network startup routine, so you may not
need to do this manually; however, at the very least you’ll need to enter the relevant infor-
mation in a GUI or text-based tool, perhaps when you install Linux.

03843c08.indd 366 8/25/09 7:23:18 AM

Basic Network Configuration 367

To begin the process, you must first obtain information on your wireless network’s set-
tings. If you’re using a wireless network set up by somebody else, such as your employer’s
network or a public access point, you should be able to get the relevant information from
its maintainer. If you’re using a network that you maintain yourself, such as a home net-
work or one that you’ve set up for your employer, you can find the information from the
configuration tools provided by your WAP or broadband router. This information can often
be accessed via a Web server run on the device. For instance, Figure 8.3 shows the configu-
ration screen for one broadband router. In this model, the Wireless options screen contains
several tabs, each of which provides certain data. Pay particular attention to the radio band
(802.11g in Figure 8.3), service set identifier (SSID; NoWires in Figure 8.3), channel (Chan-
nel 1 in Figure 8.3), authentication type, and authentication key. (These last two items are
on the Security tab, which isn’t shown in Figure 8.3.)

F i gu r e 8 . 3 WAPs and broadband routers provide configuration tools in which you set
wireless options for your network.

If you’re configuring your own wireless network, be sure to enable the high-
est security level possible, Wi-Fi Protected Access 2 (WPA2). Earlier security
systems, and particularly Wired Equivalent Privacy (WEP), are extremely
vulnerable. Using them enables anybody with modest skill to snoop on all
your network traffic. Depending on your local security settings, intruders
might be able to easily break into other wired or wireless computers on your
network from outside your building using a notebook computer.

03843c08.indd 367 8/25/09 7:23:18 AM

368 Chapter 8 n Configuring Basic Networking

To use iwconfig, you pass it the relevant data using option names such as essid and
channel, preceded by the wireless network device name (typically wlan0):

iwconfig wlan0 essid NoWires channel 1 mode Managed key s:N1mP7mHNw

This example sets the options for wlan0 to use the managed network on channel 1 with
the SSID of NoWires and a password of N1mP7mHNw. The password requires a few extra
comments. Ordinarily, iwconfig takes a password as a string of hexadecimal values, with
optional dashes between 2-byte blocks, as in 0123-4567-89AB. Often, however, the pass-
word is given as a text string. The string s: must precede the password in this case, as
shown in the example.

For details on additional iwconfig options, including some highly technical ones,
consult its man page.

Once you’ve configured a wireless interface, you can check on its settings by using
iwconfig with no options or with only the interface name:

iwconfig wlan0

wlan0 IEEE 802.11g ESSID:”NoWires”

 Mode:Managed Frequency:2.462 GHz Access Point: 08:10:74:24:1B:D4

 Bit Rate=54 Mb/s Tx-Power=27 dBm

 Retry min limit:7 RTS thr:off Fragment thr=2352 B

 Encryption key: 314E-506D-6d37-4E48-0A [2]

 Link Quality=100/100 Signal level=-32 dBm Noise level=-94 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

In addition to providing information on settings, iwconfig provides some diagnostic
information, such as the link quality, received (Rx) and transmitted (Tx) errors, and so on.

DHCP Configuration
One of the easiest ways to configure a computer to use a TCP/IP network is to use DHCP,
which enables one computer on a network to manage the settings for many other com-
puters. It works like this: when a computer running a DHCP client boots up, it sends a
broadcast in search of a DHCP server. The server replies (using nothing but the client’s
hardware address) with the configuration information the client needs to allow it to com-
municate with other computers on the network—most importantly the client’s IP address
and netmask and the network’s gateway and DNS server addresses. The DHCP server may
also give the client a hostname. The client then configures itself with these parameters.
The IP address is not assigned permanently; it’s referred to as a DHCP lease, and if it’s not
renewed, the DHCP server may give the lease to another computer. Therefore, from time to
time, the client checks back with the DHCP server to renew its lease.

Three DHCP clients are in common use on Linux: pump, dhclient, and dhcpcd (not to
be confused with the DHCP server, dhcpd). Some Linux distributions ship with just one of

03843c08.indd 368 8/25/09 7:23:18 AM

Basic Network Configuration 369

these, but others ship with two or even all three. All distributions have a default DHCP client,
though—the one that’s installed when you tell the system you want to use DHCP at system
installation time. Those that ship with multiple DHCP clients typically enable you to swap
out one for another simply by removing the old package and installing the new one.

Ideally, the DHCP client runs at system bootup. This is usually handled either by a SysV
startup file, as described in Chapter 4, or as part of the main network configuration startup
file (typically a SysV startup file called network or networking). The system often uses a
line in a configuration file to determine whether to run a DHCP client. For instance, Fedora
Linux sets this option in a file called /etc/sysconfig/network-scripts/ifcfg-eth0 (this
filename may differ if you use something other than a single Ethernet interface). The line in
question looks like this:

BOOTPROTO=dhcp

If the BOOTPROTO variable is set to something else, changing it as shown here will config-
ure the system to use DHCP. It’s usually easier to use a GUI configuration tool to set this
option, however, as described in the upcoming section “Using GUI Configuration Tools.”

In Ubuntu, the equivalent configuration is done in the /etc/network/interfaces file,
which contains the following line for DHCP configuration on the first Ethernet device:

iface eth0 inet dhcp

Replacing dhcp with static in this line changes the system to use a static IP address, but
you must then add lines to provide the static IP address and related information. As with
Fedora, it may be easier to use a GUI configuration tool.

Static IP Address Configuration
If a network lacks a DHCP server, you must provide basic network configuration options
manually. You can set these options using interactive commands, as described shortly, but to
set them in the long term, you adjust a configuration file. Details vary from one distribution
to another, so you may have to search through your /etc directory to find the appropriate
file to make permanent changes. By way of example, I show the files used in Fedora 10 and
Ubuntu 8.04. DNS settings are done in the same way in all distributions. Temporary changes
can be done using the same tools on any distribution, as well.

If you aren’t sure what to enter for the basic networking values (the IP
address, network mask, gateway address, and DNS server addresses), you
should consult your network administrator. Do not enter random values
or values you make up that are similar to those used by other systems on
your network. Doing so is unlikely to work at all, and it could conceivably
cause a great deal of trouble—say, if you mistakenly use an IP address
that’s reserved for another computer.

03843c08.indd 369 8/25/09 7:23:19 AM

370 Chapter 8 n Configuring Basic Networking

Making Permanent Changes in Fedora
 In Fedora, /etc/sysconfig/network-scripts/ifcfg-eth0 controls most network set-
tings. (The filename varies depending on the network interface.) Listing 8.1 shows a typical
ifcfg-eth0 file, configured to use a static IP address.

listing 8.1: A Sample Fedora Network Configuration File

DEVICE=eth0

BOOTPROTO=static

IPADDR=192.168.29.39

NETMASK=255.255.255.0

NETWORK=192.168.29.0

BROADCAST=192.168.29.255

GATEWAY=192.168.29.1

ONBOOT=yes

Several specific items are required, or at least helpful, for static IP address configuration:

IP address You can set the IP address manually via the ifconfig command (described in
more detail shortly) or via the IPADDR item in the configuration file.

Network mask The netmask can be set manually via the ifconfig command or via the
NETMASK item in a configuration file.

Gateway address You can manually set the gateway via the route command. To set it per-
manently, you need to adjust a configuration file, which may be the same configuration file
that holds other options or another file, such as /etc/sysconfig/network/routes. In either
case, the option is likely to be called GATEWAY or gateway. The gateway isn’t necessary on a
system that isn’t connected to a wider network—that is, if the system works only on a local
network that contains no routers.

The network configuration script may hold additional options, but most of these are related
to others. For instance, Listing 8.1 has an option specifying the interface name (DEVICE=eth0),
another that tells the computer to assign a static IP address (BOOTPROTO=static), and a third
to bring up the interface when the computer boots (ONBOOT=yes). The NETWORK and BROADCAST
items in Listing 8.1 are derived from the IPADDR and NETMASK items, but you can change them
if you understand the consequences.

Making Permanent Changes in Ubuntu
Ubuntu Linux uses the /etc/network/interfaces file to hold IP address, netmask, and
gateway information for all its interfaces. Listing 8.2 presents an example of this file.

listing 8.2: A Sample Ubuntu Network Configuration File

The loopback network interface

auto lo

iface lo inet loopback

03843c08.indd 370 8/25/09 7:23:19 AM

Basic Network Configuration 371

The primary network interface

auto eth0

iface eth0 inet static

address 192.168.29.39

netmask 255.255.255.0

gateway 192.168.29.1

The loopback interface configuration in the first few lines of the file should never be
touched. The eth0 configuration, though, can be altered to suit your needs. The entry includes
the same basic information as appears in a Fedora configuration file, but the exact keywords
and formatting differ. Also, pay attention to the line beginning with the keyword iface: it
concludes with the word static. In a DHCP configuration, as noted earlier, it would end with
dhcp, and the following address, netmask, and gateway lines would be absent.

Setting DNS Options
In order for Linux to use DNS to translate between IP addresses and hostnames, you must
specify at least one DNS server in the /etc/resolv.conf file. Precede the IP address of the
DNS server by the keyword nameserver. You may include up to three such lines, although
just one may be sufficient. (More than one provides redundancy in case the first name
server becomes unresponsive.) This file may also include a domain keyword, which sets
the Internet domain name in which the system resides, and one or more search keywords,
which are additional domains that are searched if none is specified. For instance, to enable
you to contact dino.pangaea.edu by using the shortened hostname dino, you could include
the line search pangaea.edu, whether or not your computer is in the pangaea.edu domain.
Listing 8.3 shows a sample resolv.conf file.

listing 8.3: A Sample /etc/resolv.conf File

domain pangaea.edu

search luna.edu

nameserver 192.168.29.11

nameserver 172.24.24.24

nameserver 10.103.9.41

Adjusting this file is all you need to do to set the name server addresses; you don’t have
to do anything else to make the setting permanent. You might notice that Listing 8.3 speci-
fies name servers on three different networks. This is perfectly valid (although for example
purposes I’ve used addresses on reserved private networks). In general, though, the closer a
DNS server is to your own system, the better.

If you use DHCP, the DHCP client alters /etc/resolv.conf. Thus, if you
make changes to this file and then use DHCP, your changes will be lost.

03843c08.indd 371 8/25/09 7:23:19 AM

372 Chapter 8 n Configuring Basic Networking

Implementing Permanent Changes
If you’ve made manual changes to your configuration files, you can implement those
changes by using the ifup and ifdown commands. These tools bring up or shut down a net-
work interface, respectively, using the definitions in your configuration files. For instance,
suppose you want to make changes to an existing configuration for eth0. Before making
your changes, you would bring the interface down:

ifdown eth0

After making your changes, you would bring it up:

ifup eth0

The alternative to using these tools is to issue ifconfig and route commands to dupli-
cate your changes, as described in the next section, “Setting Temporary Options.” Using
ifup and ifdown is simpler and enables you to verify that your changes work the way you
expect. Using the underlying ifconfig and route commands is better for making tempo-
rary changes, such as adding a notebook computer to a hotel network to which it will be
connected only briefly.

Setting Temporary Options
As mentioned earlier, the ifconfig program is critically important for setting both the IP
address and netmask. This program can also display current settings. Basic use of ifconfig
to bring up a network interface resembles the following:

ifconfig interface up addr netmask mask

For instance, the following command brings up eth0 (the first Ethernet card) using the
address 192.168.29.39 and the netmask 255.255.255.0:

ifconfig eth0 up 192.168.29.39 netmask 255.255.255.0

This command links the specified IP address to the card so that the computer will respond
to the address and claim to be that address when sending data. It doesn’t, though, set up a
route for traffic beyond your current network. For that, you need to use the route command:

route add default gw 192.168.29.1

Substitute your own gateway address for 192.168.29.1. (Advanced routing and the
route command are described in more detail in Chapter 9.) Both ifconfig and route
can display information on the current network configuration. For ifconfig, omit up and
everything that follows; for route, omit add and everything that follows. For instance, to
view interface configuration, you might issue the following command:

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

 inet addr:192.168.29.39 Bcast:192.168.29.255 Mask:255.255.255.0

03843c08.indd 372 8/25/09 7:23:20 AM

Basic Network Configuration 373

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:10469 errors:0 dropped:0 overruns:0 frame:0

 TX packets:8557 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:1017326 (993.4 Kb) TX bytes:1084384 (1.0 Mb)

 Interrupt:10 Base address:0xc800

When configured properly, ifconfig should show a hardware address (HWaddr), an IP
address (inet addr), and additional statistics. There should be few or no errors, dropped
packets, or overruns for both received (RX) and transmitted (TX) packets. Ideally, few (if
any) collisions should occur, but some are unavoidable if your network uses a hub rather
than a switch. If collisions total more than a few percent of the total transmitted and
received packets, you may want to consider replacing a hub with a switch. To use route
for diagnostic purposes, you might try the following:

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.29.0 * 255.255.255.0 U 0 0 0 eth0

127.0.0.0 * 255.0.0.0 U 0 0 0 lo

default 192.168.29.1 0.0.0.0 UG 0 0 0 eth0

This shows that data destined for 192.168.29.0 (that is, any computer with an
IP address between 192.168.29.1 and 192.168.29.254) goes directly over eth0. The
127.0.0.0 network is a special interface that “loops back” to the originating computer.
Linux uses this for some internal networking purposes. The last line shows the default
route—everything that doesn’t match any other entry in the routing table. This line
specifies the default route’s gateway system as 192.168.29.1. If it’s missing or misconfig-
ured, some or all traffic destined for external networks, such as the Internet, won’t make
it beyond your local network segment.

As with DHCP configuration, it’s almost always easier to use a GUI configuration tool
to set up static IP addresses, at least for new administrators. The exact locations of the con-
figuration files differ from one distribution to another, so the examples listed earlier may
not apply to your system.

Using GUI Configuration Tools
Most distributions include their own GUI configuration tools for network interfaces. For
instance, Fedora and Red Hat ship with a custom GUI tool called Network Configuration
(system-config-network-gui) and a text-mode tool called system-config-network-tui,
SUSE has a text-mode and GUI tool called YaST, and Ubuntu ships with a GUI tool called
Network Settings (network-admin). The details of operating these programs differ, but the
GUI configuration tool provides a means to enter the information described earlier.

03843c08.indd 373 8/25/09 7:23:20 AM

374 Chapter 8 n Configuring Basic Networking

Figure 8.4 shows the Fedora Network Configuration tool, which you can use by typing
system-config-network-gui or by selecting the System Administration Network menu
item from the default GNOME desktop menu. Figure 8.4 shows both the main window
(Network Configuration) and the one in which you can set the most basic settings for an indi-
vidual device (Ethernet Device). To see the latter window, you must highlight a device (only
one is available in Figure 8.4’s Network Configuration window) and click Edit. You can then
enter your static IP address or, as in Figure 8.4, click the Automatically Obtain IP Address
Settings With button to use DHCP. (Alternatively, you can choose the older BootP protocol
or configure a dial-up configuration with this tool.) Additional options, including those to set
the route and DNS features, are available from other tabs on these two dialog boxes.

F i gu r e 8 . 4 GUI network configuration tools provide fields in which you enter basic
networking parameters.

The precise details of how to configure a Linux system using GUI tools differ from
one distribution to another. The basic principles are the same, though; you must choose
whether to use static IP address assignment or an automatic system such as DHCP,
and then you enter a number of key options, depending on what configuration method
you choose.

If you use a wireless network, most desktop environments provide GUI tools to help
you bring up a wireless link. Look for icons along your desktop environment’s menu
bars that might relate to wireless connections and click them. These tools vary greatly
in the details of their operation, but most are easy to use and will help you make con-
nections. You can usually save your settings to simplify moving a notebook computer
between networks.

03843c08.indd 374 8/25/09 7:23:20 AM

Diagnosing Network Problems 375

using ppp

With the rise in broadband access, most Linux systems—even in homes—now have always-
up Internet connections. Nonetheless, you might still need to use a dial-up PPP connection
from time to time. The easiest way to do this generally is to employ a GUI configuration tool,
such as those described in “Using GUI Configuration Tools.” These tools collect information
such as the dial-in system’s telephone number, a username, and a password, and they alter
the relevant configuration files to make initiating a PPP connection easy.

If you prefer to edit the configuration files manually, start with /etc/ppp/pap-secrets
or /etc/ppp/chap-secrets. These files hold authentication information for dial-up
connections:

username server password IP_address

You’ll normally enter a username and password, but place an asterisk (*) in the server
field and leave the IP_address field blank.

With the authentication data entered, you can edit the ppp-on script, which is usually
found somewhere in the /usr/share/doc/ppp directory tree. Copy the script, along with
ppp-off and ppp-on-dialer, to a location such as /usr/local. You must then edit
ppp-on to include your ISP’s telephone number (on the TELEPHONE line) and your user-
name (on the ACCOUNT line). Verify that the DIALER line points to the ppp-on-dialer
script. You may also need to modify the device used by the call to pppd at the end of the
script (usually /dev/ttyS0 by default); this device must point to your modem.

With these changes in place, you can test your connection by typing ppp-on. (Depending
on security settings, you may need to be root to do this.) If it’s successful, your modem
will dial and connect, and a short while later your PPP connection will come up. Typing
ifconfig ppp0 will show a valid network link, and you should be able to use ordinary
Linux networking programs. Type ppp-off to shut down your PPP connection.

Diagnosing Network Problems
Network configuration is a complex topic, and unfortunately, things don’t always work as
planned. Fortunately, there are a few commands you can use to help diagnose a problem.
Four of these are arp, ping, traceroute, and netstat. Each of these commands exercises
the network in a particular way and provides information that can help you track down the
source of a problem. You can also use other network tools to help give your network con-
nections a workout.

03843c08.indd 375 8/25/09 7:23:20 AM

376 Chapter 8 n Configuring Basic Networking

Examining the ARP Cache
The arp utility examines or updates the ARP cache—the list of local IP addresses and
their associated hardware addresses maintained by the computer. Used as a diagnostic
tool, this utility can help you verify that some of the most fundamental parts of a network
link are working.

Before using arp as a diagnostic tool, though, you must first at least attempt to contact
a few other computers using other tools. Linux builds the ARP cache as network activity
occurs. For instance, if you attempt to connect to 192.168.24.78, Linux sends a query to
the network looking for this system, and, if that system replies, Linux adds that system to
its ARP cache. Only after that point will the arp command show the association.

You should also keep in mind that arp is a local network tool; it returns data only on the
computers that exist on the same network segment as the system on which it’s run. That is,
you won’t get data on computers on the Internet at large; those systems are accessed via your
network gateway system. You should see your Internet gateway system in the ARP cache,
though—assuming you’ve accessed that gateway, either directly or by accessing systems to
which it routes.

The simplest way to use arp is to type its name alone:

$ arp

Address HWtype HWaddress Flags Mask Iface

hindmost.rodsbooks.com ether 08:10:74:24:1b:d4 C eth0

halrloprillalar.rodsboo ether 00:0c:76:96:a3:73 C eth0

seeker.rodsbooks.com ether 00:e0:4c:ee:59:e6 C eth0

This use shows three systems in the ARP cache, identified by their hostnames, hardware
types, hardware addresses, flags, masks, and network interfaces. If nothing appears in the
ARP cache, then either you’ve made no network access attempts or something is seriously
wrong with your configuration. Try using ifconfig to verify that the network interface is
up, and check your network cabling. If several systems appear but one that should appear
doesn’t, perhaps that system is down, or perhaps the cabling between the two systems is at
fault—for instance, a cable could be disconnected, or a switch might be faulty.

Several arp options enable you to limit the program’s output. For instance, -H type
limits output to specific hardware types, such as ether for Ethernet; -i Iface limits out-
put to specific interfaces; and -n substitutes IP addresses for hostnames.

In addition to providing information, arp enables you to manipulate the ARP cache.
This isn’t normally necessary, but it could be helpful if you’ve reconfigured a computer or
if you want to delete an entry that you believe is causing problems. The -d address option
deletes the entry for a specified IP address, while -s ip_address hw_address adds an entry
for the specified IP address and hardware address. These changes may not hold forever,
though; the ARP table is dynamic, so any changes you make may be overridden as normal
network operations occur.

03843c08.indd 376 8/25/09 7:23:21 AM

Diagnosing Network Problems 377

Testing Basic Connectivity
Another basic network test is the ping command, which sends a simple packet to the sys-
tem you name (via IP address or hostname) and waits for a reply. In Linux, ping continues
sending packets once every second or so until you interrupt it with a Ctrl+C keystroke.
Alternatively, you can pass the -c n command-line option, which causes ping to send only
n test packets. Here’s an example of its output:

$ ping speaker

PING speaker.rodsbooks.com (192.168.1.1) from 192.168.1.3 : 56(84) bytes of data.

64 bytes from speaker.rodsbooks.com (192.168.1.1): icmp_seq=0 ttl=255 time=149 usec

64 bytes from speaker.rodsbooks.com (192.168.1.1): icmp_seq=1 ttl=255 time=136 usec

64 bytes from speaker.rodsbooks.com (192.168.1.1): icmp_seq=2 ttl=255 time=147 usec

64 bytes from speaker.rodsbooks.com (192.168.1.1): icmp_seq=3 ttl=255 time=128 usec

--- speaker.rodsbooks.com ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max/mdev = 0.128/0.140/0.149/0.008 ms

This command sent four packets and waited for their return, which occurred quite
quickly (in an average of 0.140 milliseconds [ms]) because the target system was on the
local network. By pinging systems on both local and remote networks, you can isolate
where a network problem occurs. For instance, if you can ping local systems but not remote
systems, the problem is most probably in your router configuration. If you can ping by IP
address but not by name, the problem is with your DNS configuration.

Some computers are configured to ignore ping requests. If you attempt to ping such
systems, you’ll get no reply, which you might mistakenly believe means that the system is
inaccessible when in fact it isn’t. If you’re in doubt, you can try other systems or try using
a protocol to which you know the system should respond, as described shortly, in “Using
General Network Tools.”

Tracing a Route
A step up from ping is the traceroute command, which sends a series of three test packets
to each computer between your system and a specified target system. The result looks some-
thing like this:

$ traceroute -n 10.1.0.43

traceroute to 10.1.0.43 (10.1.0.43), 30 hops max, 52 byte packets

 1 192.168.1.254 1.021 ms 36.519 ms 0.971 ms

 2 10.10.88.1 17.250 ms 9.959 ms 9.637 ms

 3 10.9.8.173 8.799 ms 19.501 ms 10.884 ms

03843c08.indd 377 8/25/09 7:23:21 AM

378 Chapter 8 n Configuring Basic Networking

 4 10.9.8.133 21.059 ms 9.231 ms 103.068 ms

 5 10.9.14.9 8.554 ms 12.982 ms 10.029 ms

 6 10.1.0.44 10.273 ms 9.987 ms 11.215 ms

 7 10.1.0.43 16.360 ms * 8.102 ms

The -n option to this command tells traceroute to display target computers’ IP addresses,
rather than their hostnames. This can speed up the process a bit, and it can sometimes make
the output easier to read—but you might want to know the hostnames of problem systems,
because that can help you pinpoint who’s responsible for a problem.

This sample output shows a great deal of variability in response times. The first hop, to
192.168.1.254, is purely local; this router responded in 1.021, 36.519, and 0.971 ms to its
three probes. (Presumably the second probe caught the system while it was busy with some-
thing else.) Probes of most subsequent systems are in the 8–20 ms range, although one is at
103.068 ms. The final system has only two times; the middle probe never returned, as the
asterisk (*) on this line indicates.

Using traceroute, you can localize problems in network connectivity. Highly variable
times and missing times can indicate a router that’s overloaded or that has an unreliable
link to the previous system on the list. If you see a dramatic jump in times, it typically
means that the physical distance between two routers is great. This is common in intercon-
tinental links. Such jumps don’t necessarily signify a problem, though, unless the two sys-
tems are close enough that a huge jump isn’t expected.

What can you do with the traceroute output? Most immediately, traceroute is helpful
in determining whether a problem in network connectivity exists in a network for which
you’re responsible. For instance, the variability in the first hop of the preceding example
could indicate a problem on the local network, but the lost packet associated with the final
destination most likely is not a local problem. If the trouble link is within your jurisdiction,
you can check the status of the problem system, nearby systems, and the network segment
in general.

As with ping, some routers are configured to drop packets from traceroute.
Thus, the traceroute output may indicate dropped packets even though
regular network traffic passes through these routers just fine.

Checking Network Status
Another useful diagnostic tool is netstat. This is something of a Swiss Army knife of net-
work tools because it can be used in place of several others, depending on the parameters it
is passed. It can also return information that’s not easily obtained in other ways. Table 8.2
summarizes some examples.

03843c08.indd 378 8/25/09 7:23:21 AM

Diagnosing Network Problems 379

TA B le 8 . 2 Common netstat Options

Option Option Abbreviation Meaning

--interface -i Pass netstat this parameter to obtain informa-
tion on your network interfaces similar to what
ifconfig returns. (Some versions of netstat
return information in the same format, but others
display the information differently.)

--route -r You can use this parameter to obtain a routing
table listing similar to what the route command
displays.

--masquerade -M Pass netstat this parameter to obtain infor-
mation on connections mediated by Linux’s
NAT features, which often go by the name “IP
masquerading.” NAT enables a Linux router to
“hide” a network behind a single IP address.
This can be a good way to stretch limited IP
addresses.

--program -p Some versions of netstat support this param-
eter, which attempts to provide information on
the programs that are using network connec-
tions. This attempt isn’t always successful, but
it often is, so you can see what programs are
making outside connections.

Various Various When used with various other parameters, or
without any parameters at all, netstat returns
information on open ports and the systems to
which they connect.

Keep in mind that netstat is a very powerful tool, and its options and output aren’t
entirely consistent from one distribution to another. You may want to peruse its man page
and experiment with it to learn what it can do.

Name Server Troubleshooting
The nslookup, host, and dig tools were described earlier as a means to test basic name
server functioning. One trick that’s helpful if you encounter problems is to use another
name server. You can do this by passing the name of a particular name server to these
tools. With nslookup and host, you trail your query with the IP address of the server you

03843c08.indd 379 8/25/09 7:23:22 AM

380 Chapter 8 n Configuring Basic Networking

want to use; with dig, you begin the query with the name server’s address preceded by an
at-sign (@). For instance:

$ host www.oberlin.edu 192.168.1.254

$ dig @192.168.1.254 www.oberlin.edu

These queries both employ the DNS server at 192.168.1.254 instead of the computer’s
default DNS server. (I’ve omitted their outputs, which can be lengthy.) The result can help
you identify servers that are down or perhaps server IP addresses you’ve entered incorrectly.

If ifconfig shows that your network interface is up but you can’t seem to
access the network, try using an IP address rather than a hostname. (You
can use host on another computer to look up a hostname, or you can try
your router’s IP address.) If you can access a system by IP address but not
by hostname, then the problem almost certainly lies with your DNS config-
uration—or perhaps your DNS server is down.

The hostname command can also be a useful diagnostic tool. This program returns the
currently defined hostname for the computer:

$ hostname

aldrin.luna.edu

If your system’s hostname is set incorrectly, you can run into some odd networking
problems, including delays or an inability to reach systems on your local network via their
short names. You can temporarily set a hostname by passing it to hostname, but if you need
to set it permanently, you may need to do so in configuration files. Typically, editing /etc/
hostname or /etc/HOSTNAME will do the job, or you can use a GUI configuration tool, such
as the ones described earlier, in “Using GUI Configuration Tools.”

The hostname returned or set by the hostname command is unrelated to
the hostname as maintained by your local network’s DNS server. The two
should match, but using hostname to set your hostname will not adjust
the DNS entry and hence the way other computers contact yours. Setting
your hostname locally, either via the hostname utility or by adjusting your
configuration files, affects the hostname used in certain programs. For
instance, your local hostname may affect your default e-mail address in
mail clients, the local hostname used by mail servers, and the hostname
displayed by Bash in some prompt configurations.

Using General Network Tools
You can use any network client or server as a means of testing network connections. Some-
times this is helpful if a remote system is configured to ignore ping requests. For instance,

03843c08.indd 380 8/25/09 7:23:22 AM

Diagnosing Network Problems 381

you might launch Mozilla Firefox to test the response of a computer that runs a Web server
program, or you might use an e-mail client program to test a mail server computer.

One particularly helpful test program is telnet. This program is a simple text-mode
remote login program, and when it’s used for its original intended purpose, it enables you
to connect to a remote system and run text-mode programs on it. The Telnet protocol,
however, is unencrypted and so is no longer recommended for remote logins; instead, you
should use Secure Shell (SSH) for this task. The telnet program remains useful as a net-
work diagnostic tool, however, because you can pass a port number after the system name
to connect to any TCP port on the target system:

$ telnet mail.example.com 25

Trying 192.168.1.2...

Connected to mail.

Escape character is ‘^]‘.

220 mail.example.com ESMTP Postfix (Ubuntu)

This example shows a connection to port 25 on mail.example.com. This port is ordinarily
used by the Simple Mail Transfer Protocol (SMTP), and the example shows an SMTP server
(Postfix) responding on this port. In other words, the target system’s mail server program is
functioning, at least in a minimal way. If you can’t send e-mail, therefore, the problem doesn’t
lie in basic connectivity.

If you know enough about the protocols involved, you can use telnet to simulate a data
exchange session. For instance, the preceding exchange might be continued:

mail from:<ben@example.com>

250 2.1.0 Ok

rcpt to:<george@example.com>

250 2.1.5 Ok

data

354 End data with <CR><LF>.<CR><LF>

This is a message!

.

250 2.0.0 Ok: queued as 8B00C6735

quit

The mail from:, rcpt to:, data, and quit commands are all legal ones in SMTP, while
the text of the message (This is a message!) is the body of an e-mail message. This example
shows a message being accepted for delivery by the server, but if an error occurred, the server
would present an error message that might be diagnostic—for instance, the server might com-
plain that it’s not configured to forward e-mail between sites.

Of course, to do more than check for a basic connection, you must know enough about
the protocol to issue valid commands. This knowledge is fairly advanced, and you won’t be
expected to do such things on the Linux+ exam!

03843c08.indd 381 8/25/09 7:23:22 AM

382 Chapter 8 n Configuring Basic Networking

You should be aware that although telnet is good for testing TCP connections, it’s not
useful for testing UDP or other types of connections. A few protocols, such as some versions
of the Network File System (NFS), use UDP, so telnet isn’t a useful diagnostic for them.

If you need to know a port number to use telnet as described here, the
/etc/services file may be of use; it provides a mapping of port numbers
to service names. Chapter 9 also provides this information for several
common servers.

Summary
Networking is very important to many modern Linux systems, which frequently function as
servers or workstations on local networks. Networks operate by breaking data into individual
packets in a manner that’s dictated by the particular protocol stack in use by the system. Linux
includes support for several protocol stacks, the most important of which is TCP/IP, the pro-
tocol stack on which the Internet is built. You can configure Linux for TCP/IP networking by
using DHCP to automatically obtain an address, by entering the information manually, or by
establishing a PPP link. You can do any of these things using text-mode or GUI tools, although
the GUI tools aren’t standardized across different distributions.

You may need to diagnose network problems. Tools such as ifconfig, netstat, arp,
ping, and traceroute are useful in this task. Each of these tools provides its own type of
data, which can help you isolate the source of a problem.

Exam Essentials

Determine appropriate network hardware for a Linux computer. If the computer is to be
used on an existing network, you must obtain a network card of a type that’s compatible
with that network, such as Ethernet or Token Ring. If you’re building a new local network,
Ethernet is the most common choice, although more exotic alternatives are also available
and may be suitable in some specific situations. Hardware supporting 802.11 (Wi-Fi) proto-
cols is appropriate if wireless access is necessary.

Summarize how most network hardware is activated in Linux. The ifconfig command
brings up a network card, assigning it an IP address and performing other basic configura-
tion tasks. Typically, this command is called in a SysV startup script, which may perform
still more tasks as well, such as adding entries to the routing table. Wireless hardware
requires use of the iwconfig command prior to the ifconfig call.

03843c08.indd 382 8/25/09 7:23:23 AM

Exam Essentials 383

Describe the information needed to configure a computer on a static IP network. Four
pieces of information are important: the IP address, the netmask (aka the network mask or
subnet mask), the network’s gateway address, and the address of at least one DNS server.
The first two are required, but if you omit either or both of the latter two, you won’t be
able to connect to the Internet or use most DNS hostnames.

Determine when using /etc/hosts rather than DNS makes the most sense. The /etc/
hosts file provides a static mapping of hostnames to IP addresses on a single computer.
As such, maintaining this file on a handful of computers for a small local network is
fairly straightforward, but when the number of computers rises beyond a few or when IP
addresses change frequently, running a DNS server to handle local name resolution makes
more sense.

Explain what the route command accomplishes. The route command displays or modi-
fies the routing table, which tells Linux how to direct packets based on their destination IP
addresses.

Summarize how ping and traceroute differ. The ping command sends a simple packet to
a target, waits for a reply, and reports on the total round-trip time. The traceroute com-
mand is similar, but it traces the route of a packet step-by-step, enabling you to track the
source of a network connectivity problem.

03843c08.indd 383 8/25/09 7:23:23 AM

384 Chapter 8 n Configuring Basic Networking

Review Questions

1. Which types of network hardware does Linux support? (Choose all that apply.)

A. Token Ring

B. Ethernet

C. DHCP

D. Fibre Channel

2. Which of the following is a valid IPv4 address on a TCP/IP network?

A. 202.9.257.33

B. 63.63.63.63

C. 107.29.5.3.2

D. 98.7.104.0/24

3. Which of the following is not a Linux DHCP client?

A. pump

B. dhcpcd

C. dhcpd

D. dhclient

4. You try to set up a computer on a local network via a static TCP/IP configuration, but you
lack a gateway address. Which of the following is true?

A. Because the gateway address is necessary, no TCP/IP networking functions will work.

B. TCP/IP networking will function, but you’ll be unable to convert hostnames to IP
addresses, or vice versa.

C. You’ll be able to communicate with machines on your local network segment but not
with other systems.

D. The computer won’t be able to tell which other computers are local and which
are remote.

5. Which of the following types of information is returned by typing ifconfig eth0?
(Choose all that apply.)

A. The names of programs that are using eth0

B. The IP address assigned to eth0

C. The hardware address of eth0

D. The hostname associated with eth0

03843c08.indd 384 8/25/09 7:23:23 AM

Review Questions 385

6. In what way do GUI network configuration tools simplify the network configuration process?

A. They’re the only way to configure a computer using DHCP, which is an easier way to
set networking options than static IP addresses.

B. They provide the means to configure PPPoE, which is easier to configure than DHCP
or static IP addresses.

C. Once running, they provide easy-to-find labels for options, obviating the need to locate
appropriate configuration files.

D. They’re consistent across distributions, making it easier to find appropriate options on
an unfamiliar distribution.

7. Which of the following is an advantage of IPv6 over IPv4?

A. IPv6 provides a much larger address space than IPv4.

B. IPv6 provides better support for legacy OSs than IPv4.

C. IPv6 supports remote text-mode logins with encryption.

D. IPv6 works with Wi-Fi connections; IPv4 doesn’t.

8. Under what circumstances might you use the iwconfig utility?

A. You must diagnose problems on a Token Ring network.

B. You need to bring up or shut down an Ethernet network link.

C. You need to connect a Linux system to a new wireless network.

D. You must diagnose the failure of a DHCP client on a HIPPI network.

9. Which of the following utilities can bring up a network connection? (Choose all that apply.)

A. ifconfig

B. netstat

C. ifup

D. ping

10. Which file would you modify to give /etc/hosts priority over DNS lookups?

A. /etc/hosts

B. /etc/dns.conf

C. /etc/resolv.conf

D. /etc/nsswitch.conf

11. You want to permanently change the IP address of an Ubuntu computer with a fixed IP
address on an Ethernet network. What file would you edit to do this job?

A. /etc/network/eth0

B. /etc/network/interfaces

C. /etc/resolv.conf

D. /etc/hostname

03843c08.indd 385 8/25/09 7:23:23 AM

386 Chapter 8 n Configuring Basic Networking

12. You want to permanently change the IP address of a Fedora computer with a fixed IP
address on an Ethernet network. What file would you edit to do this job?

A. /etc/sysconfig/network-scripts/ifcfg-eth0

B. /etc/network/ifcfg

C. /etc/system-config/ipaddr

D. /etc/hosts

13. You type arp -n at a command prompt. What type of output will you see?

A. A summary of network packet errors

B. Routing table information

C. The mapping of IP addresses to MAC addresses

D. The IP address(es) of your name server(s)

14. Your computer has an IP address of 192.168.21.102, with a network mask of 255.255.255.0.
You’re able to ping 192.168.21.7 and 192.168.21.98, but not 192.168.27.3 or 10.78.21.102.
If you know that all of these addresses are valid and the computers are turned on and con-
nected to the network, what is the most probable cause of this problem?

A. The name server configuration is set incorrectly on 192.168.21.102.

B. The default route is set incorrectly on 192.168.21.102.

C. The DHCP servers must be activated on 192.168.27.3 and 10.78.21.102.

D. The netmask is set incorrectly on 192.168.21.102.

15. Which of the following programs can be used to perform a DNS lookup in interactive
mode?

A. nslookup

B. host

C. pump

D. ifconfig

16. Which of the following entries are found in the /etc/hosts file?

A. A list of hosts allowed to remotely access this one

B. Mappings of IP addresses to hostnames

C. A list of users allowed to remotely access this host

D. Passwords for remote Web administration

17. You use traceroute to trace the path from your computer to 172.24.24.24. You discover,
however, that starting with 10.109.73.7, your packets are being lost. What can you conclude?

A. The 10.109.73.7 router is down.

B. You need to rerun the test with the -n option to traceroute.

C. The 172.24.24.24 server is down.

D. No solid conclusions can be drawn.

03843c08.indd 386 8/25/09 7:23:23 AM

Review Questions 387

18. Your computer is in the example.com domain, but you want to be able to contact the
neil.tranquility.luna.edu and buzz.tranquility.luna.edu servers by typing neil
or buzz as the hostnames, respectively. How can you accomplish this goal? (Choose all
that apply.)

A. Add the lines host neil neil.tranquility.luna.edu and host buzz
buzz.tranquility.luna.edu to your Bash startup script.

B. Add entries for neil and buzz, linking them to their IP addresses, to /etc/hosts.

C. Add the line search tranquility.luna.edu to your /etc/resolv.conf file.

D. Add the line nameserver tranquility.luna.edu to your /etc/resolv.conf file.

19. Which of the following commands should you use to add to host 192.168.0.10 a default
gateway to 192.168.0.1?

A. route add default gw 192.168.0.10 192.168.0.1

B. route add default gw 192.168.0.1

C. route add 192.168.0.10 default 192.168.0.1

D. route 192.168.0.10 gw 192.168.0.1

20. The telnet program can be used to help diagnose connection problems to many servers.
For what class of servers is this untrue?

A. Servers that use HTTP

B. Servers that use SMTP

C. Servers that use TCP

D. Servers that use UDP

03843c08.indd 387 8/25/09 7:23:24 AM

388 Chapter 8 n Configuring Basic Networking

Answers to Review Questions

1. A, B, D. Ethernet is currently the most common type of network hardware for local net-
works. Linux supports it very well, and Linux also includes support for Token Ring and
Fibre Channel network hardware. DHCP is a protocol used to obtain a TCP/IP configura-
tion over a TCP/IP network. It’s not a type of network hardware, but it can be used over
hardware that supports TCP/IP.

2. B. IP addresses consist of four 1-byte numbers (0–255). They’re normally expressed in
base 10 and separated by periods. 63.63.63.63 meets these criteria. 202.9.257.33 includes
one value (257) that’s not a 1-byte number. 107.29.5.3.2 includes five 1-byte numbers.
98.7.104.0/24 is a network address—the trailing /24 indicates that the final byte is a
machine identifier, and the first three bytes specify the network.

3. C. Option C, dhcpd, is the Linux DHCP server. The others are all DHCP clients. Most
distributions ship with just one or two of the DHCP clients.

4. C. The gateway computer is a router that transfers data between two or more network
segments. As such, if a computer isn’t configured to use a gateway, it won’t be able to com-
municate beyond its local network segment. (If your DNS server is on a different network
segment, name resolution via DNS won’t work, although other types of name resolution,
such as /etc/hosts file entries, will still work.)

5. B, C. When used to display information on an interface, ifconfig shows the hardware
and IP addresses of the interface, the protocols (such as TCP/IP) bound to the interface, and
statistics on transmitted and received packets. This command does not return information
on programs using the interface or the hostname associated with the interface.

6. C. Once you know what tool to run in a distribution, it’s usually not difficult to find the
label for any given network configuration option in a GUI tool. You can configure DHCP
and PPPoE in text mode (and the latter is arguably more complex than DHCP). GUI config-
uration tools, although they provide similar functionality, are not entirely consistent from
one distribution to another.

7. A. The main motivating force behind IPv6 is to increase the address space of TCP/IP from
the 232 (approximately 4 billion) addresses provided by IPv4, which is becoming an obstacle
to further Internet expansion. Option B is backwards; older OSs are more likely to have
good IPv4 support than good IPv6 support. Encryption is largely a feature of client and
server software at the Application level, and software such as SSH provides encrypted text-
mode login support even with IPv4, so option C is incorrect. (That said, IPv6 does have
features that are intended to improve security.) Wi-Fi connections can be made with either
IPv4 or IPv6, contrary to option D.

8. C. The iwconfig utility configures a Linux wireless (Wi-Fi) connection, so option C is cor-
rect. Options A, B, and D all refer to wired network hardware, for which iwconfig is useless.

03843c08.indd 388 8/25/09 7:23:24 AM

Answers to Review Questions 389

9. A, C. The ifconfig command is Linux’s basic tool for manually bringing up a network
connection using options provided on the command line, while ifup is a utility that brings
up a network connection based on the contents of the network configuration files. The net-
stat and ping commands are both useful network diagnostic tools, but they don’t bring up
network connections.

10. D. The /etc/nsswitch.conf file includes a line called hosts that specifies, in order,
what tools to use for hostname resolution. If files appears before dns on this line, the
/etc/hosts file will be used before DNS accesses are attempted. The /etc/hosts file itself
doesn’t control its own priority, contrary to option A. There is no standard /etc/dns.conf
file. The /etc/resolv.conf file points Linux to its name servers, but it doesn’t affect the
priority of /etc/hosts vs. DNS lookups.

11. B. The /etc/network/interfaces file holds critical network configuration information
for Ubuntu systems, including the computer’s IP address if that’s configured manually. The
/etc/network/eth0 file is fictitious. The /etc/resolv.conf file holds name server infor-
mation. The /etc/hostname file holds the computer’s hostname, not its IP address.

12. A. Option A specifies the correct file (although the 0 number may be different if the com-
puter has several Ethernet interfaces). Options B and C are fictitious. Option C specifies the
file that holds static mappings of hostnames to IP addresses for local use.

13. C. The arp utility returns data from the Address Resolution Protocol (ARP) table, which
holds mappings of IP addresses to hardware (MAC) addresses. The -n option displays IP
addresses as such rather than converted into hostnames. Network packet error information,
as stated in option A, can be obtained, along with other information, from ifconfig but
not from arp. Routing table information, as stated in option B, is usually obtained from
route or netstat -r. Your name server(s) IP address(es), as in option D, are most easily
obtained by displaying the contents of /etc/resolv.conf.

14. B. The two reachable systems are on the same network block (192.168.21.0/24), so their
network traffic would not pass through a router. The two unreachable systems are on
different network blocks, which means their traffic must pass through a router. This pat-
tern suggests that there’s a routing problem, as in option B. (Another possibility is that
the router itself is down or misconfigured.) Since all the computers in the question were
specified by IP address, name server configuration, as in option A, isn’t an issue. Option C
implies that DHCP servers are required to respond to ping requests, but this isn’t so; DHCP
servers deliver IP addresses to DHCP clients. Although a change in the netmask might plau-
sibly enable the first system to contact 192.168.27.3, if the two systems are connected to the
same physical wires, the 10.78.21.102 system is much too different in IP address to make a
misconfigured netmask a plausible explanation for this problem, as option D suggests.

15. A. The nslookup program, though being phased out, offers an interactive mode that can
be used for DNS lookups. The host program, though a replacement for nslookup, does not
offer an interactive mode. pump is a DHCP client, while ifconfig is used for configuration
of networking parameters and cards.

03843c08.indd 389 8/25/09 7:23:24 AM

390 Chapter 8 n Configuring Basic Networking

16. B. The /etc/hosts file holds mappings of IP addresses to hostnames, on a one-line-per-
mapping basis. It does not list the users or other hosts allowed to remotely access this one,
nor does it affect remote administration through a Web browser.

17. D. Although traceroute can be a useful tool for locating problems, it’s imperfect. Routers
can sometimes be configured to drop traceroute packets but not regular packets, so you
can’t really be sure if 10.109.73.7 is dropping packets by design or if it’s down; both are
possibilities, so no conclusion can be drawn.

18. B, C. The /etc/hosts file contains static mappings of hostnames to IP addresses, so add-
ing entries as specified in option B will work (although these entries will need to be changed
if these servers’ IP addresses ever change). Option C’s solution will also work, and it will
continue to work if the servers’ IP addresses change, provided that their DNS server is
appropriately updated. Option A won’t work because the host command is a DNS lookup
tool; it doesn’t create hostname aliases, as option A implies. Option D confuses the search
and nameserver functions of /etc/resolv.conf. The nameserver line in this file specifies
a DNS name server by IP address, so option D won’t work.

19. B. To add a default gateway of 192.168.0.1, the command would be route add default
gw 192.168.0.1. Specifying the IP address of the host system is not necessary and in fact
will confuse the route command.

20. D. Telnet is a TCP protocol, which means that it cannot connect to servers that use UDP
exclusively. Thus, option D is correct. HTTP and SMTP are both TCP-based protocols for
which telnet can be a useful diagnostic tool. Broadly speaking, Telnet can help diagnose
TCP protocols, although this is easier for some protocols than for others.

03843c08.indd 390 8/25/09 7:23:24 AM

Chapter

9
Configuring Advanced
Networking

The FollowiNg CompTiA objeCTives
Are Covered iN This ChApTer:

3.9 Deploy and manage CUPS print services (enable and ÛÛ
disable queues, Web management interface [port 631],
Printing commands: lpr, lp, lpq, lpstat, cancel).

4.1 Identify common networking ports and the associated ÛÛ
service (20, 21, 22, 23, 25, 53, 80, 110, 123, 143, 443, 631,
3306, /etc/services).

4.3 Implement configurations and/or configuration ÛÛ
changes for the following (Packet filtering: iptables).

5.7 Deploy remote access facilities using the following ÛÛ
(SSH: secure tunnels, SFTP, X11 forwarding, Key gen; VNC).

03843book.indb 391 8/21/09 12:09:21 PM

Chapter 8, “Configuring Basic Networking,” introduced the
topic of network configuration, but it covered only the basics
of network configuration and diagnostics. This chapter con-

tinues this introduction to networking by tackling several important topics. These include
additional information on router configuration, network ports, and packet filtering (a secu-
rity tool that enables you to drop, redirect, or modify packets based on a wide variety of
criteria). These topics are particularly important if you want to configure a Linux system as
a router—a system that directs data between two networks.

This chapter also covers a couple of important classes of network servers and clients:
remote login tools and the Common Unix Printing System (CUPS) utility for printing. Both
ordinary users and system administrators can use remote network access. CUPS is used for
printing even on Linux systems with no regular network connections, but CUPS really shines
on a network, since it enables seamless sharing of printers. Chapter 10, “Configuring Net-
work Servers I,” and Chapter 11, “Configuring Network Servers II,” continue the examina-
tion of Linux networking by delving into a number of additional network server packages.

Objective 4.3 is covered partly in this chapter and partly in Chapter 8.

Routing Between Networks
Chapter 8 provided information on router configuration, including the use of the route
command to tell your computer about the local networks to which it’s attached and how to
direct network traffic to computers on other networks.

A typical configuration involves just one local network and one router or gateway sys-
tem; however, Linux can support much more advanced configurations. For instance, sup-
pose a computer has two network cards, each of which is connected to a different network.
The routing table on such a computer might resemble the following, as reported by route:

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

172.24.21.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

0.0.0.0 192.168.1.254 0.0.0.0 UG 100 0 0 eth1

03843book.indb 392 8/21/09 12:09:22 PM

Firewall Configuration 393

This computer (let’s call it speaker) is connected to two networks: 172.24.21.0/24, on
eth0; and 192.168.1.0/24, on eth1. The latter network includes a default gateway system
(192.168.1.254), which handles traffic addressed to all computers on networks other than
those explicitly included in the routing table.

Ordinarily, a computer configured in this way can communicate with the computers on
both its networks and, via the gateway computer, to additional systems (perhaps including
the entire Internet). One additional step will turn the computer into a router, which can
then pass traffic back and forth between the two networks. If speaker is configured as a
router, the systems on the 172.24.21.0/24 network might refer to it as a router, enabling
them to communicate with the 192.168.1.0/24 systems, as well as all the computers that
192.168.1.254 can contact. Likewise, systems on the 192.168.1.0/24 network can commu-
nicate with 172.24.21.0/24. To enable this configuration, you must modify a key file in the
/proc filesystem:

echo “1” > /proc/sys/net/ipv4/ip_forward

This command enables IP forwarding. Permanently setting this option requires modify-
ing a configuration file. Some distributions set it in /etc/sysctl.conf:

net.ipv4.ip_forward = 1

The sysctl utility and sysctl.conf are described in greater detail in
Chapter 3, “Managing Processes and Editing Files.”

Other distributions use other configuration files and options, such as /etc/sysconfig/
sysctl and its IP_FORWARD line. If you can’t find it, try using grep to search for ip_forward or
IP_FORWARD, or enter the command to perform the change manually in a local startup script.

You shouldn’t configure a Linux system as a router unless you understand
the consequences. Linking two networks is often desirable or even neces-
sary, but it may have security implications, particularly if one network is pri-
vate (such as a network in a small office) and the other is public (such as the
Internet). You can use iptables, as described in the next section, to increase
the security on a router. You may also want to apply security software to all
the computers on the smaller network and take extra care to secure the router
itself. Chapter 12, “Securing Linux,” provides a starting point for this task.

Firewall Configuration
The first line of defense in network security is a firewall. This is a computer that restricts
access to other computers, or it’s software that runs on a single computer to protect it alone.
Broadly speaking, two types of firewalls exist: packet-filter firewalls, which work by blocking

03843book.indb 393 8/21/09 12:09:22 PM

394 Chapter 9 n Configuring Advanced Networking

or permitting access based on low-level information in individual data packets, such as source
and destination IP addresses and ports, and proxy filters, which partially process a transac-
tion, such as a Web page access, and block or deny access based on high-level features in this
transaction, such as the filename of an image in the Web page. This chapter describes Linux’s
packet-filter firewall tools, which can be very effective at protecting a single computer or an
entire network against certain types of attack.

Where a Firewall Fits in a Network
Traditionally, firewalls have been routers that block undesired network transfers between two
networks. Typically, one network is a small network under one management, and the other
network is much larger, such as the Internet. Figure 9.1 illustrates this arrangement. (More
complex firewalls that use multiple computers are also possible.) Dedicated external firewalls
are available, and they can be good investments in many cases. In fact, it’s possible to turn an
ordinary computer into such a device by using Linux—either with a special-purpose distri-
bution like the Linux Embedded Appliance Firewall (http://leaf.sourceforge.net) or by
using an ordinary distribution and configuring it as a router with firewall features.

F i gu r e 9 .1 Firewalls can selectively pass some packets but not others, using
assorted criteria.

Desired access (passed by firewall)

Undesired access (blocked by firewall)

Internet

Firewall

Local network

As described in more detail shortly, servers operate by associating themselves with par-
ticular network ports. Likewise, client programs bind to ports, but client port bindings
aren’t standardized. Packet filter firewalls block access by examining individual network
packets and determining whether to let them pass based on the source and destination port
number, the source and destination IP address, and possibly other low-level criteria, such
as the network interface in a computer with more than one. For instance, in Figure 9.1, you
might run a Samba file server internally, but outside computers have no business accessing
that server. Therefore, you’d configure the firewall to block external packets directed at the
ports used by Samba.

In addition to running a firewall on a router that serves an entire network, it’s possible
to run a firewall on an individual system. This approach can provide added protection to

03843book.indb 394 8/21/09 12:09:23 PM

Firewall Configuration 395

a sensitive computer, even if an external firewall protects that computer. It’s also useful on
computers that don’t have the protection of a separate firewall, such as many broadband-
connected systems.

Linux Firewall Software
Linux uses the ipfwadm, ipchains, and iptables tools to configure firewall functions.
These tools are designed for the 2.0.x, 2.2.x, and 2.4.x kernels, respectively. The 2.6.x
kernels continue to use the iptables tool. (The 2.4.x and later kernel series include the
ability to use the older tools, but only as a compile-time option.) You can configure a fire-
wall in any of several ways:

Manually You can read up on the syntax of the tool used to configure your kernel
and write your own script. This approach is described in the upcoming section “Using
iptables.”

For more information on this approach, consult a book on the subject, such
as Michael Rash’s Linux Firewalls: Attack Detection and Response with
iptables, psad, and fwsnort (No Starch Press, 2007) or Steve Suehring
and Robert Ziegler’s Linux Firewalls, 3rd Edition (Novell Press, 2005).

With the help of a GUI configuration tool A few GUI configuration tools are available
for Linux firewall configuration, such as Firestarter (http://firestarter.sourceforge
.net) and Guarddog (http://www.simonzone.com/software/guarddog). Linux distribu-
tions often incorporate such tools as well, although the distribution-provided tools are
often very simple. These tools let you specify certain basic information, such as the net-
work port and the client and server protocols you want to allow, and they generate firewall
scripts that can run automatically when the system boots.

If you use a GUI tool, be sure it supports the firewall tool your kernel requires—some
older tools were written for ipchains only or were designed for non-Linux OSs, but you’re
almost certainly using a 2.6.x kernel and so will want something that supports iptables.
Also, you shouldn’t consider a firewall to be perfect protection. You might create a configu-
ration that contains flaws, or flaws might exist in the Linux kernel code that actually imple-
ments the firewall rules.

One of the advantages of a firewall, even to protect just one computer, is
that it can block access attempts to any server. Most other measures are
more limited. For instance, TCP Wrappers (described in Chapter 4, “Man-
aging System Services”) protects only servers configured to be run via
TCP Wrappers from inetd, and passwords are good only to protect the
servers that are coded to require them.

03843book.indb 395 8/21/09 12:09:24 PM

396 Chapter 9 n Configuring Advanced Networking

Common Server Ports
Most packet filter firewalls use the server program’s port number as a key feature. For
instance, a firewall might block outside access to the SMB/CIFS ports used by Samba but let
through traffic to the SMTP mail server port. In order to configure a firewall in this way, of
course, you must know the port numbers. Linux systems contain a file, /etc/services, that
lists service names and the ports with which they’re associated. Lines in this file look some-
thing like this:

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

24 - private

smtp 25/tcp

The first column contains a service name (ssh, telnet, or smtp in this example). The sec-
ond column contains the port number and protocol (such as 22/tcp, meaning TCP port 22).
Anything following a hash mark (#) is a comment and is ignored. The /etc/services file lists
port numbers for both TCP and UDP ports. Typically, a single service is assigned the use of
the same TCP and UDP port numbers (as in the ssh service in this example), although most
protocols use just one or the other. When configuring a firewall, it’s generally best to block
both TCP and UDP ports; this ensures you won’t accidentally block the wrong port type.

Table 9.1 summarizes the port numbers used by the most important protocols run on
Linux systems. This list is, however, incomplete; it hits only some of the most common pro-
tocols. In fact, even /etc/services is incomplete and may need to be expanded for certain
obscure servers. (The documentation for such servers describes how to do so, if necessary.)

TA b le 9 .1 Port Numbers Used by Some Common Protocols

Port Number TCP/UDP Protocol Example Server Programs

20 and 21 TCP FTP ProFTPd, WU FTPd

22 TCP SSH OpenSSH, lsh

23 TCP Telnet in.telnetd

25 TCP SMTP sendmail, Postfix, Exim, qmail

53 TCP and UDP DNS BIND, dnsmasq

67 UDP DHCP DHCP, dnsmasq

69 UDP TFTP in.tftpd

80 TCP HTTP Apache, thttpd

03843book.indb 396 8/21/09 12:09:24 PM

Firewall Configuration 397

TA b le 9 .1 Port Numbers Used by Some Common Protocols (continued)

Port Number TCP/UDP Protocol Example Server Programs

88 TCP Kerberos MIT Kerberos, Heimdal

109 and 110 TCP POP (versions 2 and 3) UW IMAP, Cyrus IMAP

111 TCP and UDP Portmapper NFS, NIS, other RPC-based
services

113 TCP auth/ident identd

119 TCP NNTP INN, Leafnode

123 UDP NTP NTP

137 UDP NetBIOS Name Service Samba

138 UDP NetBIOS Datagram Samba

139 TCP NetBIOS Session Samba

143 TCP IMAP 2 UW IMAP, Cyrus IMAP

177 UDP XDMCP XDM, KDM, GDM

220 TCP IMAP 3 UW IMAP, Cyrus IMAP

389 TCP LDAP OpenLDAP

443 TCP HTTPS Apache

445 TCP Microsoft DS Samba

514 UDP Syslog syslogd

515 TCP Spooler BSD LPD, LPRng, cups-lpd

631 TCP IPP CUPS

636 TCP LDAPS OpenLDAP

749 TCP Kerberos Admin MIT Kerberos, Heimdal

3306 TCP SQL MySQL

5800–5899 TCP VNC via HTTP RealVNC, TightVNC

03843book.indb 397 8/21/09 12:09:24 PM

398 Chapter 9 n Configuring Advanced Networking

TA b le 9 .1 Port Numbers Used by Some Common Protocols (continued)

Port Number TCP/UDP Protocol Example Server Programs

5900–5999 TCP VNC RealVNC, TightVNC

6000–6099 TCP X X.org-X11, XFree86

Table 9.1 shows the ports used by the servers for the specified protocols. In
most cases, clients can and do use other port numbers to initiate connec-
tions. For instance, a mail client might use port 43411 on client.pangaea
.edu to connect to port 143 on mail.pangaea.edu. Client port numbers are
assigned by the kernel on an as-needed basis, so they aren’t fixed. (Clients
can request specific port numbers, but this practice is rare.)

One key distinction in TCP/IP ports is that between privileged ports and unprivileged
ports. The former have numbers below 1024. Unix and Linux systems restrict access to
privileged ports to root. The idea is that a client can connect to a privileged port and be
confident that the server running on that port was configured by the system administrator
and can therefore be trusted. Unfortunately, on today’s Internet, this trust would be unjus-
tified based solely on the port number, so this distinction isn’t very useful. Port numbers
above 1024 may be opened by ordinary user programs.

ISPs typically block access to many common server ports on residential
accounts. This practice prevents home users, and even some small busi-
nesses, from running their own Web, e-mail, and other common servers.
Users can still access outside servers’ ports in most cases, although as a
spam-reduction measure, ISPs sometimes block outgoing port 25 access
except to their own mail servers.

Using iptables
The iptables program is the utility that manages firewalls on recent Linux kernels (from
2.4.x through at least 2.6.x). Although these kernels can also use the older ipchains tool
when so configured using kernel compile-time options, iptables is the more flexible tool
and is therefore the preferred way of creating and managing packet-filter firewalls.

When using iptables, you should first understand how Linux’s packet filter architecture
works—you can create several types of rules, which have differing effects, so understanding
how they interact is necessary before you begin creating rules. Actually creating the rules
requires understanding the iptables command syntax and options. Finally, it’s helpful to
look at a sample firewall script and to know how it’s installed and called by the system.

03843book.indb 398 8/21/09 12:09:25 PM

Firewall Configuration 399

The Linux Packet Filter Architecture
In the 2.4.x and later kernels, Linux uses a series of “tables” to process all network packets
it generates or receives. Each table consists of several “chains,” which are series of pattern-
matching rules—when a packet matches a rule, the rule can discard the packet, forward it
to another chain, or accept the packet for local delivery. Figure 9.2 illustrates the filter
table, which is the one you normally modify when creating a firewall. Other tables include
the nat table, which implements network address translation (NAT) rules, and the mangle
table, which modifies packets in specialized ways.

F i gu r e 9 . 2 Linux uses a series of rules, which are defined in chains that are called at
various points during processing, to determine the fate of network packets.

Outgoing DataIncoming Data

Routing
Decision

INPUT
Chain

FORWARD
Chain

OUTPUT
Chain

Local Processes

As shown in Figure 9.2, the filter table consists of three chains: INPUT, OUTPUT, and
FORWARD. These chains process traffic directed to local programs, generated by local pro-
grams, and forwarded through a computer that’s configured as a router, respectively. You
can create rules independently for each chain. For instance, consider a rule that blocks
all access directed at port 80 (the HTTP port, used by Web servers) on any IP address.
Applied to the INPUT chain, this rule blocks all access to a Web server running on the local
computer but doesn’t affect outgoing traffic or traffic that’s forwarded if the computer is
configured as a router. Applied to the OUTPUT chain, this rule blocks all outgoing traffic
directed at Web servers, effectively rendering Web browsers useless, but it doesn’t affect
incoming traffic directed at a local Web server or traffic forwarded by a router. Applied to
the FORWARD chain, this rule blocks HTTP requests that might otherwise be forwarded by a
computer that functions as a router, but it doesn’t affect traffic from local Web browsers or
to local Web servers.

Much of the task of creating a firewall involves deciding which chains to modify. Generally
speaking, when you want to create a separate firewall computer (as illustrated in Figure 9.1),
you modify the FORWARD chain (to protect the computers behind the firewall) and the INPUT
chain (to protect the firewall system itself). When implementing a firewall to protect a server
or workstation, you modify the INPUT chain and perhaps the OUTPUT chain. Blocking output
packets can have the effect of preventing abuse of other systems or use of protocols you don’t

03843book.indb 399 8/21/09 12:09:25 PM

400 Chapter 9 n Configuring Advanced Networking

want being used. For instance, you might block outgoing traffic directed to a remote system’s
port 23, effectively disallowing use of Telnet clients on the system you’re configuring.

All of the chains implement a default policy. This policy determines what happens to
a packet if no rule explicitly matches it. The default for a default policy is ACCEPT, which
causes packets to be accepted. This policy is sensible in low-security situations, but for a
more secure configuration, you should change the default policy to DROP or REJECT. The
former causes packets to be ignored. To the sender, it looks as if a network link is down.
The REJECT policy causes the system to actively refuse the packet, which looks to the sender
as if no server is running on the targeted port. This option requires explicit kernel support.
Both DROP and REJECT have their advantages. DROP reduces network bandwidth use and
reduces the system’s visibility on the network, whereas REJECT can improve performance
for some protocols, such as auth/ident, which may retry a connection in the event a packet
is lost. Using either DROP or REJECT as a default policy means that you must explicitly open
ports you want to use. This is more secure than using a default policy of ACCEPT and explic-
itly closing ports, because you’re less likely to accidentally leave a port open when it should
be closed. Setting a default policy is described in the next section.

Creating Firewall Rules
To create firewall rules, you use the iptables command. You should probably start with
the -L option, which lists the current configuration:

iptables -L -t filter

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

The -t filter part of this command specifies that you want to view the filter table.
This is actually the default table, so you can omit this part of the command, if you like.
The result is a list of the rules that are defined for the specified (or default) table. In this
case, no rules are defined, and the default policy is set to ACCEPT for all three chains in the
table. This is a typical starting point, although depending on your distribution and your
installation options, it’s possible yours will have rules already defined. If so, you should
track down the script that sets these rules and change or disable it. Alternatively, or if you
just want to experiment, you can begin by flushing the table of all rules by passing -F CHAIN
to iptables, where CHAIN is the name of the chain. You can also use -P CHAIN POLICY to set
the default policy:

iptables -t filter -F FORWARD

iptables -t filter -P FORWARD DROP

03843book.indb 400 8/21/09 12:09:25 PM

Firewall Configuration 401

These two commands flush all rules from the FORWARD chain and change the default
policy for that chain to DROP. Generally speaking, this is a good starting point when con-
figuring a firewall, although using REJECT rather than DROP has its advantages, as described
earlier. You can then add rules to the chain, each of which matches some selection criterion.
To do so, you use an iptables command of this form:

iptables [-t table] -A CHAIN selection-criteria -j TARGET

When modifying the filter table, you can omit the -t table option. The TARGET is
the policy target, which can take the same values as the default policy (typically ACCEPT,
REJECT, or DROP). In most cases, you’ll use ACCEPT when the default policy is REJECT or DROP
and you’ll use REJECT or DROP when the default policy is ACCEPT. CHAIN is, as you might
expect, the chain to be modified (INPUT, OUTPUT, or FORWARD for the filter table). Finally,
selection-criteria can be one or more of several options that enable you to match packets
by various rules, as summarized in Table 9.2.

TA b le 9 . 2 iptables Selection Criteria Options and Effects

Option
Option
Abbreviation Effect

--protocol name -p name This option lets you specify the low-level proto-
col used. You pass the protocol name (tcp, udp,
icmp, or all) to match packets of the specified
protocol type. The all name matches all proto-
col types, though.

--source-port port --sport port This option matches packets that originate from
the port number that you specify. (You can also
provide a list of port numbers by separating
them with colons, as in 1024:2048 to specify
ports from 1024 to 2048, inclusive.) Note that
the originating port number is the port number
for the server program for packets that come
from the server system, but it’s the port num-
ber used by the client program for packets that
come from the client system.

--destination-
port port

--dport port This option works much like the --source-port
option, but it applies to the destination of the
packet.

--source ipaddr -s ipaddr This option filters on the source IP address.
You can specify either a single IP address or an
entire subnet by appending the netmask as a
number of bits, as in -s 172.24.1.0/24.

03843book.indb 401 8/21/09 12:09:25 PM

402 Chapter 9 n Configuring Advanced Networking

TA b le 9 . 2 iptables Selection Criteria Options and Effects (continued)

Option
Option
Abbreviation Effect

--destination ipaddr -d ipaddr This option works just like the --source option,
but it filters based on a packet’s destination
address.

--in-interface iface -I iface You can use the interface on which the packet
arrives with this option, which accepts an inter-
face name as an argument. For instance, -I
eth0 matches packets that arrive on the eth0
interface. This option works with the INPUT and
FORWARD chains, but not with the OUTPUT chain.

--out-interface iface -o iface This option works much like the --in-interface
option, but it applies to the interface on which
packets will leave the computer. As such, it
works with the FORWARD and OUTPUT chains,
but not with the INPUT chain.

--match module -m module This option specifies a module used to expand
options. One common module is state, which
enables stateful packet inspection, as used by
--state.

--state state None Network connections have states—they can be
used to initiate a new connection, continue an
existing connection, be related to an existing
connection (such as an error message), or be
potentially forged. This option can match based
on these states, using codes of NEW, ESTABLISHED,
RELATED, or INVALID. You must precede this
option with the -m state option on the same
iptables command line. This feature is most
useful in blocking connection attempts to unpriv-
ileged ports, thus denying miscreants the ability
to run unauthorized servers on those ports.

You can combine multiple items to filter based on several criteria. For instance, in a
default-deny configuration, you can open traffic to TCP port 445 from the 172.24.1.0/24
network with a single command:

iptables -A INPUT -p tcp --dport 445 -s 172.24.1.0/24 -j ACCEPT

In this case, the selection-criteria consist of three rules: -p tcp, --dport 445, and
-s 172.24.1.0/24. Packets that match all of these rules will be accepted; those that fail to
match even a single rule will be denied (assuming this is the default configuration), unless
they match some other rule in the chain.

03843book.indb 402 8/21/09 12:09:26 PM

Firewall Configuration 403

A complete chain is created by issuing multiple iptables commands, each of which defines
a single rule. You can then view the result by typing iptables -L, as described earlier.

A Sample iptables Configuration
Because iptables creates a complete firewall configuration only through the use of multiple
calls to the utility, Linux packet-filter firewalls are frequently created via shell scripts that
repeatedly call iptables. (Chapter 2, “Using Text-Mode Commands,” introduces shell scripts,
so review it if you need more information on the basics of creating a script.) These scripts may
be called as SysV startup scripts or in some other way as part of the startup procedure. For
learning purposes, you may want to create a script that’s not called in this way, though. List-
ing 9.1 shows a sample script that demonstrates the key points of firewall creation.

listing 9.1: Sample Linux Firewall Script

#!/bin/bash

iptables -F INPUT

iptables -F FORWARD

iptables -F OUTPUT

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT DROP

Let traffic on the loopback interface pass

iptables -A OUTPUT -d 127.0.0.1 -o lo -j ACCEPT

iptables -A INPUT -s 127.0.0.1 -i lo -j ACCEPT

Let DNS traffic pass

iptables -A OUTPUT -p udp --dport 53 -j ACCEPT

iptables -A INPUT -p udp --sport 53 -j ACCEPT

Let clients’ TCP traffic pass

iptables -A OUTPUT -p tcp --sport 1024:65535 -m state \

 --state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -p tcp --dport 1024:65535 -m state \

 --state ESTABLISHED,RELATED -j ACCEPT

Let local connections to local SSH server pass

iptables -A OUTPUT -p tcp --sport 22 -d 172.24.1.0/24 -m state \

 --state ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -p tcp --dport 22 -s 172.24.1.0/24 -m state \

 --state NEW,ESTABLISHED,RELATED -j ACCEPT

03843book.indb 403 8/21/09 12:09:26 PM

404 Chapter 9 n Configuring Advanced Networking

Listing 9.1 consists of three broad parts. The first three calls to iptables clear out all
preexisting firewall rules. This is particularly important in a script that you’re creating
or debugging because you don’t want to simply add new rules to existing ones—the
result would likely be a confusing mishmash of old and new rules. The next three calls to
iptables set the default policy to DROP on all three chains. This is a good basic starting
point for a firewall. The remaining calls to iptables configure Linux to accept specific
types of traffic:

Loopback traffic The script sets the system to accept traffic to and from the loopback
interface (that is, 127.0.0.1). Certain Linux tools expect to be able to use this interface, and
because it’s purely local, the security risk in accepting such traffic is very slim. Note that
the lines that enable this access use both the IP address (via the -d and -s options) and the
lo interface name (via the -o and -i options). This configuration protects against spoofing
the loopback address—an attacker pretending to be 127.0.0.1 from another computer. This
configuration, like most iptables configurations, requires two iptables rules: one to enable
incoming traffic and one to enable outgoing traffic.

DNS traffic The second block of rules enables UDP traffic to and from port 53, which
handles DNS. A configuration like this one is necessary on most systems to enable the
computer to use its local DNS server. You could strengthen this configuration by specifying
only your local DNS server’s IP address. (If you have multiple DNS servers, you’d need one
pair of rules for each one.)

Client traffic Listing 9.1 enables TCP packets to be sent from unprivileged ports (those
used by client programs) to any system. This configuration uses stateful inspection to
enable new, established, or related outgoing traffic but to allow only established or related
incoming traffic. This configuration effectively blocks the ability to run servers on unprivi-
leged ports. Thus, an intruder or malicious authorized user won’t be able to log into an
unauthorized server that runs on such a port—at least, not without root access to change
the configuration.

SSH server traffic The final block of options enables access to the SSH server (TCP port
22). This access, though, is restricted to the 172.24.1.0/24 network (presumably the local
network for the computer). This configuration uses stateful packet inspection to outgo-
ing traffic from the SSH server for established and related data, but not for new or invalid
packets. Incoming packets to the server are permitted for new, existing, or related traffic,
but not for invalid packets.

A configuration such as the one in Listing 9.1 is suitable for a workstation that runs an
SSH server for remote administration but that otherwise runs no servers. For a computer
that runs many servers, you would need to add several additional blocks of rules similar
to the SSH block, each one customized for a particular server. For a dedicated router
with firewall features, the emphasis would be on the FORWARD chain rather than the INPUT
and OUTPUT chains, although such a system would likely need to perform some INPUT and
OUTPUT chain configuration to support its own administration and use.

03843book.indb 404 8/21/09 12:09:26 PM

Managing Remote Logins 405

Managing Remote Logins
Linux’s multiuser, multitasking nature invites remote access: you can use both text-mode
and GUI tools to log in remotely and use the computer, both as an ordinary user and as a
system administrator. Even if a computer is primarily a user workstation, remote access can
be very convenient for system administration purposes—you as a system administrator can
log into another user’s computer to diagnose problems, install software, and so on.

Chapter 11 describes GUI remote access tools that are particularly useful
for interacting with Windows systems. This chapter emphasizes text-mode
and Linux/Unix GUI remote access tools.

Setting Up a Remote Access Server
One of the oldest remote access protocols around is Telnet, and all major Linux distributions
ship with a Telnet server, which is typically called telnetd or in.telnetd. This file may be
distributed in a package called telnet, telnet-server, or something else. Telnet servers are
very simple and therefore require no configuration beyond basic installation. They’re normally
launched from inetd or xinetd, which are programs that start other servers on an as-needed
basis. Chapter 4 describes inetd and xinetd in more detail.

Unfortunately, Telnet suffers from serious security problems—it sends passwords (and all
other data) unencrypted across the network. Therefore, the SSH protocol has emerged as a
more secure replacement for Telnet. The most popular SSH package in Linux is OpenSSH
(http://www.openssh.com). SSH typically comes in at least two packages: a client and a
server. There may also be a “common” package and support libraries.

Once all the required packages are installed and the server is running, the default SSH
configuration tends to work well. If necessary, though, you can fine-tune it. The normal
SSH server configuration file is /etc/ssh/sshd_config. (There’s also an /etc/ssh/ssh_config
file that controls the SSH client.)

Some SSH packages come configured to allow root to log in directly. Even
with the password encryption provided by SSH, this is inadvisable because
it makes it too easy for somebody who has obtained the root password
through other means to break into your system. To plug this security hole,
change the PermitRootLogin option in sshd_config to no. Users who need
to perform superuser tasks remotely can still log in as ordinary users and
then use su to obtain the necessary privileges. This requires an outsider to
have two passwords in order to do serious damage to the system.

03843book.indb 405 8/21/09 12:09:26 PM

406 Chapter 9 n Configuring Advanced Networking

SSH supports two major protocol versions: 1 and 2. These are enabled using the Protocol
line in /etc/ssh/sshd_config. For best security, only protocol version 2 should be supported:

Protocol 2

If you enable protocol version 1 in addition to version 2 (via a 2,1 or 1,2 option on the
Protocol line), the server will accept logins from clients using protocol version 1, which is
less secure than version 2. A configuration that accepts only version 1 is also possible but is
even worse than a configuration that accepts both protocols.

In addition to functioning as a text-mode remote-access tool, SSH permits port forwarding,
in which another protocol’s traffic travels over the SSH connection. This is most easily man-
aged in conjunction with X, as described in “Using X Programs Remotely.” To enable X port
forwarding, look for the following line in /etc/ssh/sshd_config:

X11Forwarding yes

If this option reads no rather than yes, change it to read yes. The forwarding of other
TCP protocols is controlled via another option:

AllowTcpForwarding yes

The default value for this option is yes. If enabled, users may forward ports from a client
to the server using SSH.

If you want to be able to use the sftp program (described in the next section) for file
transfer, be sure that your sshd_config file includes a line like the following:

Subsystem sftp /usr/lib/openssh/sftp-server

The path to the sftp-server program might not be the same as the one shown in this
example, but a similar line should exist. If it doesn’t, add one, but be sure that the sftp-
server program exists on your system and that you point to it using the correct path.

Using Text-Mode Logins
You can use SSH to access one Linux computer from another system—even from a computer
running another OS, such as Windows or Mac OS. Typically, you log in using a regular user
account. You may then you use su or sudo to acquire superuser privileges, if you want to
perform administrative tasks. Thereafter, you can do almost anything you could do from a
text-mode login at the console.

Telnet passes all data in an unencrypted form. This means that both your
ordinary user’s login password and the root password you enter in con-
junction with su might be intercepted by an unscrupulous individual on
the source, destination, or any intervening network. For this reason, it’s
best not to use Telnet for remote administration. For that matter, if it’s
possible, you should totally avoid using Telnet. SSH encrypts all the data
that pass between two systems, so it is a much better choice for remote
administration.

03843book.indb 406 8/21/09 12:09:27 PM

Managing Remote Logins 407

To use SSH for remote access, you type the SSH client’s name followed by the server
name. SSH passes your current username to the server, which attempts to use the same
username to authenticate you. If you want to use a different username on the server than
on your current system, you should include the -l username parameter on the command
line or prepend the username to the hostname with an at-sign (@), as follows:

$ ssh ecernan@apollo.luna.edu

ecernan@apollo.luna.edu’s password:

Last login: Tue Sep 30 10:43:37 from gemini.luna.edu

[ecernan@apollo ecernan]$

The first time you make a connection to a given server, you may see a mes-
sage informing you that the authenticity of the server can’t be verified. The
message goes on to display a code associated with the server. If you want
to continue connecting, type yes in response to the query.

You may omit the username and at-sign if your username is the same on both sys-
tems. Once you’ve logged in with SSH, you can use the system much as you would from
the console—by typing text-mode commands, editing files with text-mode editors, and
so on. Because SSH encrypts all data, it’s extremely unlikely that your original pass-
word, or the password you type when you use su, will be usable to anybody who inter-
cepts the data stream.

A variant on using SSH for remote login access is to use the protocol for running a
specific program. Simply type the command you want to run at the end of the ssh com-
mand line, as in ssh apollo.luna.edu cat /etc/fstab to view the contents of /etc/
fstab on apollo.luna.edu.

SSH does further duty as a secure file transfer protocol. On the client side, you can use
the scp or sftp commands to handle this job. The scp command is similar to cp, but it
operates across an SSH link. You add the hostname and, optionally, remote username to
either the source or destination filename, as follows:

$ scp gemini.txt gene@apollo.luna.edu:

...or...

$ scp gene@apollo.luna.edu:xvii.txt ./

The first command copies the local file gemini.txt to the home directory of the user
gene on apollo.luna.edu. The second command copies xvii.txt from apollo.luna.edu
to the local computer. If your username on both systems is the same, you may omit the
username and at-sign (@) from the command.

03843book.indb 407 8/21/09 12:09:27 PM

408 Chapter 9 n Configuring Advanced Networking

It’s easy to forget the colon (:) at the end of the machine name when using
scp. If you do, scp works much like cp when given the same arguments—it
will copy the file locally, so you’ll end up with a local file named after the
remote username and computer hostname, such as gene@apollo.luna.edu.
This is usually a minor inconvenience, but if you don’t verify that a file has
been transferred, it could turn into a major inconvenience at a later time.

The sftp program acts much like the more common ftp program: type the command
name followed by the remote hostname (optionally preceded by a username). The computer
then presents an sftp> prompt, at which you can type commands similar to those used
by the ftp program. Example commands include get (to retrieve a file), put (to put a file),
dir or ls (to view a directory listing), cd (to change into a directory on the remote system),
lcd (to change into a directory on the local system), and exit or quit (to terminate the
program). Chapter 11 describes the ftp client program in more detail. The sftp program
requires that the server support its variant protocol, as described earlier.

Generating SSH Keys
SSH works, in part, by using a series of keys, which are large numbers used to encrypt and
decrypt data. Keys may also be used as a means of identification. Although SSH generates
keys automatically so that you can use SSH without explicitly configuring keys, under-
standing SSH keys will enable you to perform tasks with the protocol you wouldn’t other-
wise be able to do.

The SSH server stores its keys in /etc/ssh, in a series of files called ssh_host_rsa_key,
ssh_host_dsa_key, and these same filenames with .pub extensions. The files with .pub
extensions hold public keys—keys that are given to other computers as a means of decrypt-
ing data that’s been encrypted with the server’s private keys (the keys stored in files without
.pub extensions).

Private keys are extremely sensitive. They should be stored with 0600
(-rw-------) or more restrictive permissions, and they should never be
sent to other parties. If a miscreant obtains your private key, that individual
can impersonate you. Public keys are not very sensitive, so they can usu-
ally be read by anybody on the local computer, and they’re frequently dis-
tributed to other computers as a normal part of SSH operation.

Individual users can also have SSH private and public keys. The ssh client program can
automatically generate some keys as needed; however, you can alter the way SSH authenti-
cates users by manually generating a new key. Using this method, either you’ll use a pass-
phrase instead of your normal password or you’ll eliminate the need to type a password
when you use SSH. To generate such a key, follow these steps:

1. Log into the SSH client system.

03843book.indb 408 8/21/09 12:09:27 PM

Managing Remote Logins 409

2. Generate an SSH version 2 key by typing the following command:

$ ssh-keygen -q -t rsa -f ~/.ssh/id_rsa -C ‘’ -N ‘’

Omitting the -N ‘’ part of this command causes ssh-keygen to prompt for a pass-
phrase, which you will then have to use whenever you access a remote system. Using
-N ‘’ or pressing the Enter key in response to the passphrase prompt will eliminate the
need to type a password or passphrase when connecting to remote systems.

3. Copy the ~/.ssh/id_rsa.pub file generated in step 2 to your account on the SSH server
system. Don’t overwrite the file of this name on the server, though; give it a unique name.

4. Log into the server. If you use SSH, you’ll have to enter a password.

5. Change to the ~/.ssh directory on the server.

6. Add the client’s id_rsa.pub file to the file that holds authorized keys on the server.
This file may be called authorized_keys or authorized_keys2, depending on the SSH
version. If the file doesn’t exist, create it (or rename the copied id_rsa.pub file). You
can combine the files using a text editor or by using a command like the following:

$ cat id_rsa.client >> authorized_keys

Once this task is done, you should be able to access the server using ssh, scp, and sftp
from the client without typing a password (or by typing a passphrase instead of a password).
The key you generated serves as a password substitute. This configuration can be extremely
convenient, particularly if you want to use scripts or other automated tools to transfer files
or otherwise use SSH features. If you access multiple servers, you should repeat steps 3–6
for each server, but you should not repeat step 2! Doing so will generate a new private key,
invalidating the one you’ve copied to the first server.

The private key generated in this way is extremely sensitive. If somebody
steals your private key, that person will be able to log into any server that’s
been given the matching public key. For this reason, you might want to think
twice before using this method on computers that might be compromised,
such as laptops that might be stolen.

Using X Programs Remotely
Linux’s GUI environment, the X Window System (or X for short), is unusual in that it’s
fully network-enabled. Using nothing but the normal X software and Linux network con-
figuration, you can run an X program on one computer while sitting at another computer,
using the second computer’s monitor, keyboard, and mouse. In fact, one of these systems
can run a Unix OS that’s not Linux. You can even run an X server on a Windows, OS/2,
or other completely non-Unix system, or on a system with a different class of CPU than the
Linux system.

03843book.indb 409 8/21/09 12:09:27 PM

410 Chapter 9 n Configuring Advanced Networking

Although most people think of clients as running on the computers at which
they sit and servers as running on remote systems, this isn’t true of X. In X,
the server runs on the system local to the user. To make sense of this, think
of it from the program’s point of view. To a word processor, the display and
keyboard are services to be used, much like a network-accessible printer.

Suppose that your local network contains two machines. The computer called zeus is a
powerful machine that hosts important programs, like a word processor and data analysis
utilities. The computer called apollo is a much less powerful system, but it has an adequate
monitor and keyboard. Therefore, you want to sit at apollo and run programs that are
located on zeus. Both systems run Linux. To accomplish this task, follow these steps:

1. Log into apollo and, if it’s not already running X, start it.

2. Open a terminal (such as an xterm) on apollo.

3. Type xhost +zeus in apollo’s terminal. This command tells apollo to accept for
display in its X server data that originates on zeus.

4. Log into zeus from apollo. You might use Telnet or Secure Shell (SSH), for instance.
The result should be the ability to type commands in a shell on zeus.

5. On zeus, type export DISPLAY=apollo:0.0. (This assumes you’re using Bash; if you’re
using tcsh, the command would be setenv DISPLAY apollo:0.0.) This command tells
zeus to use apollo for the display of X programs.

6. Type whatever you need to type to run programs at the zeus command prompt. For
instance, you could type ooffice to launch OpenOffice.org. You should see the pro-
grams open on apollo’s display, but they’re running on zeus—their computations use
zeus’s CPU, they can read files accessible on zeus, and so on.

7. After you’re done, close the programs you’ve launched, log off zeus, and type xhost
-zeus on apollo. This will tighten security so that a miscreant on zeus cannot modify
your display on apollo.

Sometimes, you can skip some of these steps. For instance, depending on how it’s config-
ured, SSH can forward X connections, meaning that SSH intercepts attempts to display X
information and passes those requests on to the system that initiated the connection. When
this happens, you can skip steps 3 and 5, as well as the xhost command in step 7. Using
SSH to forward X requires support on the server, as described earlier in “Setting Up a
Remote Access Server.” A similar configuration on the client (using the ForwardX11 option
in /etc/ssh/ssh_config) is also required, or you can pass the -X option to ssh when mak-
ing the initial connection. (Note that this is an uppercase -X; a lowercase -x disables X for-
warding in the client!)

As an added security measure, many Linux distributions today configure X to ignore
true network connections. If your distribution is so configured, the preceding steps won’t
work; when you try to launch an X program from the remote system, you’ll get an error

03843book.indb 410 8/21/09 12:09:28 PM

Managing Remote Logins 411

message. To work around this problem, you must make an additional change, depending on
how X is launched:

GDM On older versions of GDM, check the GDM configuration file (typically /etc/X11/
gdm/gdm.conf): look for the line DisallowTCP=true, and change it to read DisallowTCP=false.
On newer versions of GDM, edit /etc/gdm/gdm.schemas, and look for the line that reads
<key>security/DisallowTCP</key>. A couple of lines below this, change the key from true
to false.

KDM or XDM These two XDMCP servers both rely on settings in the Xservers file (in
/etc/X11/xdm for XDM, and in this location or some other highly variable location for
KDM). Look for the line that begins with :0. This line contains the command that KDM
or XDM uses to launch the X server. If this line contains the string -nolisten tcp, remove
that string from the line. Doing so eliminates the option that causes X to ignore conven-
tional network connections.

Special OpenSUSE configuration In OpenSUSE, you must edit /etc/sysconfig/
displaymanager and set the DISPLAYMANAGER_XSERVER_TCP_PORT_6000_OPEN option
to yes.

X launched from a text-mode login If you log in using text mode and type startx to
launch X, you may need to modify the startx script itself, which is usually stored in /usr/
bin. Search this script for the string -nolisten tcp. Chances are this string will appear in a
variable assignment (such as to defaultserverargs) or possibly in a direct call to the X server
program. Remove the -nolisten tcp option from this variable assignment or program call.

Once you’ve made these changes, you’ll need to restart X. Thereafter, X should respond
to remote access requests.

Distribution maintainers disable X’s ability to respond to remote requests
for a reason. If X responds to remote network requests, the risk of an
intruder using a bug or misconfiguration to trick users by displaying bogus
messages on the screen is greatly increased. Thus, you should disable this
protection only if you’re sure that doing so is necessary. You may be able
to use an SSH link without disabling this protection.

Another option for running X programs remotely is to use the Virtual Network Com-
puting (VNC) system (http://www.realvnc.com). VNC runs a special X server on the
remote computer, and a special VNC client runs on the computer at which you sit. You
use the client to directly contact the server. This reversal of client and server roles over the
normal state of affairs with conventional X remote access is beneficial in some situations,
such as when you are trying to access a distant system from behind certain types of fire-
wall. VNC is also a cross-platform protocol; it’s possible to control a Windows or Mac OS
system from Linux using VNC, but this is not possible with X. (X servers for Windows and
Mac OS are available, allowing you to control a Linux system from these non-Linux OSs.)
Chapter 11 describes VNC in more detail.

03843book.indb 411 8/21/09 12:09:28 PM

412 Chapter 9 n Configuring Advanced Networking

Remote GUI Logins
Chapter 1, “Getting Started with Linux,” described basic configuration of an X Display
Manager Control Protocol (XDMCP) server, such as XDM, KDM, or GDM, to man-
age local GUI logins. These protocols also support remote GUI logins—you can use an
extremely slim local system to access a more powerful remote computer. Some offices use
this type of configuration, concentrating computing power in a small number of comput-
ers and enabling users to log in from old or dedicated hardware that might not be able to
handle the needs of modern software. XDMCP-based logins differ from those initiated via
a Telnet or SSH session in that you don’t need to first initiate that text-mode login. In an
extreme case, you can sit down at a client and log in once, as if the XDMCP client system
were the powerful remote computer.

Configuring an XDMCP Server
To enable remote GUI access, you must make some changes to the standard XDMCP
configuration described in Chapter 1. You make the first changes on the XDMCP server
computer—that is, the system that will host user accounts, applications, and data files, as
opposed to users’ desktop terminals.

The simplest case is XDM. With this server, you must first modify /etc/X11/xdm/
xdm-config. Look for a line that resembles the following:

DisplayManager.requestPort: 0

This line tells XDM to not access a conventional server port. To use XDM for remote
logins, you must change 0 to 177, the traditional XDMCP port.

A second change must be made to /etc/X11/xdm/Xaccess. This file controls what
computers may access the XDM server, and in what ways. A wide-open system contains
lines that use an asterisk (*) to denote that anybody may access the system:

*

* CHOOSER BROADCAST

This first line tells XDM that anybody may connect, and the second line tells XDM that
anybody may request a chooser—a display of local systems that accept XDMCP connec-
tions. To limit the choices, you should list individual computers or groups of computers
instead of using the asterisk wildcard:

*.pangaea.edu

tux.example.com

*.pangaea.edu CHOOSER BROADCAST

This example permits any computer in the pangaea.edu domain to connect or receive a
chooser, and it also lets tux.example.com connect but not receive a chooser.

The KDM server is configured much like XDM, but it may use different configuration
files, as described in Chapter 1. Check /etc/X11/kdm, /etc/kde/kdm, or other locations
suggested by a perusal of the contents of your KDM package. You may also need to look

03843book.indb 412 8/21/09 12:09:28 PM

Managing Remote Logins 413

for a file called kdmrc. Look for the [Xdmcp] section of this file and be sure the Enable
option is set to true.

GDM completely abandons the XDM style of configuring remote logins. Instead, you
should look for a file called gdm.conf or custom.conf, which is likely to be located in /etc/
X11/gdm or /etc/gdm. Look for a section called [xdmcp] and be sure the Enable option is
set to true.

Most Linux distributions have been taking extra steps in recent years to
secure their default configurations. These steps may include setting fire-
wall rules to block access to the XDMCP port, so if you have problems get-
ting a newly configured XDMCP server to respond, you should check your
firewall rules.

Using an X Server
To use X to connect to a remote X server, you must alter the way X starts up. An easy way
to test the configuration is to shut down the X server on the desktop system, log in using
text mode, and then start X manually. A command such as the following should connect to
a remote XDMCP server and permit a login:

$ Xorg -query zeus.example.com

This command starts X and tells it to query the specified computer for an XDMCP login
server. If successful, the result should be a connection that looks very much like a local
login, although it won’t be as fast—all the display data must pass over the network after all.

In addition to -query, X supports two other XDMCP options: -broadcast and -indirect
server. The -broadcast option starts an XDMCP broadcast, in which the XDMCP client
(that is, the X server) sends a broadcast to the local network looking for XDMCP servers.
The XDMCP client then either connects to the first server it finds or presents a list to the
user. (In practice, Xorg-X11 and XFree86 seem to do the former, but some X servers do the
latter.) The -indirect server option relies on the named server computer to present a list of
XDMCP servers on the network.

Sometimes one of these three connection methods works when the others
don’t, so if you have problems, you should try all three methods.

If you want to permanently configure a computer as an X terminal (that is, a computer that
functions only as an X server for remote computers, with few local programs running aside
from the X server itself), you should locate whatever script starts X running on your system
and change it. This script is likely to be a SysV startup script, as described in Chapter 4. Some-
times this script includes X options, such as -nolisten tcp, that interfere with X accepting
remote connections, so you may need to remove such lines. (The preceding section, “Using X
Programs Remotely,” provides additional information on such configurations.)

03843book.indb 413 8/21/09 12:09:28 PM

414 Chapter 9 n Configuring Advanced Networking

Configuring Basic Printing
Printing in Linux is a cooperative effort involving several tools. A system administrator
must be familiar with what each of the tools in this collection does, as well as how they
interact. As with many other programs that are part of Linux, some of these tools have
several versions, which can lead to confusion or incompatibilities if you’re not aware of
how the system as a whole functions. The basic Linux printing architecture is the same in
all cases. One key component of this architecture is the presence of PostScript printers or
the use of a program called Ghostscript to convert PostScript into a format that the printer
can understand. Whether you use PostScript or non-PostScript printers, chances are your
system uses the Common Unix Printing System (CUPS) utility to tie everything together.
You should know how to configure CUPS, as well as how to use the utilities to submit and
manage print jobs in Linux.

The Linux Printing Architecture
Linux printing is built around the concept of a print queue. This is a sort of holding area
where files wait to be printed. A single computer can support many distinct print queues.
These frequently correspond to different physical printers, but you can also configure several
queues to print in different ways to the same printer. For instance, you might use two queues
to print using two different printer drivers, if each one has unique features or advantages.

Users submit print jobs by using a program called lpr. Users can call this program
directly, or they may let another program call it. In either case, lpr sends the print job into
a specified queue. This queue corresponds to a directory on the hard disk, typically in a
subdirectory of the /var/spool/cups directory. The traditional Linux printing tool is called
lpd, but all the major modern Linux distributions now use CUPS instead. This program
runs in the background watching for print jobs to be submitted. The printing system accepts
print jobs from lpr or from remote computers, monitors print queues, and serves as a sort of
“traffic cop,” directing print jobs in an orderly fashion from print queues to printers.

One important and unusual characteristic of Linux printing is that it’s highly network
oriented. CUPS can accept print jobs that originate from remote systems as well as from
local ones. In fact, even local print jobs are submitted via network protocols, although they
don’t normally use network hardware, so even a computer with no network connections
can print. In addition to being a server for print jobs, CUPS can function as a client, pass-
ing print jobs on to other computers that run the same protocols.

The old lpd printing system is essentially unidirectional—applications know nothing
about the printer’s capabilities, so they blindly produce PostScript (as described shortly).
The print queue takes this output and sends it on to the printer, which must deal with it
as best it can. This is one of the deficiencies that CUPS corrected. Applications can query
CUPS about a printer’s capabilities—its paper sizes, whether it supports color, and so
on. Support for these features is still far from universal, but it now exists in many Linux
applications.

03843book.indb 414 8/21/09 12:09:29 PM

Configuring Basic Printing 415

Understanding PostScript and Ghostscript
If you’ve configured printers under Windows, Mac OS, OS/2, or certain other OSs,
you’re probably familiar with the concept of a printer driver. In these OSs, the printer
driver stands between the application and the printer queue. In Linux, the printer driver
is part of Ghostscript (http://www.cs.wisc.edu/~ghost/), which exists as part of the
printer queue. This relationship can be confusing at times, particularly because not all
applications or printers need Ghostscript. Ghostscript serves as a way to translate Post-
Script, a common printer language, into forms that can be understood by many different
printers. Understanding Ghostscript’s capabilities, and how it fits into a printer queue,
can be important for configuring printers.

PostScript: The De Facto Linux Printer Language
Most Unix (and therefore Linux) programs that print generate PostScript as an output format.
In theory, any printer that understands PostScript can print the output of any program that
generates PostScript. (In practice, there are various exceptions to this rule.)

A few programs don’t generate PostScript output. Most commonly, many programs can
produce raw text output. Such output seldom poses a major problem for modern printers,
although some PostScript-only models choke on raw text. Some other programs can produce
either PostScript or Printer Control Language (PCL) output for Hewlett-Packard laser print-
ers or their many imitators. A very few programs can generate output that’s directly accepted
by other types of printers.

The problem with PostScript as a standard is that it’s uncommon on the low- and mid-
priced printers with which Linux is often paired. Therefore, to print to such printers using
traditional Unix programs that generate PostScript output, you need a translator and a way
to fit that translator into the print queue. This is where Ghostscript fits into the picture.

Ghostscript: A PostScript Translator
Ghostscript is a PostScript interpreter that runs on a computer, offloading some of the
need for RAM and CPU power from the printer to the computer. Ghostscript takes Post-
Script input and produces output in any of dozens of different bitmap formats, including
formats that can be accepted by many non-PostScript printers. This makes Ghostscript a
way to turn many inexpensive printers into Linux-compatible PostScript printers at very
low cost. Ghostscript is available as open source software (GNU Ghostscript), with a more
advanced variant (Aladdin Free Public License, or AFPL, Ghostscript) available for free.
AFPL Ghostscript is not freely redistributable in any commercial package, though. Because
all Linux distributions are available on CD-ROMs sold for a price, they ship with the older
GNU Ghostscript, which works well enough for most users.

One of Ghostscript’s drawbacks is that it produces large output files. A PostScript file
that produces a page filled with text may be just a few kilobytes in size. If this page is to
be printed on a 600 dots per inch (dpi) printer using Ghostscript, the resulting output file
could be as large as 4MB—assuming it’s black and white. If the page includes color, the
size could be much larger. In some sense, this is unimportant because these big files will be

03843book.indb 415 8/21/09 12:09:29 PM

416 Chapter 9 n Configuring Advanced Networking

stored on your hard disk for only brief periods of time. They do still have to get from the
computer to the printer, though, and this process can be slow. Also, some printers (particu-
larly older laser printers) may require memory expansion to operate reliably under Linux.

Squeezing Ghostscript into the Queue
Printing to a non-PostScript printer in Linux requires fitting Ghostscript into the print queue.
This is generally done through the use of a smart filter. This is a program that’s called as part
of the printing process. The smart filter examines the file that’s being printed, determines its
type, and passes the file through one or more additional programs before the printing soft-
ware sends it on to the printer. The smart filter can be configured to call Ghostscript with
whatever parameters are appropriate to produce output for the queue’s printer.

CUPS ships with a set of smart filters, which it calls automatically when you tell the
system what model printer you’re using. These filters are configured automatically as part
of the CUPS configuration, as described in the upcoming section “Using the Web-Based
CUPS Utilities.”

The end result of a typical Linux printer queue configuration is the ability to treat any
supported printer as if it were a PostScript printer. Applications that produce PostScript
output can print directly to the queue. The smart filter detects that the output is PostScript
and runs it through Ghostscript. The smart filter can also detect other file types, such as
plain text and various graphics files, and it can send them through appropriate programs,
instead of or in addition to Ghostscript, in order to create a reasonable printout.

If you have a printer that can process PostScript itself, the smart filter is usually still
involved, but it doesn’t pass PostScript through Ghostscript. In this case, the smart filter
passes PostScript directly to the printer, but it still sends other file types through whatever
processing is necessary to turn them into PostScript.

Running a Printing System
Because Linux printing systems run as daemons, they must be started before they’re useful.
This task is normally handled automatically via startup scripts in /etc/rc.d or /etc/rc?.d
(where ? is a runlevel number). Look for startup scripts that contain the string cups in their
names (or lpd or lprng for the older BSD LPD or LPRng printing systems). If you’re unsure
if a printing system is currently active, use the ps utility to search for running processes by
these names, as follows:

$ ps ax | grep cups

 3713 ? S 0:00 cupsd

The ps command is covered in more detail in Chapter 3. The grep com-
mand and pipes (used to link these two commands together) are covered
in Chapter 2.

03843book.indb 416 8/21/09 12:09:29 PM

Configuring Basic Printing 417

Choosing an Appropriate printer for linux

If you want a speedy printer for Linux, choose a model with built-in PostScript. In my
experience, Ghostscript-driven printers work well enough for 600 dpi black-and-white
printers with speeds of up to about 6 pages per minute (ppm), although theoretically
both the parallel port and USB 1.x port should be able to handle speeds of 3–5 times that
value. If the printer’s speed is greater than that, the parallel or USB 1.x port may not be
able to deliver the necessary performance, although you may be able to tweak it to get
somewhat better speed. Non-PostScript printers that use USB 2.0 can handle higher reso-
lutions and color. Modern office printers often claim speeds of 30–40 ppm. To improve
your odds of attaining that speed, ensure that they have USB 2.0 or network ports and
understand PostScript natively.

Color inkjet printers are generally limited more by the speed of the print head than by the
speed of the data coming over their ports. Few such printers directly support PostScript.
The Ghostscript support for these models varies from nonexistent to excellent. Some
models come with Windows-based PostScript engines that are conceptually similar to
Ghostscript, but such software is useless under Linux. There are a few color PostScript
printers that use non-inkjet printing technologies. Color laser printers, in particular, have
become popular in recent years.

For information on what printers are supported by Ghostscript, check the Ghostscript Web
page or the OpenPrinting Web page (http://www.linuxprinting.org/printer_list.cgi).

This example shows that cupsd, the CUPS daemon, is running, so the system is using
CUPS for printing. If you can’t find any running printing system, consult your distribu-
tion’s documentation to learn what is available and check that the appropriate package is
installed. All major distributions include startup scripts that should start the appropriate
printing daemon when the computer boots.

Configuring CUPS
CUPS uses various configuration files in the /etc/cups directory and its subdirectories.
You can edit these files directly and may need to do so if you want to share printers or use
printers shared by other CUPS systems. The simplest way to add printers to CUPS, though,
is to use the tool’s Web-based configuration utility.

Editing the CUPS Configuration Files
You can add or delete printers by editing the /etc/cups/printers.conf file, which con-
sists of printer definitions. Each definition begins with the name of a printer, identified by

03843book.indb 417 8/21/09 12:09:29 PM

418 Chapter 9 n Configuring Advanced Networking

the string DefaultPrinter (for the default printer) or Printer (for a nondefault printer) in
angle brackets (<>), as in the following:

<DefaultPrinter okidata>

This line marks the beginning of a definition for a printer queue called okidata. The
end of this definition is a line that reads </Printer>. Intervening lines set assorted printer
options, such as identifying strings, the printer’s location (its local hardware port or network
location), its current status, and so on. Additional options are stored in a PostScript Printer
Definition (PPD) file that’s named after the queue and stored in the /etc/cups/ppd subdirec-
tory. PPD files follow an industry-standard format. For PostScript printers, you can obtain a
PPD file from the printer manufacturer, typically from a driver CD-ROM or from the manu-
facturer’s Web site. CUPS and its add-on driver packs also ship with a large number of PPD
files that are installed automatically when you use the Web-based configuration utilities.

As a general rule, you’re better off using the CUPS Web-based configuration tools to add
printers, rather than adding printers by directly editing the configuration files. If you like,
though, you can study the underlying files and tweak the configurations using a text editor
to avoid having to go through the full Web-based tool to make a minor change.

One exception to this rule relates to configuring the CUPS Web-based interface tool
itself and CUPS’s ability to interface with other CUPS systems. One of the great advantages
of CUPS is that it uses a network printing protocol, known as the Internet Printing Pro-
tocol (IPP), that supports a feature it calls browsing. This feature enables computers on a
network to automatically exchange printer lists, which can greatly simplify configuring net-
work printing. You may need to change some settings in the main CUPS configuration file,
/etc/cups/cupsd.conf, to enable this support.

The older BSD LPD and LPRng tools used a different network printing
protocol. CUPS can print to network printers using this protocol, and you
can run the cups-lpd server to accept LPD jobs from older computers on
a system that runs CUPS.

The /etc/cups/cupsd.conf file contains a number of configuration blocks that specify
which other systems should be able to access it. Each block controls access to a particular
location on the server. These blocks look like this:

<Location /printers>

Order Deny,Allow

Deny from All

BrowseAllow from 127.0.0.1

BrowseAllow from 192.168.1.0/24

BrowseAllow from @LOCAL

Allow from 127.0.0.1

Allow from 192.168.1.0/24

Allow from @LOCAL

</Location>

03843book.indb 418 8/21/09 12:09:30 PM

Configuring Basic Printing 419

If you’re configuring a workstation with a local printer that you don’t want
to share or if you want to configure a workstation to use printers shared
via LPD or some other non-IPP printing protocol, you shouldn’t need to
adjust /etc/cups/cupsd.conf. If you want to access remote IPP printers,
however, you should at least activate browsing by setting the directive
Browsing On, as described shortly. You shouldn’t have to modify your
location definitions unless you want to share your local printers.

The /printers location, shown here, controls access to the printers themselves. Features
of this example include the following:

Directive order The Order Deny,Allow line tells CUPS in which order it should apply
allow and deny directives—in this case, allow directives modify deny directives.

Default policy The Deny from All line tells the system to refuse all connections except
those that are explicitly permitted.

Browsing control lines The BrowseAllow lines tell CUPS from which other systems it
should accept browsing requests. In this case, it accepts connections from itself (127.0.0.1),
from systems on the 192.168.1.0/24 network, and from systems connected to local subnets
(@LOCAL).

Access control lines The Allow lines give the specified systems nonbrowse access to
printers—that is, those systems can print to local printers. In most cases, the Allow lines
will be the same as the BrowseAllow lines.

You can also create a definition that uses Allow from All and then creates BrowseDeny
and Deny lines to limit access. As a general rule, though, the approach shown in the preced-
ing example is safer. Locations other than the /printers location can also be important.
For instance, there’s a root (/) location that specifies default access permissions to all other
locations and an /admin location that controls access to CUPS administrative functions.

Before the location definitions in cupsd.conf are a few parameters that enable or
disable browsing and other network operations. You should look for the following options
specifically:

Enabling browsing The Browsing directive accepts On and Off values. The CUPS default
is to enable browsing (Browsing On), but some Linux distributions disable it by default.

Browsing access control The BrowseAddress directive specifies the broadcast address to
which browsing information should be sent. For instance, to broadcast data on your printers
to the 192.168.1.0/24 subnet, you’d specify BrowseAddress 192.168.1.255.

Once you’ve configured a CUPS server to give other systems access to its printers via appro-
priate location directions, and once you’ve configured the client systems to use browsing via
Browsing On, all the systems on the network should autodetect all the printers on the network.
There’s no need to configure the printer on any computer except the one to which it’s directly
connected. All printer characteristics, including their network locations and PPD files, are
propagated automatically by CUPS. This feature is most important in configuring large net-
works with many printers or networks on which printers are frequently added and deleted.

03843book.indb 419 8/21/09 12:09:30 PM

420 Chapter 9 n Configuring Advanced Networking

Obtaining CUPS Printer Definitions
The basic version of CUPS ships with smart filter support for just a few printers, includ-
ing raw queues that do no processing and a few models from Hewlett-Packard, Epson, and
Okidata. If you use another printer, you should obtain extra CUPS printer definitions. These
definitions may consist of PPD files, appropriate behind-the-scenes “glue” to tell CUPS how
to use them, and possibly Ghostscript driver files. These printer definitions can be obtained
from several sources:

Your Linux distribution Many distributions ship extra printer definitions under various
names, so check your distribution for such a package. Many distributions provide one of
the driver packages that’s described next.

Foomatic The OpenPrinting Web site hosts a set of utilities and printer definitions known
collectively as Foomatic (http://www.linuxfoundation.org/en/OpenPrinting/Database/
Foomatic). These provide many additional printer definitions for CUPS (as well as for other
printing systems).

Gutenprint These drivers were originally known as GIMP Print, after the GNU Image
Manipulation Program (GIMP) from which they originated. These drivers support a wide
variety of printers. Check http://gimp-print.sourceforge.net for more information.

CUPS DDK The CUPS Driver Development Kit (DDK; http://www.cups.org/software
.php) is a set of tools designed to simplify CUPS driver development. It ships with a hand-
ful of sample drivers.

Printer manufacturers Some printer manufacturers offer CUPS drivers for their printers.
These may be nothing more than the Foomatic, Gutenprint, or other open source drivers;
but a few provide proprietary drivers, some of which support advanced features that the
open source drivers don’t support.

Chances are good that you’ll find your printer, or something close enough to work well,
in your distribution’s standard set of drivers. If you try to configure your printer and can’t
find a suitable driver in the CUPS Web-based tools, though, you should check with these
sources for additional drivers. You might also try using your Internet-enabled package
management tools (such as yum or apt-get) to locate drivers. Try searching the package
database for packages that include cups or print in their names.

Using the Web-Based CUPS Utilities
The CUPS IPP printing system is closely related to the Hypertext Transfer Protocol (HTTP)
used on the Web. The protocol is so similar, in fact, that you can access a CUPS daemon by
using a Web browser. You need only specify that you want to access the server on port 631—
the normal printer port. To do so, enter http://localhost:631 in a Web browser on the
computer running CUPS. (You may be able to substitute the hostname, or access CUPS from
another computer by using the other computer’s hostname, depending on your cupsd.conf
settings.) This action brings up a list of administrative tasks you can perform. Click Printers
to open the printer management page, as shown in Figure 9.3. Clicking Administration brings
up a page in which you can set various administrative options, including adding new printers.

03843book.indb 420 8/21/09 12:09:30 PM

Configuring Basic Printing 421

F i gu r e 9 . 3 CUPS provides its own Web-based configuration tool.

If you’re configuring a stand-alone computer or the only one on a network
to use CUPS, the printer list will be empty, unlike the one shown in Fig-
ure 9.3. If other computers on your network use CUPS, you may see their
printers in the printer list, depending on their security settings.

You can add, delete, or modify printer queues using the CUPS Web control system. To
add a printer, follow these steps:

1. From the administration page, click Add Printer.

2. The system displays a page asking for the printer’s name, location, and description.
Enter appropriate information in the Name, Location, and Description fields. These
fields are all entirely descriptive, so enter anything you like. (Users will use your entry
in the Name field to access the printer, though.) When you click Continue, CUPS asks
for the printer device.

03843book.indb 421 8/21/09 12:09:31 PM

422 Chapter 9 n Configuring Advanced Networking

3. The printer device may be a local hardware port (such as a parallel printer port or
a USB port), a remote LPD printer, a remote SMB/CIFS (Samba) printer, or other
devices. The precise options available vary from one distribution to another. Select the
appropriate one from the pop-up list, and click Continue.

4. If you entered a network printer, the result is a page in which you enter the complete
path to the device. Type the path, such as lpd://printserv/brother to print to the
brother queue on the printserv computer. Click Continue when you’re done.

5. If you entered a local device in step 3 or after you’ve entered the complete path in
step 4, you’ll see a list of driver classes, such as PostScript and HP. Select one, and click
Continue. Alternatively, you can point directly to a PPD file if you have one handy. If
you do this, you’ll skip the next step.

6. CUPS now displays a complete list of printer models within the class you selected in
step 5. Select an appropriate model, and click Add Printer. Alternatively, you can point
directly to a PPD file.

7. If you haven’t already performed administrative actions with CUPS, it will ask you for
a username and password. Type root as the username and the administrative password
as the password, and then click OK.

CUPS doesn’t encrypt its data, so you shouldn’t use it to administer printers
remotely. Doing so would be a security risk, because the passwords would
be exposed to sniffing. If necessary, you can use an SSH tunnel to overcome
this limitation.

8. CUPS informs you that the printer has been added.

9. If you wait a few seconds, the notification that the printer has been added is replaced
by a page in which you can set printer-specific options, such as sheet feeder sources
and print resolutions. Adjust any options you like, and then click Set Printer Options.

If you click the Printers item at the top of the page, you should be returned to the printers
list (see Figure 9.3), but your new printer should be listed among the existing queues. You
can print a test page by clicking Print Test Page. If all goes well, a test page will emerge from
your printer. If it doesn’t, go back and review your configuration by clicking Modify Printer.
This action takes you through the steps for adding a printer but with your previous selections
already entered as the defaults. Try changing some settings until you get the printer to work.

From the printer queue list, you can also click Set Printer Options to set various printer
options. What options are available depends on the printer, but common options include
the resolution, color dithering options, the paper size, whether or not to enable double-
sided printing, and the presence of banner pages.

Many distributions provide dedicated GUI tools for printer configuration, such as
Printer Configuration (aka system-config-printer). These tools usually mirror the stan-
dard Web-based CUPS configuration tool in features. Using them is conceptually similar
to the procedure just described, although details differ—you may need to locate options on
menus or enter data in slightly different ways.

03843book.indb 422 8/21/09 12:09:31 PM

Configuring Basic Printing 423

Printing to Network Printers
If your network hosts many Windows computers, you may use the Server Message Block/
Common Internet File System (SMB/CIFS) for file and printer sharing among Windows
systems. Linux’s Samba server also implements this protocol and so can be used for sharing
printers from Linux.

Chapter 11 describes the basics of configuring a Linux Samba server, so con-
sult it if you want to share an existing printer queue with Windows clients.

On the flip side, you can print to an SMB/CIFS printer queue from a Linux system. To
do so, you select an SMB/CIFS queue in the CUPS printer configuration. Under CUPS, this
option is called Windows Printer via SAMBA in step 3 of the procedure in the preceding
section. You must then provide your username, password, server name, and share name,
but the format is not obvious from the Web-based configuration tool:

smb://username:password@SERVER/SHARE

This is a uniform resource identifier (URI) for an SMB/CIFS share. You must substitute
appropriate values for username, password, SERVER, and SHARE, of course. Once this is done
and you’ve finished the configuration, you should be able to submit print jobs to the SMB/
CIFS share.

SMB/CIFS printers hosted by Windows systems are usually non-PostScript
models, so you must select a local Linux printer definition, just as you
would for a local printer. Printers hosted by Linux systems running Samba,
though, are frequently configured to act like PostScript printers, so you
should select a PostScript driver when connecting to them.

If you want to print to a Unix or Linux server that uses the old LPD protocol, the URI
format is similar but omits a username and password:

lpd://hostname/queue

You can use the same format, but substitute ipp:// for lpd://, to print to a CUPS
server if browsing is disabled on your network.

In practice, you may be faced with a decision: should you use LPD, IPP, or SMB/CIFS
for submitting print jobs? To be sure, not all print servers support all three protocols, but
a Linux server might support them all. As a general rule, IPP is the simplest to configure
because it supports browsing, which means that CUPS clients shouldn’t need explicit con-
figuration to handle specific printers. This makes IPP the best choice for Linux-to-Linux
printing, assuming both systems run CUPS. When CUPS isn’t in use, LPD is generally
easier to configure than SMB/CIFS, and it has the advantage of not requiring a username
or password to control access. Because SMB/CIFS security is password-oriented, clients

03843book.indb 423 8/21/09 12:09:31 PM

424 Chapter 9 n Configuring Advanced Networking

typically store passwords in an unencrypted form on the hard disk. This fact can become
a security liability, particularly if you use the same account for printing as for other tasks.
On the other hand, sometimes use of a password on the server provides more of a security
benefit than the risk of storing that password on the client. Generally speaking, if clients
are few and well protected, while the server is exposed to the Internet at large, using pass-
words can be beneficial. If clients are numerous and exposed to the Internet while the print
server is well protected, though, a password-free security system that relies on IP addresses
may be preferable.

Monitoring and Controlling Print Queues
You can use several utilities to submit print jobs and to examine and manipulate a Linux
print queue. These utilities are lp, lpr, lpq, lprm, cancel, lpc, and lpstat. All of these com-
mands can take the -P parameter to specify that they operate on a specific print queue. In
addition, CUPS’ Web-based interface permits point-and-click management of print queues.

Printing Files
Once you’ve configured the system to print, you probably want to start printing. As mentioned
earlier, Linux uses the lpr program to submit print jobs. Alternatively, you may use lp. These
programs accept many options for modifying the programs’ actions. The more common
options are summarized in Table 9.3, but you may want to check your preferred utility’s man
page for additional options. The reason for two similar programs is historical; they originated
on two different Unix varieties, and because CUPS serves as a substitute for both, it provides
workalikes for both utilities.

TA b le 9 . 3 lpr and lp Options and Effects

lpr Option lp Option Effect

-P queuename -d queuename This option enables you to specify a print queue.
This is useful if you have several printers or if you’ve
defined several queues for one printer. If you omit
this option, the default printer is used. (The original
BSD version of lpr required that no space be pres-
ent between -P and the queue name, but CUPS
doesn’t suffer from this limitation.)

-r None Normally, lpr sends a copy of the file you print into
the queue, leaving the original unharmed. Specify-
ing the -r option causes lpr to delete the original
file after printing it.

-E -E This option enables encryption on the connection to
the print server.

03843book.indb 424 8/21/09 12:09:31 PM

Configuring Basic Printing 425

TA b le 9 . 3 lpr and lp Options and Effects (continued)

lpr Option lp Option Effect

-C jobname,
-J jobname, or
-T jobname

-t “jobname“ Print jobs have names to help identify them, both
while they’re in the queue and once printed (if the
queue is configured to print banner pages). The name
is normally the name of the first file in the print job,
but you can change it by including this option.

-# number -n copies You can specify the number of copies of a print job
by including this option.

-l None This option causes CUPS to bypass its smart filter
for the printer.

-m -m You can have CUPS send you an e-mail when the
job has finished by using this option.

None -P page-list Sets a range of pages to be printed. Pages may
be listed individually, separated by commas (as in
1,7,9), be a range separated by a dash (as in 2-4),
or use both methods (as in 1,7-9,12).

Suppose you have a file called report.txt that you want to print to the printer attached
to the lexmark queue. This queue is often quite busy, so you want the system to send e-mail to
your account when it’s done so that you know when to pick up the printout. You could use the
following command to accomplish this task:

$ lpr -Plexmark -m report.txt

The equivalent command using lp is as follows:

$ lp -d lexmark -m report.txt

The lpr and lp commands are accessible to ordinary users as well as to root, so anybody
may print using these commands.

Many programs that need to print directly, such as graphics programs and word proces-
sors, call lpr or lp. Other programs interface more directly with CUPS. In either case, these
programs typically give you some way to adjust the print command so that you can change
parameters such as the printer name. For instance, Figure 9.4 shows Konqueror’s Print dia-
log box. Konqueror features a pop-up list button that lets you select the print queue. This is
the Name field in Figure 9.4, but some programs call it something else. Some programs also
provide a text entry field in which you type some or all of an lpr or lp command, instead
of selecting from a pop-up list of available queues. Consult the program’s documentation if
you’re not sure how it works.

03843book.indb 425 8/21/09 12:09:32 PM

426 Chapter 9 n Configuring Advanced Networking

F i gu r e 9 . 4 Most X-based programs that print enable you to set printer options via a
dialog box.

Displaying Print Queue Information
The lpq utility displays information on the print queue—how many files it contains, how
large they are, who their owners are, and so on. By entering the user’s name as an argu-
ment, you can also use this command to check on any print jobs owned by a particular
user. To use lpq to examine a queue, you might issue a command like the following:

$ lpq -Pepson

epson is ready and printing

Rank Owner Job File(s) Total Size

active rodsmit 323 reply.tif 884736 bytes

This example shows the lpq output for CUPS. If you use another printing
system, the format will differ, although similar information should appear.

Of particular interest is the job number—323 in this example. You can use this number
to delete a job from the queue or reorder it so that it prints before other jobs. Any user may
use the lpq command.

03843book.indb 426 8/21/09 12:09:32 PM

Configuring Basic Printing 427

Instead of using lpq, you may use lpstat. This utility’s purpose is similar, but its details
differ. Most notably, it takes a lowercase -p to specify the printer name, and its output is
formatted differently:

$ lpstat -p epson

printer epson now printing epson-323. enabled since Sat 09 May 2009 10:14:35 AM
EDT

 Gutenprint Printing page 1, 12%

The default output of lpstat is less complete than that of lpq. The job ID number is
present, but it’s not labeled as such: note the string epson-323 in the first line of output.
The number (323) is the job ID number.

Removing Print Jobs from the Queue
The lprm or cancel command removes one or more jobs from the print queue. There are
several ways to issue this command:

If it’s issued with a number, that number is understood to be the job ID (as shown in Ûn

lpq’s output) that’s to be deleted.

If Ûn root runs the BSD lprm and passes a dash (-) to the program, it removes all print
jobs belonging to all users.

The lprm and cancel programs may be run by root or by an ordinary user, but as just
noted, their capabilities vary depending on who runs them. Ordinary users may normally
remove only their own jobs from the queue, but root may remove anybody’s print jobs.
(CUPS does provide an option, which can be set from the Web interface, to enable ordinary
users to cancel other users’ jobs, but this option is not set by default.)

Instead of using lprm or cancel, you may use the Web interface for CUPS to remove jobs
from a print queue. Click the Jobs tab (shown in Figure 9.3) to obtain a list of current print
jobs. Click Cancel Job in the row for any particular job to cancel it.

Controlling the Print Queue
In the original BSD LPD system, the lpc utility starts, stops, and reorders jobs within print
queues. Although CUPS provides an lpc command, it has few features. Instead of using
lpc, you should use the CUPS Web interface, which provides point-and-click print queue
management:

You can disable a queue by clicking the Stop Printer link for the printer on the CUPS Ûn

Web interface (see Figure 9.3). When you do so, this link changes to read Start Printer,
which reverses the effect when clicked. The Jobs tab also provides a way to cancel and
otherwise manage specific jobs.

You can use a series of commands, such as Ûn cupsenable, cupsdisable, and lpmove, to
control the queue. These commands enable a queue, disable a queue, or move a job
from one queue to another. Moving a job can be handy if you must shut down a queue
for maintenance and want to redirect the queue’s existing jobs to another printer.

03843book.indb 427 8/21/09 12:09:32 PM

428 Chapter 9 n Configuring Advanced Networking

Summary
Beyond basic network configuration lie increasingly advanced network configuration tasks.
Router and firewall configurations are two such sets of tasks. You can enable a computer
with two or more network interfaces to pass data between network segments, thus linking
them, either on a multisegment private network or to link one network to the Internet. Fire-
wall configurations can improve the security of router configurations, but firewalls are also
important security tools for nonrouter computers. In Linux, you use the iptables program
to create firewalls.

Two types of server programs that you’re likely to run on Linux are remote login tools
and printing tools. Basic remote login tools permit text-mode access to the computer.
Although Telnet was historically popular for this task, today SSH has largely supplanted
Telnet because of SSH’s superior security features. In addition to supporting encryption,
SSH supports file transfers and tunneling a wide variety of protocols, which enables the
addition of encryption features to otherwise unencrypted protocols. This feature is fre-
quently used in conjunction with X, so users can log into a Linux system remotely and run
X-based programs without taking special steps. You can also use X remotely without tun-
neling it through SSH, but this requires extra steps to link the client and servers. In some
environments, you may want to reconfigure your X and XDMCP servers to permit remote
GUI logins.

Printing in Linux is a network task; even on an isolated workstation, the CUPS print
queue is a network-enabled tool, and it uses network protocols locally to do its work, much
like X on an isolated system. CUPS really shines in a networked environment, though; it
supports automatic printer discovery so that all the printers on a network may be shared
by all the computers, with no need to explicitly configure these printers except on the com-
puter that most directly manages them. Command-line tools such as lpr, lprm, lpq, and
lpstat enable you to submit and manage print jobs; or you can use CUPS’s Web-based
tools to manage the task.

Exam Essentials

Explain the function of a packet-filter firewall. A packet-filter firewall filters network
traffic based on low-level data that’s easily obtained from individual network packets with-
out reassembling them into a complete data stream. Examples include source and destina-
tion IP addresses and port numbers. Such filters can protect a computer or (when used on a
router) a network from certain types of suspicious network traffic, such as off-site attempts
to access sensitive servers intended for local use.

Summarize how a packet-filter firewall is created in Linux. The usual tool for creating
a packet-filter firewall is iptables. Each call to this utility creates an individual rule, such
as one to drop incoming packets to a particular port from certain IP addresses. Many

03843book.indb 428 8/21/09 12:09:32 PM

Exam Essentials 429

such rules combine together to create a complete firewall. Typically, a script runs at system
startup to manage this task.

Describe common text-mode remote login tools. Telnet was the traditional remote text-
mode login tool, but it passes data over the network unencrypted and so is a poor choice
today. The Secure Shell (SSH) is the most common remote text-mode access tool today.

Explain the nature of X clients and servers. An X server controls a screen display and
handles input from the user’s mouse and keyboard. Therefore, the X server is used directly
by the user, and X clients are the programs that rely on the X server’s services.

Explain the role of an XDMCP server. An XDMCP server, such as XDM, KDM, or
GDM, launches X and controls access to X via a login prompt—that is, it serves as Linux’s
GUI login system. XDMCP servers are also network enabled, providing a way to log in
remotely from another X server.

Explain the role of Ghostscript in Linux printing. PostScript is the standard Linux print-
ing language, and Ghostscript converts PostScript into bitmap formats that are acceptable
to non-PostScript printers. Thus, Ghostscript is a critical translation step in most Linux
print queues.

Summarize how print jobs are submitted and managed under Linux. You use lpr or lp to
submit a print job for printing, or an application program may call lpr or lp itself or imple-
ment its functionality directly. The lpq or lpstat utility summarizes jobs in a queue, and
lprm can remove print jobs from a queue.

03843book.indb 429 8/21/09 12:09:32 PM

430 Chapter 9 n Configuring Advanced Networking

Review Questions

1. What is the default port used by the Simple Mail Transfer Protocol (SMTP)?

A. 143

B. 80

C. 25

D. 21

2. Which of the following ports are known as unprivileged ports?

A. Those that have numbers above 1024

B. Those that have numbers between 512 and 1024

C. Those that have numbers between 1 and 100

D. Those that have numbers below 1024

3. Which port, by default, is commonly used by OpenSSH?

A. 20

B. 21

C. 22

D. 23

4. Which port, by default, is commonly used by HTTPS?

A. 111

B. 143

C. 389

D. 443

5. Which of the following is true of the DROP policy for iptables?

A. It replies as if the computer was available but running no software on the target port.

B. It ignores packets, providing the illusion of a network error between the sender and
recipient.

C. It may be used only on ports that are opened by servers, not clients.

D. It may be applied as a default policy but not on a port-by-port basis.

03843book.indb 430 8/21/09 12:09:33 PM

Review Questions 431

6. When is it reasonable to enable routing between network segments on a computer that’s
connected to both of them?

A. Whenever one of the network segments is connected to the Internet and the other seg-
ment is a private network.

B. Whenever the segments must communicate directly and the computer in question is
configured as a firewall.

C. Whenever the segments must communicate directly and the computer in question is
designated as the router.

D. Never; this task should be handled only by dedicated network hardware that never
runs Linux.

7. A firewall script includes the following two lines. What is their purpose?
iptables -A OUTPUT -d 127.0.0.1 -o lo -j ACCEPT

iptables -A INPUT -s 127.0.0.1 -i lo -j ACCEPT

A. To set the default policy for all chains to ACCEPT; subsequent rules will use DROP or
REJECT.

B. To enable routing of localhost traffic on a computer configured as a router.

C. To enable communications over the localhost interface for local programs.

D. To set the default policy for the OUTPUT and INPUT chains to ACCEPT, leaving the
FORWARD chain unaffected.

8. Broadly speaking, how will use of iptables on a router with firewall features differ from
its use on a workstation?

A. A router’s iptables rules will include an emphasis on the FORWARD chain; a worksta-
tion’s will emphasize the INPUT and OUTPUT chains.

B. A router’s iptables rules will most likely use a default DROP policy, whereas a work-
station’s will probably use a default ACCEPT policy.

C. A router’s iptables rules will be activated by a script, whereas a workstation’s will be
configured using a GUI tool.

D. A router’s iptables rules will emphasize privileged port numbers, whereas a work-
station’s will emphasize unprivileged port numbers.

9. You want to use an X server on an old Pentium computer to run X clients on a modern
Itanium CPU system, with the goal of performing computationally intensive spreadsheet
calculations. Which of the following is true?

A. The spreadsheet will compute slowly because of the slow speed of the Pentium server.

B. You won’t be able to run the spreadsheet because the Itanium and Pentium CPUs need
different executables.

C. The computation will run swiftly, but graphics displays may be slowed by the Pen-
tium’s limited speed.

D. Computations will run swiftly only if the Itanium computer makes its filesystem avail-
able via NFS.

03843book.indb 431 8/21/09 12:09:33 PM

432 Chapter 9 n Configuring Advanced Networking

10. Why is it unwise to allow root to log on directly using SSH?

A. Somebody with the root password but no other password could then break into the
computer.

B. The root password should never be sent over a network connection; allowing root
logins in this way is inviting disaster.

C. SSH stores all login information, including passwords, in a publicly readable file.

D. When logged on using SSH, root’s commands can be easily intercepted and duplicated
by undesirable elements.

11. What programs directly support secure encrypted file transfers via SSH? (Choose all that apply.)

A. ftp

B. sftp

C. scp

D. NFS

12. What program can you use to generate a key that will enable logins to remote SSH servers
without using a password?

A. authorized_keys

B. ssh-keygen

C. sshpasswd

D. id_rsa

13. To whom should you distribute your server’s main SSH private key?

A. Only to servers with which you want to communicate

B. Only to servers that have already provided their own public keys

C. To anybody who can provide a matching SSH public key

D. None of the above

14. Which of the following is generally true of Linux programs that print?

A. They send data directly to the printer port.

B. They produce PostScript output for printing.

C. They include extensive collections of printer drivers.

D. They can print only with the help of add-on commercial programs.

15. Which of the following describes the function of a smart filter?

A. It detects the type of a file and passes it through programs to make it printable on a
given model of printer.

B. It detects information in print jobs that might be confidential, as a measure against
industrial espionage.

C. It sends e-mail to the person who submitted the print job, obviating the need to wait
around the printer for a printout.

D. It detects and deletes prank print jobs that are likely to have been created by miscreants
trying to waste your paper and ink.

03843book.indb 432 8/21/09 12:09:33 PM

Review Questions 433

16. What information about print jobs does the lpq command display? (Choose all that apply.)

A. The name of the application that submitted the job

B. A numerical job ID that can be used to manipulate the job

C. The amount of ink or toner left in the printer

D. The username of the person who submitted the job

17. You try to create a definition for a new printer using the CUPS Web-based tool, but you
can’t find a suitable printer definition. How might you proceed?

A. Edit the /etc/cups/printers.conf file directly.

B. Use the system-config-printer program instead of the CUPS Web tool.

C. Install the LPRng package, if it’s not already installed.

D. Install the Foomatic package, if it’s not already installed.

18. In setting up a network printer for use in Linux, a system administrator uses the follow-
ing URI:
smb://bsd:lpd@USB/PARALLEL

Assuming this URI is correct, what type of printer is the administrator attempting to use?

A. A local parallel-port printer

B. A local USB printer

C. A networked Windows or Samba printer

D. A networked BSD LPD printer

19. You type lpr -P brother sample.ps file to submit a print job. What would you type to
do the same thing using lp?

A. lp -d brother sample.ps

B. lp -p brother sample.ps

C. lp --printer brother sample.ps

D. lp -P brother sample.ps

20. Under what circumstances may ordinary users cancel other users’ print jobs on a system
that uses CUPS?

A. Only if the print queue has registered an error condition (paper out, printer jam, and
so on)

B. Only if the administrator has enabled the option to allow this activity

C. Only if permissions on the original file or its directory permit other users to delete
the file

D. Never

03843book.indb 433 8/21/09 12:09:33 PM

434 Chapter 9 n Configuring Advanced Networking

Answers to Review Questions

1. C. The SMTP service by default uses port 25. Port 143 is used by IMAP, port 80 is used for
WWW, and port 21 is used by FTP.

2. A. Unprivileged ports are those that have numbers above 1024. Privileged ports are those
that have numbers below 1024. The idea is that a client can connect to a privileged port and
be confident that the server running on that port was configured by the system administrator.

3. C. The default port for OpenSSH is 22. FTP uses ports 20 and 21, while Telnet uses port 23.

4. D. The default port for HTTPS is 443. PortMapper uses port 111, while the default port
for IMAP 2 is 143. The default port for LDAP is 389.

5. B. The DROP policy causes the computer to respond as described in option B. Option A
describes the REJECT policy, not the DROP policy. Contrary to option C, DROP may be used
on any port, whether it’s used by clients or servers. Contrary to option D, DROP may be
used either as a default policy or on a port-by-port basis.

6. C. Option C describes the basic reason for enabling routing in a computer. Option A is, in
some sense, backwards; routing is not normally enabled between an isolated private network
and the Internet. Option B is incorrect because a firewall configuration is not required in a
router, although it’s often advisable. Both options A and B also ignore the fact that another
computer might already be configured as a router; two networks might share multiple com-
puters, but only one needs to be configured as a router to enable communication between
them. Contrary to option D, both dedicated router devices and general-purpose computers
may function as routers.

7. C. Linux uses the localhost (127.0.0.1) IP address for local communications; network-
enabled programs use this address for communications even on one system. If your default
iptables policy is DROP or REJECT, this interface will be blocked, so it’s necessary to
unblock it using lines like those shown in the question, making option C correct. The
default policy, referenced in options A and D, is set using the -P option, as in iptables
-t filter -P FORWARD DROP, so these options are incorrect. Routing of localhost traf-
fic makes no logical sense—localhost traffic is, by definition, local and therefore is not
routed—so option B is incorrect.

8. A. The FORWARD chain is used for forwarding traffic, as in a router, so a router’s firewall will
include rules that affect the way the router forwards network traffic. A workstation doesn’t
forward traffic, so there will be few or no rules affecting the FORWARD chain on a workstation,
making option A correct. Contrary to option B, both workstations and routers may use either
the DROP policy or the ACCEPT policy (or the REJECT policy) as a default, although ACCEPT is
the least-preferred policy. Although both scripts and GUI tools can be used to create a fire-
wall, there is no necessary link between these tools and the type of computer, as option C
suggests, so that option is incorrect. Option D is incorrect because, although the distinction
between privileged and unprivileged port numbers is an important one, only the server’s port
numbers (which are, by and large, privileged) are fixed, so even a workstation’s iptables
rules will emphasize these port numbers.

03843book.indb 434 8/21/09 12:09:33 PM

Answers to Review Questions 435

9. C. The X server handles the display and user input only, so its speed will influence graphics
displays. Computations occur on the fast Itanium-based X client system.

10. A. Allowing only normal users to log in via SSH effectively requires two passwords for any
remote root maintenance, improving security. SSH encrypts all connections, so it’s unlikely
that the password, or commands issued during an SSH session, will be intercepted, which
make options B and D incorrect. (Nonetheless, some administrators prefer not to take even
this small risk.) SSH doesn’t store passwords in a file, making option C incorrect.

11. B, C. The sftp program provides an ftp-like user interface that works via SSH, while
scp is an SSH-enabled program that works like cp. Both enable you to transfer files using
encryption via SSH. (sftp requires explicit support in the SSH server, though.) The ftp
program supports unencrypted transfers, and not via SSH, so option A is incorrect. The
Network File System (NFS) is another unencrypted protocol, so option D is also incorrect.

12. B. The ssh_keygen utility generates SSH keys, including private keys for individuals,
that can be used instead of passwords for remote logins to SSH servers. (These keys must
be transferred and added to appropriate files on the server; using ssh_keygen alone isn’t
enough to accomplish the goal.) Option A’s authorized_keys is a file in which keys are
stored on a server; it’s not a program to generate them. Option C’s sshpasswd is fictitious.
Option D’s id_rsa is the file in which private keys are stored on the client; it’s not a pro-
gram to generate them.

13. D. SSH private keys are extremely sensitive, and they should not normally be distributed to
anybody, since possession of another system’s private key will make it easier for a miscreant
to pretend to be you. Thus, option D is correct. It’s safe to distribute public keys widely, as
in any of the other options, and in fact SSH does this automatically; but private keys should
remain just that: private.

14. B. PostScript is the de facto printing standard for Unix and Linux programs. Linux pro-
grams generally do not send data directly to the printer port (option A); on a multitasking,
multiuser system, this would produce chaos because of competing print jobs. Although a
few programs include printer driver collections (option C), most forgo this in favor of gen-
erating PostScript. Printing utilities come standard with Linux; add-on commercial utilities
aren’t required (option D).

15. A. The smart filter makes a print queue “smart” in that it can accept different file types
(plain text, PostScript, graphics, and so on) and print them all correctly. It does not detect
confidential information or prank print jobs, as suggested in options B and D. The lpr pro-
gram in the CUPS printing system can be given a parameter to e-mail a user when the job
finishes, but the smart filter doesn’t do this, making option C incorrect.

16. B, D. The job ID and job owner are both displayed by lpq. Unless the application embeds
its own name in the filename, that information won’t be present (option A). Most printers
lack Linux utilities to query ink or toner status; certainly lpq can’t do this (option C).

03843book.indb 435 8/21/09 12:09:34 PM

436 Chapter 9 n Configuring Advanced Networking

17. D. The Foomatic package is a set of printer definitions. If it’s not already installed, install-
ing it may provide a driver for your printer. (Gutenprint is another package that may be
helpful.) Options A and B are both alternatives to the CUPS Web-based configuration tool,
but neither by itself provides access to additional printer definitions. The LPRng package
of option C is an alternative to CUPS, but it doesn’t provide extra printer drivers, so it’s
unlikely to help. Since LPRng uses older printing protocols, using it instead of CUPS could
complicate your use of network-accessible printers.

18. C. The smb:// part of the URI identifies a printer that uses the SMB/CIFS network proto-
col—the protocol used by Windows and Samba for file and printer sharing. Thus, option C
is correct. The remaining fields were set to deliberately confuse; in this case, the computer is
called USB, the printer uses the queue called PARALLEL, the username to access the server
is bsd, and the password to access the printer is lpd. Most of these are likely to be poor
choices in the real world, of course; they serve only to make the incorrect options A, B,
and D seem more plausible—but these options remain incorrect.

19. A. The -d option to lp is the equivalent of lpr’s -P; it selects the printer queue (brother in
this case). Both utilities take the name of a file to printer, so passing sample.ps works the
same for both. The lp utility has no lowercase -p or --printer option, and the uppercase
-P option sets a page range.

20. B. CUPS provides an option to enable users who don’t own a print job to delete it, but this
option is disabled by default. If the system administrator enables this option, users may
cancel each others’ print jobs, as option B states. Queue errors and original file permissions
have no effect on this ability, contrary to options A and C. Option D directly contradicts
the correct answer, option B.

03843book.indb 436 8/21/09 12:09:34 PM

Chapter

10
Configuring Network
Servers I

The FollowINg CompTIA objeCTIveS
Are Covered IN ThIS ChApTer:

3.2 Implement interoperability with Windows using the ÛÛ
following (Security and authentication [Kerberos]).

3.8 Explain the purpose of each of the following mail ÛÛ
services, protocols, and features (Protocols: SMTP,
IMAP, POP3; MTA: Postfix, Sendmail; Email aliases:
/etc/aliases, newaliases).

3.10 Set up, install, configure, and maintain a BIND DNS ÛÛ
server and related services (DNS utilities: named, rndc;
Config file locations [/var/named]; Forward zones, reverse
zones, root hints).

3.11 Perform basic administration of the DHCP server ÛÛ
(/etc/dhcpd.conf, dhcpd.leases).

3.12 Given a scenario, troubleshoot NTP related issues ÛÛ
(/etc/ntp.conf, ntpdate, date, ntpq -p).

4.4 Explain the different DNS record types and the ÛÛ
process of DNS resolution (Local resolution, TTL/caching,
Root name servers, A, MX, PTR, CNAME, NS, TXT).

03843c10.indd 437 8/21/09 12:37:45 PM

Many Linux computers exist solely to function as server com‑
puters—they respond to access requests from other computers,
delivering IP addresses, time data, e‑mail, and other informa‑

tion to their clients. Many of the protocols and software packages that enable Linux to
function as a server system are extremely complex, and entire books have been written
about many of these protocols. Nonetheless, it’s possible to get basic systems up and run‑
ning without too much in‑depth knowledge. This chapter and the next cover this topic for
many common servers, so you should be able to get simple server configurations running.

Objective 3.2 is covered partly in this chapter and partly in Chapter 11,
“Configuring Network Servers II.”

Delivering Network Information
Increasingly, local networks rely on several common protocols to help tie the network
into a coherent whole. These protocols may be used across platforms—that is, Windows,
Mac OS, Linux, and other clients may all access a Linux server. Examples of these pro‑
tocols are the Dynamic Host Configuration Protocol (DHCP), the Domain Name System
(DNS), and the Network Time Protocol (NTP). Linux can function as a server for each
of these protocols. On many networks, one Linux system can run all of these protocols,
although you can also split the duty up across multiple server computers, if you prefer.

Some of these protocols (particularly DNS and NTP) are used on the Inter-
net at large, as well as on local networks. This chapter emphasizes their
configuration as local network servers, since this type of configuration is
simpler, more common, and less risky than is a public (Internet-accessible)
configuration. You may want to employ a firewall, as described in Chapter 9,
“Configuring Advanced Networking,” to block outside access attempts to all
of these server ports.

Delivering IP Addresses with DHCP
Chapter 8, “Configuring Basic Networking,” described how to configure a computer to
use an existing DHCP server to obtain its IP address. That DHCP server can run on any

03843c10.indd 438 8/21/09 12:37:46 PM

Delivering Network Information 439

number of OSs, including Linux. If you want Linux to do this, you must first install the
DHCP server package, which is usually called dhcp-server or dhcp. This package normally
includes a SysV startup script, such as /etc/init.d/dhcpd, which launches the server at
system startup time. The server program itself is called dhcpd and is normally located in
/usr/sbin.

The DHCP server program (dhcpd) has a very similar name to one of the
three common Linux DHCP clients (dhcpcd). This similarity can be confus-
ing; it’s easy to install the wrong package or waste time trying to get the
wrong daemon running.

The main DHCP server configuration file is /etc/dhcpd.conf. Listing 10.1 shows a
sample of this file, which can serve as a starting point for a basic configuration. The file
consists of two main parts: a series of global options and a subnet declaration that sets
options for a particular subnet the DHCP server handles. (In a complex network, a single
DHCP server might have multiple network interfaces, each with its own subnet declaration
in dhcpd.conf.)

listing 10.1: Sample DHCP Server Configuration

default-lease-time 86400;

max-lease-time 172800;

option subnet-mask 255.255.255.0;

option domain-name-servers 192.168.1.3, 10.128.60.8;

option domain-name “example.com”;

option netbios-name-servers 192.168.1.3;

option netbios-node-type 8;

get-lease-hostnames true;

use-host-decl-names true;

ddns-update-style none;

subnet 192.168.1.0 netmask 255.255.255.0 {

 range 192.168.1.50 192.168.1.175;

 option routers 192.168.1.1;

}

Most of the options in Listing 10.1 set features that are self‑explanatory or that
you shouldn’t need to change. Features you’re most likely to want to adjust include the
following:

Lease times The default-lease-time and max-lease-time options set the default and
maximum DHCP lease times in seconds. For testing purposes, lease times of just a few
minutes (perhaps 100–500 seconds) are reasonable. For a working network, lease times of
several hours to several days (roughly 5,000–1,000,000 seconds) are more reasonable.

03843c10.indd 439 8/21/09 12:37:46 PM

440 Chapter 10 n Configuring Network Servers I

If you expect to make major changes to your network configuration that
affect your DHCP server configuration, try reducing your lease times in
stages prior to implementing these changes—for instance, reduce lease
times from one week to one day to one hour, and perhaps to even lower
values. The shorter lease times will ensure that your clients will check back
more frequently as the network change time approaches, thus reducing
problems caused by clients operating with outdated information. When the
network changes are complete, increase the lease times to their original
values to reduce the load on the DHCP server.

Network mask The option subnet-mask line sets the network mask delivered to clients.

Name servers You can point clients to one or more DNS name servers with the option
domain-name-servers line. As in Listing 10.1, multiple servers should be separated by
commas.

Domain name You can set the domain name with the option domain-name line. Clients
might or might not use this information.

NetBIOS options You can provide several NetBIOS options to Windows systems with vari‑
ous options that include the string netbios in their name. Listing 10.1 points Windows sys‑
tems to a NetBIOS name server and sets the NetBIOS node type. The values in Listing 10.1
are reasonable for most networks, although you must change the IP address of the NetBIOS
name server for your network. If you don’t know what your NetBIOS name server’s IP
address is, you should omit these lines.

Subnet declaration The subnet line begins the definition of a subnet the server is to
handle. This begins with a specification of the subnet range, in the form of a network address
(192.168.1.0), the netmask keyword, and a network mask (255.255.255.0). The network
mask often matches the one specified with the option subnet-mask line, but it doesn’t have to.
An open curly brace ({) then begins the subnet declaration itself, in which you set options that
apply only to this subnet. The subnet declaration ends with a close curly brace (}).

IP address assignments You tell the DHCP server what IP addresses to manage on the
range line, which includes two IP addresses. The server assigns addresses within that range
to any client that asks for one. Note that this range should not include the IP address used
by the DHCP server itself or any other computer to which you assign a static IP address.
(You can use DHCP to assign fixed IP addresses, even to servers, using more advanced con‑
figurations.) Be sure to include enough IP addresses in this range. Remember that you may
need more addresses than you have computers, particularly if computers come and go (as in
notebooks) or if virtual machines consume extra IP addresses.

Routers The option routers line sets the IP address of the router for this subnet.

Most lines in dhcpd.conf end in semicolons (;). The exceptions are lines that denote the
start or end of a block of lines, such as the first and last lines in a subnet declaration.

To keep track of its leases, the DHCP server maintains a file, dhcp.leases, which holds
lease information. This file is likely to reside in /var/lib/dhcp or /var/db. You shouldn’t

03843c10.indd 440 8/21/09 12:37:47 PM

Delivering Network Information 441

need to edit this file, but you may want to consult it if you’re having DHCP problems on
your network.

The Linux DHCP server is very flexible and supports many options not described here,
such as the ability to assign fixed IP addresses to specific computers. This can be handy
if you want to configure server computers via DHCP. For more information, consult the
dhcpd.conf man page or a book on DHCP, such as Ralph Droms and Ted Lemon’s The
DHCP Handbook, 2nd Edition (Sams, 2002).

Delivering Hostnames with DNS
Just as Linux uses a DNS server to resolve hostnames to IP addresses (and vice versa), Linux
can run a DNS server program for the benefit of other systems. The most common Linux DNS
package is the Berkeley Internet Name Domain (BIND), which installs a server under the file‑
name named. This server is typically started through a SysV startup script of the same name—
like a DHCP server, a DNS server works best when it can run continuously to cache the names
it serves, so DNS servers aren’t typically run from super servers. There are two main parts to
BIND configuration: setting global BIND options and configuring one or more domains that
the server manages itself.

obtaining a domain

You may run a DNS server on a small local network without registering a domain name.
Such a configuration normally uses a made-up domain name, ideally using a top-level
domain (TLD, such as .com or .edu) that’s not in use (such as .invalid); or you can con-
figure the system as a forwarding-only server that doesn’t handle any local hostnames.

You may also run a DNS server using a registered domain name. The Internet Corporation
for Assigned Names and Numbers (ICANN) maintains a list of accredited registrars (http://
www.icann.org/en/registrars/accredited-list.html). Check this list to locate a registrar
for the TLD you want to use. You may then register a domain name, which normally costs
about $10 or $15 a year, and set up a DNS server to manage that domain. Either you can link
your own DNS server to the global DNS network by entering your server’s IP address in Web
forms maintained by your domain registrar, or you can have your registrar maintain your
public (Internet-accessible) DNS presence and set up your own DNS server for your private
network’s use only. Which approach is best depends on your needs and resources. If you
run a lot of servers or want to provide your users with direct access to your network’s sys-
tems from off-site, running your own publicly accessible DNS server makes sense, although
doing so increases your security risks. Running a private DNS server is sensible if your net-
work is protected behind a network address translation (NAT) router or if there’s no need to
provide direct outside access to most of your network’s computers. (Note that your comput-
ers may still be accessible via IP address even if no hostnames point directly to them, so fail-
ing to provide DNS entries is not an effective security measure.)

03843c10.indd 441 8/21/09 12:37:47 PM

442 Chapter 10 n Configuring Network Servers I

Setting Overall BIND Options
The main BIND configuration file is /etc/named.conf. This file controls overall server
operation, including global options (in a section that begins with the keyword options)
and one or more zone sections that point to files that describe the domains the server man‑
ages. The simplest type of BIND configuration is as a forwarding-only DNS server—that
is, as a server that merely forwards DNS lookups to another computer. This configuration
can improve DNS lookup times because your local DNS server can cache the names most
frequently looked up by users on your local network, eliminating the need for your systems
to consult an outside DNS server. A forwarding‑only DNS configuration is enabled in the
options section of named.conf, as shown in Listing 10.2. Most lines in this file end in a
semicolon (;). This punctuation denotes the end of a configuration option. Comments are
indicated by two leading slashes (//).

listing 10.2: Sample BIND /etc/named.conf Configuration

options {

 directory “/var/named”;

 forwarders {

 10.9.16.30;

 10.13.16.30;

 };

 listen-on{

 192.168.1.1;

 172.24.21.1;

 };

 forward only;

};

The key sections of this definition are the forwarders lines and the forward only line. The
forwarders definition specifies the DNS servers to which BIND should forward the lookup
requests it receives. This example specifies two outside systems; BIND will try each of them
in turn, stopping when it receives a reply. The forward only line tells BIND that it should
function only as a forwarding server; that is, it won’t attempt to do lookups itself. If you
change this line to forward first, then BIND will attempt to get an answer from the systems
specified in the forwarders area, but if they don’t answer, BIND will attempt to perform a
full recursive DNS lookup. In this process, BIND contacts the root DNS servers (aka the root
name servers), which know which systems handle the TLDs. These systems know which serv‑
ers handle individual domain names, and so on. BIND queries each of these systems in turn.
Full recursive lookups can take some time by computer standards (perhaps a couple of sec‑
onds), and the faster the network connection, the faster this happens. Thus, leaving this task
to a server that’s closer to the Internet at large than your own system is generally a good idea.

Listing 10.2 has a listen-on section, which tells BIND on which IP addresses it should
listen. This option is most useful on server computers that have multiple network interfaces;
you can have BIND respond to queries from some interfaces but not others.

03843c10.indd 442 8/21/09 12:37:47 PM

Delivering Network Information 443

Configuring the Root Zone
Performing a full recursive lookup requires that your system have an accurate root zone
record. This is normally installed along with BIND and is referenced by the zone “.” section
of named.conf (which does not appear in Listing 10.2):

zone “.” IN {

 type hint;

 file “named.ca”;

};

These lines define a DNS zone—that is, a set of addresses that the server can resolve using
rules defined elsewhere. The “.” zone is also known as the root zone—this is the entire Inter‑
net namespace. This zone is defined by the named.ca file, which is located in the directory
defined by the directory line in the options section of named.conf—normally /var/named.
You shouldn’t ordinarily change this particular definition, since it’s normally the same for
all DNS servers that use the Internet’s DNS. If your system is configured to forward DNS
requests, as described earlier in “Setting Overall BIND Options,” the root zone definition is
optional.

If the root servers ever change (as they do from time to time), your existing configuration
might not work. You can retrieve the current root zone file in various ways. One is to type
the following command:

$ dig @a.root-servers.net . ns > db.cache

Alternatively, you can download db.cache from ftp://ftp.internic.net/domain/.
(Note that this is an FTP site, not a Web site. Chapter 11 provides some pointers on using
FTP clients.) Once you’ve retrieved the latest zone file, you can replace the old one (named.ca
in the preceding example; the filename you retrieve may not match what’s used on your sys‑
tem) with the new file.

Configuring a Domain with BIND
On a small local network (say, one with a dozen or so computers), you can set up each
computer with an /etc/hosts file for hostname resolution, as described in Chapter 8. This
approach works, but it becomes tedious as the number of computers grows; every time you
add a computer or change its IP address, you must change the /etc/hosts file for every
computer on the network. Rather than deal with this hassle, you may want to configure
a DNS server to handle local hostnames. Doing so requires making three sets of changes:
adding a zone reference to /etc/named.conf, creating a forward zone file, and creating a
reverse zone file.

Adding a Zone Reference to the Main BIND Configuration File

A default /etc/named.conf file usually includes one or more zone file references, such as
the one to the root zone presented earlier. These references begin with the keyword zone,
include the name of the domain to be managed, and link to a zone file in another directory
(normally /var/named).

03843c10.indd 443 8/21/09 12:37:47 PM

444 Chapter 10 n Configuring Network Servers I

To have your system deliver IP addresses for local computers, you must create both for‑
ward and reverse zone files (as described shortly) and point your main named.conf file to
your new definitions. Modifying named.conf is fairly straightforward; your changes will
look something like this:

zone “pangaea.edu” {

 type master;

 file “named.pangaea.edu”;

};

zone “1.168.192.in-addr.arpa” {

 type master;

 file “named.192.168.1”;

};

The first four lines point BIND to the forward zone file, which enables the server to
return IP addresses when it’s fed hostnames. The final four lines point BIND to the reverse
zone file, which enables the server to return hostnames when it’s fed IP addresses. Both def‑
initions should include the type master option and specify a file (normally in /var/named)
in which the definition will be created. (You can also specify other types, as in type slave;
however, these configurations require additional setup work not described here. In particu‑
lar, slave configurations require at least two DNS servers, one of which copies the other’s
records.) The forward zone is named after the domain name it defines—pangaea.edu in this
example. The reverse zone is named after the IP address block it serves but with a couple of
twists. First, the .in-addr.arpa string is added to the end of the IP address range. Second,
the IP address range’s numbers are reversed. For instance, if you’re defining a reverse zone
file for 192.168.1.0/24, you’d take the network portion of the address (192.168.1), reverse
its numbers (1.168.192), and add .in-addr.arpa, resulting in 1.168.192.in-addr.arpa.

Creating a Forward Zone File

A forward zone file creates the mapping of hostnames to IP addresses. Listing 10.3 shows
an example. This file might be the named.pangaea.edu file referenced earlier.

listing 10.3: Sample Forward Zone Configuration File

$TTL 1D

pangaea.edu. IN SOA dns1.pangaea.edu. \

 admin.pangaea.edu. (

 2010022003 ; serial

 3600 ; refresh

 600 ; retry

 604800 ; expire

 86400 ; default_ttl

)

dns1.pangaea.edu. IN A 192.168.1.1

03843c10.indd 444 8/21/09 12:37:48 PM

Delivering Network Information 445

coelophysis.pangaea.edu. IN A 192.168.1.2

peteinosaurus IN A 192.168.1.3

 IN A 192.168.1.4

pangaea.edu. IN A 192.168.1.5

www IN CNAME webhosting.example.com.

ftp IN CNAME coelophysis

@ IN MX 10 peteinosaurus

@ IN MX 20 mail.example.com.

@ IN NS dns1.pangaea.edu.

Most of the lines in a zone configuration file take the following form:

name IN record-type record-contents

name is the name of the computer (or a name derived from the computer’s address, in the
case of reverse zone configuration files, as described shortly). You should pay careful atten‑
tion to the trailing dots (.) in the fully qualified domain names (FQDNs) in Listing 10.3—the
names that include both machine name and domain name portions. Technically, all DNS
hostnames end in dots, although they can usually be omitted when you’re using Web browsers,
e‑mail clients, and most other tools. In the case of a zone file, though, the dots are manda‑
tory when you specify a complete hostname. When a name does not end in a dot, BIND adds
the current zone name—pangaea.edu., in the case of Listing 10.3. Thus, you can specify
hostnames either completely (as in coelophysis.pangaea.edu.) or by host portion only (as in
peteinosaurus). If you omit a name completely (as in 192.168.1.4 in Listing 10.3), the previ‑
ous hostname (peteinosaurus in Listing 10.3) is linked to both IP addresses (192.168.1.3 and
192.168.1.4 in Listing 10.3). The DNS server delivers all the IP addresses that are so linked
in a round‑robin fashion. This is an easy way to perform load balancing—if you need two
computers to handle the load for one Web site or other server, you can configure two comput‑
ers identically and have the DNS server direct half the traffic to each computer. The at‑sign (@)
is a stand‑in for the domain itself; it’s commonly used with NS and MX records, as shown in
Listing 10.3.

Following the hostname comes the string IN, which stands for Internet. Next is a code
for the record type. Several record types are common and important:

A An address (A) record links a hostname to an IPv4 address. You may specify the host‑
name as an FQDN or as a hostname without its domain portion, as described earlier. You
may also assign an IP address to the domain name alone (as in pangaea.edu. in Listing 10.3).

AAAA These records are the IPv6 equivalent of A records.

CNAME A canonical name (CNAME) record links a hostname to another hostname.
You may specify the record-contents either as a “bare” machine name or as an FQDN. In
the latter case, the target system need not be in the same domain as the one specified by the
SOA record. For instance, in Listing 10.3, www links to an outside system.

NS A name server (NS) record provides the hostname of a DNS server for the domain.
This record is used mainly by other DNS servers that are directed to yours by other systems

03843c10.indd 445 8/21/09 12:37:48 PM

446 Chapter 10 n Configuring Network Servers I

when your DNS server functions on the Internet at large. NS records, like CNAME
records, can point outside your own domain.

MX A mail exchanger (MX) record points to a mail server for the domain. Remote mail
servers access this record to learn how to deliver mail that’s addressed to your domain. The
record-contents of these records includes both a priority code (10 or 20 in Listing 10.3;
sending servers try to contact servers with lower priority codes first) and a computer name.
As with CNAME and NS records, MX records can point to systems in other domains. The
mail server must be configured to accept mail for the domain, though.

PTR Pointer (PTR) records are the opposite of A records; they link IP addresses to host‑
names. As such, they don’t exist in Listing 10.3. The upcoming section “Creating a Reverse
Zone File” covers this type of record in more detail.

SOA The start of authority (SOA) record is the first one in Listing 10.3. This type of
record is complex enough that I describe it in more detail shortly.

TXT This record type enables you to set explanatory text associated with the domain.

Most BIND packages for Linux include one or more forward zone files, such as one
for the localhost name and perhaps a rudimentary file (called named.empty or something
similar) that you can use as a model for your own domain. You may also use Listing 10.3
as a model.

The SOA record is particularly complex. It provides various administrative details for the
zone. The name is the domain name for the record, and this name is used as the default when‑
ever a machine name without a trailing dot (.) appears in subsequent records. An at‑sign (@)
can function as a stand‑in for the domain name; in that case, the zone name specified in the
/etc/named.conf file is used instead.

The record-contents field of an SOA record is itself quite complex. It includes several
components, separated by spaces:

The name of the primary name server (which should also have its own NS record).Ûn

The e‑mail address of the domain’s administrator, but with a dot (Ûn .) instead of an
at‑sign (@). For instance, Listing 10.3’s domain administrator is admin@pangaea.edu.

A set of numbers within commas specifying values that other DNS servers use to deter‑Ûn

mine how long to cache records for the domain. (Cache times are sometimes referred
to as a time‑to‑live, or TTL, value.) Times are specified in seconds, although you may
append M, H, D, or W to specify times in minutes, hours, days, or weeks, respectively.
Cache times for working domains are usually set in the range of hours to days; how‑
ever, when testing a configuration, you might want to set cache times of just a minute
or two. You might also want to lower the cache times on a working domain a few days
prior to making major changes to your domain so that clients won’t be delivering out‑
dated information after you make your changes.

The serial number (the line flagged as serial in Listing 10.3) is particularly important
on networks that employ both master and slave DNS servers. Slave servers examine this
value in zone files to determine whether to update their local versions of the zone file. If the
serial number doesn’t change, the slave server won’t update its local file. This fact can cause

03843c10.indd 446 8/21/09 12:37:48 PM

Delivering Network Information 447

confusion because if you forget to update your serial number, changes to your zone file may
not propagate properly. You can use any system you like for creating serial numbers. List‑
ing 10.3 uses a date with an appended revision number—2010022003 refers to the third
change (03) on February 20, 2010. A simple incrementing number will work, too (1, then 2,
then 3, and so on). Be sure your numbers increment in a strictly linear way—if you use the
date, be sure to use YYYYMMDD format.

Creating a Reverse Zone File

Reverse zone files are conceptually similar to forward zone files; however, they use PTR
records rather than A records, and they map IP addresses to hostnames. They do this by
using hostnames in the in-addr.arpa domain (or ip6.arpa in the case of IPv6 addresses) as a
way to represent IP addresses in hostname form. Reverse zone files also often lack some com‑
mon features of forward zone files, such as MX listings. Listing 10.4 presents an example of a
reverse DNS zone file. This listing might be used in conjunction with Listing 10.3.

listing 10.4: Sample Reverse Zone Configuration File

$TTL 1D

1.168.192.in-addr.arpa. IN SOA dns1.pangaea.edu. \

 admin.pangaea.edu. (

 2010022003 ; serial

 3600 ; refresh

 600 ; retry

 604800 ; expire

 86400 ; default_ttl

)

1.1.168.192.in-addr.arpa. IN PTR dns1.pangaea.edu.

2 IN PTR coelophysis.pangaea.edu.

3 IN PTR peteinosaurus.pangaea.edu.

4 IN PTR peteinosaurus.pangaea.edu.

5 IN PTR pangaea.edu.

@ IN NS dns1.pangaea.edu.

The hostnames in a reverse zone file (in the name fields of the file’s entries) are based on
the IP addresses, as described earlier in “Adding a Zone Reference to the Main BIND Con‑
figuration File.” Listing 10.4 provides listings for the 192.168.1.0/24 domain, so its SOA
field specifies 1.168.192.in-addr.arpa. as the domain name. As with forward entries, the
name field may present either a complete hostname, including a trailing dot (.), or just the
part of the hostname that comes to the left of the domain portion of the name. The latter is
normally the final one to three numbers in the IP address, but in reverse order. The domain
name in PTR records ends in either in-addr.arpa. (for IPv4 addresses) or ip6.arpa. (for
IPv6 addresses).

The record-contents portion of a reverse zone file’s PTR entries consists of DNS host‑
names, complete with the domain portion and trailing dot (.), as illustrated in Listing 10.4. If

03843c10.indd 447 8/21/09 12:37:48 PM

448 Chapter 10 n Configuring Network Servers I

you omit the DNS domain name, the record will be misinterpreted as being part of the domain
defined by the reverse zone file—1.168.192.in-addr.arpa, in the case of Listing 10.4.

Running a DNS Server
A single DNS server can manage multiple domains. To do so, you must create one zone file
for each domain managed (forward zones and reverse zones each require their own files)
and reference each of them in /etc/named.conf. If these zones are to be publicly accessible,
you must also register them with the upstream DNS servers, via your domain registrar.

With the /etc/named.conf file and all the zone files configured, you can launch your
DNS server or tell it to reread its configuration files. You normally do this via its SysV
startup script, as described in Chapter 4, “Managing System Services.” This will launch
the BIND server, which is normally called named. You may want to check your system log
files (also described in Chapter 4) at this point; it’s not uncommon for a misconfiguration
to cause the DNS server to fail to start or to misbehave in some other way. Such problems
often leave traces in log files. If the server seems to be running, you can check its operation
using named, host, or dig, as described in Chapter 8, “Configuring Basic Networking.” Be
sure to test the system using the server computer itself, another computer on the local net‑
work that’s configured to use your DNS server directly, and (if applicable) a remote system.
Remote computers, though, may not immediately use your DNS server, since it can take
minutes, hours, or sometimes even days for DNS changes to propagate through the entire
DNS network.

Once it’s running, you may control the named server using the rndc utility. You pass the
utility any of several commands on the command line. For instance, typing rndc reload
reloads the configuration files, rndc stop terminates the server, rndc flush flushes the
server’s caches, and rndc status displays the server’s status information. Typing rndc
alone presents a complete list of the commands it accepts.

Delivering the Time with NTP
Typically, a clock on an isolated computer needn’t be set with any great precision. It doesn’t
really matter if the time is off by a few seconds, or even a few minutes, so long as the time
is reasonably consistent on that one computer for the purpose of cron, other scheduling
tools, and files’ time stamps. Sometimes, though, maintaining a truly accurate system time
is important. This is true for a few scientific, business, and industrial applications (such as
astronomical measurements or a system that determines the start and stop times for televi‑
sion broadcasts).

In a networked environment, maintaining the correct time can be more important. Time
stamps on files may become confused if a file server and its clients have different times, for
instance. Worse, a few protocols, such as the Kerberos security suite, embed time stamps in
their packets and rely on those time stamps for normal system functioning. If two systems
using Kerberos have wildly different times, they may not be able to communicate. For these
reasons, several protocols exist to synchronize the clocks of multiple systems. Of these,

03843c10.indd 448 8/21/09 12:37:48 PM

Delivering Network Information 449

NTP is the most popular and flexible. You should first understand the basic principles
of NTP operation. You can then go on to configuring an NTP server for your network
and setting up other systems as NTP clients.

Other time-setting protocols include one built into the Server Message
Block/Common Internet File System (SMB/CIFS) used for Windows file
sharing and implemented in Linux by Samba and a protocol used by the
rdate utility in Linux.

Understanding NTP Basics
Linux uses the date command to enable you to view or set the date and time. Typing date
alone displays the current date and time. You can set the date and time by adding them to
the command line in MMDDhhmm[[CC]YY][.ss]] form. The date command is, however, not
network‑enabled, so setting the time using this tool is labor‑intensive. NTP solves that prob‑
lem by enabling one computer to set its clock based on another one.

NTP creates a tiered hierarchy of time sources, as illustrated in Figure 10.1. At the top
of the structure are one or more highly accurate time sources—typically atomic clocks or
radio receivers that pull their times from broadcast time signals based on atomic clocks.
These are referred to as stratum 0 time servers, but they aren’t directly accessible to any but
the stratum 1 time servers to which they’re connected. These stratum 1 computers run NTP
servers that deliver the time to stratum 2 servers, which deliver the time to stratum 3 serv‑
ers, and so on, for an arbitrary number of strata.

The key to NTP is the fact that each server can deliver time to an expanding number
of clients. For instance, if a stratum 1 server has 1,000 clients, each of which has 1,000
clients, and so on, then stratum 3 will consist of 1,000,000 systems, and stratum 4 will
contain 1,000,000,000 systems. Each increase in the stratum number slightly decreases
the accuracy of the time signal, but not by much; even a stratum 4 system’s clock should be
accurate to well under a second, which is accurate enough for almost all purposes. More
important, if you run a network, you can set aside one computer as an NTP server and set
all your other computers’ clocks from that one server. Even if your primary NTP server’s
clock is off by a second, all the clocks on your network should be set to within a tiny frac‑
tion a second of each other, which is the most important consideration for time‑dependent
network protocols such as Kerberos.

NTP works by measuring the round‑trip time for packets between the server and the client.
The two systems exchange packets with embedded time stamps; the client then adjusts its time
so that it is synchronized with the source’s time stamp but adds a bit to the time reported by
the source to account for this round‑trip delay. For this reason, when you select an NTP source
(as described next, in “Locating a Time Source”), you should pick one with the shortest pos‑
sible network time delay, all other things being equal. (In truth, several measures of reliability
exist, and the NTP programs try to take them all into account.)

03843c10.indd 449 8/21/09 12:37:49 PM

450 Chapter 10 n Configuring Network Servers I

F I gu r e 10 .1 NTP enables an expanding pyramid of computers to set their clocks to a
highly accurate source signal.

Atomic Clock Atomic Clock

Stratum 0

Stratum 1

Stratum 2

Stratum 3

Stratum 4

The main Linux NTP server program functions as both a server and a client; it sets its
clock based on the time of the server to which it’s pointed, and it enables other systems to
set their clocks based on its own. Even the end points in the NTP hierarchy (the stratum
4 and some stratum 3 servers in Figure 10.1) often run the full NTP server package. The
reason is that this software runs constantly and can monitor for and adjust the clock drift
that’s common in computers’ clocks, resulting in much more consistent timekeeping than
is possible with a program that simply sets the clock and then ignores it until the next time
the program is run. In other words, NTP doesn’t just reset the system clock periodically;
the server improves the accuracy of the system clock. In part, this is done through the ntp.
drift file, which is usually buried in /var/lib/ntp but is sometimes stored in /etc. This
file holds information about the software clock’s inaccuracies and so can be used to correct
for them. A full NTP server, even when it’s functioning only as an NTP client, periodically
checks with its source servers to keep the system time set correctly and to update the ntp.
drift file.

03843c10.indd 450 8/21/09 12:37:50 PM

Delivering Network Information 451

Locating a Time Source
You may think that locating an NTP server with a low stratum number (such as stratum 1)
is ideal. Although it’s true that your own system will have a minutely more accurate clock
when using such a source, the best approach in most cases is to synchronize with a stratum
2 or lower system. The reason is that this practice will help keep the load on the stratum 1
servers low, thus improving the overall performance of the NTP network as a whole. An
exception might be if you’re configuring an NTP server that will itself deliver the time to
hundreds or more computers.

To locate an NTP server, you should consult one or more of several sources:

Your ISP Many Internet service providers (ISPs), including business networks and univer‑
sities, operate NTP servers for the benefit of their users. These servers are usually very close
to your own in a network sense, making them good choices for NTP. You should consult
your ISP or the networking department at your organization to learn whether such a system
is available.

Your distribution’s NTP server Some Linux distributions operate NTP servers for their
users. If you happen to be close to these servers in a network sense, they can be good
choices; however, chances are this isn’t the case, so you may want to look elsewhere.

Public NTP server lists Lists of public NTP servers are maintained at http://support.ntp
.org/bin/view/Servers/WebHome. These servers can be good choices, but you’ll need to
locate the one closest to you in a network sense and perhaps contact the site you choose
to obtain permission to use it.

Public NTP server pool The pool.ntp.org subdomain is dedicated to servers that have
volunteered to function as public NTP servers. These servers are accessed in a round‑robin
fashion by hostname, so you can end up using different servers each time you launch NTP.
Thus, using the public NTP server pool can be a bit of a gamble, but the results are usually
good enough for casual users or if you don’t want to spend time checking and maintaining
your NTP configuration. To use the pool, you can configure your NTP server to use either
the pool.ntp.org subdomain name or a numbered host within that domain, such as 0.pool
.ntp.org. Consult http://support.ntp.org/bin/view/Servers/NTPPoolServers for details.

The closest server in a network sense may not be the closest computer
in a geographic sense. For instance, a national ISP may route all traffic
through just one or two hub sites. The result can be that traffic from, say,
Atlanta, Georgia, to Tampa, Florida, may go through Chicago, Illinois.
Such a detour is likely to increase round-trip time and decrease the accu-
racy of NTP. In such a situation, a user in Atlanta may be better off using
a Chicago NTP server than one in Tampa, even though Tampa is much
closer geographically.

Once you’ve located a few possible time servers, try using ping to determine the round‑
trip time for packets to this system. If any systems have very high ping times, you may
want to remove them from consideration.

03843c10.indd 451 8/21/09 12:37:51 PM

452 Chapter 10 n Configuring Network Servers I

Serving Time to windows Systems

If your network hosts both Linux and Windows systems, you may want to use a Linux
system as a time source for Windows clients or conceivably even use a Windows server
as a time source for Linux clients. One way to do this is to run NTP on Windows. Con-
sult http://www.meinberg.de/english/sw/ntp.htm or perform a Web search to locate
NTP software for Windows systems. For Windows NT/200x /XP/Vista, you can type NET
TIME /SETSNTP:time.server, where time.server is the name of your local NTP time
server. This command performs a one-time setting of the clock but doesn’t run in the
background as the full NTP package does on Linux. Running this command in a Windows
login script may be adequate for your purposes.

For older Windows 9x /Me systems, you can type NET TIME \\SERVER /SET /YES to have
the system set the time to the time maintained by SERVER, which must be a Windows or
Samba file or print server. This command doesn’t use NTP, but if you have a Linux system
that runs both NTP and Samba, it can be a good way to get the job done.

Configuring NTP Servers
When you’re setting up a network to use NTP, select one system (or perhaps two for a net‑
work with several dozen or more computers) to function as the primary NTP server. This
computer needn’t be very powerful, but it must have always‑up access to the network. You
can then install the NTP server and configure it.

Most Linux distributions ship the NTP software in a package called ntp, xntp, ntpd, or
xntpd. Look for this package and, if it’s not already installed, install it. If you can’t find this
package, check http://www.ntp.org/downloads.html. This site hosts NTP source code,
which you can compile and install. Alternatively, you can look for a binary package for
another distribution. In any event, if you don’t install your distribution’s own NTP package,
you’ll need to create your own SysV startup script or start the NTP daemon in some other way.

Once NTP is installed, look for its configuration file, /etc/ntp.conf. This file contains
various NTP options, but the most important are these server lines:

server clock.example.com

server ntp.pangaea.edu

server time.luna.edu

Each of these lines points to a single NTP server. When your local NTP daemon starts
up, it contacts all the servers specified in /etc/ntp.conf, measures their accuracy against
each other, and settles on one as its primary time source. Typically, you list about three
upstream time servers for a system that’s to serve many other computers. This practice

03843c10.indd 452 8/21/09 12:37:51 PM

Delivering Network Information 453

enables your server to weed out any servers that deliver a bad time signal, and it also gives
automatic fallback in case an upstream server becomes temporarily or permanently unavail‑
able. If your NTP server won’t be serving many computers itself, you may want to config‑
ure it for three servers initially and then drop the ones your system isn’t using as its primary
time source after a day or two. This will reduce the load on these servers.

You may want to peruse your configuration file for entries to remove. For instance,
the configuration file may contain references to servers you’d rather not use or other
odd options with associated comments that make you think they’re inappropriate.
Generally speaking, you shouldn’t adjust entries in the ntp.conf file other than the
reference server lines, but special circumstances or odd starting files may require you
to make changes.

Once you’ve made your changes, start or restart your NTP daemon. Typically, this is
done via a SysV startup script:

/etc/init.d/ntpd restart

You may need to change the path to the file, the SysV script filename, or the option (change
restart to start if you’re starting NTP for the first time). Most distributions configure NTP
to start whenever the system boots once you install the server. Consult Chapter 4 for details
on changing this configuration.

To verify that NTP is working, you can use ntpq, which is an interactive program
that accepts various commands. Figure 10.2 shows it in operation, displaying the out‑
put of the peers command, which summarizes the servers to which your NTP server
is connected. (Typing ntpq -p causes the program to display this list and then exit.)
In Figure 10.2, three external servers are listed, plus LOCAL(0), which is the last‑resort
reference source of the computer’s own clock. The refid column shows the server to
which each system is synchronized, the st column shows the stratum of the server, and
additional columns show more technical information. The server to which yours is syn‑
chronized is denoted by an asterisk (*), other servers with good times are indicated by
plus signs (+), and most other symbols (such as x and -) denote servers that have been
discarded from consideration for various reasons. Consult ntpq’s man page for more
information about its operation.

F I gu r e 10 . 2 The ntpq program enables you to verify that an NTP server is
functioning correctly.

03843c10.indd 453 8/21/09 12:37:52 PM

454 Chapter 10 n Configuring Network Servers I

You won’t see a server selected as the source until a few minutes after you
restart the NTP daemon. The reason is that your local NTP process takes a
while to determine which of the sources is providing the best signal.

Configuring NTP Clients
Once you’ve configured one or more NTP servers, you can configure the rest of your systems
to point to them. Their configuration is done just like the NTP server configuration, with a
couple of exceptions:

You set your NTP clients to refer to the NTP server (or servers) you’ve just configured Ûn

rather than to an outside NTP source. This way, your local systems won’t put an addi‑
tional burden on the outside NTP server you’ve selected.

You may want to ensure that your NTP clients can’t be accessed as servers. This is Ûn

a security measure. You can do this with an iptables firewall rule or by using the
restrict default ignore line in ntp.conf. This line tells the server to ignore all
incoming NTP requests. Ideally, you should use both methods. (If your distribution
employs such tools by default, you may have to undo them on any system that should
serve time to its own clients.)

Once you’ve configured a client, restart its NTP daemon. You can then use ntpq to
check its status. You should see that it refers only to your network’s own NTP server or
servers. These systems should be listed as belonging to a stratum with a number one higher
than the servers to which they refer.

In some cases, a simpler way to set the time on a client is to use ntpdate. This program
is part of the NTP suite, and it performs a one‑time clock setting. To use it, type the com‑
mand name followed by the hostname or IP address of an NTP server:

ntpdate clock.example.com

Some NTP packages include a call to ntpdate in their NTP daemon startup scripts in
order to ensure that the system is set to the correct time when it starts. The ntpdate com‑
mand, however, has been deprecated and could disappear from the NTP package at any
time. Instead, you can start ntpd with its -g and -q options, which enable it to perform a
one‑time clock setting to a value that’s wildly divergent from the current time. (Ordinarily,
ntpd exits without adjusting the clock if the time server’s time differs from the local time by
more than a few minutes.)

Authenticating Users on the Network
One of the problems with large computer networks is that user authentication can become a
problem. If a network has 100 computers, and if even just a few users need to be able to use
any of these computers, managing the accounts for those users can become a full‑time job

03843c10.indd 454 8/21/09 12:37:52 PM

Using E-mail 455

all by itself. The solution to this problem lies in network authentication protocols, including
the following:

Kerberos This protocol, named after the mythological three‑headed dog that guarded
the underworld, provides encryption and authentication for network servers that explicitly
support it. Typically, a Kerberos network uses a Key Distribution Center (KDC; a Kerberos
server) along with Kerberos‑enabled (aka Kerberized) servers and clients for specific proto‑
cols. Kerberos typically manages specific protocols rather than replace the standard Linux
account database, although it can be tied into the standard login tools.

LDAP The Lightweight Directory Access Protocol (LDAP) is a tool for storing directories,
which in this context are similar to databases. Among other things, these directories can
include Linux user account data. LDAP supports encrypted or unencrypted authentication,
using a central server and LDAP support in the Linux Pluggable Authentication Module
(PAM) system. Used in this way, an LDAP server can supplement or replace Linux’s normal
account database. LDAP is a very flexible tool, capable of far more than simple network
authentication.

NIS Network Information Services (NIS) is a tool that’s similar in broad strokes to LDAP,
although NIS predates LDAP and is geared toward providing Unix/Linux data, including
account and network data.

Winbind The Linux Winbind server (aka winbindd, the name of the server program) is
similar to LDAP and NIS in that it can supplement or replace the standard Linux account
database. Winbind differs in that it uses a Windows domain controller (either an NT
domain controller or a newer Active Directory [AD] controller) as its source of account
information. This configuration imposes certain compromises; for instance, Windows
domain controllers don’t hold Linux username‑to‑UID mappings, so Winbind must manage
this detail itself. Nonetheless, Winbind is very useful on Windows‑dominated networks.

Chapter 12, “Securing Linux,” provides additional details concerning NIS and LDAP.
Fully configuring any of these tools is an advanced task, though, so you should consult
additional documentation if you need to use network authentication.

Using E-mail
E‑mail enables users to send messages to one another, across an office or across the world.
Before configuring mail programs, you should understand the protocols involved. With that
knowledge in hand, you can perform some basic mail server configuration. (I cover only the
bare‑bones basics for a few popular servers in this chapter.) You should also know how to
set up e‑mail forwarding and aliases, which are tools to redirect the delivery of e‑mail from
one account or address to another.

03843c10.indd 455 8/21/09 12:37:52 PM

456 Chapter 10 n Configuring Network Servers I

Understanding E‑mail Protocols
Internet mail delivery today is dominated by a protocol known as the Simple Mail Transfer
Protocol (SMTP). This protocol is an example of a push protocol, meaning that the send‑
ing system initiates the transfer.

A user writes a message using a mail reader and then tells the mail reader to send
the mail. The mail reader contacts a local SMTP server, which may run on the same or
another computer. The SMTP server accepts the message for delivery, looks up the recipient
address, and delivers the message to the recipient system.

In some cases, the recipient system may forward the mail to another system, which handles
the mail account for the addressee. Depending on how the recipient reads mail, that person
may use the destination mail server computer directly or run a mail client on another com‑
puter. In the latter case, the mail client uses a protocol such as the Post Office Protocol (POP)
or the Internet Message Access Protocol (IMAP) to retrieve the mail from the local mail
server. POP and IMAP are both examples of pull protocols, in which the recipient, rather
than the sender, initiates the data transfer. This configuration is outlined in Figure 10.3. The
Internet’s mail system is flexible enough that the total number of links between the sender
and recipient may be more or less than the number depicted in Figure 10.3, though. Users
may read mail on the final SMTP server (inbox.pangaea.edu in Figure 10.3) or use a POP or
IMAP client (as depicted in Figure 10.3) to read mail from another system. It’s even possible
to use a program such as Fetchmail (http://fetchmail.berlios.de) to extend the chain fur‑
ther after a POP or IMAP retrieval.

F I gu r e 10 . 3 E-mail typically traverses several links between sender and recipient.

smtp.pangaea.edu

inbox.pangaea.edumail.example.com

franklin.pangaea.educlient.example.com

POP or
IMAPSMTPSMTPSMTP

Three of the computers in Figure 10.3—mail.example.com, smtp.pangaea.edu, and
inbox.pangaea.edu—must run SMTP servers. These servers can be entirely different prod‑
ucts running on different platforms. For instance, one might be sendmail on Linux, another
might be Postfix on FreeBSD, and a third might be Microsoft Exchange on Windows. In
addition to running an SMTP server, Figure 10.3’s inbox.pangaea.edu must run a POP or
IMAP server. The two end‑point computers—client.example.com and franklin.pangaea
.edu—need not run mail servers. Instead, client.example.com connects to the SMTP server
on mail.example.com to send mail, and franklin.pangaea.edu connects to the POP or
IMAP server on inbox.pangaea.edu to retrieve mail.

Mail servers are sometimes called mail transfer agents (MTAs), and mail
clients (user systems) are sometimes called mail user agents (MUAs).

03843c10.indd 456 8/21/09 12:37:54 PM

Using E-mail 457

Configuring SMTP Servers
Even Linux computers that don’t exist as mail server computers often run mail server
software. The reason is that certain local tools sometimes assume that a local mail server
program will be present; these tools use the local mail server to deliver notices about their
activities to root or to some other user. For instance, cron (described in Chapter 3) e‑mails
the output of the programs it runs to the user who runs them. Thus, basic e‑mail configura‑
tion is often important, even on Linux systems that aren’t primarily mail servers. The next
few pages describe two common Linux SMTP server programs, sendmail and Postfix, as
well as some of the commands and tools you can use to manage a mail queue on Linux.

SMTP servers can be misconfigured to function as open mail relays.
These will forward mail from any address to any other address, and they
are beloved by those who send spam—unsolicited bulk e-mail. All Linux
distributions released since 1999 or so are configured to not be open mail
relays by default. If you’re running an older distribution or if you attempt
to change your mail server’s configuration, you should ensure that you
aren’t running an open mail relay. Consult http://www.mail-abuse.com/
an_sec3rdparty.html for more information on this important topic.

This section can only scratch the surface of e-mail configuration, particu-
larly for large mail server computers. For more information on mail server
configuration, consult the server’s own documentation or a book on the
subject, such as Craig Hunt’s Linux Sendmail Administration (Sybex, 2001)
or Kyle D. Dent’s Postfix: The Definitive Guide (O’Reilly, 2003).

Configuring Sendmail
The sendmail program (http://www.sendmail.org) has long been the most common
mail server program on the Internet, although it has declined in popularity in recent years.
Several Linux distributions use sendmail as the default mail server program. Most Linux
distributions that use it provide it in a package called sendmail, so you can check to see
whether that package is installed on your system.

The presence of a binary program called sendmail might not indicate the
presence of the sendmail server. Many programs assume that the mail
server executable is called sendmail, so other mail server packages usu-
ally provide a binary or link of that name for compatibility purposes.

The main sendmail configuration file is sendmail.cf, which is usually kept in /etc/
mail. This file has a very complex and confusing structure, though. In practice, most

03843c10.indd 457 8/21/09 12:37:54 PM

458 Chapter 10 n Configuring Network Servers I

administrators write their sendmail configurations in another file, which is converted to
a sendmail.cf file via a special utility, called m4:

m4 < myconfig.mc > sendmail.cf

If you issue the m4 command in the same directory in which the original
sendmail.cf file resides, the command copies over the existing /etc/
mail/sendmail.cf file. For added safety, back up that file first. You can
then restore it from the backup if something goes wrong.

This command converts the myconfig.mc file into the sendmail.cf file. Where do you start,
though? That is, where can you find a file to modify into myconfig.mc? Distributions that
use sendmail typically provide sample configurations called sendmail.mc, linux.smtp.mc, or
something similar. These files may exist in the /etc/mail directory or elsewhere. This file may
be installed as part of the main sendmail package or as part of a separate package, such as
Fedora’s sendmail-cf package. You may also need to install the m4 package, which holds the
m4 utility used to convert the .mc file to a .cf file.

For the most part, a typical desktop Linux system needs few or no changes to its send‑
mail configuration; the default values should work acceptably. Most distributions ship with
sendmail configurations that cause the server to accept mail only from the computer on
which the server runs. If you want sendmail to accept mail from other computers, though,
you’ll need to modify the configuration. To do so, look for a line like this:

DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA’)dnl

The character before Port in this line isn’t an ordinary single quote mark;
it’s an open single-quote mark, which can be typed from the key to the left
of the number 1 key on most keyboards that also includes the “tilde.” This
character is also referred to as a “backtick” or a “back quote.” In some fonts,
the result looks like “curly” single quotes around the options within the
parentheses.

This line tells sendmail to bind only to the 127.0.0.1 address—that is, the localhost
interface. To have sendmail accept mail from other systems, you must comment this line
out. The .mc file uses the string dnl as a comment indicator, so you should add that string
to the start of the line:

dnl DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA’)dnl

You can then create a new sendmail.cf file by using m4, as just described. After you
restart sendmail by using its SysV startup script, the server should accept mail from other
computers.

03843c10.indd 458 8/21/09 12:37:54 PM

Using E-mail 459

Configuring Postfix
Postfix (http://www.postfix.org) isn’t as popular on the Internet at large as sendmail, but
it’s now the default mail server for several Linux distributions, such as Mandriva and SUSE.
On the whole, Postfix is simpler to configure than is sendmail; Postfix uses a single configura‑
tion file, /etc/postfix/main.cf, for most options, and the Postfix options are named more
intuitively than are most sendmail equivalents. The default main.cf file is also copiously com‑
mented, so you can learn a great deal about Postfix configuration by reading that file.

As with sendmail, a default Postfix configuration works reasonably well for a stand‑
alone workstation or a nonmail server system. Most default Postfix configurations accept
mail directed at the server computer from other systems, so reconfiguring it as described
for sendmail isn’t likely to be necessary. If you can’t seem to send to the Postfix server
from another computer, though, or if you want to close it off so that it rejects such access
attempts, look for the inet_interfaces option:

inet_interfaces = $myhostname, localhost

This setting tells Postfix to listen on the network interface associated with $myhostname
(which is set earlier to the computer’s hostname) and to the localhost interface. You can
remove $myhostname to have Postfix listen only on the localhost interface, or you can add
it if it’s not present and you want the server to listen on that interface.

After you make changes to the Postfix configuration, you can tell the server to immediately
implement the changes:

postfix reload

This command begins an orderly rereading of configuration files, and the various pro‑
cesses associated with Postfix restart at their earliest convenience. Using the SysV startup
script’s restart or reload option should have a similar effect.

Managing Mail Queues
The sendmail program functions both as a daemon and as a command that can accept
mail for delivery as well as manage mail queues. In fact, some Linux programs send mail
by calling the sendmail program, which is why Postfix and other Linux mail servers
typically provide a program of the same name and that accepts the same options as the
original program.

One of the most basic ways to use the sendmail command is to use its -bp option, which
lists the mail messages that are still waiting to be sent. An equivalent command is mailq. In
either form, this command is useful if you’re not sure whether the mail server is delivering
mail. For instance, if your configuration is bad or if a network connection is down, typing
mailq should reveal a backlog of old messages. Such a listing might even provide clues to the
nature of a problem. For instance, if mail to some sites is being delivered but mail to other
sites isn’t getting out, it could be a problem with routers, overzealous anti‑spam configura‑
tions on some remote sites, or something about your own configuration that’s tripping anti‑
spam alarms on the remote site.

03843c10.indd 459 8/21/09 12:37:55 PM

460 Chapter 10 n Configuring Network Servers I

Seeing messages in a mailq listing isn’t necessarily a sign of trouble. If your
system is processing very many or very large messages, they will appear in
the queue for a time. Likewise, a slow network connection will cause mes-
sages to hang around for a while. If messages regularly stay in the queue for
very long, though, your network connection may be unreliable or overloaded,
or something about your mail server software’s configuration may be subop-
timal. Checking the mail log files (typically /var/log/mail) may provide you
with more clues.

If mail has accumulated in the queue and you believe you’ve corrected the problem,
it should eventually clear out on its own. To speed up the process, though, you can type
sendmail -q. This command causes the mail server to immediately attempt delivery of all
queued messages.

Using Aliases and Forwarding E‑mail
E‑mail aliases enable one address to stand in for another one. For instance, all e‑mail servers
are supposed to maintain an account called postmaster. E‑mail to this account should be
read by somebody who’s responsible for maintaining the system. One way to do this is to set
up an alias linking the postmaster name to the name of a real account. You can do this by
editing the aliases file, which usually resides in /etc or sometimes in /etc/mail.

The aliases file format is fairly straightforward. Comment lines begin with hash marks
(#), and other lines take the following form:

name: addr1[,addr2[,...]]

The name that leads the line is a local name, such as postmaster. Each address (addr1,
addr2, and so on) can be a local account name to which the messages are forwarded, the
name of a local file in which messages are stored (denoted by a leading slash), a command
through which messages are piped (denoted by a leading vertical bar character), the name
of a file whose contents are treated as a series of addresses (denoted by a leading :include:
string), or a full e‑mail address (such as fred@example.com).

A typical default configuration includes a few useful aliases for accounts such as
postmaster. Most such configurations map most of these aliases to root. Reading mail
as root is inadvisable, though—doing so increases the odds of a security breach or other
problem because of a typo or bug in the mail reader. Thus, you may want to set up an
alias line like the following:

root: yourusername

This redirects all of root’s mail, including mail directed to root via another alias, to
yourusername, which can take any of the forms just described (it’s most likely to be a local
username or a valid remote e‑mail address). Some mail servers, including sendmail and
Postfix, require you to compile /etc/aliases into a binary file that can be processed more
quickly. To do so, type newaliases as root.

03843c10.indd 460 8/21/09 12:37:55 PM

Using E-mail 461

Another approach to redirecting mail is to do so on the user level. In particular, you can
edit the ~/.forward file in a user’s home directory to have mail for that user sent to another
address. Specifically, the ~/.forward file should contain the new address—either a username
on the current computer or an entire e‑mail address on another computer. This approach has
the advantage that it can be employed by individual users—say, to consolidate e‑mail from
multiple systems into one account without bothering system administrators. A drawback is
that it can’t be used to set up aliases for nonexistent accounts or for accounts that lack home
directories. The ~/.forward file can also be changed or deleted by the account owner, which
might not be desirable if you want to enforce a forwarding rule that the user shouldn’t be
able to override.

Choosing a POP or IMAP Server
POP and IMAP are both tools that are used to deliver e‑mail to end users, who typically use
mail clients on remote computers. The two protocols differ in that POP is much simpler; it
provides users with direct access to their mail queues on the server computer. Users may read
and delete messages from that queue, but they may not organize their mail queues. To store
messages in multiple folders according to content, correspondent, or other criteria, users are
expected to download the mail and store it locally. IMAP, by contrast, supports the use of
mail folders on the server computer. This feature enables users to access the same mail struc‑
ture from several computers (say, a desktop system and a notebook). The drawback is that
IMAP, if fully utilized, increases server requirements—mail stored long‑term on the server
increases disk needs, and users referring repeatedly to the same e‑mail message will push up
network bandwidth used by the server.

Several different versions of POP and IMAP exist. In particular, POP2
and POP3 are distinct protocols, and versions of both POP and IMAP that
employ Secure Sockets Layer (SSL) encryption also exist.

Quite a few POP and IMAP servers are available for Linux. (Many programs handle
both protocols.) Examples include the following:

UW IMAP Despite its name, the University of Washington IMAP server (http://www
.washington.edu/imap/) supports POP2, POP3, and IMAP. This set of servers is extremely
common; it ships with most Linux distributions, usually in a package called imap or
uw-imapd. The IMAP server stores user mail folders in users’ home directories, which
can be awkward if users also log into their accounts and store nonmail files there.

Cyrus IMAP Like UW IMAP, Cyrus IMAP (http://asg.web.cmu.edu/cyrus/imapd/)
supports more than just IMAP. Specifically, Cyrus IMAP supports IMAP, POP3, and a
Kerberos‑enabled POP3 variant (KPOP). This server stores IMAP mail folders in a propri‑
etary file format in its own directory tree, so it can be a good choice if users store nonmail
files in their home directories.

03843c10.indd 461 8/21/09 12:37:55 PM

462 Chapter 10 n Configuring Network Servers I

Courier The Courier mail server (http://www.courier-mta.org) is an integrated set of
SMTP, POP, and IMAP servers. Although the Courier SMTP server isn’t very popular in
Linux, the IMAP server can be installed separately, and it has a modest following.

Qpopper This POP3 server was originally a commercial product released by the same
people who developed the popular Eudora client and server packages. With version 4.0,
though, Qpopper has gone open source. You can learn more at http://www.eudora.com/
products/unsupported/qpopper/.

One issue you should consider when installing and configuring a pull mail server is pass‑
word security. In a typical configuration, the traditional POP and IMAP servers require
password authentication—users must enter their usernames and passwords. Most servers
authenticate users against the normal Linux username and password database.

The basic protocols deliver the username and password over an unencrypted link. As
a consequence, a miscreant with the appropriate access can sniff the password. The SSL
variants fix this problem, but they require support in the mail clients. Another approach
is to use the Secure Shell (SSH) to tunnel the pull mail protocol over an encrypted link, as
outlined in Chapter 9. This approach requires configuring SSH on the server and on all
the clients, though. If you don’t want to go to this effort, you may want to consider setting
aside special mail‑only accounts and instruct users to create unique passwords for these
accounts. This practice will at least minimize the damage that a miscreant might do if pull
mail passwords are compromised. You may also want to restrict access to your POP or
IMAP ports using firewall rules, TCP Wrappers, or xinetd access restrictions.

Actual POP and IMAP configuration varies substantially from one server to another.
Given this fact, and the fact that this level of detail is not covered on the Linux+ exam, I
recommend you consult server‑specific documentation if you need to configure a POP or
IMAP server.

Summary
Network servers are many and varied, and Linux provides programs to handle all common
network protocols. These include DHCP for configuring clients’ network settings, DNS
for resolving hostnames and IP addresses, NTP for managing time on a network, POP and
IMAP for pull e‑mail, and SMTP for push e‑mail.

Although these servers share certain common features, such as their ability to be launched
via SysV startup scripts or super servers, each protocol and server is unique. Indeed, for many
protocols, multiple servers are available, and each server can have its own unique configura‑
tion style. Thus, you must study each server you install and run to determine how best to
manage it.

03843c10.indd 462 8/21/09 12:37:55 PM

Exam Essentials 463

Exam Essentials

Summarize why you might want to run a DNS server. The Domain Name System
(DNS) turns hostnames into IP addresses, and vice versa. You can run a DNS server
both to handle this task for local computers (even those that aren’t connected to the
Internet) and to deliver this mapping to computers on the Internet at large so that out‑
side users can access your local servers.

Explain the purpose of DNS zone files. DNS zone files contain the nitty‑gritty details of
DNS zones—that is, they hold mappings of IP addresses to hostnames, and vice versa. DNS
zone files also hold miscellaneous extra zone information, such as the identities of mail
servers and the e‑mail address of the individual responsible for DNS zone maintenance.

Describe how you can maintain consistent times on all the computers on a network. The
Network Time Protocol (NTP) handles this task. You run an NTP server that accesses time
signals from one or more outside sources, thus synchronizing its clock to a (presumably
accurate) clock. You can then configure all your network’s other computers to synchronize
their clocks with your first NTP server, thus keeping all your system’s clocks closely syn‑
chronized with each other and almost as well synchronized with the outside source.

Summarize the common e‑mail protocols. The Simple Mail Transfer Protocol (SMTP)
is the protocol that’s responsible for delivering mail between mail server computers on the
Internet. It’s also used by clients that initiate e‑mail transfers. The Post Office Protocol
(POP) and the Internet Message Access Protocol (IMAP) are two common protocols used
by clients to retrieve e‑mail messages. POP and IMAP are generally used in the last leg of
e‑mail delivery so that client systems can retrieve e‑mail at their own convenience rather
than receive it whenever the sender tries to deliver it, as SMTP works.

Explain how e‑mail forwarding and aliases work. Ordinarily, a Linux mail server deliv‑
ers mail to local accounts associated with the username in e‑mail addressed to the server.
Forwarding and aliases enable overriding this behavior so that mail addressed to nonexis‑
tent accounts can be delivered to real users or so that mail can be sent from a real recipient
account to another account. Forwarding does this in a user‑configurable way for one account,
while aliases work system‑wide but must be configured by the system administrator.

03843c10.indd 463 8/21/09 12:37:56 PM

464 Chapter 10 n Configuring Network Servers I

Review Questions

1. Which of the following protocols can be employed to use a third computer to authenticate
users who want to log onto your computer remotely?

A. DNS

B. DHCP

C. NTP

D. Kerberos

2. Which of the following commands could you type to see whether the mail service is func‑
tioning and view a backlog of old messages?

A. postfix

B. traceroute

C. sendmail

D. mailq

3. Which protocols might an e‑mail client use to retrieve e‑mail from a mail server? (Choose
all that apply.)

A. SMTP

B. POP3

C. MTA

D. IMAP

4. You’ve edited the /etc/aliases file on a mail server computer that runs sendmail. What
command should you type to ensure that your changes take effect?

A. newaliases

B. mailq --aliases

C. aliases --renew

D. sendmail -na

5. Which of the following is an important distinguishing characteristic of Postfix vs. sendmail?

A. Postfix uses a more user‑friendly configuration file format.

B. Postfix supports POP and IMAP as well as SMTP.

C. Postfix supports SMTP as well as POP and IMAP.

D. Postfix uses GPG to encrypt the e‑mail it sends.

03843c10.indd 464 8/21/09 12:37:56 PM

Review Questions 465

6. A university runs a mail server for its students and faculty, many of whom use public
computers to log in and check their e‑mail. Which of the following mail protocols will
best enable users to organize and store their mail on the mail server so that it’s accessible
and properly organized when the users change from one client to another?

A. SMTP

B. POP3

C. IMAP

D. KMail

7. A corporate mail server computer (sendy.example.com) runs sendmail on FreeBSD. An
e‑mail message sent through this computer is addressed to a user on a computer that runs
Postfix on Linux (posty.luna.edu). Which of the following is a true statement?

A. sendy.example.com will successfully send the e‑mail to posty.luna.edu, assuming
both are properly configured and there are no network problems.

B. sendy.example.com will be unable to connect to posty.luna.edu because the two
servers require incompatible versions of SMTP.

C. The e‑mail message will be successfully delivered, but only after a two‑hour delay
because of extensive protocol negotiations between sendmail and Postfix.

D. The e‑mail message can be delivered successfully only if it’s delivered via an intermediate
system running Fetchmail, which bridges the differences between sendmail and Postfix.

8. A Linux system administrator types rndc flush at a root command prompt on a computer
that’s running a DNS server. What will be the effect?

A. The DNS server program will restart.

B. All the DNS server’s zone files will be emptied.

C. The DNS server’s caches will be cleared.

D. The DNS server computer will restart.

9. What is the purpose of the following lines in /etc/named.conf?

zone “1.168.192.in-addr.arpa” {

 type master;

 file “named.192.168.1”;

};

A. They tell the DNS server to use the file named.192.168.1 to look up IP addresses for
names in the in-addr.arpa domain.

B. They tell the DNS server to use the file named.192.168.1 to look up hostnames when
given IP addresses.

C. They tell the DNS server to ignore (“zone out”) requests in the 192.168.1.x IP
address block.

D. They tell the DNS server to retrieve the file named.192.168.1 from the master server
for the domain in question.

03843c10.indd 465 8/21/09 12:37:56 PM

466 Chapter 10 n Configuring Network Servers I

10. In which directory are DNS zone files typically stored on a system that runs the main Linux
DNS server, named?

A. /etc/dns

B. /var/dns

C. /etc/named

D. /var/named

11. Why might you run a DNS server? (Choose all that apply.)

A. To deliver IP addresses for local users

B. To deliver IP addresses for off‑site users

C. To deliver IP addresses for NetBIOS users

D. To deliver IP addresses for IPX users

12. Which of the following are legal record types in a DNS zone file? (Choose all that apply.)

A. MX

B. DNS

C. ZF

D. CNAME

13. Which of the following options is true of the following DNS zone file entry?

example.net. IN SOA dns.pangaea.edu. \

 fred.example.com. (

 7 ; serial

 3600 ; refresh

 600 ; retry

 604800 ; expire

 86400 ; default_ttl

)

A. The serial number (7) is invalid; this number must be a date‑based code, such as
2010071101.

B. The primary DNS server entry (dns.pangaea.edu) is invalid; this server must exist
within the main (example.net) domain.

C. You should send e‑mail to fred@example.com concerning any DNS‑related problems
with the example.net domain.

D. This domain has precisely two DNS servers: dns.pangaea.edu and fred.example.com.

03843c10.indd 466 8/21/09 12:37:56 PM

Review Questions 467

14. You want to enable users to access the computer with the IP address of 192.168.17.198
as linus.example.com. What line would you place in the zone file for example.com to
accomplish this task?

A. linus IN A 192.168.17.198

B. linus IN MX 192.168.17.198

C. 198 IN TXT linus.example.com.

D. 198 IN PTR linus.example.com.

15. What is the effect of the following two DNS zone file entries for the luna.edu domain?

tycho.luna.edu. IN A 192.168.23.5

www IN CNAME tycho

A. The same computer (192.168.23.5) may be accessed as either tycho.luna.edu or
www.tycho.luna.edu.

B. The same computer (192.168.23.5) may be accessed as either tycho.luna.edu or
www.luna.edu.

C. E‑mail sent to www.luna.edu is delivered to tycho.luna.edu.

D. The server will fail to start, since a stray dot (.) appears at the end of the hostname
tycho.luna.edu.

16. A network has two servers with static IP addresses, ten desktop systems, and five laptop
computers that come and go. The desktop and laptop systems are configured to use DHCP
to obtain their IP addresses. Which of the following is the most reasonable number of IP
addresses to reserve for this network in the DHCP server’s configuration?

A. 10

B. 15

C. 100

D. Unlimited

17. You want your DHCP server to deliver your network’s DNS servers’ IP addresses to clients.
Which of the following lines, in /etc/dhcpd.conf, will accomplish this goal?

A. set dns 192.168.1.7, 10.10.7.192

B. option domain-name-servers 192.168.1.7, 10.10.7.192;

C. option netbios-name-servers 192.168.1.7, 10.10.7.192;

D. set domain 192.168.1.7 10.10.7.192;

18. Which of the following systems’ IP addresses should you never configure via a DHCP server?

A. The IP addresses used by Windows workstations

B. The IP address used by the DHCP server computer itself

C. The IP addresses used by SMTP mail server computers

D. The IP addresses used by network‑enabled printers

03843c10.indd 467 8/21/09 12:37:56 PM

468 Chapter 10 n Configuring Network Servers I

19. What will be the effect of a computer having the following two lines in /etc/ntp.conf?

server pool.ntp.org

server tardis.example.org

A. The local computer’s NTP server will poll a server in the public NTP server pool; the
first server option overrides subsequent server options.

B. The local computer’s NTP server will poll the tardis.example.org time server; the
last server option overrides earlier server options.

C. The local computer’s NTP server will poll both a server in the public NTP server pool
and tardis.example.org and use whichever site provides the cleanest time data.

D. The local computer’s NTP server will refuse to run because of a malformed server
specification in /etc/ntp.conf.

20. You’ve configured one computer on your five‑computer network, gateway.pangaea.edu,
as an NTP server that obtains its time signal from ntp.example.com. This configuration
provides an acceptably accurate clock on gateway.pangaea.edu. What computer(s) should
your network’s other computers use as their time source(s)?

A. You should consult a public NTP server list to locate the best server for you.

B. Both gateway.pangaea.edu and ntp.example.com.

C. Only ntp.example.com.

D. Only gateway.pangaea.edu.

03843c10.indd 468 8/21/09 12:37:56 PM

Answers to Review Questions 469

Answers to Review Questions

1. D. Kerberos is a network authentication tool; clients and servers that are written to use Kerbe‑
ros can consult with the Kerberos server to perform authentication tasks. DNS is the Domain
Name System; it translates between IP addresses and hostnames. DHCP is the Dynamic Host
Configuration Protocol; it delivers IP addresses to clients for basic network setup. NTP is the
Network Time Protocol; it keeps computers’ clocks synchronized. None of these three proto‑
cols is used for network authentication, so options A, B, and C are all incorrect.

2. D. The mailq utility can display a backlog of old messages and show you whether the mail
service is functioning. Postfix and sendmail are both mail server programs (although typing
sendmail -bp is equivalent to typing mailq), while traceroute is an enhanced version of
ping that shows the route data takes to reach a target.

3. B, D. The Post Office Protocol version 3 (POP3) and the Internet Message Access Protocol
(IMAP) are two common protocols used for retrieving e‑mail from the final mail servers in
the mail delivery chain. The Simple Mail Transfer Protocol (SMTP) is used for sending e‑mail,
both by the originating system and by mail servers between the originator and the final recipi‑
ent, but it’s not used by e‑mail clients to retrieve e‑mail from the server. A mail transfer agent
(MTA) is another name for an e‑mail server program; it’s not an e‑mail protocol per se.

4. A. The newaliases command processes the text‑mode /etc/aliases file into a binary
form that the mail server can process more rapidly. This command must be run for your
changes to take effect. Options B and C are both fictitious options to real commands, and
option C is a fictitious command.

5. A. Postfix’s configuration file format is easier for nonexperts to understand and manipulate
than is sendmail’s configuration file format, which is notoriously opaque. Both Postfix and
sendmail support SMTP, and neither supports POP or IMAP (although you can run sepa‑
rate POP or IMAP servers alongside either Postfix or sendmail). Neither Postfix nor send‑
mail directly supports GPG, but you can send GPG‑encrypted messages using either mail
server by using a mail client or other software to encrypt the message.

6. C. The Internet Message Access Protocol (IMAP) enables users to permanently store and
organize e‑mail on the server, as specified by the question. The Simple Mail Transfer Proto‑
col (SMTP) is a push mail protocol that’s not used for mail retrieval by end users. The Post
Office Protocol version 3 (POP3) is a pull mail protocol, but it doesn’t provide options for
organizing mail on the server, so it won’t work well for the stated purpose. KMail is one
of many mail clients for Linux; it’s not a mail protocol at all, although it supports SMTP,
POP3, and IMAP.

7. A. Sendmail and Postfix both understand the same Simple Mail Transfer Protocol (SMTP)
and can therefore send and receive e‑mail from each other with no problems, assuming
proper configuration; thus, option A is correct. Contrary to options B, C, and D, there are
no fundamental incompatibilities that will block e‑mail delivery, delay e‑mail delivery, or
require an intermediate system. (That said, network problems, system load issues, and so
on, can unpredictably delay e‑mail delivery in the real world, but such delays aren’t the
result of sendmail/Postfix incompatibilities.)

03843c10.indd 469 8/21/09 12:37:57 PM

470 Chapter 10 n Configuring Network Servers I

8. C. The rndc program provides a control interface for the DNS server program, named.
The flush option to rndc clears (flushes) the cache of recent DNS lookups, so option C is
correct. None of the remaining options describes anything that rndc can do, although the
reload option will cause named to reload its zone files, which is partway to option A.

9. B. Zone file definitions in /etc/named.conf tell the DNS server where to look to find map‑
pings of IP addresses to hostnames, or vice versa. The in-addr.arpa pseudo‑domain is
reserved for reverse DNS lookups—the server returns hostnames when given IP addresses. The
file directive points the server to the file that holds the mappings. Thus, option B is correct.
Option A is incorrect because reverse DNS lookups return hostnames, not IP addresses. A
zone directive is not an instruction to ignore a domain or address block, contrary to option C.
The type master line in the example tells the server that it is the master DNS server for this
zone, not to retrieve a file from another master server, so option D is incorrect.

10. D. The /var/named directory holds DNS zone files on a typical Linux DNS server that
runs named. Options A, B, and C are all fictitious; these locations don’t normally exist.

11. A, B. A DNS server can deliver IP addresses for local users, off‑site users, or both, depending
on its and your network’s configuration; thus, options A and B are both correct. NetBIOS
and IPX are alternative network stacks, neither of which uses the TCP/IP addresses that DNS
delivers. Thus, options C and D are both incorrect.

12. A, D. Mail exchanger (MX) and canonical name (CNAME) records are common in for‑
ward zone files. There are no such things as DNS and ZF records. Other common record
types include Address (A), Name Server (NS), Pointer (PTR), and Start of Authority (SOA)
records. (PTR records are used in reverse zone files.)

13. C. Option C is correct; an administrative contact e‑mail address is embedded in the SOA
record, but with the at‑sign (@) replaced by a dot (.). Option A is incorrect because the
serial number need not be date‑based, although date‑based serial numbers are common.
Option B is incorrect because the primary DNS server for a domain need not be part of the
domain it serves. Option D is incorrect because the SOA record identifies only one DNS
server; others may be specified via separate NS records.

14. A. The question is asking for an address (A) record entry for the forward zone file, and
option A presents such an entry. Option B presents a valid mail exchanger (MX) record, but
that’s not what the question asked for. Option C presents a text (TXT) record that might
appear in a reverse zone file, but it’s a somewhat odd one. Option D presents a correct
pointer (PTR) record for the reverse zone file, but that’s not what the question asked for.

15. B. A canonical name (CNAME) record creates a sort of alias, enabling a second name
to access a computer that already has a hostname. Option B correctly describes the effect
of the CNAME record in this example, given the address (A) record that also appears in
this example. The CNAME entry shown does not create a name of www.tycho.luna.edu,
contrary to option A. E‑mail delivery to a domain can be adjusted via an MX record, but
the example includes no such record; and even if the second record were an MX record
rather than a CNAME record, option C would not describe its effect. The dot at the end of
tycho.luna.edu in the first entry identifies a complete hostname; it’s either required, or the
domain name portion of the name must be omitted (as in www on the second line), contrary
to option D.

03843c10.indd 470 8/21/09 12:37:57 PM

Answers to Review Questions 471

16. C. When configuring a DHCP server’s address space, you should give it plenty of slack,
both to allow for network expansion and to permit clients to obtain new addresses in case
a lease isn’t released. Option A’s 10 addresses isn’t enough for the 15 desktop and laptop
systems that are expected to use the DHCP server, and option B’s 15 addresses are barely
sufficient—any unexpected demands will cause clients to receive no addresses. Option C’s
100 provides plenty of room for expansion or leases temporarily lost because of clients that
don’t release their leases. Option D isn’t a possibility, since DHCP requires you to explicitly
set aside a finite set of addresses.

17. B. The option domain-name-servers line sets the DNS server IP addresses delivered by
the DHCP server to its clients, and option B uses the correct syntax for this option. Options
A and D are both incorrect because the set keyword isn’t used for this purpose in DHCP.
Option C specifies the netbios-name-servers feature, which refers to NetBIOS name
servers (used by SMB/CIFS), not DNS servers.

18. B. The DHCP server computer must be configured with an IP address before it can work,
so you can’t use a DHCP server to give itself an IP address; the DHCP server computer must
have a static IP address, making option B correct. Windows workstations and network servers
(including network‑enabled printers) can obtain their IP addresses via DHCP, although if the
server requires a fixed IP address, you’ll have to perform more advanced DHCP configuration
than is described in this chapter.

19. C. Multiple server entries in /etc/ntp.conf tell the system to poll all the named servers
and to use whichever one provides the best time data. Thus, option C is correct. (The pool.
ntp.org subdomain and numbered computers within that subdomain give round‑robin
access to a variety of public time servers.) Options A and B both incorrectly state that one
server statement overrides another, when in fact this isn’t the case. The server statements
shown in the question are properly formed.

20. D. Once you’ve configured one computer on your network to use an outside time source and
run NTP, the rest of your computers should use the first computer as their time reference.
This practice reduces the load on the external time servers, as well as your own external net‑
work traffic. Thus, option D is correct. (Very large networks might configure two or three
internal time servers that refer to outside servers for redundancy, but this isn’t necessary for
the small network described in the question.) Option A describes the procedure to locate a
time server for the first computer configured (gateway.pangaea.edu) but not for subsequent
computers. Although configuring other computers to use ntp.example.com instead of or in
addition to gateway.pangaea.edu is possible, doing so will needlessly increase your network
traffic and the load on the ntp.example.com server.

03843c10.indd 471 8/21/09 12:37:57 PM

03843c10.indd 472 8/21/09 12:37:58 PM

Chapter

11
Configuring Network
Servers II

The FollowINg CompTIA objeCTIveS
Are Covered IN ThIS ChApTer:

2.7 Manage filesystems using the following (NFS: ÛÛ
configuration, exportfs, /etc/exports, showmount).

3.2 Implement interoperability with Windows using ÛÛ
the following (rdesktop—client, vnc—server and client,
Samba—server and client [smb.conf, winbind, lmhosts]).

3.3 Implement, configure, and maintain Web and FTP ÛÛ
services (Apache, FTP services).

3.4 Given a scenario, explain the purpose of the following ÛÛ
web-related services (Tomcat, Apache, Squid).

3.5 Troubleshoot web-related services using the following ÛÛ
utilities (Commands: curl, wget, ftp, telnet).

3.6 Given a scenario, troubleshoot common FTP problems ÛÛ
(Active vs. passive, ASCII vs. binary).

3.7 Given a scenario, perform the following MySQL ÛÛ
administrative tasks (Locate configuration file, Starting
and stopping, Test the configuration).

03843book.indb 473 8/21/09 12:10:45 PM

Chapter 10, “Configuring Network Servers I,” began an
exploration of Linux network servers. This chapter continues
this investigation with a look at several more servers. Specifi-

cally, this chapter covers several types of file sharing and exchange servers (the Network
File System, Samba, the File Transfer Protocol, and the Apache Web server), Windows
remote-access tools (rdesktop and Virtual Network Computing), and the Structured
Query Language database tool.

Objective 2.7 is covered partly in this chapter and partly in Chapter 6,
“Managing Disks.” Objective 3.2 is covered partly in this chapter and
partly in Chapter 10.

Delivering Files Over the Network
Many network protocols involve file transfer in one form or another. This is most directly
the case with file-sharing and file-transfer protocols, such as the Server Message Block/
Common Internet File System (SMB/CIFS), the Network File System (NFS), and the File
Transfer Protocol (FTP). The World Wide Web’s (WWW’s) protocol, the Hypertext Trans-
fer Protocol (HTTP), is another common protocol for transferring files. Naturally, Linux
can function as a server for any of these protocols.

As I use the term, a “file-sharing protocol” is used to share files in a way
that makes it easy for a client to mount the shared-file directory as if it
were a local partition. SMB/CIFS and NFS are both file-sharing protocols.
File-transfer protocols, on the other hand, lack some low-level features
that are helpful for file sharing and so are seldom used for this purpose.
Instead, file-transfer protocols, such as FTP and HTTP, are generally used
to transfer entire files with the help of specialized programs, such as the
ftp client program or Web browsers.

Delivering Files with Samba
The Samba server suite (http://www.samba.org) implements the SMB/CIFS protocol suite,
which is used for sharing files and printers. It’s controlled through a master configuration

03843book.indb 474 8/21/09 12:10:45 PM

Delivering Files Over the Network 475

file, smb.conf, which is usually stored in /etc/samba (it can sometimes appear in /etc,
/etc/samba.d, or other locations). The Samba suite actually consists of two major servers,
smbd and nmbd, along with several auxiliary programs and servers. It’s started via one or
more SysV startup scripts. Typically, either one script called samba (or something similar)
starts both smbd and nmbd or these servers have independent SysV startup scripts named
after themselves.

Non-Windows computers, including Linux, can function as Samba clients.
Chapter 6 describes using Linux as an SMB/CIFS client.

Setting Basic Samba Options
The main smb.conf file consists of several sections, each of which begins with a keyword
in square brackets. The first of these is the [global] section, which sets global options.
Subsequent sections define file or printer shares—named resources on the SMB/CIFS server
that can be accessed to share files or printers. Each of these sections is named with a share
name; for instance, [common] defines a share called COMMON. Within each section, Samba
parameters look like this:

parameter = value

parameter is a keyword, such as security or netbios name. It’s essentially a variable
name that’s set to the value specified. This value may be numeric (such as a time in seconds),
a filename, a hostname, a Boolean (Yes or No; True or False; 1 or 0), or some other type of
value. The intent is that the smb.conf file’s meaning be fairly self-explanatory, at least if you
know the server’s basic features. Unfortunately, there are so many features that you might
not understand everything, much less be able to generate new entries, unless you’re an expert.
Most default smb.conf files include extensive comments to help you with this process, or you
can consult the smb.conf man page, which is unusually complete.

Two parameters in the [global] section are particularly important: workgroup and
encrypt passwords. The workgroup parameter sets the name of the NetBIOS workgroup or
domain. The default value is usually WORKGROUP, but most networks have their own workgroup
name, so you should adjust this parameter appropriately. If you don’t, clients may have trouble
finding the Samba server using their network browsers. The encrypt passwords parameter
is a Boolean that determines whether Samba uses its own encrypted password database or
requires unencrypted passwords that it authenticates using the standard Linux password data-
base. The default value is No for Samba 2.x but is Yes for Samba 3.0 and later. In most cases,
encrypt passwords = Yes is the most appropriate choice, because all versions of Windows
since the mid-1990s require the use of encrypted passwords by default.

Unfortunately, using encrypted passwords means that you must maintain a Samba-specific
password database. The reason is that the encrypted password exchange tools of SMB/CIFS
are incompatible with the methods Linux uses to store passwords in /etc/shadow. To cre-
ate and maintain an encrypted password database, you can use the smbpasswd utility, which
stores data in the /etc/samba/smbpasswd file by default. (This file sometimes resides elsewhere,

03843book.indb 475 8/21/09 12:10:45 PM

476 Chapter 11 n Configuring Network Servers II

particularly if you compile Samba yourself. You can also use the passdb backend option to
alter how Samba stores its encrypted passwords; consult the smb.conf man page for details.)
To add a user to the Samba password database, pass smbpasswd the -a parameter and the
username:

smbpasswd -a john

This command creates an entry for john, provided that the local Linux user john already
exists. (The smbpasswd program will create entries only for those users who already have
standard Linux accounts.) When you type this command, you’ll be prompted twice for a
password, much as when you use the Linux passwd command to change a password. In
fact, you can then use smbpasswd to change Samba passwords for existing users.

The first time you use the smbpasswd command, it will complain about the
lack of an /etc/samba/smbpasswd file. This complaint looks like an error
message, but the utility creates the file, so nothing is wrong or needs your
attention.

Resolving Hostnames in Samba
SMB/CIFS was originally built around non-TCP/IP networking, but today’s implementations
generally use TCP/IP. The result can be a bit confusing when it comes to name resolution,
since implementations differ in how they resolve names—some use TCP/IP hostnames, but
others use NetBIOS names, even when working over TCP/IP.

To maximize flexibility, Samba supports a file called lmhosts, which is typically stored
in /etc/samba. This file is similar to the Unix /etc/hosts file, in that it provides a map-
ping of hostnames to IP addresses. It consists of one line per host, with an IP address and
hostname:

172.24.21.34 DANCE

This line maps the NetBIOS name DANCE to 172.24.21.34. If you have problems locat-
ing Windows servers using Samba clients, editing lmhosts may fix the problem. Sometimes,
though, this file will be useless. In particular, if your servers’ IP addresses change frequently
(say, because you’re using DHCP with dynamic IP addresses to configure them), then a static
lmhosts file will go quickly out-of-date. In that case, the standard NetBIOS name resolution
should be used. Samba tries to do this by default, but to be sure, check the [global] section
of your smb.conf file for the name resolve order directive:

name resolve order = host lmhosts wins bcast

Each subsystem is tried in the order listed. If a subsystem is omitted from the list, it’s not
used. In this example, host uses Linux’s standard DNS lookup, lmhosts uses the lmhosts
file, wins uses a NetBIOS equivalent to a DNS server, and bcast uses low-level broadcast
lookups that are unique to SMB/CIFS. Try different orders of these four options until you
find a combination that works.

03843book.indb 476 8/21/09 12:10:46 PM

Delivering Files Over the Network 477

Sharing Files with Samba
To share files with Samba, you must create file share definitions. These can be as simple as
a share name in square brackets in the smb.conf file:

[sample]

This line creates a share called SAMPLE. If no other lines are present until the end of
the file or the next share definition, the share is read-only and provides access to the /tmp
directory. To make the share useful, chances are you’ll want to change at least some of
these defaults:

[sample]

 comment = Sample Samba Share

 path = /home/samba/sample

 read only = No

This example sets three parameters. The comment line sets a comment string that’s
associated with the share and that appears in many clients’ network browsers. It doesn’t
directly affect the share’s functionality, but providing a descriptive comment can help users
find the shares they need. The path parameter tells Samba what directory to share. The
default value is /tmp, but that’s not usually very useful. A synonym for this parameter is
directory. Finally, setting read only = No tells Samba that users may write to the share.
The writeable, writable, and write ok parameters are antonyms for read only; that is,
writeable = Yes is equivalent to read only = No. An important caveat about Samba’s
write permissions is that they still work within the constraints of Linux file permissions,
as described in Chapter 2. Every user who accesses a Samba server does so as an ordinary
user. If that user can’t write to a directory or file, Samba won’t permit the user to do so (at
least, not without using more advanced parameters). Thus, you must ensure that permis-
sions are set appropriately within file shares if you want your users to be able to write to
them. In fact, permissions must be set to enable users to read files in shares that they should
be able to read, as well. In most cases, 0644 (-rw-r--r--) permissions do nicely for files in
read-only shares, but managing permissions in read/write shares can be complex.

An important special Samba share is the [homes] share. Unlike most shares, this one
doesn’t point to a single directory; it points to the user’s home directory, as defined in
/etc/passwd. If you want users to be able to store their personal files on a Samba server, a
[homes] share can be just the thing you need. Most smb.conf sample files include a work-
ing [homes] share, so you might not need to do anything to add one. In operation, this
share appears as the user’s username—for instance, the user john sees a share called JOHN.

Samba is a very complex and powerful server, and this description barely
presents the most basic Samba information. If you need to do more with
Samba, you should consult its copious documentation or a book on the
subject, such as my Linux Samba Server Administration (Sybex, 2001).

03843book.indb 477 8/21/09 12:10:46 PM

478 Chapter 11 n Configuring Network Servers II

Sharing Printers with Samba
In addition to file shares, Samba supports printer shares. The simplest way to share printers
is with a [printers] share, which is analogous to a [homes] share in that both share every
available instance of their type (printers or user home directories, respectively). A typical
[printers] share definition looks like this:

[printers]

 comment = “All Printers”

 path = /var/spool/samba

 print ok = Yes

A share called [printers] causes all the printers defined on the Samba server to be
shared with SMB/CIFS clients. This definition depends on Samba to be able to identify the
printers. On a Linux system that uses the Common Unix Printing System (CUPS) for print-
ing, you should normally include a line that reads printing = cups in the [global] section
in order to tell Samba how to interface with the printing system.

Instead of, or in addition to, a [printers] definition, you can create named printer-by-
printer definitions. These, like the [printers] share, must include the print ok = Yes
parameter or its synonym, printable = Yes. By default, Samba looks for a local printer
with the same name as the printer share; however, you can point Samba to a different share
by using the printer name parameter, as in printer name = laser to print to a local
queue called laser.

Print jobs accepted by Samba are submitted to the Linux printing system as if they
were locally generated. In most cases, this means that clients should be configured as if
they were printing to a PostScript printer, even when the printer isn’t a PostScript model.
Generic PostScript drivers usually work well, as do drivers for Apple LaserWriter printers.
For color printers, try using a driver for a QMS magicolor printer; these drivers usually
work well with Samba. Some printer queues’ smart filters recognize native printer lan-
guages and pass such files through unmodified. If this is the case, using the drivers pro-
vided by the printer manufacturer will work. Ultimately, you may need to experiment to
determine what works well on the client side.

Using a Windows Domain
Most networks that rely heavily on SMB/CIFS for file sharing deploy a domain configura-
tion, which differs from the simpler workgroup configuration in several ways. The most
important of these is that a domain includes a domain controller computer, which manages
accounts for all the computers on the domain.

If you want to use a Windows domain with your Samba server (or Linux SMB/CIFS
clients), you must set a couple of smb.conf global options:

security = Domain

password server = 172.24.21.98

03843book.indb 478 8/21/09 12:10:46 PM

Delivering Files Over the Network 479

The security option tells Samba and related tools how to handle authentication. The
default value, User, tells Samba to authenticate users against a local account database, as
outlined in “Setting Basic Samba Options.” Three different options may be used on a Win-
dows domain:

Server Setting security = Server causes Samba to use the Windows NT 4 protocols
to talk to a domain controller, but without fully joining the domain. This configuration is
easy to set up, but the Samba developers discourage its use.

Domain Setting security = Domain causes Samba to use the Windows NT 4 protocols
to talk to a domain controller as a full domain member. Prior to accessing the controller
for the first time, you must join the domain by typing net join member -U adminuser,
where adminuser is an account on the domain controller that has administrative access to
the domain controller’s account database in order to create a special account for the Linux
system. You’ll be asked to type a password, and if all goes well, you’ll then see a message to
the effect that you’ve joined the domain.

ADS Setting security = ADS works much like security = Domain, except that the system
uses the more sophisticated Active Directory (AD) protocols rather than the older NT 4
protocols. This configuration can be finicky in Linux, however.

With the security option set, the password server pointing to the domain controller
computer (you can specify an IP address or a NetBIOS name), and, if necessary, a domain
account created for the computer, Samba should now defer to the domain controller for
authentication tasks.

If authentication succeeds but no local Linux account exists for a user, the user won’t be
able to log in. If you want the existence and successful authentication of a user on a domain
to be sufficient, you can employ the add user script Samba option:

add user script = /usr/sbin/useradd -m %u

This configuration causes Samba to run useradd with the -m option (to create a user
home directory) when a domain login succeeds but no local user exists. (The %u option is a
Samba variable that refers to the username.)

Many Linux systems use Windows domains solely for Samba authentication. It’s
possible, though, to employ Windows domains in a more comprehensive manner. The
Winbind tool (sometimes referred to as winbindd, the name of the server binary) can link
Windows domain accounts into the main Linux account system. Once so configured, the
computer will use the Windows NT 4 domain or AD controller to authenticate users for
ordinary text-mode and GUI logins, e-mail retrieval, FTP accesses, and so on. Configur-
ing Winbind can be tricky, since it requires setting options in the smb.conf file, in the
/etc/nsswitch.conf file, and in one or more files in /etc/pam.d. Getting it wrong can
result in a system that doesn’t accept any logins. Chapter 12, “Securing Linux,” describes
these authentication tools in more detail, but if you want to configure Winbind, you may
want to consult more advanced documentation, such as a book on Samba or network
authentication.

03843book.indb 479 8/21/09 12:10:46 PM

480 Chapter 11 n Configuring Network Servers II

Delivering Files with NFS
Samba is primarily a tool for file sharing with Windows clients. Although it can be used
for sharing files with Linux or Unix clients, SMB/CIFS wasn’t designed with these sys-
tems in mind. Early versions of SMB/CIFS lack support for Unix-style ownership and
permissions. Later versions add this functionality, although it frequently works imper-
fectly because the Windows and Unix ownership and permissions models tend to conflict
with each other. A better option for file sharing between Linux and Unix systems is the
Network File System (NFS), which was designed by Sun as a network file-sharing tool for
Unix. To use NFS, you must configure the directories you’re sharing (known as exports
in NFS) and start the server. You can also use utilities to modify or review the configura-
tion once the server is running.

Configuring the NFS Server
In Linux, NFS server configuration is handled through a file called /etc/exports. This file
contains lines that begin with a directory that’s to be shared followed by a list of hostnames
or IP addresses that may access it, with their options in parentheses:

/home taurus(rw,async) littrow(ro)

/opt taurus(ro)

These examples share two directories: /home and /opt. Two computers (taurus and
littrow) may access /home, but only taurus may write to that directory because only
taurus’s definition includes the rw (read/write) option; the littrow definition includes
the ro (read-only) specification. The /home description for taurus also includes the async
option, which can improve performance but slightly increases the risk of data loss should
a disk error occur. The /opt directory is shared only with taurus, and that system may
not write to the directory.

In order to deliver NFS support, you must run an NFS server program. (Most NFS
server programs for Linux rely on special kernel features as well, but they are almost
always compiled into the kernel by default.) Typically, this program is run by a SysV
startup script, often called nfsserver or something similar. Check for this startup script
and, if necessary, start or restart it once you’ve made changes to the /etc/exports file.

Modifying or Viewing the NFS Configuration on the Fly
In addition to /etc/exports, NFS enables nonpermanent changes to its exports via the
exportfs command. Used without any options, exportfs displays a list of active NFS exports,
similar to the contents of /etc/exports, but with one line per export (so if you list a direc-
tory as being exported to three systems or networks, three lines will appear in the exportfs
output for that directory). Adding options enables you to modify your system’s NFS exports.
Table 11.1 summarizes the most important of these options. The exportfs man page provides
details on more obscure options.

03843book.indb 480 8/21/09 12:10:46 PM

Delivering Files Over the Network 481

TA b le 11.1 Common exportfs Options

Option Explanation

-a Reads /etc/exports and exports all the directories listed there.
(When used with -u, unexports all directories.)

-r Reexports all directories. This has the effect of unexporting directo-
ries that are not listed in /etc/exports.

-o options Implements the specified options, which take the same form as
those in /etc/exports.

-u Unexports one or more directories.

-f Flushes and rebuilds the exports table.

-v Adds verbose messages to the program’s output.

When using exportfs to add or delete exports, you specify a client and directory in the
form client:/export/directory. You don’t need to specify any of the options from Table 11.1
when exporting a new directory, but you must use the -u option to unexport a directory.
For instance, suppose your NFS server is currently exporting /var/www to 192.168.23.0/24
as a means to enable local users to edit a Web server’s files. You want to move this direc-
tory to /var/apache/webfiles. You could implement these changes by typing the following
commands:

exportfs -u 192.168.23.0/24:/var/www

exportfs 192.168.23.0/24:/var/apache/webfiles

This change will be temporary, however; you should also edit /etc/exports. In fact,
you might prefer to edit /etc/exports first and then type exportfs -r, thus implementing
your changes.

A second tool for managing NFS is showmount, which displays information on current
NFS activity. Used without options, this tool reveals the IP addresses of the computers that
are currently using the server. Table 11.2 summarizes showmount’s most common options.

TA b le 11. 2 Common showmount Options

Option Option abbreviation Explanation

--all -a Displays both the IP addresses of clients and the
directories they’re using

--directories -d Displays the directories currently being shared
by the server, but not the identities of clients

03843book.indb 481 8/21/09 12:10:47 PM

482 Chapter 11 n Configuring Network Servers II

TA b le 11. 2 Common showmount Options (continued)

Option Option abbreviation Explanation

--exports -e Displays the current available exports (similar to
the default output of exportfs, but each export
uses just one line of output)

--help -h Presents basic help information

--version -v Prints the program’s version number

--no-headers None Suppresses explanatory headers in the output

You can use showmount to display information on the server running on any computer
(network firewall and other security options permitting). By default, the program displays
information on the local computer’s NFS server; but if you add a computer hostname, the
result is information on that computer:

$ showmount -a nessus

All mount points on nessus:

172.24.21.5:/home

172.24.21.5:/home/george/photos

192.168.1.4:/home

192.168.1.4:/home/sally

In this example, 172.24.21.5 is accessing /home/george/photos (part of the /home
export), and 192.168.1.4 is accessing /home/sally (also part of the /home export).

Understanding NFS Security Concerns
Most servers use passwords or some other authentication tool to control access to files. NFS
works differently; an NFS server trusts the client system to control access to files. Once a
directory is exported via NFS, any client computer that’s authorized to access the directory
in /etc/exports may do so in any way the /etc/exports definition permits. The idea is that
the client computer will have a user base that’s compatible with the user base on the server
and that the client computer is trustworthy.

These assumptions weren’t unreasonable when NFS was created, but in today’s computing
environment, they’re a bit risky. Somebody with a notebook computer and wireless network-
ing hardware may be able to access your server and masquerade as another computer if you
use a wireless network. Even with a wired network, a compromised system or physical access
can enable an attacker to pretend to be a trusted system. An attacker can control the user
database on the attacking computer or use a custom NFS client program that doesn’t play
by the usual security rules, thus bypassing the intent of the NFS security scheme. Therefore,

03843book.indb 482 8/21/09 12:10:47 PM

Delivering Files Over the Network 483

you should be cautious about NFS security. Don’t add a computer to /etc/exports unless it’s
really necessary, and don’t give clients read/write access unless they really need it. You might
also want to use IP addresses rather than hostnames to specify computers in /etc/exports;
this practice makes masquerading as a trusted system a little more difficult.

Delivering Files with FTP
FTP has long been a popular server, providing a login-based means of retrieving files. The
protocol has some peculiarities, but every OS that has a serious TCP/IP stack has an FTP
client. FTP is typically used in one or both of two ways:

Users must authenticate themselves to the server by providing a username and pass-Ûn

word. They can then read, and often write, files to their home directory or to common
areas on the computer.

Users provide a username of Ûn anonymous and any password (conventionally their e-mail
addresses). They can then read, but usually not write, data stored in public directories.
This anonymous FTP access is a popular means of delivering public files such as soft-
ware upgrades, multimedia files, and so on.

Both configurations share many features, but certain details differ. How you set up an
FTP server to use either system depends on the server you choose. Several such servers exist
for Linux. This section describes your choices and then covers two popular FTP servers,
ProFTPd and vsftpd, in more detail. I also describe Linux FTP clients and some common
FTP pitfalls.

One of FTP’s major problems when used for authenticated user access is
that FTP sends all data, including passwords, in an unencrypted form. This
fact means that miscreants on the server’s network, the client’s network,
or intervening networks can use packet sniffers to steal users’ passwords.
This issue isn’t as much of a problem for anonymous access, which is sup-
posed to be public.

Choosing an FTP Server
FTP is an old protocol, and numerous implementations of it have sprung up over the years.
These servers vary in many details; however, they all serve the same protocol, and they all
look very much alike to their users. FTP server options for Linux include the following:

ProFTPd This server, headquartered at http://proftpd.org, is one of the more popular of
the very complex FTP servers. It ships with most major Linux distributions. Its configuration
file is modeled after that of Apache, and the server supports many advanced features. A dedi-
cated GUI configuration tool, GProFTPd (http://freshmeat.net/projects/gproftpd/), is
available for this server.

03843book.indb 483 8/21/09 12:10:47 PM

484 Chapter 11 n Configuring Network Servers II

vsftpd This server aims to excel at security, stability, and speed. In doing so, its develop-
ers have chosen to eschew some of the more advanced features of servers such as ProFTPd
and WU-FTPD. If you don’t need those features, this trade-off may be more than accept-
able. You can learn more from its Web site, http://vsftpd.beasts.org. It’s available with
most Linux distributions.

WU-FTPD The Washington University FTP Daemon (WU-FTPD) is an old standard in
the Linux world. Unfortunately, it has collected more than its fair share of security prob-
lems and isn’t the speediest FTP server available. For these reasons, it ships with fewer
Linux distributions today than in years past. Its main Web site is http://www.wu-ftpd.org.

PureFTPd This server, headquartered at http://www.pureftpd.org, is another FTP server
that emphasizes security.

oftpd This server is unusual because it’s designed to function only as an anonymous FTP
server; it doesn’t support logins using ordinary user accounts. This feature can be appealing
if you only want to run an anonymous server, but it makes this server unsuitable for many
other purposes. It’s available from http://www.time-travellers.org/oftpd/.

This list of FTP servers is far from complete. The oftpd Web page describes
the primary developer’s search for a name for the server. He wanted a name
of the form xftpd, where x was a single letter. Starting with aftpd, he found
that oftpd was the first name that wasn’t already in use!

Because FTP can potentially provide users with substantial access to the system—the abil-
ity to read or write any file, within limits imposed by Linux file ownership and permissions—
FTP servers are unusually sensitive from a security point of view. As a result, the Web pages
for many of the servers in the preceding list emphasize their developers’ attention to security.

For a small FTP site, chances are any of the servers in the preceding list will work well,
with the exception of oftpd if you want authenticated user logins rather than anonymous
access. ProFTPd and vsftpd are both popular choices on modern Linux systems.

FTP Server Configuration
Details of FTP server configuration vary greatly from one server to another, so I don’t
describe most features in detail. Broadly speaking, though, you should pay attention to
several features:

Configuration files Most FTP servers have configuration files, such as /etc/proftpd/
proftpd.conf for ProFTPd or /etc/vsftpd/vsfptd.conf for vsftpd. You should consult
your server’s documentation to learn the details of the configuration file format and the
options that the server supports.

Launch method Many FTP servers can run either stand-alone (via a SysV or local startup
script) or from a super server. Some servers work better when launched in one way or the
other, and distributions sometimes provide startup scripts for one method but not the other.
Chapter 4, “Managing System Services,” describes both methods of launching servers, so
you should consult it and check to see what startup scripts are provided with your package.

03843book.indb 484 8/21/09 12:10:48 PM

Delivering Files Over the Network 485

chroot jails FTP servers often run in a chroot jail, which is a way to run a program such
that it can see only a limited subset of the computer’s available directories. You should con-
sult your server’s documentation to learn whether it supports this feature and, if so, how to
use it. Typically you’ll set aside a directory and copy a few files to it, including the files that
the FTP server should serve.

User configuration FTP servers frequently enable any user with a regular account to log
in. Some servers also support the /etc/ftpusers file, which includes the usernames of users
who may not use the FTP server. This file typically includes system accounts, such as root
and daemon, but you can add regular users to this file, as well. If your FTP server package
doesn’t install this file, check the server’s documentation to see whether it’s supported. If
it’s not, check to see whether the server provides another means of restricting who may
access the system.

Anonymous access Most FTP servers provide some means to support anonymous access,
but the details of how this is done vary from one FTP server to another.

The issue of anonymous access is an important one, so I provide a few examples. First, the
oftpd server, as noted earlier, is designed to provide only anonymous access. It’s therefore a
good choice if you want to provide anonymous access only, and not regular user access.

If you use ProFTPd, the anonymous configuration requires setting quite a few options in
/etc/proftpd/proftpd.conf:

<Anonymous /home/ftp>

User anonymous

Group anonymous

AnonRequirePassword off

<Limit LOGIN>

Allow from all

</Limit>

<Limit LIST NLST RETR MTDM PWD XPWD SIZE STAT CWD XCWD CDUP XCUP >

 AllowAll

</Limit>

<Limit STOR STOU APPE RNFR RNTO DELE MKD XMKD SITE_MKDIR RMD XRMD➥

SITE_RMDIR SITE SITE_CHMOD SITE_CHGRP >

 DenyAll

</Limit>

</Anonymous>

You should change the directory in the first line (/home/ftp in this example) to point to
the directory that holds the files you want to be available. A few other options are fairly obvi-
ous, but some are obscure. The second and third <Limit> blocks, in particular, specify what
types of operations are permitted, such as LIST and RETR (to list and retrieve files, respec-
tively). These codes can be confusing to the uninitiated. It’s no surprise that the GProFTPd
configuration tool exists, since it helps you set up anonymous (and nonanonymous) access
using a point-and-click interface—but even GProFTPd can be perplexing.

03843book.indb 485 8/21/09 12:10:48 PM

486 Chapter 11 n Configuring Network Servers II

The vsftpd server is simpler to configure than ProFTPd. To enable anonymous access,
you need only ensure that one line is present in the /etc/vsftpd/vsftpd.conf file:

anonymous_enable=YES

You must also ensure that your system has an account for the ftp user. That user’s home
directory will be the directory used for anonymous FTP access.

Using FTP Clients
FTP clients are many and varied. One of the most common in Linux is the ftp program,
which you can use by typing the program name followed by the name of the site you want
to access, as in ftp ftp.example.org. The program then prompts you for a username and
password. The result is an ftp> prompt, at which you type various commands, the most
common of which are summarized in Table 11.3.

TA b le 11. 3 Common ftp Commands

Command Name Effect

ascii Set an ASCII (plain-text) transfer.

binary Set a binary transfer; synonymous with image.

bye Exit from the program; synonymous with exit and quit.

cd dir Change to a new directory on the server.

chmod mode file Change the mode (permissions) on the specified file.

close Terminate an FTP session without exiting from the program;
synonymous with disconnect.

delete file Delete a file.

dir Obtain a directory listing; synonymous with ls.

disconnect Terminate an FTP session without exiting from the program;
synonymous with close.

exit Exit from the program; synonymous with bye and quit.

get file Retrieve a file; synonymous with receive.

help command Display help on the specified command (or a list of all commands);
synonymous with ?.

03843book.indb 486 8/21/09 12:10:48 PM

Delivering Files Over the Network 487

TA b le 11. 3 Common ftp Commands (continued)

Command Name Effect

image Set a binary transfer type; synonymous with binary.

lcd dir Change the current directory on the client system.

ls Obtain a directory listing; synonymous with dir.

mdelete files Delete multiple files.

mget files Retrieve multiple files.

mkdir dir Create a directory on the remote system.

mput files Send multiple files.

open server Open a connection to the specified remote system.

prompt Toggle prompting to verify each file in multifile commands (mget,
mput, etc.).

passive Toggle passive transfer mode on and off.

put file Send one file; synonymous with send.

pwd Display the current directory on the server.

quit Exit from the program; synonymous with bye and exit.

recv file Retrieve a file; synonymous with get.

reget file Retrieve a file starting with the end of the local file of the same
name; useful for restarting an aborted transfer.

rstatus Display status of server.

rename oldname
newname

Rename a file on the server.

rmdir dir Remove a directory on the server.

send file Send one file; synonymous with put.

status Display current status.

03843book.indb 487 8/21/09 12:10:48 PM

488 Chapter 11 n Configuring Network Servers II

Type help or ? to obtain a list of ftp commands. Type help command or ?
command to obtain a very brief description of what a specific command does.

Many other FTP clients are available, including GUI tools such as gFTP (http://gftp
.seul.org). Web browsers can function as FTP clients; you enter the FTP server’s hostname,
preceded by ftp:// for anonymous access, as in ftp://ftp.example.org. For nonanony-
mous access, you precede the hostname by the username and an at-symbol (@), as in ftp://
lucy@ftp.example.org. The Web browser will then prompt you for a password.

One unusual but useful FTP client is fuseftp (http://freshmeat.net/projects/
fuseftp/). In conjunction with the Filesystem in Userspace (FUSE; http://fuse
.sourceforge.net) software, fuseftp enables you to mount an FTP server’s files as
if they were on an SMB/CIFS share or NFS export. This type of access is very handy if
you want to directly access files on the FTP server without storing them locally, as in
viewing graphics files or editing text files.

FTP is an old and quirky protocol, and it presents a couple of pitfalls that are unique to
FTP. These are largely client-side problems, so users should be aware of them; however, if
you configure a firewall, as described in Chapter 9, “Configuring Advanced Networking,”
you may need to take the first of these issues into account.

The first FTP quirk is in the way it manages ports. Two ports (TCP ports 20 and 21) are
registered to FTP. Port 20 is the data port, which is used for data transfers; port 21 is the
command port, which is used for issuing commands. The big problem with this configura-
tion is that in the normal FTP active mode, the client initiates the connection to the com-
mand port, and then the server initiates a reverse connection to the client from the server’s
command port. This server-to-client connection is blocked by some firewalls, so FTP often
fails on firewalls that aren’t explicitly configured to permit this connection. A client-side
workaround to this problem is to use FTP passive mode (by typing passive in the ftp pro-
gram or by selecting equivalent options in GUI or other FTP clients). In passive mode, the
FTP client initiates both connections, which overcomes the problem of firewalls that block
all incoming connections. Passive mode uses an unprivileged port on the server for its data
transfers, though, which can sometimes run afoul of firewalls. Thus, you may need to try
both active and passive modes to determine which one works best.

The second FTP quirk relates to transfer mode. FTP clients often default to ASCII (plain-
text) transfer mode, in which the files are transferred in such a way as to dynamically alter
the character encoding to account for the different ways that different OSs store plain-text
files. (Linux/Unix, Windows, and the original Mac OS all used different line-ending conven-
tions, and some even more exotic systems use non-ASCII encoding methods.) Using ASCII
mode works well for plain-text files, but this mode will almost always corrupt binary files,
such as tarballs, graphics files, word processing documents, and so on. You can use the
ascii and binary options in ftp, or similar options in other FTP clients, to set the transfer
mode. If in doubt, use binary mode; most text editors today can handle any of the common
line-ending types, so retrieving a text file in the wrong format will cause minimal or no
problems. Some Linux configuration files must use Unix-style line endings, though, so you
may need to pay attention to this detail if you transfer such files.

03843book.indb 488 8/21/09 12:10:49 PM

Delivering Files Over the Network 489

Configuring Web Servers
Web servers are another staple of the Internet. These servers handle the Hypertext
Transfer Protocol (HTTP), which is why most Web page addresses begin with the
string http://. (A secure HTTP variant also exists; such pages are denoted by a lead-
ing https://.) Apache (http://httpd.apache.org) is the most popular Web server for
Linux. Some distributions install Apache by default, but many don’t, so if you want to run
Apache, you may need to install it; it usually comes in a package called apache or httpd.

Other Web server packages also exist, but none is nearly as popular as
Apache. Because Apache usually ships with Linux and is sometimes installed
by default, it’s often a good choice, even though it provides more features
than many sites need.

Apache is an extremely complex server; this section presents only the barest features
of the server. To learn more, consult its documentation or a book on the subject, such as
Charles Aulds’ Linux Apache Server Administration, 2nd Edition (Sybex, 2002).

Setting Basic Apache Options
Once it’s installed, Apache relies on a configuration file, which is likely to be called
httpd.conf or httpd2.conf (the latter name most often applies to Apache 2.0 or later
installations). This file usually appears in /etc/apache, /etc/httpd, or /etc/httpd/conf.
In any event, the usual Apache configuration file consists of comment lines that begin with
hash marks (#) and option lines that take this form:

Directive Value

Directive is the name of an option you want to set, and Value is the value you want to
assign to Directive. This file also contains blocks of options, which are denoted by codes in
angle brackets:

<IfDefine APACHEPROXIED>

 Listen 8080

</IfDefine>

A default Apache configuration typically delivers Web pages from a central location, which
is specified with the DocumentRoot directive. Chances are you don’t want to serve your distri-
bution’s generic Web page, so you should look for this directive and either change it to point
to your own home page or replace the files in the default location with those you’ve created.

In addition to the main site Web page, Apache can deliver user Web pages, which it reads
from a directory specified with the UserDir directive. These pages normally reside in a sub-
directory of each user’s home directory. For instance, if UserDir points to public_html, the
public_html subdirectory of each user’s home directory holds that user’s Web pages, which
can then be accessed by appending a tilde (~) and the username in the Web address, as in
http://www.asmallisp.net/~john/ to access john’s home page.

03843book.indb 489 8/21/09 12:10:49 PM

490 Chapter 11 n Configuring Network Servers II

The ServerRoot directive identifies the root location for the server itself. Other configu-
ration and log files are identified relative to this directory.

Several Apache configuration options relate to logging. In particular, ErrorLog sets the
filename of the error log file, CustomLog sets the access log file, LogLevel sets the system log-
ger level, and LogFormat controls the format of data stored in the access log file. (Chapter 4
describes the system logger.)

Users or Web site maintainers can override some Apache configuration options using the
.htaccess files in the directories that Apache serves. The format of the .htaccess file is just
like that of the main Apache configuration file, but the options set in this file affect only the
directory tree in which the .htaccess file resides. Normally, this file is used only by users
whose personal Web pages are shared via a global UserDir directive or by Web site maintain-
ers who may edit one or more subdirectories of the server’s main Web space directory but
who don’t have full administrative access to edit the main Apache configuration file.

Using Apache Modules
Many Apache features are implemented in code that’s optional. This code is sometimes com-
piled directly into the main Apache binary, but other times it’s stored in separate modules.
These modules are similar to Linux kernel modules: they’re separate files that may be loaded
into memory or ignored, depending on the needs and configuration of the system as a whole.
To load a module, you use the LoadModule directive in the httpd.conf configuration file:

LoadModule module_name module_filename

The module_name is typically related to the module_filename, except that the latter
includes the path relative to the server’s root directory (set via ServerRoot) and is typically
followed by .so. The two may also differ slightly in form. As an example, you might have
a line like the following in your configuration file:

LoadModule auth_basic_module modules/mod_auth_basic.so

This line loads a module that provides some authentication features. Chances are your
distribution’s default Apache configuration includes quite a few LoadModule directives. You
can learn what they do at http://httpd.apache.org/docs/2.2/mod/. (Change 2.2 to your
Apache version, if it’s not a 2.2.x version.)

Some modules may be compiled directly into your version of Apache. To see what
modules are so compiled on your system, type httpd -l or apache -l, depending on the
name of your Apache binary.

Configuring Scripts
Many sites run a Web server merely to deliver static content—that is, pages whose content
doesn’t change. Web servers can also run dynamic content, though, such as Common Gate-
way Interface (CGI) scripts, PHP: Hypertext Preprocessor (PHP; a recursive acronym, for-
merly expanded as Personal Home Page) scripts, or Java servlets. These scripts can extend
the functionality of a Web server, enabling it to provide dynamic content or perform com-
puting functions on behalf of clients. Each of these technologies is extremely complex, and

03843book.indb 490 8/21/09 12:10:49 PM

Delivering Files Over the Network 491

this section provides only enough information for you to activate support for it in Apache. If
you need to maintain a site that relies on scripting technology, you should consult additional
documentation on the topic.

Enabling scripting features on a Web server can be risky, because an incor-
rect configuration with buggy scripts can give an attacker a way to compro-
mise the computer’s security as a whole. Thus, I strongly recommend that
you not attempt this unless you learn far more about Web servers and their
scripting capabilities than I can present in this brief introduction to this topic.

CGI scripts are scripts or programs that run on the Web server at the request of a
client. CGI scripts can be written in any language—C, C++, Perl, Bash, Python, or others.
CGI scripts may be actual scripts or compiled programs, but because they’re usually true
scripts, the term CGI script applies to any sort of CGI program, even if it’s compiled. The
script must be written in such a way that it generates a valid Web page for users, but that
topic is far too complex to cover here.

To activate CGI script support in Apache, you typically point to a special CGI directory
using the ScriptAlias directive:

ScriptAlias /cgi-bin /usr/www/cgi-bin

This line tells Apache to look in /usr/www/cgi-bin for scripts. This directory may be a
subdirectory of the parent of the DocumentRoot directory, but their locations can be quite
different if you prefer.

PHP, by contrast, is a scripting language that’s designed explicitly for building Web
pages. As with CGI scripts, writing PHP scripts is a complex topic that’s not covered on
the Linux+ exam. You should, however, know how to activate PHP support in Apache. To
begin this task, ensure that you’ve installed the necessary PHP packages. Chances are you’ll
need one called php, and perhaps various support or ancillary packages, too.

With PHP installed, you can configure Apache to support it. This is done via Apache
configuration lines like the following:

Use for PHP 5.x:

LoadModule php5_module modules/libphp5.so

AddHandler php5-script php

Add index.php to your DirectoryIndex line:

DirectoryIndex index.html index.php

AddType text/html php

The preceding configuration works for PHP version 5. If you’re using
another PHP version, you may need to change the filenames.

03843book.indb 491 8/21/09 12:10:49 PM

492 Chapter 11 n Configuring Network Servers II

The first couple of lines in this configuration simply load the PHP module and handler. The
DirectoryIndex and AddType lines help Apache manage the PHP files. The DirectoryIndex
line will replace existing lines in your configuration—or more precisely, you should ensure that
index.php appears on the DirectoryIndex line along with any other filenames you use for
index files.

In addition to these global options, directories that hold PHP scripts may include files
called php.ini, which set various PHP interpreter options. There are quite a few options,
such as user_dir, include_path, and extension. If you need to tweak your PHP settings,
I recommend starting from a sample file, such as the global php.ini file in /etc.

The final Web server scripting solution is Tomcat (http://tomcat.apache.org), which
enables Apache to run Java servlets on the server computer. Tomcat is conceptually similar
to PHP. As with PHP, you must begin by installing appropriate Tomcat packages on your
system. The main Tomcat package is likely to be called tomcat5, tomcat6, or something
similar. (Version 6 is the latest version of Tomcat as I write, but version 5 is still available in
many distributions.) High-level package tools, such as Yum or APT, will help you locate the
appropriate packages.

With Tomcat installed, you must tell Apache how to use it. Typically, Tomcat packages
install their own configuration files with options to enable support in Apache. To use them,
you need add only one line to your Apache configuration file, such as this one:

include /tomcat/conf/mod_jk.conf-auto

The precise file you reference may vary from one distribution to another, so you should
check your own Tomcat package to see what configuration files it’s installed.

Whatever scripting tool you use, you can restart Apache via its SysV startup script to
have it enable scripting support. It’s then up to you or your Web developers to create appro-
priate scripts to manage dynamic content on your site. This is a very complex topic that’s
not covered on the Linux+ exam.

Configuring Virtual Hosting
Another Web server feature that’s handy on large systems is virtual hosting—one server that
hosts multiple Web sites. Suppose two organizations with two domains (say, example.com and
pangaea.edu) both want to host Web sites, but to reduce costs, they decide to share a single
computer to do the job. Both point hostnames in their domains to this computer’s IP address.
Virtual hosting enables the computer with this IP address to respond differently depending
on the hostname the user enters in a remote Web browser. Web hosting ISPs make heavy use
of this feature, supporting many domains on a single computer. It can also be handy if you’ve
changed your company name—you can run a single server that responds to both old and new
domain names, with a notice about the change on the old name.

Implementing virtual hosting can be done in a couple of ways. One is to create a block
with the VirtualHost directive:

<VirtualHost *>

 ServerName www.example.com

03843book.indb 492 8/21/09 12:10:50 PM

Delivering Files Over the Network 493

 DocumentRoot /usr/www/example/html

</VirtualHost>

Directives inside this block apply only when the client contacts the server using the host-
name specified on the ServerName line. A second method involves the VirtualDocumentRoot
directive, which specifies a document root directory that incorporates the hostname. This is
specified with a special code that takes the form %N.M, where N is the hostname component and
M is the number of characters (all characters, if it’s omitted). A negative number counts from
the final component. For instance, with a hostname of www.sales.example.com, %-2 expands
to example and %4.2 expands to co. This code is incorporated into a directory specification:

VirtualDocumentRoot /usr/www/%-2.1/%-2

Controlling Apache
You can start, stop, and restart Apache via its SysV startup script, just as you can control many
other services. (Chapter 4 describes SysV startup scripts in detail.) Another tool, apachectl,
provides similar capabilities, plus some more. In fact, Apache SysV startup scripts often work
by invoking apachectl.

Typically, you’ll call apachectl by typing the utility’s name along with an option, the
most common of which are summarized in Table 11.4.

TA b le 11. 4 Common apachectl Commands

Command Name Effect

start Launches Apache.

stop Terminates Apache.

graceful-stop Similar to stop, but requests that are currently being serviced
are permitted to complete.

restart Restarts Apache. If it’s not running, restart is identical to start.

graceful Similar to restart, but requests that are currently being serviced
are permitted to complete.

fullstatus Displays a status report, including a list of requests being serviced.
This option requires the mod_status module enabled.

status Similar to fullstatus, but omits the list of requests being
serviced.

configtest Performs a test of the configuration file syntax and reports
any errors.

03843book.indb 493 8/21/09 12:10:50 PM

494 Chapter 11 n Configuring Network Servers II

You might use apachectl rather than the Apache SysV startup script if you need to get
a status report or check the syntax of your configuration file. You may want to check your
SysV startup script to see whether it uses the normal or graceful options for stopping and
restarting.

Using Web Proxy Servers
A proxy server is a program that accepts network access requests on behalf of a client,
accesses the target server, and relays the results back to the client. In some respects, a proxy
server is similar to a firewall computer; however, a proxy processes access requests at a
higher level. For instance, a Web proxy server parses the URLs sent by clients and can fully
assemble the Web pages sent in response. This enables a proxy server to use high-level data
to block undesirable Web pages, to cache data for quicker subsequent accesses, or to per-
form other high-level tasks.

Although proxy servers can exist for many protocols, they’re very common for HTTP,
the Web protocol. Proxy servers can be used to block sites that might not be suitable for
children; to limit employees’ nonwork use of the Web from employer computers; to check
Web pages for malware; or to cache Web pages locally, thus improving performance, to
name just four common uses of Web proxies.

Squid (http://www.squid-cache.org) is a popular Web proxy server for Linux. Its
emphasis is on caching data for speed, rather than providing security or other features. If
you install Squid and then immediately launch it, the program will work in this capacity
immediately; however, its configuration file, /etc/squid/squid.conf, provides a dizzying
array of options. If you need to adjust Squid’s configuration, you can peruse this configura-
tion file, preferably in conjunction with Squid’s documentation.

You can install Squid on an individual client computer to gain some benefits; however,
Squid works best when it runs on a central server computer and caches requests from multiple
clients. For instance, if Fred accesses a Web page from his desktop system, a Squid proxy
running on a different but nearby system can cache that page locally. If Mary then accesses
the same page from her computer, Squid can deliver the cached page. If Squid were installed
separately on Fred’s and Mary’s computers, it wouldn’t be able to deliver the cached copy to
Mary, thus eliminating Squid’s benefits.

Squid is a proxy server, and as a server it must be run in one of the ways appropriate to
servers, as described in Chapter 4. Typically, this means that Squid is run from a SysV startup
script. If you’ve just installed Squid, you should be sure to launch it manually the first time
and ensure that it’s configured to run automatically when you reboot the computer.

In addition to installing and running Squid on its host system, you must configure clients
to use it. This is typically done by selecting appropriate options in your clients’ Web servers.
For instance, in Mozilla Firefox on Linux, you should select Edit Preferences to reveal
the Firefox Preferences dialog box. Select the Advanced option, click the Network tab, and
click the Settings button. The result will be the Connection Settings dialog box, shown in
Figure 11.1 along with the Firefox Preferences dialog box. Select Manual Proxy Configura-
tion, and enter the hostname or IP address of the proxy server computer, along with the port
number it’s using. (Squid defaults to port 3128.)

03843book.indb 494 8/21/09 12:10:50 PM

Delivering Files Over the Network 495

F I gu r e 11.1 You must configure Web browsers to use a proxy server such as Squid.

Alternatively, you can use an iptables firewall configuration on your network’s
router to redirect all outgoing Web traffic to the proxy server. (Chapter 9 describes
iptables.) This configuration obviates the need to configure each client individually;
however, it also means that if the proxy server corrupts data, your users will have no
recourse. If you attempt such a configuration, be sure to exempt the proxy server com-
puter from the rule, lest you set up an infinite loop in which the proxy server’s traffic is
redirected to itself!

Using Text-Based Web Clients
You’re probably already familiar with the most common Web browsers: GUI tools such
as Mozilla Firefox, Konqueror, and Opera. A few text-based Web clients deserve mention,
though: lynx, wget, and curl.

The lynx program is a text-based interactive Web browser. It has features that are similar
to those of GUI Web browsers, but it doesn’t support graphics. You browse the Web with
lynx by using your keyboard’s arrow keys to move a cursor from one link to another and
then pressing the Enter key to select the link. lynx is particularly useful if you need to browse
the Web using a text-only display. Users with visual impairments also use lynx in conjunction
with screen reader software.

The wget program enables you to retrieve a document from a Web server and store it
locally—think of it as analogous to Linux’s cp command, but using a source document
that’s a Web URL. For instance, suppose you want to retrieve the main page from the
http://www.linux.org Web site. You could do so with the following command:

$ wget http://www.linux.org

03843book.indb 495 8/21/09 12:10:50 PM

496 Chapter 11 n Configuring Network Servers II

In this case, wget will locate the main document (index.html in this case, although the
filename could be different), retrieve it, and save it to disk. If you want to retrieve some-
thing other than the main page, you can specify its filename:

$ wget http://www.linux.org/apps/all/Administration/Backup.html

You can use quite a few options with wget; consult its man page for details. One option
in particular deserves mention: -r, which causes wget to retrieve a site recursively—it copies
the document you specify and all those documents from the same site that are referenced by
it. This can be a handy way to back up the contents of a Web server from another computer,
either because you maintain the site and need a local copy or because you want to retrieve a
site for later offline reading.

The final text-mode Web command is curl. This tool is similar to wget in that it’s
designed to transfer files to and from servers. By default, though, curl displays the
retrieved file on standard output, similar to cat for local files. This makes it handy for
directly viewing text files retrieved from servers, but it’s less useful than wget for backing
up an entire site.

Although I’ve described wget and curl as Web retrieval tools, both support additional pro-
tocols. wget works with HTTPS (secure HTTP) and FTP, while curl works with these proto-
cols along with TFTP, Telnet, and several others.

Using Windows Remote Access Tools
Chapter 9 presented information on remote access using some common Linux tools,
including SSH and the X Window System. These aren’t the only remote access protocols
available, however. A couple of tools are particularly useful for interoperating with Win-
dows systems. The first of these is rdesktop, which uses the Remote Desktop Protocol
(RDP) to connect to Windows systems that run Terminal Services to enable remote GUI
logins. The second tool is Virtual Network Computing (VNC), which is a cross-platform
GUI login tool that uses the Remote Framebuffer (RFB) protocol. You can configure a
VNC server in Linux to enable logins from other systems, and you can use a VNC client
to log in to remote systems.

Using rdesktop
The rdesktop program is fairly straightforward to use, as you can see by its syntax:

rdesktop [options] server[:port]

Table 11.5 summarizes the most common rdesktop options. Consult the program’s
man page for a more complete list. Most of the options not shown in Table 11.5 are highly
technical and relate to the way the protocol transfers data or to enabling the server to
access local hardware devices on the client.

03843book.indb 496 8/21/09 12:10:51 PM

Using Windows Remote Access Tools 497

TA b le 11.5 Common rdesktop Options

Command Name Effect

-u username Specify a username for accessing the server.

-d domain Specify a domain for accessing the server.

-s shell Start the specified program rather than Explorer on the server.

-p password Pass the specified password to the server. This may have
no effect if the Always Prompt for Password option is set on
the server.

-g geometry Specify the desktop size; geometry is specified as width and
height, separated by an x, as in 1024x768.

-f Enter full-screen mode.

-a bitdepth Specify the color depth (8, 15, 16, or 24). Depths greater than
8 work only with Windows XP or newer.

Using VNC
VNC’s greatest strength is its cross-platform nature. VNC clients and servers are available
for Linux, other Unix variants, Mac OS, Windows, and more obscure OSs. This makes
VNC a good choice for remote GUI access in a cross-platform environment.

Configuring a VNC Server
The standard VNC server configuration on Linux is rather odd: it runs the VNC server as
an ordinary user. Accessing the server produces a login to the computer as the user who ran
the server. Thus, if Fred and Mary both run VNC servers on a Linux system, each can log
in separately; but if George and Sally also have accounts on the system but don’t run VNC,
they won’t be able to log in remotely. Behind the scenes, VNC server programs for Linux
include both a VNC server and an X server; the two are linked, with the VNC server half
functioning as a virtual keyboard, mouse, and monitor for the X server half.

It’s possible to link VNC to an X Display Manager Control Protocol (XDMCP)
server. When this is done, users who access the VNC server system will see
a standard Linux XDMCP login screen. This configuration requires using
advanced VNC options that aren’t described here.

03843book.indb 497 8/21/09 12:10:51 PM

498 Chapter 11 n Configuring Network Servers II

The first step to running VNC is to install it. Several different VNC servers exist, and
most distributions ship with at least one of them. Typically, separate client and server pack-
ages are available, often called vnc and vnc-server, or variants of this (such as tightvnc
and tightvncserver). If you’re not sure whether VNC is installed on your system, use your
high-level package manager, such as yum or apt-get, to search for relevant packages. If VNC
isn’t installed, install the appropriate packages for your distribution, or check the RealVNC
Web site (http://www.realvnc.com) or the Tight VNC Web site (http://www.tightvnc.com).
After you install VNC, follow these steps as an ordinary user on the VNC server system:

1. Create a directory called .vnc in your home directory. This directory will house your
VNC configuration files.

2. Type vncpasswd. The program prompts you for a password and for a verification of
this password. VNC doesn’t, by default, use the normal Linux password database. You
will need this password to gain entry to the system.

3. Type vncserver. This command is actually a script that performs various checks and
then starts a VNC server (using the Xvnc program file) in your name. The program dis-
plays some summary information, including a VNC session number:

New ‘tranquility.luna.edu:1 (neil)‘ desktop is tranquility.luna.edu:1

You should now be able to access the VNC server system, as described in the upcoming
section “Using a VNC Client.” When you try this, though, you may run into problems.
One common issue is that the server fails to start, or it starts and then crashes. Check for
log files in ~/.vnc. These files may include clues to the problem. One common problem
relates to font paths; the VNC server is very sensitive about its font paths, and it will crash
if you specify font directories that don’t exist or that are misconfigured. You can add the
-fp option and a comma-separated list of font directories to the command line to work
around this problem. Alternatively, you can adjust your configuration files.

A second problem—or series of problems, really—is that various default options may be
set strangely. Most configurations use two types of configuration files:

The VNC Startup Script The vncserver script includes within it various options, such as
the default desktop size, the default font path, and so on. For the most part, these defaults
are equivalent to X server defaults you would set in your local X server’s xorg.conf file.
You can edit this script to change these defaults.

User Configuration Files Most VNC servers use ~/.vnc/xstartup as a user’s local startup
script. This script may call /etc/X11/xinit/xinitrc or some other local default startup script,
or it may launch a bare-bones window manager, such as twm. In any event, you can edit this
script much as you’d edit any other X startup script.

Using a VNC Client
The Linux VNC client program is usually called vncviewer. This tool takes several
options, but in most cases you use it by typing the program name followed by the VNC

03843book.indb 498 8/21/09 12:10:51 PM

Deploying MySQL 499

server name, a colon, and the VNC session number. For instance, you might type the fol-
lowing command:

$ vncviewer blueox.luna.edu:1

VNC server supports protocol version 3.8 (viewer 3.3)

Password:

If you type the correct password, vncviewer displays more text in your terminal and
opens a window displaying the remote computer’s desktop. VNC clients are also available
for many other OSs; check the original VNC or the Tight VNC Web sites for these clients.
These non-Linux VNC clients work much like the Linux VNC client, but they emphasize
dialog boxes for entering the server’s hostname and password.

One important drawback of VNC is that the user must ordinarily launch the VNC server
from the server computer before running the VNC client program from the client computer.
In some cases, this requirement isn’t a major issue. For instance, if you’re sitting at a worksta-
tion and know you’ll want to use it from another location in the near future, you can launch
the server before leaving the workstation. In other cases, though, you may need to log into the
VNC server computer using a text-mode login tool in order to launch the VNC server. This
procedure requires two logins, which is a nuisance. What’s more, this means you must run
two login protocols on the server computer, increasing its security exposure.

Deploying MySQL
The Structured Query Language (SQL), as its expanded name suggests, is a language used
for retrieving data from a database. In practice, SQL is implemented in several different
database products. Thus, you should know a little about the SQL products that are avail-
able for Linux. With a SQL package installed, you can begin learning about the principles
of SQL use and run a SQL product.

Picking a SQL Package
SQL is a language for accessing data, and specific SQL packages implement that language.
This distinction is similar to that between a network protocol (such as SMTP) and the
servers that implement it (such as sendmail and Postfix). In principle, you can use any SQL
package to satisfy your SQL database needs. In practice, specific products that store data
using SQL may work better with (or even require) particular packages. Some of the more
common choices in Linux include the following:

MySQL Sun owns this SQL implementation, which it has released under the GPL. Most
major Linux distributions include MySQL in their package databases. For a complete
installation, you’ll probably need to install multiple packages, such as a client, a server,
and perhaps development tools. You can learn more at http://www.sun.com/software/
products/mysql/.

03843book.indb 499 8/21/09 12:10:51 PM

500 Chapter 11 n Configuring Network Servers II

PostgreSQL This SQL implementation evolved from the earlier Ingres software (the
name PostgreSQL is a compressed form of post-Ingres SQL). It’s available under the BSD
license and is available as multiple packages in most Linux distributions. As with MySQL,
you’ll most likely have to install a client, a server, and perhaps additional support pack-
ages. PostgreSQL is headquartered at http://www.postgresql.org.

SQLite This package, based at http://www.sqlite.org, is a library that implements SQL.
As such, it’s not a stand-alone database; instead, it’s intended as a way to provide programs
with access to SQL database features within the program. If you install a program that uses
SQLite, your distribution’s package manager should install the relevant libraries for you.
If you want to write a program that requires database access and you don’t want to install
a complete client-server SQL package such as MySQL or PostgreSQL, SQLite may be just
what you need.

There are dozens more SQL database products for Linux. For the purpose of learning
SQL, MySQL or PostgreSQL should do fine, or you can use another full implementation
if you prefer. If you have a specific purpose in mind for using SQL, though, you should
research SQL packages in more detail. You may need a particular product for compatibility
with other software, or you may need a SQL package that provides specific features. The
Linux+ objectives mention only MySQL by name.

As just noted, some SQL packages, including MySQL and PostgreSQL, operate on a client-
server model: one program (the server) manages the database, while another (the client) pro-
vides users and programs with access to the database. Such implementations can work over a
network, enabling users at multiple client systems to access a centralized database server.

Using MySQL
To learn about SQL, you should have access to a SQL database. For purposes of demon-
stration, I’m using MySQL as a reference. Other SQL implementations are similar to what
I describe here, but some details differ. From an administrative perspective, you need to
know how to set MySQL configuration options, how to start and stop the server, and how
to test that it’s working. Actually performing database queries with MySQL is a complex
topic that’s beyond the scope of this book or the Linux+ exam.

Configuring, Starting, and Stopping MySQL
MySQL’s main configuration file is called my.cnf, and it’s usually stored in /etc or /etc/
mysql. You should peruse this file to familiarize yourself with some of the key MySQL
options. Unless you know you need to change the defaults, though, you should be cautious
about changing this file’s contents, at least initially.

One initial configuration task you must perform is to set the MySQL root password.
Just like Linux itself, MySQL requires an administrative (root) user; however, MySQL’s
root isn’t the same as the Linux root account. A default MySQL installation is likely to

03843book.indb 500 8/21/09 12:10:51 PM

Deploying MySQL 501

require no password for administrative access. To enable a password, type the following
command:

$ mysqladmin -u root password newpassword

Change newpassword to the password you want to use, of course. If your system already
has a root password set, you can change it with another command:

$ mysqladmin -u root -p’oldpassword‘ password newpassword

Some distributions, such as Ubuntu, include installation scripts that
prompt you to enter a MySQL root password when you install the soft-
ware. Thus, you might not need to type these commands.

Typically, MySQL is started and stopped using SysV startup scripts, such as /etc/
init.d/mysqld. Chapter 4 describes SysV startup scripts in more detail, so consult it if you
need help starting or stopping MySQL. You can verify that MySQL is running using ps;
search for a process called mysqld:

ps ax | grep mysql

 1948 ? S 0:00 /bin/sh /usr/bin/mysqld_safe

 2013 ? Sl 33:30 /usr/sbin/mysqld --basedir=/usr➥

--datadir=/var/lib/mysql --user=mysql --pid-file=/var/run/mysqld/mysqld.pid➥

--skip-locking --port=3306 --socket=/var/run/mysqld/mysqld.sock

 2014 ? S 0:00 logger -p daemon.err -t mysqld_safe -i -t mysqld

30933 pts/0 S+ 0:00 grep mysql

In this example, the /usr/sbin/mysqld program is the MySQL server, so it’s definitely run-
ning. This output also shows the options used to launch the program. Three other MySQL-
related processes were also found by this query, including the grep command used to search
for MySQL. Be sure that you find mysqld (the daemon, whose name ends in d); the mysql
program is the client, and it could be running even if the server isn’t running. If you can’t find
the MySQL daemon running, try using its SysV startup script, and if that fails, search your log
files for clues to what might be going wrong when you try to launch the server.

Testing the MySQL Connection
To test MySQL’s basic operation, you should first ensure that the server is running, as
just described. You can then start the SQL client. In the case of MySQL, this program is
called mysql:

$ mysql

03843book.indb 501 8/21/09 12:10:52 PM

502 Chapter 11 n Configuring Network Servers II

If the client can connect to a server, you’ll see a mysql> prompt. If the server isn’t running
or can’t be contacted, you’ll see an error message. To verify the status of the mysql client con-
nection to its server, you can use the STATUS command:

mysql> STATUS;

mysql Ver 14.12 Distrib 5.0.51a, for debian-linux-gnu (x86_64) using readline 5.2

Connection id: 29

Several additional lines of status information will appear, as well. You can peruse these
to learn a few more details, such as what version of the server is in use and how long it has
been running.

If you’ve just installed MySQL, it may have no databases defined. To learn what’s defined,
you can use the SHOW DATABASES command:

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

+--------------------+

1 row in set (0.00 sec)

These operations should be more than sufficient to verify basic functioning of MySQL.
You might not get in so easily, though, particularly if you use a computer other than the
one on which the MySQL server is running to test the server’s operation. (If network
operation is important in your installation, you should definitely test network access
to ensure that firewalls or other network issues won’t cause problems.) If you receive a
Can’t connect to MySQL server message, chances are either the MySQL server isn’t
running or a network configuration is blocking access to the server. If you receive an
Access denied message, the problem is with authentication—you must specify a legal
account and password.

To connect to a remote server, use a particular MySQL account, or send a particular
MySQL password, you must use the --host (or -h), --user (or -u), or --password (or -p)
options, respectively. For instance, to connect to the MySQL server running on third
.luna.edu as dbuser with a password of e4bUg7TQ, you might type the following:

$ mysql --host=third.luna.edu -u dbuser -pe4bUg7TQ

03843book.indb 502 8/21/09 12:10:52 PM

Exam Essentials 503

When using the long option names, you must include an equal sign
between the option name and its value, as in the --host option in this
example. An equal sign is not used with the short option forms. For the
password, you must not include a space between the short option name
(-p) and the password. You might prefer to use the long form (as in
--password=e4bUg7TQ) to improve legibility. If you include the -p option
but omit the password, mysql will prompt for it.

Summary
Network servers are many and varied, and Linux provides programs to handle all common
network protocols. These include DHCP for configuring clients’ network settings, DNS for
resolving hostnames and IP addresses, NTP for managing time on a network, SMB/CIFS for
file sharing with Windows, NFS for file sharing with Linux and Unix, FTP for cross-platform
file transfers, HTTP for Web browsing, VNC for cross-platform GUI access, SMTP for push
e-mail, POP and IMAP for pull e-mail, and SQL for database access.

Although these servers share certain common features, such as their ability to be launched
via SysV startup scripts or super servers, each protocol and server is unique. Indeed, for many
protocols, multiple servers are available, and each server can have its own unique configura-
tion style. Thus, you must study each server you install and run to determine how best to
manage it.

Exam Essentials

Explain where Samba and NFS are best deployed. Samba is an implementation of the
SMB/CIFS protocol suite, which is most often used for file and printer sharing by Windows
systems; thus, Samba is best used as a server for Windows clients. NFS, by contrast, was
designed as a file sharing protocol for Unix systems, so it’s best used for sharing files with
Unix or Linux clients.

Describe the Samba and NFS configuration files. Samba is configured via smb.conf,
which is typically stored in /etc, /etc/samba, or /etc/samba.d. Global Samba options
appear in the [global] sections, and subsequent sections define specific shares. NFS is con-
figured via /etc/exports, which lists the directories that are to be exported, one per line.
Each line also contains a list of computers or networks that may mount the export, along
with mount options.

03843book.indb 503 8/21/09 12:10:52 PM

504 Chapter 11 n Configuring Network Servers II

Summarize the differences between FTP and HTTP. The File Transfer Protocol (FTP)
is a login-based protocol for transferring files. The Hypertext Transfer Protocol (HTTP)
doesn’t typically require logins (although some Web sites do implement login functionality).
FTP is an old protocol with some quirks, such as requiring the use of two network connec-
tions. The World Wide Web (WWW or Web for short) is built atop HTTP, making HTTP
an extremely important protocol on today’s Internet.

Describe common Web server scripting tools. The Common Gateway Interface (CGI) is
a general mechanism that enables a Web server to run a normal Linux program or script
(written in Perl, Python, C, or any other language that Linux supports) to generate Web
pages dynamically. PHP and Tomcat are more specialized languages that are designed with
Web use in mind. They require additional configuration in Samba but can be easier to pro-
gram for Web purposes.

Explain the purpose of rdesktop and VNC. The rdesktop program enables access to
Windows computers that provide the Windows-specific Remote Desktop Protocol (RDP)
for remote login access. VNC can fill a similar role, but VNC is a cross-platform tool; the
server can run Windows, Mac OS, Linux, or various other OSs.

Describe the purpose of SQL and MySQL. The Structured Query Language (SQL) is a
common database language; it’s used to store data that can be retrieved by individuals or
programs. SQL is network-enabled, meaning that database users can exist on computers
other than the one that hosts the database. MySQL is a common implementation of SQL
for Linux; it includes client, server, and support programs.

03843book.indb 504 8/21/09 12:10:52 PM

Review Questions 505

Review Questions

1. How does an NFS server determine who may access files it’s exporting?

A. It uses the local file ownership and permission in conjunction with the client’s user
authentication and a list of trusted client computers.

B. It uses a password that’s sent in unencrypted form across the network.

C. It uses a password that’s sent in encrypted form across the network.

D. It uses the contents of individual users’ .rlogin files to determine which client com-
puters may access a share.

2. You want to export the /home directory to two computers via NFS: remington should have
full read/write access, while gentle should have read-only access. How would you config-
ure this in /etc/exports?

A. remington(/home,rw) gentle(/home,ro)

B. [homes] remington(readwrite) gentle(readonly)

C. /home remington(rw) gentle(ro)

D. remington(/home,readwrite) gentle(/home,readonly)

3. You want to temporarily export the /mnt/cdrom directory using NFS so that reader
.example.org may read but not write the export. Assuming an NFS server is already
running, what would you type at a shell prompt to accomplish this goal?

A. exports -o ro reader.example.org:/mnt/cdrom

B. showmount -o ro reader.example.org:/mnt/cdrom

C. exportfs -o ro reader.example.org:/mnt/cdrom

D. mount -o ro reader.example.org:/mnt/cdrom

4. A Samba server (dance) includes a [homes] share definition but no [sammy] share definition.
Assuming the relevant account exists, what will then happen when the user sammy on a client
attempts to access \\dance\sammy?

A. An error message will appear because the [sammy] share doesn’t exist.

B. If the user enters the correct password, he’ll be given access to the /home directory on
the server.

C. The user will be given access to the /tmp directory whether or not a correct password
is entered.

D. If the user enters the correct password, he’ll be given access to his home directory’s files
on the server.

03843book.indb 505 8/21/09 12:10:52 PM

506 Chapter 11 n Configuring Network Servers II

5. You’re configuring a Samba server to participate in an existing Windows domain that’s
managed by a Windows Server 2003 domain controller. You want users to be able to
authenticate using the Windows controller’s account database. How would you set the
security option in smb.conf to achieve this result? (Choose all that apply.)

A. security = User

B. security = Server

C. security = Domain

D. security = ADS

6. What does the following line in an smb.conf file mean?

name resolve order = lmhosts

A. Samba uses the lmhosts file preferentially for name resolution but will use other
methods if necessary.

B. Samba uses the lmhosts file exclusively for name resolution and does not fall back on
other methods.

C. Samba uses the lmhosts file as source material when it functions as a NetBIOS
name server.

D. Samba uses the lmhosts file’s contents to determine the priority given to different
clients’ name-resolution requests.

7. Which of the following is an important difference between RDP and VNC?

A. RDP is a GUI protocol, but VNC is text-based.

B. RDP is a text-based protocol, but VNC is a GUI tool.

C. RDP is used primarily by Windows servers, but VNC is cross-platform.

D. RDP is used primarily by Unix and Linux servers, but VNC is used primarily by
Windows servers.

8. A user wants to access a Linux desktop from a Windows computer. After configuring
VNC, what would the user type at a Linux command prompt to enable this access?

A. vncserver

B. vncviewer

C. Xvnc

D. vncpasswd

9. Which is the best way to launch an FTP server?

A. From a SysV startup script.

B. From a super server.

C. From a local startup script.

D. It’s impossible to say without more information.

03843book.indb 506 8/21/09 12:10:52 PM

Review Questions 507

10. You want to enable individual users to manage their personal Web pages on www.example
.net. What Apache directive do you use to set the subdirectory within the users’ home
directories that will house their personal Web pages?

A. ServerDir

B. ServerRoot

C. DocumentRoot

D. UserDir

11. Which of the following tools caches Web (HTTP) accesses by clients, thus improving
performance on subsequent accesses to the same popular sites?

A. Squid

B. PHP

C. lynx

D. CGI

12. You’ve been told that an Apache server is configured with Tomcat. What does this mean?

A. The server employs a GUI configuration tool for remote administration.

B. The server can run an enhanced version of cat locally to modify Web pages.

C. The server can run Java servlets locally to generate dynamic content.

D. The server supports Secure Sockets Layer (SSL) encryption.

13. Your employer has taken over the example.org domain, and you’ve been given the task of
retrieving the current example.org Web site so that others may edit the files. This site is
hosted at www.example.org and consists entirely of static Web pages. What might you type
to retrieve these files?

A. curl -r http://www.example.org

B. wget -r http://www.example.org

C. apache http://www.example.org

D. lynx http://www.example.org

14. You launch the ftp client program to retrieve the latest Linux kernel from ftp.kernel
.org. What ftp command will you use to retrieve the kernel file, once you’ve located it?

A. cp

B. download

C. get

D. scp

03843book.indb 507 8/21/09 12:10:53 PM

508 Chapter 11 n Configuring Network Servers II

15. You’ve launched ftp to transfer some files, but you’ve just realized that you launched it in
the wrong local directory; you want to be in ~/programming. How can you correct this
mistake without exiting ftp?

A. Press Ctrl+Z, type cd ~/programming, and then type fg.

B. Type cd ~/programming.

C. Type change-to ~/programming.

D. Type lcd ~/programming.

16. A Web server holds a text file for which you have a URL: http://www.example.org/text
.txt. You want to view this text file without launching a full Web browser. How might you
do this?

A. Type ftp http://www.example.org/text.txt.

B. Type telnet http://www.example.org/text.txt.

C. Type wget http://www.example.org/text.txt.

D. Type curl http://www.example.org/text.txt.

17. You’ve connected to a public FTP server and retrieved several JPEG graphics files. You can’t
open these files in any Linux graphics editor, though. What is the most likely explanation?

A. The FTP transfer occurred in ASCII mode, thus corrupting the binary graphics data.

B. The FTP transfer occurred in passive mode, thus corrupting the binary graphics data.

C. FTP is unsuitable for transferring graphics data; you should have used HTTP.

D. The graphics files were encrypted, so you need a private key to decrypt them.

18. When you attempt to download a file from an FTP site using a computer located on your
heavily protected local network, nothing seems to happen. The server responds to pings,
but you can’t download files. What might you do to overcome this problem?

A. Type ascii at the ftp> prompt, and try again.

B. Type passive at the ftp> prompt, and try again.

C. Type mput fix* at the ftp> prompt, and try again.

D. Type mget fix* at the ftp> prompt, and try again.

19. You want to set the password on a freshly installed MySQL server. What command would
you use to do this?

A. mysqladmin -u root password newpassword

B. mysqlpasswd newpassword

C. passwd mysql

D. smbpasswd mysql

20. Which option would you pass to mysql to have it access a remote MySQL server?

A. --server=name

B. --host=name

C. --remote=name

D. --db=name

03843book.indb 508 8/21/09 12:10:53 PM

Answers to Review Questions 509

Answers to Review Questions

1. A. NFS uses a “trusted host” policy to let clients police their own users, including access
to the NFS server’s files. NFS does not use a password, nor does it use the .rlogin file in
users’ home directories.

2. C. Option C presents the correct syntax for achieving the specified goal in /etc/exports.
Options A and D incorrectly place the exported directory name in the option list for each cli-
ent. Option B uses [homes] (a Samba name for users’ home directories) rather than /homes.
Options B and D incorrectly expand the ro and rw codes into readonly and readwrite.

3. C. The exportfs program controls the NFS server; it adds or removes directories and
clients from the list the server maintains, thus temporarily extending or restricting the list
that’s normally maintained in /etc/exports. Option C presents the correct syntax for
this program to achieve the stated goal. There is no standard exports command, so option
A is incorrect. Option B’s showmount command displays information on the clients that
are using the server, but it doesn’t change the export list. The mount command mounts a
remote export; it doesn’t affect what’s exported, so option D is incorrect.

4. D. The [homes] share in Samba is special; it gives access to users’ home directories, with
each user being given access to his or her own home directory, as option D describes.
Option A is incorrect because the point of the [homes] share is to enable access to home
directories without having to explicitly define a new share for each user. Option B is incor-
rect because the [homes] share gives access to users’ individual home directories, not to the
Linux /home directory, which is typically the directory in which all users’ home directories
reside. Option C is incorrect because a correct password is still normally required to access
[homes] and because this share doesn’t give access to /tmp unless options are set strangely.
(The default directory for most Samba shares is /tmp, but this isn’t true of [homes].)

5. B, C, D. The Server setting tells Samba to authenticate against the domain controller
without fully joining the domain. The Domain setting tells Samba to fully join the domain
using Windows NT 4 protocols. The ADS setting tells Samba to fully join the domain using
Active Directory (AD) protocols. Any of these options will work, if properly configured.
The User setting tells Samba to use its local account database, so this setting won’t do as
the question specifies.

6. B. The name resolve order option in Samba determines what tools Samba uses to resolve
hostnames into IP addresses. Since only one option (lmhosts) appears in this example, this
is the only tool that’s used, as stated by option B. Option A is incorrect because no other
methods will be used. Options C and D are incorrect because the name resolve order
option controls Samba’s own name resolution, not how it functions as a NetBIOS name
server or how it delivers names to clients.

7. C. The Remote Desktop Protocol (RDP) is used by Windows systems to support remote GUI
logins. (The Linux rdesktop program is an RDP client.) The Virtual Network Computing
(VNC) software is a cross-platform remote GUI login tool using the Remote Framebuffer
(RFB) protocol. Thus, option C is correct. Since both tools are GUIs, options A and B are
both incorrect. Option D would more accurately describe X (used by Unix and Linux) vs.
RDP (used by Windows).

03843book.indb 509 8/21/09 12:10:53 PM

510 Chapter 11 n Configuring Network Servers II

8. A. The vncserver script starts the VNC server as an ordinary user, enabling subsequent
access to the Linux computer from remote systems. The vncviewer program is the VNC
client; the user might use this program on a remote Linux system to access the server that’s
launched by vncserver. The Xvnc program is the actual VNC server binary, but it must
be launched with various options—that’s what the vncserver script does. The vncpasswd
utility sets a VNC password; the command specifies that VNC has already been configured,
so this step isn’t necessary at this point.

9. D. FTP server programs vary in design; some are intended to be run from a local or SysV
startup script, others are intended to be run from super servers, and others can be launched
in either way. The needs of the site must also be considered; for instance, a lightly used FTP
server might best be launched from a super server, whereas an FTP server that’s in constant
use might better be launched from a startup script. Thus, option D is correct.

10. D. The UserDir directive sets the subdirectory name that will be served as personal Web
pages. The ServerDir directive is fictitious. ServerRoot sets the base directory where
Apache looks for various files; many other options are specified relative to this one. The
DocumentRoot directive sets the location of the server’s main home page, rather than indi-
vidual users’ personal home pages.

11. A. The Squid program is a caching proxy server, meaning that it provides the features
described in the question. PHP is a tool for running Web-centric scripts. lynx is a text-based
Web browser. CGI is the Common Gateway Interface, a tool for running scripts from a
Web server.

12. C. Tomcat refers to a package that enables an Apache server to run Java servlets, as described
in option C. Tomcat has nothing to do with remote GUI configuration, the cat utility, or SSL
encryption.

13. B. The wget command retrieves a file from a Web (HTTP) server. Used with the -r option,
wget retrieves an entire Web site, so option B is correct. Although curl can also be used
to retrieve documents from Web sites, option A’s syntax is incorrect, and curl isn’t a good
tool for retrieving an entire site recursively. Apache is a Web server, not a client, so option C
is incorrect. Option D will launch the text-based lynx Web browser, enabling you to view
the current site; but this action won’t save the site for subsequent editing.

14. C. The ftp command to retrieve a file is get. (receive will also work, and multifile variants,
such as mget, are also available.) The cp command is a Linux Bash command to copy a file,
but it doesn’t work in ftp. The download command is fictitious in this context. The scp com-
mand is a tool that’s part of the Secure Shell (SSH) package.

15. D. The lcd command in ftp changes the local current directory; it does as the question
specifies, so option D is correct. Option A sounds promising if you’re familiar with Bash
options; however, the change implemented in this way does not affect the already launched
ftp instance, so option A is incorrect. The cd command in option B changes the current
directory on the server, not on the client, as the question specifies. The change-to command
in option C is fictitious.

03843book.indb 510 8/21/09 12:10:53 PM

Answers to Review Questions 511

16. D. The curl command retrieves a file using HTTP, FTP, or various other protocols and
sends the file to standard output. Thus, option D will do as requested. (If the file is long,
you might want to pipe it through less.) The ftp program can’t connect to an HTTP
(Web) server, and even if the computer were running an FTP server, option A wouldn’t
accomplish the specified goal. You could type telnet www.example.org 80 to connect to
the Web server and then type additional HTTP commands to retrieve the file; however, as
stated, option B won’t work. Although you can use wget to retrieve the file, wget won’t dis-
play it directly on your screen, so option C is incorrect.

17. A. FTP supports both ASCII and binary modes. Transferring binary data (such as a JPEG
graphics file) in ASCII mode will almost certainly corrupt it, as option A suggests. The dif-
ference between active and passive modes, referred to in option B, won’t corrupt data. FTP
is perfectly suitable as a tool for transferring graphics data, contrary to option C. Although
encryption could result in the specified problem, as option D suggests, this seems implausible
for files on a public FTP site. Furthermore, to decrypt files, you’d probably need the sender’s
public key, not a private key, as option D suggests.

18. B. The symptoms described can be a result of firewall settings blocking the current FTP trans-
fer mode (active vs. passive). The passive command in the ftp program toggles between these
two modes, so it may correct the problem. This isn’t guaranteed, though. The ascii command
of option A switches to ASCII mode, which alters text files for the client or server default; it’s
unlikely to help. The mput and mget commands of options C and D attempt to upload and
download, respectively, files matching the fix* wildcard. This action is unlikely to be helpful.

19. A. The mysqladmin utility enables you to administer a MySQL server, including setting
its administrative password. Option A presents the correct syntax to do this. Option B’s
mysqlpasswd utility is fictitious. Option C’s passwd command will change the Linux login
password for the mysql user. This action will have no effect on the MySQL server’s admin-
istrative password, which is independent of the Linux account database. Likewise, option D
will change the Samba password for the mysql user, which will have no effect on MySQL.

20. B. The --host (or -h) option to mysql tells it to connect to a remote server rather than the
local one. The remaining options are all fictitious.

03843book.indb 511 8/21/09 12:10:53 PM

03843book.indb 512 8/21/09 12:10:54 PM

Chapter

12
Securing Linux

The FoLLowing CompTiA objeCTiveS
Are Covered in ThiS ChApTer:

5.3 Explain the basics of SELinux (Running modes ÛÛ
[Enabled, Disabled, Permissive]).

5.5 Explain the appropriate use of the following security ÛÛ
related utilities (nmap, Wireshark, NESSUS, Snort, Tripwire).

5.6 Use checksum and file verification utilities (ÛÛ md5sum,
sha1sum, gpg).

5.8 Explain the methods of authentication (PAM, LDAP, ÛÛ
NIS, RADIUS, Two-factor authentication).

03843c12.indd 513 8/22/09 2:46:20 PM

Sadly, security is a very important topic. Sloppy configuration,
program bugs, user error, and other problems can result in a
system compromise. Such a compromise can result in confiden-

tial data falling into the wrong hands, data loss, abuse of your resources (such as network
connectivity) to malicious or even criminal ends, and so on. For these reasons, you should
pay careful attention to security, configuring your system in as secure a way as possible.

Security isn’t an all-or-nothing matter. No computer can be absolutely
100 percent secure—if nothing else, somebody might physically break in
and steal the system. Rather, security comes in degrees, from very poor
security up to very good security. You must decide where you want your
system to fall on this continuum, trading off the benefits of improved secu-
rity against the effort it takes to maintain that security, for both you and the
system’s users.

Many security topics are described in other chapters of this book. This chapter begins with
a broad overview of security issues—where problems can exist. It then gets into the nitty-
gritty details of how Linux authenticates users, since these details enable making changes
with security implications. Using file encryption for transfers over the Internet is up next so
that you can verify your correspondents’ identities and encrypt private files and messages
transferred via e-mail or other insecure media. This chapter then covers a set of high-security
Linux tools that can be deployed in high-security environments. Next up is a description of
tools and techniques you can use to review your system’s overall level of security. Finally, this
chapter looks at ways you can detect whether your system has been compromised.

Sources of Security Vulnerability
Threats to system security are many and varied, and they’re changing all the time. That is,
bugs or other problems in specific programs are likely to be fixed soon after they’re found,
but new bugs or problems may be discovered the next day. Thus, a program-by-program
listing of security problems is impractical in a book, although Web sites such as the Com-
puter Emergency Response Team (CERT; http://www.cert.org) site do track known
vulnerabilities. Instead of attempting to list all known problems, I describe security vulner-
abilities in broad categories. These include physical access, stolen passwords, bugs in local
(nonserver) programs, bugs in server programs, denial-of-service attacks, encryption issues,
and humans.

03843c12.indd 514 8/22/09 2:46:20 PM

Sources of Security Vulnerability 515

Physical Access Problems
The first broad category of security problem relates to physical access to the computer. In
brief, if a miscreant has physical access to your computer, that person can do almost any-
thing to it. Thus, controlling physical access to the computer is extremely important.

You may think of a system as secure because it has solid passwords and other protections.
With a Linux emergency disk, though, somebody who gains physical access to your computer
can boot into an environment that you don’t control but that can still read and write all your
important files, including sensitive files such as /etc/shadow. You can put up obstacles to easy
access, such as using BIOS passwords. These require you to type a password before the com-
puter boots at all. This protection can be overcome by resetting a jumper on the computer’s
motherboard, though, so a determined intruder can get around it. What’s more, if data theft
is the goal, the intruder can simply steal your hard disk, thus bypassing your BIOS password.

Very high-security installations may encrypt all the data on the hard disk to minimize
the risk of data theft. This approach requires installing special software, such as loop-AES
(http://sourceforge.net/projects/loop-aes/), dm-crypt (http://www.saout.de/misc/
dm-crypt/), or True-Crypt (http://www.truecrypt.org).

Individual computers aren’t the only elements for which physical access is a threat. Your
local network infrastructure, if breached, can give intruders a way to access your local com-
puters, bypassing the protections afforded by your router and firewall software. If you use a
wired network exclusively, this risk is limited, but not nonexistent—somebody could break
in or abuse access provided to visitors to plant a small computer on your network.

Laptop Computer Security

Laptop computers present unusual security concerns. Such computers can be easily stolen,
particularly if they’re used in a portable manner rather than residing permanently in one
secure room or building. If you use a laptop computer in a public space, it’s also easy for
other people to see what you’re doing with it. Somebody who’s up to no good might even
be able to discern a password you type on a laptop in public, particularly if you type your
password slowly.

You may want to consider using extreme measures, such as full-disk encryption, on laptop
computers even when you wouldn’t employ such tools on workstations or servers. At the
very least, you should probably use different passwords on your laptops than on your work-
stations and servers.

The security picture for laptops isn’t entirely bleak, though. Cases are occasionally
reported of thieves being caught because of laptop features. For instance, one burglar
(reported in http://perens.com/works/articles/Burglar/) was caught when he used
a stolen laptop’s camera to take photos of himself that were subsequently uploaded by
an automatic backup utility to off-site storage maintained by the laptop’s true owner!

03843c12.indd 515 8/22/09 2:46:21 PM

516 Chapter 12 n Securing Linux

With the explosion of wireless networking, the risk of internal network exposure is
increased. Somebody can sit outside your building in a car and break into your local net-
work. You can minimize this risk by employing Wi-Fi Protected Access 2 (WPA2) encryp-
tion, or at least the earlier WPA encryption. Avoid the still earlier Wired Equivalent Privacy
(WEP) encryption, which is easily broken. For still greater protection, limit the things that
can be done via a wireless link. For instance, you might isolate your wireless systems to
their own subnet and use firewall rules to ensure they can do only those things they abso-
lutely must be able to do. Another option is to employ additional encryption on top of the
WPA2 encryption. You can use Secure Shell (SSH) to encrypt data transfers, for instance.
You can even set up a virtual private network (VPN) for your Wi-Fi connections, which
provides encryption and extra security over untrusted network links. Such configurations
are very advanced, though, and I don’t cover them in this book.

Stolen Passwords
Passwords are an integral part of Linux user accounts, so if a password (with username)
falls into the wrong hands, the password can give the intruder access to the computer. At
first glance, this might not seem to be a huge problem—after all, ordinary user accounts
have limited access. Unfortunately, if this access is combined with other problems (such as
those described in “Local Program Bugs”), it can translate into a more severe root com-
promise. Even without this access, unauthorized use of local user accounts can be abused
to send spam, to access other systems, to steal CPU time or other local resources, and to
access whatever sensitive documents the user might be able to read.

Chapter 5, “Managing Users,” describes password security in greater detail. Key points
include selecting good user passwords, changing passwords frequently, disabling unused
accounts, and educating users about the risks of divulging their passwords to others (both
directly and indirectly). Be sure that your users know to never give their passwords to others
or to write them down. Attackers sometimes masquerade as system administrators or others in
authority in an attempt to collect passwords, and they’ve even been known to go rummaging
through trash to locate discarded passwords or other sensitive data.

The root password is particularly sensitive. Thus, you should be
extremely diligent in selecting a good root password and in protecting
it from compromise.

Local Program Bugs
For the most part, bugs in computer programs are considered annoyances. When a spread-
sheet program crashes, you may sigh in frustration or scream in rage, but chances are the
computer on which the program is running won’t be damaged or compromised by this
crash. Some program bugs, though, are more serious, because they can be abused to give
an attacker increased access to the computer.

03843c12.indd 516 8/22/09 2:46:21 PM

Sources of Security Vulnerability 517

Most programs have limited access to truly sensitive files, data, and hardware. Thus,
most local program bugs are unlikely to be useful to attackers. The main risk comes from
local programs that run with enhanced privileges—that is, those that enable a set user
ID (SUID) or set group ID (SGID) bit. These features enable a program to run with the
privileges associated with the program’s owner or group, respectively. As described in
Chapter 3, “Managing Processes and Editing Files,” SUID and SGID bits are risky, in part
because bugs in these programs can turn into accesses by another user. As the other user
is often root, bugs in SUID programs in particular might be abused to alter other files,
including configuration files such as /etc/passwd. Thus, a clever attacker (or a not-so-
clever attacker who uses attack scripts created by others) can, at least in principle, abuse
local program bugs to acquire root privileges, effectively taking over the computer.

When an attacker gains root privileges on a computer, that system is
sometimes said to have been rooted.

Because of the security implications of SUID and SGID programs, you may want to check
your system to learn what programs set these bits. You can do so with the find command,
which is described in more detail in Chapter 2, “Using Text-Mode Commands.”

find / -perm +6000 -type f

The preceding command finds all the files on the computer (including any mounted
removable media or network filesystems) that have their SUID or SGID bits set. To search
for SUID files alone, change +6000 to +4000; to search for SGID bits alone, change +6000 to
+2000. The -type f parameter is important to keep directories from showing up in the out-
put; this parameter restricts the search to normal files. I’ve shown this example using the
root prompt (#) because only root is likely to be able to read all the files and directories on
the computer. Although this command can be run as an ordinary user, it will return several
permission denied errors and might miss some files as a result.

Local program bugs can be exploited only by people who have access to local programs.
Thus, they might at first seem to be of little interest if the computer has no local users aside
from administrative staff or if you’re certain local users can be trusted. Unfortunately, these
bugs can sometimes be exploited should an ordinary account be compromised (say, through
a stolen password). Thus, you should be concerned with such bugs even on servers with no
local users.

The main defense against local program bugs is keeping your system up-to-date. You
should use the Advanced Package Tools (APT), Yum, YaST2, or any other tools available
to you to keep your packages up-to-date—or at least, those that have been updated to fix
security bugs.

Server Bugs
Server programs, like local user programs, can contain bugs. Like local user programs,
these bugs are most serious when the program is run as root. Most servers don’t use SUID

03843c12.indd 517 8/22/09 2:46:22 PM

518 Chapter 12 n Securing Linux

bits to run as root, though; they’re launched via SysV startup scripts or a super server.
Thus, there’s no find command to locate server programs that will run as root. Instead,
you must review your SysV and super server configurations (as described in Chapter 4,
“Managing System Services”). Auditing your system to locate running servers can also
be helpful, as described later in “Checking for Open Ports.” As with local programs, you
should also be sure to keep all your server programs up-to-date or at least update them
when you hear of security issues that have been fixed.

Unlike local user program bugs, bugs in servers can cause security breaches even when
the system has no local user accounts. For instance, a bug in a Web server could, at least
theoretically, enable a cracker to run arbitrary code as root. That code could create a root-
equivalent account and launch a Telnet server, enabling the cracker to gain full root-level
shell access to the computer.

Denial-of-Service Attacks
A denial-of-service (DoS) attack is unusual because it needn’t involve an actual security
breach on your system (although it might). The term applies to any type of attack that denies
you the use of your equipment. One common type of DoS attack is a distributed denial-of-
service (DDoS) attack, in which the attacker uses many computers (typically hijacked in one
way or another long before) to flood the victim’s computer with useless data packets. The
result is that the victim’s computer cannot send or receive real data over the network. For a
Web server, mail server, or other computer that’s used mainly as a network server, the effect
is as devastating as if the attacker had broken into the computer and shut it down.

Other types of DoS attack do exist. For instance, if a server program crashes upon receiving
certain input, an attacker could simply send that input to the server, thus causing it to crash.
The attacker hasn’t broken into the computer, much less rooted it, but the disruption can be
quite severe. Particularly to large Internet service providers (ISPs), spam can look a lot like a
DoS attack—by consuming network resources, a spike in spam can cause disruption of the
ISP’s normal operation.

Some DoS attacks can be guarded against by keeping your system up-to-date. In particu-
lar, DoS attacks that target bugs in software can be thwarted by fixing those bugs. Other
DoS attacks, though, require coordination between you and your ISP. If you find that a server
is under a DDoS attack, for instance, you might not be able to do much about it on your
server; you must work with your ISP to identify the sources of the attack or some other way
to “fingerprint” the relevant packets and drop them before they’re sent to your system. That
said, some types of firewall configuration can mitigate the effects of a DDoS attack, either by
keeping the traffic off of your local network or by causing the server computer to ignore the
packets rather than reply to them. (Chapter 9, “Configuring Advanced Networking,” describes
iptables, the Linux firewall tool.)

Encryption Issues
Another type of vulnerability relates to encryption—or more precisely, the lack thereof.
Many network protocols send data in unencrypted form. The Simple Mail Transfer Protocol

03843c12.indd 518 8/22/09 2:46:22 PM

Sources of Security Vulnerability 519

(SMTP), the Hypertext Transfer Protocol (HTTP), Telnet, the File Transfer Protocol (FTP),
and many others do not encrypt data. In some cases, users can encrypt data to be sent via
these protocols. For instance, e-mail users can employ the GNU Privacy Guard (GPG;
http://www.gnupg.org) to encrypt their e-mail messages, but the protocols themselves are
unencrypted and often carry unencrypted data. This fact can become a threat because unen-
crypted data can be intercepted and read on any intervening system, and sometimes on com-
puters on the same network as the source or destination. If sensitive data, such as passwords
or credit card numbers, are passed over these unencrypted protocols, the result is a risk that
the sensitive information will fall into the wrong hands.

The solution to this problem is to use encrypted protocols or to add encryption when-
ever possible. For instance, you can retire a Telnet or FTP server program in favor of SSH,
which can do the same job as both Telnet and FTP but using encryption. Some protocols
have encrypted variants, such as the secure HTTP variant, HTTPS, which uses Secure
Sockets Layer (SSL) encryption. (Most Web pages that ask for credit card numbers or
other sensitive data use HTTPS, as indicated by the https:// in the URL. Most browsers
also display a closed padlock, another security icon, or a URL in a distinctive color when
accessing a site that employs encryption.)

Not all encryption is equal, though. Encryption methods vary in many ways, one of
the most important being the length of encryption keys. These are numbers that are used
to mathematically scramble the data being sent. Without the original key or a key that’s
matched to it, the data can’t be unscrambled. All other things being equal, longer keys are
superior to shorter ones. Precisely how long your key should be depends on the protocol,
the type of data you’re transmitting, and how time sensitive the information is. Breaking a
key might take a few minutes, a few months, or decades. As computers speed up, the time
to break encryption goes down. Currently, most encryption tools support 128-bit (16-byte)
or larger keys.

The Human Element
People can render even the best security plans useless, either through malice or through
ignorance. One scenario involves social engineering—an attacker simply asks a legitimate
user for a password or to otherwise bypass a security measure. Of course, the attacker
refrains from twirling a long mustache while making the request. Typically, the social engi-
neer poses as a system administrator or some other authority figure and asks for the infor-
mation in a way that seems plausible. The attacker may claim that a password database
must be reinitialized, for instance.

A particular type of social engineering known as phishing has become
quite common on the Internet at large. Phishing involves sending bogus
e-mail or setting up fake Web sites that lure unsuspecting individuals into
divulging sensitive financial or other information.

Users can also create security problems by leaving sensitive doors unlocked, by running
poorly designed scripts on servers, by installing unnecessary server programs, and so on.

03843c12.indd 519 8/22/09 2:46:23 PM

520 Chapter 12 n Securing Linux

Note that this list of activities includes some that are likely to be done by system admin-
istrators, as well as by ordinary users. Indeed, configuration errors are a major source of
security breaches—for whatever reason, too many administrators don’t take the necessary
steps to secure their computers.

The main way to guard against human errors that lead to compromise is education.
Reading this chapter, as well as the other security advice in this book, is a good start for a
Linux system administrator. Keeping up-to-date by reading security newsgroups and Web
sites (such as the CERT site, http://www.cert.org) is another big way to help. Educate
your users about the presence of social engineers and phishing.

Authenticating Users
Because user accounts, passwords, and related issues are so important in Linux security, I
describe these issues in some detail. Linux uses two subsystems, the Name Service Switch
(NSS) and Pluggable Authentication Modules (PAM) to manage accounts and authenticate
users, respectively. Understanding how these systems interact will enable you to modify how
they function to improve security or to enable more flexible network authentication systems.

Understanding How Linux Authenticates Users
As described in Chapter 5, Linux stores its account information in two files: basic account
information is held in /etc/passwd, while passwords and ancillary account information
reside in /etc/shadow. This is true for most stock Linux installations, but it’s also a simpli-
fication of a larger truth. In fact, Linux employs two subsystems to manage accounts and
authenticate users: NSS and PAM.

NSS is a name-management tool; it manages various names in Linux, such as computer
hostnames, network protocol names, and usernames. When you use a command that refer-
ences a username, such as usermod or passwd, NSS swings into action; it verifies that the
username you reference exists (or doesn’t exist) and translates the username into a user ID
(UID) number. NSS does the same thing for group names.

NSS is configurable. It’s controlled via the /etc/nsswitch.conf file. Of particular interest
to Linux authentication are the following lines from this file:

passwd: compat

group: compat

shadow: compat

These lines tell Linux what it should use for information that’s normally associated with
/etc/passwd, /etc/group, and /etc/shadow, respectively. The compat keyword tells NSS to
use the ordinary files, as described in Chapter 5. (Some distributions use the keyword files
instead of compat in this place.) You can change this keyword, or add others, to have NSS
use other tools instead of or in addition to the standard disk files.

03843c12.indd 520 8/22/09 2:46:23 PM

Authenticating Users 521

Verifying that an account exists is the first step in authentication. The second step is to
check the password that the user types using an authentication tool. In Linux, this task is
handled via PAM. The idea behind PAM is that every tool that requires authentication has
its own needs and so can be configured individually. This is done via files in /etc/pam.d,
as described in “Configuring PAM.” PAM enables you to set up different rules for authen-
ticating users for each login method—local text-mode console logins, local GUI console
logins, remote logins via SSH, e-mail retrieval via POP or IMAP, and so on. This feature
can be useful because you can set different conditions and actions. For instance, you might
want to ensure that users have valid home directories for console or remote text-mode or
GUI logins, but this requirement may not be important for users who only retrieve e-mail
via a POP mail server.

Configuring PAM
Unfortunately, PAM configurations vary substantially from one distribution to another. Typi-
cally, /etc/pam.d contains a large number of files, most of which are named after particular
servers or other login tools, such as gdm, login, passwd, sshd, and su. (Very old distributions
used the /etc/pam.conf file to configure PAM, but this style of PAM configuration has long
since gone the way of the dodo.) To better understand PAM, consider a typical PAM configu-
ration file, from /etc/pam.d/login on a Fedora system, shown in Listing 12.1.

Listing 12.1: A Typical PAM Configuration File

#%PAM-1.0

auth [user_unknown=ignore success=ok ignore=ignore default=bad]

pam_securetty.so

auth include system-auth

account required pam_nologin.so

account include system-auth

password include system-auth

pam_selinux.so close should be the first session rule

session required pam_selinux.so close

session required pam_loginuid.so

session optional pam_console.so

pam_selinux.so open should only be followed by sessions to be executed

in the user context

session required pam_selinux.so open

session required pam_namespace.so

session optional pam_keyinit.so force revoke

session include system-auth

session optional pam_ck_connector.so

03843c12.indd 521 8/22/09 2:46:23 PM

522 Chapter 12 n Securing Linux

A PAM configuration for a specific service includes four stacks, which are sets of PAM
modules that are called in a specific order to perform particular subtasks associated with
authentication. Listing 12.1 shows four stacks, as identified by the management group key-
words in the first column of the noncomment lines: auth, account, password, and session.
Each management group defines how PAM controls particular authentication tasks: auth
verifies passwords, account manages nonpassword access rules, password handles pass-
word maintenance, and session handles bookkeeping when users log in or out.

The second column in a PAM configuration file specifies how success or failure of each
module is to affect the authentication task. For instance, required indicates that the mod-
ule must succeed in its task, whereas optional means that the task can succeed or fail with
no particular repercussions. The include keyword means that another file in /etc/pam.d is
loaded at this point in the stack. (Some distributions use a directive called @include in the first
column rather than an include directive in the second column for this purpose.) Including
other files provides a way to easily modify the configuration of several authentication services:
you can modify only the included file rather than the files for every tool on the system.

The final column in a PAM configuration file is the name of the module, sometimes with
associated options. This is where configuring PAM gets tricky; lots of modules are available,
and some add-on packages ship with their own tools. For instance, Samba ships with the
Winbind tool for authenticating users against a Windows network account database, and
Winbind consists, in part, of a PAM module that you add to an account stack.

Wholesale changes to PAM configuration frequently involve the general-purpose authen-
tication stack—the one that’s referred to by any include directives in other files, such as
system-auth in Listing 12.1. You can add or change a module to affect most of the relevant
authentication tools.

Changing your PAM configuration is risky. If you get something wrong, you
can end up unable to log into the computer. If this happens, you may need
to use an emergency boot disk to restore your original files. Always make
backups of any files you change in /etc/pam.d so you can do this. You
should also leave a text-mode root console login running when you make
your changes. That way, if you test your changes and find they block all
access, you’ll be able to revert to your original configuration without boot-
ing your emergency disk.

Unfortunately, changing PAM stacks is potentially tricky. Every distribution does things
slightly differently, so a change that works well on one distribution may not work at all on
another. As a general rule, if you want to add a new authentication tool, you must add a line
with the new module to the auth and account stacks. This line is typically typed sufficient
and appears immediately before or after the pam_unix.so module. In some cases you may
need to alter the pam_unix.so line or make other changes.

When using network or other unusual authentication methods, you’ll still need to create
home directories for these users. If you want this to be done automatically, try adding the
following line to the end of the session stack:

session required pam_mkhomedir.so skel=/etc/skel umask=0022

03843c12.indd 522 8/22/09 2:46:23 PM

Authenticating Users 523

This PAM module creates a home directory for users who don’t already have one. This
option can be very handy when authenticating against Winbind, NIS, LDAP, or other net-
work servers that maintain account databases but that don’t create home directories on the
Linux systems that use the authentication server.

Using Network Authentication
One means of extending Linux authentication is to enable a network server to hold Linux
account information. Chapter 10, “Configuring Network Servers I,” and the preceding
section, “Configuring PAM,” mentioned Winbind, which enables you to take advantage
of a Windows domain server to provide you with account information. A couple more
approaches are the Network Information Service (NIS) and the Remote Authentication
Dial In User Service (RADIUS) tools.

Using NIS
NIS is a protocol that’s designed to simplify user authentication and related services on a
network of multiple Unix or Linux systems. There are several variants of NIS, such as NIS+
and NIS YP and Switch (NYS). The original NIS was once called Yellow Pages (YP), but
that’s a registered trademark in some areas, so the name was changed. Nonetheless, most
NIS utilities and configuration files still include yp in their names.

Some distributions let you configure NIS during system installation. You may be
required to enter the NIS domain name (which may be different from your DNS domain
name) and the address of the NIS server. If you want to use NIS after installing the OS,
your task is a bit trickier. Your distribution might provide GUI tools to help the process, or
you might need to configure the system manually. You should begin by installing the NIS
packages. For an NIS client, the ypbind package is the most important one, but on most
distributions it depends on other packages, such as yp-tools.

NIS uses both clients and servers. The NIS server holds network account
information, and the NIS clients use that information to authenticate users.
This section describes the basics of NIS client configuration and the use
of certain tools for NIS account maintenance. To learn about NIS server
configuration, consult its documentation or a book on the subject, such as
Hal Stern, Mike Eisler, and Ricardo Labiaga’s Managing NFS and NIS, 2nd
Edition (O’Reilly, 2001).

The ypbind NIS package’s main configuration file is /etc/yp.conf. This file’s primary
purpose is to point the NIS tools at an NIS server. The default file normally presents several
possible ways to do this in comments. These methods differ in the amount of information
you as an administrator have. For instance, if you know the name of your NIS domain and
the name of the NIS server, you might use this format:

domain NISDOMAIN server NISSERVER

03843c12.indd 523 8/22/09 2:46:24 PM

524 Chapter 12 n Securing Linux

At the opposite extreme is a line that contains a single word: broadcast. This tells the
tools to send out a broadcast query for a suitable NIS server. You should consult your net-
work administrator to learn what option is best for your network.

Once you’ve told the NIS tools about your server, you must also configure Linux to use
NIS. This can be accomplished by editing the /etc/nsswitch.conf file, which tells Linux
what tools to use for name resolution, account information, and so on. A configuration that
relies heavily on NIS is shown in Listing 12.2. If you want to use NIS only for user authen-
tication, you can simply change the passwd, group, and shadow lines to add nis to the exist-
ing options.

Listing 12.2: Sample /etc/nsswitch.conf File for NIS

passwd: compat

group: compat

For libc5, you must use shadow: files nis

shadow: compat

passwd_compat: nis

group_compat: nis

shadow_compat: nis

hosts: nis files dns

services: nis [NOTFOUND=return] files

networks: nis [NOTFOUND=return] files

protocols: nis [NOTFOUND=return] files

rpc: nis [NOTFOUND=return] files

ethers: nis [NOTFOUND=return] files

netmasks: nis [NOTFOUND=return] files

netgroup: nis

bootparams: nis [NOTFOUND=return] files

publickey: nis [NOTFOUND=return] files

automount: files

aliases: nis [NOTFOUND=return] files

Once this is set up, you should start or restart the ypbind daemon, which must be run-
ning at all times on the NIS client. Client-side tools contact this daemon for information
that’s normally stored in /etc/passwd and elsewhere, the ypbind daemon contacts the NIS
server, and the NIS server delivers the requested information. Normally, you start ypbind
via its SysV startup script.

Once NIS is up and running, you can manage the system with an assortment of com-
mands whose names begin with yp. For instance, yppasswd changes a password much as
passwd does, but yppasswd changes the password on the NIS server. On the server system,
ypinit initializes the user account database.

03843c12.indd 524 8/22/09 2:46:24 PM

Authenticating Users 525

Using LDAP
The Lightweight Directory Access Protocol (LDAP) is similar to NIS in some ways, but it’s
more sophisticated and general in purpose. A directory, in the context of LDAP, is a type of
database. An LDAP server can hold data in its directories on any number of things, including,
of relevance to this chapter’s topic, account information for Linux computers.

Although configuring a Linux system as an LDAP server is well beyond the scope of this
chapter, configuring Linux as an LDAP client for authentication is much simpler. In brief,
you must configure both NSS and PAM to use LDAP in addition to (or instead of) the regular
local account files.

You must first install the LDAP authentication packages. Details differ from one distribu-
tion to another, but package names are likely to be pam_ldap and nss_ldap, or something
similar. (Sometimes lib comes at the start of these package names.) Locate and install these
packages using your distribution’s package tools.

With the packages installed, you should edit the /etc/ldap.conf file. Look for the host
and base options in this file, and set them appropriately for your network:

host 172.24.21.102

base dc=luna,dc=edu

The host line specifies the hostname or IP address of the LDAP server, and base specifies
the base of the LDAP directory tree in which the account information resides. If you don’t
know these values, ask the person who maintains your LDAP server.

To configure NSS to use LDAP, you must edit /etc/nsswitch.conf, as described earlier
in “Using NIS.” Chances are adding ldap to the ends of the passwd, shadow, and group
lines will do what you want:

passwd: compat ldap

shadow: compat ldap

group: compat ldap

PAM configuration is trickier, since the details vary from one distribution to another,
as described earlier in “Configuring PAM.” You should add a reference to pam_ldap.so to
both the auth and account stacks for any service that should use LDAP:

auth sufficient pam_ldap.so try_first_pass

account sufficient pam_ldap.so

With these changes in place, users should be able to log in using accounts that are
defined on the LDAP server.

Understanding RADIUS
RADIUS is a network authentication protocol that’s designed as a single authentication tool
for several types of network access. A RADIUS server frequently has network portals as
clients—dial-up network servers, wireless access points (WAPs), and so on. Each of these
clients needs to authenticate users of the network as a whole, and to simplify overall network

03843c12.indd 525 8/22/09 2:46:24 PM

526 Chapter 12 n Securing Linux

configuration, a RADIUS server is configured to centralize the authentication tasks associ-
ated with the various access methods.

RADIUS may in turn use another network tool, such as an LDAP server, to hold its
authentication data. The result can be a complex configuration. Despite this complexity,
RADIUS can be worth using on large networks with multiple methods of access that require
authentication.

You can run a RADIUS server, such as FreeRADIUS (http://freeradius.org), on Linux.
Because of the complexity and sensitivity of RADIUS configuration, I don’t describe it in any
detail here. For the purpose of the Linux+ exam, you should understand what RADIUS is. If
you need to actually install and use it, I recommend you consult its documentation.

Using Two-Factor Authentication
Ordinary Linux authentication involves asking the user for a username and a password.
This approach is fine for most installations; however, in some cases, something stronger is
required. In these cases, you may resort to two-factor authentication. This term refers to
any authentication system that uses two different types of authentication data. These types
include the following:

Information the user has, such as a username, a password, or the user’s favorite colorÛn

Possessions the user has, such as a key or ID badgeÛn

Features that describe the user, such as fingerprints or retina printsÛn

The first category of information is obviously the easiest to obtain with Linux. You can
use a physical key on a computer to provide a second authentication factor, but of course
such obstacles are easy to overcome if an intruder has stolen the computer. Biometrics, such
as fingerprint scanners, are used in some high-security installations to provide additional
security. Although such devices can be obtained from various sources, you must track
down appropriate Linux software to integrate them into a PAM authentication stack.

Using GNU Privacy Guard (GPG)
Sometimes you may want to encrypt e-mail messages or files sent to another person via some
other means. E-mail was never designed as a secure data transfer tool, and most e-mail mes-
sages pass through several e-mail servers and network routers. A compromise at any one of
these points enables a cracker to sniff e-mail traffic and extract sensitive data, such as credit
card or Social Security numbers. Encrypting your e-mail keeps such details private.

The usual tool for encrypting e-mail is the GNU Privacy Guard (GPG or GnuPG;
http://www.gnupg.org) package. This package is an open source reimplementation of the
proprietary Pretty Good Privacy (PGP). In addition to encrypting entire messages, GPG
enables you to digitally “sign” messages. Used in this way, messages can be read by recipi-
ents who lack the GPG software or appropriate keys, but those who have these tools can
verify that the contents haven’t been tampered with.

03843c12.indd 526 8/22/09 2:46:24 PM

Using GNU Privacy Guard (GPG) 527

Generating and Importing Keys
To begin using GPG, you should first install the software. Chances are your distribution
includes it as a standard package, so you can install it that way. Once this is done, you must
generate keys. GPG keys are conceptually similar to SSH keys: you need a private key (aka
a secret key) and a public key. As the names imply, the private key is kept private, but the
public key is publicly available. You can sign a message with your private key, and readers
can verify it with your public key; or you can encrypt a message with another user’s public
key, and it can be decrypted only with that user’s private key.

To generate keys, you use the gpg program with its --gen-key option:

$ gpg --gen-key

The program will ask you a series of questions. In most cases, answering with the
defaults should work well, although you may have to type in your full name and e-mail
address. The keys are stored in the ~/.gnupg directory.

Once you’ve generated your keys, you can export your public key:

$ gpg --export name > gpg.pub

This command saves the public key associated with name in the file gpg.pub. You can use
your e-mail address as name. (If you create additional public keys or add others’ public keys,
you can specify their names to export those keys.) You can then make your key available to
others so that they may encrypt e-mail messages sent to you or verify your signed messages.
Adding the --armor option produces ASCII output, which may be preferable if you intend
to e-mail the public key. You can make the file accessible on your Web site, transfer it as an
e-mail attachment, or distribute it in various other ways.

To encrypt e-mail you send to others, you must obtain their public keys. Ask your
correspondents how to obtain them. Once you’ve done so, you can add their keys to
your keyring (that is, the set of keys GPG maintains):

$ gpg --import filename

This command adds filename to your set of public keys belonging to other people.

Although public keys are, by definition, public, there are security concerns
relating to them. Specifically, you should be sure you use a legitimate pub-
lic key. Hypothetically, a miscreant could publish a fake public key in order
to obtain sensitive communications or fake a signed e-mail. For instance,
George might distribute a fake GPG public key, claiming it to be from Harold.
George could then either sign messages that appear to be from Harold or
intercept e-mail sent to Harold that was encrypted using the fake key. Thus,
you should use as secure a communication method as possible to distribute
your public key and to receive public keys from others.

03843c12.indd 527 8/22/09 2:46:25 PM

528 Chapter 12 n Securing Linux

Once you’ve created your own key and, perhaps, imported keys from others, you can see
what keys are available by using the --list-keys option to gpg:

$ gpg --list-keys

/home/gjones/.gnupg/pubring.gpg

pub 1024D/190EDB2E 2008-09-05

uid George A. Jones <gjones@example.com>

sub 2048g/0D657AC8 2008-09-05

pub 1024D/A8B2061A 2008-09-05

uid Jennie Martin <jennie@luna.edu>

sub 2048g/4F33EF6B 2008-09-05

The uid lines contain identifiers you’ll use when encrypting or decrypting data, so you
should pay particular attention to that information.

Encrypting and Decrypting Data
To encrypt data, you use gpg with its --out and --encrypt options and, optionally,
--recipient and --armor:

$ gpg --out encrypted-file --recipient uid --armor --encrypt original-file

You can use the UID from a gpg --list-keys output, or just the e-mail address por-
tion, as the uid in this command. If you haven’t signed the recipient’s key, you’ll have to
verify that you want to use that key. The result is a new file, encrypted-file, which holds
an encrypted version of original-file. If you omit the --armor option, the resulting file is
a binary file; if you send it as e-mail, you’ll need to send it as an attachment or otherwise
encode it for transmission over the text-based e-mail system. If you include the --armor
option, the output is ASCII, so you can cut and paste the encrypted message into an e-mail
or send it as an attachment.

If you receive a message or file that was encrypted with your public key, you can reverse
the encryption by using the --decrypt option:

$ gpg --out decrypted-file --decrypt encrypted-file

You’ll be asked to enter your passphrase. The result should be a decrypted version of the
original file.

In practice, GPG can be even easier to use than this description may make you think.
GPG is primarily used to secure and verify e-mail, so most Linux e-mail clients provide GPG
interfaces. These programs call gpg with appropriate options to encrypt, sign, or decrypt
messages. Details vary from one e-mail client to another, so you should consult your pro-
gram’s documentation for details.

03843c12.indd 528 8/22/09 2:46:25 PM

SELinux 529

Signing Messages and Verifying Signatures
As noted earlier, GPG can be used to sign messages so that recipients know they come from
you. To do so, use the --sign or --clearsign option to gpg:

$ gpg --clearsign original-file

The --sign option creates a new file with the same name as the original, but with .gpg
appended to the filename. This file is encrypted using your private key so that it may be
decrypted only with your public key. This means that anybody with your public key may
read the message, but anybody who can read it knows it’s from you. The --clearsign option
works similarly, but it leaves the message text unencrypted and merely adds an encrypted sig-
nature that can be verified only by using your public key. The --clearsign option creates a
file with a name that ends in .asc.

If you receive a signed message, you can verify the signature using the --verify option
to gpg:

$ gpg --verify received-file

If any of the keys in your keyring can decode the message or verify the signature, gpg
displays a Good signature message. To read a message that was encrypted via the --sign
option, you must decrypt the message via the --decrypt option, as described earlier.

SELinux
Security Enhanced Linux (SELinux) is a set of extensions to Linux’s usual security model
designed to improve the overall security of the system. Using SELinux, you can restrict the
actions that individual users can perform in a very fine-tuned manner. This can be helpful
in enabling some users to perform just a subset of normal administrative tasks.

Principles of SELinux
SELinux extends the Linux security system by introducing the concept of a mandatory
access control (MAC), which is a set of rules that restricts what users, including root, may
do with files. Under SELinux, every user is part of a domain, which is a set of users who
may be granted access to each others’ files. SELinux also enables multiple administrative
users, who may be in different domains. Thus, you could have one administrator who’s
responsible for maintaining Apache and another who’s responsible for maintaining X. If
these administrators are in different domains, the Apache administrator can’t damage the
X configuration, even accidentally. This configuration has obvious security benefits on a
system with multiple administrators.

In addition to these features, processes are assigned to contexts, which restrict what the
process may do. In practice, this means that the Apache process (for example) can access

03843c12.indd 529 8/22/09 2:46:25 PM

530 Chapter 12 n Securing Linux

Apache-related files only. Thus, if a bug exists in Apache, the server’s context limits the
damage that Apache can do, either accidentally or if the bug is abused by a cracker. The
Apache context is unlikely to grant it access to /etc/passwd, for instance.

SELinux requires support in the Linux kernel and in many programs and support tools
outside of the kernel. If you want to use it, you should first ensure that your kernel includes
SELinux support. You can then install relevant SELinux packages, whose names are likely
to start with the string selinux. You may need to install several packages, including one or
more policy packages, which include the rules that define MACs, domains, contexts, and so
on, to make a working SELinux system.

SELinux can be confusing, in part because it reuses so many terms.
MAC can also refer to media access control, a type of low-level network
address; and the word domain is used in many other network contexts,
such as the Domain Name System (DNS) or a Microsoft Windows domain.

In practice, SELinux can be very complex and confusing. It also degrades the system’s
performance slightly because the kernel must perform additional security checks. If the
default policies provided with your distribution aren’t suitable for your installation, you’ll
have a hard time modifying them—and this task is complex enough that I can’t cover it in
this book. (The Linux+ exam also doesn’t cover SELinux policy configuration.)

Configuring SELinux Running Modes
Once an SELinux kernel is running and the support tools are installed, SELinux will run in
one of three modes:

Disabled The SELinux extensions are turned off completely.

Permissive The SELinux extensions are turned on enough to log results, but the system
doesn’t actually restrict users’ actions. This can be a good mode for testing your SELinux
configuration prior to bringing a system completely online.

Enabled The SELinux extensions are fully operational, restricting accesses based on your
SELinux policies.

You can switch your SELinux modes in several ways. One is to use the /selinux/
enforce file, which is part of an SELinux-specific virtual filesystem (/selinux). You
can store a value of 0 or 1 in this file to switch between permissive and enabled modes,
respectively:

echo 1 > /selinux/enforce

If SELinux is enabled, you’ll need to be in the sysadm_r role to modify
files in /selinux. You can use the newrole command to switch roles, as
in newrole -r sysadm_r.

03843c12.indd 530 8/22/09 2:46:26 PM

Security Auditing 531

Some distributions provide a setenforce command that accomplishes the same task:

setenforce 1

You can permanently set the running mode on some distributions, such as Fedora and
Red Hat, by editing /etc/selinux/config. Look for the SELINUX option, and set it to
enforcing, permissive, or disabled, as in the following example:

SELINUX=enforcing

Some distributions don’t provide the /etc/selinux/config file. On these distributions,
editing your boot loader’s boot options will usually enable or disable SELinux. In particu-
lar, add selinux=0 to disable SELinux or selinux=1 to enable it. In GRUB (/boot/grub/
menu.lst or /boot/grub/grub.conf), this might look like the following:

kernel /boot/bzImage-2.6.19 ro root=/dev/hda1 nousb selinux=0

Security Auditing
From time to time, you should check your system for suspicious configurations. Such secu-
rity auditing can detect intrusions that might have slipped past other detection tools and
procedures. It can also catch sloppy configurations that might lead to trouble in the future.
Examples of things you should check are scanning for open ports, reviewing your local
accounts, and reviewing the installed files and packages.

Checking for Open Ports
Open ports are those that respond to connection attempts—that is, servers are running on
the ports. Ideally, the only open ports on a system will be those associated with servers you
intend to run. Sometimes, though, a port will be open because of an accidental misconfigu-
ration or because a cracker has broken into your system. Thus, scanning for open ports is
an important security precaution. Two methods of spotting unnecessary servers are to use
local network activity tools and to use a network scanner.

Using Local Network Activity Tools
One tool that can be helpful in spotting stray servers is netstat. This program is the Swiss
Army knife of network status tools; it provides many different options and output formats to
deliver information on routing tables, interface statistics, and so on. For purposes of spotting
unnecessary servers, you can use netstat with its -a and -p options, as shown here:

netstat -ap

Active Internet connections (servers and established)

03843c12.indd 531 8/22/09 2:46:26 PM

532 Chapter 12 n Securing Linux

Proto Recv-Q Send-Q Local Address Foreign Address State ➥

PID/Program name

tcp 0 0 *:ftp *:* LISTEN ➥

690/inetd

tcp 0 0 teela.rodsbooks.com:ssh nessus.rodsbooks.:39361 ESTABLISHED ➥

787/sshd

I’ve trimmed most of the entries from the preceding netstat output to
make it manageable as an example.

The Local Address and Foreign Address columns specify the local and remote addresses,
including both the hostname or IP address and the port number or associated name from
/etc/services. The first of the two entries shown here isn’t actively connected, so the local
address, the foreign address, and the port number are all listed as asterisks (*). This entry does
specify the local port, though—ftp. This line indicates that a server is running on the ftp port
(TCP port 21). The State column specifies that the server is listening for a connection. The
final column in this output, under the PID/Program name heading, indicates that the process
with a process ID (PID) of 690 is using this port. In this case, it’s inetd.

The second output line indicates that a connection has been established between
teela.rodsbooks.com and nessus.rodsbooks.com (the second hostname is truncated).
The local system (teela) is using the ssh port (TCP port 22), and port 39361 is used on
the client (nessus). The process that’s handling this connection on the local system is sshd,
running as PID 787.

It may take some time to peruse the output of netstat, but doing so will leave you
with a much-improved understanding of your system’s network connections. If you spot
servers listening for connections that you didn’t realize were active, you should investi-
gate the matter further. Some servers may be innocent or even necessary. Others may be
pointless security risks.

When you use the -p option to obtain the name and PID of the process
using a port, the netstat output is wider than 80 columns. You may want
to open an extra-wide xterm window to handle this output, or you may
want to redirect it to a file that you can study in a text editor capable of
displaying more than 80 columns. To quickly spot servers listening for
connections, pipe the output through a grep LISTEN command to filter
on the listening state. The result will show all servers that are listening
for connections, omitting client connections and specific server instances
that are already connected to clients.

Using Remote Network Scanners
Network scanners, such as Nmap (http://www.insecure.org/nmap/) or Nessus (http://
www.nessus.org), can scan for open ports on the local computer or on other computers. The

03843c12.indd 532 8/22/09 2:46:27 PM

Security Auditing 533

more sophisticated scanners, including Nessus, will check for known vulnerabilities, so they
can tell you whether a server might be compromised should you decide to leave it running.

Network scanners are used by crackers for locating likely target systems,
as well as by network administrators for legitimate purposes. Many organi-
zations have policies forbidding the use of network scanners except under
specific conditions. Therefore, you should check these policies and obtain
explicit permission, signed and in writing, to perform a network scan.
Failure to do so could cost you your job or even result in criminal charges,
even if your intentions are honorable.

Nmap can perform a basic check for open ports. Pass the -sT parameter and the name of
the target system to it, as shown here:

$ nmap -sT teela.rodsbooks.com

Starting nmap V. 3.55 (www.insecure.org/nmap/) at 2004-12-21 12:11 EDT

Interesting ports on teela.rodsbooks.com (192.168.1.2):

(The 1581 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

22/tcp open ssh

As with the output of netstat shown in “Using Local Network Activity
Tools,” the preceding output for Nmap has been trimmed for brevity’s sake.

This output shows two open ports—21 and 22, used by ftp and ssh, respectively. If
you weren’t aware that these ports were active, you should log into the scanned system
and investigate further, using netstat or ps to locate the programs using these ports, and
if desired, shut them down. The -sT option specifies a scan of TCP ports. A few servers,
though, run on UDP ports, so you need to scan them by typing nmap -sU hostname. (This
usage requires root privileges, unlike scanning TCP ports.)

Nmap is capable of more sophisticated scans, including “stealth” scans that aren’t likely
to be noticed by most types of firewalls, ping scans to detect which hosts are active, and
more. The Nmap man page provides details.

Nessus is a more sophisticated network scanner than Nmap. It comes as separate client
and server components; the client enables you to control the server, which does the actual
work. You’ll typically need to install the two parts separately, so check your distribution’s
package manager to find and install them both. You can install the server on one system
and the client on another, if you like.

Once Nessus is installed, you must create a Nessus account. This is an account in Nessus
itself, not a regular Linux account. Type nessus-adduser on the Nessus server system. The

03843c12.indd 533 8/22/09 2:46:27 PM

534 Chapter 12 n Securing Linux

program will ask a series of questions. Answer them, and when the program finishes, you’ll
be able to run the Nessus client to perform network scans.

To run the client, type nessus on the client system. (You can run the Nessus client as an
ordinary user). The result resembles Figure 12.1. You should begin with the Nessusd Host
tab; enter the hostname of the Nessus server in the Nessusd Host field. You can then enter the
username and password for the account you created with nessusd-adduser. When you click
Log In, the program presents a few dialog boxes with security information. That done, the
program switches to the Plugins tab, which you can use to enable or disable various tests. The
remaining tabs provide a wide array of advanced options for controlling the port scan. Peruse
these options and change them as you see fit, but if you’re not sure what something does, the
default is a good starting point.

F i gu r e 12 .1 Nessus provides a GUI to facilitate the performance of complex
network scans.

The Scan Options tab deserves mention because you can set a port range to scan on
this tab. Most servers run on the lowest 1024 ports, so scanning from 1–1024 is sufficient
to detect most servers. A few servers run on higher ports, though. This is true of X (ports
6000–6099) and VNC (ports 5800–5999), to name a couple. A cracker might run a server
on a nonstandard port, too, so if you want to detect abuse rather than just misconfigura-
tion, you must scan all ports. The Target(s) field on the Target tab enables you to specify
the computers you want to scan. You can list multiple targets by separating their hostnames
by commas; Nessus will then scan them simultaneously.

Once you’ve set all the Nessus options, click Start the Scan. Nessus begins the port
scan, which can take several minutes, or sometimes much longer, depending on the options

03843c12.indd 534 8/22/09 2:46:27 PM

Security Auditing 535

you’ve selected and the speed of the network connections between the Nessus server and
the target systems. Nessus presents a summary screen as the scan is in progress. When the
scan completes, Nessus presents its report, as shown in Figure 12.2. You can browse each
scanned computer’s open ports to learn what risks are associated with each one. You can
look up many servers in this book or in other documentation to learn how to disable them,
if you decide to do so.

F i gu r e 12 . 2 The Nessus scan report summarizes open ports and describes the
nature and severity of the risks associated with each open port.

When you use a network scanner, you should consider the fact that the ports you see
from your test system may not be the same as those that might be visible to an attacker. This
issue is particularly important if you’re testing a system that resides behind a firewall from
another system that’s behind the same firewall. Your test system is likely to reveal accessible
ports that would not be accessible from the outside world. On the other hand, a cracker on
your local network would most likely have access similar to your own, so you shouldn’t
be complacent because you use a firewall. Nonetheless, firewalls can be important tools for
hiding servers without shutting them down.

Reviewing Accounts
Your computer’s accounts are a potential source of vulnerability. If accounts go unused but
remain active, an intruder could conceivably obtain a password and break in. Even system
accounts (those used by Linux itself to run servers or for purposes other than managing
ordinary users) can pose a threat. An unused system account could be converted into a
login account and used by an intruder, possibly escaping notice.

03843c12.indd 535 8/22/09 2:46:28 PM

536 Chapter 12 n Securing Linux

From time to time, you should study your local accounts by perusing the /etc/passwd and
/etc/shadow files. These files and their contents are described in more detail in Chapter 5.
Pay particular attention to the following security issues:

Unknown accounts Most Linux systems have many system accounts, and you might not
remember them all, so don’t jump to conclusions, but if you see an account you don’t rec-
ognize, you should investigate it. Check its characteristics for any suspicious features, com-
pare your current file with a backup made after system installation, and check log files for
activity involving the account.

Accounts with a UID of 0 Linux uses a UID of 0 to represent root, so any account with
a UID of 0 other than root is highly suspicious. Attackers sometimes create such accounts
or change the UID of an existing account to 0 in order to give themselves root privileges
on a system.

System accounts with passwords System accounts, such as daemon and cron, are frequently
used by Linux to run servers or other tools without root privileges. Ordinarily, these accounts
don’t need passwords, so if you see a password for such an account in /etc/shadow, it’s very
likely to be an indication of an intrusion. If you use shadow passwords, all accounts have an
x in the /etc/passwd file’s password field, so you must check the /etc/shadow file. Accounts
without passwords are indicated by an exclamation mark or an asterisk in the password field,
which is the second field in this file.

Login shells The login shell is the final field in the /etc/passwd file. Most system accounts
use /bin/false or /dev/null as a login shell, although there are a few exceptions. Most
notably, the shutdown account uses /sbin/shutdown, the halt account uses /sbin/halt,
and root uses a normal shell (typically /bin/bash). A few server packages create accounts
with normal shells as login programs, too, although most don’t. This practice varies with
the server program and distribution. As a general rule, though, you should be suspicious of
system accounts with login shells other than /bin/false or /dev/null.

One of the best ways to review your accounts is to keep backups of /etc/passwd and
/etc/shadow on a write-protected removable medium, such as a write-protected floppy disk.
You can then mount that disk and compare the backup to your on-disk file using diff:

diff /etc/passwd /mnt/floppy/passwd

diff /etc/shadow /mnt/floppy/shadow

If you haven’t added, deleted, or modified accounts, these commands should return no
output lines. If accounts have been changed, diff will summarize the changes. Note that
changes to /etc/shadow include password changes, so this comparison is likely to turn up
many changes on a multiuser system, particularly if users are diligent about changing their
passwords on a regular basis.

Password files stored on floppy disks pose a security threat themselves. They
should be kept under lock and key—ideally in a safe that can be accessed
only by system administrators who can ordinarily read the original files.

03843c12.indd 536 8/22/09 2:46:28 PM

Intrusion Detection 537

Verifying Installed Files and Packages
A final method of security auditing is verifying installed files and packages. One approach
to doing this is to use a package tool such as RPM, as described later in “Using Package
Manager Checksums.” This procedure will help look for sloppily replaced program files. It
won’t help you spot changes to files in programs you didn’t install via your package manager,
though. It’s also overly sensitive to changes to configuration files, which you often alter your-
self after installing the package. Tripwire (described later in “Using Tripwire”) is another tool
that can be used in this way. It’s more helpful in spotting changes to key configuration files,
but it’s more of a hassle to use.

Another approach you can take is to keep backups of known-good configuration files
on read-only media. You can then compare your current configuration files to the backups
from time to time. Using diff, as described in “Reviewing Accounts,” can be an effective
way to do this.

Intrusion Detection
Even the best-configured computer has vulnerabilities. With luck, these vulnerabilities
won’t be exploited, but you shouldn’t make that assumption. Instead, you should actively
search for evidence of intrusions on your systems. That way, you’ll at least be alerted to an
intrusion and be able to take appropriate steps soon after the intrusion occurs. “Appropri-
ate steps” are usually a complete reinstallation or restore from a clean backup, followed by
tightening security around suspected points of entry. Once a system has been rooted, you
can’t completely trust anything on that system, and restoring everything from a known-
clean source is usually easier than checking each and every file for signs of tampering.

Several methods of detecting intruders exist. These range from being alert to suspicious
activities to using assorted programs that can monitor network activity or check for changes
in critical files.

Symptoms of Intrusion
One way of detecting intrusion is to notice abnormalities in your system’s operation. This
approach is unreliable, but it’s also the most general approach and might therefore succeed
even if the intruder has a way to defeat more specific monitoring tools you might employ.
The basic approach sounds simple: know how your system normally behaves, and be alert
to changes in this behavior. Symptoms of intrusion can include the following:

System slowdown Intruders might run programs on your computer that cause it to respond
more slowly than usual to its normal workload.

Increased network activity Just as intruders can consume CPU time, they can consume net-
work resources. In fact, one reason crackers break into computers is to use your network con-
nectivity. They may be using your system to launch a DDoS attack against others, to distribute
files on an illegal FTP server, or for other purposes that consume a lot of network bandwidth.

03843c12.indd 537 8/22/09 2:46:28 PM

538 Chapter 12 n Securing Linux

Changed program behavior Crackers often replace standard system tools with their own
customized versions. These tools may behave slightly differently from the originals, so
changes in the way common utilities behave (such as text that’s output differently or a com-
plaint that an option that worked yesterday is no longer working) can be a clue to a system
compromise.

System or software crashes If the computer, or just individual programs, begin crashing
for no apparent reason, it could be because they’ve been modified by an intruder. In some
sense, this is just a corollary of the changed program behavior symptom, but it’s more
severe.

Mysteriously altered data files If ordinary data files are changed without your having
changed them, one possible explanation is an intrusion. In fact, depending on the nature of
the change, it may be a flashing neon sign. For instance, intruders sometimes break in with
the exclusive goal of defacing a Web site, so such a change is a virtual guarantee of system
compromise.

Missing or corrupted log files Intruders often try to cover their tracks by altering or delet-
ing log files. (Chapter 4 covers log files in more detail.) Therefore, such changes should raise
a red flag.

Off-site complaints If the administrator of another site contacts you and complains of
attacks from your site or other suspicious behavior, it may be that your computer has been
compromised and is being used to attack another system.

Local user complaints Local users can be alert to certain types of problems, such as sys-
tem sluggishness and program behavior changes. Listen to their complaints, and investigate
them promptly.

The problem with using any of these symptoms is that they can all have causes other
than an intrusion. A local program might be running out of control, consuming CPU time
or network bandwidth; programs can behave differently or crash because of legitimate
program upgrades, emerging hardware defects, or changed environment settings; data files
and log files can be altered because of legitimate activities of other users or disk errors; off-
site complaints can be generated in error or might be traced to rogue local users who have
not gained inappropriate local access; and local user complaints can reflect any of these or
many other nonsecurity problems. Nonetheless, being alert to these clues can lead you to
investigate the problem and fix it, whether it turns out to be a security problem or not.

Using Snort
Snort (http://www.snort.org) is a powerful packet sniffer program—a program that
monitors packets directed to its host computer (or to other computers on its local network
segment). Packet sniffers are very powerful network diagnostic tools because they enable
you to dig into the “guts” of a network transaction. The knowledge you can gain from such
investigations can help you diagnose problems of all sorts, but it requires extensive knowl-
edge of the underlying protocols.

03843c12.indd 538 8/22/09 2:46:28 PM

Intrusion Detection 539

Packet sniffers are also popular tools among crackers. Packet sniffers can
help intruders discover users’ passwords and other sensitive data. In fact,
using a packet sniffer can be grounds for disciplinary actions in many orga-
nizations. Thus, although Snort is a very good and legitimate tool when
used properly, you shouldn’t install and use Snort unless you have the
authorization to do so.

In addition to functioning as a generic packet sniffer, Snort can function in a more
sophisticated role as an intrusion detection system (IDS). An IDS is a program that moni-
tors network traffic for suspicious activity and alerts an appropriate administrator to warn-
ing signs. Put another way, an IDS is a packet sniffer that can recognize activity patterns
that indicate an attack is underway.

The first step to installing Snort is deciding where to place it. Figure 12.3 shows a
couple of possible locations. Snort System #1 in this figure can monitor traffic to or from
the Internet at large, while Snort System #2 can monitor local traffic. Both have a chance
of catching outside attacks against specific local computers, but System #1 will be sensitive
to attacks that are blocked by the firewall, while System #2 will be sensitive to purely local
attacks. Also, System #2 requires either a hub rather than a switch locally or a switch that’s
programmed to echo all traffic to Snort System #2; a switch without such configuration will
hide most traffic between the local computers from the Snort system, rendering it useless.

Most modern Linux distributions ship with Snort, so you should be able to install it
in the usual way. Once installed, Snort is configured through the /etc/snort/snort.conf
file. (Some distributions don’t provide a file of this name but do provide a file called snort
.conf.distrib or some other variant. You can copy or rename this file and use it as a tem-
plate that you can modify.) A default snort.conf file may work acceptably, but you may
want to customize several variables, such as $HOME_NET, $SMTP_SERVERS, and $HTTP_SERVERS.
The first of these specifies the IP addresses to be monitored. Others define the IP addresses
of particular types of servers. The default values tell Snort to monitor all IP addresses, which
may be fine, since you may want Snort to watch all traffic on its local network, which is all it
will ordinarily be able to see.

Some distributions place a series of supplementary Snort configuration files, with names
that end in .rules, in the /etc/snort directory. These rule files define the sorts of packets
that Snort should consider suspicious. Most protocols have a single .rules file, such as
smtp.rules for SMTP packets. These .rules files are referenced via include directives in
the main snort.conf file, so be sure your main snort.conf file loads the appropriate rules
for your network. If you don’t see a .rules file for a protocol you want to monitor, check
http://www.snort.org/snort-rules/. This site hosts many Snort .rules files for less
popular protocols.

To launch Snort, type its command name: snort. The program runs and logs its output
in files located in /var/log/snort. These log files record information on suspicious packets.
You should be sure to monitor these log files on a regular basis. To launch Snort on a per-
manent basis, you can run it from a startup script. In fact, many distributions provide SysV
startup scripts to launch Snort.

03843c12.indd 539 8/22/09 2:46:29 PM

540 Chapter 12 n Securing Linux

F i gu r e 12 . 3 A Snort system can be placed at any of several locations to monitor
network activity.

Local Computers

Snort System #2

Snort System #1

Hub or Switch

Firewall

Hub

Internet

Snort doesn’t need an IP address to monitor network traffic. Thus, you can
configure a dedicated Snort system with network drivers but without an IP
address and use it to monitor network traffic. This configuration makes the
Snort monitor very resistant to external attacks, because an attacker can’t
directly address the system. On the downside, you must use the Snort sys-
tem’s own console or an RS-232 serial link to it to monitor its activities.

Using PortSentry
Another IDS is PortSentry (http://sourceforge.net/projects/sentrytools/). The basic
idea behind PortSentry is similar to that of Snort, in the sense that both are designed to
alert you to suspicious network activity. One critical difference is that PortSentry runs on
individual computers to monitor access attempts to their own ports, whereas Snort can
monitor an entire network. Another difference is that PortSentry can actively block net-
work scans. In fact, in some sense PortSentry is more like a firewall than an IDS.

03843c12.indd 540 8/22/09 2:46:30 PM

Intrusion Detection 541

After installing PortSentry (usually from a package called portsentry), you can configure
it via its portsentry.conf file, which is generally found in /etc or /etc/portsentry. You
specify ports you want PortSentry to monitor with the TCP_PORTS and UDP_PORTS options,
which both specify comma-delimited lists of ports. PortSentry binds to these ports, logs
attempts to access them, and can take various optional actions based on additional options
in the PortSentry configuration file. These actions can include ignoring the access attempts,
running external programs, dropping routes from the routing table, and so on.

Using Wireshark
Wireshark (http://www.wireshark.org), formerly known as Ethereal, is another packet
sniffer. Where Snort and PortSentry are popular IDSs, though, Wireshark is more often
used as a network diagnostic tool. It features deep analysis of network packets, meaning
that the program can help you dig into network packets to discover the meanings they
carry, thus enabling you to track down network problems—for instance, is a failure to
authenticate due to a mismatched protocol version, a mistyped password, packets that are
going missing, or some other problem?

Wireshark, just like Snort, can be abused. Before using it, obtain written
permission from your superiors, lest you run afoul of policies forbidding
the unauthorized use of packet sniffers.

The most basic use of Wireshark is via the tshark command, which by default displays
raw packet data intercepted by the program:

tshark

Running as user “root” and group “root”. This could be dangerous.

Capturing on eth1

 0.000000 08:10:74:24:1b:d4 -> Broadcast ARP Who has 192.168.1.1? Tell➥

192.168.1.254

 0.308644 192.168.1.8 -> 192.168.1.2 SSH Encrypted response packet len=128

 0.308721 192.168.1.8 -> 192.168.1.2 SSH Encrypted response packet len=48

This example (which is truncated; real output will continue indefinitely) shows an Address
Resolution Protocol (ARP) broadcast followed by two SSH packets. If you want to restrict
Wireshark’s output, you can do so with a very wide array of tshark options. Consult its man
page for details.

You’ll probably find it easier to use Wireshark via its GUI interface, which is often installed
via a separate package from the main Wireshark package. On Fedora, for instance, you must
install wireshark-gnome. You can then type wireshark to launch the main Wireshark GUI
program. Clicking Capture Start then begins a capture of all traffic. (You can limit what’s
captured by using the Capture Capture Filters option.) Clicking Capture Stop terminates
the capture operation. The result resembles Figure 12.4. This window has three panes. The

03843c12.indd 541 8/22/09 2:46:30 PM

542 Chapter 12 n Securing Linux

top pane presents a summary of each network packet, the middle pane presents protocol-
specific analysis of the packet selected in the top pane, and the bottom pane shows the raw
packet data.

F i gu r e 12 . 4 Wireshark provides a GUI interface that enables point-and-click study of
captured network traffic.

Using Tripwire
Monitoring network traffic is a useful strategy for detecting undesirable activity, but it isn’t
guaranteed to detect an intruder. Perhaps the cracker is using an authorized protocol from
an authorized location, for instance, and so the intrusion attempt doesn’t trip any triggers
in Snort or PortSentry. Should somebody manage to break into your computer, Tripwire
(http://www.tripwire.org) may be your best bet to detect that fact. This utility records
a set of information about all the important files on a computer, including various types
of checksums and hashes—short digital “signatures” that enable you to quickly determine
whether a file has been changed. (These can also be used in other ways; for instance, Linux
uses hashes to store passwords.) With this database stored in a secure location, you can
check your system periodically for alteration. If an intruder has modified any of your files,
Tripwire will alert you to this fact. If you like, you can run a Tripwire verification on a
regular basis—say, once a week in a cron job.

03843c12.indd 542 8/22/09 2:46:30 PM

Intrusion Detection 543

Many distributions ship with Tripwire, but it may not be installed by default. The utility
is controlled through two configuration files: tw.cfg and tw.pol, which often reside in /etc/
tripwire. The tw.cfg file controls overall configuration options, such as where tw.pol resides,
how Tripwire sends reports to the system administrator, and so on. The tw.pol file includes
information on the files it’s to include in its database, among other things. Both files are binary
files created from text-mode files called twcfg.txt and twpol.txt, respectively. You may need
to edit twpol.txt to eliminate references to files you don’t have on your system and to add
information on files you do have but that the default file doesn’t reference. Use the twinstall
.sh program (which often resides in /etc/tripwire) to generate the binary configuration files
and other critical database files. This utility will ask you to set a pair of passphrases, which are
like passwords but are typically longer, to control access to the Tripwire utilities. You’ll then
need to enter these passphrases to have the utility do its encoding work.

Once you’ve generated the basic setup files, type tripwire --init to have it generate
initial checksums and hashes on all the files it’s configured to monitor. This process is likely
to take a few minutes. Thereafter, typing tripwire --check will check the current state of
the system against the database, and typing tripwire --update will update the database
(say, in case you upgrade a package). The --init and --update operations require you to
enter the passphrase, but --check doesn’t. Therefore, you can include an automated Trip-
wire check in a cron job.

Tripwire is best installed and initialized on a completely fresh system,
before connecting the computer to the Internet but after all programs have
been configured. Although it’s possible to install it on a system that’s been
up and running for some time, if that computer has already been compro-
mised without your knowledge, Tripwire won’t detect that fact.

Generating Checksums Manually
If Tripwire is overkill, you can deploy a manual check for changes to files by using checksum
programs, which generate short strings that are likely to be unique. Both md5sum and sha1sum
create such checksums, although they generate different checksums:

$ md5sum /etc/passwd

f7ba3e97209ca5c4c8040276db5dc329 /etc/passwd

$ sha1sum /etc/passwd

3fc1d2e5d4ec5bf09d12beaf5a613cbf7f7da5f1 /etc/passwd

If you keep checksums of critical files, you can easily spot changes to them—if the
checksum value has changed, then the file has changed. The key to such comparisons is
to take a set of checksums before the computer could have been compromised; to do any
good, a checksum must have a comparison value. If the file might change legitimately, such
as /etc/passwd, remember to take a new checksum after you make any legitimate changes.

03843c12.indd 543 8/22/09 2:46:31 PM

544 Chapter 12 n Securing Linux

Checksum programs are often used on the Internet at large to help users
spot corrupt file downloads. A program author may provide a tarball, RPM,
or CD-R image file along with an MD5 sum. You can then check the file you
download to be sure its MD5 sum matches what the author has posted. If
it doesn’t match, you can check your download settings (to be sure you’re
using FTP binary mode, for example), try again and, if the problem persists,
report it to the program’s author.

Using Package Manager Checksums
Package managers—most notably the RPM Package Manager (RPM)—maintain checksums
on all their installed packages. As such, they can be used as intrusion detection tools. In par-
ticular, the -V (or --verify) option to rpm performs a package verification:

rpm -V postfix

S.5....T c /etc/postfix/main.cf

S.5....T c /etc/postfix/sasl_passwd

S.5....T c /etc/postfix/sender_canonical

Each line of output reports files that have changed in some way. The first eight characters
of the output lines report what has changed: the file size, mode, MD5 sum, device major or
minor numbers (for device files), link path mismatch, user ownership, group ownership, or
time. A dot (.) in a position indicates that a test passed; any other character denotes a change
(the character used depends on the test and is intended to be mnemonic). Following the eight-
character block may be another character that denotes the file type—c for configuration files,
d for documentation, g for “ghost” files (those not included in the actual package), l for a
license file, or r for a README file. Files that haven’t changed are not displayed in the output.

In the preceding example, three files have changed: main.cf, sasl_passwd, and sender_
canonical. All three files are marked as configuration files (the c characters preceding the
filenames), and all three have changed file sizes, MD5 sums, and times. Because these are
configuration files, these changes aren’t particularly suspicious, but a similar pattern of
changes in program executables would be cause for concern. Changes to the MD5 sum (the
form of checksum used by RPM) are particularly likely to be the result of tampering; they
indicate that the file’s contents have changed compared to the file in the original package.
Time stamp changes can sometimes be completely innocent. Ownership and permissions
changes might be the result of unwanted tampering or could be innocent in some cases (say
if you’ve deliberately removed world execute permission to improve security).

You can verify an individual package by providing a package name, as in the preceding
example. You can also verify all the packages installed on a system by passing the -a option.
The result is likely to be a very long list, though, because so many packages include configu-
ration files and other ancillary files that are normally changed. You might want to pass the
output to a file that you can peruse later, as in rpm -Va > rpm-test.txt.

03843c12.indd 544 8/22/09 2:46:31 PM

Intrusion Detection 545

One major limitation of a package manager’s checksums for detecting intrud-
ers is that it’s very easily overcome. Unlike Tripwire’s database, the RPM
database isn’t password-protected. In fact, intruders can easily mask their
tracks by using RPM itself to install their modified tools. When you attempt to
use RPM to verify the package, RPM will merrily report no problems.

Using chkrootkit
The chkrootkit program (http://www.chkrootkit.org) is something of a last-resort

method of detecting intrusion and is the closest thing in the Linux world to Windows virus
scanners. (Linux virus-scanning programs also exist, but they’re intended mainly to check
for Windows viruses on Samba shares. Linux viruses are not a problem in the real world, at
least not as of mid-2009.)

Many crackers use root kits, which are prepackaged intrusion tools. When an intruder
runs a root kit against a target, the root kit software probes for known weaknesses (such as
servers with known security bugs), breaks in, and installs software to enable simpler access
by the intruder. The intruder can then log in using Telnet, SSH, or the like, and gain full
control of the system.

Intruders who use root kits are often referred to as script kiddies. These
miscreants have minimal skill; they rely on the root kit to do the real work
of the intrusion. Some people prefer to reserve the term “cracker” for more
skilled intruders, but others consider script kiddies to be crackers with
minimal expertise.

Using chkrootkit is fairly straightforward: type its name. The result is a series of
lines summarizing checks that the software performs. These lines should all end with not
infected, no suspect files found, or a similar reassuring message. If any message alerts
you to an intrusion, you should take immediate corrective measures.

Monitoring Log Files
Log files can provide clues to intrusions. Chapter 4 describes log files in detail, so you should
consult it for basic information on where log files reside, how you can configure them, and
how you can monitor them. You should be aware, though, that log files often contain clues
about intrusions. Suspicious items that may appear in log files include:

Suspicious logins A login might catch your eye for any number of reasons. Perhaps the
user is on vacation with no network access, or perhaps the login is from a location to which
the user has no access. If you notice such activity, you should investigate further.

Repeated login failures Crackers sometimes attempt to log in by guessing passwords.
This procedure is likely to leave a trace in log files in the form of a long series of login

03843c12.indd 545 8/22/09 2:46:32 PM

546 Chapter 12 n Securing Linux

failures. Just one failure followed by a successful login isn’t very suspicious, though; this
sort of pattern is more likely the result of a mistyped or momentarily forgotten password.

Missing entries Intruders often try to cover their tracks by deleting entries from log files.
The result is suspicious gaps in the log files. For instance, if a system normally generates an
average of one entry per minute, a gap of 20 minutes could signal that an intruder broke in
and then deleted the log entries that would provide clues as to how this was done.

Entries for servers that shouldn’t be running If a cracker launches a new server to facilitate
future logins or perform some other task, you may see log entries from this new server.

Unfortunately, monitoring log files for all of these things can be tedious. Log file moni-
toring tools, such as those described in Chapter 4, can help minimize this tedium, but some
discoveries are still likely to be serendipitous unless you spend all your time watching your
log files grow.

Summary
Linux’s security mechanisms can help you keep your system from falling under the control
of those who want to do you harm, or who simply want to abuse your system for their own
ends. Like any OS’s security measures, though, Linux’s tools are only as good as their con-
figurations. Although the default security of Linux systems has improved greatly since the
late 1990s, maintaining a Linux system still requires that you understand the security tools
available to you and that you be able to configure those tools to suit your needs.

Security begins with physical measures. With direct access to your computer, a miscreant
can do anything at all, from changing configuration files to stealing your data to stealing the
hardware. Many physical security measures are common sense, but others are very computer-
specific.

Beyond physical security, firewalls and super server configurations can help protect the
servers running on your computer. These options enable you to block access to your servers
from undesired sources or to otherwise limit access to the computer.

Even the best configurations sometimes fail, so you should attend to the possibility by
monitoring your system for intrusion. Various intrusion detection tools, such as Snort and
Tripwire, will help you to do this. Don’t neglect basic vigilance, though—if you notice
something odd about how your system is behaving, that may be a sign of intrusion. You
should also periodically review your security measures and look for weaknesses. Again,
various tools, such as netstat and nmap, can help you in this task.

03843c12.indd 546 8/22/09 2:46:32 PM

Exam Essentials 547

Exam Essentials

Identify some common symptoms of a compromised computer. Intruders often make
mistakes when invading a system. These mistakes can manifest themselves as a sluggish
system, a system that suddenly consumes more network bandwidth than usual, programs
that suddenly begin crashing, programs that don’t behave as they normally do, or other
strange changes in the system’s operation.

Explain the purpose of GPG. GPG is a tool that encrypts or decrypts files or e-mail
messages. It can also generate a digital signature so as to verify to recipients that an unen-
crypted message originated from the claimed sender.

Describe the function of NIS. The Network Information Service is a way to centralize
Linux account, hostname, and other local system and network information on a single
server. Using NIS enables you to maintain one account database rather than duplicate this
information on many computers.

Describe the differences between Snort and PortSentry. Snort can monitor network activity
directed at multiple computers, given appropriate network infrastructure, thus providing an
early alert system for the network as a whole. PortSentry, by contrast, is a tool that’s designed
to monitor and restrict access to a single computer.

Summarize the tools that can be used for locating open ports. Local open ports can be found
with the netstat program, which uses local system calls to locate ports that are currently
open. The nmap and Nessus programs can locate open ports on the local computer or on other
computers by sending network probes to all or a subset of the ports on the target computer.

Explain how corrupted files may be located. Several tools can locate corrupt files, typi-
cally by using checksums to determine whether files on disk have been changed. These tools
include Tripwire and the RPM system. Manually performing such comparisons using diff
and backup files can also be effective; or you can store hashes using md5sum and sha1sum.

03843c12.indd 547 8/22/09 2:46:32 PM

548 Chapter 12 n Securing Linux

Review Questions

1. A large installation requires a dozen system administrators, each of whom manages a par-
ticular set of servers on several computers. Which of the following tools could help prevent
accidental or malicious damage by one administrator to another’s configurations?

A. Tripwire

B. SELinux

C. GPG

D. RADIUS

2. Which of the following methods can be used to completely disable SELinux? (Choose all
that apply.)

A. Adding selinux=0 to the kernel boot options in the system’s boot loader

B. Changing the SELINUX item in /etc/selinux/config to disabled

C. Typing echo 1 > /selinux/enforce

D. Typing selinux disable

3. At what point during system installation should you configure Tripwire?

A. Prior to installing major servers like Apache

B. After installing major servers but before configuring them

C. After installing and configuring major servers but before connecting the computer to
the Internet

D. After connecting the computer to the Internet and running it for one to four weeks

4. Which of the following are network packet sniffers? (Choose all that apply.)

A. Wireshark

B. LDAP

C. Snort

D. Tripwire

5. What tool might you use to detect unauthorized servers running on a subnet you manage?

A. PAM

B. Nessus

C. SELinux

D. GPG

03843c12.indd 548 8/22/09 2:46:32 PM

Review Questions 549

6. Which of the following tools is best suited for monitoring activity directed at multiple
computers?

A. LILO

B. PortSentry

C. Snort

D. SWAT

7. Why might you configure a Linux computer to function as an NIS client?

A. To mount remote filesystems as if they were local

B. To defer to a network’s central authority concerning user authentication

C. To set the system’s clock according to a central time server

D. To automatically obtain IP address and other basic network configuration information

8. Which of the following programs uses local system calls to locate local ports that are
currently open?

A. netstat

B. nmap

C. chkrootkit

D. nessus

9. The /etc/nsswitch.conf file on a computer includes the following lines. What can you
say about this computer?

passwd: compat ldap

shadow: compat ldap

group: compat ldap

A. The system uses LDAP but not local files to authenticate user passwords.

B. The system uses local files and LDAP to authenticate user passwords.

C. The system uses local files and LDAP to identify valid accounts.

D. The system uses LDAP to encrypt the local password database.

10. When might you need to run nmap as root?

A. When scanning computers on a remote network

B. When scanning TCP ports above 1024

C. When scanning TCP ports below 1024

D. When scanning UDP ports

03843c12.indd 549 8/22/09 2:46:32 PM

550 Chapter 12 n Securing Linux

11. A Nessus port scan reveals that ports 22 and 25 are open on a computer. What steps should
you take?

A. Shut down the programs that are using those ports.

B. Activate a firewall program to block access to those ports.

C. Nothing; those ports should normally be open.

D. The correct action depends on the system in question.

12. You’ve downloaded a GPG public key from a Web site into the file fredkey.pub. What
must you do with this key to use it?

A. Type inspect-gpg fredkey.pub.

B. Type gpg --readkey fredkey.pub.

C. Type import-gpg fredkey.pub.

D. Type gpg --import fredkey.pub.

13. You want to send an encrypted message to an e-mail correspondent. You both have GPG.
What must you send or receive before you can send your encrypted message?

A. You must send your GPG public key to your correspondent.

B. You must send your GPG private key to your correspondent.

C. You must obtain your correspondent’s GPG public key.

D. You must obtain your correspondent’s GPG private key.

14. Which of the following programs can locate open ports on the local computer or on other
computers by sending network probes to ports on target computers? (Choose all that apply.)

A. netstat

B. nmap

C. chkrootkit

D. nessus

15. Which of the following tools can create a number that you can store in a file to be used in
verifying at a later date that another file has not changed? (Choose all that apply.)

A. sha1sum

B. file

C. md5sum

D. chkdsk

16. Your workplace employs more than 100 users, who can move from one workstation to
another in an open environment, necessitating the need to support login of any user at any
workstation. What tool might you use to simplify account administration in this environ-
ment? (Choose all that apply.)

A. Winbind

B. Two-factor authentication

C. LDAP

D. NIS

03843c12.indd 550 8/22/09 2:46:32 PM

Review Questions 551

17. You’re configuring a Linux system to use a new authentication tool. What PAM module
stacks are you likely to need to modify to enable the login program to authenticate users
using the new tool?

A. auth and session

B. auth and account

C. account and session

D. account and password

18. Which of the following is the best definition of a checksum?

A. An encrypted version of the data that can be unencrypted

B. A mathematical inverse of the ASCII value of all the characters added together

C. A 56-bit encryption key used to protect the contents of a packet

D. A digital signature that enables you to determine whether data has been changed

19. You suspect that the /etc/passwd file may have been altered over the course of the
evening. You want to compare the current file with an offline backup made last night.
Which utility should you use to compare the two versions of the file?

A. tar

B. cpio

C. diff

D. check

20. Where does PAM store its configuration files?

A. /var/spool/pam.d/

B. /var/spool/pam/

C. /etc/pam/

D. /etc/pam.d/

03843c12.indd 551 8/22/09 2:46:32 PM

552 Chapter 12 n Securing Linux

Answers to Review Questions

1. B. SELinux enables creation of multiple administrative accounts, and each administrator
can modify only certain subsystems. Using this system, the multiple administrators in the
question could each have limited administrative access to the computers in question, pre-
venting the sorts of problems outlined. Tripwire can detect unauthorized changes and so
might be able to detect problems quickly, but it won’t do what’s asked. GPG is a personal
encryption tool that won’t solve the problem posed. RADIUS is a network authentication
protocol that won’t solve the problem posed.

2. A, B. Options A and B both describe methods of disabling SELinux, although option B will
work only on some distributions. Option C will enable SELinux, not disable it. Option D
describes a fictitious command.

3. C. Tripwire records checksums and hashes of major files, including server executables and
configuration files. Thus, these files should be in place and properly configured before you
configure Tripwire. Once the system has been running on the Internet, there’s a chance that
it has been compromised; you should install Tripwire prior to connecting the computer to the
Internet in order to reduce the risk that its database reflects an already-compromised system.

4. A, C. Wireshark and Snort are both network packet sniffers, although their features differ,
with Wireshark being optimized as a protocol analyzer and Snort as an intrusion detection
system (IDS). LDAP is a directory server, which can hold Linux account information or
other data. Tripwire can detect unauthorized changes to a computer’s configuration.

5. B. Nessus is a port scanner, which detects servers running on computers. Thus, it will do
the requested job. PAM is Linux’s authentication tool. SELinux is a set of Linux extensions
designed to enhance security. GPG is a personal encryption and identification tool. None of
these three tools will do the requested job.

6. C. Snort can monitor network activity directed at multiple computers, given appropriate
network infrastructure, thus providing an early alert system for the network as a whole.
LILO is a boot loader, while PortSentry is designed to monitor and restrict access to a
single computer. SWAT is the Samba Web Administration Tool.

7. B. NIS functions as a means of distributing database information across a network, most
notably including user authentication information. It’s not used for file sharing, clock setting,
or distributing basic TCP/IP configuration information.

8. A. Local open ports can be found with the netstat program, which uses local system calls
to locate ports that are currently open. The nmap and nessus programs can locate open ports
on the local computer or on other computers by sending network probes to all or a subset of
the ports on the target computer. chkrootkit is something of a last-resort method of detect-
ing intrusion and is the closest thing in the Linux world to Windows virus scanners.

03843c12.indd 552 8/22/09 2:46:32 PM

Answers to Review Questions 553

9. C. The /etc/nsswitch.conf files’s passwd, shadow, and group lines control how Linux
identifies valid accounts and groups, as option C specifies. This file doesn’t control actual
authentication, as options A and B specify; that task is managed by PAM and its configura-
tion files. LDAP doesn’t encrypt the local password database, as option D specifies, and
/etc/nsswitch.conf doesn’t control this database’s encryption.

10. D. The nmap program can scan TCP ports as any user, but it must be run as root to scan
UDP ports, as option D specifies. The account you use to run the program doesn’t impact
its ability to scan local vs. remote computers. Likewise, this has no effect on the ability to
scan ports above or below port number 1024.

11. D. Open ports are normal on many computers, such as systems that function as network
servers. Port 22 is used by the Secure Shell (SSH) login server, and port 25 is used by Simple
Mail Transfer Protocol (SMTP) mail servers. Both ports might legitimately be open on
many computers; however, if the computer you were scanning was a desktop computer that
shouldn’t be running those servers, it might be appropriate to shut down the servers, or
at least block access to them. Thus, option D is correct given the limited information pre-
sented in the question, although any of options A, B, or C might be appropriate once you
learn more about the system with the open ports.

12. D. Option D provides the correct command to import fredkey.pub prior to use. The
inspect-gpg and import-gpg commands of options A and C are fictitious, and there is no
--readkey option to gpg, as option B suggests.

13. C. The usual method of sending encrypted messages with GPG entails the sender using the
recipient’s public key to encrypt the message. Thus, option C is correct. Option A would be
correct if your correspondent needed to send you an encrypted message, but the question
only specifies your sending the encrypted message. Options B and D both entail delivery of
private keys, which is inadvisable at best, because private keys in the wrong hands permit
the holder to impersonate the person who owns the keys.

14. B, D. The nmap and nessus programs can locate open ports on the local computer or on
other computers by sending network probes to all or a subset of the ports on the target
computer. Local open ports can be found with the netstat program. chkrootkit detects
intrusions on a Linux system.

15. A, C. The sha1sum and md5sum programs both compute checksums (based on the SHA1
and MD5 algorithms, respectively), which are what the question is asking for. The file
program can identify a file type, but it won’t generate a checksum. chkdisk isn’t a standard
Linux utility, although a DOS/Windows program of that name verifies a disk’s overall
integrity, similar to fsck in Linux.

16. A, C, D. Winbind enables Linux to authenticate against a Windows domain controller,
so it can help in the specified scenario if you already have a Windows domain configura-
tion. LDAP and NIS provide similar features, but with superior support for Linux-specific
account information. Thus, A, C, and D are all correct responses. Two-factor authentica-
tion is a method for improving security by requiring two types of authentication, such as a
username/password pair and a biometric test (a fingerprint match, for instance). Two-factor
authentication won’t help in the specified scenario; in fact, it’s likely to complicate matters.

03843c12.indd 553 8/22/09 2:46:33 PM

554 Chapter 12 n Securing Linux

17. B. The auth and account stacks are the ones that are most involved in actual authentication
and so should be changed for a login service such as the login program. The session stack
manages login and logout bookkeeping tasks, and password manages password mainte-
nance; these stacks are unlikely to require changing to use the new authentication tool.

18. D. A checksum is a short digital “signature” that enables you to quickly determine
whether data has been changed. A checksum cannot be unencrypted, contrary to option A.
Option B is a fictitious description. Option C is far too specific, and it doesn’t describe a
checksum in any event.

19. C. The diff utility can be used to check two files for differences. Both tar and cpio are
used for backing up files, but they will not compare them, and check is not a standard utility.

20. D. The standard location for PAM configuration files on modern Linux systems is /etc/
pam.d. Some very old systems used a single PAM configuration file, /etc/pam.conf, but
options A, B, and C have never been used as standard PAM configuration file locations.

03843c12.indd 554 8/22/09 2:46:33 PM

About the
Companion CD

In this appendix:ÛÛ

What you’ll find on the CDÛN

System requirementsÛN

Using the CD ÛN

TroubleshootingÛN

Appendix

03843book.indb 555 8/21/09 12:11:32 PM

What You’ll Find on the CD
The following sections are arranged by category and summarize the software and other
goodies you’ll find on the CD. If you need help with installing the items provided on the
CD, refer to the installation instructions in the “Using the CD” section of this appendix.

The programs on the CD might fall into one of these categories:

Shareware programs are fully functional, free, trial versions of copyrighted programs.
If you like particular programs, register with their authors for a nominal fee and
receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications, and utilities. You
can copy them to as many computers as you like—for free—but they offer no
technical support.

GNU software is governed by its own license, which is included inside the folder of
the GNU software. There are no restrictions on distribution of GNU software. See the
GNU license at the root of the CD for more details.

Trial, demo, or evaluation versions of software are usually limited either by time or by
functionality (such as not letting you save a project after you create it).

Sybex Test Engine
The CD contains the Sybex test engine, which includes the assessment test and chapter
review questions in electronic format, as well as two bonus exams located only on the CD.

PDF of the Book
We have included an electronic version of the text in PDF form. You can view the electronic
version of the book with Adobe Reader.

Adobe Reader
We’ve also included a copy of Adobe Reader so you can view PDF files that accompany the
book’s content. For more information on Adobe Reader or to check for a newer version,
visit Adobe’s Web site at http://www.adobe.com/products/reader/.

03843book.indb 556 8/21/09 12:11:32 PM

Using the CD 557

Electronic Flashcards
For PC and Pocket PC

These handy electronic flashcards are just what they sound like. One side contains a
question or fill-in-the-blank question, and the other side shows the answer.

System Requirements
Make sure your computer meets the minimum system requirements shown in the following
list. If your computer doesn’t match up to most of these requirements, you may have problems
using the software and files on the companion CD. For the latest and greatest information,
please refer to the ReadMe file located at the root of the CD-ROM.

A PC running Microsoft Windows 98, Windows 2000, Windows NT4 (with SP4 or ÛN

later), Windows Me, Windows XP, or Windows Vista. If you intend to run on Linux,
a Web browser with the latest Adobe Flash Player plug-in is needed to run the Sybex
Test Engine. 1024x768 or greater display resolution and a high color (16-bit or greater)
video card are also required.

An Internet connection.ÛN

A CD-ROM drive.ÛN

Please read the CD’s ReadMe file for more detailed instructions on using
this CD with Linux.

Using the CD
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive. The license agreement appears.

Windows users : The interface won’t launch if you have autorun disabled.
In that case, click Start Run (for Windows Vista, Start All Programs
Accessories Run). In the dialog box that appears, type D:\Start.exe.
(Replace D with the proper letter if your CD drive uses a different letter.
If you don’t know the letter, see how your CD drive is listed under My
Computer.) Click OK.

03843book.indb 557 8/21/09 12:11:32 PM

558 Appendix N About the Companion CD

Linux users : If a Web browser with the license agreement doesn’t appear
when you insert the CD-ROM into the drive, first ensure that the drive is
mounted. Typing mount /mnt/cdrom or mount /media/cdrom will usually
do this. You can then launch a Web browser and enter file:///mnt/cdrom/
Start.html in the URL entry field. (You may need to change /mnt/cdrom to
some other string if your CD-ROM mount point differs from this.) Your sys-
tem must have Adobe Flash (http://labs.adobe.com) installed and config-
ured to work with your Web browser to use the test engine and flashcards.

2. Read the license agreement, and then click the Accept button if you want to use the CD.

The CD interface appears. The interface allows you to access the content with just one
or two clicks.

Troubleshooting
Wiley has attempted to provide programs that work on most computers with the minimum
system requirements. Alas, your computer may differ, and some programs may not work
properly for some reason.

The two likeliest problems are that you don’t have enough memory (RAM) for the pro-
grams you want to use or you have other programs running that are affecting installation
or running of a program. If you get an error message such as “Not enough memory” or
“Setup cannot continue,” try one or more of the following suggestions and then try using
the software again:

Turn off any antivirus software running on your computer. Installation programs
sometimes mimic virus activity and may make your computer incorrectly believe that
it’s being infected by a virus.

Close all running programs. The more programs you have running, the less memory is
available to other programs. Installation programs typically update files and programs;
so if you keep other programs running, installation may not work properly.

Have your local computer store add more RAM to your computer. This is, admittedly,
a drastic and somewhat expensive step. However, adding more memory can really help
the speed of your computer and allow more programs to run at the same time.

Customer Care
If you have trouble with the book’s companion CD-ROM, please call Wiley Product Technical
Support at (800) 762-2974. Outside the United States, call +1(317) 572-3994. You can also con-
tact Wiley Product Technical Support at http://sybex.custhelp.com. John Wiley & Sons will
provide technical support only for installation and other general quality-control items. For tech-
nical support on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please
call (877) 762-2974.

03843book.indb 558 8/21/09 12:11:33 PM

Glossary

03843book.indb 559 8/21/09 12:11:45 PM

560 Glossary

Numbers
1024-cylinder limit The x86 BIOS has traditionally been unable to read past the 1024th cyl-
inder in a cylinder/head/sector (CHS) addressing scheme, which has limited the size of hard
disks—first to 504MB (or about 528 million bytes, so some people refer to it as the 528MB
limit) and then to just under 8GB. On a computer with an old BIOS, the 1024-cylinder limit
prevents the system from booting a kernel from higher than this limit, although Linux itself
uses addressing schemes that aren’t bothered by this limit. BIOSs made since the late 1990s
also include ways around the limit, if the software understands those mechanisms. See also
cylinder/head/sector (CHS) addressing.

3DES See Triple Data Encryption Standard (3DES).

802.11 A family of wireless network protocols (often referred to as Wi-Fi). Examples
include 802.11a (54Mbps, but uncommon), 802.11b (11Mbps), 802.11g (54Mbps), and
802.11n (600Mbps, which is expected to be finalized in December 2009). Most wireless
routers, network cards, and wireless-capable laptop computers sold in 2009 may use
802.11b, 802.11g, and often an early subset of 802.11n.

A
absolute directory name A directory name that begins with a slash (/), indicating that
it’s to be interpreted starting from the root (/) directory.

access control list (ACL) A security system that provides a list of usernames or groups and
their permissions to access a resource. ACLs can supplement traditional Unix-style permissions
on all common Linux filesystems, although using ACLs requires setting a compile-time option
in the kernel.

account Stored information and a reserved directory that allows one individual to use a
computer. The term is often used and thought of as if it were a distinct virtual component
of a computer that a person can use, as in “Sam logged into his account” or “Miranda’s
account isn’t working.”

ACL See access control list (ACL).

ACPI See Advanced Configuration and Power Interface (ACPI).

Address Resolution Protocol (ARP) A protocol used to learn a network hardware
address based on an IPv4 address. See also Neighbor Discovery Protocol (NDP).

Advanced Configuration and Power Interface (ACPI) A power management protocol.
Linux provides ACPI support.

Advanced Power Management (APM) A power management protocol. Linux includes
better APM support than ACPI support.

03843book.indb 560 8/21/09 12:11:46 PM

Glossary 561

Advanced Technology Attachment (ATA) A type of interface for hard disks, CD-ROM
drives, tape drives, and other mass storage devices. Also often referred to as EIDE. Docu-
ments from before 2003 (and many from after that date) use “ATA” or “EIDE” to refer to
what is called “PATA” today. See also Parallel ATA (PATA) and Serial ATA (SATA).

AMD64 See x86-64.

American Standard Code for Information Interchange (ASCII) A method of encoding
letters, numbers, and punctuation as numbers. For instance, ASCII code 65 corresponds to
the uppercase letter A. ASCII was designed for encoding English, so it requires awkward
extensions when dealing with many non-English languages. See also Unicode Transforma-
tion Format (UTF).

APM See Advanced Power Management (APM).

AppleTalk A network protocol stack used by Apple with its Macintosh computers. Apple-
Talk is used primarily on local networks for file and printer sharing.

ARP See Address Resolution Protocol (ARP).

ASCII See American Standard Code for Information Interchange (ASCII).

ATA See Advanced Technology Attachment (ATA).

B
Bash The Bourne Again Shell, an open source variant of the Bourne shell. Bash is the
default shell on most Linux installations.

Basic Input/Output System (BIOS) A low-level software component included on a com-
puter’s motherboard in read-only memory (ROM) form. The CPU runs BIOS code when it
first starts up, and the BIOS is responsible for locating and booting an OS or OS loader.

baud rate A measure of data transmission speed, commonly used over serial lines, corre-
sponding to the number of signal elements transmitted per second. This term is often used
as a synonym for “bits per second,” but many modems encode more than one bit per signal
element, so the two aren’t always synonymous.

Berkeley Internet Name Domain (BIND) A common Domain Name System (DNS) server
for Linux.

binary 1. The base-2 numbering system. 2. A program or file that contains data other
than plain text, such as graphics or program data. 3. The version of a program that the
computer runs, as opposed to the source code version of the program.

binary package A file that contains a compiled and ready-to-run Linux program, including
necessary configuration files, documentation, and other support files.

03843book.indb 561 8/21/09 12:11:46 PM

562 Glossary

BIND See Berkeley Internet Name Domain (BIND).

BIOS See Basic Input/Output System (BIOS).

bit A binary digit (0 or 1).

blowfish An encryption algorithm used by several important Linux security tools, such as
SSL and SSH.

boot loader A program that directs the boot process. The BIOS calls the boot loader,
which loads the Linux kernel or redirects the boot process to another boot loader.

boot sector The first sector of a disk or partition. The boot sector for a bootable disk or
partition includes boot loader code, although this code may be absent from nonbootable
disks or partitions. See also boot loader.

broadband 1. High-speed (greater than 200Kbps) Internet connections delivered to homes
and small businesses. 2. Networking technologies that support simultaneous transmission
of data, voice, and video.

broadcast A type of network access in which one computer sends a message to many
computers (typically all the computers on the sender’s local network segment).

build number A number identifying minor changes made to a binary package by its main-
tainer, rather than changes implemented by the program’s author, which are reflected in the
version number.

bus A data transfer mechanism within the computer, such as the SCSI bus or the mem-
ory bus.

byte An 8-bit number, typically represented as falling between 0 and 255.

C
C library (libc) Standard programming routines used by many programs written in the
C programming language. The most common Linux C library is also referred to as GNU
libc (glibc).

cache memory A fast form of memory that’s used to temporarily hold a subset of a larger
but slower memory store. When properly implemented, caches can improve system perfor-
mance. Hard disks include RAM as cache for data on disk, and computers can implement
their own disk caches. Modern CPUs include a form of cache for RAM, and some mother-
boards include the same.

CD See Compact Disc (CD).

central processing unit (CPU) The main chip on a computer, which handles the bulk of
its computational tasks.

03843book.indb 562 8/21/09 12:11:46 PM

Glossary 563

CGI See Common Gateway Interface (CGI).

checksum A simple file integrity check in which the values of individual bits or bytes are
summed up and compared to a stored value for a reference version of the file. More sophis-
ticated file integrity checks that use hashes are sometimes referred to as checksums,
although technically the two are different.

child process A relative term referring to a process that another one has created. For
instance, when you launch a program from a shell, the program process is a child process
of the shell process.

chipset One or more chips that implement the main features of a motherboard or add-in
board for a computer. The chipset is not the CPU, though; the chipset provides more special-
ized functions, such as the ability to control a hard disk or produce a video display.

CHS addressing See cylinder/head/sector (CHS) addressing.

CHS mode See cylinder/head/sector (CHS) mode.

CHS translation See cylinder/head/sector (CHS) translation.

CIFS See Common Internet Filesystem (CIFS).

CLI See command-line interface (CLI).

client 1. A program that initiates data transfer requests using networking protocols. 2.
A computer that runs one or more client programs.

command prompt One or more characters displayed by a shell or other program to indicate
that you should type a command. Many Linux distributions use a dollar sign ($) as a command
prompt for ordinary users and a hash mark (#) as a command prompt for root.

command-line interface (CLI) A program that interacts with the user in text mode,
accepting typed commands as input and displaying results textually. See also shell.

Common Gateway Interface (CGI) A method of enabling a Web server to run scripts or
compiled programs locally in order to generate dynamic Web content.

Common Internet Filesystem (CIFS) Name for an updated version of the Server Message
Block (SMB) file sharing protocols. CIFS is implemented in Linux via the Samba suite. It’s
often used to share files with Windows computers.

Common Unix Printing System (CUPS) The dominant printing software for Linux.

Compact Disc (CD) A recording medium for music or data. (Data discs are usually called
“CD-ROMs.”) CDs may be created in mass quantities or individually; in the latter case, the
discs are generally called CD-recordable (CD-R) or CD-read/write (CD-RW) discs.

compiler A program that converts human-readable source code for a program into a
binary format that the computer runs.

03843book.indb 563 8/21/09 12:11:46 PM

564 Glossary

Complementary Metal Oxide Semiconductor (CMOS) setup utility A part of the BIOS
that gives the user the ability to control key chipset features, such as enabling or disabling
built-in ports.

conditional expression A construct of computer programming and scripting languages
used to express a condition, such as the equality of two variables or the presence of a file on
a disk. Conditional expressions enable a program or script to take one action in one case
and another action in the other case.

console 1. The monitor and keyboard attached directly to the computer. 2. Any command
prompt, such as an xterm window.

Coordinated Universal Time (UTC) See Greenwich Mean Time (GMT).

CPU See central processing unit (CPU).

cracker An individual who breaks into computers. Crackers may do this out of curiosity,
malice, for profit, or for other reasons.

creating a filesystem Writing low-level filesystem (meaning 1) data structures to a disk.
This is sometimes also called high-level formatting. See also filesystem.

cron job A program or script that’s run at a regular interval by the cron daemon. See also
system cron job and user cron job.

CUPS See Common Unix Printing System (CUPS).

cylinder/head/sector (CHS) addressing A method of hard disk addressing in which a
triplet of numbers (a cylinder, a head, and a sector) are used to identify a specific sector.
CHS addressing contrasts with linear block addressing (LBA).

cylinder/head/sector (CHS) mode See cylinder/head/sector (CHS) addressing.

cylinder/head/sector (CHS) translation Modifying one CHS addressing scheme into
another. CHS translation was commonly used by BIOSs in the mid-to-late 1990s to enable
the systems to use hard disks between 504MB and 8GB in capacity.

D
daemon A program that runs constantly, providing background services. Linux servers
are typically implemented as daemons, although there are also nonserver daemons.

Data Display Channel (DDC) A protocol that enables a computer to query a monitor for
its maximum horizontal and vertical refresh rates and other vital statistics.

DDC See Data Display Channel (DDC).

DDoS attack See distributed denial of service (DDoS) attack.

03843book.indb 564 8/21/09 12:11:46 PM

Glossary 565

Debian package A package file format that originated with the Debian distribution but
is now used on several other distributions. Debian packages feature excellent dependency
tracking and easy installation and removal procedures.

default route The route that network packets take if a more specific route doesn’t direct
them in some other way. The default route typically involves a gateway or router system that
can further redirect the packets.

denial of service (DoS) attack A type of attack on a computer or network that prevents
the use of a computer for its intended function, typically without actually breaking into the
computer. These attacks frequently involve flooding a network or computer with useless
data packets that overload the target’s network bandwidth. See also distributed denial of
service (DDoS) attack.

dependency A requirement of one software package that another one be installed. For
instance, most Linux programs include a dependency on the C library.

desktop computer A computer that sits on a desk and that’s used by an individual for
productivity tasks. A desktop computer is similar to a workstation, but some people use
“desktop” to refer to somewhat lower-powered computers or those without network con-
nections. See also workstation.

desktop environment A set of programs that provide a friendly, graphical environment
for a Linux user.

DHCP See Dynamic Host Configuration Protocol (DHCP).

DHCP lease A temporary assignment of an IP address to a DHCP client by a DHCP
server. Clients must periodically renew their DHCP leases or risk losing the right to use
their IP addresses.

Digital Versatile Disc (DVD) A data storage medium similar to CDs, but with greater
capacity (4.7GB–8.5GB). Like CDs, DVDs may be manufactured in quantity or recorded
on a one-off basis; the latter include DVD-Rs, DVD+Rs, DVD-RWs, DVD+RWs, and
DVD-RAMs.

direct memory access (DMA) A means of transferring data between devices (such as
sound cards or SCSI host adapters) and memory without directly involving the CPU.

Disk Operating System (DOS) An early 16-bit x86 operating system. This OS is the basis
for Windows 9x/Me, but not for Windows NT/200x/XP/Vista. DOS is sometimes used as a
platform for disk partitioning tools or as a way to boot a Linux kernel.

disk quota A limit on the amount of disk space that an individual or group may use.

distributed denial of service (DDoS) attack A type of DoS attack in which the attacker
uses many hijacked computers to cripple a computer with much better network connectivity
than any one of the hijacked computers.

03843book.indb 565 8/21/09 12:11:47 PM

566 Glossary

distribution A complete collection of a Linux kernel and programs necessary to do work with
Linux. Dozens of different Linux distributions exist, each with its own unique characteristics,
but they all work in a similar way and can run the same programs, assuming similar vintages
of critical support libraries like libc.

DMA See direct memory access (DMA).

DNS See Domain Name System (DNS).

domain A collection of related computers. See also domain name.

domain name A name associated with an organization or set of computers. Individual
computers are assigned names within a domain, and domains can be partitioned into
subdomains.

Domain Name System (DNS) A distributed set of computers that run servers to convert
between computer names (such as ns.example.com) and IP addresses (such as 192.168.45.204).
DNS servers are organized hierarchically and refer requests to systems responsible for succes-
sively more specific domains.

DOS See Disk Operating System (DOS).

DoS attack See denial of service (DoS) attack.

dot file A Linux or Unix file whose name begins with a dot (.). Most Linux shells and
programs hide such files from the user, so user configuration files usually come in this form
to be unobtrusive in directory listings.

dpkg 1. An abbreviation for Debian package. 2. A program of the same name, used to
manipulate Debian packages.

DRAM See dynamic RAM (DRAM).

DVD See Digital Versatile Disc (DVD).

Dynamic Host Configuration Protocol (DHCP) A protocol used on local networks for
dissemination of network configuration information. A single DHCP server can maintain
information for many DHCP clients, reducing overall configuration effort.

dynamic RAM (DRAM) One of several types of RAM. Plain DRAM is now largely obsolete
in desktop computers.

E
effective user ID The owner associated with a running process. This may or may not be
the same as the user ID of the individual who ran the program.

EFI See Extensible Firmware Interface (EFI).

03843book.indb 566 8/21/09 12:11:47 PM

Glossary 567

EIDE See Enhanced Integrated Device Electronics (EIDE) and Advanced Technology
Attachment (ATA).

EM64T See x86-64.

Enhanced Integrated Device Electronics (EIDE) Another name for the Advanced Tech-
nology Attachment (ATA) interface.

envelope In networking, the portion of a data packet that directs the transmission and
routing of the packet. The envelope includes such information as the source and destination
addresses and other housekeeping information.

environment variable A setting that’s available to any program running in a session.
Environment variables can define features such as the terminal type being used, the path to
search for executable programs, and the location of an X server for GUI programs.

Ethernet The most common form of wired local networking.

ext2 See Second Extended Filesystem (ext2 or ext2fs).

ext2fs See Second Extended Filesystem (ext2 or ext2fs).

ext3 See Third Extended Filesystem (ext3 or ext3fs).

ext3fs See Third Extended Filesystem (ext3 or ext3fs).

ext4 See Fourth Extended Filesystem (ext4 or ext4fs).

ext4fs See Fourth Extended Filesystem (ext4 or ext4fs).

extended INT13 BIOS routines added in the late 1990s to enable x86 computers to boot
from hard disks larger than 8GB.

extended partition A type of disk partition used on disks partitioned using the MBR par-
titioning scheme. Extended partitions are placeholders for one or more logical partitions.
Extended partitions are not needed with GPT or most other non-MBR partitioning systems.

Extensible Firmware Interface (EFI) A system intended to replace the aging x86 BIOS.
EFI provides numerous enhancements intended to help computers cope with modern hard-
ware. The GPT partitioning system is part of the EFI specification, although GPT may be
used on non-EFI systems as well.

Extent Filesystem (XFS) One of several journaling filesystems for Linux. XFS was
developed by Silicon Graphics (SGI) for its IRIX OS and then ported to Linux.

external transfer rate The data transfer rate between one device and another. The external
transfer rate is frequently applied to disks and similar devices in reference to the speed of the
ATA or SCSI interface, as opposed to the speed of the drive mechanism itself. In this context,
the external transfer rate is almost always higher than the internal transfer rate.

03843book.indb 567 8/21/09 12:11:47 PM

568 Glossary

F
failed dependency A state in which a package’s dependencies are not met when attempt-
ing to install it, or in which removing a package would cause other installed packages to
have unmet dependencies.

FAT See File Allocation Table (FAT).

FDDI See Fiber Distributed Data Interface (FDDI).

Fiber Distributed Data Interface (FDDI) A type of network hardware that supports up to
100Mbps speeds over fiber-optic cables.

Fibre Channel A type of network hardware that supports up to 6800Mbps speeds over
fiber-optic cables.

file access permissions Linux’s file access control mechanism. Every file has an owner, a
group, and permissions that define how the owner, group members, and all other users (the
“world”) may access the file. Permissions include read, write, and execute for the owner,
group, and world.

File Allocation Table (FAT) 1. A filesystem (meaning 1) popularized by DOS and used
today on removable media because of its wide support. See also Virtual FAT (VFAT).
2. A data structure used on the FAT filesystem, after which the filesystem is named.

file owner The account with which a file is most strongly associated. The owner often has
permission to do more with a file than other users can do.

file permissions See file access permissions.

file sharing protocol A network protocol that enables one computer to access files stored
on a second computer as if the second computer’s files were local to the first computer.
Examples include SMB/CIFS (used on Windows-dominated networks), NFS (used on Unix-
dominated networks), and AppleShare (used on Macintosh-dominated networks).

File Transfer Protocol (FTP) A common network protocol designed for the transfer of
files between computers. In its basic form, FTP does not support encryption, so it’s best
reserved for use on well-protected local networks or to perform anonymous FTP access, in
which publicly accessible files may be retrieved using no or any password.

file type code A special code that identifies the type of a file, such as a regular file, a
directory, or a device file.

filename completion A feature of some shells that enables them to complete a command
or filename when you press the Tab key.

filesystem 1. The low-level data structures recorded on a disk in order to direct the place-
ment of file data. The filesystem determines characteristics such as the maximum partition
size, the file-naming rules, and what extra data (time stamps, ownership, and so on) may be

03843book.indb 568 8/21/09 12:11:47 PM

Glossary 569

associated with a file. 2. The overall layout of files and directories on a computer. For
instance, a Linux filesystem includes a root directory (/), several directories falling off this
(/usr, /var, /boot, etc.), subdirectories of these, and so on.

firewall 1. A program or kernel configuration that blocks access to specific ports or net-
work programs on a computer. 2. A computer that’s configured as a router and that
includes firewall software that can restrict access between the networks it manages.

FireWire Apple’s preferred name for IEEE-1394.

font server A program that provides font bitmaps to client programs on the same or
(sometimes) other computers. The font server may work directly from font bitmaps, or it
may generate the bitmaps from outline fonts such as PostScript Type 1 or TrueType fonts.

fork 1. The method by which one process creates another process. 2. The creation of a
new software development project from an earlier one. Each project is then developed inde-
pendently. For instance, X.org-X11 is a fork of XFree86.

forwarding-only DNS server A DNS server that doesn’t perform a full recursive DNS
lookup for clients but instead forwards the whole request to another DNS server. This con-
figuration is common on small networks and can improve overall DNS performance for a
network.

Fourth Extended Filesystem (ext4 or ext4fs) A variant of the Third Extended Filesystem
(ext3 or ext3fs) that adds the ability to use larger disks (up to 1 exabyte vs. 16 terabytes for
ext3fs) and an assortment of performance enhancements.

fragmented Adjective describing files whose contents are split across several parts of a
disk, rather than placed contiguously. File fragmentation tends to degrade disk performance
because it increases head movements when reading files.

frame In networking, a data packet associated with network hardware (such as Ethernet),
as opposed to the software (such as TCP/IP).

frame buffer A low-level but standardized interface between software and video hardware.
X uses a frame buffer interface on many non-x86 computers.

Free Software Foundation (FSF) An organization, headquartered in Cambridge Massa-
chusetts, which sponsors the development of open source software and advocates its use.
The FSF created the General Public License (GPL) and the GNU project, which developed
much of the software used in Linux.

frequently asked question (FAQ) 1. A question that’s asked frequently, particularly on
Usenet newsgroups or other online discussion forums. 2. A document that collects many
FAQs (meaning 1) and their answers.

FSF See Free Software Foundation (FSF).

FTP See File Transfer Protocol (FTP).

03843book.indb 569 8/21/09 12:11:47 PM

570 Glossary

FTP active mode A mode of operation in which the FTP client initiates a command con-
nection to the server, and the server then initiates a data connection to the client. This is the
default mode of operation for most FTP sessions.

FTP passive mode A mode of operation in which the FTP client initiates both the com-
mand and the data connections to the server. This mode of operation works better than
active mode with some firewall configurations.

full duplex A mode of communication in which data can be transferred in two directions at
the same time.

full recursive DNS lookup A method of name resolution in which one DNS server queries
a series of other DNS servers, each of which has information on more and more specific net-
works, in order to locate the IP address associated with a hostname.

G
gateway A computer that functions as a router between two networks.

GB See gigabyte (GB).

GDM See GNOME Display Manager (GDM).

General Public License (GPL) A popular open source software license. The Linux kernel
and many important Linux programs have been released under the GPL.

GID See group ID (GID).

gigabit Ethernet A variety of Ethernet that can transfer 1,000 megabits (1 gigabit) per
second.

gigabyte (GB) A measure of data size, most commonly meaning 230 (1,073,741,824) bytes.
Although this meaning is common in the computer field, gigabyte more technically means
109 (1,000,000,000) bytes, with 230 bytes being more properly called “gibibyte” (GiB).

glibc A specific type of C library used on Linux systems since the late 1990s.

Globally Unique Identifier (GUID) A 16-byte number that’s intended to be a unique iden-
tifier of a specific data structure or data type—for instance, of a partition on a hard disk or
of the filesystem type it contains. GUIDs are commonly used in disk filesystems, in disk
partitions, and in certain network applications.

GMT See Greenwich Mean Time (GMT).

GNOME Display Manager (GDM) A popular XDMCP server for Linux.

GNU Recursive acronym for GNU’s Not Unix. GNU is a Free Software Foundation (FSF)
project whose goal is to build an entirely open source OS that works like Unix. The term is
also used by some non-FSF projects.

03843book.indb 570 8/21/09 12:11:48 PM

Glossary 571

GNU/Linux Generic term for a complete Linux OS to distinguish the complete OS from the
kernel alone. This term is favored by Debian; most other distributions use “Linux” alone.

GNU Privacy Guard (GPG) Cryptographic software that permits encrypting and decrypting
files or “signing” them so that a recipient can verify that they came from the claimed sender
and have not been altered.

GPG See GNU Privacy Guard (GPG).

GPL See General Public License (GPL).

GPT See GUID partition table (GPT).

Grand Unified Boot Loader (GRUB) A popular boot loader for Linux. GRUB can boot a
Linux kernel or redirect the boot process to another boot loader in a non-Linux partition,
thus booting other OSs. Similar to the competing Linux Loader (LILO). See also boot loader.

graphical user interface (GUI) A method of human/computer interaction characterized
by a graphical display, a mouse to move a pointer around the screen, and the ability to per-
form actions by pointing at objects on the screen and clicking a mouse button.

Greenwich Mean Time (GMT) The time in Greenwich, England, unadjusted for daylight
savings. Linux systems use this time internally and adjust to local time by knowing the sys-
tem’s time zone.

group A collection of users. Files are owned by a user and a group, and group members
may be given access to files independent of the owner and all other users. This feature may
be used to enhance collaborative abilities by giving members of a group read/write access to
particular files, while still excluding those who aren’t members of the group. It can also be
used by system administrators to control access to system files and resources.

group administrator A person with administrative authority over a group. A group
administrator can add or delete members from a group and perform similar administra-
tive tasks.

group ID (GID) A number associated with a particular group. Similar to a user ID (UID).

group owner The group with which a file is most strongly associated, after the file owner.

GRUB See Grand Unified Boot Loader (GRUB).

GUI See graphical user interface (GUI).

GUID See Globally Unique Identifier (GUID).

GUID partition table (GPT) A type of partitioning scheme that supports disks greater
than 2 terabytes (2TB) in size. GPT is the likely successor to the MBR partitioning scheme
that’s been dominant on x86 and x86-64 computers since the 1980s.

03843book.indb 571 8/21/09 12:11:48 PM

572 Glossary

H
hacker 1. An individual who is skilled at using or programming computers and who
enjoys using these skills in constructive ways. Many Linux programmers consider them-
selves hackers in this sense of the term. 2. A cracker (see also cracker). This use of the term
is more prevalent in the mass media, but it is frowned upon in the Linux community.

half-duplex A type of data transmission in which data can be sent in only one direction at
a time.

hard link A directory entry for a file that has another directory entry. All hard links are
equally valid ways of accessing a file, and all must be deleted in order to delete a file. See
also soft link.

hardware address A code that uniquely identifies a single network interface. This address
is built into the device itself rather than assigned in Linux.

hash An encryption method in which a file or string is encoded in a manner that cannot
be reversed. Hashes are typically much shorter than the files used to create them. Hashes
are commonly used for password storage and as a more secure variant on checksums,
among other things. See also checksum.

HDD An acronym for hard disk drive.

header files Files that contain interface definitions for software routines contained in a
library. Program source code that uses a library must refer to the associated header files.

High-Performance Parallel Interface (HIPPI) A type of network hardware that supports
speeds of up to 1600Mbps over fiber-optic cabling.

HIPPI See High-Performance Parallel Interface (HIPPI).

home directory A directory associated with an account, in which the user’s files reside.

hostname A computer’s human-readable name, such as persephone.example.com.

hot standby An optional feature of RAID arrays in which a spare drive may be automati-
cally activated by the software if it detects that one of the main drives has failed.

hot swapping Adding or removing hardware while the computer is turned on.

HOWTO documents Linux documentation that describes how to accomplish some task
or use a particular program. HOWTOs are usually tutorial in nature. They’re archived at
http://tldp.org, and all major distributions ship with them as well.

HTTP See Hypertext Transfer Protocol (HTTP).

HTTPS See Hypertext Transfer Protocol Secure (HTTPS).

03843book.indb 572 8/21/09 12:11:48 PM

Glossary 573

hub A type of network hardware that serves as a central exchange point in a network.
Each computer has a cable that links to the hub, so all data pass through the hub. Hubs
echo all data they receive to all the other computers to which they connect. See also switch.

hung Term used to describe a program that has stopped responding to user input, network
requests, or other types of input to which it should respond. Hung processes sometimes con-
sume a great deal of CPU time.

Hypertext Transfer Protocol (HTTP) A protocol used for transferring Web pages from a
Web server to a Web browser.

Hypertext Transfer Protocol Secure (HTTPS) A variant of HTTP that enables Secure
Sockets Layer (SSL) encryption.

I
IEEE-1394 An external bus technology that’s used to connect high-speed external devices
such as hard disks, scanners, and video equipment.

IMAP See Internet Message Access Protocol (IMAP).

incremental backup A type of backup in which only files that have changed since the last
backup are backed up. This is used to reduce the time required to back up a computer, at
the cost of potentially greater restoration complexity.

Industry Standard Architecture (ISA) The expansion bus used on the original IBM PC.
Most manufacturers began dropping ISA from their motherboards around 2001.

info pages A type of documentation similar to man pages (see man pages), but with a more
complex hyperlinked structure within each document. The FSF and some other developers
now favor info pages over man pages.

inode A filesystem (meaning 1) data structure that contains critical information on the
file, such as its size and location on the disk.

input/output (I/O) A term that describes the acceptance of data from an external source or
the sending of data to an external source. In some cases, the “external source” may be inter-
nal to the computer, as in I/O between a hard disk and the CPU or memory. In other cases,
I/O is more clearly external, as in network I/O.

installed file database A database of files installed via the computer’s package manager
(such as RPM or Debian), as well as associated information such as dependencies. Also
called the “package database.”

internal transfer rate The rate of data transfer within a device. This is typically applied
to hard disks and similar devices to describe how quickly they can read or write data from
their physical media.

03843book.indb 573 8/21/09 12:11:48 PM

574 Glossary

International Organization for Standardization (ISO) An international nongovernmen-
tal organization that publishes technical standards in many fields. In the computer field,
examples include ISO-9660 (a common CD-ROM filesystem) and ISO/IEC 26300:2006
(the OpenDocument Format for office files, implemented by OpenOffice.org and several
other Linux productivity programs).

internet Any collection of networks linked together by routers. See also Internet.

Internet The largest network on Earth, which connects computers from around the globe.
When used in this way, the word is always capitalized. See also internet.

Internet Message Access Protocol (IMAP) A protocol for exchanging mail messages. The
recipient initiates an IMAP session. IMAP differs from POP in that IMAP enables the recip-
ient to leave messages in organized folders on the server; POP requires that the recipient
download the messages to organize them.

Internet Packet Exchange (IPX) A protocol that underlies much of Novell’s original net-
working protocols. Despite the name, this protocol is unrelated to the Internet.

Internet Printing Protocol (IPP) A protocol for printing on a network, used in Linux by
the Common Unix Printing System (CUPS) server.

Internet Protocol (IP) A low-level portion of the TCP/IP stack responsible for handling
network addressing. See also IPv4 and IPv6.

Internet Software Consortium (ISC) See Internet Systems Consortium (ISC).

Internet Systems Consortium (ISC) A nonprofit corporation that develops a number
of important network servers, including BIND, the standard Linux DHCP server, and an
NTP server.

interrupt request (IRQ) A method by which peripherals (SCSI host adapters, sound cards,
and so on) signal that they require attention from the CPU. An IRQ also refers to a specific
interrupt signal line. The basic 32-bit x86 architecture supports 16 IRQs, numbered 0–15,
but IRQs 2 and 9 are linked, so in practice, there are only 15 IRQs in the traditional archi-
tecture, and many of these are used by basic hardware like floppy disks. Modern computers
usually support more than the 15 IRQs of the traditional x86 architecture.

intrusion detection system (IDS) Software that can detect suspicious activity on a com-
puter or network and alert an operator to this activity.

I/O See input/output (I/O).

IP See Internet Protocol (IP).

IP address A computer’s numeric TCP/IP address, such as 192.168.45.203.

IPP See Internet Printing Protocol (IPP).

03843book.indb 574 8/21/09 12:11:48 PM

Glossary 575

IPv4 The version of the Internet Protocol that’s in common use in 2009. IPv4 supports
32-bit addresses, typically represented as four decimal numbers separated by dots, as in
192.168.45.203. The IPv4 address space is too small for continued expansion, so a transi-
tion to IPv6 is underway. See also IPv6.

IPv6 The “next-generation” Internet Protocol, which uses 128-bit addresses. This
upgrade to TCP/IP supports a theoretical maximum of approximately 3.4 × 1038 addresses,
as opposed to the 4 billion addresses possible with IPv4. IPv6 addresses are represented as
a series of eight 2-byte hexadecimal numbers separated by colons, as in fed1:0db8:85a3:
08d3:1319:8a2e:0370:7334.

IPX See Internet Package Exchange (IPX).

IRQ See interrupt request (IRQ).

ISA See Industry Standard Architecture (ISA).

ISC See Internet System Consortium (ISC) (formerly Internet Software Consortium).

ISO See International Organization for Standardization (ISO).

J
Java A programming language created by Sun Microsystems. Java is used on devices as
diverse as cell phones and large server computers.

Java Virtual Machine (JVM) A method of running cross-platform computer software
written in the Java programming language.

JFS See Journaled Filesystem (JFS).

Journaled Filesystem (JFS) One of several journaling filesystems for Linux. JFS was
developed by IBM for its AIX OS. A subsequent implementation was created for OS/2, and
Linux’s JFS is derived from this code.

journaling filesystem A type of filesystem that maintains a record of its operations. Such
filesystems can typically recover quickly after a power failure or system crash. Common
Linux journaling filesystems are ext3fs, ext4fs, ReiserFS, JFS, and XFS. See also filesystem.

JVM See Java Virtual Machine (JVM).

K
KDE Display Manager (KDM) A popular XDMCP server for Linux.

KDM See KDE Display Manager (KDM).

03843book.indb 575 8/21/09 12:11:48 PM

576 Glossary

kernel The core program of any OS. The kernel provides interfaces between the software
and the hardware and controls the operation of all other programs. Technically, the Linux
kernel is the only component that is Linux; everything else, such as shells, X, and libraries,
is available on other Unix-like systems.

kernel module A driver or other kernel-level program that may be loaded or unloaded as
required.

kernel module autoloader A utility that loads and unloads kernel modules as required by
the kernel, obviating the need to manually load and unload kernel modules.

kernel ring buffer A record of recent messages generated by the Linux kernel. Immedi-
ately after a Linux system boots, this buffer contains the bootup messages generated by
drivers and major kernel subsystems. This buffer may be viewed with the dmesg command.

L
L2TP See Layer 2 Tunneling Protocol (L2TP).

Layer 2 Tunneling Protocol (L2TP) A method of passing multiple network protocols over
a single connection, as in a VPN.

LBA See linear block addressing (LBA).

LDAP See Lightweight Directory Access Protocol (LDAP).

libc See C library (libc).

library A collection of code that’s potentially useful to many programs. This code can be
stored in files separate from the programs that use the library to save disk space and RAM
when running those programs.

Lightweight Directory Access Protocol (LDAP) A tool for storing data in a type of data-
base and accessing it over a network. LDAP is sometimes used as a form of network-based
authentication.

LILO See Linux Loader (LILO).

linear block addressing (LBA) A method of accessing data on a disk that uses a single
sector number to retrieve data from that sector. LBA contrasts with cylinder/head/sector
(CHS) addressing. Some sources refer to LBA as logical block addressing.

Linux 1. The open source kernel designed by Linus Torvalds as the core of a Unix-like
operating system (OS). 2. A complete OS built around Linus Torvalds’s kernel. See also
GNU/Linux.

Linux Loader (LILO) A popular Linux boot loader. LILO can boot a Linux kernel or redirect
the boot process to another boot loader in a non-Linux partition, thus booting other OSs.
LILO is similar to the competing Grand Unified Boot Loader (GRUB). See also boot loader.

03843book.indb 576 8/21/09 12:11:49 PM

Glossary 577

load average A measure of the demands for CPU time by running programs. A load aver-
age of 0 means no demand for CPU time, 1 represents a single program placing constant
demand on the CPU, and values higher than 1 represent multiple programs competing for
CPU time. The top and uptime commands both provide load average information.

LocalTalk A type of network hardware common on older Macintosh networks.

log file A text file maintained by the system as a whole or an individual program, in
which important system events are recorded. Log files typically include information on
user logins, server access attempts, and automatic routine maintenance.

log file rotation See log rotation.

log rotation A routine maintenance process in which the computer suspends recording data
in log files, renames them, and opens new log files. This process keeps log files available for a
time, but ultimately it deletes them, preventing them from growing to consume all available
disk space.

logical block addressing (LBA) See linear block addressing (LBA).

logical partition A type of MBR hard disk partition that has no entry in the primary
partition table. Instead, logical partitions are carried within an extended partition.

logical volume management (LVM) An alternative or supplement to the normal parti-
tioning system, in which partition substitutes (logical volumes) may be created, deleted, or
resized dynamically, much like files on a filesystem. LVM simplifies volume management by
eliminating the need to plan where volumes reside on a disk, but at the cost of an extra layer
of data structures.

loop A programming or scripting construct enabling multiple executions of a segment of
code. Typically terminated through the use of a conditional expression.

LVM See logical volume management (LVM).

M
MAC See mandatory access control (MAC) or media access control (MAC) address.

MAC address See media access control (MAC) address.

machine name The portion of a hostname that identifies a computer on a network, as
opposed to the network as a whole (for instance, ginkgo is the machine name portion of
ginkgo.example.com). The machine name is sometimes used in reference to the entire
hostname.

mail exchanger (MX) In DNS configuration, refers to a computer that should accept mail
for a domain. For instance, if the MX for example.com is franklin.example.com, then
mail addressed to ben@example.com will be sent to franklin.example.com. This computer

03843book.indb 577 8/21/09 12:11:49 PM

578 Glossary

will then deliver the mail to the local user ben, forward it to another account or computer,
or bounce the mail.

mail transfer agent (MTA) A mail server program or computer.

mail user agent (MUA) A mail reader (client) program.

main memory The main type of RAM in a computer, as opposed to cache memory.

major version number The first number in a program’s version number. For instance, if a
program’s version number is 1.2.3, the major version number is 1.

man pages An electronic “manual” for a program, configuration file, system call, or other
feature of the system. Man pages are accessed by typing man followed by the program or
other topic you want to learn about, as in man man to learn about the man pages system itself.

mandatory access control (MAC) A security tool employed by SELinux to constrain who
may perform particular actions.

master One of two PATA devices on a single PATA chain. The master device gets a lower
Linux device letter than the slave device does.

master boot record (MBR) The first sector of a hard disk. The MBR contains code that
the BIOS runs during the boot process, as well as the primary partition table. MBR some-
times refers to the MBR partitioning scheme itself. See also GUID partition table (GPT).

MB See megabyte (MB).

MBR See master boot record (MBR).

MD4 password See Message Digest 4 (MD4) password.

MD5 password See Message Digest 5 (MD5) password.

media access control (MAC) address A low-level address associated with a piece of net-
work hardware. The MAC address is usually stored on the hardware itself, and it is used for
local network addressing only. Addressing between networks (such as on the Internet) uses
higher-level addresses, such as an IP address.

megabyte (MB) A measure of data size, most commonly meaning 220 (1,048,576) bytes.
Although this meaning is common in the computer field, megabyte more technically means
106 (1,000,000) bytes, with 220 bytes being more properly called “mebibyte” (MiB).

Message Digest 4 (MD4) password A password stored using the Message Digest 4 (MD4)
hash. MD4 passwords are common on Windows systems and are also used by Samba’s
encrypted password system.

Message Digest 5 (MD5) password A password that’s stored using the Message Digest 5
(MD5) hash. Recent Linux systems generally use MD5 or SHA1 passwords.

mode The permissions of a file. In conjunction with the file’s owner and group, the mode
determines who may access a file and in what ways.

03843book.indb 578 8/21/09 12:11:49 PM

Glossary 579

mode lines Definition of the timings required by particular video resolutions running at
particular refresh rates.

modem This word is short for “modulator/demodulator.” It’s a device for transferring
digital data over an analog transmission medium. Traditionally, the analog transmission
medium has been the normal telephone network, but the word “modem” is frequently
applied to devices used for broadband Internet access as well.

module A driver or other software component that’s stored in a separate file. The Linux
kernel supports modules, as do some other software packages, such as Apache. Software
designed to use modules can load them on demand or on command, saving RAM when
modules aren’t in use and reducing the size of the main program.

motherboard The main circuit board in a computer. The CPU, RAM, and add-on cards
typically plug directly into the motherboard, although some designs place some of these
components on extender cards. The motherboard is also sometimes referred to as the
“mainboard” or the “system board.”

mount 1. The process of adding a filesystem (meaning 1) to a directory tree. 2. A command
of the same name that performs this task.

mount point A directory to which a new filesystem (meaning 1) is attached. Mount points
are typically empty directories before their host filesystems are mounted.

MTA See mail transfer agent (MTA).

MUA See mail user agent (MUA).

MX See mail exchanger (MX).

N
Name Service Cache Daemon (NSCD) A daemon that caches common name service
requests, such as those for usernames and hostnames.

NDP See Neighbor Discovery Protocol (NDP).

Neighbor Discovery Protocol (NDP) A protocol used to learn a network hardware address
based on an IPv6 address. See also Address Resolution Protocol (ARP).

NetBEUI A network stack similar to AppleTalk or TCP/IP in broad outline but used
primarily on local networks.

NetBIOS Networking protocols that are often used in conjunction with NetBEUI or TCP/
IP. NetBIOS underlies the SMB/CIFS file sharing protocols used by Microsoft Windows and
implemented in Linux by Samba.

netmask See network mask.

03843book.indb 579 8/21/09 12:11:49 PM

580 Glossary

Network Filesystem (NFS) A file sharing protocol used among Linux and Unix computers.

Network Information Service (NIS) A network protocol that enables computers to share
simple database files. Commonly used to provide centralized login authentication and as a
substitute for DNS on small networks.

network interface card (NIC) The hardware that provides the network circuitry for a com-
puter. Traditionally, NICs have been plug-in ISA or PCI cards; however, most modern comput-
ers implement network circuitry on their motherboards.

network mapper (Nmap) A common text-based network port scanner for Linux.

network mask A bit pattern that identifies the portion of an IP address that’s an entire
network and the part that identifies a computer on that network. For IPv4 addresses, the
pattern may be expressed as 4 decimal bytes separated by dots (as in 255.255.255.0) or as
the number of network bits following an IP address and a slash (as in 192.168.45.203/24).
The network mask is also referred to as the “netmask” or “subnet mask.”

Network News Transfer Protocol (NNTP) A network protocol that widely disseminates
posts in any of hundreds of network newsgroups. See also Usenet.

New Technology File System (NTFS) The default filesystem for modern versions of Win-
dows (NT/200x/XP/Vista). Several NTFS drivers for Linux exist, but none is perfect.

NFS See Network Filesystem (NFS).

NIC See Network Interface Card (NIC).

NIS See Network Information Service (NIS).

Nmap See Network Mapper (Nmap).

NNTP See Network News Transfer Protocol (NNTP).

non-volatile RAM (NVRAM) A type of memory that retains data even after power is cut
off. NVRAM is commonly used to store BIOS settings.

NSCD See Name Service Cache Daemon (NSCD).

O
open mail relay An SMTP mail server that’s configured to relay mail from anywhere to any-
where. Open mail relays can be abused by spammers to obfuscate their messages’ true origins.

open port A network port that’s being used by a server program and that’s accessible by
outside systems. Ports that are open unnecessarily pose a security risk and should be closed.

open source Copyrighted software (or other works, such as documentation) that may be
freely redistributed under terms laid out at http://opensource.org/docs/osd. The Linux

03843book.indb 580 8/21/09 12:11:49 PM

Glossary 581

kernel and all software required to make a complete Linux distribution are open source,
although Linux can also run proprietary software.

Open System Interconnection (OSI) model A means of describing network stacks, such
as TCP/IP, NetBEUI, or AppleTalk. In the OSI model, such stacks are broken down into
several layers, each of which communicates directly with the layers above and below it.

OS Acronym for operating system.

OSI model See Open System Interconnection (OSI) model.

P
package database See installed file database.

packet A limited amount of data collected together with an envelope and sent over a net-
work. See also envelope.

packet filter firewall A type of firewall that operates on individual network data packets,
passing or rejecting packets based on information such as the source and destination
addresses and ports.

packet sniffer A program that monitors network traffic at a low level, enabling diagnosis
of problems and capturing data. Packet sniffers can be used both for legitimate network
diagnosis and for data theft.

PAM See Pluggable Authentication Modules (PAM).

Parallel ATA (PATA) The traditional form of ATA interface, in which several bits are
transferred at once. See also Serial ATA (SATA).

parameter An option passed to a program on a command line or as part of a configura-
tion file.

parent process A relative term referring to the process that started another. For instance,
if you launch an editor from a shell, the shell process is the editor’s parent process.

parent process ID (PPID) A PID number associated with the parent of a process.

partition A contiguous part of a hard disk that’s set aside to hold a single filesystem (mean-
ing 1). Also used as a verb to describe the process of creating partitions on a hard disk.

partition table The disk data structure that describes the layout of partitions on a hard
disk. See also master boot record (MBR) and GUID partition table (GPT).

PATA See Parallel ATA (PATA).

path A colon-delimited list of directories in which program files may be found. (Similar
lists define the locations of directories, fonts, and other file types.)

03843book.indb 581 8/21/09 12:11:49 PM

582 Glossary

payload The portion of a network data packet that contains the actual data to be trans-
mitted, as opposed to the envelope.

PCI See Peripheral Component Interconnect (PCI).

PCL See Printer Control Language (PCL).

peripheral A device that connects to and is controlled by a computer. Many peripherals,
such as Web cams and keyboards, are external to the computer’s main box. Some defini-
tions include devices that reside within the computer’s main box, such as hard disks and
CD-ROM drives.

Peripheral Component Interconnect (PCI) An expansion bus capable of much higher
speeds than the older ISA bus. Modern computers usually include several PCI slots.

permission bit A single bit used to define whether a given user or class of users has a par-
ticular type of access to a file. For instance, the owner’s execute permission bit determines
whether the owner can run a file as a program. The permission bits together comprise the
file’s mode.

Personal Home Page (PHP) See PHP: Hypertext Preprocessor (PHP).

phishing The process of sending bogus e-mail or putting up fake Web sites with the goal
of collecting sensitive personal information (typically credit card numbers).

PHP See PHP: Hypertext Preprocessor (PHP).

PHP: Hypertext Preprocessor (PHP) A recursive acronym referring to a scripting lan-
guage for Web servers that enables them to customize Web pages for particular users or
purposes. PHP is sometimes expanded as Personal Home Page.

PID See process ID (PID).

PIO See Programmed Input/Output (PIO).

pipe A method of executing two programs so that one program’s output serves as the second
program’s input. Piped programs are separated in a Linux shell by a vertical bar (|).

pipeline See pipe.

Pluggable Authentication Modules (PAM) Linux’s user authentication subsystem. PAM is
highly configurable; you can create stacks of modules that are called for any given authentica-
tion service (such as a network server or login program), enabling you to customize the authen-
tication database used and other tasks that are performed during a login attempt.

Point-to-Point Protocol (PPP) A method of initiating a TCP/IP connection between two
computers over an RS-232 serial line or modem.

port number A number that identifies the program from which a data packet comes or to
which it’s addressed. When a program initiates a network connection, it associates itself
with one or more ports, enabling other computers to uniquely address the program.

03843book.indb 582 8/21/09 12:11:50 PM

Glossary 583

Post Office Protocol (POP) A mail server protocol in which the recipient initiates transfer of
messages. POP differs from IMAP in that POP doesn’t provide any means for the recipient to
organize and store messages on the server.

PostScript A programming language used on many high-end printers. PostScript is
optimized for displaying text and graphics on the printed page. The Linux program
Ghostscript converts from PostScript to bitmapped formats understood by many low-end
and mid-range printers.

PostScript Printer Definition (PPD) A configuration file that provides information on a
printer’s capabilities—its paper size, whether it prints in color, and so on.

PowerPC See Power Performance Computing (PowerPC or PPC).

Power Performance Computing (PowerPC or PPC) A CPU architecture created by Motor-
ola, IBM, and Apple in the early 1990s. PowerPC CPUs were at the heart of Macintosh com-
puters from 1994 to 2006 (Apple has since moved to x86-64 CPUs). Today they’re used mostly
in certain specialized devices.

PPC See Power Performance Computing (PowerPC or PPC).

PPD See PostScript Printer Definition (PPD).

PPID See parent process ID (PPID).

PPP See Point-to-Point Protocol (PPP).

primary boot loader The first boot loader run by the BIOS.

primary partition A type of MBR partition that’s defined in a data structure contained
in the hard disk’s partition table in the MBR. The MBR partitioning scheme supports only
four primary partitions per hard disk.

print queue A storage place for files waiting to be printed.

Printer Control Language (PCL) A language developed by Hewlett-Packard for controlling
printers. (Many of Hewlett-Packard’s competitors also use PCL.) PCL is most commonly found
on midrange laser printers, but some inkjet printers also support the language. Several PCL
variants exist, the most common ranging from PCL 3 to PCL 6.

printer driver A software component that converts printable data generated by an appli-
cation into a format that’s suitable for a specific model of printer. In Linux, printer drivers
usually reside in Ghostscript, but some applications include a selection of printer drivers to
print directly to various printers.

privileged port A port (see port number) that’s numbered below 1024. Linux restricts
access to such ports to root. In computing’s early days, any server running on a privileged
port could be considered trustworthy, because only programs configured by professional
system administrators could be run on such ports. Today, that’s no longer the case. See also
unprivileged port.

03843book.indb 583 8/21/09 12:11:50 PM

584 Glossary

process A piece of code that’s maintained and run by the Linux kernel separately from
other pieces of code. Most processes correspond to programs that are running. One pro-
gram can be run multiple times, resulting in several processes.

process ID (PID) A number associated with a specific process. Utilities such as kill and
renice work on PIDs, enabling you to terminate them or alter their priorities.

Programmed Input/Output (PIO) A method of data transfer between memory and
expansion cards in which the CPU actively performs the transfer. PIO tends to consume
much more CPU time than DMA does.

protocol stack A collection of drivers, kernel procedures, and other software that imple-
ments a standard means of communicating across a network. Two computers must support
compatible protocol stacks to communicate. The most popular protocol stack today is TCP/IP.

pull mail protocol A mail protocol in which the recipient initiates the transfer. Examples
include POP and IMAP.

push mail protocol A mail protocol in which the sender initiates the transfer. SMTP is the
most common push mail protocol.

R
RADIUS See Remote Authentication Dial-In User Services (RADIUS).

RAID See redundant array of independent disks (RAID).

random access A method of access to a storage device (RAM, hard disk, and so on) in
which information may be stored or retrieved in an arbitrary order with little or no speed
penalty. See also sequential access.

RDP See Remote Desktop Protocol (RDP).

redirection A procedure in which a program’s standard output or standard error is sent
to a file rather than to the screen, or in which the program’s standard input is obtained
from a file rather than from the keyboard. See also standard input, standard error, and
standard output.

redundant array of independent disks (RAID) Two or more disks that are treated as a
single physical hard disk. RAID can improve speed, reliability, or both, depending on how
it’s configured. It can be implemented in special hardware RAID controllers or via special
kernel options and Linux configuration.

regular expression A method of matching textual information that may vary in important
ways but that contains commonalities. The regular expression captures the commonalities
and uses various types of wildcards to match variable information.

ReiserFS One of several journaling filesystems for Linux. ReiserFS was developed from
scratch for Linux.

03843book.indb 584 8/21/09 12:11:50 PM

Glossary 585

relative directory name A directory name that’s specified relative to the current direc-
tory. Relative directory names often include the parent specification (..), which indicates
the current directory’s parent.

release number See build number.

Remote Authentication Dial-In User Services (RADIUS) A network authentication tool
that’s often used by network gateway systems that require authentication, such as PPP servers
or Wi-Fi routers.

Remote Desktop Protocol (RDP) A network protocol used by Microsoft to enable remote
use of a Windows computer’s GUI environment. The rdesktop program is a Linux RDP client.

Remote Frame Buffer (RFB) A cross-platform remote GUI login protocol used by VNC.

remote login server A type of server that enables individuals at distant locations to use a
computer. Examples include Telnet, SSH, and XDM.

Request for Comments (RFC) An Internet standards document. RFCs define how proto-
cols like Telnet and SMTP operate, thus enabling tools developed by different companies or
individuals to interoperate.

RFB See Remote Frame Buffer (RFB).

RFC See Request for Comments (RFC).

root directory The directory that forms the base of a Linux filesystem (meaning 2). All
other directories are accessible from the root directory, either directly or via intermediate
directories.

root DNS servers A set of DNS servers that deliver information to other DNS servers
about top-level domains (.com, .net, .us, and so on). DNS servers consult the root DNS
servers first when performing full recursive DNS lookups.

root filesystem The filesystem (meaning 1) on a Linux system that corresponds to the root
directory, along with several directories based on it.

root kit A set of scripts and other software that enable script kiddies to break into computers.

root name servers See root DNS servers.

root partition The partition associated with the root filesystem.

rooted An adjective describing a computer that has been compromised to the point where
the intruder has full root access to the system.

router A computer that transfers data between networks. See also gateway.

RPM See RPM Package Manager (RPM).

03843book.indb 585 8/21/09 12:11:50 PM

586 Glossary

RPM Package Manager (RPM) A package file format and associated utilities designed by
Red Hat but now used on many other distributions as well. RPM features excellent depen-
dency tracking and easy installation and removal procedures.

runlevel A number associated with a particular set of services that are being run. Changing
runlevels changes services or can shut down or restart the computer.

S
Samba Web Administration Tool (SWAT) A server that enables administrators to configure
Samba servers from the same or another computer by using an ordinary Web browser.

SAN See storage area network (SAN).

SAS See Serial Attached SCSI (SAS).

SATA See Serial ATA (SATA).

scp The secure copy (scp) program uses the SSH protocol to copy files over a network
using encryption. It works much like the local cp program, but with extensions to enable
specification of a remote server, username, and password.

script kiddy An individual with little knowledge or skill who breaks into computers using
scripts created by others. Such break-ins often leave obvious traces, and script kiddies fre-
quently cause collateral damage that produces system instability.

scripting language An interpreted computer programming language designed for writing
small utilities to automate simple but repetitive tasks. Examples include Perl, Python, Tcl,
and shell scripting languages like those provided by Bash and tcsh.

SCSI See Small Computer System Interface (SCSI).

Second Extended Filesystem (ext2 or ext2fs) The most common filesystem (meaning 1)
in Linux from the mid-1990s through approximately 2001.

secondary boot loader A boot loader that’s launched by another boot loader.

Secure File Transfer Protocol (SFTP) A combination of SSH and FTP; this protocol
employs an SSH link to provide encrypted transfer of files in an FTP-like way.

Secure Hash Algorithm (SHA) A type of encryption algorithm that may be used in gener-
ating checksum-like verifications of file integrity or in encrypting passwords, among other
uses. Specific subtypes include SHA0, SHA1, and SHA2, with SHA1 being the most widely
used in Linux.

Secure Shell (SSH) A remote login protocol and program that uses encryption to ensure
that intercepted data packets cannot be used by an interloper.

03843book.indb 586 8/21/09 12:11:50 PM

Glossary 587

Secure Sockets Layer (SSL) An encryption protocol that permits secure two-way com-
munication over a network. Commonly used on the Web, in the form of HTTPS transfers.
See also Transport Layer Security (TLS).

Security Enhanced Linux (SELinux) A set of extensions to the Linux kernel and support
programs that enhance security.

SELinux See Security Enhanced Linux (SELinux).

Sequenced Packet Exchange (SPX) Part of the Novell networking stack, along with IPX.

sequential access A method of accessing a storage medium that requires reading or writ-
ing data in a specific order. The most common example is a tape; to read data at the end of
a tape, you must wind past the interceding data. See also random access.

Serial ATA (SATA) A type of ATA interface that uses serial data transfer rather than the
parallel data transfers used in older forms of ATA. See also parallel ATA (PATA).

Serial Attached SCSI (SAS) A type of SCSI interface that uses serial data transfer rather
than the parallel data transfers used in older forms of SCSI.

server 1. A program that responds to data transfer requests using networking protocols. 2.
A computer that runs one or more server programs.

Server Message Block (SMB) A file sharing protocol common on Windows-dominated
networks. SMB is implemented in Linux via the Samba suite. Also known as the Common
Internet Filesystem (CIFS).

Server Message Block File System (SMBFS) A Linux client implementation of SMB,
enabling Linux to mount remote Windows or Samba shares as if they were local disk
partitions.

server program See server, meaning 1.

service set ID (SSID) A name that identifies a specific Wi-Fi network to distinguish it from
other nearby networks.

set group ID (SGID) A special type of file permission used on program files to make the
program run with the permissions of its group. (Normally, the user’s group permissions
are used.)

set user ID (SUID) A special type of file permission used on program files to make the
program run with the permissions of its owner, rather than those of the user who runs
the program.

SFTP See Secure File Transfer Protocol (SFTP).

SGID See set group ID (SGID).

03843book.indb 587 8/21/09 12:11:51 PM

588 Glossary

sh A program or link in /bin that provides a default shell. On Linux systems, /bin/sh
typically links to /bin/bash, the Bash binary.

SHA See Secure Hash Algorithm (SHA).

shadow password A method of storing encrypted passwords separately from most other
account information. This allows the passwords to reside in a file with tighter security
options than the rest of the account information, which improves security when compared
to storing all the account information in one file with looser permissions.

share In file sharing protocols, and particularly in SMB/CIFS, a named network resource
associated with a directory or printer that’s being shared. May also be used as a verb to
describe the process of making the share available.

shell A program that provides users with the ability to run programs, manipulate files,
and so on.

shell script A program written in a language that’s built into a shell.

signal In reference to processes, a signal is a code that the kernel uses to control the termi-
nation of the process or to tell it to perform some task. Signals can be used to kill processes.

Simple Mail Transfer Protocol (SMTP) The most common push mail protocol on the Inter-
net. SMTP is implemented in Linux by servers such as sendmail, Postfix, Exim, and qmail.

Simple Network Management Protocol (SNMP) A protocol for reporting on the status of
a computer over a network or for adjusting a computer’s settings remotely.

slave The second of two possible devices on a PATA chain. The slave device has a higher
Linux device letter than the master device does.

Small Computer System Interface (SCSI) An interface standard for hard disks, CD-ROM
drives, tape drives, scanners, and other devices.

smart filter A program, run as part of a print queue, that determines the type of a file and
passes it through appropriate programs to convert it to a format that the printer can handle.

SMB See Server Message Block (SMB).

SMBFS See Server Message Block File System (SMBFS).

SMTP See Simple Mail Transfer Protocol (SMTP).

SNMP See Simple Network Management Protocol (SNMP).

social engineering The practice of convincing individuals to disclose sensitive information
without arousing suspicion. Social engineers may pretend to be system administrators to ask
for passwords, for instance. See also phishing.

03843book.indb 588 8/21/09 12:11:51 PM

Glossary 589

soft link A type of file that refers to another file on the computer. When a program tries to
access a soft link, Linux passes the contents of the linked-to file to the program. If the linked-
to program is deleted, the soft link stops working. Deleting the soft link doesn’t affect the
original file. Also referred to as a “symbolic link.” See also hard link.

software modem Modems that implement key functionality in software that must be
run by the host computer. These modems require special drivers, which are uncommon
in Linux.

source package A file that contains complete source code for a program. The package
may be compiled into a binary package, which can then be installed on the computer.

source RPM A type of source package that uses the RPM file format.

spam Unsolicited bulk e-mail.

spawn The action of one process starting another.

spool directory A directory in which print jobs, mail, or other files wait to be processed.
Spool directories are maintained by specific programs, such as the printing system or SMTP
mail server.

SPX See Sequenced Packet Exchange (SPX).

SSH See Secure Shell (SSH).

SSID See service set ID (SSID).

SSL See Secure Sockets Layer (SSL).

standard error The default method of delivering purely text-based error messages from a
program to the user. It normally corresponds to a text-mode screen, xterm window, or the
like. Sometimes referred to as “stderr.” See also standard output.

standard input The default method of delivering input to a program. It normally corre-
sponds to the keyboard at which you type. Sometimes referred to as “stdin.”

standard output The default method of delivering purely text-based nonerror information
from a program to the user. It normally corresponds to a text-mode screen, xterm window,
or the like. Sometimes referred to as “stdout.” See also standard error and standard input.

startup script A script that controls part of the Linux boot process.

stateful packet inspection A firewall tool in which a packet’s state (that is, whether it’s
marked to begin a transaction, to continue an existing exchange, and so on) is considered in
the filtering process.

stderr See standard error.

03843book.indb 589 8/21/09 12:11:51 PM

590 Glossary

stdin See standard input.

stdout See standard output.

sticky bit A special file permission bit that’s most commonly used on directories. When
set, only a file’s owner may delete the file, even if the directory in which it resides can be
modified by others.

storage area network (SAN) A technology that permits network-attached disks and other
storage devices to look just like local storage to client computers.

subdomain A subdivision of a domain. A subdomain may contain computers or subdomains
of its own.

subnet mask See network mask.

SUID See set user ID (SUID).

super server A server that listens for network connections intended for other servers and
launches those servers. Examples on Linux are inetd and xinetd.

superuser A user with extraordinary rights to manipulate critical files on the computer.
The superuser’s username is normally root.

swap file A disk file configured to be used as swap space.

swap partition A disk partition configured to be used as swap space.

swap space Disk space used as an extension to a computer’s RAM. Swap space enables a
system to run more programs or to process larger data sets than would otherwise be possible.

SWAT See Samba Web Administration Tool (SWAT).

switch A type of network hardware that serves as a central exchange point in a network.
Each computer has a cable that links to the switch, so all data pass through the switch. A
switch usually sends data only to the computer to which it’s addressed. See also hub.

symbolic link See soft link.

system cron job A cron job that handles system-wide maintenance tasks, such as log rota-
tion or deletion of unused files from /tmp. See also user cron job.

System V (SysV) A form of AT&T Unix that defined many of the standards used on
modern Unix systems and Unix clones, such as Linux.

SysV See System V (SysV).

SysV startup script A type of startup script that follows the System V startup standards.
Such a script starts one service or related set of services.

03843book.indb 590 8/21/09 12:11:51 PM

Glossary 591

T
tarball A package file format based on the tar utility. Tarballs are easy to create and are
readable on any version of Linux, or most non-Linux systems. They contain no dependency
information, and the files they contain are not easy to remove once installed.

TCP/IP See Transmission Control Protocol/Internet Protocol (TCP/IP).

Telnet A protocol used for performing remote text-based logins to a computer. Telnet is a
poor choice for connections over the Internet because it passes all data, including pass-
words, in an unencrypted form, which is a security risk. See also Secure Shell (SSH).

terminal program 1. A GUI program that’s used to run text-based programs in a GUI envi-
ronment. Examples include programs called xterm, Konsole, and Terminal. 2. A program
that’s used to initiate a simple text-mode connection between two computers, especially via a
modem or RS-232 serial connection.

text editor A program for editing text files on a computer.

TFTP See Trivial File Transfer Protocol (TFTP).

Third Extended Filesystem (ext3 or ext3fs) A variant of the Second Extended Filesystem
(ext2 or ext2fs) that adds a journal to reduce startup times after a power failure or system
crash. See also journaling filesystem.

time to live (TTL) A limited “lifetime” for computer data, used to prevent time-sensitive
data from being retained or retransmitted indefinitely and thereby causing problems. TTLs
are used in DNS records to ensure that DNS servers periodically check authoritative sources
for changed data and in low-level data packets to ensure that the packets don’t end up cir-
cling a network forever in case of a delivery error.

TLS See Transport Layer Security (TLS).

Token Ring A type of network hardware that supports speeds of up to 1Gbps on twisted-
pair cabling.

Transmission Control Protocol/Internet Protocol (TCP/IP) A very popular network
stack and the one on which the Internet is built.

Transport Layer Security (TLS) An encryption protocol that permits secure two-way
communication over a network. Serves as the successor to Secure Sockets Layer (SSL)
encryption in some applications.

Triple Data Encryption Standard (3DES) A data encryption standard.

Trivial File Transfer Protocol (TFTP) A simple file transfer protocol that’s most commonly
used to provide files to computers, such as thin clients, that boot off of the network rather
than from a local disk.

TTL See time to live (TTL).

03843book.indb 591 8/21/09 12:11:51 PM

592 Glossary

U
UID See user ID (UID).

umask See user mask (umask).

Unicode Transformation Format (UTF) A method of encoding letters, numbers, and
punctuation as numbers. UTF is superior to the older ASCII in that it can support more
alphabets, so it’s better at handling non-English languages.

Universal Serial Bus (USB) A type of interface for low- to medium-speed external
devices, such as keyboards, mice, cameras, modems, scanners, and removable disk drives.
USB 2.0 increases the speed to the point that USB is usable for hard disks in less demanding
applications.

unprivileged port A port (see port number) that’s numbered above 1024. Such ports may
be accessed by any user and so are commonly used by client programs and by a few servers
that may legitimately be run by ordinary users. See also privileged port.

USB See Universal Serial Bus (USB).

user An individual who has an account on a computer. This term is sometimes used as a
synonym for account.

user cron job A cron job created by an individual user to handle tasks for that user, such
as running a CPU-intensive job late at night when other users won’t be disturbed by the
job’s CPU demands. See also system cron job.

user ID (UID) A number associated with a particular account. Linux uses the UID inter-
nally for most operations, and it converts to the associated username only when interacting
with people.

user mask (umask) A bit pattern representing the permission bits that are to be removed
from files created from a process.

user private group A group strategy in which every user is associated with a unique
group. Users may then add other users to their groups in order to control access to files on
an individual basis.

username The name associated with an account, such as theo or miranda. Linux user-
names are case sensitive and may be from 1 to 32 characters in length, although they’re
usually entirely lowercase and no longer than 8 characters.

UTC See Coordinated Universal Time (UTC) and Greenwich Mean Time (GMT).

Usenet A distributed set of computers that host online discussions on a wide array of top-
ics in hundreds of different news groups, such as comp.os.linux.misc for Linux discus-
sions. Usenet predates the Web forums that have largely eclipsed it in the public eye, but
Usenet remains a valuable resource for learning about Linux—and many other things.

03843book.indb 592 8/21/09 12:11:51 PM

Glossary 593

V
variable In computer programming or scripting, a “placeholder” for data. Variables may
change from one run of a program to another, or even during a single run of a program.

VFAT See Virtual FAT (VFAT).

Virtual FAT (VFAT) A variant of the FAT filesystem that supports long filenames. Micro-
soft introduced VFAT with Windows 95, and most modern OSs now support it. To use a
VFAT filesystem in Linux, mount it with the vfat filesystem type code.

virtual filesystem A filesystem that doesn’t correspond to a real disk partition, removable
disk, or network export. A common example is /proc, which provides access to informa-
tion on the computer’s hardware.

virtual hosting A process by which a single computer can host servers (particularly
Web servers) for multiple domains. For instance, one computer might respond to the
names www.pangaea.edu, www.example.com, and web.littrow.luna.edu, delivering dif-
ferent content for each name.

Virtual Network Computing (VNC) A cross-platform remote GUI login tool based on the
RFB protocol. VNC clients and servers are available for Linux, Windows, Mac OS, and
many other platforms.

Virtual Private Network (VPN) A tool for connecting two network segments across a
potentially insecure network, such as the Internet. VPNs can enable secure communications
between offices or between individuals and remote networks.

virtual terminal (VT) One of several independent text-mode or GUI screens maintained
by Linux. You can log in multiple times and run different programs in each VT and then
switch between them by pressing Ctrl+Alt+Fn, where n is the terminal number (such as
Ctrl+Alt+F4 to switch to VT 4).

VNC See Virtual Network Computing (VNC).

VPN See Virtual Private Network (VPN).

VT See virtual terminal (VT).

W
WAP See wireless access point (WAP).

WEP See Wired Equivalent Privacy (WEP).

Wi-Fi A common name for wireless networking using any of the 802.11 standards.

03843book.indb 593 8/21/09 12:11:52 PM

594 Glossary

Wi-Fi Protected Access (WPA or WPA2) An encryption protocol used on wireless networks.
Both WPA and WPA2 are superior to the older WEP, and WPA2 is superior to WPA.

wildcard A character or group of characters that, when used in a shell as part of a file-
name, match more than one character. For instance, b??k matches book, back, and buck,
among many other possibilities.

window manager A program that provides decorative and functional additions to the
plain windows provided by X. Linux supports dozens of window managers.

Wired Equivalent Privacy (WEP) An encryption protocol used on wireless networks.
WEP is inferior to the more recent WPA and WPA2 protocols.

wireless access point (WAP) A hardware device that serves to connect multiple computers
using a wireless (Wi-Fi) network protocol. WAPs also usually connect these computers to a
wired network.

wireless router A device that combines WAP, network switch, and broadband router
functionality in one box.

workstation A type of computer that’s used primarily by one individual at a time to per-
form productivity tasks, such as drafting, scientific or engineering simulations, or writing.
See also desktop computer.

WPA or WPA2 See Wi-Fi Protected Access (WPA or WPA2).

X
X Shortened form of “X Window System.”

x86 The most common CPU type for desktop computers, workstations, and small servers
from the mid-1980s until about 2005. The x86 architecture is 32 bits in size (pre-80386
CPUs were only 16-bit, though). The architecture was created by Intel, but AMD and oth-
ers make or made x86 CPUs. See also x86-64.

x86-64 A 64-bit extension to the x86 CPU architecture. This architecture was created by
Advanced Micro Devices (AMD) and is used in most modern CPUs from both AMD and
Intel. These CPUs may run both 64-bit and 32-bit code, making the upgrade from x86 to
x86-64 relatively painless. Also referred to as “AMD64” and “EM64T.”

X.org-X11 A popular X server on Linux systems, starting in 2004. X.org-X11 6.7.0 forked
from XFree86 4.3.99.

X client A program that uses X to interact with the user.

X Display Manager (XDM) The simplest of several common XDMCP programs for Linux.

03843book.indb 594 8/21/09 12:11:52 PM

Glossary 595

X Display Manager Control Protocol (XDMCP) A protocol that accepts either remote or
local X-based logins to a computer. Examples include XDM, KDM, and GDM.

XDM See X Display Manager (XDM).

XDMCP See X Display Manager Control Protocol (XDMCP).

XFS See Extent Filesystem (XFS).

X server A program that implements X for a computer; especially the component that
interacts most directly with the video hardware.

X Window System The GUI environment for Linux. The X Window System is a network-
aware, cross-platform GUI that relies on several additional components (such as a window
manager and widget sets) to provide a complete GUI experience.

XFree86 A set of X servers and related utilities for Linux and other OSs. Abandoned on
most distributions in favor of X.org-X11.

xterm A very common terminal program (meaning 1).

03843book.indb 595 8/21/09 12:11:52 PM

03843book.indb 596 8/21/09 12:11:52 PM

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions
of a topic. Italicized page numbers indicate illustrations.

A
A (address) records, 445
AAAA records, 445
absolute directory names, 57
Accelerated-X server, 20
access control lists (ACLs), 83–84, 250
access_times option, 158
accounts. See users and user accounts
ACLs (access control lists), 83–84, 250
active mode in FTP, 488
address (A) records, 445
Address Resolution Protocol (ARP)

caches, 376
IP address conversion, 360

addresses
disk sectors, 10
IP

with DHCP, 438–441
overview, 359–362
static, 369–373

TCP/IP, 356, 358
adduser utility, 197
administrative logins, 191
administrators, group, 214
ADS setting, 479
Advanced Linux Sound Architecture

(ALSA) project, 31
Advanced Package Tool (APT) utilities,

304, 313, 314, 517
Advanced Technology Attachment

(ATA), 239–241
Aho, Alfred J., 175
aliases for e-mail, 460–461

Allowed IP or network addresses
setting, 158

ALSA (Advanced Linux Sound
Architecture) project, 31

altered data files as intrusion
symptom, 538

AMANDA package, 326
ampersands (&)

processes, 119
redirection, 69
shell commands, 50–51, 91
startup files, 158–159

Anacron package, 166
anonymous FTP access, 483, 485, 488
apache package, 489
Apache servers, 489–490

controlling, 493–494
modules, 490
options, 489–490

apachectl utility, 493–494
APM (Apple Partition Map), 242
append RAID approach, 276–277
appending text to files, 68
Apple Partition Map (APM), 242
AppleTalk protocol, 357
apropos command, 92
APT (Advanced Package Tool) utilities,

304, 313, 314, 517
apt-cache tool, 313
apt-get commands, 311–313
apt-key tool, 313
apt-sortpkgs tool, 313
architecture codes in RPM, 299–300
ARKEIA package, 326

03843book.indb 597 8/21/09 12:12:09 PM

598 ARP (Address Resolution Protocol) caches – bg program

ARP (Address Resolution Protocol)
caches, 376
IP address conversion, 360

arp tool, 376
ASCII transfer FTP mode, 488
asterisks (*)

account passwords, 205, 536
cron jobs, 126
info pages, 93
log files, 164–165
ls command, 56
NTP servers, 453
port numbers, 532
PPP servers, 375
traceroute command, 378
XDM servers, 412

at command, 128–129
at-signs (@)

domains, 445–446
FTP, 488
hostnames, 169, 407
remote machine names, 165
SOA records, 446

ATA (Advanced Technology
Attachment) devices, 239–241

atd tool, 129
atomic clocks, 449, 450
atq tool, 129
atrm tool, 129
auditing, 531

account reviews, 535–536
open ports, 531–535,

534–535
verifying installed files and

packages, 537
authentication

networks, 454–455, 523–526
overview, 520–521
PAM configuration, 521–523
Samba, 479

Author section in man pages, 93
autoconf utility, 319
autodetection of video card chipsets, 18
Automatically Obtain IP Address

Settings With option, 374
automounter support, 268
AutoRepeat option, 22
awk tool, 175–177

B
background processes, 119
backslash characters (\)

directories, 55
regular expressions, 177

backticks (`)
sendmail configuration, 458
text within, 70–71

backups
cpio, 326–329
exam essentials, 340
GPT, 244
hardware, 324–326
network, 333–334
partitions for, 246
for recovery, 335–336
restoring, 329–333
review questions, 341–347
scheduling, 334–335
summary, 339

Bash shell, 49, 52–53, 89
batch tool, 129
beginnings of log files, checking, 173
Berkeley Internet Name Domain

(BIND), 441, 443–448
Berkeley Standard Distribution (BSD)

disk labels, 242
printing systems, 416, 424, 427
ps options, 110–111

bg program, 51, 119

03843book.indb 598 8/21/09 12:12:10 PM

/bin directory – character devices file type codes 599

/bin directory, 247
binary files with FTP, 488
binary form, 89
binary packages, 297
BIND (Berkeley Internet Name

Domain), 441, 443–448
bind options

DNS, 364, 442
xinetd, 157

bind-tools package, 363
bind-utils package, 363
BIOS

boot options, 4
CHS translation, 10
EFI for, 243
NVRAM for, 239
passwords, 515
setup screens, 7

Blackbox window manager, 29
block device file type codes, 75
blowfish encryption, 224
boot directive, 12
/boot/grub/grub.conf file, 10
/boot/grub/menu.lst file, 10
boot loaders, 2

available, 8–9
GRUB, 8–11
role, 7–8

boot.log file, 170
boot options

installation process, 4, 6
setting, 12–13

/boot partition, 246
boot problems, 14

dmesg messages, 16–17
GRUB kernel options, 14–15
rescue discs for, 15
root passwords, 16

BOOTPROTO variable, 369

broadband routers, 367, 367
broadcast queries, 360
browsing in IPP, 418
BRU package, 326
BSD (Berkeley Standard Distribution)

disk labels, 242
printing systems, 416, 424, 427
ps options, 110–111

buffers, ring, 16–17
Bugs section in man pages, 93
build numbers in RPM, 299
BusID setting, 24
bzImage kernel, 13
bzip2 tool, 314–315

C
caches, ARP, 376
cancel command, 427
canonical name (CNAME)

records, 445
case changes in Vi, 136
case-sensitivity of usernames, 193
cat program, 34, 67–68
cd command, 57
cdrecord program, 329, 337–338
cdrtools package, 337
CERT (Computer Emergency Response

Team), 514
CGI (Common Gateway Interface)

scripts, 490–491
chage command, 203–204
chain loaders, 12
chains, iptables, 399–401, 399
changing

passwords, 221
runlevels, 160–162
text case, 53

character devices file type codes, 75

03843book.indb 599 8/21/09 12:12:10 PM

600 checksums – complaints as intrusion symptom

checksums
CRC, 244
file database, 295
generating, 543–544
packet manager, 544–545
Tripwire, 542–543

chgrp command, 79, 194, 219
child processes, 109
chipsets for video card, 18–19, 18
chkconfig tool, 151
chkrootkit program, 545
chmod command, 78–81
choosers, 412
chown command, 78–79, 194, 202
chroot jails, 485
CHS translation schemes, 10
CIDR (Classless Inter-Domain

Routing), 361
cifs filesystem, 272–273
classes for IP addresses, 361
Classless Inter-Domain Routing

(CIDR), 361
clients

DHCP, 368–369
FTP, 486–488
iptables traffic, 404
NTP, 450, 454
vs. servers, 365
VNC, 498–499
Web, 495–496
X, 17

CNAME (canonical name) records, 445
colons (:)

account configuration files, 204–205
chown, 79
directories, 55
group configuration files, 215
hardware addresses, 359
IP addresses, 360

scp, 407–408
Vi, 133
VNC clients, 498

color depths in X configuration, 25
color inkjet printers, 417
combining text files, 67–68
command-line interface (CLI). See shells
command lines, generating, 70–71
Command mode in Vi, 133
command prompts for shells, 49
commas (,)

cron jobs, 126
DNS servers, 440, 446
hostnames, 534
log files, 164
mount options, 275
symbolic permissions, 81

comments
account configuration files, 205
aliases, 460
Apache, 489
/etc/fstab, 275
/etc/named.conf, 442
/etc/services, 396
inetd.conf, 154
log files, 164, 166
Samba, 477
shell scripts, 90
X configuration, 21

Common Gateway Interface (CGI)
scripts, 490–491

Common Unix Printing System (CUPS)
utility, 414, 417

configuration files, 417–419
printer definitions, 420
Web-based utilities, 420–422, 421

compatible hardware, 30–31
compiling source code, 318–321
complaints as intrusion symptom, 538

03843book.indb 600 8/21/09 12:12:10 PM

compress option – Days until change allowed field 601

compress option, 168
compress tool, 314–315
compression options

log files, 168
tarballs, 314–315

compromised passwords, 221–222
Computer Emergency Response Team

(CERT), 514
Conectiva distribution, 3
conflicts in packages, 322–324
connections

MySQL, 501–502
TCP/IP, 356
testing, 377

consoles, X configuration, 29–30
content of files, 34, 66–67
contexts in SELinux, 529–530
copying files, 58–59
corrupted log files, 538
Courier e-mail servers, 462
cp command, 58–59
cpio program, 326–329, 335
CPUs and processes

priority, 113
restrictions on, 116–117
time use, 112–113, 116

Crack program, 221
crackers, 219
crashes as intrusion symptom, 538
create option for log files, 168
cron file, 170
cron jobs, 125

log files, 166
system, 126–127
user, 127–128

crontab utility, 127–128
crontabs, 127
cross-platform optical discs, 338–339

CUPS (Common Unix Printing System)
utility, 414, 417

configuration files, 417–419
printer definitions, 420
Web-based utilities, 420–422, 421

CUPS Driver Development Kit
(DDK), 420

cupsd daemon, 417
cupsdisable command, 427
cupsenable command, 427
curl command, 496
curly braces ({})

environment variables, 86
/etc/dhcpd.conf, 440
log files, 167

current directories, 56–58
custom.conf file, 29, 413
custom startup files, 158–159
cylinders, 10
Cyrus IMAP servers, 461

D
daemons, 125, 148
daily option for log files, 168
dashes (-) in cron jobs, 126
data overrun protection for

partitions, 246
data structures in filesystems, 74
databases

installed file, 295–296
network accounts, 207

date command, 449
day setting in job scheduling, 128
Days before change required field, 206
Days between expiration and

deactivation field, 206
Days until change allowed field, 206

03843book.indb 601 8/21/09 12:12:10 PM

602 Days warning before password expiration field – disks

Days warning before password
expiration field, 206

dd utility, 261
DDK (Driver Development Kit), 420
DDoS (distributed denial-of-service)

attacks, 518
Debian distribution, 3
Debian packages, 307

APT tool, 311–313, 314
conventions, 307–308
dpkg commands, 308–311
tools, 294

debug level logs, 164
Default OS option, 11
default permissions, 82–83
default routes, 373
default shells, 189, 205
DefaultDepth setting, 25
definitions, glossary of, 556–591
deleting

files, 60
groups, 216
print queue jobs, 426–427
shell command text, 53
user accounts, 207–208

denial-of-service (DoS) attacks, 518
dependencies, package, 296, 322–324
Description section in man pages, 92
desktop environment, 17, 29
/dev directory, 11, 71
/dev/fd devices, 241
/dev/hd devices, 240–241
/dev/ht devices, 241
/dev/nht devices, 241
/dev/nst devices, 241
/dev/null file, 71
/dev/nvram file, 242
/dev/random file, 71
/dev/scd devices, 241

/dev/sd devices, 240–241
/dev/st devices, 241
/dev/urandom file, 71
/dev/zero file, 71
Device field, 275
device files, 71–72
Device Manager, 18, 18
df utility, 266, 273–274
dhclient client, 368
DHCP (Dynamic Host Configuration

Protocol), 6, 359
configuration, 368–369
IP addresses with, 438–441

dhcp.leases file, 440
dhcp package, 439
dhcp-server package, 439
dhcpcd client, 368
dhcpd program, 439
diff command, 536–537
dig program, 364
digital subscriber line (DSL), 351
direct administrative logins, 191
directories, 53

creating, 62
current, 56–58
file type codes, 75
home, 196–197
LDAP, 455, 525
permissions, 77
removing, 62–63

dirs command, 57
Disabled mode in SELinux, 530
disabling unused accounts, 222–223
Disallowed IP or network addresses

setting, 158
disaster recovery, backups for, 335–336
disks

for backups, 325–326
exam essentials, 283–284

03843book.indb 602 8/21/09 12:12:10 PM

DISPLAY environment variable – e‑mail 603

partitioning. See partitions
RAID. See Redundant Array of

Independent Disks (RAID)
review questions, 285–291
storage hardware overview, 238–242
summary, 282–283

DISPLAY environment variable, 88
DISPLAYMANAGER variable, 27
distributed denial-of-service (DDoS)

attacks, 518
distribution selection, 2–3
distribution-specific tools, 21
dm-crypt program, 515
dmesg file, 170
dmesg utility

messages, 16–17
video card chipsets, 19

DNS. See Domain Name System (DNS)
documentation

man pages, 91–94
programs, 95–96
video card chipsets, 18

dollar signs ($)
environment variables, 85, 89
shells, 49

domain controller computers, 478
Domain Name System (DNS)

hostname resolution, 363–364, 441
BIND options, 442
domain configuration, 443–448
root zone configuration, 443
servers, 448

iptables traffic, 404
options, 371

Domain setting, 479
domains

configuring, 443–448
names, 362, 440
obtaining, 441
Samba, 478–479
SELinux, 529–530

DoS (denial-of-service) attacks, 518
dots (.)

chown, 79
directories, 57
forward zone files, 444–446
reverse zone files, 447
sysctl keys, 131
usernames, 193

dotted quad notation, 361
dpkg command, 308–311
drift file, 450
Driver Development Kit (DDK), 420
drivers

compiling, 320–321
kernel, 33–34
printer, 415, 420, 478
X configuration, 24

dselect utility, 311
DSL (digital subscriber line), 351
dual-core systems, 116
dump program, 328

/etc/fstab option, 275
for restoring, 329–331

duplicate files and features, dependency
issues from, 322

Dynamic Host Configuration Protocol
(DHCP), 6, 359

configuration, 368–369
IP addresses with, 438–441

dynamic viewing of processes,
113–116, 114

E
e-mail, 455

aliases and forwarding, 460–461
protocols, 456
queues, 459–460
server selection, 461–462
SMTP servers, 456–458

03843book.indb 603 8/21/09 12:12:10 PM

604 e2fsck tool – /etc/init.d/mysqld script

e2fsck tool, 258–259
echo command, 393
edit mode in Vi, 134
editing files with Vi, 132

modes, 132–133
saving changes, 137
text editing, 134–136, 135

EDITOR environment variable, 53, 88
editors, invoking, 53
edquota utility, 264–265
effective user IDs, 123
EFI (Extensible Firmware Interface)

specification, 8, 243
ELILO boot loader, 245
Emacs text editor, 51–52, 137
Embedded Appliance Firewall, 394
emerg priority logs, 164–165
emergency recovery, 335
Emulate3Buttons option, 22
Enabled mode in SELinux, 530
encryption

databases, 224
e-mail servers, 462
GPG, 528
passwords, 205–206, 220–221, 223
Samba, 475
security, 518–519
SSH, 405
wireless networks, 515

ends of files, viewing, 68, 173–174
env command, 86, 89
envelopes, packets, 354
environment variables, 84–85

common, 86–89
setting, 85–86

equal signs (=)
Bash, 89
environment variables, 85–86
log files, 165
MySQL, 503

errors
filesystem checking, 258–259
log files for, 172
partition protection from, 246

/etc directory, 247
/etc/aliases file, 460
/etc/apache file, 489
/etc/apt/sources.list file, 311
/etc/cron.d directory, 125–126
/etc/crontab file, 125–127
/etc/cups directory, 417
/etc/cups/cupsd.conf file, 418–419
/etc/cups/ppd directory, 418
/etc/cups/printers.conf file, 417–418
/etc/dhcpd.conf file, 439–440
/etc/event.d directory, 163
/etc/exports file, 480–483
/etc/fstab file, 259

filesystems, 274–276
logical volumes, 282
mounting devices, 267–268
quotas, 264
raid, 280
swap files, 261–263
unmounting devices, 271

/etc/ftpusers file, 225, 485
/etc/gdm file, 413
/etc/group file, 193–195, 213–216
/etc/gshadow file, 216
/etc/host.conf file, 364
/etc/hostname file, 380
/etc/hosts.allow file, 157
/etc/hosts.deny file, 157
/etc/hosts file, 364, 443
/etc/httpd directory, 489
/etc/httpd/conf file, 489
/etc/inetd.conf file, 153, 158
/etc/inetd.d directory, 153
/etc/init.d directory, 150–151
/etc/init.d/mysqld script, 501

03843book.indb 604 8/21/09 12:12:11 PM

/etc/init.d/ntpd restart script – /etc/yp.conf file 605

/etc/init.d/ntpd restart script, 453
/etc/inittab file, 27, 160, 162
/etc/kde/kdm file, 412
/etc/ldap.conf file, 525
/etc/login.defs file, 197
/etc/logrotate.conf file, 166–168
/etc/logrotate.d directory, 166–167
/etc/mail/sendmail.cf file, 457
/etc/modules file, 37
/etc/modules.d directory, 37
/etc/mtab file, 268
/etc/mysql directory, 501
/etc/named.conf file, 442–444, 448
/etc/network/interfaces file, 369–370
/etc/nsswitch.conf file, 364, 479, 520,

524–525
/etc/ntp.conf file, 452–453
/etc/pam.conf file, 521
/etc/pam.d directory, 479, 521–522
/etc/pam.d/login file, 521
/etc/pam.d/passwd file, 223
/etc/passwd file

account information, 520
contents, 190
creating, 223
editing, 194
groups, 195, 216
reviewing, 536

/etc/portsentry directory, 541
/etc/postfix/main.cf file, 458
/etc/ppp/chap-secrets file, 375
/etc/ppp/pap-secrets file, 375
/etc/profile file, 83
/etc/proftpd/proftpd.conf file, 484–485
/etc/raidtab file, 278–280
/etc/rc.d directory, 151, 416
/etc/rc.d/boot.local file, 158
/etc/rc.d/init.d directory, 150–151
/etc/rc.d/rc.local file, 158

/etc/resolv.conf file, 371
/etc/runlevels directory, 151
/etc/samba/lmhosts file, 476
/etc/samba/smb.conf file, 475
/etc/samba/smbpasswd file, 475–476
/etc/securetty file, 226
/etc/selinux/config file, 531
/etc/services file, 382, 396, 532
/etc/shadow file, 16

account information, 520
contents, 190
creating, 223
editing, 205–206
permissions, 207
reviewing, 536

/etc/snort/snort.conf file, 539
/etc/squid/squid.conf file, 494
/etc/ssh directory, 408
/etc/ssh/ssh_config file, 405, 410
/etc/ssh/sshd_config file, 226, 405–406
/etc/sudoers file, 192
/etc/sysconfig directory, 27
/etc/sysconfig/displaymanager file, 411
/etc/sysconfig/network/routes file, 370
/etc/sysconfig/network-scripts/ifcfg-eth0

file, 369–370
/etc/sysconfig/sysctl file, 393
/etc/sysctl.conf file, 132, 393
/etc/syslog.conf file, 164–165, 171
/etc/tripwire directory, 543
/etc/vsftpd/vsfptd.conf file, 484, 486
/etc/X11/gdm file, 413
/etc/X11/gdm/gdm.conf file, 411
/etc/X11/kdm file, 28, 411–412
/etc/X11/xdm/Xaccess file, 412
/etc/X11/xdm/xdm-config file, 28, 412
/etc/xinetd.conf file, 155
/etc/xinetd.d directory, 155
/etc/yp.conf file, 523

03843book.indb 605 8/21/09 12:12:11 PM

606 /etc/yum.conf file – files

/etc/yum.conf file, 306
/etc/yum.repos.d, directory, 306
Ethereal packet sniffer, 541
Ethernet networks, 351
Ex mode in Vi, 133
exclamation marks (!)

account passwords, 205
log files, 165
shell commands, 53
Vi files, 137

executable form, 89
execute permission, 75–77
Exiting command for info pages, 95
Expiration date field, 206
expiring passwords, 221
export command, 85–86
exportfs command, 480–481
exports

GPG keys, 527
NFS, 273, 480

expressions
find, 63–64
regular, 67, 177

ext2 (second extended filesystem),
248–249

ext2fs filesystem, 248
ext3fs (third extended filesystem),

249–250
ext4fs (fourth extended filesystem), 249
extended INT13 calls, 10
extended partitions, 243
Extensible Firmware Interface (EFI)

specification, 8, 243
Extent Filesystem (XFS), 249–250

F
FAQs (Frequently Asked Questions), 96
Fast Filesystem (FFS), 249

FAT (File Allocation Table) filesystem,
249–250

FCEDIT environment variable, 53
FDDI (Fiber Distributed Data

Interface), 352
fdformat utility, 241
fdisk program, 250

partition creation, 252–254, 253
partition listing, 265–266

Fedora distribution, 3
GRUB version, 10
Network Configuration tool,

374, 374
RPM for, 299–300
static IP addresses, 370

Fetchmail program, 456
FFS (Fast Filesystem), 249
fg program, 51, 119
Fiber Distributed Data Interface

(FDDI), 352
Fibre Channel networks, 352
File Allocation Table (FAT) filesystem,

249–250
file command, 78
File Transfer Protocol (FTP)

access control, 225
clients, 486–488
network backups, 334
security issues, 483, 519
servers, 483

choosing, 483–484
configuring, 484–486

filenames, 74
filename completion, 51–52
optical disks, 339
packages, 302

files, 53
combining, 67–68
contents, 34, 66–67
copying, 58–59

03843book.indb 606 8/21/09 12:12:11 PM

Files section – gawk tool 607

creating, 60
device, 71–72
editing with Vi. See Vi editor
links to, 60–61
listing, 54–56
locating, 63–66
log. See log files
moving and renaming, 59
ownership, 72–74, 79
permissions. See permissions
redirecting, 69–70
removing, 60
sharing with Samba, 476
startup, 158–159
type codes, 74–78
type information, 78
verifying, 537
viewing, 67–68

Files section
man pages, 92
X configuration, 22

Filesystem in Userspace (FUSE), 488
filesystems

ACL support, 83–84
creating, 256–257
data structures, 74
error checking, 258–259
meanings, 238
networks, 271–276
optical disks, 337
options, 248–249
partitions for, 246, 248–249,

256–259, 271–276
quotas, 263–265
standard, 274–276

filter table, 399–401
filters

Ghostscript, 416
packet, 393–394, 399–400, 399
proxy, 394

find command, 63–65
Firestarter tool, 395
firewalls, 393–394

iptables, 398–404, 399
purpose, 394–395, 394
rules, 400–403
server ports, 396–398
software, 395

Foomatic printer definitions, 420
forcing installations, 323
foreground processes, 119
forking processes, 109
FORWARD chain, 399, 399, 401
forward zone files, 444–447
forwarding e-mail, 460–461
forwarding-only DNS servers, 442
fourth extended filesystem (ext4fs), 249
fragmented swap files, 262
frame buffer devices, 19
frames for packets, 354
Free Software Foundation (FSF), 95
free tool, 260–261
FreeRADIUS servers, 526
Frequently Asked Questions (FAQs), 95
Fresh RPMs repository, 307
fsck tool, 258–259
FSF (Free Software Foundation), 95
FTP. See File Transfer Protocol (FTP)
full-duplex transmissions, 353
full recursive DNS lookups, 442
FUSE (Filesystem in Userspace), 488
fuseftp client, 488
fvwm window manager, 29

G
gateways

Fedora, 370
TCP/IP, 356

gawk tool, 175

03843book.indb 607 8/21/09 12:12:11 PM

608 GCC (GNU Compiler Collection) – groups

GCC (GNU Compiler Collection), 318
gdisk program, 252, 266
GDM (GNOME Display Manager), 26

configuring, 28–29
network connections, 411

gdm.conf file, 28, 413
gdm script, 27
gedit text editor, 137
general-purpose system statistics,

120–121
Gentoo distribution, 3

GRUB version, 10
recompilation, 298
runlevels, 150–151
startup scripts, 151
XDMCP, 27

getfacl command, 84
gFTP tool, 488
Ghostscript language, 415–416
Ghostscript Web page, 417
GIDs (group IDs), 72–73

group configuration files, 215
mapping to groups, 194–196
user accounts, 189, 205

gigabit Ethernet networks, 351
global replacement in Vi, 136
GNOME (GNU Network Object

Model Environment) desktop
environment, 29

GNOME Display Manager (GDM), 26
configuring, 28–29
network connections, 411

GNOME Partition Editor, 251
gnome-system-monitor tool, 114
GNOME Toaster tool, 337
GNU

awk and gawk, 175
Ghostscript, 415
Hurd kernel, 12

Parted tool, 250, 254–256
ps options, 110–111

GNU Compiler Collection (GCC), 318
GNU Network Object Model

Environment (GNOME) desktop
environment, 29

gpasswd command, 214–215, 217
GPG (GNU Privacy Guard), 519, 526

encrypting and decrypting data, 528
keys, 527–528
signatures, 529

gpg program, 527–529
GProFTPd FTP servers, 483, 485
GPT (GUID partition table) partitioning

system, 242–244
Grand Unified Boot Loader (GRUB),

8–9
configuring, 9–10
global options, 10–11
kernel additions to, 13
kernel options, 14–15
OS boot options, 12–13
partitions for, 244–245

greater-than symbols (>)
file combining, 67
redirection, 69
shells, 49

grep command, 66–67, 174–176
group administrators, 214
group IDs (GIDs), 72–73

group configuration files, 215
mapping to groups, 194–196
user accounts, 189, 205

groupadd command, 212–213
groupdel command, 216
groupmod command, 214
groups, 72

adding, 212–213
deleting, 216

03843book.indb 608 8/21/09 12:12:11 PM

growisofs program – High‑Performance Filesystem (HPFS) 609

mapping GIDs to, 194–196
modifying, 213–216
multiple, 218–219
overview, 193–194
owners, 72
project, 217–218
user private, 217
volume, 280–282

growisofs program, 337–338
grpconv program, 223
GRUB. See Grand Unified Boot

Loader (GRUB)
grub.conf file, 13–14
grub-install program, 9, 13
grub utility, 12
Guarddog tool, 395
GUI environments

firewall configuration tools, 395
installers, 5
network configuration tools,

373–374, 374
remote logins, 412–413
text editors, 137
X configuration logins, 26, 26

GUID partition table (GPT) partitioning
system, 242–244

guides, 96
Gutenprint drivers, 420
gzip tool, 314–315

H
hackers, 219
half-duplex transmissions, 353
hard disks. See disks
hard links, 60–61, 73
hardware, 30

backups, 324–326
compatible, 30–31

identifying, 31–34
kernel modules, 35–37
network configuration, 366
networks, 350–354, 353
storage, 238

configuration, 240–242
device types, 239–240
disks. See disks

hardware addresses, 359
Hardware Compatibility List (HCL), 30
hardware RAID, 278
hash marks (#)

aliases, 460
Apache, 489
/etc/fstab, 275
/etc/services, 396
inetd.conf, 154
log files, 164, 166
shell scripts, 90
shells, 49
X configuration, 21

hashes
password, 220, 223
Tripwire, 542–543

HCL (Hardware Compatibility List), 30
head program, 173
headers

in compilation, 318–319
GPT, 244

heavy loads, verifying, 171
help resources, 91

info pages, 94–95
Internet-based, 96–97
man pages, 91–94
program documentation, 95–96

HFS (Hierarchical Filesystem), 249, 339
High-Performance Filesystem (HPFS),

249–250

03843book.indb 609 8/21/09 12:12:12 PM

610 High‑Performance Parallel Interface (HIPPI) – inodes

High-Performance Parallel Interface
(HIPPI), 352

historical login data, 211–212
history command, 53
history in shells, 52–53
History section in man pages, 93
home directories

overview, 196–197
tildes for, 57
user accounts, 189, 205

HOME environment variable, 87
/home partition, 246
HorizSync setting in X configuration, 23
host program, 363–364, 379
hosting, virtual, 492–493
hostname command, 379–380
HOSTNAME environment variable, 86
hostnames, 362–364

DNS for, 363–364, 441
BIND options, 442
domain configuration, 443–448
root zone configuration, 443
servers, 448

listing, 379–380
Samba servers, 476

hot standby support, 277
HOWTO documents, 96
HPFS (High-Performance Filesystem),

249–250
.htaccess files, 490
HTTP (Hypertext Transfer

Protocol), 489
CUPS, 420
security issues, 519

httpd.conf file, 489–490
httpd package, 489
httpd2.conf file, 489
HTTPS protocol, 519
hubs, 352, 353

human element in security, 519
hung processes, 116
Hypertext Transfer Protocol

(HTTP), 489
CUPS, 420
security issues, 519

I
ICANN (Internet Corporation for

Assigned Names and Numbers), 441
IceWM window manager, 29
ICMP (Internet Control Message

Protocol), 356
identity verification, 212
IDS (intrusion detection system),

539–541, 540
IETF (Internet Engineering Task

Force), 356
iface command, 369
ifconfig command, 359, 372–373, 376
ifdown command, 372
ifup command, 372
IMAP (Internet Message Access

Protocol), 456, 461–462
importing GPG keys, 527–528
in-addr.arpa domain, 447
in.ftpd server, 153
in.telnetd server, 405
incompatible libraries, dependency

issues from, 322
incremental backups, 334–336
inetd.d directory, 153–155
inetd program, 153–155, 405
info pages, 91, 94–95
init program, 160–162
initial RAM disks, 321
inkjet printers, 417
inodes, 73–74, 264

03843book.indb 610 8/21/09 12:12:12 PM

INPUT chain – journaling filesystems 611

INPUT chain, 399, 399
input/output

redirection, 68
system statistics, 121–122

insmod program, 35
installations, 2

boot method, 4
distribution selection, 2–3
installer interaction, 5
media, 4–5
performing, 5–7

installed file database, 295–296
inted.conf file, 153–155
Internet-based help resources, 96–97
Internet Control Message Protocol

(ICMP), 356
Internet Corporation for Assigned

Names and Numbers (ICANN), 441
Internet Engineering Task Force

(IETF), 356
Internet Message Access Protocol

(IMAP), 456, 461–462
Internet Packet Exchange (IPX)

protocol, 357
Internet Printing Protocol (IPP), 418
Internet service providers (ISPs) for time

sources, 451
internets, 356
intrusion detection, 537

checksum generation, 543–544
ckrootkit, 545
intrusion symptoms, 537–538
log files, 172, 545–546
packet managers, 544–545
PortSentry, 540–541
Snort, 538–540, 540
Tripwire, 542–543
Wireshark, 541–542, 542

intrusion detection system (IDS),
539–541, 540

invoking editors, 53
iostat utility, 121–122
IP addresses

with DHCP, 438–441
overview, 359–362
static, 369–373

ipchains tool, 395, 398
ipfwadm tool, 395
IPP (Internet Printing Protocol), 418
iptables tool, 395, 398

configuring, 403–404
firewall rules, 400–403
packet filter architecture,

399–400, 399
IPv6, 358
IPX (Internet Packet Exchange)

protocol, 357
IPX/SPX protocol, 357
ISO-9660 filesystem, 249
isofs module, 34
ISPs (Internet service providers) for time

sources, 451
iwconfig command, 366, 368

J
JFS (Journaled Filesystem), 249
job numbers, 119
jobs

print queue, 426–427
process, 119
scheduling, 125–129

Joliet filesystem, 249, 339
Journaled Filesystem (JFS), 249
journaling filesystems, 249–250, 259

03843book.indb 611 8/21/09 12:12:12 PM

612 K Desktop Environment (KDE) – linear RAID approach

K
K Desktop Environment (KDE), 29, 307
K3B tool, 337
KDCs (Key Distribution Centers), 455
KDE (K Desktop Environment), 29, 307
KDM (KDE Display Manager), 26

configuring, 28
network connections, 411

kdm script, 27
kdmrc file, 413
KEdit text editor, 137
Kerberos protocol, 455
kernel option, 12
kernel ring buffers, 16–17
kernels, 2

adding, 13
compiling, 320–321
drivers, 33–34
GRUB options, 14–15
modules, 33, 35–37
as process, 108
system control data, 131–133
upgrading, 303
version information, 129–131

Kernighan, Brian W., 175
Key Distribution Centers (KDCs), 455
keyboards

as standard input device, 68
X configuration, 22

keyrings in GPG, 527
keys

GPG, 527–528
SSH, 408–409
system control, 131–132

kill command, 117–118, 159
killall command, 118, 159
killing processes, 117–118, 159
klogd daemon, 163

Knoppix package, 15
Konqueror program, 425, 426
kpm tool, 114
ksysv utility, 152, 152
kyum tool, 306

L
language options in installation, 6
laptop computer security issues, 515
LaserWriter printer drivers, 478
last command, 211–212
Last password change field, 206
Last topic command for info pages, 95
lastlog file, 170
launching shell programs, 50–51
LBA (linear block addressing)

mode, 10
LD_LIBRARY_PATH environment

variable, 87
LDAP (Lightweight Directory Access

Protocol), 207, 455, 525
LDP (Linux Documentation Project),

96–97
leases, DHCP, 368, 439
less program, 17, 68, 173, 175
less-than symbols for redirection, 68
/lib/modules directory, 33
libparted tools, 251
libraries

in compilation, 318–319
dependency issues from, 322–323

Lightweight Directory Access Protocol
(LDAP), 207, 455, 525

LILO (Linux Loader), 8–9, 244–245
line mode in Vi, 134
linear block addressing (LBA)

mode, 10
linear RAID approach, 276–277

03843book.indb 612 8/21/09 12:12:12 PM

links – lvdisplay command 613

links
creating, 60–61
file type codes, 75
inodes for, 73
optical disks, 338
permissions, 77

Linux Documentation Project (LDP),
96–97

Linux Loader (LILO), 8–9, 244–245
listing files, 54–56
Livna repository, 307
lmhosts file, 476
ln command, 60–61
loading

Apache modules, 490
kernel modules, 35–36

LOADLIN boot loader, 9
loads

averages, 116
verifying, 171

local network tools, 376, 531–532
local program bugs, 516–517
local user complaints as intrusion

symptom, 538
LocalTalk protocol, 352
locate command, 65
locating files, 63–66
log files, 163

analysis tools, 177
awk and sed tools, 175–177
common, 170–171
exam essentials, 178–179
for intrusion detection, 172, 538,

545–546
monitoring, 545–546
options, 164–166
for problem identification, 171–172
remote servers for, 169–170
review questions, 180–186
rotating, 125, 166–169

scanning, 172–177
for services, 148
summary, 178
syslogd for, 163–164

logcheck.sh file, 177
Logcheck tool, 177
logical partitions, 243, 253
logical volumes, 280, 282
login program, 225–226
logins

access control, 225
historical data, 211–212
privileges, 189
remote. See remote logins
switching identities after, 191–192
user account shells, 536

logrotate tool, 166–168
logtail utility, 177
long text files, viewing, 68
loop-AES program, 515
loopback interface configuration, 371
loopback option in optical disks, 338
loopback traffic with iptables, 404
low-level disk formats, 241
lp program, 424–425
lpc utility, 427
lpd tool, 414, 423
lpmove command, 427
lpq utility, 426–427
lpr program, 414, 424–425
lprm command, 427
lpstat utility, 427
ls program, 51

options, 54–56
wildcards, 56

lsmod command, 33–34
lspci command, 19, 31
lsusb command, 32
lvcreate command, 282
lvdisplay command, 282

03843book.indb 613 8/21/09 12:12:12 PM

614 LVM tool – mode lines in X configuration

LVM tool, 280–281
lvremove command, 282
lvresize command, 282
lvscan command, 282
lynx program, 495

M
m4 utility, 458
MAC (mandatory access control), 529
MAC (Media Access Control)

addresses, 359
machine names, 362
magnetic devices, 239, 241
magnetic tape, 239–240
mail. See e-mail
mail exchanger (MX) records, 446
mail options for log files, 168
mail transfer agents (MTAs), 456
mail user agents (MUAs), 456
maillog file, 170
mailq command, 459
make utility, 318–321
makewhatis command, 94
man pages, 91–94
mandatory access control (MAC), 529
Mandrake distribution, 3
Mandriva distribution, 3
mangle table, 399
mapping UIDs and GIDs to users and

groups, 194–196
masks

DHCP, 440
network, 360, 370
user, 82–83

master boot record (MBR), 8
partitioning system, 242–243
protective, 244

MD4 encryption, 224

MD5 (Message Digest 5) hash, 223–224
md5sum program, 543–544
mdadm package, 278
Media Access Control (MAC)

addresses, 359
media for installation, 4–5
/media partition, 247
memory

process use, 113
statistics, 122
swap space for, 259–263

menu.lst file, 13–14
menuconfig program, 319
Message Digest 5 (MD5) hash, 223–224
messages, dmesg, 16–17
messages log file, 170
Metacity window manager, 29
midnight setting in job scheduling, 128
mirroring, RAID, 277
mismatched names, dependency issues

from, 322–323
missing libraries, dependency issues

from, 322–323
missing log entries, 172, 538, 546
mixing case in passwords, 220
mkdir command, 62
mkdosfs utility, 257
mke2fs tool, 256
mkfs program, 256–257
mkfs.ext2 program, 256
mkinitramfs utility, 321
mkinitrd utility, 321
mkisofs program, 329, 337–338
mknod command, 71–72
mkraid command, 280
mkreiserfs utility, 257
mkswap tool, 261, 263
/mnt partition, 247
mode lines in X configuration, 23

03843book.indb 614 8/21/09 12:12:13 PM

modes – NetBIOS protocol 615

modes
FTP, 488
SELinux, 530
symbolic, 80–81
Vi, 132–133

modinfo command, 34
modprobe program, 35–36, 264, 366
module stacks, 37
modules

Apache servers, 490
kernel, 33, 35–37
PAM, 223, 455, 521–523

monitor options in X configuration, 23
monitoring

log files, 545–546
queues, 424–427, 426

monthly option for log files, 168
more program, 68
mount command, 264, 266–270,

272–273
Mount options field, 275
Mount point field, 275
mount points, 245–247, 266
mounting partitions, 266–270
mouse, X configuration, 22
moving

files, 59
shell text, 53

Moving up command for info pages, 94
mt program, 240, 331–333
MTAs (mail transfer agents), 456
MUAs (mail user agents), 456
multiple disks, partitions for, 245
multiple groups for users, 218–219
multiple partitions, 248
multitasking systems, 190–191
multiuser concepts, 188

groups, 193–194
home directories, 196–197

mapping UIDs and GIDs to users and
groups, 194–196

user accounts, 188–193
mv command, 59
MX (mail exchanger) records, 446
my.cnf file, 500
MySQL language

configuring, 500–501
connections, 501–502
SQL packages, 499–500

mysqladmin command, 501
mysqld daemon, 501

N
Name section in man pages, 92
name server (NS) records, 445–446
name servers

DHCP, 440
troubleshooting, 379–380

Name Service Switch (NSS), 520
named file, 441
names

dependency issues from, 322–323
groups, 215
hostnames. See hostnames
kernel files, 13
packages, 302
RPM package files, 299

NAT (network address translation),
362, 399

nat table, 399
NEdit text editor, 137
Neighbor Discovery Protocol (NDP),

360
Nessus scanner, 532–535, 534–535
Netatalk package, 357
NetBEUI protocol, 357
NetBIOS protocol, 357, 440

03843book.indb 615 8/21/09 12:12:13 PM

616 netstat tool – networks

netstat tool, 378–379, 531–532
network activity

as intrusion symptom, 537
tools, 531–532

network address translation (NAT),
362, 399

network addresses
hardware, 359
hostnames, 362–364
IP, 359–362
overview, 358–359

network-admin (Network Settings)
tool, 373

Network Configuration tool, 373
Network File System (NFS), 382, 480

exports, 273
network backups, 334
servers, 480

configuring, 480–482
security, 482–483

Network Information Service (NIS),
196, 207, 455, 523–524

network installations, 4–5
network masks

description, 360
DHCP, 440
Fedora, 370

network servers, 438
authentication, 454–455, 523–526
e-mail. See e-mail
exam essentials, 463, 503–504
FTP, 483–488
hostnames, 441–448
IP addresses, 438–441
MySQL, 499–503
NFS, 480–483
review questions, 464–471, 505–511
Samba. See Samba servers
summary, 462, 503

time, 448–454, 450, 453
Web. See Web servers

Network Settings tool
(network-admin), 373

networks
account databases, 207
ARP cache, 376
authentication, 523–526
backups, 333–334
bind option, 157
configuration overview, 365–366
connectivity testing, 377
DHCP configuration, 368–369
exam essentials, 382–383, 428–429
filesystems, 271–276
firewalls. See firewalls
general tools, 380–382
GUI configuration tools,

373–374, 374
hardware, 350–354, 353
hardware configuration, 366
in installation process, 6
name server troubleshooting,

379–380
packets, 353–354
ports, 364–365
PPP, 375
printing. See printing
protocol stacks, 354–358, 355
remote logins. See remote logins
repositories, 296–297
review questions, 384–390,

429–436
route tracing, 377–378
routing between, 392–393
static IP address configuration,

369–373
status, 378–379
summary, 382, 428

03843book.indb 616 8/21/09 12:12:13 PM

New Technology Filesystem (NTFS) – order reversal in passwords 617

Windows remote access tools,
496–499

wireless options, 366–368, 367
New Technology Filesystem

(NTFS), 249
newaliases command, 460
newgrp command, 194, 214–215,

218–219
newrole command, 530
Next page command for info pages, 94
NFS. See Network File System (NFS)
nfsserver script, 480
nice commands, 116–117
NIS (Network Information Service),

196, 207, 455, 523–524
NIS+ protocol, 523
NIS YP and Switch (NYS) protocol, 523
nmap command, 533
Nmap scanner, 532–533
nmbd server, 475
NNTPSERVER environment

variable, 87
no_access option, 158
nodes in info pages, 94
nonvolatile RAM (NVRAM), 239
noon setting in job scheduling, 128
now setting in job scheduling, 128
NS (name server) records, 445–446
nslookup program, 363, 379
NSS (Name Service Switch), 520
nss_ldap package, 525
NTFS (New Technology

Filesystem), 249
NTLDR boot loader, 9
ntp package, 452
NTP protocol

basics, 449–450, 450
clients, 454
overview, 448–449

server configuration, 452–454, 453
time sources, 451

ntpd package, 452
ntpdate program, 454
ntpq program, 453, 453
ntsysv utility, 152
numbers in passwords, 220
NVRAM (nonvolatile RAM),

239, 242
NVRAM Wakeup utility, 242
NYS (NIS YP and Switch) protocol, 523

O
off-site complaints as intrusion

symptom, 538
oftpd FTP servers, 484
1024-cylinder limit, 10
only_from option, 158
open mail relays, 457
open ports, 531–535
open single quote marks (`)

sendmail configuration, 458
text within, 70–71

Open System Interconnection (OSI)
model, 355, 355

OpenPrinting Database, 30
OpenPrinting Web page, 417
OpenSUSE network connections, 411
/opt partition, 247
optical media, 4–5

for backups, 325–326, 329
description, 239
working with, 241
writing to, 336–339

optional partitions, 245–248
Options section in man pages, 92
or netmasks, 360
order reversal in passwords, 220

03843book.indb 617 8/21/09 12:12:13 PM

618 OS – partitions

OS
boot options, 12–13
kernel additions to, 13

OS Loader, 9
OSI (Open System Interconnection)

model, 355, 355
OUTPUT chain, 399, 399
output redirection, 68
overrun protection for partitions, 246
ownership, 72

files, 72–74, 79
groups, 73

P
packages

Debian, 307–313
dependencies and conflicts, 322–324
exam essentials, 340
file collections, 294–295
filenames, 302
in installation process, 6
installed file database, 295–296
network repositories, 296–297
overview, 294
rebuilding, 297–298, 323
review questions, 341–347
RPM, 298

distributions and conventions,
299–300

rpm commands, 300–303
Yum, 303–307, 306

source code compilation, 318–321
summary, 339
tarballs, 314–318
verifying, 537

packet filters
architecture, 399–400, 399
firewalls, 393–394

packet managers, 544–545
packet sniffer programs, 538–542,

540, 542
packets, network, 353–354
PAGER environment variable, 87
PAM (Pluggable

Authentication Modules)
configuring, 521–523
LDAP support, 455
passwd, 223

pam_ldap package, 525
pam_unix.so file, 224
parallel ATA (PATA) drives, 240
Parallel Line Interface Protocol

(PLIP), 350
parameters for shells, 50
parent process IDs (PPIDs), 112
parent processes, 109, 109
Parted tool, 197, 250, 254–256
partial restores, 335
partition tables, 244
partitions, 241–242

creating, 251–256, 253
exam essentials, 283–284
filesystems, 248–249, 256–259
GPT, 242–244
identifying, 265–266
in installation process, 6
MBR, 243
mounting, 266–270
network filesystems, 271–276
optional, 245–248
quotas, 263–265
RAID, 276–280
requirements, 244–245
review questions, 285–291
root, 12
summary, 282–283
swap space, 259–263

03843book.indb 618 8/21/09 12:12:13 PM

passive mode in FTP – POP (Post Office Protocol) 619

tools, 250–251
unmounting, 270–271

passive mode in FTP, 488
passwd utility, 16, 200–201
Password-cracking programs, 221
passwords

BIOS, 515
compromised, 221–222
enforcing, 219–221
group configuration files, 215
groups, 214–215
MySQL, 501, 503
NIS, 524
protecting, 189
root, 16
Samba, 475
setting, 200–204
shadow, 190, 221–224
SMB/CIFS, 424
SSH, 405
stolen, 516
system accounts with, 536
user account configuration files,

204–206
wireless networks, 368

PATA (parallel ATA) drives, 240
PATH environment variable, 50, 87–88
payloads in packets, 354
PCI (Peripheral Component

Interconnect) standard, 31–32
PCL (Printer Control Language), 415
pdisk tool, 252
periods (.). See dots (.)
Peripheral Component Interconnect

(PCI) standard, 31–32
permission bits, 76
permissions, 72–73

ACLs, 83–84
components, 72–74
default, 82–83

modifying, 78–82
processes, 123–125
Samba, 477
type codes, 74–78
user accounts, 72, 189

Permissive mode in SELinux, 530
PGP (Pretty Good Privacy), 526
phishing, 519
PHP: Hypertext Preprocessor (PHP)

scripts, 490–492
php.ini file, 492
physical access in security, 515
physical volumes, 281
PIDs (process IDs), 112
ping tool

connectivity testing, 377
NTP servers, 451

pipes
file type codes, 75
working with, 69–70

plain-text transfer mode in FTP, 488
PLIP (Parallel Line Interface

Protocol), 350
Pluggable Authentication

Modules (PAM)
configuring, 521–523
LDAP support, 455
passwd, 223

plus signs (+)
job scheduling, 128
NTP servers, 453

Point-to-Point Protocol (PPP), 351, 375
pointer (PTR) records, 446
policies

iptables, 400–401
printing, 419
SELinux packages, 530

pool.ntp.org domain, 451
POP (Post Office Protocol), 456,

461–462

03843book.indb 619 8/21/09 12:12:14 PM

620 popd command – program prompts

popd command, 57
port forwarding, 406
ports

firewalls, 396–398
FTP, 488
network, 364–365
open, 531–535, 534–535
TCP/IP, 358

portsentry.conf file, 541
PortSentry IDS, 540–541
portsentry package, 541
Post Office Protocol (POP), 456,

461–462
postfix program, 459
PostgreSQL package, 500
postrotate option, log files, 168–169
PostScript language

overview, 415
with Samba, 478

PostScript Printer Definition (PPD)
files, 418

PPIDs (parent process IDs), 112
PPP (Point-to-Point Protocol), 351, 375
ppp-off command, 375
ppp-on command, 375
ppp-on-dialer command, 375
PPP over Ethernet (PPPoE), 351
precompiled packages, 297
prerotate option for log files, 168–169
Pretty Good Privacy (PGP), 526
Previous page command for info

pages, 94
primary boot loaders, 8
primary GIDs, 205
primary partitions, 243, 253
principles in SELinux, 529
Printer Control Language (PCL), 415
printer drivers, 415
PRINTER environment variable, 88

printing, 414
architecture, 414
CUPS configuration, 417–422, 421
Ghostscript, 415–416
to network printers, 423–424
PostScript, 415
print queues, 414, 424–427, 426
printer selection, 417
printer sharing, 478
systems, 416–417

priorities
log files, 164–166
processes, 113, 116–117

private groups, 217
private keys

GPG, 527
SSH, 408

privileged ports, 398
privileges for user accounts, 189
/proc filesystem, 34
/proc/sys directory, 131
/proc/version file, 131
process IDs (PIDs), 112
processes

CPU use restrictions, 116–117
exam essentials, 138
examining, 109–116, 114
foreground and background, 119
job scheduling, 125–129
kernel information, 129–133
killing, 117–118
overview, 108–109, 109
permissions, 123–125
review questions, 139–145
runlevels, 159–162
summary, 137–138
system statistics, 119–122

ProFTPd FTP servers, 483
program prompts, 192

03843book.indb 620 8/21/09 12:12:14 PM

program‑specific files – recovery 621

program-specific files, 190
programs

behavior changes as intrusion
symptom, 538

bugs, 516–517
documentation, 95–96
launching, 50–51

project groups, 217–218
prompts, 49, 192
protective MBR, 244
protocol stacks

OSI model, 355, 355
overview, 354–355
TCP/IP, 356
TCP/IP alternatives, 356–358

provision information for packages, 296
proxy filters, 394
proxy servers, 494–495, 495
ps command

options, 110–111
output, 111–113
process searches, 416
process status, 109

PS_PERSONALITY environment
variable, 110

PS1 environment variable, 87
PS2 environment variable, 87
PTR (pointer) records, 446
public keys

GPG, 527
SSH, 408

public NTP servers, 451
pull protocols, 456
pump client, 368
punctuation in passwords, 220
PureFTPd servers, 484
push protocol, 456
pushd command, 57
pvcreate command, 281–282
pvdisplay command, 281

pvextend command, 282
pvresize command, 281
pvsplit command, 281
pwconv program, 223
pwd command, 56
PWD environment variable, 87

Q
QMS magicolor printer drivers, 478
Qpopper server, 462
QTParted program, 251
question marks (?) for wildcards, 56
queues

e-mail, 459–460
monitoring and controlling,

424–427, 426
print, 414

quota package, 263
quota v1 support, 263
quota v2 support, 263
quotacheck command, 265
quotas, disk, 263–265

R
RADIUS authentication, 525–526
RAID. See Redundant Array of

Independent Disks (RAID)
raidtools tool, 278
random-access devices, 324
random numbers, 71
rc-update tool, 151
rdesktop program, 496–497
read permission, 75–77
README files, 95–96
RealVNC site, 498
rebuilding packages, 297–298, 323
recovery, backups for, 335–336

03843book.indb 621 8/21/09 12:12:14 PM

622 Red Hat distribution – route tracing

Red Hat distribution, 3
GRUB version, 10
RPM for, 299

redirecting files, 69–70
Redundant Array of Independent Disks

(RAID), 245, 276
benefits, 276
configuring, 278–280
designing, 277–278
forms, 276–277

refresh rate in X configuration, 23
regular expressions, 67, 177
ReiserFS filesystem, 249–250
relative directory names, 57
release numbers for RPM, 299
reliability, RAID for, 276
reload command, 150, 155
remote access tools for Windows,

496–499
remote logins, 405–413

GUI, 412–413
remote access server setup, 405–406
secure protocols, 222
SSH keys, 408–409
text-mode, 406–408
X programs, 409–411

remote network scanners, 532–535,
534–535

remote servers
for log files, 169–170
setup, 405–406

removable solid-state storage, 239,
241, 325

removing
directories, 62–63
files, 60
kernel modules, 37
print queue jobs, 426–427

renaming files, 59
renice commands, 116–117
repeated login failures, 545

replacing
packages, 323
Vi text, 136

repositories, network, 296–297
repquota command, 265
Requests for Comments (RFCs), 356
rescue discs, 15
resetting root passwords, 16
resolution in X configuration, 23, 25
resolving hostnames, 363–364
restart command, 150, 155
restoring backups, 329–333
reverse zone files, 444, 447–448
RFCs (Requests for Comments), 356
ring buffers, 16–17
rm command, 60
rmdir command, 62–63
rmmod command, 37
rndc utility, 448
Rock Ridge

cross-platform discs, 338–339
ISO-9960 support, 250, 270
optical disk support, 337

root
access control, 225–226
log file ownership, 173
passwords, 16, 516
permissions, 77
security for, 192
UIDs, 536

/root directory, 245
root DNS servers, 442
root kits, 545
root partitions, 12, 245
root window, 29
root zones, 443
rooted systems, 517
rootnoverify option, 12
rotating log files, 166–169
route command, 372, 392–393
route tracing, 377–378

03843book.indb 622 8/21/09 12:12:14 PM

routers – Secure Sockets Layer (SSL) encryption 623

routers
broadband, 367, 367
DHCP, 440
TCP/IP, 356

routing between networks, 392–393
RPM Package Manager (RPM), 3, 294,

544–545
RPM packages, 298

distributions and conventions,
299–300

rpm commands, 300–303
Yum, 303–307, 306

rpmbuild program, 297, 319
RPMFind site, 307
rsync tool, 333–334
rules

firewalls, 400–403
Snort, 539

runlevel command, 160
runlevels, 159

changing, 160–162
role, 159–160
services, 149–152, 152
XDMCP server, 27

S
Samba package, 272
Samba servers, 474–475

file sharing, 477
hostname resolution, 476
options, 475–476
printer sharing, 478
Windows domains with, 478–479

Samba Web Administration Tool
(SWAT), 226

SANE (Scanner Access Now Easy)
project, 30

sar utility, 120–121
SAS (Serial Attached SCSI) disks, 240
SATA (serial ATA) drives, 240–241

Scanner Access Now Easy (SANE)
project, 30

scanners for open ports, 532–535,
534–535

scanning log files, 172–177
scheduling

backups, 334–335
jobs, 125–129

scp command, 407
screen options in X configuration, 24–25
script kiddies, 545
scripted installations, 5
scripts, 89–91

log files, 168
starting and stopping services,

149–153, 152
Web servers, 490–492

SCSI (Small Computer System Interface)
interfaces, 239–241

searches
files, 63–66
log files, 174–175
man pages, 93–94
Vi, 136

second extended filesystem (ext2),
248–249

secondary boot loaders, 8
Secure Hash Algorithm (SHA), 223–224
secure log file, 171
Secure Shell (SSH) protocol

e-mail servers, 462
iptables traffic, 404
keys, 408–409
network backups, 334
remote access servers, 405–406
remote logins, 225–226
text-mode logins, 406–408
wireless networks, 515

Secure Sockets Layer (SSL) encryption
e-mail servers, 461–462
HTTPS, 519

03843book.indb 623 8/21/09 12:12:14 PM

624 security – sftp program

security, 514
auditing, 531–537, 534–535
authentication. See authentication
denial-of-service attacks, 518
disabling accounts, 222–223
encryption, 518–519
exam essentials, 547
FTP, 483, 519
GPG, 526–529
human element, 519
intrusion detection. See

intrusion detection
local program bugs, 516–517
NFS servers, 482–483
partition options, 245
passwords. See passwords
physical access problems, 515
review questions, 548–554
root accounts, 192
Samba, 479
SELinux, 529–531
server bugs, 517–518
SMB/CIFS, 423–424
stolen passwords, 516
summary, 546
super servers, 156–158
threat categories, 514

Security Enhanced Linux (SELinux),
529–531

sed tool, 175–177
See also section in man pages, 92
SELinux (Security Enhanced Linux),

529–531
semicolons (;)

commands, 70
/etc/dhcpd.conf, 440
/etc/named.conf, 442
log files, 165

sendmail program
configuring, 457–458
queue management, 459

Sentry Tools package, 177
Sequenced Packet Exchange (SPX)

protocol, 357
sequential-access devices, 324
serial ATA (SATA) drives, 240–241
Serial Attached SCSI (SAS) disks, 240
serial numbers in DNS records, 446–447
Server Message Block/Common Internet

File System (SMB/CIFS), 271
in printing, 423–424
share access, 272–273
time setting, 449

server ports for firewalls, 396–398
ServerLayout section, 25
servers

access control, 224
bugs, 517–518
vs. clients, 365
e-mail, 461–462
name, 379–380
network. See network servers
remote, 169–170, 405–406
Samba setting, 479
super. See super servers
VNC, 496–497
X configuration, 17–20

Service Configuration tool, 152
services, 148

log files. See log files
starting and stopping, 148–149

custom startup files, 158–159
super servers, 153–158
SysV scripts, 149–153, 152

set command for physical volumes, 281
set group ID (SGID) bit, 78, 80, 517
set user ID (SUID) bit, 77–78, 80, 517
setenforce command, 531
setenv command, 86
setfacl command, 83–84
setup utility, 13
sftp program, 406–408

03843book.indb 624 8/21/09 12:12:15 PM

sftp‑server program – Special flag field 625

sftp-server program, 406
SGID (set group ID) bit, 78, 80, 517
SGID program

finding, 124
risks, 123
uses, 123–124

SHA (Secure Hash Algorithm), 223–224
sha1sum program, 543
shadow passwords

benefits, 221–222
user account support, 190
working with, 223–224

sharing with Samba, 423, 475–478
SHELL environment variable, 87
shell scripts, 89–91
shells, 30, 48–49

command history, 52–53
launching programs, 50–51
shortcuts, 51–52
starting, 49
user accounts, 205, 536
virtual terminals, 50

short text files, viewing, 67–68
shortcuts, 51–52
shoulder surfing, 222
SHOW DATABASES command, 502
showmount command, 481–482
shutdown command, 161–162
signals, process, 117–118
signing messages, 529
Simple Mail Transfer Protocol (SMTP),

381, 455
security issues, 519–520
server configuration, 457–461

size, file
displaying, 73
log files, 168

Slackware distribution, 3, 315
slashes (/)

cron jobs, 126
directories, 55, 57, 59

/etc/named.conf, 442
log file searches, 175
netmasks, 360
root partitions, 245
sysctl keys, 131

slocate program, 65
slowdown as intrusion symptom, 537
Small Computer System Interface (SCSI)

interfaces, 239–241
smart filters, 416
SMB/CIFS (Server Message Block/

Common Internet File System), 271
in printing, 423–424
share access, 272–273
time setting, 449

smb.conf file, 475, 477–479
smbclient program, 272
smbd server, 475
smbfs filesystem, 272
smbmnt program, 272
smbmount utility, 272
smbpasswd command, 208, 476
smbumount utility, 272
SMTP (Simple Mail Transfer Protocol),

381, 455
security issues, 519–520
server configuration, 457–461

snort.conf.distrib file, 539
Snort program, 538–540, 540
SOA (start of authority) records, 446
social engineering, 519
sockets, 747
soft links, 60–61
software crashes as intrusion

symptom, 538
solid-state storage, 239, 241
source code compilation, 318–321
source packages, 297
source RPMs, 297
spam, 457
Special flag field, 206

03843book.indb 625 8/21/09 12:12:15 PM

626 speed – subnets

speed, RAID for, 276
splash image option, 11
SPX (Sequenced Packet Exchange)

protocol, 357
SQL (Structured Query Language),

499–500
SQLite package, 500
square brackets ([])

ls command, 56
map pages, 92
regular expressions, 67
smb.conf file, 475, 477

Squid proxy server, 494, 495
SSH. See Secure Shell (SSH) protocol
ssh command, 407
ssh_host_dsa_key file, 408
ssh_host_rsa_key file, 408
ssh-keygen command, 409
SSL (Secure Sockets Layer) encryption

e-mail servers, 461–462
HTTPS, 519

stacks
module, 37
protocol, 354–358, 355

standard error (stderr), 69
standard filesystems, 274–276
standard input (stdin), 68
standard output (stdout), 67
standards-based protocols, 356
start command, 150
start of authority (SOA) records, 446
starting services, 148–149

custom startup files, 158–159
super servers, 153–158
SysV scripts, 149–153, 152

startup files, 158–159
startup issues

boot loaders, 7–13
boot problems, 14–17
exam essentials, 38–39
hardware, 30–37

installations, 2–7
review questions, 40–46
summary, 38
X configuration. See X

Window System
startup scripts, 27–28, 498
startx command, 191, 411
static IP address configuration, 369–373
statistics, system, 119

general-purpose, 120–121
input/output, 121–122
memory, 122

status
MySQL, 502
networks, 378–379
processes, 109–116, 114

stderr (standard error), 69
stdin (standard input), 68
stdout (standard output), 67
sticky bit, 78, 80
stolen passwords, 516
stop command, 150
stopping MySQL, 501
stopping services, 148–149

custom startup files, 158–159
super servers, 153–158
SysV scripts, 149–153, 152

storage hardware, 238
configuration, 240–242
device types, 239–240
disks. See disks

stratum time servers, 449
striping, RAID, 277
strong passwords, 221
Structured Query Language (SQL),

499–500
su program, 124, 191
subdomains, 362
subnets

DHCP, 440
masks, 360

03843book.indb 626 8/21/09 12:12:15 PM

sudo command – tcpd command 627

sudo command, 192
SUID (set user ID) bit, 77, 79, 517
SUID program

finding, 124
risks, 123
uses, 123–124

SUID root files, 192
summary searches in man pages, 93–94
super servers, 148–149

inted.conf and inetd.d files, 153–155
security, 156–158
starting and stopping services, 153–158
xinted.conf and xinetd.d files, 155–156

superusers, 191–192
support libraries, 318–319
SUSE distribution, 3
suspicious logins, 545–546
swap space

adding, 261–262
evaluating, 260–261
overview, 259
partitions, 246, 251, 262–263

swapoff command, 261–262
swapon command, 261
SWAT (Samba Web Administration

Tool), 226
switches, 352, 353
symbolic links, 60–61

file type codes, 75
optical disks, 338
permissions, 77

symbolic mode, 80–81
synchronizing computers, 333–334
Synopsis section in man pages, 92
sysctl utility, 131–133, 393
syslog file, 171
syslog-ng system logger, 163
syslogd daemon, 163–164, 169
syslogd package, 163
system account passwords, 536
system-config-network-gui tool, 373–374

system-config-network-tui tool, 373
system control data, 131–133
system crashes as intrusion

symptom, 538
system cron jobs, 125–127
system resources in compilation, 319
system services. See services
system slowdown as intrusion

symptom, 537
system statistics, 119

general-purpose, 120–121
input/output, 121–122
memory, 122

SystemRescueCd package, 15
SysV scripts

starting and stopping services,
149–153, 152

startup, 27–28

T
tables

iptables, 398–404, 399
routing, 531

tail program, 68, 173–174
tape drives

for creating backups, 325–326
for restoring backups, 331–333

tar program
for backups, 328–329
overview, 314–317

tarballs, 295, 314
creating, 318
role, 314–315
tar, 316–317

TCP (Transmission Control
Protocol), 356

TCP/IP (Transmission Control Protocol/
Internet Protocol) stack, 356

TCP Wrappers, 156–157
tcpd command, 156

03843book.indb 627 8/21/09 12:12:15 PM

628 tcsh shell – TTL (time‑to‑live) value

tcsh shell, 49, 86
teatime setting, 128
tee command, 69
teletype (TTY) code, 112
telinit program, 15, 27, 160–162
telnet package, 405
telnet program

as diagnostic tool, 381
port numbers, 382
remote access servers, 405
security issues, 519
servers, 225–226

telnetd server, 405
10GBase networks, 351
TERM environment variable, 88
terminal programs, 29–30
terms, glossary, 556–591
test command, 78
testing

connectivity, 377
MySQL connections, 501–502
recovery tools, 336

text-based installers, 5
text-based Web clients,

495–496
text files

combining, 67–68
editing, 134–136, 135
log files, 173
viewing, 67–68

text-mode commands, 48
environment variables, 84–89
exam essentials, 98
files and directories. See

directories; files
help resources, 91–97
logins, 406–408
review questions, 99–105
shell scripts, 89–91
shells, 48–53
summary, 97
Vi, 134

third extended filesystem (ext3fs),
249–250

thorough searches in man pages, 94
Tight VNC site, 498–499
tightvnc package, 498
tightvnc-server package, 498
tildes (~)

backup files, 70
home directories, 57, 489
Vi, 134

time
file creation, 74
NTP, 448–454, 450, 453

time setting
cron jobs, 126
installation process, 6
job scheduling, 128
log files, 168

time-to-live (TTL) value, 446
Timeout period option in GRUB, 11
timestamps, 60
TLDs (top-level domains), 362, 441
/tmp partition, 247
Token Ring networks, 351
Tomcat scripts, 492
top command, 113–116, 114
top-level domains (TLDs), 362, 441
Top page command for info pages, 95
touch command, 60
tpb utility, 242
traceroute command, 377–378
transfer modes in FTP, 488
Transmission Control Protocol (TCP), 356
Transmission Control Protocol/Internet

Protocol (TCP/IP) stack, 356
transposing text, 53
Triple Data Encryption Standard (3DES)

hash, 223
Tripwire utility, 542–543
True-Crypt program, 515
tshark command, 541
TTL (time-to-live) value, 446

03843book.indb 628 8/21/09 12:12:15 PM

tvwm window manager – users and user accounts 629

tvwm window manager, 29
tw.cfg file, 543
tw.pol file, 543
twcfg.txt file, 543
twinstall.sh program, 543
two-factor authentication, 526
twpol.txt file, 543
TXT records, 446
type codes for files, 74–78
type information for files, 78

U
Ubuntu distribution

description, 3
display manager setting, 27
runlevels, 160
Samba server, 150
static IP addresses, 370–371

UDF (Universal Disk Format), 249, 339
UDP (User Datagram Protocol), 356
UFS (Unix Filesystem), 249
UIDs (user IDs)

mapping to users, 194–196
root, 536
user accounts, 72–73, 189, 205

umask command, 82–83
umount command, 266, 270–271
uname command, 129–131
underscores (_) in usernames, 193
undo command in Vi, 136
uniform resource identifiers (URIs), 423
Universal Coordinated Time (UTC), 6
Universal Disk Format (UDF), 249, 339
Universal Serial Bus (USB) devices, 32–33
Unix Filesystem (UFS), 249
Unix98 ps options, 110–111
unknown accounts, 536
unmounting partitions, 270–271
unprivileged ports, 398

upgrading
kernels, 303
packages, 323

Upstart package, 163
URIs (uniform resource identifiers), 423
USB (Universal Serial Bus) devices, 32–33
user accounts. See users and user accounts
user complaints as intrusion

symptom, 538
user cron jobs, 125, 127–128
User Datagram Protocol (UDP), 356
USER environment variable, 87
user IDs (UIDs)

mapping to users, 194–196
root, 536
user accounts, 72–73, 189, 205

user masks, 82–83
user-mode processes, 129
user private groups, 217
useradd utility, 197–200
userdel command, 207–208, 222
usermod program

groups, 214
passwords, 202

usernames
processes, 112
user accounts, 189, 193, 204–205

users and user accounts, 188
for access control, 224–226
adding, 197–200
authentication. See authentication
configuration files, 204–207
deleting, 207–208
disabling unused accounts, 222–223
exam essentials, 227–228
FTP configuration, 485
groups. See groups
home directories, 196–197
in installation process, 6
mapping UIDs to, 194–196
multitasking systems, 190–191

03843book.indb 629 8/21/09 12:12:16 PM

630 /usr/doc directory – volume groups

multiuser systems, 189–190
passwords, 200–204, 219–224
permissions, 72, 189
review questions, 229–235
reviewing, 535–536
security, 219–224
summary, 227
superusers, 191–192
usernames, 193
verifying account use, 208–212

/usr/doc directory, 97
/usr partition, 246
/usr/local partition, 246
/usr/share/doc directory, 97
UTC (Universal Coordinated Time), 6
UW IMAP servers, 461

V
/var/lib/dpkg directory, 295
/var/lib/ntp directory, 450
/var/lib/rpm directory, 295
/var/log directory, 16, 165
/var/log/dmesg file, 173
/var/log/kernel file, 165
/var/log/mail file, 165
/var/log/messages file, 150, 174
/var/log/snort file, 539
/var partition, 247
/var/spool/cron directory, 125
/var/spool/cups directory, 414
verifying

account use, 208–212
identity, 212
installed files and packages, 537
messages in GPG, 529

versions
kernels, 129–131
packages, 324
RPM, 299

vertical bars (|) for pipes, 69
VertRefresh setting, 23
VFAT (Virtual FAT), 249
vgcreate command, 281
vgdisplay command, 282
vgremove command, 282
vgrename command, 282
vgscan command, 282
vgsplit command, 282
Vi editor, 132

modes, 132–133
saving changes, 137
text editing, 134–136, 135

video cards
chipsets, 18–19, 18
options, 23–24

viewing files, 67–68
Virtual FAT (VFAT), 249
virtual hosting, 492–493
Virtual Network Computing (VNC),

411, 496
clients, 498–499
server configuration, 496–497

virtual terminals (VTs), 7,
50, 191

visudo command, 192
vmlinux kernel, 13
vmlinuz kernel, 13
vmstat utility, 122
VNC (Virtual Network Computing),

411, 496
clients, 498–499
server configuration, 496–497

vnc package, 498
VNC program, 191
vnc-server package, 498
vncpasswd program, 498
vncserver command, 498
vncviewer program, 498–499
volume groups, 280–282

03843book.indb 630 8/21/09 12:12:16 PM

vsftpd FTP servers – X Window System 631

vsftpd FTP servers, 484–486
VTs (virtual terminals), 7, 50, 191

W
w command, 208–210
WAPs (wireless access points), 353,

367, 367
warnings for log files, 164–166
Washington University FTP Daemon

(WU-FTPD) FTP servers, 484
Web-based CUPS utilities,

420–422, 421
Web servers

Apache, 489–490, 493–494
proxy, 494–495, 495
scripts, 490–492
text-based clients, 495–496
virtual hosting, 492–493

weekly option for log files, 168
Weinberger, Peter J., 175
WEP (Wired Equivalent Privacy),

367, 515
wget program, 495–496
whatis command, 94
whereis command, 65–66
who command, 208–210
whoami command, 208, 212
Wi-Fi Protected Access 2 (WPA2),

367, 515
wildcard characters, 56
Winbind server, 455, 479
winbindd tool, 455, 479
window managers, 29
Windows

remote access tools, 496
rdesktop, 496–497
VNC, 497–499

with Samba, 478–479
video drivers, 18

Wired Equivalent Privacy (WEP),
367, 515

wireless access points (WAPs), 353,
367, 367

wireless networks
options, 366–368, 367
protocols, 352
security, 515

Wireshark packet sniffer, 541–542, 542
workgroup parameter in Samba, 475
world permissions, 75
WPA2 (Wi-Fi Protected Access 2),

367, 515
Wrappers, TCP, 156–157
write permission, 75–77
WU-FTPD (Washington University FTP

Daemon) FTP servers, 484

X
X-CD-Roast tool, 337
X Display Manager (XDM), 26

configuring, 28
network connections, 411

X Display Manager Control Protocol
(XDMCP), 26

configuring, 412–413
servers, 26, 26

configuring, 28–29
running, 27–28

VNC linked to, 497
X.org-X11 servers, 19
X Window System, 2

clients, 17
configuration, 17

GUI logins, 26, 26
installation process, 6
methods, 21–22
miscellaneous options, 22
monitor options, 23

03843book.indb 631 8/21/09 12:12:16 PM

632 xargs command – zones

screen options, 24–25
server selection, 17–20
setup, 20
terminal programs, 29–30
video card chipsets, 18–19, 18
video card options, 23–24
window managers and desktop

environments, 29
XDMCP server, 27–29

port forwarding, 406
programs, 20, 409–411
servers, 17, 21, 413
terminals, 413

xargs command, 70
Xconfigurator tool, 21
XDM (X Display Manager), 26

configuring, 28
network connections, 411

xdm script, 27
XDMCP (X Display Manager Control

Protocol), 26
configuring, 412–413
servers, 26, 26

configuring, 28–29
running, 27–28

VNC linked to, 497
XF86Config file, 20
xf86config tool, 21
XF86Setup tool, 21
Xfce desktop environment, 29
XFree86 server, 19–22
XFree86-server package, 20
XFS (Extent Filesystem), 249–250
xfsdump program, 329
xfsrestore program, 329
xhost command, 410
Xi Graphics company, 20
xinted.conf file, 155–156
xinetd.d directory, 155–156

xinetd program, 156–158, 405
XkbLayout option, 22
XkbModel option, 22
xntp package, 452
xntpd package, 452
Xorg.0.log file, 171
xorg.conf file, 21–22
Xorg program, 20–21, 413
xserver-xfree86 package, 20
xterm program, 29–30, 49

Y
Yaboot boot loader, 245
YaST tool, 152
YaST2 tool, 517
Yellow Pages (YP) protocol, 523
yp-tools package, 523
ypbind daemon, 524
ypbind package, 523
yppasswd command, 524
yum command, 304–305
Yum Extender (yumex) tool, 306
Yum meta-packager, 303–307, 306
Yum tool, 517
yumdownloader command, 305
yumex (Yum Extender) tool, 306

Z
zImage kernel, 13
zip files, 315
zones

BIND for, 443–448
forward, 444–447
reverse, 447–448
root, 443

03843book.indb 632 8/21/09 12:12:16 PM

READ THIS. You should carefully read these terms and
conditions before opening the software packet(s) included
with this book “Book”. This is a license agreement “Agree-
ment” between you and Wiley Publishing, Inc. “WPI”.
By opening the accompanying software packet(s), you
acknowledge that you have read and accept the following
terms and conditions. If you do not agree and do not want
to be bound by such terms and conditions, promptly return
the Book and the unopened software packet(s) to the place
you obtained them for a full refund.
1. License Grant. WPI grants to you (either an individual
or entity) a nonexclusive license to use one copy of the
enclosed software program(s) (collectively, the “Software”)
solely for your own personal or business purposes on a
single computer (whether a standard computer or a work-
station component of a multi-user network). The Software
is in use on a computer when it is loaded into temporary
memory (RAM) or installed into permanent memory (hard
disk, CD-ROM, or other storage device). WPI reserves all
rights not expressly granted herein.
2. Ownership. WPI is the owner of all right, title, and inter-
est, including copyright, in and to the compilation of the
Software recorded on the physical packet included with
this Book “Software Media”. Copyright to the individual
programs recorded on the Software Media is owned by the
author or other authorized copyright owner of each pro-
gram. Ownership of the Software and all proprietary rights
relating thereto remain with WPI and its licensers.
3. Restrictions on Use and Transfer.
(a) You may only (i) make one copy of the Software for
backup or archival purposes, or (ii) transfer the Software to
a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease
the Software, (ii) copy or reproduce the Software through
a LAN or other network system or through any computer
subscriber system or bulletin-board system, or (iii) modify,
adapt, or create derivative works based on the Software.
(b) You may not reverse engineer, decompile, or disas-
semble the Software. You may transfer the Software and
user documentation on a permanent basis, provided that
the transferee agrees to accept the terms and conditions of
this Agreement and you retain no copies. If the Software is
an update or has been updated, any transfer must include
the most recent update and all prior versions.
4. Restrictions on Use of Individual Programs. You
must follow the individual requirements and restrictions
detailed for each individual program in the “About the
CD” appendix of this Book or on the Software Media.
These limitations are also contained in the individual
license agreements recorded on the Software Media. These
limitations may include a requirement that after using the
program for a specified period of time, the user must pay a
registration fee or discontinue use. By opening the Software
packet(s), you agree to abide by the licenses and restric-
tions for these individual programs that are detailed in the
“About the CD” appendix and/or on the Software Media.
None of the material on this Software Media or listed in
this Book may ever be redistributed, in original or modified
form, for commercial purposes.
5. Limited Warranty.
(a) WPI warrants that the Software and Software Media
are free from defects in materials and workmanship under
normal use for a period of sixty (60) days from the date of
purchase of this Book. If WPI receives notification within

the warranty period of defects in materials or workman-
ship, WPI will replace the defective Software Media.
(b) WPI AND THE AUTHOR(S) OF THE BOOK DIS-
CLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS,
THE SOURCE CODE CONTAINED THEREIN, AND/
OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
WPI DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION
OF THE SOFTWARE WILL BE ERROR FREE.
(c) This limited warranty gives you specific legal rights, and
you may have other rights that vary from jurisdiction to
jurisdiction.
6. Remedies.
(a) WPI’s entire liability and your exclusive remedy for
defects in materials and workmanship shall be limited to
replacement of the Software Media, which may be returned
to WPI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: Comp-
TIA Linux+ Study Guide, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-
762-2974. Please allow four to six weeks for delivery. This
Limited Warranty is void if failure of the Software Media
has resulted from accident, abuse, or misapplication. Any
replacement Software Media will be warranted for the
remainder of the original warranty period or thirty (30)
days, whichever is longer.
(b) In no event shall WPI or the author be liable for any
damages whatsoever (including without limitation dam-
ages for loss of business profits, business interruption,
loss of business information, or any other pecuniary loss)
arising from the use of or inability to use the Book or the
Software, even if WPI has been advised of the possibility of
such damages.
(c) Because some jurisdictions do not allow the exclusion
or limitation of liability for consequential or incidental
damages, the above limitation or exclusion may not apply
to you.
7. U.S. Government Restricted Rights. Use, duplication,
or disclosure of the Software for or on behalf of the United
States of America, its agencies and/or instrumentalities
“U.S. Government” is subject to restrictions as stated in
paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or
subparagraphs (c) (1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as
applicable.
8. General. This Agreement constitutes the entire under-
standing of the parties and revokes and supersedes all prior
agreements, oral or written, between them and may not be
modified or amended except in a writing signed by both
parties hereto that specifically refers to this Agreement.
This Agreement shall take precedence over any other docu-
ments that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unen-
forceable, each and every other provision shall remain in
full force and effect.

Wiley Publishing, Inc.
End-User License Agreement

03843book.indb 633 8/21/09 12:12:29 PM

he Best Linux+ Book/CD Package
on the Market!T

Get ready for your Linux+ certification with the
most comprehensive and challenging sample
tests anywhere!

The Sybex Test Engine features:

All the review questions, as covered in each N
chapter of the book.

Challenging questions representative of N
those you’ll find on the real exam.

Two full-length bonus exams available only N
on the CD.

An Assessment Test to narrow your focus to N
certain objective groups.

Use the Electronic Flashcards to jog your
memory and prep last-minute for the exam!

Reinforce your understanding of N
key concepts with these hardcore
flashcard-style questions.

Search through the complete book in PDF!

Access the entire N CompTIA Linux+
Study Guide complete with figures
and tables, in electronic format.

Search the N CompTIA Linux+ Study
Guide chapters to find information
on any topic in seconds.

03843book.indb 634 8/21/09 12:12:43 PM

CompTIA Linux+ Study Guide
Exam XK0-003

Objective chapter

1.0 installation and configuration

1.1 Compare and contrast installation sources 1
Physical installation media: CD-ROM, DVD
Network types: HTTP, FTP, NFS

1.2 Implement partitioning schemes and filesystem layout using the following tools and
practices

LVM, RAID, fdisk, parted, mkfs

6

1.3 Explain the purpose for using each of the following filesystem types 6
Local: EXT2, EXT3, Reiser, FAT, NTFS, VFAT, ISO9660
Network: NFS, SMBFS / CIFS

1.4 Conduct routine mount and unmount of filesystems 6
mount, umount, /etc/fstab

1.5 Explain the advantages of having a separate partition or volume for any of the
following directories

6

/boot, /home, /tmp, /usr, /var, /opt
1.6 Explain the purpose of the following directories 6

/, /bin, /dev, /etc, /mnt, /proc, /root, /sbin, /usr/bin, /usr/local, /usr/lib, /usr/
lib64, /usr/share, /var/log

1.7 Configure the boot process including the following 1
GRUB: /boot/grub/grub.conf, /boot/grub/menu.lst, grub-install, grub

1.8 Perform the following package management functions 7
Install, remove and update programs: rpm (rpm -Uvh, rpm -qa, rpm -e, yum), deb (dpkg
-i, dpkg -r, apt-get, apt-cache search), source (./configure, make, make install, make
uninstall, tar, make clean, autoconf, make test, tar.gz, INSTALL, bzip, gzip
Resolve dependencies
Add and remove repositories

1.9 Configure profile and environment variables system-wide and at the user level 2
PS1, PS2, PATH, EDITOR, TERM, PAGER, HOME, PRINTER

1.10 Troubleshoot boot issues using the following tools 1
Kernel options, Single-user mode (including recovering the root user), Rescue — live
CDs, DVDs and USB keys, dmesg

1.11 Manage devices using the following tools 1
lsusb, lspci, lsmod, /sys, modprobe, /proc, /etc/modules.conf, /etc/modprobe.conf,
Hardware Compatibility List (HCL)

2.0 System Maintenance and Operations

2.1 Given a scenario, use the following fundamental Linux tools, techniques and
resources

2, 3

03843book.indb 2 8/21/09 12:12:58 PM

Objective chapter

Directory navigation (cd, ls, pushd, popd, pwd)

File commands: file, test, find, locate, slocate, which, whereis, ln, ls -F, mknod,
touch, mkdir, mv, cp, rm, cd, file types (hardlinks, softlinks, directory, device file, regular
file, named pipe)
File editing with vi
Process management: ps, kill, top, iostat, pstree, nice, renice, signals, PID, PPID
I/O redirection: <, >, =, ==, |, ;, tee, xargs, STDIN, STDOUT, STDERR
Special devices: /dev/null, /dev/random, /dev/zero, /dev/urandom
System documentation: Man pages(man #, apropos, makewhatis, whatis), Info pages,
/usr/share/docs

Virtual consoles
Kernel / architecture information: cat, /proc/version, uname, common sysctl settings,
/etc/sysctl.conf

2.2 Conduct basic tasks using BASH 2
Basics of scripting (only: execute permission, #!/bin/bash, sh script)
Shell features: history, tab completion

2.3 Given a scenario, analyze system and application logs to troubleshoot Linux systems 4
Common log files: /var/log/messages, /var/log/syslog, /var/log/maillog, /var/
log/secure, /var/log/lastlog
Rotated logs
Searching and interpreting log files: grep, tail -f, awk, sed

2.4 Conduct and manage backup and restore operations 7
Copying data: rsync and ftp
Archive and restore commands: cpio, tar, dump, restore, dd
Write to removable media (CD-RW, DVD-RW)

2.5 Explain the following features and concepts of X11 1
Starting and stopping X11, Difference between the X11 client and server, Window
managers and display managers (KDM, GDM), Multiple desktops, X11 configuration
file (xorg.conf), Terminal emulators (xterm, etc)

2.6 Explain the difference in runlevels and their purpose 4
Command: init
Runlevels: 0 – Halt, 1 – single-user mode, 2 – single-user mode with networking,
3 – networked multi-user mode, 4 – user configurable, 5 – X11 multi-user mode, 6 – reboo

2.7 Manage filesystems using the following 6, 11
Check disk usage (df, du)
Quotas: edquota, repquota, quotacheck
Check and repair filesystems (fsck)
Loopback devices (ISO filesystems)
NFS: configuration, mount, exportfs, fstab, /etc/exports, showmount
Swap: mkswap, swapon, swapoff

03843book.indb 3 8/21/09 12:12:58 PM

Objective chapter

2.8 Implement task scheduling using the following tools 3
cron (cron.allow, cron.deny), crontab command syntax, crontab file format, at (atq)

2.9 Utilize performance monitoring tools and concepts to identify common problems 3
Commands: sar, iostat, vmstat, uptime, top
Load average

3.0 application and Services

3.1 Manage Linux system services using the following 4
/etc/init.d (start, stop, restart) inetd, xinetd, chkconfig

3.2 Implement interoperability with Windows using the following 10, 11
rdesktop – client
vnc – server and client
Samba – server and client: smb.conf, Winbind, lmhosts
Security and authentication (Kerberos)

3.3 Implement, configure and maintain Web and FTP services 11
Apache: Maintain PHP settings (php.ini), Edit Apache configuration files (Enable and
disable modules), Containers (Virtual hosts, Directories), Access control (.htaccess),
CGI (ExecCGI, ScriptAlias), Commands: apachectl (-t, -S, graceful, restart),
Configuring apache logs
FTP services: Configure FTP users (/etc/ftpusers, chroot), Configure anonymous
access

3.4 Given a scenario, explain the purpose of the following web-related services 11
Tomcat, Apache, Squid

3.5 Troubleshoot web-related services using the following utilities 11
Commands: curl, wget, ftp, telnet

3.6 Given a scenario, troubleshoot common FTP problems 11
Active vs. passive, ASCII vs. binary

3.7 Given a scenario, perform the following MySQL administrative tasks 11
Locate configuration file, Starting and stopping, Test the connection

3.8 Explain the purpose of each of the following mail services, protocols and features 10
Protocols: SMTP, IMAP, POP3
MTA: Postfix, Sendmail
Email aliases: /etc/aliases, newaliases

3.9 Deploy and manage CUPS print services 9
Enable and disable queues
Web management interface (port 631)
Printing commands: lpr, lp, lpq, lpstat, cancel

3.10 Set up, install, configure and maintain a BIND DNS server and related services 10
DNS utilities: named, rndc
Config file locations (/var/named)
Forward zones, reverse zones, root hints

03843book.indb 4 8/21/09 12:12:58 PM

Exam objectives are subject to change at any time without prior notice and at
CompTIA’s sole discretion. Please visit CompTIA’s website (www.comptia.org)
for the most current listing of exam objectives.

Objective chapter

3.11 Perform basic administration of the DHCP server 10
/etc/dhcpd.conf, dhcpd.leases

3.12 Given a scenario, troubleshoot NTP related issues 10
/etc/ntp.conf, ntpdate, date, ntpq -p

4.0 Networking

4.1 Identify common networking ports and the associated service 9
20, 21, 22, 23, 25, 53, 80, 110, 123, 143, 443, 631, 3306, /etc/services

4.2 Execute network interface configuration using the following 8
dhclient, dhcpcd, ifconfig, iwconfig, route, ifup, ifdown, network configuration files

4.3 Implement configurations and/or configuration changes for the following 8, 9
Packet filtering: iptables
Hostname lookup: /etc/hosts, /etc/nsswitch.conf, /etc/resolv.conf

4.4 Explain the different DNS record types and the process of DNS resolution 10
Local resolution, TTL/caching, Root name servers, A, MX, PTR, CNAME, NS, TXT

4.5 Troubleshoot basic connectivity issues using the following tools 8
netstat, ping, traceroute, arp, telnet, route

4.6 Troubleshoot name resolution issues using the following tools 8
dig, host, nslookup, hostname

5.0 Security

5.1 Manage and monitor user and group accounts using the following 5
Tools: useradd, userdel, usermod, groupadd, groupdel, groupmod, lock, who, w, last, whoami
Files: /etc/skel, /etc/passwd, /etc/shadow, /etc/group

5.2 Given a scenario, select the appropriate file permissions and ownership and
troubleshoot common problems

2

Tools: chmod, chown, chroot, chgrp, lsattr, chattr, umask
Special permissions: setuid, setgid, sticky bit

5.3 Explain the basics of SELinux 12
Running modes: Enabled, Disabled, Permissive

5.4 Given a scenario, implement privilege escalation using the following 5
sudo, su, /etc/sudoers

5.5 Explain the appropriate use of the following security related utilities 12
nmap, Wireshark, NESSUS, Snort, Tripwire

5.6 Use checksum and file verification utilities 12
md5sum, sha1sum, gpg

5.7 Deploy remote access facilities using the following 9
SSH: Secure tunnels, SFTP, X11 forwarding, Keygen
VNC

5.8 Explain the methods of authentication 12
PAM, LDAP, NIS, RADIUS, Two-factor authentication

03843book.indb 5 8/21/09 12:12:59 PM

STUDY GUIDE

Roderick W. Smith

Covers All Exam Objectives

Linux+

Includes Real-World Scenarios and Leading-Edge
Exam Prep Software Featuring:

• Linux-Compatible Custom Test Engine

• Hundreds of Sample Questions

• Electronic Flashcards

• Entire Book in PDF

Exam XK0-003

SERIOUS SKILLS.

CompTIA

®

C
om

pT
IA L

inux+
®

STUDY GUIDE

Smith

FEATURED ON THE CD

ISBN: 978-0-470-50384-3

As the Linux server and desktop markets continue to grow, so
does the need for qualifi ed Linux administrators. CompTIA’s new
Linux+ (Exam XK0-003) includes the very latest enhancements
to the popular open source operating system. This detailed guide
not only covers all key exam topics—including installation and
confi guration, system maintenance and operations, application
and services, networking and security—it also builds your practical
Linux skills with real-world examples. Inside, you’ll fi nd:

Full coverage of all exam objectives in a systematic approach, so you
can be confi dent you’re getting the instruction you need for the exam

Real-world scenarios that put what you’ve learned into practical context

Challenging review questions in each chapter to prepare you for
exam day

Exam Essentials, a key feature in each chapter that identifi es critical
areas you must become profi cient in before taking the exam

A handy tear card that maps every offi cial exam objective to the
corresponding chapter in the book, so you can track your exam prep
objective by objective

Roderick W. Smith, Linux+, LPIC-1, is a Linux consultant and author. His areas
of expertise include Linux networking, fi lesystems, and cross-platform confi guration.
He has written over 20 books on open source technologies, including the LPIC-1: Linux
Professional Institute Certifi cation Study Guide, 2nd Edition and Linux Administrator Street
Smarts, both from Sybex.

Prepare for the new 2009
Linux+ exam

$49.99 US
$59.99 CN

A B O U T T H E A U T H O R

Look inside for complete coverage
of all exam objectives.

www.sybex.com

SYBEX TEST ENGINE:
Test your knowledge with advanced
testing software. Includes all chapter
review questions and bonus exams.
Runs on both Windows and Linux.

ELECTRONIC FLASHCARDS:
Reinforce your understanding with
electronic fl ashcards.

Also on CD, you’ll fi nd the entire
book in searchable and printable PDF.
Study anywhere, any time, and
approach the exam with confi dence.

C A T E G O R Y
COMPUTERS/Certifi cation Guides

Exam XK0-003

spine=1.344”

	CompTIA Linux+ Study Guide (Exam XK0-003)
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Assessment Test
	Answers to Assessment Test
	Chapter 1: Getting Started with Linux
	Selecting an Installation Method
	Configuring Boot Loaders
	Troubleshooting Boot Problems
	Configuring X
	Managing Hardware
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 2: Using Text-Mode Commands
	Using a Command Shell
	Manipulating Files and Directories
	Using File Permissions
	Setting Environment Variables
	Using Shell Scripts
	Getting Help
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 3: Managing Processes and Editing Files
	Managing Processes
	Setting Process Permissions
	Running Jobs at Specific Times
	Getting and Setting Kernel Information
	Editing Files with Vi
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 4: Managing System Services
	Starting and Stopping Services
	Setting the Runlevel
	Configuring Log Files
	Using Log Files
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 5: Managing Users
	Understanding Multiuser Concepts
	Configuring User Accounts
	Configuring Groups
	Using Common User and Group Strategies
	Improving Account Security
	Controlling System Access
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 6: Managing Disks
	Storage Hardware Identification
	Planning Disk Partitioning
	Partition Management and Maintenance
	Partition Control
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 7: Managing Packages and System Backups
	Understanding Package Concepts
	Installing and Removing Packages
	Managing Package Dependencies and Conflicts
	Backing Up and Restoring a Computer
	Writing to Optical Discs
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 8: Configuring Basic Networking
	Understanding Networks
	Network Addressing
	Basic Network Configuration
	Diagnosing Network Problems
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 9: Configuring Advanced Networking
	Routing Between Networks
	Firewall Configuration
	Managing Remote Logins
	Configuring Basic Printing
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 10: Configuring Network Servers I
	Delivering Network Information
	Using E-mail
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 11: Configuring Network Servers II
	Delivering Files Over the Network
	Using Windows Remote Access Tools
	Deploying MySQL
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 12: Securing Linux
	Sources of Security Vulnerability
	Authenticating Users
	Using GNU Privacy Guard (GPG)
	SELinux
	Security Auditing
	Intrusion Detection
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Appendix: About the Companion CD
	What You’ll Find on the CD
	System Requirements
	Using the CD
	Troubleshooting

	Glossary
	Index

