
Michael Wessler

800 East 96th St., Indianapolis, Indiana, 46240 USA

Oracle DBA on Unix and Linux

Oracle DBA on Unix and Linux
Copyright © 2002 by Sams

All rights reserved. No part of this book shall be reproduced, stored in a

retrieval system, or transmitted by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without written permission from the pub-

lisher. No patent liability is assumed with respect to the use of the information

contained herein. Although every precaution has been taken in the preparation

of this book, the publisher and author assume no responsibility for errors or

omissions. Nor is any liability assumed for damages resulting from the use of

the information contained herein.

International Standard Book Number: 0-672-32158-0

Library of Congress Catalog Card Number: 2001089580

Printed in the United States of America

First Printing: November 2001

Second Printing with corrections: April 2002

06 05 04 7 6 5 4

Trademarks
All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Sams cannot attest to the accuracy

of this information. Use of a term in this book should not be regarded as

affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as

possible, but no warranty or fitness is implied. The information provided is on

an “as is” basis. The author and the publisher shall have neither liability nor

responsibility to any person or entity with respect to any loss or damages aris-

ing from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quan-

tity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

1-317-428-3341

international@pearsontechgroup.com

ASSOCIATE PUBLISHER

Jeff Koch

ACQUISITIONS EDITOR

Kathryn Purdum

DEVELOPMENT EDITOR

Kevin Howard

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

Natalie F. Harris

COPY EDITOR

Kezia Endsley

INDEXER

Erika Millen

PROOFREADER

Jody Larsen

TECHNICAL EDITORS

Jim Kotan

Paul Love

TEAM COORDINATOR

Vicki Harding

Denni Bannister

INTERIOR DESIGNER

Dan Armstrong

COVER DESIGNER

Aren Howell

PAGE LAYOUT

Lizbeth Patterson

Heather Stephenson

Contents at a Glance
Introduction 1

1 Role of the DBA 5

2 Architecture of the Oracle Server 29

3 Planning a Database 63

4 Machine Setup and Installation 87

5 Creating a Database 111

6 Daily Activities 139

7 GUI Management Products 175

8 DBA Utilities 203

9 Backup and Recovery 237

10 When Things Go Wrong 271

11 Oracle Server Tuning 293

12 Unix Operation System Architecture 321

13 Unix Server Monitoring 341

14 Patches and Upgrades 373

15 Migrations 395

16 Java Inside the Database Server 417

17 Web DB/Oracle Portal 437

18 Internet Application Server (iAS) 463

19 9i Server New Features 485

20 Growth of the DBA 511

A Basic Unix Commands 525

B vi Editor 533

C Scripts 537

D Glossary 543

Index 551

Contents
Introduction 1

Who Should Read This Book? ..2

What Makes This Book Different? ..3

1 Role of the DBA 5

What Is a DBA? ..6

Depends on the Shop ..6

Where DBAs Come From ..6

Paths to Becoming a DBA ..7

System Administrator (SA) ..7

Developer/Programmer ..7

Systems Designer/Data Modeler ..8

Other Paths ..8

Types of DBAs ..8

Application DBA ..8

Systems DBA ..8

Maintenance DBA ..9

Database Administration Principles ..9

Data Protection ..9

Data Availability ..11

Database Administration Responsibilities ..12

Database Technical Responsibilities ..12

Non-Technical Responsibilities ..16

Skills Needed ..18

Roles Within the IT Organization ..22

System Administrators ..22

Programmers/Developers ..24

Management ..24

Customers and End Users ..25

Outside Organizations ..26

DBA Mindset ..26

Summary ..27

2 Architecture of the

Oracle Server 29

Oracle Products Relating to Database Servers30

SQL*Plus ..31

Server Manager ..32

Net8 ..32

Oracle DBA on Unix and Linux

Database Versus Instance ..33

Oracle File Types ..34

Control Files ..34

Data Files ..35

System ..36

Data ..36

Index ..37

Temp ..38

Rollback ..38

Online Redo Logs ..40

Memory Structures ..42

Shared Global Area (SGA) ..42

Shared Pool ..46

Redo Log Buffer ..47

Large Pool ..48

Java Pool ..48

Oracle Processes ..49

Server Processes ..50

Background Processes ..52

System Monitor Process (SMON) ..53

Process Monitor Process (PMON) ..53

Database Writer Process (DBWn) ..53

Log Writer Process (LGWR) ..54

Checkpoint Process (CKPT) ..55

Archiver Process (ARCn) ..56

Recover Process (RECO) ..56

Job Queue Processes (SNPnn) ..56

Queue Monitor Processes (QMNnn) ..56

Dispatcher Processes (Dnnn) ..56

Shared Server Processes (Snnn) ..56

Transaction Control ..57

Miscellaneous Database Files ..59

Oracle Database Parameter and Log Files59

Summary ..62

3. Planning a Database 63

System Architecture ..64

Two-Tier Basic Client Server Architecture (2 Tier)65

Three-Tier Client Server Architecture ..66

Capacity Planning/Sizing ..67

Optimal Flexible Architecture ..71

v

Oracle DBA on Unix and Linux

Application and Database Considerations ..76

Hybrid Systems ..79

Summary ..85

4 Machine Setup and Installation 87

Pre-Installation Setup ..88

Gathering Information ..88

Configuring the System ..92

Oracle Environment Setup ..97

Installing Oracle ..102

Installation Process ..102

Verification of a Good Install ..107

Applying Patches ..109

Summary ..109

5 Creating a Database 111

Generating Creation Scripts ..112

Use of Scripts ..112

Database Configuration Assistant ..113

Customize the Scripts ..121

Creating the Database ..123

Running the Scripts ..124

Review the Create Logs ..125

Examine the Database Instance ..125

Compile Invalid Objects ..127

Clean Up a Failed Database ..129

Post-Creation Activities ..129

Changing the Passwords ..129

Modifying oratab File ..131

Create a Soft Link for init.ora ..131

Configuring Net8 for the New Database ..132

tnsnames.ora ..133

listener.ora ..134

listener ..135

Customizing Your .profile File ..137

Summary ..138

6 Daily Activities 139

Database Views ..140

Oracle Startup/Shutdown ..142

Database Stages ..142

Database Startup ..143

Database Shutdown ..145

vi

Oracle DBA on Unix and Linux

User Management ..148

Creating Users ..149

Privileges ..149

Roles ..151

Quotas ..151

Table, Index, Sequence Creation and Maintenance152

Identifying Objects and Synonyms ..154

Space Management ..157

Storage Hierarchy ..157

Tablespace Management ..160

Monitoring ..163

Verify Database and Connectivity ..163

Alert Log ..164

Monitor Database Objects ..165

Setting Up and Monitoring cron Jobs ..166

Monitoring Backups ..168

Monitoring Exports ..169

Monitor Space on Filesystems ..170

Electronic Monitoring and Notification ..171

Summary ..173

7 GUI Management Products 175

Oracle Enterprise Manager ..176

Architecture ..176

Installation ..179

OEM Controls ..190

OEM Tools ..193

TOAD ..200

Summary ..201

8 DBA Utilities 203

Export and Import ..204

Overview of Export and Import ..204

Using Export ..205

Export Types ..206

Using Import ..211

Common Export/Import Uses ..216

Logical Backups ..216

Maintenance Benefits of Export/Import ..220

Table Rebuilds ..220

Corruption Checks ..221

Row Counts ..221

Common Mistakes ..222

vii

Oracle DBA on Unix and Linux

Advanced Export and Import Techniques ..223

Export and Import with Compress and Pipe223

Editing a Dump (.dmp) File ..225

Tuning Parameters ..226

Using SQL*Loader ..227

SQL*Loader Load Types ..229

Using LogMiner ..233

Summary ..235

9 Backup and Recovery 237

Importance of Backups ..238

Backup Types ..239

Logical Backups ..239

Physical Backups ..240

Incurring Damage on the Database ..241

Impact on the Database ..241

Adding Fault Tolerance ..243

Performing Backups and Recoveries ..247

Cold Backups and Recoveries ..248

Cold Backups and NOARCHIVELOG Mode249

Cold Backups in ARCHIVELOG Mode249

Hot Backups and Recoveries ..250

Backup of Software and Parameter Files266

Comprehensive Planning and Testing ..267

Planning ..267

Testing ..269

Summary ..270

10 When Things Go Wrong 271

Responding to Problems ..272

Information Gathering ..272

Problem Identification at the System Level273

Identifying Technical Problems ..275

File and Space Management ..281

Sizing Data Files ..282

Moving and Renaming Data Files ..282

Locking ..286

DML Locking ..287

DDL Locking ..290

”Snapshot Too Old” Rollback Errors ..290

Summary ..292

viii

Oracle DBA on Unix and Linux

11 Oracle Server Tuning 293

Database Tuning Approach ..294

Diagnostic Utilities: UTLBSTAT/UTLESTAT and STATSPACK296

UTLBSTAT/UTLESTAT ..296

STATSPACK ..298

Tuning Memory Structures ..301

Ratios ..302

Database Buffer Cache ..302

Redo Log Buffer ..303

Library Cache ..303

Data Dictionary Cache ..304

Disk Sorts ..305

Tuning Rollback Segments ..305

Rollback Segments for OLTP ..305

Rollback Segments for Batch Jobs ..306

Monitoring Rollback Segment Usage ..307

Avoiding File Contention ..308

Wait Events ..309

V$SYSTEM_EVENT ..310

V$SESSION_EVENT ..310

V$SESSION_WAIT ..311

Locally Managed Tablespaces ..311

Tuning Tables ..313

Index Organized Tables (IOTs) ..313

Partitioned Tables ..314

Row Migration and Chaining ..316

Indexes ..318

Summary ..320

12 Unix Operation System Architecture 321

Imperative Concepts ..321

Understanding the Kernel ..322

Unix Processes ..323

How Unix Manages Memory ..328

Filesystems and Files ..330

I/O Subsystem ..334

Startup/Shutdown Processes in Unix ..335

Understanding the Hardware Architecture ..337

Uniprocessor Machines ..337

Symmetrical Multiprocessor Machines ..338

Clusters ..338

MPPs and NUMAs ..339

Summary ..340

ix

Oracle DBA on Unix and Linux

13 Unix Server Monitoring 341

Need for Monitoring the Server ..342

Overview of Monitoring the Server ..343

Monitoring Memory Issues ..344

Shared Memory and Semaphores ..344

SGA Allocation ..346

Intimate Shared Memory ..347

Cleaning Up Shared Memory and Semaphores348

Monitoring Memory ..354

Monitoring Disk I/O ..356

RAID ..357

Raw Partitions ..359

Asynchronous I/O ..360

Monitoring Disk I/O ..360

Monitoring the CPU ..362

Monitoring the CPU ..365

Monitoring the Network ..368

Monitoring Network Usage ..369

Summary ..371

14 Patches and Upgrades 373

What Are Patches and Upgrades? ..374

When and How to Apply Patches ..376

Overview ..376

Applying a Patch to Your System ..378

Example Patch ..382

When and How to Upgrade ..385

Overview ..385

Performing an Upgrade ..386

Example Upgrade ..388

Additional Considerations ..391

Summary ..392

15 Migrations 395

What Is a Migration ..396

Reasons to Migrate Your Database ..397

Preparation ..398

Planning ..398

Database Testing ..398

Application Testing ..399

Migration Testing ..400

x

Oracle DBA on Unix and Linux

Migration Methods ..401

Export/Import ..401

mig ..402

ODMA ..403

Version of the Source Database ..403

Time Available to Perform the Migration403

Skill of the DBA ..403

Using ODMA ..404

Overview ..404

Migration Steps Using ODMA ..405

Summary ..415

16 Java Inside the Database Server 417

Understanding the Role and Future of Java Inside Oracle418

Java Overview ..420

Supporting Java with Oracle ..422

Java Outside the Database ..422

Java Inside the Database ..423

Managing Java Inside the Database ..426

Java Configuration Parameters ..426

Installing Java ..427

Uninstalling Java ..429

Creating, Loading, and Running Java Programs 430

Configuring MTS and IIOP for Java ..433

Loading EJBs and CORBA Servers ..435

Summary ..436

17 WebDB/Oracle Portal 437

What Are WebDB and Oracle Portal? ..438

Purpose ..438

WebDB/Oracle Portal Architecture ..439

Installation ..440

Basic WebDB Maintenance ..450

Starting and Stopping the Listener ..450

Log into the Site ..451

WebDB Utility Links ..452

Key Differences between Oracle Portal and WebDB460

Summary ..461

18 Internet Application Server (iAS) 463

Web Environment ..464

Technological Design ..467

Scalability ..467

Availability ..468

xi

Oracle DBA on Unix and Linux
xii

Understanding and Using iAS ..468

Modules ..470

Oracle Forms, Reports, and Discover ..470

Oracle Portal ..471

PSPs and JSPs ..471

iFS ..471

Oracle 8i JVM ..471

Database Cache and Web Cache ..471

Installation ..472

Configuration File Location and Apache Control482

Summary ..483

19 9i Server New Features 485

Installing the 9i Server ..486

Setting Up Security and Logging In ..488

Creating a Server Parameter File (SPFILE)490

Using Oracle-Managed Files ..494

Using Dynamic Memory Parameters and Multiple Block Sizes500

Using Undo Tablespaces ..503

Comprehensive Sample Schemas ..506

Miscellaneous Features and Changes ..508

Summary ..508

20 Growth of the DBA 511

Growth of the DBA ..512

Motivation ..512

Continuing Your Education ..512

Traditional Education ..513

Oracle University Classes ..513

Third-Party Oracle Classes ..514

Learning on Your Own ..514

Emerging Technologies ..515

Getting Certified ..516

Available Certification Tracks ..516

Preparation ..517

Taking the Test ..518

Benefits of Certification ..518

Networking with Other DBAs ..519

Technical Benefits ..519

Professional Benefits ..520

Consulting/Contracting versus Salaried Employee521

Learning Systems Administration and Architecture522

Learning Java ..522

Summary ..523

Oracle DBA on Unix and Linux

A Basic Unix Commands 525

B vi Editor 533

Cursor-Movement Commands ..534

Entering Text ..534

Editing Text ..535

Saving and Exiting ..535

Miscellaneous Commands ..535

C Scripts 537

Hot Backup Script ..541

D Glossary 543

Index 551

xiii

About the Author
Michael Wessler received his B.S. in Computer Technology from Purdue University in West

Lafayette, IN. He is an Oracle Certified Database Administrator for Oracle 8 and 8i. He has

administered Oracle databases on NT, and various flavors of Unix, and Linux at several differ-

ent companies ranging from a handful of employees to IT staffs in the thousands. Included in

this experience is working at a true .com startup and managing a mission-critical OPS database

on a Sun Cluster. Michael has also programmed professionally in COBOL, SQL, and PL/SQL.

Currently, he is an Oracle consultant for Perpetual Technologies working at the Department of

Defense in Indianapolis, Indiana. Michael is coauthor of Oracle Unleashed, Second Edition;

Unix Primer Plus, Third Edition; and COBOL Unleashed. Michael can be reached at

mwessler@yahoo.com.

About the Technical Editor
Residing in Omaha, Nebraska, Jim Kotan has been in the Information Technology field since

1987 as a Unix System Administrator, Oracle DBA, Programmer, Consultant, and Manager.

Jim has also written numerous articles for Inside SCO Unix Systems Magazine. He is currently

a Production Oracle Database Administration Engineer for Qwest Communications,

International where he specializes in Shell Programming, Backup & Recovery, Migrations of

High Availability databases and Database Creations. Jim’s favorite activities are Bible Study,

bicycle riding, writing code and target shooting.

Dedication
I would like to dedicate this work to the memory of my grandfather Robert Johnson.

We miss you, Daddy Bob!!!

Acknowledgments
No one writes a book like this in total isolation. This book is certainly no exception and I’d

like to thank the following people.

All the hard working people at Sams. Katie Purdum, my Acquisitions Editor, for making this

work possible. Kevin Howard for developing this book. Natalie Harris for all her hard work.

Kezia Endsley for helping out with the grammar. Thanks to Jim Kotan for his skilled technical

review. It certainly was a pleasure to work with all of you on this project.

I’d like to thank fellow author Rich Blum for his overall support and advice during this project.

Rich’s experience with writing and wisdom made this project much easier. I’d also like to

thank the following people for the miscellaneous support they provided, particularly in terms

of networking and hardware: Tige Chastain, Ben Styring, John Pahos, Brian Conant, and Ed

Lewis. Thanks guys!

The following people have helped me professionally and technically to get to the point where I

could write this book. First, a very special thanks to Dan Wilson for always being there to

help, guide, and answer questions. Bill Pierce for giving me that first opportunity and showing

me how an MIS shop ought to be run. The following System Administrators showed incredible

patience with me in the early days: Mark Hinkle, Karl Buchman, and Greg Hartman. Thanks to

the Purdue University Computer Technology Department, particularly Professors Goldman,

Weaver, and Boggess. Finally, thanks to Ryan, Ron, and Chris for providing me such a great

opportunity at Perpetual.

Finally, I’d like to thank my family and friends for being so understanding when I said, “Sorry,

I can’t do X, I have to write.” Anyone who has ever authored a book understands just how

much time it takes to do it right. Mom, Dad, Grandma, Nanny, Joe, Angie, Tim, Emily, Rob,

Marsha, Zach, Travis; I’ll actually be around more often! For my friends Erik, Kalynn, JJ,

Brian, John, Mark, Sam, Zach, Josh, Bob, Becky, Ben, and Wendy; I’ll actually be able to go

out again!

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your

opinion and want to know what we’re doing right, what we could do better, what areas you’d

like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an Associate Publisher for Sams, I welcome your comments. You can email or write me

directly to let me know what you did or didn’t like about this book—as well as what we can do

to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,

and that due to the high volume of mail I receive, I might not be able to reply to every mes-

sage.

When you write, please be sure to include this book’s title and author as well as your name

and phone or fax number. I will carefully review your comments and share them with the

author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Introduction
Oracle is a complex Object Relational Database Management System and is probably the best

database that money can buy. People know this and that is why they trust their businesses to

Oracle. Furthermore, when they do buy Oracle they usually run it on a Unix or Linux system.

Experience shows that Unix operating systems are robust, dependable, and scalable. That is

why most companies use Unix when they have to develop large or critical systems to support

their businesses.

At the other end of the spectrum, Linux systems were initially introduced as testing and develop-

ment systems. Basically, people loaded Linux on old machines to learn and test with. Recently,

however, Linux has become a respected operating system that many companies, particularly

Internet startups, use to run their businesses. As a result of these factors, there are a large number

of Oracle systems running on both Unix and Linux.

Unfortunately, however, there are relatively few people who know Oracle and Unix/Linux. To

be an effective DBA, however, you must understand how the database interacts with the opera-

tion system. Oracle and the Unix/Linux operating systems are tied closely together. Anything

that impacts the operating system will likely impact the database. Likewise, the behavior of the

database will impact the performance of the server. Despite efforts by Oracle and various oper-

ating system vendors to simplify administration, this is still an inescapable fact. The key here

is to view Oracle and Unix/Linux as a total system, not as separate, isolated pieces.

I have worked with many people who were trained as Oracle DBAs, but couldn’t perform basic

tasks, such as install software or apply patches, if their lives depended on it. Usually they went

to some school or class that taught them about Oracle in a vacuum, but never provided any

information in the context of the operation system. This “one size fits all” approach to training

isn’t sufficient. The reality is that when they come into the industry as DBAs, they are almost

helpless because they understand only half of the Oracle and Unix/Linux equation.

I have also worked with some Unix System Administrators who thought of Oracle as just

another application. In reality, this is far from the truth. In fact, Oracle is more of an operating

system than an application. These people had a very difficult time understanding why and how

they needed to configure their servers to run Oracle optimally. Once again, their “one size fits

all” mentality resulted in failure.

To manage this system, whereby Oracle is tied closely to Unix and Linux, you need to under-

stand both sides of the equation. However, the reality often is that DBAs only understand

Oracle and SAs only understand Unix/Linux. This is indeed a problem.

ORACLE DBA ON UNIX AND LINUX

My solution in this book is to show DBAs what they need to know to run Oracle on Unix and

Linux. That way, they are not dependent on finding the rare System Administrator who under-

stands Oracle. In this way, you also understand how and why Unix and Linux work the way

they do.

My goal with this book is two-fold:

• Write a book that shows database administration in a way that combines the skills of the

DBA with the knowledge of a Unix/Linux System Administrator. This allows you to

manage the database and Unix/Linux server as a total system.

• Write a book that is for the working DBA. I have written this book as if I’m writing

notes and procedures for a co-worker. I combine solid theoretical database and system

administration knowledge with practical examples of what I do on the job. I think it is

important to know how and why the database and operating system works the way they

do, so I cover some theory. On the other hand, I give detailed examples of how to per-

form regular DBA tasks. If I’ve had to struggle to get something working, you’ll find

that information in this book.

First I cover what a DBA’s job really is and how you can survive as one. Next, I cover Oracle

architecture so you understand how and why Oracle works the way it does. I also cover the

initial steps, from planning your database, to setting up your Unix/Linux server, and then

installing Oracle. I then cover how to intelligently create databases and manage them on a

daily basis. I spend a lot of time showing you how to solve problems as they occur, both from

an Oracle and a Unix/Linux perspective. Chapters are dedicated to tuning both the database

and Unix/Linux servers. Additionally, I show you how to Web-enable your system using Java

and iAS. Finally, I explain some of the new features of Oracle’s new database, 9i.

Who Should Read This Book?
This book is geared for the person who knows what a database is and has basic SQL skills, but

wants to learn how to build and manage Oracle databases on either Unix or Linux. This book

isn’t geared towards certification, but rather towards becoming a proficient and seasoned DBA

in the Unix/Linux environments.

The following people will get the most benefit out of this book:

• Computer professionals who are starting their first jobs as Oracle DBAs.

• Experienced Oracle DBAs from NT or other platforms making the move to the Unix and

Linux platforms.

• DBAs with experience on other databases, such as SQL Server or DB2. This experience

can be on Unix and Linux or any other platform.

2

INTRODUCTION

• System Administrators who have to support database servers and want to know more

about the database they indirectly support.

• Developers who need to understand how Oracle works on the platform they support.

• People new to databases who want to install Oracle on a Linux box so they can learn the

technology.

• Computer science and technology students.

I have written this book assuming the reader has basic skills regarding computers, understands

what a database is, and knows basic SQL. If you have these skills and have access to either a

Unix or Linux machine, you should be able to create a database and do all the examples in this

book. This should prepare you for most of what you will run into on the job as a DBA.

What Makes This Book Different?
There are many books written about Oracle database administration, but very few, if any, focus

on DBA work in the Unix and Linux environments. Most books on the Oracle subject try to

separate the DBA from the operation system. Although that might make a book easier to write,

it doesn’t work in the real world.

What this book offers is a solid DBA guide, but tailored to the Unix and Linux platforms. This

book is more than just a generic DBA book where all the examples happen to be on a Unix or

Linux machine. Rather, I show you the “tricks of the trade” that’ll help you support Unix and

Linux systems. I show you what working DBAs do on a daily basis and why.

Part of this book deliberately touches on subjects that are traditionally reserved for System

Administrators. I try to blur the distinction between a DBA and an SA task so you will know

how to manage Oracle on Unix/Linux as a total system.

Key differences between this book and others include:

• This book is written specifically for the Unix and Linux platforms. Most of the focus is

on Sun Solaris, HP-UX, and RedHat Linux, which are three of the most common operat-

ing systems supporting Oracle. However, if you are running another flavor of Unix or

Linux, the concepts will easily transfer.

• I provide detailed information about how and why the database works as it does. I don’t

think it is sufficient just to give the DBA the basics. There are too many “point-and-

click” DBAs with minimal skills already. Rather, I cover topics in detail so you under-

stand why things work the way they do.

• I wrote this book as though I was making notes to myself or explaining topics to another

DBA. I focus on what’s important and what actually works.

3

ORACLE DBA ON UNIX AND LINUX

• As I explain topics, I provide detailed examples and walk you through them. If you have

a system at home, you can follow along and practice. If you can do what is covered in

this book and understand the reasoning behind it, you should do well in a work

environment.

• You will not find marketing material or find me pushing products I wouldn’t run on my

own system. I’m not going to tell you to do something I wouldn’t do myself.

• The book includes coverage of Oracle 9i, Java, and iAS. As of this writing, 9i is being

released. Although I have a chapter dedicated to 9i new features, I also cover differences

between 8i and 9i throughout the book. Also, few DBA books attempt to address Java

and iAS. I cover these topics in a manner so you will know the fundamentals when you

encounter these technologies.

I feel this book is different from most DBA books. I know that they don’t give the Unix- and

Linux-specific details you find here. That alone separates this book from other books. How-

ever, I take this one step further by covering the topic from a working DBA’s standpoint, and I

refuse to water down the technical content. There’s plenty of explanation and theory for you

Oracle purists. Finally, this might well be the first book to cover Oracle 9i and it is one of the

first to address Java and iAS. For those reasons, this book is a more complete and practical

guide than others on the market. I hope you enjoy the book!

4

CHAPTER

1
Role of the DBA

ESSENTIALS

• The official roles and responsibilities of the

DBA depend largely on the particular com-

pany or organization.

• A DBA is the person tasked with making sure

the data is safe and available to the

organization.

• The DBA has both technical responsibilities

dealing with the database and non-technical

responsibilities outside the database.

• Skills required by the successful DBA range

from the obvious technical database skills to

having “people” skills and understanding the

business of the organization.

What Is a DBA?
In its simplest terms, a DBA is the person held responsible and accountable for the safety and

practical availability of the organization’s data. Today, this is typically implemented with a

Relational Database Management System (RDBMS) or an Object Relational Database

Management System (ORDBMS). Most people tend to agree on that definition regardless of

whether dealing with Oracle or another database. Before we look at the duties of the Oracle

DBA on Unix and Linux, we should look at some of the factors affecting the generic DBA’s

job description.

Depends on the Shop
The roles and responsibilities of the DBA can vary greatly from company to company. In fact,

the job of the DBA is continually evolving as new technologies appear, such as the Internet. As

organizations change and receive new management, the role of the DBA can also change to

meet new requirements. Also, as old DBAs leave and new DBAs join an organization, the

scope of the DBA’s responsibilities can change as well, depending on each person’s personality

and experience.

The size of the organization (the shop) has a major influence on the role of the DBA. In a large

environment there are often many DBAs, so there may be well-defined responsibilities given to

each person. Within the shop there may be, for example, a dedicated performance tuning team

while other administrators are assigned individual systems to manage. Also, there may be

many different departments or organizations, each with its own (and sometimes competing)

group of DBAs. If geographically distributed environments are included, the situation becomes

even more complex. These can become tricky environments for a person to navigate because

exact responsibilities and expectations may not be clearly defined or they may be changing.

This is when “turf battles” and organizational politics become problematic.

On the other hand, a small shop might have only one or two DBAs to manage everything. This

is common in Web/Internet startups, for example. In even smaller shops, the DBA might also

be the System Administrator (SA) and may have programming responsibilities as well. I have

found that the smaller shops usually allow greater personal initiative with a wider range of

responsibilities. This can be an exciting place to be, with many great opportunities for a

motivated DBA.

Where DBAs Come From

The background the DBA comes from will naturally influence how this person views the

position. How do people become DBAs and where do they come from? Usually they grow into

the position from another IT-related position, but there are exceptions. The following sections

Oracle DBA on Unix and Linux
6

describe some of the more common paths to becoming a DBA, which are illustrated in Figure

1.1. Keep in mind how each would likely influence how the new DBA views the position.

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
7

System Designer

Data Modeler

Developer

Programmer

Oracle Database

Administrator
System Administrator

Other Paths:

 Owner / Entrepreneur

 Non-IT person making career change

FIGURE 1.1
Some of the more common paths to becoming a DBA.

Paths to Becoming a DBA

System Administrator (SA)
The SA is the person responsible for making sure the organization’s servers and overall com-

puter system are secure and available. In many ways this is very similar to the job of being the

DBA. Usually the SA manages systems supporting the database, so she is already familiar with

its needs. The SA and DBA usually (or at least should) work very closely together to support

their systems. It is for these very good reasons that a SA can pick up the job of being a DBA.

As a DBA, expect these people to look at the database as part of a larger system. For example,

they will view Oracle more as a system supporting users than PL/SQL code needing support.

Developer/Programmer
The developer or programmer is the person who writes code. Whether it is COBOL, C, Java, or

PL/SQL, these are the people who should know how their code is implemented within the sys-

tem. These people usually have a very good understanding of what their organization does and

how it works because they wrote the program to do it. They typically work with the DBA in terms

of requesting tables or tuning SQL for an individual subsystem. As a DBA, expect these people to

look at Oracle initially in terms of packages and procedures rather than backup and recovery.

Systems Designer/Data Modeler
These people design the system from a conceptual view. They use data flow diagrams and

Entity Relationship Diagrams (ERDs) to decide how a system should be organized, but not

necessarily how it is implemented. At some sites they may have the role of data administrator,

whose responsibility is to manage the data from a theoretical standpoint. They will work with

the DBA on how their logical models are actually implemented as tables. They will likely look

at the job of being DBA in terms of managing data and processes rather than the fine details or

advanced features of Oracle.

Other Paths
Some people simply grow into the DBA position by doing DBA tasks until someday someone

says “You’re a DBA.” This is more common in small environments than in larger shops, but it

does happen. It may be an entrepreneur implementing his own idea. In that case he is more

likely to view the database as a means to an end rather than to get caught up in the technology.

Others may be computer operators or even non-technical people making a move to being a

DBA as a way to break into IT. This may be something they wanted and have lobbied for or it

may be forced on them because of a vacancy. It is difficult to tell how they will view the DBA

position, but they will likely be more influenced by their mentors and training material than by

a history of practical experience.

Types of DBAs
Just as there are several roads to becoming a DBA, there are several types of DBA. These clas-

sifications apply more toward large shops because of the need for defining responsibilities.

Also, within each classification, sometimes new DBAs are referred to as Junior DBAs while

more experienced people get senior status. I’ve never been a fan of classifying people that way

because it can be divisive. However, the following descriptions are applicable in some situa-

tions. Just remember that these titles and responsibilities also vary greatly, depending on the

organization.

Application DBA
This person is responsible for a specific application(s) and all the corresponding database

objects at the schema/user level. This DBA works closely with the developers and data model-

ers to assist with table definitions and schema creation. He also focuses on tuning a particular

application by adding indexes or tuning SQL and PL/SQL. Ultimately this person becomes an

expert on the application and database objects involved. It is common to assign new DBAs to

this position initially.

Oracle DBA on Unix and Linux
8

Systems DBA
This type of DBA manages the database at the database level. Specifically, she makes sure

the actual database is running, backups are implemented, and everything is interfacing well

with the other systems (such as the OS). This DBA works very closely with the System

Administrator(s) to ensure that the total system is available and secure. While not every shop

has someone assigned as an Application DBA, every shop does have someone fulfilling the

tasks of the Systems DBA. When most people imagine the DBA position, they are usually

thinking of the Systems DBA.

Maintenance DBA
This is a person tasked with supporting preexisting systems. There usually isn’t much new

development on these systems, just making sure they are available as needed. This type of

work can involve converting old systems (such as SQL Server to Oracle), doing upgrades, and

applying patches. This type of DBA will often work with the creators of the original system to

maintain and occasionally improve it. This designation is not as common as Application or

Systems DBA, but it does exist in some larger organizations.

The three classifications of DBAs just discussed are generic. I have seen each classification

implemented, but usually a working DBA is a combination of all three. Especially in smaller

to mid-size shops, a DBA will be expected to do everything. This means to support the

application and the developers (Applications DBA), maintain and upgrade existing systems

(Maintenance DBA), and manage all the databases as a total system (Systems DBA). For the

purposes of this book, I will assume the DBA is tasked with all classifications because that is

most common. Now let’s look more in depth at what exactly a DBA is expected to do.

Database Administration Principles
To be truly successful and be a person that adds real value to an organization, the DBA must

take the position seriously. Being a DBA is far more than just creating tables and taking back-

ups; it means being responsible for everything affecting the organization’s data. This responsi-

bility encompasses both the data and RDBMS directly. It also involves every other entity that

affects the data directly or indirectly, its safety, and its availability. Does this sound like a big

job? It should, because this is probably the most important job in IT. If the SA has a bad day

and people lose some e-mail, life goes on. If the DBA has a bad day and loses some data, the

company can get sued, lose customers, and go out of business. Now let’s look at the two key

principles of database administration: data protection and data availability.

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
9

Data Protection
If the DBA does only one thing, it should be to make sure the organization’s data is safe and

recoverable. If the DBA cannot do that, he is not much of a DBA. It doesn’t matter how well

tuned or technologically advanced a system is; without data it is worthless. Make no mistake

about it; protecting the data is absolutely the most important part of being a DBA.

Systems fail all the time for a variety of reasons. Even the most advanced 24/7 shop isn’t really

24/7; it’s just a matter of time before something breaks. While that is not what most people

want to hear, that’s the reality of it. Computer systems are designed by humans and are there-

fore fallible. This fact of life is acceptable. However, it is not acceptable for data to be lost

because of something the DBA should have planned for.

There are numerous effective ways to make data secure and recoverable. Each method has its

benefits and costs. The methods usually provide varying degrees of effectiveness, but come at

the expense of performance, complexity, or recoverability. It is up to the DBA to find the right

mix of multiple methods to ensure the integrity of the organization’s data, based on business

requirements. This will likely involve consultations with the System Administrator, the

customers, and management, but it is the DBA’s responsibility to ensure a secure system is

implemented.

The DBA should have planned for most of the likely problems and outages the organization

will face. These will depend on the business nature of the organization, but I have seen pre-

cautions for everything from an accidentally dropped table to limited nuclear war. It is up to

the DBA to assess the risks rationally and plan accordingly. The level of protection and recover-

ability must also involve a buy-in from management as well, so that they know what to expect

in terms of recoverablity.

Once the risks are planned for as much as humanly possible, recovery plans should be tested

and refined. This is where most problems occur. DBAs often plan on how to respond to an out-

age, but never really test their plans under realistic conditions until something actually hap-

pens. It is here where things go wrong and data and databases are lost. There is no excuse for

this, and no one will have any sympathy for the DBA if this occurs. It is excusable to not have

a plan for a totally unforeseen event, but failing to prepare for something you should have

expected is not excusable. Also, this is not a one-time event; the process of risk assessment,

planning, and recovery training is continual. Recovery plans need to be documented and pro-

vided to everyone in the organization who could conceivably perform a recovery. When the

DBA leaves the organization, he should pass this information on to the replacement if at all

possible.

Once something actually fails (eventually it will) and the organization’s data is put on the line,

the DBA truly earns her money. This is a stressful situation, and these failures never occur at a

convenient time. Management usually wants everything up immediately because they think

Oracle DBA on Unix and Linux
10

they are losing money. People are looking over your shoulder and someone always has a

suggestion or comment on how they would do things if it were their show. This may well be

the first time anyone has ever really noticed you, because administrators are typically ignored

until there is a problem. Expect to be working until the problem is solved, even if that’s 3:00 in

the morning. That is why you are paid the big dollars, get the DBA title, and have the responsi-

bility of protecting the organization’s data. Hopefully you will be well versed in recovery

procedures and will have tested the procedure you are using for that particular case. If things

go well, you are a hero (no bonus though, since this was unscheduled downtime). If things go

bad, you probably should have an updated resume.

Data Availability
Data availability is keeping the data—and therefore the database—open and available for nor-

mal use. This is the second most important responsibility of a DBA. It does the organization no

good to have an elaborate information system if it is not operational. Indeed, some sites mea-

sure this downtime in hundreds of thousands of dollars lost per hour. If the system is down for

too long, the business can go under.

This is a DBA responsibility, but it is not something the DBA always has control over. For

example, the Unix server could crash and require recovery. This is out of the DBA’s hands, but

it affects the database. In that case the DBA could have planned to have a standby database

ready to go until the normal system is restored. Contingency planning such as this is a DBA’s

responsibility that must be taken seriously. It is the DBA’s job to have ways to keep the data

available even when unavoidable problems occur. Other events affecting data availability, such

as rebuilding tables or applying patches, are controlled directly by the DBA and should be

scheduled at a time when their impact is minimized. If this means the DBA comes in on a

Sunday to apply a patch, then the DBA does this. Ideally, management will recognize this kind

of effort, but working odd or extra hours really is part of the DBA’s job.

Data availability is often tied to data protection. One idea is that if the data is damaged or lost,

it certainly is not available. While that is true, it is important to realize that protection and

availability are often at odds with each other. The simplest example of this is with backups.

Depending on the backup methods used, the database may be shut down or performance

reduced, thus affecting availability, but this is a necessary evil.

The balance between availability and protection must be struck by the DBA, but again other

parties such as the users, customers, and management will certainly want to have input. This is

often a very difficult situation because most people push for availability over data protection

because they never really expect to have to recover their data. The DBA must be careful not to

be bullied into unreasonably exposing the data to risks. A very common example is when a

DBA has to fight to get a cold backup scheduled even though it will take the system offline

temporarily. Once something bad does happen (and it will eventually), the conversations about

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
11

backups versus availability will likely be forgotten in favor of dealing with the DBA who did-

n’t protect the data. To protect against this, it is highly recommended that the DBA provide to

management a document confirming the shop’s policies regarding data availability, protection,

and procedures. This should allow management to know what to expect from the DBA and will

hopefully provide some protection for the DBA in the aftermath of a crisis.

One other facet of data availability is performance. If the system is so slow that work cannot be

completed successfully, it may as well not be running. This can be a tricky problem to solve

because it may not even have anything to do with the database per se. For example, a network

problem or bad piece of application code could be the real culprit. Regardless of the real cause,

it is usually the DBA who gets called initially to figure out “why is the database so slow

today?”. If it affects the database, it is the DBA’s responsibility to find out what is wrong and

make sure it is fixed regardless of where the problem originates.

Those are the two main principles of being a DBA: data protection and data availability. Every

other activity a DBA undertakes supports one or both of those principles. Either he is taking

action to protect the data or he is taking action to make it available. As long as those two

principles are faithfully served, the DBA is doing fine.

Database Administration Responsibilities
Once the two guiding principles of database administration have been established, everything

else tends to fall into either technical responsibilities or non-technical responsibilities. While

the principles remain the same no matter where you go, the responsibilities assigned to a par-

ticular DBA may vary.

Database Technical Responsibilities
Core technical responsibilities of the DBA can be broken roughly into the following areas:

systems activities, application support, tuning, backup and recovery, and troubleshooting.

These have a great deal of overlap, but they do provide a basis to begin with.

System Activities
The DBA is, or at least should be, responsible for planning and designing how the database

system is implemented. Once the system is designed the DBA builds it and then tests it. From

there on, it is a continual cycle of maintenance and upgrades for the life of the system. Of

course, that makes the often unrealistic assumptions of an ideal situation and a DBA staying

with one system for its entire life. In reality, a DBA may come into a project at any given

stage, and that system may or may not be doing very well.

Oracle DBA on Unix and Linux
12

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
13

Technical

System Support

Application Support

Tuning

Backup and Recovery

Trouble Shooting

Non-Technical

Oracle "Expert"

Oracle Point of Contact

Process Expert

DBA Responsibilities

FIGURE 1.2
DBA Responsibilities

The planning and design phase of any system or project is the most critical of any project.

Unfortunately, it is often unappreciated or not properly completed. The DBA usually comes out

of this phase with an ERD of tables to build and some general ideas about system response

requirements and activity. Hopefully the DBA has had an opportunity to work with the data

modeler to come up with a practical design for the tables. It is good if the DBA has met with

the developers and has a feel for the type of application the database will be supporting.

Finally, hopefully the DBA has had a good dialogue with the System Administrator regarding

server sizing and configuration. Entire books have been written on each of these subjects, but

ultimately the DBA will have a set list of requirements for the system.

Once the DBA has the system requirements, it is up to that DBA to build it. Usually this means

a Unix or Linux server has been selected, purchased, and loaded with the basic operating sys-

tem by the System Administrator. At this stage the DBA installs and patches Oracle Server and

any other related database software. Next the DBA creates the actual database, using the plans

generated before. This results in a blank database running on a server with no data. The DBA

will then create the tables, populate them with data, and establish connectivity with the appli-

cation. A basic backup and recovery schedule should also be established at this stage. After a

period of initial testing, the application will go live.

Maintaining the system is the next phase. The idea behind maintaining the system is to take

proactive steps so the data and application is available for use to the end users. Typically this

involves mundane daily tasks such as creating users, monitoring database growth, making sure

backups and production jobs run successfully, and reacting to change requests. Applying

patches and performing database upgrades and migrations are also part of normal system

maintenance for the DBA.

Application Support
The application(s) the database supports is written by the developer(s). Typically, developers

work in conjunction with the data modeler and the DBAs to determine what tables and indexes

are needed. They will then send the table specifications to the DBA to review and implement.

The DBA will usually fine-tune the table specifications in terms of storage and indexing to

improve performance, but the basic structure will be what the developer wants. Once the

application is built, the developers will usually have changes to existing tables or request new

indexes, which will keep the DBA busy. In the meantime, it is up to the DBA to monitor the

application and look for ways to improve it.

Tuning
Tuning is a key part of database administration and can be split into three areas: application

tuning, database tuning, and system tuning. Each area is important and tied with the other

areas. It is important to note that tuning is never really done and that something running fine

today may be unacceptable tomorrow. The DBA should know that user perception is important.

If the users and management believe one part of the system is running well, the DBA should

focus on other areas perceived as having problems.

Application tuning is typically the most visible tuning activity for a DBA. In its simplest terms,

it means making things run faster for the users. If this is done well, it is noticed and makes a

positive effect on the organization. Ideally this process begins early in the planning process

when tables and data flows are being designed. Once the application is built, the DBA usually

can only add or remove indexes and tune SQL and PL/SQL code. Often this involves working

closely with the developers. I have seen cases where adding a missing index has made dramatic

improvements for the end users. This can be rewarding work for the DBA because it can have

an immediate positive impact on the user community.

Database tuning is the process of tuning the actual database server and processes and is a core

DBA function. Tuning the database can involve topics such as optimizing memory allocation,

datafile placement and size, locks and latches, and instance parameters. This is where the DBA

becomes an expert on the specifics of the database. It is also where the DBA needs to be

especially careful because a minor mistake can have wide-reaching effects on the system.

System tuning involves tuning the environment the database and application run in. It involves

those areas outside the database that affect the database either directly or indirectly. This could

mean, for example, working with the operations staff to determine when batch jobs are run. It

could also mean working with the SA on networking issues. This is a difficult topic to define

Oracle DBA on Unix and Linux
14

because it involves working with areas outside the database and application that affect the data

and database. This is an area in which DBAs with a wide range of IT experience can really

excel.

Backup and Recovery
This is the most important part of the job for a DBA, but it is often not given the attention it

deserves. The DBA is responsible for selecting a mix of backup and recovery methods based

on the specific needs of the system. What may be great for one system might be totally unac-

ceptable for another. It is up to the DBA to meet with key management and customer groups to

determine what is an acceptable balance between data protection and data availability. Once

those requirements have been established in writing, typically as a Service Level Agreement

(SLA), the DBA selects the appropriate backup methods.

The next step is actually to implement, test, and document the various backup and recovery

scenarios. Regular testing of the backups and practicing recoveries are key. At this stage the

DBA should be working in conjunction with the System Administrator. Problems seldom occur

in isolation, and a failure of one system will likely affect other systems. For example, a failure

of the server or operating system will affect the database as well. Also, recovering a database

will likely involve the SA restoring files from tape or implementing special backups. The DBA

and SA must have an understanding of what is needed to recover the entire system. Full-scale

practice recoveries should take place whenever possible. The DBA should also consult devel-

opers and business analysts to see what to do from a business and process standpoint when

problems occur. Finally, the DBA should document these tested procedures.

Troubleshooting
This is a catchall area for the DBA. Problems, both real and perceived, are common to all com-

puter systems. The DBA may receive a call saying the system is down and then find that the

person calling had a locked login account. The DBA may be told that an important month-end

batch job failed and that he needs to fix the problem by adding a larger rollback segment to the

database. Sometimes the problem and solution will clearly be DBA responsibilities; other

times they won’t even involve the database. It is at this stage that the DBA really becomes an

administrator who must evaluate problems and develop solutions (both technical and non-tech-

nical) in a practical manner. This is where a DBA’s knowledge, experience, and personality are

tested. Problem-solving skills are a must at this level. Troubleshooting is where the DBA really

has a chance to shine in crisis situations.

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
15

One Problem Often Leads to Another
Any time you start to fix a problem ask yourself if you are really fixing the problem

or just a symptom of a larger issue. Many small problems you see and fix are related

Oracle DBA on Unix and Linux
16

to bigger technical problems. Even more disturbing, the technical problem you are

fixing is caused by a problem in the business process or human logic.

I was called to fix a “crisis” whereby the USERS tablespace had ran out of space.

When developers were running scripts to create test tables, they were receiving

errors saying the USERS tablespace was full and Oracle couldn’t allocate space. This

was deemed an emergency that was stopping development for scores of PL/SQL

programmers working on a project. It was of the utmost importance that I add more

space to the USERS tablespace immediately.

I asked why not put the table in a different tablespace. There were plenty of other

tablespaces with gigabytes of free space, so why not use those? The answer was that

the scripts didn’t come with those tablespaces specified, so they couldn’t have the

developers edit their own scripts to use them. I considered this silly from a purely

technical standpoint, but since it was their database and their rules, I added more

space to USERS.

Non-Technical Responsibilities
Fulfilling non-technical responsibilities is a key part of being a successful DBA. These are the

skills not normally taught in class or detailed in database manuals, but they are what determine

who really adds value to an organization.

Oracle “Expert”
As an Oracle DBA, you are expected to know everything about Oracle, all of its products, the

future direction of the technology, and the business practices of the database vendors. This is

an impossible task, so it is acceptable just to be highly knowledgeable but willing to research

the questions you cannot answer. Most of the people a DBA deals with will not know the dif-

ference between Oracle database server products and, for example, development tools. While

some questions technically might not fall under the role of a DBA, it is your responsibility to

find answers because you are “the Oracle expert.” Don’t shirk this responsibility, because a

large part of your job is inspiring confidence that you are knowledgeable about Oracle and

database administration. In pursuit of this goal, don’t be surprised if you even have to teach

classes for your own organization.

Don’t expect all the questions you receive to be about Oracle or even technical. Often the DBA

is asked questions that really fall under the realm of the System Administrator. If you can pro-

vide accurate answers to these questions, doing so adds value to your position. If you honestly

cannot answer a question, either find the answer or refer the person to someone who can. That is

part of being a computer administrator. It is also beneficial to keep Oracle Corporation press

releases, announcements, and stock prices. Again, this might not technically be a DBA task, but

you will look pretty silly if you don’t even know who is the CEO of Oracle Corporation.

Stay current with computer technology in general. This means reading non-database books

and experimenting on your own. This makes you more knowledgeable, more effective, and

ultimately more marketable. Most of the new technologies will eventually integrate with

Oracle in one form or another so it is definitely worth the time to learn them early on. Java is

a prime example. Just a few years ago, Java was simply a new programming language. Now it

is integral to the database and future of Oracle. Lightweight Directory Access Protocol (LDAP)

is another new technology that a DBA should have at least a basic understanding of. This will

help you because as new ideas are passed around the office, it will be you (and not someone

else) determining the technical direction of your organization.

Oracle Point of Contact
Just as you are expected to know everything about Oracle, you will likely be the person

assigned to deal with Oracle Corporation. Again, this may not be a DBA technical task, but it

is a responsibility of the DBA.

As the DBA you will recommend the level of Oracle support and make sure it is used by your

organization. These days online support via MetaLink and phone support are part of most

Oracle contracts. It is your job to make sure all the technical people in your organization (such

as the developers and System Administrators) have access to online support services. When

your people call Oracle Support, it is your job to make sure they get the answers they need. If

they don’t, it is your job to step in and get a satisfactory resolution. Oracle Support is a great

resource, and it is something the DBA should make sure is fully utilized.

Oracle training is often another responsibility of the DBA. Whether it is signing up the people

for Oracle University (formerly Oracle Education) courses or sending people to another train-

ing organization such as Perpetual Technologies (http://www.perptech.com), often it is the

DBA’s job. You should keep current on what classes are available so that the right people get

the necessary training in a timely manner. This might mean knowing what classes are needed

to get a Master’s Certificate or are needed for Oracle Certified Professional (OCP) tests.

The DBA is supposed to know all of the Oracle products and what they do, so it is logical that

the DBA have input when creating the contracts. For example, does the organization really

need the Parallel Server option added to the contract? That is something the DBA should

know. Oracle contracts can cost a great deal of money, and the DBA is responsible for making

sure unneeded features are not purchased. The DBA should also expect to have to justify these

costs to management. It is entirely understandable when managers ask for justification as to

why they are spending several hundred thousand dollars a year on support. The DBA should be

prepared to answer these questions. Depending on the organization, the DBA will have differ-

ing roles on determining how much money to spend and when to spend it. The DBA might

have a great deal of power and authority in this area or it might be completely out of the

DBA’s hands. Regardless, the DBA should be kept up to date on the status of the contract and

make sure it is paid.

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
17

Process Expert
The DBA is expected to have a solid working knowledge of the core business processes of the

organization. The DBA should have a greater understanding of what the organization actually

does than simply the tables involved. This is a key area where the DBA can really add value.

Because the DBA has access to the data and application processes of the organization, the

DBA is in a unique position to optimize those processes as a system. This goes far beyond

adding a needed index or parameter; it means being able to identify both needed processes and

inefficient processes. If the DBA is able to understand both the “how” and “why” of the

business, this person can become the most valuable person in that organization.

Skills Needed
Not everyone can or should be a DBA. Doing the job well requires a mix of skills more than

just being technically competent. Just as you can teach someone the syntax of Java, there is

more to programming than typing code. The same applies to being a DBA. It is not enough

just to know how the Oracle database server operates; you must be able to think logically and

solve problems. Plus you need to be able to deal with people and understand your organiza-

tion’s business processes. If it seems that you must be “a jack of all trades,” then you are cor-

rect. In its simplest form, an effective DBA needs to possess talents in the areas of technical

skills, business skills, and human interaction (Figure 1.3).

Oracle DBA on Unix and Linux
18

Technical

Database Knowledge

Application Knowledge

Systems Knowledge

Business

Understanding

Organization's Processes

Following Trends

 •Information Technology

 •Organization's Line of

Business

Human

Communication

Management

Problem Solving

Continuing Education

Skills Needed

FIGURE 1.3
Skill areas required for DBA.

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
19

Skills Needed by the DBA Technical
The most obvious area in which the DBA needs skills is the technical arena. This is where

most DBAs are at their strongest. Technical skills for the DBA break down into three main

categories: database, application, and system.

Database Knowledge

This is the core technical area of the DBA. It is the RDBMS the DBA is responsible for. The

DBA will monitor this on a daily basis and will provide all the maintenance for it. He will

know everything about the database and will have it fully documented. It is the database that

the DBA is well paid to protect and manage, so the DBA needs to treat it as such. The skills

necessary to perform this task are what this book will explain.

Application Knowledge

The DBA is responsible for understanding and supporting the program code affecting the

database. The DBA does not necessarily write code, but he needs to know what it does. If it is

stored inside the database, such as PL/SQL packages or Java procedures, the DBA needs to

support this. If it runs outside the database, such as Pro*C, the DBA needs to know where it is

and how it connects to the database. Installation and maintenance of development tools such as

Oracle Developer typically are the responsibility of the DBA. Tuning the code, especially SQL

and PL/SQL, is a joint responsibility between the DBA and the application developers.

Systems Knowledge

These are the technical skills not directly related to managing the database that the DBA is

responsible for. In this book we will focus on Unix and Linux skills. There is a strong link

between how Oracle and Unix/Linux tie together, and the DBA needs to understand this.

Ideally, the DBA should be able to serve as a backup System Administrator if needed.

The more systems administration and networking skills the DBA has, the better. For example,

even if the DBA is not responsible for creating a swap file, he should know what it is and how

its use affects performance. This book will not teach you how to be a full-time SA, but it will

show you the aspects of systems administration that affect your database.

Business Knowledge
Most production database systems are not isolated, nor are they merely for research. Database

systems are typically built to support a larger system that supports a business process. It is this

process that the DBA needs to understand.

Understanding Organization’s Processes

The DBA needs to have a clear understanding of what the database is supporting. It is not

enough merely to create tables to implement an ERD without understanding the process as a

whole. The “how” and “why” need to be understood. Then the DBA can apply relevant experi-

ence and knowledge of all the tools and features provided by Oracle, not just the database

server, and provide a better technical solution.

More importantly, the DBA will be able to address the business process as a whole. This is

where the DBA will add value to the process and to the organization. Eliminating inefficiencies

at this level provides a far greater benefit than any amount of tuning at the database level.

Following Industry Trends

There is another level of business knowledge the DBA must understand. The DBA should fol-

low the industry the organization is in. By watching industry trends and the competition, the

DBA can have an idea of what to expect. In large organizations, this usually equates only to a

heads up; a single DBA will not be able to influence a major industry change. On the other

hand, one person in a small shop (such as an Internet startup) could see a trend and find a way

to capitalize on it. This does not fall under the traditional DBA job description. However, con-

sidering the detailed knowledge of business, core processes, and data that a DBA should

already have, the DBA is in a good position to come up with new ideas.

It is also important for the DBA to keep up with the IT industry. This is different from just

staying current with new technologies (both database and non-database related). The DBA

should be familiar with major IT industry news. For example, the DBA may use a third-party

backup utility. If that software company is bought by a larger company, the DBA should learn

what impact this will have on the product’s future. This sort of activity occurs all the time, and

the DBA should be aware of the potential impact.

Human Interaction
Human interaction is sometimes the most difficult skill for a technical person to master. This is

sometimes referred to as “people skills,” the ability to communicate effectively with others,

both inside and outside the organization.

I will take this one step further: The DBA should be able to communicate effectively and

professionally. I have seen some brilliant technical people fail miserably as administrators and

managers because they could not interact professionally with others. This is not to say that a

DBA or even an SA needs to be everyone’s friend, but it is necessary for an administrator to be

perceived as a professional and to be able to work effectively with others.

Communication

A good administrator (DBA or SA) needs to be able to communicate with others. This includes

both technical people within the organization and non-technical people outside the organization

or even outside the company.

Oracle DBA on Unix and Linux
20

On the technical side, communication is necessary not only to foster productivity, but also to

avoid accidental mishaps. I have seen quite a few cases in which administrators have destroyed

each other’s work or imposed system downtime because of a lack of communication. For

example, suppose an administrator wants to apply a patch to a machine that she thinks is not

critical. After the patch is applied, it is shut down and restarted (bounced), at which point the

administrator learns the hard way that someone was using that machine or database. That sort

of accident happens quite often, especially in larger shops, because administrators either have

not documented their procedures or the communication process is not working.

Accidents are even more common when there is a new administrator in the shop who does not

know the environment. Senior team members should take it upon themselves to explain the

technical environment and site procedures to new people. It is also the responsibility of new

team members to make sure they understand the environment and site standards. By taking the

time to communicate effectively with the entire technical staff, many misunderstandings and

accidents can be avoided.

Management

DBAs are often assigned management responsibilities. This often relates to the fact that DBAs

are the people who know the system from a technical standpoint, understand the business

processes, and already have a relationship with people from different groups. Knowledge of

the entire system (not just the database) and how it supports the business makes the DBA a

very knowledgeable person and often qualifies him to take on project management responsibil-

ities. The people he manages may not be just DBAs; it might include SAs and programmers in

support of a project. More traditional managerial responsibilities such as project planning and

budgeting may also be required.

Problem Solving

DBAs ideally should be natural problem solvers. The people who really add value to their

positions are those who can solve both technical and non-technical problems. Much of what a

DBA or SA does involves gathering information and making judgments. It is imperative that

they be logical, analytical, and detailed in this process.

Many mundane tasks can be automated or simplified with wizards, but complex systems

require an experienced human to make judgements. This is especially true when systems expe-

rience problems. Many times the real source of an error is hidden and will be found only by

someone who understands how the database, operating system, and application interact with

each other. Other problems will be of a human nature and will require skills in negotiation and

compromise.

Continuing Education

A good DBA is curious and is willing to take the initiative to learn new technologies. Many

DBAs suggest that at least one hour a day be spent reviewing technical manuals or studying

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
21

new technologies. I agree with that number. It would be easy to say the DBA should get x

number of hours of classroom training per year, but education does not work that way.

The DBA should get some training outside of work, but each DBA should also have a test

database on a test server to play with, and the shop should have an environment that

encourages this type of learning. A shop that encourages its technical staff to stay sharp will

reap benefits in higher morale and less system downtime. If management frowns on DBAs

using company time to learn, the DBA should take the initiative anyway or leave for a more

progressive organization. DBAs who do not actively continue their professional education will

be left behind by the industry until they are ineffective anywhere but on a legacy system.

Roles Within the IT Organization
Most IT shops are essentially comprised of developers and programmers, DBAs, System

Administrators, and management. The titles might change, and in larger organizations these

groups might be split into dedicated groups such as networking/telecommunications, LAN and

PC support, data modeling, operations, and help desk.

In every IT shop there is a power structure and an organizational hierarchy. This is more

apparent in larger shops, but it exists everywhere. It is very important for the DBA—or any

IT professional, for that matter—to understand the hierarchy of that particular shop. This will

dictate who reports to whom and how the DBA will interact with other elements within the

organization. The hierarchy will probably have been established well before the DBA joins the

organization. Additionally, that power structure may have been based on political consideration

as much as technical considerations. Regardless, the DBA needs to recognize this and do the

job at hand anyway. The following sections discuss consistencies that I have seen from shop to

shop and how they affect the typical DBA.

System Administrators
The role of the SA is very much like that of the DBA, except the SA has a wider range of

responsibilities. The main concern of the SA is keeping all the boxes running efficiently and in

a secure manner. If this sounds a lot like the DBA’s job it should, because both have similar

responsibilities.

The DBA will interact with the SA frequently, especially when building a new database or

server. The DBA needs to know the server’s backup strategy, the disk layout, RAID level,

machine memory, and if there are any major non-database applications planned. All these fac-

tors will affect the database, and the SA is obligated to provide this information to the DBA.

Oracle DBA on Unix and Linux
22

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
23

System

Administrators

Management

Outside

Organizations

End Users/

Customers

Developers /

Programmers

DBA

FIGURE 1.4
Interaction with Other Groups.

Not only is the SA obligated to provide relevant information to the DBA, the SA also needs to

provide resources to support Oracle. The DBA will typically have one constant request from

the SA: more disk space. Oracle installations and databases can be large, and this requires sub-

stantial disk space. The DBA should not expect the SA to hand over gig after gig of space

blindly; he should expect to be questioned about why it is needed. Also, if the SA is new to

Oracle, don’t be surprised if she shows concern about the huge amount of memory being con-

sumed. Oracle can easily use over 250M of memory for just one medium-size database.

With the interaction between the SA and DBA, you might assume it to be a very close and cor-

dial relationship. That is not always the case. In fact, there can be contention between the two.

The DBA, rightfully so, is concerned with the welfare of the database. The SA, also quite cor-

rectly, is concerned about her box. There is often contention between the administrators on

such issues as when to reboot the machine, use of system resources (disk space and memory),

backup and recovery procedures, and user policy. This contention is normal, but the DBA

needs to make sure above all that data safety and availability are not compromised.

Programmers/Developers
Programmers are usually the group the DBA will spend the most time supporting and trou-

bleshooting. As programs are written, there are always database or environment changes that

need to be implemented by the DBA. The DBA will be involved in code walk-throughs and

tuning sessions as well. When working with large or complex applications, it is not uncommon

to have Application DBAs dedicated to supporting the developers.

DBAs are also kept busy by developers in another respect: troubleshooting. Most problems in

production and most database errors are the result of bad program code. This is not in any way

to knock the developer community; it is simply a fact of the IT industry. Whenever the data-

base starts generating trace files or messages in the error logs, the DBA should seriously examine

the code being executed, particularly new code. The same applies to problems in production. If

there are problems, the DBA should look first at what has been changed in the application. The

DBA should ask the developers if they have changed anything. If they say they haven’t, the

DBA should take it with a grain of salt. Unfortunately, that “no” sometimes means the change

actually made was really small and should not have caused problems. In those cases, the DBA

should continue to investigate the problem because developers don’t always volunteer informa-

tion if it is their code causing problems.

Management
As an administrator, the DBA must report to management. A manager may be technical or

may be from a non-technical background. Managers typically will look to the DBA for

accountability in terms of data availability first and data safety second. The administrator needs

to understand that the typical manager doesn’t care about how technically advanced a system

is, he just wants it to be available to serve its business function. The manager will see seem-

ingly large amounts of money going into the IT shop, and he will be quite upset if problems

still occur. The problem might not even be related to the database, but the DBA may have to

provide an explanation anyway.

Just as there can be friction with management, there can be a good working relationship. Many

managers realize that they don’t understand IT and are fearful of trusting their IT staffs

completely. An administrator who can address this issue and gain the trust of management can

later enjoy a great deal of management support. A good DBA should be able to educate even a

non-technical manager. This means explaining to the manager the different parts of a system

(at a high level) and explaining how they are dependent on each other. The DBA can explain

what it takes to provide high system uptime, both in terms of hardware and in terms of trained

IT professionals. If communication is good, the manager can become a champion for the sys-

tem and will have a good relationship with the staff.

Oracle DBA on Unix and Linux
24

Customers and End Users
Technical people, especially administrators, must communicate with non-technical people.

The population may be inside the organization, outside the organization, or even outside the

company. Each will have a different background and needs, but all will expect a level of sup-

port from the IT staff.

The administrator regularly must deal with users who are often frustrated with IT. The DBA or

SA needs to have the patience to listen to what is being said and provide answers that are under-

standable. IT sometimes has a bad reputation with users; the administrator needs to recognize

this and respond in a professional manner. It may not always be popular to give the answers the

customer or user wants to hear, but the administrator needs to be able to do this anyway.

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
25

Don’t Kill the Messenger
Often times you have to tell management things they don’t want to hear. I once had

to inform the senior management of a company that if they wanted to upgrade their

database and application it was going to take an entire weekend. These people nor-

mally got upset at one or two hours of downtime, an entire weekend was nearly out

of the question.

Next the SA told them the expensive cluster they had was so outdated it would be

more cost efficient to scrap the whole thing and rebuild the system on a smaller,

faster server. That really angered them. However, we knew what had to be done. We

approached them with the facts and explained to them why this was the case.

They didn’t like it at all, especially when we told them that if normal upgrades had

been allowed previously this step might not have been necessary. Basically, a large

amount of the blame rested on them because they never allowed maintenance

downtime. However, they listened and ultimately approved the purchase of the new

system and the upgrade. This happened because we explained the situation in a

manner they could understand and backed it up with proof.

By the same token, the administrator needs to really listen to what is being said. Often it is the

end user who is the first to notice a problem with the system, even before the IT staff does.

Also, simply asking users if there is anything they think could be improved with the system

will promote goodwill and an occasional good idea. Above all, the administrator needs to

remember that the system and therefore the administrator exist to support the business and the

customers.

Outside Organizations
The DBA will often have to represent the organization to outside parties. This could mean

meeting with vendors and salespeople on a sporadic basis. It could mean negotiating with

companies such as Oracle who have preexisting contracts.

At a minimum the DBA will have to interact with Oracle Corporation. This will mean choos-

ing products and negotiating support contracts. This usually involves varying degrees of man-

agement approval and consultations with other branches of IT, but it should never negate the

technical input of the DBA. Other interactions with Oracle Corporation include signing up for

training classes (highly recommended), pursuing technical support issues, and occasionally

working with members of Oracle Consulting. The DBA should address these issues on a

case-by-case basis, but should not forget that the organization is paying a large amount of

money and should therefore receive satisfactory service.

Just as the DBA will deal with Oracle Corporation, there is a host of other outside companies

that may demand interaction. There is a seemingly endless supply of vendors continually

trying to sell products to IT shops. The DBA should stay abreast with these products, but that

could become a full-time job. Instead, the DBA should focus on what the organization actually

needs, rather than what the salesperson is pushing.

It is important to keep in mind that the IT shop exists to support the business, not to be a show-

case of extraneous technology. The DBA is also responsible for making sure that any new soft-

ware implemented, related to both database and non-database uses, does not adversely affect

data protection or availability. Just because a product is purchased and installed doesn’t neces-

sarily mean it will work well with other products. It is up to the DBA to do the actual research

and testing needed to guarantee that no unexpected problems or bugs occur because of a new

software addition.

DBA Mindset
Now that we have discussed what a DBA actually does, it is important to discuss the mindset

the DBA should have at all times. The DBA needs to be very territorial and protective of the

system. No one but the DBA touches the database. Anything that could conceivably affect it is

the DBA’s business. If application developers want to run new program code, that’s fine, but

the DBA has the final say in what is run in the RDBMS.

The same goes with anything the System Administrator wants to do. It might be the SA’s box, but

it is the DBA’s database. No server patches or downtime should be allowed without the notifica-

tion and approval of the DBA. It is the database that the DBA is well paid to protect and manage,

so the DBA needs to treat it as such. Don’t rely on SAs or developers to consider the effect on

the database; that is clearly the DBA’s job. Support of the database may sometimes conflict with

Oracle DBA on Unix and Linux
26

plans of the developers, SAs, or even management. Protecting the safety and integrity of the data

may also be an issue when a manager is demanding a down system be made available ASAP,

regardless of whether a precautionary backup needs to be made. It is in stressful situations like

this that the DBA needs to take a stand and protect the data and database.

Summary
The database administrator is the person responsible for making sure the organization’s data is

safe and available. Depending on the shop, the DBA can have different titles or varying

responsibilities, but the two principles of data safety and availability remain the same.

DBAs come from many different backgrounds, each shaping how the DBA perceives this new

position. Regardless of where DBAs come from, they will require a mix of both technical and

non-technical skills to successfully perform the role as the DBA.

Role of the DBA

CHAPTER 1

1

R
O

LE
O

F
T
H

E

D
B

A
27

CHAPTER

2
Architecture of the
Oracle Server

ESSENTIALS

• A solid understanding of the architecture of

an Oracle database is essential to the success

of the DBA.

• A running Oracle database consists of data-

base files, memory structures, and back-

ground processes.

• There are three types of Oracle files: software

installation files, configuration/parameter

files, and actual database files.

• An Oracle instance consists of memory struc-

tures and background processes.

• Most of the components of an Oracle data-

base are tunable by the DBA; therefore, the

DBA must understand them.

The knowledge of how and why an Oracle database works is essential for the successful DBA.

Oracle databases function more as a Unix operating system than as a standalone application.

Just as the Unix System Administrator knows the details of how the operating system runs, the

DBA must know the equivalent information for the database. Administration of an Oracle data-

base requires fundamental knowledge of its files, memory structures, and processes. There is

no GUI that can (or even should) replace this kind of knowledge. Oracle on the Unix/Linux

platform gives the DBA such a high degree of control that understanding how the database

actually functions is key to building, tuning, and troubleshooting a system.

This chapter details the anatomy and processes of an Oracle database, hereafter referred to as

an Oracle server. The chapter assumes that you are familiar with basic relational database

theory, as it focuses on the Oracle implementation for the Unix and Linux platforms.

Oracle Products Relating to Database Servers
Before we dive into the core components of the database server, we should look at the larger

picture. Specifically, where does the database reside in relation to the user? Figure 2.1 shows

an example of a typical system.

The database resides on a Unix server. Users log into their workstations. They then start up an

Oracle application such as SQL*Plus. This tool connects across a TCP/IP network using the

Oracle Net8 protocol to establish connectivity with the Unix server running the database. The

user is then authenticated and receives a connection with the database. From here the user

issues SQL statements that are sent across the network to the database for processing, and

results are sent back to the user.

Oracle DBA on Unix and Linux
30

DBA Connection via

Server Manager

End User Connecting

via Oracle Forms

Programmer Connecting

via SQL Plus

Unix Server

Oracle

Database

Instance

Net8

Net8

Net8

FIGURE 2.1
Oracle Server Overview

This represents the most rudimentary example of a user accessing a database. In fact, this is

about as simple as it gets. We will discuss more advanced architectures in later chapters. In this

example we introduced several fundamental components: a user, a user’s application, a net-

work, and a database residing on a Unix/Linux server. We will now look at some of the key

components in more detail.

SQL*Plus
SQL*Plus is the most common user interface to the database. It is essentially a command-line

utility that enables the user to enter SQL commands for the database. In many respects, it is

very similar to a DOS or Unix prompt. The main idea is to provide the user a direct way to

interface with the database without a cumbersome GUI.

SQL*Plus can be installed on PCs, workstations, or servers. It can be used to connect to any

database accessible via the network. In Oracle 8.1.7, iSQL*Plus will be released to provide the

same access from a Web browser. SQL*Plus provides an easy way to access virtually any data-

base as long as the user has the correct security permissions and the network is configured

properly. It is this availability that makes this a practical tool. SQL*Plus is available with any

installation of an Oracle database and most Oracle desktop products.

Not only is SQL*Plus a widely available tool, it is extremely powerful. Starting with Oracle 8i,

any database command can be entered using SQL*Plus. Originally, SQL*Plus was used pri-

marily by users and developers to issue normal SQL statements, write PL/SQL, run scripts,

and generate text-based reports. DBAs used a similar but separate tool, Server Manager, to

issue DBA-type commands. Now, since Oracle 8i, DBAs can use SQL*Plus to do such

activities as start-up and shut down databases, alter database settings, or add users.

As a DBA, most of what you do will be executed via SQL*Plus. In fact, it is preferable for the

DBA to be more knowledgeable about SQL*Plus than the GUI management tools. SQL*Plus

provides everything you need without a cumbersome GUI. As long as the DBA can reach any

PC and use Telnet to connect to the Unix/Linux server hosting the database, the DBA is fully

functional because access to SQL*Plus will always be available.

Just as SQL*Plus is a powerful tool and is widely available, it is a potential security risk.

While you cannot actually drop a database with SQL*Plus, a user with DBA privileges can

practically destroy a database. It is amazing the number of regular users with SQL*Plus on

their desktops who don’t know how much power they have. The DBA should be conscious of

this and be selective with which PCs are loaded with SQL*Plus. While users can connect to a

database without SQL*Plus loaded on their PCs, not having it loaded reduces the possibility.

Better yet, the DBA should enforce a high degree of security at the user level to prevent users

from logging in with excessive permissions.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

31

Server Manager
Server Manager is very similar to SQL*Plus, but it is geared specifically toward DBAs. It

replaced a product called SQL*DBA which was a previous DBA utility. Server Manager has a

line mode and a graphical mode, but we will focus on the more common line mode. It is capa-

ble of issuing the same SQL statements as SQL*Plus, but it lacks the extensive formatting and

report-generating features. All DBA commands can be issued from Server Manager, assuming

the user has the correct level of permissions.

In versions of Oracle before 8i, Server Manager was the only command-line tool available to

issue DBA commands directly. If the DBAs wanted to start or stop a database, they had to log

in using Server Manager. This functionality was not available in SQL*Plus. Starting with

Oracle 8i, the DBA functionality of Server Manager was included in SQL*Plus. Oracle has

decided to phase out Server Manager as a product, and it will likely no longer be available

after 8i. DBAs should now be using SQL*Plus instead of Server Manager. All of the security

concerns with SQL*Plus apply equally to Server Manager.

Net8
Net8 is the network software used to connect to Oracle databases. Originally called SQL*Net,

starting in Oracle 8 it was renamed Net8. Anytime you install Oracle products to connect to

an Oracle database, you are using Net8. Net8 can be used over such networking protocols as

IPX/SPX, DECnet, and IBM LU6.2, but in the Unix/Linux world it is TCP/IP that is used.

Net8 can be used for more than just establishing database connectivity. Net8 and its extra

features can provide additional security measures, encryption, load balancing, and other

management features.

In the example in Figure 2.1, a very simple architecture was introduced. The user had

SQL*Plus loaded on a PC connected to a Unix server hosting an Oracle database. A TCP/IP

network was established so the PC could connect to the Unix server. A specific Net8 configu-

ration file called tnsnames.ora was configured on the PC. This file contained the IP address of

the Unix server and the names of the database(s) on that server. The Unix server had a server-

side Net8 file called listener.ora containing the names of the server’s databases and basic

connect information.

In our example, the user starts SQL*Plus and enters a username, password, and database name.

This information, referred to as a connect string, is resolved to the desired database server via

the client-side tnsnames.ora. The information is sent from the PC across the TCP/IP network

on the Net8 layer to the Unix server. On the Unix server, the listener.ora file configures a lis-

tener process used to connect the user request to the appropriate database where the username

and password are authenticated. Once this is successful, a connection is established between

the user running SQL*Plus and the Oracle database. The user can then enter SQL commands

Oracle DBA on Unix and Linux
32

on the PC running SQL*Plus. Those commands are sent across the network to the database to

be executed, and the results are sent back across the network to the user.

These are the bare fundamentals of how a database is accessed by a user. This example is cer-

tainly not intended to provide a high degree of networking knowledge, but only to provide an

overview of basic Oracle DBA products and how they interface with the database. Now that

we have the context of the Oracle database server, we will examine its anatomy in detail.

Database Versus Instance
A running Oracle database is composed of three components: files, memory, and processes.

Each component is configured and managed by the DBA. Much like the Unix operating

system, Oracle runs more as an operating system than a standalone application. Figure 2.2

shows these components.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

33

Unix Server

Oracle Database Instance = Memory Structures + Background Processes

Memory Structures Physical Database Files

System Global Area (SGA)

PGA PGA PGA

Background Processes

PMON SMON DBWR LGWR CKPT ARCH RECO SNPnn QMNnn

Database Buffer Cache

Redo Log Buffer

Large Pool

Java Pool

Shared Pool

 Data Dictionary Cache

 Library Cache

control1a.ctl control2b.ctl control3c.ctl

Control

system01.dbf temp01.dbf rollback_01.rbs

users01.dbf data01.dbf index01.rbs

Data

Redo

redo03a.rdo redo03b.rdo redo4a.rdo redo4a.rdo

redo1a.rdo redo1b.rdo redo2a.rdo redo2b.rdo

FIGURE 2.2
An Oracle Database Instance

An Oracle database is different from an Oracle instance. Specifically, a database is just the

physical files on disk, but an instance is the memory structures and background processes. The

physical database files are simply storage containers for data. It is a database instance that the

DBA starts up and shuts down and that users access. Data in the data files cannot be accessed

without the supporting memory and background processes.

It is the Oracle background and server processes (similar to Unix daemons) that actually access

and manipulate data. These processes move data from disk into shared memory areas for

short-term storage, access, and modification. They also move data between memory areas and

eventually write data back to disk.

Everything that happens with an Oracle database occurs in memory first before it is moved to

disk. Also, these memory structures and, to a lessor degree, background processes are highly

configurable by the DBA. Managing these components is where knowledge of Oracle and

Unix architecture is essential for the successful DBA.

Oracle File Types
A running Oracle database is composed of three main components: physical files on disk,

several different memory buffers, and background processes. Since physical files are easiest to

visualize, we will begin with file types.

If you were to examine all the files related to Oracle on a Unix/Linux server, you would find quite

a few. As you can see in Figure 2.3, these files can be broken roughly into three categories: shared

software installation files that are loaded via the installation CD, database parameter and log-

ging files, and the actual files composing the database. Most of these files are related to the soft-

ware installation, and few of those require extensive DBA attention. The DBA typically is more

focused on the files of the actual database and the corresponding parameter and log files.

An Oracle database consists of three types of files: control, data, and redo. These three file

types are what actually compose a physical database. A database will usually include a mix of

at least 10 different files, and if any of them are lost or damaged a severe loss of service could

result. The care, maintenance, and function of each file type are different, so the DBA needs to

understand these files.

Control Files
The control file stores information about the file structure of the database. It keeps track of

every file in the database, its location, and a time stamp. The time stamp in our case is referred

to as a System Change Number (SCN) and is the last time the file’s header was modified.

Control files also contain the database name, character set, and file type limits.

An Oracle database requires only one control file, but typically three or more identical control files

are used. The reason for the redundancy is that control files are absolutely essential for the database

to run. If any control file is damaged or lost (such as in a disk crash), the database will need to be

shut down and repaired. At this stage the redundancy of the files comes in to play. If there is still an

existing good copy, the DBA simply copies the good copy over the damaged file and restarts the

database with a minimal loss of service. If all the files are lost or damaged, the DBA will have to

perform what can be a tricky and time-consuming database recovery, and lost data may result.

Oracle DBA on Unix and Linux
34

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

35

Unix Server

Oracle File Types = Physical Database Files + Software Files + Database Parameter/Log Files

Software Files

tnsnames.ora

listener.ora

oratab

Database Parameter and

Log Files

init.ora

config.ora

alert.log

Physical Database Files

control1a.ctl control2b.ctl control3c.ctl

Control

system1.dbf temp01.dbf rollback_01.rbs

users01.dbf data01.dbf index01.rbs

Data

redo1a.rdo redo1b.rdo redo2a.rdo redo2b.rdo

redok03a.rdo redo3b.rdo redo4a.rdo redo4a.rdo

Redo

FIGURE 2.3
Oracle Database File Types

Control files are relatively small in size, and there is no real performance overhead in having

multiple copies. The DBA should create the database with no fewer than three control files,

located on separate disks with separate controllers. Oracle will automatically take care of

writing to each of these files. Therefore, there is very little DBA interaction involved after the

control files are created. Control files typically are named with the suffix CTL.

Never try to open a data, control, or redo files with an editor. You cannot see

anything useful (most files are binary) and will only risk corrupting the file. If you

want to see a control file’s content, issue the statement ALTER DATABASE BACKUP

CONTROLFILE TO TRACE. This will create a text file in the background dump area

that can safely be viewed using an editor such as vi.

TIP

Data Files
The most common type of file is the data file, which stores the information accessed by the

database. There are five categories of data files, each distinguished by the type of information

it stores. They have different functions and differing degrees of importance.

Oracle DBA on Unix and Linux
36

The term data file refers to a single physical file. Data files are physical objects, but

they are organized logically within the database as tablespaces. One or more of the

same type of data file compose a logical tablespace. We will discuss this relationship

in greater detail in Chapter 6, “Daily Activities,” but for the purposes of this

discussion we will use the terms interchangeably.

NOTE

System

The most critical data file is the system data file. It contains all the information about the data-

base. This is stored in the data dictionary, which is a read-only collection of tables and views

owned by the user SYS. The data dictionary can be considered the “brains” of the database.

While control files contain information about the database’s physical structure, the system data

file contains relational tables containing internal database information of both a physical and

logical nature. All of the information about the database, its layout, objects, and their status is

stored in the data dictionary.

Normal user tables and sort areas should never be stored in the system tablespace, even though

it is technically possible. There are only two users who should own any objects in this file.

User SYS owns V$VIEWS, V_$TABLES, and X$TABLES, and the SYSTEM user owns other

critical tables. Most of the SYS and SYSTEM tables are too cryptic for the average user to use,

so views such as V$ and DBA_XXX are created during database creation. The DBA will

become very familiar with many of the V$ and DBA_XXX views because they provide a win-

dow into the database.

This is the most critical data file for running the database. If the system data file becomes dam-

aged or lost, the database will crash immediately and require recovery. If the system data file is

lost, the database is rendered useless. Unlike control files, the system data file is much larger,

often exceeding 250M. There is no way to keep identical copies as with control files. The sys-

tem data file typically ends with a DBF suffix.

Data
These are the files most people consider when they think of a database. Generic data files

contain all the normal users’ data tables such as CUSTOMER and EMPLOYEE tables.

Any user can write to a data file if he has a space quota for that tablespace. Each user is

assigned one default tablespace containing one or more data files in which the user can create

tables. However, users almost always create and write to tables in an assortment of tablespaces

containing multiple data files. Also, tablespaces and data files are not owned by any specific

user, so they may be written to by anyone with a quota of space in that tablespace.

For example, a table called CUSTOMER may be created in the CUSTOMERS tablespace,

containing one data file called customers.dbf. All the users in the database can add rows to the

CUSTOMER table, each signifying a new customer. Additionally, tables logically containing

customer type data, such as address information, could be created in the CUSTOMERS

tablespace as well as written to the same data file.

There usually are many data files in a database. Tablespaces are often composed of several

data files. The file sizes typically range anywhere from 50M to over the 2G limit. Note that

some Unix platforms with some operating systems now support files over 2G. Baseline exam-

ples include Solaris 2.6 and HP-UX 10.20, but you should verify this for your own platform.

There are performance concerns regarding the size of data files, but basically you do not want

to use only a few large files if you can spread smaller files over multiple disks.

Data files are not actually required for a database, but this would seemingly defeat the whole

idea of having a database. If you lose a data file while the database is running, it should not

crash. However, you will lose access to any data contained in that file. Depending on the

importance of the data in the lost file, this may or may not stop the business. The DBA should

restore an old file from a backup and then recover it to the time of its loss. A data file typically

has the DBF suffix.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

37

Files for the tablespace USERS and TOOLS are simply subsets of the data file type.

These tablespaces are optional, but they are recommended. If a user creates an object

without specifying the tablespace, it will typically be created in the USERS tablespace.

Oracle add-on productions, such as Oracle Enterprise Manager, sometimes need tables

in a database. When this is the case, they are created in the TOOLS tablespace.

NOTE

Index
Index files are the sisters to the data files. Tables are created in data files and hold actual data.

Optionally, that data can be indexed to provide faster access. Just as you could read through

this entire book to find a specific topic, it is much faster to use the index at the end to find the

specific page where the topic is located. Indexes created on tables provide the same functional-

ity as indexes in a book, but in a database they are stored in index files.

The same general rules that apply to data files apply to indexes. They are optional, but it doesn’t

make any sense not to use them. If you lose an index file, the database will still continue to

operate, but the associated loss of performance and some index-dependent operations may

render the database useless from a business perspective. On the plus side, index files are the

easiest for the DBA to recover.

Oracle DBA on Unix and Linux
38

Index files are stored in tablespaces just as data files are stored. Each index file may contain

indexes from multiple tables. They typically range from 50M to over 2G as well. Just as with

data files, there are performance issues associated with their size and placement. Index files

typically end with the IDX suffix.

Temp
Temp (temporary) data files are simply locations on disk for sorting operations. Some SQL

queries require data to be selected and then sorted before it is returned to the user. For exam-

ple, if a user wanted all employees’ names, identification numbers, and salary, starting with the

most highly paid employee and ending with the lowest-paid employee, a sorting operation

would be necessary. Oracle would find all the employees and their corresponding data, but it

would be necessary to sort them based on salary because the rows would most likely not be

stored in that order. For performance reasons, Oracle will do a sort in memory until it exceeds

a DBA-specified size. Then the sort will occur on disk, which is the temp file.

In Oracle 7 and 8, the temporary sorting area was typically called temp. In Oracle 8i it is

usually called sort, but the functionality is the same. Also, in previous versions of Oracle,

permanent tables and indexes could be created in temp files, although that was usually not a

good idea. That option has been removed in Oracle 8i, so only temporary objects can be

written to these areas.

Temp data files require special handling from the DBA. They should be monitored by the DBA

because if they are used often, it could be a sign of excessive sorting, which affects perfor-

mance. Also, the DBA should make sure the temp data file does not run out of space when

large sort operations are needed. Each user is assigned a default tablespace and corresponding

data file(s) for sorting operations. Temp files usually end with the DBF suffix.

Rollback
When a user changes a row of data, its old value is stored in a rollback segment. The reason

for this relates to the three “R’s” of rollback:

• Transaction Rollback When a user updates a row in a table, the old value is stored in

the rollback segment in the event the user decides to roll back (or undo) the statement.

Actually, the old value really isn’t stored. A statement to reverse the row to its previous

value is stored. For example, if a user inserts a row into a table, a corresponding delete

statement is stored in the rollback segment.

• Transaction Recovery If the database instance crashes before the statement can be

committed, the statement will be rolled back (undone) during instance recovery. This is

made possible by storing the value in both the rollback segment and the redo log files.

• Read Consistency Oracle promises that users will see data in a read-consistent state

within their own transactions. Once the users start modifying data, they will be the only

person seeing those changes until they are made permanent with a commit. Other users

on the system will not see the uncommitted changes. If a user updates a row, that modifi-

cation will exist within the rollback segment and will be visible only to that user. Also,

the user will not see changes committed by other users that did not exist at the beginning

of a statement. Once the update is committed, everyone will see the new value. Oracle

automatically applies row-level locks to updated data to prevent two users from

modifying the same data.

Rollback segments are stored in rollback tablespaces, which are made up of one or more files.

A rollback tablespace typically contains multiple rollback segments. Each rollback segment is

a circular chain of extents. Rollback segments are created with a specified number of extents

allocated. For example, rollback segment rbs2 (see Figure 2.4) has 10 extents at 500K each. As

a transaction grows and more rollback space is needed, the next extent is acquired. If all 10

extents are used, an eleventh is allocated, assuming there is still space in the data file. This also

will happen if the transaction needs to write to the next extent, but that extent is already

occupied by another transaction. Oracle cannot “jump” over an extent, so it will allocate a new

extent.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

39

Rollback Segment Tablespace

rbs01.dbf

rbs1

rbs3 rbs4

rbs2

As transactions grow

the next extent is

occupied

Extend to 11th extent

Each segment states with 10 extents

Each extent is 500K

FIGURE 2.4
Rollback Segments

Oracle DBA on Unix and Linux
40

When a rollback segment extends like this, called an extend, the circular segment has been

increased. If the new extent fills, another will be allocated as an extend. This will continue

until either the transaction commits or rolls back, the DBA-defined maximum number of

extents is exceeded, or the rollback segment runs out of disk space. While this extend is

necessary, it does represent a performance hit.

The SYSTEM tablespace automatically has one small rollback segment for use with objects,

but the segments we are discussing are for normal users. The DBA should also note that only

inserts, updates, and deletes generate rollback. Index changes resulting from these changes are

also stored in the rollback segment. Data Definition Language (DDL) changes such as DROP

TABLE and TRUNCATE do not generate rollback and cannot be undone.

Files containing rollback segments demand a great deal of DBA attention. They are planned

carefully, created, and constantly monitored because they have a large impact on performance.

There are also serious implications to the database if any of these files are damaged or

destroyed. These issues will be covered in Chapter 9, “Backup and Recovery,” and Chapter 11,

“Oracle Server Tuning.” These files typically end with the RBS suffix.

Know and Understand the Technical Details
Understanding how and why Oracle does things will often prevent you from doing

silly or dangerous things to the database. There are many people who know enough

about Oracle to be extremely dangerous. It takes a skilled DBA to be able to identify

and stop bad advice before it takes place.

I once had a PL/SQL programmer ask me to drastically increase the size of the rollback

segments inside the database. He was going to do large scale processing and wanted

to make sure he didn’t blowout a rollback segment. By itself that is a fair request and

I almost did it without really thinking to ask for details.

It turns out that his script would was going to commit every 10 rows, thus freeing the

rollback. It’s doubtful he would have used more than one extent before a commit,

much less run out of space. I explained to him how rollback segments and commits

work and why his request would have done nothing to help his job. Instead we

increased the time between commits and left the rollback segments alone.

Online Redo Logs
The third type of file in an actual database is the online redo log file (also called a redo log

file). Every change within the database such as modifying a row of data is written from a

memory area (the redo log buffer, described later in this chapter in the section “Memory

Structures”) to one of the online redo log files. In effect, these files are a transaction log for

every change in the database.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

41

There is a large amount of data continually being written to the active online redo log file.

When one of the two log files fills up with data, Oracle begins writing to the next online redo

log file. This is referred to as a log switch. Once the second redo log is filled, Oracle will either

write to the next empty redo log (if one exists) or it will begin overwriting the first online redo

log file. This is a continuous circular process in which each redo log file is written to in a serial

fashion.

Oracle requires that at least two online redo log files exist for the database to run. Actually,

Oracle requires two redo log groups. A redo log group consists of one or more files called

members. When Oracle performs a log switch, it stops writing to one group and begins writing

to the next group. For performance reasons, the DBA often creates more than the default two

groups. Three or four different groups is common for most databases. Also, because the data-

base will crash and lose data if one group is lost or damaged, DBAs often multiplex their redo

log files. Multiplexing involves creating multiple members (usually two) for each group. Each

member is the same size but is located on a different disk and controller to minimize the

chance of losing both members.

Multiplexing Online Redo Logs

redo1a.rdo

/02

redo1b.rdo

/u03

Log Group #1

redo2a.rdo

/u04

redo2b.rdo

/u05

Log Group #2

redo3a.rdo

/u06

redo3b.rdo

/u07

Log Group #3

Log Switch back to Group #1

Log Switch to

Group #2

Log Switch to

Group #2

Log Switch to

Group #3

Log Switch to

Group #3

Disk Controller A

Disk Controller B

FIGURE 2.5
Multiplexing Online Redo Log Files

Many common performance problems can be attributed to inappropriate size or layout of the

redo log files, as well as the frequency of log switches. As a result, they demand a high degree

of planning and monitoring by the DBA. These high-activity files should be located on sepa-

rate disks, preferably away from any other I/O (input/output)–intensive files. Details of how to

avoid I/O contention are in Chapter 3, “Planning a Database.” Redo log files usually have the

RDO suffix.

Oracle DBA on Unix and Linux
42

Memory Structures
As was stated earlier, a running Oracle database is composed of files, memory structures, and

processes. In the previous section we focused on the three types of database files on the server:

control files, data files (and their subtypes), and redo log files. We will now focus on database

memory structures. There are three memory structures the DBA focuses on: SGA, PGA, and

UGA. The SGA is what the DBA is most concerned about because it services the entire

database and requires a high degree of configuration and monitoring. PGA and UGA processes

exist for individual processes and are not as maintenance intensive as the SGA.

Shared Global Area (SGA)
The Shared Global Area (also referred to as System Global Area) is the largest and most

important memory area for the DBA to understand. The SGA is a collection of several smaller

memory pools that are allocated when the database is started. This shared memory area is

where all the action within the database occurs. If the system data file is the brains of the

database, the SGA is its heartbeat. Without the SGA, the data in the data files is inaccessible.

The SGA includes the database buffer cache, the redo log buffer, the shared pool, the large

pool, and the Java pool (new in 8i). Each of these memory areas is configurable by the DBA

and has a large impact on performance. The values for the SGA are displayed on SQL*Plus at

instance startup. They can also be displayed by either SELECT * FROM V$SGA or SHOW

SGA, as can be seen here:

SQL> select * from v$sga;

NAME VALUE

-------------------- ----------

Fixed Size 69616

Variable Size 111783936

Database Buffers 98304000

Redo Buffers 548864

SQL> show sga

Total System Global Area 210706416 bytes

Fixed Size 69616 bytes

Variable Size 111783936 bytes

Database Buffers 98304000 bytes

Redo Buffers 548864 bytes

As you can see, the SGA is quite large, over 200M. This is normal for many databases. The

composition of the SGA is derived as follows:

SGA = Database Buffers (database buffer cache)

+ Redo Buffers (redo log buffer)

+ Variable Size (shared pool + large pool + Java pool)

+ Fixed Size

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

43

Examine the SGA

V$SGASTAT gives a complete breakdown of the SGA. Use this to see how your pools

are allocated.

NOTE

The value Fixed Size is small and not configurable. It contains information about the database

used by the background processes. Variable Size is really a sum of the shared, large, and Java

pools. To see a listing of their values, enter the following from a SQL*Plus prompt:

SHOW PARAMETER pool

Each parameter with pool will be displayed. To see all published parameters and their settings,

just enter SHOW PARAMETER.

This is typically the largest memory area in the SGA. The database buffer cache is a shared

memory area used to cache copies of data blocks read from the data files on disk. These blocks

can be actual data blocks or they can be from index, rollback, temp, or data dictionary seg-

ments. A user will issue a SQL statement requiring a specific piece of data stored in a block.

Oracle will quickly read through the buffer cache to see if a current unmodified “clean” copy is

present. If so, that copy will be used. If it is not found, Oracle will go to disk to get that block

and write it to the buffer cache. Once the data block is in the buffer cache, it can be manipu-

lated to meet the user’s request.

A block in the buffer cache can be in one of three states: current, dirty, or pinned. A block is

current if it is the same in the buffer as it is on disk. These blocks can be accessed immediately

as needed. Dirty blocks are those blocks that have been modified by a process and must be

written to disk before they can be reused. A pinned block buffer is one that is currently being

used. Note that several copies of the same block, each in a different state, can be found in the

cache simultaneously. In this case, one is considered current (consistent with the disk copy),

and the others are kept to provide read consistency for other users.

Oracle DBA on Unix and Linux
44

Keeping the data blocks needed by Oracle in the buffer cache is key to performance. Every

time a user needs a row of data, that data block will need to be in the buffer cache before it can

be accessed. If the block is already in the cache, the user process can proceed. If the block is

not in the cache, Oracle must make an expensive disk ready to retrieve that data block and

place it in the buffer. It is between 10,000 and 100,000 times faster to access data in memory

then on disk. Therefore, it is in the DBA’s best interest to make sure buffer cache is properly

sized so the data blocks most commonly accessed are found there. The DBA does this by

making sure there are enough buffers to keep the most frequently accessed data in the cache.

The size of the buffer cache and therefore the number of blocks it can hold are configured by

the DBA. Each buffer in the buffer cache corresponds to one database block. Therefore, the

total size of the buffer cache is equal to the size of a database block multiplied by the number

of buffers:

Database Buffer Cache = DB_BLOCK_SIZE × DB_BLOCK_BUFFERS

Sizing, measuring performance, and tuning multiple database buffer caches are covered in

detail in Chapter 11.

The buffer cache has a finite size, so some blocks are kept in the cache and others are written

back to disk to free up space. Oracle manages this process by using two lists: a Least Recently

Used (LRU) list and a “dirty blocks” list.

The LRU list is a linked list where blocks are stored. The list has a Most Recently Used

(MRU) end and a Least Recently Used (LRU) end. As blocks are read into the cache, they are

placed on the MRU end. As time passes and newer blocks are placed at the MRU end, the

older blocks are moved down the chain toward the LRU end. Eventually the cache will fill and

Oracle will need to make room in the cache for a new block. Modified blocks (on the dirty list)

are written to disk to make room. Consistent (unmodified) blocks at the end of the LRU list do

not need to be written to disk, so that space is simply reclaimed. When that block is needed

again, it is read from disk and again placed on the MRU end. If the block is already in the

cache and is needed, it will be moved back to the MRU end, thus giving it more time in the

cache. See Figure 2.6.

Note that there is an exception to the rule of putting new blocks at the MRU end. If a Full

Table Scan (FTS) is taking place, where an entire table is being read, those blocks will be

placed at the LRU end of the list. This is done because these blocks are typically not needed

for very long.

FIGURE 2.6
LRU and Dirty Block Lists in the Buffer Cache.

The dirty blocks list is technically called the LRUW (LRU Write) list, but most DBAs use the

more descriptive name. The dirty block list identifies those blocks that have been modified but

not yet written to disk. As Oracle scans the LRU list, any dirty blocks found are moved to this

list. These blocks represent data that has not been committed but cannot simply be overwritten.

Therefore, they must be written to disk before the space in the cache can be reclaimed. The

details of when they are written to disk is covered later in this chapter in the DBWn section.

The previous information is specific to Oracle 7 and Oracle 8, but the buffer cache in Oracle 8i

is managed slightly differently. The exact algorithm for how blocks are handled in 8i and

above is internal to Oracle Corporation and has not been released to the public. However,

based on what information is available, the process seems similar, but with two new concepts:

midpoint insertion and touch count. Midpoint insertion is the process of placing new blocks in

the middle of the LRU list, rather than at the head of the MRU side. Apparently the idea is that

since some blocks are used only once, there is no need to place them at the MRU side if they

are only going to be aged out. These blocks are promoted forward to the MRU end by using a

touch count algorithm. Each time a block is used, that counts as a “touch.” Based on the

number of touches a block receives, Oracle moves the block to the “hot” MRU end or toward

the “cold” LRU end of the list. This may become tunable by the DBA in future releases.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

45

DWBR

System Global Area (SGA)

Database Buffer Cache

LRU End MRU EndLeast Recently Used List

Blocks Cycle Through List Based on State and Usage

Mid-Point Insertion

for 8i and above

Data

Index

Rollback

Server

Process

Dirty List

Server

Process

Insert blocks at end

for Full Table Scans

Insert blocks at head of LRU list

Dirty Blocks are moved to Dirty

List and later written back to disk

by DBWR.

Redo Log

Buffer

Shared

Pool

Large

Pool

Shared Pool
The shared pool provides caching in memory to improve performance for the same reasons as

does the database buffer cache. The shared pool, however, caches data dictionary information

and parsed SQL statements rather than data blocks. Like the database buffer cache, proper

sizing and management of the shared pool is critical for good database performance.

The shared pool is composed of two caches: the data dictionary cache and the library cache.

Database control data regarding the status of the instance, its processes, locks, and other

attributes is also contained within the shared pool.

Data Dictionary Cache
The data dictionary cache holds information about database objects such as table definitions

and privileges in memory. This is the data dictionary information stored in the system table-

space. Upon instance startup this cache is empty, but it will fill up as more SYS objects are

queried. This cache is smaller than the library cache, and it is not heavily tuned by the DBA.

An LRU algorithm manages the contents of the data dictionary cache.

Library Cache
The library cache stores the text of SQL and PL/SQL blocks, the corresponding parsed SQL

and PL/SQL statements, and their execution plans. These are retained for reuse by future user

requests in an area called the shared SQL area.

Storing parsed SQL and PL/SQL is a key point in database tuning. Before they can be exe-

cuted, new SQL and PL/SQL statements must be parsed and plans for their execution must be

created. This is a relatively time-consuming process, especially since a SQL query can be exe-

cuted thousands of times within the database. If each statement could go through this parsing

process only once and then be saved in the cache, it would represent a major time savings.

This is exactly what the shared SQL area is for. Each new SQL and PL/SQL statement is

parsed, analyzed, and stored in this area. A quick hash algorithm is applied to the statement,

and the resulting value is saved. As more statements are issued by users, their SQL is quickly

hashed and a value is determined. Oracle then searches the shared SQL area for any parsed

statement with the same hash value. If a matching value is found, the two statements match

and the normal parsing steps are skipped. Oracle simply executes the old SQL statement again

and returns the value to the new user process.

Writing SQL code that is reusable is one of the most effective ways to tune a database. It is the

DBA’s responsibility to make sure the developers write code that is reusable in this manner.

Details on this will be discussed in Chapter 11.

Within the shared SQL area, a LRU algorithm is used to age out old SQL statements. Existing

statements in the shared SQL area are also flushed/invalidated under certain conditions. If an

Oracle DBA on Unix and Linux
46

object is analyzed with the ANALYZE command, all statements referencing that object are

flushed because new execution plans will be created reflecting the new statistics. Also, when a

database object is altered, any dependent SQL statements are invalidated. They will be

reparsed and new execution plans will be generated next time the statement is reissued.

Neither the data dictionary cache nor the library cache can be sized directly. Both are sized

together with the database parameter SHARED_POOL_SIZE. This value is in bytes, not

buffers or blocks. Typically, DBAs size the shared pool to optimize the library cache rather

than the data dictionary cache. The general consensus is that if the library cache is sized

properly, the data dictionary cache will be as well.

Redo Log Buffer
The redo log buffer contains a record of any change to the database. These include any type of

insert, update, or delete activity in Data Manipulation Language (DML), as well as any

changes to the database such as creating or dropping objects in Data Definition Language

(DDL). These changes are recorded in the log buffer in case the database crashes. As the data-

base is recovered, these changes are replayed (or redone) to bring the database to the exact

same condition it was before it crashed; hence it is called a redo log buffer.

When a user process makes a change to a row or data object, Oracle writes that to this buffer.

While that change may later be rolled back (assuming it is a change to data), it is still

recorded. The only exception to the rule of redo activity being written to the log buffer is when

an operation is specified as NOLOGGING. Normally this is used only when a large amount of

data needs to be loaded but the overhead of generating redo would be too intensive. If the data-

base crashes during the load, that data will be lost, but the DBA should know this and have a

workaround solution. NOLOGGING is available with the Oracle data-loading utility

SQL*Loader (see Chapter 8, “DBA Utilities”) and some SQL statements (see the SQL

Reference manual).

Obviously there is a great deal of activity within this memory area. However, it is a relatively

small area when compared to other parts of the SGA. The reason is that the redo log buffer is

written to disk very frequently. Also, unlike the database buffer cache, the entire redo log

buffer is flushed to disk rather than just some blocks. The Log Writer process (see the section

“Log Writer Process (LGWR),” later in this chapter) is responsible for writing this buffer to the

active online redo log group.

The redo log buffer is sized by the database start-up parameter LOG_BUFFER. This is not the

actual number of buffers, but is the total size in bytes. To be the actual number of buffers,

divide LOG_BUFFER by DB_BLOCK_SIZE, which is the size in bytes of each Oracle data

block. Remember that the value for these parameters may be viewed by issuing the SHOW

PARAMETER statement in SQL*Plus. There is an enforced minimum size of 4 ×

DB_BLOCK_SIZE for this buffer. Tuning-specific details are covered in Chapter 11.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

47

Large Pool
The large pool is an optional memory structure in the SGA first introduced in Oracle 8. It is

used to provide memory for specific activities that normally would come at the expense of the

shared pool.

The large pool is used to aid the following:

• User Global Area (UGA) session memory when using a Multi Threaded Server (MTS)

configuration.

• Extended Architecture (XA)

• I/O slaves

• Recovery Manager (RMAN) backup and restore activities

In many systems there is no real need to configure the large pool. I/O slaves are used only

occasionally. Unless the system has a very high number of users or is supporting Enterprise

Java Beans (EJBs) or CORBA servers, there is no reason to use MTS. RMAN is being used

increasingly on NT systems, but it still is not entirely embraced by most Unix DBAs.

This has to be CORBA. The parameter LARGE_POOL_SIZE configures the size of this

memory area in bytes.

Java Pool
The Java pool is a relatively new memory structure first introduced in Oracle 8i. It is used to

store shared Java objects. The more stored Java procedures and EJBs you use, the larger this

parameter should be. This pool is used especially during loading of classes, but compiling

objects will also use it.

The parameter JAVA_POOL_SIZE sizes the Java pool in bytes. The default size is 20M, with

50M common for systems using more Java. However, a JAVA_POOL_SIZE of 100M or more

is needed if initjvm.sql is being used to install Java Virtual Machine (JVM) manually, but

after the JVM is loaded this parameter can be downsized. If Java is not going to be actively

used in the database, the Java pool can be set to 1M without problems.

The SGA is shared memory for the entire database instance and demands most of the DBA’s

attention. However, there are two other memory areas that the DBA should be familiar with:

PGA and UGA.

The Program Global Area (PGA) is also referred to as the Process Global Area. One PGA is

allocated for each dedicated server process spawned. The PGA contains user session data,

stack space, and cursor state information for its process. This memory area is not shared

between processes because each is specific to one server process.

Oracle DBA on Unix and Linux
48

The User Global Area (UGA) is a subset of the PGA. It contains the user session data and

cursor information. Sorts for each user occur first in this area. If the sort exceeds the value set

in SORT_AREA_SIZE, it will be moved to disk in the temporary tablespace.

When using the dedicated server configuration, the PGA contains user session data, stack space,

and cursor state information and is located outside the SGA. Therefore the corresponding UGA

(session and cursor information) is also stored outside the SGA. This is a factor because sorts

will occur outside the SGA, which is good from a performance standpoint. See Figure 2.7.

If the Multi Threaded Server option is used (see the following section, “Oracle Processes”), the

session information and cursor state (UGA) are stored in the SGA, with only stack space stored

outside the SGA. This is because the shared server process may need to access any user’s ses-

sion information. If the large pool memory area is allocated, it will store each process’s UGA.

Otherwise the UGA is stored in the shared SQL area. This can have a negative effect because it

takes away space that could be used for caching. Also, any sorts that take place in memory will

occur in the shared SQL area, thus consuming even more valuable cache space.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

49

System Global Area (SGA)

Redo Log Buffer
Shared Pool

• Stores UGA if no Large Pool

Database Buffer Cache

PGA/UGA Under MTS Configuration

UGA

• User Session Data

• Memory Sorts

• Cursor Info

UGA

• User Session Data

• Memory Sorts

• Cursor Info

Large Pool

Dispatcher

PGA/UGA Under Dedicated Server Configuration

UGA

• User Session Data

• Memory Sorts

• Cursor Info

PGA

•Stack Space

UGA

• User Session Data

• Memory Sorts

• Cursor Info

PGA

•Stack Space

User User User User

PGA

• Stack Space

PGA

• Stack Space

FIGURE 2.7
SGA/PGA and Multi Threaded Server

Oracle Processes
The second component of an Oracle instance is the Oracle process. There are two main types

of process: user processes and Oracle processes. User processes are on the client side and are

requesting data from the server. Oracle processes are those that run on the database server.

These fall into two categories: server processes and background processes.

Server Processes
A server process acts as a go-between for the user process and the Oracle memory structures.

When a user process has a request for work, that work is done by a server process. Reading

data from disk and placing it in memory also is done by the server process. For example, when

a user process requests data, it is the server process that scans the database buffer cache to find

it and, if the data is not in the cache, the server process reads the data block from memory into

the buffer cache.

The method by which server processes support user processes depends on the database’s

configuration.

Dedicated Server
Every time a user process is created, a corresponding server process is created. That server

process is dedicated to fulfilling the work requests of that specific user process. The user

process will pass its work requests to its server process. The server process will perform the

work and return the results directly to the user process.

Information about the user’s session is stored in PGA by the server process. The one-to-one

relationship between the user’s session and server process exists for the life of the user process.

When the user process terminates, so does the server process. If the user process does not

make any requests, the server process will remain idle.

Oracle requires a dedicated server process for any DBA session attempting media recoveries or

a database startup/shutdown. Ideally, user processes running large batch jobs should have dedi-

cated server processes as well. This is because any user process requiring a high degree of ser-

vice should have a dedicated server process.

The dedicated server configuration is the default for Oracle. It is fairly efficient, robust, easy to

monitor, and simple to implement. Generally speaking, unless you need MTS for a specific

reason, use the dedicated configuration.

Multi Threaded Server (MTS)
In some cases, it is preferable to have a few server processes servicing many user processes.

Under these circumstances, Oracle’s Multi Threaded Server option should be considered.

For example, people working at a call center will need to query a customer record and some-

times enter an order. This is called On Line Transaction Processing (OLTP). In an OLTP situa-

tion, users are issuing brief requests to the database on a relatively infrequent basis (in terms of

CPU time). Most of the time, the user process is waiting idle for a command from the user.

Oracle DBA on Unix and Linux
50

During this time, the corresponding server process is also sitting idle. This represents a chunk

of memory that is not being used. While this may seem trivial, the issue becomes serious if the

system is attempting to support hundreds or thousands of users simultaneously.

MTS seeks to reduce the amount of unused memory by allocating a few shared server

processes to service multiple user processes. This results in a one-to-many ratio for server-to-

user processes (see Figure 2.8).

Under this configuration, when a user logs in the listener identifies this as a new user process.

The listener hands off the client process to a dispatcher process. The dispatcher will listen to

multiple clients and place their requests in a shared request queue. Shared server processes will

take the user’s requests from the request queue and process them. When the work is done, the

shared server process will place the results in the response queue for the particular dispatcher

handling the request. The dispatcher will then pass the return response to the client process.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

51

System Global Area (SGA)

Database Buffer Cache Redo Log Buffer Shared Pool Large Pool

Shared Server

Process

Performs

Request

Returns result to

specific dispatcher

Returns result to

specific dispatcher
Shared Request Queue

Shared Server

Process

Performs

Request

D1 Response Queue

Dispatcher D1

D2 Response Queue

Dispatcher D2

Each dispatcher relays requests

Listener routes new user processes

to next available dispatcher

Listener Process

User Process User Process
New

User Process
User Process User Process

User issues

requests
User issues

requests

Dispatcher

returns

results

Dispatcher

returns

results

FIGURE 2.8
Multi Threaded Server (MTS)

MTS requires the use of Net8 and a running listener process even if the clients are on the same

machine as the server. Once the user process is assigned to a dispatcher, only that dispatcher

process will be used. Requests are placed in a shared request queue for all dispatchers and are

processed in a first in, first out basis. Each dispatcher has a private response queue where the

finished results are placed by the shared server processes.

Although MTS can be used to support large numbers of OLTP users, it sometimes must be

used in support of Java. Specifically, when using Enterprise Java Beans (EJBs) or CORBA

(Common Object Request Broker Architecture) servers, MTS is a requirement. This is detailed

in Chapter 16, “Java Inside the Database Server.”

MTS is used in conjunction with dedicated server processes. Even if MTS is configured, a

DBA will need a dedicated server connection to start up or shut down the database. In addition,

Oracle can be configured to enable some normal users to log in as MTS users and others, such

as batch jobs, to log in and receive a dedicated server connection.

Configuration of Oracle for MTS requires modification of the init.ora parameter file and the

listener.ora file. See Appendix C for an example of an MTS configuration.

Background Processes
Background processes perform much of the legwork between the memory structures and disks.

Anytime data is written from memory to disk, it is done by a background process. The DBA

needs to know what each process does and how to configure it. This is critical to understanding

how Oracle actually functions.

Like memory structures, background structures exist only when the database instance is run-

ning. To see the background processes for a particular database instance, enter the following

Unix command:

ps -ef | grep -i database_sid

Figure 2.9 shows the processes for an Oracle instance.

Oracle DBA on Unix and Linux
52

FIGURE 2.9
Oracle Background Processes

As you can see, there are multiple processes here. System Identifier (SID) identifies the

instance and will be discussed in Chapter 5, “Creating a Database.”

Some are server processes and can be identified with:

oracleSID (DESCRIPTION=(LOCAL=no)(ADDRESS=(PROTOCOL=BEQ)))

or

oracleSID (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

The background processes are the remaining processes. We will cover each in detail, but for

now it is important to note that some are mandatory and others are optional. Specifically,

PMON, SMON, LGWR, DBWR, and CKPT (starting in Oracle 8) are required. If any of these

processes die or are accidentally killed, the database will crash. The database instance cannot

survive without all of these processes. Other processes, such as QMNn or ARCH, are required

to provide additional database functionality.

System Monitor Process (SMON)
The System Monitor process is a required Oracle process that is normally sleeping. It wakes

up periodically and performs its tasks automatically without any interaction from the DBA.

SMON automatically performs the following activities:

• Instance recovery after a crash. This is the “roll forward” and “roll back” stage in which

transactions are resolved to the last completed checkpoint.

• Coalesces (merges) free space on disk within dictionary managed tablespaces if the

PCTFREE parameter is greater than 0. This applies to tables and indexes.

• Recovery of space used by temporary segments.

Process Monitor Process (PMON)
Process Monitor (PMON) cleans up abnormally terminated user processes. This includes

rolling back a process’s transaction and releasing its resources such as transaction locks and

memory. PMON also detects and resolves deadlocks by rolling back the deadlocking transac-

tion. If the database is set to use MTS, PMON will restart dispatcher and server processes that

have died unnaturally.

PMON can take a while to wake-up because killed user processes can exist for quite some

time. I have seen user logins that have been killed at the Oracle level survive on the database

for several days.

Although there are five required Oracle background processes for a running database instance

(SMON, PMON, DBWR, LGWR, and CKPT), most DBAs verify if a database is up or down

by checking for PMON. It is common to use the Unix command string ps -ef | grep -i

pmon to verify if a database is running. This method is often used in Unix shell scripts to check

if the database is up before attempting to access a database.

Database Writer Process (DBWn)
The database writer (DBWn, also called DBWR) writes modified (dirty) blocks from the data-

base buffer to disk. DBWR does this to clear out old dirty blocks to make room for new blocks

in the cache. The DBA should note that this includes both committed and uncommitted data.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

53

Oracle will be able to keep track of which data is not yet committed, so it will move out those

blocks when necessary. DBWR does not write unmodified (clean) blocks to disk because there

is no reason to do so. Multiple DBWRs and slaves can be configured as needed.

DBWR writes blocks at the following times:

• Every three seconds.

• When Oracle cannot find a free block in the LRU list as dictated by the Least Recently

Used (LRU) algorithm.

• When the number of dirty blocks in the buffer exceeds the

DB_BLOCK_MAX_DIRTY_TARGET setting. This is a value defined by the DBA in

the start-up parameter file (init.ora).

• At any system checkpoint (CKPT).

• When an object is dropped from the database.

• When a tablespace is offlined.

• At the beginning of a hot tablespace backup (ALTER TABLESPACE BEGIN BACKUP).

There is normally one database writer process per database instance, but up to 10 DBWRs may

be configured. Also, DBWR slave processes may also be used in some cases. These options are

further described in Chapter 11.

Log Writer Process (LGWR)
Log Writer (LGWR) writes all the entries from the redo log buffer to the active online redo log

group. If there are two or more files in the online redo log group (as there ideally should be),

LGWR will write to all the members in that group simultaneously. If LGWR can write to only

one member of the active redo log group, it will do so, but it will issue an error in the alert log.

In the event that LGWR cannot write to any of the online redo log members, the database will

require a more in-depth recovery, as detailed in Chapter 9. In that case, the DBA must exercise

caution because it is easy to lose data accidentally in this scenario.

LGWR writes to the active log group under the following conditions:

• Every three seconds.

• After a commit is issued.

• When the redo log buffer reaches one third full.

• When DBWR writes.

• During a checkpoint.

LGWR also periodically updates file headers during the checkpoint process.

Oracle DBA on Unix and Linux
54

Checkpoint Process (CKPT)
A checkpoint process (CKPT) is when Oracle takes a moment to flush its buffers and synchro-

nize all its files. During a checkpoint, all the database file headers and control files are updated

with the checkpoint sequence number. This number is used to synchronize all the files in the

database to a specific point in time and state.

The exception to the rule of all file headers being updated during checkpoints is those data

files that are part of read-only tablespaces. Their file headers are frozen at the time they are

made read-only.

Memory buffers are also cleared during a checkpoint. All the modified (dirty) blocks in the

database buffer cache are written to disk by the DBWR process. Also, the entire redo log

buffer is written to disk by LGWR. This guarantees that transactions can be correctly applied

(committed) or revoked (rolled back) if the database instance suddenly crashes, because the

buffer information would be located on disk rather than in memory.

A checkpoint occurs at the following times:

• Every time a redo low switch occurs.

• When manually initiated by the DBA with ALTER SYSTEM CHECKPOINT.

• Just before any database shutdown except for a shutdown abort.

• When a tablespace is taken offline.

• At the beginning of a hot tablespace backup.

• After the specified time (in seconds) since the last checkpoint as defined by the

parameter LOG_CHECKPOINT_TIMEOUT.

• After the specified number of OS blocks have been written to the online redo log files

since the last checkpoint. This parameter is set with LOG_CHECKPOINT_INTERVAL.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

55

Use of the parameters LOG_CHECKPOINT_TIMEOUT and LOG_CHECKPOINT_INTERVAL

is mutually exclusive. You can use one or the other but not both.

NOTE

Checkpoints do have performance implications. Performance is affected during a checkpoint,

so the DBA does not want continual checkpointing. However, if the database instance crashes,

the time to recover is also affected. The closer the last checkpoint is to the database instance

crash, the faster the instance will be able to recover. There is a tradeoff, and it will be discussed

further in Chapter 11. The database parameter LOG_CHECKPOINTS_TO_ALERT should be

set to TRUE so that each checkpoint occurrence is recorded in the database alert log.

Archiver Process (ARCn)
The archiver process (ARCn, also called ARCH) automatically copies online redo log files

(which will eventually be overwritten) to permanent archive log files. This is to preserve all the

changes to the database in the event a database recovery is needed. This process is active only

if the database is in ARCHIVELOG mode and automatic archiving is enabled. There may be

up to 10 archiver processes if needed. Details about using the archiver process are found in

Chapter 9 and Chapter 10, “When Things Go Wrong.”

Recover Process (RECO)
The recover process (RECO) exists only in distributed database environments. It automatically

cleans up failed transactions and tries to resolve in-doubt transactions. This means that if a

transaction is occurring between two separate databases and fails, RECO will take the

appropriate rollback steps.

Job Queue Processes (SNPnn)
Job queue processes perform several tasks. They execute jobs submitted by the DBMS_JOB

package. They also refresh snapshots of tables in distributed database environments. There may

be up to 36 job queue processes.

Queue Monitor Processes (QMNnn)
Queue monitor processes support the Oracle Advanced Queuing (AQ) option. Up to 10 of

these processes can be configured to support message queuing.

Dispatcher Processes (Dnnn)
Dispatchers are present only when MTS is implemented. The listener process directs incoming

user processes to a dispatcher process. The dispatcher process places user requests in a request

queue to be picked up by the next available server process. Once the shared server process has

preformed the request, the dispatcher retrieves the results from its response queue and relays

them to the user.

Shared Server Processes (Snnn)
Shared server processes are allocated only when MTS is used. These are the shared processes

that service the user processes as directed by the dispatcher process. Once the shared server

has retrieved the information for the user process, the results are placed in the dispatcher’s

response queue.

Oracle DBA on Unix and Linux
56

Transaction Control
Now that we have looked at the Oracle architecture, we will look at a sample transaction in

detail to see how everything works together. This sample transaction is shown in Figure 2.10.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

57

System Global Area (SGA)

Redo Log Buffer
Shared Pool

15

12
Database Buffer Cache

LRU List

User Process

Libarary Cache

Data Dictionary Cache

8
9

10
11
16

17 19

6 7

7

Server
Process

LGWR

Redo1.rdo

15

DBWR

Rollback

10 15 16

DBWR

Index

10 16

DBWR

Data

9 16

Server
Process

Server Process

PGA 5

UGA 6

 19 17

3

4

User at PC

2 Listener

1

13141719

FIGURE 2.10
A sample Oracle transaction.

The following covers a basic transaction inside Oracle:

1. A user logs starts SQL*Plus and enters a username, password, and database name

(referred to as a connect string). On the client side, Oracle finds the database name in

tnsnames.ora. Using the specified IP address, port number, and connect string, the user

process establishes a connection with the database server.

2. The Oracle listener process on the database server receives the user process connection.

It looks for the databases in listener.ora and routes the user process to the specified

database. At this point we are assuming a dedicated (not MTS) connection.

3. A new server process inside the database is spawned and establishes contact with the

user process. At this stage the listener process is no longer involved. After password

authentication, the user process is connected.

4. The user process issues a SQL statement to update a row of data in a table. This

statement goes across the network to the dedicated server process.

5. Information inside the PGA for the server process is updated to reflect the new SQL

statement.

6. The server process runs a quick hash algorithm on the statement and receives a value. It

then scans the shared SQL area for any statements with the same hash value. For this

example, it does not find a matching hash value.

7. The server process scans and finds a free area within the shared SQL area to work. It

parses the user’s SQL statement and checks the syntax. Oracle verifies that the table

exists in the data dictionary and verifies the user’s object-level permissions on the table

being modified. Then it looks at the statement and the stored statistics it has about the

table and any indexes to develop an execution plan. Oracle then issues an exclusive lock

on the row of data and attempts to execute the statement. Oracle reads the current System

Change Number (SCN) for the system and uses this value to maintain consistency

throughout the transaction.

8. The server process scans the database buffer cache to see if the data block is already

cached. In our example the server process does not find a copy of the block in the buffer

cache, so it must read in a copy.

9. A scan of the database buffer cache finds a consistent data block buffer that can be

reused. The server process follows the prescribed execution plan and retrieves the block

containing the row to be modified. It overwrites the buffer cache buffer with the new

block. The block is marked as being at the MRU end of the Least Recently Used list. In

Oracle 8i it is believed that a block will be placed in the middle of the LRU list using

Mid Point Insertion, but there isn’t enough public information to confirm this.

10. A slot in the rollback segment header is briefly acquired, and space in a rollback segment

extent is found. The block of this rollback segment extent is moved to the database buffer

cache in a similar manner as in step 8. An UPDATE statement to undo the user’s

UPDATE statement is generated and placed in the rollback segment. Undo for the update

to the row’s index is also generated and placed in the rollback segment.

11. The row of data is actually modified in the database buffer cache memory. Index and

rollback segment buffers are also inside the buffer cache.

12. The server process finds space and writes the change to the redo log buffer. This includes

both the modified data and the contents of the rollback segment.

13. At this stage the user who issued the statement can see the change with a SELECT

statement. Any other user issuing a SELECT statement will see the row as it was before

step 4. The block containing the modified row is now considered dirty because it has

been modified but not yet committed. If another user attempts to issue a statement to

modify the same row, that session will seem to hang because it is waiting on the first

user to release the row exclusive lock acquired in step 6.

14. The user types the COMMIT command at the SQL*Plus prompt and presses Enter. This

is considered an explicit commit and is a signal to Oracle to make permanent any

Oracle DBA on Unix and Linux
58

changes made by the user. What if the user types the word EXIT at the SQL*Plus

prompt and presses Enter? This is an implicit commit because the user is exiting nor-

mally. The changes to the data will be made permanent.

15. The Oracle server process receives the instruction to commit the row update. A unique

System Change Number is assigned to the transaction in the rollback segment transac-

tion table and in the redo log buffer. LGWR writes everything in the redo log buffer to

the active online redo log file(s). Once the data is written to the redo log file(s) and Unix

has confirmed the write to be successful, Oracle considers the transaction complete and

the change permanent. If a database crash were to occur, the changes to the data would

still be recovered.

16. DBWR will eventually write every dirty block in the buffer cache to disk, but that may

not necessarily happen yet. In fact, the modified blocks may already have been written to

disk. This will occur at the normal time when DBWR writes. A user commit does not

force DBWR to write. The modified blocks may still reside in the database buffer cache,

but the transaction is considered complete by Oracle because LGWR successfully wrote

to the online redo log.

17. The row-level lock held by the user is released. The user receives a message stating the

commit was successful.

18. The other statement (in step 13) waiting to update the row will now receive an exclusive

row lock, and the steps starting at step 6 may occur.

19. The first user issues an EXIT statement in SQL*Plus. This causes any new DML state-

ments to be committed. Next the Oracle server process and the corresponding user

process terminate. Memory resources and any locks held in the user’s PGA/UGA are

released back to the system.

Note that this was discussed only at the Oracle level and that we did not yet mention how the

memory and disk are accessed at the Unix level. Relatively simple transactions such as this

occur very frequently and involve many steps. This should underscore the need for a highly

tuned system because any inefficiency could result in noticeable performance problems.

Miscellaneous Database Files
Files that make up the physical database are not the only files the DBA manages. There are

specific support files common to any Oracle installation that require configuration or monitor-

ing. These files fall under two categories: database parameter/log files and Oracle software

installation files. Each file discussed is a text file and can be edited by the DBA.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

59

Oracle Database Parameter and Log Files
Each database has its own parameter and log files. The DBA will monitor these files and

customize them to meet the needs of the specific database. These files are common to Oracle

databases regardless of platform.

init.ora
init.ora is the parameter file containing configurable database parameters. Actually, the file

is called initSID.ora, where SID is the name of the database instance. This mandatory file is

read during database startup, and the database is configured accordingly. It is by editing this

file that the DBA assigns memory pool allocations, number and types of processes, and other

parameter settings.

Any configurable parameter may be specified in this file. If a parameter is not listed, the

default value is used. With the SQL*Plus SHOW PARAMETER command, values in this file

can be confirmed and values not listed in the file can be found. The DBA should become very

familiar contents of this file because it determines how the database will operate. It should be

backed up regularly, documented, and versioned in case changes need to be backed out.

Changes made to init.ora do not take effect until the database is shut down and started

(“bounced”). The DBA should be careful when making changes because, if some parameters

are given too outrageous a value, the database will not start. In that case the DBA hopefully

knows what has been modified and will choose a more realistic value. Bad database

performance can often be attributed to poorly set parameter values in init.ora.

config.ora
config.ora is an optional file used by many DBAs. The init.ora file can read in parameters

from another file called config.ora. Often an IT organization will have a standardized init.ora

containing basic settings for use in each database. As individual databases develop specific needs,

a config.ora file containing customized parameter settings is often created.

For example, a database may be used for OLTP during the day, but intensive batch processing

occurs during the night. By using a basic init.ora file that calls a more customized config.ora,

the DBA can run the database with OLTP settings during the day and then bounce the database

using another config.ora file to set-up for evening batch operations. This practice is also

common when running development/testing databases versus live production.

alert.log
The alertSID.log file contains diagnostic and error messages about the database. This file is

written to every time the database is started, stopped, modified or has problems. Routine

activities such as checkpoints and redo log switches are also written to this file.

Oracle DBA on Unix and Linux
60

The DBA must monitor this file frequently to check for errors. Ideally the DBA will monitor

this file in the morning, at the end of the day, and several times throughout the day. It is in this

file that problems and warnings will usually first appear. This is the first place the DBA checks

whenever database problems are reported.

Oracle Software Installation Files
Any Oracle software installation on a Unix or Linux box has certain files that are shared by

every database. The DBA must configure these files to meet the needs of the database while

making sure that any changes do not affect other databases.

Like all database files, these should be backed up. They should also be versioned, and changes

should be tracked. The greatest threat to these files is multiple DBAs making ad hoc modifica-

tions and overwriting each other’s changes. Situations like this would not necessarily cause an

Oracle error, but loss of database service could still result.

Architecture of the Oracle Server

CHAPTER 2

2

A
R

C
H

IT
E

C
T

U
R

E
O

F

T
H

E
O

R
A

C
LE

S
E

R
V

E
R

61

Connectivity Files

Database connectivity details and configuration of the tnsnames.ora, listener.ora,

and sqlnet.ora files are covered in Chapter 5.

NOTE

oratab
oratab is a simple file that contains the name of each database, the database version, and a Y

or N flag to indicate if the database should be automatically restarted after a machine reboot.

Oracle initially creates this file, but the DBA needs to make sure it is updated as databases are

created and removed.

Viewing this file represents a handy way for a DBA to identify what databases are on a server

and their versions. Some clever DBAs also write shell scripts that use this file to identify data-

bases and set up Unix environments.

tnsnames.ora
The tnsnames.ora file is the client-side file an Oracle application reads to get database con-

nection information. The file contains the database name, the server address it resides on, and a

port number to connect to. The user will enter a username and password and a database name.

Oracle on the client will take the database name given and find the correct corresponding entry

in tnsnames.ora. It will then attempt to connect to the specified server and database. In effect,

tnsnames.ora is a database lookup file. It is typically a client-side file, but it is configured on

servers to provide database-to-database connectivity.

listener.ora
listener.ora is the configuration file for the Oracle listener process. The listener process

waits and listens for incoming user requests to connect to a database. If a request is technically

valid, the listener routes it to the appropriate database. listener.ora contains each database’s

name and various connection parameters for the server.

sqlnet.ora
There are many Net8 configuration options available to the DBA. These include encryption,

load balancing, tracing, dead connection detection, and the method of user authentication.

Many of these options are configured in the sqlnet.ora file. This file can be found on both the

client and server. While tnsnames.ora and listener.ora are the most important files regarding

connectivity, sqlnet.ora is used to configure the more advanced features of Net8.

Summary
Understanding how and why Oracle works is a requirement for the Unix DBA. A great deal of

problem solving and tuning is made possible by understanding what is occurring in the server.

Once this knowledge is obtained, error messages and diagnostics will seem logical, and prob-

lems can be solved. Almost anyone can memorize facts, but having actual practical knowledge

about the Oracle architecture is how a DBA can become valuable to an organization.

Oracle DBA on Unix and Linux
62

CHAPTER

3
Planning a Database

ESSENTIALS

• Planning is the most critical part of any

project lifecycle.

• There are many factors, both technical and

non-technical, that impact the configuration

of the system.

• The role of the database within the overall

system will dictate many of the parameters

when planning the individual database.

• Plan and configure the database to support

the specific type of application to be

implemented: OLTP, DSS, or a hybrid of both.

• Use established design and tuning principles,

such as OFA, and avoid resource contention

when planning and configuring the database.

The planning and design phase of a database is the most influential factor in determining its

performance and integrity. At this stage, the DBA should have identified the major business

requirements. Now is the time to design a database to meet those business requirements. The

DBA will look at the system architecture to determine where to put the database. This will

depend largely on the type of application(s) the database will need to support. Next, the

Unix/Linux server supporting the database will be selected based upon both technical and

non-technical considerations. The DBA will then determine the physical structure and layout of

the database files while focusing on performance and integrity. After these steps are completed

and a solid database design has been created and reviewed, the actual process of building the

system can begin.

System Architecture
A computer system is typically composed of at least three components: the applications, the

data, and the network. A new component, the Internet (Web), is now in most systems as well.

The location, configuration, and role of these components are what systems architecture is all

about.

If each of these components (application, data, network, and Web) is designed properly from

the outset, the system can run very well. If any of these components is mishandled or mis-

placed, technical tuning will most likely not prevent a large system from being slow.

This relates to the fact that even though a poorly conceived process can be sped up, it is still

inefficient. These types of inefficiencies might be barely noticed on small systems, but they

become major problems as the system grows. Poorly designed systems do not lend themselves

to scaling regardless of the hardware or tuning thrown at them. There is a popular industry esti-

mate that a $1 fix in the design phase costs $1000 to fix in a production phase. I’m not quite

sure how that number was derived, but I will say that once a bad process or design has been

moved into production, it is very difficult to fix.

The DBA needs to know where the database sits in relation to the other components in the sys-

tem. This will dictate the inputs into the database, the outputs, and the processing require-

ments. How much of the database will support Web users? How much will be for OLTP users?

When will batch jobs be executed on the server? Is this database the primary data store and

what are its uptime requirements? These are questions the DBA should ask when examining

the architecture.

Each of these architectural components is implemented as a tier on a machine. For example,

the application tier can reside on a client’s PC as a program while the data is on a Unix box in

an Oracle database. The network simply connects these tiers.

Oracle DBA on Unix and Linux
64

An additional Internet tier composing a Web interface is now being introduced in many

businesses, especially the dot-coms. Because there are already three tiers and the number of

servers is scaleable, this is often referred to as the n-tier architecture. This architecture will be

discussed in detail in Chapter 19, “9i Server New Features.”

Next, take a look at some basic architecture types.

Two-Tier Basic Client Server Architecture (2 Tier)
The basic client/server (2 tier) architecture was briefly discussed in Chapter 2, “Architecture of

the Oracle Server.” This architecture has been in existence for several years and will likely

continue for the foreseeable future. It is, however, being modified with the addition of dedi-

cated application and Web servers. This architecture focuses on simply two entities: the client

and the server.

Client
The client is the machine where the end user sits. It can be as simple as a dumb terminal with

an Oracle Forms order entry application, or it can be a powerful PC with a Visual Basic appli-

cation. The basic idea is that a user sits at this machine, enters requests, and data “auto-magi-

cally” appears on the screen. The user doesn’t care where the data or application comes from,

just as long as it appears when needed. This goal of transparency is what you want; the user

should feel like everything is stored on his/her own local machine.

The role of the client has been in a state of flux. In mainframe times the client was just a dumb

terminal with no processing power; it simply displayed information received from the server.

This is referred to as a thin client. As PCs became more powerful, a greater deal of the work-

load was transferred to the PC. The idea was to split the processing between the client and

server. This was termed a fat client because the client held at least some of the application.

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
65

Dumb Terminals Still Exist?

When the reference is made to dumb terminals, it is not solely a historical reference.

Dumb terminals are still used by some companies, particularly telephone call centers. I

don’t see these terminals lasting for too much longer, but they still do exist in some

businesses.

NOTE

As of this writing, the trend appears to have shifted back in favor of the thin client. Some

factors influencing this shift were the advent of Web browsers and more powerful servers but

no corresponding jump in network throughput. Now most architects are attempting to move as

much of the data, application, and processing to the server, thus leaving the client to only

request and display information.

Author’s Perspective: 20 years ago, the thin client was a terminal attached to a mainframe.

Today, it’s a Web browser connected to the Internet. In between these periods was the fat client

phase. I view this as a pendulum swinging between thin and fat clients. I would be surprised if

it stays this way forever, but for now, thin clients are the way to go.

Server
In a modern two-tier architecture the server holds both the application and the data. In this

case, the application resides on the server rather than the client. The reason for this is that a

Unix/Linux box will have a great deal more processing power and disk space than a PC, so

why not use those resources? In addition, if a distributed processing situation occurs where

huge amounts of data are being sent from the server to the client for processing, the network

will get choked. Also, now that so much of the client requests are directed towards the Internet,

it is not really practical to download the results to the client for processing. Figure 3.1 shows

the resulting thin client architecture.

Oracle DBA on Unix and Linux
66

Modern Thin Client / Server Architecture

Thin Clients Server

PC

PC

Dumb

Terminal

Unix Server

Data

Oracle Database

Application

Pro*C Application

Network

FIGURE 3.1
Thin Client and Server Overview

Three-Tier Client Server Architecture
In a three-tier architecture, the data and applications are split onto separate servers. The client

still is used as a front end, simply requesting and displaying data. The server-side processing,

however, is distributed between a database server and an application server.

There are several reasons for splitting the application and data tiers. By having two servers,

each can be dedicated to processing either data or application requests. If both tiers reside on

the same server, contention for resources can occur. Also, this isolation of tiers makes for a

more manageable system. It is easier to configure and manage a box specifically dedicated to

database activities or to application needs.

Figure 3.2 shows how the three-tier architecture is implemented.

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
67

3 Tier Architecture

Thin Clients

Server

PC

PC

Dumb

Terminal

Unix Server

Data

Oracle Database

Network

Application Server

Unix Server

Application

Pro*C Application

FIGURE 3.2
Three-tier Architecture

Capacity Planning/Sizing
Capacity planning is the practice of sizing a system for the needs of the business. From the

DBA’s perspective, this means determining what kind and how big of a server and database are

needed. The decision will normally be a joint one made by the DBA and SA, and then okayed

by management. This is usually a tricky proposition because it involves estimating growth

when there is often no baseline. This exercise often results in a potentially large purchase of

expensive equipment, thus making the situation more difficult.

If the system is sized too small, more equipment will be needed just to keep the system going.

This is expensive because of the lost performance, time to do an upgrade, and the equipment

itself. Don’t assume this will occur months or years later; an undersized system might become

an issue very quickly, especially in a Web environment. If the system is sized too big, it looks

like an expensive over-kill. Even if the system is sized perfectly for the first year or two, sys-

tem resource requirements will change over time. If this looks like a difficult situation, it

should, because it is.

The DBA and SA need to understand that their sizing will be questioned (as it should be)

and will be second-guessed later (which is counter-productive). They have to make the best

estimate possible based on the current (and usually incomplete) information. Make sure the

estimate is reasonable, logical, and supported by numbers when possible. Finally, allow it to

be analyzed by other technical people and management so they have their say.

Those are some of the issues I look at when I size systems. They fall into both technical and

non-technical issues. In my opinion, it is better to error on the side of over-sizing rather than

under-sizing. But remember, a well designed and tuned application will have a large impact on

the size of machines needed for your system!

Technical Sizing Issues
The DBA usually estimates the disk space needed over a period of time (at least one year) and

the SA takes it from there. However, there are a few issues the DBA should have input on.

Operating System

I won’t get into a huge Unix versus NT debate here because it is safe to assume you’ve

probably already decided on Unix because you are reading this book. Although Windows 2000

is now available and supposedly is improved, many IT people are still suspicious. Traditionally

Unix has been viewed as being more stable, more configurable, and more scalable than NT. It

will be interesting to see how Windows 2000 changes that perception.

Unix operating systems vendors such as Sun, HP, and IBM have enjoyed a strong position in

the market. Most Oracle databases are on these operating systems. The DBA should consider

this fact when selecting an operating system. Newer Oracle software releases will first appear

on Sun and then on these other systems. It is almost inconceivable for Oracle Corporation to

stop supporting any of these platforms. Bug fixes and new products will also come to these

more common platforms before lesser-known platforms.

The DBA should also consider the skills and experience of the SA in these matters. It is

preferable to run an operating system on a platform the SA feels comfortable with rather than

experimenting. The DBA should also consider his or her own expertise on the operating sys-

tem. Is it something new for the DBA? Are the differences between the OS’s something the

DBA is able to learn? When possible, the DBA should be willing to learn new platforms, as it

will add to his or her own experience and marketability.

Oracle DBA on Unix and Linux
68

The growth and acceptance of the Linux operating system has provided another option to

Oracle DBAs. Linux and the associated hardware is usually smaller scale and less expensive

than the larger Unix machines. Therefore, Linux tends to compete more with NT than the large

Unix systems do. In fact, based on what I have personally seen, Linux seems to be the system

Unix people prefer when faced with going to Intel based systems. There are quite a few

smaller systems such as individual Web servers and development/test boxes running on various

flavors of Linux.

The guideline I’ve seen used for the most part is to use an established Unix vendor (Sun, HP,

or IBM) for the large production machines and use a Linux distribution for smaller testing or

development machines. Even this, however, is changing as more companies, particularly

smaller dot-coms, are choosing to run everything on Linux. From a DBA perspective, I prefer

an established Unix vendor to run anything production. If I’m doing work on my own (such as

this book) or doing testing/development, I prefer Linux.

Disks

This is typically a SA decision, but generally the more and faster the disks, the better. The

DBA should request enough disk space for at least one year of database growth. From an

Oracle perspective, having a larger number of disks to spread I/O across is far better than

having a few large disks. I will show some examples of this later in this chapter. Also, having

the disks spread out across multiple controllers is beneficial. The more controllers you can

spread the I/O across, the better. The DBA should push for disks that are hot-swappable. The

choice in disk brands and Logical Volume Managers (LVMs) is really an SA call, but the DBA

should be familiar with the available products. If the database will be a production system,

some degree of disk mirroring should be used.

Discussion of RAID, raw filesystems, and I/O caching is covered in detail in Chapter 13,

“Unix Server Monitoring.”

Memory

In terms of memory, the more and faster, the better. Oracle likes disks, but it likes memory

more. Production Oracle SGAs typically start around 200M and can easily reach 500M. And

that is real memory, not swapped out to a disk. Also, one server will likely have several data-

base instances. Don’t forget to consider other applications running on the box besides Oracle.

If there is only enough memory for Oracle, other applications might be continually swapped to

disk because of memory shortages, which will affect the entire system. As a DBA, you should

try to convince the SA to max out the memory on the box if at all possible.

CPU

This really the SA's call, except that the box should have multiple processors (SMP). Oracle

will take advantage of multiple processors and it is actually required for some features such as

Parallel Query. Most systems are not CPU bound unless there is bad code running, in which

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
69

case extra processors will not help. Regardless, go with multiple processors if possible to take

advantage of Oracle's parallel processing. We will discuss more exotic architectures such as

MPP and NUMA in Chapter 12, Unix Operating System Architecture.

Non-Technical Sizing Issues
The non-technical aspects of system sizing are often overlooked. This includes more than just

the price tag involved.

Machine Cost

This is one item every manager considers. Often times when they see a server exceed $20,000

they go into a state of stock. After all, their PC only costs $1,000 so why should a slightly

bigger computer cost so much more? At this stage, the technical person needs to explain in non-

technical terms why a Unix server is in a different class than a PC. It helps if you justify the

costs in terms of lost revenue because of downtime. I’ve been in this situation before and it’s

easy to get frustrated. Simply be professional and explain why this is a cost of doing business.

If purchasing a machine is impossible, look at other options. This means searching for leases,

loaners, and special deals. Some vendors and hardware resellers will allow a shop to borrow a

machine for a proof of concept. Once a server is actually installed and running a test system, it

is easier to get managers to fund it. Server trade-ins and leases are also possible; check with

the hardware reseller. Also look for special promotional deals. For example, there recently was

a deal where Internet startups could get Unix servers cheap and database software at reduced

cost.

When getting a new machine isn’t possible, you are left to using what is already on hand.

Often an IT shop has a server that can support the system, but it is usually less than optimal. In

this situation, the server is usually older, not configured properly, and is already supporting

system(s). See about getting such servers upgraded. Also, sometimes several machines can be

cannibalized into a better server. Work such as this will have to involve the SA.

System Maintenance

Supporting the system is often overlooked. Many times, companies purchase a state-of-the-art

system (hardware and/or database), but don’t have any one in the shop who can support it, so

therefore it is even more unreliable than a basic system. This happens more often than you

think. Being a “regular” DBA or SA is tough enough, but having to deal with new features

such as Web servers or clusters will only add to the difficulty. Simply assuming that a technical

person can “pick up” the specifics on the job is a costly assumption. Also, just because some-

one goes to training doesn’t mean they can manage a real system. Even if the DBAs and SAs

can manage a complex system, remember that they are highly sought-after individuals and

might leave for better opportunities.

Oracle DBA on Unix and Linux
70

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
71

Keep Your Talented People or the System Will Suffer
I was at one shop that had purchased an early high-availability Sun Cluster where we

ran Oracle Parallel Server. The system itself was fairly stable when we had a highly

skilled SA who knew about clusters. However, within days of that SA leaving, the

system began crashing and the replacement SAs had a terrible time keeping it up.

Although they were good SAs themselves, they lacked the skills with clusters.

Ultimately, it was an expensive learning curve for the company.

I recommend using new technologies where they make sense; just don’t assume that they run

themselves. If you find yourself in a shop getting Oracle Parallel Server (OPS) or other advanced

features, be prepared to do some extra work. Try to go to training if possible and do some

reading and research on your own. If you can become proficient, you will find it a rewarding

experience.

Technology/Vendor

Become familiar with the technologies you are examining before you buy. That sounds obvi-

ous, but it is easy to skip. For example, if the hardware vendor is discussing SMP (Symmetric

Multi-Processors) systems and MPP (Massively Parallel Processors) systems, do you know the

difference? Are you willing to trust the vendor’s explanation as to why you need one over the

other? Time to do some research if you don’t know.

Examine the vendor you are buying from. Sure, Sun, HP, and IBM are the big names in Unix

today, but what about other options? This includes Linux. If you decide to go with a specific

Linux distribution, will it still exist in the future? Don’t go with an OS that is on the way out.

Small, local vendors and resellers should also undergo this scrutiny.

From a DBA perspective, consider which versions of Oracle are supported on the OS. For

example, Oracle develops and releases each new version on Sun Solaris. They then port to

other popular OS’s. When dealing with Linux, check on the Oracle online support pages

(MetaLink and Technet) to see whether Oracle is certified for a specific distribution and kernel.

This is where research on behalf of the DBA is necessary.

Ask DBAs and SAs at other shops about their experiences on a specific platform and database.

These people can provide insights and technical advice that can be hard to find elsewhere. If

you are making a case for or against a specific system, these kinds of testimonials can carry a

lot of weight.

Optimal Flexible Architecture
Now that you have planned and chosen your system, it is time to consider the Oracle-specific

details.

Oracle Corporation has a recommended method of installing and configuring its databases on

Unix. Originally written by Cary Millsap, this is called Optimal Flexible Architecture (OFA).

This is a common method of installing Oracle and creating databases in a standardized manner.

Another way to explain what OFA is would be to describe it as a recommended directory

structure for Oracle software installations and database files.

OFA allows multiple versions of Oracle to be installed on one server. Many databases can be

managed simultaneously with a minimum of contention. Benefits of OFA include:

• A standardized configuration across all servers

• Easily manageable installation and maintenance of different Oracle versions

• Separation of Oracle software files from database files

• Separation of database files from one another to improve manageability and performance

• Logical and distinguishable database file names

• Separation of files across multiple mount points to reduce I/O contention

The OFA is simply a set of recommendations, not a set of absolute rules. However, Oracle

installs the software in an OFA-compliant manner if you create your filesystems correctly.

Building the database in an OFA-compliant manner is discussed in this chapter and is

demonstrated in Chapter 5, “Creating a Database.” That chapter does not rehash all the points

of OFA, but does cover what you need to know.

Create multiple filesystems to spread your files across as many disks as possible. At one shop I

worked at, we had a Sun E450 with 16—18G disks available for the database. I specified disk

mirroring (see Chapter 4, “Machine Setup and Installation”), which effectively reduced the

number to eight disks. Based on that, a filesystem was created on each mirrored group. Mount

points /u01 through /u08 were created to hold Oracle software, configuration, and database files.

Oracle DBA on Unix and Linux
72

OFA Minimum Requirements

At a minimum, an OFA compliant database requires four mount points: /u01 for the

software and /u02, /u03, and /u04 for database files.

NOTE

A mount point is a Unix term for a filesystem. A filesystem is, from a DBA’s perspective, a

directory structure that holds files. It can span multiple disks and can be “mounted” from a dif-

ferent machine over a network (Network File System, NFS). Work with the SA to get multiple

filesystems created. Each mount point is typically named with the convention /uN where N is

the filesystem number (such as /u01).

The next section discusses the OFA structure by looking at what goes under /u01 and then

examining the rest of the OFA.

Files on /u01
Underneath the first mount point, create an app subdirectory. This is where the application

runs. Next, on /u01/app, create an oracle subdirectory. Beneath the /u01/app/oracle directory,

an important split takes place. The subdirectories /product, /local, and /admin are created, as

shown:

/u01/app/oracle/product

“ “ “ /admin

“ “ “ /local

Under ../product, each version of the Oracle database is installed. For example, if you were

running Oracle 7.3.4 and Oracle 8.1.6 on the same machine, you would have:

/u01/app/oracle/product/7.3.4

“ “ “ “ /8.1.6

This is an important distinction. You can have multiple versions of Oracle running

simultaneously, but the software is stored in different locations. A common mistake is to try to

load all the software in one directory and expect Oracle to figure it out. That won’t work!

Oracle knows which version you want to run by setting your Unix environment variable

$ORACLE_HOME. This variable defines which Oracle software executables are used. For

example:

echo $ORACLE_HOME

/u01/app/oracle/product/8.1.6

This shows that your Unix environment is set to run Oracle 8.1.6. All the Oracle software

installation files for 8.1.6 are stored in this directory.

Under the ../admin directory are all the startup, configuration, and log files for each database

instance, regardless of version. For example:

/u01/app/oracle/admin/prod_1

“ “ “ “ /dev_2

This indicates there are two databases on this machine (prod_1 and dev_2). Prod_1 is an

Oracle 7.3.4 production database while dev_2 is an Oracle 8.1.6 development database. If you

examine dev_2, you might find the following subdirectories:

/u01/app/oracle/admin/dev_2/adump

“ “ “ “ “ /bdump

“ “ “ “ “ /cdump

“ “ “ “ “ /pfile

“ “ “ “ “ /udump

Each of these subdirectories hold files specific to the database instance dev_2. The directory

structure and most of the files are created during database installation. You can now briefly

examine the contents of each of these subdirectories.

../adump

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
73

adump contains trace files created by the database for auditing purposes. Every time a user

connects internal to the database, this event is logged and a small, unique trace file is created.

../bdump

The bdump directory contains perhaps the most important file to the DBA: the alert_sid.log

file. This file, commonly referred to as the alert log, contains diagnostic and error messages

about the database. Every time the database is started or is shut down, messages and

parameters are written to this file. The DBA needs to check this file several times daily.

Background dump (bdump) files are generated when an Oracle process experiences unexpected

problems. A message stating a bdump file was generated is sometimes written in the alert.log.

The DBA should examine the bdump trace files and try to determine what caused them. These

files should not normally be deleted and, when serious problems occur, they can be sent to

Oracle Support for detailed analysis.

../cdump

Core dump files are sometimes generated when an Oracle process has really big problems.

These files are very large, sometimes filling up an entire filesystem. They are not much use to

the DBA, but if needed, Oracle Support can analyze them. Unless there is a real need to keep

and compress a core dump, it is usually best to delete the file.

../pfile

The pfile directory contains the init.ora file for the database. This is the configurable startup

file that contains database parameters. The details of this file were discussed in the previous

chapter.

../udump

User dump (udump) trace files can be intentionally generated by the DBA or developers. These

files contain a wealth of diagnostic information, including the SQL being executed inside the

database. The DBA and/or developers can turn on tracing to generate these files. The files are

then analyzed to identify problems or tune SQL.

Under the /u01/app/oracle/local directory are general-purpose files for the Oracle user and

DBAs. It is common to have a sql directory containing DBA SQL scripts here. Unix shell

scripts for the DBA are sometimes stored here. The crontab file for the Oracle user (see

Chapter 6, “Daily Activities”) is usually stored here. Import and export dump directories can

sometimes be stored under the ../local directory, but that varies quite a bit from shop to shop.

Export and import files are also often stored under the ../admin/database_sid/exp directory.

Notice that nowhere under /u01 have data files been discussed. That is because, ideally, data-

base files will not be located under /u01. From an administration standpoint, it is easier to

Oracle DBA on Unix and Linux
74

maintain the separation between actual data files and the Oracle installation/configuration files.

This simplifies monitoring space usage, backups, and performing recoveries.

Data Files and Other OFA Conventions
There should be at least three mount points dedicated to data files. An example is as follows:

/u02/oradata/prod_1/system_prd_01.dbf

“ “ /dev_1/customer_dev_dat_01.dbf

Physical database files are stored under the ../oradata directory. Notice the subdirectory

identifying the database each file belongs to. Also notice the descriptive file names identifying

the database (dev or prd)—these aid in administration. In this case, there are no other files on

/u02. It is okay to have additional database files on this filesystem, but do not include non-

Oracle files or Oracle configuration/installation files.

File names can be in any form; Oracle doesn’t care. However, it is a good idea to make them

descriptive. Identify the tablespace, database, file number, and file type in the name. For exam-

ple, customer_dev_dat_01.dbf tells you this is in the customer tablespace of the development

database; it is a data (rather than an index) file; it is the first file in the tablespace (you don’t

know out of how many); and it is a .dbf (data) file.

Typically, a database will have a very similar core set of files for the SYSTEM, USERS,

TEMP, and TOOLS tablespaces. When you’re dealing with multiple data and index

tablespaces, the names can get long.

Officially, the recognized file extensions are limited to .ctl for control files, .log for redo log

files, and .dbf for all other data files. It’s my opinion that this is a little restrictive. I have an

even bigger concern about the redo log files being .log. This can give the impression that these

files are viewable and somehow less important because they are just log files. In reality, if you

lose one of these, you can be in big trouble. File extensions that I have seen used are listed

here.

File/Tablespace Type Extension

Control .ctl

SYSTEM .dbf

USERS .dbf

TOOLS .dbf

TEMP .dbf

DATA .dbf, .dat

INDEX .dbf, .idx

ROLLBACK .dbf, .rbs

Redo log .log, .rdo

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
75

Those are the basics of setting up an OFA database installation. As the database is actually

configured, created, and managed, the benefits to this structure become apparent.

Application and Database Considerations
To design and configure a physical database, you need to know what kind of transactions will

be occurring and with what frequency. You can size and configure an Oracle database very

effectively to handle long, intensive transactions, or you can set it up for many small quick

transactions. Oracle can handle either situation very well. The trick is identifying what is actu-

ally being asked of your database and then making the appropriate settings. Keep in mind that

these requirements are seldom clearly defined and they usually change.

There are two popular types of database setups: OLTP and DSS.

Online Transaction Processing (OLTP)
OLTP is characterized by many, short transactions hitting the database with a high frequency.

For example, the database can have hundreds of users in a call center taking orders from cus-

tomers over the telephone. A sample transaction is as follows:

1. A customer calls the call center operator.

2. A selection on the customer’s record occurs to get basic information.

3. The customer wants to order a product.

4. An insert is made into the ORDER and BILLING tables for the new order. An update to

the CUSTOMER table might occur.

5. The operator commits the transaction and the customer hangs up. This is the end of the

transaction.

This is not a long or intensive operation. All the data selected should be indexed and the

INSERT statement is only one row in a few tables. This represents a typical OLTP transaction.

Designing for OLTP is not a problem when there are only a few users and a small CUSTOMER

table. Problems start to occur when there are hundreds of users taking orders very rapidly.

Problems increase when the users are spread out over a wide geographical area.

Another caveat of OLTP systems is the perceived need to be highly available. Many organiza-

tions are convinced their OLTP system needs to be fully operational 24 hours a day, 365 days a

year. This brings on some very special needs and is quite expensive. Clustered servers, parallel

server databases, and a very proficient staff are needed to provide this type of availability.

Because of these reasons, most systems are not truly 24×7, but high availability requirements

do exist.

Oracle DBA on Unix and Linux
76

Technical considerations for OLTP systems are as follows:

• Have many, small rollback segments. The standard is one rollback segment for every

four active transactions. Each transaction will likely take one (maybe more) extents. This

can be a problem, but the bigger problem is the rollback segment header. This header

must be allocated initially to find an available block in the rollback segment. If several

transactions are fighting each other over this header, the system will suffer.

• Size the redo log buffer appropriately. A redo log switch is a performance hit, so you don’t

want these occurring all the time. Size the redo log files to about 100M to start with.

• Have a large shared pool. Think about the previous sample transaction. Doesn’t it sound

reasonable for the same SQL to be executed many times, just with different customers?

If you use bind variables for the customer name, the SQL will be cached in memory and

the performance will improve.

• Have separate indexes from the data. Create your primary key and all other indexes in a

separate tablespace and put that on a separate disk and controller.

• Use small temporary segments. Little sorting will be needed and most of it will occur in

memory. If many large joins are part of the SQL, this can cause writes to the TEMP seg-

ment. In this case, see about tuning the SQL to use fewer joins or increase the memory

with SORT_AREA_SIZE. OLTP transactions should not go to disk.

• Look at using MTS, especially when you have a large number of users. This can reduce

the total amount of memory needed, but remember this comes at a performance hit.

OLTP is the most common application to manage. If it was the only type of transaction to plan

for, the DBA’s job could almost be easy. Unfortunately, the DSS transaction often finds its way

into a system as well.

Decision Support Systems (DSS)
Decision Support Systems (DSS) are, for the purposes here, business-oriented batch-processing

systems. This chapter does not get into the caveats of running a data warehouse or number-

crunching system for scientific research, even though the same principles apply. Batch process-

ing involves a few, very large and intensive queries hitting many tables and requiring many

sorts. Nightly processing tasks are considered DSS. A sample DSS job is as follows:

1. Create a report for management to identify sales over the past month. Update and cancel

any orders that still have a “pending” status.

2. Select all the orders that were valid over the past month, group them by payment option,

and sum the results. Also break this down by the customer’s state of residence.

3. This requires a select on the ORDER table, as well as sorting and summing the data,

which would likely require using the temporary tablespace. Queries against the

CUSTOMER table also take place.

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
77

4. Update the orders with a “pending” status. These orders reside in the rollback segments

for the length of the transaction.

5. Format the results and create the report.

This is a relatively simple report; most businesses have more complex needs and business

rules. However, the idea behind this type of system is a few, very intensive queries hitting the

database. These queries can take hours or even days to run. If the job fails, the rollback process

can be quite lengthy before the job is restarted. In the meantime, management wants their

reports and they frown on hearing “sorry, the job failed.” This is even more critical during

month-end or year-end processing.

Key components of supporting batch processing are as follows:

• Have fewer, larger rollback segments. DML in a DSS environment can take a large

amount of rollback and can hold it for a long time. You do not want a job to die because

the rollback segment ran out of space. Create an especially large rollback segment for the

big jobs. Before the SQL statement, use SET TRANSACTION USER ROLLBACK

SEGMENT segment_name to force a transaction to use a specific rollback segment. You

learn about how to avoid SNAPSHOT TO OLD errors and rollback segment tuning in

Chapters 10 and 11, respectively.

• Have a large temporary tablespace created for disk sorts and joins. DSS will often exceed

the SORT_AREA_SIZE parameter and go from memory to disk. These sorts can be

large and you don’t want to run out of room.

• Use a smaller shared SQL area in favor of a larger database buffer cache. The SQL state-

ments are not going to be executed so frequently that gains made by sharing the SQL are

noticeable. Instead, increase the size of the database buffer cache so more data blocks

and rollback segments can be cached in memory.

• Make sure you are running well-tuned and properly indexed SQL. This applies to both

OLTP and DSS, but I have seen processing times reduced to a fraction of what they orig-

inally were simply by SQL tuning and indexing. This can save hours of processing per

SQL statement and reduce stress on the rollback segments. Eliminating unnecessary sorts

also helps reduce the use of the temporary tablespace.

• Use partitioning and the Parallel Query (PQ) option where applicable. If your CUS-

TOMER and ORDER tables are huge (millions of rows), partitioning and using PQ

might provide some performance benefits. These options start getting into the realm of

VLDBs (Very Large Databases) and data warehousing, but if they can help your batch-

processing efficiency, use them.

Systems dedicated to DSS are not as common as OLTP systems, but they do exist. However,

OLTP systems that have some DSS requirements are more common. These are called hybrid

systems and are discussed in the next section.

Oracle DBA on Unix and Linux
78

Hybrid Systems
Hybrid systems are those with a mix of OLTP and DSS needs. Although most applications are

OLTP in nature, most systems are really hybrids. For example, virtually any business that takes

orders from customers is OLTP. However, how long can those businesses exist without finan-

cial or sales reports? Although the OLTP application is where the company actually makes the

money, there are back-end support functions that need DSS (batch) processing.

Review the needs of OLTP versus DSS. Do they look like they are in opposition? They should

because the fundamental characteristics of OLTP are exactly the opposite of DSS. If you

optimize a system to serve one, the other suffers. This can pose a dilemma for a DBA trying to

please both the OLTP users (those who bring revenue to the company) and the DSS users (the

managers who the DBA reports to).

There are three common solutions to this dilemma: throttle between OLTP and DSS on one

system, run two separate systems, or run OLTP and DSS simultaneously on one system.

Figure 3.3 shows how the different hybrid systems can be addressed.

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
79

Handling Hybrid Systems

Run one database in either OLTP or DSS mode

7 AM to 6 PM - OLTP

6 PM to 7 AM - DSS

Run 2 databases, propagating changes from OLTP to DSS

OLTP Database DSS DatabaseUpdates are replicated to DSS

Run 1 physical database either sharing OLTP/DSS or run OPS with 2 instances

OLTP DSS

OPS- 2 instances accessing the same database

OR

OLTP DSS

FIGURE 3.3
Handling Hybrid Systems

Run OLTP during the day and do batch processing at night. If the users are taking phone

orders from 7-6, simply run the database configured for OLTP during that time. At 6PM,

bounce the instance and bring it up using a DSS configuration. Whenever the nightly backups

and batch processing are done, bounce the database again but restart it using an OLTP init.ora.

This works okay if a few assumptions can be made. The hours of OLTP need to be well-

defined and not 24×7. Users can use the system after it has been bounced for DSS operations,

but performance would be impacted. Depending on the call volume in the evenings, this might

be acceptable from a business standpoint. Another issue involves Web users. The DBA needs to

examine the impact that DSS and bouncing the server have on Web users. Remember, Web

access and online ordering implies a 24×7 uptime requirement.

A second solution is to run two databases simultaneously, one for OLTP and one for DSS.

Real-time updates are made to the OLTP database. At a regular time interval, these changes are

propagated to the DSS database.

There are several methods available to do this. The DBA can perform nightly exports of some

or all of the OLTP system and import into the DSS system. This method is conceptually sim-

ple, but is time consuming and might not meet the needs of the DSS system. A better solution

is to use replication over database links to propagate the changes in a real-time manner. A third

option available in Oracle 8i is to run the DSS database as a standby database. Archive logs

from the OLTP database are automatically applied to the DSS database. This keeps the DSS

system just a few steps behind the OLTP system, but as of now, only read-only queries are

allowed against the DSS. The DBA will need to examine these options and perhaps use a mix

of them to support a second DSS system.

The third option for hybrid systems is to run both OLTP and DSS simultaneously. This is prob-

ably the most common solution imposed by DBAs. Often times, a system starts off as OLTP,

but DSS requirements are added gradually until the system becomes a hybrid.

In this case, the DBA must balance the needs of the OLTP users against the batch-processing

tasks. I tend to favor the OLTP users in this case. Create as many rollback segments as you do

for OLTP, but also have a few large rollback segments that you assign specifically to large

transactions. Keep both the database buffer cache and shared SQL areas a reasonable size.

Make sure the temporary tablespace is large enough for the batch sorts, but use SORT_

AREA_SIZE to keep the OLTP sorts in memory. I recommend using a dedicated server, not

MTS in this situation. If MTS is used, configure it so batch job users have a dedicated server.

It is possible to serve both the OLTP and DSS users, but it is a tricky proposition.

There is one final option that is really a derivative of running both OLTP and DSS simultane-

ously. Oracle Parallel Server (OPS) allows multiple instances to access one physical database.

One instance is configured for OLTP and another instance is configured for batch processing.

Oracle DBA on Unix and Linux
80

Assuming the system is designed to handle this type of processing and assuming a qualified

staff is available to manage the system, this is a good option because it provides both

application partitioning and high availability.

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
81

Multiple Applications in One SID

In large IT shops, it is not uncommon for a single database SID to support multiple,

unrelated applications. This is necessary to keep from having to support hundreds of

databases simultaneously. Even if the applications are different, try to separate OLTP

apps from DSS apps and then design the databases accordingly.

NOTE

Avoiding Disk Contention

Designing the layout of the data files across the mount points is very important for perfor-

mance. No matter how much memory your machine has, disk I/O will be necessary and it will

hurt performance. However, if highly accessed files are on separate disks, this effect can be

minimized. Take a look at each file type in terms of contention.

File Type I/O Activity

Control Relatively little access.

SYSTEM Relatively little access.

USERS Little access if objects are created with a separate tablespace defined.

TOOLS Little access.

DATA Depends on the table. Can range from very high to very low. Identify

and segregate high activity tables.

INDEX Depends on the object indexed, but it often corresponds to the table

activity.

TEMP Depends on the amount of disk sorts. Low for OLTP but can be high

for DSS or if the SQL is poorly tuned.

ROLLBACK Very high.

Redo log Very high.

Based on this table, you want to separate the high activity data and index files, the rollback

segments, and the online redo logs. After those have been assigned to separate disks, you

spread out the rest of the less contentious files. Ideally, the DBA will know which tables/

indexes are used most frequently and will have many disks on which to allocate files.

Unfortunately, this is seldom the case and the DBA has to work with whatever information

and resources are available.

Before you learn to review a sample layout, there are a few other items to remember:

• Mount points can be composed of multiple disks, and those disks might be part of several

mount points. For example, disk A might have 9G allocated to /u02 and 9G allocated to

/u03. If you put a rollback tablespace on /u02 and a redo log on /u03, you will have

contention on the same physical disk even though you think you have distributed the files

properly. Work with the SA and know which filesystems mount to which disks and which

disks share which controllers. This will also affect your backup and recovery plans.

• Production databases are placed in archive log mode. This means that after every redo

log switch, the online redo log files are copied by ARCH to another location (disk, tape,

or optical media). This area will be highly active and needs to be large. If ARCH cannot

write to this location (because the disk is full), the database will hang and no DML will

be allowed. Therefore, make sure this disk has plenty of free space and monitor it regu-

larly. Also, if there is so much I/O contention that ARCH cannot write the archive redo

log before that online redo log file is needed, problems will occur. Therefore, make sure

this disk (defined as ARCHIVE_DUMP_DEST) has plenty of space and is free from

contention. Do not place online redo log files and archive log files on the same disk.

• Create at least three, perhaps even more, online redo log groups. Because the database

will likely be in archive log mode, the extra groups will give ARCH time to write to the

archive log before LGWR needs the group again. Also, multiplex the online redo logs.

• Consider multiplexing your data and index tablespaces. In this context, a tablespace will

be composed of files on separate filesystems. For example, if you know a table will get

big and you want to break it apart, place the data files for the tablespace on /u02 and

/u03. The first data file created (*_1.dbf) will be used first, and then extents in the second

data file /u03 will be used. Just be sure that you don’t put the data and index files for the

same object on the same disk.

• If a table will get really big, a better solution is to use partitioning. The table (and

indexes) can be created across multiple tablespaces. This will spread out I/O and can be

used to physically organize the data based on a logical value (using range partitioning).

• Consider backup and recovery when dealing with designing the database. Examine the

impact on the database for the loss of each disk. For example, if disk A comprises

filesystems /u01, /u03, and /u05, what is the impact of losing disk A? If your system is

OFA compliant, you lose all the Oracle installation software on /u01. Hopefully you

don’t have all your control files or all the members of an online redo log group on /u03

and /u05. If you do, you’re in trouble. This type of planning is well worth the time and

will be very beneficial when developing your backup and recovery plans.

Oracle DBA on Unix and Linux
82

Take a look at a sample database layout, shown in Figure 3.4. Assume the system is a hybrid

of OLTP and DSS. Also, it contains one data file per tablespace and the disks are mirrored

with two controllers. It attempts to be OFA compliant, but some of the naming extensions vary.

This is typical of many Oracle installations, except there are more data and index tablespaces.

A few possible I/O contention issues were intentionally introduced to make the design more

realistic. Make note of the following:

• The mount points are separated by controller, using even and odd numbers to identify

controller A and controller B. The DBA won’t always have this luxury, but the DBA

should dictate to the SA how many filesystems are created and the naming conventions

when it pertains to Oracle.

• /u01 has been reserved for the Oracle installation files and the database parameter and

configuration files. It is possible to add actual database files here, but it makes

administration more difficult.

• Online redo log groups have been multiplexed. There are three groups with two members

each. Each member is on a separate disk on a different controller. They are also named in

a logical manner. For example, when group 1 is active, /u03 and /u04 will be written to

frequently. When a log switch occurs, group 2 (/u07 and /u08) will be written to by

LGWR and ARCH will read from the first group and write to the Archive Log Dump

Destination on /u10.

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
83

Sample Database Layout

Controller A Controller B

Archive Log Dump

 Destination

control04.ctl

drsys01.dbf

/u10

rollback_load01.rbs

control02.ctl

/u06

system01.dbf

employee_idx01.dbf

/u02

redo01b.rdo

users01.dbf

tools01.dbf

/u04

redo02b.rdo

order_data01.dbf

/u08

redo03.rdo

customer_idx01.dbf

/u12

control03.ctl

customer_data01.dbf

/u09

rollback01.rbs

control01.ctl

/u05

Oracle Installation Files

Parameter / Config Files

 init.ora.alert log

/u01

redo01a.rdo

temp01.dbf

/u03

redo02a.rdo

order_idx01.dbf

/u07

redo03a.rdo

employee_data01.dbf

/u11

tnsnames.ora

listener.ora

oratab

Misc. Oracle Files

/var/opt/oracle /etc • Note: /var/opt and/ etc are created by the SA and serve

 more than just Oracle. /etc usually contains oratab. but it

 may contain tnsnames and listener .ora depending on the

 platform (ex.HP- UX). var/opt/oracle is common to

 Sun Solaris.

FIGURE 3.4
Sample Database Layout

• /u10 holds the Archive Log Dump Destination. This disk will continually be written to

by ARCH, so only a small control file is placed on it. Monitor this location frequently to

ensure that it does not run out of space.

• The control files are multiplexed across four disks and two controllers. Some DBAs

would have even more than four copies, but if these disks are mirrored, that should be

enough.

• Two rollback tablespaces are created on separate disks. /u05 holds the rollback segments

for OLTP users. Depending on the number of users, there can be even more rollback

tablespaces created if needed. /u06 holds the large rollback tablespace for large batch

processes and data loads (for the DSS users). Remember, when dealing with batch jobs,

that a transaction must be directed to a specific rollback segment. Otherwise, there is no

guarantee that the transaction will choose the correct segment.

• The TEMP tablespace is located on /u03. This is a possible problem because that disk

also contains a redo log member. In real life, there are usually not enough disks to

dedicate one for each file. If the application is composed mostly of OLTP (few sorts and

joins), this will be fine because TEMP will seldom be used. If the application is com-

posed primarily of batch processes and uses the TEMP tablespace frequently, contention

will occur.

• Data and index tablespaces are separated on different disks and controllers. The DBA

will hopefully know which tables/indexes are active and which are not so I/O can be

balanced. Notice that no data or index files were placed on disks with rollback segments.

Avoid trying to compete with rollback segments as much as possible. If necessary, place

seldom used or updated tables and indexes with rollback segments. Also, note that disks

containing online redo logs are lightly loaded with index and data files. The DBA will

often have to place data and index files with contentious online redo logs, but try to put

the least used tables/indexes on these on these files.

• Miscellaneous Oracle files such as oratab, tnsnames.ora, and listener.ora are placed in

default directories during the Oracle install. The DBA has limited control over the loca-

tion of these files. It is important to note that they do fall outside the normal filesystems

used by the DBA, but they do still need to be configured, monitored, and backed up.

Oracle DBA on Unix and Linux
84

Sharing Filesystems

The sample database shown in Figure 3.4 addresses only one actual database. Often

times, the DBA will need to share the filesystems with more than one database. In

this case, the DBA must coordinate the design and creation of any future databases

with the needs of the existing database.

NOTE

Planning a Database

CHAPTER 3

3

P
LA

N
N

IN
G

A

D
A

TA
B

A
S

E
85

This database design is simply an example. In real life, more data and index tablespaces would

be created and the diagram would be more cluttered. However, the OFA principles still need to

be followed when applicable. Files would be separated based on contention and attention

would be paid to the consequences of losing any given disk.

Summary
This chapter covered basic physical database design. You need to spend some time analyzing

the design before creating the database. The DBA needs to know the architecture of the system

and understand how his/her database fits into the grand scheme. Knowledge of the inputs, out-

puts, and processing characteristics/requirements is absolutely essential. Otherwise, the DBA is

really just shooting in the dark.

After you define the requirements, the database is designed to perform well, be easily

managed, and withstand damage without data loss. By understanding the types of applications

the database will support and following some basic tuning guidelines, the needs of the corpora-

tion can largely be addressed with a good design.

CHAPTER

4
Machine Setup and
Installation

ESSENTIALS

• There are multiple server and operating sys-

tem requirements that must be met before

installing Oracle.

• Work with the System Administrator to set

up the server to make the database easily

manageable, tunable, and simplify backup

and recovery.

• Read and comply with the Installation and

Configuration Guide for your particular plat-

form and database version before performing

the installation.

• Carefully install the software and note any

problems or unexpected situations.

• Verify the installation was successful and

apply patches as needed.

This chapter explains what it takes to get the Oracle software installed and running on a

machine. You will start with a clean machine loaded only with the operating system and end

with a box running Oracle 8.1.6 EE. For demonstration purposes, the box will be running

RedHat 7.0 Deluxe Workstation. Differences between this and Sun Solaris and HP-UX plat-

forms are highlighted as needed. The chapter assumes that the basic operating system has been

successfully installed and network connectivity has been established.

Pre-Installation Setup
In most shops, the SA will receive the new server, install the basic OS, configure the network,

and add users. He or she will then ask the DBA what needs to be done for Oracle. At this

stage, they are no longer talking about high-level system design or server sizing; they are dis-

cussing the exact technical needs of Oracle. The DBA will need to tell the SA which users and

groups need to be created, how many filesystems to create and their sizes, and if there are any

additional patches or server setup steps prior to installing Oracle. This information is found in

the Oracle Installation and Configuration Guide (ICG) and Release Notes specific to your

release of Oracle. These documents should be included with your software, but if they are not,

you can find them on http://technet.oracle.com under the documentation section.

Depending on the size and culture of the shop and on the SA involved, the DBA might only be

expected to provide this information. If the shop is small and the SA trusts the DBA, the DBA

might be expected to actually set up the machine for Oracle. This is preferable because it gives

the DBA the assurance of a proper setup. This chapter assumes that the DBA has been tasked

with the actual setup, which is common in smaller and medium-sized shops.

Gathering Information
When you need to install Oracle on a machine, the first step is to familiarize yourself with the

machine. Hopefully you already know how the machine should be configured, but it is a good

idea to verify the actual configuration of the machine. Some of this information will be needed

to install Oracle and some of it will help later when creating and managing the databases. The

next sections look at some of the machine characteristics of interest to the DBA.

OS and Version
You need to determine which OS and version is installed on the machine. Do this by using the

uname command:

$ uname -a

Linux mikehat.mike.com 2.2.16-22 #1 Tue Aug 22 16:49:06 EDT 2000 i686 unknown

As you can see here, it is a Linux machine running the 2.2.16-22 kernel and the machine is

named mikehat.mike.com. Here is what the same command on a Sun and HP box yields:

Oracle DBA on Unix and Linux
88

Sun Solaris Machine Information

$ uname -a

SunOS vader 5.8 Generic sun4u sparc SUNW,Ultra-4

HP-UX Machine Information

>uname -a

HP-UX tiger B.11.00 U 9000/893 unlimited-user license

Make note of the machine name, its OS version, and the patch level. Ideally, start a spreadsheet

for each machine showing the following information:

• OS and version

• Machine name

• IP address

• Database versions

• Database names

• Backup mode (Archive/No Archive)

• Major schemas/applications supported

• Points of contact (POC)

Keep this spreadsheet in your cube and keep a copy in your wallet/purse. Because this docu-

ment contains potentially sensitive information, you might want to keep the IP address/

machine name off the list. Certainly do not write down any passwords on this same sheet of

paper! I have found a handy list like this especially helpful when I am “on call” and have to

support many systems.

Verify that the OS, version, and patch level are compatible with the Oracle software you want

to install. First, log in to Oracle’s online support page MetaLink (http://metalink.oracle.com).

Check under Product LifeCycle, and then Certifications to see which versions of the OS are

certified with your Oracle release. As long as your combination is certified, you are pretty safe.

However, if, for example, you are trying to load Oracle 8.1.6 on Solaris 8 before it is certified,

don’t expect a huge amount of help from Oracle Support. I had to do this once. It loaded and

ran successfully, but because I was running in an “unsupported” configuration, Oracle was

under no obligation to provide support.

Next check the README.TXT and Installation and Configuration Guide (ICG) for your

Oracle release. See http://technet.oracle.com under documentation for this information.

Read this before you try to install the software. Look for specific OS patch requirements and

known bugs/issues. You need to verify that your OS is patched to or above the level specified

in the Installation and Configuration Guide. Remember that just because the SA installed the

operating system does not necessarily mean this same person also applied all the required OS

patches to it (a common mistake).

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
89

To check the patch level of your machine, type:

showrev -a (for Sun machines)

To see which packages are installed on your Linux machine, try this:

rpm -qa

If your machine meets or exceeds the level specified in the manual you should be okay. If it is

deficient, find out what is missing and what it affects. Take this information to the SA and find

out why the patch was not applied. Unless there is a compelling reason not to apply it, have the

SA apply the patch.

Memory
The DBA should already know from the server-sizing stage how much memory is on the

machine, but it is good to verify the information. To do so, type:

$ dmesg | more

Linux version 2.2.16-22 (root@porky.devel.redhat.com) (gcc version egcs-2.91.66

...

Memory: 516136k/523264k available (1048k kernel code, 412k reserved, 5604k

data,

64k init, 0k bigmem)

This gives you all the messages during boot time and this will contain the amount of memory

on the machine. Remember, you want as much memory as possible to hold the SGA. In this

case, there is 512M of real memory. Check your ICG for the minimum requirement for real

memory and swap space.

Oracle DBA on Unix and Linux
90

Verify Memory Is Recognized

Sometimes on Linux, not all your memory is detected. On my machine, Linux thought

I only had 64M to start with. If you are having these problems, edit (as root)

/etc/lilo.conf to the total amount of RAM minus1M (511M in my case), and then issue

the command /sbin/lilo, and reboot. After rebooting, the top of your /etc/lilo.conf

should look like this:

append=”mem=511M”

boot=/dev/hda

...

NOTE

Swap Space
Oracle documentation usually calls for a swap file that’s two to three times the amount of real

memory on a machine. To find the amount of swap space allocated, issue:

$ dmesg | grep swap

Starting kswapd v 1.5

Adding Swap: 1228932k swap-space (priority -1)

Disks
Check the disk and filesystems available. Most likely they will need to be reconfigured to

reflect the OFA requirements specified in Chapter 3, “Planning a Database.” To check disk and

filesystem sizes, enter the following commands:

Sun Solaris

$ df -k

Filesystem kbytes used avail capacity Mounted on

/dev/vx/dsk/var 3933982 46614 3848029 2% /var

swap 3386832 0 3386832 0% /var/run

/dev/vx/dsk/opt 3009327 397623 2551518 14% /opt

/dev/vx/dsk/u01 5235898 3660752 1522788 71% /u01

/dev/vx/dsk/u02 5235898 3169993 2013547 62% /u02

/dev/vx/dsk/u04 5235898 4310880 872660 84% /u04

swap 3387200 368 3386832 1% /tmp

/dev/vx/dsk/u03 5235898 4132592 1050948 80% /u03

HP-UX

>bdf

Filesystem kbytes used avail %used Mounted on

/dev/vg00/lvol3 299157 91918 177323 34% /

/dev/vg00/lvol1 83733 34640 40719 46% /stand

/dev/vg00/lvol8 2003481 557889 1245243 31% /var

/dev/vg00/lvol7 1001729 638769 262787 71% /usr

/dev/vg00/lvol6 600571 254233 286280 47% /tmp

/dev/vg09/lvol1 17772544 11525424 6149564 65% /saveroot

/dev/vg05/lvol5 2048000 1381379 628015 69% /oracle

RedHat

$ df -m

Filesystem 1M-blocks Used Available Use% Mounted on

/dev/hda5 3969 319 3448 9% /

/dev/hda1 220 5 203 3% /boot

/dev/hda15 1181 4 1117 1% /home

/dev/hda9 3150 1 2988 1% /tmp

/dev/hda6 3938 1 3737 1% /u01

/dev/hda10 1969 1 1868 1% /u02

/dev/hda11 1969 1 1868 1% /u03

/dev/hda12 1969 1 1868 1% /u04

/dev/hda13 1969 1 1868 1% /u05

/dev/hda8 3250 1888 1197 62% /usr

/dev/hda7 3351 34 3147 2% /var

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
91

This gives the filesystem layout and the space available in kilobytes for Unix and megabytes

for RedHat. Later in the chapter, you learn how to configure these settings.

CPU
The DBA really doesn’t have control of the CPUs and they really are not tunable, but you

should know how many you have and their speeds anyway. To get a quick count of the number

on the box, issue this command:

$ dmesg | more

Linux version 2.2.16-22 (root@porky.devel.redhat.com) (gcc version egcs-2.91.66

19990314/Linux (egcs-1.1.2 release)) #1 Tue Aug 22 16:49:06 EDT 2000

Detected 801431 kHz processor.

...

Pentium-III serial number disabled.

CPU: Intel Pentium III (Coppermine) stepping 06

Once again, dmesg provides valuable information from system startup. Knowing the number of

CPUs you have is beneficial if you attempt to use parallel processing features such as the

Parallel Query (PQ) option.

Network Information
This is not DBA territory per se, but you need the IP address to log in and the domain name to

install Oracle. Check /etc/hosts to get network information. You can also use ifconfig -a to

find information:

$ /sbin/ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:01:03:2D:4C:A2

inet addr:192.168.1.11 Bcast:192.168.1.255 Mask:255.255.255.0

...

Here, you can tell that the machine’s IP address is 192.168.1.11.

There is one last command that will get a large amount of information about most of the

previous topics, but it is a bit unwieldy. Try using /usr/sbin/prtconf. This will print a good deal

of information if you are on a Sun Solaris box.

That covers it for obtaining basic system information. Just as there are many ways to write a pro-

gram, there are many ways to get this information. System-monitoring tools exist which will give

this information and more. These tools are discussed in Chapter 13, “Unix Server Monitoring,”

but they are not installed on every system nor are they always available to every user.

Configuring the System

Now that the DBA has accessed the existing server, it is time to configure it for Oracle. This

discussion works on the assumption that Oracle has never been installed on the server. Specific

Oracle users and groups need to be created. Filesystems (/u01 ... /u0X) need to be built and

Oracle DBA on Unix and Linux
92

sized. Shared memory parameters for the server need to be configured to handle the Oracle

SGA. These are fairly standardized from one Unix server to the next except for adjusting the

shared memory parameters. This is shown in this chapter, but you should find the actual

numbers from your platform specific Installation and Configuration Guide.

Root Password
To configure the system to install Oracle, you need a root password. This is the all powerful

superuser account that allows you to do anything on the box. SAs normally don’t just give this

password out to anyone. Some shops will allow certain DBAs to have the password as long as

they use it only for DBA purposes. You will need this password to create the users, groups, and

filesystems for Oracle or you will need the SA to do it.

Giving the root password to non-SA staff can be a touchy subject. Many SAs and management

will fight against it. There are many valid reasons why the root password should not be given

to anyone except SAs because the risk to the system is so high.

My opinion is that, in a large shop where there are many SAs available, the root doesn’t need

to leave their control. If something needs to be done as the root user, an SA should be

available. On the other hand, in a small shop I think the DBAs should have the root if they are

competent and trustworthy. It should be understood that the DBA has the root only to act when

time is an issue and the SA is not around, not to change settings on a whim. There are times

when the SA won’t be around, but something on the system will need to be done. Here, a

Unix-savvy DBA can “save the day” and fix the problem. Ultimately, this is a decision for the

individual shop to make.

Groups
Users exist in Unix within groups. A user will have one primary group and can have multiple

secondary groups. A group dba needs to be created. The root user can easily create groups via

the command line, as follows:

[root@mikehat /root]# groupadd dba

Use more on the file /etc/group to see the groups in the system. The user oracle needs to have

dba as its primary group. Other Unix users can be in the group dba as well. Being in the group

dba gives the user the capability to connect internal in the database with full DBA privileges,

so do this carefully. Do not put the root user in group dba. To see who is in the group dba, try

this:

$ grep dba /etc/group

dba:x:504:oracle,mikew

The users oracle and mikew are in the group dba and will be able to connect internal into this

system.

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
93

Oracle DBA on Unix and Linux
94

Connect Internal Is Going Away

The use of connect internal is being unsupported by Oracle Corporation because it is

a perceived security risk. Many DBAs I’ve worked with don’t agree with this change

and like the ease of being able to simply connect internally. The change is scheduled

to take effect in 9i.

NOTE

Recent Oracle documentation talks about a new group: oinstall. This group is for sites with

multiple Oracle installations that are trying to separate ownership of the database files and the

software files. The documentation says to make this the primary group for oracle. Based on

knowledgeable people I’ve worked with and on my own experience, you can go without

creating this group. Simply create a user oracle and assign the dba group to it.

Users
Oracle requires an oracle account, which owns all the software installation files, parameter

files, and database files. This is the Oracle user.

This user can be created via the command line using the useradd command, but it is easier to

use an admin tool to create the user. Use SAM on HP-UX and admintool on Solaris to create

users and groups.

To create the oracle user on RedHat, use an admin tool such as KDE User Manager. See

Figure 4.1.

Assign the user a home directory, name or comment, login shell, and assign the user to group

dba. The choice of shell is up to the person using the account, but many DBAs prefer the Korn

shell. Once the user is created, you can verify it by checking /etc/passwd. Use grep, more, or

vi for the file (be careful!) to see the username and user information. If you are unfamiliar

with these commands or with the vi editor, refer to Appendixes A and B.

Disks
Filesystems need to be created for Oracle. They will follow the layout defined in Chapter 3. If

you are on Unix and are going to use RAID and striping, you’ll probably need the SA’s help.

This might involve the use of a Logical Volume Manager, which is the SA’s territory. If the

filesystems are simply going to be laid over the disks on Linux, it is probably simple enough

for the DBA to do. During the Linux installation process, you can create your filesystems if

you like using Disk Druid. Once the OS is installed, the Linux cfdisk utility can be used, as

illustrated in Figure 4.2.

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
95

FIGURE 4.1
Creating the User oracle.

FIGURE 4.2
Creating Filesystems.

The user oracle in group dba needs read/write/execute access for /u01../u0X. The SA often for-

gets this step when configuring the system for the DBA. If this happens expect your install

process to end very quickly, saying that Oracle cannot write to /u01. For example:

Oracle DBA on Unix and Linux
96

$ ls -l

...

drwxr-xr-x 3 oracle dba 4096 Feb 16 17:06 u01

drwxr-xr-x 3 oracle dba 4096 Feb 16 17:07 u02

drwxr-xr-x 3 oracle dba 4096 Feb 11 16:21 u03

drwxr-xr-x 3 oracle dba 4096 Feb 11 16:21 u04

drwxr-xr-x 3 oracle dba 4096 Feb 11 16:21 u05

The Linux system in this example has only one physical disk. The use of a single disk limits

the system to 12 actual filesystems including /, /boot, /tmp, /var, /usr, /home, and /swap.

Therefore, you can only have /u01 ../u05 as actual filesystems. To simulate the 12 dedicated

Oracle mount points covered in Chapter 3, you can create soft links to directories /u06../u12 on

the /u02../u05 filesystems.

A true production machine (regardless of whether it uses Unix or Linux) should have more

than one physical disk for size, performance, and fault-tolerance reasons, but this is a common

setup for Linux testing and development boxes.

Solaris Specific Directory

Sun Solaris requires that a /var/opt/oracle directory be created and owned by Oracle.

NOTE

Kernel Parameters
You need to configure certain shared memory settings for Oracle. These affect the size and

number of the shared memory segments and semaphores. They are stored in the /etc/system

file on Solaris, which can be edited in vi. If you are on an HP, use the admin tool SAM to

edit these parameters. In the Linux world, you will be editing /usr/src/linux/include/asm/

shmparam.h and /usr/src/linux/include/linux/sem.h. Each Oracle Installation and

Configuration Guide comes with a listing of minimum values for its platform. The following is

a sample listing from a Sun /etc/system file:

set shmsys:shminfo_shmmax=805306368

set shmsys:shminfo_shmmin=200

set shmsys:shminfo_shmmni=200

set shmsys:shminfo_shmseg=200

set semsys:seminfo_semmni=4096

set semsys:seminfo_semmsl=500

set semsys:seminfo_semmns=4096

set semsys:seminfo_semopm=100

set semsys:seminfo_semvmx=32767

Make a backup of this file, edit (using vi) the real copy to have the values listed, and then

bounce the box so the changes take effect. Each of these parameters is discussed in detail in

Chapter 12, “Unix Operation System Architecture.”

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
97

Hexadecimal Parameters

On Linux, some values can be in hexadecimal format. For example, file shmparam.h

defines SHMMAX as:

#define SHMMAX 0xF424000 /* max shared seg size (bytes) */

The easiest method here is to just use your online calculator to determine that this is

really 256M or .5 the value of physical memory on the machine, as required by the

Installation and Configuration Guide.

NOTE

Oracle Environment Setup
After the machine is configured in accordance with the Oracle Installation and Configuration

Guide and Release Notes, you are nearly ready to start the install process. The only remaining

step is to set up your Unix environment for the user oracle.

This discussion assumes you are using the Korn shell, but a Bourne shell will also work. The

environment for the Korn shell user is defined by .profile. This file is read every time you log

in; it sets up your basic environment. From an Oracle perspective, it tells Unix which database

software to use and which database to connect to.

Shell Programming

Comprehensive shell programming is outside the scope of this book, but it is necessary

if you are a Unix DBA. You will write, modify, or use many shell scripts to automate

database-management tasks. You don’t have to be able to write complex programs

from scratch, but you do need to be able to read, understand, and modify code.

NOTE

If your account was created on a Unix system, you probably have a skeleton .profile file. Use

ls -al in your home directory to see a long listing of all your files, including those starting

with a dot. On Linux, you might need to copy your .bash_profile file to your .profile (for

example, cp .bash_profile .profile). Your SA might have a standard .profile file to use as

Oracle DBA on Unix and Linux
98

a template to get started. Figure 4.3 shows the basic settings you need to install Oracle for the

first time. This is from a Linux system that created a .bash_profile, but I copied and modified it

to be a .profile file.

FIGURE 4.3
Initial oracle .profile

These are only the basic settings you need to install Oracle for the first time on a server. Once

the software is installed and a few additional Oracle files are created, you can customize your

.profile to reference these files. This is discussed in Chapter 5, “Creating a Database.”

To determine your environment, type env. This will display all your current settings,

even those not defined in your .profile file. Each value is identified by a variable such as

$ORACLE_HOME. To identify the value of a specific variable, echo the variable name

prefaced by the $ sign:

$ echo $ORACLE_HOME

/u01/app/oracle/product/8.1.6

This shows that you are set to use the Oracle 8.1.6 software. If you wanted to change the value

of a variable, you must export the value to that variable:

$ echo $ORACLE_SID

demo

$ export ORACLE_SID=mh1tst1

$ echo $ORACLE_SID

mh1tst1

In this case, you just changed your environment to connect from the demo database to the

mh1tst1 database.

Key Oracle environment settings include the following:

• ORACLE_BASE This is /u01/app/oracle. This is the starting point for your Oracle

software. From this directory comes your admin, product, and local subdirectories.

Assuming Oracle is not yet installed, there is no actual /u01/app/oracle directory struc-

ture. You need to create /u01 (with the correct permissions), but the app/oracle is created

automatically during the installation process.

• ORACLE_HOME This is /u01/app/oracle/product/8.1.X. This is where each version of

the Oracle software is installed. For example, you could have separate subdirectories for

8.0.5, 8.1.6, and 8.1.7. In fact, you are required to install each release in a different

ORACLE_HOME, otherwise Oracle won’t know which executable to run. Verify your

ORACLE_HOME before you start any Oracle program. Although you can mess-up and

use the wrong SQL*Plus to query information, you don’t want to be connected to the

wrong software when starting up a database.

• ORACLE_SID This is your Oracle System Identifier. It is an eight-character unique

identifier that determines which database you are attempting to connect to. You’ll learn

about naming conventions and ways to circumvent this value in the next chapter.

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
99

Always Verify Your SID

Verify your ORACLE_HOME and ORACLE_SID before you perform DBA tasks. It is very

easy to accidentally connect to the wrong database (ORACLE_SID) or connect using

the wrong software (ORACLE_HOME). This is particularly common when you have

multiple screen sessions and versions of Oracle running. If you don’t verify this often

it is only a short matter of time before you do something to the wrong database.

Using echo $ORACLE_SID every time before you log in is not being paranoid, it is

being responsible.

NOTE

• ORA_NLS33. ORA_NLS33 and NLS_LANG refer to the National Language Set used

by Oracle. They are required only if you are creating a database in a character set other

than US7ASCII. For the most part, they are not used.

• LD_LIBRARY_PATH. LD_LIBRARY_PATH provides a link to shared Oracle libraries

in $ORACLE_HOME/lib.

Oracle DBA on Unix and Linux
100

CLASSPATH Variable

You need to set CLASSPATH to use Java, but Oracle documentation recommends not

setting this variable during the install.

NOTE

• PATH. This is your Unix path. It is the order of directories that Unix searches to find the

executable for each command you enter. For example, if you issue ls, Unix will look

through each directory listed in $PATH until it finds the first occurrence of ls. It will

then use that particular executable. If it cannot find a copy of ls, it will issue a message

“ksh: ls: not found.”

The same applies if you try to start SQL*Plus. Unix will look through every directory

specified in $PATH for an executable called “sqlplus”. If it finds one, it will start it,

otherwise it issues the message saying it cannot be found.

The last statement in the .profile file adds the $ORACLE_HOME/bin containing

SQL*Plus to the path so Unix can find it. The statement export PATH=$PATH:/

bin:/etc:$ORACLE_HOME:$ORACLE_HOME/bin:. sets PATH equal to the value already in

$PATH plus the value in $ORACLE_HOME (the Oracle software directory for your ver-

sion), $ORACLE_HOME/bin (binary executables directory), and your current directory

(identified by the period). This will force Unix to search all these directories to attempt

to find the program you want to execute before Unix gives up. To see which executable

you are using, issue which your_command:

$ which sqlplus

/u01/app/oracle/product/8.1.6/bin/sqlplus

• DISPLAY. DISPLAY is used for XWindows when attempting to start a graphical pro-

gram, such as the Oracle Universal Installer (OUI). It tells Unix which machine you are

using to pop-up the program. It is the name or IP address of the machine you are physi-

cally sitting at, plus :0.0. Notice that it is the machine you are physically at, not the

machine you are attempting to connect to. For example if I was trying to load Oracle on

192.168.1.11, but I was sitting at 192.168.1.10, I would do the following:

$ export DISPLAY=192.168.1.10:0.0

$ echo $DISPLAY

192.168.1.10:0.0

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
101

Don’t Forget to Set Your DISPLAY
The most common errors when doing installations usually relate to either failing to

comply with the ICG or not setting up your environment variables correctly. Of the

environment variables, DISPLAY is most common.

I was once trying to install remotely over a network. However I made a classic mistake

and didn’t set the DIPLAY to the IP address of my client. When the graphical installer

tried to start, it would fail every time.

Ultimately I figured out what was wrong and I fixed it. The install then went fine.

However, since then I always double-check my environment and verify that my

DISPLAY is set properly.

• umask. umask defines the default read/write/execute permissions on any file or directory

you create. Every file and directory in Unix has a defined setting that can be viewed with

ls -l. For example:

$ ls -l

-rwxr-xr-x 1 oracle dba 65 Feb 16 21:45 tail-1

The file tail-1 is owned by the user oracle in the group dba. The rwxr-xr-x defines read

(r), write (w), and execute (x) permissions for the file. This long string is better defined

as:

rwx r-x r-x

owner oracle group dba all other groups

The file owner oracle has read, write, and execute (rwx) permissions on this file. Any

other user in the group dba has read and execute (r,x) permissions on the file. All other

users not in group dba have (r,x) permissions on tail-1. Each – means no permission is

allowed for that value. The leading – indicates a file, whereas a “d” indicates a directory

and an “l” indicates a link.

Each permission (r,w,x) has a numeric synonym, where read (r) = 4, write (w) = 3, and

execute (x) = 1. These values are added within the owner, group, and others subgroup.

Therefore, tail-1 is referred to as having 755 permissions where owner oracle has rwx

(7), members of group dba have r-x (5), and all others have r-x (5).

umask comes into this by setting a default numeric value to any file or directory created.

Every file or directory starts off with a default value such as 666 for this example. umask

defines the value (permissions) to subtract from the 666. The standard umask for Oracle

files is 022. Therefore, you start with 666, but umask subtracts 022, so the resulting

permission value is 644. This way, only the oracle user can write (edit) Oracle files, but

others can read them. The default value is normally 666 or 777. To find your default

value reset your umask to 000. Then create a file and check its permissions. What you see

there is the default value by the system and is what umask starts with, as shown:

[root@mikehat /root]# umask 000

[root@mikehat /root]# ls -l mike_test1

-rw-rw-rw- 1 root root 0 Jun 29 06:49 mike_test1

As you can see, the resulting value is 666 with a umask of 000 being applied; don’t

always assume it is 777. You know the default value is also 666. Your umask is normally

set in the .profile.

Installing Oracle
Once the server, filesystems, and oracle user are set up, you are ready to install the Oracle

software.

Installation Process
Assuming you ordered your CDs from Oracle (rather than downloading them from Technet),

you will likely have a box full of CDs. Some will be the extra utilities, whereas other CDs

contain the actual Oracle database software.

Find the CD labeled Oracle 8i Enterprise Edition Release X. There will likely be several

labeled like this, but some might be Standard Edition. If you are licensed for Enterprise

Edition, make sure you load that version, and not Standard Edition (an easy mistake!). Also,

some Unix CDs are labeled for either 32-bit or 64-bit. If you don’t know what you are running,

ask your SA.

Load the CD into the server and then mount the CD-ROM drive. Sun Solaris machines

normally mount the CD-ROM automatically, but if you use a system that doesn’t (such as

Linux), simply type as root mount /mnt/cdrom. Then log out as root because you want to

install as the oracle user, not as root.

Log in as Oracle and verify your environment variables. cd to /cdrom and read the Release

Notes if you haven’t already. To begin the actual installation, type:

. ./runInstaller

This begins the Oracle Universal Installer (OUI). This is a fairly standard Java-based program

used to install Oracle software. If you get an error message stating the OUI could not start,

check your DISPLAY settings. Remember, it is the IP address or name of the machine you are

physically at, with a :0.0 at the end. You need to be on XWindows to run this OUI, normal tel-

net cannot run the GUI.

The OUI will start with a welcome screen. You will be given the option to deinstall products,

check what is currently loaded via Installed Products, exit, or choose Next. Select Next and

Oracle DBA on Unix and Linux
102

you will go to the File Locations screen. Leave the Source path as the default because you are

loading from the CD. The Destination path should be set to your 8.1.6 ORACLE_HOME. If it is not

correct, edit it now, as shown in Figure 4.4.

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
103

FIGURE 4.4
Specify ORACLE_HOME.

You are prompted for the Unix group that owns the software, as shown in Figure 4.5. This is

the primary group you assigned to the user oracle. In this example, it is the dba group.

FIGURE 4.5
Identify the Unix Group.

Assuming this is the initial install, you will be prompted early to run (as root) the file

orainstRoot.sh to create a directory (see Figure 4.6). If so, bounce out to a separate window,

log in as root, and run the script. This script creates the file /etc/oraInst.loc, which specifies

the location for oraInventory and identifies the Unix group dba.

Oracle DBA on Unix and Linux
104

FIGURE 4.6
Run orainstRoot.sh to Create /etc/oraInst.loc.

Assuming you have an Oracle CD with Enterprise Edition Server, you will have several instal-

lation options. You can install the Oracle Client, which simply contains database utilities such

as SQL*Plus (no actual database), or you might load the Enterprise Edition, which is the actual

database and utilities. Choose the Enterprise Edition, as shown in Figure 4.7.

FIGURE 4.7
Product Selection.

OUI will ask if you want a Typical, Minimal, or Custom installation, as shown in Figure 4.8.

Unless you are having problems (some software isn’t loading), are short on disk space, or just

want specific products, install the Typical installation.

The Typical installation will attempt to create a demo database. This is not the actual database

you want to create for normal use, but it is a good way to verify the installation. Set the SID to

demo. The Global Database Name is your SID.domain_name. If you do not remember the

domain name, go to another window and type uname -a. In this example, the Global Database

Name is demo.mike.com, as shown in Figure 4.9.

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
105

FIGURE 4.8
Installation Options.

FIGURE 4.9
Specifying the SID and Global Database Name.

When the OUI asks for a location to install the database files, enter /u02, as shown in Figure 4.10.

OUI is looking for a place to load the demo data, control, and online redo log files. Do not

enter /u01, which is where the Oracle software will be installed. Also, do not specify /u02/

oradata; the OUI will create the oradata subdirectory automatically. Notice that because this

is just a demo database, OUI does not prompt for mount points /u02../u04.

Next is a Summary page containing all the products you intend on installing, as shown in

Figure 4.11. Verify that your Destination directory is your $ORACLE_HOME. When you are satis-

fied, click Install to begin the actual installation.

Once you specify all the installation parameters, OUI will install the Oracle software files. This

might take a while to complete. If it seems as if the OUI is hanging for a few minutes, be

patient. Figure 4.12 shows the installation progress screen.

FIGURE 4.10
Enter the Location for demo Database Files.

Oracle DBA on Unix and Linux
106

FIGURE 4.11
Verify Install Options on Summary Screen.

FIGURE 4.12
OUI Installing the Oracle Software.

At the end of the software installation, you will be prompted to run root.sh. Again, open

another window and run this file as root. This time, the script is different and you will be

prompted for some directories. Simply accept the defaults.

[root@mikehat /root]# cd /u01/app/oracle/product/8.1.6

[root@mikehat 8.1.6]# . ./root.sh

The OUI will quickly run the Net8 Configuration Assistant and will then move to the Oracle

Database Configuration Assistant. At this stage it will copy the database files to disk for the

demo database. Once this is done, exit the installer. Your XWindows screen will not have

returned a prompt yet. This is not hanging; simply press the Enter key to get a prompt.

Verification of a Good Install
After the install process, the GUI screen should report that the install was successful; it

requests that you check the log file for errors. If you got to this point, good, you might have a

valid install. In some cases if the database-creation process hangs, you might be forced to can-

cel out of this step. Even if the database creation and/or network configuration failed or was

canceled, the installation of the software might be successful.

Check to see whether the demo database you created during the install is up. The existence of

this database doesn’t guarantee that everything is correct, but it will tell you if the install really

went bad. Again, if you had to cancel the database creation because of hanging problems, do

not expect the instance to exist. After a successful install and database creation, the instance is

left running so you can check on the mandatory background process pmon:

$ ps -ef | grep -i pmon

oracle 1670 1 0 14:38 ? 00:00:00 ora_pmon_demo

danw 1826 1580 0 18:32 pts/0 00:00:00 grep -i pmon

If this process is up, you have a running database. If not, either something went wrong (check

the install logs at $ORACLE_BASE/oraInventory/logs) or you decided to cancel the database

creation.

If the install did go bad, check the install log for errors. Common mistakes include trying to

write to filesystems you don’t have permissions to or writing to a filesystem that is too small.

More often than not, your system was not set up properly in accordance with ICG and Release

Notes. Revisit these documents to make sure you complied with all the requirements.

Assuming that you have fulfilled these requirements and you still are having problems, it’s

time to look for outside help. Oracle on Unix is usually pretty stable, but installing it on Linux

can be tricky. Although you should have already reviewed MetaLink and Technet before your

install, now is definitely the time if problems persist. Technet and MetaLink both have separate

forums for users to write in questions. These have proven to be extremely valuable, especially

when working with Linux.

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
107

Oracle DBA on Unix and Linux
108

Always Have a Few Hacker Friends
If there is one thing I’ve learned it is that there is always someone who knows a little

more about the kernel than you. There is nothing wrong with this; many people send

their free time playing with operating systems. In fact, it is good to know these people

when you have problems.

I was having some problems doing an operating system install. The help support line

didn’t know what was going on and basically told me I was on my own. The docu-

ments I had weren’t much help either. Finally I simply asked for help from a colleague

who plays with operating systems both on the job and in his free time. He explained

the problem was in the operating system release rather than anything I had done.

Next he explained a way he and a few other folks were getting past the problem. I

tried his solution and it worked perfectly.

It’s cases like this where networking with other technical people can save you time

and headaches. Once you have exhausted your resources it’s okay to ask for help as

long as you don’t abuse it.

Check out Technet first if you are trying to install Oracle on Linux and are having problems.

The forums should tell you which library you are usually missing (which is not your fault) and

how to find and install it. I personally have yet to see an install of Oracle on Linux work with-

out some tweaking, so don’t become frustrated if you experience problems as well. However,

running Oracle on Linux is well worth any minor headaches you endure initially. If you fail to

find information on Technet, try MetaLink. After that, try some of the many external Oracle-

related Web sites. Just remember to take any advice with a grain of salt. If all else fails, call

Oracle Support.

If you are installing on a major Unix release, the process usually goes fine. Most of the problems

are because of mistakes by the user, not Oracle or Unix. Once again, check your Installation and

Configuration Guide and the Release Notes. Make sure that your system meets the baseline

requirements, your filesystems are not full, and that you can write to your directories.

MetaLink is the place to first start looking if you have problems when installing on Unix. Look

under the bugs and patches sections for your platform and release. You will likely need to

patch your release anyway, so you might as well see whether any of the related bugs affect the

installation. Once you have exhausted the resources on MetaLink, call Oracle Support. I have

received excellent support from the Unix group concerning installations. Often times they will

have release-specific information and installation tricks that are not common knowledge, but

will save you time and headaches.

Machine Setup and Installation

CHAPTER 4

4

M
A

C
H

IN
E

S
E
T
U

P

A
N

D
IN

S
TA

LLA
T
IO

N
109

Persistence Is Good Up to a Point
I was once installing an earlier version of Oracle on Unix. However, every time I

installed there were problems. I checked and double-checked my environment and

settings, but each time the install didn’t go right. I spent the better part of a day

doing this.

Frustrated, I called Oracle Support. Within a couple of minutes, the support analyst

told me there was a specific combination of products I had to install in a specific

order. Otherwise I would run into a bug that wasn’t documented for the general

public. I followed the advice and the install worked perfectly.

On that day Oracle Support certainly paid for itself. They provided needed

information I couldn’t find anywhere else. Too bad I waited so long before using this

resource.

Applying Patches
It is often better to apply patches to the database after an install. For example, you might have

just installed Oracle EE 8.1.6.1, but now you want to patch to Oracle 8.1.6.2. If you have to

apply patches, now is the time to do so, before you have running production databases. Patches

are covered in detail in Chapter 14.

Summary
This chapter covered how to take a box only running Unix or Linux and install Oracle on it.

Installing Oracle is not difficult, but it can be tricky. You have to read up on your platform to

make sure it is compatible with your Oracle release. Next, you have to configure your machine

in accordance with the Oracle Installation and Configuration Guide and Release Notes. Then

comes the actual installation of the Oracle software, followed by verification.

Hopefully, the entire process will be uneventful and without errors. Otherwise, you get to dig

into the details of what went wrong and search for solutions not listed in your install guides.

Fortunately, there is a wealth of valuable online resources. If that fails, you can call Oracle

Support.

CHAPTER

5
Creating a Database

ESSENTIALS

• Create a basic set of database scripts so

each database creation is configurable and

repeatable.

• Customize your database create scripts to

meet the requirements of the database you

need to create.

• Run the database create scripts and check for

serious errors.

• Fix any problems with the database and

configure your network files for the new

database.

• Configure several Unix files to set up your

Oracle environment when you log in.

Now that you have installed the database software, it is time to create your database. This

involves creating the database data files, control files, and online redo log files. It also involves

creating the necessary parameter (init.ora) and log (alert.log) files to support the database.

Oracle will read the parameter file, open the database files, and allocate the SGA and back-

ground processes so you will have a fully functional database instance.

In terms of database design, this chapter creates a hybrid database (part OLTP, part DSS) and

gives it the file layout described in Chapter 3, “Planning a Database.” At the end of this

process, you will have a running hybrid database suitable for OLTP and DSS use. Next, you

will learn how to establish basic connectivity into this database from other machines. Finally,

you will customize your .profile file to handle multiple database environments.

Generating Creation Scripts
Scripts are a key part of any DBA’s life. Their use cannot be overstated. There is simply no

way any DBA, no matter how good, can type everything by hand. The most productive DBAs

will attempt to script as much work as possible so it is reproducible and standardized. Given a

choice between performing a task manually in five minutes or taking 10 minutes to write a

short script, more often than not more time will ultimately be saved by writing the script. In

fact, many sites operate largely on scripts. If you don’t use your organization’s scripts, you will

get reprimanded. Individuality is normally a good thing, but when creating environments on

many servers it does not work. Standard scripts are the way to go for any medium or large

sized environments and creating databases are a good place to start.

Use of Scripts
Databases are best created via a series of scripts. Although Oracle can create a database for

you, or you can issue each command manually, both of these methods have drawbacks. If you

let Oracle create the database for you, you lose the ability to finely customize the database.

Creating a database manually takes too long, is prone to mistakes, and cannot be easily

reproducible.

Many medium and large IT shops often have a set of standardized database-creation shell

scripts. The DBA simply copies these scripts, modifies them to include the new database and

filesystem names, and then runs them. This “plug-and-chug” approach ensures a level of stan-

dardization and allows a shop to use a set of “best practices” when creating every database. It

permits virtually any DBA, regardless of skill, to create the necessary databases to support

their applications.

Although this takes some of the “fun” out of being a DBA, it does make sense in larger environ-

ments. The only real drawbacks are if the original scripts are somehow flawed or if the DBAs

Oracle DBA on Unix and Linux
112

are not allowed the degree of customization needed to serve their particular systems. If you are

new to a shop, find out if there is a set of scripts you are supposed to use. Review these scripts

to determine what they actually do and consider if there are any ways to improve them.

Just as many shops have a set of standardized scripts, many individual DBAs have a set of

their own scripts. Particularly in consulting, where you frequently move from shop to shop, a

DBA will develop a “tool box” of SQL scripts to monitor, tune, and create databases. These

tools allow the DBA to always have a familiar, repeatable set of scripts available to perform

tasks, such as creating databases. These scripts contain the tricks and best practices of that par-

ticular DBA, so every database he/she creates will have the same level of consistency and

design. Regardless of whether you are in consulting or work for one shop, I strongly recom-

mend you create your own “tool box” so you can enjoy these benefits.

Database Configuration Assistant
The easiest way to get a basic set of database-creation scripts is to have the Database Creation

Assistant (DBCA) generate them for you. The DBCA asks you a set of questions about the

needs of your database and then offers to either create the database for you or to generate a set

of scripts to create it. This chapter uses the DBCA to generate the set of scripts to create a

basic hybrid database. You will then use these scripts as your template to create your real

database.

The set of scripts DBCA generates are Unix shell scripts that execute SQL*Plus scripts to

issue the database-creation commands. There is a master shell script that calls each of these

scripts in order. Once the whole set is generated, you can use vi to edit certain scripts to

reflect your desired database name, file structure, number of control files, number and size of

online redo logs, and various other parameters. Once this customization is done, you can exe-

cute the scripts to create the database.

Create a temporary directory to store the scripts generated by the assistant. The default loca-

tion for these scripts is $ORACLE_HOME/assitants/dbca/jlib. As the oracle user, create a

directory for the database you plan to create:

$ mkdir $ORACLE_HOME/assistants/dbca/jlib/rh1dev1

DBCA is a graphical tool very similar to the Oracle Universal Installer used to install the soft-

ware. Log in as Oracle and set up your environment just as you did in the previous chapter. To

start the DBCA as the oracle user, simply enter the following:

$ dbassist

This takes you in to the Database Configuration Assistant. Here, you can create a new

database, modify an existing database, or delete an old database. You want to create a new

database, so select Create a Database, as shown in Figure 5.1.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

113

FIGURE 5.1
Database Creation Assistant Welcome Screen

The next screen asks whether you want a typical or custom database. Either way, you will be

editing the scripts manually, but selecting the custom option now will reduce the amount of

work needed later. Select the Custom database design, as shown in Figure 5.2.

Oracle DBA on Unix and Linux
114

FIGURE 5.2
Typical or Custom Database

DBCA asks you which type of database to design. Remember from Chapter 3 that a hybrid of

OLTP and DSS is the most common design. In this chapter, you will design for this type. You

can later edit the scripts if you need to cater more towards OLTP or towards DSS. Select the

Multipurpose option, as shown in Figure 5.3.

FIGURE 5.3
Select a Multipurpose Database.

The next screen asks you how many users will be connected simultaneously, as shown in

Figure 5.4. This information is used to size your rollback segments. You can change this infor-

mation later, but for now, enter 75 users. Be careful if you are ever in this tool again and select

OLTP; DBCA will automatically set up MTS if you select 20 or more users.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

115

FIGURE 5.4
Enter Number of Concurrent Users.

When prompted for dedicated server or shared server (which is really MTS), select the dedi-

cated mode, as shown in Figure 5.5. This will give your larger jobs better performance and the

set up and management processes are easier.

FIGURE 5.5
Dedicated or Shared Server Mode.

DBCA prompts you for the options to install. If you click Help, you get a description of each

option. For your purposes, select everything, as shown in Figure 5.6. You will certainly use the

JServer in the Java chapter and Oracle InterMedia will be used with iFS (internet File System).

The next screen prompts you for a Global Database Name and a SID. Before you enter the

database name, which is unchangeable once the database is physically created, read the next

section on SID/database names.

FIGURE 5.6
Select Oracle Options.

Oracle DBA on Unix and Linux
116

Changing Database Names

There are a few “unchangeable” parameters such as the database names that can be

changed after database creation. By generating a copy of the control file, modifying

it, and then “recovering” the database you can change some parameters. Be warned

that this is a more advanced technique and should not be attempted without proper

research, backups, and practice.

NOTE

A database name is really different than the SID (System Identifier), but most people use the

terms synonymously. Each set of database files (the database) has a database name as identi-

fied in the CREATE DATABASE statement. The SID refers to that database instance (database

plus memory and background processes). If you are like most people and only have one physi-

cal database that will be opened by one set of background processes and memory (SID), give

each the same name.

In an Oracle Parallel Server (OPS) environment, this is different. Under OPS you will have one

physical database name, but you will have two or more instances on different machines with

different names (SIDs) accessing the same physical database simultaneously. Although OPS is

gaining in popularity, it can be confusing initially. This chapter works on the assumption that

you are using one physical database with one instance. Therefore, your database name and SID

are one in the same.

Select the name of your database carefully. You are allowed up to eight characters, including

letters and numbers. When the database supports only one application/major schema, you

might be tempted to name the database after that application. For example, if your application

is a production system that handles cable subscribers, you might call it subprod1. For small

shops, this might be a good name.

If you are working in a larger environment with many databases hosting multiple applications,

you need a more general naming convention. At one site I was at, we had dozens of HP and

Sun machines hosting nearly one hundred SIDs supporting hundreds of applications. The

method they used (which I think is a good idea) was to use the name to identify the server

type, server name, instance name, and instance type. How can you get all this in only eight

characters? Simple, use naming conventions to include server info and database info in the

SID. Take the following example: HP4DEV2.

Use the first three letters to identify the server type and number. Use HP for HP-UX machines,

SN for Sun, CP for Compaq, LN for Linux, and so on. Next, give each server a one-digit iden-

tifier. In our case, HP4DEV2 identifies the fourth HP server. A spreadsheet associates the

server name to the number (4 in this case). Ideally, the server name will be something mean-

ingful, such as hp4indy. If you are getting the idea that cute server names like Tigger (I’ve

worked with several different Tiggers) are inefficient, you are correct. Name your servers

something meaningful, and include the type (HP, SN, or LN), and a number (1-9, and then

a..z) in the name.

Now that you have identified the server (HP4), you need to identify the database. You can tie

the name to a specific application, but doing so restricts your database to only one application,

which is inefficient in large environments. Identify the database by its function—production

(PRD), repository (REP), development (DEV), or testing (TST)—followed by a number (1-9,

a..z). In this case, HP4DEV2 refers to the second development database on the HP4. The data-

base identification spreadsheet mentioned in the previous chapter will identify the HP4DEV2

and the applications it supports.

For the purposes here, you will name the database rh1dev1 for RedHat server #1, development

database #1. Enter this name in the Global Database Name field, followed by a period, and

then your domain (mike.com in my case), as shown in Figure 5.7. Your domain name can be

obtained with the Unix command uname -a. Notice how the tool automatically fills in the SID

value and the Initialization Filename fields with the your database name (up to the domain

name). Leave the Initialization Filename (init.ora) as the default. The Compatible Parameter

will be set to 8.1.0, but you will fix that manually after the database is created. Leave the

Character Set as US7ASCII.

The next screen asks about control file location, as shown in Figure 5.8. Notice how the assis-

tant puts all the three control files on /u01. Not only does that break with the OFA standard,

but you would also be in a very tough situation if /u01’s disk dies, because you would lose all

your control files at once. You can fix this poor configuration manually, so leave it as is for

now. Increase the Maximum Log Members from 2 to 4.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

117

FIGURE 5.7
Set the Global Database Name to RH1DEV1.

Oracle DBA on Unix and Linux
118

FIGURE 5.8
Define Control File Location.

The next screen, shown in Figure 5.9, has a host of tabs: System, Tools, Rollback, Index,

Temporary, and InterMedia. Each tab allows you to size the datafile(s) for the corresponding

tablespace. Notice again that the default location is /u01, which is not optimal, but you will fix

that once the scripts are generated.

FIGURE 5.9
Size Each Tablespace.

Click through each tab to view the options. For now, leave the default data file locations. Turn

the auto extend feature off. This allows a data file to grow in size if it needs to allocate a new

extent that wouldn’t normally fit. However this is not a good policy to simply let files manage

themselves. Leave the rest of the sizing parameters the same except for the following sizes.

Tablespace Size (M)

SYSTEM 575

TOOLS 100

USER 104

ROLLBACK 675

INDEX 54

TEMP 100

INTERMEDIA 84

You will further adjust some of the parameters in the scripts (especially for rollback segments),

but for now this is enough to get you started. Remember this is only a template, not your pro-

duction system. Advanced topics regarding space management are covered in Chapter 6,

“Daily Activities.”

The defaults on the next screen regarding redo log files are a recipe for disaster. The redo logs

are not multiplexed and they all reside on /u01. Not only is there contention between ARCH

and LGWR, but a single loss of /u01 would cause the loss of all the log groups. They are also

so small (at 500K) that they would be in near continual state of redo log switches during times

of heavy transactions. You should certainly change these before you create the database. For

now, make each redo log file a more reasonable 75M, as shown in Figure 5.10.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

119

FIGURE 5.10
Redo Log Files.

The following screen asks you about Log Checkpoint Interval/Timeout. This refers to the

init.ora parameters LOG_CHECKPOINT_INTERVAL and LOG_CHECKPOINT_INTERVAL.

These parameters identify how often a system checkpoint (CKPT) will occur. For performance

reasons, you want your checkpoints to occur only at redo log switches, so set the Checkpoint

Interval to a value (in OS blocks) greater than your redo log size. Using 8K blocks and 75M

redo log files, you can safely leave the value at 10000 because 8K×10000 is greater than 75M.

Set the Checkpoint Timeout to 0 to disable this parameter.

You’ll want to enable archiving eventually, but not for the database creation, so leave the

Enable Archive Log option unchecked. See Figure 5.11.

Oracle DBA on Unix and Linux
120

FIGURE 5.11
Log Checkpoint Interval and Archive Logging.

The next screen addresses SGA parameters, processes, and block size, as shown in Figure 5.12.

As a DBA, you will often analyze and sometimes change the SGA parameters, so these serve

as preliminary values only. Leave the Shared Pool Size at its default value. For now, increase

the Block Buffers to 6000. This will result in 6000 buffers times the database block size (8K),

so the database buffer cache will be approximately 50M. Increase the log buffer to 540,672

bytes. The number of processes in dedicated server mode needs to be greater than the number

of concurrent users (with one server process each), plus the number of background processes.

Set this number higher; try 200.

The question about database block size has performance implications and it must be addressed

now. Once you set this value (DB_BLOCK_SIZE) and create the database, it cannot be changed.

The larger the block, the more data read into the database buffer cache for each read.

Conventional wisdom is to use a larger block size for DSS applications because you are look-

ing for larger amounts of data and this will improve your read efficiency. For OLTP, where you

are looking for just a few rows to be returned, a smaller block size is more appropriate.

The single most important requirement is to make sure the database block size is a multiple of

your OS block size, otherwise all your reads will be inefficient. For hybrid systems, I usually

go with 8K blocks (8192 bytes).

The final configuration screen deals with Trace File Directories. The default settings are set

correctly in an OFA compliant manner. Leave these settings alone and click Next.

After you have specified the basics of your system, DBCA will ask you whether it should run

the creation now or save the configuration in scripts. Select the scripts option and put them in

the $ORACLE_HOME/assistants/dbca/jlib/rh1dev1 directory you created before you started

the assistant. A pop-up screen will appear stating the scripts will be saved as sqlsid.sh, as

shown in Figure 5.13. Click OK and exit the DBCA.

FIGURE 5.12
SGA and Database Block Size.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

121

FIGURE 5.13
Enter Path for Database Creation Scripts.

Customize the Scripts
As the oracle user, go to the $ORACLE_BASE/admin subdirectory. If you used the DBCA, it

should have made your subdirectories for you. Otherwise, make a subdirectory named after the

SID you plan to create. Then, type these commands:

$ cd $ORACLE_BASE/admin

$ pwd

/u01/app/oracle/admin

$ mkdir rh1dev1

$ cd rh1dev1

$ mkdir create

This create directory is where you edit your scripts. Copy the scripts created by DBCA to this

location:

$ pwd

/u01/app/oracle/admin/rh1dev1/create

$ cp $ORACLE_HOME/assistants/dbca/jlib/rh1dev1/* .

$ ls

rh1dev1alterTablespace.sh rh1dev1ordinst.sh

rh1dev1spatial1.sh rh1dev1context.sh

rh1dev1replicate.sh rh1dev1sqlplus.sh

rh1dev1drsys.sh rh1dev1run.sh

rh1dev1timeseries.sh rh1dev1iMedia.sh

rh1dev1run1.sh sqlrh1dev1.sh

rh1dev1java.sh rh1dev1run2.sh

There is a master script (sqlrh1dev1.sh) that calls all the other shell scripts in order. Use more

on sqlrh1dev1.sh to see the order of the script execution. The main scripts you need to be

concerned about are rh1dev1run.sh, rh1dev1run1.sh, and rh1dev1drsys.sh. Except for

rh1dev1run2.sh, which runs some additional Oracle scripts, the rest of the scripts are used to

install Oracle products and are not present if you did not select them during database configu-

ration. Modification of init.ora is also required to configure control file locations. Modify the

following scripts:

rh1dev1run.sh

This script performs the actual CREATE DATABASE statement. Open this file in an editor

(such as vi) and make the following changes.

Give the system data file and online redo log files the location you created during the planning

stage. Based on the sample configuration in Chapter 3, this should be changed to the following:

DATAFILE ‘/u02/oradata/rh1dev1/system01.dbf’ SIZE 575M AUTOEXTEND OFF

logfile ‘/u03/oradata/rh1dev1/redo01a.rdo’ SIZE 75000K,

‘/u07/oradata/rh1dev1/redo02a.rdo’ SIZE 75000K,

‘/u11/oradata/rh1dev1/redo03a.rdo’ SIZE 75000K;

Notice that the names of the redo log files now have an ‘a’ after them. The suffixes were also

changed from .log to .rdo. In this configuration, these redo log files are not multiplexed. You

will create the database with this configuration and then you’ll learn how to add members to

redo log groups in Chapter 6.

rh1dev1run1.sh

This script starts by running the catalog.sql, which creates data dictionary views (such as

V$SGA). Next, it creates the basic tablespaces for the database. These include rollback, tem

porary, users, and any product-related tablespaces. If you know which application-specific

tablespaces you need to create at this stage, you can add them here. For manageability reasons,

I prefer to keep the creation of tablespaces separate from the database creation. For now, you

can just create the basic tablespaces.

First, modify all the data file locations and give them an appropriate location (not /u01). Next,

consider removing the INDEX tablespace. This tablespace isn’t necessary unless you create a

corresponding “DATA” tablespace. In this example, you will create application-specific table-

spaces, so this INDEX tablespace is unnecessary.

Oracle DBA on Unix and Linux
122

Next, examine the rollback segment allocations. Based on the number of concurrent users (75),

DBCA decided to create 29 (0-28) rollback segments. Reduce this to 25 segments (0-24).

Increase the extent size for each segment from 500K to 1M and adjust the optimal value to

20M. This will force the segment to shrink to 20M if it needs to extend during a transaction.

Each segment starts with 20 extents at 1M each, so each rollback segment will take approxi-

mately 20M. If you size the tablespace at 675M, this configuration will take approximately

500M to allocate initially. This gives you extra room to add additional segments if needed and

for existing segments to extend (allocate additional extents)

.rh1dev1drsys.sh

This script creates the tablespace DRSYS for the Context Option. Modify the script to place

the data file in /u10.

initrh1dev1.ora

The init.ora in $ORACLE_BASE/admin/rh1dev1/pfile needs a minor modification before the

database is created. Change the control file locations from /u01 to /u05, /u09, and /u10.

Creating the Database
Once you create and edit the scripts, you are ready to run them to create the database.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

123

Be Careful with Initial Extents

Resist the temptation to specify a higher initial extent size in an attempt to reduce

contention within these tablespaces. Vendor-provided scripts often do not specify ini-

tial sizes for their tables and indexes so they default to the size specified in the table-

space. This results in many small tables allocating large initial extents until the

tablespace runs out of space (it “blows out”).

NOTE

Filesystems Must Exist

It is assumed that any filesystems not created during the initial machine setup have

been created prior to this step. Each should have an ../oradata/rh1dev1 subdirectory

owned by the oracle user.

NOTE

Running the Scripts
Before you run the database, take a moment to verify a few parameters. Verify your $ORACLE_

SID and $ORACLE_HOME settings before you attempt to create the database. Also check that

the CREATE DATABASE command refers to the new database you want to create, not a pre-

existing SID you used earlier.

Go to each filesystem and create the ../oradata/rh1dev1 subdirectory for the data files and make

sure it is writeable by oracle. Also check that your data files are not going to override any

existing data files. Finally, verify that you have enough room (with some to spare) on each

filesystem for the files you plan to create.

Once you have verified that the system is ready, cd to $ORACLE_BASE/admin/rh1dev1/create

and execute the master shell script:

$. ./sqlrh1dev1.sh

Expect this to seemingly hang for a few seconds to several minutes. Oracle is creating data

files and allocating memory. This will impact the system. Oracle then has a whole list of

scripts and subscripts to run. Your job is to sit back and watch for major errors. Huge amounts

of text will scroll by far too quickly to read, but don’t worry, as this data is being written to a

series of log files.

This is the database creation. Oracle is starting with the first script and is running all the sub-

scripts after that. This can easily go on for an hour. Once you kick it off and watch it for a few

minutes (to ensure it is running), you can do something else because no further action is

needed.

There will be many Oracle errors on the screen. There are “good” errors and “bad” errors. One

good error you will see is ORA-01432: public synonym to be dropped does not exist.

Before Oracle attempts to create an object (such as a synonym), it will attempt to drop it.

Obviously if the synonym has never been created, it cannot be dropped. Hence, you get this

“good” error.

An example of a “bad” error is a rapid succession of ”not connected” messages. In this case,

for whatever reason, Oracle failed to create the database or failed to connect to it. Oracle is

still, however, attempting to run all the database-creation scripts even if the database cannot be

created or doesn’t exist. You can either press CTRL+C to get out of this or let it run. Either

way, you need to look at your log files (start with the first one created) and determine why the

script failed.

The database create will run for about an hour and will then finish. At this stage, you need to

determine whether it was successful. This will involve several database-verification steps.

Oracle DBA on Unix and Linux
124

Review the Create Logs
First, determine whether the database instance is still running.

$ ps -ef | grep -i pmon

oracle 1344 1 0 17:39 ? 00:00:00 ora_pmon_rh1dev1

Go to $ORACLE_BASE/admin/rh1dev1 and look at the directories created. You should see the

OFA-compliant subdirectories adump, bdump, cdump, pfile, and udump. The database-creation

log files will be located in the create subdirectory. Skim through the alert.log in the bdump

directory. Also determine whether any trace or core files were created in the bdump, cdump, or

udump directories. Expect to see a few files in the bdump and udump; you may use compress on

these files if they are large and delete them later if they are not needed. If you see any core

files in cdump (you should not at this point), use ls -l to get an idea of just how big they are

and then delete them with rm.

Next, go through the logs in the create subdirectory to determine whether there were any error

messages. You can scroll through the smaller ones, but use a grep to search for Oracle errors in

larger scripts.

$ grep -i ORA crdb2.log | more

ORA-01432: public synonym to be dropped does not exist

ORA-01432: public synonym to be dropped does not exist

ORA-00942: table or view does not exist

ORA-01432: public synonym to be dropped does not exist

...

Once again, you know that these errors are expected. What you want to look for are Oracle

errors not like these. Investigate why any of these errors occurred. If they are related to a spe-

cific feature, such as Context Option, you might want to determine how important that feature

is to you. If you can fix the problem and rerun the script, do so. That is one of the benefits of a

modular design.

Examine the Database Instance
The next step is to login to the database using SQL*Plus and look around. Use the default sys-

tem/manager account for this.

$ sqlplus system

SQL*Plus: Release 8.1.6.0.0 - Production on Sun Feb 18 17:59:13 2001

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Enter password:

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

125

Connected to:

Oracle8i Enterprise Edition Release 8.1.6.1.0 - Production

With the Partitioning option

JServer Release 8.1.6.0.0 - Production

SQL> show user

USER is “SYSTEM”

SQL>

Oracle DBA on Unix and Linux
126

Security Issues

There are two security issues here. First, Oracle always creates the SYSTEM account

with manager as the password and the SYS account always has change_on_install as

its password. This is public information and will be changed later in this chapter, but

it is amazing how often these passwords are not changed. The second issue deals

with not typing system/manager on the command line. Sure, you can log in with

SQL*Plus system/manager, but don’t do it! Not only can people look over your shoul-

der or scroll up on your screen when you are not there, but there is an even bigger

problem. Anyone logged into the Unix system can use ps -ef to see your log in to

SQL*Plus and some platforms will show the password. This information also goes into

your history file.

NOTE

Run SELECT statements from DBA_DATA_FILES, V$CONTROLFILE, and V$LOGFILE.

SQL> select tablespace_name, file_name, bytes

2 from dba_data_files order by file_name;

TABLESPACE FILE_NAME BYTES

---------- ------------------------------------ ------------

SYSTEM /u02/oradata/rh1dev1/system01.dbf 602,931,200

TEMP /u03/oradata/rh1dev1/temp01.dbf 104,857,600

TOOLS /u04/oradata/rh1dev1/tools01.dbf 104,857,600

USERS /u04/oradata/rh1dev1/users01.dbf 109,051,904

RBS /u05/oradata/rh1dev1/rollback01.rbs 707,788,800

DRSYS /u10/oradata/rh1dev1/drsys01.dbf 88,080,384

SQL> select name from v$controlfile;

NAME

/u05/oradata/rh1dev1/control01.ctl

/u06/oradata/rh1dev1/control02.ctl

/u09/oradata/rh1dev1/control03.ctl

SQL> select group#, member from v$logfile;

GROUP# MEMBER

---------- ---------------------------------

1 /u03/oradata/rh1dev1/redo01a.rdo

2 /u07/oradata/rh1dev1/redo02a.rdo

3 /u11/oradata/rh1dev1/redo03a.rdo

Compare the results of these queries against the files that you wanted to create. They should

match, otherwise some file was not created. If this is the case, determine whether a filesystem

is full (df -k or bdf) and thus cannot create a data file. Next, ensure that the pathnames and

filenames you specified in your create scripts are valid (a common mistake). Finally, exit

SQL*Plus and cd to the directories where the files should be created. Verify that they are there

and that the file structure is correct and OFA-compliant.

Compile Invalid Objects
The next step of verification involves getting object counts and recompiling invalid objects.

Login as SYSTEM into SQL*Plus and issue the following command:

SQL> select object_type, count(*) from dba_objects

2 where status = ‘INVALID’ group by object_type;

OBJECT_TYPE COUNT(*)

------------------ ----------

PACKAGE BODY 15

VIEW 26

To get the names and types of each invalid object, type the following:

col object_name format a30

col owner format a10

SQL> select owner, object_name, object_type from dba_objects

2 where status = ‘INVALID’ order by object_type, object_name

3 /

In this case, you can see that there are some invalid objects, which is normal. My system had

41; if you see hundreds or thousands of invalid objects, you should be concerned. You simply

need to recompile them. You can either recompile each manually, or you can use dynamic SQL

to generate the SQL to compile the objects. Dynamic SQL is simply writing SQL to generate

more SQL.

For example, you want to issue the following:

SQL> alter view SYS.USER_REPOBJECT compile;

View altered.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

127

To use dynamic SQL to create a script to compile all the objects, do the following:

SQL> set heading off

SQL> set feedback off

SQL> set pagesize 200

SQL> spool compile_invalid_views.sql

SQL> select ‘alter view ‘ || owner || ‘.’ || object_name ||

2 ‘ compile;’ from dba_objects

3 where status = ‘INVALID’ and object_type = ‘VIEW’

4 /

alter view SYS.ALL_REPCAT compile;

alter view SYS.ALL_REPCOLUMN compile;

...

SQL> spool off

Then type from within SQL*Plus !vi compile_invalid_views.sql to invoke the vi editor.

The ! allows you to enter Unix commands from the SQL*Plus prompt. Remove the SQL state-

ment at the top of the file and the spool off command at the end of the file. Next, type ZZ to

save, exit vi, and return to SQL*Plus. Then, run the script to compile the invalid views.

SQL> set feedback on

SQL> set heading on

SQL> @compile_invalid_views.sql

View altered.

View altered.

...

That’s dynamic SQL. All your views should be compiled. Sometimes there is a dependency

and not all the objects will compile the first time because they are depending on another object.

If a few invalid objects remain, repeat this process a few times. If the object still won’t com-

pile, type show errors after the error message to identify the problem.

Write the dynamic SQL to recompile any other invalid objects. Use the following syntax for

packages, package bodies, and procedures:

alter package package_name compile;

alter package package_body_name compile body;

alter procedure procedure_name compile;

Oracle DBA on Unix and Linux
128

Dynamic SQL

Learn how to write dynamic SQL. Next to becoming proficient with vi and command-

line editing, dynamic SQL is one of the biggest timesavers for the Unix DBA. It might

seem a little awkward at first, but it is much faster and less prone to human errors

than manual entry.

NOTE

If you already executed the initjvm.sql file (within rh1dev1java.sh) to create the Java

objects during the database create, there is no need to run it again. This is a system resource

intensive script and sometimes it fails. If you already ran it, don’t run it again. Simply get a

count from the DBA_OBJECTS where object_type like ‘JAVA%’. Your number should be

around 9000 objects and none of them should be invalid.

Clean Up a Failed Database
If, for some reason, the database create did fail, the problem can likely be found in the first

few create database logs. Use ps -efl to see whether any of the background processes are still

up (it’s possible). If they are running and you cannot shut them down normally, you need to

kill them and remove the shared memory segments (see Chapter 13, “Unix Server

Monitoring”) or reboot the server.

If some database files were created, you will have to either remove any files created or include

the REUSE parameter in the database scripts (which should already be used). You might also

have to delete or re-create the password file in $ORACLE_HOME/dbs. If you delete the

orapwrh1dev1 file, modify the init.ora parameter to REMOTE_LOGIN_PASSWORDFILE = NONE.

Once those cleanup tasks are completed and you have fixed the original problem, try again to

create the database.

Post-Creation Activities
After you have created the database, there are a few things that you need to do. You need to

change the passwords, verify the database is in oratab, and create a link for the init.ora.

These steps will make your new database ready for normal use.

Changing the Passwords
First, change the passwords for the users SYS and SYSTEM. You can use the SQL*Plus pass-

word-changing utility, which has a similar look to the Unix passwd command:

SQL> password

Changing password for SYSTEM

Old password:

New password:

Retype new password:

Alternatively, you can simply issue SQL to do this; just make sure no one sees it. Typing a

!clear will enter the Unix shell, clear the screen, and return you to SQL*Plus. This, unlike

using SQL*Plus system/manager, is not visible via ps.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

129

SQL> alter user sys identified by superdba7;

User altered.

SQL> !clear

There are other user accounts that should be locked or have their passwords changed. Using

DBA_USERS and selecting the username will yield approximately 15 standard accounts,

depending on which features you loaded.

SQL> select username from dba_users order by created;

USERNAME

SYS

SYSTEM

OUTLN

DBSNMP

TRACESVR

AURORAORBUNAUTHENTICATED

ORDSYS

ORDPLUGINS

MDSYS

CTXSYS

10 rows selected.

If you have any user test accounts such as SCOTT, ADAMS, BLAKE, CLARK, and JONES,

they can be locked by this command:

SQL> alter user scott account lock;

User altered.

Special accounts such as CTXSYS, TRACESVR, ORDSYS, and ORDPLUGINS can be

locked if you are not using the Context Option. MDSYS is used for the Spatial Option so that

can be locked if you don’t need it.

Oracle DBA on Unix and Linux
130

Change Default Passwords
Make it a point to change default passwords or people will circumvent your security

procedures. There is a very popular story among DBAs of a manager traveling to a

“secure” site to get some data from a system. Upon arrival he was hassled for hours

about security clearance. Frustrated and desperate, when no one was looking, he

tried logging in as SYS/change_on_install. To his astonishment he was able to get

You’ll learn about changing passwords for the DBSNMP user in Chapter 7, “GUI Management

Products.” OUTLN should have its password changed, as it is used for database statistics and

tuning. AURORAORBUNAUTHENTICATED is a special case. Based on the information I have been

given, you should not lock it nor should you change its password. This is supposed to be

changed in a later release and currently it doesn’t appear to have dangerous privileges, but

some DBAs find this situation disturbing.

Modifying oratab File
The file oratab contains a listing of each database, its ORACLE_HOME, and a Y|N flag to

determine whether the database should be automatically restarted on machine reboot. It is used

to determine which databases are on a server, their versions, and if they should be automati-

cally started. Shell scripts often use this file when they set up a user’s login environment. The

oratab file is located in /etc on HP-UX and Linux machines, whereas it is in /var/opt/oracle

on Sun Solaris platforms.

If you create a database completely with DBCA or use DBCA to generate scripts, the oratab

file will be automatically updated. If you created and ran the scripts yourself, you need to add

a line to this file containing your new database. Here are the key fields of an oratab file.

demo:/u01/app/oracle/product/8.1.6:N

rh1tst1:/u01/app/oracle/product/8.1.6:N

rh1dev1:/u01/app/oracle/product/8.1.6:N

Simply vi oratab, move to the last line, and then type yy to “yank” one line. Then type p to

paste the line at the end. Edit the line to show your database name and the correct

ORACLE_HOME. For now, leave the last column as N. You’ll learn about setting a database to be

restarted automatically on reboot in Chapter 9, “Backup and Recovery.”

Create a Soft Link for init.ora
Under $ORACLE_HOME/dbs, there needs to be a Unix soft link to the init.ora in $ORACLE_BASE/

admin/database_name/pfile. To see what links already exist, do this:

$ pwd

/u01/app/oracle/product/8.1.6/dbs

$ ls -alt init*

lrwxrwxrwx 1 oracle dba 51

Feb 17 11:55 initrh1tst1.ora ->

/u01/app/oracle/admin/rh1tst1/pfile/initrh1tst1.ora

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

131

in. The manager then got the data he needed and left without ever telling the site

about their huge security gap. I cannot tell for sure how much is exaggeration, but

it’s a safe bet this security hole exists in many systems.

lrwxrwxrwx 1 oracle dba 45 Feb 17 10:44 initdemo.ora ->

/u01/app/oracle/admin/demo/pfile/initdemo.ora

-rw-r--r-- 1 oracle dba 835 Apr 11 2000 initsoxx.sql

-rw-r--r-- 1 oracle dba 9219 Aug 27 1999 initdw.ora

-rw-r--r-- 1 oracle dba 8385 Aug 27 1999 init.ora

Notice the “l” in first field for the permissions (such as lrwxrwxrwx). This indicates a soft link.

In this example, the file initrh1tst1.ora is really just a pointer to the real file in /u01/app/oracle/

admin/rh1tst1/pfile/initrh1tst1.ora. Oracle looks in this location ($ORACLE_HOME/dbs) to

find the init.ora for the database you are trying to start. Oracle will find and use the soft-linked

init.ora file in this location to start the database.

The links are created automatically if the DBCA is used to either create the database or gener-

ate the scripts. In this case, they were created automatically.

If you created the scripts without the DBCA, the only init.ora for the new database is in the

pfile directory, so a link needs to be created to this file. The syntax is as follows:

ln -s where the file physically exists

where you want the file to appear to exist.

$ ln -s /u01/app/oracle/admin/rh1dev1/pfile/initrh1dev1.ora /u01/app/oracle/

product/8.1.6/dbs/initrh1dev1.ora

The file still physically resides in ...admin/rh1dev1/pfile, but it will also appear to be in

$ORACLE_HOME/dbs.

Oracle DBA on Unix and Linux
132

Additional Scripts

Some additional scripts from $ORACLE_HOME/rdbms/admin might be executed to

provide extra functionality or to prepare the database for special utilities. One exam-

ple is locking scripts, discussed in Chapter 10, “When Things Go Wrong.”

NOTE

Configuring Net8 for the New Database
Once the database is created, you need to include it in the Oracle networking files. Specifically,

you need to make entries in the tnsnames.ora and listener.ora files. Then you need to start

the listener process so the server can detect and route incoming requests to the appropriate

database.

You can accomplish these tasks by either editing the files manually or by running the Oracle

Net8 Assistant. Net8 is a GUI, like the Database Creation Assistant. To start the tool, type

netasst. Once you have configured it for one database, manually editing the files to add addi-

tional databases is easy. Or, if you have working listener.ora and tnsnames.ora files from

another server, you can copy them to your new server and edit them for the new databases.

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

133

Automatically Configured Files

If you used the DBCA to create your scripts or to create the database, you will find

that the network files are automatically configured. You can use this method to

quickly generate working tnsnames.ora and listener.ora files in your $ORACLE_

HOME/network/admin directories if you decide not to use the GUI network configura-

tion tools.

NOTE

tnsnames.ora
The tnsnames.ora file initially resides in $ORACLE_HOME/network/admin. Copy this to /etc

on HP-UX and Linux machines. If you are on Sun Solaris, copy the file to /var/opt/oracle.

Oracle will work with the file in its original location, but as you install more versions of Oracle

on the same machine, it is helpful to have the file outside a specific ORACLE_HOME.

Because this file is outside the filesystems Oracle normally occupies, make sure it is not over-

looked during backups. Figure 5.14 shows a sample tnsnames.ora file.

FIGURE 5.14
The tnsnames.ora File

The tnsnames.ora file is a client-side file. It is located on the server here to make connections

to databases on other servers. When a user starts SQL*Plus and issues a connect string (for

example, sqlplus mikew@rh1dev1), the tnsnames.ora file is examined to determine whether

rh1dev1 exists. If rh1dev1 is found, a connection is attempted with the server specified on the

specified port. Assuming that rh1dev1 is found and the username and password are valid, a

database connection is established. If the value is not found, an Oracle message reports that the

tnsnames could not resolve the service name (ORA-12154: TNS:could not resolve service

name).

Oracle DBA on Unix and Linux
134

Connecting to Local Databases

If you are logged on the same server as the database and have your ORACLE_SID

specified, you do not go through this process. Simply type sqlplus username; do not

specify the database with the @database_name. You connect directly to the server via

the bequeath protocol. You do not need the listener to be running to make this kind

of connection. A ps -ef will show this connection as local.

$ ps -efl | grep -i local

oracle 2366 2365 18:45 ? oraclerh1tst1

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

NOTE

Once you have modified the server’s tnsnames.ora, the copies on the client’s PCs and other

servers must be updated. If there are only a few such machines, the changes can be done man-

ually. More likely, there are too many of these, so a new copy with the new database should be

sent to each machine. This can become an administrative mess, particularly in a large environ-

ment. In such environments, a nightly or weekly job to refresh every client tnsnames.ora file

with a copy of the master file might make sense.

listener.ora
The listener.ora file, shown in Figure 5.15, is the parameter file for the listener process. The lis-

tener is a background process that listens for incoming connection requests and then passes

those requests to the appropriate database. The listener.ora file specifies which port valid con-

nections will come in on, which protocols to use, and which service name connects to which

database. This file resides in $ORACLE_HOME/network/admin. Your connections will ini-

tially be through port 1521. The use of GIOP and port 2481 is for Java and will be covered in

Chapter 16, “Java Inside the Database Server.”

FIGURE 5.15
The listener.ora File

The key set of lines you need to copy and modify for the new database are as follows:

(SID_DESC =

(GLOBAL_DBNAME = rh1tst1.mike.com)

(ORACLE_HOME = /u01/app/oracle/product/8.1.6)

(SID_NAME = rh1tst1)

)

Make sure you have added the correct database name, and that it’s spelled correctly. Next, you

must consider the listener process itself.

listener
The listener process must be running for connections from other machines to be successful. If

the listener process is not running, you will be able to connect to the database locally, but out-

side connections into your database will fail. There is typically one listener process on each

server that supports all the databases (regardless of version) for that server. To start the listener

process simply type lsnrctl start, as shown in Figure 5.16.

You can use ps -ef to determine whether the listener process is running, or you can check the

listener itself:

$ lsnrctl status

This will tell you whether the listener is running and for what databases (service handlers) it is

listening.

After you modify the listener.ora file, you need to bounce the listener for the changes to

take effect. You can either issue the lsnrctl reload command, or you can actually bounce it.

To stop the listener, issue this command:

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

135

$ lsnrctl stop

LSNRCTL for Linux: Version 8.1.6.0.0 - Production on 19-FEB-2001 19:32:17

(c) Copyright 1998, 1999, Oracle Corporation. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC)))

The command completed successfully

Don’t forget to restart the listener after you have stopped it if your intent is to bounce it.

Finally, to get a more comprehensive listing of the listener commands, try lsnrctl help.

Oracle DBA on Unix and Linux
136

FIGURE 5.16
Starting the listener Process.

Don’t Forget the listener!

More than one DBA has started the production database in the morning, but has for-

gotten to start the listener. The result is confused users asking, “Is the database up?”

Make sure that the listener process is running after you start your databases.

NOTE

Remember that there are two ways to connect into the database, either locally or remotely. A

local connection is when you are already logged into the database server, your ORACLE_SID is

set, and you do not specify the database in your connect string:

$ sqlplus system

A local connection will use the bequeath protocol and does not require the listener to be run-

ning. Typically, this is how most DBAs connect to the database because they are already

logged onto the Unix server via telnet or XWindows.

A remote connection involves the user connecting from a client machine to the database server.

This requires the use of a connect string specifying the target database and a tnsnames.ora on

their machine. The listener process must also be running on the database server. This is the

type of connection used by most end users. An attempt to connect to a remote database looks

like this:

$ sqlplus system@rh1dev1

That covers the basics of setting up Oracle networking. The more advanced features of Net8

always seem to be evolving, but these fundamentals will get you production-ready. Now that the

database is set up and connectivity has been established you are ready from a technical stand-

point. Some shops have procedures for documenting new databases, plus you need to update

your own spreadsheet for the new database, so don’t forget these final administrative tasks.

Customizing Your .profile File
The .profile file you used to create the database will work, but it can be improved. Two popular

modifications in the Unix environment are to provide a prompt for the database SID when you

log on and to provide command-line editing.

To get a prompt for your SID and have your environment properly set up, you need to use the

/usr/local/bin/oraenv file and have an updated /etc/oratab file. Simply add the following

code to the end of your .profile file (located in your home directory):

echo “The SIDs on this machine are:”

cat /etc/oratab | awk -F: ‘{print $1}’ | grep -v “#”

ORAENV_ASK=”YES”

export ORAENV_ASK

. /usr/local/bin/oraenv

This code uses awk to extract and print the databases listed in /etc/oratab. You then select one

of the SIDs and oraenv sets your environment using this value. Your next login will appear like so:

$ su - oracle

Password:

The SIDs on this machine are:

demo

rh1tst1

ORACLE_SID = [rh1tst1] ? demo

$ echo $ORACLE_SID

demo

Creating a Database

CHAPTER 5

5

C
R

E
A

T
IN

G
A

D
A

TA
B

A
S
E

137

The next common .profile modification uses the Korn shell feature of command-line editing

and your history file. If you want to repeat a command you entered previously, simply type

ESC+K. Then type K and each previous command you have entered will appear on the line.

Each time you press K, the previous command will appear and you can then execute the com-

mand you want. Alternatively, you can edit the command as if you were in the vi editor. Simply

use your normal vi commands—h and l—to move back and forth through the line. Use x to

delete a character, and a or i to append or insert text. Although it might seem trivial at this

stage, these features can be real timesavers.

To implement this, you must be set to use the Korn shell. Verify that you are set by default to

use the Korn (ksh) shell.

$ grep oracle /etc/passwd

oracle:x:501:504:Oracle Software Owner:/home/oracle:/bin/ksh

In your .profile file, add the following line before you have the SID code:

export EDITOR=vi

By defining your editor, you can also edit your previous SQL statement in vi when you are in

SQL*Plus. Log in to SQL*Plus and type SELECT * FROM V$DATABSE; and press Enter. Then

type ed once the query returns. You should find yourself in vi with your SQL statement ready

to be edited:

select * from v$database

/

~

~

You can type ZZ to save, exit vi, and return to the SQL*Plus prompt. Then enter a / to execute

the command you edited. While in vi, if you want to, you can also save the SQL to a .sql file

by typing :w file_name.sql. This is a quick and easy way to save your SQL as scripts. You

will notice an afiedt.buf file in your directory; it contains the last SQL you edited.

Summary
This chapter covered creating and customizing a database via scripts. It is easiest to have the

DBCA create a basic template and then edit it to meet your needs. Expect the actual database

creation to take a while and produce many errors, but still be successful. The chapter also cov-

ered troubleshooting and cleanup. You read about post-creation issues dealing with the oratab

and invalid objects. Next, you took a brief tour of the Oracle networking environment, includ-

ing tnsnames.ora, listener.ora, and the listener process. Finally, you learned a few pointers on

setting up your login environment to support multiple SIDs and command-line editing.

Oracle DBA on Unix and Linux
138

CHAPTER

6
Daily Activities

ESSENTIALS

• There are many different facets of database

administration in which the DBA has to be

proficient.

• There are several different ways to start up

and shut down Oracle and the DBA needs to

understand the differences between each

method.

• Managing and tuning database structures and

files is a core DBA responsibility.

• Creating and managing database users, their

objects (tables and indexes), and security is

another DBA responsibility.

• Monitoring the various logs and alert files for

each database, their backups, and any nightly

jobs is an important daily responsibility that

cannot be skipped.

This chapter focuses on what a Unix DBA does on a “normal” day. It examines some the

technical tasks performed by all DBAs (such as starting a database), but it also discusses some

tasks not always covered in DBA school. It does not attempt to detail every conceivable option

and syntax for basic Oracle commands. This information is best obtained from the Oracle manu-

als. Instead, this chapter attempts to impart unto the reader some the administrative knowledge

and tasks of a DBA, not just the technical skills. It is this kind of “know-how” that separates

people who can simply operate databases from people who are database administrators.

There are certain activities that DBAs are expected to perform on a daily basis. Most people

might immediately suggest creating tables or adding indexes, but that is a bit short-sighted. The

daily activities of a DBA usually center on either making the data safe or making it available.

Tasks related to these tenants of database administration include checking backups, checking

the status of previous night’s processes, verifying the database is up and accessible to the users,

monitoring the database for problems, and (hopefully) preventing the problems before they

occur. Usually, only after these tasks are done, does the DBA have time to start creating tables

and indexes.

Database Views
One of the most effective tools the DBA has is access to the data dictionary. The use of V$,

DBA_X, ALL_X, and USER_X views make a “real” DBA. A solid knowledge of database

views from the command line is one common characteristic I’ve noticed with every good DBA

I’ve worked with. By the same token, most of the DBAs I’ve worked with that have struggled

usually had no real concept of these views. If their GUI management tool wasn’t available,

they were largely helpless.

Users with DBA privileges have access to all the views in the database. Normal users have

access only to USER_X and ALL_X. The following table identifies the different types of

information offered by each type of view.

View Name Information Access

V$ Dynamic performance information DBAs

DBA_X All objects in database DBAs

ALL_X All objects you have access to All Users

USER_X Objects you own All Users

Oracle DBA on Unix and Linux
140

The data dictionary provides a host of views with information regarding every object and

statistic in the database. This information is provided in a read-only (not updateable!) format to

the users. This represents a very good supply of information for anyone able to query it. In

fact, most the GUI-management tools (covered in Chapter 7, “GUI Management Products”)

get their information from these views and then format it in colorful charts and graphs for the

users.

One of the most beneficial activities I did as a new DBA was create an easy-to-read list of all

the views available to me (as a DBA) and made a commitment to learning what some of the

more common views were. By no means have I memorized all of them, but I know what many

of them are and I know when to look for one even if I cannot remember its exact name.

To get a listing of all the standard views, issue the following command:

select synonym_name from dba_synonyms where

synonym_name like ‘V$%’ or

synonym_name like ‘DBA%’ or

synonym_name like ‘ALL%’ or

synonym_name like ‘USER%’

order by synonym_name;

Spool this off to a file and edit it to remove unneeded or redundant information.

Some of the more popular views used by DBAs are:

v$database, v$datafile, v$controlfile, v$instance,

vlog, vlogfile, v$recover_file v$sga, v$session

dba_constraints, dba_data_files, dba_extents, dba_free_space,

dba_ind_columns, dba_indexes, dba_objects, dba_segments,

dba_sequences, dba_synonyms, dba_rollback_segs, dba_role_privs,

dba_roles, dba_tables, dba_tab_privs, dba_tablespaces, dba_users

To get a description of any of these views, use desc view_name from within SQL*Plus.

Queries on many of these views will provide very large listings that can be difficult to read. It

is almost essential to modify some of the default format masks and display options within

SQL*Plus. To do this in an efficient manner, create a login.sql file that will exist in the

directory from where you log in to SQL*Plus. This file will be read automatically when you

start SQL*Plus and customize the display options for you. It will also issue a SELECT state-

ment to identify the database and will identify the user. Figure 6.1 shows how this is done.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
141

Oracle DBA on Unix and Linux
142

FIGURE 6.1
Customizing the SQL*Plus Environment.

Oracle Startup/Shutdown
Database startup and shutdown requires more knowledge than just knowing the SQL syntax.

There are several options and ramifications regarding database startup. Depending on what you

need to do, you might start the database where only the memory and background processes are

started or you might also include the data files. When it is time to shut down the database,

there are also several options and ramifications you need to be aware of. This section examines

how Oracle starts up and shuts down.

Database Stages
Starting and stopping the database is as fundamental to the DBA’s job as bouncing the server is

to the SA’s job. There are times when the DBA must shut down the database (such as during

cold backups), and there are times when the database should bounce (such as when something

goes wrong and hundreds of users need to be killed).

An Oracle database instance has four states of existence. Each state represents a stage, from

taking a closed set of database files (no memory or processes), creating the instance (memory

and processes), creating the instance and reading the control files(s), and opening the database

files for normal access. During this evolution, each stage has its own set of characteristics.

Certain database-maintenance and recovery tasks require the database to be in a specific state,

so the DBA needs to understand each state and its implications.

The four states of an Oracle database instance are shutdown, nomount, mount, and open.

Figure 6.2 shows the evolution from shutdown to open.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
143

Read init.ora

Allocate Memory (SGA)

Start Background Processes

Open and Read Control File

Open All Database Files

Open

(Instance and All Files)

Read init.ora

Allocate Memory (SGA)

Start Background Processes

Open and Read Control File

Mount

(Instance and Control File)

Read init.ora

Allocate Memory (SGA)

Start Background Processes

Nomount

(Instance)

Shutdown

FIGURE 6.2
Database Stages.

As you can see, each stage has specific characteristics:

• Shutdown No database files are open nor are any processes or memory structures

allocated. The database is not accessible. This is used for cold backups.

• Nomount During the nomount stage, only the instance (memory structures and

background processes) is started. The init.ora file is read to get the parameters for the

instance, but no data or control files are opened. During this stage, databases are created

via the CREATE DATABASE statement. If you have sized your SGA too big or the

expected memory resources are not available, an error will occur at this stage.

• Mount The init.ora is read, the instance is started, and the control file(s) is read.

Application data and DBA_X tables/views are not available, but information from the V$

tables is accessible. At this stage, it is important to realize that the control file is read so

Oracle knows about the database structure, but those files are not yet open. This allows

maintenance on data files and redo log files to be performed. Database recoveries are

also performed from this stage.

• Open The init.ora is read, the instance is started, and all the database files are opened

and are accessible to users. This is the normal state of the database.

Database Startup
When you start a database, you can specify which state it will open to. The default is open

(STARTUP), but you can specify STARTUP NOMOUNT or STARTUP MOUNT depending

on which tasks you need to perform. The database does not open directly to any one particular

stage; it progresses from the nomount to mount to the open stage. If any problems are encoun-

tered along the way, the process stops and an error message is issued.

To start a closed database:

1. Log in as oracle (or any user in group dba).

2. Set your ORACLE_SID to the instance you want to start. Verify your ORACLE_HOME

is set to the correct database version.

3. Start SQL*Plus and connect internal (desupport for this is covered in Chapter 15,

“Migrations”).

4. Start the database. Figure 6.3 shows an idle database instance being completely started.

Oracle DBA on Unix and Linux
144

FIGURE 6.3
Database Startup.

Notice that Figure 6.3 says “Connected to an idle instance”. This indicates the instance you are

attempting to connect to is not started. Your database is not started if you start SQL*Plus and

see the following:

SQL> select * from v$database;

select * from v$database

*

ERROR at line 1:

ORA-01034: ORACLE not available

This is a common mistake for beginners. It is also not what you want to hear over the phone

from a user!

If you start the database in mount or nomount mode, you can continue to open the database

from that stage:

SQL> alter database open;

Database altered.

Another handy startup option is STARTUP RESTRICT. When the database is started in

restricted session mode, only users (such as those with roleDBA) with the system privilege

RESTRICTED SESSION can connect to the database. Use this when you are performing

maintenance or want only certain users to be able to log in.

If the database is already open, you can set it to restricted session even if normal users are

logged in (no new users will be able to log in):

SQL> alter system enable restricted session;

System altered.

Once your task is completed, you can open the system to allow regular users to log in.

SQL> alter system disable restricted session;

System altered.

Oracle will, by default, use the init.ora specified in the $ORACLE_HOME/dbs directory. This is

typically a database link to the init.ora in the $ORACLE_BASE/admin/oracle_SID/pfile

directory. You can override this default by specifying a PFILE parameter on the startup line.

Use this method when there is a special init.ora file you need to use. For example:

SQL> startup pfile=’$ORACLE_BASE/admin/rh1dev1/pfile/initrh1dev1.ora’

ORACLE instance started.

Database Shutdown
A database shutdown roughly goes in the opposite order of a startup. Oracle tries to shut down

in the following manner:

1. Wait until all users log off or are killed so transactions are either committed or rolled

back.

2. Issue a check point so all the redo log and database buffers are written to disk and the

file headers are updated with the current SCN.

3. Close the database files.

4. Deallocate the memory structures and terminate Oracle processes.

Like the database STARTUP command, there are several options for database SHUTDOWN.

Each option performs the shutdown steps listed previously in a slightly different manner. Use

the least violent method you can while still shutting down the database within your time con-

straints and safety margins. Your shutdown options are (from least to most violent):

SHUTDOWN, SHUTDOWN TRANSACTIONAL, SHUTDOWN IMMEDIATE, and

SHUTDOWN ABORT.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
145

SHUTDOWN
The preferred method to shut down a database is simply the SHUTDOWN command. This

kindly waits for each user to log off or be killed. Oracle then shuts down the database. If you

can use this method, do so. However, there are seldom times when you (the SYS user) are the

only one connected to the database. Remember, when using this method, Oracle waits until

everyone except you logs off the database before the shutdown continues. The alternative to

waiting for everyone to log off (often an unrealistic option) is to kill each user session, at

which point Oracle will perform the shutdown.

You can kill users in the manner shown in Figure 6.4 until you are the only user left and

shutdown can proceed.

Oracle DBA on Unix and Linux
146

FIGURE 6.4
Killing Users.

The ALTER SYSTEM KILL SESSION ‘SID,SERIAL#’ command kills the user session and

forces a rollback of any current transaction. The problem is that it can take PMON a while

(hours to days even) to remove the session. Even though the users status is ‘KILLED’, the user

is still logged in and normal shutdown will not proceed.

Know What Session You Are Killing

Be careful when specifying the SID (not the same as ORACLE_SID) and serial number

to kill a user. Make sure you enter the correct SID and serial number for the user you

want to kill. It is easy to accidentally enter the values for a background process. These

are the first rows returned from V$SESSION where there is no value listed for the

username (see Figure 6.4).

NOTE

Use this method of shutdown to guarantee a “clean” shutdown where all the file headers are

updated. If you are taking a cold backup, insist on this method. If many users are logged on

and you must use a more drastic shutdown option, that is fine. After the shutdown, start the

database normally and then do a regular shutdown, which should work because no one has

logged on. This will guarantee a clean shutdown.

A normal shutdown should look like this:

SQL> shutdown;

Database closed.

Database dismounted.

ORACLE instance shut down.

SHUTDOWN TRANSACTIONAL
This method is new to Oracle 8. Using this method, Oracle waits for each user to either

commit or rollback their current transaction. Then Oracle kills their session and performs the

shutdown once all the users are off the system.

This is an option, but it relies on waiting for the users to finish their transactions. Theoretically,

this is a good idea, but if an OLTP user has gone to lunch or home for the weekend, you will

be waiting for a while! For that reason, I typically skip this option and either kill sessions or

use SHUTDOWN IMMEDIATE.

SHUTDOWN IMMEDIATE
Using this method, Oracle kills all user sessions (forcing a rollback) and then performs the

normal shutdown procedures. If you need a system down and more users are logged in than

you care to kill manually, this is a good method.

SHUTDOWN IMMEDIATE is supposed to provide a clean shutdown (and it probably does),

but many DBAs feel safer with a normal shutdown. If I need to shut down a database for cold

backups with SHUTDOWN IMMEDIATE, I wait for the database to shut down, and then issue

a startup and then a normal shutdown. This might not be necessary, but this extra step is worth

it to me.

The problem with SHUTDOWN IMMEDIATE is that it can take a while (several minutes or

more) for all the transactions to roll back and for the sessions to be killed. It will, however,

finish sooner than if you entered the kill commands manually. If you find this process is taking

too long and you really need the system down immediately, type CTRL+C to escape the

shutdown, and read the next section on shutdown abort.

SHUTDOWN ABORT
When I refer to a violent shutdown, this is it. This effectively slams the door on all the user

sessions and kills the database. There is no automatic checkpoint or log switch before the

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
147

database goes down. This results in a database that is in an inconsistent state and will require

automatic instance recovery on the next startup. During this process, Oracle rolls back uncommit-

ted transactions and makes sure committed transactions are applied. Control files and data files

are resynchronized. Once this process is done, the database will be opened for normal use.

This normally occurs without problems, but it is not something experienced DBAs like to do.

If you need to do a SHUTDOWN ABORT, at least try to force a checkpoint (ALTER SYSTEM

CHECKPOINT) or redo log switch (ALTER SYSTEM SWITCH LOGFILE) before you issue

the command.

Sometimes when the database is in a confused state or there are so many logins that killing

them would take forever, SHUTDOWN ABORT is the only real option. I had one situation

where a process went haywire and kept logging in. By the time it was stopped there were

several hundred logins that had to be killed. I issued a shutdown immediate but after several

hours I used CTRL+C to escape the command, issued ALTER SYSTEM CHECKPOINT, and

then did a SHUTDOWN ABORT. Next I executed a normal startup and then shut down the

database again. This worked; the checkpoint helped by flushing the buffers and updating the

file headers. Instance recovery proceeded automatically and bouncing the database afterward,

guaranteed any cleanup was finished.

Don’t use a SHUTDOWN ABORT unless it’s really necessary. If you issue this and then

perform a cold backup, don’t count on that backup being valid.

Shutting down the database is not always as simple as it seems. If you can get the users to

log themselves off, that is best. If not, kill their sessions and hopefully their processes will

be cleaned up quickly so a normal SHUTDOWN can occur. If this is not the case, use a

SHUTDOWN IMMEDIATE. When writing scripts that involve database shutdowns, use

the SHUTDOWN IMMEDIATE option. For times when a cold backup is needed, insist on

a normal SHUTDOWN even if it was proceeded by a SHUTDOWN IMMEDIATE and

STARTUP. Finally, if you have to use a SHUTDOWN ABORT, try to at least force a

checkpoint before you abort the instance.

User Management
Creating database users is a typical DBA task. Most users are simply that, database users; they

do have any tables or other objects. These are the people logging on to the database to use the

application. The key with these users is to make sure they have only the permissions they need,

that password security is maintained, and that they are modified or deleted as necessary.

The database users requiring more attention are those relative few that actually own the tables,

indexes, and other objects within the database. These are the schemas with the data that the

DBA must monitor and keep available. Once these accounts are created, there is relatively little

Oracle DBA on Unix and Linux
148

account maintenance. Most of the work involves creating or modifying tables and indexes at

the request of the application developers.

Creating Users
You must have the system privilege CREATE USER to create users. Typically, only DBAs

have this power. The basic syntax to create a database user is as follows:

create user username identified by password

default tablespace tablespace_name

temporary tablespace tablespace_name;

If possible, make the username the same as the user’s OS account. This helps tracking and

auditing. It also permits the use of OS authentication, which is common in Unix environments.

Set the password to something simple initially, but force the users to change the password by

ALTER USER username PASSWORD EXPIRE. This allows the users to log in initially, but

will force them to change their passwords. If you want to initially create the password with

special characters, enclose it in double quotes (such as “newguy!2”).

The default tablespace specifies where user objects, such as tables and indexes, are created

when no tablespace is specified. Set this to the USERS tablespace. The specification for

temporary tablespace indicates where disk sorts occur. Set this value to the TEMP tablespace.

It is important to explicitly define both the default and temporary tablespace for all users

because, if you don’t, they default to the SYSTEM tablespace. You do not want users creating

tables or sorting inside the SYSTEM tablespace because this will cause performance problems

because of fragmentation, contention, and possibly running out of room.

Here is a sample user creation:

SQL> create user danw identified by “oracledan!”

2 default tablespace users

3 temporary tablespace temp;

User created.

The view DBA_USERS provides a great deal of useful information regarding users. The

dynamic performance view V$SESSION also provides information on users currently logged in.

Privileges
Even though this newly created user has an account, he cannot log in because he lacks the nec-

essary privileges. Oracle maintains control over users by assigning privileges to every action

and every user starts with no privileges. There are two types of privileges: system privileges

and object privileges.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
149

System privileges allow users to perform a database action. For example, being able to log in

requires the CREATE SESSION privilege. This needs to be granted to a new user before they

can log in.

SQL> grant create session to danw;

Grant succeeded.

This user can now log in, assuming he has the password. Other examples of system-type privi-

leges include creating public synonyms, creating users, and modifying database structures such

as tablespaces.

To see which system privileges exist, execute SELECT DISTINCT PRIVILEGE FROM

DBA_SYS_PRIVS. As of Oracle 8.1.6, this command lists 115 different privileges.

Object privileges allow users to create, drop, modify, or execute an object such as a table,

index, sequence, procedure, function, or package. If I have the privilege to create one of these

types of objects, I can do anything I want with my object and no one else can touch it. By the

same token, I cannot touch anyone else’s objects without privileges to do so.

To be able to even view information in another user’s table, you need permission on that

object:

SQL> show user

USER is “MIKEW”

SQL> grant select on test_table to danw;

Grant succeeded.

SQL> connect danw/oracledan!

Connected.

SQL> select * from mikew.test_table;

F1 F2

---- -----------

1 Hello World

In this case, the table TEST_TABLE was created and owned by MIKEW. For the user DANW

to be able to select from it, MIKEW has to grant the object level select permission to DANW.

Once that was done, DANW can select from MIKEW.TEST_TABLE, but DANW cannot

insert, update, or delete data from it. To perform that kind of data-manipulation, DANW needs

to be granted those privileges as well.

To view your object privileges, issue SELECT * FROM ALL_TAB_PRIVS. This command

lists every insert, update, delete, and execute privilege you have on an object (not just tables) or

that you have granted to other users.

Oracle DBA on Unix and Linux
150

Roles
Obviously it would not be practical to grant explicit privileges for every action to every user.

Oracle handles this by packaging groups of related system and object privileges together as a

role. Oracle 8.1.6 comes with 22 predefined roles. Some roles are related to specific tools, but

others, such as DBA and CONNECT, are more general and are intended to be granted to nor-

mal users. To identify these roles, issue SELECT * FROM DBA_ROLES. It is advisable to

identify which privileges are being granted to the roles via SELECT * FROM DBA_TAB_

PRIVS WHERE GRANTEE = ‘ROLE_NAME’.

On a generic system, it is standard procedure to grant the CONNECT role to users after you

have created them. This role includes the CREATE SESSION system privilege.

SQL> grant connect to danw;

Grant succeeded.

In more security-conscious shops, these roles are recreated with different names and more

restrictive privileges. It is common to create application-specific roles with only the privileges

needed. This is an area where the DBA should work with the developers to identify a list of

the privileges needed by the users. Assign only what the users need, this is not the time to be

generous.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
151

Roles as Flags

You can create a role but not necessarily assign any privileges to it. Developers will

sometimes ask for a role to be created and assigned to a user so it can be used as a

flag within their programs.

NOTE

Quotas
Quotas provide a way to limit a user’s use of disk space on a specific tablespace. When users

are initially created, they have no quotas on any tablespace, so they cannot create objects. If the

user is not intended to create objects, it might be valid to just grant CONNECT to the user who

does not require quotas. If the user needs to create objects, quotas must be provided to

the user.

Granting the role RESOURCE will provide unlimited tablespace usage to a user. You can also

assign users defined amounts of space on specific tablespaces. Typically, however, once it has

been determined that a user needs to create objects, the necessary space is made available with-

out the use of quotas to restrict size. It is more common to use quotas to completely restrict

access to specific tablespaces rather than provide access only up to a specified amount of

megabytes.

Table, Index, Sequence Creation and Maintenance
It should seem odd that although a database exists to store data in tables, a DBA spends rela-

tively little time working with individual tables. Unless the DBA is an Application DBA or

doubles as an application developer, he or she spends a majority of the time managing schemas

and databases rather than individual tables. Although many people initially cringe at this irony,

most will agree it is true. More often than not, the developer or data modeler designs the table

and the DBA just implements their request. The same holds true for indexes and sequences

because it is the developers/programmers who are writing the code to use the index or

sequence numbers.

Despite the fact the DBA most likely did not initially design the table, he or she is responsible

for its efficient implementation. This means the DBA examines the developer’s or designer’s

request, determines whether it makes sense, and only then decides how best to implement it. It

is here where the DBA needs to exercise some discretion.

Not all table, index, or sequence requests are valid! Just because the DBA gets an email

requesting a table or index, doesn’t necessarily mean it should be created. Unfortunately,

developers are often pressed by time and will design tables and indexes to expedite or optimize

development of their particular piece of an application. This can come at the expense of data

normalization and can conflict with the application’s data model. I consider data models to be

“living” objects that should be modified when needed, but not on a whim. I have managed

systems that were solely at the mercy of the developer’s whims for years and these systems

became some of the most difficult environments to manage. In these environments, expect to

see invalid, redundant, or ridiculous data tables that no one remembers why they were built.

You should also expect to see a large number of poorly conceived and never used indexes. If

you find yourself in this situation, expect a great deal of work ahead of you. Better yet, don’t

let yourself get into these types of situations in the first place.

Oracle DBA on Unix and Linux
152

Database Design Resource

One solid book on data modeling and design that recently came out is Database

Design by Ryan Stevens and Ron Plew (SAMS Publishing, 2001 ISBN 0-672-31758-3).

It provides the DBA with some valuable insights on design outside the scope of

this text.

NOTE

What do you do when a developer requests that a table be created or modified? First of all,

don’t just implement it. Look at the table and determine what is being created or changed.

These requests are almost always emails with a CREATE TABLE statement or a CASE

(Computer Aided System Engineering) tool generated with the CREATE TABLE script with

the full syntax to create the table. Typically you will be given the syntax to create the table

with X number of columns and Y data types. (The same goes for indexes and sequences).

Attempt to determine what this object is for.

Next, examine the Entity Relationship Diagram (which should exist for your system) and

determine whether this proposed table is redundant, breaks integrity rules, or is valid. If it is an

index or sequence, review the data dictionary (using the DBA_X views) to determine whether

the object already exists or whether another object exists that could be used instead.

Once you have done your homework on the object, approach the developer about it. Ask for an

explanation for the new object. Ideally, you are part of the SQL code walkthroughs or design

meetings where you can raise these issues, but if that is not possible you might need to

confront the developer independently.

Unfortunately, some developers don’t want to be “bothered” by the DBA nor do they want to

justify their object. If you get this reaction, it should raise some red flags about the validity of

the object. Do not waste the developer’s time with questions that you can research yourself and

don’t demand explanations in the middle of crisis, but the developer should make the time to

talk with you. If the developer isn’t able to reasonably justify why a new table is needed, per-

haps you should not create it. If the table will unreasonably danger the integrity of the data

model or impose an unacceptable degree of data denormalization, do not create it. Instead,

work out an alternative.

Assuming the table, index, or sequence is valid, you need additional DBA-specific information

from the developer. Specifically, you should ask these questions:

• How big does this table need to be initially? How much will it grow over time (one to

several years)?

• What type of activity will hit this table and how often? Are they primarily large inserts or

will it be heavy query activity? What degree of updates and deletes will occur?

• Will this table be used heavily in conjunction with other objects?

• Are there any special objects in this table such as LOBs (Large Objects)?

• What kind of indexing is required? The size and activity on the table will influence this.

• If the object is a sequence (which is really just a unique number generator), identify the

starting, ending, and interval values.

• Ask if there is any other information about the object you should know. Leave this

open-ended and hopefully the developer will volunteer some information.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
153

Do not expect complete answers to all your questions because often the developers and data

modelers do not have all the information themselves.

Once you have all the information possible, it is time to create the object. Working off the

assumption you have the basic SQL from the developers, it is best if you do not attempt to enter

it manually. The chance for human error is simply too great plus this is simply not feasible in

large, fast-moving environments. Logging into SQL*Plus, typing spool scriptname.lst to

save the output, and executing the create script is the best policy. If there are errors, they are

logged and can be more easily identified.

You’ll learn about the performance-related technical details of table and index types and their

advanced storage options in Chapter 11, “Oracle Server Tuning.” If you need to create a table

without the benefit of a script, a GUI tool is acceptable, especially when you can save the DDL

to a script to execute from SQL*Plus. For times when you have to manually create a table,

index, or sequence from the command line, the appendixes of this book contain the syntax and

sample objects.

Oracle DBA on Unix and Linux
154

Check for Invalid Objects

When creating, modifying, or dropping objects, always check for invalid objects

before and after you run the script. Query the view USER_OBJECTS WHERE STATUS =

‘INVALID’ to find any invalid object. This frequently occurs when working with PL/SQL

packages and procedures. If necessary, generate dynamic SQL to recompile the

objects.

NOTE

You should store detailed information about the object in a repository for documentation

purposes. In large shops where there are multiple releases of software, institute revision control

over your DDL scripts and program code. This way, your database objects can match the

application code. Just as the DBA must work with the SA on many issues, he or she should

also work with the developers on this issue. Unix provides rcs (revision control system),

which I have seen used successfully in small to medium sized shops. More comprehensive and

complex third-party tools are also available and can be used in conjunction with CASE tools. If

you are managing a large or complex environment, the use of these types of tools is almost

mandatory. Just make sure that once these tools and their data become an integral part of your

system, they are given the backup, recovery, and security attention they deserve.

Identifying Objects and Synonyms
Earlier in the chapter, MIKEW created a table called TEST_TABLE and granted access to

DANW to illustrate the use of privileges. I will now expand upon this example to show how

users reference objects via schema names and synonyms.

The use of MIKEW.TEST_TABLE versus TEST_TABLE can be confusing for beginners. User

MIKEW owns the table TEST_TABLE. Because it is his object, he can refer to it as either

MIKEW.TEST_TABLE or simply as TEST_TABLE. He does not need to preface the object

name (TEST_TABLE) with the schema/owner name (MIKEW). If MIKEW issues a SELECT

statement on MIKEW.TEST_TABLE and on TEST_TABLE, the same data will be returned in

both cases.

The user DANW does not own any tables. He has access to the table MIKEW.TEST_TABLE.

Because DANW has SELECT access to that table owned by MIKEW (but no objects of his

own), DANW must refer to the table as MIKEW.TEST_TABLE. If he simply looks for

TEST_TABLE, Oracle will return an error message saying it cannot find TEST_TABLE.

For example:

SQL> show user

USER is “DANW”

SQL> select * from mikew.test_table;

F1 F2

---- -------------

1 Hello World

SQL> select * from test_table;

select * from test_table

*

ERROR at line 1:

ORA-00942: table or view does not exist

The reason for this is because of how Oracle resolves object names. When a user issues a state-

ment for an object without specifying an owner, Oracle looks for the object in the following

order and returns the first one found:

1. If the user explicitly identifies the object with a schema name, it will use that object. In

other words, MIKEW.TEST_TABLE always refers to the TEST_TABLE owned by

MIKEW.

2. If the user owns an object by that name, Oracle uses that object if no schema name is

specified.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
155

3. When the user has created a synonym that basically says “TEST_TABLE really means

MIKEW.TEST_TABLE”, Oracle will use that synonym. Of course, that user must have

permission to that table and the ability to create a synonym.

For example:

SQL> create synonym test_table for mikew.test_table;

Synonym created.

SQL> select * from test_table;

F1 F2

---- -------------

1 Hello World

4. When a public synonym points to an object, any user with permissions on that object

will go through the public synonym to get to the object. Public synonyms are typically

created by more powerful users such as DBAs to funnel users to objects owned by one

particular schema. For example, assume the private synonym was dropped and a DBA

creates the following public synonym:

SQL> create public synonym test_table for mikew.test_table;

Synonym created.

SQL> connect danw

Enter password:

Connected.

SQL> select * from test_table;

F1 F2

---- -------------

1 Hello World

As you can see from the previous examples, if you specify the schema/owner.object_name, you

will always get that particular object, even when synonyms or public synonyms exist. Once

you refer to the object name without the schema/owner, Oracle returns any object you own,

and then objects that you have created private synonyms for, followed by any object with a

public synonym. If Oracle cannot find the object after that, it issues an error.

If the object has a public synonym, but you do not have access privileges, Oracle returns an

error. Assume MIKEW revokes access to TEST_TABLE for DANW.

SQL> select * from test_table;

select * from test_table

*

ERROR at line 1:

ORA-00942: table or view does not exist

Oracle DBA on Unix and Linux
156

Notice how Oracle now acts like the object doesn’t exist? That is because DANW no longer

has permissions for that object. Once the use of permissions and synonyms is understood,

manipulating access is easy.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
157

Running Multiple Schemas

In development and testing environments, it is common to run with multiple schemas

with near identical sets of objects. If the testers want to test against User_A’s objects,

the DBA creates public synonyms to “point” everyone towards those objects. If the

testers decide they want to switch and test against User_B’s objects, the DBA drops

the old public synonyms pointing to User_A and creates new public synonyms point-

ing to User_B. With the use of dynamic SQL to quickly make the drop and create

synonym scripts, this sort of environment is relatively easy to manage.

NOTE

Use the views DBA_SYNONYMS, DBA_VIEWS, and DBA_TAB_PRIVS to resolve

problems involving object identification.

Space Management
Space management is a major duty of the DBA. This typically involves creating tablespaces,

adding data files to them, and then monitoring the free space in them as tables and indexes

grow. The idea is to make sure that objects within the tablespaces have enough space allocated

to contain their data without needing to grow dynamically, unexpectedly, or run out of room.

Like so many tasks of the DBA, you know the DBA is doing his or her job if space manage-

ment is never a problem.

Storage Hierarchy
Managing objects is easier said than done. A single production schema can have 10,000

objects, including tables, indexes, sequences, synonyms, and PL/SQL packages, procedures,

and functions. Obviously the DBA doesn’t manage each of these individually, but the DBA is

obligated to make sure each of these is in a reasonable tablespace and has enough space to

grow if needed. Before you go any further, you should understand the storage hierarchy of

Oracle objects, shown in Figure 6.5.

The storage hierarchy is from largest to smallest: tablespace, datafile, segment, extents, and

blocks. Each unit is composed of one or more smaller subunits until you reach the Oracle

block, which can be a multiple of OS blocks. Tablespaces, segments, and extents are logical

constructs that organize and hold data. Data files and Oracle blocks are physical objects.

Oracle DBA on Unix and Linux
158

Data block (8K)Data block (8K)

Next extent for test_table

Data block (8K)Data block (8K)

Initial extent for test_table

Data segment for test_table

Data file users01.dbf of the tablespace Users

Data block (8K)Data block (8K)

Next extent for test_table

Data segment for test_table

Data file users02.dbf of the tablespace Users

Physical Objects = Datafiles and Blocks Logical Objects = Tablespace, Segments, and Extents

Tablespace Users containing multiple data files

FIGURE 6.5
Oracle Storage Hierarchy.

Oracle reads and writes by the Oracle block, which is the smallest unit of I/O Oracle can

manipulate. A block can hold several rows of data, or one long row of data can span several

blocks. Having one row spanning multiple blocks is a possible performance hit and is covered

in Chapter 11.

When a table (or index) is created, it is assigned to a tablespace. It is also assigned an initial

extent size and a next extent size. A segment is simply the collection of all the extents for an

object.

SQL> create table test_table (f1 number, f2 varchar2(20))

2 tablespace Users

3 storage (initial 16K next 16K);

Table created.

Generally, unless partitioning is used (covered in Chapter 11), a table will exist in only one

tablespace. That tablespace can have one or more data files that are located on separate disks.

When the table is initially created, the initial extent is created on a disk within the specified

tablespace. In this case, the initial extent was set to 16K, which happens to be the size of two

Oracle blocks.

As data is inserted (and committed) into the table test_table, each row is loaded into the

16K initial extent. If the rows are deleted, truncated, or updated smaller or larger, Oracle will

automatically fit the rows within the initial extent. Ultimately, the first extent will likely run

out of room and the next extent will need to be allocated.

When a new extent needs to be allocated to hold more data, this is called dynamic space

allocation. If a user wants to insert more rows than can fit into the initial extent, Oracle will

dynamically allocate however much space is specified for the next extent. In this case, Oracle

would allocate another 16K next extent somewhere in either of the data files composing the

tablespace USERS. This causes a performance hit because Oracle temporary has to pause the

user’s INSERT transaction, determine whether there is room left in either of the data files for

the next extent, allocate that space, and then insert the data into the newly allocated extent of

two blocks.

Notice that the new extent can be anywhere in the tablespace as long as the extent is

contiguous (all the blocks are side by side). They do not even have to be in the same data file;

the only rules are they must be in the tablespace USERS and the blocks of the extent must be

next to each other. If the extents are located away from each other, this is called fragmentation.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
159

Fragmentation an Issue?

Few topics among DBAs draw as much heated discussion as fragmentation. For years,

DBAs have worked under the assumption that fragmentation was a horrible perfor-

mance problem. The recommended advice was to size your initial and next extents so

large that all the data for the table (or index) would fit within just a few extents. The

rationale was that if Oracle had to jump from extent to extent to retrieve rows (espe-

cially during Full Table Scans, FTS), performance would suffer. In recent years some

people, notably those from Oracle, have been suggesting that fragmentation really is

not as bad as once thought. Some have further indicated that trying to fit all the

data into one or two extents is a waste of time considering the minimal performance

gains. They suggest simply giving every extent one of just a few possible sizes (which

optimizes storage) and not worrying about fragmentation. I haven’t made my mind

up on the issue yet. I don’t lose sleep over a few extents, but I also don’t let a table

or index climb to hundreds or thousands of tiny extents either.

NOTE

Tablespace and extent sizes are the two main storage parameters to be concerned about when

creating tables or indexes. Other storage parameters can also be specified in the CREATE

statement. These additional values, listed in the following table, become especially important

when table access or free space becomes a problem.

Parameter Purpose

pctfree Percentage of the Oracle data block (8K) that’s reserved for updates.

This allows rows to grow within blocks so they do not need to spill

into other blocks. Set high for tables with heavy update activity; set

low for insert only tables. Default is 10%.

pctused Once a block exceeds the pctfree percentage, no new inserts are

allowed into that block. If deletes reduce the amount of space within

that block to below the pctused percentage, that block will become

eligible for new inserts. Set to a lower value to reduce fragmentation.

Default is 40%.

minextents The minimum number of extents for an object. Default is 1.

maxextents The maximum number of extents for an object. Set this to unlimited.

pctincrease A percentage increase in size of each next extent. Default is 50%, but

change this to either 0 or 1%. If it is set to 1%, SMON will periodi-

cally coalesce (combine) contiguous free extents into larger free

extents.

freelist Identifies the number of blocks available for simultaneous inserts. Set

this value higher to avoid contention on blocks during inserts.

These values are tunable, but some of them require the object to be re-created with the new

values. New advances in Oracle 8i and 9i allow an increasing number of parameters to be

changed “on the fly” even if Oracle appears to be re-creating the object behind the scenes. One

key factor that should be noted now, but is discussed in greater detail in Chapter 10, is locking.

Consider the effect you have on a table when you manipulate its parameters or add/drop/

rebuild its indexes. It is possible to lock and prevent DML access to an object for normal users

if the DBA is not conscious of how Oracle is modifying the table. Research what is actually

going to happen to the table before you modify it so you won’t unexpectedly lock a table that’s

being accessed by hundreds of users.

Good information about objects can be obtained from DBA_OBJECTS, DBA_TABLES,

and DBA_INDEXES. Space-related information is available from DBA_SEGMENTS and

DBA_EXTENTS.

Tablespace Management
Tablespaces are a key logical unit within the database. They are composed of data files in

which database objects are stored. You have already learned what they are and what they store

in previous chapters. You have also learned why you should separate some types of objects so

they will be in different tablespaces to avoid contention (such as data and indexes for the same

Oracle DBA on Unix and Linux
160

table). Additionally, you have seen the basic create tablespace syntax in the create database

scripts. Therefore, I will not rehash all this information, but will move onto the management

activities rather than the theory.

In previous chapters, you planned a sample database layout and then created that database.

You did, however, defer to this chapter to create the application-specific tablespaces. During

database creation, the DBA should only be focused on getting a clean and solid database, not

trying to build the application.

Creating tablespaces should not be taken lightly. Their creation is not difficult, but their

characteristics and usage should be well planned. Once you have identified the need, the name,

and the location for your tablespace, verify you have enough space to create it. If you lack the

available disk space the creation will fail. To manually create a tablespace for employee

indexes on /u02, do the following as a DBA:

SQL> create tablespace employee_idx

2 datafile ‘/u02/oradata/rh1dev1/employee_idx01.dbf’ size 100M

3 minimum extent 128K

4 default storage

5 (initial 128K next 128K minextents 1 maxextents unlimited

6 pctincrease 1);

Tablespace created.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
161

Raw Partitions

If your filesystems are on raw partitions (uncooked filesystems), you will need the SA

to create a volume for your tablespace before you create it. This is common for

Parallel Server DBAs.

NOTE

The tablespace is now created and objects can be created in it. It took a few seconds to create

because a 100M file had to be created. Be patient if you have to create tablespaces with files

several gigabytes in sizes because it will take a few minutes. Notice that the example went to

great lengths to specify the default parameters in the tablespace. If a table or index is created

without a parameter (such as initial or next extent), that object is created with the default value

for the tablespace. In this case, it is good to error on the side of being too small rather than

accidentally creating a huge table that only holds a few rows.

Now that the tablespace is created, you can resize the data file. You can increase or reduce the

size of the data file as long as there is still enough space for its objects.

SQL> alter database

2 datafile ‘/u02/oradata/rh1dev1/employee_idx01.dbf’

3 resize 125M;

Database altered.

If you decide you want to add a new data file to a tablespace, you can do that as well. Once

again, verify you have enough space and that the new tablespace will not cause contention or

recovery difficulties with other tablespaces on the same disk.

SQL> alter tablespace employee_idx

2 add datafile ‘/u08/oradata/rh1dev1/employee_idx02.dbf’

3 size 25M;

Tablespace altered.

At this stage, most literature on backup and recovery policies recommends a full database

backup because you added a tablespace. Even if you only added or modified a data file, some

DBAs would push for a backup. I find this somewhat excessive, but I would get a complete

backup to use as a baseline before I start creating large numbers of objects. After that, I would

recommend another backup before you open a database for production.

Moving data files from one disk to another (within the same tablespace) is also possible, but is

a little trickier. This is usually done to eliminate I/O contention or in response to a disk prob-

lem. Data files can be named anything; Oracle does not care. A data file can be renamed, but

this is also tricky and similar to a file move. Therefore, I will cover both in Chapter 10, “When

Things Go Wrong.”

If you have accidentally added a data file to the wrong tablespace or simply want to drop a

data file, that’s too bad. Unfortunately, there is not an “alter tablespace ... drop datafile” com-

mand. Many people would like one and I would assume the problem is being researched, but

for now it is not possible. In this situation, the only options are to drop the tablespace (which is

possible) or to resize the unwanted data file down to an insignificant size. Just be sure to

remember to include this file in the backup scheme just like all the other database files.

Oracle DBA on Unix and Linux
162

Locally Managed Tablespaces

Oracle 8i introduced a new type of tablespace. Locally managed tablespaces offer new

ways to manage object sizes. By using these, combined with a different approach to

categorizing tables, it is possible to manage large numbers of objects with a minimum

of overhead. Because these types of tablespaces are still relatively new and are a depar-

ture from traditional tablespaces, they are covered in Chapter 11.

NOTE

Tablespaces can be taken offline or made read-only. Taking tablespaces offline is typically

done only when a disk has or is failing and a recovery is needed. Tablespaces are not often put

into read-only mode unless there is a special situation where the data should not or cannot be

changed.

Useful information about tablespaces can be obtained from DBA_TABLESPACES, DBA_

DATA_FILES, and DBA_FREE_SPACE. The DBA should know what tablespaces are in the

database, which data files they are composed of and their sizes, and how much free space is

available in each tablespace.

Monitoring
One of the most common, yet often overlooked, responsibilities of the DBA is monitoring. A

production server supporting an application can be busy: there are normal users logged on,

nightly batch processing, special processing such as month-end or year-end, backups of the

server and of the database, plus all the little things specific to an application or shop. Most of

these tasks can be automated and all of them should write to log files of some sort. It is often

the DBA who is tasked with making sure everything runs correctly because all of it impacts

the database. Remember, if it affects either the data or the data’s availability to the users, it is

the DBA’s business.

When a DBA comes in the morning, he/she often has a list of processes to check. If any

process failed, the DBA should ideally be the first to know about it and should know why. It is

quiet embarrassing for a user or manager to call the IT department and inform the DBA that

their database or application is down. Users are always going to call and complain when

systems have problems, but it looks bad when the DBA needs to be told that the system has

crashed. Therefore, the DBA should have a list of critical systems, subsystems, and jobs that

he or she verifies every morning.

Verify Database and Connectivity
This verification typically starts with the database. Log in to the Unix server and check for the

PMON process for each SID.

$ ps -ef | grep -i pmon

oracle 1233 1 0 Feb26 ? 00:00:00 ora_pmon_rh1dev1

oracle 1961 1 0 06:57 ? 00:00:00 ora_pmon_rh1tst1

oracle 1987 1920 0 06:58 pts/0 00:00:00 grep -i pmon

If a database is not up that should be, find out why and get it started. If there is actually a

database problem that will require time to fix, make sure the user community and managers are

notified. No one wants to hear there are problems, but people get frustrated when they call to

report a computer problem and find the IT department either didn’t know about it or knew and

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
163

decided not to tell anyone. This is a prime example of why IT departments and personnel

sometimes have a poor reputation with other professionals.

Check the listener process. Either use grep to search for the process or use lsnrctl status.

Remember, if this process is down, users will not be able to connect to the database. If there is

any doubt about connectivity, the DBA should log in as a user to verify access into the system.

This includes checking whether the application is available. Obviously, if the DBA cannot log

in to the application, the users are probably having this same problem.

Alert Log
Once the DBA has verified the database and listener are running and access into the applica-

tion is possible, it is time to check the database log for errors. Each database’s alertSID.log is

located in $ORACLE_BASE/admin/SIDname/bdump. This file should be checked in the

morning, before or after lunch, before the DBA leaves, and whenever there are problems.

The DBA will become very familiar with the contents of the alert.log. Many of the messages

in the file are routine, such as database startup/shutdown, checkpoints, and redo log switches.

The DBA should monitor the frequency of these messages to verify the database is operating

as planned. Also, any non-default database parameters are listed in this file during database

startup.

You are not interested in seeing the entire alert.log. Because this file is appended to, only the

last 200 or so lines are important. Either use tail -200 alertSID.log | more or write a

shell script such as:

$ more tail-1

tail -222 $ORACLE_BASE/admin/$ORACLE_SID/bdump/alert*.log | more

$ ls -alt tail-1

-rwxr-xr-x 1 oracle dba 65 Feb 16 21:45 tail-1

This script makes it easy to routinely monitor the alert.log:

$ tail-1

Mon Feb 26 11:26:14 2001

Thread recovery: finish rolling forward thread 1

Thread recovery: 0 data blocks read, 0 data blocks written, 0 redo blocks read

Crash recovery completed successfully

...

Mon Feb 26 12:23:53 2001

Completed: ALTER DATABASE OPEN

Mon Feb 26 13:32:45 2001

alter tablespace users

add datafile

‘/u02/oradata/rh1dev1/users02.dbf’ size 100M

Mon Feb 26 13:32:45 2001

ORA-1031 signalled during: alter tablespace users

Oracle DBA on Unix and Linux
164

A database normally does not have a large number of ORA-XXXX errors in the alert.log. If you

see error messages such as ORA-1031, you need to fully investigate. The DBA should check the

error message number and find the cause of the problem. If the error is an ORA-600, a call into

Oracle Support should be made. If anything is mentioned about media recovery or corruption,

you should be ready to really earn your money because this is a serious problem.

To get more information about any Oracle error, use the error-checking utility oerr. This

handy utility can look up most common errors related to Oracle and is much faster than using

an error messages guide. See Figure 6.6.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
165

FIGURE 6.6
Checking Database Errors.

The alert.log can get big over time. Sometimes it is advisable to archive and compress the file:

$ pwd

/u01/app/oracle/admin/rh1dev1/bdump

$ mv alert_rh1dev1.log alert_rh1dev1-20010227.log

$ compress alert_rh1dev1-20010227.log

There is no longer an alertSID.log, but Oracle will create a new one (with the same name as

before) whenever it needs to write a new message. Therefore, the previous method is a safe

way to archive your alert.log. If you don’t want a copy of the file, simply cat /dev/null

into the file and erase the file’s contents:

$ cat /dev/null > alert_rh1dev1.log

Monitor Database Objects
The DBA should monitor two particular types of database objects: tablespace allocations and

invalid objects. These checks should also be done in the morning. A failure to do so will not

destroy a database, but it can impact the availability of the data to the users.

Log into SQL*Plus and check the tablespaces you have created.

SQL> select tablespace_name, sum(bytes) from dba_free_space

2 group by tablespace_name;

TABLESPACE_NAME SUM(BYTES)

-------------------- ----------------

DRSYS 84,074,496

EMPLOYEE_IDX 157,270,016

RBS 183,492,608

SYSTEM 358,121,472

TEMP 104,849,408

TOOLS 104,849,408

USERS 108,650,496

7 rows selected.

In a stable system, there is relatively little change in this from day to day. This is because most

of the database objects already have their initial extents and will grow only when needed. Only

when next extents are allocated or new objects are created should you see the amount of free

space decline. Save and monitor these reports over a period of time. If you notice a trend

where you expect to run out of space, either add more space to the tablespace, truncate or drop

unneeded tables, or find out why a table or index is growing so much and stop it. If a table or

index needs to allocate a next extent, but cannot find a contiguous free extent large enough, an

error message will be issued.

Also get a count of invalid objects for whichever schema owns the application objects in the

database. Inside SQL*Plus, a simple SELECT OBJECT_NAME, OBJECT_TYPE FROM DBA_OBJECTS

WHERE OWNER = ‘SCHEMA_OWNER’ AND STATUS = ‘INVALID’ identifies invalid objects.

Recompile these using dynamic SQL to improve performance and to verify that all the objects

are valid. If you notice an increasing trend or an alarming number of invalid objects, raise this

issue with the developers.

Setting Up and Monitoring cron Jobs
cron is a very useful Unix/Linux job-scheduling and running facility. It allows you to specify

that, at any given time on any given day, a specific script will be executed and a log file will be

created. This provides a tremendous capability to set up jobs to execute without having to start

them manually.

In the Unix world, most batch processing and automated tasks run via cron. From a DBA

perspective, you can use it to schedule when your nightly backups begin, when exports/imports

occur, when tables are analyzed, and what time nightly processing begins. You can also use

cron to log in, check for the PMON process, and if it is not found send an email or page.

There is virtually no limit to what you can use cron to do.

Setting up and running cron is very easy. Follow these steps:

Oracle DBA on Unix and Linux
166

1. First, create your shell scripts as normal. Be sure to fully define the environment

variables within your scripts. If you don’t set your environment variables, they will not

be set automatically your script will fail. Scripts can call other scripts but make sure you

declare the full path and filename in the scripts. SQL*Plus scripts can also be executed

from within shell scripts.

2. Next, create a directory where your crontab (file with your jobs) will be stored. The user

oracle will have a personal cron daemon, so create the directory

$ORACLE_BASE/local/cron_files.

3. Create (using vi) a file called crontab_oracle. Any scripts (jobs) you want to run will

be placed in this file along with when to run them and (optionally) the log file to be cre-

ated.

4. Use man cron and man crontab for compete syntax on cron. The format for the crontab

file is as follows:

0 22 * * 0-6 `/u01/app/oracle/backups/hots/hot.sh

1>/u01/app/oracle/backups/hots/hot.log 2>&1`

The script hot.sh will be executed at 2200 hours (0 for minutes, 22 for 22nd hour) on

every day (the first *) of every month (second *) on days 0-6 (Sunday through Saturday).

The log of the execution will be written as hot.log. Notice the use of back-tics (`) rather

than single quotes (‘).

5. Currently this command only exists in the crontab file (crontab_oracle). It needs to be

submitted to the cron process. To submit it, type crontab followed by the file you want

submitted to cron. The file you submit will overwrite the current contents of cron, so

make sure only one crontab file is used and it is up to date.

$ crontab crontab_oracle

6. To see what cron intends to run, execute crontab -l.

$ crontab -l

DO NOT EDIT THIS FILE - edit the master and reinstall.

(crontab_oracle installed on Tue Feb 27 09:25:42 2001)

(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37 vixie Exp $)

0 22 * * 0-6 /u01/app/oracle/backups/rh1dev1_hots/hot.sh

That’s it. cron will run the script hot.sh at the time specified until you tell cron to do otherwise.

The only negative aspect of scheduling so many jobs via cron is that someone (the DBA)

should monitor their success or failure. Jobs in cron are not implicitly dependent on each

other, so if one job begins failing, this could go on for a while before it is detected. The DBA

should know which jobs are scheduled via cron (using crontab -l) and check the log files

generated from the scripts to make sure they are running correctly.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
167

Oracle DBA on Unix and Linux
168

Always Check Your cron Job Logs
As a DBA you should always check your database alert log, but after that the logs

from your cron jobs should be checked. I have seen more than one occasion in which

someone will change something on a system, causing my cron jobs to fail. The data-

base will still be up and the alert log will be fine, but nightly processing will have

failed.

Each shop and system will have its own jobs; it is up to the administrators to set these

up. However, just because they execute successfully once doesn’t mean they will run

forever without problems. Particularly if they deal with backups (such as exports) or

some type of data loads, the DBA will be held accountable if they start failing but no

one notices. Don’t let that happen to you!

Monitoring Backups
Backup and recovery is covered in Chapter 9, “Backup and Recovery,” however monitoring the

previous night’s backups is clearly a daily task. Backups can be implemented in a variety of

manners, but they all need validation by the DBA. On the Unix/Linux platform, the two most

common methods are shutting all the databases down and then copying every file to tape or

running a series of scripts to back up each tablespace while the database is running.

These jobs are typically executed by cron; therefore, log files from cron should exist and be

reviewed. Because these cron jobs are implemented via Unix shell scripts, there should be a log

which also should be reviewed by the DBA. In fact, if the scripts are well written, their logs

might have more information than the logs generated by cron. Finally, the database alert.log

can often be used to determine whether a backup occurred, especially if the hot backup mode

was used. After all these logs are reviewed, you can always verify that the backup files are, in

fact, residing in their backup dump location. Given all these indicators, you should have a reli-

able sense of whether the backups were successful.

You should also keep tabs on the success or failure of backups for the database server as a

whole. If the SA reports that backups for a particular database server are often having prob-

lems, the DBA might justifiably be concerned. Repeated failures of tapes or other server

backup components (including the SA!) should concern the DBA. The DBA needs to access

how a recovery/restore of the server will affect the backup plans.

The DBA and SA should share a spreadsheet of each night’s backups, the media they are on,

and any special notes. If possible, the actual logs should be compressed (they are small) and

saved so they can be reviewed as well. Once a recovery is needed there should be no question

as to which day’s backups should be used. If backup failures on both the database and server

occur, but they are not logged, there is an unacceptably high risk of a bad backup being

restored.

Although this doesn’t seem likely in a small shop where there is only one DBA and one SA,

what happens in a large or distributed shop? In large organizations, there are often teams of

DBAs and SAs managing multiples systems that don’t know each other or aren’t even in the

same city. Trying to remember which backup was good or bad is not realistic in these environ-

ments. Finally, for those organizations that really take offsite disaster recovery seriously, a log of

valid backups might be the only information a recovery team has to work with after a disaster.

Monitoring Exports
Exports and imports are covered in detail in Chapter 8, “DBA Utilities,” but they do merit a

mention here. Basically, an export dump (*.dmp) file contains the structure and data for the

table(s), user(s), or database you have exported. These files are useful to DBAs when loading

or unloading data. They are also used as a component of a shop’s backup and recovery scheme.

As a result, these files are important, their creation is often scheduled via cron, and they can be

very large (in the gigabyte range).

Because of these factors, the DBA needs to monitor the creation and integrity of these .dmp

files when they are created (typically overnight via cron).

Assuming a nightly cron job exists to export a user (and all his/her data) from a database, there

are a few checks for the DBA.

• Make sure the cron job executed properly as defined in the previous section. This

involves reviewing the execution log for that cron job.

• Exports generate log files that identify what was exported, by whom, and if there were

any errors. The DBA needs to review this file (such as more exp_customer_tbl.log) to

determine whether there were any errors or warnings. These will be clearly identified as

they occur. The last line of the log file will have one of several messages: “export termi-

nated successfully without warnings”, “export terminated successfully with warnings”, or

“export terminated unsuccessfully”. The DBA needs to determine whether there were

problems and warnings, and if there were, to determine their severity.

• The last check is to see how much space is left on the filesystem after the export.

Remember, export files can be very small for just a few tables, or they can be mammoth

at several gigabytes or more. Use df -k or bdf, depending on your platform, to identify

how much space is left on your filesystem. Feel free to use compress or gzip on your

export .dmp files. Compression will not corrupt them and you will likely get much better

than the normal 3:1 compression ratio. The use of compression on exports/imports is

covered in more detail in Chapter 8.

Like backups, it is important to verify the validity of export files for the time when you actu-

ally need to use them. Although Oracle and cron will be happy to generate worthless files on

an automated basis, it is up to the DBA to identify situations like this and take corrective

action.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
169

Monitor Space on Filesystems
The DBA is better qualified than anyone to monitor the disk usage of his/her filesystems.

Although the SA should have scripts that monitor and issue warnings if a filesystem begins

running out of space, this is really the DBA’s responsibility. If a routine backup or export fails

because it ran out of disk space, it is the DBA who is accountable, not the SA.

On filesystems where you are dumping large export, log, or backup files, identify how much

space you have and how much is used each night. Once again, use df -k or bdf. Next, project

how long it will take for the filesystem to exceed 90-95% capacity or have only have a few

hundred megabytes left. At this capacity, disk performance can begin to suffer, plus you run the

real risk of running out of space. Do not let a filesystem reach this point before you attempt to

take action.

Oracle files used for backup purposes and export .dmps can be compressed using compress or

gzip without problems (testing is still a good idea!). Run a compression routine on any file

you create in your backup or export dump directories. This should be the last part of any cron

job, plus you might want a separate cron job that checks for and compresses any large file not

compressed. By using compressing files in a sensible manner, you will save a large amount of

disk space.

Work with the SA to identify when and how your filesystems are being backed up. The backup

and recovery of databases is discussed in length in Chapter 9, but I am referring to Oracle

filesystems/directories without databases. Most SAs will copy everything from a filesystem to

a tape on a nightly basis. Those tapes then can be moved offsite in case a tornado, fire, or other

disaster occurs. The tapes are then typically returned after a month or two to be recycled. This

matters to the DBA because once a file has been copied to tape, it theoretically doesn’t need to

be kept on disk any more.

For example, the users want you to keep a backup of table data (typically in an export .dmp

file) for 10 days. You can export that table nightly, compress it, and then let the nightly backup

by the SA put the file on tape. You could deleted the data from the filesystem (saving disk

space) because it is on tape and could be restored if needed. Even though your users might say

they only need the data for 10 days, you have the benefit of knowing that if needed, you could

have it for 30 days (or whatever the tape rotation dictates).

In reality, don’t delete the file after the first night. Just as your backups will fail sometimes, so

will the SA’s jobs fail occasionally. If possible have a cron job automatically delete these types

of files after three or four days. That should allow enough of a “fudge factor” for a bad tape,

server crash, and so on. Also consider the impact of restoring files on the SA in terms of time,

money, and hassle. If a tape is moved offsite, it usually costs both time and money to have it

returned early. Plus the SA needs to do the restore unless he/she wants to empower the DBA to

do this (which would remove dependency on the SA).

Oracle DBA on Unix and Linux
170

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
171

Legal Requirements

Many companies are legally required to maintain financial information for several

years. From a DBA perspective this often means taking very large database exports on

a month-end and year-end basis. Work with the SA to make sure these are backed up

on clearly identified tapes and that they are stored properly. If you have not been

approached about these types of legal requirements, ask your management if they

exist. It might be possible that management assumes these backups are being taken

even if they are not.

NOTE

One final note about managing space on filesystems. Although these should be checked every

workday, make absolutely sure there is enough space before a long weekend or a vacation.

Especially just before these times, it is easy to overlook your disk space. Make sure you have

enough space for normal activity plus a reserve.

Electronic Monitoring and Notification
With many technical people carrying pagers and cell phones, it’s a good idea to use automatic

system tools that notify the DBA and/or SA when a database or system fails. The keys here are

to make sure the monitoring tools are accurately diagnosing the system, to establish realistic

thresholds for notification, to establish a plan of action for when problems do occur, and to

ensure that the total process works.

The idea of setting a system to page the DBA if the database goes down seems so simple, yet

many times there are problems. If the system is accidentally set to page all the time, this

problem is noticed and fixed immediately. If, however, there is a problem where a page is not

being sent or received correctly, this minor glitch might not surface until there is a major

problem and the distress call is not received.

Testing and coordination between the SAs and DBAs is key. A good SA will have commercial

monitoring software installed and running or will have customized monitoring scripts for key

processes. Because there is such a dependency between the database and server, it makes sense

to integrate monitoring and paging for both the database and server into one system. This often

involves the DBA submitting to the SA’s notification system. However, it is still up to the DBA

to make sure the database monitoring and notification processes are accurate and tested. In

other words, do not rely on the SA to monitor your database for you.

A clear understanding of what is and is not monitored needs to be established as well as who is

notified when a specific problem occurs. For example, it seems obvious that if a server crashes,

both the SA and DBA should be notified. But issues with email should not be sent to the DBA

nor should a blown rollback segment trouble the SA. Be warned that this can become a touchy,

political subject if one group or the other wants to get into the other’s business and administra-

tion tactics. The situation becomes even more difficult when considering how and when man-

agement should be notified.

Have a plan and call list for when problems do occur. If all the DBAs, SAs, and managers get

a page saying a script couldn’t find PMON running, do they know what to do? If responsibili-

ties are not clearly defined, chaos can occur. Half the staff is trying to fix the same problem

and the other half is looking at the pagers saying “not my problem.”

One final note of electronic notification: consider the impact it has on the staff. No one wants

to be continually tied to a pager 24/7/365. If a system is truly that critical, it is critical enough

to have more than one person available to be “on call.” Do not make unrealistic expectations of

people and then be surprised if they fail to meet those expectations. Also address what is con-

sidered “acceptable” response time and what happens if a page goes out but the DBA/SA can-

not or does not respond. Remember, pages do legitimately get lost and people are sometimes

out of range.

Oracle DBA on Unix and Linux
172

Plan and Establish Paging Policies Reasonably
I have seen pager polices range from reasonable to ridiculous. If your system really

needs to be up at 3AM a pager and perhaps a nighttime operator is necessary. Set

this policy and enforce it. However, I have seen managers dictate to technical people

that 7/24 support is “required” because it looks good from a business standpoint.

Technical people are smart enough to know what is necessary and what isn’t. As a

result, technical people may well leave their pagers behind, even if they are expected

to carry them. This is especially the case if the pager is assigned to an individual with

no rotation or break from being on call. If the system pages the technical personnel

at the slightest problem you can expect to develop a “Cry Wolf” syndrome as well.

This can get to the point where administrators will leave their pagers behind because

the notification policy is unrealistic.

Pagers and notification need to be taken seriously. However, this policy needs to

consider people’s personal lives as well. Administrators need to take carrying a pager

seriously and respond in an acceptable time period. However, management cannot

stick someone with a pager without compensation and expect personnel to base their

lives (and that of their family and friends) around it.

Summary
This chapter covered most common daily tasks of the DBA. Being a good DBA requires more

than just adding users or building tablespaces. These are technical skills that should be mas-

tered, but mastery of the skills makes one a good technician, not necessarily a good DBA. A

good DBA has these technical skills, but more importantly has an understanding of the system,

its processes, and how to manage and head off situations before they become major problems.

Although it is an accomplishment to understand the finest details of creating tables, no one

will really care if the database is down because the DBA never noticed the backups were

invalid. Hopefully, you are leaving this chapter with a clearer understanding of technical issues

regarding Oracle objects, but more importantly you know how to administer Unix and Oracle

database systems.

Daily Activities

CHAPTER 6

6

D
A

ILY
A

C
T
IV

IT
IE

S
173

CHAPTER

7
GUI Management Products

ESSENTIALS

• GUI tools offer an excellent way to perform

many tedious and routine tasks.

• GUI tools should not be expected to replace

core skills and knowledge held by an experi-

ence DBA.

• There are several ways to configure Oracle

Enterprise Manager to meet the needs of

the DBA.

• OEM can be used to manage users, objects,

and files as well as provide assistance when

faced with tuning or locking issues.

• TOAD is another GUI tool that DBAs should

be familiar with because they will likely

encounter it at some point being used by

developers.

Anything that needs to be done by the DBA can typically be done from the command line.

This is especially true regarding complex tasks. A solid DBA will understand what he or she is

doing, why he or she is doing it, and how Oracle and Unix implement it.

Having said this, Graphical User Interface (GUI) management products can fulfill a useful

niche for the Oracle DBA. A GUI provides a layer of abstraction between the DBA and Oracle.

This is only a presentation layer; because Oracle and Unix still perform the same tasks. The

details are hidden beneath a GUI display.

Many simple, mundane tasks that cannot be scripted can be performed easily with the aid of a

GUI tool. For example, you can add a new user or write a PL/SQL package from SQL*Plus,

but it is often easier and quicker to use a GUI tool. A DBA might not remember the syntax or

all the options for creating a table, but a GUI tool can generate the SQL for the DBA. It is in

situations like these that GUI tools are advisable.

This chapter covers how to install and configure Oracle Enterprise Manager. It examines some

of the more common tools and how they are useful to the Unix DBA, but a detailed coverage is

outside the scope of this book. Finally, it looks at a popular OEM alternative: TOAD.

Oracle Enterprise Manager
Oracle’s main GUI management tool is Oracle Enterprise Manager. It comes standard with

Oracle Client tools or Oracle Server. This makes OEM widely available to both DBAs and

developers.

Oracle DBA on Unix and Linux
176

Web-based Interfaces

WebDB (aka Oracle Portal) does provide some OEM functionality via a Web browser

interface. This is covered in Chapter 17, “Web DB/Oracle Portal.”

NOTE

Architecture
OEM can take advantage of a multiple-tier architecture. In its barest form, you only need an

Oracle database running on a server and the basic OEM tools installed either on a PC or on the

server. This setup provides basic functionality; however, more advanced features of OEM

require additional setup. For example, you can create a repository in an Oracle database to

store data about the other Oracle databases. If you want to add even more functionality, you

can connect to a middle tier running as an Oracle Management Server to store information

about OEM jobs. To implement the more advanced features, you need to understand the

architecture of OEM. The available architectures are outlined in Figure 7.1.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

177

Server
Unix Server

Middle Tier

Client

Unix Server

Target

Database

Instance

Unix Server

Target

Database

Instance

Repository

Database

Instance

Oracle Management Server

(OMS) running on either:

• MS Windows NT

• MS Windows 2000

• Unix Sun Solaris

Windows PC

running OEM

software

Windows PC

running OEM

software

Windows PC

running OEM

software

Three Tier ConfigurationTwo Tier ConfigurationBasic Configuration

Target

Database

Instance

Repository

Database

Instance

FIGURE 7.1
Oracle Enterprise Manager Architecture

As you can see in Figure 7.1, OEM can distributed across a client, a server, and a middle tier.

The type of configuration you use depends on your needs. If you need basic setup where you

connect to the database only to add users or modify objects, the basic configuration will be

fine. If you need to perform more advanced tasks on multiple databases, it is necessary to

create a repository database (such as rh1rep1) to store information about other databases. In a

large environment where the database servers reside on Windows platforms, it makes sense to

use the middle tier with Oracle Management Server (OMS). Let’s take a look at each tier in

detail.

OMS

There seems to be a trend away from just using a client and a repository. Although it

was common in previous versions of OEM and with some other tools, OMS is

becoming more necessary.

NOTE

Client
There is typically a Windows workstation containing the OEM tools. From this machine, you

start up and use the OEM utilities. You can log on directly to a single database, or you can

Oracle DBA on Unix and Linux
178

connect to the middle tier to access all the databases in your enterprise. The installation

process is simple and almost foolproof. It is customary to install at least the basic OEM tools

on any DBA’s machine on site, on any DBA laptops, and at home.

Just as you learned in Chapter 2 that SQL*Plus is a potentially dangerous tool to install freely

to everyone, giving OEM out is even more dangerous. Because of OEM’s easy-to-use inter-

face, anyone with a minimum of knowledge can be dangerous. Make sure you control OEM’s

distribution and, more importantly, keep control of your passwords. Some sites have created

users with read-only access and provide this with OEM to appropriate personnel. Developers

often get OEM with the passwords to the schema they are developing in and read-only access

to everything else.

You can install the basic OEM Database Administration Pack to cover your basic needs. If you

have the proper licensing, add the Performance Tuning, Diagnostic, and Change Management

Packs as well. These tools can act as great timesavers when examining user sessions or looking

for locked users. Some of these utilities require a repository and an OMS server, so just

because a product is installed does not mean it’s available.

OEM on Unix Platforms

Even though the basic OEM utilities are typically installed on Windows machines, they

also come with the normal installation of Oracle Server on some Unix platforms (such

as Sun Solaris). Verify this by looking in $ORACLE_HOME/bin for the utility oemapp.

NOTE

Middle Tier
The middle tier refers to the location of the Oracle Management Server (OMS). OMS runs as a

service on Microsoft platforms and as a background process on Sun Solaris. You do not need

OMS to run OEM, but if you want to connect to the OEM console, it is a requirement. From

the OEM console, you can easily administrate multiple databases on different servers. OMS is

also used to schedule jobs, monitor events, and to provide email and paging.

Oracle Management Server is as new as the OEM version 2.1. As of this writing, it currently

requires access to Sun Solaris, MS NT, or MS Windows 2000. Many Unix DBAs don’t even

know about OMS yet, probably because they don’t use OEM too much. Much of the OMS

functionality is already available via Unix cron or via shell scripts to monitor events. Many

Unix DBAs do not see any advantage to introducing an additional OMS tier to perform tasks

already covered with Unix. For these reasons, not everyone is using it yet, but that will likely

change as it becomes more powerful and supported on more platforms. I typically run OMS as

a service on NT, but I have not seen any shops use it to replace established Unix monitoring

and scheduling tools.

Server
Under the OEM architecture, the server tier contains the target database, which is the database

you are attempting to manage. The server can also contain a repository database, which

contains information about one or more target databases. These databases might be one in the

same or different physical servers and they might be different database server versions.

Obviously, the repository database needs to be running to access it and to use any OEM

features dependent on it, but even if that server/database is down, other databases can be

accessed using the basic OEM tools.

Within each target database, there can be multiple user sessions for database intelligent agents.

These agents provide a way to remotely administer databases even when you are not logged

onto the OEM console. Oracle uses Intelligent Agents logged into each target database to

detect OEM defined events and perform OEM scheduled jobs.

Oracle has one other optional service available on the server. Oracle Data Gatherer is a

background process that collects information for Oracle Capacity Planner and Performance

Manager.

Remember that OEM can be used with basic functionality when loaded on a PC accessing a

target database. However, if you want to use the OEM’s advanced features, you need to create

a repository, add an OMS, start your Intelligent Agents, and finally start Oracle Data Gatherer.

As you’ll see in the next section of this chapter, once the initial setup is established and

everything is working, OEM can be a useful tool.

Installation
Installation of OEM is fairly simple. However, each tier has separate issues, each of which is

examined in the following sections.

Client
Installing the basic OEM client on a Windows machine is relatively simple and requires no

server setup. For that reason, expect three consequences—there will many different versions of

OEM floating around, it will be on every machine used by the DBA, and it will be on many

machines used by people who are not DBAs. Your best bet is to institute a series of “autho-

rized releases” and roll out OEM to the appropriate users when you are comfortable with it.

Unfortunately, the OEM genie is sometimes already “out of the bottle” and everyone in the

shop has OEM and thinks they are a DBA. If you find yourself in this situation, you must step

in and regain control, particularly if the DBA password(s) are no longer secure. Although a

strong case can be made for SAs to have the Oracle password, developers and other users

should not. Oddly enough, this is more common in smaller shops where there is often less

stringent control of passwords and procedures.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

179

FIGURE 7.2
Oracle Enterprise Manager Installation.

The technical details of installing OEM on a client are as follows.

1. Obtain the CD “Oracle Enterprise Manager: Version 2.1 with Oracle Tuning,

Diagnostics, and Change Management Packs.”

2. Load the CD in any Windows machine 95 or higher. If you want to install and run the

Oracle Management Server, the machine needs to be any version of either NT or

Windows 2000.

3. The OEM load screen appears. Select the Install/Deinstall Products option, as shown in

Figure 7.2.

4. The next screen (Figure 7.3) shows the familiar Oracle Universal Installer you used to

install the Oracle Server in Chapter 4, “Machine Setup and Installation.” Click the Next

button.

Oracle DBA on Unix and Linux
180

FIGURE 7.3
Oracle Universal Installer.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

181

5. You will be prompted for file locations, as shown in Figure 7.4. It seems logical to create

an Oracle directory, and then create a subdirectory for OEM and other Oracle product

subdirectories at the same level. Unfortunately, I have experienced some problems with

this method where the Registry on NT gets “confused.” Instead, forgo the idea of

creating an Oracle directory and simply install OEM as OraOEM21.

6. You will be prompted for what to install. If you are running NT or Windows 2000, your

options will be OEM, Management Packs, and Management Infrastructure (which is

OMS) or you can just Install OEM and the Management Packs. If you are running

Windows 98 or Windows 95, you will receive the options shown in Figure 7.5. Assuming

you are running Windows 95/98, select the Typical installation.

FIGURE 7.4
OEM File Locations.

FIGURE 7.5
OEM Installation Types.

FIGURE 7.6
OEM Summary Information.

Oracle DBA on Unix and Linux
182

Installing OMS and creating the repository are covered under Middle Tier and Server

Installations.

7. The next screen provides a summary of products to install, as shown in Figure 7.6. Once

you have verified this is what you want, click OK.

8. This installation of the products will occur, as shown in Figure 7.7.

FIGURE 7.7
OEM Installation Is Complete.

9. After the installation has occurred successfully, you will likely be placed in the Net8

Configuration Assistant to configure the client-side tnsnames.ora file. You did this for the

server in Chapter 5, “Creating a Database,” and you can proceed with this if you want.

Another method is to exit from the assistant (it won’t hurt your OEM installation).

Then copy/ftp the tnsnames.ora file from your Unix/Linux server to your client in the

$ORACLE_HOME/network/admin directory.

This is all there is to installing the OEM client. After the installation, your OEM software is

available from Start, Programs, Oracle-OraOEM21.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

183

Middle Tier (OMS)
Installation of the Oracle Management Server is optional, but you can’t schedule database jobs

via OEM or monitor for events without OMS. As of this writing, to install and run OMS, you

need either a Sun Solaris server or a Windows machine running any version of NT or Windows

2000. The Oracle Universal Installer determines whether you are running a Windows machine

capable of running OMS and provides the additional OMS options. This section assumes that

you are using Windows NT/2000. The installation process is very similar to the basic OEM

except for the following OMS options.

OUI will provide you the option of installing the basic OEM and Management Packs or the

OEM with the OMS infrastructure, as shown in Figure 7.8.

FIGURE 7.8
OEM OMS Product Selection.

OUI will then ask you whether OMS will connect to a new or an existing repository, as shown

in Figure 7.8. In this section, you create the repository with the OEM Configuration Assistant

covered in the OEM Server setup. Select New Repository when prompted.

FIGURE 7.9
OMS Repository Selection.

FIGURE 7.10
OMS Setup.

Once you reach this point, it is time to create the database repository and start the intelligent

agents on the Unix/Linux server. Creating the repository on a database is a prerequisite for

starting OMS. This is covered in the next section “Server Installation.” Once that is completed,

you can start the OMS service, as detailed next.

Assuming the database repository has been created and the intelligent agents are running, it is

time to start the OMS service on your NT/Windows 2000 machine.

Go to Start, Settings, Control Panel, Services. As shown in Figure 7.11, you will find the ser-

vice for Oracle Management Server.

Oracle DBA on Unix and Linux
184

FIGURE 7.11
Control Panel Services.

Next, highlight and double-click OMS get the service options. You can either start the service

manually, or you can set it to start automatically on machine reboot. Select the manual startup

for now, as shown in Figure 7.12.

After the installation, Oracle Net8 Assistant will start and will be followed by the OMS setup,

as shown in Figure 7.10.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

185

FIGURE 7.12
OMS Service Startup.

After a few seconds, the service should start. You can verify this by looking in the status

column for Services. At this stage you should be able to log in to OEM console. If the OMS

server failed, check that the repository database and listener are started, the repository has been

created, and that connectivity exists to that database. Basic OEM functionality is available if

OMS or the repository is down, but advanced features will not be available.

OMS Logins

The OMS will determine whether the repository database is accessible and whether

the repository has been created before it starts. Expect to see multiple login sessions

by the repository owner (OEM_OWN in this case) into the repository database once OMS

is started. These sessions will terminate when OMS is stopped.

NOTE

Server Installation
Configuring the server tier for OEM is also optional; however advanced features provided by

OMS are dependent on this. Also, some OEM tools require a repository, Intelligent Agents, and

Data Gatherer even if you choose not to use OMS. Most Unix DBAs create OEM repositories

and start Intelligent Agents even if they choose not to use OMS.

To create an OEM repository, you need to start the OEM Configuration Assistant, as shown in

Figure 7.13. This is found on NT/Windows 2000 installations under Oracle-OEM21, Enterprise

Manager. Select the option to create a new repository.

The next screen asks you which database you want to create the repository in. If you have

created a database specifically for this, such as rh1rep1, enter that information now.

Otherwise, the repository can go into a preexisting database, but that database will need to be

continually running to support OEM’s advanced features.

FIGURE 7.13
OEM Configuration Assistant.

Notice how OEM expects you to define the service name. It wants the service name in the

format of host:port#:sid. If you cannot get the hostname to work, you can use the database

server’s IP address. The port will typically be 1521; you can verify this by checking the

$ORACLE_HOME/network/admin/listener.ora file on the database server.

Figure 7.14 shows how to select a database to install your repository in.

FIGURE 7.14
OEM Repository Configuration.

The rest of the repository-creation process is fairly straightforward. The assistant creates a user

(call it OEM_OWN), a tablespace called OEM_REPOSITORY, and the objects for the

repository. The final screen before the repository is created is shown in Figure 7.15.

Once the repository is created, the OMS server can be successfully started. However, before

OEM scheduled jobs and event monitoring can be implemented, Oracle intelligent agents need

to be configured on each database server (referred to as a node in OEM documentation).

Oracle DBA on Unix and Linux
186

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

187

FIGURE 7.15
OEM Repository Summary.

Intelligent Agents

Oracle Intelligent Agents exist on each node to provide the “lights out” administration by

implementing OEM scheduled jobs and checking for events. Each target database instance will

have two Intelligent Agents logged into it as the user DBSNMP.

SQL> select username from v$session

2 where username is not null;

USERNAME

DBSNMP

SYS

DBSNMP

SQL>

This indicates that agents for this node have been successfully started. Every database instance

on this node will have two DBSNMP sessions logged in.

Intelligent Agents are managed on each node through the lsnrctl utility. After you have

started your databases and the listener process (lsnrctl start), it is time to start the agents:

$ lsnrctl dbsnmp_start

LSNRCTL for Linux: Version 8.1.6.0.0 - Production on 18-MAR-2001 17:55:05

$

This will start the agents for the entire node and all running database instances will now have

two DBSNMP sessions. After this point any additional databases you start will have DBSNMP

sessions login after about one minute.

To verify that the agents are running, you can check for their database logins in SQL*Plus by

querying V$SESSION or you can use ps -ef to search for their background processes. You

can also get the status of the Intelligent Agents using the command lsnrctl dbsnmp_status.

$ lsnrctl dbsnmp_status

LSNRCTL for Linux: Version 8.1.6.0.0 - Production on 18-MAR-2001 18:01:06

Copyright 1998, 1999, Oracle Corporation. All rights reserved.

The db subagent is already running.

$

Because these are actually login sessions, they must either be stopped or killed before you shut

down a database instance. The best way to eliminate DBSNMP sessions is to shut them down

via the lsnrctl dbsnmp_stop command.

$ lsnrctl dbsnmp_stop

LSNRCTL for Linux: Version 8.1.6.0.0 - Production on 18-MAR-2001 18:08:00

$

This forces the DBSNMP sessions to log out of every database instance on the node. You can

then cleanly shut down the databases without having to kill any sessions. Problems arise, how-

ever, when you have multiple databases running on a node and want to shut one down, but you

cannot stop all the agents on the node to do this. In these cases, it is usually best to use the

SHUTDOWN IMMEDIATE option.

An Oracle Intelligent Agent is actually a default database user just like any other user created

in a database. Therefore, it has a password that is a potential security risk. The default pass-

word for the DBSNMP user is dbsnmp. You can simply change the password as you do for any

other user, but that can cause problems. A better method is as follows:

1. It is preferable to make these changes before you create any jobs or events. However, if

any OEM jobs or events have already been created, remove the jobs and events for all

the databases on the node.

2. Stop the Intelligent Agents if they are running. Use lsnrctl_stop.

3. Edit the file $ORACLE_HOME/network/admin/snmp_rw.ora to have the following two

parameters:

snmp.connect.service_name.name = dbsnmp_name

snmp.connect.service_name.password = new_password

Oracle DBA on Unix and Linux
188

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

189

A modified snmp_rw.ora file looks like this:

snmp.contact.listener = “”

snmp.index.listener = 1

snmp.contact.rh1dev1.mike.com = “”

snmp.index.rh1dev1.mike.com = 2

snmp.connect.rh1dev1.mike.com.name = dbsnmp

snmp.connect.rh1dev1.mike.com.password = dbsnmppwd

snmp.contact.rh1rep1.mike.com = “”

snmp.index.rh1rep1.mike.com = 3

snmp.connect.rh1rep1.mike.com.name = dbsnmp

snmp.connect.rh1rep1.mike.com.password = dbsnmppwd

In this case, the service names are rh1rep1.mike.com and rh1dev1.mike.com. The

Intelligent Agent login name is dbsnmp and the password is dbsnmppwd.

Include Future Databases

You have to add two separate lines for each database. Be sure to add this file to the

list of post-creation tasks for any database instance you later create.

NOTE

4. Because this file has hard-coded passwords, it is necessary to change its permissions for

security. Give it 700 permissions so only the oracle user can read it.

$ chmod 700 snmp_rw.ora

5. Log in to each database and change the password to whatever you changed it to in the

snmp_rw.ora file The syntax is as follows:

alter user dbsnmp identified by “new_password”;

Putting the password in double quotations is necessary if you plan on using special

characters such as !.

6. Restart the Intelligent Agents. Verify that they are logged on to each database you

modified in snmp_rw.ora. If not, you most likely either mistyped a password or failed to

change them inside the database.

$ lsnrctl dbsnmp_start

and

SQL> select username from v$session;

7. Change the file catsnmp.sql to have the new password: dbsnmppwd:

$ vi $ORACLE_HOME/rdbms/admin/catsnmp.sql

8. Modify the permissions on catsnmp.sql because it now has a hard-coded password.

$ chmod 700 $ORACLE_HOME/rdbms/admin/catsnmp.sql

That is all there is to working with Intelligent Agents. Once they are configured and started,

they require little attention from the DBA. Just remember to add them to your normal startup

routine and verify their status if you have reports of OEM jobs failing.

Data Gatherer

The OEM utilities Performance Manager and Capacity Planner use Data Gatherer to collect

and record information. It is possible to run Performance Manager without Data Gatherer, but

it will run with reduced functionality.

Data Gatherer is installed with the Intelligent Agents. It can be found in $ORACLE_HOME/odg.

Before you run it for the first time, clear any files out of the $ORACLE_HOME/odg/log

and $ORACLE_HOME/odg/reco directories. A Data Gatherer alert log is created in

$ORACLE_HOME/odg/log; you can view it if there are problems.

There are four basic commands to control Data Gatherer:

vppcntl -start <-- Start Data Gatherer

vppcntl -status <-- Get status information

vppcntl -ping <-- Verify connectivity

vppcntl -stop <-- Stop Data Gatherer

To run and stop Data Gatherer:

$ vppcntl -start

The Oracle Data Gatherer is running.

$ vppcntl -status

The Oracle Data Gatherer is running.

$ vppcntl -ping

The Oracle Data Gatherer is running.

$ vppcntl -stop

The Oracle Data Gatherer has shutdown.

That is the basics of running Data Gatherer. It is not essential, but its setup is fairly simple.

OEM Controls
Once Oracle Enterprise Manager has been installed and configured, you can begin working

with its tools. There are two ways to run the basic suite of OEM products: via the OEM con-

sole or in standalone mode.

OEM Console
Think of the OEM console as a master login where you can be logged onto all your databases

simultaneously and can control them as an enterprise. It is from the console that you can per-

form advanced features, such as scheduling jobs and monitoring events. All the normal OEM

utilities are also available from the console.

Oracle DBA on Unix and Linux
190

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

191

FIGURE 7.16
OEM Console Login.

Once successfully logged in, you will see a four-panel screen, as shown in Figure 7.17. The

top-left panel labeled “Navigator” contains all the nodes and databases on each node. This is

where you select the database to administer. The top-right panel is “Group” and allows you to

logically group multiple databases. The lower-left panel is “Jobs” and it lists all the jobs you

currently have scheduled. The lower-right panel is called “Events” and it displays all the events

you are monitoring.

FIGURE 7.17
OEM Console.

All the tools installed are available via the buttons on the left side or by the drop-down Tools

menu.

To start the console, the OEM repository database must be created, running, and accessible with

the Intelligent Agents running. Also, the OMS service must also be running and accessible. To

log on to the console, choose Start, Programs, Oracle-OEM21, Enterprise Manager, Console.

The first screen prompts you for the console administrator login and password, as shown in

Figure 7.16 The username is sysman and the default password is oem_temp. You are also

prompted for a running OMS server to connect to. If OMS is on your local machine, that

version is normally listed as the default OMS. In cases where the OMS is on another machine,

use the Add button to add the name of the remote OMS. Once this is done, click OK to log in.

Oracle DBA on Unix and Linux
192

FIGURE 7.18
Node Discovery.

Once the node has been discovered every running database on that node is accessible if you

have a password. By expanding the node and node name, and then clicking any of the data-

bases, you will be prompted for a password. There will be a check box option to save the pass-

word as a Preferred Credential. If that option is selected it will not be necessary to enter the

password again; this is the equivalent of “save password” for a database. This is possible

because the passwords will be encrypted and stored on their PC. Once the DBA password has

been entered, the database is accessible.

Figure 7.19 shows a view of databases accessible from the console.

FIGURE 7.19
Accessible Databases via OEM Console.

To gain access to the databases you want to manage, you must “discover” each node. Either

use the Navigator drop-down menu or right-click the node’s icon and select Discover Nodes.

This will start a two-screen wizard that identifies every database on each node you want to dis-

cover. On the second screen, you enter the host name of the database server node you want to

manage or its IP address, and then click Next. Once they are discovered, all the databases on

that node will be identified every time you start the console. See Figure 7.18.

Detailed use of all the options provided by the OEM console is outside the scope of this book.

Fortunately, however, OEM Help “Take a Quick Tour” provides a good overview of the

features available. This feature off the Help menu provides a set of quick examples on how to

use some features.

Standalone
If the console seems overkill for your purposes, you can also use most of the OEM tools in

standalone mode. Go to Start, Programs, Oracle-OEM21, Database Administration, DBA

Studio. DBA Studio provides most of the tools commonly used with OEM. It provides the

option to log in to the OMS server or log in in standalone mode. If not going to use the OEM

console, it does not make sense to use OMS with DBA Studio. Simply select the standalone

option.

DBA Studio displays all the databases as defined in the “tree,” as shown in Figure 7.20. These

are simply the databases found in your local tnsnames.ora that you have selected. If you add a

new entry to your tnsnames.ora, DBA Studio will ask you if it should be added to the tree dur-

ing the next login. Double-click any database listed and you will prompted for a password,

which can be saved as a Preferred Credential in a manner similar to the OEM console.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

193

FIGURE 7.20
Accessible Databases via DBA Studio.

A reduced tool set is provided with DBA Studio; however, you can also access these tools via

the Windows Start, Programs menu. The Tools menu bar does have some useful features that

manage database loads/imports/exports (under Data Management) and wizards that perform

analyze and reorganizations. Once again, OEM provides some useful self-help information in

the form of Quick Tours and Latest Features.

OEM Tools
OEM tools are broken into different packs accessible from the Start menu. Some require the

use of OMS, whereas others do not. The following sections cover the tools most commonly

used by Unix DBAs.

Application Development
The only tool available via Application Development is SQL*Plus. This is simply a Windows

version of the normal SQL*Plus program started from the command line. There are several

drawbacks to using the Windows version of SQL*Plus in the Unix environment. The largest

disadvantage is that direct access to the Unix system is denied. The DBA cannot shell out to

the Unix OS and all files accessed must be on the desktop. Any scripts must be on the

Windows machine rather than the Unix server. This is not a problem if the DBA is dealing

with small spool files, but if large files are generated or $ORACLE_HOME/rdbms/admin

scripts are needed, problems will arise.

Oracle DBA on Unix and Linux
194

Shelling Out

“Shelling out” is the practice of using ! to escape SQL*Plus and to enter a Unix shell.

Typing exit will return the user to the SQL*Plus prompt. Alternatively, a command

sequence such as !ls from within SQL*Plus issues the ls command in the current

directory without ever really leaving SQL*Plus.

NOTE

Change Management Pack
Oracle’s Change Management Pack is a relatively new tool that allows schemas to be com-

pared and changes outlined. For example, if a DBA wanted to compare the current production

environment to the development environment, this tool provides that functionality. This tool is

useful and deserves further examination, especially by Application DBAs.

Database Administration
The Database Administration set contains SQL*Plus Worksheet and the DBA Studio.

Developers might find SQL*Plus Worksheet useful, because it provides a more friendly input

medium than SQL*Plus. Entire blocks of code, rather than single lines, can be written, edited,

saved, and submitted.

DBA Studio is a suite of the most commonly used DBA tools. It can be used in either a stand-

alone architecture or it can be combined with OMS. DBA Studio allows the DBA to identify

multiple databases as a “tree” and connect to them simultaneously. Once connected, the DBA

has four utilities to choose from: Instance Manager, Schema Manager, Storage Manager, and

Security Manager. See Figure 7.21.

Instance Manager attempts to provide system-level DBA control over a database instance. If

the correct password configuration is set, the DBA can start up and shut down a database from

this tool. In the Unix world, however, every DBA I have worked with prefers to start up and

shut down databases at the Unix SQL*Plus command line in case problems occur.

FIGURE 7.21
DBA Studio Management Utilities.

Instance Manager, shown in Figure 7.22, does provide the useful display screens for database

state, parameters, and memory allocations. It provides an easy-to-use GUI representation of the

SGA memory allocations and the init.ora parameters. Management of user sessions is also pos-

sible via the Instance Manager.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

195

FIGURE 7.22
DBA Studio Instance Manager.

Don’t be a Point and Click DBA!
Most Unix DBAs understand the principles of Oracle and know when to use tools like

OEM. However, I have been frightened to see too many “DBAs” who really know

nothing about Oracle and survive only because of OEM tools such as Instance

Manager and Schema Manager. My opinion is that if you cannot bounce a database

or move files from the command prompt, you should not have OEM either.

continues

Schema Manager, shown in Figure 7.23, is the most powerful and commonly used OEM

utility. This tool allows the DBA to create, alter, or drop every object in the database. This

includes tables, indexes, sequences, clusters, synonyms, objects, and so on. PL/SQL packages,

procedures, and functions can also be managed from this tool.

In the example that follows, the table MIKEW.TEST_TABLE is displayed. Here, the DBA can

add columns and any type of constraint, or can change the storage parameters. Schema Manager

gives the DBA quick access to every type of object owned by any user. This allows the DBA to

quickly create objects without having to remember the exact SQL syntax. The DBA uses the

GUI to make the changes within the tool and then views the actual SQL via the Show SQL

button. If you are satisfied with the SQL generated by the tool, you can use the Apply button to

force the tool to submit the SQL to the database. Remember, Schema Manager is really just a

slick SQL generation tool. Nothing is actually done to the database until you press the Apply

button.

Oracle DBA on Unix and Linux
196

DBAs tend to be well paid, but that is largely because the position requires

knowledge. Companies expect you to know what you are doing and why. Don’t try to

skate by just by relying on OEM to do everything for you. This policy does not work.

Everyone I know who has operated like this pays the price sooner or later. You’ll

either end up with a corrupted database or just lose all respect from your peers. OEM

truly is a great tool, but it is no substitute for knowledge!

FIGURE 7.23
DBA Studio Schema Manager.

Oracle Security Manager, shown in Figure 7.24, is another tool widely used by DBAs. It is

used to manage the users, roles, and profiles of the database. Most commonly it is used to add,

modify, or delete user accounts.

As you can see, a database user has a password that can be changed or reset by the DBA (a

common request). The account can also be locked or unlocked. Oftentimes, generic accounts

are created and, later, no one remembers why they were created or if they are needed. In cases

like this, it is common to lock the account for a few days or weeks and then delete it if no one

complains about not being able to log in. The default and temporary tablespaces of the user

can also be modified.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

197

FIGURE 7.24
DBA Studio Security Manager.

Oracle Security Manager also provides an easy method to identify which roles, system, and

object privileges a user has. Although this information can be found with the DBA_XXX

tables, the GUI tool is a little faster and easier to use. If needed, new roles can also be created

and privileges can be assigned.

Finally, one feature of Security Manager is a great time-saver: the create like option. Often,

the DBA is asked to create a user, but no one knows what privileges are needed. Many times

there are roles in the database that exist only as flags within an application, so even the DBA

does not know what they really do. In cases like this the DBA needs to ask the person request-

ing the user “who do you want this account to mirror?” Basically the DBA gets the name of a

current user who already has the necessary privileges. The DBA then highlights that user

account, right-clicks it, and selects the create like... option. This will create a user with the

same roles and privileges as the targeted user.

The final utility of OEM DBA Studio that is of use is Storage Manager, shown in Figure 7.25.

This tool allows the DBA to add, modify, and delete access to the databases data files, control

files, rollback segments, archive logs, and tablespaces. Obviously, there is a great deal of

power associated with this tool. Unfortunately, many new DBAs have a tendency to rely on

this particular utility too much.

OEM will let you modify these objects, but it won’t tell you whether you should modify these

objects. For example, you can drop a tablespace with this tool. It is up to the DBA to realize

that all objects in that tablespace will also be dropped, so maybe dropping a tablespace is a bad

idea. Given the magnitude of some of the changes this tool can be make, I prefer to make

major database changes at the SQL*Plus command line, not within a GUI.

Oracle DBA on Unix and Linux
198

FIGURE 7.25
DBA Studio Storage Manager.

That covers it for the high points on DBA Studio. A DBA can use this tool with or without an

OMS. It has many useful features, but you do need to understand the ramifications of any of

your changes.

Diagnostics Pack
OEM’s Diagnostics Pack offers several tools, but TopSessions and Performance Manager are

the most popular.

The DBA should always have a general idea of who is logged into the database and what they

are doing. OEM TopSessions provides a graphical representation of which users are logged

into the database. You can obtain more detailed information, such as the SQL being issued, by

double-clicking a user. Simply start Top Sessions and connect to the database you want to

monitor. Remember to edit the Sessions, Options, Count drop-down menu to show all sessions,

not just the top 10 sessions. Also remember to refresh the view often to identify new logins.

TopSessions, shown in Figure 7.26, gives the DBA the capability to kill user sessions. This is a

good idea to do before attempting a shutdown or if you notice that a user has been logged on

for an excessive amount of time. To kill a user, you highlight that user, right-click it, and

choose kill session.

The tool also provides the very useful feature of identifying locking sessions. Often, users call

the DBA to complain about being locked. This usually indicates the user’s session is hanging

because someone else has already locked the same row or table. That locking user needs to

either commit or roll back their changes.

FIGURE 7.26
TopSessions.

To resolve this problem, get the user’s ID/username. Highlight that user and double-click it to

get more information. Then select Locks. This gives you the option of viewing All Locks or

only the Blocking/Waiting Locks. Look under Blocking/Waiting Locks. Once you find the

blocking session, either have the user commit their changes or kill their sessions. Figure 7.27

shows an example of normal locks because of a table update.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

199

FIGURE 7.27
Normal Locks because of a Table Update.

Performance Manager is another popular tool provided by the Diagnostics Pack. Ideally it,

along with Capacity Planner, should be used with an OMS. Performance Manager can,

however, be used without attaching to an OMS. Data Gatherer should also be running on the

database server when using Performance Manager.

OEM’s Performance Manager is really just a tool to graphically represent what is going on in a

database at a specific time. The tool uses tried-and-true SQL scripts to generate data and then

merely charts that data. For these reasons, many Unix DBAs prefer just to run the scripts them-

selves. Many of these scripts are covered in Chapter 11, “Oracle Server Tuning.”

Network Administration
Both network configuration tools—Net8 Assistant and Net8 Configuration Assistant—are

available via OEM. They have already been discussed in Chapter 5.

Oracle Tuning Pack
The Oracle Tuning Pack provides two tools that can be used to tune your database: Oracle

Expert and SQL Analyze. Both these tools are an okay place to get started, but this is an area

where real knowledge of the database and its application is necessary. Before using these tools,

you should have a solid foundation of tuning knowledge so that you know what is going on

within the database, rather than relying on a GUI.

TOAD
TOAD is a third-party alternative to OEM. It is owned by Quest (quest.com) and trial versions

are available for download. Actually, there are many products in addition to TOAD that merit

investigation, but they are beyond the scope of this book.

If you’re a new DBA and have been trained using the traditional Oracle tools, it is possible

that you’ve never been exposed to TOAD. This is unfortunate and is why it is being covered

briefly here.

TOAD is basically an OEM alternative, but it is well regarded by Oracle PL/SQL program-

mers. Not many DBAs use it exclusively like they do OEM, but it is not uncommon to see

developers use it to create or edit their PL/SQL. For these reasons, if nothing else, the Unix

DBA should be familiar with it.

TOAD is easy to install. There is no OMS or repository, which is probably one reason it is

popular. This comes at the expense of more advanced features, but most developers do not

need those features anyway. You can create a few tables to support the use of explain plans, but

this is not a complicated task, using the TOAD scripts provided by the install. TOAD uses the

normal tnsnames.ora to connect, just like OEM does.

Once TOAD is started, there is only one screen to operate from, but all the utilities are avail-

able beneath drop-down menus. Many of these utilities are similar to the utilities provided by

OEM, so it is up to you to decide which is best. Figure 7.28 shows a sample screen from a

TOAD login. As you can see, many of the features available via the various OEM utilities are

available here as well.

Oracle DBA on Unix and Linux
200

FIGURE 7.28
TOAD Options.

The best way to learn TOAD is to download it and play with it. In my experience, I have found

the TOAD utilities to be quick and easy to use. I especially like the easy-to-use export utilities,

which places my data in a script that I can edit, unlike Oracle Export utilities. The table editor

is also good, just be careful with it. The fact that so many tools are quickly available on one

screen makes accessing these tools and experimenting with them very easy. I have found that

working with tables, data, and PL/SQL is particularly easy in TOAD.

The choice between TOAD and OEM is a personal one; they both provide similar functional-

ity. It is my opinion that anything complex or critical should be done manually from the Unix

box anyway, so the choice of GUI interface is trivial. I will say that it is safe to assume OEM

will always be available and supported in any organization, so a DBA should be familiar with

it. On the other hand, I find many DBAs are almost afraid to use any third-party tool or script

not endorsed by Oracle because they are terrified something will break. I find this to be an

irrational fear, especially because products like TOAD are so widely used. I encourage any

DBA to at least be familiar with TOAD because it is very likely they will encounter it some-

time in their career.

Summary
The use of GUI tools such as OEM and TOAD do have their rightful place in database admin-

istration. They can and should be used to perform quick tasks that normally require a lot of

typing. These tools can provide a quick overview of a database, its users, its objects, and how

it compares to other databases.

GUI Management Products

CHAPTER 7

7

G
U

I
M

A
N

A
G

E
M

E
N

T

P
R

O
D

U
C

T
S

201

The only caution I have against GUI tools is not to become too dependent on them. As you

saw with OEM, there is a lot of functionality, but some of it is dependent on setting up and

maintaining extra management servers and repositories. These extra layers require setup and

can break or become unavailable. You need to be able to operate without them. OEM does

offer some interesting monitoring and job-scheduling features, but these are duplicated in Unix

with use of cron and shell scripts. The bottom line with any GUI tool is to use it to aid in doing

your job, but don’t expect it to do your job for you.

Oracle DBA on Unix and Linux
202

CHAPTER

8
DBA Utilities

ESSENTIALS

• Using utilities to load, unload, and transfer

data and objects are core DBA tasks.

• A solid working knowledge of Oracle’s utili-

ties will make life for a DBA much easier.

• Export and import are used to move data and

objects from one Oracle database to another

Oracle database.

• SQL*Loader is used to load data from non-

Oracle flat files into Oracle databases.

• LogMiner is a relatively new utility that

allows the DBA to view the contents of Oracle

archive logs.

So much of what a database administrator does resembles the role of a system administrator or

a programmer that it is easy to lose sight of the data itself. In reality, the DBA is expected to

be an expert in loading, unloading, and manipulating data. Much of the unglamorous job of

being a DBA is loading large amounts of data from one table to another. This isn’t exciting

work, but it is a core responsibility of being a DBA.

This chapter examines the two most common utilities for loading data: export/import and

SQL*Loader. It includes a basic overview and some examples. The fundamentals are dis-

cussed, but more importantly, you’ll get a good understanding of when and how to use these

utilities. Best practices and a few tuning tricks are also covered.

The last part of the chapter covers a relatively new utility: LogMiner. This tool allows the DBA

to examine the contents of archive log files. This capability to view the archive log files pro-

vides some much-needed options for undoing mistakes that logically corrupt data.

Export and Import
Oracle data exists in tables, owned by users, residing in databases. Therefore, it makes sense

that the data can be extracted (exported) from a table owned by one user and then loaded

(imported) into a matching table owned by another user. This is the basic premise of export

and import. All the data is exported from a table into a file and that file is later loaded into

another table.

This section reviews the fundamentals of export/import. Next, it covers export and import

processes in greater detail. After that, the chapter examines some of the common uses of

export/import. Finally, it covers special situations that often arise when dealing with export and

import in the Unix/Linux environment.

Overview of Export and Import
Export provides the capability to extract all the table data from a single table, a group of tables,

all the tables owned by a user, or an entire database. This information is placed in an export

dump file called filename.dmp. This file, generically referred to as a .dmp file, is an individual

file on the operating system that can be copied, moved, or FTP’ed as needed. It is not part of a

database per se and can be treated as a normal file. The only restriction is that if you try to

open it in a text editor it will likely be corrupted, but this issue is addressed later in the chapter.

Once the .dmp file has been created via export, the DBA copies it to the server that holds the

database into which it will be imported. It is important to note that, while this must be an

Oracle database, it does not have to be the same database version nor does it even have to be

on the same platform. For example, if you wanted to create a small development environment

on a Linux or NT system, you could easily export the tables from a production Oracle database

on Solaris and use that .dmp file to build a new schema. The beauty of .dmp files is that they

are highly portable and are largely version- and platform-independent.

Oracle DBA on Unix and Linux
204

Once the .dmp file is on the server that holds the target database, the DBA simply imports the

data into the existing database. The DBA has the option to import all or just some of the tables

in the .dmp into the receiving database. Plus this .dmp file is reusable so the same tables can

be reimported time and again if needed.

Now that you understand the basic procedure of export and import, it’s time to look at each

phase in greater detail.

Using Export
Exporting table data is relatively simple, but there are a few caveats you need to be aware of.

Along with tables, other table-related objects such as indexes and grants can also be exported.

Exactly which type of objects are exported varies depending on the level of export used. There

are three levels of export: table, user, and database.

Table Level Export
A table level export is simply an export of one or more tables owned by a user. This is the

simplest form of export. The users conducting the export can export their own tables or can

export any user’s tables if the EXP_FULL_DATABASE role is granted (standard for DBAs).

The biggest caution when dealing with table level exports is that, because tables are often

linked in foreign key relationships, it is easy to miss a needed table.

The following objects are exported when a table level export occurs:

Table data Grants on the table

Table indexes Triggers

Table constraints

User Level Export
A user level export captures all the objects owned by a single user. This is the often the most

practical form of export because it exports everything needed to re-create a user’s schema. The

only real caution when using a user level export is that the resulting .dmp file can be very large

depending on the user’s schema.

The terms user level and schema level are often used interchangeably, but Oracle expects the

keyword to be user.

The following objects are captured with a user level export:

Table data Table indexes

Table constraints Grants on the table

Triggers Views

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

205

Database links Private synonyms

Snapshots Job queues

Sequences Packages

Procedures Functions

Full Database Export
A full database export will export an entire database, including every schema and object.

Obviously, the resulting .dmp file can be huge.

I have not seen this level of export used much, although it is sometimes used to relocate entire

databases. Typically, a database will have a few key schemas that need to be exported, but it is

easier to re-create all the normal users and database structure without an export. The level of

export is a matter of preference, but this chapter focuses on table and user level exports.

Export Types
An export can be conducted in one of two ways: either interactively or using a parameter file

(parfile).

Interactive Export
An interactive export is best used for simple, one time exports of a user or a few tables. Once

you start the utility you are asked a few questions to establish basic parameters, and then the

objects are exported. It is important to note that only a few of the many parameters are tunable

with an interactive export.

Figure 8.1 shows how you interactively export the DEPT and EMP tables from the default

SCOTT schema. Make note of how simple this is when just dealing with a few tables.

The export occurred in the $ORACLE_BASE/admin/SID/exp directory. Exports can occur any-

where there is adequate disk space, but this is a logical location. Export is started with the

command exp. The export was executed by the SYSTEM user, which has DBA privileges,

including EXP_FULL_DATABASE. Therefore, SYSTEM was able to export SCOTT’s objects.

The export was fairly straightforward, as Oracle only prompted for a few parameters.

Parameters for an interactive export are as follows:

• Username/Password (USERID) Oracle identifies the user executing the export in the

form of Username and Password. Because the DBA SYSTEM has by default

EXP_FULL_DATABASE, it was possible to export SCOTT.

• Buffer Size (BUFFER) Oracle will transfer bytes of data in the size specified.

Obviously, the bigger the buffer, the better. Most Unix DBAs go with either 1024000 or

10024000.

• Export File (FILE) Develop a meaningful naming convention for the .dmp files gener-

ated. This example uses the schema name (SCOTT), identifies that tables are being

Oracle DBA on Unix and Linux
206

exported (tbls), and includes the date (20010326). It is convention to always append a

.dmp to the end of any Oracle export dump file.

• Level of Export (FULL, OWNER, TABLES) Interactive exports will permit database,

user, or table level exports. In this case, table level export was used.

• Export Table Data (ROWS) Export provides the option just to export the DDL to create

the exported objects, not including the actual data. This is useful when you want a bare

schema or just want to copy a table’s structure.

• Compress Extents (COMPRESS) This has nothing to do with the size of the resulting

.dmp file. The Compress Extents option specifies that, upon import, all the table data

will be placed in the initial extent. If a table was created with a smaller initial extent than

can hold all the data, the imported table will have its initial extent expanded to contain

all the data. This is useful to reduce table fragmentation. If you do compress into one

extent, make sure the tablespace you will be importing into has enough contiguous space

to handle the extent.

• Table or Partition to be exported (TABLES) Oracle 8i allows either entire tables or

individual table partitions to be exported interactively. This example specified that

SCOTT.DEPT and SCOTT.EMP tables be exported. After each export, a total identifying

the number of rows exported is displayed.

The export terminates with a message stating the success or failure of the export.

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

207

FIGURE 8.1
Interactive Table Level Export.

Export Using Parameter Files
In cases where an export needs to be highly efficient, customized, or repeatable, a parameter

file should be used. A parameter file is simply a text file containing a list of parameters to be

used during the export. This allows you to customize certain options for a particular export.

Because the parameters are specified in a file rather than entered manually, the export can be

executed repeatedly as a cron job.

If a parameter is not listed in the parfile, its default value is used. The most commonly used

parameters were already defined in the interactive export, however there are other options here.

Figure 8.2 shows a listing of all the export parameters for Oracle 8.1.6.

Oracle DBA on Unix and Linux
208

FIGURE 8.2
Oracle 8.1.6 Export Parameters.

As you can see, there are quite a few options available. In addition to the parameters explained

earlier in this chapter, a few export parameters deserve attention. Remember, most of these

options are available only when you explicitly define them in a parameter file or on the export

command line.

• PARFILE Defining PARFILE=filename.par identifies that the export will not be

interactive and will use the values defined in the parfile. Parameters can be defined in the

parfile or on the command line; otherwise the default values are used.

• FILE A The name of the .dmp file to be created.

• LOG The name of the .log file created during the export. If this is specified, everything

normally written to the screen is also written to this file. It is highly recommended to use

this parameter.

• FULL Use of the FULL=Y parameter indicates a full database export will occur.

• OWNER Defining a value for OWNER identifies the schema to be exported. For

example, OWNER=SCOTT signifies a user level export of the SCOTT schema.

• TABLES Use of the TABLES=(table_name1, table_name2...) indicates that a table level

export will be executed and identifies the tables.

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

209

Determine Level of Export

The use of the FULL, USER, or TABLES option is mutually exclusive. One and only one

of the three options can be defined for the export. Attempting to specify more than

one level will cause the export to fail.

NOTE

• FEEDBACK When working with large table exports, an impatient DBA might wonder if

the export is “hanging” because nothing is happening on the screen. If the FEEDBACK

parameter is given a value, 50000 for example, one tic mark will appear on the screen for

every 50,000 rows exported. This shows that the export is proceeding. The default value

is 0, so this option is not used.

• DIRECT Setting DIRECT=Y changes the way Oracle reads and writes blocks to the

.dmp file. Normally, Oracle will read each block from disk into the database buffer cache

and will then write it to the .dmp file. If DIRECT=Y, Oracle will bypass writing the

blocks to the buffer cache and will write them directly to the .dmp file. This parameter

can speed up exports, but has no effect on import performance. The use of DIRECT=Y

and the BUFFER parameter is mutually exclusive. The default value is no, so this option

is not used.

• CONSISTENT Theoretically, an export should start and finish without any table data

being changed. Unfortunately, on a busy database where many tables are being exported

that is not likely to happen naturally. For example, if 50 tables are being exported it is

likely for a user to update data in table 45 that conflicts with exported data in table 10.

To resolve this problem, the CONSISTENT=Y parameter forces rollback segments to

create a read consistent point in time view of the data at the start of the export. This way

the export will have logically valid data, even if it changed during the export. Because

this is not usually necessary and because of its stress on rollback segments, this option is

off by default.

The best way to use exports and parameter files is to create a template parameter file and

customize it for your needs. The following is a sample parameter file that creates a schema

level export of the user SCOTT. It is a simple text file created in vi.

$ more scott_schema.par

userid=system

file=scott_user-20010326.dmp

log=scott_user-20010326.log

owner=scott

direct=y

$

Notice the password to the user SYSTEM is not included in this file. If executed from the

command line, the export utility will prompt the user for the password. The .dmp file and the

.log file have meaningful names. The OWNER=SCOTT parameter identifies this as a user level

export. Using the DIRECT parameter prevents the use of the BUFFER parameter, but you are

still getting a slight performance gain by bypassing the buffer cache.

Figure 8.3 shows a sample schema level export of the SCOTT schema using the parameter file.

Pay particular attention to the non-table objects exported at the end of the export.

Oracle DBA on Unix and Linux
210

FIGURE 8.3
User Level Export with a Parameter File.

The export of the user SCOTT was successful. All four tables were exported. Many additional

object types were listed as having been exported, but if SCOTT did not own objects of that

type nothing was exported.

Query Based Exports
There is one new feature in Oracle 8i that deserves separate attention: query based exports.

Previously, when a table was exported, all the rows were exported. There was no way to selec-

tively export only a few rows. This has changed in Oracle 8i with the use of the WHERE

parameter.

It is now possible to include a WHERE clause in table level exports. If you can identify spe-

cific rows via a WHERE clause, export can be directed only to export those rows. The only

drawback is that the clause must apply to every table being exported. You cannot export multi-

ple tables and expect the WHERE clause to be applied to only one table. This effectively limits

the export to one table at a time. The following is a sample parameter file to export only EMP

rows where DEPTNO = 30.

$ more scott_emp_30.par

userid=system

file=scott_emp_30-20010326.dmp

log=scott_emp_30-20010326.log

tables=scott.emp

query=”where deptno=30”

$

This export would be executed just like any other export using a parameter file, but it would

export only those six rows in the SCOTT.EMP table WHERE DEPTNO = 30.

From a technical standpoint, you know everything you need to know to begin exporting data.

However, more advanced techniques are often required in a real-world Unix environment.

These are covered with advanced import techniques later in this chapter.

Using Import
Importing data is the opposite of exporting it. As a result, many of the procedures and types of

imports are similar to exports. Just like export there are three levels of import: table, user, and

database. Also, you can execute an import interactively or with a parameter file.

The level of import is partially dependent on the level of export. Obviously if the export .dmp

contains only a table you cannot import a schema. If, however, the export was of a schema you

can choose to import only a few selected tables.

The user receiving the imported objects must be identified. If only a user ID is given for the

import, objects will be imported into that user’s schema. The only other alternative is to use the

FROMUSER/TOUSER clause via a parameter file to identify who will receive the objects.

An import .dmp file is essentially a script with CREATE TABLE/INDEX/etc DDL and data. If

you import a table into a schema where that table does not exist, the import will create the

table with any indexes/constraints/triggers, load it with any data, and apply any grants neces-

sary. If a table of the same name already exists, import will issue an error and will not attempt

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

211

to create the table or load any data. This can be overridden by setting the parameter

IGNORE=Y. By using this parameter, import will ignore the fact the table already exists and

will load the data into it. All primary key, foreign key, and other constraints will be enforced

unless they are disabled prior to the import.

Interactive Import
An interactive import is similar to an interactive export. It is most appropriate when the import

is ad hoc and does not require any special parameter changes. Just like the interactive export,

this import will prompt you for a few parameters and will use the default values for the rest.

Figure 8.4 shows an example of a table level import.

Oracle DBA on Unix and Linux
212

FIGURE 8.4
Interactive Import of a Single Table.

In this example, the user SCOTT imported the table SALGRADE into his schema. Take a look

at the options in greater detail:

• Username/Password (USERID) This is the ID of the user conducting the import. If the

user has IMP_FULL_DATABASE rights, he/she can import into any schema. That is

normally a DBA privilege. Because SCOTT is just a normal user, he can only import into

his own schema.

• Expdat.dmp (FILE) SCOTT identified the export .dmp file as salgrade-tbl.dmp.

• Buffer Size (BUFFER) Just like in export, this parameter determines how big each

“chunk” of data is. Unlike export, there is no DIRECT option for import. Even if the

export was taking with DIRECT=Y, a buffer value can be specified here.

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

213

• List Contents of Import File Only If this parameter is set to Y, the DML in the export

DMP file will be displayed to the screen, but nothing will actually be imported into the

database. Because SCOTT actually wanted to import the table, he accepted the default of N.

• Ignore Create Error Due to Object Existence (IGNORE) If import tries to import a

table that already exists, it will generate an error message, skip that table, and move on to

the next object in the .dmp file. The default action is not to import into a preexisting

object. If the parameter is set to Y, the error will not be displayed and any rows of data

will be inserted into the existing table. The only caveat of this situation is that any

enabled constraints such as primary and foreign keys will be enforced. Also, any triggers

on the table will also fire. No data will be overwritten, but an enabled primary key will

prevent duplicate rows from being inserted.

Disable Constraints

For performance reasons, it is common to create the tables before importing the

data. In cases like this, it is best to use Dynamic SQL to disable all the constraints, pri-

mary and foreign keys, and triggers on the user’s tables before the import. After the

import, the Dynamic SQL is modified to reset those constraints, keys, and triggers.

NOTE

• Import Grants (GRANTS) Objects normally have grants to users or roles that should

be included in any import. Typically it is best to go with the default of YES.

• Import Table Data (ROWS) Accepting the default value of YES will cause import to

create any tables not existing and will import the associated data. A NO option will cause

only the objects (tables, indexes, grants, and so on) to be created without any data. Use

this option when you want to create a bare schema or set of tables with no data.

• Import Entire Export File (FULL) An import can import everything in a .dmp file or it

can use individual objects. In cases such as this, it is best to know what is actually in the

.dmp file, which can be a problem if it was created by another DBA. Based on the name

(salgrade-tbl.dmp), you can assume it is a table so you can import the entire file. Had the

NO option been selected, a prompt to identify the user that will receive the imported

objects would have been issued and individual tables could have been selected.

Because this was an interactive import, there is no log file and the output is only to the screen.

However, you can see the import was successful because it produced no warnings. This type of

import is suitable for simple or ad hoc jobs, but most of the time, the parameter file method is

preferable.

Parfile Imports
Using a parameter file for imports provides maximum flexibility and makes the process repeat-

able. Indeed, to make use of the wide range of import options or to securely automate a job, a

parameter file is necessary. To view the available import options, type imp help=y. See

Figure 8.5.

Oracle DBA on Unix and Linux
214

FIGURE 8.5
Import Options.

Key options used for import not discussed in the interactive import are as follows:

• PARFILE Defining PARFILE=filename.par identifies that the import will not be

interactive and will use the values defined in the parfile. Parameters must be defined in

the parfile or on the command line; otherwise the default values are used.

• LOG The name of the .log file created during the import. If this is specified, everything

normally written to the screen will also be written to this file. It is highly recommended

to use this parameter.

• FEEDBACK When working with very large imports, a DBA will want to check how

many rows of an object have been imported. If the FEEDBACK parameter is given a

value, 50,000 for example, one tic mark will appear on the screen for every 50,000 rows

imported. This shows that the import is proceeding. The default value is 0, so this option

is not used.

• COMMIT Oracle will, by default, wait until the entire import is finished before it

commits any changes. During this time it keeps filling up the rollback segment until the

import completes or the rollback segment runs out of room. Set this value to Y in your

parameter file. It will force a commit after every table is imported, thus reducing the

chance of blowing out a rollback segment. The only two drawbacks are a slight

performance hit and the fact that you will be stuck with unwanted objects if the import

later fails. If this happens, just drop everything imported (see your log file) and try the

import again.

It normally takes longer to roll back a failed import than to create it. For example, if you

are six hours into an import and blow out your rollback segment, expect at least another

six hours for Oracle to roll back the import. That represents 12 hours wasted on an

import—time that most DBAs cannot afford. For this reason I almost always use

COMMIT=Y.

• FROMUSER/TOUSER These parameters are used together. If you have the role

EXP_FULL_DATABASE, you can log in as one user (SYSTEM for example), export

another user’s objects (such as SCOTT’s SALGRADE table), and then import it

into another user’s schema on another database (ERIKH on rh1dev1). Simply set

FROMUSER=SCOTT and TOUSER=ERIKH in the parameter file with USERID=

SYSTEM. This is commonly done when moving schemas from one database to another.

• INDEXFILE Specifying a filename will force import to create a file containing only the

DML from the export .dmp file. Nothing will actually be imported into the database

when this option is selected. One use of this option is to create a file that can be edited

by the DBA to change storage parameters. The edited file can then run via SQL*Plus to

create tables and indexes with different storage values. Unfortunately, the resulting file is

not easy to format by hand, but it can be useful if you are good with vi. Using this option

to create indexes after an import is covered in the tuning export/imports section.

The following is an example of an import parfile of the user SCOTT from rh1tst1 into the user

schema ERIKH on rh1dev1. The export is a user level one conducted by SYSTEM.

$ more scott-usr.par

userid=system

log=scott-usr.log

file=scott-usr.dmp

fromuser=scott

touser=erikh

commit=y

$

This parameter file will execute the import as SYSTEM. The DBA is prompted for the

password at the start of the import. A log file scott-usr.log is generated containing the screen

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

215

output. Because the export was taken by SYSTEM and the import will be conducted by

SYSTEM, you use the FROMUSER/TOUSER clause. To execute the import, type imp

parfile=scott-usr.par at the command line.

Common Export/Import Uses
Now that you have an understanding of the syntax and options of export and import, you can

learn how it is used in the Unix/Linux world.

Logical Backups
The export utility can perform what is called a logical backup. The term logical is used

because it differentiates between exporting table(s) or user(s) versus physically backing up all

the files comprising a database. The pros and cons of logical backups are covered in Chapter 9,

“Backup and Recovery,” but two common types of logical backups are discussed here.

Backing Up Individual Tables
There are times when a DBA is about to modify, drop, or load data into a table, but knows

there is a chance that the change will need to be undone. For example, often times a data mod-

eler or developer will identify a table that no longer needed and ask the DBA to drop it. Before

the table is dropped, the DBA should export it just in case. The same applies when massive

data inserts or deletes are scheduled. Although it is possible to recover an individual table from

physical database backups, it is a major headache for the DBA. If there is any doubt, it is best

to take a table level export because these are relatively easy to recover.

Oracle DBA on Unix and Linux
216

Always Export Before Dropping Tables

Don’t ever drop a table without an export, no matter how much you are told “Oh,

it’s not needed. Just drop it.” I have seen too many cases where data that is worthless

today is needed tomorrow and the only thing that will save your skin is an export

file. Also, it is often a good idea to request drop table and schema requests in an

e-mail rather than acting on someone’s verbal request.

NOTE

Backing Up Entire Schemas
A business does not actually depend on a specific database per se, but it does depend on the

data in a user’s schema. For this reason schema level exports are common in addition to

normal physical database backups. If a database recovery is needed and, for whatever reason,

the physical backups are invalid, the DBA can recover the necessary schemas into another

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

217

database. This should be considered a last resort on production systems, but some development

systems use this method exclusively.

A more practical use for schema level backups is to protect against accidental table drops,

truncates, modifications, or deletes. A database doesn’t need to lose data files to be rendered

worthless—if the data is logically corrupted it is just as useless. One development system I was

supporting was unexpectedly corrupted beyond repair when some software testers ran a series

of scripts to modify data and messed up their WHERE clauses. They had no idea what they

changed and deleted so the best option was to drop the user and re-import the schema from the

previous night’s export. Although this might not be acceptable in a production OLTP environ-

ment, it worked just fine for testing and development.

Archiving Business Data
Many businesses face a legal requirement to store month-end or year-end data for several

months or years. The DBA needs to work with management to determine whether this is a

requirement. If so, a schema level export to tape can meet this need. In fact, an export .dmp

might be even more useful than a database backup because the .dmp file can be imported into

any later release of Oracle regardless of platform. Just make sure the tapes these exports are on

are clearly labeled and stored properly.

Migrations
Migrations are covered in detail in Chapter 15, “Migrations,” but are also mentioned here in

this context. A migration is the process of moving from a base release of Oracle to the next

release. For example, moving from Oracle 8 to Oracle 8i is considered a migration. It might be

on the same database server or it might be on a different physical server (aka rehosting). There

are several ways to accomplish this, but using a schema level export is one accepted method.

Building Schemas
Copying and moving schemas from one instance to another instance is a common task for the

Unix DBA. Often there will be an existing production environment and the DBA will be

expected to re-create that environment on another server to be used by developers and/or

software testers. It is also common to create a training database for new employees to work

with before they access live production data.

Make sure you understand your requirements before you start this process. Once word is out

there is another database people will often want to use it for purposes it originally was not

intended. You will be expected to provide a level of backup and recovery protection for this

database, so do not forget to identify these needs. Training and development databases also need

to be refreshed with data on a regular basis, so be ready to create a nightly cron job to drop the

old schema and re-import a new copy of data. Finally, if you are dealing with sensitive data,

institute controls on these smaller systems just as you would for the production system.

The process of re-creating a schema on another schema is conceptually easy, but there are a

few details that can cause problems. First, execute a user level export for the schema you need

to re-create. It is necessary to understand that this will get all the user’s objects and grants but

it will not get the user itself, public synonyms, database roles, or public database links. These

objects need to be created on the target database before the import.

Next, create the user account on the target database. Grant the account the same roles and priv-

ileges as the original database. Use dynamic SQL to capture the roles and public synonyms on

the original database and re-create them on the target database. It is important to note that you

can create roles and public synonyms before you import the objects. Also make sure any users

that have grants are created on the target database before the import. Otherwise, you will get

import messages that state that grants to specific users and/or roles have failed because those

users/roles do not exist. These are non-fatal errors, but your application may not work if the

users/roles lack the correct grants.

Oracle DBA on Unix and Linux
218

Grants

During an import, any grants on objects are reapplied. If a table being imported has

an insert grant to user CLERK, Oracle will look for a user named CLERK to apply that

grant to. If that user does not exist, a warning message will be issued, but the import

of the table will continue.

NOTE

One common problem when moving schemas from database to database is dealing with table

and index storage parameters. If you export a table with its indexes it will be imported with the

same storage parameters. This is a problem when you have large initial and next extents from a

production database, but you want to put them in a smaller development database. An even

bigger problem exists when you have many, highly customized tablespaces. When importing

an object, Oracle attempts to put it in the tablespace defined in the .dmp file. If that tablespace

does not exist, Oracle places it in the user’s default tablespace.

One of the best ways to deal with the storage parameter issue is to create the user’s objects in

the target database before you import the data. Get a copy of the user’s DDL and edit it to

include the necessary tablespaces and smaller extent sizes. Some work can be avoided if every

database uses the same tablespace names, even if they are physically smaller. If you follow the

belief that fragmentation is not a major issue and use small uniform extent sizes, you do not

need to modify the initial and next extent sizes either. Otherwise, get a copy of the DDL for

the user’s objects from Oracle Designer, from various SQL scripts and tools, or from importing

using an index file and then edit it as needed.

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

219

Use the Same Tablespace Names Everywhere

Because a schema can have hundreds of tables and thousands of indexes, it is often

impractical to modify the storage parameters for each object. Many DBAs simply use

the same tablespace names across all their databases. Tables and indexes are created

only with a tablespace clause defined and therefore they default to the initial and

next extent size of their tablespace. This greatly improves manageability.

NOTE

Once the storage and tablespace issues are resolved, it is time to import the user’s objects.

There is a performance benefit if the objects are already created, but you have to use dynamic

SQL to disable any constraints and triggers or they will fire during the import. As an alterna-

tive, if you import into a “clean” schema where there are no objects, you do not have to worry

about existing PKs, firing triggers, or foreign key constraints. Import will create the tables,

import the data, and then create/enable the constraints and triggers. Given a choice, I usually

try to import into clean schema unless the tables/indexes are large or there are tablespace and

storage issues.

When the import has finally completed and all the objects are successfully imported, there is

one final step many DBAs often forget. It is necessary to recompile any PL/SQL packages,

procedures, and functions because they will be invalid. Use dynamic SQL to recompile these

and do not be surprised if you need to do this two or three times because of interrelated

dependencies.

Once all the database objects are successfully imported, the PL/SQL is recompiled, and the

public objects (synonyms, grants, database links) are resolved, look at the OS environment.

Often, the DBA is responsible for setting up the OS file structure to support the application and

move the executables. This can be difficult because it is not really “DBA work,” but the DBA

is responsible for it. Work with your developers and SAs if you have questions about what is

needed here. I have found that using shell scripts to create directories and copy files to the

correct locations is a good way to automate this tedious process.

Maintenance Benefits of Export/Import
Exporting and reimporting tables inherently provides certain maintenance benefits. The savvy

DBA will be aware of these benefits and use them when needed. The benefits fall into these

categories: table rebuilds, corruption checks, and row count logs.

Table Rebuilds
As a table changes over time, its rows might be stored in a sub-optimal layout on disk. Several

inefficiencies can occur that impact performance. This is typically the result of frequent inserts,

updates, and deletes. For example, if many rows have been inserted, there could be an exces-

sive number of extents resulting in fragmentation. Other than fragmentation, there are other

problems that occur.

The insertion of data results in a highwater mark, which indicates the furthest point in the seg-

ment that contained rows of data. Oracle uses this highwater mark to limit how far into a seg-

ment it reads during full table scans since it is useless to read where there are no rows. As rows

in the segment are deleted by normal OLTP activity, gaps occur and data might no longer reach

the highwater mark. Oracle, however, continues to read through the entire segment up to the

highwater mark during the full table scans even though this in unnecessary. The segment

begins to resemble a piece of Swiss cheese because of all the gaps, which result in a

performance inefficiency.

Row chaining and row migration might develop over time because of long rows and/or high

update activity. Chaining and migration are not the same thing. The differences are covered in

Chapter 11, “Oracle Server Tuning,” but basically these are when one row resides in two

different data blocks. This creates a performance hit.

All these issues regarding table storage degradation can be addressed by rebuilding the table.

This involves exporting the table, dropping it, and importing it back into the same database. It

can be created in a different tablespace with different storage parameters. Exporting with the

compress option will compress all the data into the initial extent during import. Gaps in the

data are eliminated, chained/migrated rows are fixed, and the highwater mark is reset. Indexes

are also rebuilt, which is beneficial because they too can suffer from storage degradation. I

would not recommend doing this all the time, but a database suffering performance problems

might benefit from rebuilding problem tables.

Oracle DBA on Unix and Linux
220

9i Improvement

Oracle 9i promises to provide a new DDL to alter and rebuild objects “on the fly”

without the normal export/import. These new features and their ramifications are

examined in Chapter 19, “9i Server New Features.”

NOTE

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

221

Corruption Checks
Database corruption is an advanced subject, but it does merit a mention here. Sometimes data

or index information will not be written to disk in a way Oracle expects. There are many

causes of corruption, but the end result is Oracle cannot read data or indexes that should be

accessible and therefore this information is lost. As bad as losing data is, this problem is mag-

nified by the fact that corruption can grow undetected for a long time.

Fortunately, an export will attempt to read all these blocks and if corruption exists an error is

normally generated. For this reason, it is wise to examine your schema level export logs

regularly and fully investigate when Oracle says it cannot read a block.

Row Counts
The final way export and import is useful deals with monitoring table row counts. As

unbelievable as it might seem, many DBAs do not have a real feel for how many rows are in

their tables. They might know their tablespace sizes in megabytes, but they are clueless when it

comes to how many rows are in each table.

Simple SQL*Plus scripts certainly can capture row counts every night, but this is unnecessary.

Assuming schema level exports are taken every night and are written to a log file, you will

always have an exact row count for every table. Because log files are relatively small, they can

be kept on disk for an extended period of time.

Maintaining a log of row counts is beneficial not only because this is good DBA information,

but also because it can be used to track table growth and deletions. It also provides protection

for the DBA when someone claims “my table data is missing!” I have seen several cases where

a developer or end user will suddenly “realize” they are missing table data, think there is a fail-

ure of some kind, and begin pointing fingers at the DBA. This is where a series of nightly

export logs showing row counts can confirm or deny this accusation. If there is a problem, the

date of the log file indicates which export .dmp file is needed to recover the data.

Common Mistakes
Many DBAs write shell scripts to export or import data via cron. This is a reliable method, but

there are a few common mistakes that pose a security risk. Too many DBAs do not protect

their passwords when using scripts. Often there will be a line inside the shell script similar to

this one:

imp userid=system/manager parfile=scott.par

This is a risk because when the script executes this command many Unix systems will display

this line to anyone using ps -ef. The result is everyone will now know the SYSTEM pass-

word. For the same reasons you do not type sqlplus system/manager from the Unix com-

mand line, you should not do this within a script. This applies to SQL*Plus, SQL*Loader, and

export/import regardless if the script is interactive or cron-driven.

A far better method is to hide the parameter USERID=system/manager in a parfile called by

import/export or SQL*Loader. Make sure that file has appropriate permissions such as 740 or

700 to keep it secure. An even better method is not to embed a username/password at all and

instead use an Oracle account with operating system identification. This way, the user connects

with a “/” and no password is displayed or recorded anywhere.

One other common mistake people new to the Unix/Linux environment make is failing to place

jobs in the background to execute. Unix/Linux allows a user to start a job (such as an

import/export) in the background with the nohup (no hang up) option. This causes the job to

execute in the background and text that normally goes to the screen will be redirected to a file

in the local directory called nohup.out. The user is freed to issue additional commands in that

login session and can even log out, but the job will continue normally in the background. If the

user is still logged in to that session, a message will appear when the job is finished. The fol-

lowing example illustrates this:

$ nohup exp parfile=scott-usr.par &

[1] 9606

$ nohup: appending output to `nohup.out’

[1] + Done nohup exp parfile=scott-usr.par

$

The user executed an export with a parameter file containing userid=system/manger so it

would run automatically. By issuing the nohup option, you tell Unix/Linux to continue the job

even if the login session terminates before the job is finished. The ampersand (&) pushes the

job into the background and everything normally written to the screen is written to nohup.out,

which can be viewed. Once the job is finished, the Done message is displayed.

Test Your Exports and Imports

Oracle DBA on Unix and Linux
222

I know a couple of DBAs who had a schema that was corrupted and decided to

restore it via export/import. Unfortunately, they never tested the parfile for the

import. They set it up to run in cron that night and went home. Nor did they check

its progress when it started (it was still early evening). Too bad the parfile had few

errors in it that caused the restore to fail.

When they got in that morning to their shock their test schema supporting many

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

223

Advanced Export and Import Techniques
In the Unix/Linux world, there are a few special cases where basic knowledge of export and

import will not suffice. The situations covered here are exporting/importing large files, editing

.dmp files, and a few tuning tricks.

Export and Import with Compress and Pipe
Historically, Unix files were limited to a maximum file size of 2G (gigabytes). This limit posed

problems when you attempted to export and the resulting .dmp would exceed 2G. On most

modern Unix systems this limit no longer exists and most versions of Oracle no longer enforce

this limit. However, the need to deal with large files still exists.

It is not uncommon to export a schema and have the .dmp file range from several hundred

megabytes to several gigabytes. Even if the Unix operating system supports files this size they

are still cumbersome to manage and can exceed the disk space on the filesystem. The obvious

solution is to compress the .dmp file with the compress command for storage and moving/

copying it, but Unix-savvy DBAs take this one step further. It is possible to export directly into

a compressed file and import from a compressed file. This eliminates the step of compressing

and uncompressing in the .dmp file, which is especially beneficial when the uncompressed file

exceeds available disk space.

The idea is to create a Unix pipe redirected to a compressed file, which is the .dmp file. The

export is then executed where the .dmp is defined as the Unix pipe. Data from the export goes

through the pipe into the compressed file. The result is a .dmp.Z file, which is the export dump

file in a compressed format. To do this, follow these steps:

1. Make a Unix pipe:

$ mknod /u01/app/oracle/admin/rh1tst1/exp/p_rh1tst1 p

$ ls -l

prw-r--r-- 1 oracle dba 0 Apr 1 14:45 p_rh1tst1

2. Direct the pipe to the .dmp file and compress it in the background:

$ compress < p_rh1tst1 > $ORACLE_BASE/admin/rh1tst1/exp/scott-usr.dmp.Z &

people had zero tables and PL/SQL objects. After about five minutes of debugging

the parfile was fixed and the import started, but it still took most of the day to

restore the schema. No one got fired over this, but it was a silly mistake that did cost

people time. The point of the story is to check and test any job you do, particularly

then dealing with backup and recovery.

3. Create the export parameter file. Notice the file parameter points to the pipe p_rh1tst1.

$ more scott-usr.par

userid=system

compress=yes

direct=y

log=scott-usr.log

file=p_rh1tst1

owner=scott

$

4. Execute the export:

$ exp parfile=scott-usr.par

.....

$ ls

p_rh1tst1 scott-usr.dmp.Z scott-usr.log scott-usr.par

The export finished successfully and the resulting dump file is scott-usr.dmp.Z. This

file is in a compressed format and can be handled just like any other compressed .dmp

file. The pipe (p_rh1tst1) still exists and can be reused, but you have to repeat step 2 to

point the pipe to the next dump file.

To import a compressed .dmp.Z file, follow the following steps:

1. Optionally move the .dmp.Z to a different location to conduct the import. If this is done,

create a new pipe:

$ mknod /u01/app/oracle/admin/rh1dev1/exp/p_rh1dev1 p

$ ls -l

prw-r--r-- 1 oracle dba 0 Apr 1 15:12 p_rh1dev1

-rw-r--r-- 1 oracle dba 2564 Apr 1 15:01 scott-usr.dmp.Z

$

2. Uncompress the .dmp.Z file through the pipe in the background:

$ uncompress < scott-usr.dmp.Z > p_rh1dev1 &

3. Create a parameter file for the schema level import. Notice how the pipe is listed as the

file in the parfile.

$ more scott-usr.par

userid=system

file=p_rh1dev1

log=scott-usr.log

ignore=y

commit=y

fromuser=scott

touser=danw

$

Oracle DBA on Unix and Linux
224

4. Conduct the import.

$ imp parfile=scott-usr.par

The compressed .dmp.Z file imported successfully through the pipe.

As you can see, working with pipes is fairly simple, yet necessary, if you are working with

.dmp files in the gigabyte range. The only caveat is to be careful if you intend on manually

uncompressing any .dmp.Z files. You can normally expect a 3:1 compression ratio on normal

files, but this is not necessarily the case with .dmp files. Expect to get a much better ratio of

compression (I have seen 500M .dmp files compressed to 50M). If you uncompress a relatively

small file it could fill up your filesystem.

Editing a Dump (.dmp) File
Oracle documentation and support personnel state that .dmp files are not editable and any

attempt to open these files will corrupt them beyond repair. Furthermore, Oracle Support will

not support you if you attempt to edit a .dmp file. Having said that, I will show you a way I

have found to edit .dmp files to change storage parameters. Be warned, however, that this

procedure is totally unsupported and that I am not responsible if you try it and it corrupts your

files beyond repair.

If you export on Unix or Linux and attempt to edit the .dmp file in vi, the file will be corrupted

beyond repair and import will reject it immediately. However, the following procedure has

worked for me in the past. Try it at your own risk and remember to make backups of your

.dmp file in case they become corrupted.

1. Export the file as normal. I have tested this with user level exports, no data (I just want

the DDL), include grants, and no compress.

2. Make backup copies of the resulting .dmp file.

3. FTP one .dmp file in binary mode to a PC.

4. Open the file in WordPad.

5. Use Edit, Replace All to change your tablespaces and initial extent sizes.

6. Save the file as a .txt document.

7. FTP the file using binary mode back to the Unix/Linux machine.

8. Copy the file from .txt back to a .dmp file.

9. Import the file into the target database.

Once again, this works in some cases, but perhaps not in all cases. I do not rely on this method

for production systems and I make backups before I attempt to modify any .dmp file. However,

there are times when you need to create all the objects for a user with different storage options

and this can work. A safer method is to use a script to extract DDL or export to an index file,

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

225

but those methods take longer and also require editing. This method is provided only as a

possible alternative.

Tuning Parameters
Large exports and especially imports can take hours or even days to complete. This is a frus-

trating reality for DBAs who are always trying to find ways to speed up the process. The fol-

lowing list includes a few methods I have used to improve performance of user level imports.

These suggestions are tailored for large exports/imports, but will yield benefits even when

you’re working with small data amounts of data.

• When exporting data, use DIRECT=Y to bypass the evaluation buffer. Exports are rela-

tively quick, but this will improve performance.

• Create all the user objects on the target database before data is imported. This way, there

are no delays when attempting to allocate space and tablespaces can be sized more easily.

• Use dynamic SQL to disable all primary and foreign key constraints, as well as any other

constraints on the tables. Also disable any triggers before the import to prevent them

from firing.

• Import the data first, and then create the indexes. This is faster than importing data and

indexes simultaneously. Run a test import first using the INDEXFILE option to create a

.sql file to create the indexes. Next import the data with INDEXES=N. Once that is done,

run the .sql file to create the indexes. This is highly recommended when working with

large imports. Furthermore, the resulting index create file can be broken into multiple

files to be run in parallel.

• Consider running multiple imports simultaneously. The same .dmp can be accessed by

several import jobs at the same time. If you have multiple processors and disks, and can

divide the tables into different imports, this might be an option. Just make sure you do

not miss any objects.

• Use a large value for the BUFFER parameter. A value of 1024000 is not unreasonable.

• Analyze the tables after the import, not during the import.

• Set COMMIT=Y to commit after every table is imported to reduce the likelihood of

blowing out a rollback segment. Remember it takes longer to roll back a failed import

than to do the actual import.

• Set FEEDBACK to a value such as 100000 so you can track the progress of the import

on large tables.

• Make sure you are familiar with using Unix pipes and compression to deal large files.

Most large exports and imports will require these, so it is better to learn these concepts

before you need them.

Oracle DBA on Unix and Linux
226

These suggestions should improve the performance of large exports and imports, but there is

no one “magic bullet” to make the process go quickly. As with any important task, before you

are faced with a large or critical export/import, you should test your procedures. You might

find that some parameters yield larger results or are more difficult to implement than others

under certain circumstances. Use whatever mix works best for your environment.

Using SQL*Loader
SQL*Loader loads data from one or more flat files into Oracle database tables. It is the fastest

and most efficient way to load large amounts of data, plus it allows for the data to be in any

user-defined format. All that is needed is a flat file with the data and a DBA-created control

file that tells Oracle the format of the data. In the Oracle world, export/import unloads data

from one Oracle database and loads it into anther Oracle database. SQL*Loader takes the data

from non-Oracle sources (flat files) and loads into an Oracle database for the first time.

For example, if a company had a list of several hundred perspective customers obtained at a

trade show, these could easily be put a spreadsheet at the show. After the show, the spreadsheet

can be dumped to a text file. That text file would be used as the data file for the SQL*Loader

job. This is much better than having to manually enter the data twice (once into someone’s lap-

top and then into the database).

On the other side of the spectrum, SQL*Loader is the preferred method of loading massive

amounts of data. For example, imagine a legacy mainframe with volumes of data that someone

wants to load into Oracle on a large Unix box. The mainframe people could dump the data

(millions of rows) into CUSTOMERS, ORDERS, and so on, as flat files in any character-

delimited or space-delimited format. The Oracle DBA would create corresponding SQL*Loader

control files specifying the data’s format and which Oracle tables to load the data into. He or

she could then execute the SQL*Loader jobs in parallel to quickly load the data.

It is important to note that data is being loaded into preexisting Oracle tables. There is no user

level or full database SQL*Loader job; you are simply loading data into table(s). There are,

however, many ways to customize your SQL*Loader jobs. You might load the data into one or

more tables, have null and check constraints, and include default values all within the

SQL*Loader control file. This is in addition to the normal constraints and triggers in the

Oracle tables. If you are going to be migrating many systems to Oracle, have complex data

rules, or the data needs “scrubbing,” I highly recommend delving deeply into all the options

available. This chapter covers the fundamentals, but a highly detailed SQL*Loader study is

outside the scope of this book.

SQL*Loader is a command-line utility executed in a manner similar to import. There many

parameters that can be specified or the default settings can be used. A parameter file can be

created containing standard options. Figure 8.6 shows the SQL*Loader options.

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

227

Oracle DBA on Unix and Linux
228

FIGURE 8.6
SQL*Loader Options.

There are five types of files that can be used. Although they are called data and control files,

they are not the same files composing a database.

• Data The data file is the flat file containing the actual data to be loaded. Each row in the

file represents a record that’s loaded as a row in a table. Within each record, individual

columns are separated by either user-defined special characters, by fixed width, or by

variable width. Because it is a text file, anyone can open it and edit it. Unlike export/

import .dmp files, these files can be corrupted only if someone accidentally adds garbage

data or control characters.

• Control The control file specifies the characteristics of the data. The data filename is

specified and the corresponding database tables are identified. The format of the data

record format is given. Any special default values, constraints, and WHERE conditions

are provided. This file can be highly customized to scrub or validate data as it is being

loaded.

• Bad Any rows that do not meet the size or format specifications for a record are written to

this file and are not loaded into the database. After the data load, this file will contain rows

that cannot be loaded into the table because they do not meet the format specification.

• Discard Rows that do not meet the logical requirements specified in the control file are

written to this file and are not loaded into the database. Rows in this file could have

physically been loaded, but business rules dictate they should not be loaded into the

table. These rows can later be repaired and reloaded by the DBA.

• LOG Contains detailed results of the data load.

SQL*Loader Load Types
Within SQL*Loader, there are two types of loads: conventional path and direct path. These dif-

fer in terms of how data is loaded and they impact the level of constraint checking and trigger

firing. The default mode is conventional path, but specifying DIRECT=Y will force a direct

path load.

Conventional Path Loading
Conventional path loading essentially loads each row of data as an individual SQL INSERT

statement. Ramifications of this include:

• It is slower than direct path.

• All the normal rules and processes for a normal INSERT occur. All constraints are

checked, primary and foreign key relationships are maintained, sequences are used, and

triggers fire as normal.

• Database buffer cache is used. The normal contents of this buffer could be flushed out as

large numbers of data rows are read into the buffer. This will impact performance after

the data load because the “normal” buffer contents need to be recached.

• Inserts are logged in the online redo log files and archive log files as normal. This is

important to note because there is a danger that a large data load will cause a spike in

redo log switches and creation of archive log files. Make sure there is plenty of free

space in the archive log dump destination because if that filesystem fills up, the database

will hang.

• Data is inserted into any free space available in the table’s data blocks. New blocks are

written to only if needed.

• The table is not locked so it remains available for DML.

• Indexes are built normally as data is loaded.

• Rows are inserted in groups (bind arrays) as defined by the ROWS parameter. Rather

than loading one row at a time (which is inefficient), setting ROWS=100 would load data

in 100-row units. For conventional path loading, this parameter acts as a commit.

Conventional path loading is best suited for small amounts of data in established databases. It

essentially acts as a series of INSERT statements with all the associated ramifications of DML.

This method is not the fastest way of loading data, but the DBA does not have to worry about

constraints not being checked or locking a table.

Direct Path Loading
When loading massive amounts of data, direct path loading is the best option. With this

method, data is not loaded as a normal INSERT statement. This method has some implications

you need to be aware of before you use it:

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

229

• Direct path loading is faster than conventional path.

• Normal table level insert processing does not occur, and only some constraints are

enforced. Primary key, unique key, and not null constraints are enforced. Foreign keys

and check constraints are disabled automatically so they are not applied during the load.

Insert triggers are also disabled so they do not fire. After the load, you must re-enable

any constraints or triggers not automatically re-enabled.

• Database buffer cache is bypassed. This improves performance and does not force Oracle

to flush out blocks normally cached in the buffer.

• Redo information is not generated for the data loaded when the database is in

NOARCHIVELOG mode.

• Current table data blocks are ignored during the load. As space is needed the next free

table data block is acquired and data is loaded directly into that block. There is no

attempt to load data into blocks that already contain data, even if they still have free

space.

• The table and its indexes are locked during the load. No DML activity can occur; queries

are the only access available. Obviously, this impacts the user availability. The DBA

might be forced to run the load during non-production hours.

• Indexes are built after the load has completed, not during the load. Also, check the

STATUS column of DBA_INDEXES after the load because, if there are problems during

the load, an index might be left in direct load state. If so, drop and re-create the index.

• The ROWS parameter for direct path loading indicates how often to save the data. This is

slightly different than a commit. If the database instance crashes, all the data protected

by a data save will survive, but their indexes will be unusable. This is resolved by either

finishing the load or dropping and re-creating the index. Data saves acts as performance

hits, so do not set this value too low.

Direct path loading is most appropriate for new large tables whereby you can afford them

being unavailable to the users. Just make sure after the load all the constraints and triggers are

enabled without data problems.

The following is a basic example of a conventional load into the SCOTT.BONUS table. Before

running the load, you have to define a control (.ctl) file, a data file (.dat), and a parameter file

(.par).

The control file is as follows:

$ more bonus.ctl

LOAD DATA

INFILE bonus.dat

APPEND

INTO TABLE bonus

Oracle DBA on Unix and Linux
230

(ename position(01:10) char,

job position(11:19) char,

sal position(20:27) integer external,

comm position(28:30) integer external

nullif comm=blanks)

$

The parameters are fairly self-explanatory. The INFILE identifies the data file as bonus.dat.

The next parameter, APPEND, tells SQL*Loader to insert data without disturbing any existing

rows in the table BONUS. Other options here are REPLACE, which acts to delete any existing

rows and TRUNCATE, which truncates any existing rows before the insert. The INTO TABLE

BONUS code line indicates that the BONUS table will be loaded. Each field in the data file,

its position, and the data type for the data file column are indicated. The last column in this

example has a clause to set the table column to null if the last field is text blanks.

The sample data file is as follows:

$ more bonus.dat

Mike W CEO 150000 10

Dan W DBA 100000 25

Tige C DBA 100000 25

Jeff J SA 100000 25

John P SA 100000 25

Mark P SA 100000 25

Brian C SA 100000 25

Bob G PGR 100000 25

Becky G PGR 100000 25

Kalynn H PGR 100000 25

Zach H PGR 100000 25

Josh H PGR 100000 25

Erik H G 100000

$

As you can see, each row corresponds to the format as defined in the control file.

The parameter file is optional because each value can be specified on the command line, but it

makes running SQL*Loader jobs repeatable.

$ more bonus.par

userid=scott

control=bonus.ctl

bad=bonus.bad

log=bonus.log

discard=bonus.dis

rows=2

errors=5

skip=0

$

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

231

The user executing the data load is SCOTT and a password will need to be entered. Control,

bad, log, and discard files are identified. SQL*Loader log files are lengthy and descriptive, but

they should reviewed after a data load. ROWS=2 indicates a commit every two rows.

ERRORS=5 specifies that if more than five rows are sent to the bad file, the SQL*Loader job

will terminate. Any rows loaded and protected via row commits will remain in the table.

SKIP=0 indicates that the first 0 rows in the data file will be skipped during the load. If, for

example, the first run of the load failed after successfully loading 35,000 rows, the DBA can

fix the error and set SKIP=35000. When the data load restarts, SQL*Loader can resume where

it left off.

Execution of the SQL*Loader job is similar to export/import, as shown in Figure 8.7.

Oracle DBA on Unix and Linux
232

FIGURE 8.7
SQL*Loader Execution.

The most difficult technical issues in regards to SQL*Loader are writing a control file to

correctly match the data format and resolving data integrity issues. What is really difficult is

determining which data to load and verifying that it is valid. Especially when you’re migrating

legacy systems to Oracle, you should meet the data modelers and business analysts to verify

that “garbage” data is not being loaded. Remember, just because data has been sitting in a

legacy system for years does not mean it is valid in a new system.

Using LogMiner
The online redo log files and any resulting archive log files provide a wealth of information

because they are basically transaction logs. Any changes that occur within the database go to

these files. Although this represents potentially useful information, the DBA historically had no

way to view these files. All that changed with the advent of the LogMiner utility.

The contents of the online redo logs and archived redo log files can now be viewed by a DBA.

If, for example, you know that critical data was changed sometime in the morning, you can

examine all the SQL executed by any user during that time. Additionally, the utility can gener-

ate SQL to undo any DML in the database. This gives you the capability to undo any change

within the database, even if it was committed. A classic example of how this is helpful is when

someone updates data with a logically incorrect WHERE clause. You can track down exactly

who made the change and when, and then fix it.

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

233

Avoid Analyzing Online Redo Logs

It is documented that LogMiner can analyze online redo log files without any

problems. If you are like me and are uneasy about doing anything to your online

redo logs, there is a simple solution. Use ALTER SYSTEM SWITCH LOGFILE to force the

contents of your online redo log to a new archive log file that you can analyze.

TIP

LogMiner is conceptually simple, but the actual process is somewhat tedious. Everything past

step 3 must be done from a single SQL*Plus session. If that session terminates for any reason,

you must restart the entire LogMiner process from the beginning. Also, all files listed must be

given full absolute paths. Hopefully, the process will be made more user friendly in the future,

but for now these are the steps for using LogMiner:

1. Create a UTL_FILE_DIR directory. This is where Oracle will read the archive log files.

For convenience, put this where your archive log files are stored. This example uses

LogMiner with the database in archive log mode. Place the following line in the init.ora

file and bounce the instance.

Location for Log Miner Dictionary files to be placed

utl_file_dir = /ubackup/app/oracle/admin/rh1dev1/arch

This cannot be set by ALTER SYSTEM or ALTER SESSION. The parameter must be in

init.ora file and the database bounced. If you plan on using LogMiner, you should

perform this step before a situation arises where data needs to be recovered.

2. Create the LogMiner Dictionary File, which will contain data dictionary info. This

resolves object names in the archive log files. It might take several minutes to create the

file, so be patient.

$ cd /ubackup/app/oracle/admin/rh1dev1/arch

$ sqlplus internal

SQL> set linesize 400

SQL> execute

dbms_logmnr_d.build(‘rh1dev1dict1.ora’,’/ubackup/app/oracle/admin/rh1dev1/

➥arch’);

3. Define a new list of log files to be analyzed. This might be online or archived log files.

In this step you provide Oracle with a range of log files to analyze. Make sure the event

you are searching for can be found in these log files.

$ cd /ubackup/app/oracle/admin/rh1dev1/arch

$ sqlplus internal

SQL> set linesize 550

SQL> col sql_redo format a350

SQL> col sql_undo format a350

SQL> execute dbms_logmnr.add_logfile

(‘/ubackup/app/oracle/admin/rh1dev1/arch/rh1dev1_arch_1_128.arc’,dbms_logmnr.

➥new);

PL/SQL procedure successfully completed.

SQL> execute dbms_logmnr.add_logfile

(‘/ubackup/app/oracle/admin/rh1dev1/arch/rh1dev1_arch_1_139.arc’,dbms_logm

➥nr.addfile);

PL/SQL procedure successfully completed.

Repeat this process for each archive log file to analyze. This example stops at

arch_1_139.arc, which is the most current log file.

If you use the .new option, you create a new list of files to analyze (LogMiner disregards

any previous list). After that, use the .addfile option to append log files to a list.

4. Begin the analysis of the specified logs.

execute

dbms_logmnr.start_logmnr(dictfilename=>’/ubackup/app/oracle/admin/rh1dev1/

➥arch/rh1dev1dict1.ora’,

starttime=>to_date(‘07/03/2000:10PM’,’MM/DD/YYYY:HHPM’),

endtime=>to_date(‘07/07/2000:07:55:00AM’,’MM/DD/YYYY:HH:MI:SSAM’));

PL/SQL procedure successfully completed.

5. Use the following V$ views to interrogate the analyzed log files:

V$LOGMNR_CONTENTS (especially the SQL_REDO and SQL_UNDO columns)

V$LOGMNR_DICTIONARY

V$LOGMNR_LOGS (has SCN and time ranges)

V$LOGMNR_PARAMETERS

6. Query these views to identify SQL. Spooling the output to a .lst file for analysis is a

good idea here.

SQL> select timestamp, username, sql_redo from v$logmnr_contents where

username in (‘JOHNP’, ‘ERIKH’, ‘KALYNNH’, ‘JEFFJ’);

SQL> select timestamp, username, sql_redo, sql_undo from v$logmnr_contents

where username = ‘ZACHH’ and seg_name = ‘SUBSCRIBER’;

Oracle DBA on Unix and Linux
234

DBA Utilities

CHAPTER 8

8

D
B

A
 U

T
ILIT

IE
S

235

LogMiner Stresses the System

These statements can take a long time to execute and are CPU-intensive. The Unix

monitoring utility top shows the process as 48% CPU and 31 minutes. The load aver-

age identified by uptime also increased during this period.

NOTE

7. Release the resources held by the analyzer. This is an important cleanup step done after

you have made your LogMiner queries.

SQL> execute dbms_logmnr.end_logmnr;

PL/SQL procedure successfully completed.

LogMiner can be a useful tool for determining who changed what data and when, and then

fixing it. I have used LogMiner several times to identify what exactly happened when a devel-

oper or user comes up and says “I was updating some data and I don’t remember what I did,

but now it’s broke. Help!” In times like this, LogMiner can be a better solution than trying to

guess what data to re-create or dropping and reimporting a logically corrupted table. Although

LogMiner requires a little initial setup and is tedious to work with, it provides an important

new level of functionality to the DBA.

Summary
This chapter covered Oracle DBA utilities. It covered the basic syntax to use these utilities, but

more importantly, addressed the situations when these utilities should be used. It is not enough

to know that a utility exists, the savvy DBA knows when and why a specific utility should be

employed to meet a technical need.

A majority of the chapter covered export and import because those are the most commonly

used and versatile utilities. A solid working knowledge of export/import is a must for DBAs in

the Unix/Linux environment.

SQL*Loader and LogMiner were also discussed. SQL*Loader is a great utility for loading data

from a flat file into a database. This process can be done simply or can be made to enforce

complex constraints and check conditions on the data as it is being loaded. LogMiner is a first-

generation tool used to query the contents of online redo log files and archived redo log files.

CHAPTER

9
Backup and Recovery

ESSENTIALS

• The first principal of database administration

is data protection, which directly equates to

backup and recovery. This is the most critical

skill for a DBA.

• Oracle provides many features that can be

used to implement a solid backup and

recovery policy.

• The choice between ARCHIVELOG and

NOARCHIVELOG mode will greatly impact

your backup and recovery options.

• The type of damage your database suffers will

also determine your method of recovery.

• No matter what policies you implement, they

must actually be tested before you can rely on

them.

Oracle DBA on Unix and Linux
238

Database backup and recovery directly relate to the first principal of database administration—

data protection. This is the one area the DBA should never be deficient in and must aggres-

sively promote. It is the most critical skill of a good DBA.

This chapter covers the fundamentals of backup and recovery in the Unix/Linux environment.

It discusses the tasks required to create a reasonably secure database. Once you understand

these procedures, you should practice them and be comfortable with them before a disaster

requires you to use them. This point cannot be stressed enough. Backing up and recovering

production databases is a little like working in an emergency room—during the emergency is

no time to realize that the highly paid professional doesn’t know what to do to save the day.

Importance of Backups
It is important to realize that you are ultimately responsible for the organization’s data.

Unfortunately, that is said so often in marketing literature or job descriptions that many people

overlook its significance. What it really means is that, if you (as the DBA) mess up and lose a

database, you will likely get fired. In addition, those dependent on the data will suffer; cus-

tomers lose a service they are paying for. Depending on the severity of the failure, the business

could easily go under, meaning your coworkers are also facing unemployment. Finally, the

owners of the business face a financial loss. Oracle DBAs are typically very well paid and one

big reason is that they are expected to provide piece of mind that the database will be secure.

Ironically enough, data protection often comes at the expense of data availability. When sys-

tems are being backed up, they are either not available or they are available, but performance

suffers. Not matter which backup scheme you implement, this is an unavoidable fact. Some

backup methods have a smaller impact than others, but all have an impact even when it is not

readily apparent. It is the DBA’s job to understand the implications and develop a sensible

backup schedule that meets the needs of the business. Be sure to document what will be

backed up, who will be responsible for backups and recoveries, and the ramifications of

potential problems. This is no place for assumptions.

Once a method and schedule have been established, the DBA must aggressively pursue its suc-

cessful implementation. This is one area where you won’t win any friends. You must check the

status of your overnight database backups every morning. Once this is done, check with the SA

to make sure the server backups are valid. If they aren’t, you need to find out why and get the

problem fixed. Ideally, this is not a problem, but some SAs get defensive when being ques-

tioned by the DBA. Also, business people and programmers sometimes prefer to forgo backups

to complete a report or job more quickly. The DBA needs to step in before this happens and

make sure backups are performed.

The final major impact is testing. It is not enough to simply implement backups. Everyone

involved in the backup, restore, and database/server recovery processes should regularly prac-

tice their procedures. This ensures that the procedures are correct, sharpens the skills of the

technical people, and builds the confidence of both the administrators and the technical staff.

There is simply no substitute for backup and recovery drills.

Backup Types
There are two types of backups: logical and physical. One is the process of backing up the raw

data via Oracle’s export utility (logical) whereas the other involves backing up the physical

database files (physical). Most DBAs and SAs primarily think in terms of physical backups

and that will be the main focus of this chapter. There are, however, some aspects of logical

backups that merit discussion. Most DBAs use a mix of logical and physical backups to protect

their systems because each method is used to recover from different types of failures.

Logical Backups
Logical backups (exports) are used to recover from accidentally deleted or modified data. If,

for example, someone accidentally deleted your production CUSTOMER table because they

thought they were in a development database, you would use an export to restore the table.

This is because there is nothing physically wrong with the customer01.dbf file on-disk, it’s just

that some human’s logic was incorrect and data was destroyed.

Exports are easy to set up and schedule via cron so entire schemas can be backed up overnight.

Because export and import are familiar utilities anyway, using them to back up and recover

data is easier.

There are not any true problems with using exports for this purpose, but their usefulness is lim-

ited depending on the database and application. In large schemas if there is so much data that

the export cannot finish in time (overnight), the export might be impractical as well as the

import. Also, if the data itself is changing too fast or is highly entwined, the export might not

be useful. Finally, because an export represents the database at a previous point in time, it

might not be valid if transactions have occurred since that time.

In the previous example in which the CUSTOMER table was deleted, you would only need to

reimport the table data back into the database. There would likely be triggers and foreign key

constraints that needed to be disabled before the import, but these can be managed with

dynamic SQL. The biggest issue here is what to do with the transactions that occurred after the

export; these transactions are not recovered by the import. This is the largest problem with log-

ical backups and brings the discussion to physical backups.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
239

Use LogMiner to Undo Changes

The new utility LogMiner enables SQL to undo unwanted DML changes to the data.

You should become familiar enough with LogMiner so you know when to use it

instead of export/import.

TIP

Physical Backups
The process of copying the Oracle database, configuration, and software files is a physical

backup. A physical backup enables you to recover a database when a media failure, such as a

bad disk, occurs. Physical backups are the primary form of database protection in the Unix/

Linux world.

Fully understanding the architecture of the Oracle database is the first step to implementing

successful physical backups. Going back to the emergency room example, a doctor who does

not understand human anatomy cannot reliably diagnose a patient’s illness. The same concept

applies to DBAs because they are called to identify what is wrong with the computer system

and determine the effect on the overall database instance.

Backup and recovery procedures make sense only when you understand why they are being

done. Oracle architecture is complex and does change so you should review it on a regular

basis. This chapter assumes that you have a solid understanding of the Oracle architecture and

understand how each piece relates to the other. If you are not at this stage, a review of Chapter

2, “Architecture of the Oracle Server,” is strongly recommended.

When dealing with physical backups, there are three distinct stages to be discussed: backup,

restore, and recover.

• Backup Backups are the act of copying the database files, database parameter files,

and Oracle software installation files to disk, tape, or optical media (such as a writeable

CD-ROM). Typically this is automated to run each night and is coordinated with the SA.

The DBA (usually in conjunction with the SA) should verify the success or failure of

these backups each morning and take action if they begin to fail. It is important that you

understand when and how these backups occur, even if they involve backing up the

Unix/Linux server files, which is traditionally not a DBA responsibility.

• Restore Restore is the process of copying files from a previous backup to disk.

Typically, a disk will fail, errors will occur, and the DBA will shut down the database if

it hasn’t crashed already. At this stage, the SA will replace the disk and ask the DBA

what needs to be restored. The DBA should know what files were lost and when the last

valid backup occurred. He or she should be able to respond with something like “Files

for /u04 from May 23’s backup”. The SA will then retrieve the tape of May 23 and copy

the files from /u04 to the replaced disk.

• Recover Once the files are restored to disk, Oracle needs to be restarted and recovered

so that it accepts the restored files. Depending on the backup method used, the database

will either exist as it did at the time of the backup, or it will recover itself to the time of

the failure. It is during this stage that you might need to provide instructions to Oracle on

how far to recover and when to open for normal use.

Oracle DBA on Unix and Linux
240

These steps comprise the stages of a typical recovery of a lost disk. Most of the DBA’s focus

will be on planning the backups and performing the recoveries. The options available to the

DBA during the recovery are determined by the type of backup(s) used, the validity of those

backups, and the nature of the failure. The next section examines the technical details of this

process.

Incurring Damage on the Database
Before you look at ways to physically recover a database, you need to understand how it can

be physically damaged. This section is no longer talking about a user accidentally deleting a

table; it considers how files are destroyed or corrupted beyond repair.

The classic example is when a disk drive that holds a critical database file crashes. This is

referred to as a media failure. There are many ways a file can become inaccessible, but this is

the most common, so this section bases the discussion on this event. Remember that the impact

is the same no matter how a file is lost, so these principles can be applied to most situations.

Impact on the Database
Oracle’s database control file(s) determine whether all is well within the database. Within the

control file, there is a list of each file, its location, the current log file sequence number, and

the timestamp and System Change Number (SCN) it should have. During a checkpoint, each

file in the database is updated with timestamp and SCN information and the control file is

included. If the information in the control file doesn’t synch with what is actually on-disk, an

error is issued to the alert log. For example, if a disk dies suddenly, taking with it cus-

tomer01.dbf, Oracle should notice it is missing during the checkpoint.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
241

Errors Might Not Show Up Immediately

Most people would expect an error to immediately be logged if the customer01.dbf

file is lost, but that is not the case. It might be a while before Oracle notices a file is

missing. The problem is made even more confusing because the file might be deleted,

but Oracle might still see it as open. In this case, it is not until a redo log switch that

Oracle realizes the file is gone.

NOTE

If any one file is missing or has an unexpected SCN or timestamp, Oracle will loudly issue

warning messages in the alert log and the information in the missing file will be inaccessible.

The impact on the database depends on what type of file is destroyed. Some files can be lost and

the database will limp along, but the loss of other files can mean sudden death for a database

instance. The following table contains guidelines for what to expect when you lose a database

file. These guidelines are based on the assumption of a 1:1 ratio of data files to tablespaces. It is

very important to note this chart contains expected results. Depending on the ARCHIVELOG

mode of the database and how the file is lost, you might receive different error messages and the

database might crash sooner than later.

File Type Expected Impact

System Instance crash as soon as it is “noticed” by Oracle.

Control Instance crash as soon as it is “noticed” by Oracle. Multiplexing

control files does not prevent a crash, but they do allow for a much

easier and faster recovery.

Online Redo Log Depends on whether redo log files are multiplexed and whether the

file is part of the active group.

If multiplexed, an error message will be issued but the database

instance will survive.

If not multiplexed, the instance will crash and any data in that file

will be lost if it has not be archived.

Rollback If there is only one non-SYSTEM rollback tablespace, the database

instance will crash. As long as at least one rollback tablespace is

available, the instance should survive, but performance will suffer. If

there were active transactions, data can be lost.

Temp Database instance will continue to exist, but any operations requir-

ing a disk sort will fail.

Data Loss of access to objects in that tablespace. (USERS, TOOLS,

DRSYS are treated as data files.)

Index Loss of performance and capability to create/update primary or

unique keys on corresponding table. Data will be accessible, but any

DML requiring an index will fail.

Oracle will react to a loss of a file as soon as it “notices” the loss. For example, when testing

you can delete a system.dbf and still do some queries because that file is still considered

“open” and Oracle does not know that it is missing. However, as soon as a log switch occurs

and Oracle tries to access that file, the instance will crash because it no longer exists. All

Oracle background processes (PMON, SMON, and so on) will terminate. Users will likely

receive either “ORA-12571: TNS:packet writer failure” or “ERROR at line 1:ORA-03113:

end-of-file on communication channel”, indicating they have lost contact with the database.

The alert log should have an entry such as:

Sat Apr 14 15:04:17 2001

CKPT: terminating instance due to error 1242

Instance terminated by CKPT, pid = 2676

Oracle DBA on Unix and Linux
242

At this stage you have a crashed database instance that cannot be opened. You also likely have

one or more active transactions that need to be resolved.

The problem with losing disks is compounded by the fact that a crashed disk seldom takes just

one file with it; normally it costs several files. For example, a failure of a disk holding /u02

would impact the files and databases shown in Figure 9.1.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
243

FIGURE 9.1
Impact of Losing /u02.

In this case, both databases would crash because the SYSTEM tablespace .dbf files would be

lost. If, however, /u02/oradata/rh1dev1 only contained the EMPLOYEE index tablespace, the

database would have survived the loss and the DBA would have only needed to drop the

indexes on the EMPLOYEE table and rebuild them in another tablespace.

Obviously, you should know which files are located on which filesystems. Ideally, you will

have identified what filesystems hold essential files and which filesystems are not as critical. If

the SA comes to you and states “We’re losing /u04 to a bad disk,” you should have docu-

mented which files there are and know what the impact will be.

Impact of Losing One Disk

On large Unix servers, one disk does not necessarily equate to one filesystem. This

relates to RAID and will be covered in depth in Chapter 13, “Unix Server Monitoring.”

NOTE

Adding Fault Tolerance
There is nothing you can do to prevent a disk from failing, but there are a few steps that you

can take to make the database more fault-tolerant.

The two most advised practices are to multiplex the control files and to multiplex online redo

logs. In the Oracle world, multiplexing means to have Oracle create and maintain two or more

identical copies of a file. This is not the same as mirroring because mirroring is done at the

operating system level, whereas multiplexed files are managed by Oracle. Only control files

and online redo log files can be multiplexed.

Another common method of adding fault tolerance is to set the critical databases to restart

automatically if the server crashes or reboots. This auto-start feature means that if a Unix/

Linux server reboots or crashes for any reason, Oracle should be restarted automatically. The

SA and DBA still need to investigate why the machine rebooted, but this feature allows Oracle

to become available without human intervention.

Multiplex Control Files
Multiplexing control files means maintaining several identical control files for the same data-

base. Oracle will read from the first control file created, but will write to all the control files

just as if there were only one file. The database will still crash if any control file is lost, but

recovery is greatly simplified.

Typically, control files are multiplexed during database creation. The database-creation assis-

tant and most scripts will automatically create the database with three control files. These are

listed in your configSID.ora or initSID.ora files. If you want to add additional control files

after the database has been created, follow these steps:

1. Shut down the database normally.

2. Edit the configSID.ora or initSID.ora files to have the new control filename and location.

3. Copy one good, preexisting control file to the location specified and give it the appropri-

ate name.

4. Restart the database and verify that Oracle “sees” it by querying V$CONTROLFILE.

Control files are relatively small (about 4M each) and there is no real performance hit by hav-

ing extras, so you should multiplex them. Just make sure they are placed on different filesys-

tems with different controllers so one failure cannot destroy them all.

Multiplex Online Redo Logs
Multiplexing online redo log files is conceptually very similar to multiplexing control files.

Oracle automatically maintains one or more copies of a file. The key difference is that the loss

of a multiplexed redo log file will generate an error message, but the database instance will

still survive. Additionally, no data will be lost. Given these benefits, it is a very good idea to

multiplex each redo log group on a different filesystem.

You normally multiplex redo log files after the database is created. Use the following steps to

multiplex a redo log group:

Oracle DBA on Unix and Linux
244

1. Use V$LOG and V$LOGFILE to identify the members of each group and to identify

which is the active group.

SQL> select * from v$logfile;

GROUP# STATUS MEMBER

---------- ------- --------------------------------------

1 /u03/oradata/rh1dev1/redo01a.rdo

2 /u07/oradata/rh1dev1/redo02a.rdo

3 /u11/oradata/rh1dev1/redo03a.rdo

SQL> select group#, members, bytes, status from v$log;

GROUP# MEMBERS BYTES STATUS

---------- ---------- ---------------- ----------------

1 1 76,800,000 CURRENT

2 1 76,800,000 INACTIVE

3 1 76,800,000 INACTIVE

2. Add a new member to the non-active redo groups.

SQL> alter database add logfile member

2 ‘/u08/oradata/rh1dev1/redo02b.rdo’

3 to group 2;

Database altered.

Repeat this step for redo03b.rdo in group 3.

3. Use ALTER SYSTEM SWITCH LOGFILE to move to the next group. Then add the new

member to the remaining non-active redo group.

4. Perform several log switches to remove the INVALID or STALE status for each new

member, which can be seen via V$LOGFILE.

There is more maintenance and performance overhead associated with multiplexing redo logs

than with control files. Specifically, if you have doubled the size of disk space needed for your

redo log files and there will be more I/O because of the additional writes. However, this is a

very small price to pay in return for not having the database crash and potentially losing data if

a redo log file is lost.

Automatic Database Startup
When a Unix or Linux server shuts down (planned or otherwise), any databases running on it

are also shut down. Once the server is restarted, any databases will remain shutdown by

default. This can pose a problem if the databases need to be restarted. Unless there is a DBA

on call 7×24 just in case there are problems, the solution is to have the database automatically

restart on machine startup.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
245

Unix and Linux servers have a set of predefined stages they go through as they shut down or

start up. Each run level can have a list of processes associated with it. The DBA can include

shell scripts to start up or shut down one or more databases and listeners for a specific run

level. This allows a database to be automatically shut down if the server is being shut down

and allows the database to be restarted once the server has rebooted. Oracle instance recovery

will automatically resolve most problems in the event the server crashed.

The controlling file to determine whether a database is restarted automatically is /etc/oratab

(Linux or HP-UX) or /var/opt/oracle/oratab (Sun Solaris). Figure 9.2 shows a copy of the

oratab file.

Oracle DBA on Unix and Linux
246

FIGURE 9.2
The /etc/oratab File.

The last field (Y or N) of each line indicates whether the database will be restarted at reboot.

As you can see, only rh1rep1 and rh1dev1 are automatically restarted.

Oracle provides two scripts to automatically start and shut down the databases indicated in the

/etc/oratab. The scripts are:

$ORACLE_HOME/bin/dbshut

and

$ORACLE_HOME/bin/dbstart

Work with your SA to implement these scripts because they do require root access. There can

be platform-specific issues as well, so you should consult your Installation and Configuration

Guide. However, the following steps provide one way to implement automatic startup and shut-

down processes on Sun Solaris:

1. Edit (as Oracle) $ORACLE_HOME/bin/dbshut to use SHUTDOWN IMMEDIATE.

2. Create (as root) a file: /etc/init.d/dbshut.

#!/bin/csh

su – oracle –c “/u01/app/oracle/product/8.1.6/bin/lsnrctl stop”

su – oracle –c “/u01/app/oracle/product/8.1.6/bin/dbshut”

3. Assign dbshut permissions 755.

$ chmod 755 dbshut

4. Create (as root) a soft link for /etc/rc0.d/K01dbshut to /etc/init.d/dbshut.

$ ln -s /etc/init.d/dbshut /etc/rc0.d/K01dbshut

This link will force the script dbshut to stop the listener. The Oracle dbshut script will

shut down immediate-running databases.

5. Create (as root) a file: /etc/init.d/dbstart.

#!/bin/csh

su – oracle –c “/u01/app/oracle/product/8.1.6/bin/dbstart”

su – oracle –c “/u01/app/oracle/product/8.1.6/bin/lsnrctl start”

6. Assign dbstart permissions 755.

$ chmod 755 dbstart

7. Create (as root) a soft link for /etc/rc2.d/S99dbstart to /etc/init.d/dbstart.

$ ln -s /etc/init.d/dbstart /etc/rc2.d/S99dbstart

This link will execute the dbstart script, which will start the databases indicated in

/etc/oratab. This script will also start the Oracle listener.

These are only the basic steps for setting up automatic startup and shutdown in your databases.

You can use the $ORACLE_HOME shell variable, but these scripts will explicitly call the 8.1.6/bin

scripts, which sometimes need editing.

Once again, it’s advisable to verify the filenames of your specific platform. Also, check

Oracle’s online support and installation guide for potential bugs or alerts with automatic

startup/shutdown because they sometimes occur. If you still encounter problems, check the

oracle .profile file, because this sometimes causes problems if it is interactive.

Ultimately you should test these scripts by actually rebooting the server.

Performing Backups and Recoveries
There are two distinct modes of running a database: NOARCHIVELOG mode and ARCHIVELOG

mode. In ARCHIVELOG mode, a copy of the active redo log file is made by ARCH and copied to a

separate location after each redo log switch. This way, a copy of the redo log is always available

in case it needs to be “replayed” to reconstruct the database to a specific point in time. This is

in contrast to NOARCHIVELOG mode, whereby the online redo log files are never copied and are

overwritten when they are needed again.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
247

The decision to place a database in ARCHIVELOG mode is important because it determines types

of backups implemented and recovery options available. Ultimately, it determines the level of

protection for the database. Let’s now examine each type of backup in detail.

Cold Backups and Recoveries
Cold backups (aka offline backups) are conceptually the simplest form of physical backup.

Basically, you shut down the normal database and then copy all the control, online redo log,

and data files to another location. It is key to note that the database is shut down while the files

are being copied. The idea is that because the database was shut down normally, all transac-

tions will neatly be closed, buffers will be flushed, and file headers will be properly synchro-

nized. With a cold backup, you end up with a complete copy of your database at one specific

point in time.

One common mistake people make is to back up the database while it is still running and think

they have a valid cold backup. Unfortunately, that is not the case. If you back up a database file

while the database is still running, your backup is worthless. You will not be able to recover

your database if you try to restore a file that was copied while the database was running.

Support personnel I have spoken with claim this is a very common problem, because people

don’t pay any attention to what they are backing up. Worse yet, they never test their recovery

plans or their backups until a failure occurs.

Furthermore, databases should be shut down normally to guarantee the cold backup will be

valid. Any other form of shut down (transactional, immediate, and especially abort) leaves

doubt as to the validity of the backup. Some documentation states that shutdown immediate is

fine, but I choose to be more conservative, when possible. If you must use shutdown immedi-

ate to kill user sessions, that’s okay, but immediately restart it and then do a normal shutdown

before cold backups.

Oracle DBA on Unix and Linux
248

The Database Crashed!
I have seen more than one case where someone has panicked because the database

went for cold backups, but they didn’t know why it went down. They will claim the

database crashed when in reality it was shut down as part of a normal backup script.

What is even more common is for someone to schedule a nighttime job, but have it

fail because the database went down. Particularly in large shops, it is very important

to communicate changes in cold backup schedules to prevent jobs from failing.

How a cold backup is restored depends on whether a database is in NOARCHIVELOG mode or

ARCHIVELOG mode.

Cold Backups and NOARCHIVELOG Mode
Databases in NOARCHIVELOG mode can only be backed up and restored by full cold (offline)

backups. If any data or online redo log file is lost or damaged and the database needs recovery,

every file on the database must be restored.

The only file that doesn’t require a complete restore is a control file. If you lose only a control

file and still have a valid copy, you don’t have to restore the entire database. Restoring control

files is covered later in this chapter.

In this example, you shut down the database on Sunday night and perform a cold backup of all

the control, redo log, and database files. On Monday morning, you restart the database and

business runs as normal until Wednesday when /u07 fails. You know that /u07 only contains

your customers_01.dbf file, but you still must restore the entire database from Sunday’s cold

backup. This means you lose all your transactions since Sunday night.

This is a severe loss of data, but that is a penalty of running a database in NOARCHIVELOG mode.

You can only recover to the time of the last good backup.

Performing a recovery is conceptually simple. Delete all the control files, online redo log files,

and data files of the damaged database. Then restore all the control files, online redo log files,

and data files from the same backup to the exact same locations. Each file must be from the

same backup and it must be in the same location. If any file is missing or was not “closed”

during the backup, the database will not start up properly. Once the files are in place, simply

start SQL*Plus, connect internal, and start the database. You will have the database exactly as

it was before it was shut down for the cold backup.

Cold Backups in ARCHIVELOG Mode
Cold backups of databases in ARCHIVELOG mode follow the same rule—the database must be

shut down—but there is more flexibility in terms of what is restored. Specifically, you do not

have to restore the entire database. Only restore those files that are damaged or lost. Oracle

will recognize that the files restored from the backup have an earlier timestamp and will apply

archived redo logs to bring those files up to date.

To start a cold backup, shut down the database normally. Next, copy all the data and control

files to the backup location. Once all the files have been copied, the database can be restarted.

Do not copy the online redo log files of a database in ARCHIVELOG mode. You want to keep

your online redo logs from the time of failure because they can contain transactions that need

to be reapplied to the database. This is a key difference between cold backups of databases in

ARCHIVELOG mode versus databases in NOARCHIVELOG mode. The following table summarizes

what to backup.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
249

Backup Y/N Control Files Data Files Redo Log Files

NOARCHIVELOG Mode Yes Yes Yes

ARCHIVELOG Mode Yes Yes No

Backing up and restoring online redo logs is often a point of confusion, even with experienced

DBAs. In fact, I have even seen Oracle documentation with conflicting information on this

issue. The reason for this is that people often think that cold backups are the same for data-

bases in NOARCHIVELOG mode and ARCHIVELOG mode. In reality, the requirements for

each type of database are different.

Consider these three certainties in regards to cold backups:

• The database must be shut down cleanly before the backup

• The database is not available during the backup

• It is the only option for databases in NOARCHIVELOG mode

Cold backups are simple to understand, implement, and recover from. If used correctly, they

provide full recovery to the point in time of the backup. However, because they require down

time and because NOARCHIVELOG mode does not allow point-in-time recovery, many sites

opt to use hot backups instead.

Hot Backups and Recoveries
Hot backups (aka online backups) are copies of data files taken while the database is up and

running. Only databases in ARCHIVELOG mode are eligible for hot backups. Furthermore,

the backup is not simply an OS level copy of the entire database at once. Each tablespace is

placed in “hot backup mode,” which freezes the data file headers so the SCN does not increase.

Then, each data file in the tablespace is copied to the backup destination. Once those files are

successfully copied, that tablespace is taken out of backup mode and the file headers are

unfrozen. The backup process then advances to the next tablespace and performs the same

process. Once all the tablespaces are copied, the hot backup is complete. The result is a copy

of each tablespace and its corresponding data files, whereby each set of data files has a slightly

different timestamp.

Believe it or not, this method is the most flexible way to back up an Oracle database. Rather

than backing up an entire database (as with cold backups), these hot backups save files at the

tablespace level. If a disk fails and you lose a mount point, simply restore those lost files from

the hot backup. During the recovery, Oracle will notice that they have an earlier timestamp

than specified in the surviving control files. Oracle will go into recovery mode and prompt you

for all the archive log files after the timestamp of the restored files. Oracle will then “replay”

the transactions in the archived log files and eventually the online redo log files to bring all the

data files to the current SCN. Oracle will then open the database for business as normal.

Oracle DBA on Unix and Linux
250

Conceptually, that is how Oracle recovers to the current point in time using archive log files.

All that is needed is the archived log files, a current control file (to see how far to recover to),

and valid copies of the data files. The restored data files can come from a cold backup, a series

of hot backups, or a mixture of both. Oracle only cares whether the files were closed normally

or were in hot backup mode when they were copied to the backup location.

Oracle does, however, require a continuous chain of valid archive log files. Conceivably, you

can restore a backup of a data file taken the previous year as long as you have every archive

log file since that backup. If you encounter a gap in your archive log files, your recovery will

be halted at the last continuous file.

Hot backups only apply to data files that are part of tablespaces. Control files and online redo

logs are not part of a hot backup per se. Rather, they are used to implement the recovery by

providing guidance for what to recover (via the control files) and the most recent transactions

(via the redo log files). The hot backup and recovery methodology is largely based on the

assumption that at least one control file and one member of each redo log group will survive

the initial failure. This is a big reason why you multiplex your control and online redo log

files. If you lose all of either the control or redo log files, you must first recover them before

you can attempt to recover the data files. A failure of this magnitude only adds to the complex-

ity and time to recover the database.

Putting a Database into ARCHIVELOG Mode
Databases are by default created in NOARCHIVELOG mode. After you build the database, create

the application tablespaces, and load the initial data, you should put the database in

ARCHIVELOG mode.

The first step is to identify where archive log files will be generated. This location is usually

referred to as the archive dump destination or the LOG_ARCHIVE_DEST. The default location is

$ORACLE_HOME/admin/SID/arch. This might not always be the best location, especially when it

is not backed up regularly or is short in space. When choosing a location for the archive log

files, consider two factors:

• Any loss of an archive log file will limit recovery to that point.

• If the archive dump destination fills up (no disk space left) or cannot be written to for

any reason, the DML activity will “hang” on the database. In addition, new users might

not be able to log in to the database.

Usually, you want your archive dump destination to be a very large filesystem reserved exclu-

sively for Oracle. This filesystem should be mirrored and backed up on a regular basis.

Preferably there should be a cron job to compress or gzip (either will work) these files auto-

matically. Once they are on-disk, be sure to copy these files to tape or to a writeable CD-ROM,

or to FTP them to another machine. If for any reason a file is lost, you need to take a new

backup of the database and use that as your baseline because archive log files dated after that

missing file are worthless.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
251

Make sure the archive log files’ destination is always available. If, for example, your filesystem

fills up and Oracle cannot write the archive log file to that location, the database will hang on

any DML activity. Normal queries will work, but DML will not be allowed because Oracle

cannot archive it. Diagnosis of this problem will also be difficult because errors are not visible

to the user, they will only appear in the alert log. Also keep in mind the speed at which files

are being compressed or copied off the archive dump destination. I once started a big data load

and archive log files were being written very quickly to the archive dump destination. Although

we were writing to disk, the writeable CD-ROM could not keep up with moving the files from

disk to CD fast enough. We almost hung the database.

To actually put a database into ARCHIVELOG mode, do the following:

1. Edit the initSID.ora file to contain the following values:

log_archive_start = true

log_archive_dest = “/u01/app/oracle/admin/rh1dev1/arch”

log_archive_format = arch_rh1dev1_%t_%s.arc

These parameters will start the ARCH process automatically, define the archive dump

destination to $ORACLE_BASE/admin/rh1dev1/arch, and define the naming format of

each dump file.

2. Start up the database in mount mode.

SQL> startup mount

ORACLE instance started.

3. Put the database in ARCHIVELOG mode.

SQL> alter database archivelog;

Database altered.

4. Verify the status of the database.

SQL> alter database archivelog;

Database altered.

SQL> archive log list;

Database log mode Archive Mode

Automatic archival Enabled

Archive destination /u01/app/oracle/admin/rh1dev1/arch

Oldest online log sequence 37

Next log sequence to archive 39

Current log sequence 39

5. Open the database for normal use.

SQL> alter database open;

Database altered.

Oracle DBA on Unix and Linux
252

6. Force a log switch and verify the log has been created in the correct location.

SQL> alter system switch logfile;

System altered.

SQL> !ls /u01/app/oracle/admin/rh1dev1/arch

arch_rh1dev1_1_39.arc

The log file has the format arch_rh1dev1_thread#_sequence#.arc. The thread# only

applies to Parallel Server installations in which there is more than one instance.

Sequence# identifies the archive log file. For example, this file is given the value 39; the

next log will be 40.

That covers the basics of putting a database in ARCHIVELOG mode. The only other parame-

ters to consider are if you want to write archive logs to multiple destinations. The idea is that if

one location cannot be written to, valid archive logs will also be written to a backup location.

The old parameter was LOG_ARCHIVE_DEST, but now you can specify up to five locations

with LOG_ARCHIVE_DEST_[1…5]. Also, successfully writing to each location might be

optional or mandatory. These parameters are useful if you must have a high availability system

and have plenty of disk space, but most databases do not need this level of protection.

One final note on archive dump destinations: they can be changed while the database is up. For

example, if a dump location is filling up and you have another filesystem where they can be

stored, this is a valuable option. Just make sure you don’t lose any log files by writing to mul-

tiple locations. The syntax is as follows:

SQL> alter system archive log

2 to ‘/ubackup/rh1dev1/arch’;

Putting Databases in Hot Backup Mode
Hot (online) backups require the database to be in ARCHIVELOG mode. Next, each table-

space is placed in hot backup mode, which effectively freezes the file header so it cannot

change. The files corresponding to that tablespace space are then copied to the backup loca-

tion. Once this process is completed, the tablespace is taken out of hot backup mode.

While the tablespace is in hot backup mode, normal database activity related to that tablespace

can occur, but more redo logs will be generated. The reason is that changes will be logged at

the block level, rather than the row level. Thus the increase in redo activity. This will impact

performance, which is why hot backups should occur when the database is least active.

Also, there is no requirement to back up every tablespace nor is it required to back up each

tablespace sequentially. However, if you can fit each tablespace in a nightly backup, do so. In

addition, it is faster to back up each tablespace sequentially than to place all the tablespaces in

hot backup mode at once. Remember, unlike cold backups in NOARCHIVELOG mode, you

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
253

do not need to have data files with matching timestamps. This process restores valid backup

copies of each data file (with differing timestamps), and lets the recovery process of applying

archive log files bring the data files up to date.

The following steps are needed to back up a tablespace in hot backup mode.

1. Freeze the data file header by putting the tablespace into hot backup mode.

SQL> alter tablespace users begin backup;

Tablespace altered.

Remember that during this time, normal access to objects in the USERS tablespace is

allowed, but at the cost of increased redo activity.

2. Next, use any OS command to copy the data files of the USERS tablespace to your

backup location. This can be to disk, tape, or optical media. Also, once the file is copied

it can be compressed.

SQL> !cp /u04/oradata/rh1dev1/users01.dbf

/ubackup/rh1dev1/hot_backups

3. Take the tablespace out of hot backup mode.

SQL> alter tablespace users end backup;

Tablespace altered.

At this stage, the next tablespace in the database can be backed up using the same procedure.

Once all the tablespaces are backed up, perform the following tasks:

1. Back up the control file to a text copy. This will allow you to rebuild the control file if

you lose all your control files or need to rebuild them with a different value such as max

data files.

SQL> alter database backup controlfile to trace;

Database altered.

The trace file will be created in the udump location as defined by the parameter

USER_DUMP_DEST.

2. Back up a control file to a binary copy. Provide it a location and unique name with a

timestamp.

SQL> alter database backup controlfile to

2 ‘/ubackup/rh1dev1/hot_backups/control.20010422’;

Database altered.

3. Flush the online redo log files to make sure the changes during backups are archived.

SQL> alter system archive log current;

System altered.

Oracle DBA on Unix and Linux
254

Obviously, this is a task that is best scripted rather than performed manually. Scripts I’ve used

in the past to dynamically generate the list of tablespaces are located in the appendixes of this

book. I recommend testing them in your environment.

Notice that no attempt was made to back up online redo logs. Remember that you only back

up online redo logs in cold backups on databases in NOARCHIVELOG mode. Backing up

control files is not part of a hot backup per se, but it is logical to back them up at the end of

the hot backup.

These steps comprise the fundamentals of taking hot backups. They provide a way to take reli-

able backups while the database is available. Once files are backed up, they can be used in

conjunction with files from a cold backup or from another hot backup to recover the database.

Recovering from a Crash During Hot Backups
Because it can take several hours to complete hot backups, it is logical to assume that at some

point the database will crash during hot backups. If this happens, you cannot simply restart the

database. Oracle will attempt to open its data files, will notice a tablespace is in hot backup

mode, and will request media recovery for the file. Fortunately, although this is a common fail-

ure, it is relatively easy to fix.

In this example, assume the USERS tablespace was in hot backup mode and for whatever rea-

son the machine rebooted. Upon startup, you will need to perform the following actions.

1. You start the database and encounter the following:

SQL> startup

ORACLE instance started.

Total System Global Area 128184304 bytes

Fixed Size 69616 bytes

Variable Size 78413824 bytes

Database Buffers 49152000 bytes

Redo Buffers 548864 bytes

Database mounted.

ORA-01113: file 5 needs media recovery

ORA-01110: data file 5: ‘/u04/oradata/rh1dev1/users01.dbf’

SQL>

2. Identify the filename needing recovery.

SQL> select * from v$recover_file;

FILE# ONLINE ERROR CHANGE# TIME

---------- ------- --------------- ---------- ---------

5 ONLINE 247341 22-APR-01

SQL> select name from v$dbfile where file# = 5;

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
255

NAME

/u04/oradata/rh1dev1/users01.dbf

3. Because you know the database was in hot backup mode when it went down, this is not

unusual. Simply take the data file out of hot backup mode and open the database.

SQL> alter database datafile

2 ‘/u04/oradata/rh1dev1/users01.dbf’

3 end backup;

Database altered.

SQL> alter database open;

Database altered.

That is about as simple of a “recovery” as they come. In reality, you didn’t recover anything,

you just changed the file status so Oracle could use it.

Recovering from a Lost Data File
Losing a data file should not, by itself, crash the database. It will, however, make its corre-

sponding tablespace inaccessible. Assuming that a valid backup copy is available, via a hot

or a cold backup, and that all the archive log files since that backup are available, full recovery

is possible. In this example, you will recover the USERS tablespace.

1. Identify that a problem exists. The data dictionary view V$RECOVER_FILE and the

alert.log are the two best sources of this information.

SQL> select * from v$recover_file;

FILE# ONLINE ERROR CHANGE# TIME

------- ------- --------------- ------- -------

5 OFFLINE FILE NOT FOUND 0

The alert.log shows the following:

Sun Apr 22 23:02:21 2001

Errors in file /u01/app/oracle/admin/rh1dev1/bdump/ckpt_9977.trc:

ORA-01171: datafile 5 going offline due to error advancing checkpoint

ORA-01116: error in opening database file 5

ORA-01110: data file 5: ‘/u04/oradata/rh1dev1/users01.dbf’

ORA-27041: unable to open file

Linux Error: 2: No such file or directory

2. At this stage contents of that tablespace are inaccessible. However, depending on the

nature of the loss, the file might be listed as OFFLINE under DBA_DATA_FILES or

DBA_TABLESPACES.

Oracle DBA on Unix and Linux
256

SQL> select * from danw.test_table;

select * from danw.test_table

*

ERROR at line 1:

ORA-00376: file 5 cannot be read at this time

ORA-01110: data file 5: ‘/u04/oradata/rh1dev1/users01.dbf’

3. Take the corresponding tablespace offline.

SQL> alter tablespace users offline temporary;

Tablespace altered.

4. Restore the backup to the file that is missing or damaged. If it cannot be restored to that

location, rename the file to a different location. In this case, you restore the file from the

hot backup location.

$ cp /ubackup/rh1dev1/hot_backups/users01.dbf /u04/oradata/rh1dev1/

➥users01.dbf

5. Recover the USERS data file by applying archive logs. The simplest way to do this is

using ALTER DATABASE RECOVER TABLESPACE AUTOMATIC. In this manner,

Oracle will automatically apply the archive log files it needs without prompting the

DBA. This assumes each archive log file is in the archive dump destination and is

uncompressed.

SQL> alter database recover automatic tablespace users;

Database altered.

6. Verify the file no longer needs to be recovered and make the tablespace online.

SQL> select * from v$recover_file;

no rows selected

SQL> alter tablespace users online;

Tablespace altered.

7. Verify objects in that tablespace are available.

SQL> select count(*) from danw.test_table;

COUNT(*)

1

The data file, and therefore the tablespace, is now available. Although only the data file

was lost, this example recovered the entire tablespace. This method was selected because

potentially you might have to restore several data files from one tablespace. However, the

following statement could have been used for step #5.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
257

SQL> alter database recover automatic datafile

2 ‘/u04/oradata/rh1dev1/users01.dbf’;

Database altered.

This recovery is a good example of how Oracle is robust. Although the tablespace was unavail-

able, the rest of the database remained open. Also note that no data was lost because, between

the backup file and the series of archive log files, Oracle was able to reconstruct every change

made to any object in the USERS tablespace.

Recovering from a Lost Temporary or Index Tablespace
Theoretically, if you lose a temporary or index tablespace, you should just have to drop and

re-create them. The procedure would be the following:

SQL> drop tablespace temp;

Tablespace dropped.

SQL> select * from v$recover_file;

no rows selected

SQL> create tablespace temp

2 datafile ‘/u03/oradata/rh1dev1/temp01.dbf’ size 200M

3 minimum extent 64K

4 default storage (initial 64K next 64K

5 minextents 1 maxextents unlimited pctincrease 0)

6 temporary;

Tablespace created.

The rationale is that because neither temp or index tablespaces contain truly critical data, they

can be re-created easier than being recovered. I tend to agree with this when re-creating the

temporary tablespace, but not when re-creating an index tablespace.

If you lose an index tablespace, data in the corresponding data tablespace will be accessible as

long as indexes are not needed. For example, a full table scan will work, but inserting a new

row with a primary key will fail.

SQL> insert into test_table values (‘c’, 3);

insert into test_table values (‘c’, 3)

*

ERROR at line 1:

ORA-00376: file 8 cannot be read at this time

ORA-01110: data file 8: ‘/u08/oradata/rh1dev1/employee_idx02.dbf’

Oracle DBA on Unix and Linux
258

If you know which indexes exist in the lost tablespace and have a script to re-create them, this

might be the fastest. Using an export .dmp file to create the index file script can be of use here.

Otherwise, simply recover the index data file just like any other tablespace.

SQL> alter database recover automatic tablespace employee_idx;

Database altered.

SQL> alter tablespace employee_idx online;

Tablespace altered.

Recovering from a Lost Redo Log Member
Losing an online redo log file is not a major problem if it is multiplexed. Theoretically, as long

as the member is multiplexed, your database should not go down, although Oracle will issue

error messages in the alert log. If, however, you lose an entire group, expect the database to

crash. This section assumes that you did wisely multiplex your redo log groups and have at

least two members each.

First, before a crisis occurs, let’s look at the groups and members. As you can see in the fol-

lowing code, you have three groups of two members each.

SQL> select * from v$logfile order by group#;

GROUP# STATUS MEMBER

---------- ------- -----------------------------------

1 /u03/oradata/rh1dev1/redo01a.rdo

1 /u04/oradata/rh1dev1/redo01b.rdo

2 /u07/oradata/rh1dev1/redo02a.rdo

2 /u08/oradata/rh1dev1/redo02b.rdo

3 /u11/oradata/rh1dev1/redo03a.rdo

3 /u12/oradata/rh1dev1/redo03b.rdo

6 rows selected.

Next, you identify the current log group, which happens to be group 2.

SQL> select group#, members, bytes, status, archived

2 from v$log;

GROUP# MEMBERS BYTES STATUS ARC

---------- ---------- ------------ ---------------- ---

1 2 76,800,000 INACTIVE YES

2 2 76,800,000 CURRENT NO

3 2 76,800,000 INACTIVE YES

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
259

If you lose the log file redo01a.rdo suddenly, you would see the following error in the alert log.

This error would show up during the redo log switch, which attempts to make group 1 active.

Mon Apr 23 08:54:13 2001

Errors in file /u01/app/oracle/admin/rh1dev1/bdump/lgwr_10054.trc:

ORA-00313: open failed for members of log group 1 of thread 1

ORA-00312: online log 1 thread 1: ‘/u03/oradata/rh1dev1/redo01a.rdo’

ORA-27037: unable to obtain file status

Linux Error: 2: No such file or directory

Additional information: 3

Mon Apr 23 08:54:13 2001

Errors in file /u01/app/oracle/admin/rh1dev1/bdump/lgwr_10054.trc:

ORA-00321: log 1 of thread 1, cannot update log file header

ORA-00312: online log 1 thread 1: ‘/u03/oradata/rh1dev1/redo01a.rdo’

Mon Apr 23 08:54:13 2001

Errors in file /u01/app/oracle/admin/rh1dev1/bdump/lgwr_10054.trc:

ORA-00313: open failed for members of log group 1 of thread 1

At this stage, don’t panic because the database is still up. Oracle is just letting you know it’s

missing a member. The important thing to remember here is to not restore a copy of a redo log

file from any backup you have. If you do, you will lose whatever data was in the redo log you

attempted to “fix.” The proper way to address this problem is to drop the missing member and

then re-create it in either the same or a different location.

1. Force a log switch so the group missing the file is no longer active. This is necessary

because you cannot drop a “current” log member.

SQL> alter system switch logfile;

System altered.

SQL> select group#, status, members from v$log;

GROUP# STATUS MEMBERS

---------- ---------------- ----------

1 INACTIVE 2

2 CURRENT 2

3 INACTIVE 2

2. Drop the missing member.

SQL> alter database drop logfile member

2 ‘/u03/oradata/rh1dev1/redo01a.rdo’;

Database altered.

As you can see, group 1 now has only one member.

SQL> select * from v$logfile order by group#;

Oracle DBA on Unix and Linux
260

GROUP# STATUS MEMBER

---------- ------- --------------------------------------

1 /u04/oradata/rh1dev1/redo01b.rdo

2 /u07/oradata/rh1dev1/redo02a.rdo

2 /u08/oradata/rh1dev1/redo02b.rdo

3 /u11/oradata/rh1dev1/redo03a.rdo

/u12/oradata/rh1dev1/redo03b.rdo

3. Add the missing member back to group 1. This can be either to the same location or to a

different location.

SQL> alter database add logfile member

2 ‘/u03/oradata/rh1dev1/redo01a.rdo’ to group 1;

Database altered.

4. Once the log file member has been added, it will show up as INVALID. Do not worry

about this; cycle through several redo log switches to make the file valid.

SQL> select * from v$logfile where group# = 1;

GROUP# STATUS MEMBER

---------- ------- --------------------------------------

1 INVALID /u03/oradata/rh1dev1/redo01a.rdo

1 /u04/oradata/rh1dev1/redo01b.rdo

SQL> alter system switch logfile;

System altered.

That covers the basic recovery process for online redo log files. As long as you do not lose an

entire group or try to restore a redo log from a backup, recovery should be fairly simple.

Recovering from Lost Control Files
If you lose a control file, your database will need to go down. Sometimes an instance will sur-

vive for a while before it crashes, but users will experience problems. The best solution is to

issue a SHUTDOWN ABORT and then restore the control file. Although you might have lost a

control file, as long as you still have a good copy of a control file, you have two very easy

recovery options.

The easiest way to recover this is to edit the configSID.ora or initSID.ora files to only

include the good control files. For example, if control file #2 was lost, simply remove it from

the list of control files that are read during database startup.

control_files = (“/u01/app/oracle/oradata/rh1tst1/control01.ctl”,

➥“/u03/oradata/rh1tst1/control03.ctl”)

Then start the database as normal. V$CONTROLFILE will now show only the existing database

files; you can continue with normal business.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
261

A better long-term option is to replace the bad control file with a good control file. To do so,

follow these steps:

1. Make sure the database is shut down, although in most cases it has already crashed.

2. Remove the damaged control file if it still exists. This delete is redundant, but it prevents

you from accidentally copying the wrong file.

3. Copy (using cp) a good control file to the location of the bad or missing control file.

Notice that you do not use mv because you do want to keep the good copy in its current

location.

4. Rename (using mv) the restored control file to the name as listed in the configSID.ora or

initSID.ora files.

5. Restart the database normally. Oracle will acknowledge the file’s existence in

V$CONTROLFILE and normal operations can continue.

If, however, you lose all your control files, recovery is much more difficult. Hopefully you had

included ALTER DATABASE BACKUP CONTROLFILE TO TRACE in your hot backup scripts so you

have a file to work with. You have to re-create a control file in order to recover the database; a

task well outside the scope of this book. Help from Oracle Support is recommended in this case.

Recovering from a Combination of Lost Files
The chapter has covered the basics of losing individual data, online redo logs, and control files.

Individually, the recovery for each file is fairly simple as long as you have good backups and

multiplex your control and online redo log files. Unfortunately, however, disk crashes seldom

take just one file with them. Normally, you will lose several files at once and this complicates

the recovery. This section looks at a sample recovery of a control file, an online redo log file, a

SYSTEM tablespace, and an INDEX tablespace.

Assume a disk goes bad and you lose /u02.

$ ls /u02/oradata/rh1dev1

control02.ctl employee_idx01.dbf redo03b.rdo system01.dbf

Because you lose both a control file and the SYSTEM tablespace, the database will crash.

This problem requires an offline database recovery. You need to restore and recover the files in

the following order:

1. Restore the control file.

2. Restore the SYSTEM tablespace. Because you are restoring anyway, it’s a good idea to

include the INDEX tablespace in this step.

3. Drop the online redo log file. This will be re-created once the database is restored.

Oracle DBA on Unix and Linux
262

Recover the database by following these steps:

1. Make sure the database is shut down and all background processes are down. If the

instance is still up despite the damage, use a SHUTDOWN ABORT.

2. Restore the control file. Copy the good control file from /u01 to /u02 and give it the

name specified in the init.ora.

3. Restore the missing data files for the SYSTEM and INDEX tablespaces from the most

recent valid backups. These can be from a cold or a hot backup, but the more recent the

copy, the faster the database will recover. Also make sure that all the archive log files

since those backups are restored to the archive dump destination and are uncompressed.

4. Log in to SQL*Plus, connect internal, and set autorecovery option on.

$ sqlplus internal

SQL*Plus: Release 8.1.6.0.0 - Production on Mon Apr 23 10:28:33 2001

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Connected to an idle instance.

SQL> set autorecovery on

5. Start the database in mount mode to allocate the SGA and open the control files. This

step recovers the missing control file.

SQL> startup restrict mount;

ORACLE instance started.

Total System Global Area 128184304 bytes

Fixed Size 69616 bytes

Variable Size 78413824 bytes

Database Buffers 49152000 bytes

Redo Buffers 548864 bytes

Database mounted.

SQL>

6. Identify the missing/damaged data files.

SQL> select * from v$recover_file;

FILE# ONLINE ERROR CHANGE# TIME

---------- ------- ------------ ---------- ---------

1 ONLINE 288346 23-APR-01

7 ONLINE 288348 23-APR-01

SQL> select * from v$dbfile where file# in (1,7);

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
263

FILE# NAME

---------- --

1 /u02/oradata/rh1dev1/system01.dbf

7 /u02/oradata/rh1dev1/employee_idx01.dbf

7. Identify the missing redo log file. Depending on the situation, the missing online redo

log member might be identified as INVALID. You know, however, that because /u02 was

completely lost, the member on that filesystem is also lost. The solution is to drop it and

recover it after the database is opened. If Oracle complains that the file is a member of

the active group and will not let you drop it, that is also okay, but you need to drop it

after the next redo log switch.

SQL> select * from v$logfile;

GROUP# STATUS MEMBER

---------- ------- --

1 /u03/oradata/rh1dev1/redo01a.rdo

2 /u07/oradata/rh1dev1/redo02a.rdo

3 /u11/oradata/rh1dev1/redo03a.rdo

3 /u02/oradata/rh1dev1/redo03b.rdo

2 /u08/oradata/rh1dev1/redo02b.rdo

1 /u04/oradata/rh1dev1/redo01b.rdo

6 rows selected.

SQL> alter database drop logfile member

2 ‘/u02/oradata/rh1dev1/redo03b.rdo’;

Database altered.

8. Recover the database automatically. This will cause Oracle to apply whatever archive log

files are needed to bring the missing data files up to date. Because you set auto recovery

on, the statement RECOVER DATABASE will apply the redo logs automatically. If you

forgot to set autorecovery on, type AUTO at the archive log prompt.

SQL> recover database;

ORA-00279: change 288346 generated at 04/23/2001 09:55:39 needed for thread 1

ORA-00289: suggestion :

/u01/app/oracle/admin/rh1dev1/arch/arch_rh1dev1_1_101.arc

ORA-00280: change 288346 for thread 1 is in sequence #101

ORA-00279: change 288351 generated at 04/23/2001 10:16:58 needed for thread 1

ORA-00289: suggestion :

/u01/app/oracle/admin/rh1dev1/arch/arch_rh1dev1_1_102.arc

ORA-00280: change 288351 for thread 1 is in sequence #102

ORA-00278: log file ‘/u01/app/oracle/admin/rh1dev1/arch/

➥arch_rh1dev1_1_101.arc’

no longer needed for this recovery

Oracle DBA on Unix and Linux
264

ORA-00279: change 288352 generated at 04/23/2001 10:17:08 needed for thread 1

ORA-00289: suggestion :

/u01/app/oracle/admin/rh1dev1/arch/arch_rh1dev1_1_103.arc

ORA-00280: change 288352 for thread 1 is in sequence #103

ORA-00278: log file ‘/u01/app/oracle/admin/rh1dev1/arch/

➥arch_rh1dev1_1_102.arc’

no longer needed for this recovery

Log applied.

Media recovery complete.

SQL>

9. At this stage the database is “recovered,” but you still need to open the database and re-

create the missing redo log file. Disregard messages that state that the other redo logs are

STALE; they will change status after a few redo log switches.

SQL> alter database open;

Database altered.

SQL> select * from v$recover_file;

no rows selected

SQL> select * from v$logfile order by group#;

GROUP# STATUS MEMBER

---------- ------- --

1 STALE /u03/oradata/rh1dev1/redo01a.rdo

1 STALE /u04/oradata/rh1dev1/redo01b.rdo

2 /u07/oradata/rh1dev1/redo02a.rdo

2 /u08/oradata/rh1dev1/redo02b.rdo

3 /u11/oradata/rh1dev1/redo03a.rdo

SQL> alter database add logfile member

2 ‘/u02/oradata/rh1dev1/redo3b.rdo’ to group 3;

Database altered.

SQL> alter system switch logfile;

System altered.

10. At this stage, the database is ready to be reopened for business. However, the smart thing

to do is make a cold backup before proceeding. If, however, management demands the

database be reopened, disable the restricted mode.

SQL> alter system disable restricted session;

System altered.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
265

The preceding example is one scenario of the events following a real disk crash. It was based

on the assumption that the disk for /u02 filesystem was repaired by the SA and the files where

properly restored. Also, notice how you knew what files where on /u02. It is important to have

a cron job dynamically generate a list of every data, control, and redo log file in the database

everyday. This way, you will know the impact when the SA informs you that /u02, is gone.

Ideally, you will have documented and practiced your recovery procedures for a loss of /u02

before it occurs. This recovery plan should be stored next to plans for losses of /u01 through

/u12. Because these types of recoveries can be complicated, it’s important that you practice

them before they occur.

Finally, if a situation occurs for which you have not prepared or which do not fully understand,

call Oracle Support for assistance. Advanced backup and recovery techniques are well outside

the scope of this book. If I need a tablespace point in time recovery or am encountering truly

unusual errors, I will call support for help. Documentation on advanced recoveries is available,

but like the emergency-room analogy, it is important to know when to ask for help. There are

many tools and techniques Oracle Support has that the general public does not. Believe me, I

know DBAs who have learned this lesson the hard way.

Backup of Software and Parameter Files
The SA can back up Oracle software and database parameter files (such as tnsnames.ora) as

part of a normal server backup. These files can be treated as any other normal file and there is

no particular “state” or timestamp needed for them. If the OFA standard is followed and these

files are placed on /u01 without any physical database files, the backup process is very simple.

The SA might include /u01 with the backups of the rest of the non-Oracle filesystems.

Restoring the Oracle installation and database parameter files is just as simple as restoring any

normal file. For example, assume that OFA is followed and /u01 is lost. The SA can replace

the disk and copy /u01 restore from any valid backup. The DBA simply restarts the database

and no special database recovery should be needed.

The only potential issue is when the database is in ARCHIVELOG mode. Be aware that if you

are archiving your redo logs to /u01/app/oracle/admin/SID/arch (also standard OFA) and one

or more is missing, they will not be restored because they were generated after the /u01 backup.

The ramification is if they are later needed for a recovery, the recovery will stop at the last con-

tinuous log file. Remember, Oracle will not skip over a gap in archive log files during recovery.

One solution is to take a full backup (preferably cold) after a recovery of /u01. An even better

solution is to place your archive log files on a dedicated filesystem that is backed up very frequently.

Oracle DBA on Unix and Linux
266

Comprehensive Planning and Testing
Now that you have identified how to implement different levels of backups, this section looks

at ways they can be integrated to provide protection for a real system.

Planning
First, look at the backup and recovery options available. You can use logical backups (exports),

physical backups, or both. If your system has developers or users with access to SQL*Plus,

logical backups are a good idea in case someone accidentally corrupts data. In fact, the only

cases in which logical backups are a bad idea is in systems that are so large or changing so fast

that any export would be hopelessly outdated by the time it is applied. For most systems, how-

ever, taking a nightly export is normally a good idea as long as there is sufficient disk space.

Because all databases are prone to hardware loss, physical backups seem necessary. The only

exception is when it’s easier to apply a logical backup to a new or different database than it is

to restore and recover the old database. The only candidates I’ve seen that fall into this cate-

gory are training and development databases.

Assuming physical backups are implemented, the next major decision is whether to choose

ARCHIVELOG mode or NOARCHIVELOG mode. Pros and cons of each method are

described, as well as recommendations, in the following table.

NOARCHIVELOG ARCHIVELOG

Mode Mode

Online Redo Logs Archived No Yes

Overhead of Maintaining Archive Log Files No Yes

Point In Time Recovery Possible? No Yes

Cold (offline) Backups Yes Yes

Hot (online) Backups No Yes

Suitable for Production Systems? No Yes

Suitable for Non-Production Systems Yes Yes

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
267

Take a Backup After a Recovery

Most prudent DBAs will take a full cold backup after any recovery just in case further

problems develop. This can be a touchy situation if down time has already occurred

and management wants the system up ASAP, but a backup is the responsible action

to take.

TIP

Next, examine the type of system you are supporting. The key questions are: Is it a production

system? What is the acceptable down time? What is the acceptable data loss?

If a system is a training or development system, it probably does not need to be up 7×24 with

point-in-time recovery. Therefore, NOARCHIVELOG mode is probably acceptable. Exports

can be taken each night and every night the database can also be shut down for a cold backup.

If a failure occurs, the database can be restored to the state of the previous evening. For devel-

opment and training, this is usually sufficient.

Production databases normally require a higher level of protection. Any data loss usually trans-

lates to lost revenue and they normally also have higher availability requirements. This means

ARCHIVELOG mode is a requirement. Depending on the business, the database might be able

to be shut down for cold backups only once a week or even less often. This means hot backups

will be required.

The following table shows a backup schedule of one shop I worked at that had relatively high

uptime requirements:

Day Cold Backup Hot Backup Schema Export

Sunday Yes: 9 PM No No

Monday No Yes: 9 PM Yes: 12:30 AM

Tuesday No Yes: 9 PM Yes: 12:30 AM

Wednesday No Yes: 9 PM Yes: 12:30 AM

Thursday No Yes: 9 PM Yes: 12:30 AM

Friday No Yes: 9 PM Yes: 12:30 AM

Saturday No Yes: 9 PM Yes: 12:30 AM

This shop had people on the database from 7AM–12AM Monday thru Saturday. On Sunday,

people went home at 9PM because there was little business on Sundays. When people were not

working, batch jobs were being executed, but those did not change the data in the main

schema.

In this situation, I could shut down the database Sunday night, take a cold backup, and still

have enough time to restart the database and run the batch jobs that were relatively small.

During the rest of the week people were on the system until midnight so I could not shut down

the database, but I could start hot backups at 9PM because there was considerably less activity.

At 12:30AM I knew for sure no one would be changing the transactional data so I kicked off a

schema level export. Batch jobs proceeded, but were not severely impacted by the hot backups

and they did not impact the export.

Oracle DBA on Unix and Linux
268

This scenario provided pretty good protection for most failures. If a disk went bad and files

needed recovery, a maximum of one day of archive logs needed to be applied because either

hot or cold backups were taken each night. If a logical error occurred, the schema level export

provided a level of protection. In the event of a catastrophic failure, we always had a cold

backup and schema level exports. Of course, all this was automated via cron and tapes were

taken offsite on a daily basis.

Testing
At another site I worked at, I was the first DBA to build the infrastructure. That meant every-

thing was built from scratch and had to be tested before we went “live”.

Backup and Recovery

CHAPTER 9

9

B
A

C
K

U
P

A
N

D

R
E

C
O

V
E
R

Y
269

Try Working at a Startup

From a career standpoint, if you ever have the opportunity to work at a new com-

pany, you should consider it. Few experiences are as enjoyable or as educational as

working at a new IT company. You can expect to work some long hours initially, but

the experience you gain is valuable.

NOTE

I planned and built the database, put it in ARCHIVELOG mode, and implemented a mix of

physical and logical backups. Because this site had to be available often, but was not yet in

production, real testing was possible. The System Administrator and myself simulated each

type of failure that was likely for our site. I documented my recovery procedures for each event

and then tested them under real conditions. Not only did we find what worked and what didn’t,

we knew exactly how long it would take to restore the system for each type of failure. By the

time we went live, the system was already backed up and the recovery procedures were docu-

mented so almost anyone could perform a recovery.

That is the way a system should be prepared. Unfortunately, that level of testing is normally

not possible because it is rare to be on site before a system is live. Furthermore, the system, the

requirements, and the technical staff change over time so your backup and recovery procedures

need to be continually updated and tested.

If you do come to a site where backup and recovery standards have been established, it is your

responsibility to test them. Testing verifies that the procedures are valid and familiarizes you

with the procedures, the system, and the technical staff. Remember, testing is the only way to

verify that a backup and recovery plan is valid.

Conclusion
Database backup and recovery is a critical skill. If a database or data is lost, the ramifications

are often significant. Every DBA will face a backup or recovery situation at some point in their

career; therefore, it is best to learn what to do before a crisis occurs.

The chapter primarily focused on physical backups and recoveries. You learned that it’s best to

multiplex control and online redo log files in order to add a level of fault tolerance. Most pro-

duction databases are in ARCHIVELOG mode because that promises the highest levels of

uptime and recoverability. Next, the chapter covered the most common types of failures and

how to recover from them. The steps described here should be used merely as templates on

how to recover; there is no substitute for performing practice recoveries on your own system.

Also, if you have any doubt about what you are doing, call Oracle Support because recoveries

are too important to chance. Finally, the chapter discussed how to plan backups and the need to

test recoveries. If no other point is taken from this chapter, let it be the need to continually

practice and test your recovery plans.

Oracle DBA on Unix and Linux
270

CHAPTER

10
When Things Go Wrong

ESSENTIALS

• When problems are reported, you should

identify the who, what, when, why, how, and

the impact of the problem.

• Check the server for obvious problems such as

full filesystems, high system usage, and

recent crashes and reboots.

• Managing data file locations, names, and

sizes is a common DBA task.

• Locking problems within the database can be

identified via scripts or GUI tools and then the

blocking sessions can be terminated.

• ORA-01555 Snapshot too old errors occur

when Oracle cannot find a read-consistent

image of the data.

Problem-solving is one of the most important skills you need as a DBA. No matter how well

your system is planned and implemented, problems will occur from time to time. These can be

technical issues, or they can be business or human problems manifesting themselves into a

technical problem. Often, the DBA is called to investigate a “database error” that is really a

symptom of a more serious problem with an application, server, or network. Nevertheless, the

DBA is often the person to diagnose a problem and begin developing a solution. Problem

solving is often made more difficult because many sites have an associated dollar value for

each hour of system downtime.

This chapter covers situations that normally start with “Help, the database is broken.” It

discusses what to do from a system perspective once problems are reported and identifies

places to initially look. Then, it discusses the more common database problems involving file

management, locking, rollback segments.

Responding to Problems
It is quite common for users to call the DBA and claim that the database is down. First of all,

don’t panic. Normally there is some type of technical problem, but most times the database has

not crashed. In fact, quite often, there is nothing wrong with the database per se; rather, the

users cannot access their data. Regardless of the cause, the DBA must step in and determine

the problem.

Information Gathering
Before diving into a reported problem, the DBA needs to gather some basic information. This

process relies as much on personal skills as it does technical skills. Unfortunately, when problems

do occur, people often become frantic and act without thinking. As an administrator, you will

receive these calls and must piece together an accurate picture of the situation. The standard

series of questions—who, what, when, why, and how—are good places to start when

diagnosing problems. Also, identify the impact of the problem.

• Who First, identify who the user is. Of equal importance, identify whom the user is

trying to log in as. If the “who” is a process or job having problems, identify the owner

of that job.

• What Next, clarify exactly which system is perceived as having problems. Exact server

names (if known) and the error messages are very important. Often, a screen shot of the

error message can be most helpful.

• When Find out when the problem occurred. Is it a current crisis? Or is it something

intermittent, such as batch jobs failing? Also, how long has this problem been noticed?

This is particularly important information because it allows you to search for anything

that has changed that might be causing the problem. Finally, ask if this problem has

happened before and, if so, how it was resolved.

Oracle DBA on Unix and Linux
272

• Why Ask why the user thinks there is a problem. Often, people think there is a problem

even when the system is doing exactly what it is supposed to be doing. For example, if a

user is getting the message “Invalid Password Login Denied,” that is causing problems

for the user but is not necessarily a system error. Also, end users are often the last people

to know when a system will be modified or shut down.

• How Find out under what circumstances the problem is occurring. It is important to push

for details here. Often, frustrated users will omit information they think is irrelevant, but

is truly critical. If you can see the problem first-hand, this is best. Otherwise get as much

step-by-step information as possible because often it is necessary to recreate a problem

before solving it.

• Impact Ascertain whether this is a major problem worth working on all night or whether

it is a minor inconvenience on a less important system. Do not ignore problems just

because they are small, but do prioritize your problems according to impact.

In most real situations, you won’t have the luxury of getting all this information, but it is a

good goal. Sometimes by asking the user questions about the problem, a resolution appears.

Other times, asking questions will resolve miscommunication issues, which can cause as much

trouble as any technical error.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
273

Which “System” is Really Down?
I once had a user claim “the system,” was down which sends shivers down the spine

of any administrator. However, further questioning identified the user as the head of

the training department and “the system” was really a tiny training database. It was

during this time the main user schema was being imported so the database was in

restricted mode. Had I just taken the report that “the system” was down at face

value and started acting, I would have made the problem worse.

Remember; don’t assume that you are on the same wavelength as the user. During

crises, people often get excited and the chances of a costly miscommunication

increase.

Hopefully, you’ll have at least an idea of how the problem is appearing to the users and its

frequency. From there, you can begin tracking it down from a technical perspective.

Problem Identification at the System Level
Most technical problems originate from the database, the server, the network, or an application.

However, a problem with any one of these elements normally impacts the performance of the

entire system. If the DBA is called, it is normally because someone thinks it is a database

issue, but in many cases it is not. It is up to you to look at the system as a whole and determine

the real cause so you can fix it.

You need to understand the basic architecture of the system in order to be effective at

diagnosing problems outside the database. A simple diagram outlining each server, its purpose,

and what it connects to is very useful. This visually identifies all the pieces that can break;

therefore each component can be individually checked. Figure 10.1 identifies the components

of this system and what can break.

Oracle DBA on Unix and Linux
274

Database

Server

Oracle

Database

Web

Server
JDBC

Communication

JDBC

Communication

InternetApplication

Customer

with PC

Customer

with PC

Customer

with PC

FIGURE 10.1
Basic Architecture Diagram.

For example, consider a database on a dedicated Unix server. The only connection into the

database server is a Web server. The Web server contains the application code and connects to

the Internet, which is how users access the system.

In a simple case like this, it’s best to begin diagnosing the problem with the database and then

work your way outward until you find the problem. First, make sure the Unix server is up. Next,

make sure the database is running and users can connect to it. After you’re sure your piece (the

database server) is okay, start looking at the other components in the system. Verify that the Web

server is up and that it is “talking” to the database server. Then check that the application on the

Web server is running properly. Finally, look at the connections from the Internet into the Web

server. If you reach this point without finding the cause of a problem, go back to examine each

piece in more detail or look for something not represented on the diagram.

Although this is a conceptually simple example, it illustrates an effective way to break big

problems into small problems. Too many people only look at their piece of the pie and do not

understand how it fits in the system as a whole. Each system is unique and has different points

of possible failure that should be identified before they occur. Ideally, you have already done

this during the initial system-design phase.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
275

Benefits of an Architecture Diagram

Not only is this method good for diagnosing problems, it is a good way to look at

performance tuning. By identifying bottlenecks at the system level, you can apply

limited tuning resources to the areas where they will have the largest impact.

TIP

Identifying Technical Problems
This section examines how to quickly identify obvious problems with the server, database, and

applications. Use these methods only as a starting point. Each system has its own quirks and

common problems that need to be identified differently. Remember, Unix and Linux systems

tend to be highly customized and you, as an administrator, need to be aware of this. However,

the following sections discuss common areas I have learned to check over the years. Don’t nec-

essarily go down each list sequentially either; use whatever combination of checks makes sense

for your system given the nature of the reported problem.

Server-Related Checks
When I receive a call that something is wrong with the system, I initially check the status of

the server. For the most part, I include the network in this category as well. At this stage, look

for anything that might be hindering the normal function or accessibility to the database, at a

Unix server level. Verify that the Unix/Linux servers are available and running normally.

Attempt to establish connectivity.

• Ping the box to establish basic connectivity. If this fails, contact the SA. Figure 10.2

shows there is connectivity to the machine. An IP address is used here, but if you have a

DNS alias, be sure to test it also.

FIGURE 10.2
Ping the Server.

Oracle DBA on Unix and Linux
276

• Determine whether the Unix/Linux server is up. Try to log in to the machine with a

simple Telnet window. If you cannot log in here, there is either a network or a server

problem.

• See how long it has been since the server was rebooted.

$ uptime

5:35pm up 2 days, 5:22, 2 users, load average: 0.00, 0.00, 0.00

In this case, you can see it has been two days since the box was down. If you notice it is

only a matter of minutes, the problem probably stems from the server rebooting/crashing.

• If the machine has been rebooted or crashed, investigate this further. Use dmesg | more

to see its boot messages. Other files worth seeing are /var/adm/messages and /var/

log/syslog. This is SA territory, but by examining these files, you might be able to iden-

tify obvious problems.

• Determine who else is using the server. Depending on the system architecture, this might

not be a valid indicator of problems. Look for any unusually high or low numbers.

$ who

oracle tty1 Apr 22 17:22

oracle pts/1 Apr 23 18:55

• Determine whether the system is being stressed more than usual. If a large, resource-inten-

sive job is running, it might not be a problem per se, but it might be impacting user

response time. This is particularly true when the server is being used to support more than

just Oracle. Also look for runaway processes accumulating large amounts of CPU time.

System-monitoring tools are covered in detail in Chapter 13, “Unix Server Monitoring,”

but one tool you can use to get a quick snapshot of the system is top. Figure 10.3 shows

a small load on the server.

• Check for normal processes or locked files on the system. These are site-specific, but

they include listeners, cron jobs, and any other process that is required for the system to

perform its normal function. Ideally, you will know your system well enough to tell

whether a process is missing. For example, one site I worked at had a home-grown

replication routine and listener that had to be running. I learned to add that to my list of

system checks. By the same token, also determine whether something is running that is

out of place, such as a backup in the middle of the day.

• Pay particular attention to the response time from the command line. If it is noticeably

slow, the server may be stressed or, more likely, the network is having performance

problems. If you issue a command such as ls or cd and the command hangs, there is

likely either a disk problem or a filesystem has become unmounted.

• The final check I normally do on a server is to determine whether any filesystems are

filled up. Filesystems at 100% are immediately suspect, especially when they contain

Oracle archive log files. Any other filesystem in the mid to high 90s is also investigated.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
277

If you notice that available disk space suddenly decreases, determine whether it contains

the cdump directory for any database. Often, a core dump resulting from a failed process is

the culprit. Use either bdf (on HP-UX) or df -k to check on available space, as Figure 10.4

shows.

FIGURE 10.3
Use top to Get an Overview of Performance.

FIGURE 10.4
Check for Full Filesystems.

• If the Unix/Linux server is “average,” the initial check for problems can stop here.

However, if you are running a more advanced or complicated system, look further. For

example, in a cluster, check the status of each node and the communications between

them. If there are any site-specific quirks, consider these to be potential problems.

Oracle DBA on Unix and Linux
278

Unless the DBA has the root password, only the SA can fix most of the server problems.

However, the more preliminary information the DBA can provide, the more likely the problem

can be solved quickly.

Database
Once you have verified that the Unix/Linux server is up and functional, turn your attention to

the database. Many problems with the database fall into the following categories:

• Users cannot access the database as they expect. Usually, the database is down, a listener

is not started, or there is a tnsnames/username/password issue.

• Users are not getting the results they expect in an acceptable timeframe. This is usually

either a locking issue or a performance issue.

• An unanticipated change occurred at the schema level, which impacts the application.

Often, objects are invalidated, or an object or grant is dropped.

• Routine database maintenance is needed. Perhaps tablespaces need more space, rollback

segments need to be larger, or SGA or init.ora parameters need to be modified.

Most of what is checked is a repeat of the normal checks performed each morning. However, if

the problem is with the database it will likely show up with the following checks:

• Determine whether the instance is running. Specifically, look for a required background

process such as Process Monitor (PMON).

$ ps -ef | grep -i pmon

oracle 11385 1 0 Apr23 ? 00:00:00 ora_pmon_rh1dev1

It is a near certainty that if PMON is up, the entire database instance is also up. If PMON

is not running in the background, users will likely get an error ORA-01034 ORACLE not

available. This is a clear sign that either the database is down or ORACLE_SID is set

to a bogus value.

• Verify that the database listener process is running. A common mistake is to start a data-

base, but forget to start the listener. The result is the database is up, but no one outside

the box can connect to it.

• Either use ps -ef to search for the listener process or issue lsnrctl -status. Sometimes

it is necessary to stop a listener, kill its dangling Unix process, and restart it if there were

problems with the process.

• Check the user’s tnsnames.ora file. These files are often managed by the users them-

selves, which make them prone to error. The problem is magnified by the fact that a PC

or laptop often has a different tnsnames.ora file for each Oracle tool. Many end users do

not know this. They might correctly configure tnsnames for one tool, but have problems

connecting to another tool.

• Use tail to view the end of the alertSID.log file located in the database bdump direc-

tory. Do this multiple times daily whether or not problems are reported. The alert log

contains the vital information a DBA needs to diagnose and solve database problems.

Any serious errors encountered by Oracle will be reported in this file; you should investi-

gate them all. The importance of checking the alert log cannot be overstressed, particu-

larly when problems are reported.

• Force several redo log switches using ALTER SYSTEM SWITCH LOGFILE. Then check the alert

log and the view V$RECOVER_FILE for any errors or files needing media recovery. If the

database hangs during the log switches, determine whether the archive dump destination

is accessible.

• Log into the database and determine how many user sessions exist. Note any particularly

small or large numbers. If very few people are logged in, look at connectivity issues. A

usually large number of logins can cause degraded performance because of stress on the

system. A high number of logins can be caused by users being disconnected and logging

back in.

• Check for database locks. Oracle is normally pretty good at handling locking. However,

if the application is poorly written or if a user updated a row and never committed the

change, locking problems can occur.

• Make sure each tablespace has an acceptable amount of free space available. If the view

DBA_FREE_SPACE shows a low value for a tablespace, either add a new data file or resize

the current files. Otherwise, users will get errors stating that Oracle cannot allocate

another extent when a segment needs to grow. These errors also show up in the alert log.

A problem related to this is the storage parameter MAXEXTENTS. If a table, index, or

rollback segment was created without MAXEXTENTS being set to UNLIMITED, the

value can be reached. If so, alter the object to increase the number of extents.

• Make sure that no tablespaces or data files are offline. Check the status column of

DBA_DATA_FILES and DBA_TABLESPACES. Normally, nothing should be taken offline with-

out a good reason and the DBA should be aware if this occurs.

• Look for ORA-01555 Snapshot too old rollback segment errors. These are discussed

later in this chapter.

• Check for invalid objects (packages, procedures, triggers, and so on) within the database.

Pay particular attention to the schemas owning application-related tables or PL/SQL. It is

a common mistake to alter one object and accidentally invalidate others. If the DBA or

developer is not in the habit of checking for this, the problem can snowball.

• Use dynamic SQL to create scripts to recompile invalid objects. Ideally, the DBA will

have prepared scripts to generate the recompilation code before a problem occurs.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
279

• Determine whether any application schema object or grant has been added, dropped, or

modified. Tables, indexes, sequences, synonyms, and database links are frequently

changed in development and testing environments. Also, necessary grants can sometimes

be accidentally dropped and not reapplied in these environments.

• Determine whether anyone has changed the init.ora. If, for example, someone made a

typo while changing a parameter, database activities can occur. Or, the intended change

itself can cause problems. This is particularly common in larger shops in which multiple

DBAs aren’t communicating their changes to each other.

Just as with any database file, be sure to back up the init.ora file. Ideally, it should also

be locked in a version control system like RCS so changes are logged and can be undone

if needed.

These are some of the more common database errors. Some are more serious than others, but

any of these errors can cause user problems. Note that you can prevent the majority of these

errors or at least minimize them by proactive maintenance, controlling access to the DBA

password, and monitoring the alertSID.log.

Application
Checking the application is normally the final step. The rationale for this is applications,

particularly those developed in-house, tend to be modified frequently and have bugs, but identi-

fying such bugs can be difficult. It can take a long time to track down, fix, and test a single

program error. On the other hand, checking the server, network, or database for obvious

problems can be done relatively quickly. Therefore, it makes sense to eliminate those areas that

can be checked quickly before expending resources checking for bad code.

In most situations, the DBA will be familiar with the application. However, he or she won’t

know individual modules of program code well enough to instinctively associate a reported

error with a specific module. At this stage, the DBA is largely at the mercy of the developers

when it comes time to track down application code problems.

The developers, on the other hand, might not realize their code is causing problems. When

problems occur, it is normally the help desk, SA, or DBA who gets the phone call, not the

application developers. The first indication they have of a problem is when another IT person

questions them about the code. At this stage, it is helpful to have supporting evidence of an

application problem, rather than just a report that something is wrong with the system.

Consider the following application-related areas after you have ruled out a system, network,

and database errors:

• Check the alertSID.log for errors indicating trace files have been created. Specifically,

look in the udump directory for .trc files. These are typically generated when an individ-

ual user process fails when executing an application. The trace file is the best initial

Oracle DBA on Unix and Linux
280

source of information when diagnosing application bugs. They contain a timestamp,

userid, and the SQL executed at the time of error. This is normally enough information

to start the debugging process.

• If the application has any log files, check those for errors. The administrator should be

familiar enough with the application to check whether it is started and is writing any

error messages to log files.

• Work with the user reporting the problem to create a documented test case that causes

the error(s). This helps the developers to re-create the problem to aid in their debugging.

If possible, place the user and developer in direct contact to discuss the problem.

• If the application has been purchased off the shelf, determine whether there are any

known bugs. In cases where there exists a dedicated help staff for a particular product,

use it.

One final tip on troubleshooting. Ask the question, “What has changed in the system?” In

many small, unstructured shops, both administrators and developers will make changes to the

production system without much testing or public announcement. Often, these changes cause

problems, and you would not know any changes were made unless you specifically ask. To

take this one step further, the parties who make these changes often quietly realize it was their

change causing the problem. Do not, however, expect them to volunteer this information,

especially when the work environment is hostile. Usually they will fix whatever they changed,

but as far as you know the system mysteriously “fixed itself.” Although this might be

discomforting, don’t be surprised to see it happen.

The next section discusses some of the database-specific troubleshooting activities performed

by the DBA.

File and Space Management
Managing Oracle data files is a common DBA task. Ideally, you should check the amount of

free space available in each data file every morning. For performance tuning and backup and

recovery purposes, be sure to run this job every night in order to record the name, location, and

tablespace of each file.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
281

9i New Feature

9i has the capability to “manage” files by itself. You do nothing; you simply let Oracle

handle everything, including the OS commands. This is optional in 9i; I doubt many

DBAs will be willing to blindly give up control of the files to Oracle. Chapter 19, “9i

Server New Features,” covers this new feature in detail.

NOTE

Oracle DBA on Unix and Linux
282

Sizing Data Files
Most DBAs have SQL scripts to generate reports showing the amount of space. How much

space should you keep free? That depends on the nature of your database. If you know an

object is growing, keep enough space to allow for this, plus some overhead. Many DBAs run

nightly cron jobs that report any data file over 90% allocated.

Use the view DBA_FREE_SPACE command to see the chunks of free space available in a data

file. If the amount of contiguous free space is less than the size of the next extent for an object,

an error will be generated the next time that object attempts to allocate an extent. This is a

common, yet simple, problem that DBAs are often called to fix.

When it is time to add more space, you can either add a new data file or resize an existing file.

Some sites have standards for this activity, so keep those in mind. Also, it is generally

preferable to have several smaller files for a tablespace rather than one giant file (over 2G).

To add a data file to an existing tablespace:

SQL> alter tablespace users

2 add datafile

3 ‘/u03/oradata/rh1dev1/users02.dbf’ size 100M;

Tablespace altered.

Alternatively, you can make the file larger or smaller as long as there is room for any objects in

that file. Resizing a file to an insignificant size is sometimes necessary because there is no way

to drop a data file from a tablespace once it has been added.

SQL> alter database datafile

2 ‘/u03/oradata/rh1dev1/users02.dbf’ resize 125M;

Database altered.

SQL> alter database datafile

2 ‘/u03/oradata/rh1dev1/users02.dbf’ resize 5M;

Database altered.

Pay attention to your disk usage. Look for patterns in database growth and determine the cause

when the patterns change. Also, make sure there is enough disk space to support the growth.

Work with the SA to make sure the server has the disk space available when the database

needs it.

Moving and Renaming Data Files
Moving and renaming Oracle data files is another task the DBA commonly performs. There are

many reasons that a DBA moves or renames a data file. This might be in response to a SA

request to clear off a filesystem. Or it might be necessary because a disk crashed and you need

to restore the backup file from tape to a different location to perform the recovery. If there is a

large amount of I/O contention on a particular disk, you can move one data file to another disk

to reduce the contention. Finally, you might have just made a typo when adding a data file and

you want to correct the mistake.

There are two approaches to moving and renaming data files: move them with the database

open or move them with the database shutdown. The approach depends on the type of file you

are moving.

File Type Online or Offline

System tablespace file Offline

Rollback Offline if it is only rollback tablespace

Online redo log file Offline

Data or index file Online or offline

The rule of thumb is that if a tablespace can be taken offline, the file can be moved or renamed

while the database is open. This means normal data and index files can be moved while the

database is open. However, files in the SYSTEM tablespace and online redo logs cannot be

taken offline; therefore, the database must be shut down. If there is more than one rollback

tablespace and one can be taken offline, it can be moved; otherwise, it will have to wait until

the database is shut down.

The following procedures explain how to move and rename a file. The procedure is the same

even when the file is only being renamed.

The procedure for moving a file with the database open is outlined here:

1. Find the files associated with tablespace you need to move.

SQL> select file_name, bytes from dba_data_files

2 where tablespace_name = ‘USERS’;

FILE_NAME BYTES

----------------------------------- ------------

/u04/oradata/rh1dev1/users01.dbf 109,051,904

/u03/oradata/rh1dev1/users02.dbf 5,242,880

2. Assume, for example, that you want to place all the files on /u04. The next step is to ver-

ify that there is enough disk space to support the move and that the directory structure

exists. You already know the directory structure exists, so just make sure there is suffi-

cient disk space.

SQL> !df -k /u04

Filesystem 1k-block Used Available Use% Mounted on

/dev/hda12 2016016 851852 1061752 45% /u04

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
283

3. Take the tablespace offline so it can be moved. At this stage it will be inaccessible to

users:

SQL> alter tablespace users offline;

Tablespace altered.

4. Move the file to the new location using operating system commands. If it is to be

renamed, do that as well. Be careful not to accidentally override any files during this

process.

$ cd /u03/oradata/rh1dev1

$ mv users02.dbf /u04/oradata/rh1dev1/users02.dbf

5. The file needs to be renamed within Oracle.

SQL> alter database rename file

2 ‘/u03/oradata/rh1dev1/users02.dbf’

3 to

4 ‘/u04/oradata/rh1dev1/users02.dbf’;

Database altered.

6. Take the tablespace online so users can access it.

SQL> alter tablespace users online;

Tablespace altered.

7. Cycle through a redo log switch, and check V$RECOVER_FILE and

DBA_DATA_FILES to verify the move was successful.

SQL> alter system switch logfile;

System altered.

SQL> select * from v$recover_file;

no rows selected

SQL> select file_name from dba_data_files

2 where tablespace_name = ‘USERS’;

FILE_NAME

/u04/oradata/rh1dev1/users01.dbf

/u04/oradata/rh1dev1/users02.dbf

Backing up the database at this stage is a good idea. Also, if you used cp instead of mv,

remember to delete the old Oracle file after you have verified the move. Oracle will not delete

files at the OS level, so that file will remain there until you delete it.

Oracle DBA on Unix and Linux
284

Sometimes it is necessary to move a file when the database is shut down. This is common

when you have to restore files because of a lost disk to a different location. In the following

example, you move the SYSTEM tablespace, which requires the database to be closed. This

procedure is also used to move online redo log files.

1. If needed, identify the location of the file to be moved. Then shut down the database

normally.

SQL> shutdown;

Database closed.

Database dismounted.

ORACLE instance shut down.

2. Verify that the destination location exists and that sufficient disk space exists. Then move

the file using OS commands.

$ cd /u02/oradata/rh1dev1

$ mv system01.dbf /u04/oradata/rh1dev1/system01.dbf

3. Start the database in mount mode so the file can be renamed inside of Oracle.

SQL> startup mount

4. Rename the file.

SQL> alter database rename file

2 ‘/u02/oradata/rh1dev1/system01.dbf’

3 to

4 ‘/u04/oradata/rh1dev1/system01.dbf’;

Database altered.

5. Open the database. Then verify that Oracle sees the file correctly in the new location.

SQL> alter database open;

Database altered.

SQL> select * from v$recover_file;

no rows selected

SQL> select file_name from dba_data_files

2 where tablespace_name = ‘SYSTEM’;

FILE_NAME

/u04/oradata/rh1dev1/system01.dbf

The file has been moved successfully. Had this been part of a recovery process, you would

have renamed the file and then proceeded with the recovery steps. Again, it’s a good idea to

perform a backup at this point, especially if this move was in response to a failure.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
285

Locking
When users report that they updated something and the database isn’t responding, odds are it is

a locking issue. The following section doesn’t delve deeply into every type of locking situation

inside Oracle, but it does show you what you need to know to solve the vast majority of

locking problems.

Locking is the process of placing a hold on a table or row so that it can be changed while pro-

viding a read-consistent image to other users. Locking is a normal process that is handled auto-

matically by Oracle. Based on the statement being issued, Oracle will automatically lock the

rows being modified and then release the lock after the statement has been committed or rolled

back. This automatic process requires no action by the user or the DBA.

Within the Oracle community there is a saying regarding locking: “Readers don’t block writ-

ers. Writers don’t block readers. And writers don’t block writers unless they are trying to

update the same row.”

What this means is that, when a user attempts to read a table in the form of a query, no locks

are acquired so no one is blocked. Oracle uses what is in the data file and in the rollback seg-

ments to provide a read-consistent view of the data for that user’s query.

When a user attempts to update a row, an exclusive lock is taken only on that individual row.

Another user can still query the entire table by seeing what is stored on-disk and in the

rollback segment. Therefore, one user can update a row and another user can still query the

entire table with a read-consistent image.

The only time one user’s update impacts another user’s update is when they are both trying to

change the same row at the same time. In this case, whoever issued the statement first gets the

lock. The second user will automatically wait enqueue for the first user to commit, roll back, or

abnormally terminate. At that point, the second user is given an exclusive lock on that row and

their statement is executed.

Locking is normally handled very well by Oracle with a minimum of problems. In a well-

designed database, serious problems are rare. Locking can become a problem in the following

situations:

• In Oracle Parallel Server (OPS) environments

• In shops in which application developers write code to explicitly lock objects or do not

commit their transactions frequently enough

• When foreign key columns are not indexed

Locking problems in OPS environments are normally the result of poor application design and

partitioning. If your developers are writing code to explicitly lock objects, find out why. This is

Oracle DBA on Unix and Linux
286

often more of a bad habit than a programming necessity. Finally, always index the foreign key

column in a parent-child relationship. Failure to do so will result in unnecessary locking of the

child table whenever the parent table is updated or deleted.

DML Locking
Because Oracle practices row-level locking, the most common problems occur when two users

are trying to update the same row at the same time. As long as the first user commits or rolls

back rapidly, this is usually not a problem. Problems occur when one user updates a row, but

does not commit or roll back the change immediately. Any other user attempting to update the

same row will issue their statement, but no response will come back from Oracle. It will look

to them like the screen is “hanging.” This is not an error per se, so Oracle will patiently wait

for the first user to commit or roll back the change so the exclusive lock on that row will

release. From a user standpoint, Oracle didn’t come back immediately with a message saying

“X rows updated” so they usually assume there is a problem and call for help.

For example, if User A opens a customer’s account to make a change and then goes to lunch

without committing or rolling back the change, that customer’s record will be locked

indefinitely. If User B issues a statement to update that same customer’s account, nothing will

happen. They will press Enter and no response will come back to the screen. There will be no

message saying, “User A has locked Customer 123’s account”. User B will be stuck waiting on

a response, which will not come back until User A commits or rolls back the original change.

At this point, user training can be very helpful. It is not impossible to train users about the

basic idea of locking. They can be trained to know that two people cannot change the same

piece of data at the same time. In cases like this, the users should know to call the DBA,

identify who they are and what customer they are trying to update. This is all the information

you, as the DBA, need to resolve the situation.

You can use a GUI tool such as OEM to determine who has the exclusive (blocking) lock and

who is waiting to receive a lock on the row. You can then either ask the blocking user to

commit or rollback, or you can kill their session. If you kill a session, it is considered a

rollback. Also, if that user’s session terminates abnormally for any reason, Oracle considers

this a rollback and PMON will clear up the locks.

Oracle Enterprise Managers used to have a great tool called Lock Manager, which was

designed specifically to monitor and resolve locks. Unfortunately, this tool is no longer

included in new releases of OEM. If you happen to have an old copy of OEM, this tool makes

it worth installing. New releases of OEM provide the same basic functionality via TopSessions,

which comes with Oracle Diagnostics Pack. As you can see in Figure 10.5, TopSessions can

identify users with locks.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
287

FIGURE 10.6
Identifying Locks with TopSessions.

The Lock Types drop-down menu has two options: All Locks or Blocking/Waiting Locks.

Select Blocking/Waiting Locks to see any locks that DANW is waiting for. You can see that

MIKEW already holds a row level lock (Lock Type TX) in Exclusive Mode. DANW has

requested an exclusive lock on the same row, but is waiting for MIKEW.

At this point, you can take action. You can call MIKEW and ask him to either commit or roll

back his update, or you can use TopSessions to kill MIKEW’s session. Either way, DANW is

next enqueue to receive the lock and his update will continue as soon as MIKEW’s lock is

released.

GUI tools are sometimes the easiest way to resolve locks when you know the identity of at

least one locking user. However, sometimes you need to look at locking of an entire instance

and, unless you have Lock Manager, you need SQL*Plus scripts to do this.

Oracle DBA on Unix and Linux
288

FIGURE 10.5
Examining Users with TopSessions.

In this case, the user DANW calls the DBA to report a locking problem. The DBA highlights

DANW’s session, right-clicks it, and selects the Details option. The DBA then selects the

Locks tab, as shown in Figure 10.6.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
289

Missing DBA_LOCKS?

Sometimes, not all the locking-related data dictionary views are created when the

database is. If you find that DBA_LOCKS does not exist, connect internal and run

$ORACLE_HOME/rdbms/admin/catblock.sql to create the missing views. This is a pre-

requisite for running some lock-detecting scripts such as utllockt.sql.

NOTE

There are many scripts in existence to identify locking issues. The views V$LOCKS,

V$LOCKED_OBJECT, DBA_LOCKS, and V$SESSION are most useful when looking for locks, but

prepackaged scripts makes this task much easier. One standard script is utllockt.sql, which

resides in $ORACLE_HOME/rdbms/admin. Read over the script before running it. Basically, it cre-

ates a chart of the session IDs that have blocking locks and identifies the

sessions waiting to acquire that lock. Once the blocking session IDs have been identified, you

can use V$SESSION and the ALTER SYSTEM KILL SESSION command to kill the blocking

session. Utllockt.sql determines the SID of the user process as defined by V$SESSION so you

can use that value to identify the user session to terminate. Because the output can be lengthy,

it is best to spool it to an output file and then review the results. Figure 10.7 shows the output

of the utllockt.sql script.

FIGURE 10.7
Identifying Blocking Locks with utllockt.sql.

As you can see, session 14 is waiting on session 17. These are the only sessions in the database

currently having locking issues. By equating the number in the WAITING_SESSION to a SID, you

can use the following query to identify the users. Then, you can kill the blocking session. As it

turns out, DANW was waiting on MIKEW, so you need to terminate MIKEW’s session.

SQL> select username, sid, serial#

2 from v$session

3 where sid in (14,17);

Oracle DBA on Unix and Linux
290

USERNAME SID SERIAL#

-------------- ---------- ----------

DANW 14 33

MIKEW 17 51

SQL> alter system kill session ‘17,51’;

System altered.

DDL Locking
You need to be aware that DDL actions can exclusively lock entire tables. Any type of ALTER,

CREATE, or DROP command will lock a table and prevent DML for the duration of the com-

mand. ANALYZE statements will prevent all DML and queries, which is an exception to the

rule that Oracle doesn’t block readers.

This is an issue when the table is very large or accessed frequently. If the DML will take too

long to perform during normal business hours, you might be forced to perform the action at

night, assuming batch jobs can be delayed.

Another problem is that before a DDL lock can be acquired, no other lock can exist on the

table. DML locks will patiently wait enqueue until they can acquire a lock, but DDL locks do

not wait. If you issue a DDL command and another user has any type of lock on the object,

you will receive an ORA-00054: resource busy and acquire with NOWAIT specified. You

have to wait and try the DDL command later. The only other option is to put the database into

restricted mode, kill all the sessions, and then reattempt the command.

Creating or rebuilding indexes also causes locking. Downtime because of this type of locking

can be a big problem. I am aware of shops that have suffered because they could not withstand

the downtime of rebuilding their indexes. The impact of creating indexes depends on the ver-

sion of Oracle you are using. Oracle 7 and 8 always forced exclusive table locking during

index creates and rebuilds. Oracle 8i is better because it allows some DML during indexing by

using rollback segments. However, if too much DML occurs, it will revert to an exclusive lock

on the table. Oracle 9i promises to alleviate some of these problems.

”Snapshot Too Old” Rollback Errors
This section examines one of the most peculiar problems in Oracle: the ORA-01555 Snapshot

too old error. This much-discussed problem relates to rollback segments. Rollback-segment

fundamentals were explained in Chapter 2, “Architecture of the Oracle Server.” Here, you are

concerned with rollback segments in terms snapshot too old errors.

To understand the ORA-01555 error, you must first remember that Oracle demands a read-

consistent image of the data for a query. This guarantees that once users start a query, they

will not see changes that were committed during the execution of that query.

To do this, Oracle checks the current System Change Number (SCN) at the start of the query

and does not display changes dated after that SCN. As Oracle is reading the data to be returned

by the query, it will likely get most of this data from the table segments on disk. If, however,

another user modifies that data during the course of the query, Oracle will need to reconstruct

the “before image” of the data based on what is stored in the rollback segments. This is how

Oracle provides read consistency: by using data from the table plus data reconstructed from the

rollback segments.

For a long-running query, Oracle often needs to go to the rollback segments to reconstruct an

old block of data. If Oracle cannot reconstruct a needed block of data from the rollback seg-

ments, it cannot provide a read-consistent view of the data. In this case, it rationalizes that its

snapshot of the data is too old, therefore it issues the ORA-01555 error.

How can Oracle not find the older data in the rollback segments? Once the transaction that

changes the data is committed, Oracle no longer protects the “before image” of the changed

data in the rollback segment. This means that particular space is fair game and can be

overwritten, at which point the earlier image is destroyed. If the data block on the disk has also

been updated via delayed block cleanout, there is no way a long-running query can find the

prior image. Thus, you get the error.

Long-running jobs are particularly prone to this error. Such an error occurs most often when

there is a long-running query in an environment with many small OLTP transactions and

equally small rollback segments. Under these conditions, before images do not last long after a

commit, so a long-running query is a prime candidate for this problem.

Most DBAs resolve this error by reexamining their rollback segment allocations. The standard

solution is to increase the size of the rollback segments. You might also find you are using too

few rollback segments, which means the same segment is being reused frequently. In this case,

add more rollback segments to spread out the transactions so each segment won’t be reused so

soon.

Another option is to run the query during reduced or nonexistent update activity. If the

problem still exists, look at the application code to determine whether overly frequent commits

are the cause before images to be overwritten too quickly.

When Things Go Wrong

CHAPTER 10

10

W
H

E
N

T
H

IN
G

S

G
O

W
R

O
N

G
291

Summary
This chapter discussed what to do when problems are initially reported. Your life as a DBA can

become stressful when problems occur. Especially in shops that lose large amounts of money

for each hour of downtime, there can be excessive pressure to solve problems quickly.

Unfortunately, situations like these are not conducive to clear thinking and silly mistakes can

happen. Under these conditions, a problem-solving framework like the one provided in this

chapter can be a great help. This chapter covered the major areas in which problems can occur

(server, database, and applications) and looked at ways to examine each one. I recommend that

you customize this list of common mistakes and problem-solving procedures to your environ-

ment. Once you do so, you will be more organized the next time a problem occurs.

The next portion of the chapter covered three common problems encountered by DBAs. Data

file management was covered with a focus on sizing, moving, and renaming files. Next, you

learned about locking both at the row level and table level, as well as ways to reduce its

negative impact. Finally, you read about the cause of the infamous “Snapshot too old” error.

You saw that by increasing the size and number of the rollback segments, you can reduce the

frequency of this problem.

Oracle DBA on Unix and Linux
292

CHAPTER

11
Oracle Server Tuning

ESSENTIALS

• Database tuning is an important skill that

requires knowledge about both the database

and the type of application it supports.

• Oracle's UTLBSTAT and UTLESTAT are solid,

proven tools to obtain database statistics.

• The STATSPACK utility is a new Oracle product

that provides B/ESTAT information in a more

friendly format.

• There are many valuable SQL scripts available

to monitor SGA, rollback segment, and data

file usage.

• Performance can further be improved by mon-

itoring Wait Events and by tuning tables and

indexes.

Tuning an Oracle database is considered by some to be as much of an art form as it is a sci-

ence. In reality, it is a little of both. This chapter tries to make it as scientific as possible. You

will learn about tuning the parts of the Oracle database server that yield the greatest results. If

you are not familiar with Oracle architecture, check out or review Chapter 2, “Architecture of

the Oracle Server,” first.

First, you’ll look at how to approach tuning a database. Next, you’ll find out how to get a snap-

shot of the database’s performance so you can identify problems. You will then examine ways

to monitor and tune the memory pools inside the SGA. You’ll read about rollback segments

from a performance standpoint, as well as ways to detect and avoid file contention. You will

also learn how to monitor wait events inside the database. The chapter also provides an

overview of a new Oracle feature: locally managed tablespaces. Finally, you will look at some

different options when creating tables and indexes that can improve performance.

Database Tuning Approach
Tuning should not start after a system is up and running, but it instead should begin during the

system design phase. The sooner performance bottlenecks are detected, the easier they can be

fixed. The DBA should be included in the system design meetings, but that doesn’t always

happen. You might just be called in to create a database for an application. If so, the guidelines

in Chapter 3, “Planning a Database,” will give the basis for creating a scalable database.

Having said that, more often than not the DBA inherits a preexisting database that might not

have been designed and built correctly. In consulting circles, DBAs who specialize in tuning

will be called in to tune databases of poorly performing systems. In reality, the root problem is

often poorly written application code, an unscalable design, or poorly tuned SQL. However,

before these issues can be addressed, problems with the database must be ruled out, which

means the database performance must be examined. Therefore, this section focuses on the

database itself.

Tuning a database starts by understanding what type of application(s) are running on it.

Fundamentally, you need to know if it is an OLTP, DSS, or a hybrid. You need to know where

the database exists within the entire system architecture so you can identify the inputs and

outputs of the database. Understanding what a “typical” transaction entails is very helpful in

understanding the stresses placed on the database. Once you understand what the database

should be doing, you can find ways to get it there.

The next step is to get a feel for how the database is currently performing. This information

will come from both technical and non-technical sources. Oracle supplied utilities and a host of

scripts will tell you what is occurring inside the database. By speaking with end users and

managers you will determine what the perceived problems with the database are. Both types of

information are important because they will dictate where you apply your tuning resources.

Oracle DBA on Unix and Linux
294

The goal of tuning is to make the database meet the needs of the business, which means you

address the problems identified by those relying on the system. This is an important point.

Managers and end users really do not care how slick the internals of your database are. They

just want their reports generated on time and the data returned to the screen quickly. Towards

that end, you need to identify what they consider important and then tune to achieve that goal.

For example, if your system is OLTP and it is performing badly, concentrate on getting data

back to the screen quickly rather than trying to fix the occasional batch job.

Focus your attention on the areas that will generate the biggest gains and know when to stop

tuning a particular part. There is usually not any one change that will make a slow database

suddenly run quickly because most databases have several problems. However, initially focus

your efforts on the biggest problems first. Once your goals have been met, assess whether it is

worth your time trying to fine tune parts of the system that might not even be noticed by the

end user. Once your tuning efforts reach the point of diminishing returns, you should probably

move on to another area.

Finally, once a database is “tuned,” the DBA needs to monitor it and make adjustments as

needed. In reality, no database is ever “done” because systems are dynamic and the stresses on

a database are usually changing. Therefore, keep running periodic reports on database perfor-

mance to look for trends. Also keep in contact with the user population to verify the system is

meeting their needs.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
295

Problems Are Often Tuning Opportunities
Often, fixing a database problem provides the opportunity to tune the system as

well. One time a repository database I was managing suddenly started having

problems allocating shared memory. Oracle ORA-4031 errors began occurring fre-

quently, which is often an indicator of an under-sized shared pool. In our case, the

shared pool was huge, but someone had added a small large pool, which Oracle

started trying to use. However, since the large pool was too small to support the

users, the ORA-4031 errors began occurring. This was verified by viewing V$SGASTAT,

which showed almost no free memory left in the large pool.

After working with some highly skilled tuning experts, we determined our options

were to either reset the large pool to zero so the shared pool would be used

exclusively or to increase the large pool to handle the workload. At the same time,

we could decrease the shared pool, which was far too large. In the end this turned

out to be a “good” problem because it highlighted several suboptimal tuned init.ora

parameters that were fixed in addition to the immediate problem.

Now that you know how to approach tuning, you can take a look at the technical details.

Diagnostic Utilities: UTLBSTAT/UTLESTAT and
STATSPACK
If you do not understand what is happening inside the database, you have no chance to make it

better. There are several ways to look into a database such as with data dictionary views or

using GUI tools like OEM Performance Manager. However, one of the most complete and

time-tested methods for collecting information is running a series of scripts called UTLBSTAT

and UTLESTAT. Starting in Oracle 8i, these scripts are being phased out with a similar utility

called STATSPACK.

UTLBSTAT/UTLESTAT
UTLBSTAT and UTLESTAT (hereafter called B/ESTAT) are scripts that capture and report

statistics across an entire database for a defined period of time. Basically, you start the

database and run UTLBSTAT to start capturing statistics. Let the database run for a while dur-

ing the time you want to monitor. Then run UTLESTAT to stop the statistic-collecting process

and generate a report.

The report generated by B/ESTAT contains a wide ranging and detailed listing of what

happened inside the database. You can see detailed information regarding:

• Library cache activity

• Database statistics

• Events causing waits

• Latch statistics

• Rollback segment usage

• Dictionary cache statistics

• initSID.ora parameters

• I/O by tablespaces and data files

• Database version and when the scripts ran

This provides a wealth of information. Some of the information is not pertinent to the DBA

and detailed coverage of each section is outside the scope of this book. However, this has

historically been the method used when serious database tuning is required.

The best way to become familiar with B/ESTAT is to run it and then try to interpret the results.

The report it generates is lengthy and can be overwhelming at first. However, much of the

information captured in the report is the same as what is discussed throughout this chapter.

Also, some sections of the report are commented with descriptions and explain what to look

for. Therefore, run the report and then use this chapter to address each section.

Oracle DBA on Unix and Linux
296

When running B/ESTAT, consider these guidelines. First, run the report regularly and save the

output so you have a baseline of information. Running the report only during poor-performing

periods does not help you identify what has changed inside the database. You will get the most

accurate results if you run the report only during the specific times you want to monitor. Also,

let the database run a little while before running these scripts to allow for normal data to be

initially loaded into the database cache.

Also, if the database is shut down or crashes between BSTAT and ESTAT, disregard the report

because the statistics will be invalid.

Before you run the report you should alter the system to collect more detailed statistics

regarding time. Either set the parameter TIMED_STATISTICS to TRUE in the init.ora or you

can use ALTER SYSTEM to set the value. Theoretically, this change should incur a slight perfor-

mance hit, but I have never noticed any problems. Also, running the scripts will not generate

any additional performance overhead so there is no penalty for running them.

Start from the directory you want the report to be generated in when you run the scripts. The

output report is simply called report.txt. Once it has been generated, you should rename it

with a unique timestamp and save it for archive purposes.

Finally, you might want to change the default tablespace of the SYS user before and after you

run the scripts. The reason is that UTLBSTAT creates temporary tables to store the statistics.

These tables are dropped when UTLESTAT is executed. Some DBAs fear this can cause

fragmentation of their SYSTEM tablespace. However, other DBAs feel that this small amount

of fragmentation is negligible. I have run the scripts both in the SYSTEM tablespace and in the

TOOLS or USERS tablespace and have never experienced problems either way.

Use the following steps to run UTLBSTAT and UTLESTAT:

1. Start SQL*Plus and connect internal.

2. Set TIMED_STATISTICS to TRUE to get detailed statistics.

SQL> alter system set timed_statistics=true;

System altered.

3. Run the script utlbstat.sql to create the temporary tables to store the statistics.

SQL> @$ORACLE_HOME/rdbms/admin/utlbstat.sql

4. Let the database run normally so statistics can be generated.

5. After the period you want to monitor has ended, run utlestat.sql to drop the tempo-

rary tables and generate the report.

SQL> @$ORACLE_HOME/rdbms/admin/utlestat.sql

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
297

6. Set TIMED_STATISTICS back to FALSE.

SQL> alter system set timed_statistics=false;

System altered.

At this stage, the report.txt file is created and can be reviewed. Remember to change the

default tablespace back to SYSTEM if you altered it to run the scripts.

STATSPACK
Introduced in Oracle 8.1.6, STATSPACK is intended to provide similar functionality as

UTLBSTAT and UTLESTAT, but with several improved features. Specifically, STATSPACK

offers the following improvements:

• Reports are easier to read

• Resource-intensive SQL is identified

• Statistics are stored permanently in database tables

• Statistics can be captured with different levels of detail

Database statistics are captured by STATSPACK and are stored in database tables. Each time

you capture statistics, you create a snapshot. You can capture multiple snapshots of data; they

are saved indefinitely. For example, you can take a snapshot every three hours during a normal

day of production—each snapshot is given a unique identifier. At some time later, you can then

have STATSPACK create a report detailing the activity between snapshots X and Y. This allows

you to collect statistics, but you do not necessarily have to generate a report at that time. The

only restriction is that, like B/ESTAT, the report cannot span a database shutdown.

The reports generated by STATSPACK are also easier to read and understand. There is not as

much extraneous information, the formatting is better, and many ratios are calculated for you.

Overall, this is a much more user-friendly report.

STATSPACK does require a more involved setup and operation procedure, but it is not terribly

complex. The basic steps require you to install STATSPACK, gather statistics, and generate a

report. The details are outlined in the following sections.

Installation
The first step is to install STATSPACK:

1. Start SQL*Plus and connect internal. Then add 50M to the TOOLS tablespace.

SQL> alter database datafile

2 ‘/u04/oradata/rh1dev1/tools01.dbf’

3 resize 150M;

Database altered.

Oracle DBA on Unix and Linux
298

2. Run the installation script statscre.sql. This will create a user PERFSTAT, who owns the

tables used for storing the statistics. You will be prompted for both a default and tempo-

rary tablespace, so select TOOLS and TEMP. You will also be prompted for a tablespace

for STATSPACK objects, so select TOOLS.

SQL> @$ORACLE_HOME/rdbms/admin/statscre.sql

... Installing Required Packages

…

Specify PERFSTAT user’s default tablespace: TOOLS

…

Specify PERFSTAT user’s temporary tablespace: TEMP

…

Enter tablespace where STATSPACK objects will be created: TOOLS

In Oracle 9i the create script is renamed spcreate.sql. It is in the same location. Most

of the scripts are the same, but instead of having a stat prefix they have a sp prefix. For

example, statauto.sql is now spauto.sql.

3. The installation can take a couple of minutes to create the objects and about 30M from

the TOOLS tablespace. The default password for PERSTAT is PERFSTAT.

4. Check the file statspack.lis for errors. This file is located in the directory where you

ran the scripts. Assuming there are no errors, the installation is complete.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
299

Be Careful Mixing B/ESTAT and STATSPACK

You cannot run UTLBSTAT/UTLESTAT and STATSPACK as the same user. They share a

table called STATS$WAITSTAT, which will be overwritten by each utility. The solution

is to continue to run UTLBSTAT/UTLESTAT as SYS, but run STATSPACK as the user

PERFSTAT.

CAUTION

Gather Statistics
The next step is to gather statistics in the form of snapshots:

1. Like UTLBSTAT/UTLESTAT, it is advisable to set TIMED_STATISTICS to TRUE.

SQL> alter system set timed_statistics=true;

System altered.

2. Connect as the PERFSTAT user.

SQL> connect perfstat/perfstat

Connected.

3. Execute STATSPACK.SNAP to capture a snapshot. It will take about 30 seconds to run.

SQL> execute statspack.snap;

PL/SQL procedure successfully completed.

That is all there is to creating a snapshot. This process can easily be automated via cron or as a

DBMS_JOB using $ORACLE_HOME/rdbms/admin/statsauto.sql.

Generate a Report
Once you have captured two snapshots, you can generate a report. The report is created in the

directory where you start SQL*Plus.

1. Connect as the PERFSTAT user.

SQL> connect perfstat/perfstat

Connected.

2. Run the script statsrep.sql.

SQL> @$ORACLE_HOME/rdbms/admin/statsrep.sql

3. You will be prompted for a beginning snapshot ID. Select one of the snapshots available

as a starting point.

DB Id DB Name Inst Num Instance

----------- ---------- -------- ----------

3801419294 RH1DEV1 1 rh1dev1

Completed Snapshots

Instance DB Name SnapId Snap Started Snap Level

---------- ---------- ------ ---------------------- ----------

Comment

--

rh1dev1 RH1DEV1 1 27 Apr 2001 16:25:25 5

2 27 Apr 2001 16:31:27 5

3 27 Apr 2001 16:36:10 5

Enter beginning Snap Id: 1

Oracle DBA on Unix and Linux
300

4. Select an ending snapshot ID. Remember, the time between the snapshots cannot span a

database shutdown.

Enter ending Snap Id: 3

5. Name the output file. A default name is supplied or you can give it a more meaningful

name.

Enter name of output file [st_1_3] : statspk_sp1_3.txt

STATSPACK will quickly generate the report in your local directory. The report will contain

the following information:

• Database identification

• Snapshots used to create the report

• Buffer and block sizes

• Load information

• Calculated SGA ratios

• Wait events

• Most resource-intensive SQL statements

• Instance statistics

• I/O by tablespace

• Rollback segment usage

• Latch statistics

• Dictionary cache statistics

• Library cache activity

• Complete SGA composition

• initSID.ora parameters

The information in the reports generated by UTLBSTAT/UTLESTAT and STATSPACK is

comparable. Certainly for the DBA just beginning to understand database tuning, STATSPACK

reports will be easier to understand. For that reason I recommend using STATSPACK first, and

then fall back on UTLBSTAT/UTLESTAT if you cannot find what you need.

Tuning Memory Structures
Oracle’s tuning utilities provide you the capability to capture information about the database.

However, without accurate interpretation, that information is meaningless. This section looks at

what the numbers mean within the SGA. First, it discusses how these values are measured.

Then, it looks at the most common measurements of database performance.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
301

Ratios
A long-time measuring stick for DBAs has been the ratios of the memory pools inside the

database. The idea is that every time a block of data is not found in memory and Oracle has to

go to disk or a value has to be recalculated or parsed, the database is slowed. Therefore, DBAs

rationalize, database performance can be measured by how many times a block is found in

memory versus how many times it is not found. As a result, there are many formulas to

measure the performance in terms of hits and misses. Furthermore, each category has an

acceptable percentage that should be achieved.

Tuning a database solely on these types of ratios is dangerous. A database can meet or exceed

all the recommended values and still have lackluster performance. High percentages can be

deceptive depending on the type of application running. Just because you run a series of scripts

and you have good numbers, does not necessarily mean your database is highly tuned.

On the other hand, poor ratios are good indicators of problems. If you notice a ratio with a low

number, it can very well indicate a problem. The ratios are simply a quantitative means of mea-

suring performance categories.

One final note on ratios: they work on the assumption that the database has been running for a

while. Everything normally found in memory has to read into memory at least once. This takes

time. For this reason expect your ratios to be lower immediately after database startup than

after a few hours of normal use.

Database Buffer Cache
The database buffer cache contains each block of data required by a user’s operation. When an

operation requires a block of data, it looks here first. If a good copy is found, that copy is used.

Otherwise, Oracle has to go to a disk. Database buffer cache is sized by

DB_BLOCK_BUFFERS.

The value for database buffers when queried from V$SGA is derived by:

Database Buffers = DB_BLOCK_BUFFERS * DB_BLOCK_SIZE

The efficiency is measured as the cache hit ratio. This is the number of physical reads versus

how often a current or read-consistent image of a block is found in memory.

The value is derived by:

SQL> select 1 - (phy.value / (cur.value + con.value))

2 from v$sysstat cur, v$sysstat con, v$sysstat phy

3 where cur.name = ‘db block gets’

4 and con.name = ‘consistent gets’

5 and phy.name = ‘physical reads’;

Oracle DBA on Unix and Linux
302

1-(PHY.VALUE/(CUR.VALUE+CON.VALUE))

.973552222

The target value is 90% or higher for OLTP systems. In this case, it is 97%. If the value were

less than 90%, you would add DB_BLOCK_BUFFERS as long as there was sufficient mem-

ory on the machine and the previous increase in DB_BLOCK_BUFFERS had an impact. In

most databases the database buffer cache is the largest single pool. STATSPACK shows this as

buffer hit ratio.

Redo Log Buffer
The redo log buffer holds changed data until it can be written to the online redo log files. This

buffer is cleared frequently so it does not need to be very large. However, it does need to be

large enough so that server processes writing changes to it can find space quickly.

The redo log buffer is sized by LOG_BUFFER.

The performance is measured by the ratio of the number of redo log space requests to the num-

ber of redo entries. This represents how often a server process had to wait for space in the log

buffer before it could write. This should not happen more than once every 5000 times.

SQL> select (req.value*5000)/entries.value

2 from v$sysstat req, v$sysstat entries

3 where req.name = ‘redo log space requests’

4 and entries.name = ‘redo entries’;

(REQ.VALUE*5000)/ENTRIES.VALUE

0

STATSPACK shows this as the redo noWait ratio.

Library Cache
The library cache (sometimes called shared SQL area) stores each SQL statement issued and

PL/SQL blocks. In the event the same statement is issued, the copy in the cache is reused and

the costly process of reparsing is avoided.

This pool and the data dictionary cache are sized by the SHARED_POOL_SIZE parameter.

There are two common measures of performance regarding the shared pool:

• How often an object has to be reloaded into the cache once it has been loaded. This

should occur less than 1% of the time.

SQL> select sum(pins) Executions, sum(reloads)

2 Misses, sum(reloads)/sum(pins) Ratio

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
303

3 from v$librarycache;

EXECUTIONS MISSES RATIO

---------- ---------- ----------

53275 66 .001238855

• The hit ratio for the library cache. Conceptually, this is similar to the buffer cache. It

should be in the high 90s.

SQL> select namespace, gethitratio

2 from v$librarycache;

NAMESPACE GETHITRATIO

--------------- -----------

SQL AREA .974144487

TABLE/PROCEDURE .831081081

BODY .867924528

TRIGGER .935483871

INDEX 0

CLUSTER .976284585

OBJECT 1

PIPE 1

These values are prone to distortion. For example, using Oracle forms can inflate this value.

Increasing the value of the SHARED_POOL_SIZE parameter can help performance. However,

an even better solution is to force the developers to write reusable code. Have your developers

use bind variables in their SQL and enforce coding standards so the SQL can be reused more

frequently.

STATSPACK measures library cache performance with library hit ratio.

Data Dictionary Cache
The data dictionary cache stores definitions of data dictionary objects. This pool is tied to the

library cache in that both are contained within the shared pool. As a general rule, if the library

cache is performing well, the data dictionary cache will also be performing well. Most tuning

focus is on the library cache rather than on the data dictionary cache.

The target ratio of GETMISSES to GETS for the data dictionary cache should be less than

15%. However, this ratio can be distorted if the database has not been running very long.

SQL> select sum(getmisses)/sum(gets)

2 from v$rowcache;

SUM(GETMISSES)/SUM(GETS)

.080397678

Oracle DBA on Unix and Linux
304

Disk Sorts
Whenever possible, sorts should take place in memory rather than on disk. This is fairly easy

to obtain in OLTP environments, but it is more difficult when dealing with DSS or batch jobs.

The controlling parameter is SORT_AREA_SIZE, which is defined in bytes. Any sort requir-

ing more space than specified by SORT_AREA_SIZE is done on disk in the TEMPORARY

tablespace.

The target is to have not more than 5% of all sorts occur on disk.

SQL> select disk.value disk, mem.value memory,

2 (disk.value/mem.value) * 100 ratio

3 from v$sysstat mem, v$sysstat disk

4 where mem.name = ‘sorts (memory)’

5 and disk.name = ‘sorts (disk)’;

DISK MEMORY RATIO

---------- ---------- ----------

11 3541 .31064671

Keep in mind that increases in the SORT_AREA_SIZE will increase the amount of memory in

the PGA for dedicated server processes and in the shared pool when using MTS.

STATSPACK shows this ratio as its in-memory sort ratio.

This section covered the most commonly used indicators of performance. These values are not

necessarily proof that the database is running well, but they can be used to highlight trouble

areas.

Tuning Rollback Segments
Tuning rollback segments is done differently depending on whether you are supporting OLTP

or large batch jobs. The general guideline is to have more, smaller rollback segments for OLTP

users and fewer, larger rollback segments for large batch jobs. The following sections discuss

each.

Rollback Segments for OLTP
The key for OLTP is to make sure each user can grab a rollback segment without waiting when

they have a transaction. Because the typical transaction is not long, individual rollback

segments do not have to be huge. However, they do need to be plentiful.

For years, the guideline has been one rollback segment for every four active transactions. For

example, if you have 100 users at your peak time, create about 20 or 25 rollback segments.

Ideally you should spread these out across several data files to distribute the I/O.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
305

Once you identify the number of extents, you must come up with a number of minimum

extents that each segment is created with as defined by the create parameter MINEXTENTS.

You also need to determine how big each extent will be. Remember, rollback segments have

the same size INITIAL and NEXT extents and the PCTINCREASE is 0. The main idea here is

that each segment must be large enough so that a transaction will not likely need to wrap into

the next extent. Also, create enough extents to reduce the likelihood of a single transaction hav-

ing to extend the segment, a process called dynamic space allocation. This allocation is a per-

formance hit, so once you create a rollback segment, you do not want to see it grow.

To start, I usually create my rollback segments with MINEXTENTS = 20 and with a size of

500K, or 1M each. Some might argue that 1M is large for OLTP, but I consider disk space

cheap enough to justify not having to worry about wraps or extends.

Rollback Segments for Batch Jobs
Create fewer, larger rollback segments if you anticipate long running jobs. The rationale is that

you don’t have to worry as much about a large number of transactions trying to grab rollback

segments simultaneously. Your main concern is that once a transaction does grab a segment, it

has enough room to grow without blowing out the tablespace. Preferably, each extent is large

enough to avoid wrapping in the next segment.

I normally use between 1M-5M for my INITIAL and NEXT extent size. Create enough extents

to reduce the likelihood of an extend, but avoiding these are sometimes not possible. I usually

create all my rollback segments (OLTP and batch) with MAXEXTENTS set to UNLIMITED,

but this is especially important with batch jobs. Remember to set the OPTIMAL parameter so

the rollback segment will shrink after a long run, but don’t set this so low as to incur a pattern

of continuous growth and shrinkage.

Make sure there is a large amount of free space in your tablespace so a rollback segment can

grow as needed without running out of room. The other option is to turn AUTOEXTEND on in

your data files, but that can get dangerous if a runaway transaction occurs and starts consuming

excessive disk space. Remember, running out of space in rollback segments while executing

batch jobs is especially bad because not only does a large transaction fail, but there is also a

large amount of rollback to be done.

Most shops run with a large number of OLTP sized rollback segments, but also create a few

big segments reserved for batch jobs. Generally, you have no way of telling which rollback

segment a transaction will use. Therefore if you want a specific transaction to use one of your

large rollback segments, you must explicitly assign it to that segment.

You can assign a transaction to a specific rollback segment by using either of the following

methods:

Oracle DBA on Unix and Linux
306

SET TRANSACTION USE ROLLBACK SEGMENT rollback_segment_name;

or

EXECUTE dbms_transaction.use_rollback_segment(‘rollback_segment_name’);

Your transaction must start with either of these commands and the assignment only lasts until

the end of the transaction. Be aware that if you are using loops to insert and commit data, you

need to specify the rollback segment after each commit.

Monitoring Rollback Segment Usage
There are two main areas you want to watch for regarding rollback segments: contention and

size.

Contention is more common in OLTP environments. It occurs when several transactions are

fighting for access to a rollback segment. Specifically, each rollback segment has a header

containing a transaction table. This transaction table contains information about what is being

written to the rollback segment. There are several extents in a rollback segment, but there is

only one header. Therefore, this is a source of possible contention. If you see signs of

contention here, you probably should create additional rollback segments.

Use the following query to check for contention. The popular guideline is if WAITS/GETS is

over 5%, you need to increase the number of rollback segments. However, I usually look to

increase the number if I find WAITS much larger than 0.

SQL> select a.name, b.extents, b.rssize,

2 b.xacts “Active X-actions”, b.waits, b.gets,

3 optsize, status

4 from v$rollname a, v$rollstat b

5 where a.usn = b.usn

6 /

NAME EXTENTS RSSIZE Active X-actions WAITS GETS OPTSIZE STATUS

-------- -------- ---------- ---------------- ------ ----- ---------- --------

SYSTEM 7 581632 0 0 389 ONLINE

RBS0 20 20963328 0 0 494 20971520 ONLINE

RBS1 20 20963328 0 0 413 20971520 ONLINE

RBS2 20 20963328 0 0 377 20971520 ONLINE

…

RBS23 20 20963328 0 0 364 20971520 ONLINE

RBS24 20 20963328 0 0 338 20971520 ONLINE

26 rows selected.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
307

The next areas to monitor when dealing with rollback segments are wraps and extends.

The existence of wraps can mean your extents are too small. Extends above the number of

MINTEXTENTS can indicate too small and/or too few extents. Remember, every time Oracle

has to allocate an extent, a new space is allocated on disk, and the database takes a

performance hit. Also try to avoid excessive shrinks, which is a sign of too few extents and too

low of an OPTIMAL value. The following query shows the number of wraps, extents, and

other diagnostic information.

SQL> select name, extents, writes, optsize,

2 hwmsize, shrinks, wraps, extends, curext

3 from v$rollname name, v$rollstat stat

4 where name.usn = stat.usn

5 /

NAME EXTENTS WRITES OPTSIZE HWMSIZE SHRINKS WRAPS EXTENDS CUREXT

------ -------- ------- --------- --------- ------- ------ -------- -------

SYSTEM 7 10820 581632 0 0 0 5

RBS0 20 49278 20971520 20963328 0 0 0 16

RBS1 20 55230 20971520 20963328 0 0 0 13

RBS2 20 24218 20971520 20963328 0 0 0 15

RBS23 20 28672 20971520 20963328 0 0 0 9

RBS24 20 29810 20971520 20963328 0 0 0 10

26 rows selected.

This section explained rollback segment tuning. Make sure that there are enough rollback

segments for every transaction that needs one. Also be sure that, once they are acquired, these

segments do not extend excessively.

Avoiding File Contention
Historically, spreading high-contention files across multiple filesystems has been a common

way to tune a database. This process can improve performance if an I/O bottleneck exists.

Ideally, competing files such as data and indexes will be identified and separated before the

database is created. You learned about this principle and which files to separate in Chapter 3.

Once a database has been created, you should check to see which files are being frequently

written to and read. Because you can determine which objects reside in a file, you can also

identify which tables are being used heavily. If several high-contention data files reside on the

same filesystem, it’s a good idea to move one of the files to a less active location. Moving and

renaming data files was discussed in the previous chapter.

There are several ways to identify areas of high I/O activity. You can either look from inside

Oracle or you can use operating system utilities. I recommend a mix of both. Monitoring of

disk I/O is covered in Chapter 13, “Unix Server Monitoring.”

Oracle DBA on Unix and Linux
308

From inside Oracle, you cannot directly monitor contention at the disk level, but you can see

which files (and their corresponding filesystems) are being heavily accessed. Oracle provides

this information in both UTLBSTAT/UTLESTAT and STATSPACK. You can also run the fol-

lowing query to identify which files are being accessed:

SQL> select tablespace_name tablespace, file_name,

2 PHYRDS, PHYWRTS, PHYBLKRD, PHYBLKWRT

3 from v$filestat, dba_data_files

4 where file_id = file#

5 order by PHYRDS, PHYWRTS desc

6 /

TABLESPACE FILE_NAME PHYRDS PHYWRTS PHYBLKRD PHYBLKWRT

------------ ----------------------------------- ------- ------- --------- ---------

-

TOOLS /u04/oradata/rh1dev1/tools01.dbf 3 1 3 1

USERS /u04/oradata/rh1dev1/users01.dbf 3 1 3 1

EMPLOYEE_IDX /u02/oradata/rh1dev1/employee_idx01.dbf 3 1 3 1

DRSYS /u10/oradata/rh1dev1/drsys01.dbf 3 1 3 1

EMPLOYEE_IDX /u08/oradata/rh1dev1/employee_idx02.dbf 3 1 3 1

USERS /u04/oradata/rh1dev1/users02.dbf 3 1 3 1

RBS /u05/oradata/rh1dev1/rollback01.rbs 66 103 66 103

TEMP /u03/oradata/rh1dev1/temp01.dbf 127 172 174 172

SYSTEM /u04/oradata/rh1dev1/system01.dbf 1189 119 2023 120

9 rows selected.

As you can see, right now the SYSTEM tablespace—specifically the file /u04/oradata/

rh1dev1/system01.dbf—is most active. In a production system, this would not be the case,

certainly after the database has been running for a while. As it stands now, no particular

filesystem has a majority of the most active files. Therefore, there is no reason to suspect con-

tention at this time.

Wait Events
Oracle stores a good deal of information about its performance in views. V$SYSSTAT is a

good example of general instance information. Other views, however, can provide information

regarding potential bottlenecks within the instance. Specifically, you can look at the events

occurring inside the database.

Oracle keeps information about how often and how long certain database events occur. These

are not errors or problems; they are just normal events inside the database. Many of the types

of events are cryptic to the average DBA, but some are useful. By finding the most frequent or

longest running events, you can identify areas to be tuned.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
309

To get a listing of the types of events, query V$EVENT_NAME:

SQL> select name from v$event_name

2 order by name;

NAME

BFILE check if exists

BFILE check if open

BFILE closure

…

wakeup time manager

write complete waits

writes stopped by instance recovery or database suspension

212 rows selected.

Oracle stores the totals of each event in three useful views: V$SYSTEM_EVENT, V$SES-

SION_EVENT, and V$SESSION_WAIT.

V$SYSTEM_EVENT
This view stores the totals of each event in the entire database since the database started. Use

this view to identify the longest running and most frequent events. The results can be sorted by

the number of waits for an event or the total amount of time waited for an event.

SQL> select * from v$system_event

2 order by time_waited desc;

EVENT TOTAL_WAITS TOTAL_TIMEOUTS TIME_WAITED AVERAGE_WAIT

----------------------- ----------- -------------- ----------- ------------

rdbms ipc message 46402 45522 2389696 51.4998491

pmon timer 14260 14258 317436 22.2605891

virtual circuit status 1421 1421 313344 220.5095

dispatcher timer 710 710 313344 441.329577

V$SESSION_EVENT
Waits for individual sessions can also be identified in a similar manner. By identifying the

session by its SID as defined by V$SESSION, you can see who is waiting on what.

SQL> desc v$session_event

Name Null? Type

--- -------- -------------

SID NUMBER

EVENT VARCHAR2(64)

TOTAL_WAITS NUMBER

Oracle DBA on Unix and Linux
310

TOTAL_TIMEOUTS NUMBER

TIME_WAITED NUMBER

AVERAGE_WAIT NUMBER

MAX_WAIT NUMBER

SQL> select event, total_waits, time_waited

2 from v$session_event

3 where sid = 11 order by time_waited desc;

EVENT TOTAL_WAITS TIME_WAITED

--- ----------- -----------

control file sequential read 1 0

file open 3 0

SQL*Net message to client 347 0

SQL*Net more data to client 1 0

SQL*Net message from client 346 0

SQL*Net break/reset to client 8 0

V$SESSION_WAIT
The final view relating to wait events shows the cumulative statistics—it shows all the current

sessions that are waiting. This is useful for determining which events currently are causing

users to wait.

SQL> select event, wait_time, seconds_in_wait, state

2 from v$session_wait;

EVENT WAIT_TIME SECONDS_IN_WAIT STATE

-------------------------- ---------- --------------- -----------

pmon timer 0 1322890954 WAITING

rdbms ipc message 0 3702286836 WAITING

rdbms ipc message 0 502511022 WAITING

rdbms ipc message 0 1301416113 WAITING

rdbms ipc message 0 4294966 WAITING

rdbms ipc message 0 4294966 WAITING

rdbms ipc message 0 0 WAITING

smon timer 0 223371349 WAITING

SQL*Net message to client -2 0 WAITED UNKNOWN TIME

Wait events can provide valuable clues as to what is happening inside the database, and these

views help you see and identify these wait events. Wait events are also identified when using

UTLBSTAT/UTLESTAT and STATSPACK.

Locally Managed Tablespaces
Introduced in Oracle 8i, locally managed tablespaces offer a new way to manage space within

tablespaces. Traditionally, when using normal tablespaces, storage information regarding space

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
311

allocation is stored in the data dictionary in the SYSTEM tablespace. When an object in a nor-

mal tablespace needs a new extent, Oracle looks inside the SYSTEM tablespace to determine

where in the data file to create the next extent. Using this method, space allocation is managed

from within the data dictionary. This can become a problem when dynamic space allocation

occurs frequently. The result can be contention on the data dictionary inside the SYSTEM

tablespace.

Locally managed tablespaces attempt to alleviate this data dictionary contention by managing

space from within the tablespace’s data file header. A bitmap containing the extent layout of

the data file resides in the file header of the individual tablespace. When an object needs to

extend, Oracle uses this bitmap inside the local tablespace to manage the space allocation

rather than going to the data dictionary in the SYSTEM tablespace. Therefore, the space is

locally managed inside the individual tablespace.

This new feature forces tablespaces to be defined based upon their space management tech-

nique: dictionary or local. Once a tablespace is created, there is no way to change its type.

Unless a tablespace is explicitly created as being locally managed, it will default to the normal

data dictionary management.

Within locally managed tablespaces, you have two options regarding how extents are allocated.

Each extent can be either given a uniform size (UNIFORM) or you can allow Oracle to size

the extent for you (AUTOALLOCATE). Once you have created the tablespace, Oracle will

handle any object’s INITIAL and NEXT sizes for you. If you have specified UNIFORM, every

object extent will be that value regardless of the INITIAL or NEXT defined for it. Under the

AUTOALLOCATE plan, the value defined as INITIAL will be used for the object, but all

extent sizes after that will be determined by Oracle.

Where and why would you want to use locally managed tablespaces? The first place might

be with tablespaces prone to frequent space allocation. This will reduce contention on the

SYSTEM tablespace. Also, because data dictionary tables are not being updated, rollback

generation is reduced.

Another place I have seen locally managed tablespaces used effectively is with data and index

tablespaces where the DBAs don’t want to spend time carefully managing extent sizes. You

first create several tablespaces with small, medium, and large UNIFORM extent sizes. Then

each table is created in the tablespace corresponding to its expected size (small to large).

Figure 11.1 shows the tablespace EMPLOYEES being created, which will be managed locally.

Every object created in that tablespace will have an extent size of 500K. Even if you create an

object with an INITIAL of 2M, it will be broken into four 500K extents, as you can see in

Figure 11.1.

Oracle DBA on Unix and Linux
312

FIGURE 11.1
Creating a Locally Managed Tablespace.

Locally managed tablespaces are an interesting feature. For those willing to sacrifice some

control over the storage characteristics of their objects, they might be worth considering.

Tuning Tables
You can include certain characteristics in your tables to improve performance. Not all the

options for creating tables yield large performance gains nor are they all applicable in all situa-

tions. This section discusses some features that you might find useful for your environment. It

also examines the issue of chained and migrated rows inside tables. Because fragmentation and

basic storage parameters have been discussed in Chapter 6, “Daily Activities,” they aren’t dis-

cussed here.

There are two particularly interesting subsets of tables that are sometimes used to improve per-

formance and manageability. They are Index Organized Tables (IOTs) and partitioned tables.

Index Organized Tables (IOTs)
When creating normal tables, it is standard to have a column that uniquely identifies each row

with an index created based on that column. As you probably guessed, this is the primary key.

The table is stored in the data tablespace and the index on that column is stored in a corre-

sponding index tablespace. Depending on the query issued, Oracle can use that index to

quickly find any row in the table. Overall, this normally works well.

Index Organized Tables (IOTs) attempt to improve on this structure by combining the primary

key index and the first column of the table. Rather than storing the data like a normal table,

they store it as a B*Tree index. Basically, the index is stored as normal, but it has data stored

with it. Each row starts with the index, but is followed by its row of data.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
313

By combining the index and data, you save space. There is no separate data tablespace and

index tablespace.

Access is faster because fewer reads are necessary to get to the data. Access via an index on a

normal table requires an initial read on the index in the index segment to find the ROWID of

the target row in the data segment. Then a second read is required to go to the ROWID in the

data segment to get the actual data to satisfy the query. IOTs are faster because the second sep-

arate read on the data segment is not necessary. Once Oracle has found the index for the data,

it has also found the data.

So you might wonder why IOTs aren’t used all the time if they are so good. The reason is that

their index-based structure does not handle multiple inserts, updates, and deletes too well. In

addition, rows that grow too long are moved to a separate data segment called an overflow

area. Also, prior to Oracle 8i, the only index you could have on the IOT was the one compos-

ing the first column. There is no ROWID for IOTs. Therefore, if your code references

ROWIDs, IOTs cannot be used.

As a result of these restrictions, IOTs are not used very often. However, they do have a place in

some situations. Specifically, if you have static lookup tables, they can be worthwhile. For

example, a STATE table using postal abbreviations is a theoretical candidate for being IOT.

You create an IOT as follows:

SQL> create table state

2 (code char(2), name varchar2(30),

3 constraint state_pk primary key (code))

4 organization index

5 tablespace employees

6 pctthreshold 20

7 overflow tablespace users;

Table created.

The table creation is similar to a normal table, except for two IOT-specific parameters. ORGA-

NIZATION INDEX specifies that the table will be an IOT. PCTTHRESHOLD 20 specifies that

any rows taking over 20% of the block will have the non-index columns stored in the OVER-

FLOW tablespace. Specifically, columns exceeding that 20% will be stored separately. This is

to keep rows from getting too long within the IOT segment.

Partitioned Tables
When a row is inserted into a standard table, there is no relationship between the values in that

row and where the row is physically stored. Oracle will place that row wherever it can find

available space in a block. This is normally not a concern to the user because Oracle knows

Oracle DBA on Unix and Linux
314

where the row is stored and makes access to the row transparent. However, when working with

extremely large tables, it is often desirable to store the data in different tablespaces based on

the characteristics of each row. This is the idea behind partitioning.

Partitioning allows you to replace one giant data segment with multiple smaller data segments

in different tablespaces. This allows an I/O to be spread out more evenly. Also, by using paral-

lel processing, Oracle can devote multiple processes to support a query or DML statement

across the multiple partitions. This starts getting into data warehousing and supporting very

large databases, which are outside the scope of this book. However, this section does discuss

the basics of partitioning.

Data can be partitioned using one of two methods in Oracle 8i. Hash partitioning uses an

Oracle algorithm to determine where to place each row to balance data evenly across all the

partitions. Range partitioning allows you to specify a range of acceptable values for each parti-

tion. Each new row is evaluated to see which range it falls in and is then inserted into the

appropriate partition.

Oracle 9i introduces list partitioning, which is similar to range partitioning. However, rather

than specifying a range of values for each partition, you identify a list of specific values to

be met. For example, instead of range partitioning based on orders placed on Monday to

Wednesday and Thursday to Sunday, you could list partition for orders placed on Mon, Wed,

and Fri and then Tue, Thur, Sat, and Sun. You can achieve similar results using either range or

list partitioning, but this new feature makes the process easier to implement.

Indexes on the table data can also be partitioned. If you are going to partition your data, it

makes sense to partition the indexes in the same way. One word of caution: it is easy to invali-

date your indexes when using partitioning, so check their status regularly.

I have used range partitioning before to control the data in a new orders table. We knew it was

going to get huge and did not want all the data stored in one big tablespace. I created twelve

partitions corresponding to each month of the year. Each row was then inserted into the parti-

tion for the month it was created.

The idea was that once we got one year of data, we would create another set of twelve parti-

tions for the next year. Oracle allows you to manage data at the partition level. Over time we

would be able to export older, individual partitions and then drop those partitions. This would

result in keeping the ORDER table at a manageable size because the data over one year old

would be exported and dropped at the partition level. If any of the data was ever needed, it

could still be retrieved via the export for that partition. However, we would not have incurred

the overhead of storing old data that was likely never needed again. Plus, because the data was

in smaller partitions, queries accessing it needed to go through a single small partition rather

than a high multimillion-row segment.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
315

If you are going to be dealing with very large tables, I recommend taking a serious look at par-

titioning. Partitioning is considered a separate option, so you need to purchase a license specif-

ically to use it.

Row Migration and Chaining
Oracle accesses table data fastest when it can go directly to a block and read the row needed

for the query. For example, a data block defined by DB_BLOCK_SIZE as 8K will easily hold

a row of data that is 3K long. The block will have not all 8192 bytes available to store data

because a little is reserved for the block header. Also, whatever amount is defined by PCT-

FREE will be reserved to store an increase in the row caused by an update statement.

If Oracle decides it needs to return the entire row for a query, it reads all 3K of the row located

in this one block. This is normal and is what you want the database to do. However, what if

that row was originally inserted as 10K or had been updated to be 12K? Where would it be

stored? This opens up the issue of row migration and row chaining.

When a row of data exceeds the size of available space in a block, Oracle needs to either move

it to a different block with more room or split the row into several pieces. Either of these repre-

sents a performance hit. When Oracle needs to read the row again, it will look in the location

where the row was originally created. If that row has been moved (migrated), Oracle will see

this, but will need to go to the new location of the row to get the data. This extra step hurts per-

formance. If Oracle starts reading a row and finds that it has been split into two pieces, Oracle

might need to jump to another block to get the needed data. Having to go to the block where

the rest of the row resides also hurts performance.

Row migration occurs when an existing row within a block is updated and thus exceeds the

amount of space remaining in that block. Basically, it can’t fit. Oracle has a choice of either

breaking that row into two pieces or moving the entire row to a new block. When Oracle

chooses to move the row to a new block, it is called row migration. It will leave a pointer in

the old block. This pointer gives the address of the row’s new location. Future queries will still

be able to find the row, although this requires an extra read.

Row chaining occurs when either a row is created that cannot fit in any block or when a preex-

isting row is updated to exceed the size any block. Oracle will be forced to break the row into

two pieces. It will store what it can in the first block and then store the rest in another block.

When a read occurs, the data in the first block will be read. If the column is found in the first

block, the read stops. However, if the column is at the end of the row, Oracle will jump to the

chained block to continue the read, of course with a performance hit.

Oracle will always try to migrate (move) a row before it will split (chain) a row. How can you

prevent this? If the row is larger than the block size, there is nothing you can do to prevent

chaining. However, row migration can be prevented or reduced by carefully setting the PCT-

Oracle DBA on Unix and Linux
316

FREE parameter. This reserves a percentage of each block to be used when a row grows

because of updates. The default value is 10%. Increasing this reserves more space in case a

row grows, but if the row never grows it is wasted space. You need to understand the DML

characteristics of your table to set this value accurately. If you know there will be a high level

of update activity, set this value higher. If you know data will never be updated, you can lower

the value to pack the data in tighter.

Detecting row chaining and migration is fairly simple. In fact, it can be set up in a cron job and

the results checked regularly. To check for this condition ANALYZE your table and then view

CHAIN_CNT from DBA_TABLES. Use the most complete level of ANAYZE you can, but remember

that it locks your table during this time. The column CHAIN_CNT will identify the number of

chained and migrated rows. Another column that is useful is AVG_ROW_LEN; you can use it to

see how long most rows are. If you notice they are smaller than your block size you probably

have row migration. If they are larger than your block size, you are dealing with chained rows.

Fixing row chaining and migration is tougher than detecting it. The only way to fix chained

rows is to increase your block size. Unfortunately, that can be be done only by rebuilding the

database with a higher DB_BLOCK_SIZE value. If you detect row migration, increase your PCT-

FREE value for the table. However, this adjustment will not fix rows that are already migrated.

These migrated rows need to be identified, copied to another table, deleted, and then reinserted

into original table. That process is outlined here:

1. Create the table CHAINED_ROWS to hold the ROWIDs for the chained rows. Use the script

$ORACLE_HOME/rdbms/admin/utlchain.sql.

SQL> @$ORACLE_HOME/rdbms/admin/utlchain.sql

Table created.

2. Analyze the table with the migrated/chained rows. Use the LIST CHAINED ROWS

option to load the ROWIDs into the CHAINED_ROWS table you just created.

SQL> analyze table employee

2 list chained rows into chained_rows;

Table analyzed.

3. Create a temporary table holding the chained/migrated rows as identified in the

CHAINED_ROWS table.

SQL> create table employee_chained

2 as select * from employee

3 where rowid in

4 (select head_rowid from chained_rows);

Table created.

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
317

4. Delete the chained/migrated rows from the main table. Before you do this, you might

want to disable foreign key constraints and triggers depending on your application and

business rules.

SQL> delete from employee

2 where rowid in

3 (select head_rowid from chained_rows);

10 rows deleted.

5. Reinsert the rows back into the main table from the temporary table. If they are too big,

they will be chained because they simply cannot fit in any one block. If they were only

migrated rows, they will be inserted as normal rows and will be fine. After this, remem-

ber to re-enable any triggers or constraints you disabled in the previous step.

SQL> insert into employee

2 select * from employee_chained;

10 rows created.

6. Drop the temporary table. Be sure not to drop the real one by mistake!

SQL> drop table employee_chained;

Table dropped.

7. Reanalyze your tables and confirm that the migrated rows have been fixed.

SQL> analyze table employee compute statistics;

Table analyzed.

SQL> select chain_cnt from user_tables

2 where table_name = ‘EMPLOYEE’;

CHAIN_CNT

0

That is all there is to repairing migrated rows. Remember, you would have to recreate the data-

base with a larger block size to fix rows that are truly chained. You should monitor for chained

and migrated rows periodically. It is usually okay to wait until there several are migrated rows

before fixing them, as shown previously, but do not let the numbers reach the hundreds or

thousands before taking action.

Indexes
A good indexing scheme is critical to application performance. If indexes are not created or

aren’t used by the application, performance will suffer.

Oracle DBA on Unix and Linux
318

Oracle automatically uses indexes to enforce uniqueness of primary keys and columns impacted

by unique constraints. These also improve performance. When creating a primary key or

unique constraint, Oracle will automatically create a unique index on that column. You can

control the tablespace of the index by manually creating a unique index on the primary key or

unique column and then creating the constraint. Oracle will use the index if it already exists.

Remember to always index foreign key columns. Failure to do so will cause unnecessary lock-

ing during DML. This was covered in detail in Chapter 10, “When Things Go Wrong.”

The standard guideline is to create an index when fewer than 15% of the table will be returned

by a query. If you think an index might improve a query, test it by using Oracle utilities such

as TKPROF or AutoTrace.

However, before indexing all the columns on your tables, remember that indexes take up disk

space and impact DML performance because Oracle must maintain them. There is also no

guarantee that Oracle will use them once they are created. The point is to index columns that

will be used by Oracle; do not create indexes blindly.

Verify that the SQL code being executed is actually using the indexes on the table. Getting an

EXPLAIN plan for a statement will confirm or deny this. Indexes will not be used if a NOT

clause or function is used on the indexed column. It is common for indexes to remain unused

because the developer did not know his code was preventing their use.

Oracle 8i introduced a new type of index that can reduce the problem of unused indexes. You

can now create an index on a column with a function applied to it. For example, if your SQL

code always uses a WHERE clause with UPPER(LOC), any normal index on the LOC column

would not used because of the UPPER function. Now, you can create a function-based index

on UPPER(LOC), which will be used by Oracle. To create a function-based index, you need

the system privilege QUERY REWRITE. Once you have that privilege, you create the index as

follows:

SQL> create index dept_fk2

2 on dept(upper(loc));

Index created.

Now, any query using UPPER(LOC) will make use of the function based on the index

DEPT_FK2.

Indexes need to be maintained just like any other object. They require space and their data files

need to have sufficient disk space. One key issue with B*Tree indexes is that they must be

rebuilt on a periodic basis. Over time, as the index grows, the levels of index get deeper, which

degrades performance for that index. You should analyze your tables regularly and then check

Oracle Server Tuning

CHAPTER 11

11

O
R

A
C

LE
S

E
R

V
E
R

T
U

N
IN

G
319

the column BLEVEL (branch level) from USER_INDEXES to see how many levels exist. If

this value is over three, you probably should rebuild the index as follows:

SQL> alter index test_table_f1 rebuild;

Index altered.

Normally you have to be careful when creating or rebuilding indexes because they can lock

your table and prevent DML from occurring. However, Oracle 8i allows you to create or

rebuild indexes with the ONLINE feature. This option prevents the restrictive locking so you

can use DML against the table. This feature comes at the expense of disk space during the

rebuild. Also, because Oracle uses the existing index as the basis for the rebuild, it is some-

times better to drop and recreate the index if it is badly degraded.

Indexing is important and it needs to be done intelligently to compliment the application code.

For this reason, you should work closely with the developers to have a solid indexing strategy.

Summary
Performance tuning is considered by many DBAs to be “fun” work because it involves prob-

lem solving and is challenging. If you are successful, the users and managers are happy

because the system runs better for them. Indeed, if you are good at it, a career in consulting

might be a possibility. The demand for good tuning specialists is high.

The reason for the demand is that database tuning can be tricky. You’ve seen in this chapter

that there is more to it than just changing parameters and hoping for the best. To be successful,

you need an multifaceted approach to tuning. You need to know which areas are performing

poorly, how to identify the technical causes within Oracle, and then how to implement a suc-

cessful fix. Finally, you need to know when to stop tuning one area and move to the next.

This chapter covered some of the most common areas to tune within the database. It showed

that you can use tools such as UTLBSTAT/UTLESTAT and STATSPACK to obtain valuable

statistics regarding performance. The chapter also provided queries you can use to diagnose

problems with your pools inside the SGA and rollback segments. Oracle stores information

regarding events that have caused it to wait—the chapter looked at ways to view this informa-

tion. Finally, you read about some ways to improve the performance of your tablespaces,

tables, and indexes.

Oracle DBA on Unix and Linux
320

CHAPTER

12
Unix Operation System

Architecture

ESSENTIALS

• The Unix kernel manages processes, memory,

files and I/O.

• Programs really execute as one or more par-

ent and child processes managed by the ker-

nel.

• Unix uses virtual memory which is a combina-

tion of real memory and swap space on disk.

• The kernel manages the various types of

filesystems and any files they contain.

• There are several different architectures deal-

ing with how multiple CPUs, memory, and

disk are shared within and between machines

and these can offer some benefits.

Imperative Concepts
Understanding Unix architecture will help you better understand how and why Oracle runs as

it does. The Unix kernel is key to the operating system as it manages processes, memory, files,

and I/O.

For the same reasons you learned about Oracle’s architecture, it is necessary to understand

Unix architecture. When you understand why and how things happen at the OS level, the entire

Oracle/Unix system becomes easier to understand and troubleshoot. Rather than looking at

error messages as though they are in a foreign language, you can actually make sense of them

because you understand the anatomy of the Unix operating system. Particularly when you’re

troubleshooting or tuning, a solid understanding of the operating system is very helpful.

This chapter looks at how Unix works. It examines the kernel, its main subsystems, and how

they interact. The focus is theoretical in this chapter and more hands-on in the next chapter. An

overview of startup/shutdown procedures and hardware architectures is also provided. Each fla-

vor of Unix/Linux is different, so the chapter tries to be as general as possible when describing

topics. However, preference is given to Solaris when describing architecture.

This chapter will not make you a Systems Administrator. However, it does give you an idea of

what the OS is trying to do. Once the architecture and processes are explained in this chapter,

you will be able to make the most of Chapter 13, “Unix Server Monitoring.”

Understanding the Kernel
The core of the Unix operating system is its kernel. This memory-resident program structure

manipulates machine hardware and software resources to meet the user’s requests. In a sense, it

is the “brains” of the operating system. It does not, however, interface directly to service the

user’s request; the kernel operates through managing processes and hardware assets to do the

user’s work. The kernel is shielded from the users by several layers of abstraction. Figure 12.1

has long been used to show how Unix is layered.

As you can see, there are several layers operating above the kernel. At the outermost applica-

tion layer, programs exist that are started by users. For instance, the Oracle database runs at the

application level. This is the level users operate in. Beneath the application level is the shell,

which is the user’s interface into the operating system. At this level, commands from the user

application enter the system to request a Unix service (such as to remove a file). The next layer

is the process layer. At this layer, Unix processes fulfill the requests of the shell layer. Finally,

beneath the process layer is the kernel. The kernel acts as an interface between the physical

hardware and the processes requesting services.

Oracle DBA on Unix and Linux
322

FIGURE 12.1
Layered Unix Architecture.

The kernel manages four subsystems consisting of processes, memory, files, and I/O. The

combination of these subsystems composes a running Unix system, so this chapter examines

each one in detail.s

Unix Processes
Any ”program” really executes as one or more processes. Within the context of a program, a

process executes to perform a task. For example, the LGWR background process writes from

the online redo log buffer to the online redo log files. That task is part of the Oracle “program.”

The same principle holds true whether the program is Oracle, a simple shell script, or a Unix

command such as grep.

At any given time, there are usually hundreds of concurrent processes running on the system.

Some are spawned by the users; others are supporting the system, such as those owned by root.

Each process is trying to perform some unit of work, but “work” can only be accomplished

when the process is actively running on a processor/CPU. Unless a process is actually running

on a processor, it is accomplishing nothing. Additionally, only one process can be running per

processor at any specific point in time.

How does anything ever get done under these constraints, especially when there are hundreds

of processes demanding time on the CPU? Unix can support this by via multitasking, time-

slicing, and using the scheduler. Basically, Unix forces each process to share time on the

machine’s CPU(s). One process will run on the CPU for a little bit, and then it will relinquish

the CPU to the next process in line. A scheduling process allocates time on a CPU to each

process based on its priority. This time-slicing technique is how Unix achieves multitasking.

Multitasking is the process whereby multiple processes can exist on a system at the same time.

New programs don’t have to wait until running programs end before they can start. A user can

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

323

Kernel

Process

Shell

Application

have multiple processes, corresponding to different programs, running simultaneously. Because

Unix is a multi-user system, more than one user can have different processes running simulta-

neously. However, it appears to each user that he or she is the only person on the machine

because the processes seem to run as soon as the user presses Enter. The fact that there are

hundreds of processes by different users waiting in line to be executed is invisible to the user.

With all the processes demanding time on the processor, Unix must have a method for control-

ling access to this resource. Unix does this by classifying each process and then assigning it a

priority. Then a scheduling process allocates slices of processor time to each process. In this

way, every process gets CPU time, but more critical processes have priority over non-critical

processes.

Unix processes have three general classifications. How much CPU time the process gets is

based on these classifications. Within each classification is a number range further ordering the

priority of each process. The higher the number, the higher the priority. The three types of

processes are Time Share (TS), System (SYS), and Real Time (RT), described here:

• Time Share is the default classification. It is also the lowest level of priority. TS holds the

priority range from 0 to 59. Processes in this range include your typical user processes,

such as using Oracle. Within the TS range is a subset for Inter-Active (IA) processes. IA

processes are used by GUI windows systems.

• System processes are those supporting the operating system, such as init. These

processes command the range from 60 to 99. Any process of this priority class will

receive CPU time before any time-share process.

• Real Time processes are allocated the highest priority on the system. They hold the range

100 to 159. These are common on systems that have critical applications requiring a hold

on the CPU in order to complete processing, even at the expense of the system processes.

Information about each process is stored in a kernel array called the process table. Process

information used by the kernel is stored in /proc and is always in memory. Given that each

process has a classification and wants CPU time, there still must be some controlling authority

that determines who gets the CPU and for how long. This controller is the scheduler process.

The scheduler process, sched, allocates a slice of CPU time to each process. sched is a

daemon process. Daemons are operating system background processes that perform some sort

of maintenance task. After the executing process has been run for its set amount of time, it

goes to sleep and another process gets the CPU. This switching of processes is called a context

switch. If a lower priority process is running and a higher priority process needs the CPU,

sched will preempt the running of the less important process. This is how Unix implements

preemptive multitasking.

Oracle DBA on Unix and Linux
324

As you can see, processes alternate between being run and waiting to be run. In reality, there

are even more fine-grained classifications than these. A process can fall into the following

states:

• Idle A process needs to be scheduled in order to run.

• Run The process is in the run queue.

• Sleep The process is runable, but it is waiting on a system resource, such as I/O.

• Stop A process has been stopped for some reason.

• Zombie The process has been terminated; its resources have been released, and it is

waiting to return its exit code to the parent process.

Now that you have looked at how processes are executed, you can examine their structure. A

process exists to fulfill tasks determined by program code. In a sense, a user process is an indi-

vidual entity whose sole purpose is to fulfill its program instructions. It does this by allocating

memory, requesting services from the kernel such as I/O, and when necessary, spawning chil-

dren processes to perform subtasks.

A process is a running representation of a program. This structure exists within the virtual

memory of the machine. Although the program can be written in a high-level language, the

process of compiling and linking the program ultimately breaks it down into machine-exe-

cutable code. Just as the program is written to hold variables, these variables are contained in

memory areas of the process. Also, a copy of the executable code is maintained within the

process. Figure 12.2 shows a representation of a process’s structure.

As you can see, the process has several areas. Each area has the following characteristics:

• User Area Information about the process used by the kernel.

• Text Sharable machine language code.

• Initialized Data Variables with initialized values at program runtime.

• BSS (Block Started by Symbol) Variables with undefined values at program runtime.

• Stack Local variables within the process. It also contains parameters passed into it and

the results of function calls.

Each of these areas is private to the individual process except for the text area. This is an

important exception. Because the text area represents read-only executable code, multiple

processes can and do share one copy of this area. Rather than having multiple redundant copies

stored for each process (taking up valuable memory), all the processes running the same pro-

gram can share the same copy.

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

325

FIGURE 12.2
Process Structure.

For a process to be created, it must be spawned by another process (called a parent). This new

process can, in turn, spawn children processes of itself to do work. This chain starts all the way

with the init Process ID (PID) 1. Each successive child process has a unique PID, but the

hierarchy can be traced by examining the child Parent Process ID (PPID). These are identified

via the ps command.

The system called fork() is used to spawn a child process. The child is an exact copy of the

parent. After fork() creates the child process, a new program instruction is laid on top of it

with the exec() process. This is how a child process gets its instructions. Once a child process

is spawned and has its instructions, the parent process has two options: pause until the child is

done working or continue its work in parallel with the child. The course of action is deter-

mined by the specific program, but, by default, the parent process waits for the child process to

execute and then resumes working.

All this information is interesting at a high level, but how does it apply to an individual

system? How do you tell what your processes are doing? Use the Unix command ps -efc.

Oracle DBA on Unix and Linux
326

User Area

Runtime process information

Used by the kernel

Text

Executable program code

May be shared between processes

Initialized Data

Initialized program variables

BSS - Block Started by Symbol

Uninitialized program variables

Stack

Local variables

Parameters passed by procedures

Values returned from functions

Previously, you saw this command used to check on Oracle processes, but here, it’s used to

view non-Oracle processes:

[root@mikehat /root]# ps -efc

UID PID PPID CLS PRI STIME TTY TIME CMD

root 1 0 - 39 21:59 ? 00:00:05 init [3]

root 2 1 - 39 21:59 ? 00:00:00 [kflushd]

root 3 1 - 39 21:59 ? 00:00:00 [kupdate]

root 4 1 - 39 21:59 ? 00:00:00 [kpiod]

root 5 1 - 39 21:59 ? 00:00:00 [kswapd]

The expanded form of ps -efc provides the following columns:

• UID User ID. This is the user ID owning the process. Keep in mind that a user does

not have to be logged into have processes running.

• PID Process ID. This is the process’ unique identifying number. If you want to stop a

process, you use the kill PID# command, where PID# is the process ID number.

• PPID Parent Process ID. Every process except sched has a parent process. This

number represents the process that spawned the child process.

• CLS Classification of the process. If this is listed it is one of TS, IA, SYS, or RT.

• PRI Priority number of the process within the classification. Remember, the higher the

value, the higher the priority.

• STIME The time the process was started. If the process is over a day old, the date

rather than time appears here.

• TTY The location of the process, if known.

• TIME The total amount of CPU time in minutes accumulated for this process. This is

not real time per se, but it is an indication of how much work a process has been doing.

• CMD Command issued. This is the name of the process being executed. This can be a

recognizable background process such as LGWR or it can be a command such as grep.

As you can see, there are many processes running. Some by root are always running—includ-

ing sched, init, and pageout. Others can be owned by users, such as Oracle. As a DBA, you

should become familiar with processes normally running and those that appear out of place.

For example, if you notice that processes associated with nighttime backups are still running in

the afternoon, you know there is a problem of some sort. Also, if you have reports of poor

system performance and then see a process with an unusually large amount of accumulated

CPU time, you have possibly found the culprit.

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

327

How Unix Manages Memory
Understanding how memory is managed within Unix is very important to being a DBA,

particularly when you’re performance tuning and troubleshooting. Knowing how the kernel

will react when you create an SGA of several hundred megabytes is extremely relevant, espe-

cially when a novice SA insists it is Oracle making the machine swap. In situations like these,

your knowledge of how Unix works is the best protection when people start complaining about

performance.

Unix works on the principle of virtual memory, which is the concept that you can operate with

a memory area composed of real memory and disk acting as one. The benefit is that active

processes can run on the real memory and that inactive processes can be paged or swapped out

to disk (to the swap area). This results in more “virtual” memory than what actually exists in

terms of actual RAM.

Virtual Memory = Real Memory + Disk (Swap Area)

For example, assume you have 2G of real memory. Following the guideline of having two or

three times the swap area as you have real memory, you need 4G of swap space. This would

give you 6G of virtual memory.

Virtual memory also means more than just real memory plus disk space. Rather than assigning

a process to a location of real memory, processes are assigned a virtual memory address.

Address translation tables map the virtual addresses of each process to locations of real mem-

ory. This is transparent to each process.

This is relevant because for a process to be executed, it must exist in real memory. Therefore,

before any work can be done, there must be enough room in real memory for the active pages

of the process and they must be moved into that real memory area. By itself, this seems like a

simple concept, but once again you need to realize that real memory is a finite resource and

Oracle DBA on Unix and Linux
328

Windows NT and Threads

Oracle on Unix works using processes as described previously. However, that is not the

case with other operating systems. Windows NT uses multiple threads rather than

processes to run Oracle. Threads are created to perform a process’ subtasks. Rather

than spawning a new child process, a thread will be created instead. One process can

have multiple threads executing simultaneously. With NT, one process to support

Oracle is started. From there multiple threads are created to support DBWR, LGWR,

and so on.

NOTE

that the demand for memory usually exceeds the supply. For these reasons, real memory needs

to be managed. In this case, the system daemon page manages the memory allocation.

Virtual memory is divided into units called pages. Each page is typically 4K or 8K. On Solaris,

use the command pagesize to find the size on your system.

It is the job of the daemon page to determine which pages reside in real memory and make

sure that there is enough room in memory for active processes to run. page does this by

moving inactive pages and entire processes from real memory to the swap area on-disk. When

individual pages of a process are moved from real memory to the swap area this is called

paging. When entire processes are moved to the swap area this is called swapping.

Paging and swapping are Unix’s way of responding to a deficiency in real memory. Either one

represents a performance hit. However, some degree of paging can occur on most systems with

relatively little negative impact. One the other hand, swapping is a negative sign that indicates

a serious lack of real memory.

Paging and swapping do not occur randomly; there is a method to when Unix pages and when

it swaps. Unix will always try to page first in order to free enough memory for the system to

run. Depending on the kernel settings, page will attempt to maintain a certain amount of free

space by moving non-active pages in memory to the swap area. It will identify pages that have

not been used recently and will label them as such. Later, if they are still inactive, they will be

freed to be used by other processes. This is actually done by the pageout daemon and thus, is

called a page-out. Later when that page is needed back in real memory, it is read back in.

Hopefully, this level of paging will create enough room in real memory. However, if it doesn’t

work, swapping will occur. Unix will begin to swap out inactive processes in an attempt to free

memory. This is often referred to as leisure swapping. If this fails to free enough memory,

Unix begins “desperation” swapping where active processes are swapped out.

At this stage, things become serious because the machine will spend more time trying to man-

age swapping than it will letting processes execute. This is called thrashing. At this point, no

productive work can be accomplished because the system is too busy swapping processes in

and out of memory.

Figure 12.3 identifies the kernel parameters that determine at which level paging and swapping

begin. These thresholds are based on the amount of real memory available and are typically

determined by the SA. However, as the DBA, you should understand them.

These parameters determine at what level paging and swapping begin based on the amount for

real memory available. Lotsfree indicates the level at which no paging occurs. If the amount

of free memory drops to the desfree, leisure swapping begins. If this doesn’t free enough

memory and the minfree threshold is breached, desperation swapping will occur. In Solaris,

these parameters are set in /etc/system.

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

329

FIGURE 12.3
Escalation from Paging to Swapping.

There isn’t much, as a DBA, you can do when the server reaches the point of desperation

swapping because it simply needs more real memory. You can shut down or resize your SGA,

but this example assumes the server was set up for Oracle in the first place, so stopping Oracle

isn’t an option. You can increase the amount of swap space, but this is really a Band-Aid solu-

tion if you are facing swapping.

Because paging and swapping represent disk I/O, you can try to have the SA spread the swap

partitions across different disks and make sure they are not contending with your database

files. You can also reevaluate which processes are running on the box and the size of the SGA

to reduce memory usage. However, in the end, the best solution is to get more memory.

That covers the basics of memory management. There are, however, very important ramifica-

tions involving shared memory and the SGA, which are covered in the next chapter. For now,

just understand that real memory is needed for processes to execute and how Unix tries to use

paging and swapping to provide that memory.

Filesystems and Files
Understanding how filesystems and files are managed and how they can be corrupted is useful

information. It can help you troubleshoot your database when problems occur.

Oracle DBA on Unix and Linux
330

Amount of free Memory

No paging

Paging

Leisure swapping

Deseperation swapping

Thrashing

lotsfree

desfree

minfree

Filesystems
Working on the assumption you know that Unix directories have a hierarchical structure,

filesystems are a little easier to understand. For example, in Figure 12.4, you can see that there

is a root directory (/) with subdirectories for var, usr, home, u01, u02, and u03.

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

331

/

var

opt

oracle

adm

root

usr

bin local

u01

app

oracle

product oradata

home

zachw timw travisw emilyw

u02

app

oracle

oradata

u03

app

oracle

oradata

FIGURE 12.4
Hierarchical Directory Structure.

A filesystem corresponds to a directory with subdirectories and files located on a disk, called a

device. In the DOS world this is conceptually similar to a partition. This device can be part of

a one disk, an entire disk, or several disks combined to form one logical unit. The term device

comes in because that is how Unix sees it. The Unix kernel will pass calls to it (I/O requests)

and receive responses from it. For example, /u01 represents a device that happens to be a disk.

Alternatively, devices can represent objects other than disks such as floppies or tape drives and

CD-ROMs. For example, the devices /mnt/floppy or /mnt/cdrom correspond to floppy and

CD-ROM drives.

Once a device has been created it is not necessarily available. To make it available it must be

mounted so it is accessible by the kernel. Use the mount command to mount a filesystem. For

example, the following command would mount /u01:

[root@mikehat /root]# mount /u01

The filesystem is mounted at its mount point. In this case the device name is /dev/hda6 and

the mount point is /u01. When the operating system starts, it attempts to mount the root (/)

filesystem and read from it. After some processing it will attempt to read the configuration file

/etc/fstab for most Unix and Linux systems and /etc/vfstab for Solaris. This is a text file

containing the names and types of each of the remaining filesystems. Figure 12.5 is an

example of a Linux /etc/fstab.

Oracle DBA on Unix and Linux
332

FIGURE 12.5
The Linux /etc/fstab File

Unix will automatically try to mount each filesystem. It will check each filesystem with the

fsck utility for corruption. You can see the success or failure of this process on the console in

the startup messages. After this, view /var/adm/messages or use dmesg | more to view these

messages.

Once a filesystem is mounted it becomes accessible. A df -k or bdf will identify the device,

its name, and the amount of space on it. Within the filesystem, directories can be created

containing files. As files are added, the amount of free space for that particular filesystem

decreases. Most people have multiple filesystems to provide a separation of duties, distribute

I/O, and to contain growth. As you saw in Figures 12.4 and 12.5, the root / filesystem is

mandatory, but you can also have /var, /usr, /home, and /u01 to /u03. For example, if you

didn’t separate / and /u02, all the disk access to the database files would conflict with root and

there would be a greater chance that the root filesystem would become full (which is bad).

There are several types of filesystems, each with a different use, as follows:

• ufs (the Unix ilesystem) This is the normal filesystem and is how most directories and

files are stored. ufs is a disk(s) on your local machine. Root, /usr, and /var are

examples of typical ufs filesystems.

• ext2 (the second extended filesystem_ The default Linux filesystem. Just as ufs is the

Unix default, ext2 is the Linux default.

• nfs (the network filesystem) In DOS terms, this is like mapping a network drive to

your local PC. Conceptually nfs is similar to ufs, but it is physically located on a differ-

ent machine. Once your server is started, Unix will mount this filesystem to your server.

For example, the /home filesystem containing the home directories of all the users is a

popular filesystem to nfs mount. This way, whenever users log into any machine, they

are placed in the same directory with the same files. This eases the burden of maintain-

ing multiple /home directories for each user and makes life easier for the user as well.

Ramifications of this are possibly increased network traffic (because you are connecting

to two servers) and increased impact when /home goes down because multiple servers

are affected.

• vxfs (Veritas filesystem)—This is a vendor-specific type and it is very popular. What

makes this different is it is a journaled filesystem. When writes are made to the disk,

they are written to the Unix buffer cache and a redo log. The use of the redo log allows

for faster filesystem recovery when the server crashes. Writes stored in the redo log are

applied to the disk in a manner conceptually similar to that of an Oracle database.

• iso9660 (compact disk filesystem)—This is the filesystem type for CD-ROMs.

• swap—This is where processes are swapped out to. Ideally, there should be several swap

partitions to distribute I/O and they should be separate from other high-contention disks.

• proc—This is a memory-resident filesystems containing information about each process

running on the system. The kernel uses this filesystem to manage processes and the

system.

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

333

Oracle’s New Filesystem

Oracle has introduced its own filesystem, called iFS. The iFS (Internet filesystem)

allows you to store your directories and files inside the database. You map a drive to

the iFS location and access your files as though they are normally stored on disk.

However, they are really stored within the database, which provides some benefits.

All your data has the same level of protection as with any data in an Oracle database.

When indexing documents, search access is also fast.

NOTE

Just as you can mount a filesystem to make it available, you can also unmount it with the com-

mand umount. Maintenance on filesystems is possible only when the filesystem is unmounted.

If a process is accessing that filesystem, you will get a “device busy” message. In cases like

this, you have to find and kill the process using the filesystem. Then you can unmount the

filesystem.

Filesystems that unexpectedly become unmounted or otherwise inaccessible often initially

appear as “hanging” problems. If you use a command that attempts to access an inaccessible

filesystem, the command hangs rather than returns an error. For example, if you issue the

ls /u01 command to access a filesystem and the command hangs, you should first make sure

the filesystem is mounted properly. If you notice that users log in and their login sessions hang,

check whether the /home filesystem is an nfs mount. If the login process tries to place the users

in a home directory that cannot be accessed, they will hang.

I remember one occurrence in which we had several filesystems stored on a SAN (Storage

Array Network). (Basically a cabinet of disks attached to the server via a cable.) Somehow that

cable became loose (someone probably tripped over it) and from that point on anyone trying to

access those filesystems with an ls or cd or anything else became stuck. Unix was sending

requests to access that filesystem and decided to wait (hang) patiently for a response that, it

turns out, would never come. The fix was simple, but the problem did impact a large number of

users.

Files
Now that you know where files exist (in filesystems), you can examine the files themselves.

Obviously Unix stores files in filesystems. Structural information about each filesystem is

stored in the superblock. The superblock contains size information and information about the

physical disk. This is critical information and is redundantly stored in several locations on disk.

Each individual file is broken into two components: the inode and the file itself. An individual

inode exists for each file in the filesystem. The inode stores ownership and storage information

about a specific file. Oddly enough, it stores everything about a file except for the filename and

file contents. An inode for a file contains the following information:

• Owner (user ID)

• Group (group ID)

• Level of permissions

• Size

• Last access time

• Last modification time

• Block locations

The name of the file is stored at the directory level. The block locations point to where the file

data is stored. Depending on the size of the file, single, double, or triple indexed block pointers

indicate the location of the file data blocks.

Earlier, you read how the fsck utility is used to check filesystems for corruption. This utility

checks superblocks and each inode. It makes sure each inode is valid and that it points to the

correct file. Discrepancies create corruption and can be caused by bad/failed writes. fsck will

attempt to fix these errors so the filesystem can be mounted.

Oracle DBA on Unix and Linux
334

I/O Subsystem

The I/O subsystem simply describes how Unix reads and writes to disk. A user process will

request a read or a write. The kernel will then take this request and forward it to the I/O

subsystem. From here, things become more complicated. Unix doesn’t immediately read or

write directly to disk every time a read/write request occurs. Instead, it caches the writes and

reads in a Unix buffer cache. This way the I/O can occur when it is optimal. Also during this

time, the user process might be waiting for the result of the operation. If synchronous I/O is

occurring, the user process will wait patiently until the kernel process returns a success or fail-

ure response. If asynchronous I/O is enabled, the user process will not wait for the result and

will continue working. Ultimately, the kernel will receive an indication as to the result of the

I/O and it will forward this to the user process.

I/O subsystems are difficult to describe past a generic level because so much depends on the

specific vendor of your disk drives and disk storage arrays. Especially when dealing with large

storage arrays and RAID, the differences between a Linux workstation containing one disk and

a large HP or Sun box is great. Logical Volume Managers further make this a vendor-specific

issue. The choice between “cooked” filesystems and raw disks also needs to be considered. All

these factors impact performance and can be tuned and monitored.

For these reasons, detailed disk information and RAID are covered in the next chapter.

Startup/Shutdown Processes in Unix
Normally, you don’t start, shut down, or reboot Unix servers, but I have seen cases where it is

necessary (normally because the SA is absent). Regardless, you should understand how the

system boots, as is can aid you when troubleshooting. Understanding this process is a require-

ment if you plan on implementing startup/shutdown scripts, as outlined in Chapter 9, “Backup

and Recovery.”

The following steps occur when the Unix server starts up:

1. Firmware in the machine scans the server to determine what hardware exists.

2. The boot device, typically on-disk, is located.

3. The kernel is read into memory.

4. Server is scanned again and hardware is checked to see whether it is usable.

5. The init process is started and /etc/inittab is read. The init process is what spawns

all the other processes.

6. More processes and daemons are started by init.

7. Filesystems are checked and mounted.

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

335

8. Run control scripts are executed. These start such services as SendMail, NFS, and

Oracle, if it is configured.

9. Server will open to the default run level.

While this is happening, diagnostic messages are being written to the console and to

/var/adm/messages. If you miss any of these, use dmesg | more. There is more to the startup

process than this and it varies between platforms, but from a DBA perspective, these are the

core steps. What is of particular importance to the DBA is the run level of the system and the

run control scripts.

Just as a database has different levels of startup, so does a Unix/Linux server. These are listed

in the /etc/inittab along with the scripts needed to reach each level.

Run Level Description

0 Shutdown or halted state. The server is physically shut down.

1 or S Single user mode. This is typically reserved for maintenance.

2 Multi-user for non-networked systems.

3 Multi-user with mode with file sharing and network connections.

Typically the default level as identified in /etc/inittab.

4 User-defined run level. Typically it is unused.

5 Firmware state. The machine can be physically powered off. Used for

maintenance.

6 Reboot state. The machine goes to run level 0 and then restarts to the

default run level.

How does Unix know when to start or stop specific services? Each run level has a series of

shell scripts associated with it. The master script controlling each run level is called from

/etc/inittab. The individual scripts for each run level are contained in subdirectories

/etc/rc#.d where # represents the run level. These scripts determine which processes start or

stop as the server moves through them. For example, run level 3 has certain scripts in the direc-

tory /etc/rc3.d that need to be executed, as you can see in Figure 12.6.

Each of these files is a shell script. Scripts starting with K are executed to kill the processes for

this run level. Those beginning with S are executed to start processes. Within the K or S type,

the scripts are executed in numeric order. For example, S10network is executed before

S25netfs. When a run level is reached the K scripts are executed first to kill certain processes,

and then the S scripts are executed to start the appropriate processes.

Unix/Linux does not jump directly to a run level on startup. For example, if the machine was

going to run level 3, it would first start with the scripts in rc0.d and then proceed through

rc1.d, rc2.d, and finally end with rc3.d.

Oracle DBA on Unix and Linux
336

FIGURE 12.6
The /etc/rc3.d Directory.

It is important to shut down the system in an orderly manner. Just like with Oracle, Unix has

processes to kill, services to stop, and disk writes to complete. If you do not allow Unix to go

through these process and, instead, simply turn off the power button, you are chancing

problems when the server restarts. Always try to use the appropriate shutdown command to

bring your Unix/Linux machine down.

Understanding the Hardware Architecture
Hardware architecture is something best addressed before a system is built, but often you come

into a preexisting environment and must work with whatever is there. However, you still need

to understand the architecture of the machine, as well as its applicable characteristics. This

section discusses at a high level the three most common architectures found today. It also

defines two newer and less common architectures.

The most common machine architectures a DBA will encounter today are uniprocessors,

Symmetric Multiprocessors (SMPs), and clusters. Each differs primarily in the number of

CPUs and how memory and disk is shared. It is the distribution of these hardware assets that

this section focuses on.

Uniprocessor Machines
A uniprocessor machine is simply a box with one CPU. It can be anything from a SPARC

workstation running a RISC (Reduced Instruction Set Computing) chip to an Intel-based box

running Linux. The defining characteristic is that it has only one processor.

Uniprocessor machines, especially those running Linux, are very common. Most PCs meet this

classification. They are so common because they are the least expensive and easiest to manage.

This comes at a price in terms of performance and scalability. No matter how you analyze it,

there is still only one CPU available to process work requests. This makes everything a serial

process and eliminates the possibility of taking advantage of Oracle’s advances in parallel

processing. Although Unix is good at using time-slicing to provide the illusion that multiple

users/programs are executing simultaneously, they are still only being executed one at a time.

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

337

Because they have only one processor, these machines are incapable of supporting resource-

intensive systems. However, for small testing, training, or development systems, uniprocessor

machines can be successfully deployed.

Symmetrical Multiprocessor Machines
An SMP machine is a server with multiple symmetrical processors running simultaneously on

the same physical machine. Although a uniprocessor workstation has only one CPU, an SMP

server can have four, six, or eight processors (all at the same speed). Aside from the fact there

are multiple processors, an SMP box is conceptually similar to a uniprocessor in that the same

memory and disks are accessed on an equal basis. There is no memory or disk exclusively

reserved for any particular processor. In this respect it is a shared-everything architecture.

Because there are multiple processors running simultaneously, these machines can take advan-

tage of Oracle’s parallel processing. For example, using Parallel DML, you can have four

processes dedicated to executing one statement rather than just one in a serial manner. Or you

can have several users/jobs running in a truly simultaneous manner. This becomes a require-

ment when you have a large user population trying to access data simultaneously. Don’t forget

that not only must Oracle and its users be supported, all the normal operating system processes

must also be supported.

SMP machines are by far the most common type of production-class machine. These can range

from fairly small machines, such as Sun E450s, to mammoth Sun E10000 or HP Superdome

servers. Organizations willing to spend the money on SMP machines usually will also have a

dedicated SA to manage them. Often there will also be a few uniprocessor machines around,

typically for testing or development. Monitoring CPU usage is discussed in the next chapter,

but for now you should know that if you are working an SMP machine you should try to take

advantage of the multiple processors.

Clusters
Clusters can be most easily described as two or more machines (typically SMPs) tied together

and sharing a common set of disks. Figure 12.7 shows the basic architecture of a Sun cluster.

In this case, you have two SMP machines, each with their own processors, memory, and inter-

nal disk drives. What makes this a cluster is that the two machines are tied together and they

also share a common disk array. Each SMP machine (aka node) has normal control over what’s

on its internal drives, but they share access to the shared disk array. Communication between

the nodes occurs on the high-speed interconnect joining the two (or more) servers.

Oracle DBA on Unix and Linux
338

FIGURE 12.7
Sun Cluster

In terms of Oracle, you can put a physical database on the shared drive and have two instances

(one on each machine) accessing it simultaneously. This configuration is called Oracle Parallel

Server (OPS). Locking is handled by a Distributed Lock Manager (DLM), which manages

locks between the two machines as each instance accesses the shared database. When running,

both nodes access the database simultaneously. For example, you can have one node running

batch jobs and the other supporting OLTP users. If one node fails, the database instance on the

other is still accessible. This makes for a highly available system.

Clusters are common in environments where high availability is a must. However, they are

expensive and complex. It takes a highly skilled SA to successfully manage a cluster. Also,

Oracle Parallel Server requires an extra license charge, which drives the price up even further.

Finally, managing the database and application is more difficult as well. However, if high

uptime is truly needed, clusters and OPS are a viable solution.

Unix Operation System Architecture

CHAPTER 12

12

U
N

IX
O

P
E

R
A

T
IO

N

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E

339

Sun E5000 SMP Server

•Multiple Processors

•Memory

Dedicated Disk Drives

Sun E5000 SMP Server

•Multiple Processors

•Memory

Dedicated Disk Drives

Interconnect between

machines

Access to shared

disks

Access to shared

disks

SPARC Storage Array (SSA)

•Shared Disk Array

Shared Disk

Shared Disk

Shared Disk

Shared Disk

Shared Disk

Shared Disk

Shared Disk

Shared Disk

MPPs and NUMAs
Massively Parallel Processors (MPPs) and NonUniform Memory Access (NUMAs) are more

complex architectures. MPP systems can be described as a collection of networked uniproces-

sor nodes with their individual memory and disks. Each node is composed of its private

processor, memory, and disk. This is called a shared-nothing configuration. NUMA systems

are similar in that they are composed of multiple processors, but NUMA systems share

memory and disks, and operate with one operating system.

This section provided an introduction to the different hardware architectures you might

encounter. Once you have identified what type of system you are on, by all means investigate it

further. Particularly when working with clusters, you (and the SA) should understand how

Oracle is implemented.

Summary
This chapter covered the basics of Unix architecture. It looked at the kernel and the four basic

subsystems it manages: processes, memory, files, and I/O. Programs are executed as processes.

Memory is a valuable resource and is combined with disk to form virtual memory. If too little

memory is available paging will occur and if the problem persists swapping might occur. Unix

uses filesystems to manage directories and files. I/O is how Unix reads and writes to disk and

is covered in greater detail in the next chapter.

The chapter also covered how Unix starts up and shuts down. Just like the Oracle database,

there are different levels of startup and shutdown, which you should understand. Finally, the

chapter introduced the three most common hardware architectures you will encounter:

uniprocessors, SMPs, and clusters. Each has different characteristics in terms of how hardware

resources (CPU, memory, and disk) are managed, which in turn influences how Oracle runs.

Oracle DBA on Unix and Linux
340

CHAPTER

13
Unix Server Monitoring

ESSENTIALS

• The capability to monitor the Unix/Linux

server is an important DBA skill.

• Oracle uses shared memory for the SGA and

sometimes this, as well as semaphores, need

to be cleared after a database crash.

• Key areas on the server to monitor are:

memory, disk, CPU, and network.

• There are many tools that can be used to

monitor performance and most differ slightly

depending on your platform.

• Because each system is different and technol-

ogy changes, there is not any one set of

defined numbers that you can use to measure

performance across all systems. This is where

you need to understand your system and then

apply tuning rules of thumb.

Oracle DBA on Unix and Linux
342

Server monitoring is an important skill for an Oracle DBA to have. The database and the server

are inherently tied together. What happens on the server has a definite impact on the database.

It is also true that what happens in the database impacts the server. Therefore the performance

of the machine is the DBA’s business.

As a DBA, you don’t need all the skills of an SA, but you do need to understand the funda-

mentals, which were discussed in the previous chapter. This chapter looks at the four main

areas to watch: memory, disk, CPU I/O, and network. By learning to monitor each of these

subsystems, you will be able to identify what is impacting server performance. You will see

how the server reacts to the demands placed on it by the database. By tying this information

into what you learned in Chapter 11, “Oracle Server Tuning,” you will be able to tune the sys-

tem as a whole.

This chapter also explains in greater detail how Oracle and Unix handle shared memory and

disk I/O. Also, throughout the chapter, there are multiple examples of situations I’ve seen so

you can put the technical information into the context of the “real world.”

Need for Monitoring the Server
Monitoring the activity and performance of the server is traditionally an SA’s job. This makes

sense because the server is the SA’s responsibility and theoretically this person understands

Unix/Linux and hardware better than the DBA. For these valid reasons, the SA should be mon-

itoring the server. However, there are reasons why the DBA also needs to monitor the server.

Most of the time when performance on a database server is poor, the first person people look

for is the DBA. This is unfair in a sense that not all problems are caused by the database, but

people will still come to the DBA first because it is a database server. The DBA needs to look

at both the server and the database to identify where the problem is. For example, the DBA

might be told “I entered a query and it’s just sitting there.” This might be a locking problem.

Or, there might be a load on the server that it’s taking a while for queries to be executed. The

truth is, it often takes a look at both the database and the server to diagnose problems. If you

can look at both areas, you can solve such problems faster.

The database and server are inherently tied to each other. Activity on the database impacts the

server and vice versa. It takes a special skill set to examine both areas. If, for example, you

notice the run queue on the server is high, you can hopefully trace it back to a specific data-

base process. In cases where Unix memory is short, you might need to reexamine the size of

the Oracle SGAs. In many cases it is easier to address these issues than it is to train the SA to

have database skills needed to do so.

Overview of Monitoring the Server
A Unix-savvy DBA is usually in the best position to tune the system (server, database, applica-

tion) as a whole. This is because the DBA can interpret Unix statistics in terms of database or

application activity. By being able to put all the pieces together, you will be able to solve prob-

lems quickly and tune the system.

Tuning strategy is covered in Chapter 11, so I won’t rehash it here. However, it is important to

note that you should monitor the server even when there aren’t any problems. This is how you

get a baseline for what is “normal.” Throughout this chapter, I provide general guidelines and

thresholds, but it is important to remember some of these baselines are system-specific.

Numbers that I consider alarming might be okay on your particular system. This is where test-

ing and understanding the characteristics of your particular system is important.

As you read your server statistics, try to tie them back to activity in the database. For example,

if you notice a certain disk is getting a high level of I/O activity, cross check the V$FILESTAT

file to identify which tablespace and data file is being used. As another example, if you notice

one user process has accumulated a high amount of CPU time, investigate what it is doing. Use

the combination of ps -ef and V$SESSION to identify the Oracle username, SID, and serial

number of the Unix process. From there, you can put a name and “face” on the process that is

hogging your CPU.

When monitoring the Unix server from a DBA’s perspective there are four main areas to look

at: memory, disk I/O, CPU, and network. The following sections discuss the tools needed in

each of these areas. This chapter also provides expanded coverage of shared memory and disk

I/O as it pertains to Oracle.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

343

Cross Training

Keep in mind that many good DBAs were originally SAs and vice versa. As a DBA, you

should train your SA in the basics of Oracle architecture: SGA, instance, file types, and

so on. This way, the SA knows what issues you face and what the processes running

on the box are. The SA should also train the DBA. The SA should show the DBA how

backups are done, what other processes are running on the box, and how to monitor

the server. This is especially true in smaller shops.

NOTE

Monitoring Memory Issues
The previous chapter covered the basics of memory: virtual memory, processes, paging, and

swapping. Here, you will learn how Oracle and Unix use shared memory, how to clean up allo-

cated memory from an aborted instance, and how to lock it into real memory. It is important to

understand how Oracle works with memory, which is why this section provides more detail. At

the end of this section, you’ll learn about a few commands you can use to check memory

usage.

Shared Memory and Semaphores
The SGA is a shared memory segment. What does this mean? First of all look at what the SGA

really is—it contains the caches of data, such as the shared pool and data dictionary cache, as

well as buffer areas such as the redo log buffer and database block buffers. In a sense, the SGA

is the database loaded into memory. It contains all the background processes and server

processes that access the data in the SGA.

The last sentence is key in that many database processes access the SGA. This means that the

SGA is shared by all the Oracle processes; hence it is shared memory. When an Oracle server

or background processes starts, it attaches to the shared memory of its instance, which is the

SGA. This means that any background or server process can read or write to the SGA; there-

fore it must be shared.

Think about it in another way. Does it seem conceivable that you can have 100 users, each

with his/her own private SGA of 300M? Obviously this exceeds the memory limits on a Unix

or Linux machine. For this reason alone, shared memory is necessary, but there are other rea-

sons for it as well. By attaching to a shared memory area such as the SGA, any process can

read or write to it. This is how server processes work within the SGA and background

processes such as LGWR and DBWR read and write from their respective caches. Oracle also

has the dedicated process called PMON, which cleans up after terminated user processes.

Shared memory is not a concept limited only to Oracle; other applications can use their own

shared memory segments. During Oracle’s installation process, you read about configuring

shared memory in files such as /etc/system for Solaris and Linux with

/usr/src/linux/include/asm/shmparam.h and /usr/src/linux/include/linux/sem.h to

match the Installation and Configuration Guide (ICG). The following key values are examples

from a Sun box I worked on; however, you should get your values from the Oracle ICG and

customize them for your environment.

Shared Memory
set shmsys:shminfo_shmmax=805306368

SHMMAX is the maximum allowable size (in bytes) of an individual shared memory segment.

Ideally, this should be larger than any single SGA on your box, so each SGA will have its own

Oracle DBA on Unix and Linux
344

single contiguous memory segment. Otherwise, it will be broken into several smaller segments,

which is not as good.

set shmsys:shminfo_shmmin=200

SHMMIN is the boundary for the smallest allowable size (in bytes) for an individual shared

memory segment.

set shmsys:shminfo_shmmni=200

SHMMNI is the total maximum number of shared memory segments on the box at any given

time.

set shmsys:shminfo_shmseg=200

SHMSEG is the total maximum number of shared memory segments of any one individual

process.

Semaphores
set semsys:seminfo_semmni=4096

SEMMNI is the maximum number of semaphore sets on the system.

set semsys:seminfo_semmsl=500

SEMMSL is the maximum number of semaphore identifiers for any one individual process/

semaphore set. This number needs to be greater than the PROCESSES parameter in the

init.ora. Remember that PROCESSES is set to the number of Oracle background processes

plus the maximum number of dedicated user processes on your database. Most DBAs set this

value to at least 10 over their PROCESSES number.

set semsys:seminfo_semmns=4096

SEMMNS is the maximum number of system semaphore identifiers allowable at any one time.

This value should exceed the sum of init.ora PROCESSES parameters of all your simultane-

ously running databases. It should exceed this value because other processes on the box might

need semaphores and Oracle needs additional semaphores during instance startup.

set semsys:seminfo_semopm=100

SEMOPM is the maximum number of operations per semop call.

set semsys:seminfo_semvmx=32767

SEMVMX is the maximum value of a semaphore.

Notice how some of these values seem a little high? I tend to use inflated values on purpose

because once I set these for a box, I don’t want to have to deal with them again. These values

are only limits; they do not force memory to be allocated unless it is needed. This means there

is no real penalty in using higher values for parameters such as SHMMAX or SHMMNI. Just as long

as your machine can support the minimum values, you should be okay.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

345

What you want to avoid is a case where your database hits an upper limit such as SHMMAX,

SEMMSL, or SEMMNS. To fix these problems, you have to modify /etc/system and bounce the

box, which imposes unnecessary down time. These values can be viewed either by examining

the individual files or on Unix by using the sysdef | more command. Remember, however,

that you have to reboot for any changes to take effect.

Oracle DBA on Unix and Linux
346

Shared Memory Parameters Don’t Cause Swapping
I once had an SA who was convinced that the server was swapping horribly and the

shared memory parameters in the /etc/system were to blame. What really happened

was that he misinterpreted the results of swap -s and thought the server was actively

swapping. Then he blamed it on the shared memory parameters in /etc/system.

In reality, what he saw on swap -s was how much was allocated for swap, not what

actually was being used. For the /etc/system parameters (supplied in the Oracle ICG),

these allocations establish upper limits for shared memory. They do not necessarily

impose these values or mandate that a certain amount of memory will be allocated

whether it is needed or not.

This SA is a smart guy and just misinterpreted what he saw. Ultimately, it was a good

learning experience for both of us. However, this is a good example of why the DBA

must understand the Unix side of things. Had I not known he was wrong and had

proof to support my case, we might have reset the parameters much lower and real

problems would have occurred.

Processes lock and unlock shared resources via semaphores. A semaphore is simply a nonnega-

tive integer value used as a counter. This is how processes synchronize the use of a shared

resource with other processes. When a process wants to use a resource it will check the value

of the semaphore for that resource. If it is greater than zero that resource is available. The

process will then decrement the semaphore and use the resource. When it is done with the

resource it will increment the semaphore. As long as the semaphore value is above zero, the

resource is still accessible to other processes.

In terms of Oracle, each background and server process must be able to get a semaphore. It is

through semaphores that processes can synchronize access to the SGA. This is why you set

SEMMSL and SEMMNS in relation to the PROCESSES parameter in the init.ora.

SGA Allocation
You need to set your shared memory parameters so Oracle can acquire the shared memory it

needs to start up the instance. There are several SGA memory configurations Oracle uses to try

to allocate the shared memory it needs, but if it cannot do this, an error message will be issued

and the instance will not start. There are three configurations Oracle will use to allocate the

SGA after background processes have been started. In order of preference they are, one con-

tiguous segment, multiple contiguous segments, and multiple non-contiguous segments, and

are each discussed next.

One Contiguous Segment
One contiguous segment of shared memory is found and the entire SGA is located within that

segment. This is the optimal method, so Oracle tries it first. Intimate Shared Memory (ISM) is

discussed in a later section, but for now you should know that this memory configuration is a

requirement for ISM.

Multiple Contiguous Segments
If the SGA cannot fit into one contiguous shared memory segment, Oracle will try to fit sev-

eral segments together to hold the SGA. For example, if SHMMAX is smaller than the SGA, mul-

tiple shared memory segments have to be used. Oracle will attempt to put these segments next

to each other.

Multiple Non-Contiguous Segments
In cases in which Oracle cannot place the SGA into one segment or multiple contiguous seg-

ments, the final option is to break the SGA into parts wherever they will fit. Oracle breaks the

SGA into fixed portion, variable portion, database buffer cache, and the redo log buffer. These

can be seen via V$SGA. Oracle will attempt to combine the fixed and variable portions, but if

the sum of the two exceeds SHMMAX, they will be split.

Next, Oracle will try to find a space for the redo log buffer and the database buffer cache.

If Oracle cannot allocate enough shared memory to satisfy any of the previous memory config-

urations, an error will be issued and the SGA will not be allocated. Assuming SGA is allo-

cated, semaphores are allocated next. Then the appropriate files are opened and the database is

opened as specified.

Intimate Shared Memory
Intimate Shared Memory (ISM) is a Sun Solaris-specific option. It does two things for Oracle:

it locks the SGA into real memory and allows processes to share the same page table entry.

Both of these improve performance. Locking the SGA into real memory ensures that it will

never be paged out to disk. Just keep in mind that this can cause other non-Oracle processes to

be paged out instead. From Solaris 2.6 onwards, backing space is not allocated on the swap

device for ISM pages so do not expect to see your SGA represented there. ISM also reduces

the amount of kernel operations by allowing multiple processes to share the same address reso-

lution table entry. This reduces the amount of work the kernel has to do when mapping virtual

to physical memory addresses.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

347

In more recent versions of Solaris (2.6 onwards) and Oracle (8i onwards), ISM is enabled by

default. The init.ora parameter USE_ISM sets the parameter to TRUE by default in the data-

base. It can be disabled at the operating system level in the /etc/system file. To use ISM, it

must be enabled at both the database and operating system level. Also, the SGA must have

been allocated in one contiguous shared memory segment, not the multiple segments previ-

ously discussed. There won’t be any messages if this happens, but you might experience parts

of the SGA being paged. Finally, beware that early on ISM required OS patches to prevent cor-

ruption caused by a bug, so check with your SA to make sure the OS is patched for this bug.

Oracle DBA on Unix and Linux
348

LOCK_SGA Parameter

You might wonder where you can use ISM if you’re not on Sun Solaris. Is your SGA

doomed to be paged out? Not necessarily. There is an init.ora parameter LOCK_SGA

that you can set to TRUE in order to prevent the SGA from being moved out of real

memory. Be warned that like ISM, locking an SGA into real memory can cause paging

and swapping of other processes that can impact other applications.

NOTE

Cleaning Up Shared Memory and Semaphores
Although it happens infrequently, there are times when an instance crashes, but shared memory

and semaphores for that instance still exist. In reality, the server and background processes have

terminated and the files are no longer accessible, but memory is still allocated. This is a problem

because before you can restart the instance, these shared memory areas and semaphores must be

cleared out of the system. This is not just because they are a waste of resources; the new SGA

will not allocate if the old memory segments still exist. The two ways to remove the old mem-

ory segments are to reboot the box or to remove them individually with ipcrm.

Most DBAs will attempt to remove the lingering remnants of the SGA via ipcrm. The trick is to

make sure you remove the correct shared memory and semaphores. If you have two instances

running and one crashes, there is a chance you could accidentally remove the wrong memory

segment, thus creating two crashed instances. Fortunately, identifying and removing shared

memory and semaphores is not as difficult as it might sound. Actually, just going through the

process of identifying them will give you a better appreciation for the SGA as a memory struc-

ture and help you determine which configuration model it was allocated with.

There are several ways to identify which shared memory segments and semaphores belong to

which database. If you have just one database running on a machine, simply remove all the

segments and semaphores owned by the OS user oracle. In cases where you have multiple

databases, it is often best and safest to list and identify the shared memory segments and sema-

phores for each database instance. Then you can identify segments of the crashed instance

through the process of elimination.

For example, if you have three databases and one crashes, you can log into the two remaining

databases and use Oracle utilities to identify their shared memory and semaphores. Then, you

can go to the OS and identify all the Oracle shared memory segments and semaphores. Those

owned by the oracle user that you cannot identify within the running databases are the ones

you want to remove. Once you have identified everything, you can be sure you are removing

the correct segments and semaphores.

The following example has two Oracle 8.1.6 databases running: rh1dev1 and rh1tst1. You

need to free the shared memory and segments for rh1dev1 without impacting those for rh1tst1.

You can use two Oracle utilities (sysresv and oradebug ipc) to get information about the

instance’s shared memory and semaphores. This example also uses the Unix command ipcs to

get information about all the shared memory segments and semaphores on the system. Then,

you can use ipcrm to remove the appropriate segments and semaphores.

1. Use the Oracle OS utility sysresv to determine what Oracle calls the shared memory for

each instance. Remember to set your ORACLE_SID before running this utility for each

instance. This utility exists for Oracle 8i and above.

$ export ORACLE_SID=rh1dev1

$ sysresv

IPC Resources for ORACLE_SID “rh1dev1” :

Shared Memory:

ID KEY

5121 0x00000000

5122 0x00000000

5123 0x00000000

5124 0x00000000

5125 0x3cccf9f4

Semaphores:

ID KEY

3584 0x03ec71b6

Oracle Instance alive for sid “rh1dev1”

$ export ORACLE_SID=rh1tst1

$ sysresv

IPC Resources for ORACLE_SID “rh1tst1” :

Shared Memory:

ID KEY

5126 0x00000000

5127 0x00000000

5128 0xd5cdac04

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

349

Semaphores:

ID KEY

5121 0x0decb316

Oracle Instance alive for sid “rh1tst1”

As you can see from the shared memory report, each instance has the SGA allocated in

multiple segments. Both instances have also acquired one set of semaphores. Make a note

of the IDs of both the shared memory and semaphores associated with each instance.

2. Earlier versions of Oracle used the database utility oradebug ipc, which required log-

ging into the surviving instances. This utility still exists in Oracle 8i. Depending on the

version you are using, it either creates a trace file in the udump directory or displays out-

put directly to the screen. The trace file is not huge, but it does contain information about

both the database it was run against and the entire system (located at the end of the file).

The values you want to find are those identifying rh1tst1’s shared memory and sema-

phore IDs. The shared memory ID is identified by Shmid and the semaphore ID is identi-

fied by Semaphore List.

SQL> oradebug ipc

Information written to trace file.

SQL> exit

$ pwd

/u01/app/oracle/admin/rh1tst1/udump

$ more ora_12126.trc

/u01/app/oracle/admin/rh1tst1/udump/ora_12126.trc

Oracle8i Enterprise Edition Release 8.1.6.1.0 - Production

With the Partitioning option

JServer Release 8.1.6.0.0 - Production

ORACLE_HOME = /u01/app/oracle/product/8.1.6

System name: Linux

Node name: mikehat.mike.com

Release: 2.2.16-22

Version: #1 Tue Aug 22 16:49:06 EDT 2000

Machine: i686

Instance name: rh1tst1

Redo thread mounted by this instance: 1

Oracle process number: 0

12126

*** 2001-06-17 12:31:01.887

Dump of unix-generic skgm context

areaflags 00000027

realmflags 0000000f

mapsize 00001000

protectsize 00001000

lcmsize 00001000

seglen 00001000

largestsize 00000000f8000000

Oracle DBA on Unix and Linux
350

smallestsize 0000000000400000

stacklimit 0xbf87eed7

stackdir -1

mode 640

magic acc01ade

Handle: 0x9400938 `/u01/app/oracle/product/8.1.6rh1tst1’

Dump of unix-generic realm handle `/u01/app/oracle/product/8.1.6rh1tst1’,

flags

= 00000000

Area #0 `Fixed Size’ containing Subareas 0-0

Total size 0000000000010ff0 Minimum Subarea size 00000000

Area Subarea Shmid Stable Addr Actual Addr

0 0 5126 0x00000050000000 0x00000050000000

Subarea size Segment size

0000000000011000 0000000001411000

Area #1 `Variable Size’ containing Subareas 2-2

Total size 000000000112e000 Minimum Subarea size 00100000

Area Subarea Shmid Stable Addr Actual Addr

1 2 5127 0x00000051800000 0x00000051800000

Subarea size Segment size

0000000001200000 0000000001200000

Area #2 `Database Buffers’ containing Subareas 3-3

Total size 0000000001000000 Minimum Subarea size 00002000

Area Subarea Shmid Stable Addr Actual Addr

2 3 5128 0x00000052c00000 0x00000052c00000

Subarea size Segment size

0000000001000000 000000000102d000

Area #3 `Redo Buffers’ containing Subareas 4-4

Total size 000000000002a000 Minimum Subarea size 00000000

Area Subarea Shmid Stable Addr Actual Addr

3 4 5128 0x00000053c00000 0x00000053c00000

Subarea size Segment size

000000000002a000 000000000102d000

Area #4 `Lock Manager’ containing Subareas 5-5

Total size 0000000000002000 Minimum Subarea size 00000000

Area Subarea Shmid Stable Addr Actual Addr

4 5 5128 0x00000053c2a000 0x00000053c2a000

Subarea size Segment size

0000000000002000 000000000102d000

Area #5 `Java’ containing Subareas 1-1

Total size 0000000001400000 Minimum Subarea size 00000000

Area Subarea Shmid Stable Addr Actual Addr

5 1 5126 0x00000050011000 0x00000050011000

Subarea size Segment size

0000000001400000 0000000001411000

Area #6 `skgm overhead’ containing Subareas 6-6

Total size 0000000000001000 Minimum Subarea size 00000000

Area Subarea Shmid Stable Addr Actual Addr

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

351

Subarea size Segment size

0000000000001000 000000000102d000

Dump of Solaris-specific skgm context

sharedmmu 00000000

shareddec 0

used region 0: start 0000000050000000 length 0000000004000000

Maximum processes: = 50

Number of semaphores per set: = 54

Semaphores key overhead per set: = 4

User Semaphores per set: = 50

Number of semaphore sets: = 1

Semaphore identifiers: = 1

Semaphore List=

5121

-------------- system semaphore information -------------

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x00000000 5121 oracle 640 69632 10

0x00000000 5122 oracle 640 29360128 10

0x00000000 5123 oracle 640 29360128 10

0x00000000 5124 oracle 640 24576000 10

0x3cccf9f4 5125 oracle 640 26755072 10

0x00000000 5126 oracle 640 21041152 13

0x00000000 5127 oracle 640 18874368 13

0xd5cdac04 5128 oracle 640 16961536 13

------ Semaphore Arrays --------

key semid owner perms nsems status

0x03ec71b6 3584 oracle 640 204

0x0decb316 5121 oracle 640 54

------ Message Queues --------

key msqid owner perms used-bytes messages

The easiest way to find the values you want is to vi the file and use /Shmid and

/Semaphore List to search for these strings. Make sure you keep searching (using the n

key), because in this case Shmid had several values—5126, 1527, and 1528—which

identify multiple shared memory segments. Semaphore List only had the value 5121,

which identifies one semaphore set.

3. Use the Unix command ipcs to find all the shared memory and semaphores on the sys-

tem. Linux users can just use ipcs, but Unix users should use ipcs -b.

$ ipcs

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x00000000 5121 oracle 640 69632 10

0x00000000 5122 oracle 640 29360128 10

0x00000000 5123 oracle 640 29360128 10

0x00000000 5124 oracle 640 24576000 10

Oracle DBA on Unix and Linux
352

0x3cccf9f4 5125 oracle 640 26755072 10

0x00000000 5126 oracle 640 21041152 12

0x00000000 5127 oracle 640 18874368 12

0xd5cdac04 5128 oracle 640 16961536 12

------ Semaphore Arrays --------

key semid owner perms nsems status

0x03ec71b6 3584 oracle 640 204

0x0decb316 5121 oracle 640 54

------ Message Queues --------

key msqid owner perms used-bytes messages

This output shows all the shared memory segments and semaphores on the system. In this

case, they are all owned by oracle. As you can see, there are eight shared memory seg-

ments belonging to two instances. If you were to add these for each instance, the result

would be very close to what you’d get if you issued a sum from V$SGA. If you know the

sizes of your SGAs and there is only one shared memory segment per SGA, you can usu-

ally guess which segment belongs to which SID. However, I recommend clearly identify-

ing each SID’s segments rather than making educated guesses. From this display, you can

also see that two sets of semaphores have been allocated, one for each instance.

4. Once you have all the shared memory segments and semaphores identified, it is time to

actually remove the crashed instance’s shared memory segments and semaphores. Based

on the output from sysresv for both instances, oradebug ipc for rh1tst1, and ipcs for

the entire system, you can be sure rh1dev1 has the following shared memory IDs and

semaphore IDs:

Shared Memory IDs:

1521, 1522, 1523, 1524, 1525

Semaphore IDs:

3584

Use ç to remove the shared memory segments:

ipcrm -m 5121 5122 5123 5124 5125 <- For Unix

ipcrm shm 5121 5122 5123 5124 5125 <- For Linux

Use ipcrm to remove the semaphores:

ipcrm -s 3584 <- For Unix

ipcrm sem 3584 <- For Linux

That is all there is to cleaning up shared memory and semaphores in Oracle 8i. Assuming that

rh1dev1 had crashed in the first place and that shared memory segments and semaphores had

survived, you could now restart the database because those segments and semaphores have

been freed.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

353

Monitoring Memory
The chapter covered how Oracle uses memory extensively because it’s important to understand

this when you’re looking at memory usage. The SA will usually understand how memory is

used (such as virtual memory); but more often than not, SAs are clueless about how Oracle

uses memory. Understanding this is rightfully the DBA’s responsibility. Now that you under-

stand the fundamentals of memory and how Oracle uses memory, it’s time to look at ways to

monitor it.

Oracle DBA on Unix and Linux
354

Remove sgaSIDdef.dbf File

In earlier versions of Oracle, including Oracle 7 and Oracle 8, there was one addi-

tional step that was sometimes necessary. The file sgaSIDdef.dbf in $ORACLE_HOME/

dbs needs to be deleted before removing the segments. Originally, this file stored

memory and semaphore information and its existence indicated the instance was run-

ning. Early versions of Oracle needed to delete this file before the instance was

restarted, after which the file would be recreated. However, in Oracle 8i, this file is

not created so it becomes a non-issue.

NOTE

Available Monitoring Tools

There are many tools for monitoring system performance. This chapter focuses on

those tools every DBA should have: sar, vmstat, swap, uptime, ps, iostat, and netstat.

These are command-line utilities available on most Unix and Linux systems. Be warned,

however, that each of these tools differs depending on your platform. Make sure you

check your man pages for each utility because they will be different on Solaris, HP-UX,

AIX, BSD, and Linux. This chapter focuses primarily on Solaris and Linux.

Other tools are more graphical in nature. Every system should have a version of top

installed. This is a handy tool to be used with other tools. On HP-UX the tool glance

provides a wealth of information and you should use it if you are on that platform.

Other third-party tools such as Team Quest are available as well, but you need to

work with the SA to get these tools.

NOTE

There are several tools you should use when monitoring memory. In addition to memory

usage, you also need to monitor swap usage because the two are inherently linked.

To see the size of your swap partitions and the amount used on Solaris, make use of the Unix

command swap.

$ swap -l

swapfile dev swaplo blocks free

/dev/vx/dsk/swapvol 162,8 16 6295216 6264976

The command swap –l shows the device that holds the swap partition and its size. You can

obtain this information from df –k, where each filesystem and type is indicated.

The swap –s command shows the amount of swap space allocated, reserved, and used.

$ swap -s

total: 1328560k bytes allocated + 35856k reserved =

1364416k used, 3386064k available

This output can easily be misinterpreted. You have to understand how your particular operating

system allocates swap space. Early operating systems mandated that if a process required a

certain amount of real memory, that amount had to be allocated as a backing store on the swap

device in case it was needed. Newer operating systems don’t always require this. (Intimate

Shared Memory on Solaris 2.6 onward is an example.) Also, keep in mind that when a process

is created the necessary swap space is reserved/allocated, but not necessarily used. So just

because you see a certain amount allocated doesn’t necessarily mean you are actively swap-

ping that amount.

Looking at the amount of memory used can be trickier. Many people like graphical tools, such

as top or glance, and this chapter uses top later. For now, you can use the vmstat command

to look at memory, although this tool provides useful CPU and disk I/O information as well.

Remember to check your man pages to identify differences with this command between plat-

forms. The following shows three snapshots taken five seconds apart.

$ vmstat -S 5 3

procs memory page disk faults cpu

r b w swap free si so pi po fr de sr f0 s0 s1 s2 in sy cs us sy id

0 0 0 3679944 647800 0 0 347 0 0 0 0 0 2 5 3 205 954 168 1 2 96

0 1 0 3385760 402368 0 0 0 0 0 0 0 0 0 1 1 146 212 82 0 0 100

0 1 0 3385760 402344 0 0 0 0 0 0 0 0 0 3 3 172 243 90 1 0 99

First check under the procs section for the w column. This column is covered in more detail in

the CPU monitoring section, but for now, you should understand that values in the w column

indicate processes that have been swapped out. If you see nonzero values in this column, you

likely have a memory problem.

Next under memory, look at swap and free. The swap column indicates the amount of swap

space allocated. Remember that operating systems like to allocate space on the swap partition

in case it is needed, so this does not necessarily mean your machine is actively swapping. The

free column indicates the amount of free real memory.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

355

Paging is indicated under the page category. Remember that you can expect to see some pag-

ing on most systems, but if this becomes excessive or grows into swapping, you have prob-

lems. The most important columns here are pi, po, de, and sr. When a program starts, you can

expect to see page-in activity under pi; such activity is normal. After program start-up, how-

ever, activity here indicates that processes have to page in from disk, which is not good.

po indicates that the system moved a process out in order to make room to run other processes.

This is also not a good sign. If you have values under the de column, you have bigger prob-

lems. This value represents an anticipated shortage of memory; also a bad sign. Finally, sr rep-

resents the scan rate, which is the number of pages examined by the page daemon before it

finds a free page.

Oracle DBA on Unix and Linux
356

A Word About Thresholds

Throughout all these monitoring examples, I can only suggest what to look for and

what problems some numbers might indicate. The problem is that tuning is an art as

well as a science. I cannot establish a set of concrete numbers and say with absolute

certainty that if you see X number in the Y column you always have a Z problem. There

are too many factors involved, including server size and architecture, and the OS.

What I do give you are rules of thumb that I have used over the years. Based on what

I have seen, read, and learned from some highly skilled Unix tuning experts I’ve

worked with, I have never been able to find a concrete set of tuning numbers that fit

all situations. But I do look for some key characteristics in order to determine

whether a system is memory-, I/O-, or CPU-bound. Throughout this chapter, I share

these rules of thumb, but make sure you apply them to your system in a reasonable

manner. Remember, no one knows your particular system better than you and your

SA, so remember to use your best judgment.

NOTE

When looking at memory, keep in mind that Oracle performs best when it is in memory and

not in disk. It is best if you can lock the SGA in real memory (via LOCK_SGA or ISM).

However, this can come at the expense of paging for other processes. Obviously, you need to

size your SGA relative to the amount of real memory available on the machine, but you also

have to make sure it is big enough to keep your data blocks buffered. In many cases, this

means buying more memory for the machine.

Monitoring Disk I/O
You’ve read in previous chapters that disk I/O is orders of magnitude slower than memory

access and that it should be avoided as much as possible. Both Oracle and Unix will go to

great pains to cache data in memory in order to avoid disk I/O. Regardless, disk I/O does hap-

pen; it’s your job to try to detect and eliminate needless I/O while reducing the impact of nec-

essary I/O.

Work with the SA to plan and configure the disk layout on your machine. This involves both

capacity planning and attempting to optimize performance. Typically, SAs get a box with a

certain amount of disks to configure as they see fit. It’s best if you can be part of the configura-

tion planning too.

What you need to bring to the table are your plans for the database(s) you will build. Ideally,

you will have a plan and sample layout of the data files, as covered in Chapter 3, “Planning a

Database.” Based on that example, you know you need 12 mount points and size requirements

for each. From there, you and the SA start planning the disks.

Most likely the SA won’t have the same number of disks as you have mount points planned. I

can virtually guarantee that the SA’s disk sizes will be different from your size specifications.

That’s okay because you don’t want a ratio of one physical disk to one mount point anyway.

Most likely, the SA will ask you what level of RAID you want for your disks. Therefore, you

need an understanding of RAID.

RAID
Redundant Array of Inexpensive/Independent Disks (RAID) is a method of creating filesys-

tems across multiple physical disks. Basically, you have one logical filesystem, but it is com-

posed of several underlying disks. The benefits of using RAID are two-fold: performance and

fault tolerance.

Performance is improved with RAID because data is striped across multiple disks. Unix will

issue a read or write to the device driver, but the actual read or write will take place over sev-

eral disks, not just one. This way, no one individual disk gets hammered all the time. The

amount of the data striped per disk is the stripe size. Speak with your SA when defining the

stripe size because this value does have performance implications.

Fault tolerance is improved with RAID because, depending, on the level of RAID, if you lose

one physical disk the data is still accessible on the other disks. This is possible either by disk

mirroring (also called disk shadowing) or by using a parity bit. Disk mirroring is where you

have data on one physical disk, but the OS keeps one or more exact copies on other disks. If

you lose one disk, its data is still accessible via the mirrored disk(s).

Fault tolerance via parity bits work a little differently. The data is striped across all the disks,

but each bit of data can also be recalculated from parity bits if a disk is lost. For example, you

can determine that if 3 + X + 3 = 10, X must be 4. Theoretically, the parity bits work the same

way, because when a disk is lost, the remaining disks can calculate what is missing and recre-

ate the missing data so nothing is permanently lost.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

357

This all sounds fine, but there are some key issues that routinely come up when using RAID:

• You need multiple physical disks to implement RAID. If you are running Linux on your

PC or if your Unix box only has a couple of disks, RAID isn’t really an option.

• Disk mirroring provides the best fault tolerance because the data is copied exactly to

multiple disks. However, this mandates that you buy twice the amount of disk you need.

This gets expensive, especially as disk sizes grow.

• Fault tolerance via parity bits creates a performance hit. Every time you write, the parity

has to be calculated. Supposedly if you do lose a disk, replace it, and the data is being

recreated on the other disk it should still be available with degraded performance.

However, one SA I know had this happened and he said his system was rendered virtu-

ally unusable because of the performance hit.

Those are just some of the issues associated with RAID. No doubt your SA will have opinions,

which you will almost certainly hear. Furthermore, the use of intelligent disk array storage sys-

tems further complicates the matter. EMC is probably the biggest name among them, but there

are others. When dealing with systems like these that have their own memory and configura-

tions, you need to work with your SA and read the vendor-specific documentation. For now,

this chapter focuses on the most common RAID levels in use.

RAID 0
RAID 0 is stripping with no mirroring or parity of any kind. This adds to performance, but if

you lose a disk, there is no protection and data will be lost. I have never seen this used by

itself.

RAID 1
RAID 1 is disk mirroring with no striping. If you want the safest, most fault-tolerant configura-

tion, this is it. If one disk fails, the data is still completely intact on other disks. This does not

provide any performance benefit because the data is not striped.

RAID 0+1
RAID 0+1 is the combination of RAID 0 and RAID 1. It is mirroring with striping, which is

the best of both worlds. Performance is improved because reads and writes occur across multi-

ple disks. Fault tolerance is good because if one disk goes bad, it has a mirrored backup. This

method is obviously expensive because you have twice the disk you physically need, but it is

considered by many to be the best choice.

RAID 5
RAID 5 is striping with parity. Just like in RAID 0, data is striped across multiple disks to

improve performance. However, parity bits to recreate data are also striped across each disk.

If one disk failure occurs, the data should still be safe because the parity bits can recreate it.

Oracle DBA on Unix and Linux
358

However, it should be noted that there is a performance penalty associated with recalculating

the parity for each write. This level of RAID is often used when performance is not a big issue

or when it is not possible to use RAID 0+1.

What about the other RAID levels, such as RAID 2, 3, and 4? Do these exist and is there any-

thing above RAID 5? The answer is yes; they do exist. However, for the most part, they are

just inefficient variations of the RAID levels previously discussed. They exist in a theoretical

sense, but no one uses them because they have various flaws, which have been fixed in the lev-

els discussed here.

In addition to RAID levels, there are two levels at which RAID is managed: hardware and soft-

ware. Hardware RAID is managed at the disk subsystem level by an intelligent disk array.

Software RAID is managed by the operating system; which incurs extra work for the OS.

Hardware RAID is faster than software RAID and is preferable.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

359

Disks Are Getting Bigger

Disk sizes are now exceeding the size of many databases. As of this writing, if I ask

my SA for more disk space, he will ask me if I want a 18G or 36G disk. Too bad many

of my testing and training databases are around 10G. This is an issue because for

years DBAs wanted (and received) many small disks so they could spread out their I/O

across multiple disks. Now most databases can fit one or two physical disks. And in

most cases the SA or whoever is paying for the disks will laugh if the DBA asks for

twelve 18G disks so he can spread out a tiny database across 12 mount points. The

large size of these new disks and the economics involved are making the idea of

“many small disks” a thing of the past.

So what are a DBA and SA to do? I/O still should be spread out even though the disks

are relatively huge. My response is to work with the SA and stripe in an intelligent

manner. Also expect to have to share the mount points with other databases. No SA

is going to leave large amounts of disk unused because you are afraid of contending

with other databases. This is where you, as the DBA, need to balance the different

data files from multiple databases so no one disk or filesystem is getting hammered.

Is this more difficult? Absolutely, but it is one consequence of having huge disks.

NOTE

Raw Partitions
There are other issues involved when deciding how to set up your disk subsystem. One issue

that is not as common as it once was is the use of raw partitions. A misconception is that each

disk needs to have a filesystem placed on it. That is not true. You can place data files on a raw

“uncooked” partition rather than on a “cooked” partition. Most commonly this is done to

improve performance. You can avoid much of the overhead of processing reads and writes by

using raw filesystems. This comes at the cost managing those files as you normally would. You

cannot use normal Unix commands such as mv or ls because they are not on a normal filesys-

tem. This also requires you perform backups via the dd command.

The performance improvements gained by using raw partitions are not enough to justify the

management headaches. For the most part, there is only one situation you will find raw parti-

tions used: in Oracle Parallel Server (OPS) installations. OPS operates on clusters in which

there is a shared disk array. The database files are located on this disk array so they can be

accessed by each node in the cluster. However, for each node to access this shared disk array, it

must be a raw partition, not a filesystem “owned” by one node. Except when OPS is used, I’d

recommend against using raw partitions.

Asynchronous I/O
The previous chapter stated that when a user process issues a request for a service by the ker-

nel, such as an I/O, that user process will pause until the kernel returns a success or failure

response to the user process. This is the default behavior for most platforms and is referred to

as synchronous I/O.

Other platforms have an option that allows processes to proceed without waiting for the

response from the kernel. This keeps the user process from needlessly waiting on an I/O and

thus improves performance. Of course, it works on the assumption that the I/O subsystem is

solid and that any writes will be successful. This practice is referred to as asynchronous I/O.

Platforms that support asynchronous I/O include Sun Solaris and HP-UX. This must also be

enabled in the init.ora file. In Oracle 7.3 the parameters ASYNC_READ and ASYNC_WRITE

must be set to TRUE. In Oracle 8 and above, the single parameter DISK_ASYNCH_IO must

be set to TRUE. If you are on a platform that does not support asynchronous I/O, you can

increase DBWR_IO_SLAVES to simulate asynchronous I/O.

Monitoring Disk I/O
You can monitor disk I/O using several tools, but making sense of what you see and drawing

accurate conclusions can be tricky. To be really effective you need to be able to tie what you

see from these utilities to a particular database file and optimally to a table or index. This is the

tricky part.

The tools you will see report on the activity of a particular disk. From there, you need to deter-

mine whether there is a problem with a particular disk and whether you want to pursue it fur-

ther. If so, you must work with the SA to identify which mount point the problem disk

corresponds to. If it is part of a striped set, it becomes more difficult to determine which mount

point contains the files that are the subject of the I/O. Again, work with your SA on this.

Oracle DBA on Unix and Linux
360

Once you can identify the disk-to-mount-point mapping, you should be able to use a combina-

tion of your Oracle tuning tools and V$ views such as V$FILESTAT to identify which table-

space and data file is being impacted. Once you are at this point, you should be able to tell

which table or index is the culprit. From there you can move the object to a “cooler” disk loca-

tion or use any other method in your DBA bag of tricks to reduce the disk I/O on this object.

As complicated as this might seem, the first step is to look at your I/O using the following

tools: sar, vmstat, and iostat. be sure to check the man pages for each of these tools because

the options will differ between Unix and Linux. However, once you have a basic understanding

of each command you should be able to use it successfully on your platform. Each of these

commands has two numeric values to indicate the time in seconds between each snapshot and

then the number of snapshots to take. For example, sar -b 3 5 displays statistics from five

snapshots taken three seconds apart. Also, you should always ignore the numbers from the first

snapshot because they are skewed.

You can use sar (System Activity Report) to check I/O. Use sar -b on Linux and sar -d on

Unix. Here is a sample from a Linux box with little activity.

$ sar -b 3 5

Linux 2.2.16-22 (mikehat.mike.com) 06/23/2001

10:12:30 AM tps rtps wtps bread/s bwrtn/s

10:12:33 AM 3.00 0.00 3.00 0.00 24.00

10:12:36 AM 5.66 0.00 5.66 0.00 45.33

10:12:39 AM 3.00 0.00 3.00 0.00 24.00

10:12:42 AM 5.66 0.00 5.66 0.00 45.33

10:12:45 AM 5.66 0.00 5.66 0.00 45.33

Average: 4.60 0.00 4.60 0.00 36.80

tps indicates the number of I/O transfers per second against a disk. rtps and wtps refer to

read and write requests per second, respectively. The columns bread/s and bwrtn/s indicate

the blocks read in or written out per second. As you can see from this example, there are some

writes occurring, but no reads.

vmstat was used previously to check memory and it will later be used to check CPU, but here,

it’s used to check disk activity on a Sun box.

$ vmstat -S 5 3

procs memory page disk faults cpu

r b w swap free si so pi po fr de sr f0 s0 s1 s2 in sy cs us sy id

0 0 0 3679944 647800 0 0 347 0 0 0 0 0 2 5 3 205 954 168 1 2 96

0 1 0 3385760 402368 0 0 0 0 0 0 0 0 0 1 1 146 212 82 0 0 100

0 1 0 3385760 402344 0 0 0 0 0 0 0 0 0 3 3 172 243 90 1 0 99

Under the disk section, you want to look at s0, s1, and s2, which indicate the number of I/O

operations per second on each disk.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

361

One tool I prefer to use is iostat. Again, you need to check your man pages for differences

and additional options, but here is a sample from Sun Solaris.

$ iostat -D 5 5

sd0 sd1 sd2 sd3

rps wps util rps wps util rps wps util rps wps util

1 1 0.5 2 3 3.7 1 2 2.1 0 0 0.0

0 0 0.2 0 0 0.4 0 0 0.4 0 0 0.0

0 0 0.0 0 3 2.2 0 3 2.1 0 0 0.0

0 0 0.0 0 1 1.1 0 2 1.4 0 0 0.0

0 0 0.0 0 1 0.8 0 1 1.0 0 0 0.0

Each disk is identified by sd0 to sd3. rps and wps correspond to reads per second and writes

per second.

The following is how iostat is used on Linux.

$ iostat -d 4 2

Linux 2.2.16-22 (mikehat.mike.com) 06/23/2001

Disks: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

hdisk0 2.25 0.27 21.33 234014 18371058

hdisk1 0.00 0.00 0.00 0 0

hdisk2 0.00 0.00 0.00 0 0

hdisk3 0.00 0.00 0.00 0 0

Disks: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

hdisk0 0.00 0.00 0.00 0 72

hdisk1 0.00 0.00 0.00 0 0

hdisk2 0.00 0.00 0.00 0 0

hdisk3 0.00 0.00 0.00 0 0

tps is transfers per second. Then comes blocks read and blocks written per second and then

totals for each.

So what do all these numbers mean? By themselves they are difficult to make sense of and

draw conclusions. First of all, you are going to see activity on your root drive and swap parti-

tions. Next, determine which disks correspond to the mount points with your Oracle data files.

Those are the ones you want to monitor for increased activity. Finally, read about how your

particular operating system buffers reads and writes and whether your disk arrays do the same.

This will determine the degree to which each I/O request translates to a physical I/O (actual

read/write) or a logical I/O (retrieved from memory).

Monitoring the CPU
The previous chapter mentioned that only one process can actually be running on a CPU at

any given time. However, by using time-slicing, Unix can service multiple processes nearly

Oracle DBA on Unix and Linux
362

simultaneously to give the illusion of one CPU per user. By using SMP machines in which you

have multiple processors executing simultaneously, the capability to service more processes

without bottlenecks improves.

There are two ways to look at CPU usage: by using utilities to examine activity on the CPUs

or by looking at the processes trying to access the CPUs. Most people immediately jump to

using tools like vmstat and sar to monitor system-wide CPU usage. This chapter will cer-

tainly cover that method, but I often gain valuable information by looking at the currently run-

ning processes first to determine whether there are any “trouble makers.”

If I find any runaway processes gobbling up CPU time with no end in sight, I will often kill

them, thus freeing up the CPU. Just make sure you know what you are killing and are sure that

they are runaway processes, not simply random jobs that you are not familiar with.

First, how do you recognize that a process has been running a long time on the CPU? Check

the accumulated CPU time for the Unix process. From a DBA perspective, you obviously want

to pay particular attention to user processes connected to the database. These tend to be far

more problematic than any of the Oracle background processes such as LGWR or DBWR. Any

process with over 10-20 minutes of accumulated CPU time will normally get my attention.

Anything that exceeds several hundred minutes absolutely will be investigated and probably

killed unless there is a good reason for it to exist.

Use any of the following commands to determine which processes are on the system and

which ones have the highest amounts of CPU time: ps -ef, top, or glance. For example, the

following code shows some Oracle processes, one of which warrants investigation.

$ ps -ef | grep -i ora

oracle 12574 1 0 Jun17 ? 00:04:00 oraclerh1rep1 (DESCRIPTION=(LOCA

oracle 12575 1 0 Jun17 ? 00:05:12 oraclerh1rep1 (DESCRIPTION=(LOCA

oracle 15624 15623 0 22:47 ? 00:55:04 oraclerh1rep1 (DESCRIPTION=(LOCA

Here, I used ps -ef to look for Oracle processes. Instead, you can use top or glance; which

would have ordered the results based on the highest resource users. In this case, notice that

process 15624 has 55 minutes of CPU time (shown in the seventh column), which is well

worth investigating. Based on the oraclerh1rep1 and the partial description identifying the

connection as LOCAL, you can determine that this is a user logged onto the database rh1rep1.

The next step is to log into SQL*Plus and identify which Oracle user session corresponds to

this offending Unix process. Once that is established within Oracle, you can use your normal

set of DBA tools to determine who the user is and what he or she is doing. If necessary, you

can use the ALTER SYSTEM KILL SESSION command to terminate the session. From within

SQL*Plus, issue the query shown in Figure 13.1 using V$SESSION and V$PROCESS.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

363

FIGURE 13.1
Finding Unix PIDs for Oracle Sessions.

As you can see in Figure 13.1, there is someone logged in as SYS with a SID of 12, SERIAL#

of 47394, and the Unix PID of 15624. The PID identifies this user as the Unix process with 55

minutes of CPU time (identified with ps -ef) and the corresponding database information

allows you to investigate what this user is doing. If necessary, you can contact the user or

kill the session. Because this is a handy query to have, I saved it to a SQL script called

show_session_short.sql for future use. It is also included in Appendix C.

The utility top, which you read about previously, also provides a plethora of good information

regarding CPU usage and active processes. It breaks down CPU usage in an easy-to-read for-

mat as well as shows the most active processes. Figure 13.2 shows a sample top display.

Oracle DBA on Unix and Linux
364

FIGURE 13.2
Using top to View CPU Usage.

Notice that top gives you information regarding memory and CPU, as well as detailed process

information in a quick and easy to understand format. For those reasons alone, you will find

top to be one of the most commonly used tools among DBAs and SAs.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

365

Determine Who Is Hogging Your CPUs
One morning I had a database that was taking a while to recover after a crash so I

decided to check it out via glance (I was on an HP-UX 9000). I noticed that three of

the six CPUs where pegged at nearly 100% utilization by three separate processes.

Obviously each was climbing in terms of CPU time. This immediately raised some con-

cerns about using half the processors on the machine to service three processes,

which were likely runaway processes.

By using glance, top, and a combination of ps -ef with V$SESSION, I was able to

determine one process was a backup that was running late, one was a runaway data-

base process, and one was my database recovering. After consulting with the SA, we

determined it was best to kill the backup and the runaway database job. We left the

database recovery process alone. The end result freed two CPUs that were otherwise

being wasted.

Monitoring the CPU
When monitoring CPU usage, I first look at two similar metrics: system “load” and how many

processes are waiting to run on a processor. Next I look at the percentage of user versus system

verses idle processing so I can see where the processor is spending most of its time.

“Load” describes how busy or stressed a server is. Based on this number, you can tell relatively

how busy a server is. Tools that provide this number also provide the average load from both

five minutes and 15 minutes ago so you can tell whether the workload is increasing or decreas-

ing. The easiest way to determine load is to use uptime:

$ uptime

2:09pm up 8 day(s), 21:55, 2 users, load average: 0.01, 0.02, 0.04

This gives you three very handy pieces of information. First, you can tell how long the box has

been up. If you notice the machine has been up for an incredibly short amount of time, it’s a

reasonable bet that the machine bounced or crashed unexpectedly and that’s why people are

complaining. Believe it or not, this is sometimes how administrators find out their box has

crashed at some point. The next piece of information is the number of users. Because people

can connect to the server via Net8, this cannot be a reliable indicator of how many people are

using the machine, but you should know your server well enough to notice if this is an espe-

cially large or small relative number.

Finally the load average is listed. As you can see, the average for that past minute was .01, the

last five minutes it was .02, and over the last 15 minutes it was .04. Basically, this server is

almost idle. On a “normal” system running Oracle during the day, I expect to see a load around

3.0. This might vary depending on your machine, but you should have an idea of what is “nor-

mal” for your system. That way if you see it spike to 10 you know something is happening.

How high can this value go? Again it depends on a variety of factors, but I start investigating if

it gets above 5. On some systems I’ve seen it into the high teens, but at that point users are

usually complaining.

Load information is also available via top and glance.

Most utilities report the usage of CPU on the machine as a percentage doing the following:

being idle, servicing user processes, or servicing system processes. If the CPU has a high idle

percentage, it is not doing anything. Generally, there is not a problem with a CPU having a

high utilization percentage. However, you don’t want to see an excessive amount of CPU time

dedicated to system processing. This is because you want the CPU to service your user

processes, which are the ones doing the application work for the system. As a rule of thumb, I

like to see system processing around 20% or 30% and user processing around 70% or 80%.

The other characteristic similar to load that I look at when monitoring CPU usage is how many

processes are runnable, but are waiting on a CPU. The tool I use for this is vmstat, which you

used earlier to look at memory and disk I/O.

$ vmstat -S 5 3

procs memory page disk faults cpu

r b w swap free si so pi po fr de sr f0 s0 s1 s2 in sy cs us sy id

0 0 0 3679944 647800 0 0 347 0 0 0 0 0 2 5 3 205 954 168 1 2 96

0 1 0 3385760 402368 0 0 0 0 0 0 0 0 0 1 1 146 212 82 0 0 100

0 1 0 3385760 402344 0 0 0 0 0 0 0 0 0 3 3 172 243 90 1 0 99

Once again, ignore the first line of statistics, as you have three snapshots five seconds apart.

Next focus on the procs section. The values r, b, and w have the following meanings:

r The count of runnable processes.

b The number of processes that are blocked from executing because they are wait-

ing on I/O or memory.

w The number of processes that are waiting because they have been swapped out

(memory shortage).

Under the faults section, you can see three statistics: interrupts in, system calls sy, and con-

text switches cs. Each statistic is measured in number of times the event occurred per second.

The final section of vmstat is cpu. Here, you have a measure of time spent on user processes

us, system processes sy, and the time idle id. As you can see, most of the time the CPU is idle

and is not being used.

Oracle DBA on Unix and Linux
366

Another tool you can use to monitor CPU usage is sar.

$ sar -u 5 5

SunOS vader 5.8 Generic sun4u 03/15/01

14:14:39 %usr %sys %wio %idle

14:14:44 0 0 50 49

14:14:49 0 0 51 48

14:14:54 0 7 8 85

14:14:59 0 1 0 99

14:15:04 2 4 1 93

Average 1 2 22 75

This report also shows the percentage of CPU use on user %usr, system %sys, and idle %idle.

It also has another informative column indicating how much time was spent waiting on disk

I/O %wio.

One Solaris utility I sometimes use displays a great deal of information—it’s called mpstat.

$ mpstat 5 5

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

1 33 1 184 283 181 83 3 4 5 0 459 1 2 8 89

3 35 1 144 21 19 84 3 4 6 0 494 1 3 8 88

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

1 1 0 4 309 209 90 0 3 0 0 164 1 0 1 99

3 0 0 6 1 1 37 0 3 1 0 79 0 15 4 82

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

1 291 0 195 270 167 155 5 7 7 0 935 4 3 0 93

3 291 0 79 5 1 162 4 7 8 0 887 2 5 3 90

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

1 12 0 16 262 162 47 0 2 0 0 172 0 1 2 98

3 12 0 13 1 0 51 0 1 0 0 116 0 1 1 98

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

1 0 0 5 250 150 35 0 1 0 0 110 0 0 1 99

3 0 0 6 1 1 40 0 1 0 0 90 0 1 1 98

Just like with vmstat and sar, this utility provides percentages of CPU utilization. However,

this utility also provides information pertaining to faults, interrupts, and context switches.

Check the man page for a detailed description of each column.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

367

Consult Before Killing Sessions
I was wrapping up the day one Friday when the Sun E10000 I was working on was

brought to its knees. Response time was slow and almost immediately several people

came to my cube asking what the problem was. That server hosted several repository

continues

Monitoring the CPU is not as difficult as monitoring other areas such as memory or the net-

work. Perhaps this is because CPUs are easier to conceptualize rather than a swap area or net-

work collisions. Regardless, this section has illustrated several tools that you can use to

monitor CPU utilization.

Monitoring the Network
Blaming the network for performance problems is a common tactic when the database, server,

and application all appear okay. Like it or not, if everything else is “proven” to be fine, the net-

work is usually the scapegoat when poor response time occurs. Part of this is because most

DBAs, application people, and even some SAs have a tough time monitoring or tuning net-

works. Most have a good theoretical knowledge of networking principles, but not as many have

the hands-on skills. This issue is exacerbated by not having as many tools on hand and used

regularly by these people to monitor the network. DBAs and application people are busy

enough trying to work their core areas. The goal is to get the DBA and application developers

to think in terms of memory and CPU consumption while minimizing disk I/O. However,

Oracle DBA on Unix and Linux
368

databases for Oracle Designer. Normally it ran like a champ, but for some reason it

was crawling along at a snail’s pace.

I quickly checked uptime and the load was around 15 and climbing. That is not good

considering that it is normally around 3 or 4. Considering that this is a very large mul-

tiple CPU machine with abundant memory I knew something was wrong. Next I ran

top and identified several Designer users, each with several hundred minutes of CPU

time on the same database; these numbers were climbing. In the absence of any

other unusual statistics, that was enough for me to determine that those people were

indeed the culprits.

I traced the PIDs to individual database logins via SQL*Plus. Based on the IDs I knew

who these people were and I also knew that they had been working on a project.

Rather than just killing their sessions I decided to ask them what they were doing. It

turns out that each one had some intensive processing to do within Designer and

happened to start them at about the same time. This was just a case where people

were not communicating or coordinating what they were doing with each other.

Did I kill their sessions and lecture them on scheduling resource intensive jobs? No.

The timelines of this project dictated that these jobs had to finish. Management con-

firmed that, in this case, it was better to let their jobs finish at the expense of the rest

of the users. This wasn’t as bad as it sounds because on a Friday most people were

going home anyway. So as a result, even though we knew who and what was causing

the problem, there wasn’t anything we could do to improve the immediate situation.

It is cases like these where the DBA needs to use people skills and understand the

needs of business in addition to technical skills to be successful.

getting these people to think in terms of networking is a stretch because networking is largely

out the hands of DBAs or developers.

For these reasons I recommend that if you suspect network issues, don’t hesitate to enlist the

help of people who deal with networks on a daily basis. As the DBA, you should be able to

eliminate the database, application, and much of the server from the list of suspects when per-

formance problems occur. With a little skill and investigative work you can perhaps suggest a

network problem. However, to confirm the problem and get it fixed, you will need outside

help. Just make sure you have your facts straight and have exhausted your resources before

blaming the network for performance problems.

Monitoring Network Usage
One tool commonly used by DBAs is tnsping. This is not a Unix network performance tool; it

is actually an Oracle utility used to test database connectivity. However, it does provide timing

statistics. You can use it as shown in Figure 13.3.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

369

FIGURE 13.3
Using tnsping to Test the Network.

As you can see here, it is an Oracle utility that contacts the host and port used by the listener

(1521). It returns a success or failure message and how long it took. Notice that this can be

issued from a DOS prompt and that you don’t need to be on a Linux or Unix box.

Another very similar and more common tool is the normal ping utility used by most people.

Figure 13.4 shows a sample of its use.

FIGURE 13.4
Using ping to Test the Network.

This provides a little more network-specific information than tnsping. You still get time statis-

tics, but you also get the number of packets sent and received.

Obviously tnsping and ping provide some useful information, but not enough to allow serious

network tuning. A more powerful tool is ifconfig -a. This command shows all network cards

installed, the IP address, the number of packets sent (TX), the number of packets received

(RX), and the number of collisions and errors.

$ ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:01:03:2D:4C:A2

inet addr:192.168.1.11 Bcast:192.168.1.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:28589 errors:0 dropped:0 overruns:0 frame:0

TX packets:17338 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

Interrupt:11 Base address:0xac00

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:3924 Metric:1

RX packets:686 errors:0 dropped:0 overruns:0 frame:0

TX packets:686 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

In this example, what you care about is the Ethernet card because that is where the network

traffic is occurring. Look for high amounts of collisions and errors, which might indicate a

problem to be further investigated by more skilled network specialists.

One final tool I will briefly mention is netstat. This tool is more useful, but it is also more

complex and requires network knowledge outside the scope of this book. However, I want to

acknowledge its existence and suggest you consult your man pages and network-specific

resources for more information.

Oracle DBA on Unix and Linux
370

Blame the Network or Blame the DBA?
I was managing some databases on a box and response time was good. All my data-

base numbers (obtained using STATSPACK) were good and server statistics were gen-

erally good as well. No one ever complained except one remote site located hundreds

of miles away. They would issue commands and when things would seem to run slow

they would call me up complaining that it was the database’s fault.

As a DBA you are obligated to investigate these claims and I did. I found nothing

wrong on the database or the server. Plus no one else on the same database was hav-

ing any problems. Obviously this looked like a network issue. Next I called the user

back and by chance ended up speaking to someone else. This person volunteered

continues

These are the tools I use to get a rough snapshot of the network. Use tnsping and ping to test

connectivity and get sample times. Then use ifconfig to determine how many network cards

your machine has, their IP addresses, the number of packets sent/received, and statistics relat-

ing to lost packets and collisions. Finally, if you really want more info, make use of netstat.

However, my most common recommendation is to make use of your network technicians if

you really think you have a problem.

Summary
This chapter covered Unix server monitoring. At a high level, it looked at memory, disk I/O,

CPU, and network consumption on the Unix server. Then, it took a deeper look at how Unix

and Oracle interact in terms of shared memory, semaphores, and disk I/O. Understanding these

topics and being able to apply them to real-world systems are truly key to being an effective

Unix and Linux DBA. Many people argue that these skills separate Oracle DBAs on

Unix/Linux from those on other operating systems. Indeed, these are critical skills to have if

you want to be successful.

Within each category (memory, disk I/O, CPU, and network), you read about multiple utilities

used to monitor performance.

Finally, I tried to include as many relevant examples and experiences from my past as I could

in order to illustrate situations that might also happen to you. Remember, just like Oracle mon-

itoring and tuning, Unix monitoring and tuning requires a mix of technical knowledge, prob-

lem-solving skills, logic, and people skills. This chapter attempted to provide the basis to

succeed at monitoring and tuning your server.

Unix Server Monitoring

CHAPTER 13

13

U
N

IX
S

E
R

V
E

R

M
O

N
IT

O
R

IN
G

371

that it was odd that one physical side the room was running fine, but the other physi-

cal side was horribly bogged down. This included everything, not just the database. I

started laughing once I heard this because it was such an obvious network (not data-

base) issue. Eventually they did have a dedicated network technician look at their

network and made some changes. After that, everyone has been running fine. The

moral of this story is that people will often blame whatever application they are

using that seems to be running slow, regardless of the root cause. In this case, they

were working on the database so they called me. Had these people be using another

application, someone else would have probably been called even though it was really

a network problem.

CHAPTER

14
Patches and Upgrades

ESSENTIALS

• Bugs and performance enhancements are

common to any sophisticated software

package and Oracle is no exception.

• Installing: patches to fix existing problems or

to prevent future problems is part of the

DBA’s job.

• Upgrading the database release (such as from

8.1.6 to 8.1.7) is a common way to avoid bugs

and improve the database’s functionality.

• Installing: patches and performing upgrades

normally are uneventful processes; however,

you need to research, plan, and test these

changes before incorporating them into

production systems.

• Be aware of changes in the system as a result

of a patch or upgrade.

Oracle DBA on Unix and Linux
374

It’s commonly the DBA’s job to apply patches and upgrade the database to newer releases.

This is not normally done on a weekly basis, but it does need to be done periodically in order

to fix or prevent bugs from causing problems and to keep the database up to date.

This chapter differentiates between applying a patch versus performing an upgrade. It explains

how and why each is done. It also provides examples of how this is typically performed. It

shows you how to apply a trivial patch to an 8.1.6 database, and upgrades another to 8.1.7.

Issues regarding patch and upgrade policies are also discussed.

What Are Patches and Upgrades?
Any sophisticated software package, including Oracle, is in a continued state of change. The

competitive IT industry demands that companies always improve and update their products to

improve sales. Software development is often at a breakneck pace—new product releases often

occur every several months. Add to this the different operating systems that must be supported

for any large product such as Oracle. As a result you can expect two consequences because of

the fierce competition to release new products:

• Existing products will have problems (called “bugs”).

• Vendors will push their customers to keep upgrading to the latest and greatest versions of

their products.

These consequences happen with any software company you deal with, not just Oracle. This is

simply the nature of the IT industry.

The first consequence deals with bugs. There is an old saying that if you fix one problem,

you’ll end up breaking something else. This is often true, especially in software development.

Furthermore, as new features are added, you can expect there to be new bugs because these

features haven’t been tested yet in the real world. For situations like this, Oracle offers patches

to fix the bugs.

The second consequence deals with upgrading. Each successive release of Oracle theoretically

has new minor features and improvements, in addition to fixes for all the bugs in the previous

release. If you want to take advantage of these new features and fix your existing bugs, you

perform an upgrade.

When I say upgrade, I mean moving upward from one release in the same version to a higher

release within the same base version. For example, going from Oracle 7.3.2.3 to 7.3.4 is con-

sidered an upgrade. However, if you wanted to go from Oracle 7.3.4 to 8.1.6, that is consid-

ered a migration because you are moving to a different version. Migrations are covered in the

next chapter. Figure 14.1 shows the differences between version, release, and patchset numbers

and how to differentiate between these.

FIGURE 14.1
Upgrades Versus Migrations.

As you can see in Figure 14.1, a change in version is a migration and a change in release num-

ber is an upgrade. When you apply large patchsets, you can expect the patch number to

increase as well.

When and why do you apply a patch or perform an upgrade? Usually this information is

relayed to you by Oracle Support. For example, if you are encountering an unusual problem

and call Support, they might well determine you are encountering a bug. They will normally

tell you what patch you need to download and apply or what database version you need to

upgrade to. You can also pay attention to new software announcements. For example, you

might be running Oracle 8.1.6, but you have heard that Oracle 8.1.7 is out, so you decide to

upgrade to 8.1.7.

Before you apply any type of patch or attempt an upgrade, you must do research and testing.

It’s not that installing:patches and doing upgrades is necessarily difficult, but they are detail-

oriented processes and you need to follow the directions. Depending on the README file,

you might just have to run a simple Unix shell script that will make the changes for you. In

other cases, you have to start the Oracle Universal Install to make the changes, relink some or

all of the executables, and then run scripts to rebuild the data dictionaries in each database.

Again, none of this is difficult by itself, but you do need to know what you are doing.

In many cases, you will not need to apply the patch or perform an upgrade because they con-

tain fixes to products you don’t use. For example, assume there is a bug with replication.

However, if you don’t use replication and never plan on using it, applying a patch is not neces-

sary and you should in fact probably avoid it.

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

375

8 . 1 . 6 . 2

Migration

Version

Number

Patch

Number

Upgrade

Release

Number

Maintenance

Release

Number

Patch

Installing: patches and performing upgrades should be uneventful and even boring. This is one

area where you don’t want unexpected results and excitement. Rather, you should be very famil-

iar with the patch/upgrade instructions and have tested them on test databases. By the time you

apply the patch to a production system, the process should be routine. I usually test what I’m

doing on a development server, even if it only has the demo database installed. Even if the patch

or upgrade runs correctly, I still need to know approximately how long the entire process will

take and if there will be any invalid objects to recompile. Therefore, testing is a must.

When and How to Apply Patches
This section examines when and how you should apply patches.

Overview
Patches are small modifications made to the Oracle software to fix one or more bugs. If the

bug is potentially serious, such as one that can cause database corruption, failure, or a security

hole, you can expect a patch to fix that specific problem. When problems like this are discov-

ered, Oracle will put a patch out immediately. Other times Oracle will wait and combine multi-

ple bug fixes together into one larger patch. You might want the patch to fix a specific bug you

are encountering, but in reality you might receive several bug fixes.

Oracle DBA on Unix and Linux
376

Patches and Upgrades Aren’t Just for the Database

Any product or tool you use might need to be patched or upgraded, not just the

database server. As a general rule, it is a DBA responsibility if the product is owned by

Oracle. For example, it is not uncommon for the DBA to install and patch Oracle

Designer and/or Oracle Developer. The same guidelines that apply to the database

should be applied when patching these tools.

From time to time the operating system will also be patched or upgraded. This is typi-

cally an SA responsibility, but because it impacts the database you should be notified.

Your job is to make sure there aren’t any bugs or potential issues with the SA modify-

ing the operating system. Check with Oracle Support and online forums to determine

whether there are any known bugs. Also make sure the OS version the SA is upgrad-

ing to is compatible with Oracle. Specifically, you need to check the Oracle database

and operating system matrix to ensure the database and OS are compatible and if

there are any known issues. As a DBA you have to coordinate with the SA, develop-

ers, and designers to make sure that any planned patches or upgrades do not break

other tools.

NOTE

How do you know if you are encountering a bug and need a patch? Typically this happens in

one of two ways. Either you or someone in your department notices something unusual and it

turns out to be a bug or you see a bulletin from Oracle stating there is a bug.

In the first case, either you or someone notices some part of the database is behaving abnor-

mally. An obvious example is if you try to start SQL*Plus and it performs a core dump. A

lesser example is when you notice performance is unexpectedly bad or you receive a lot of

warning messages. The trick is trying to identify whether the problem is your fault or whether

it is because of a legitimate problem with the software. If you notice something that “isn’t

right,” try to develop a test case for it. Determine whether it is a repeatable occurrence and

document under what conditions it occurs. This is key; Oracle Support cannot do anything if

you simply call and claim there is a bug. You need to provide them with documented proof of

what you are seeing. Additionally, it needs to be documented so they can reproduce the same

problem in their labs. Only after that is done can they determine whether the problem repre-

sents a real bug that needs to be fixed.

Once you have documented what you believe to be a bug, check with Oracle Support to see

whether the bug has already been reported. Oracle has thousands of customers, so if you’ve

found a bug, odds are it’s happening to other people as well. If you are using Oracle online

support such as MetaLink, try a search based on a short description of the problem. However,

do not be surprised if it doesn’t return any results. Oracle MetaLink has two versions: a public

one with limited bug information and a internal version for Oracle employees with all the bug

information. It may very well be that you are running into a bug, but Oracle doesn’t have infor-

mation about it posted for the general public on MetaLink.

The next step is to call Oracle Support and describe the situation. From there, the analyst will

be able to access the internal MetaLink site to search for bugs. If there are any, the analyst will

be able to tell you what the bug is, how severe it is, and how to fix it or a suitable workaround.

Remember, you pay for Support as part of your license fees so don’t be afraid to use it, partic-

ularly when dealing with bugs.

The other way you find out about bugs is because you read about them somewhere or someone

tells you about them. For example, many times your developers will find bugs and will ask you

to patch them. Other times you will read about Oracle bugs from third-party sources and you

will pursue the problem from there. Other times by just browsing through MetaLink or talking

to Oracle Support, you will find out about patches. Therefore, you should periodically check

MetaLink’s Patches section of your particular platform to find any new patches and bugs.

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

377

Should you apply a patch for every bug you see? Absolutely not! Rather, you need to consider

how the bug impacts your system. Remember, installing:patches requires system downtime and

they do have the possibility of causing additional problems, so you don’t want to apply patches

if they are not necessary. As a guideline I wait for larger patchsets so I can squash multiple

bugs at once. These larger patchsets have the benefit of being more completely tested for bugs

than small “one-off” patches. However, if there is a serious bug or one that directly impacts my

system, I’ll apply it as soon as it is available. Finally, keep in mind that some IT shops attempt

to have standardized versions of Oracle across all databases, so consider this before installing:

patches.

Applying a Patch to Your System

Once you have determined that a patch needs to be applied, the next steps are to read the

README file, download the patch, FTP it to the server if necessary, create a backup, apply

the patch, and perform any post patch validation.

The first step is to read the README file. This is available online via MetaLink and is

included with the patch. I cannot stress enough how important it is to read and understand each

step outlined in this document. Installing:patches often requires using the OUI, using shell

scripts, manually relinking the executables, and running SQL scripts. If you don’t thoroughly

read the README file, you will not know what to do and you will likely mess up your data-

base.

Next, download the patch to your server or to your PC where you can then FTP it to your

server. Go to the Patches link at http://metalink.oracle.com unless directed otherwise.

Remember to make sure the patch you are getting exactly matches your database version, oper-

ating system platform, and operating system version. In this case, close isn’t good enough

(unless directed otherwise by Oracle Support).

Oracle DBA on Unix and Linux
378

Check Your Installation CD for Patches

Sometimes your Oracle installation CD will contain patches included with it. After you

mount the CD, do an ls to see whether there is a patches subdirectory. If so, investi-

gate these patches because you might need to apply them after your installation.

NOTE

Don’t Have Access to MetaLink?

Not everyone has a MetaLink account or can get to it all the time. If so, you can also

download patches from:

TIP

Patches are usually compressed, but they can be anywhere from 20K to several hundred

megabytes in size. Obviously, you need a reliable network connection to do the download.

Otherwise, call Oracle Support and see whether they can ship you the patch.

Create a subdirectory in your $ORACLE_HOME called patches or patchsets. In this location,

you should make a subdirectory for each patch you apply and reference it by the bug or patch

number. You need to place these files somewhere, and this system is a good way to keep track

of which patches have been applied. The following code shows how to do this.

$ cd $ORACLE_HOME

$ ls

JRE install ldap odg plsql

assistants install.platform lib oracore precomp slax

bin javavm md ord rdbms sqlj

ctx jdbc network otrace relnotes sqlplus

dbs jlib ocommon owm root.sh svrmgr

$ mkdir patches

$ ls

JRE install ldap odg patches root.sh

svrmgr assistants install.platform lib oracore plsql

bin javavm md ord precomp slax

ctx jdbc network otrace rdbms sqlj

dbs jlib ocommon owm relnotes sqlplus

$ mkdir patches/bug_12345

Here, you have a patches subdirectory and a directory beneath that for a specific patch. After

you apply the patch, do not delete the directory or log files. If a tar file or a compressed copy

of the patch still exists and isn’t needed anywhere else, you can delete them; but you should

keep your log files.

If you have to FTP your patches from server to server, make sure you use the correct form of

FTP. Corrupting files via FTP is a simple mistake, but it happens all the time.

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

379

ftp://oracle-ftp.oracle.com

I sometimes find more patches available on this site than on the normal MetaLink

site. If you are considering a move to a different version or platform, this site helps

you determine how many bug fixes there are. It’s an easy-to-navigate site.

FTP and Corruption

A common mistake I see all the time is FTPing files in the wrong mode. Specifically,

moving a file in ASCII when it should be binary and vice versa. If this happens with

TIP

Before applying a patch and especially before doing an upgrade, it’s a good idea to perform a

backup. Preferably this is a cold backup of your database and all your OS software files.

However, I must confess I don’t always do this for “minor” patches, but I will also probably

suffer for it sometime as well. Even though most patches I’ve seen come with or generate

scripts to deinstall them, I have to recommend taking a backup if possible.

I approach installing:patches or doing upgrades just like I do performing installs. Read the docu-

mentation and set up your environment as you do normally. Make sure your ORACLE_HOME

and your other environment variables are set properly or you will have big problems.

Applying the patch normally requires that you shut down the database(s). If your database

needs to be shut down, be sure to coordinate this with your users. The actual process of apply-

ing a patch doesn’t take too long, but there might be post-patch steps such as running data dic-

tionary scripts and recompiling invalid objects that can be time-consuming. Therefore, make

sure to allow yourself adequate time. Also, don’t forget to shut down any database listener

processes before applying a patch.

Oracle DBA on Unix and Linux
380

SQL files or text files you might see control characters such as ^M at the end of each

line if you vi the file. You can remove these manually, but a better solution is to FTP

the file again. If you do this accidentally with an executable or a patch, you should

consider that copy worthless and redo the FTP.

Remember to verify the type of FTP you are doing. For example, do not assume that

a Unix-to-Unix FTP defaults to binary; I have seen cases where it does not. If you are

unsure what you are set to use, issue the command status to see bin or binary

(binary) or ascii (ASCII). In the following example, I switch from a default ASCII to a

binary transfer.

ftp> status

Connected to 192.168.1.11.

Type: ascii; Verbose: On ; Bell: Off ; Prompting: On ; Globbing: On

Debugging: Off ; Hash mark printing: Off .

ftp> bin

200 Type set to I.

Connected to 192.168.1.11.

Type: binary; Verbose: On ; Bell: Off ; Prompting: On ; Globbing: On

Debugging: Off ; Hash mark printing: Off .

There are many GUI FTP tools available, many for free. However, you should still

know how to use the command-line version of FTP on Unix, Linux, and Windows

boxes because these GUI tools are not always available.

The way the patch is actually applied depends on the specific patch itself. I have used the fol-

lowing methods, as directed by the README files, to apply patches.

• Run a simple Unix shell script provided with the patch. In fact, sometimes the README

is the script. Normally these scripts just make copies of old files, move new files to the

correct locations, and then relink the appropriate executables. Installing:patches like this

gives you the benefit of being able to read the shell script before you actually run it. This

method is commonly used when the patch fixes one or a very small number of bugs.

• Manually move one or more individual files to the locations identified in the README

file. Obviously, you need to make sure file ownership and permissions are correct.

• Use the OUI to apply the patch. After you unzip or untar the patch, a runInstaller.sh file

is created in your patch directory. Set up your environment and use this script to start the

OUI. Follow the instructions in the README to navigate through the OUI and apply the

patch. This is a fairly simple method.

Once again, the README file will dictate which method you use to apply the patch. In the

first two methods, log files might not be generated automatically. If they aren’t, you should use

the command script to create a log of what you have done. The OUI will generate logs of

what it does automatically. Once the patch is applied, review these logs for errors.

After the patch has been applied, there may be post-patch steps to do for each database

impacted. Typical examples of these include:

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

381

The Databases Are Down!
Late one Friday afternoon, users at one of my IT shops reported that all the databases

on a certain server were suddenly down. Users started calling and asking why their

sessions had been killed and why Oracle wasn’t available. DBAs and SAs began

searching through their logs in an attempt to determine what happened. Finally, a

new DBA seated far from the others heard the commotion, stood up out of his cube

and said, “Oh, I shut them down to apply a patch.”

It turns out this DBA was actually very experienced and quite good; he was just new

to this shop. Someone had told him to apply the patch and that the databases on

that server weren’t really being used. Apparently he saw a few logins, but figured

they were from people who’d left for the day so he killed them and then shut down

the databases.

Because the databases were already down and the patch was basic, he quickly

applied it and restarted the databases. This was nothing more than a miscommunica-

tion, but it should underscore the need to communicate effectively, especially with

new people.

• Start the database, connect internal, and run the following scripts from $ORACLE_HOME/

rdbms/admin:

catalog.sql: Re-creates data dictionary views

catproc.sql: Script for the procedural option

catrep.sql: If you are running replication

These scripts can run for a while and they need to be executed against every database

impacted by the patch. Basically, they re-create data dictionary objects so the database

can take advantage of the changes.

• Rebuild Java inside the database. Do this only if Java is installed. You can check this by

either connecting internally and doing DESCRIBE DBMS_JAVA or counting the number of

objects in DBA_OBJECTS WHERE OBJECT_TYPE LIKE ‘JAVA%’. If you get a big package

header called DBMS_JAVA or have roughly 8000 or 9000 Java objects, Java is installed and

you need to perform the following step as internal:

SQL> create or replace java system

/

The slash on the second line is important. Expect this command to run for a while. We

cover this more in detail in Chapter 16, “Java Inside the Database Server.”

• Check for invalid objects and recompile them. Preferably you should have a count of

invalid objects before you apply the patch so you can see what has changed. After the

patch has been applied and you have completed all the other post-patchsets, recompile

any object from DBA_OBJECTS WHERE STATUS = ‘INVALID’. I strongly recommend you

use Dynamic SQL to accomplish this, as covered in Chapter 5, “Creating a Database.”

Once the post-patch steps are done don’t forget to start the listener so the users can log in.

These are the basic steps to follow when installing:patches. The next section goes through a

simple Linux patch install step by step.

Example Patch
The following is a simple patch that fixes one bug on Linux. The bug it fixes is not relevant to this

discussion. What is relevant is the process used to apply the patch. At this point, you can assume

the patch has been downloaded to your PC. You’ve verified that the patch is necessary and then

made a back up of your database and software. From here, you perform the following steps:

1. Create the subdirectory in the $ORACLE_HOME/patches directory for patches if it does not

exist. You did that earlier so now you can create the subdirectory for this specific patch.

$ pwd

/u01/app/oracle/product/8.1.6/patches

$ mkdir bug_12345

Oracle DBA on Unix and Linux
382

$ ls -l

total 4

drwxr-xr-x 2 oracle dba 4096 Jun 30 20:43 bug_12345

2. If necessary, FTP the compressed patch file from the PC to the $ORACLE_HOME/

patches/patch_12345 directory. Figure 14.2 shows how to FTP the patch from the

PC to your $ORACLE_HOME/patches directory.

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

383

FIGURE 14.2
FTPing the Patch File.

3. The next step is to uncompress, unzip, and/or untar the file. When you download a patch,

it is normally compressed and you must uncompress it. On Unix, you can expect files to

normally be compressed with compress. In those cases use the command uncompress to

uncompress the file. On Linux, they are sometimes zipped and you must unzip them as

show here.

$ unzip p12345_8161_GENERIC.zip

Archive: p12345_8161_GENERIC.zip

inflating: prvtpidx.plb

inflating: README.txt

$ ls -l

total 52

-rw-rw-rw- 1 oracle dba 1583 May 16 08:49 README.txt

-rw-r--r-- 1 oracle dba 13380 Jun 10 21:19 p12345_8161_GENERIC.zip

-rw-rw-rw- 1 oracle dba 31919 May 11 16:35 prvtpidx.plb

At this point, you can remove the ZIP file if you know the patch will not be needed

again. Sometimes larger patches will have multiple files and subdirectories. These are

compressed and transported in a tar file. Check the man page for tar, but basically it is

used as a way to compress a directory, its subdirectories, and all their files into one file.

This one file can then be downloaded, copied, and moved to any location. Once it is in

place, the file is untared and it expands to re-create the same directory, subdirectories,

and files as before. The steps to uncompress and untar a patch are as follows:

$ uncompress 734_patchset.Z

$ tar xvf 734_patchset

In this case, I uncompressed the tar file 734_patchset.Z and then untared it. You can

then find the directory and subdirectories for the 734_patchset.

Oracle DBA on Unix and Linux
384

Using tar to Move Directories

Oftentimes as a DBA you are asked to move not only a database, but also all the

operating system files belonging to the application using that database. This can be a

little tricky because DBAs are trained to deal with databases, but moving filesystems,

Unix groups, and Unix users is a little outside traditional DBA training.

One way I’ve seen used to move entire directory trees is with the tar command. For

example, say you have a directory system under /app that you need to move to

another server. You can go to /app and tar the directory you need, FTP it to the new

server, and then untar it. This method will get all your files and subdirectories. You

will still have to resolve differences in filesystem names, corresponding soft links, and

hard coded directory names in scripts, but this gives you a good place to start.

NOTE

4. Now that the patch is uncompressed (and potentially untared) in the correct location,

reread the README. Make sure you know what needs to be done. Find out if it is sim-

ply a shell script to be executed, a SQL script to be ran, or if it requires the OUI to install

the patch.

5. Next, shut down all the databases and listeners belonging to this ORACLE_HOME

unless this is just a SQL script to be executed. In this case, it is just a SQL script so you

can leave the databases up.

6. Execute the instructions for the patch. In this case, it is just a SQL script to be executed.

SQL> @prvtpidx.plb

Grant succeeded.

Package body created.

No errors.

Grant succeeded.

Commit complete.

7. Next, check for invalid objects and recompile them if necessary.

SQL> select owner, count(*) from dba_objects where status = ‘INVALID’

2 group by owner;

no rows selected

SQL>

In this case, nothing was invalidated so you are done with this database. The next step is

to run the same script against every other database in this ORACLE_HOME. Once that’s

done, you are done.

As patches go, that was about as easy as it gets. Patches themselves are normally not problem-

atic. Typically, you just run whatever shell or SQL scripts are indicated in the README. The

tricky part is scheduling the downtime for all the databases in the ORACLE_HOME, running

SQL scripts against every database in that ORACLE_HOME, and finally checking for invalid

objects in each database.

This section covered the basics of installing:patches. It discussed what patches are, when to

apply them, and how to do so. The next section looks at a more tricky issue: upgrades.

When and How to Upgrade
This section examines when and how to perform upgrades.

Overview
An upgrade involves increasing the database release number, but keeping within the same data-

base version. Examples of upgrades include going from 7.3.2.3 to 7.3.4 or from 8.1.6 to 8.1.7.

You do this to get all the bug fixes contained in the next release and to pick up new features

within the same version.

There are multiple issues to be addressed before performing an upgrade. First, you should have

a reason why you are upgrading such as acquiring new functionality or avoiding a set of bugs.

One non-technical reason for upgrading is to move to the terminal release of a version so you

will have Oracle Support longer for that release.

Next, you should verify that by upgrading your database, it won’t break other systems or applica-

tions interfacing with it. This is a bigger issue with migrations, but it should be considered for

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

385

upgrades as well. The upgrade process should be tested and applications should be re-certified to

run on the new release. For example, there might be changes in application performance associ-

ated with an upgrade so you need to investigate this issue before upgrading a production system.

I also recommend checking MetaLink, Technet, and any other forums you use to read about

issues that other DBAs have encountered when performing similar upgrades. If bugs or other

problems exist, these forums are a good place to learn about them before you encounter them.

From these resources you can learn if the upgrade is going to cause problems with the listener,

OEM, or other tools. Minor issues occur often enough with these tools that I strongly encour-

age you to investigate them before doing the upgrade.

Finally, once you have tested your upgrade process and performance on a test system, you

need to upgrade your production systems. Normally this involves scheduling downtime in the

evening or on a weekend so you can shut the system down, perform the upgrade, and check

that the system is handling the new database software without any problems. Hopefully, all

will go well and your previous testing will have uncovered any problems, but make sure to fac-

tor in some extra time to deal with any unexpected problems.

The next section looks at the basic steps of performing an upgrade.

Performing an Upgrade
Upgrades are similar in many respects to patches, but they are more involved. First you install

the new Oracle software (such as 8.1.7) using the same steps as outlined in Chapter 4,

“Machine Setup and Installation.” Key differences are that because Oracle is already installed

on the server, you don’t have to create the oracle user, group dba, or worry too much about

your hardware requirements. You should still check the ICG for any changes such as with

shared memory or semaphores, but once one version is installed, requirements for other

releases within that version should be the same.

One key point, however, is that you must install Oracle in a different ORACLE_HOME than any

other version or release. Starting with Oracle 7.3.4, this became a requirement. Fortunately, if you

follow the OFA guidelines, this is simple. For example, under the $ORACLE_BASE/product direc-

tory you would have an ORACLE_HOME for each version of Oracle installed:

$ ls $ORACLE_BASE/product

8.1.6 8.1.7

After the new database software is installed and you have verified that it is running properly,

you need to upgrade the older databases. Remember you don’t have to upgrade all your data-

bases at once; you can do them one at a time. Don’t forget that, before performing an upgrade,

it is a good idea to perform a cold backup in case something goes wrong.

Oracle DBA on Unix and Linux
386

The next step is to log into each database you want to upgrade under the older ORACLE_HOME and

shut them down normally.

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

387

Multiple ORACLE_HOMEs

You can run multiple databases of different versions on the same box with no prob-

lem. In fact, folks do this all the time. The trick is not to get your databases and soft-

ware confused. For example, if you have 7.3.4 and 8.1.6 databases on the same server,

you must have the software separated into different directories as shown:

$ ls $ORACLE_BASE/product

7.3.4 8.1.6

Remember that your ORACLE_HOME determines which database software you will

use to access your database as identified by your ORACLE_SID environment variable.

For example, here, the ORACLE_HOME is set for 8.1.6 databases.

$ echo $ORACLE_HOME

/u01/app/oracle/product/8.1.6

Therefore, I can use this to access, start up, and shut down any 8.1.6 database, but

not the 7.3.4 databases.

It is very important that you verify and use the correct ORACLE_HOME for each cor-

responding database. Although you can normally use tools like SQL*Plus against dif-

ferent versions, you don’t want to start up or shut down databases with the wrong

software.

NOTE

After you have shut down the older database you plan to upgrade, you need to set up your

environment for the new database. This involves changing your ORACLE_HOME, creating a soft

link in the $ORACLE_HOME/dbs to the $ORACLE_BASE/admin/SID/pfile/initSID.ora, and

restarting the old database under the new ORACLE_HOME with new software.

Once the database is started you have a set of upgrade scripts to run as the user internal. These

are typically located in $ORACLE_HOME/rdbms/admin. Once those are executed, you may need

to rerun scripts such as catalog.sql and catproc.sql to rebuild the data dictionary. However,

most upgrades to newer database versions include those scripts in the upgrade script so it is

often not necessary to run them separately.

After all the database upgrade and data dictionary scripts have been executed, you need to

check for invalid objects. If you find any, write Dynamic SQL as discussed in Chapter 5 to

recompile them.

Finally, modify your oratab, listener.ora, and any other Oracle parameter files to reflect the

change in ORACLE_HOME. This includes application scripts, environment scripts, and the

like. Change the COMPATIBLE parameter in the init.ora to reflect the upgrade. Also, you need

to decide which listener you will use on the database. Typically, listeners have been back-

wards-compatible so you can just use the highest version available. However, sometimes listen-

ers don’t always work well that way so you may need to run multiple listeners on your server.

They can share the same listener.ora file, but they will need to listen on different port numbers.

Be sure to work this issue out and test it before upgrading a production system. The database

won’t be any good if users cannot log into it.

These are the basic steps in performing an upgrade. The next section shows an example

upgrade.

Example Upgrade
This example looks at moving from Oracle 8.1.6 to Oracle 8.1.7 on Linux. At the time of this

writing, this is a very common upgrade. This section skims over some parts, such as installing

Oracle, because that was covered in Chapter 4. Also, this section doesn’t address application-

testing or certification for the new version. What it does cover is the database-specific aspects

of performing an upgrade. Finally, do not forget to take a cold backup of your database before

performing the upgrade.

1. Install the new Oracle software. In this case, this is Oracle 8.1.7. Make sure you separate

your software into different ORACLE_HOME directories. Also make sure that when you

perform the install, your ORACLE_HOME is set for 8.1.7, not 8.1.6. Verify that all your

other environment variables are also set to 8.1.7 where appropriate.

Depending on your version, during installation the OUI will look at the oratab file and

offer to upgrade/migrate older databases for you. Because you don’t always want to do

this, skip that step and install the software as normal.

2. Shut down the database you plan on upgrading and exit out of SQL*Plus. In this case,

you have an 8.1.6 database called rh1tst1.

SQL> select name from v$database;

NAME

RH1TST1

SQL> select * from v$version;

BANNER

--

Oracle8i Enterprise Edition Release 8.1.6.1.0 - Production

Oracle DBA on Unix and Linux
388

PL/SQL Release 8.1.6.0.0 - Production

CORE 8.1.6.0.0 Production

TNS for Linux: Version 8.1.6.0.0 - Production

NLSRTL Version 3.4.0.0.0 - Production

SQL> shutdown;

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> exit

Disconnected

At this stage, you should perform a cold backup of the database.

3. Set up your environment for the new database software. In this case, it is 8.1.7.

$ echo $ORACLE_SID

rh1tst1

$ echo $ORACLE_HOME

/u01/app/oracle/product/8.1.7

$ echo $LD_LIBRARY_PATH

/u01/app/oracle/product/8.1.7/lib

4. Create a soft link in the new $ORACLE_HOME/dbs to the init.ora in the $ORACLE_BASE/

admin/SID/pfile directory. Also, remove the link in the old $ORACLE_HOME to reduce the

chance of the database accidentally being started with the older software.

$ pwd

/u01/app/oracle/product/8.1.7/dbs

$ echo $ORACLE_BASE

/u01/app/oracle

$ echo $ORACLE_HOME

/u01/app/oracle/product/8.1.7

$ ln -s $ORACLE_BASE/admin/rh1tst1/pfile/initrh1tst1.ora .

$ rm /u01/app/oracle/product/8.1.6/dbs/initrh1tst1.ora

$ ls -l

total 24

-rw-r--r-- 1 oracle dba 8385 Oct 22 1999 init.ora

-rw-r--r-- 1 oracle dba 9219 Oct 22 1999 initdw.ora

lrwxrwxrwx 1 oracle dba 51 Jul 1 15:15 initrh1tst1.ora ->

/u01/app/oracle/admin/rh1tst1/pfile/initrh1tst1.ora

As you can see, there is now a link for the init.ora from the new $ORACLE_HOME/dbs to

the actual init.ora in the $ORACLE_BASE/admin/SID/pfile directory.

5. Connect internal with SQL*Plus and start up the database in restricted mode so no one

else can log in. Make sure you do this using the new Oracle software. Also, you might

have to change the init.ora parameter REMOTE_LOGIN_PASSWORDFILE to NONE to start

and open the database without a password file for the first time.

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

389

$ sqlplus internal

SQL*Plus: Release 8.1.7.0.0 - Production on Sun Jul 1 15:32:11 2001

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to an idle instance.

SQL> startup restrict;

ORACLE instance started.

Total System Global Area 55828640 bytes

Fixed Size 73888 bytes

Variable Size 38805504 bytes

Database Buffers 16777216 bytes

Redo Buffers 172032 bytes

Database mounted.

Database opened.

SQL>

6. Next, run the upgrade script in $ORACLE_HOME/rdbms/admin for your particular version.

In this case, because you are upgrading from 8.1.6 to 8.1.7, you need to run the script

$ORACLE_HOME/rdbms/admin/u0801060.sql. Notice that there are other scripts for

upgrading from other versions as well in this directory. The directory also contains

scripts to perform downgrades. Before actually running it, it’s a good idea to actually

read the script to understand what it’s doing and what other scripts it calls. After reading

it, run it while you are connected internal.

SQL> @$ORACLE_HOME/rdbms/admin/u0801060.sql

The script will run for a while, so be patient. Make note of any unusual errors and inves-

tigate them as needed.

7. In earlier versions of Oracle, such as in Oracle 7.3, you had to run scripts such as

catalog.sql and catproc.sql to rebuild the data dictionary after the upgrade. In Oracle

8i these scripts are executed automatically, as you can see in the upgrade script. However,

after these scripts have been executed you might want to run utlrp.sql to automatically

recompile any invalid objects.

SQL> @$ORACLE_HOME/rdbms/admin/utlrp.sql

8. After the packages have been recompiled, double-check for any invalid objects and use

Dynamic SQL to recompile them. Use the following statement to determine how many

invalid objects each user has.

SQL> select owner, count(*) from dba_objects

2 where status = ‘INVALID’

3 group by owner;

Oracle DBA on Unix and Linux
390

9. At this point the database can be opened for normal use, but a better idea is to take a

cold backup first. If necessary, you can open the database with ALTER SYSTEM DISABLE

RESTRICTED SESSION.

SQL> alter system disable restricted session;

System altered.

10. The final step is to update certain files so that they include the new database information.

These files include:

• oratab Change the $ORACLE_HOME value

• listener.ora Change the $ORACLE_HOME value and listener

• init.ora Set COMPATIBLE = 8.1.7

• Any other miscellaneous scripts or files

This section assumes that you have configured the networking files during the installa-

tion of the new product. Simply remove references about the database from the old con-

figuration files and put it in the new files.

That covers it for basic database upgrades. For the most part, upgrades are fairly simple and

should be uneventful. This chapter didn’t go into detail on upgrading other parts of the system

such as the operating system, application, Web server, or other Oracle-specific products, but

these elements should be addressed seriously because each has its own requirements. Make

sure that you don’t upgrade one part of the system so that it becomes incompatible with

another part. I have seen this happen. It required multiple simultaneous upgrades and these are

indeed tricky situations.

Additional Considerations
Oracle normally recommends that you update with the latest patches and move to the newest

releases. That way they can assume that any problems you have will be addressed by their bug

fixes. It also keeps you moving forward with the latest and greatest of Oracle’s products. From

Oracle’s perspective, this is a good thing. From your perspective, there are some additional

considerations you need to consider before upgrading or installing: patches.

First, does your OS platform support this release of Oracle? Are there any special Oracle

patches or operating system patches that need to be applied? This is normally a bigger issue

when performing migrations, but it should be considered here as well.

Next, is every application and tool interfacing with your database certified to run on a higher

version? Once again, this is often an issue to be addressed before performing a migration, but

it needs to be discussed here as well. You do not want to upgrade your database only to find it

is incompatible with some other application or system tool.

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

391

Why are you moving to a higher version or applying a patch? Make sure there is a valid reason

to perform an upgrade or a patch. Sometimes people apply patches or do upgrades just to get

new resume material. Other times it is someone trying to fix a problem and they are simply

guessing that an upgrade or patch will help. Trouble-shooting by blindly installing:patches and

upgrades is an ill-advised policy.

One legitimate reason Oracle will force you to upgrade or apply patches is if your database

version is too old to be supported. It is unrealistic to expect any company to support every

release of every product indefinitely. The line has to be drawn somewhere and Oracle enforces

this by reducing the level of support for old database versions. For example, Oracle version

7.3.2.3 is no longer supported. You could call Oracle Support with questions and problems and

they will answer them to the best of their ability. However, they will not write new bug fixes

for that version or continue development on it. Instead they will suggest that you upgrade to a

newer version.

With a seemingly endless chain of new versions, releases, and patches, is there ever a chance

to stop upgrading? Yes and no. Oracle will always push you to upgrade to the latest and great-

est, but you can usually settle on the terminal (last) database version release. For example,

assume you are happy with Oracle 8i and you don’t want to move to 9i. In this case, you

should upgrade and patch to Oracle 8.1.7, which Oracle announced as the terminal release of

8i. Because it’s the terminal release, it will be supported much longer than 8.1.6. Ultimately,

you will have to move to 9i, but terminal releases such as 8.1.7 and 7.3.4 will be supported

much longer than earlier releases within the same version.

Summary
This chapter covered the basics of installing:patches and performing upgrades. Patches and

upgrades occur in response to software bugs and as a way to take advantage of minor improve-

ments. You should not rush to apply every patch and upgrade that becomes available; rather,

you should selectively choose the ones that will help your system.

The actual process of installing:patches is usually easy. First, you carefully review the

README file because the instructions for patches can vary greatly. Next, you download the

patch and copy it to the correct $ORACLE_HOME/patches subdirectory and

uncompress/unzip/untar it. When you are ready to apply the patch, you shut down the data-

bases and the listener. Then, you perform the instructions in the README for patches. After

that, you start each database and run any necessary post-patch scripts. Then check for invalid

objects and recompile them as necessary.

If it is an upgrade, install the new software under a different ORACLE_HOME using OFA standards.

Make sure the installation was successful by starting a demo database. Next, you shut down the

Oracle DBA on Unix and Linux
392

old database and listener. You then set up your Oracle environment for the new software and

restart the database and apply the necessary upgrade scripts out of $ORACLE_HOME/rdbms/admin.

Next, you run any necessary post upgrade scripts to rebuild the data dictionary and rebuild the

Java objects if needed. Then, you recompile any invalid objects. Finally, you have to modify any

remaining configuration files such as oratab and the listener.ora to reflect the new environment.

Patches and Upgrades

CHAPTER 14

14

P
A

T
C

H
E

S
A

N
D

U
P

G
R

A
D

E
S

393

CHAPTER

15
Migrations

ESSENTIALS

• Migrating a database involves upgrading a

preexisting database to a higher version.

• Careful planning and testing is necessary to

ensure a successful migration.

• There are three methods used to migrate a

database: export/import, mig utility, and

ODMA (Oracle Data Migration Assistant).

• The easiest, most straightforward method is

to use the Oracle Data Migration Assistant.

• This chapter shows you how to migrate from

Oracle 8.1.6.1 to 9.0.1 using the Oracle Data

Migration Assistant.

Oracle DBA on Unix and Linux
396

Migrations involve upgrading a database from one version to a higher one. Migrations require

more planning, preparation, and are more difficult to perform than simple upgrades or patches.

The three methods normally used to migrate a database are using export/import, using the mig

utility, and using the Oracle Data Migration Assistant.

This chapter looks at what it takes to migrate a database. It discusses some of the planning and

preparation issues needed to perform a migration. These issues need to be discussed because,

all too often, DBAs migrate their databases without much planning and then suffer because

they failed to examine other factors outside the database. The chapter also explores the three

most common methods used to migrate a database. Finally, it provides an example migration

from 8.1.6.1 to 9.0.1 using ODMA (Oracle Data Migration Assistant).

What Is a Migration
A migration is simply an upgrade of a database to a higher version. This is different from a

pure upgrade, which involves moving to a higher release within the same database version.

Upgrades (and patches) were discussed in the previous chapter.

Don’t confuse a migration with rehosting. Often, a DBA will be asked to “migrate” a database

from server A to server B. Unless the database version is increasing during the move, the DBA

is simply moving the database from one host to another. Incorrect use of the term “migration”

is normally harmless, but it is good to understand the actual difference between the terms.

A New Definition of Migration?

Oracle’s definition of migration now differs from the definition used in this book.

New Oracle documentation now only uses the term migration when moving from

Oracle 7 to a higher version. All other migrations, such as from Oracle 8 and Oracle 8i

to higher versions, are referred to as “upgrades.”

For example, a move from Oracle 7 to Oracle 8i is a migration. However, a move from

Oracle 8i to Oracle 9i is an upgrade.

This definition differs with what I and other DBAs have been taught. Perhaps this is

because the process of going from 8i to 9i is “simple” from an internal standpoint as

compared to a move from 7 to 9i. Moving from 8i to 9i may be so simple internally

that it is more like an upgrade than a full blown migration. In fact, the ODMA tool

considers a move from 8i to 9i to be an upgrade. Additionally, the scripts to manually

move from 8i to 9i resemble upgrade scripts.

NOTE

continues

Reasons to Migrate Your Database
Oracle is always coming out with new products with exciting features. Many DBAs enjoy

learning about new products and technologies. From a technical standpoint, there are often

valid reasons to use a new database—because of the completely new features and enhance-

ments of older features. Sometimes businesses depend on these new features in order to fulfill

a technical requirement within the system; other times they are considered interesting novel-

ties. These new features typically come as a result of a new database version, not as part of a

simple upgrade within the same version. Therefore, if you want to access new features, you

have to use the newest version of the database. These new features are not back-ported to

previous versions.

As discussed in the last chapter, Oracle will eventually force its customers to move to 9i by not

supporting older versions. However, with releases of Oracle 7 and 8 still running in some

shops, it might be years before this happens to you. Most DBAs don’t want to wait until they

have to migrate; they want to be using the newest software as soon as they are confident that it

is stable and any major bugs have been resolved. For those reasons, you generally won’t find a

crazed rush of DBAs migrating all their production systems to the initial release of any soft-

ware. Normally, they will get a copy of the new software and then take a few months to “play”

with it and become familiar with the new features. In the meantime, Oracle will have a chance

to come out with the next release and provide the first set of patches to fix any bugs. This con-

servative approach regarding new software is the more common and recommended one.

Ultimately, the time will come when you feel you’re ready to start using the new version. By

this point, you should know and understand its new features. Whether via structured training or

simply on your own, you should be familiar with all the new features and be aware of which

preexisting features have been modified or are no longer supported in the new version.

Preferably, you should also have had the new version running on testing and development

servers for some length of time. This way, you gain hands-on experience with the new data-

base before using it on your production systems.

The next section examines some of the issues you need to consider when migrating databases

to production systems.

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

397

I will still call this process a migration because you are moving from version to version

but it’s a good idea to note that Oracle documentation and the ODMA calls it an

upgrade. Regardless of what you choose to call it, the main focus of this chapter is on

using the ODMA tool to move your database from 8.1.6.1 to 9.0.1.

Preparation
You shouldn’t migrate your production systems on a whim. Rather the migration process

should be carefully planned and tested. This section discusses some of the issues involved with

migrations.

Planning
Treat migrating a production system like a project. You should consider the system-wide

impact of migrating the database. Remember that the database interfaces with and depends on

the Unix server, the application, and the Web. A change in the database can impact any of the

other areas. You need to make certain you understand the impact on these other components.

Consider, for example, these questions:

• Is the new database version compatible with the operating system version and do any

patches need to be applied to either? Oracle’s MetaLink has a Certification Matrix under

the Project Lifecycle section that tells you whether your database/OS combination is cer-

tified and whether there are any known issues. I have run databases in uncertified config-

urations, but I knew there were potential consequences. You need to be aware that you’ll

receive limited support if you run into bugs because you are using an unsupported con-

figuration. You also need to determine whether the new database will even work on your

current operating system and whether the SA needs to perform any operating system

upgrades or apply any patches.

• Is the new database version compatible with the application software? Many COTS

(Commercial Off The Shelf) and GOTS (Government Off The Shelf) products are certi-

fied for a specific database version. In these cases, the DBA cannot upgrade or migrate

the database until the application is certified for a higher version or release. If the appli-

cation is in-house, the DBA might have some influence to get it certified. However, if

someone else owns the application, the DBA might be at the mercy of the vendor. Many

of the Oracle 7.3.4 databases in existence today fall into this category.

• Are there other version-dependent interfaces? Is there a Web interface that is version

dependent? What about the backup software? These are examples of site-specific issues

that the DBA must address before moving forward with a migration.

There are several distinct types of testing that should take place before any migration:

database, application, and migration testing.

Database Testing
Obviously, the DBA should be focused on the new database’s characteristics. I’m a strong

believer in DBAs going to “new features” training because it benefits the company. It does no

Oracle DBA on Unix and Linux
398

good for Oracle to provide new features if the DBAs and developers don’t know they exist.

LogMiner is a great example of this. Many experienced DBAs do not know that they can use

this tool to undo changes in the database or determine who made changes. They might be

tempted to use tablespace point-in-time recoveries or restore from old exports to undo changes

that can easily be done with LogMiner. However, unless the DBAs know about these features

and are skilled enough to use them, they might as well stay with their old version of Oracle. In

cases like this, the only reason to move to a new version is because of inherent improvements

inside the database that don’t require DBA expertise.

Ideally, you have installed the database on a testing or development box and worked with the

new features so you know and understand the new features. Also be sure to review posts on

Technet and MetaLink so you’re familiar with any issues regarding the new database.

The next step is to set up the database as it will be used in production. This is where a test or

development box is essential. By setting up the new database environment so that it mirrors the

production environment, you can discover any problems. Additionally, you can test the new

features of the database to see how they can be incorporated into your production environment.

For example, be sure to consider any issues with locally managed tablespaces and the applica-

tion. Here, you can test the new features to determine which ones you’ll use in the production

environment.

Application Testing
The chapter has discussed situations in which the DBA cannot upgrade because the application

won’t be certified with a higher version. However, even when your database will be certified,

you still need to perform rigorous testing, particularly when you’re using homegrown applica-

tions. Structured testing should include:

• Functionality Does the application still work? If you encounter problems, are they

because of the database change or were they there originally? I worked on one database

upgrade in which several application bugs were discovered only because we were per-

forming the first real test cases executed in years.

• Performance Is application performance better, worse, or the same? Common sense

dictates that a newer database should make the application run faster, but that isn’t

always the case. Have you reanalyzed your database tables under the database version?

Are there changes in the optimizer or execution plans under the new database? Any of

these can impact application performance even without changing a line of code.

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

399

Test for Performance
I once received an urgent flurry of emails from a DBA at a company I had once

worked for. He had just migrated from Oracle 7.3.4 to Oracle 8i (I don’t remember

• New features Is the application taking advantage of any of the database’s new fea-

tures? If so, are they providing tangible improvements? Many of the enhancements inside

the database will improve overall performance and don’t need to be specifically added to

the application. Other improvements, such as changes in PL/SQL, must be added directly

into the application. If you are lucky enough to have Oracle-savvy developers, you can

take advantage of new features more readily.

Those are the main areas to look for in terms of application testing. Typically, the DBA will

work with the developers and/or the vendor to make sure the application is ready for the new

database. Normally, the DBA doesn’t have the background or familiarity with the application

to make this judgment alone. Therefore, use the expertise of your developers, testers, and ven-

dors to make sure your application runs successfully.

Migration Testing
Although testing the application and planning for the migration is essential for success, per-

forming the actual database migration is the main focus of this chapter. It focuses mainly on

using the ODMA tool, but whatever method you use should be tested several times. This

should actually come as a natural part of your application testing. For example, if you have

testing, development, and production databases, it makes sense that you will have performed

Oracle DBA on Unix and Linux
400

the version) and performance was absolutely horrible. He had spent an entire week-

end trying to find the problem. He was concerned that the migration had failed in

some respect so he emailed me.

I hadn’t been at that company for a while and I wasn’t there for the migration so I

didn’t really know where to start. I asked him whether there were any obvious error

messages, which there weren’t. I also asked him whether he had analyzed his tables

after the migration. It turns out that was the problem (although to his credit he

thought of that just as I was sending him the email). He never analyzed his data

tables after the migration. This must be done because after a migration all your sta-

tistics are worthless. After he reanalyzed the tables, his system’s performance was

great and he was off the hook.

Because I wasn’t there to witness how he preformed the migration, I really don’t

want to make assumptions about his planning. However, the nature of the error sug-

gests he probably did not test his application much for performance before he

migrated. Although the technical problem had to do with failing to use ANALYZE

after the migration, the bigger problem probably had to do with not thoroughly

preparing for the migration.

the migration on the testing and development databases before you migrate the production sys-

tem. Just make sure that you document your procedure and note any issues so when you do it

for real there won’t be any surprises.

After you have tested the database, application, and the actual migration processes, it is time to

go live. Just like when performing upgrades, you need to schedule for the downtime. Depending

on the migration method, downtime can be relatively minor if the database is migrated in place

or it can take many hours if the database is created via export/import. However, do not forget to

factor in the time for a backup because it is reckless to perform a migration without a backup

first (unless you are using the export/import method). There is also the time required to verify

that the migration was successful and the application is successfully restarted. Backups after the

migration are also a good idea. Experienced DBAs will also factor in time to fix minor prob-

lems as they occur. This is normally performed late at night or over a weekend.

Migration Methods
The DBA has several methods available to migrate a database. The most common three are

using export/import, mig utility, and ODMA.

Export/Import
You should already be familiar with the export and import tools. They were covered in Chapter 8,

“DBA Utilities.” You already know that you can use an export DMP file to move data and

objects from one database to another, but additionally these databases do not have to be the

same version. You can use your DMP file to import into a higher version database or even a

lower version database in the event of a downgrade.

Key benefits of using export and import include:

• Conceptually simple for the DBA to understand.

• All objects are rebuilt thus improving performance. This includes indexes and Oracle 7

ROWIDs. Fragmentation is also reduced.

• This is an opportunity to reorganize tablespaces and disk layouts because the target is a

different database.

• Selected portions of the database can be migrated and unneeded portions can be left

behind.

• The source database still remains available.

• If the process fails, it can be reattempted with relatively little penalty.

• There is no need to take a full database backup before the migration.

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

401

Potential drawbacks using export and import include:

• The process takes a long time. There are ways to speed up the process, but there is no

way to make it run as quickly as other migration methods.

• There is a chance of users, objects, roles, privileges, and database links being “missed”

depending on the level of export/import used.

• The export must be consistent and transactions must be propagated to the new system so

activity against the source database effectively stops after the export process begins.

For moving schemas from one testing or development database to another when time is not a

factor, I like export/import. I’m already very familiar with it and as a result I know how to

optimize its use. Plus I get the performance gains of rebuilding the objects. For those reasons,

export/import is sometimes a good option.

There are not too many drawbacks to export/import, but those that exist are big. The single

largest problem is the huge amount of time it takes to export one production database and

import it into another. Many organizations simply cannot afford the time to do this.

Oracle DBA on Unix and Linux
402

Upgrade and Rehosting with Export/Import
One of the first production systems I moved was using export/import. We wanted to

move the system off the old server to a new server running a newer operating sys-

tem. We also wanted to perform a database upgrade in the process. The method I

selected was export/import.

Predictably, the export/import process took many hours to complete. However, every-

thing was moved successfully. Because of a combination of new hardware and

rebuilding the database, production batch jobs were much faster than before. In fact,

originally we thought something was wrong because they finished in about one third

the time. Obviously the new hardware helped, but rebuilding the database also con-

tributed to the amazing increase in performance.

mig
mig is a command-line Oracle migration utility that you can use to migrate Oracle 7.3 data-

bases. This tool is actually called from the ODMA, but you have more control over the data-

base-migration process by using this utility.

This utility has several steps. The benefit of this staged approach is that you can stop the

migration process any time before the ALTER DATABASE CONVERT statement. Typically, after

you start the ODMA, you are committed to going forward.

Ultimately, you get a binary file with the convert information stored in it. After you issue the

ALTER DATABASE CONVERT statement, Oracle uses this file to create an Oracle 9i data dictionary

and then update the data file headers and the control files. Notice that the data itself is not

actually modified. After the database is migrated, you have to perform some cleanup steps,

such as eliminating old init.ora parameters, creating a soft link in the correct $ORACLE_HOME/

dbs directory, and recompiling all your invalid objects.

ODMA
Oracle Data Migration Assistant walks you through upgrading or migrating a database. This

GUI actually invokes the mig utility, but the GUI makes it much easier to use.

You can use ODMA to migrate Oracle 7.3 databases as well as Oracle 8 and 8i databases.

After the database is migrated, the GUI will offer to run utlrp.sql to recompile your PL/SQL,

update your listener.ora, and remove obsolete parameters from your init.ora file.

We have covered the basics of each tool available. Ultimately you must choose the best method

for your situation. Factors influencing the type of method used are discussed next.

Version of the Source Database
If database has the older ROWID type from Oracle 7, is badly fragmented, or has indexes in

need of being rebuilt, using export and import is a valid option. The newer ROWID will pro-

vide benefits, but this doesn’t happen if the database is migrated in place. Also, performance

can significantly be improved by rebuilding all the database objects. Although export and

import take longer, they will likely pay for themselves in performance gains.

Time Available to Perform the Migration
Some shops have stringent uptime requirements that cannot be relaxed, even for migrations. If

this is the case, export and import won’t do. Furthermore, the mig tool might not be an option

because it is not as fast as ODMA.

Remember, the time needed to perform the migration is determined by the number of data dic-

tionary objects to be updated, not the size of the data files. Therefore, you can’t use the size of

the actual database as an accurate gauge to determine downtime. However, the size of the data-

base is a factor when performing a backup before the migration. The best way to calculate a

time estimate is by determining how long your migration tests take.

Skill of the DBA
The skill of the DBA performing the migration is a factor. Every DBA is a beginner at some

point; perhaps it’s your first time migrating a database. As long as you test your processes and

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

403

have prepared adequately, this shouldn’t be a problem. The only recommendation I have

specifically for less experienced DBAs is to use either export/import or the ODMA tool.

Typically, any DBA is already familiar with export/import so using this method to migrate a

database shouldn’t be difficult conceptually. The biggest points here are to optimize the speed

of the export/import process and to make sure that all users, roles, privileges, and objects are

indeed moved to the new database.

ODMA is probably the easiest migration method of the three. Assuming you know how to use

the OUI to install Oracle, you can use the DBCA to generate database CREATE scripts, and

have an understanding of the migration process, you can likely use the ODMA successfully.

Using ODMA
This section shows an example of using the ODMA tool to move from an 8.1.6.1 database to a

9.0.1 database.

Overview
This section assumes the Oracle 9i software has been successfully installed in a separate ORA-

CLE_HOME. Furthermore, it assumes that you are not running Oracle Replication or OPS

(renamed Real Application Clusters in 9i). If you are running replication, you need to make

sure you don’t still have any distributed transactions before the migration. As for OPS/RAC,

the ODMA doesn’t support migrating OPS/RAC. For this, you would need to use the mig tool.

Oracle DBA on Unix and Linux
404

Migrating to a Base Release

Oracle documentation states that it only supports migrating to a base release without

patches. For example, 8.1.6.0 is okay, but 8.1.6.2 isn’t supported. Why? Oracle doesn’t

know how many patches it is going to release before a version comes out and it

doesn’t go back and retest direct migrations to every conceivable patch release.

This puts the normal DBA in a bind because theoretically you have to live with all

bugs for a release until all your databases are migrated. Only after all the databases

have been migrated can you patch your base release with approval from Oracle.

No doubt this will cause many DBAs to consider patching their databases to the level

they need and then performing the migrations anyway. Theoretically I don’t see why

this would be a problem, except that Oracle says you’re acting in an “unsupported”

manner. However, I cannot recommend that you migrate your databases in an unsup-

ported manner either. All I will say is that whatever you do, make sure you test it

thoroughly before attempting a migration on your production systems. Make sure, as

always, that you have valid backups.

NOTE

Migration Steps Using ODMA
The following example uses ODMA to migrate (or upgrade, using Oracle terminology) an

Oracle 8.1.6.1 database to Oracle 9.0.1. In reality, the migration process for 8i to 9i is more

like an upgrade (basically running scripts) than from Oracle 7.3 to 9i. You’ll see where the two

paths diverge once you’re inside the tool.

The migration process can be broken into three steps: preparing the database, using ODMA to

migrate the database, and performing post-migration checks.

Preparing the Database
Before you migrate your database there are certain steps that you need to perform, as follows:

1. Modify the following init.ora parameters:

DB_DOMAIN = mike.com

(Your domain name will be different.)

JOB_QUEUE_PROCESS = 0

AQ_TM_PROCESSES = 0

REMOTE_LOGIN_PASSWORDFILE = NONE

These parameters are modified to stop advanced queuing, replication, and prevent the

need for a password file. Make sure your DB_DOMAIN is properly set as well. After the

migration is complete, you can reset the parameters and re-create the password file.

2. Increase the size of the SYSTEM tablespace so both data dictionaries can exist simulta-

neously during the upgrade. I usually like to have large SYSTEM tablespaces anyway,

but make sure you have at least 100M free.

SQL> select file_name, bytes from dba_data_files

2 where tablespace_name = ‘SYSTEM’;

FILE_NAME BYTES

------------------------------ ----------------

/u02/oradata/demo/system01.dbf 246,022,144

SQL> select sum(bytes) from dba_free_space

2 where tablespace_name = ‘SYSTEM’;

SUM(BYTES)

720,896

SQL> alter database datafile

2 ‘/u02/oradata/demo/system01.dbf’

3 resize 400M;

Database altered.

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

405

3. Prepare the rollback segment inside the SYSTEM tablespace. You don’t want this to

blow out in the middle of your migration nor do you want it to shrink. Give it the maxi-

mum limit of 505 extents, turn off OPTIMAL, and set the PCTINCREASE to 50%.

SQL> alter rollback segment system

2 storage (maxextents 505 optimal null next 1M);

Rollback segment altered.

SQL> alter tablespace system default storage (pctincrease 50);

Tablespace altered.

4. Make sure that the default and temporary tablespace for SYS and SYSTEM is SYSTEM.

Most DBAs will change the temporary tablespace to avoid fragmenting the SYSTEM

tablespace and others will move SYSTEM’s default tablespace to TOOLS. During the

migration, you need them both back inside SYSTEM. Also, if you moved SYS.AUD$

outside of SYSTEM tablespace, you must move it back.

SQL> alter user sys default tablespace system

2 temporary tablespace system;

User altered.

SQL> alter user system default tablespace system

2 temporary tablespace system;

User altered.

5. Make sure you do not have a database user called MIGRATE. This user is created and

dropped during the migration process by ODMA. If you have this user, export and then

drop the schema. You can bring the user back into the database after the migration.

SQL> select username, created from dba_users

2 where username = ‘MIGRATE’;

no rows selected

6. Check whether you have a user named OUTLN. This user is created automatically in

Oracle 8i onwards, so if you are already running 8i it is okay to have it. If you are run-

ning a previous version, such as Oracle 7, you need to export and drop this user, and then

reimport it into another schema. Because this example is running 8i, it’ll show this user.

SQL> select username, created from dba_users

2 where username = ‘OUTLN’;

USERNAME CREATED

------------------------------ ---------

OUTLN 17-APR-00

Oracle DBA on Unix and Linux
406

7. Ensure that you do not have any data files that need recovery. Although it is doubtful that

you would be performing a migration if your database needed recovery, some inexperi-

enced people might think that by going to a newer version they can recover their data-

base easier.

SQL> select * from v$recover_file;

no rows selected

8. Shut down the database normally and exit. Technically a SHUTDOWN IMMEDIATE

will work, but I feel safer with a normal SHUTDOWN.

SQL> shutdown;

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> exit

Disconnected

9. Take a cold backup of your database. If something goes wrong during the migration, you

will need this backup in order to recover. Do not skip this step.

Most of these preparatory steps are geared for migrating an Oracle 7 database, which is more

involved than migrating an Oracle 8i database. However, nothing you’ve done here will harm

your Oracle 8i database, so you are now ready to proceed with the migration.

Use ODMA to Migrate
This series of steps comprises the actual migration:

1. Set up your environment to reflect the new software and ORACLE_HOME. Also set up

your DISPLAY as if you were going to run the OUI. The ODMA is a Java GUI, so you

will need the same settings as for running OUI.

2. Start the ODMA in the new $ORACLE_HOME/bin.

$ cd $ORACLE_HOME/bin

$ odma

3. After a few seconds a Welcome screen should appear, as shown in Figure 15.1. Click

Next.

4. The next screen lists a few requirements to consider before attempting to migrate or

upgrade, as shown in Figure 15.2. Click Next.

5. The next screen asks you to select an instance. This is generated by examining the oratab

file, so make sure the database you want to migrate to is listed there with the current

(premigration) version. Here, you want to select the demo database, as shown in

Figure 15.3.

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

407

FIGURE 15.1
ODMA Welcome Screen.

Oracle DBA on Unix and Linux
408

FIGURE 15.2
Before You Migrate or Upgrade.

6. ODMA will ask you to confirm both the old and new ORACLE_HOME. It will also ask for

the location of the init.ora file, which should be in the old $ORACLE_HOME/dbs

directory. This is shown in Figure 15.4.

FIGURE 15.3
Select an Instance to Migrate or Upgrade.

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

409

FIGURE 15.4
Verify the ORACLE_HOME Directories and the init.ora Location.

The ODMA will pause for a few seconds; you’ll see a message stating that it is getting

database information.

7. You can now choose a migration type: Default or Custom. The biggest benefits of the

Custom option are that it allows you to change the database name and National Character

Set. Select the Default option, shown in Figure 15.5.

FIGURE 15.5
Select a Default Migration.

8. ODMA will ask you if you have backed up your database. If you have, click Next, as

shown in Figure 15.6.

Oracle DBA on Unix and Linux
410

FIGURE 15.6
Have You Backed Up Your Database?

9. The next screen, shown in Figure 15.7, asks you if you are ready to start the migration or

upgrade. Verify that the settings are correct and then click Next if you are ready to proceed.

FIGURE 15.7
Start the Migration.

10. ODMA will ask you one last time if you are ready to continue. It specifies that, if neces-

sary, it will use SHUTDOWN IMMEDIATE to shut down the database. Select Yes to

continue.

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

411

FIGURE 15.8
Shut down the Database.

11. The ODMA provides a status of the migration or upgrade as it occurs; see Figure 15.9.

You can expect the migration or upgrade to take about 20 minutes to an hour. Remember,

the ODMA is primarily working with the data dictionary inside the SYSTEM tablespace,

not the actual data in your tables. Therefore, use the number of objects in your SYSTEM

tablespace to estimate how long it will take, not the database’s size in gigabytes.

12. The ODMA will offer to update the database entry in the listener.ora with the new ver-

sion. You can do this manually later if you prefer.

13. The final screen will note that the process is complete. When you are done, click Finish

to exit the tool.

The migration process should now be completed. Next, you need to perform the post-migration

tasks.

Oracle DBA on Unix and Linux
412

FIGURE 15.9
ODMA Status

Post-Migration Tasks
In the best case, all went well with the migration. If there was a problem during the process,

you might have to restore from your backups. However, even if everything appeared to go as

planned, you have to perform the following steps. Notice how these steps are very similar to

the ones you perform after an upgrade:

1. Check the logs in $ORACLE_HOME/assistants/dbma/log/demo directory. Use grep as a

quick way to search for Oracle errors as follows:

$ pwd

/u01/app/oracle/product/9.0.1/assistants/dbma/log/demo

$ grep -i ora- *

2. During the migration, the ODMA examines the old init.ora, removes obsolete parame-

ters, and places this revised copy in the new $ORACLE_HOME/dbs directory. This is the

actual file; it is not a soft link. The old copy with obsolete parameters will still exist in the

$ORACLE_BASE/admin/SID/pfile directory and the soft link in the old $ORACLE_HOME/dbs

will also exist.

Make a backup copy of the old init.ora and then delete the original. Then remove the

soft link in the old $ORACLE_HOME/dbs. These steps are necessary because you want to

reduce the possibility of the database being restarted with the old software.

$ cd $ORACLE_BASE/admin/demo/pfile

$ ls

initdemo.ora

$ cp initdemo.ora initdemo-816.ora

$ rm initdemo.ora

$ cd /u01/app/oracle/product/8.1.6/dbs

$ ls -l initdemo.ora

lrwxrwxrwx 1 oracle dba 45 Feb 17 10:44 initdemo.ora ->

/u01/app/oracle/admin/demo/pfile/initdemo.ora

$ rm initdemo.ora

Next, move the revised init.ora in the new $ORACLE_HOME/dbs to the $ORACLE_BASE/

admin/SID/pfile directory. Then, create a soft link in the new $ORACLE_HOME/dbs to

the init.ora in $ORACLE_BASE/admin/SID/pfile. This way the updated init.ora will

always be used.

$ cd $ORACLE_BASE/admin/demo/pfile

$ mv /u01/app/oracle/product/9.0.1/dbs/initdemo.ora .

$ ls

initdemo-816.ora initdemo.ora

$ cd /u01/app/oracle/product/9.0.1/dbs

$ ln -s $ORACLE_BASE/admin/demo/pfile/initdemo.ora .

$ ls -l initdemo.ora

lrwxrwxrwx 1 oracle dba 45 Jul 3 21:27 initdemo.ora ->

/u01/app/oracle/admin/demo/pfile/initdemo.ora

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

413

Server Parameter Files

Oracle 9i allows you to replace the text-based init.ora file with a binary copy called

an spfileSID.ora. You can create the SPFILE or you can continue to use the text-

based init.ora file. The benefits of using this new type of file and how to create it are

covered in Chapter 19, “9i Server New Features.”

NOTE

3. Review the init.ora; the ODMA should have removed obsolete parameters. You can use

diff to compare the files.

$ diff initdemo-816.ora initdemo.ora

4. Set the COMPATIBLE parameter in the init.ora to represent the new version. Notice that

this value is not automatically updated by the ODMA. In this case, you need to set it to

COMPATIBLE = 9.0.0.

5. Start the database using the new Oracle software, as shown in Figure 15.10. Use

STARTUP RESTRICT to prevent other users from logging in before you have verified

that the migration was successful.

Oracle DBA on Unix and Linux
414

FIGURE 15.10
Start the Database with the New Software.

Notice how you have to use sqlplus “/ as sysdba”? That is because connect internal

is no longer supported and will not work in 9i.

6. Check the alert log for errors.

$ pwd

/u01/app/oracle/admin/demo/bdump

$ ls *alert*

alert_demo.log

7. Run $ORACLE_HOME/rdbms/admin/utlrp.sql to recompile invalid objects.

SQL> @$ORACLE_HOME/rdbms/admin/utlrp.sql

8. Check for invalid objects manually and recompile them as needed. Use Dynamic SQL,

as covered in Chapter 5, if needed.

SQL> select owner, count(*) from dba_objects

2 where status = ‘INVALID’

3 group by owner;

OWNER COUNT(*)

------------------------------ ----------

CTXSYS 3

MDSYS 15

ORDSYS 159

SYS 216

9. Check the status of your indexes. Look for any bitmapped indexes rendered unusable

because of the migration. Rebuild them if necessary.

SQL> select owner, index_name, table_name from dba_indexes

2 where index_type = ‘BITMAP’ and status = ‘UNUSABLE’;

no rows selected

Next look for any function-based indexes that might have been disabled or made unus-

able as well.

10. Use ANALYZE to reanalyze all your tables and indexes. You should have scripts and/or

cron jobs to do this normally.

11. Shut down the database and perform another cold backup.

12. Verify that oratab and listener.ora reflect the migrated database. The ODMA should

automatically modify your oratab file. Depending on what you selected in Step 11 of

the migration, it might have also modified the listener.ora.

13. Restart the database and verify the application is running properly. If it is, open it for

normal use.

Assuming all went well, you now have a solid Oracle 9i database!

Summary
This chapter covered migrations. A migration involves moving to a higher version of Oracle.

The first part of this chapter discussed the planning portion of the migration. It is important to

have a tested migration plan before attempting a migration. Testing the database, application,

and migration steps is essential to a successful migration. Each piece of the system should be

tested against the new database to make sure it works reliably and with acceptable perfor-

mance. If you skip this testing process, your system can be a mess even if your database

migrates successfully.

The second half of the chapter discussed the three methods used to migrate a database:

export/import, mig, and the ODMA. Factors influencing the choice of methods were discussed.

The chapter then explained how to use ODMA to migrate from Oracle 8.1.6.1 to 9.0.1.

Migrations

CHAPTER 15

15

M
IG

R
A

T
IO

N
S

415

CHAPTER

16
Java Inside the Database
Server

ESSENTIALS

• Java is the language that provides scalable

Internet development.

• Oracle has chosen to tightly integrate Java

with the database.

• Java programs can exist outside or inside the

database.

• The DBA must understand how to deploy Java

outside the database and support the Java

developers.

• The DBA needs to load Java programs and

manage Java objects within the database.

Oracle DBA on Unix and Linux
418

Java is more than just another programming language; it is one of the building blocks of

Internet computing. Just as TCP/IP is the standard for telecommunications and networking,

Java is emerging as the language of the Internet. Because a large part of any vendor’s future,

including Oracle’s, is tied to the Internet, it is not surprising that Oracle databases are built to

be integrated with Java.

The goal of this chapter is to explain what the DBA needs to know about Java. It does not

teach you how to write Java programs nor does it make you an Internet developer. These topics

require an entire book to address it appropriately. Rather, this chapter is geared toward the

DBA encountering Java for the first time. First, it discusses some of the Java technologies and

how they can be deployed both inside and outside the database. This chapter serves to demys-

tify Java so that you can focus on the tasks that you need to perform. The next part of the chap-

ter provides hands-on examples of how to configure Oracle to support Java. It shows you how

Java is built into the database, how to write Java programs to access the database, and how to

deploy Java components inside the database.

Understanding the Role and Future of Java Inside
Oracle
Anyone involved with computers or the IT industry knows that the Internet is the key to stay-

ing competitive. Every computer vendor certainly knows this. As a result there has been a mad

rush for several years to “Web-enable” virtually every aspect of computing. Oracle has

embraced this idea and has gone to great lengths to make its database accessible and support-

ive of the Internet.

Oracle created several new products and restructured others to support this initiative. These

products include:

• WebDB This is Oracle’s easy and lightweight method to Web-enable its database. This

PL/SQL-based product is now called Oracle Portal. It is now being packaged with iAS.

WebDB is covered in Chapter 17, “WebDB/Oracle Portal.”

• Oracle Application Server Oracle first created Oracle Application Server (OAS) to

provide Web-based access into the database. This PL/SQL-driven product is being retired

with a terminal release of OAS 4.0.8.

• Internet Application Server Oracle’s follow-up to OAS is iAS. This Java-oriented

application Web server is covered in Chapter 18, “Internet Application Server.”

• Internet File System Oracle now allows you to store any type of file that normally

resides on a typical hard drive inside your database. These files appear to the user as if

they are on a network drive, but in reality they are stored within an Oracle database.

Users access and edit their files as normal, for example using Windows Explorer.

However, because the files are inside the database, they can use all the indexing, locking,

and backup features associated with Oracle databases.

• JDeveloper Oracle built an integrated Java development tool called JDeveloper. This

development tool allows programmers to quickly create Java programs.

• Oracle Database Starting with Oracle 8i, a Java Virtual Machine exists inside the data-

base. This allows Java programs to run inside the database. Furthermore, Java can now

be used instead of PL/SQL. Finally, Java entry points into the database via JDBC and

SQLJ are supported.

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

419

Changing Role of the DBA
These are quite a few changes involving Java, and more are likely coming. Although

you don’t have to know how to program Java, you do have to know how to support

it. It’s a very similar situation to what PL/SQL are currently. Some of the most effective

DBAs aren’t PL/SQL programming experts,but they know how to support their devel-

opers. The same holds true for Java. Just as you need to know what a PL/SQL trigger

is, you need to know what an Enterprise Java Bean (EJB) is. Fortunately, if you already

understand Oracle databases and PL/SQL, you should also be able to understand Java

without too much trouble.

Unfortunately, Java, its related technologies, and the product names change much

faster than Oracle and PL/SQL. Some of these changes reflect new technologies,

whereas other changes are little more than marketing and sales ploys. For example,

here are just a few name changes.

• Oracle Internet file system is now Oracle9i file system

• Oracle Portal is now Oracle9iAS Portal

• Oracle 8i JVM is now Oracle Enterprise Java Engine (EJE)

Keep in-mind these changes are just within Oracle! Other vendors change their

names too. Regardless, you need to learn how Java plays a role within your environ-

ment and keep current with it. Although PL/SQL and “traditional” DBA work will still

exist for years to come, those skills will become less valuable. COBOL and mainframe

positions can still be found today, for example, but they don’t usually pay as well as

positions that deal with newer technologies.

NOTE

Obviously, Oracle has invested a great deal of time and money into developing these Java-

enabling products. These products keep changing with each release so trying to stay on top

each product can be a full time job. Fortunately, you don’t have to be a world class Java

programmer or Webmaster. However, you should be familiar with the technologies involved

and understand how they are deployed. Furthermore, at the points at which they interface with

your database, you do need to be an expert.

Java Overview
To learn about Java, the language, architecture, and its components, start by visiting

www.java.sun.com. There you can find everything you need to get started, including software,

tutorials, and white papers. Pay particular attention to the J2EE (Java 2 Enterprise Edition)

specification and white paper. This paper outlines the Java architecture and specifications that

inherently have a longer life span than many of the product names pushed by vendors. After

you learn the fundamentals, learning the vendor-specific details is much easier. However, there

are a few concepts and terms you should understand.

From a programming standpoint, Java is a highly portable, object-oriented (OO) language.

Basically you can write it on any platform and run it on any other platform. Concepts of

object-oriented programming are well beyond the scope of this book, but it is a powerful para-

digm of programming and design that every IT professional should understand.

One of the confusing concepts about Java is that it can be deployed everywhere. If you take a

simple three-tier architecture, as shown in Figure 16.1, you will see that Java can exist on

every tier.

Oracle DBA on Unix and Linux
420

Web Application Server Database Server

Oracle 8i or 9i

Database

w/JVM

Client PC

Web Browser

Java Server

Pages

Client PC

Web Browser

Servlets

Client PC

Web Browser

JavaScript

Java Stored

Procedures

Functions

Triggers

Enterprise

Java Beans
HTTP

Listener

Java Beans

SQLJ converted

into JDBC

JDBC

HTTP

HTTP

HTTP

FIGURE 16.1
Java Deployment

This section explains each Java term. The middle tier is discussed in Chapter 18. The key point

here is to understand that Java can exist on many different tiers. You don’t have to set up your

environment to use Java on the client, application/Web server, and database. In fact, you most

likely will not use all the technologies identified in Figure 16.1. However, you need to know

the differences between having Java in the client, the middle tier, or the database.

There are a plethora of Java terms flying around that you should be familiar with. Here is an

explanation of the most common ones.

• Applet A Java program that is downloaded and executes on a client’s browser.

• Java Virtual Machine The Java Virtual Machine (JVM) is the virtual machine and

environment Java programs run in. This is described in greater detail later in this chapter.

• Java Bean A Java bean is a piece of Java code on the middle tier. It can be graphical,

lightweight, and accessed by Java Server Pages (JSP).

• Enterprise Java Bean An Enterprise Java Bean (EJB) is a reusable, robust, scalable

piece of Java code typically on the middle tier. It is not the same as a Java bean. There

are two types of EJBs: session beans and entity beans. Session beans exist to serve one

client and are not persistent across multiple sessions. Within that session they can be

stateful (retaining information between calls) or they can be stateless (no information is

retained between calls). Entity beans are persistent and do maintain information. For

example, an entity bean can be mapped to an object, such as a customer, that exists

longer than one session.

• Servlet A servlet is a lightweight piece of Java code that resides in an HTML Web

page, but runs on the server. Basically, it is an applet that runs on the server side. This

code is executed based on actions by the Web user.

• Java Server Page A Java Server Page (JSP) is a tag in an HTML page that compiles

into a servlet when executed. Because it is only a tag in a Web page, it doesn’t appear as

Java code to the HTML developer.

• JavaScript JavaScript isn’t really Java. It is just a scripting language for use within

HTML pages.

These are certainly a lot of terms that might seem foreign to you if you’re new to Java or the

Web. However, examining a diagram of your system’s architecture to determine where Java is

deployed will help demystify the whole Java/Web environment. Once you do this, you can

manage it using similar principals used in any other environment.

Just as you do with any system, you need to identify the inputs and outputs related to the data-

base and server. Although you might have a Web server between the users and database, you

are still just dealing with connections into your database. In the case of Figure 16.1, these are

JDBC connections into your database. Once a connection is established, SQL requests are hit-

ting your database in a manner similar to any other connection.

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

421

Supporting Java with Oracle
Rest assured that you don’t need to be a Java programmer any more than you already are a

PL/SQL developer. Although advanced skills in the respective languages are helpful, they

aren’t absolute requirements. However, there are some things you need to know about support-

ing the language and your developers. Among these are knowing where your program code

resides and how it interfaces with the database.

Java Outside the Database
Java code commonly resides outside the database. Sometimes the code resides in a Web appli-

cation server, other times it is standalone. However the need to access data inside a database is

still present. Since Oracle 7.3.4, Java can make SQL calls to a database. The two ways to do

this are by using JDBC or SQLJ.

JDBC
Java Database Connectivity (JDBC) is an open method that allows Java programs to issue SQL

statements to any database, not just Oracle. Conceptually this is similar to ODBC (Open

Database Connectivity) calls. Within the Java program, a JDBC code segment requests a con-

nection to the specified database and issues a SQL statement. The statement is issued and

results are returned to the program. This is a common method for interfacing with a database.

Oracle 8.1.6 and 8.1.7 databases comply with the JDBC 2.0 standard. There are three types of

JDBC drivers used with Oracle databases. The nature of the application you are using deter-

mines which driver you use.

• JDBC Thin Driver Connects a Web browser to the database. The key to this driver is

that it does not require any Oracle network software (such as Net8) to be installed on the

client. This allows the clients to be “thin” because they are just Web browsers. However,

this lightweight method should not be used for SQL-intensive operations.

• JDBC OCI Driver A more robust method of connecting to the database. Use this dri-

ver if you expect to be doing a lot of database calls. For example, if you have a Web

application server that continually accesses the database, this would likely be the driver

to use. The only drawback is that it requires Oracle Net8.

• JDBC KPRB Server Driver Used with Java stored procedures located within the

Oracle database.

Establishing a new JDBC connection, which is really a database connection, for each SQL call

is expensive from a performance standpoint. Some Web servers allow connection pooling to

avoid this expense. It’s important to identify how your developers are using JDBC to access the

database and to verify that they are using the right driver for the job.

Oracle DBA on Unix and Linux
422

SQLJ
SQLJ is essentially Java with embedded static SQL. In many respects it is similar to Pro*C

where a C program has embedded SQL statements. In fact, this product is sometimes referred

to as Pro*Java. When the program gets to the SQL statement, the SQL statement is trans-

formed into a JDBC call to the database. However, there are a few advantages to using SQLJ

over straight JDBC calls, outlined here:

• The syntax is reduced and is more readable. This makes development faster and easier.

• You can use bind variables in SQL statements to improve performance.

• A precompiler checks the SQLJ syntax before it is executed, unlike in JDBC. This

improves program debugging.

One drawback to SQLJ is that you cannot create dynamic SQL with it. This can only be done

with JDBC.

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

423

MTS Is Not Always Necessary
One common misconception of DBAs new to Java is that they think MTS (Multi-

Threaded Server) must be set up to run Java. That is only partially true. If you are run-

ning Java EJBs or CORBA servers inside the database, you must indeed configure and

run MTS.

However, if the Java code resides exclusively outside the database, MTS is not

required. For example, if you have a Web server containing EJBs that connect to your

database via JDBC, you can (and perhaps should) run in dedicated server mode. The

reason is that Java isn’t really being executed inside the database; all the database

sees are JDBC connections issuing SQL statements.

NOTE

Java Inside the Database
Oracle 8i is the first version to allow Java objects to exist inside the database, thanks to the

Oracle Java Virtual Machine (JVM), which is inside the database. (Actually, there is also a

JVM inside the iAS server, but this is discussed in Chapter 18.) To understand what this

means, you need to know a little about Java and its JVM.

JVM
Java programs are highly portable because they can be written on one platform and executed

on a different one. This provides a big advantage over other languages. The main reason they

are portable is that Java programs execute inside a Java Virtual Machine, which interfaces

between the executing program and the platform.

Towards this end, Oracle has seen fit to include a special JVM inside both its database and iAS

server. This JVM is tuned specifically to run within Oracle, which means it uses less memory

than a standard JVM. Each Java program that runs inside the database gets its own JVM in

which it executes. However, if your database had hundreds of Java programs running simulta-

neously, the required memory would likely exceed what was available. Oracle reduced the like-

lihood of this by reducing the memory needed for each session. Requiring MTS to be set up

for Java running inside the database also reduces memory requirements.

Each new version of Oracle is compliant with different Java specifications and features. The

readme.txt found in $ORACLE_HOME/javavm/doc is the best source for up-to-date information,

but here are a few highpoints in terms of Java compatibility.

Oracle Version Compliant With

Oracle 8.1.5 Java 1.1

Oracle 8.1.6 Java 2.0

Oracle 8.1.7 Java 2.0

Oracle 9.0.1 Java 2.0

The JVM is compliant with different versions of Sun’s Java Developers Kit. The version of

JDK is dependent on the version of the database:

Oracle Version Compliant With

Oracle 8.1.5 JDK 1.1

Oracle 8.1.6 JDK 1.2.1

Oracle 8.1.7 JDK 1.2.1

Oracle 9.0.1 JDK 1.2.1

New in Oracle 8.1.7 is an improvement to the JVM called Oracle8i JVM Accelerator. This

enhancement allows Java bytecode to be compiled and executed as native compiled C code. C

code is faster than Java code, so this results in a performance improvement. Note that this does

not impact the platform independence or portability of the Java code.

Java Programs Used Instead of PL/SQL?
By running Java inside the database, you have a possible alternative to using PL/SQL. In fact,

just about anything you write in PL/SQL can also be written in Java. Functions, procedures,

and triggers can all be written in Java. This certainly provides you with some new options, but

it is also begs the question: “Do you really want to write in Java?”

Oracle DBA on Unix and Linux
424

PL/SQL handles SQL operations very well. It is proven, robust, has a large code base, and a

large skilled developer base. However, some tasks, such as interfacing with the OS, object ori-

entation, and intensive processing, are better done with Java.

You don’t have to choose to use either Java or PL/SQL; you can use both. Oracle has ensured

that you can call SQL and PL/SQL from Java. Also, SQL and PL/SQL can call Java, as

follows:

• Java calls SQL and PL/SQL via JDBC or SQLJ.

• SQL and PL/SQL have Java stored procedures placed in a PL/SQL wrapper so they can

be called.

Therefore, I recommend using the following guidelines when choosing between PL/SQL and

Java:

• If the task requires traditional database access, use PL/SQL.

• If the task does not require heavy database access and is more of a “number-crunching”

program, use Java. Starting in Oracle 8.1.7, Java programs can be compiled and executed

as very fast C code.

Oracle will likely continue to support PL/SQL. There is simply too much tied up in PL/SQL

already and not enough people trained in Java. Plus PL/SQL does its job of database access

and manipulation too well to justify converting to something else. I certainly wouldn’t start

migrating my PL/SQL programs to Java, but I would take a look at Java for new applications.

EJBs and CORBA Inside the Database
Oracle allows Enterprise Java Beans and CORBA servers to be loaded into the database and

executed. This comes in addition to having Java stored procedures, functions, and triggers.

There are several advantages to having these objects inside the database, including faster exe-

cution and reduced network traffic.

To support the use of EJBs and CORBA servers inside the database, you needed to configure

MTS. Each client session gets its own JVM and the connection to the database is managed by

MTS. Although EJBs inside the Oracle database are not themselves multi-threaded, this is not

a major issue because each client has its own JVM.

Starting with Oracle 8.1.7, Java Server Pages (JSPs) and servlets are also fully supported

within the database. These are made possible by incorporating the Java Server Pages Engine

and Servlet Engine inside the 8.1.7 database.

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

425

Managing Java Inside the Database
Although you might never be called to write Java code, I can almost guarantee that you will

have to support it at some point in your career as a DBA. This section covers some of the

hands-on duties of the DBA who supports Java. Specifically, it covers Java-specific init.ora

parameters, installing/uninstalling the Java option, writing and executing a simple Java pro-

gram, configuring MTS and IIOP for Java, and loading EJBs and CORBA servers.

Java Configuration Parameters
In Oracle 8i and 9i there are three init.ora parameters that specifically deal with Java.

SQL> show parameter java

NAME TYPE VALUE

------------------------------- ------- ----------

java_max_sessionspace_size integer 0

java_pool_size string 100M

java_soft_sessionspace_limit integer 0

SQL>

They are discussed in detail here:

• JAVA_POOL_SIZE Determines the size of the Java pool inside the SGA. This pool

acts similarly to the shared pool except that it stores shared Java objects in memory. If

you do not plan on using Java and want to conserve memory, you can set this value to 0

and Oracle will give it a minimum value of 32K. Otherwise, Oracle sets a default value

of 20M, which is sufficient if you are using Java-stored procedures, functions, and trig-

gers. However, if you are using stored EJBs and CORBA servers, this needs to be a

larger value. When you install Java for the first time give this pool a large value such as

100M.

• JAVA_SOFT_SESSIONSPACE_LIMIT This parameter is really just a threshold for

warning messages regarding memory usage by a Java session. If the memory usage for a

Java session exceeds this value, a message in the alert.log is written. The default is 1M.

• JAVA_MAX_SESSIONSPACE_SIZE This is the hard limit for the amount of mem-

ory used for a Java program. It is a higher value than

JAVA_SOFT_SESSIONSPACE_LIMIT. If a Java program exceeds this value, it is termi-

nated. The default is 4G.

In addition to these three parameters, you must make sure that the SHARED_POOL_SIZE is

sufficient. Oracle will use the UGA to store static Java variables so the shared pool must be

sized accordingly. Fortunately, shared pools are usually large anyway so this shouldn’t be a

problem. For the initial install of Java I set the shared pool to 100M.

Oracle DBA on Unix and Linux
426

Installing Java
Installing the Java option is not terribly difficult if you know what needs to be done. You must

install this option if you want to run Java inside your database. Depending on your version of

the database, there are between 8000 and 9000 Java objects. These are owned by SYS and are

in the SYSTEM tablespace. These objects compose the Java option. They can be loaded when

the database is created or afterward. Installing Java also results in the creation of the

DBMS_JAVA package and a minimum of two roles: JAVAUSERPRIV and JAVASYSPRIV.

To load Java, follow these steps.

1. Set up your database environment. Loading Java is a resource-intensive process and

takes about an hour. You do not want the process to fail halfway through because of a

lack of resources. The default parameters are not normally sufficient to load Java. I usu-

ally increase the parameters as follows.

JAVA_POOL_SIZE = 100M

SHARED_POOL_SIZE = 100M

DB_BLOCK_BUFERS = 35000 # Using 8K blocks

After you have loaded Java and verified it was successful, you can reduce these parameters.

2. Make sure you have enough free space. I make sure I have about 500M of rollback space

available and about 200M of free space in the SYSTEM tablespace. Use view

DBA_FREE_SPACE to verify that you have enough free space.

SQL> select tablespace_name, sum(bytes) from dba_free_space

2 where tablespacE_name in (‘SYSTEM’,’RBS’)

3 group by tablespace_name;

TABLESPACE_NAME SUM(BYTES)

------------------------------ ----------------

RBS 568,311,808

SYSTEM 230,023,168

SQL>

3. Get a count of invalid objects in the database before you run the script. This way, you

can identify any objects invalidated due to the script.

SQL> select owner, count(*) from dba_objects

2 where status = ‘INVALID’ group by owner;

no rows selected

SQL>

The install generates many messages, which will scroll past the screen. Start a spool file

to capture the output.

SQL> spool initjvm.lst

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

427

4. Connect internal (or as SYS) and run the script

$ORACLE_HOME/javavm/install/initjvm.sql.

SQL> show user

USER is “SYS”

SQL> @$ORACLE_HOME/javavm/install/initjvm.sql

...

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

SQL>

Just like any install, you might see some harmless errors stating that objects don’t exist

before they are dropped. Expect the install to run 30 minutes to over an hour. Once the

install is complete, stop spooling.

SQL> spool off

5. Once the install has completed, you need to take object counts and check for invalid

objects. If you find any invalid objects, use dynamic SQL to recompile them as explained

in Chapter 5, “Creating a Database.”

SQL> select owner, count(*) from dba_objects

2 where status = ‘INVALID’ group by owner;

no rows selected

SQL> select count(*) from dba_objects

2 where object_type like ‘JAVA%’;

COUNT(*)

8659

SQL>

You should see between 8000 and 9000 Java objects when you are done. You will have

some variation depending on the version of Oracle you are running. Anything less than

8000 likely indicates a problem.

6. Verify that you can see the package DBMS_JAVA.

SQL> desc dbms_java

...

FUNCTION UNIQUE_TABLE_NAME RETURNS VARCHAR2

Argument Name Type In/Out Default?

------------------------------ ----------------------- ------ --------

PREFIX VARCHAR2 IN

SQL>

Oracle DBA on Unix and Linux
428

Assuming that you can see DBMS_JAVA, you have over 8000 Java objects, and none on them are

invalid, you should be ready to start using Java inside the database. To get information specific

to your database version, refer to the file $ORACLE_HOME/javavm/doc/readme.txt for details.

Because each successive release of Oracle has increased support for Java, this readme.txt is

critical.

Uninstalling Java
There are rare times when you’ll actually want to uninstall Java. I have run across this on sev-

eral occasions. In one case, we didn’t want to allocate any memory to JAVA_POOL_SIZE. I could

have just set JAVA_POOL_SIZE to an insignificant value, but we wanted to make sure no one

would try to use it, so we decided to completely remove Java. On another really odd occasion,

full database exports were failing because so many Java objects were invalid (appearing as an

ORA-04030 error). Because we weren’t using Java at the time, we decided it was just easier to

remove Java than to fix the problem.

1. The driving script to remove Java is $ORACLE_HOME/javavm/install/rmjvm.sql.

Depending on your version of Oracle, you might have to make the following manual fix

to the script. On line 38, change the following

call rmjvm.run(true);

to

execute rmjvm.run(true);

Although this is a simple change, it is probably a good idea to make a backup of your

script before you edit any Oracle file.

2. Just as you did for the install, make sure there are several hundred megabytes of free

space in your rollback segments. During the uninstall, a rollback segment MONSTER

will be automatically created and then dropped once Java has been removed.

3. Connect internal (SYS) and run the script rmjvm.sql.

SQL> @$ORACLE_HOME/javavm/install/rmjvm.sql

...

set transaction use rollback segment MONSTER

delete from obj$

set transaction use rollback segment MONSTER

All java objects removed

alter rollback segment monster offline

drop rollback segment monster

flush shared_pool

PL/SQL procedure successfully completed.

SQL>

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

429

4. Verify that there are no longer any Java objects and nothing has been invalidated.

SQL> select count(*) from dba_objects

2 where object_type like ‘JAVA%’;

COUNT(*)

0

SQL> select owner, count(*) from dba_objects

2 where status = ‘INVALID’ group by owner;

no rows selected

SQL>

Obviously, you can reinstall Java later if you decide you need it. Typically, I simply install Java

whenever I create a database whether I know I’ll use it or not. Although there is some overhead

in doing this, I’d rather get the install out of the way during the database creation (unless the

machine is really tight on resources).

Creating, Loading, and Running Java Programs
Although the developers usually write the Java code, it is sometimes the DBA’s job to load the

Java code into the database. Therefore, this section shows you how to write a simple Java

stored function, load it into the database, publish it so you can call from SQL or PL/SQL, and

then execute it via SQL*Plus. Although this is a function, it could just as easily be a procedure

or trigger. To load and use these types of Java objects, you do not have to be running MTS or

IIOP. Note that the example does not load EJBs or CORBA servers at this point.

There are four basic steps to create a Java stored procedure, function, or trigger.

1. Write the Java program. This can be in any tool you want, but at this point the program

still resides outside the database.

2. Load the program into the database as a Java program. There are two ways to do this.

You can use the CREATE OR REPLACE JAVA SOURCE database statement or the

loadjava command-line utility.

3. Publish the Java program into a PL/SQL wrapper so it can be executed by SQL or

PL/SQL. This is done with the CREATE OR REPLACE [PROCEDURE | FUNCTION |

TRIGGER] PROGRAM_NAME as LANGUAGE JAVA statement.

4. Call the Java program (contained in the PL/SQL wrapper) from SQL or PL/SQL.

Oracle DBA on Unix and Linux
430

The following is a simple example of creating the traditional “Hello World” program. This

program has been written thousands of times in every language and this is the Java version.

However, don’t get too wrapped up in the code; the main emphasis here is on the processes

used to load and publish a Java program inside the database.

Perform the following steps to load and publish “Hello World” in Java.

1. Write the program in Java. If you plan on loading the program into Oracle with the CRE-

ATE OR REPLACE JAVA SOURCE database statement via SQL*Plus, you don’t really

need to write it beforehand. However, if you are using the loadjava utility, you need to

save the file as a .java file as shown:

[oracle@mikehat oracle]$ more hello.java

public class Hello

{

public static String world()

{

return “Hello World!!!”;

}

}

[oracle@mikehat oracle]$

2. Load the program into the database. There are two ways to do this.

Method 1: Load using the CREATE OR REPLACE JAVA SOURCE statement:

SQL> create or replace java source named “Hello” as

2 public class Hello

3 {

4 public static String world()

5 {

6 return “Hello World!!!”;

7 }

8 }

9 /

Java created.

SQL>

Method 2: Load using the loadjava utility:

[oracle@mikehat oracle]$ loadjava -u system/manager -v -r hello.java

initialization complete

loading : Hello

creating : Hello

resolver :

resolving: Hello

[oracle@mikehat oracle]$

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

431

3. Publish the Java program into a PL/SQL wrapper.

SQL> create or replace function hello

2 return varchar2

3 as language java

4 name ‘Hello.world() return java.lang.String’;

5 /

Function created.

SQL>

There is now a procedure called hello that SQL and PL/SQL can execute.

4. Execute the program from SQL*Plus. You might get a warning error ORA-29549 the first

time you run the program. If so, re-execute the program to eliminate the message.

SQL> set serveroutput on

SQL> select hello from dual;

select hello from dual

*

ERROR at line 1:

ORA-29549: class SYSTEM.Hello has changed, Java session state cleared

SQL> select hello from dual;

HELLO

--

Hello World!!!

SQL>

At this point, you have successfully written, loaded, published, and executed a simple

Java program inside the database. In this case it was a function, but it can also be a pro-

cedure or a trigger. The next logical step is to remove the Java objects from the database.

As you can see, there are three Java objects related to the “Hello World” example.

SQL> select object_name, object_type from user_objects

2 where upper(object_name) like ‘HELLO%’;

OBJECT_NAME OBJECT_TYPE

------------------------------ ------------------

HELLO FUNCTION

Hello JAVA CLASS

Hello JAVA SOURCE

SQL>

Oracle DBA on Unix and Linux
432

Dropping the function is just like dropping any other object.

SQL> drop function hello;

Function dropped.

SQL>

To remove the Java source and Java class, you can use the command-line utility drop-

java. This is basically the opposite of loadjava.

[oracle@mikehat oracle]$ dropjava -u system/manager -v hello.java

dropping source : Hello

[oracle@mikehat oracle]$

As you can see, all the “Hello World” objects have been dropped from the database:

SQL> select object_name, object_type from user_objects

2 where upper(object_name) like ‘HELLO%’;

no rows selected

SQL>

Those are the fundamentals of creating, loading, publishing, executing, and dropping Java pro-

cedures, functions, and triggers inside the database. Obviously there is much more to the cod-

ing aspect, all of which is outside the scope of this book. However, these steps should be

enough to get you started using Java inside the database.

Configuring MTS and IIOP for Java
Oracle requires MTS (Multi-Threaded Server) to be running if you plan on using EJBs and

CORBA servers inside the database. If you are simply running Java procedures, functions, and

triggers inside the database, you don’t need MTS because these components run in either dedi-

cated or multi-threaded server mode. Furthermore, if you have EJBs external to the database

(such as from a Web application server) that access it via JDBC, you do not need MTS.

You need to configure the MTS to use the IIOP protocol. Internet Inter-Orb Protocol is the

TCP/IP implementation of the GIOP (General Inter-Orb Protocol) protocol. This protocol

allows direct access to Java inside the database without using Net8. To set this up, perform the

following tasks.

1. Modify the init.ora file to use MTS. Assuming you have used the DBCA to create a

template database and init.ora, you have to uncomment only one line. Remember to

bounce the instance.

mts_dispatchers = “(PROTOCOL=TCP)(PRE=oracle.aurora.server.SGiopServer)”

Uncomment the following line when your listener is configured for SSL

(listener.ora and sqlnet.ora)

mts_dispatchers = “(PROTOCOL=TCPS)(PRE=oracle.aurora.server.SGiopServer)”

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

433

Here, you want to use MTS_DISPATCHERS with the TCP protocol because you are not

using SSL (Secure Sockets Layer) at this point.

2. Next, configure the listener.ora file for GIOP presentation and RAW session. In this

case, you use port 2481. Add the code under the default listener section. When you’re

done, it should look like this:

LISTENER =

(DESCRIPTION_LIST =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = mikehat.mike.com)(PORT = 1521))

)

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))

)

)

(DESCRIPTION =

(PROTOCOL_STACK =

(PRESENTATION = GIOP)

(SESSION = RAW)

)

(ADDRESS = (PROTOCOL = TCP)(HOST = mikehat.mike.com)(PORT = 2481))

)

)

3. Next reload the listener with lsnrctl reload.

[oracle@mikehat /etc]$ lsnrctl services | more

LSNRCTL for Linux: Version 8.1.6.0.0 - Production on 15-AUG-2001 19:10:40

(c) Copyright 1998, 1999, Oracle Corporation. All rights reserved.

Connecting to

➥(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=mikehat.mike.com)(PORT=1

521)))

Services Summary...

PLSExtProc has 1 service handler(s)

DEDICATED SERVER established:0 refused:0

LOCAL SERVER

rh1dev1 has 1 service handler(s)

DEDICATED SERVER established:0 refused:0

LOCAL SERVER

rh1dev1 has 2 service handler(s)

DISPATCHER established:0 refused:0 current:0 max:254 state:ready

D000 <machine: mikehat.mike.com, pid: 3633>

Oracle DBA on Unix and Linux
434

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=mikehat.mike.com)

➥(PORT=41648))(P

RESENTATION=oracle.aurora.server.SGiopServer)(SESSION=RAW))

Presentation: oracle.aurora.server.SGiopServer

DEDICATED SERVER established:0 refused:0

LOCAL SERVER

The command completed successfully

[oracle@mikehat /etc]$

MTS with IIOP is now configured so you can run EJBs and CORBA servers inside the data-

base. You may connect either to port 2481 as identified in the listener.ora or directly to the dis-

patcher D000 through port 41648 as shown by lsnrctl services. You can also improve

security by using SSL if needed.

Loading EJBs and CORBA Servers
After the database is configured to run MTS with IIOP you can start loading and EJBs and

CORBA servers. Because these objects are often placed on the middle tier rather than inside

the database, this section doesn’t go into a detailed discussion of the entire process. However,

it does identify the steps needed to accomplish this task.

Both EJBs and CORBA servers need to be loaded and published inside the database. There are

two command-line utilities that can be used to do this: deployejb and publish.

• deployejb is used for EJBS.

• publish is used for CORBA servers.

The syntax of the utilities is roughly similar to loadjava although there are differences and

you need to investigate the details.

Once the EJB or CORBA server is loaded into the database it is published as a published

object inside the session namespace. By using Java Naming and Directory Interfaces (JNDI),

clients can find the published objects inside the session namespace.

You can navigate the session namespace as well. Once inside the shell, you can use Unix com-

mands such as cd, ls, mkdir, and rm. You must first invoke the session shell as shown here:

$ sess_sh -u system -p manager -s sess_iiop://mikehat.mike.com:2481:rh1dev1

In this case, you invoke the session shell as SYSTEM/MANAGER. Then you connect to the

hostname or IP address, the port, which is 2481, and finally the rh1dev1 database. This method

uses the listener to connect to the database port.

Alternatively, you can specify just the hostname or IP address and the dispatcher’s port number

(41648), which you can determine using lsnrctl services. This method connects you

directly to the dispatcher.

Java Inside the Database Server

CHAPTER 16

16

J
A

V
A

IN
S

ID
E

T
H

E

D
A

TA
B

A
S
E

S
E
R

V
E
R

435

Summary
This chapter covered the fundamentals of Java from the DBA’s perspective. Java is a key to

Internet computing and Oracle is incorporating it into as many products as possible. There are

many ways to implement Java and an equal number of terms to understand. However, as long

as you understand where Java is deployed in relation to your database, the environment is

manageable.

Java code can exist inside or outside the database. If the code resides outside the database, Java

will establish connections either by using straight JDBC calls or by using SQLJ, which is also

JDBC. If the Java code resides inside the database, it will do so in the form of Java procedures,

functions, and triggers, EJBs, and CORBA servers. As of Oracle 8.1.7, you can also use JSPs

and servlets. All of these run inside a Java Virtual Machine (JVM), which has been optimized

for Oracle databases.

Typically, the developers do the actual coding of Java programs. However, the DBA does have

certain setup and configuration responsibilities, especially when Java programs are executed

inside the database. First, the Java option must be installed. This involves using the initjvm.sql

script to load over 8000 objects into the database. Depending on the type of Java programs

running in the database, you might have to set up MTS with IIOP. Other DBA tasks can

include loading Java programs and publishing them inside the database. Although there is a lot

to learn if you’re new to Java, it is not an impossible task as long as you are aware of your

architecture and can see the big picture.

Oracle DBA on Unix and Linux
436

CHAPTER

17
WebDB/Oracle Portal

ESSENTIALS

• WebDB has been renamed Oracle Portal start-

ing in version 3.0.

• WebDB/Oracle Portal is the fastest way to

Web-enable an Oracle database.

• WebDB/Oracle Portal allows users to connect

to the database using any standard Web

browser and execute PL/SQL packages inside

the database.

• Many OEM-like DBA utilities become available

to the DBA via the Web because of this tool.

• Application developers can use Wizards and

PL/SQL to quickly create Web interfaces into

the database.

WebDB (soon to be renamed Oracle Portal) can be used to quickly provide Web-based access

into any Oracle database version 7.3 and higher. This software consists of an HTTP listener

and PL/SQL packages that, once loaded into a database, allow users to access the database

through any Web browser.

WebDB provides benefits to both developers and DBAs. Developers can quickly create Web-

based forms and reports using easy-to-use Wizards and PL/SQL packages. DBAs benefit by

gaining a set of OEM-like tools that they can access via any Web browser.

This chapter looks at WebDB/Oracle Portal primarily from a DBA’s perspective. Complete

coverage of what it can provide developers is outside the scope of this book. Instead, the chap-

ter provides a quick overview of what it is, what it offers developers, and its architecture. The

chapter then covers installation and basic maintenance procedures. Finally, you’ll look at some

of the database-management tools available.

What Are WebDB and Oracle Portal?
WebDB and Oracle Portal are the same product. Right now, it is in the transition from WebDB

2.2 to Oracle Portal 3.0. The key functionality of WebDB still exists in Oracle Portal, plus the

product is gaining some new features and improvements. Currently, Oracle Portal is being

packaged with iAS, which is discussed in Chapter 18, “Internet Application Server.”

Purpose
WebDB purports to be the quickest and easiest way to Web-enable a database. After the tool is

installed and running, the PL/SQL developer or DBA is presented with a multitude of tem-

plates and wizards from which he or she can create PL/SQL-driven Web forms to access the

database. End users can access these forms using any Web browser as long as they have a valid

URL, username, and password.

The main benefit of WebDB is that it is relatively quick and simple to implement without

extensive training or setup. It uses a preexisting database. Installation of the product is nor-

mally straightforward and hassle-free. Because the forms are generated in PL/SQL and there is

a wide array of wizards and templates to get started with, almost anyone with PL/SQL experi-

ence can use this product. For those who want to start using the Web quickly and with little

overhead, this tool is a good choice.

Oracle DBA on Unix and Linux
438

Developers Really Like this Tool
From my experience, any developer who uses this tool likes it. I made a mistake of

mentioning I was going to install it at one site. One of the Java developers (who obvi-

ously had WebDB previously) was at my cube every few hours asking whether it was

ready yet. He certainly was anxious to use it again.

WebDB/Oracle Portal Architecture
There are three main components within the WebDB/Oracle Portal architecture: the client, the

database server, and the WebDB/Oracle Portal server. Figure 17.1 shows how the WebDB

architecture can be organized.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
439

Another developer I worked with said he wished he’d known more about the tool

when we worked together. I had installed it, but because he didn’t know much about

it, he never messed with it. After he left our company he received WebDB training at

his new company and wished that he had taken advantage of the tool sooner.

I also know of a PL/SQL-savvy DBA that thought he was going to have to hire a devel-

oper specifically to write an application using this tool. However, with a little work

and trial-and-error he was able to write the application himself.

For the organization that has a limited need to Web-enable its database, this tool can

be a viable solution. Especially if you have aggressive PL/SQL developers/DBAs like the

ones I know.

WebDB/Oracle Portal

running a light-weight

HTTP listener process

WebDB/Oracle Portal

sends requests to

the database via

PL/SQL Gateway

Oracle Database

with

PL/SQL Packages

containing the

application logic

Client using

any

Web Browser

Client using

any

Web Browser

Client using

any

Web Browser

HTTP

over

TCP/IP

HTTP

over

TCP/IP

Unix Server

FIGURE 17.1
WebDB/Oracle Portal Architecture.

On the client side, all you need is a Web browser. No special Oracle tools or Net8 products

need to be installed. This makes the database very accessible. All you need is the correct URL,

username, and password.

On the database server side is an Oracle database with the WebDB PL/SQL packages installed.

All the data, PL/SQL application logic, and user information is stored within the database. This

inherently provides performance and backup and recovery protection because all the objects are in

an Oracle database. Here, you can leverage your proven tuning and backup and recovery skills.

Between the client and the database server is the WebDB/Oracle Portal installation. It provides

its own lightweight HTTP listener that takes requests from the client’s browsers. Alternatively,

it can also use the listener from an OAS server, iAS server, or another third-party Web server.

This improves the scalability of the product. WebDB/Oracle Portal then relays the client’s

request via its PL/SQL gateway to the Oracle database, which in turn processes the requests

via PL/SQL packages. The responses are then returned to the WebDB/Oracle Portal installation

and then relayed back to the client’s browser.

Installation
This section discusses how to install WebDB/Oracle Portal. Installing this tool is normally

straightforward. The install described here is WebDB 2.2 on RedHat Linux. The biggest issues

normally deal with connectivity and getting the listener to run. You need to have the database

you are going to connect to running because this tool loads objects into that database.

Oracle DBA on Unix and Linux
440

Oracle Portal Is Now Installed with iAS
Oracle has decided to start shipping Oracle Portal with iAS (Internet Application

Server). WebDB, on the other hand, was shipped with the database. So why not cover

it in Chapter 18?

First of all, iAS is big enough that it deserves its own chapter, although this product is

mentioned where necessary. Second, I have covered the use of the OUI throughout

this book because I have been focusing on the latest releases of each product.

However, this version of WebDB uses the older text-based installer, which every DBA

should see at least once because older systems will continue to exist for some time.

Finally, there are people who don’t have iAS and just want to use WebDB. This chap-

ter is intended to provide the fundamentals of WebDB/Oracle Portal from a DBA’s

perspective, not to cover all the technologies of the Internet.

NOTE

Follow these steps to install WebDB 2.2 on RedHat Linux:

1. The database you will use with WebDB must meet the following minimum requirements:

Have 25 or more MAX_ENABLED_ROLES

Have 100 or more OPEN_CURSORS

O7_DICTIONARY_ACCESSIBILITY must be set to TRUE

2. You must create a separate ORACLE_HOME for WebDB. Create the following directory

and set your ORACLE_HOME variable.

$ cd $ORACLE_BASE/product

$ mkdir webdb22

$ export ORACLE_HOME=/u01/app/oracle/product/webdb22

3. Next, set up your other environment variables as follows:

$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib

$ export SHLIB_PATH=$ORACLE_HOME/lib

$ export TNS_ADMIN=/etc

$ export WV_GATEWAY_CFG=$ORACLE_HOME/listener/cfg/wbsrv.app

Make sure your PATH has the correct $ORACLE_HOME. It is easy to accidentally

include the wrong $ORACLE_HOME value at this stage.

$ echo $PATH

/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:

/home/oracle/bin:/etc:/u01/app/oracle/product/webdb22:

/u01/app/oracle/product/webdb22/bin:.

4. Load and mount the CDROM. Then, cd to the CDROM. Some earlier software releases,

including this version of WebDB, don’t have OUI. Therefore, you will use the text-based

install for this product. (You’ll use the GUI installer when you install iAS in Chapter 18.)

Here, you start the program orainst in the orainst directory.

$ mount /mnt/cdrom

$ ls

DST.LST bin network oemagent otrace precomp sqlplus upgrade

Extras doc nlsrtl oracore owa40 rdbms support wwv21

RELDESC.TXT lib ocommon orainst plsql slax unix.prd www21

$ cd orainst

$ orainst

5. The text-based installer should appear. This is what many installers looked like prior to

the OUI. Use the Tab key and arrow keys to move through the installer’s fields. You can

use the Spacebar to highlight/select an item and the Enter key to issue your command.

The first screen, shown in Figure 17.2, lists the installation requirements. Tab over to OK

and press Enter.

6. The next screen asks you to verify your ORACLE_BASE and ORACLE_HOME.

Remember that you must use a different ORACLE_HOME for this install. Verify the val-

ues, as shown in Figure 17.3, and then Tab over to OK and press Enter.

7. The next screen asks you to select products for the installation. You want both WebDB

and the WebDB Listener, but you’ll install WebDB first. Highlight the WebDB product.

This is shown in Figure 17.4. Then Tab over to OK and press Enter.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
441

FIGURE 17.2
Installation Requirements.

Oracle DBA on Unix and Linux
442

FIGURE 17.3
Verify ORACLE_BASE and ORACLE_HOME.

8. Figure 17.5 shows the installer in the process of installing all the products you selected.

The installer will automatically advance after this screen.

9. The next screen asks you to select a database version. Here you should select Oracle 8i,

as shown in Figure 17.6. Then Tab over to OK and press Enter.

10. Figure 17.7 shows the installer asking you for the SYS password and a TNS names alias.

This is the database you want to store the WebDB objects in. Your password won’t be

visible when you enter it, but the database name will be. You might have to enter the full

connect string, such as rh1dev1.mike.com, in order for the installer to connect. Enter the

values and then press Enter.

FIGURE 17.5
Installation of Products.

The installer will pause for a few seconds as it attempts to connect to the database speci-

fied using the SYS password.

11. The next screen will ask you for an owner of the PL/SQL Web Toolkit, and the default

and temporary tablespaces. Accept the defaults, as shown in Figure 17.8.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
443

FIGURE 17.4
Select Oracle WebDB to Install it.

FIGURE 17.6
Select a Database Version.

Oracle DBA on Unix and Linux
444

FIGURE 17.7
Enter the SYS Password and the Database Name.

12. Next the installer prompts you for a username, as well as the default and temporary

tablespaces for the WebDB user. Select the defaults as shown in Figure 17.9.

13. The installer informs you that the default password for the WebDB user is WEBDB, as

shown in Figure 17.10. Obviously, you should change this password as soon as possible.

14. The installer automatically loads English, but if you want to add additional languages,

you can do so from the screen shown in Figure 17.11.

FIGURE 17.8
Owner of PL/SQL Web Toolkit.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
445

FIGURE 17.9
WebDB User.

15. The installer will then proceed to create the WebDB schema. This takes several minutes

and involves multiple steps, as you can see in Figure 17.12.

16. The next screen notifies you that WebDB is successfully installed. It provides the default

username/password of WEBDB/WEBDB, as shown in Figure 17.13.

17. The installer next asks you to log in as root and run root.sh after the install, as indicated

in Figure 17.4. Unlike installing the database, you do not have to do this immediately.

This represents the end of the WebDB PL/SQL product installation. Click on Cancel to

continue.

FIGURE 17.10
The Initial WebDB Password.

Oracle DBA on Unix and Linux
446

FIGURE 17.11
Load Additional Languages.

18. Next, you have to install the WebDB Listener. Highlight the listener and press Enter.

19. The installer will ask you for the Data Access Descriptor (DAD) information. Enter your

hostname and accept the defaults for WebDB. Your hostname is your host plus the

domain name. You can determine the hostname by using uname -a. You might, however,

need to use a different port depending on how your server is configured. I used port

21093, as shown in Figure 17.16.

The installer might pause for a while as it analyzes listener dependencies. If it returns an

error at this point, try a different port number, such as 21093.

FIGURE 17.12
Create WebDB Schema.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
447

FIGURE 17.13
WebDB Schema Has Been Created.

20. The installer should return a screen indicating a successful install of the listener, as

shown in Figure 17.17. It should include the URLs to get you started and instructions for

starting the listener. If you are new to WebDB, be sure to print this page. Press

ALT+PrtScreen to capture the screen and then paste it into a Word document to print.

Just don’t write any usernames and passwords on it since your URLs are listed there too.

21. Once again, the installer will ask you to run root.sh after you exit the installer. Highlight

OK and press Enter to return to the main install screen. You can view the script from

within the installer or exit.

FIGURE 17.14
You Are Told to Run root.sh.

Oracle DBA on Unix and Linux
448

FIGURE 17.15
Install the WebDB Listener Next.

22. After you have exited, run root.sh as root. If the script immediately terminates without

any messages, it was not executed as root.

[root@mikehat orainst]# pwd

/u01/app/oracle/product/webdb22/orainst

[root@mikehat orainst]# . ./root.sh

23. Continue to run the script even if you receive a message warning that the Oracle user’s

home directory is different from the $ORACLE_HOME value. Also verify that the local

bin directory listed by the script actually exists; sometimes Oracle gives an incorrect

location for it.

FIGURE 17.16
Enter DAD Information.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
449

FIGURE 17.17
Listener Install Successful.

WebDB is now installed and the listener process is running. Note that the following users have

been created during the install: OAS_PUBLIC, WEBDB, and SCOTT. Each user has the following

roles:

SQL> select * from dba_role_privs

2 where grantee = ‘OAS_PUBLIC’;

GRANTEE GRANTED_ROLE ADM DEF

-------------- ------------------------------ --- ---

OAS_PUBLIC CONNECT NO YES

OAS_PUBLIC RESOURCE NO YES

SQL> select * from dba_role_privs

2 where grantee = ‘WEBDB’;

GRANTEE GRANTED_ROLE ADM DEF

-------------- ------------------------------ --- ---

WEBDB CONNECT YES YES

WEBDB DBA YES YES

WEBDB RESOURCE NO YES

WEBDB WEBDB_DEVELOPER YES YES

SQL> select * from dba_role_privs

2 where grantee = ‘SCOTT’;

GRANTEE GRANTED_ROLE ADM DEF

-------------- ------------------------------ --- ---

SCOTT RESOURCE NO YES

SCOTT WEBDB_DEVELOPER NO YES

One of these should demand the attention of any DBA. Notice how the WebDB user has DBA

privileges? Make sure you change that password to avoid a security hole.

The installation has also created a new role called WEBDB_DEVELOPER, which is just a

flag. It has no system or object privileges granted to it.

The next section looks at how to access WebDB and use some of the DBA-related features.

Basic WebDB Maintenance
There are a few basic maintenance tasks that you need to perform. Obviously, the database and

its listener need to be running. Then WebDB needs to have its listener running. After you

ensure that those requirements are met, you can access the Web page utilities inside WebDB in

order to establish users and roles, create Web forms and pages, and monitor the database.

Starting and Stopping the Listener
Before users can access the Web pages, you must start the HTTP listener and the database with

its normal listener.

To start the WebDB/Oracle Portal listener, set the correct ORACLE_HOME. Next, you need to

start the listener with the following syntax:

wbdblsnr hostname port# [start|stop]

In this example, you would issue the following command.

$ wdblsnr mikehat.mike.com 21093 start &

Oracle DBA on Unix and Linux
450

After this has started, you can verify the process is running by checking with ps -ef.

$ ps -ef | grep -i wdblsnr

oracle 5435 5434 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5436 5435 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5437 5436 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5438 5436 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5439 5436 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5440 5436 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5441 5436 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5442 5436 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5443 5436 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5444 5436 0 12:51 pts/0 00:00:00 wdblsnr mikehat.mike.com 21093

oracle 5826 1478 0 14:06 pts/3 00:00:00 grep -i wdblsnr

To stop the listener, use this command:

$ wdblsnr mikehat.mike.com 21093 stop

Log into the Site
To log into the site, you initially have two locations listed at the end of the installation. One is

for gateway administration and the other is for listener administration. They are:

http://mikehat.mike.com:21093/admin_/gateway/htm

http://mikehat.mike.com:21093/admin_/listener.htm

The normal login location is:

http://mikehat.mike.com:21093/

At this point, you will be prompted for a username/password. Because you have only the

WEBDB user, use that account, as shown in Figure 17.18.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
451

FIGURE 17.18
Log into Site.

You should now be logged into the main page of the WebDB user.

After you’re logged into the Web site, you will see the corresponding login inside the database:

SQL> select username, program from v$session

2 where username is not null;

USERNAME PROGRAM

---------- --

SYS sqlplus@mikehat.mike.com (TNS V1-V3)

WEBDB ? @mikehat.mike.com (TNS V1-V3)

The next section focuses on the utilities listed on the main page.

WebDB Utility Links
WebDB has five utilities that you can access from the main page, as shown in Figure 17.19.

Some utilities are geared toward the DBA and others prove to be more useful to the Web

developers.

Oracle DBA on Unix and Linux
452

FIGURE 17.19
WebDB’s Five Main Utilities.

Browse
You use the Browse utility to search for and view any database object owned by any user.

Figure 17.20 shows a list of objects owned by SCOTT that you could query.

FIGURE 17.20
Browse Enables You to Look for Objects.

If, for example, you selected Tables and clicked Browse, all the tables owned by SCOTT

would be listed. Next, you can double-click any of those tables to view the details of that par-

ticular table, as shown in Figure 17.21.

With this GUI, you can see the columns and data types for the table. You can also issue queries

and insert roles.

Build
Under the Build menu, you can create objects. Figure 17.22 shows the available categories.

Most of these are of interest to the Web developers. For example, the easy-to-use tools to cre-

ate forms are under User Interface Components in Figure 17.23.

This utility includes links to tools that enable you to build forms, reports, menus, and other

objects. Technically, this isn’t normally a DBA’s responsibility, but you should be familiar with

these tools.

From the Build page, you also access the Build Database Objects tool. As you can see in

Figure 17.24, you can create tables, indexes, views, sequences, and PL/SQL objects using the

Build Database Objects tool.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
453

FIGURE 17.21
You Can View SCOTT’s EMP Table.

Oracle DBA on Unix and Linux
454

FIGURE 17.22
Build Categories.

FIGURE 17.23
User Interface Components.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
455

FIGURE 17.24
Build Database Objects.

By selecting any of these objects, you start a wizard that will help you create these objects.

The look and feel isn’t exactly like OEM, but the base functionality is there. Remember, this is

available via a typical Web browser. Using just a simple Web browser, you can still do DBA

work.

Administer
From the Administer page, you have a more powerful set of tools. Figure 17.25 shows the sev-

eral tools available.

Oracle DBA on Unix and Linux
456

FIGURE 17.25
Administrator Tools

Most of these tools deal with user maintenance, roles, and privileges. Each tool is fairly

straightforward, so I won’t cover them all. User Manager is representative of what you can

expect from these tools. Figure 17.26 shows how you can use it to create or modify existing

users.

Because you want more than just the WebDB user to be able to access the Web site, you can

create a user MIKEW. Later, you can add additional roles and privileges.

Another useful tool is accessed from the Listener Settings link. From there, you have the

same functionality as if you went to the http://mikehat.mike.com:21093/admin_/gateway/

htm link.

FIGURE 17.26
User Manager

Monitor
The Monitor page provides a way to monitor the Web page components, usage, and the data-

base. The DBA should be familiar with the Web components and be able to manage them. This

involves using the User Interface Component, Activity Log, and Batch Results tools. These

tools tell you who has logged into your page (database), from where, and what they accessed.

It also calculates tuning and response time metrics. Although users are hitting a Web page, they

really are also hitting your database; therefore, you should be monitoring this activity. Figure

17.27 shows a sample of the reports available to you via the User Interface Components tool.

As you can see, you can generate reports based on response time, frequency, user ID, IP

address, and a host of other characteristics. This utility, combined with your other monitoring

tools, can be used to gauge activity on the database and the server.

From a purely DBA perspective, you might be interested in the Database Objects tool, shown

in Figure 17.28.

This tool provides much of the key reporting functionality provided by OEM, but it’s accessi-

ble from any Web browser. You can generate information about user sessions, structure, para-

meters, and storage. You can also access blocking lock information, which can be a lifesaver

when users are locked.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
457

FIGURE 17.27
Reports Available to the DBA.

Oracle DBA on Unix and Linux
458

FIGURE 17.28
Database Tools and Reports.

You should familiarize yourself with these tools for times when OEM is down or otherwise

unavailable. The layout of the reports generated by these tools is very readable. Although much

of the information is in a report basis, you do have the ability to make some database changes.

This chapter doesn’t examine each category, but they all should look familiar to you. It’s a

shame that more DBAs don’t realize the remote control and reporting power they gain over

their database by installing and configuring WebDB.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
459

Remote DBA
This tool is great for the remote DBA. It provides most of the information normally

available via OEM, only from a browser. But why would the DBA need this?

First of all, even as a typical DBA you are not at the shop all the time. Unless you

carry a laptop, you are not always going to have a way to connect to your machine

with all your Oracle tools. For example, you might be on vacation when you get an

urgent call or page, and you don’t have your PC with you. With this tool, you can

simply use any computer with a browser.

Remote DBA support is a growing business that can make use of tools like this. Not

all companies want to hire a full-time DBA to be on-site. However, they do have a

legitimate need for some DBA support. So what can they do? Many consulting com-

panies hire a DBA to remotely log in a few times a week and make sure everything is

running correctly. This DBA might only work 20 hours a week for that client. Tools

like this make remote support possible for smaller companies and DBA entrepreneurs.

Sites
The Sites tool provides Wizards for creating new sites. It is primarily used by the developers.

Figure 17.29 shows this tool.

From this page, you can query existing sites. To start the site-building wizard, click the Create

button under Site Building.

FIGURE 17.29
Site Tools

Key Differences between Oracle Portal and
WebDB
This chapter focuses primarily on WebDB because it is established and many people use it.

Oracle Portal is being included with iAS, which means only those with iAS can use it.

The functionality and principles discussed here carry over into Oracle Portal. However, there

are a few differences between the two products that you should be aware of.

• Oracle Portal uses a friendlier OUI rather than the text-based installer.

• Database users and Web users are separate. Oracle Portal users do not show up in the

DBA_USERS table or when accessing SQL*Plus.

• Java is more prevalent in Oracle Portal.

• Oracle Portal makes heavy use of portals. These are more encompassing Web pages with

many options. You will certainly feel more like a Webmaster than a DBA or PL/SQL

developer when using this product.

People who have a limited need to Web-enable their database will likely be satisfied with

WebDB. For what it is intended, it is a good product. However, for those wanting to get into

true e-business, a more robust tool set and architecture is needed. For this, you will use iAS; its

tools as described in Chapter 18.

Oracle DBA on Unix and Linux
460

Summary
This chapter discussed WebDB/Oracle Portal as a standalone product. It offers a relatively

quick and simple way to make an Oracle database Web-accessible. It does this by providing a

lightweight HTTP listener that receives requests from any client’s Web browser and then send-

ing those requests to be executed by PL/SQL packages inside the Oracle database.

WebDB/Oracle Portal offers developers a host of wizards and templates that can be used to

quickly create forms to access the database via PL/SQL packages. Developers can use these

generated packages, modify them, or write their own as necessary.

Next, you learned how to install WebDB/Oracle Portal and how to get the listener running.

Then, you navigated through a few screens, created some users, and assigned roles.

Although WebDB/Oracle Portal was designed to be used primarily by developers to quickly

build Web applications, this chapter focused more on its uses as a DBA tool. Much of the basic

functionality provided by OEM is also available via WebDB/Oracle Portal. This is a great ben-

efit to off-site DBAs.

WebDB/Oracle Portal

CHAPTER 17

17

W
E
BD

B
/O

R
A

C
LE

P
O

R
TA

L
461

CHAPTER

18
Internet Application Server
(iAS)

ESSENTIALS

• Web and application servers are key to

Internet computing.

• The most common architectural design uses a

client tier (Web browsers), a middle tier (Web

and application servers), and a database.

• There are several pitfalls associated with some

Web architectures including technical design,

scalability, and availability.

• Oracle iAS is a highly functional Internet

Application Server. It has many advanced fea-

tures that integrate with Oracle 8i databases

and development tools.

• Installation of iAS is fairly simple, but it does

require substantial disk space.

Oracle DBA on Unix and Linux
464

This chapter looks at the Web architecture with a focus on Oracle 9i Application Server. First,

it examines the Web environment. It covers the three-tier architecture and shows how each tier

can be implemented to serve Internet users. You’ll learn about the components of this architec-

ture and learn how to avoid some common pitfalls.

Next, the chapter looks in detail at the Oracle 9i Application Server. It looks at what this prod-

uct is, its architecture, and how it can be deployed. Finally, you’ll learn how to install the prod-

uct and some of the fundamental configuration steps.

This chapter discusses Java quite a bit. Unless you are already familiar with Java, check out

Chapter 16, “Java Inside the Database Server,” for an overview of Java and its components

such as JVMs and EJBs.

Web Environment
Anyone involved in computers knows that the Internet is a big part of most computer systems.

It is difficult to imagine a new, large system that didn’t interface with the Web in one way or

another.

There are several ways to interface with the Web, but the most common method is using the

generic Web application server. Although the details vary between vendors and implementa-

tions, Figure 18.1 outlines the basic architecture.

Database Server

Client PC

Web Browser

Client PC

Web Browser

Client PC

Web Browser HTTP

Listener

• Receives

requests

and sends

back results

• Some

requests

may be

sent to

application

server.

• Will provide

requested

HTML

pages.

Application

Logic

• Program

code to

process

requests

from clients.

• May make

calls to a

database.

Database

• Database

from any

vendor to

store data

for

application.

• It may be

accessed

via ODBC

or JDBC.

• It may

contain

program

logic and

code in the

form of

procedures,

triggers, or

packages.

Web

Server

Application

Server

ODBC/

JDBC

ODBC/

JDBC

ODBC/

JDBC
HTTP

HTTP

HTTP

FIGURE 18.1
A Simple Web Architecture.

This is a three-tiered architecture with clients(s), a middle tier, and a database on the back end.

• Clients Clients are Web browsers (such as Netscape Navigator/Communicator or

Microsoft Internet Explorer) located on PCs. Because much of the customer base of

Internet computing are desktop PCs, these are the main clients. However, with the advent

of Web-enabled cell phones and PDAs, you can expect more attention to be paid to these

devices.

Their browsers send and receive requests via HTTP (Hypertext Transfer Protocol) to

“paint” the screens of their Web browsers. Some processing can occur on the Web

browser in the form of Java applets, but this tier is mostly used to display information.

• Middle tier This tier receives requests from the client browsers, processes them, and

then sends back the results. When you connect to a Web page, you connect to the middle

tier.

There are three main functions that occur here: browser requests are received, requests

are processed, and responses are sent.

The Web server component is responsible for receiving HTTP requests and sending

responses. It examines the request and routes it to the appropriate application service to

be addressed. It also returns any HTML files requested. The application server compo-

nent is responsible for any type of program processing and logic needed to fulfill the

request relayed to it by the Web server. Some of these requests can be fulfilled locally;

others require access to a remote database.

This tier can be on one physical machine or can be split. In some cases, high-availability

systems such as clusters or fail-over systems are deployed. There can be several Web

servers or application servers in order to improve performance, scalability, and fault

tolerance.

• Database tier The back end of this tier is a data store, which is typically a database. It

receives SQL requests from the application server via ODBC or JDBC. The database

processes and executes the SQL statement, and then it returns the results to the applica-

tion server.

Optionally, there might be some program logic and computing inside the database. This is typi-

cally done via stored procedures, functions, triggers, and packages. Java can also exist inside

Oracle databases to perform some processing.

The database component can be on the same machine as the middle tier. However, scalability

and performance are improved by separating the database and middle tier so no one machine

carries the burden of both tiers. It is also common to place the database component on multiple

machines or clusters to improve performance and fault tolerance.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

465

Web servers receive HTTP requests from a client, whereas application servers contain program

code (such as EJBs) to service those requests. Many products combine both of these tasks into

one product generically called either a Web server or an application server. I’ll try not to blur

the distinction and refer to this combination as a Web application server where appropriate.

However, many new products combine these functions into one tool so the distinction between

a Web server and an application server is sometimes difficult to make.

Oracle DBA on Unix and Linux
466

Alternatives to iAS
There are alternatives to Oracle’s iAS and OAS. One such competing Web server I

recently worked with is BEA’s WebLogic Web server (go to www.bea.com or

www.weblogic.com).

The Web application server sat on the middle tier between the database and the

clients. Web browser requests from the client go to the middle tier. For our particular

implementation, we chose to put the EJBs in the Web application server to handle

the business logic. When data was needed, JDBC calls were made to the database.

Because these were just JDBC using the JDBC-OCI driver, we needed to have Net8

configured, but MTS with IIOP was not needed.

We used JDBC connection pooling to keep a minimum number of database sessions

open at all times to service requests. This prevented having to create a new database

connection every time a JDBC request was issued. As the number of JDBC requests

from the middle tier increased, more database sessions were automatically spawned.

This architecture is shown in Figure 18.2.

From a DBA’s standpoint managing the database was easy. No Java was actually used

in the database. Rather the Java was outside the database and inside the Web server.

Most of the connections into my database were in the form of JDBC connections

accessing data. Connection pooling allowed a set number of connections to always

exist, which improved performance because creating new connections require system

resources. If the number of users increased, the number of connections would also

increase. I found this architecture to be conceptually simple yet effective.

NOTE

Those are the basic architectural fundamentals of a Web environment. Obviously, the technolo-

gies vary depending on the vendors involved and are always evolving. Common pitfalls in this

environment include technological design, scalability, and availability.

FIGURE 18.2
A Sample WebLogic Implementation.

Technological Design
The chapter has so far covered the basic Web architecture, but there are many technical meth-

ods available to implement it. In fact, there are usually several ways that a system can be suc-

cessfully built, but there are many more paths that lead to failure. The trick is knowing your

requirements and then intelligently creating a design and architecture to meet those require-

ments.

People often use technologies for purposes they were never intended. Then they fail because

the technologies cannot support their needs. This is the equivalent of using a hammer to nail a

screw; it doesn’t work very well! The key to avoiding this situation is to truly understand the

technologies involved. Remember to focus on the product itself, not on the vendor’s sales

pitch.

Another related problem is selecting a design that is overly complicated, too reliant on a

“bleeding-edge” technology, or is too obscure to be implemented and supported by an IT staff.

Technical people often attempt to use the latest and greatest technologies, even when those are

untested. They also sometimes settle on a technology like Java, but fail because they are not

willing to find and pay enough for skilled and experienced Java developers.

Scalability
Make sure your architecture, processes, and the underlining hardware are big enough to sup-

port your system. A very common problem involves building systems that are too small to sup-

port the users.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

467

Database Server

Client PC

Web Browser

Client PC

Web Browser

Client PC

Web Browser
Enterprise

Java

Beans

• Contains

the

business

logic.

Oracle 8i

Database

w/JVM

• No Java

code was

actually

stored in the

database.

• Application

logic and

processing

was via

EJBs on the

middle tier.

JDBC

JDBC

JDBCHTTP

HTTP

HTTP

Web Application Server

HTTP

Listener

JDBC

Connection

Pooling

For example, suppose someone creates a flashy demo application on one or two small NT

boxes and shows it to your manager. Your manager likes it and expects that same system to

support everyone on the Internet. As ridiculous as that might sound, I’ve seen it happen several

times. Some people just cannot understand what works well for 10 users in a testing lab will

not work in a real implementation.

More often, an organization will spend relatively large sums of money to purchase several

small- or medium-sized Unix or Linux servers. Then they will go live with the new system and

within a very short amount of time (hours, days, or weeks), they find out the expensive system

still cannot compete. Then they have to rebuild the system on a different platform and/or with

more powerful machines. This is expensive in terms of money wasted on the initial purchase,

money spent to purchase what should have been purchased initially, and the downtime experi-

enced during the conversion.

The keys to avoiding this nightmare is accurately predicting your system load, performing

intelligent capacity planning to meet that load, performing actual load testing to determine how

your system performs, and remembering to scale big.

Availability
Availability is closely tied to both scalability and technical design. Indeed, making sure your

system can survive a crash should be part of the initial design and building process, not an

afterthought. Business success in the Web environment is dependent on the system’s availabil-

ity. If you charge people for a service and then it is not available, you will lose customers. It’s

that simple.

Unfortunately, this isn’t always realized or fully appreciated. At one Web-based Application

Service Provider (ASP) I worked at, I was horrified to learn the production system was going

live without any form of disk mirroring or RAID. Management and the system administration

staff knew about this, but decided to gamble that the disks wouldn’t fail anytime soon.

Silly mistakes and gambles like this are one factor in system availability, but there are others.

Running all your key systems in one physical location, not using clusters or available fail-over

technology, and designing systems with a single point of failure are other common mistakes.

Although not every organization has the funding to take all these steps, it’s surprising how

often these precautions aren’t implemented until after a problem occurs.

Understanding and Using iAS
The Oracle product suite is constantly changing, both in terms of products offered and in terms

of nomenclature. The product of focus here is commonly referred to as iAS (Internet

Application Server). However, Oracle recently changed the name to Oracle9i Application

Server and this is the product we are actually installing.

Oracle DBA on Unix and Linux
468

iAS has many internal components, but I choose to conceptually separate them into two cate-

gories. Specifically, some parts fulfill the role of a Web server whereas others fulfill the role of

an application server.

The key Web server element is the Apache HTTP listener component. Apache is itself a very

popular open source product. It is very widely used and well liked. This component receives

HTTP requests from clients and then routes them to be serviced. If only a HTML file needs to

be supplied, it does just that. Otherwise it routes the request to the appropriate service on the

application server. After the request has been fulfilled, Apache sends the request back to the

client. From a high level, this is what a Web server does.

Application server-type components are those that perform the computing and processing to

fulfill the client’s request. Typically, this means program code in either Java or PL/SQL. It also

includes products that use those languages such as Oracle Portal, Forms, and Reports, all of

which are present in iAS. Supporting features such as the Oracle JVM, Database Cache, and

Web Cache also fall into this category.

Unfortunately, however, that is about as far as this conceptual separation can go. In reality, all

these components are linked to each other. As you can see in Figure 18.3, there are many com-

ponents that make up iAS.

Figure 18.3 does not attempt to identify every component or relationship, but it does capture

key points of this tool. As you can see, client requests come into the Apache HTTP Web server

component. From there, they are directed based on request type to the appropriate application

component. After the requests are fulfilled they are sent back to the Apache Web server where

they are returned to the client.

Oracle has introduced and integrated some interesting components used to improve perfor-

mance while providing the developers with as much flexibility as possible.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

469

What Existed Before iAS?
Before iAS, Oracle had a product called OAS (Oracle Application Server). This tool also

served as a Web application server. It was primarily used to run PL/SQL cartridges, but

it also supported some Java. This product is being phased out with release 4.0.8.

This move is not just a sales ploy or name change. iAS is a completely new product

that’s built into Java, uses a different Web server (Apache), and has many other fea-

tures. Although OAS and iAS are similar in purpose, iAS is different internally and is

more advanced. Oracle offers upgrade paths to iAS that reportedly do not require

extensive modification of existing OAS applications.

NOTE

FIGURE 18.3
Key iAS Components.

Modules
Modules (or mods) are the iAS equivalent of OAS cartridges. These are essentially plug-ins for

the Web server that allow it to handle each type of client request. Each request is routed on the

mod associated with it. The following list describes the more common mods available:

• mod_plsql This mode is equivalent to the OAS PL/SQL cartridge. It routes requests

for PL/SQL and stored Java procedures to the database.

• mod_jserv This mod handles Java requests such as servlets and JSPs. It routes them to

the Apache JServ.

• mod_perl Perl requests are handled by this mod.

Oracle Forms, Reports, and Discover
Each of these tools should be familiar to the DBA and PL/SQL developers. Oracle Forms have

long been a key Oracle application tool and need little introduction. Reports create and display

management reports and traditionally have been bundled with Forms. Discover is a query-cre-

ation tool that enables you to easily extract information from the database. Traditionally, these

tools stood separate from the database. In iAS, these tools are bundled within the application

server.

Oracle DBA on Unix and Linux
470

Database Server

Client PC

Web Browser

Client PC

Web Browser

Oracle

Portal

Oracle

JVM

Oracle

IFS

Forms,

Reports,

and

Discover

PSPs

and

JSPs

Database

Cache and

Web

Cache

Client PC

Web Browser
Apache

HTTP

Listener

• Route

requests

based on

mods:

• mod_plsql

• mod_jserv

• mod_perl

• Will provide

requested

HTML files

to clients.

Oracle 8i or

9i Database

w/JVMNet8

JDBC

HTTP

HTTP

HTTP

Internet Application Server

Oracle Portal
Oracle Portal is the next generation of WebDB, which is covered in Chapter 17,

“WebDB/Oracle Portal.” This PL/SQL-based tool was originally used as a quick method for

Web-enabling databases. Now, however, this tool has grown into a powerful way to design

dynamic Internet Web applications. It is now bundled with iAS.

PSPs and JSPs
iAS supports PL/SQL Server Pages (PSPs) and Java Server Pages (JSPs). These are basically

HTML pages with embedded code tags used to generate dynamic content. When this code is

started on the browser, it is compiled and then executed on the server side (not inside the

browser).

iFS
Internet File System (iFS) is Oracle’s method for storing normal files inside the database

instead of on normal file systems. Files stored in this manner appear as if they are on a mapped

network drive, not in a database. The users can access such files normally, but iFS provides

added features such as locking and version control. Also, because the file is inside the data-

base, it can be indexed for faster access and protection, which is provided by Oracle’s proven

indexing and backup and recovery methods. Finally, by storing the files in the database, they

are accessible to developers to manipulate using XML.

Oracle 8i JVM
This is the same Java Virtual Machine you find in an Oracle 8i database and it serves the same

purpose: to run Java programs. With this feature Java enables iAS to run EJBs, CORBA

servers, Java Server Pages, servlets, and Java procedures on the middle tier. See Chapter 16 for

more information.

Database Cache and Web Cache
Oracle realizes that you can achieve large performance gains by caching database information

and queries and Web information such as URLs. Many requests that come to the Web server

normally require database access via SQL or PL/SQL. Normally these requests have to be

relayed to the database, processed, and then returned. However, Database Cache can keep read-

only database information on the middle tier, which reduces the accesses to the actual data-

base. Web Cache is used to cache Web information, such as URLs. These caches reduce

network traffic and processing on the database and Web application servers.

Those are the high-level features of iAS. There are many more exciting features such as its

wireless option, which allows communication with cell phones and PDAs (outside the scope of

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

471

this book). Also, each new release of iAS has many more features than the last. Therefore

you need to keep up on the documentation and release notes to avoid missing out on new

functionality.

As a DBA, you should work with the different parties of your IT staff to determine how best to

use iAS. For example, coordinate with your HTML Web designers to determine how Oracle

Portal can make Web portals. No doubt your PL/SQL and Java developers should be included

in discussions about how and where the application code is developed and deployed. They will

have valuable insight into using Forms, Reports, and PL/SQL in a Web environment as well as

the various existing Java components. And don’t forget to communicate with the SA staff so

they know what to expect when they run iAS on their servers. Especially because iAS can (and

should) exist on a separate server than the database and because it can be made fault tolerant,

solid architectural planning is needed.

Installation
This section outlines a simple installation of iAS 1.0.2.0 on RedHat Linux. An 8.1.6 database

installation already exists on the server, but the iAS 1.0.2.0 database software is based on 8.1.7.

For testing purposes the database and the iAS will be on the same physical machine, but nor-

mally this configuration should be avoided.

Read the installation and configuration guide (ICG) as you would before any software installa-

tion. The following steps install iAS:

1. Oracle iAS requires a substantial amount of disk space depending on which products you

install. Enterprise Editions installations can take over 3G. Make sure that at least 2G is

available for a standard installation.

[oracle@mikehat /u01]$ df -m .

Filesystem 1M-blocks Used Available Use% Mounted on

/dev/hda13 7875 4898 2578 66% /u01

[oracle@mikehat /u01]$

2. Unset the LD_LIBRARY_PATH environment variable.

[oracle@mikehat /u01]$ unset LD_LIBRARY_PATH

3. Create and set a new ORACLE_HOME specifically for iAS. Like all recent Oracle prod-

ucts, you must use a separate ORACLE_HOME for each product.

[oracle@mikehat /u01]$ export $ORACLE_HOME=/u01/app/oracle/product/

➥ias10210

4. If you plan on using iFS there are some database and network configuration steps you

need to follow. Refer to the ICG for these steps if you need iFS.

Oracle DBA on Unix and Linux
472

5. iAS has three installation CDs. Therefore you have to change CDs during the installation

process. Do not just cd to /mnt/cdrom and attempt to run the installer. Rather, execute

the installer program from a different directory such as $ORACLE_BASE.

[oracle@mikehat oracle]$ cd $ORACLE_BASE

[oracle@mikehat oracle]$ /mnt/cdrom/runInstaller

This should bring up the OUI. Linux users might need to set LD_ASSUME_KER-

NEL=2.2.5 and perform miscellaneous distribution-specific tasks to get this running.

Check the ICG, release notes, MetaLink, and Technet discussion forums for details.

During the install you will be prompted for each CD when it is needed. Remember to

unmount the CD-ROM, eject the CD, reload the CD, and then mount the CD-ROM drive

before clicking OK.

[oracle@mikehat oracle]$ umount /mnt/cdrom

[oracle@mikehat oracle]$ eject

[oracle@mikehat oracle]$ mount /mnt/cdrom

6. A welcome screen appears as shown in Figure 18.4. Click Next to continue.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

473

FIGURE 18.4
OUI Welcome Screen.

7. The next screen prompts you for a source and destination location. Do not modify the

source. Verify that the destination is your $ORACLE_HOME as shown in Figure 18.5.

FIGURE 18.5
Verify Source and Destination Locations.

8. Next, you need to choose from Enterprise Edition, Standard Edition, or a Minimal instal-

lation. Because the Enterprise Edition requires over 3G of disk space, you should select

Standard Edition unless you really need the extra features. Select Standard Edition as

shown in Figure 18.6.

Oracle DBA on Unix and Linux
474

FIGURE 18.6
Three Installation Options.

9. The next screen is specific to iAS. It provides a list of installation tips that you can get

help about. After you are satisfied that your system meets the installation requirements,

click Next to see the screen shown in Figure 18.7.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

475

FIGURE 18.7
Installation Checklist.

10. OUI next asks you whether you want the installer to automatically configure the HTTP

Server and Oracle Portal after the installation. Leave both products highlighted (indicat-

ing Yes), as shown in Figure 18.8. Then click Next.

FIGURE 18.8
Automatic Configuration Option.

11. The next screen asks you for the DAD (Database Access Descriptor), schema name, and

tnsnames.ora alias for the database that will be used for Oracle Portal. Accept the defaults,

as shown in Figure 18.9. The database is rh1dev1 so that will be the TNS connect string.

Oracle DBA on Unix and Linux
476

FIGURE 18.9
Oracle Portal DAD, Schema, and Database.

12. The installer will ask you for the same information as before, except this time for the sin-

gle sign-on option. Accept the defaults of portal30_sso and enter your database name, as

shown in Figure 18.10.

FIGURE 18.10
Single Sign-On DAD, Schema, and Database.

13. Oracle will ask you for a Global Database Name and SID of the database to be used for the

Enterprise Java Engine (EJE). This is the renamed Oracle 8i JVM. Oracle states in the ICG

that this database is created in the iAS ORACLE_HOME and that it should only be used for

EJE. Use the default SID of ias1021 and Global Database Name of ias1021.mike.com, as

shown in Figure 18.11.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

477

FIGURE 18.11
Supply the EJE Global Database Name and SID.

14. Next you are asked to enter the location of JDK 1.1.8. In my case it is in /u01/app/

oracle/jre/1.1.8. Enter your location as shown in Figure 18.12.

FIGURE 18.12
Enter the JDK 1.1.8 Location.

15. Portal-to-go repository information is requested next. Here you need to enter a hostname,

listener port number, and SID. This is shown in Figure 18.13.

Oracle DBA on Unix and Linux
478

FIGURE 18.13
Enter Portal-to-Go Repository Information.

16. The next screen prompts you for an owner of the Portal-to-Go repository. Pick a memo-

rable username such as PTG_MANAGER and a password as shown in Figure 18.14.

FIGURE 18.14
Assign a Username/Password for the Portal-to-Go Owner.

17. In Figure 18.15, Oracle asks you to supply the SYSTEM password for the Portal-to-go

repository database. This password is used with the repository user.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

479

FIGURE 18.15
Supply the SYSTEM Password.

18. The next screen provides a summary of the products to be installed. This is shown in

Figure 18.16. Click Install to continue the installation process.

FIGURE 18.16
Installation Summary.

19. The installation process will take a while, usually over an hour. A status bar shows you

the progress, as shown in Figure 18.17.

Oracle DBA on Unix and Linux
480

FIGURE 18.17
Installation Status.

20. Part of the way through the installation, the OUI will pause the installation and ask

you for the next CD. Unmount the CD-ROM, eject the CD, place the next CD in the

CD-ROM, mount the CD-ROM, and then press OK. This process is shown next and

illustrated in Figure 18.18.

It might be necessary to find the session that started the installation, press Enter to get a

command prompt, and log out as that user to free the /mnt/cdrom so it can be

unmounted.

[oracle@mikehat oracle]$ umount /mnt/cdrom

[oracle@mikehat oracle]$ eject

[oracle@mikehat oracle]$ mount /mnt/cdrom

FIGURE 18.18
Load the Next CD.

21. The OUI will likely ask for Disk 1 again. If so, repeat Step 20. This process might occur

several times.

22. After the installation and relinking process has completed, Oracle prompts you to run

root.sh. After you have executed the script as root, click OK.

23. After a moment, iAS will start several configuration tools for Net8, DBCA, Oracle Portal,

and finally it will attempt to start the Web server on port 7777. This is shown in Figure 18.19.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

481

FIGURE 18.19
Running Configuration Tools.

At this point you can run the tools automatically or you can stop each tool and run it sep-

arately outside the installer.

24. It is interesting to note that although this is iAS, an Oracle database is actually installed.

Therefore, you can use its JVM. The DBAC will automatically run as shown in Figure 18.20.

FIGURE 18.20
Install the JVM Database.

25. You identified the database earlier in the installation process as ias1021.mike.com. Oracle

identifies the database and provides the default username and passwords in Figure 18.21.

Oracle DBA on Unix and Linux
482

FIGURE 18.21
Confirm Database ias1021 and Username/Password.

26. The Oracle Portal Configuration Assistant starts next. Choose to Install Oracle Portal and

the Login Server and click Next to continue as shown in Figure 18.22. Because you have

already installed WebDB in a previous chapter, I will not cover it again here.

FIGURE 18.22
Begin the Oracle Portal Configuration Assistant.

Ultimately, you would configure Oracle Portal, start the Apache HTTP listener, and exit the

OUI. Any of these tools and assistants can also be started from the command line, which

means the OUI isn’t mandatory. That concludes the fundamentals of an iAS installation.

Configuration File Location and Apache Control
iAS has configuration and setup options you can access via Web browsers, which makes sense

because it’s a Web product. However, the Apache side of this product mandates configuration

changes that cannot be made graphically. Rather, you have to edit configuration files using vi.

The main file you need to configure is httpd.conf. This is located in the $ORACLE_HOME/

Apache/Apache/conf directory. This file controls parameters such as virtual paths, virtual

directories, and virtual hosts. Other key configuration files can be found in subdirectories off

of $ORACLE_HOME/Apache.

Finally, the Web locations for Apache and Oracle Portal are as follows:

http://mikehat.mike.com:7777 for Apache

http://mikehat.mike.com/pin/portl30 for Oracle Portal

Don’t forget to substitute your hostname for mikehat and your domain for mike.com.

This section covered iAS from a conceptual view, its components, and a sample installation.

From here, you should have enough information to start experimenting with the different com-

ponents and to begin developing Web applications.

Summary
This chapter covered the three-tiered architecture of Internet computing. It explained the role

of the client (Web browser), the middle tier (Web and application server), and the database on

the back end. You also learned about key issues such as technical design, scalability, and

availability.

Next, the chapter examined the Oracle9i Application Server, commonly referred to as iAS. The

chapter looked at this product, its basic architecture (Apache Web server and an application

server), and its key components. Finally, the chapter covered a standard installation and some

of the configuration issues involved in such an installation.

Internet Application Server (iAS)

CHAPTER 18

18

IN
T

E
R

N
E

T

A
P

P
LIC

A
T

IO
N

S
E

R
V

E
R

(IA
S

)

483

CHAPTER

19
9i Server New Features

ESSENTIALS

• Oracle 9i has many new features to improve

performance and simplify database

administration.

• The text-based init.ora parameter file can be

replaced with a binary system parameter file.

• Many SGA parameters can now be adjusted

“on the fly” without needing to bounce the

database instance.

• 9i has the capability to create and manage

database files without direct action by the

DBA.

• Options regarding rollback segments have

been expanded to include undo segments.

Oracle DBA on Unix and Linux
486

With every new version of Oracle, there are exciting new features and Oracle 9i is no excep-

tion. Some of these advances are inside the database and are largely transparent to the DBA.

Other features impact the way the database is managed on a daily basis. It is those features that

are the focus of this chapter.

This chapter covers new features roughly in the order you will encounter them. First, it looks at

changes in the install processes. Next, it discusses what it takes to start the database and how

to create a server parameter file. Then, the chapter covers ways to dynamically adjust SGA

parameters. Use of Oracle managed files is then discussed. Ways that rollback segments have

been modified and use of undo segments are next. Finally, the chapter addresses several mis-

cellaneous changes.

Installing the 9i Server
As with any installation you should check the Installation and Configuration Guide (ICG), but

this is especially true when dealing with a new database version. Be sure to also review the

release notes and any readme.txt files. Also, especially when working on Linux, review the

discussion groups on Technet and the forums on MetaLink to identify the problems people are

finding. I’ve used those discussion groups several times to get Oracle up and running.

Oracle 9i has a higher level of hardware and software requirements than previous versions.

Especially on Linux, you need to verify that your server meets the 9i requirements. Check your

own platform-specific notes for details, but expect to require considerably more RAM (512 M

for Linux) and disk space (almost 2G). These represent roughly double the old requirements.

The OUI is still Java based and the basic screens and options are similar to 8i. However, it

does have a new look, as illustrated in the Installation Type screen shown in Figure 19.1.

As you can see, you can still select between Enterprise, Standard, or a Custom install. Notice,

however, that the software will take 1.79G. To do this 9i comes on three CDs and you will

need to use each one during the installation. Because you will be using multiple CDs for the

install, it is important that you do not start the installer process from within the CD. Do not just

cd to /mnt/cdrom and attempt to run the installer. Rather, execute the installer program from a

different directory, such as $ORACLE_BASE.

[oracle@mikehat oracle]$ cd $ORACLE_BASE

[oracle@mikehat oracle]$ ls /mnt/cdrom

doc index.htm install oidupgrade response runInstaller stage

[oracle@mikehat oracle]$ /mnt/cdrom/runInstaller

This should bring up the OUI. Linux users might need to set LD_ASSUME_KERNEL=2.2.5

and perform miscellaneous distribution specific tasks to get this running.

FIGURE 19.1
9i Installation Type.

During the install, you will be prompted for each CD when it is needed, as shown in Figure 19.2.

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

487

FIGURE 19.2
Prompt for New CD.

As you can see, OUI wants CD number 3. Remember to unmount the CD-ROM, eject the CD,

reload the CD, and then mount the CD-ROM drive before pressing OK.

[oracle@mikehat oracle]$ umount /mnt/cdrom

[oracle@mikehat oracle]$ eject

[oracle@mikehat oracle]$ mount /mnt/cdrom

The OUI might ask you for the location of the Java Developer Kit (JDK). You might have to

download a copy, install it, and then provide the location, as seen in Figure 19.3.

FIGURE 19.3
Enter the JDK Location.

Refer to your ICG guide for specifics regarding which JDK to download and install. However,

this is a fairly straightforward easy task so you should not have many problems with it.

During the installation process you might be given a list of preexisting databases with the

option to migrate them as part of the install. As mentioned in Chapter 15, “Migrations,” I rec-

ommend avoiding this practice. A more conservative approach is to install and test the 9i soft-

ware first, and then perform the migration as a separate process.

Those are the main differences between installing 8i and installing 9i. Expect 9i to require

more memory and disk space, and be prepared to load from three CDs rather than just one.

Setting Up Security and Logging In
There is an attempt at improving security for database installations. First of all, ServerManager

(svrmgrl) and connect internal no longer exist. Oracle has been warning about this change for

several years, and it is now a reality. If you try to connect internal, you will get the following

error.

[oracle@mikehat oracle]$ sqlplus internal

SQL*Plus: Release 9.0.1.0.0 - Production on Sat Jul 14 15:10:52 2001

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Oracle DBA on Unix and Linux
488

Enter password:

ERROR:

ORA-09275: CONNECT INTERNAL is not a valid DBA connection

The description for this error is as follows:

[oracle@mikehat oracle]$ oerr ora 9275

09275, 00000, “CONNECT INTERNAL is not a valid DBA connection”

// *Cause: CONNECT INTERNAL is no longer supported for DBA connections

// *Action: Please try to connect AS SYSDBA or AS SYSOPER.

//

[oracle@mikehat oracle]$

To log in and start a database you must use SQL*Plus as shown here.

[oracle@mikehat oracle]$ sqlplus “/ as sysdba”

SQL*Plus: Release 9.0.1.0.0 - Production on Sat Jul 14 15:04:29 2001

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to an idle instance.

SQL> startup

ORACLE instance started.

Total System Global Area 336356520 bytes

Fixed Size 279720 bytes

Variable Size 268435456 bytes

Database Buffers 67108864 bytes

Redo Buffers 532480 bytes

Database mounted.

Database opened.

SQL>

After you start the database you will find new users. Also, most of the default database

accounts for the new database are expired. This is shown in Figure 19.4.

As you can see, most of the accounts are expired and locked.

Additional changes are planned in future releases. At some point the OUI will prompt you for

passwords for SYS and SYSTEM so the defaults of change_on_install and manager will no

longer exist. Also, the use of a SYSTEM user will no longer be supported some day and it will

no longer be created automatically. No time frame exists for these changes, but they are not

implemented as of Oracle 9.0.1.

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

489

FIGURE 19.4
Expired Accounts.

Creating a Server Parameter File (SPFILE)
In previous versions of Oracle the primary source of database parameters was the text-based

init.ora. From that file it was common to read config.ora and initdef.ora files for additional

parameters, but all of these files were text based. This changes in Oracle 9i.

A binary server parameter file (SPFILE) can now be created from the text-based init.ora file

and used instead, if desired.

To create an SPFILE you must have a preexisting init.ora file to use as a starting point. Next,

log in to SQL*Plus as the DBA and issue the CREATE SPFILE statement as shown here.

SQL> !pwd

/u01/app/oracle/admin/demo/pfile

SQL> !ls

initdemo.ora

SQL> create spfile=’/u01/app/oracle/admin/demo/pfile/spfiledemo.ora’

2 from pfile=’/u01/app/oracle/admin/demo/pfile/initdemo.ora’;

File created.

SQL> !ls

initdemo.ora spfiledemo.ora

SQL>

Oracle DBA on Unix and Linux
490

This creates the SPFILE. Remember to make a soft link to it from your $ORACLE_HOME/dbs

directory as you would with a normal init.ora. You can create this file when the database is

running, but before it takes effect, you must bounce the instance. To determine whether you are

using an SPFILE, examine the parameter SPFILE.

SQL> show parameter spfile

NAME TYPE VALUE

--------------- ----------- ----------------------

spfile string ?/dbs/spfile@.ora

SQL>

If no value is specified, but you have created a SPFILE in the $ORACLE_HOME/dbs directory,

bounce the instance.

Because this is a binary file, you cannot change it manually. You can, however, view it using

more.

[oracle@mikehat pfile]$ more spfiledemo.ora

__¥_

*.background_dump_dest=’/u01/app/oracle/admin/demo/bdump’

*.compatible=’9.0.0’

*.control_files=’/u01/app/oracle/oradata/demo/control01.ctl’

,’/u01/app/oracle/oradata/demo/control02.ctl’

,’/u01/app/oracle/oradata/demo/control03.ctl’

*.core_dump_dest=’/u01/app/oracle/admin/demo/cdump’

*.db_block_size=8192

*.db_cache_size=67108864

*.db_domain=’mike.com’

*.db_name=’demo’

*.dispatchers=’(PROTOCOL=TCP)(SER=MODOSE)’,’(PROTOCOL=TCP)

(PRE=oracle.aurora.server.GiopServer)’,’(PROTOCOL=TCP)

(PRE=oracle.aurora.server.SGiopServer)’

*.fast_start_mttr_target=300

*.instance_name=’demo’

*.java_pool_size=’117440512’

*.large_pool_size=’1048576’

*.open_cursors=300

*.processes=150

*.remote_login_passwordfile=’EXCLUSIVE’

*.resource_manager_plan=’SYSTEM_PLAN’

*.shared_pool_size=117440512

*.sort_area_size=524288

*.timed_statistics=TRUE

*.undo_management=’AUTO’

*.undo_tablespace=’UNDOTBS’

*.user_dump_dest=’/u01/app/oracle/admin/demo/udump’

[oracle@mikehat pfile]$

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

491

Don’t try to change this file with a text editor because you will corrupt the file. Changes to this

file must be made through Oracle.

You must make parameter changes via ALTER SYSTEM commands within the database.

These changes will be made to the instance and the SPFILE file will be updated. This elimi-

nates the need to manually update an init.ora file to reflect a change. This is one of the

biggest benefits of using a SPFILE.

Historically, the ALTER SYSTEM command impacted the current database instance, but the

change did not persist across instance shutdown/startup. If you wanted to make the change per-

manent, you had to manually add it to the init.ora file. The ALTER SYSTEM command now

has a new SCOPE clause that specifies whether the change is made to the current instance and

SPFILE, just to the current instance, or just to the SPFILE. Using the COMMENT parameter,

you can also include a text comment in the SPFILE. The structure of the SCOPE clause is as

follows.

SCOPE = MEMORY

Here, the change affects only the current database instance. The SPFILE is not modified and

the change will last only until the instance is bounced.

SCOPE = SPFILE

This change updates the SPFILE, but not the current instance. For the change to take effect, the

instance must be bounced.

SCOPE = BOTH

The current instance is modified and the SPFILE is updated with the modification.

Rules regarding dynamic versus static parameters still apply. Static parameters are ones that

require a database bounce to take effect. For example, you cannot specify a static parameter

with a SCOPE of MEMORY or BOTH. Static parameters can only be specified with a SPFILE

SCOPE.

The following is an example of a changing a dynamic parameter in both the SPFILE and in the

current instance. Here, you change the value of TIMED_STATISTICS from TRUE to FALSE and

add a comment.

SQL> show parameter timed_statistics

NAME TYPE VALUE

---------------------- ----------- --------------

timed_statistics boolean TRUE

SQL> alter system set timed_statistics = false

2 comment = ‘stop taking detailed stats’

3 scope = both;

Oracle DBA on Unix and Linux
492

System altered.

SQL> show parameter timed_statistics

NAME TYPE VALUE

---------------------- ----------- --------------

timed_statistics boolean FALSE

SQL> !more $ORACLE_HOME/dbs/spfiledemo.ora

…

*.timed_statistics=FALSE#stop taking detailed stats

…

SQL>

The change has now been made both to the current instance and the SPFILE, so it will be in

effect after the instance is bounced.

After you are running the SPFILE it is wise to take text-based backups of it. This process is

the opposite of creating the SPFILE.

SQL> create pfile=’/u01/app/oracle/admin/demo/pfile/initdemo.ora’

2 from spfile=’/u01/app/oracle/admin/demo/pfile/spfiledemo.ora’;

File created.

SQL>

It is possible to go back to using the text-based init.ora file after having used a SPFILE.

Simply bounce the database, but on startup, specify the text-based parameter file.

SQL> shutdown;

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> startup pfile=’/u01/app/oracle/admin/demo/pfile/initdemo.ora’;

ORACLE instance started.

Total System Global Area 336356520 bytes

Fixed Size 279720 bytes

Variable Size 268435456 bytes

Database Buffers 67108864 bytes

Redo Buffers 532480 bytes

Database mounted.

Database opened.

SQL> show parameter spfile

NAME TYPE VALUE

----------------------- ----------- ---------

spfile string

SQL>

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

493

You are now back to using the text-based init.ora file. However, it is necessary to create a link

in $ORACLE_HOME/dbs to the correct initialization file.

Server parameter files offer a binary alternative to the older text-based files. The biggest advan-

tage is the capability to change Oracle parameters and not to have to worry about updating a

file manually. Drawbacks include the fact it is a binary file that cannot be manually edited.

This file can become corrupted, so make sure you have a backup text-based file.

Oracle DBA on Unix and Linux
494

Remember these Are New Features
Whenever a new version of a software program is released, it is important to take

them with a grain of salt. By that, I mean don’t rush to use every new feature just

because it is available. Especially when using production systems, I wouldn’t trust a

new feature from any vendor without testing it first.

There are several reasons for this. First, new software obviously has a higher likeli-

hood of containing bugs. I don’t mind testing new software and finding bugs on test

systems, but not on a production system. Next, if a technology is new, its optimal

usage most likely hasn’t been identified. It takes time and testing to identify how

best to deploy a technology. This can be a painful process fraught with many false

starts. This is okay, as long as it is not on your production system.

Finally, some new features turn out being little more than gimmicks or are so narrow

in their scope that very few people will use them in the “real world.” Not every prod-

uct or feature released by a vendor is going to be helpful. The trick is to make sure

you don’t buy into products that have no real value. Marketing buzzwords are every-

where. As a person evaluating these features, you must identify what it will actually

do for you, not what is promised. If a feature isn’t going to benefit your system in

some tangible way, you probably shouldn’t implement it. Some of the best technical

advice I ever got was if a product doesn’t seem to fill a business or a technical need it

probably isn’t a good idea. If you apply that rule to new features and products, your

system will be better off.

Using Oracle-Managed Files
Oracle 9i offers a new feature that attempts to free you from the details of managing database

files. Oracle-managed files allow you to create data files and tablespaces normally, but Oracle

manages these aspects:

• Location Each file is placed in a default directory location. This parameter can be

modified with ALTER SYSTEM.

• Name Each file has a unique name within the database. It still follows OFA conven-

tions and data files include the tablespace name, but each file is given a system-generated

unique name.

• Size Each file is 100M by default.

• Growth Each file is set with AUTOEXTEND = TRUE to an unlimited size.

• Deleting Once a tablespace is dropped, the file is automatically removed from the OS

by Oracle.

The idea is to make managing files almost transparent. This way, you don’t spend time worry-

ing about name, file size, location, or growth. Oracle takes care of all this transparently.

This feature can be used for control, online redo log, and data files. You can have a mix of nor-

mal files and Oracle-managed files. Assuming you let the defaults of each file take effect, the

single largest variable is determining the default location, which is controlled by two database

parameters.

• DB_CREATE_ONLINE_LOG_DEST_[1…5] If this parameter is specified, this is

where control files and online redo log files are placed by default. You can specify up to

five locations. If more than one location exists, the files are multiplexed automatically.

Data files are not placed in this location. If this value is not set, control and online redo

log files are placed in the default data file location.

• DB_CREATE_FILE_DEST Data files are placed in this location when created by

Oracle. Also, if DB_CREATE_ONLINE_LOG_DEST_[1…5] is not specified, a single

copy of a control file and one member of the two online redo log groups are placed in

this location.

If neither of these parameters is specified and you attempt to create a tablespace without prop-

erly specifying the data file, the statement will fail. The following steps show some examples

of using Oracle-managed files.

To create a simple tablespace using Oracle-managed files, follow these steps:

1. First, set the location of your DB_CREATE_FILE_DEST file, which is where data files

are created.

SQL> alter system

2 set db_create_file_dest

3 = ‘/u03/app/oracle/oradata/demo3’;

System altered.

SQL> show parameter db_create_file_dest

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

495

NAME TYPE VALUE

--------------------- -------- ---------------------

db_create_file_dest string /u03/app/oracle/oradata/demo3

SQL>

2. Create the tablespace and accept all the defaults.

SQL> create tablespace data01;

Tablespace created.

SQL>

3. Examine the tablespace’s defaults. Here, you can see it is in the DB_CREATE_FILE_DEST

location, has a unique name, is 100M, will auto-extend, and it is locally managed.

SQL> select file_name, bytes, autoextensible

2 from dba_data_files

3 where tablespace_name = ‘DATA01’;

FILE_NAME BYTES AUT

--- ------------ ---

/u03/app/oracle/oradata/demo3/ora_data01_xotkdrnj.dbf 104,857,600 YES

SQL> select extent_management, initial_extent, next_extent,

2 allocation_type, segment_space_management

3 from dba_tablespaces

4 where tablespace_name = ‘DATA01’;

EXTENT_MAN INITIAL_EXTENT NEXT_EXTENT ALLOCATIO SEGMEN

---------- ---------------- ---------------- --------- ------

LOCAL 65,536 SYSTEM MANUAL

SQL>

4. Determine whether Oracle will automatically delete the file at the operating system level

once you drop the tablespace.

SQL> !ls /u03/app/oracle/oradata/demo3

ora_data01_xotkdrnj.dbf

SQL> drop tablespace data01;

Tablespace dropped.

SQL> !ls /u03/app/oracle/oradata/demo3

SQL>

Oracle DBA on Unix and Linux
496

Oracle was able to create the data file in a default location, give it default values, and

then remove it as needed. Alternatively, you could have provided some explicit values

such as size.

SQL> create tablespace data02

2 datafile

3 size 250M;

Tablespace created.

SQL> select file_name, bytes

2 from dba_data_files

3 where tablespace_name = ‘DATA02’;

FILE_NAME BYTES

--- ------------

/u03/app/oracle/oradata/demo3/ora_data02_xotlhtwk.dbf 262,144,000

SQL>

You can also add to existing tablespaces and can add multiple files simultaneously as

seen here.

SQL> select file_name from dba_data_files

2 where tablespace_name = ‘DATA02’;

FILE_NAME

/u03/app/oracle/oradata/demo3/ora_data02_xotlhtwk.dbf

SQL> alter tablespace data02

2 add datafile size 150M, size 150M;

Tablespace altered.

SQL> select file_name, bytes from dba_data_files

2 where tablespace_name = ‘DATA02’;

FILE_NAME BYTES

--- ------------

/u03/app/oracle/oradata/demo3/ora_data02_xotlhtwk.dbf 262,144,000

/u03/app/oracle/oradata/demo3/ora_data02_xowlz7d0.dbf 157,286,400

/u03/app/oracle/oradata/demo3/ora_data02_xowlzc00.dbf 157,286,400

SQL>

As you can see, you added two data files with non-default sizes to an existing tablespace. This

adds to the flexibility of Oracle-managed files.

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

497

Creating control files or redo logs is very similar to creating data files. The biggest difference

is that if DB_CREATE_ONLINE_LOG_DEST_n is not specified, a single copy will be placed

in DB_CREATE_FILE_DEST. Next, you can create a multiplexed online redo log group with

two members.

1. Specify the default locations for your redo log or control files.

SQL> alter system

2 set db_create_online_log_dest_1

3 = ‘/u03/app/oracle/oradata/demo3’;

System altered.

SQL> alter system

2 set db_create_online_log_dest_2

3 = ‘/u04/app/oracle/oradata/demo3’;

System altered.

SQL> show parameter db_create_online_log_dest

NAME TYPE VALUE

----------------------------- -------- -----------------------------

db_create_online_log_dest_1 string /u03/app/oracle/oradata/demo3

db_create_online_log_dest_2 string /u04/app/oracle/oradata/demo3

db_create_online_log_dest_3 string

db_create_online_log_dest_4 string

db_create_online_log_dest_5 string

SQL>

2. Identify the current online redo log groups.

SQL> select * from v$logfile

2 order by group#;

GROUP# STATUS TYPE MEMBER

------ ------- ------- --

1 ONLINE /u01/app/oracle/oradata/demo3/redo01.log

2 ONLINE /u01/app/oracle/oradata/demo3/redo02.log

3 ONLINE /u01/app/oracle/oradata/demo3/redo03.log

SQL>

Clearly this is not a good layout. Every member is on one disk, which represents a single

point of failure and would result in I/O contention. Additionally, none of the members is

multiplexed. This is probably the result of a hasty database creation and in a real system,

you would likely fix these problems. For now, just add the new log group.

Oracle DBA on Unix and Linux
498

3. Create a new online redo log group.

SQL> alter database add logfile;

Database altered.

SQL>

4. Check to see what was created. In this case a new log group #4 was created. Because

you assigned two locations for DB_CREATE_ONLINE_LOG_DEST_n, you will have

two multiplexed members for the new group. Each file is uniquely named and is 100M

in size.

SQL> select * from v$logfile

2 order by group#;

GROUP# STATUS TYPE MEMBER

---------- ------- ------- --

1 ONLINE /u01/app/oracle/oradata/demo3/redo01.log

2 ONLINE /u01/app/oracle/oradata/demo3/redo02.log

3 ONLINE /u01/app/oracle/oradata/demo3/redo03.log

4 ONLINE

/u03/app/oracle/oradata/demo3/ora_4_xotmkyyz.log

4 ONLINE

/u04/app/oracle/oradata/demo3/ora_4_xotml1f5.log

SQL>

SQL> select group#, members, bytes

2 from v$log

3 order by group#;

GROUP# MEMBERS BYTES

---------- ---------- ------------

1 1 104,857,600

2 1 104,857,600

3 1 104,857,600

4 2 104,857,600

SQL>

As you can see there is now a new online redo log group with two members at 100M each.

Oracle-managed files do seem to simplify administration, but it comes at a cost. Spreading out

your disk I/O is more difficult with Oracle-managed files unless your logical volume is striped

and preferably mirrored. Even if that is the case, having all your files in one location is danger-

ous because one misplaced rm command can destroy everything.

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

499

Another concern I have is “dumbing down” the DBA’s role and promoting sloppy administra-

tion practices. Although DBAs with a solid background in previous releases of Oracle aren’t

likely to fall into this category, newer DBAs might fall into this trap. If they never learn to sep-

arate their files and rely on Oracle to specify all default parameters, they will never practice

solid database design principles. This might be sufficient on small test systems, but perfor-

mance will suffer greatly on larger systems. My advice is to use Oracle-managed files when

they make sense, but never forget the fundamentals of file management.

Using Dynamic Memory Parameters and Multiple
Block Sizes
One of the most exciting new features of Oracle 9i is the capability to adjust the SGA without

bouncing the database. Obviously this has large implications for systems with high uptime

requirements. The process of defining the size of the database buffer cache has also changed.

This section covers these changes.

Have you ever had a production database with lots of active users, only to find that you need to

increase a parameter like the shared pool to meet an unexpected demand? It’s a hassle to have

everyone log off, increase the parameter to a higher number that you think is correct, bounce

the database, and then have the users log back on. If your increase was sufficient, the users suf-

fer a slight inconvenience and your image takes a small hit. If your increase was insufficient

and performance problems continue, the whole problem snowballs. Fortunately, Oracle 9i

allows you to change these parameters on the fly without having to bounce the instance.

The following parameters can now be changed using the ALTER SYSTEM command:

• SHARED_POOL_SIZE Size of the shared pool.

• LARGE_POOL_SIZE Size of the large pool.

• DB_CACHE_SIZE New parameter in 9i. This is the size of the database buffer cache

of the default database block size.

• DB_nK_CACHE_SIZE New parameter in 9i. This is the size of the optional caches

inside the database buffer cache dedicated to a specific database block size.

• PROCESSES The number of processes on the system. This is an issue if the number

of users logged in (plus the background processes) exceeds the processes number.

Remember not to exceed the number of semaphores on your system when adjusting this

value.

You can decrease or increase these memory pool values, but only up to the size identified by

SGA_MAX_SIZE. You cannot increase a memory pool that will cause the SGA to exceed this

value. Also, this value is not dynamic, so you must bounce the database to increase it.

Oracle DBA on Unix and Linux
500

Here, you modify the shared pool size.

SQL> alter system

2 set shared_pool_size = 75M;

System altered.

If you attempt to increase the shared pool above the value set for SGA_MAX_SIZE, you’ll get

an error.

SQL> show parameter sga_max_size

NAME TYPE VALUE

--------------------- ----------- -------------

sga_max_size big integer 336356520

SQL> alter system

2 set shared_pool_size = 400M;

alter system

*

ERROR at line 1:

ORA-02097: parameter cannot be modified because specified value is invalid

ORA-04033: Insufficient memory to grow pool

SQL>

Related to dynamic memory pool allocation is the practice of using multiple block sizes in the

database. Oracle 9i allows you to use up to four database block sizes for data files and segre-

gate these as separate caches within the database buffer cache. Within the buffer cache, you

can dynamically increase or decrease individual pools based on block size. The range of block

sizes available are 2K, 4K, 8K, 16K, and 32K.

When you create a 9i database, you still define a DB_BLOCK_SIZE, which will be your

default block size and will be the size used for the SYSTEM tablespace. For example, here

you are set to use 8K blocks.

SQL> show parameter db_block_size

NAME TYPE VALUE

------------------- ----------- ----------

db_block_size integer 8192

Now, for tuning purposes, you want a tablespace with a larger block size, you can specify that

within the CREATE TABLESPACE statement. However, before you do this, you must allocate

a pool within the database buffer cache to hold this different block size. Failure to create space

in buffer cache for the different block size will result in an ORA-29339 error when you try to

create the tablespace, so be sure to allocate the pool first.

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

501

SQL> show parameter db_16k

NAME TYPE VALUE

------------------- ----------- ----------------

db_16k_cache_size big integer 0

SQL> alter system

2 set db_16k_cache_size = 16M;

System altered.

SQL> create tablespace data

2 datafile ‘/u01/app/oracle/oradata/demo/data01.dbf’

3 size 100M

4 blocksize 16K

5 default storage (initial 1M next 1M);

Tablespace created.

SQL>

You now have DATA tablespace using 16K blocks and a pool in the buffer cache reserved for

it. The database buffer cache now contains a pool for 16K blocks and a separate pool for the

default 8K blocks. Keep in mind that when you add new pools, they come in addition to the

buffer cache. By adding the new pool for 16K blocks, you do not implicitly increase or

decrease the size of the default (8K) pool.

There is a catch when creating separate pools for different block sizes. You cannot define a

pool with DB_nK_CACHE_SIZE for the default block size. In this example the default block

size was 8K, but you never defined a DB_8K_CACHE_SIZE value. This pool is sized by set-

ting the DB_CACHE_SIZE parameter, which is for the default block size. Oracle might ini-

tially let you assign a separate pool size for the default block size, but you will receive the

following error when you bounce the instance:

SQL> startup

ORA-00380: cannot specify db_8k_cache_size since 8K is the standard block size

SQL> !oerr ora 380

00380, 00000, “cannot specify db_%sk_cache_size since %sK is the standard block

size”

// *Cause: User specified the parameter db_nk_cache_size (where n is one of

// 2,4,8,16,32), while the standard block size for this database is

// equal to n Kbytes. This is illegal.

// *Action: Specify the standard block size cache using db_cache_size (DEFAULT

// pool) (and db_recycle_cache_size, db_keep_cache_size if additional

// buffer pools are required). Do NOT use the corresponding

// db_nk_cache_size parameter for the standard block size.

//

SQL>

Oracle DBA on Unix and Linux
502

Using multiple block sizes alters the way the buffer cache is sized. Prior to 9i, the formula for

the buffer cache was as follows:

buffer cache size = DB_BLOCK_SIZE * DB_BLOCK_BUFFERS

Under 9i, this formula changes. You no longer measure the buffer cache in terms of

DB_BLOCK_BUFFERS. Rather, you specify the size of the buffer cache for the default block

size using the parameter DB_CACHE_SIZE. In addition to that value, you also add each pool

for any non-default block sizes as well. The new equation is as follows:

buffer cache size = DB_CACHE_SIZE + DB_[2K...32k]_CACHE_SIZE

In this manner, you measure the buffer cache by the sum of each pool reserved for a specific

block size.

Using Undo Tablespaces
Oracle 9i also attempts to reduce maintenance duties involving rollback segments. If you want,

you can still use traditional tablespaces, whereby you create rollback segments and manage the

extents. However, 9i introduces a new type of undo tablespace that replaces traditional rollback

segments. In fact, Oracle documentation states that the traditional method of creating rollback

segments is being depreciated and strongly recommends using undo tablespaces.

Undo tablespaces perform the same core functions of traditional rollback segments. They pro-

vide the three Rs of rollback segments:

• Rollback of SQL statements

• Read consistency

• Recovery in case of a crash

Unfortunately, at the time of this writing, Oracle has not explained exactly how undo tablespaces

work internally and in what way they differ internally from traditional rollback segments.

Basically, we know how to create them and that Oracle automatically manages them, but the exact

details haven’t been released. Based on the queries from DBA_ROLLBACK_SEGS, it looks like

they do use some type of segments, but how these differ from traditional rollback segments is still

unknown. Therefore, this section focuses on what they do rather than how they do it.

A 9i instance can run using either traditional rollback segments or the new undo tablespaces.

Changing between methods requires modifying the parameter UNDO_MANAGEMENT and

bouncing the instance. UNDO_MANAGMENT has the following settings:

Setting Description

UNDO_MANAGEMENT = ‘’ Unset, defaults to rollback segments

UNDO_MANAGEMENT = MANUAL Use traditional rollback segments

UNDO_MANAGEMENT = AUTO Use new undo tablespaces

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

503

If you do not set UNDO_MANAGEMENT or set it to MANUAL, you can use and manage

rollback segments as normal. However, if you decide to use undo tablespaces you must do the

following:

1. Decide whether you will create the tablespace at database creation or after the database

is created. Here, you create an undo tablespace after the database has been created. The

key difference between creating this undo tablespace versus any other type of tablespace

is the UNDO clause.

SQL> create undo tablespace auto_undo_tbs

2 datafile ‘/u02/app/oracle/oradata/demo/auto_undo_tbs01.dbf’

3 size 100M;

Tablespace created.

SQL>

Here, you now have an undo tablespace called AUTO_UNDO_TBS. If you let Oracle

create it for you at database creation, the default name is UNDOTBS.

2. Currently, you are set to use manual (traditional) rollback tablespaces. Because you can

have multiple tablespaces, you must identify which one you will use. Set the database to

use the undo tablespace AUTO_UNDO_TBS once you start using undo tablespaces.

SQL> alter system

2 set undo_tablespace = auto_undo_tbs

3 scope = spfile;

System altered.

SQL>

Once you have set the database to use undo tablespaces, you can change

UNDO_TABLEPSACE dynamically to switch between different tablespaces. New trans-

actions will take place in the tablespace specified, whereas existing transactions will con-

tinue in the previous tablespace. However, here you can’t set UNDO_TABLESPACE

dynamically because the database is still in manual rollback mode. Therefore, you set it

in the SPFILE using the SCOPE clause to take effect next time you bounce the instance.

3. Next, you must set the database to use the auto undo tablespace method rather than the

manual method. This parameter is not dynamic so you must set it in the SPFILE so it

will take effect when you bounce the instance. Set the database to use AUTO undo.

SQL> alter system

2 set undo_management = auto

3 scope = spfile;

System altered.

SQL>

Oracle DBA on Unix and Linux
504

4. Bounce the database so the changes take effect.

SQL> shutdown;

...

SQL> startup

ORACLE instance started.

Total System Global Area 420242700 bytes

Fixed Size 279820 bytes

Variable Size 335544320 bytes

Database Buffers 83886080 bytes

Redo Buffers 532480 bytes

Database mounted.

Database opened.

SQL>

5. Verify the database is using the undo tablespace.

SQL> show parameter undo

NAME TYPE VALUE

------------------------ ----------- ---------------

undo_management string AUTO

undo_retention integer 900

undo_suppress_errors boolean FALSE

undo_tablespace string AUTO_UNDO_TBS

SQL> select segment_name, tablespace_name, status

2 from dba_rollback_segs

3 order by tablespace_name;

SEGMENT_NAME TABLESPACE_NAME STATUS

--------------- --------------- ----------------

_SYSSMU11$ AUTO_UNDO_TBS ONLINE

_SYSSMU12$ AUTO_UNDO_TBS ONLINE

_SYSSMU13$ AUTO_UNDO_TBS ONLINE

_SYSSMU15$ AUTO_UNDO_TBS ONLINE

_SYSSMU17$ AUTO_UNDO_TBS ONLINE

_SYSSMU19$ AUTO_UNDO_TBS ONLINE

_SYSSMU20$ AUTO_UNDO_TBS ONLINE

_SYSSMU18$ AUTO_UNDO_TBS ONLINE

_SYSSMU16$ AUTO_UNDO_TBS ONLINE

_SYSSMU14$ AUTO_UNDO_TBS ONLINE

SYSTEM SYSTEM ONLINE

11 rows selected.

SQL>

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

505

As you can see, the database is using the undo tablespace. There are 10 segments automatically

created in this tablespace. You cannot manually add additional rollback segments to this table-

space. The parameter UNDO_SUPPRESS_ERRORS is currently set to FALSE, which means

Oracle will issue an error message if you attempt manually add rollback segments. If you set

UNDO_SUPPRESS_ERRORS to TRUE and attempt that operation, Oracle will not display an

error and it will appear that your command was successful, however the segments will not be

used.

One final parameter of interest relating to undo tablespaces is UNDO_RETENTION. This

parameter dictates how long, in seconds, the undo from a completed transaction is preserved in

the undo tablespace before the space is reused. By keeping this undo information available,

Oracle provides a read consistent “before image” of the data for other transactions to use. This

is necessary to prevent the ORA-01555 Snapshot Too Old error. The default value is 900 sec-

onds (15 minutes). To modify this value, issue the following:

SQL> alter system

2 set undo_retention = 1800;

System altered.

SQL>

In this case, you double the retention period to 1800 seconds (30 minutes). Oracle will now

attempt to retain committed undo data for 30 minutes in case a long running query needs it for

read-consistency. However, if Oracle needs space in the undo tablespace, this retained undo is

used. Therefore, you cannot entirely depend on the undo being available if you have an active

database or a small undo tablespace.

Undo retention also supports the new package DBMS_FLASHBACK. This package allows

you to view data as it existed previously, but only to the point that undo exists. If you plan on

using this package, you need to set UNDO_RETENTION accordingly.

Oracle has provided a new view to monitor undo tablespace usage. The new view is V$UNDO-

STAT. Previous views regarding rollback segments still exist in 9i.

Comprehensive Sample Schemas
Oracle 9i has a new and more complete set of optional sample schemas for testing. Many DBA

and developers originally learned Oracle on the SCOTT/TIGER account; this account still

exists. However, the SCOTT schema is limited in terms of objects, complex referential

integrity, and volume of data. Often trainers and instructors have to create their own schemas

so students can train on realistic accounts.

Oracle DBA on Unix and Linux
506

Oracle 9i now allows you to create several new testing/training schemas. These include refer-

ences to Human Resources (HR), Order Entry (OE), Product Media (PM), Sales History (SH),

and Shipping (QS), as shown next. Notice how each account (except for SCOTT) is expired

and locked by default.

SQL> select username, account_status from dba_users

2 where username in (‘SCOTT’, ‘HR’, ‘SH’, ‘PM’, ‘OE’)

3 or username like ‘QS%’;

USERNAME ACCOUNT_STATUS

---------- --------------------

QS EXPIRED & LOCKED

QS_ADM EXPIRED & LOCKED

QS_CB EXPIRED & LOCKED

QS_CBADM EXPIRED & LOCKED

QS_CS EXPIRED & LOCKED

QS_ES EXPIRED & LOCKED

QS_OS EXPIRED & LOCKED

QS_WS EXPIRED & LOCKED

OE EXPIRED & LOCKED

PM EXPIRED & LOCKED

SH EXPIRED & LOCKED

HR EXPIRED & LOCKED

SCOTT OPEN

13 rows selected.

SQL>

These schemas are created when you create the demo database. You can also find scripts to

create each schema in $ORACLE_HOME/demo/schema.

Why make a big deal about training accounts? Aren’t there other 9i features that will impact

the DBA more on a daily basis? First of all, these training accounts represent most of the new

default users, so you need to know what they are. Second, because many DBAs will attempt to

learn 9i by experimenting, it is good to identify the “Guinea pig” accounts quickly. Finally,

these schemas contain objects that the average DBA might not have experience with, including

LOBs and queues. Fortunately, some schemas do have these types of more exotic objects.

SQL> select owner, object_type, count(*) from dba_objects

2 where owner = ‘QS’

3 group by owner, object_type;

OWNER OBJECT_TYPE COUNT(*)

-------------------- ------------------ ----------

QS INDEX 15

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

507

QS LOB 1

QS QUEUE 6

QS SEQUENCE 2

QS TABLE 15

QS VIEW 5

6 rows selected.

SQL>

Use these schemas as you experiment with the 9i features. They will likely be used in Oracle

training classes and probably future books.

Miscellaneous Features and Changes
There are many more new features and changes that deserve mentioning. Use this list to iden-

tify features you should explore as you find the time.

• Oracle Parallel Server (OPS) is now called Real Application Clusters (RAC). RAC is the

system of having a physical database on a shared disk array that’s accessed simultane-

ously by multiple instances on separate nodes. This provides improved fault tolerance

and can be used to partition the application. This feature has been available since Oracle

7, but Oracle is pushing it more aggressively in 9i. Because of recent improvements, this

feature is now available on Linux systems.

• Net8 is now referred to as Oracle Net.

• The processes of locking and reorganizing database objects have been improved.

• You can now create tablespaces with automatic segment management. This eliminates

the need to configure parameters such as FREELISTS and PCTUSED.

• LogMiner via OEM now has a graphical interface.

• DBMS_FLASHBACK allows you to view data as it existed previously in the database.

• Standby databases are improved and are now called Data Guard.

There are many more features you should be familiar with; you should explore the ones listed

previously in greater detail. However, this should provide a good place to start. From here, you

can start experimenting with the new database. Next, you should consider taking a 9i New

Features class to better understand the new release and prepare for the OCP upgrade exam.

Summary
This chapter covered some of the most interesting new features of Oracle 9i. Although there

are many improvements that you should become familiar with, the focus of this chapter was on

the changes that you will notice immediately.

Oracle DBA on Unix and Linux
508

The chapter covered changes to the installation procedure and what to expect during installa-

tion. Next, it looked at changes to security and how to log in using the “/ as sysdba” clause.

Server parameter files (SPFILE) were discussed, as this new feature attempts to replace text-

based init.ora files. Oracle-managed files were also discussed. Oracle is attempting to replace

DBA managed rollback segments with automatic undo tablespaces. The chapter therefore

showed how to create and implement this new type of rollback management. Next, it provided

an overview of the new training schemas that you can create. Finally, the chapter touched on

several miscellaneous changes and new features that you should be aware of. This information

should help you get started using 9i.

9i Server New Features

CHAPTER 19

19

9
I
S

E
R

V
E

R
N

E
W

F
E

A
T

U
R

E
S

509

CHAPTER

20
Growth of the DBA

ESSENTIALS

• The key to advancing your career as a DBA is

continuing education.

• Classes via Oracle University or third-party

schools are a great way to learn new skills.

• Certification is very popular in IT and the best

way to prepare for Oracle certification is to

take Oracle University Classes.

• Learning on your own is a critical skill for any

technical person because paid training is not

always available.

• There are many lucrative opportunities for

experienced technical people if they are

willing to pursue them.

Growth of the DBA
People in the technology industry often ask “How can I get ahead?” This is often tied to “How

can I make more money?” These are fair questions because IT certainly is a business. However,

although many technology people are driven by money, most also do gain a level of personal

satisfaction by being good at what they do. Combined with the dynamic nature of IT, growing

and learning is more of a requirement than an option.

This chapter discusses some common characteristics I’ve noticed among DBAs that I consider

successful. It surveys some of the ways DBAs can become better at what they do. If becoming

more skilled increases the salary base, even better. However, the main focus of this chapter is

growing from a technical standpoint.

Motivation
What drives a DBA or any technical person for that matter? The answers are as varied as the

people. However, I have noticed some traits common among successful DBAs and SAs that

I’ve known.

• They really like to understand how and why things work.

• The desire to keep learning extends far beyond the classroom.

• They want to make good money, but they know they won’t get ultra-rich.

Obviously, motivating factors vary from person to person. However they reflect the nature of

the industry so people possessing these characteristics tend to do well as administrators. Notice

how learning and understanding the technology are central themes. That’s why this chapter

focuses on continuing education.

Continuing Your Education
It is one industry in which a specialized degree is not a requirement. Unlike most other profes-

sional occupations, there is no rule (official or implied) that says you must have a college

degree to practice. Some of the most successful people in IT don’t even have college degrees.

In fact, the CEOs of several of the largest software companies are college dropouts. Could any-

one imagine this to be the case in the legal or medical professions?

What this means is that you should not feel inferior if you lack a traditional education in IT.

However, it does not mean that learning isn’t important. In fact continuing education is often

the key to advancing yourself. It almost seems cliché to say that change is constant, but in IT,

this really is true. Most DBAs realize this and want to stay on top. The following sections

outline some of the more common ways to stay abreast of the changes in this field.

Oracle DBA on Unix and Linux
512

Traditional Education
Many people leave school early to get into IT or have non-IT degrees. The point is they lack a

computer degree and feel that one would help them. Once someone is established as a DBA

with years of experience, the effort of earning a degree approaches the point of diminishing

returns. Regardless, some people do leave the industry for a full-time education or (more often)

take classes while working a full-time job.

You can get quality Oracle training at universities. In addition to the normal classes in pro-

gramming, design, and networking, many programs require some level of database training.

Initially, this is often taught in SQL using Microsoft Access. However, upper-level classes

often teach PL/SQL, data modeling, and database design. Some of the better institutions also

teach database administration.

Oracle University Classes
Oracle Corporation offers a very good series of instructor led classes. The scope of these

classes covers virtually everything related to databases. Very good training for SQL, PL/SQL,

Oracle Designer, Oracle Developer, Oracle Discoverer, Web and Internet products, data model-

ing, and database administration is available. These classes are continually being updated;

you’ll find complete course descriptions on the Oracle University (formerly Oracle Education)

Web page at http://oracle.com/education/.

The classes contain a mix of instructor-led lectures, discussions, and lab work. Most of the

classes take place in special training centers, located in almost every city. As a student you

have access to a workstation loaded with whatever software you are learning. You also are

issued a student kit containing the lecture and lab manuals. Pay particular attention to the

training manuals. These are very good manuals and will be useful once you return to your job.

Growth of the DBA

CHAPTER 20

20

G
R

O
W

T
H

O
F

T
H

E

D
B

A
513

Keep Your Manuals

If your company officially pays for training, the lab manuals are yours. If you later

leave your company I recommend taking them with you.

TIP

Each class takes between one and five days. However, most classes are four or five days. Most

of the standard classes, such as those related to SQL and database administration, are offered

regularly at any training center. However, if you want a class covering specialized products,

such as Parallel Server or iAS, you will probably have to travel to a major city. The only other

alternative is to have Oracle come to your organization and teach a class. If a large group of

students attend, Oracle will send an instructor to a site to teach a specific class.

Computer Based Training (CBT) CDs are also available. CBTs are interactive multimedia

presentations designed to teach a topic. Over the years these have improved dramatically from

plain text lectures and questions to fully graphical, audio training presentations. These CBTs

are a good way to get introductory information on a subject. However, the full-blown

instructor-led courses provide a more complete and in-depth education.

Third-Party Oracle Classes
Quality training is also available from third-party organizations. Particularly for those who just

want more training so they perform their jobs better, smaller schools are often better.

Depending on the company, you’ll pay about $600 for the lecture, a hands-on lab, and training

materials. Many private individuals opt for these types of classes to advance their IT careers

because they can be held at night. These types of classes are also popular with non-IT

individuals looking to see whether they want a change in careers.

One such company that conducts this type of training is Perpetual Technologies (http://

www.perptech.com/). They provide a full range of Oracle DBA, SQL, PL/SQL, and design

classes. Unlike many training organizations, they also place an emphasis on the Unix/Linux

operating system, which is very important. Classes in system administration and Korn shell

programming are also available (these are also valuable skills for an Oracle DBA to have).

Finally, training internships are also available so students can practice their skills in a work

environment.

Learning on Your Own
By far, most DBAs train themselves on the job when needing a new skill. Working DBAs

seldom have time to take a class for every new skill they need just to survive. Most DBAs

might get basic training on a new topic, such as performance tuning, and then use this basis to

teach themselves the on-the-job skill.

DBAs typically read Oracle manuals, published books, and Technet (http://

technet.oracle.com) and Metalink (http://metalink.oracle.com) Web pages to

gain new information. In fact, it’s not a bad idea to try to devote at least one hour a day reading

or practicing new skills. Too many systems suffer because administrators fail to understand or

implement their systems properly. Indeed, viable technical options to difficult problems won’t

be considered if you don’t know they exist. This means that management must understand that

computer administration is a technical position and their administrative staff needs the time to

maintain and expand their technical skills.

Oracle DBA on Unix and Linux
514

Growth of the DBA

CHAPTER 20

20

G
R

O
W

T
H

O
F

T
H

E

D
B

A
515

“Goofing Off?”
I once had a non-technical manager who frowned on his technical people reading

manuals or Oracle Web pages. He was convinced that if you were not typing rapidly

at the keyboard, you obviously were not working. After about one month of getting

dirty looks, the SA, a developer, and I let him know what we were doing and why.

We cited examples of how training and what we learned on our own had directly

benefited the company. After a while he started to understand the nature of an IT

shop, but the culture still wasn’t conducive to professional development. Ultimately

we all left that company; the negative atmosphere we faced was a big reason for our

leaving.

Many DBAs build a test instance on a Unix or Linux box to practice what they have learned.

This is how most real learning occurs. If you cannot get a test box at work, get a Linux box at

home. Many people become DBAs because they are willing to work and learn on their own.

Obviously, you should not use production databases to test new skills. This is why a test box is

great—if you crash it or lose a database, nothing of value is lost.

Make notes to yourself and develop a collection of scripts you know and understand. There is

no reason to reinvent the wheel; when you do perform an interesting or complicated task, out-

line it. These notes are for yourself so the next time you are faced with a similar task you will

be better prepared. By creating these personal white papers you become more familiar with

what you did and increase your retention level. This makes you more valuable as an adminis-

trator because your experience stays with you. Also start creating a toolbox of scripts. These

can be shell or SQL scripts that perform virtually any task. DBAs who travel and consult often

rely on a common set of scripts they take with them. This improves efficiency and guarantees a

level of repeatability because the same scripts are used each time.

Emerging Technologies
After you have been trained and are working as a DBA, it is up to you to learn new technolo-

gies. In recent years, the roles of the Internet, LDAP, Java, and Web servers have become more

important to the DBA. There is a big push to Web-enable many preexisting systems, which of

course has an impact on the database. As Java supplements and replaces PL/SQL, you must

understand how, why, and where it is used. Oracle is continually phasing these technologies

into each new database release. The traditional tasks of the DBA are changing as the database

becomes more self-managed. However, the responsibilities of data protection and data avail-

ability will remain, it’s just they will be more Web-oriented. Progressive DBAs realized this

and are acting accordingly.

This section covered continuing education. A formal education in computers is helpful, but not

necessary. It is far more important what you do on the job than what you learned in school.

Knowing this, you can use structured training classes to learn new topics. Then, you can work

on your own to maintain and expand your skills. Once you have been “trained,” it is up to you

to stay on top of new technologies, because they will ultimately change the way you work.

Getting Certified
Certifications have been part of the IT industry for some time. Novell certifications have been

around for years; Microsoft has several certifications available; and now Cisco is expanding.

Oracle is no exception with its Oracle Certified Professional (OCP) program.

Available Certification Tracks
Until just recently, there were three categories of OCP: Database Operator, Database

Administrator, and Application Developer.

Database Operator is the simplest certification. It has one test focused on basic database

principles and OEM. Some people consider it the equivalent of a Junior DBA test.

Database Administrator is the main certification most people attempt. It has five tests covering

the following areas:

• Introduction to SQL and PL/SQL

• Database administration

• Network administration

• Backup and recovery

• Performance tuning

By no mere accident, these correspond exactly to the classes offered by Oracle University.

Application Developer certifies that you can be a developer. This track is being modified for

the new Developer 6i toolset. The exact number of tests depends on the track you are taking.

Generally, it is composed of the following tests:

• Introduction to SQL and PL/SQL

• PL/SQL

• Forms 1

• Forms 2

As of this writing Oracle has expanded the program to include certifications for Java Developer

and Financial Applications. The Java certification is one or two exams depending on the level

Oracle DBA on Unix and Linux
516

of certification you want to obtain. The Financial Applications certification requires three tests,

but it looks like this certification is being retired.

Growth of the DBA

CHAPTER 20

20

G
R

O
W

T
H

O
F

T
H

E

D
B

A
517

The OCP Program Is Evolving

New OCP tracks are added regularly and the requirements can change. Be sure to

check the Oracle Certification (http://www.oracle.com/education/certification/)

page to view the latest requirements.

NOTE

The “Introduction to SQL and PL/SQL” test is the same for both the DBA and Developer

categories. Each test is slated towards a version of the appropriate Oracle product—whether it

be Oracle 7, Oracle 8, or Oracle 8i DBA. Rather than having to take all the tests of a specific

release, as it used to be, you now can mix the versions of the tests to a certain extent. You can

also take upgrade tests in order to go from one version to the next. For example, if you are an

Oracle 8-certified DBA, you do not have to take the same five tests for 8i certification. Simply

pass the Oracle 8i upgrade test and you will be certified for Oracle 8 and Oracle 8i.

Preparation
These tests do require preparation; most people cannot pass the exams without preparing.

These tests ask very specific, detailed questions about Oracle. Because these are multiple-

choice questions, there is no way to give a bogus essay answer and get partial credit. You can

normally eliminate one response, but you are still left with three or four other possible

solutions. You really need to know the material.

Another reason these tests are challenging is that they deal with areas you might not have any

hands-on experience with. You might be very successful using shell scripts to do many of the

tasks that Oracle has separate products to do also. However, the test focuses on the Oracle

products, not your scripts. You have to be familiar with each Oracle product whether you use it

or not.

So how do you prepare for these exams? By far the best way to prepare is to take the Oracle

University courses. I have found that if you take these classes, you’ll have everything you need

to pass the test. Just read the manuals from the class from cover to cover. Make sure you really

know this material; if so, you’ll do fine on the exam.

What about many of the third-party courses available? Personally speaking, I would skip them

and go straight to Oracle University. Why go to a third-party group focusing solely on a test

when you can get a good technical education plus the testing material from Oracle? One

characteristic I especially like about Oracle University classes is that they focus on teaching the

topic, not only on passing the test. In fact, most of the instructors I’ve had barely even mention

the OCP and none structure the class around taking the test. However, by taking the class and

knowing the manual, you’ll be more than ready to take the test. This is a better way to prepare

yourself for employment as a DBA. It is also much more respected in the industry.

There are also many books on the market that claim to prepare you for the tests. Many times,

these books don’t reflect the tests very well. There might be some exceptions out there, but

none that I have seen. You can get some good information in terms of learning more about

Oracle, but I think they pale in comparison to the real Oracle courses.

The only other source to consider is the official Oracle documentation set. As a DBA, you

should be familiar with these manuals already. If you cannot make it to Oracle University

courses, the documentation—free online from Oracle Technology Network—should suffice.

The course material is tied closely to the documentation set. The only problem with the

documentation set is that you risk getting information overload, but that will probably benefit

you in the long term.

In terms of evaluating your readiness, there are practice tests available. Oracle offers short

sample tests that are accessed online. These are worthwhile and are a good predictor of

success. From my experience if you have studied and can pass the practice test with a 90% or

more, it’s time to consider taking the real test. Oracle also offers tests with more questions. I

have not used these, but people I know who have are satisfied with them.

Taking the Test
Each test costs $125 whether you pass or fail. If you fail and want to retake the test it costs

another $125. Many companies will reimburse their employees who pass the test, so you might

want to check with your employer. If you have Oracle training credits and don’t have enough

for a class or CBT CD, sometimes you can use them to obtain testing vouchers.

You have to find a location that hosts the tests and then register for a day and time. I recom-

mend registering at least one week in advance to make sure space is available. Registration

links and phone numbers are available online from the Oracle certification Web site.

Most of the tests are between 40 and 60 questions and you have 90 minutes to complete them.

Expect between one and six questions per subject area. Although these tests are computer-

driven, they are not adaptive. That means the test will not adjust the difficulty of the questions

based on your strengths and weaknesses. At the end of the test, you will immediately receive

your score, whether you passed or failed, and the subtotals of each subject area.

Oracle DBA on Unix and Linux
518

Benefits of Certification
Certification adds a nice touch to any resume. Many companies give bonuses or raises for cer-

tification. Consultants sometimes have a higher billing rate when they are certified. However,

most IT people consider it no substitute for real experience and I have to agree with that. Also,

be aware of the fact that preparing for certification exams is a moneymaking opportunity for

many people. Whether they are selling books or teaching the “Boot Camp” training classes,

they are doing it for a profit. So keep that in mind before spending thousands of dollars to

prepare for one test.

Networking with Other DBAs
Administration of any type is often as much a human issue as it is a technical one. Many of the

ways administrators grow professionally is by working with and learning from other adminis-

trators. Doing so can meet two objectives—it can help you become more technically skilled

and find a better position.

Technical Benefits
One of the best ways to become more knowledgeable about Oracle is to talk with other DBAs.

No one person can stay abreast of every development regarding the database industry. It is by

talking with other DBAs (or SAs for that matter) that you can learn how technology is imple-

mented, what works well, and what doesn’t work. This type of information usually isn’t in a

manual. By learning from other DBAs, you can avoid “reinventing the wheel” to a certain

extent.

I usually try to work with as many DBAs as I can. By seeing what they are doing, getting their

insights, and sometimes swapping scripts, both people become a little wiser. Most administra-

tors I’ve worked with are more than willing to impart some of their knowledge, but you should

be willing to return the favor at some point. I’ve also never had a problem teaching more junior

DBAs either. It really is true that one of the best ways to learn a topic is to teach it. In these

cases, both parties benefit.

Try to meet as many IT people as possible outside your organization or company. This is how

you learn what other shops are doing. Learn how and why they have implemented a certain

database, operation system, and programming language and consider the challenges they have

faced. By doing this, you learn which technologies are doing well and which are not. This is

helpful later, when you are called to evaluate a new platform, database, or language.

Classes, Oracle conventions, and user group meetings are good places to meet other DBAs and

exchange ideas. I have yet to be at a class that didn’t start off with a round of introductions.

Because you will likely be in training for a few days, you have plenty of time to meet other

Growth of the DBA

CHAPTER 20

20

G
R

O
W

T
H

O
F

T
H

E

D
B

A
519

DBAs who are often working locally and are usually facing similar issues. Conventions such as

Oracle’s Open World are also good to attend so you can meet other technical people, as well as

learn about newer technologies. Finally, user group conventions are good places to meet local

DBAs and learn what they are doing.

Professional Benefits
Another reason to network with other IT people, particularly DBAs and SAs, is to build your

potential job contacts. A high percentage of technology people owe their positions to someone

they know. Networking is how people find better jobs, especially among established IT people.

The biggest reasons for this phenomenon are as follows:

• Word gets out about job openings before it ever reaches the want ads.

• More accurate and honest depictions of the job are available.

• You already have a reference from someone in that shop.

• The “middleman” is cut out, which might result in higher salaries.

Usually, when a shop has a need for an administrator, the other (often overworked) administra-

tors are the first to know about it. Frequently, you will hear something like “We’re not actively

looking for someone yet, but my boss is thinking about hiring someone.” At this early stage,

you have a leg up if you can get an interview; they often are prone to hire you because they

don’t want to deal with a formal hiring process.

By knowing people at a shop, you’ll get an idea how it is to work there. Even before a job

opening is available, you can usually identify the technology used and how people are treated

at that shop. Whether or not it’s fair, some shops get a good reputation, whereas others are

labeled sweatshops. These reputations carry a great deal of weight; be sure to find out how the

company is labeled.

If someone you know is setting you up with an interview, it’s pretty safe to assume they think

you can do the job. Acting as a personal reference for someone can be risky if they don’t turn

out as promised, but it is a very persuasive way to get someone hired.

Do not lose sight in a market in which IT people are in demand; there is money to be made by

meeting that demand. Finding and hiring any qualified IT person is expensive, time-consuming,

and often frustrating for employers. Currently, Oracle DBAs, Unix SAs, and Java programmers

are at the top of the list in terms of being hard to find and retain.

As a result, many companies turn to employment agencies, or “headhunters,” as they are usu-

ally called, to fill IT positions. This costs the company money and time because they have to

pay the headhunter for you plus they still have to perform interviews. On the other hand, you

also pay indirectly because a percentage of your salary goes to pay the headhunter. This is

Oracle DBA on Unix and Linux
520

reflected in a lower starting salary. Obviously, if you can directly contact the hiring company

before a headhunter becomes involved, both you and the employer come out on top.

Growth of the DBA

CHAPTER 20

20

G
R

O
W

T
H

O
F

T
H

E

D
B

A
521

Referral Incentives

Be aware that many companies have incentive programs for employees who help hire

other employees. IT people are highly sought after and they can bring a bonus of

several thousand dollars. This does not necessarily mean the job is bad, but just keep

in mind that your “friend” might also benefit from your employment there.

NOTE

Consulting/Contracting versus Salaried Employee
Many DBAs start off initially as employees at established companies. Many companies prefer

to train DBAs internally because it’s sometimes cheaper than hiring someone off the street.

Plus, the DBA they get in the end already knows their systems. This makes sense and can work

if both parties are truly committed to the program. However, once they are trained and have a

few months or years of experience, many DBAs look for higher-paying jobs.

Many DBAs are then faced with a decision of working for another company on salary or

consulting. This is a big issue that many people do not consider until they are faced with the

situation. Some of the pros and cons of consulting follow.

Pros:

• Potentially much higher pay.

• Exposure to many different shops and environments.

• Great resume-building material.

• Travel to different states and even countries.

• Ability to sometimes avoid involvement in company politics.

Cons:

• Potentially unstable employment.

• Travel for extended periods of time.

• Long hours and aggressive project deadlines.

• Potential to work in hostile client environments.

• Pay and benefits might be less than expected.

Obviously, these are generalities and might not apply to everyone. However, with the majority

of consultants I’ve worked with and from what I’ve experienced, these are common pros and

cons.

Most of the consultants I know are glad they are or have consulted. They usually cite the vari-

ety of interesting work and higher pay as top reasons why they consult. The biggest complaint

I’ve heard, particularly by those with families, is the travel. I know of consultants who go on

projects out of state lasting over a year. Keep this in mind before signing up as a consultant.

Learning Systems Administration and Architecture
After a few years as a DBA, some people branch out into other related IT fields. One of these

is system administration. The duties are similar in terms of being responsible for complex

systems. Plus the knowledge of Unix allows an easier transfer of skills. In smaller shops it is

not uncommon for one person to be both the DBA and SA.

This transition goes both ways. Some of the best DBAs I’ve worked with have their roots in

system administration. Needless to say, anyone who can claim a position as both the DBA and

SA will command a very high salary.

Approach becoming an SA the same way you did to becoming a DBA. Take classes if possi-

ble, study and practice both on the job and at home, and work with the SAs on the job. Ideally,

the DBA should be able to serve as a backup SA anyway, which can be good justification for

learning the job.

Tied closely with administration is designing system architectures. After a few years of experi-

ence implementing, managing, and tuning systems, many administrators have a feel for what

works and what doesn’t. These skills tend to come more with experience than with classroom

training. The key is understanding the different pieces of a system and how they work together.

Once this and the project-management skills are obtained, the administrator can demand a high

salary in many different organizations.

Learning Java
Historically people usually grow from being developers (especially PL/SQL developers) into

the DBA position. So why might you go back to development? Actually, there are a couple of

reasons many people find this path appealing.

Some people do not like the stresses of an administrator position. It usually requires long hours

and can be stressful. This can burn some people out so they go back to being a developer.

Oracle DBA on Unix and Linux
522

Another reason, perhaps even more common, is the money. A good Java programmer in the

right job can make more than a DBA. Plus Java is new and exciting. Therefore it can draw

many people away from DBA positions. Also, as Oracle and Java become more entwined the

transition process becomes easier.

Regardless of whether you want to learn Java as a language, you need to know how it is used

in your system. You don’t have to be a serious Java coder to understand where and why it is

deployed. Understanding the role of Java inside the database and how a Web server operates

are important in today’s market. In the future, Java will likely be a mandatory skill for the

Oracle DBA.

Summary
This chapter looked at how a DBA can grow professionally and technically. Learning the tech-

nology involved is tough enough. Once you have learned those skills, you have to keep them

sharp and keep adding new skills. This is done via classes, manuals, books, Web sites, working

on your own, and learning with others. It is truly a never-ending task.

Fortunately those who work hard to learn the technology, get certified, and network with others

tend to do well financially. Oracle DBAs are at the top of list for the most sought-after IT staff.

Whether you are a consultant or a salaried employee, you should expect to do well, if not,

there are plenty of other jobs available. Most DBAs can also branch into other areas, including

system administration, system design, or Java development.

Growth of the DBA

CHAPTER 20

20

G
R

O
W

T
H

O
F

T
H

E

D
B

A
523

APPENDIX

A
Basic Unix Commands

This appendix identifies and describes Unix commands commonly used by the DBA. It does

not attempt to provide every possible option, but it does display commands in a useful context.

bdf—bdf displays all the filesystems and the amount of disk space on an HP-UX server. Use

this command to determine what filesystems you have and how much disk space is available

on each.

cat—cat filename displays to the screen the contents of an entire file. The output of the file

will scroll past the screen if the file is large. Pipe this file with more to display the contents one

screen at a time (for example, cat long_file.txt | more). Also use with /dev/null to erase

the contents of log files (for example, cat /dev/null > alertdemo.log).

cd—cd directory_name moves you to the specified directory. Issuing cd without a directory

specified takes you to the $HOME directory. The directory can be specified with an absolute

path (for example, cd /home/mikew/scripts) or with a relative path (for example, cd

scripts). To move up one directory, use cd ... and to move to a user’s home directory, use

cd ~username (for example, cd ~mikew).

chgrp—chgrp newgroup filename changes the group for the file specified. For example,

chgrp dba test.sql changes the group of test.sql to dba.

chmod—chmod 644 filename changes the permissions of the specified file. The first digit

represents permissions for the owner, the second digit represents permissions for members of

that group, and the final digit represents permissions for everyone else. Read permission = 4;

write permission = 2; and execute permission = 1. Therefore, in this case, the owner has read

and write permissions (4+2=6), members of the group have read permission (4), and everyone

else has read permission (4).

chown—chown newowner filename changes the owner of the specified file. For example,

chown oracle test.sql changes the owner of test.sql to oracle.

clear—clear clears the screen of all previous output and moves the prompt to the top of the

screen.

compress—compress filename compresses the file to approximately one third its original size

and adds a .Z extension to indicate it is compressed. You can expect DMP files to have a

higher compression ratio of approximately one fifth the original size.

cp—cp filename destination copies the file to the specified destination. A copy of the file

will exist at both the source and the destination. You can use a -p option to preserve the

permissions and modification date of the file when you copy it to the new location.

crontab—crontab filename loads the file into a user’s crontab to be executed by cron.

crontab –e allows you to edit the crontab directly and crontab –l lists the user’s crontab.

The safest method is to use crontab –l > oracle.crontab, edit this file to include your

changes, and then load it back into cron with crontab oracle.crontab.

Oracle DBA on Unix and Linux
526

date—date shows the current day, date, and time.

df—df displays your filesystems and the amount of space available on each. It is common to

use this with the –k option to display results in kilobytes (for example, df –k).

diff—diff filename1 filename2 compares two filenames and displays the differences

between the two.

dmesg—dmesg shows all the messages generated from the operating system boot. This is useful

when you’re looking for problems with the server or when you’re trying to find out more about

the system. It is common to pipe this command through more (for example, dmesg | more).

du—du -s * shows disk usage for every subdirectory below your current location. This is use-

ful for finding directories with large files to be purged.

echo—echo “text string” or echo $ENV_VARIABLE echoes the contents of the text string or

the value of a variable to the screen. Echoing strings is common in shell scripts. Echoing

variables is useful for verifying your environment (for example, echo $ORACLE_SID or echo

$ORACLE_HOME).

env—env displays all your environment variables. It is common to pipe the output through

more (for example, env | more) so that it is more readable.

exit—exit logs the current user off the system.

find—find / -name filename searches for the file in every directory starting at / and

working through each subdirectory. Any location can be given instead of /, with the current

location (.) being a common option. When the command is executed and the search attempts

to view a directory you don’t have permissions for, you will receive an error but the search will

continue. To suppress these error messages add 2>/dev/null to the end of the command as

follows: find . -name login.sql 2>/dev/null.

ftp—ftp hostname opens an FTP (File Transfer Protocol) connect to the host or IP address

specified. You are prompted for the remote machine’s username and password. Use help to

identify more options and status to see your current parameters.

fuser—fuser filename shows the processes accessing a specified file.

glance—glance invokes the HP-UX system-monitoring tool. Use this to check system

performance on HP servers.

grep—grep –i string filename searches the file for occurrences of the string, with the –i

making the search case-insensitive. For example, grep –i ORA-00600 alertdemo.log

searches the alert log for any ORA-600 errors and displays them to the screen. This can also be

used with ps -ef to find Oracle background processes (for example, ps –ef | grep ora).

groups—groups displays all the groups you are a member of.

Basic Unix Commands

APPENDIX A

A

B
A

S
IC

U
N

IX

C
O

M
M

A
N

D
S

527

gunzip—gunzip filename unzips/uncompresses a file compressed with gzip.

gzip—gzip filename will compress a file and add a .gz extension. This is sometimes used

instead of compress.

head—head –n filename displays the first n lines of a file.

id—id shows your group ID, username, primary group, and other groups to which you belong.

Use this command to verify you are the oracle user and you are in group dba.

iostat—iostat is a utility that monitors I/O activity.

ipcrm—ipcrm removes shared memory segments and semaphores after an instance crash. Use

ipcs to identify the exact segments and semaphores to remove. Use ipcrm –m shared_mem-

ory_id to remove shared memory segments and ipcrm –s semaphore_id to remove a

semaphore. On Linux, use ipcrm shm shared_memory_id and ipcrm sem semaphore_id.

ipcs—ipcs displays shared memory and semaphores. Use this command to identify how many

pieces the SGA is in. Also use it to identify share memory segments and semaphores to be

removed after an instance crash.

kill—kill PID terminates the process with the PID. PID is Process ID and is obtained from

ps –ef. If this doesn’t kill the process, use kill –9 PID.

last—last username shows the last time the specified user logged in.

ln—ln –s /location_of_actual_file/filename /where_file_should_appear creates a

soft link for a file. This makes it seem as if the file appears in one location even though it really

exists in another location. For example, ln –s $ORACLE_BASE/admin/demo/pfile/

initdemo.ora $ORACLE_HOME/dbs/initdemo.ora creates a link so the initdemo.ora file

appears to exist in the $ORACLE_HOME/dbs directory. The –s makes this a soft link so that a

ls –l will denote the file is a link and provide its real location. Removing the link will not

delete the physical file. Removing the actual file will leave the link intact, but it will be invalid.

ls— ls –altr lists all the files in a directory, their permissions, owners, groups, size in bytes,

and time of last modification in order of oldest to most recently modified. It also identifies

directories (d), soft links (l), and pipes (p).

mailx—mailx username@email.address prepares to send an email to the user at the email

address specified (for example, joe@acme_test.com). Next, you will be prompted for a subject

and then need to press Enter. Next you write your message. To send the message, press CTRL-

D. This is handy when you cannot get to your normal email in order to send a quick message.

Oracle DBA on Unix and Linux
528

man—man command displays the manual page of any Unix command.

mkdir—mkdir directory_name creates the specified directory.

more—more filename displays the contents of a file, one screen at a time. To keep scrolling

one screen at a time, press the spacebar. To advance one line at a time, press Enter. To stop

viewing a file, press CTRL-C.

mv—mv filename_destination moves a file from one location to another. The file can also be

renamed in the process.

nohup—nohup command specifies the no-hangup option for a command. Basically, if you issue

a long-running command or start a program and your session terminates before the command

or program ends, your command/program will still continue processing until completion. This

is commonly used with the ampersand (&) to put the command/program in the background so

you can continue to issue more commands from the same prompt. For example, nohup exp

parfile=exp_customer.par & starts an Oracle export using a parfile and places the job in the

background. You can then log out of the machine, yet the export will continue to run.

page—page filename displays the contents of a file one screen at a time. To keep scrolling

one screen at a time, press the spacebar. To advance one line at a time, press Enter. To stop

viewing a file, press CTRL-C.

passwd—passwd enables you to change your password.

pine—pine invokes a Unix-based email system.

ps—ps –ef shows all the Unix processes running. The option –elf shows additional

information. This is commonly used with grep to find Oracle background processes

(for example, ps –ef | grep ora).

rm—rm filename removes a specified file. Use extreme caution when using rm with the *

wildcard because it is very easy to accidentally delete files you did not intend to delete.

rmdir—rmdir directoryname removes a specified directory if it is empty. If the directory

contains files, use rm –r directoryname to remove it and any subdirectories and files.

rpm—rpm –Uvh packagename.rpm uses RedHat Package Manager to install packagename.rpm

on a Linux machine. To see which packages you have installed, issue rpm –qa.

sar—sar is System Activity Report and can show a variety of operating system statistics. This

is frequently used for monitoring the server and it has several options.

script—script filename.txt creates a log of everything that is displayed to the screen until

you press CTRL-D. This is similar to spooling output in SQL*Plus. This is good to run when

applying patches.

Basic Unix Commands

APPENDIX A

A

B
A

S
IC

U
N

IX

C
O

M
M

A
N

D
S

529

su—su – username prompts you for a password to log in as the specified user. The hyphen

indicates that the user’s .profile will be executed and new environment variables will be

established when you log in. If the hyphen is not specified, the user will inherit the environ-

ment of the previous user. There is normally not a good reason to log in as a user without set-

ting up the proper environment, so generally you should use the hyphen.

tail—tail –n filename displays the last n lines of a file. To continually see the end of a log

file that’s being added to, use tail –f filename; this will keep displaying the end of the file

until you press CTRL-C. The –f option is commonly used to monitor export or import logs,

whereas the –n option is often used for alert logs.

talk—talk username tty requests an online chat session with the user with a specific tty.

You can obtain this information using the who command. This is a handy means of communi-

cating with another user logged in to the same server. The communication will continue until

you quit with a CTRL-C. To refresh the screen display, use CTRL-L.

tar—tar cvf -`find . –print ` > filename.tar compresses a directory, its subdirecto-

ries, and all the files into one file called filename.tar. This TAR file can be compressed and

transported via cp or ftp to a different location. Once it has been moved to its location, the

directory, its subdirectories, and all the files can be recreated by issuing tar xvf

filename.tar in its new location. This is a common way to move directory trees from one

server to another. Oracle patches also are often in TAR files.

top—top invokes a Unix server monitoring utility. This is a handy utility to have as it gives a

good snapshot of system performance and load.

touch—touch filename attempts to create an empty file in your current directory. Use this to

determine whether you have write permissions on a directory. For example, after the oradata

directory has been created, touch a file there as the oracle user to confirm it has the necessary

permissions.

truss—truss -p PID traces all the system calls for a given process ID. This command is

handy when you have to see exactly what a process is doing at the Unix level.

umask—umask 022 sets the default file permission mask to 644 if the default was 666.

uname—uname –a displays the operating system type and version, the name of the server, and

the current time. This provides basic information about the server you are using.

uncompress—uncompress filename.Z uncompresses the file. Make sure you have enough

space on your filesystem for the file once it is uncompressed.

uptime—uptime displays the current time, how long the server has been running since the last

reboot, the number of users on the server, and the load average for the present time, five min-

utes ago, and 15 minutes ago.

Oracle DBA on Unix and Linux
530

vmstat—vmstat displays a variety of Unix server monitoring statistics. There are several

options with this command and it is very useful.

wall—wall < enter your message> <CTRL-D> echoes your message to every user on the

server. Use this for announcements such as “The database will be shutdown in five

minutes. Log off now!” Once you type wall, your cursor will jump down a line. There, you

type your message. To end your message and send it to everyone, type CTRL-D.

wc—wc –l filename gives a word count of the number of lines in a file. Use it in conjunction

with grep to count the number of lines found. For example, to see the number of Oracle errors

in your alert log, issue this command grep -i ORA- | wc –l. This will show you the number

of lines with ORA- in them.

which—which command determines which executable you are going to use when you issue

command. For example, which sqlplus might show you

/u01/app/oracle/product/8.1.6/bin/sqlplus.

who—who shows you the users logged on the system, their tty, and the time they logged in.

Basic Unix Commands

APPENDIX A

A

B
A

S
IC

U
N

IX

C
O

M
M

A
N

D
S

531

APPENDIX

B
vi Editor

The vi editor is the most commonly used editor on Unix and Linux machines. Although it is a

little tricky to learn initially, you need to know how to use vi because it is the standard editor

on most machines. This appendix lists the common vi commands. However, the best way to

learn vi is to practice editing files. Learning vi is a lot like learning how to type; it is difficult

and awkward at first, but after a while, it becomes instinctive.

Follow these general rules when using vi:

• Do not edit with the CAPS LOCK key on.

• You can precede most commands by a number to indicate the number of times to execute

a command. For example, 5dd erases five lines.

• vi has two modes: Insert Command mode.

When you’re typing text, you are in Insert mode. Before you can issue any commands or

move the cursor, you must enter Command mode by pressing the ESC key.

To leave the Command mode and begin inserting text, you must either press i for Insert

or a for Append. Insert allows you to enter text before your cursor location, whereas

Append allows you to enter text after your cursor location.

To invoke vi to create or edit a particular file, type the following:

vi filename

Cursor-Movement Commands

To move… Press…

Left h

Right l

Up k

Down j

To the end of file G

To line n nG

Entering Text

To perform this… Press…

Insert i

Append a

Oracle DBA on Unix and Linux
534

Editing Text

To perform this… Press…

Delete one character x

Delete one line dd

Copy n lines n yy

Paste p

Saving and Exiting

To perform this… Type…

Save a current file :w <ENTER>

Save with a different filename :w filename <ENTER>

Save and exit :wq <ENTER> or ZZ

Exit without save :q! <ENTER>

Miscellaneous Commands

To do this… Type…

Display current line number CTRL-G

Refresh the screen CTRL-L

Read an outside file into the document :r /path_to_file/filename <ENTER>

Search /search_string <ENTER>

Global search and replace :1,$s/search_string/

replacement_string/g

(The above reads, start at line 1 (:1),

search for search_string, replace it with

replacement_string, and do so globally

(g).)

Execute a Unix command from within the editor :! command <ENTER>

Repeat a command .

Undo a command u

vi Editor

APPENDIX B

B

V
I
E

D
IT

O
R

535

APPENDIX

C
Scripts

Scripts
The following scripts are some of the ones that I’ve used over the years. None of them is

terribly complex so you should be able to understand them without much problem. Most are

really just canned queries that save typing, therefore you will not find them nicely commented

or documented. I’ve found that many of the ad hoc queries I make I end up needing again, so

why not put them in a script? I usually put them on a floppy, take them with me on-site, and

add to them as I go.

Feel free to modify these as you need, but make sure you understand them before using them.

Remember, never blindly run anyone else’s script before you have had a chance to read them

yourself. Truly complex scripts are available via other sources and I recommend using those

when possible instead of “reinventing the wheel” and writing your own. However, I wouldn’t

trust the integrity of my system to some mysterious script I picked up on the Internet or

anywhere else.

Above all, I hope these scripts prove to be useful and help spawn ideas for your own scripts.

login.sql
REM This file provides custom display settings with SQL*Plus.

REM Have it in the directory from where you start SQL*Plus.

set pagesize 25

col member format a60

col file_name format a60

col tablespace_name format a20

col owner format a15

col object_name format a30

col initial_extent format 999,999,999

col next_extent format 999,999,999

col bytes format 999,999,999,999

col sum(bytes) format 999,999,999,999

select name, created, log_mode from v$database;

show user;

show_session_short.sql
select s.username, osuser, status, server as “Connect Type”,

to_char(logon_time,’fmHH:MI:SS AM’) as “Logon Time”,

sid, s.serial#, p.spid as “UNIX Proc”

from v$session s, v$process p

where s.paddr = p.addr

and s.username is not null

order by status, s.username, s.program, logon_time

/

Oracle DBA on Unix and Linux
538

show_dba_rollback_segs.sql
select segment_name, owner, tablespace_name, initial_extent,

next_extent, min_extents, max_extents,

status, instance_num from dba_rollback_segs

/

show_filestat.sql
set linesize 180

col tablespace_name format a20

col file_name format a52

col PHYRDS format 999,999,999

col PHYWRTS format 999,999

col PHYBLKRD format 999,999,999

col PHYBLKWRT format 999,999

spool show_filestat.lst

select tablespace_name, file_name, PHYRDS, PHYWRTS, PHYBLKRD, PHYBLKWRT

from v$filestat, dba_data_files

where file_id = file#

order by PHYRDS, PHYWRTS desc

/

spool off

show_index_depth.sql
REM B*Tree indexes should not go past 4 levels, performance suffers.

REM Rebuild anything greater than 3, but remember it will lock the table from

dml

REM unless you are using 8i online rebuilds (which take space instead).

REM Also remember to run analyze before running this

REM

col owner format a15

accept user_name1 prompt ‘Enter index owner to examine: ‘

select owner, table_name, index_name, blevel, last_analyzed from dba_indexes

where upper(owner) = upper(‘&user_name1’)

order by blevel

/

set heading off

select ‘Note: blevel should not be greater than 3’ from dual

/

set heading on

show_redo_logs.sql
set linesize 180

col member format a50

col bytes format 999,999,999,999

Scripts

APPENDIX C

C

S
C

R
IP

T
S

539

select v$log.group#, members, member, v$log.status, bytes, archived

from vlog, vlogfile

where v$log.group# = v$logfile.group#;

show_rollback_contention.sql
set linesize 180

col name format a15

select a.name, b.extents, b.rssize, b.xacts “Active X-actions”, b.waits,

b.gets,

optsize, status

from v$rollname a, v$rollstat b

where a.usn = b.usn

/

show_segments.sql
REM Note the hard coded owner, you will have to fix this for your system

set linesize 180

col tablespace_name format a16

col segment_name format a30

col segment_type format a6

col initial_extent format 9,999,999,999

col next_extent format 9,999,999,999

col bytes format 99,999,999,999

spool verify_import-2000.lst

select tablespace_name, segment_name, segment_type, initial_extent,

next_extent, bytes, extents

from dba_segments

where owner = ‘CUSTOMER’

order by tablespace_name, segment_type, segment_name

/

spool off

show_tablespaces.sql
set linesize 132

set pagesize 65

set heading off

set feedback off

set verify off

col tablespace_name format a30

col file_name format a60

col bytes format 999,999,999,999,999

col status format a15

spool tablespaces.lst

select to_char(sysdate,’MM-DD-YYYY HH:MM’)from dual;

set heading on

select tablespace_name, file_name, bytes, status from dba_data_files

Oracle DBA on Unix and Linux
540

order by tablespace_name, file_name

/

spool off

compare_users.sql
REM Get two database users and show their roles.

REM

accept user_1 prompt ‘Enter the first user: ‘

accept user_2 prompt ‘Enter the second: ‘

select grantee, granted_role from dba_role_privs where

grantee in (upper(‘&user_1’),upper(‘&user_2’))

order by granted_role, grantee

/

create_analyze_script.sql
REM Note the hard coded owner. You need to modify this or use Dynamic SQL.

set heading off

set feedback off

set linesize 180

set pagesize 32767

spool analyze_customer_tables.sql

select ‘analyze table CUSTOMER.’ || table_name || ‘ estimate statistics;’

from dba_tables

where owner = ‘CUSTOMER’

/

spool off

set heading on

set feedback on

tail-alert
The following is a handy shell script to check the end

of the alert.log for a database identified by $ORACLE_SID

I normally run this script several times a day and immediately

whenever problems are reported.

I usually give this script 755 permissions.

tail -150 $ORACLE_BASE/admin/$ORACLE_SID/bdump/alert*.log | more

Hot Backup Script
The following is a small piece of code that enables you to initiate hot backups. Use this as a

sample for your script. I used scripts to generate this dynamically, but it can be hard coded as

well. I also could have made use of Unix environment variables for the copy and compress

steps, but I wanted to keep it simple.

Scripts

APPENDIX C

C

S
C

R
IP

T
S

541

This script first spools to create a log. Next it puts a tablespace in hot backup mode. It uses cp

to copy the file to a backup location. The -p option is probably not necessary. Next it uses

gzip to compress the file. The tablespace is then taken out of hot backup mode. At the end of

the script, I make a text copy and a binary copy of the control file. The timestamp for the

binary copy is dynamically generated. Finally, I force a log switch and end the spool.

Especially when writing backup scripts, you must test the scripts to make sure they work and

nothing becomes corrupt.

run_hots.sql
spool hot_backup_run.lst

alter tablespace TOOLS begin backup;

!cp -p /u02/app/oracle/oradata/rh1dev1/tools01.dbf

/ubackup/hot_backup_dump/rh1dev1

!gzip -f /ubackup/hot_backup_dump/rh1dev1/tools*.dbf

alter tablespace TOOLS end backup;

alter tablespace USERS begin backup;

!cp -p /u02/app/oracle/oradata/rh1dev1/users01.dbf

/ubackup/hot_backup_dump/rh1dev1

!gzip -f /ubackup/hot_backup_dump/rh1dev1/users*.dbf

alter tablespace USERS end backup;

alter database backup controlfile to trace;

alter database backup controlfile to

‘/ubackup/hot_backup_dump/rh1dev1/control.15062000135844’;

alter system switch logfile;

spool off

exit

Oracle DBA on Unix and Linux
542

APPENDIX

D
Glossary

The following is a list of terms commonly used by Oracle DBAs in Unix and Linux shops.

alert.log—A log file containing informational messages about the database’s status, health,

and errors.

archivelog mode—Database mode in which online redo logs are copied to a separate location

before they are reused. Later these logs can be reapplied to recover a damaged database.

archiver process—The background process that copies the online redo logs to the archive

dump file location.

background process—Any process running in the Unix/Linux background. In Oracle terms,

this is one of the background processes supporting the database.

block—The smallest unit of data managed by Oracle.

bounce—To stop and restart a database, server, or process.

checkpoint—An occurrence whereby Oracle flushes the redo log buffer and updates every file

header with checkpoint and System Change Number information.

Checkpoint process (CKPT)—The background process that updates file headers during a

checkpoint.

cold backup—A complete copy of every data, control, and redo log file on an Oracle

database. The database must be shut down for the backup to be valid.

commit—The action of making DML changes permanent inside the database.

config.ora—An optional file called by the init.ora file that contains initialization parameters

for the database.

control file—A binary file containing metadata about the database. It is also a text file used to

manage SQL*Loader jobs.

core dump—The result of a failed process. The contents of the memory and variables are

dumped to a text file. These files can be extremely large and can fill up a filesystem. Typically,

core dumps should be removed and the failed process investigated.

cron—A Unix job-scheduling utility. This is commonly used to schedule batch jobs and

backups for both Oracle and other applications.

daemon—A Unix background process.

Data Definition Language (DDL)—A SQL statement that creates, modifies, or drops an

object inside the database. For example, ALTER TABLE or CREATE INDEX are DDL

statements. A DDL statement issues an implicit commit and it cannot be rolled back.

Oracle DBA on Unix and Linux
544

data dictionary—The set of tables and views that contain metadata about the database.

data dictionary cache—A memory area in the shared pool containing data dictionary

information.

data file—A file belonging to a tablespace that contains data tables and/or indexes belonging

to a database.

Data Manipulation Language (DML)—A SQL statement that inserts, updates, or deletes

table data. These statements can be committed or rolled back. If they are followed by a DDL

statement or the user session exits normally, they will be committed.

database—A set of data, control, and redo log files identified by a SID.

Database Administrator—The individual responsible for the creation, maintenance, tuning,

and backup and recovery of a database. Principle responsibilities are data protection and data

availability.

database buffer cache—A memory area within the SGA that holds copies of data blocks.

Database Writer process (DBWR)—The background process that writes blocks from the

database buffer cache to the data files.

export—An Oracle utility used to extract data and objects from an Oracle database into a

.dmp dump file.

extent—A set of contiguous blocks inside the database.

hot backup—A backup of the data files while the database is running.

import—An Oracle utility used to load data and objects from a .dmp dump file into an Oracle

database.

index—A structure within a database holding a pointer to a specific row of a data table.

Indexes increase data access and enforce uniqueness.

init.ora—A mandatory text file containing database parameters read during database startup.

instance—The combination of Oracle memory structures and background processes running

on a server.

Internet Application Server(iAS)—The newest Oracle Web server product. It replaces Oracle

Application Server OAS.

java pool—A memory pool inside the SGA used to hold Java objects.

Java Developers Kit (JDK)—The collection of libraries and classes used to develop Java

programs.

Glossary

APPENDIX D

D

G
LO

S
S

A
R

Y
545

Java Runtime Environment (JRE)—This is the environment that Java programs run under

after they are developed with a JDK.

Java Virtual Machine (JVM)—The Java “engine” inside an Oracle database.

kernel—An internal memory resident structure in a Unix or Linux operating system that man-

ages processes, memory, files, and disk I/O.

large pool—A memory pool inside the SGA.

Linux—A relatively new Unix variant typically running on PCs with Intel processors. Linux

now often runs on server class systems with non-Intel chipsets.

listener—A process that’s waiting for incoming requests from clients. These requests are then

routed to another process to be managed.

listener.ora—The configuration file containing parameters for an Oracle listener.

log switch—The point in time at which LGWR stops writing to one online redo log file and

begins writing to the next online redo log file. A checkpoint automatically occurs at this time.

Log Writer (LGWR)—The process that writes from the redo log buffer to the online redo log

files.

man pages—Online help for Unix commands. See the listing for man in the Unix command

appendix.

mirroring—A method of writing data on two or more identical disks in an attempt to improve

fault tolerance.

mount—A database state in which the init.ora file has been read, the instance (memory pools

and background processes) has been started, and the control file(s) have been opened and read.

multiplex—A practice of having Oracle maintain redundant copies of either control files or

online redo log files. This provides fault tolerance, so if one file is damaged, its mirrored

copies will still exist.

Net—Oracle networking software in Oracle 9i.

Net8—Oracle networking software in Oracle 8 and 8i.

noarchive log mode—Database mode whereby online redo logs are not copied to a separate

location before they are reused.

nomount—A database state in which the init.ora file has been read and the instance (memory

pools and background processes) has been started.

online redo log file—The file written to by the Log Writer process.

Oracle DBA on Unix and Linux
546

Online Transaction Processing (OLTP)—A classification of an application in which short,

frequent transactions are common.

Oracle Application Server (OAS)—An older Oracle Web server product. It is being replaced

by iAS (Internet Application Server).

Oracle Certified Professional (OCP)—An individual who has successfully passed the

required test(s) covering Oracle subjects such as database administration, operation, or

development.

Oracle Enterprise Manager (OEM)—A GUI tool used to aid administrators in managing the

database.

Oracle Parallel Server (OPS)—An Oracle product in which multiple database instances

simultaneously access one physical database. This product is called Real Application Clusters

in Oracle 9i.

Oracle Universal Installer (OUI)—A Java-based Oracle utility used to install Oracle

software.

paging—An effort by the kernel to free real memory by moving a portion of a non-active

process from real memory to disk. This happens normally on most systems, but if it occurs

excessively, performance will be impacted.

PL/SQL—An Oracle proprietary structured programming language based on SQL used to

access and manipulate data within an Oracle database.

Process monitor process (PMON)—A background process responsible for cleaning up after

and freeing resources of abnormally terminated processes.

RAID—Redundant Array of Inexpensive/Independent Disks. A classification of several

methods of striping and mirroring disks.

Real Application Clusters (RAC)—The new name for Oracle Parallel Server starting in

Oracle 9i. This is where two or more instances on a cluster simultaneously access the same

physical database located on a shared disk array.

redo log buffer—A memory area containing a log of all the change activity within an Oracle

database.

redo log file—See online redo log file.

rollback—Undo information generated for a statement. Also the action of undoing a DML

statement. Only DML statements can be rolled back; DDL statements cannot be rolled back.

rollback segment—An Oracle structure used to hold rollback information.

Glossary

APPENDIX D

D

G
LO

S
S

A
R

Y
547

root—The all powerful superuser account on Unix and Linux systems. Be very careful when

working as this user.

segment—The collection of Oracle extents belonging to a specific object.

semaphore—A Unix/Linux integer structure that is incremented or decremented as a means of

controlling access to a resource.

Server Manager—An Oracle utility that submits database commands and SQL to the

database. This tool has been phased out in favor of SQL*Plus in Oracle 9i.

Shared Global Area (SGA)—See System Global Area.

shared memory—A memory area in Unix/Linux that can be attached, read, and written to by

multiple processes. The SGA is a shared memory area.

shared pool—A memory area in the SGA containing the shared SQL area and data dictionary

cache.

shared SQL area—A memory area in the shared pool containing parsed SQL statements so

they can be reused.

SID (System Identifier)—An eight-character identifier used to identify an Oracle instance.

spfile—A server parameter file is a binary copy of the init.ora file. It is an optional 9i feature.

SQL*Loader—An Oracle utility that loads data from flat files into an Oracle database.

SQL*Net—Oracle networking software prior to Oracle 8.

sqlnet.ora—A file containing Oracle network configuration parameters. Contrary to the name,

this file survives past SQL*Net.

SQL*Plus—An Oracle utility that submits database commands and SQL to the database.

striping—A method of writing data across two or more physical disks in an attempt to

improve performance.

Structured Query Language (SQL)—A non-procedural language used to read, insert, update,

or delete data in a database. This is not Oracle proprietary, although there are some proprietary

extensions added to it.

swapping—An effort by the kernel to free real memory by moving an entire process from real

memory to disk. This happens in response to a shortage of memory; performance is negatively

impacted. This should be avoided.

System Administrator—The individual responsible for the administration and management of

a Unix or Linux server.

Oracle DBA on Unix and Linux
548

System Global Area (SGA)—Also known as Shared Global Area. This is the collection of the

different memory pools comprising a running database instance. These include the database

buffer cache, redo log buffer, shared pool (data dictionary cache and shared SQL area), large

pool, and the Java pool.

System Monitor process (SMON)—A background process responsible for instance recovery,

cleaning up temporary segments, and coalescing free space in tablespaces for objects with

PCTINCREASE > 1.

table—A database structure used to store data.

tablespace—A logical collection of database objects stored in one or more data files.

tnsnames.ora—A client-side Oracle networking text file containing a list of database names,

their host machine names or IP addresses, and port numbers so the client can attempt to estab-

lish a connection.

truncate—A command to immediately delete all data in a table, free the used space, and reset

the high water mark. There is no rollback for this statement.

Unix—A robust, multitasking, multi-user operating system commonly used on servers to host

critical applications such as databases and Web servers.

Glossary

APPENDIX D

D

G
LO

S
S

A
R

Y
549

INDEX
SYMBOLS

! (exclamation point), 194

0 run level, 336

1 run level, 336

2 run level, 336

2-tier client/server architecture, 65-66

3 run level, 336

3-tier client/server architecture, 66-67

4 run level, 336

5 run level, 336

6 run level, 336

9i server, 485-486

dynamic memory parameters, 500-503

installing, 486-488

logging in, 488-489

miscellaneous new features and changes, 508

multiple block sizes, 500-503

Oracle-managed files, 494-500

creating redo logs with, 498-499

creating tablespaces with, 495-497

RAC (Real Application Clusters), 508

sample schemas, 506-508

security, 488-489

SPFILEs (server parameter files), 490-494

backing up, 493

creating, 490

updating, 492-493

viewing, 491

undo tablespaces, 503-506

A
a command, 534

-a option (ifconfig command), 92

/admin directory, 73-74

Administer utility
552

Administer utility (Oracle

Portal), 456

administration. See database

administration

administrators

DBAs (database administrators).

See DBAs

SAs (system administrators),

7, 22-23, 522

adump files, 74

alert log files, 164-165, 279

alert.log file, 60-61

alertSID.log file, 279

alert.log file, 60-61

alertSID.log file, 279

All Locks command

(TopSessions Lock Types

menu), 288

allocating resources

dynamic space allocation, 159

SGA (Shared Global Area),

42-45, 346-347

ALL_X view, 140

analyzing log files, 232-235

Apache HTTP listener, 469

application DBAs (database

administrators), 8

application code listings.

See listings

applications

Java programs

creating, 430-431

dropping, 433

loading, 431

publishing, 432

running, 432

multiple applications, 81

problem-solving, 280-281

testing, 399-400

applying. See installing

ARCH (archiver), 56

architecture, 30-34

architecture diagrams, 273-275

control files, 34-35

data files, 35

generic data files, 36-37

index files, 37-38

online redo logs, 40-41

rollback data files, 38-40

system data files, 36

temporary data files, 38

disk contention, 81-85

DSS (Decision Support

Systems), 77-78

files

parameter and log files,

60-61

software installation files,

61-62

hybrid systems, 79-81

location, 30-31

memory

Java pool, 48-49

large pool, 48

redo log buffer, 47

SGA (Shared Global Area),

42-45

shared pool, 46-47

OEM (Oracle Enterprise

Manager), 176-177

client tier, 177-178

middle tier, 178

server tier, 179

OFA (Optimal Fexible

Architecture)

/u01 directory, 73-75

benefits of, 72

conventions, 75-76

data files, 75-76

minimum requirements, 72

OLTP (Online Transaction

Processing), 76-77

Oracle Portal, 439-440

processes, 49

ARCn (archiver), 56

background processes, 52-53

CKPT (checkpoint), 55

DBWn (Database Writer),

53-54

Dnnn (dispatcher), 56

LGWR (Log Writer), 54

PMON (Process Monitor), 53

QMNnn (queue monitor), 56

RECO (recovery), 56

server processes, 50-52

SMON (System Monitor), 53

Snnn (shared server), 56

SNPnn (job queue)

processes, 56

system architecture, 64-65

three-tier, 66-67

two-tier, 65-66

transactions, 57-59

Unix

clusters, 338-339

files, 334

filesystems, 331-334

I/O subsystem, 335

kernel, 322-323

memory, 328-330

MPPs (Massively Parallel

Processors), 340

NUMAs (NonUniform

Memory Access), 340

processes, 323-327

shared-everything

architecture, 338

shared-nothing

architecture, 340

shutdown process, 337

SMP (symmetrical multi-

processor) machines, 338

startup process, 335-336

uniprocessor machines,

337-338

user interfaces

Net8, 32-33

Server Manager, 32

SQL*Plus, 31

Web architecture, 464-466

availability, 468

clients, 465

database tier, 465

middle tier, 465

scalability, 467-468

technological design, 467

changing
553

ARCHIVELOG mode

cold backups, 249-250

hot backups, 251-253

archiver (ARCn), 56

archiving business data, 217

ARCn (archiver), 56

asynchronous I/O

(input/output), 360

automatic database startup,

245-247

availability

data, 11-12

Web architecture, 468

awk command, 137

B
background dump (bdump)

files, 74

background of DBAs

(database administrators), 6

developers/programmers, 7

on-the-job training, 8

SA (system administration), 7

systems designers/

data modelers, 8

background processes, 52-53

backups, 238. See also recovery

business archives, 217

cold backups

ARCHIVELOG mode,

249-250

NOARCHIVELOG mode, 249

recoveries, 248

DBA (database administrator)

responsibilities, 15

fault tolerance, 243-244

automatic database startup,

245-247

multiplex control files, 244

multiplex online redo logs,

244-245

hot backups, 250-251

ARCHIVELOG mode,

251-253

hot backup mode, 253-255

hot backup script, 541-542

importance of, 238

legal requirements, 171

logical backups, 216-217, 239

media failure, 241-243

monitoring, 168-169

parameter files, 266

physical backups, 240

planning, 267-269

software, 266

SPFILEs (server parameter

files), 493

testing, 269

bad files, 228

base releases,

migrating to, 404

batch jobs

DSS (Decision Support

Systems), 78

rollback segments, 306-307

bdf command, 91, 332, 526

bdump (background dump)

files, 74

BEA’s WebLogic server, 466

B/ESTAT script, 296-298

block locations, 334

Blocking/Waiting Locks

command (TopSessions Lock

Types menu), 288

books, Database Design, 152

boot messages, 276

Browse utility, 452-453

buffer cache, 43-45

BUFFER export parameter, 206

BUFFER import parameter, 212

buffers

performance tuning, 302-303

redo log buffer, 47

bugs. See patches;

problem-solving

Build utility (Oracle Portal),

453, 456

business knowledge, 19-20

C
cache

cache hit ratio, 302

data dictionary cache, 46, 304

database buffer cache, 43-45,

302-303

iAS (Internet Application

Server), 471-472

library cache, 46-47, 303-304

cache hit ratio, 302

capacity planning, 67-68

disk drives, 69

memory, 69

operating system, 68-69

server costs, 70

system maintenance, 70-71

technology and vendors, 71

cat command, 526

catalog.sql script, 382

catproc.sql script, 382

catrep.sql script, 382

CBT (Computer Based

Training), 514

cd command, 526

cdump (core dump) files, 74

central processing units.

See CPUs

certification. See also

continuing education

benefits of, 519

cost, 518

Database Administrator, 516

Database Operator, 516

Financial Applications, 516

Java Developer, 516

preparation, 517-518

test-taking tips, 518

Web site, 517

cfdisk command, 94

chaining (rows), 316-318

Change Management Pack, 194

changing. See also editing

file owners, 526

file permissions, 526

passwords, 129-131, 529

chat sessions
554

chat sessions, 530

checking. See finding

checkpoints (CKPTs), 55

chgrp command, 526

chmod command, 526

chown command, 526

CKPTs (checkpoints), 55

CLASSPATH variable, 100

cleaning up failed databases,

129

clear command, 129, 526

clearing screen, 129, 526

client/server architecture,

64-65

three-tier, 66-67

two-tier, 65-66

clients, 465

client/server architecture, 64-65

three-tier, 66-67

two-tier, 65-66

fat clients, 65-66

OEM (Oracle Enterprise

Manager), 177-182

thin clients, 65-66

closed databases, starting, 144

clusters, 338-339

code listings. See listings

cold backups

ARCHIVELOG mode, 249-250

NOARCHIVELOG mode, 249

recoveries, 248

college courses, 513

Command mode (vi), 534

command-line response time,

276

command-line utilities.

See commands

commands. See also scripts

! (exclamation point), 194

awk, 137

bdf, 91, 332, 526

cat, 526

cd, 526

cfdisk, 94

chgrp, 526

chmod, 526

chown, 526

clear, 129, 526

command-line response time,

276

compress, 223, 526

cp, 526

crontab, 526

date, 527

deployejb, 435

df, 91, 332, 527

diff, 527

dmesg, 90-92, 276, 527

du, 527

echo, 98, 527

env, 98, 527

exit, 194, 527

export, 204-205

business archives, 217

common mistakes, 221-222

compressed files, 223-225

corruption checks, 221

dump (.dmp) files,

204, 225-226

full database exports, 206

interactive exports, 206-207

logical backups, 216-217

migrations, 217-219,

401-402

parameter files, 208-210

pipes, 223-225

query-based exports, 211

rehosting, 402

row counts, 221

table level exports, 205

table rebuilds, 220

testing exports, 222

tuning parameters, 226-227

upgrades, 402

user level exports, 205-206

find, 527

fsck, 332

ftp, 527

fuser, 527

glance, 365, 527

grep, 412, 527

groups, 527

gunzip, 528

gzip, 528

head, 528

id, 528

ifconfig, 92, 370

import, 211-212

common mistakes, 221-222

compressed files, 223-225

corruption checks, 221

dump (.dmp) files, 204,

225-226

grants, 218

interactive imports, 212-213

migrations, 401-402

parameter files, 214-216

pipes, 223-225

rehosting, 402

row counts, 221

table rebuilds, 220

testing imports, 222

tuning parameters, 226-227

upgrades, 402

iostat, 362, 528

ipcrm, 528

ipcs, 352-353, 528

ipsrm, 353

kill, 528

last, 528

ln, 528

loadjava, 430

Lock Types menu

(TopSessions), 288

LogMiner, 232-235

ls, 528

lsnrctl, 187-188, 278

mailx, 528

man, 529

mig, 402-403

mkdir, 529

more, 529

mount, 331

mpstat, 367

mv, 529

Net8, 32-33

netasst, 133

netstat, 370-371

nohup, 529

CPUs
555

oemapp, 178

oerr, 165

oradebug, 350-352

page, 529

pagesize, 329

passwd, 529

pine, 529

ping, 275, 369-370

ps, 129, 278, 326-327, 363, 529

publish, 435

rm, 529

rmdir, 529

rpm, 90, 529

sar, 529

CPU usage statistics, 367

disk I/O monitoring, 361

script, 529

Server Manager, 32

showrev, 90

shutdown, 337

SQL*Loader, 227

conventional path loading,

229

direct path loading, 229-232

file types, 228

SQL*Plus, 60, 31

su, 530

swap, 355

sysresv, 349-353

tail, 279, 530

talk, 530

tar, 384, 530

tnsping, 369

top, 276, 364-365, 530

touch, 530

truss, 530

umask, 101-102, 530

umount, 333

uname, 88, 530

uncompress, 530

uptime, 276, 365-366, 530

useradd, 94

vi, 534

vmstat, 355-356, 531

CPU usage statistics, 366

disk I/O monitoring, 361

wall, 531

wc, 531

which, 531

who, 531

COMMIT import parameter, 215

communication, 20-21

professional benefits, 520-521

technical benefits, 519-520

compact disc filesystem, 333

compare_users.sql script, 541

comparing filenames, 527

compiling invalid objects,

127-129

compress command, 223, 526

COMPRESS export parameter,

207

compressed files,

importing/exporting, 223-225

compressing

directories, 530

files, 170

compress command, 526

gzip command, 528

tar command, 530

Computer Based Training

(CBT), 514

config.ora file, 60

Configuration Assistant

(OEM), 185

configuration files, 60-61

configuring systems, 92

disks and filesystems, 94-96

groups, 93-94

iAS (Internet Application

Server), 482-483

IIOP (Internet Inter-Orb

Protocol), 433-435

Java, 426

MTS (Multi-Threaded Servers),

433-435

Net8, 132-133

listener process, 135-137

listener.ora file, 134-135

tnsnames.ora file, 133-134

root passwords, 93

shared memory settings, 96-97

users, 94

connect internal feature, 94

connect strings, 32

connecting to databases, 134

CONSISTENT export

parameter, 209

console (OEM), 190-193

consulting/contracting, 521-522

contention, 81-85

file contention, 308-309

rollback segments, 307

contiguous extents, 159

continuing education, 21-22,

512. See also certification

CBT (Computer Based

Training), 514

colleges and universities, 513

emerging technologies, 515-516

independent learning, 514-515

Oracle University, 513-514

third-party Oracle classes, 514

contracting/consulting, 521-522

control files, 34-35

lost control files, recovering

from, 261-262

multiplexing, 244

SQL*Loader, 228

conventional path loading, 229

conventions (OFA), 75-76

copying files, 526

CORBA servers, 425, 435

core dump (cdump) files, 74

corruption

checking for, 221

FTP (File Transfer Protocol),

379-380

costs

certification exams, 518

servers, 70

counting rows, 221

cp command, 526

CPUs (central processing units)

checking speed of, 92

monitoring, 362-363

glance command, 365

mpstat command, 367

ps command, 363

CPUs
556

sar command, 367

top command, 364-365

uptime command, 365-366

vmstat command, 366

crashes, recovering from,

255-256

CREATE SESSION privilege,

150

CREATE USER statement, 149

create_analyze_script.sql

script, 541

creation scripts

advantages, 112-113

create_analyze_script.sql script,

541

customizing, 121-123

directory location, 113

generating, 113-120

running, 124

cron jobs

monitoring, 166-168

running, 166-167

crontab command, 526

crontab files, 167

.CTL file extension, 35

current memory blocks, 43

cursor-movement commands

(vi), 534

customers, 25

customizing. See editing

D
DAD (Database Access

Descriptor), 476

daemons, 329

data availability, 11-12

Data Definition Language

(DDL), 290

data dictionary, 36, 46, 304

data files, 35

adding, 162, 282

defined, 36

generic data files, 36-37

index files, 37-38

lost data files, recovering from,

256-258

moving, 162, 282-285

OFA (Optimal Flexible

Architecture), 75-76

offline data files, 279

renaming, 282-285

resizing, 161

rollback data files, 38-40

sizing, 282

SQL*Loader, 228

system data files, 36

temporary data files, 38

Data Gatherer, 190

Data Manipulation Language

(DML), 287-290

Data Migration Assistant

(ODMA), 403-404

database preparation

backups, 407

init.ora parameters, 405

MIGRATE user, 406

OUTLN user, 406

SYSTEM tablespace size,

405-406

migration process, 407-412

post-migration tasks, 412-415

data modelers, 8

data protection, 10-11

Database Access Descriptor

(DAD), 476

database administration, 9

data availability, 11-12

data protection, 10-11

responsibilities

application support, 14

backup and recovery, 15

Oracle consultant, 16-17

Oracle point of contact, 17

performance tuning, 14-15

process expert, 18

system activities, 12-14

troubleshooting, 15

skills needed, 18

application knowledge, 19

business knowledge, 19-20

communication, 20-21

continuing education, 21-22

database knowledge, 19

management, 21

problem-solving, 21

systems knowledge, 19

systems administration, 522

Database Administrator

certification, 516

database administrators.

See DBAs

database buffer cache, 43-45,

302-303, 471-472

Database Configuration

Assistant (DBCA), 113-120

control file location, 117

creating databases, 114-115,

118-120

naming databases, 115-117

starting, 113

Welcome screen, 113

database-creation logs, 125

database design

capacity planning, 67-68

disk drives, 69

memory, 69

operating system, 68-69

server costs, 70

system maintenance, 70-71

technologies and vendors, 71

Database Design, 152

disk contention, 81-85

DSS (Decision Support

Systems), 77-78

hybrid systems, 79-81

OFA (Optimal Fexible

Architecture)

/u01 directory, 73-75

benefits of, 72

conventions, 75-76

data files, 75-76

minimum requirements, 72

OLTP (Online Transaction

Processing), 76-77

system architecture, 64-65

three-tier, 66-67

two-tier, 65-66

databases
557

Database Design, 152

database objects, monitoring,

165-166

Database Operator

certification, 516

database servers.

See databases

database tier (Web

architecture), 465

database views, 140-141

Database Writer (DBWn),

53-54

databases, 30

backups, 238

business archives, 217

cold backups, 248-250

DBA (database administrator)

responsibilities, 15

fault tolerance, 243-247

hot backups, 250-255,

541-542

importance of, 238

legal requirements, 171

logical backups, 216-217,

239

media failure, 241-243

monitoring, 168-169

parameter files, 266

physical backups, 240

planning, 267-269

software, 266

SPFILEs (server parameter

files), 493

testing, 269

compared to instances, 33-34

connecting to, 134

creating, 123

cleanup, 129

compiling invalid objects,

127-129

creation scripts, 112-120,

124

database-creation logs, 125

security, 126

verifying database instances,

125-127

creation scripts

advantages, 112-113

create_analyze_script.sql

script, 541

customizing, 121-123

directory location, 113

generating, 113-120

running, 124

Database Configuration

Assistant, 113-120

control file location, 117

creating databases,

114-115, 118-120

naming databases, 115-117

starting, 113

Welcome screen, 113

designing

capacity planning, 67-71

disk contention, 81-85

Database Design, 152

DSS (Decision Support

Systems), 77-78

hybrid systems, 79-81

OFA (Optimal Fexible

Architecture), 71-76

OFA (Optimal Fexible

Architecture)minimum

requirements, 72

OLTP (Online Transaction

Processing), 76-77

system architecture, 64-67

disk contention, 81-85

DSS (Decision Support

Systems), 77-78

exporting data, 204-205

business archives, 217

common mistakes, 221-222

compressed files, 223-225

corruption checks, 221

dump (.dmp) files, 204,

225-226

full database exports, 206

interactive exports, 206-207

logical backups, 216-217

migrations, 217-219,

401-402

parameter files, 208-210

pipes, 223-225

query-based exports, 211

rehosting, 402

row counts, 221

table level exports, 205

table rebuilds, 220

testing exports, 222

tuning parameters, 226-227

upgrades, 402

user level exports, 205-206

fault tolerance, 243-244

automatic database startup,

245-247

multiplex control files, 244

multiplex online redo logs,

244-245

file types

control files, 34-35

data files, 35-40

online redo logs, 40-41

viewing, 35

files

oratab, 131

parameter and log files,

60-61

software installation files,

61-62

hybrid systems, 79-81

importing data, 211-212

common mistakes, 221-222

compressed files, 223-225

corruption checks, 221

dump (.dmp) files,

204, 225-226

grants, 218

interactive imports, 212-213

migrations, 401-402

parameter files, 214-216

pipes, 223-225

rehosting, 402

row counts, 221

table rebuilds, 220

testing imports, 222

tuning parameters, 226-227

upgrades, 402

databases
558

indexes

creating, 152-154

IOTs (Index Organized

Tables), 313-314

performance tuning,

318-320

JDBC (Java Database

Connectivity), 422

linking to init.ora file, 131-132

location, 30-31

locks, 286-287

DDL (Data Definition

Language), 290

defined, 286

DML (Data Manipulation

Language), 287-290

Lock Manager, 287

TopSessions, 287-290

maintenance

corruption checks, 221

row counts, 221

table rebuilds, 220

memory

Java pool, 48-49

large pool, 48

redo log buffer, 47

SGA (Shared Global Area),

42-45

shared pool, 46-47

migration, 395-396

compared to rehosting, 396

DBA skill level, 403-404

defined, 396-397

import/export commands,

401-402

mig command, 402-403

ODMA (Oracle Data

Migration Assistant),

403-415

performance issues, 403

planning, 398

preparation, 398-401

time requirements, 403

to base releases, 404

when to use, 397

modes

ARCHIVELOG, 249-253

NOARCHIVELOG, 249

monitoring, 165-166

naming, 115-117

OEM (Oracle Enterprise

Manager), 179

OFA (Optimal Fexible

Architecture)

/u01 directory, 73-75

benefits of, 72

conventions, 75-76

data files, 75-76

minimum requirements, 72

OLTP (Online Transaction

Processing), 76-77

Oracle 9i, 485-486

dynamic memory

parameters, 500-503

installing, 486-488

logging in, 488-489

miscellaneous new features

and changes, 508

multiple block sizes,

500-503

Oracle-managed files,

494-500

RAC (Real Application

Clusters), 508

sample schemas, 506-508

security, 488-489

SPFILEs (server parameter

files), 490-494

undo tablespaces, 503-506

passwords, 129-131

patches

defined, 374-375

downloading, 378

example, 382-385

installation CD patches, 378

installing, 378-382

preparation, 376-378

tips and recommendations,

391-392

when to use, 375-376

performance tuning

B/ESTAT script, 296-298

file contention, 308-309

goals and approaches,

294-295

indexes, 318-320

locally managed

tablespaces, 311-313

memory, 301-305

rollback segments, 305-308

STATSPACK script, 298-301

tables, 313-318

UTLBSTAT script, 296-298

wait events, 309-311

problem-solving

alertSID.log file, 279

database locks, 279

init.ora file, 280

invalid objects, 279

listener processes, 278

log switches, 279

offline data files, 279

offline tablespaces, 279

PMON (Process Monitor),

278

rollback segment errors,

279, 290-291

tablespace free space, 279

tnsnames.ora file, 278

user sessions, 279

processes, 49

ARCn (archiver), 56

background processes,

52-53

CKPT (checkpoint), 55

DBWn (Database Writer),

53-54

Dnnn (dispatcher), 56

LGWR (Log Writer), 54

PMON (Process Monitor),

53

QMNnn (queue monitor), 56

RECO (recovery), 56

server processes, 50-52

SMON (System Monitor), 53

Snnn (shared server), 56

DBAs
559

SNPnn (job queue)

processes, 56

recovery

cold backups, 248

crashes, 255-256

lost control files, 261-262

lost data files, 256-258

lost redo log files, 259-261

lost tablespaces, 258-259

multiple lost files, 262-266

planning, 267-269

testing, 269

rehosting, 402

repositories, 185-186

rows

counting, 221

row chaining, 316-318

row migration, 316-318

schemas, 216-217

shutting down, 145

SHUTDOWN ABORT

statement, 147-148

SHUTDOWN IMMEDIATE

statement, 147

SHUTDOWN statement,

146-147

SHUTDOWN

TRANSACTIONAL

statement, 147

starting

closed databases, 144

online database startup,

245-247

problem solving, 144

restricted session mode, 145

STARTUP RESTRICT state-

ment, 145

STARTUP statement, 143

states, 142-143

tables

backing up, 216

creating, 152-154

IOTs (Index Organized

Tables), 313-314

partitioned tables, 314-316

tablespaces

creating, 495-497

undo tablespaces, 503-506

testing, 398-399

transactions, 57-59

upgrades

defined, 374-375

example, 388-391

import/export commands,

402

installing, 386-388

ORACLE_HOME directory,

386-387

parameter files, 388

preparation, 385-386

tips and recommendations,

391-392

upgrade scripts, 387

when to perform, 375-376

user interfaces

Net8, 32-33

Server Manager, 32

SQL*Plus, 31

verifying, 125-127, 163-164

views, 140-141

obtaining descriptions of,

141

obtaining list of, 141

V$SESSION_EVENT,

310-311

V$SESSION_WAIT, 311

V$SYSTEM_EVENT, 310

WebDB, 418

date command, 527

dates, displaying, 527

DBA Studio

Instance Manager, 194-195

Schema Manager, 196

Security Manager, 196-197

Storage Manager, 197-198

DBAs (database administrators)

application DBAs, 8

background and training, 6

developers/programmers, 7

on-the-job training, 8

SA (system administration), 7

systems designers/

data modelers, 8

consulting/contracting, 521-522

continuing education, 21-22,

512

CBT (Computer Based

Training), 514

colleges and universities, 513

emerging technologies,

515-516

independent learning,

514-515

Oracle University, 513-514

third-party Oracle classes,

514

data availability, 11-12

data protection, 10-11

Java, 522-523

maintenance DBAs, 9

mindset, 26-27

motivation, 512

networking with other DBAs

professional benefits,

520-521

technical benefits, 519-520

OCP (Oracle Certified

Professional) program

benefits of, 519

cost, 518

Database Administrator, 516

Database Operator, 516

Financial Applications, 516

Java Developer, 516

preparation, 517-518

test-taking tips, 518

Web site, 517

responsibilities

application support, 14

backup and recovery, 15

Oracle consultant, 16-17

Oracle point of contact, 17

performance tuning, 14-15

process expert, 18

scope of, 6

system activities, 12-14

troubleshooting, 15

DBAs
560

roles within IT organizations

customers and end users, 25

management, 24

programmers and

developers, 24

SAs (system administrators),

22-23

roles in outside organizations, 26

salaried employees, 521-522

skills needed, 18

application knowledge, 19

business knowledge, 19-20

communication, 20-21

database knowledge, 19

management, 21

problem-solving, 21

systems knowledge, 19

systems DBAs, 9, 522

DBA_X view, 140

DBCA (Database Configuration

Assistant), 113-120

control file location, 117

creating databases, 114-115,

118-120

naming databases, 115-117

starting, 113

Welcome screen, 113

.DBF file extension, 36-37

dbshut script, 247

DBWn (Database Writer),

53-54

DB_CACHE_SIZE parameter,

500

DB_CREATE_FILE_DEST

parameter, 495

DB_CREATE_ONLINE_LOG_DEST

parameter, 495

dd command (vi), 535

DDL (Data Definition

Language), 290

Decision Support Systems

(DSS), 77-78

dedicated servers, 50

default passwords, 130

default permissions, 101

defining default permissions,

101

deleting

directories, 529

files, 529

semaphores, 348-349

ipcrm command, 353

ipcs command, 352-353

oradebug command,

350-352

sysresv command, 349-350

shared memory, 348-349

ipcrm command, 353

ipcs command, 352-353

oradebug command,

350-352

sysresv command, 349-350

shared memory segments, 528

deployejb utility, 435

desc statement, 141

designing databases

capacity planning, 67-68

disk drives, 69

memory, 69

operating system, 68-69

server costs, 70

system maintenance, 70-71

technologies and vendors, 71

Database Design, 152

disk contention, 81-85

DSS (Decision Support

Systems), 77-78

hybrid systems, 79-81

OFA (Optimal Fexible

Architecture)

/u01 directory, 73-75

benefits of, 72

conventions, 75-76

data files, 75-76

minimum requirements, 72

OLTP (Online Transaction

Processing), 76-77

system architecture, 64-65

three-tier, 66-67

two-tier, 65-66

determining. See finding

developers, 7, 24

df command, 91, 332, 527

diagnostic commands. See

commands

Diagnostics Pack

Performance Manager, 199-200

TopSessions, 198-199, 287-290

diagrams (architecture),

273-275

dictionary (data), 36, 46, 304

diff command, 527

DIRECT export parameter, 209

direct path loading, 229-232

directories. See also files

compressing, 530

creating, 529

deleting, 529

moving, 384

navigating, 526

ORACLE_HOME, 386-387

patches, 379

/u01

/admin subdirectory, 73-74

/local subdirectory, 74

/product subdirectory, 73

/var/opt/oracle, 96

dirty memory blocks, 43

discard files, 228

disk contention, 81-85

disk I/O (input/output),

monitoring, 356-357

asynchronous I/O, 360

iostat command, 362

RAID (Redundant Array of

Inexpensive Disks), 357-359

raw partitions, 359-360

sar command, 361

synchronous I/O, 360

vmstat command, 361

disk mirroring, 358

disk sorts, 305

disk striping, 358-359

disks

capacity planning, 69

checking size of, 91-92

disk contention, 81-85

fault tolerance, 243-244

automatic database startup,

245-247

events
561

multiplex control files, 244

multiplex online redo

log files, 244-245

I/O (input/output), monitoring,

356-357

asynchronous I/O, 360

iostat command, 362

RAID (Redundant Array of

Inexpensive Disks),

357-359

raw partitions, 359-360

sar command, 361

synchronous I/O, 360

vmstat command, 361

media failure, 241-243

mirroring, 358

size of, 359

sorts, 305

striping, 358-359

system configuration, 94-96

dispatcher (Dnnn), 56

DISPLAY variable, 100-101

displaying

alertSID.log file, 279

database-creation log files, 125

date/time, 527

environment variables, 527

file contents, 35

cat command, 526

more command, 529

page command, 529

filesystems

bdf command, 526

df command, 527

logged-in users, 531

manual pages, 529

privileges, 150

processes, 529

shared memory segments, 528

SPFILEs (server parameter

files), 491

swap partitions, 355

Unix processes, 327

word counts, 531

dmesg command, 90-92, 276,

527

DML (Data Manipulation

Language), 287-290

.dmp files. See dump files

Dnnn (dispatcher), 56

downloading patches, 378

drivers (JDBC), 422

dropping Java programs, 433

DSS (Decision Support

Systems), 77-78

du command, 527

dumb terminals, 65

dump (.dmp) files

adump, 74

bdump, 74

cdump, 74

defined, 204

editing, 225-226

udump, 74

dynamic memory parameters

(Oracle 9i server), 500-503

dynamic space allocation, 159,

306

dynamic SQL (Standard Query

Language), 128

E
echo command, 98, 527

editing. See also changing

database creation scripts,

121-123

dump (.dmp) files, 225-226

oratab files, 131

.profile files, 137-138

text, 534

editors, vi, 534

education. See continuing

education; training

EJB (Enterprise Java Beans),

421, 425

electronic monitoring and

notification, 171-172

emerging technologies,

515-516

employee retention, 71

end users, 25

Enterprise Java Beans (EJB),

421, 425

Enterprise Manager.

See OEM (Oracle

Enterprise Manager)

env command, 98, 527

environment variables

CLASSPATH, 100

DISPLAY, 100-101

displaying, 527

LD_LIBRARY_PATH, 99

NLS_LANG, 99

ORACLE_BASE, 99

ORACLE_HOME, 99

ORACLE_SID, 99

ORA_NLS33, 99

PATH, 100

environments

checking, 98

Oracle environment setup,

97-99

DISPLAY variable, 100-101

LD_LIBRARY_PATH

variable, 99

NLS_LANG variable, 99

ORACLE_BASE variable,

99

ORACLE_HOME

variable, 99

ORACLE_SID variable, 99

ORA_NLS33 variable, 99

PATH variable, 100

umask, 101-102

Web architecture, 464-466

availability, 468

clients, 465

database tier, 465

middle tier, 465

scalability, 467-468

technological design, 467

error messages.

See also problem solving

not connected, 124

public synonym...

does not exist, 124

Snapshot too old, 279, 290-291

events, wait events, 309-311

exams
562

exams (certification)

benefits of, 519

cost, 518

Database Administrator, 516

Database Operator, 516

Financial Applications, 516

Java Developer, 516

preparing for, 517-518

test-taking tips, 518

Web site, 517

exclamation point (!), 194

exec method, 326

exit command, 194, 527

export command, 204-205

business archives, 217

common mistakes, 221-222

compressed files, 223-225

corruption checks, 221

dump (.dmp) files, 204,

225-226

full database exports, 206

interactive exports, 206-207

logical backups, 216-217

migrations, 217-219, 401-402

parameter files, 208-210

pipes, 223-225

query-based exports, 211

rehosting, 402

row counts, 221

table level exports, 205

table rebuilds, 220

testing exports, 222

tuning parameters, 226-227

upgrades, 402

user level exports, 205-206

export parameters

BUFFER, 206

COMPRESS, 207

CONSISTENT, 209

DIRECT, 209

FEEDBACK, 209

FILE, 206-208

FULL, 207-209

LOG, 209

OWNER, 207-209

PARFILE, 208

ROWS, 207

TABLES, 207-209

tuning, 226-227

USERID, 206

exporting data, 204-205

business archives, 217

common mistakes, 221-222

compressed files, 223-225

corruption checks, 221

dump (.dmp) files, 204,

225-226

full database exports, 206

interactive exports, 206-207

logical backups, 216-217

migrations, 217-219, 401-402

monitoring exports, 169

parameter files, 208-210

pipes, 223-225

query-based exports, 211

rehosting, 402

row counts, 221

table level exports, 205

table rebuilds, 220

testing exports, 222

tuning parameters, 226-227

upgrades, 402

user level exports, 205-206

ext2 filesystem, 332

extents

contiguous, 159

initial extents, 123

monitoring, 308

F
failed databases,

cleaning up, 129

fat clients, 65-66

fault tolerance, 243-244

automatic database startup,

245-247

multiplex control files, 244

multiplex online redo logs,

244-245

RAID (Redundant Array of

Inexpensive Disks), 357-359

FEEDBACK export parameter,

209

FEEDBACK import parameter,

214

file contention, 308-309

FILE export parameter, 206,

208

file extensions

.CTL, 35

.DBF, 36-37

.dmp, 204

.IDX, 38

.RBO, 41

.RBS, 40

FILE import parameter, 212

file systems. See filesystems

File Transfer Protocol (FTP),

379-380

filenames, 527

files, 34. See also directories

compressed files, 223-225

compressing, 170

compress command, 526

gzip command, 528

tar command, 530

control files, 34-35

lost control files, 261-262

multiplexing, 244

copying, 526

corruption, 379-380

crontab files, 167

data files, 35

adding, 282

adding to tablespaces, 162

defined, 36

generic data files, 36-37

index files, 37-38

lost data files, 256-258

moving, 162, 282-285

OFA (Optimal Flexible

Architecture), 75-76

offline data files, 279

renaming, 282-285

resizing, 161

rollback data files, 38-40

sizing, 282

forms
563

system data files, 36

temporary data files, 38

deleting, 529

disk contention, 81

displaying contents of

cat command, 526

more command, 529

page command, 529

dump (.dmp) files

adump, 74

bdump, 74

cdump, 74

defined, 204

editing, 225-226

udump, 74

exporting, 169, 223-225

file contention, 308-309

file extensions

.CTL, 35

.DBF, 36-37

.dmp, 204

.IDX, 38

.RBO, 41

.RBS, 40

finding, 527

importing, 223-225

init.ora

database migrations, 405,

413

linking to, 131-132

troubleshooting, 280

listener.ora, 134-135

listing, 528

log files, 60

alert logs, 60-61, 164-165,

279

analyzing, 232-235

database-creation logs, 125

redo log files, 40-41, 47,

244-245, 259-261, 303

SQL*Loader, 228

lost files, recovering from

control files, 261-262

data files, 256-258

multiple lost files, 262-266

redo log files, 259-261

moving, 529

naming conventions, 75-76

Oracle-managed files, 494-500

creating redo logs with,

498-499

creating tablespaces with,

495-497

orainstRoot.sh, 103

oratab, 131

ownership, 526

parameter files

backups, 266

config.ora, 60

exporting data, 208-210

importing data, 214-216

init.ora, 60

upgrades, 388

permissions

changing, 526

default permissions, 101

pfile, 74

.profile, 137-138

restoring, 240

root.sh, 107

sem.h, 96

shmparam.h, 96

soft links, 528

software installation files

listener.ora, 62

oratab, 61

sqlnet.ora, 62

tnsnames.ora, 61

SPFILEs (server parameter

files), 490-494

backing up, 493

creating, 490

updating, 492-493

viewing, 491

SQL*Loader file types, 228

tnsnames.ora, 133-134, 278

uncompressing

gunzip command, 528

uncompress command, 530

Unix, 334

viewing, 35

word count, 531

filesystems

checking size of, 91-92

creating, 94-96

defined, 72

displaying

bdf command, 526

df command, 527

free space, 170-171

iFS (Internet File System), 333,

418, 471

problem-solving, 276

sharing, 84

Unix

ext2, 332

free space, 332

iso9660, 333

mount points, 331

mounting, 331-332

nfs, 332

problem solving, 333-334

ufs, 332

unmounting, 333

vxfs, 333

Financial Applications

certification, 516

find command, 527

finding

available disks and filesystems,

91-92

available memory, 90

available swap space, 90

CPU speed, 92

current environment, 98

files, 527

invalid objects, 154

operating system and version,

88-90

shared memory

ipcs command, 352-353

oradebug command,

350-352

sysresv command, 349-350

fixing problems.

See problem solving

fork method, 326

forms, Oracle Forms, 470

fragmentation
564

fragmentation, 159

free filesystem space,

170-171, 332

freelist parameter, 160

FROMUSER import parameter,

215

fsck command, 332

FTP (File Transfer Protocol),

379-380

ftp command, 527

full database exports, 206

FULL export parameter, 207,

209

full filesystems,

troubleshooting, 276

FULL import parameter, 213

fuser command, 527

G
G command (vi), 534

gathering information,

272-273

glance command, 365, 527

glossary, 544-549

granting privileges, 149-150

GRANTS import parameter, 213

grep command, 412, 527

groups

creating, 93-94

oinstall, 94

redo log groups, 41

groups command, 527

GUI (graphical user interface)

tools

OEM (Oracle Enterprise

Manager), 176

architecture, 176-179

Change Management Pack,

194

client installation, 179-182

clients, 177-178

Configuration Assistant, 185

console, 190-193

Data Gatherer, 190

databases, 179

DBA Studio, 194-198

Diagnostics Pack, 198-200

Intelligent Agents, 187-190

OMS (Oracle Management

Server), 178, 183-185

Oracle Tuning Pack, 200

repository creation, 185-186

SQL*Plus, 194

SQL*Plus Worksheet, 194

standalone mode, 193

TOAD, 200-201

gunzip command, 528

gzip command, 528

H
h command (vi), 534

hanging problems,

troubleshooting, 333-334

hard disks. See disks

hardware

clusters, 338-339

hard disks. See disks

MPPs (Massively Parallel

Processors), 340

NUMAs (NonUniform

Memory Access), 340

SMP (symmetrical multi-

processor) machines, 338

uniprocessor machines, 337-338

hash partitioning, 315

head command, 528

help

manual pages, 529

MetaLink, 108

Oracle Support, 108-109

Technet, 108

hexadecimal format, 97

hierarchy of object storage,

157-160

history of iAS (Internet

Application Server), 469

hit ratio (cache), 302

hot backup mode, 253-255

hot backup script, 541-542

hot backups, 250-251.

See also recovery

ARCHIVELOG mode, 251-253

hot backup mode, 253-255

hot backup script, 541-542

HTTP listener, 469

hybrid systems, 79-81

I
i command (vi), 534

I/O (input/output)

disk I/O, monitoring, 356-357

asynchronous I/O, 360

iostat command, 362

RAID (Redundant Array of

Inexpensive Disks),

357-359

raw partitions, 359-360

sar command, 361

synchronous I/O, 360

vmstat command, 361

Unix I/O subsystem, 335

iAS (Internet Application

Server), 463-464, 468

alternatives to, 466

components, 469-470

configuring, 482-483

database cache, 471-472

history of, 469

iFS (Internet File System), 471

installing, 472-482

DAD (Database Access

Descriptor), 476

disk space requirements, 472

Global Database Name, 477

help, 475

HTTP Server configuration,

475

installation CDs, 473

installation types, 474

JDK location, 477

Oracle Portal configuration,

475

Oracle Portal Configuration

Assistant, 482

installing
565

ORACLE_HOME

directory, 472

portal-to-go repository

information, 478-479

source and destination loca-

tion, 473

welcome screen, 473

JSP (Java Server Page)

support, 471

modules, 470

Oracle 8i JVM, 471

Oracle Discover, 470

Oracle Forms, 470

Oracle Portal, 418, 460, 471

Administer utility, 456

architecture, 439-440

benefits of, 438-439

Browse utility, 452-453

Build utility, 453, 456

installing, 440-450

listener, 446, 450-451

login procedure, 451-452

Monitor utility, 457-459

Sites utility, 459

Oracle Reports, 470

PSP (Pl/SQL Server Page)

support, 471

Web cache, 471-472

ICG (Oracle Installation and

Configuration Guide), 88

id command, 528

Idle state (Unix processes), 325

.IDX file extension, 38

ifconfig command, 92, 370

iFS (Internet File System), 333,

418, 471

IGNORE import parameter, 213

IIOP (Internet Inter-Orb

Protocol), 433-435

import command, 211-212

common mistakes, 221-222

compressed files, 223-225

corruption checks, 221

dump (.dmp) files, 204, 225-226

grants, 218

interactive imports, 212-213

migrations, 401-402

parameter files, 214-216

pipes, 223-225

rehosting, 402

row counts, 221

table rebuilds, 220

testing imports, 222

tuning parameters, 226-227

upgrades, 402

import parameters

BUFFER, 212

COMMIT, 215

FEEDBACK, 214

FILE, 212

FROMUSER, 215

FULL, 213

GRANTS, 213

IGNORE, 213

INDEXFILE, 215

LOG, 214

PARFILE, 214

ROWS, 213

TOUSER, 215

tuning, 226-227

USERID, 212

importing data, 211-212

common mistakes, 221-222

compressed files, 223-225

corruption checks, 221

dump (.dmp) files, 204, 225-226

grants, 218

interactive imports, 212-213

migrations, 401-402

parameter files, 214-216

pipes, 223-225

rehosting, 402

row counts, 221

table rebuilds, 220

testing imports, 222

tuning parameters, 226-227

upgrades, 402

independent learning, 514-515

Index Organized Tables (IOTs),

313-314

index tablespaces, 258-259

indexes, 37-38

creating, 152-154

index tablespaces, 258-259

IOTs (Index Organized Tables),

313-314

performance tuning, 318-320

INDEXFILE import parameter,

215

industry trends, 20

information gathering, 272-273

init.ora file, 60

database migrations, 405, 413

linking to, 131-132

troubleshooting, 280

initial extents, 123

initialized data, 325

inodes, 334

input/output. See I/O

Insert mode (vi), 534

Installation and Configuration

Guide (ICG), 88

installation files

listener.ora, 62

oratab, 61

sqlnet.ora, 62

tnsnames.ora, 61

installing

iAS (Internet Application

Server), 472-482

DAD (Database Access

Descriptor), 476

disk space requirements, 472

Global Database Name, 477

help, 475

HTTP Server

configuration, 475

installation CDs, 473

installation types, 474

JDK location, 477

Oracle Portal

configuration, 475, 482

ORACLE_HOME directory,

472

portal-to-go repository

information, 478-479

installing
566

source and destination

location, 473

welcome screen, 473

Java, 427-429

OEM (Oracle Enterprise

Manager), 179

clients, 179-182

OMS (Oracle Management

Server), 183-185

repositories, 185-186

Oracle

installation files, 61-62

installation process,

102-107

Oracle environment setup,

97-102

Oracle Installation and

Configuration Guide

(ICG), 88

patches, 109

pre-installation setup, 88-92

system configuration, 92-97

verifying installation,

107-108

Oracle 9i, 486-488

Oracle Portal

listener, 446-447

ORACLE_HOME variable,

440-441

root.sh script, 448

system requirements, 440

text-based installer,

441-447

user roles, 449-450

patches, 109

backups, 380

example, 382-385

installation CD patches,

378

installation process, 381

patches directory, 379

post-patch steps, 381-382

preparation, 376-378

README files, 378

tips and recommendations,

391-392

STATSPACK, 298-299

upgrades, 386-388

example, 388-391

ORACLE_HOME directory,

386-387

parameter files, 388

preparation, 385-386

tips and recommendations,

391-392

upgrade scripts, 387

Instance Manager, 194-195

instances, 33-34, 125-127

Intelligent Agents

passwords, 188-190

starting, 187

verifying, 188

interactive exports, 206-207

interactive imports, 212-213

interfaces (user)

Net8, 32-33

Server Manager, 32

SQL*Plus, 31

Internet Application Server.

See iAS

Internet File System (iFS), 333,

418, 471

Internet Inter-Orb Protocol

(IIOP), 433-435

Intimate Shared Memory

(ISM), 347-348

invalid objects

checking for, 154

compiling, 127-129

monitoring, 165-166

troubleshooting, 279

iostat command, 362, 528

IOTs (Index Organized Tables),

313-314

ipcrm command, 353, 528

ipcs command, 352-353, 528

ISM (Intimate Shared

Memory), 347-348

iso9660 filesystem, 333

J-K
j command (vi), 534

Java, 417-418, 522-523

checking installation of, 382

compared to PL/SQL, 424-425

configuration parameters, 426

CORBA servers, 435

IIOP (Internet Inter-Orb

Protocol), 433-435

installing, 427-429

Java Beans

defined, 421

EJB (Enterprise Java

Beans), 421, 425

loading, 435

JavaScript, 421

JDBC (Java Database

Connectivity), 422

JDeveloper, 419

JSPs (Java Server Pages), 421

JVM (Java Virtual Machine),

421-424, 471

MTS (Multi-Threaded Servers),

433-435

Oracle support for, 418-421

programs

creating, 430-431

dropping, 433

loading, 431

publishing, 432

running, 432

servlets, 421

SQLJ, 423

uninstalling, 429-430

Web site, 420

Java Beans

defined, 421

EJB (Enterprise Java Beans),

421, 425

loading, 435

Java Database Connectivity

(JDBC), 422

Java Developer certification,

516

listings
567

JAVA_MAX_SESSIONSPACE_

SIZE parameter, 426

Java pool, 48-49

JAVA_POOL_SIZE parameter,

48, 426

Java Server Pages (JSPs), 421,

471

JAVA_SOFT_SESSIONSPACE_

LIMIT parameter, 426

Java Virtual Machine (JVM),

421-424, 471

JavaBeans. See Java Beans

JavaScript, 421

JDBC (Java Database

Connectivity), 422

JDeveloper, 419

job queue (SNPnn)

processes, 56

jobs

batch jobs

DSS (Decision Support

Systems), 78

rollback segments, 306-307

cron jobs, 166-168

problem-solving, 276

JSPs (Java Server Pages),

421, 471

JVM (Java Virtual Machine),

421-424, 471

k command (vi), 534

kernel (Unix), 322-324

kill command, 528

killing user sessions, 146, 367

KPRB server drivers, 422

L
l command (vi), 534

languages

Java, 417-418, 522-523

compared to PL/SQL,

424-425

configuration parameters,

426

CORBA servers, 425, 435

IIOP (Internet Inter-

Orb Protocol), 433-435

installing, 427-429

Java Beans, 421, 425, 435

JDBC (Java Database

Connectivity), 422

JSPs (Java Server Pages),

421

JVM (Java Virtual

Machine), 421-424, 471

MTS (Multi-Threaded

Servers), 433-435

Oracle support for, 418-421

programs, 430-433

servlets, 421

SQLJ, 423

uninstalling, 429-430

Web site, 420

JavaScript, 421

large pool, 48

LARGE_POOL_SIZE

parameter, 500

last command, 528

LD_LIBRARY_PATH variable, 99

Least Recently Used

(LRU) list, 44

Least Recently Used Write

(LRUW) list, 45

levels (RAID), 358-359

LGWR (Log Writer), 54

library cache, 46-47, 303-304

links

init.ora file, 131-132

soft links, 528

Linux servers, monitoring,

342-343

CPUs, 362-363

glance command, 365

mpstat command, 367

ps command, 363

sar command, 367

top command, 364-365

uptime command, 365-366

vmstat command, 366

disk I/O (input/output), 356-357

asynchronous I/O, 360

iostat command, 362

RAID (Redundant Array

of Inexpensive Disks),

357-359

raw partitions, 359-360

sar command, 361

synchronous I/O, 360

vmstat command, 361

importance of, 342

memory, 354

swap command, 355

thresholds, 356

vmstat command, 355-356

network performance, 368-369

ifconfig command, 370

netstat command, 370-371

ping command, 369-370

tnsping command, 369

shared memory

finding, 349-353

ISM (Intimate Shared

Memory), 347-348

removing, 348-353

semaphores, 345-346

SGA allocation, 346-347

SHMMAX parameter, 344

SHMMIN parameter, 345

SHMMNI parameter, 345

SHMSEG parameter, 345

list partitioning, 315

listeners

iAS (Internet Application

Server), 469

Oracle Portal

installing, 446

starting and stopping,

450-451

listener processes, 135-137, 278

listener.ora file, 62, 134-135

listing files, 528

listings

compare_users.sql, 541

create_analyze_script.sql, 541

login.sql, 538

run_hots.sql, 542

listings
568

show_dba_rollback_segs.sql,

539

show_filestat.sql, 539

show_index_depth.sql, 539

show_redo_logs.sql, 539

show_rollback_contention.sql,

540

show_segments.sql, 540

show_session_short.sql, 538

show_tablespaces.sql, 540-541

tail-alert, 541

ln command, 528

loading data. See also export

command; import command

CORBA servers, 435

EJB (Enterprise Java Beans),

435

Java programs, 431

SQL*Loader, 227

bad files, 228

control files, 228

conventional path loading,

229

data files, 228

direct path loading, 229-232

discard files, 228

log files, 228

loadjava utility, 430

/local directory, 74

local databases,

connecting to, 134

locally managed tablespaces,

162, 311-313

Lock Manager, 287

Lock Types menu commands

(TopSessions), 288

locks, 286-287

DDL (Data Definition

Language), 290

defined, 286

DML (Data Manipulation

Language), 287-290

Lock Manager, 287

TopSessions, 287-290

LOG export parameter, 209

log files

alert logs, 60-61, 164-165, 279

analyzing, 232-235

database-creation logs, 125

redo log files, 40-41

buffer, 303

creating, 498-499

lost redo log files, 259-261

multiplexing, 244-245

redo log buffer, 47

SQL*Loader, 228

LOG import parameter, 214

log switches, 41, 279

Log Writer (LGWR), 54

logged-in users, displaying, 531

logging in

login.sql script, 538

OMS (Oracle Management

Server), 185

Oracle 9i server, 488-489

Oracle Portal, 451-452

logging off users, 527

logical backups, 239

entire schemas, 216-217

individual tables, 216

login.sql script, 538

LogMiner, 232-235

logs. See log files

LOG_BUFFER parameter,

47, 303

LOG_CHECKPOINT_INTERVAL

parameter, 55

LOG_CHECKPOINT_TIMEOUT

parameter, 55

LOG_CHECKPOINT_TO_ALERT

parameter, 55

lost files, recovering from

control files, 261-262

data files, 256-258

multiple lost files, 262-266

redo log files, 259-261

lost tablespaces, recovering

from, 258-259

LRU (Least Recently Used)

list, 44

LRUW (Least Recently Used

Write) list, 45

ls command, 528

lsnrctl command, 187-188, 278

M
mailx command, 528

maintenance

capacity-planning issues, 70-71

corruption checks, 221

row counts, 221

table rebuilds, 220

maintenance DBAs (database

administrators), 9

man command, 529

management, 21

memory management, 328-330

roles, 24

space management

dynamic space allocation,

159

fragmentation, 159

storage hierarchy, 157-160

storage parameters, 159-160

tablespaces, 160-163

users

creating, 149

privileges, 149-150

quotas, 151-152

roles, 151

management tools, 176

OEM (Oracle Enterprise

Manager), 176

architecture, 176-179

Change Management Pack,

194

client installation, 179-182

clients, 177-178

Configuration Assistant, 185

console, 190-193

Data Gatherer, 190

databases, 179

DBA Studio, 194-198

Diagnostics Pack, 198-200

migration
569

Intelligent Agents, 187-190

OMS (Oracle Management

Server), 178, 183-185

Oracle Tuning Pack, 200

repository creation, 185-186

SQL*Plus, 194

SQL*Plus Worksheet, 194

standalone mode, 193

TOAD, 200-201

managers

Instance Manager, 194-195

OEM (Oracle Enterprise

Manager)

architecture, 176-179

Change Management Pack,

194

client installation, 179-182

clients, 177-178

console, 190-193

Data Gatherer, 190

databases, 179

DBA Studio, 194-198

Diagnostics Pack, 198-200

Intelligent Agents, 187-190

OMS (Oracle Management

Server), 178, 183-185

Oracle Tuning Pack, 200

repository creation, 185-186

SQL*Plus, 194

SQL*Plus Worksheet, 194

standalone mode, 193

Performance Manager, 199-200

Schema Manager, 196

Security Manager, 196-197

Storage Manager, 197-198

manual pages, 529

Massively Parallel Processors

(MPPs), 340

MAXEXTENTS parameter, 279

maxtextents parameter, 160

media failure

defined, 241

fault tolerance, 243-244

automatic database startup,

245-247

multiplex control files, 244

multiplex online redo logs,

244-245

impact on database, 241-243

memory, 42

cache, 43-45

cache hit ratio, 302

data dictionary cache, 304

database buffer cache,

302-303

iAS (Internet Application

Server), 471-472

library cache, 303-304

capacity planning, 69

checking, 90

monitoring, 354

swap command, 355

thresholds, 356

vmstat command, 355-356

performance tuning, 301

data dictionary cache, 304

database buffer cache,

302-303

disk sorts, 305

library cache, 303-304

ratios, 302

redo log buffer, 303

pool

Java pool, 48-49

large pool, 48

sizing, 501

SGA (Shared Global Area), 42-45

shared memory

configuring, 96-97

data dictionary cache, 46

displaying, 528

finding, 349-353

ISM (Intimate Shared

Memory), 347-348

library cache, 46-47

monitoring, 344-345

redo log buffer, 47

removing, 348-353, 528

semaphores, 345-346

SGA (Shared Global Area),

42-45, 346-347

Unix

NUMAs (NonUniform

Memory Access), 340

pages, 329

paging, 329-330

swap area, 328

swapping, 329-330

thrashing, 329

virtual memory, 328

messages

boot messages, 276

error messages

not connected, 124

public synonym...

does not exist, 124

snapshot too old, 279,

290-291

MetaLink, 108, 378, 514

methods. See also commands

exec, 326

fork, 326

middle tier (Web architecture),

465

mig command, 402-403

MIGRATE user, 406

migration, 395-396

to base releases, 404

compared to rehosting, 396

DBA skill level, 403-404

defined, 396-397

import/export commands,

401-402

mig command, 402-403

ODMA (Oracle Data Migration

Assistant), 403-404

database preparation,

405-407

migration process, 407-412

post-migration tasks,

412-415

performance issues, 403

planning, 398

preparation

application testing, 399-400

database testing, 398-399

migration testing, 400-401

planning phase, 398

migration
570

schema-level exports, 217-219

testing, 400-401

time requirements, 403

when to use, 397

mindset of DBAs (database

administrators), 26-27

minextents parameter, 160,

306

mirroring disks, 358

missing processes, 276

mkdir command, 529

modes

databases

ARCHIVELOG, 249-253

NOARCHIVELOG, 249

restricted session mode, 145

vi editor, 534

modules (iAS), 470

mod_jserv module, 470

mod_perl module, 470

mod_plsql module, 470

Monitor utility, 457-459

monitoring system,

163, 342-343

alert logs, 164-165

backups, 168-169

CPUs (central processing

units), 362-363

glance command, 365

mpstat command, 367

ps command, 363

sar command, 367

top command, 364-365

uptime command, 365-366

vmstat command, 366

cron jobs, 166-168

disk I/O (input/output), 356-357

asynchronous I/O, 360

iostat command, 362

RAID (Redundant Array

of Inexpensive Disks),

357-359

raw partitions, 359-360

sar command, 361

synchronous I/O, 360

vmstat command, 361

electronic monitoring and noti-

fication, 171-172

exports, 169

filesystem space, 170-171

importance of, 342

invalid objects, 165-166

memory, 354

swap command, 355

thresholds, 356

vmstat command, 355-356

network performance, 368-369

ifconfig command, 370

netstat command, 370-371

ping command, 369-370

tnsping command, 369

rollback segment usage

contention, 307

extends, 308

wraps, 308

shared memory

finding, 349-353

ISM (Intimate Shared

Memory), 347-348

removing, 349-353

semaphores, 345-346

SGA allocation, 346-347

SHMMAX parameter, 344

SHMMIN parameter, 345

SHMMNI parameter, 345

SHMSEG parameter, 345

vp, 348-349

tablespace allocations, 165-166

verifying databases and

connectivity, 163-164

more command, 529

Most Recently Used (MRU) list,

44

motivation of DBAs (database

administrators), 512

mount command, 331

mount points. See filesytems

mount state, 143

mounting filesystems, 331-332

moving

data files, 162, 282-285

directories, 384

files, 529

MPPs (Massively Parallel

Processors), 340

mpstat command, 367

MRU (Most Recently Used)

list, 44

MTS (Multi-Threaded Servers),

50-52, 423, 433-435

multiple applications, 81

multiple block sizes, 500-503

multiple lost files, recovering

from, 262-266

multiple ORACLE_HOME

directories, 387

multiple schemas, running, 157

multiplexing, 41, 244-245

multitasking, 323

mv command, 529

N
names

data files, 282-285

databases, 115-117

file extensions

.CTL, 35

.DBF, 36-37

.dmp, 204

.IDX, 38

.RBO, 41

.RBS, 40

OFA (Optimal Flexible

Architecture) conventions,

75-76

tablespaces, 219

navigating directories, 526

Net8, 32-33

Net8 Assistant, 132-133

listener process, 135-137

listener.ora file, 134-135

tnsnames.ora file, 133-134

netasst command, 133

netstat command, 370-371

network filesystem (nfs), 332

networks

configuring, 132

listener process, 135-137

offline tablespaces
571

listener.ora file, 134-135

tnsnames.ora file, 133-134

monitoring, 368-369

ifconfig command, 370

netstat command, 370-371

ping command, 369-370

tnsping command, 369

network information, checking, 92

new features (Oracle 9i),

485-486

dynamic memory parameters,

500-503

logging in, 488-489

miscellaneous features, 508

multiple block sizes, 500-503

Oracle-managed files, 494-500

creating redo logs with,

498-499

creating tablespaces with,

495-497

RAC (Real Application

Clusters), 508

sample schemas, 506-508

security, 488-489

SPFILEs (server parameter

files), 490-494

backing up, 493

creating, 490

updating, 492-493

viewing, 491

undo tablespaces, 503-506

nfs filesystem, 332

NLS_LANG variable, 99

NOARCHIVELOG mode

(cold backups), 249

nohup command, 529

NOLOGGING option, 47

nomount state, 143

non-technical capacity-

planning issues

server costs, 70

system maintenance, 70-71

technologies and vendors, 71

non-technical responsibilities

of database administration

Oracle consultant, 16-17

Oracle point of contact, 17

process expert, 18

NonUniform Memory Access

(NUMAs), 340

not connected

(error message), 124

NUMAs (NonUniform Memory

Access), 340

O
OAS (Oracle Application

Server), 418, 469

objects

identifying, 155-157

invalid objects

checking for, 154

compiling, 127-129

monitoring, 165-166

troubleshooting, 279

privileges, 150

storage hierarchy, 157-160

storage parameters, 159-160

OCI drivers (JDBC), 422

OCP (Oracle Certified

Professional) program

benefits of, 519

cost, 518

Database Administrator, 516

Database Operator, 516

Financial Applications, 516

Java Developer, 516

preparation, 517-518

test-taking tips, 518

Web site, 517

ODMA (Oracle Data Migration

Assistant), 403-404

database preparation

backups, 407

init.ora parameters, 405

MIGRATE user, 406

OUTLN user, 406

SYSTEM tablespace size,

405-406

migration process, 407-412

post-migration tasks, 412-415

OEM (Oracle Enterprise

Manager)

architecture, 176-177

client tier, 177-178

middle tier, 178

server tier, 179

Change Management Pack, 194

client installation, 179-182

clients, 177-178

Configuration Assistant, 185

console, 190-193

Data Gatherer, 190

databases, 179

DBA Studio

Instance Manager, 194-195

Schema Manager, 196

Security Manager, 196-197

Storage Manager, 197-198

Diagnostics Pack

Performance Manager,

199-200

TopSessions, 198-199

Intelligent Agents

passwords, 188-190

starting, 187

verifying, 188

OMS (Oracle Management

Server), 178, 183-185

Oracle Tuning Pack, 200

repository creation, 185-186

SQL*Plus, 194

SQL*Plus Worksheet, 194

standalone mode, 193

oemapp command, 178

oerr command, 165

OFA (Optimal Fexible

Architecture)

/u01 directory

/admin subdirectory, 73-74

/local subdirectory, 74

/product subdirectory,

72-73

benefits of, 71-72

minimum requirements, 72

offline data files, 279

offline tablespaces, 163, 279

oinstall group
572

oinstall group, 94

OLTP (Online Transaction

Processing), 50, 76-77,

305-306

OMS (Oracle Management

Server), 178, 183-185

online backups.

See hot backups

online chat sessions,

requesting, 530

online redo log files, 40-41

analyzing, 232-235

multiplexing, 244-245

redo log buffer, 47

Online Transaction Processing

(OLTP), 50, 76-77

open state (databases), 143

operating systems

capacity planning, 68-69

determining, 88-90

OPS (Oracle Parallel Server),

80, 508

Optimal Fexible Architecture.

See OFA

optimizing performance.

See performance tuning

ORA-01432 error, 124

ORA-01555 error, 279, 290-291

Oracle 8i JVM, 471

Oracle 9i server, 485-486

dynamic memory parameters,

500-503

installing, 486-488

logging in, 488-489

miscellaneous new features and

changes, 508

multiple block sizes, 500-503

Oracle-managed files, 494-500

creating redo logs with,

498-499

creating tablespaces with,

495-497

RAC (Real Application

Clusters), 508

sample schemas, 506-508

security, 488-489

SPFILEs (server parameter

files), 490-494

backing up, 493

creating, 490

updating, 492-493

viewing, 491

undo tablespaces, 503-506

Oracle Application Server

(OAS), 418

Oracle Certified Professional

program. See OCP program

Oracle Data Migration

Assistant. See ODMA

Oracle Diagnostics Pack, 198

Performance Manager, 199-200

TopSessions, 198-199, 287-290

Oracle Discover, 470

Oracle Enterprise Manager.

See OEM (Oracle Enterprise

Manager)

Oracle environment setup,

97-99

DISPLAY variable, 100-101

LD_LIBRARY_PATH

variable, 99

NLS_LANG variable, 99

ORACLE_BASE variable, 99

ORACLE_HOME variable, 99

ORACLE_SID variable, 99

ORA_NLS33 variable, 99

PATH variable, 100

umask, 101-102

Oracle Forms, 470

Oracle installation

installation process

database file location, 105

installation options, 104

orainstRoot.sh file, 103

root.sh file, 107

summary page, 105

Unix group, 103

welcome screen, 102

Oracle environment setup,

97-99

DISPLAY variable, 100-101

LD_LIBRARY_PATH

variable, 99

NLS_LANG variable, 99

ORACLE_BASE variable, 99

ORACLE_HOME

variable, 99

ORACLE_SID variable, 99

ORA_NLS33 variable, 99

PATH variable, 100

umask, 101-102

Oracle Installation and

Configuration Guide (ICG), 88

patches, 109

pre-installation setup

CPUs, 92

disks and filesytems, 91-92

memory, 90

network information, 92

operating system and

version, 88-90

swap space, 90

system configuration, 92

disks and filesystems, 94-96

groups, 93-94

root passwords, 93

shared memory settings,

96-97

users, 94

verifying, 107-108

Oracle Installation and

Configuration Guide (ICG), 88

Oracle Management Server

(OMS), 178

Oracle Parallel Server (OPS),

80, 508

Oracle Portal, 418, 460, 471

Administer utility, 456

architecture, 439-440

benefits of, 438-439

Browse utility, 452-453

Build utility, 453, 456

installing

listener, 446-447

ORACLE_HOME variable,

440-441

root.sh script, 448

PARFILE import parameter
573

system requirements, 440

text-based installer, 441-447

user roles, 449-450

listener

installing, 446

starting and stopping,

450-451

login procedure, 451-452

Monitor utility, 457-459

Sites utility, 459

Oracle Reports, 470

Oracle servers. See databases

Oracle Support, 108-109

Oracle Tuning Pack, 200

Oracle Universal Installer.

See OUI

Oracle University, 513-514

Oracle-managed files, 494-500

creating redo logs with, 498-499

creating tablespaces with,

495-497

ORACLE_BASE variable, 99

ORACLE_HOME directory,

386-387

ORACLE_HOME variable, 99

ORACLE_SID variable, 99

oradebug command, 350-352

orainstRoot.sh file, 103

oratab file, 61, 131

ORA_NLS33 variable, 99

OUI (Oracle Universal Installer)

database file location, 105

installation options, 104

orainstRoot.sh file, 103

root.sh file, 107

summary page, 105

Unix group, 103

welcome screen, 102

OUTLN user, 406

output. See I/O (input/output)

outside organizations, role of

DBAs in, 26

overflow areas, 314

OWNER export parameter,

207, 209

ownership of files, 526

P
p command (vi), 535

page command, 529

page daemon, 329

pages (Unix), 329

pagesize command, 329

paging, 171-172, 329-330

Parallel Server (Oracle), 80, 508

parameter files

backups, 266

config.ora, 60

exporting data, 208-210

importing data, 214-216

init.ora, 60

upgrades, 388

parameters

DB_CACHE_SIZE, 500

DB_CREATE_FILE_DEST, 495

DB_CREATE_ONLINE_

LOG_DEST, 495

export parameters

BUFFER, 206

COMPRESS, 207

CONSISTENT, 209

DIRECT, 209

FEEDBACK, 209

FILE, 206, 208

FULL, 207, 209

LOG, 209

OWNER, 207, 209

PARFILE, 208

ROWS, 207

TABLES, 207, 209

tuning, 226-227

USERID, 206

hexadecimal format, 97

import parameters

BUFFER, 212

COMMIT, 215

FEEDBACK, 214

FILE, 212

FROMUSER, 215

FULL, 213

GRANTS, 213

IGNORE, 213

INDEXFILE, 215

LOG, 214

PARFILE, 214

ROWS, 213

TOUSER, 215

tuning, 226-227

USERID, 212

JAVA_MAX_SESSIONSPACE_

SIZE, 426

JAVA_POOL_SIZE, 48, 426

JAVA_SOFT_SESSIONSPACE_

LIMIT, 426

LARGE_POOL_SIZE, 500

LOG_BUFFER, 47, 303

LOG_CHECKPOINT_

INTERVAL, 55

LOG_CHECKPOINT_

TIMEOUT, 55

LOG_CHECKPOINT_TO_

ALERT, 55

MAXEXTENTS, 279

MINEXTENTS, 306

Oracle 9i server

dynamic memory

parameters, 500-503

SPFILEs (server parameter

files), 490-494

PROCESSES, 500

SEMMNS, 345-346

SEMMSL, 345

SHARED_POOL_SIZE,

303-304, 500

SHMMAX, 344

SHMMIN, 345

SHMMNI, 345

SHMSEG, 345

SORT_AREA_SIZE, 305

UNDO_MANAGEMENT, 503

UNDO_RETENTION, 506

UNDO_SUPPRESS_

ERRORS, 506

parent processes, 326

PARFILE export parameter, 208

PARFILE import parameter, 214

parfiles
574

parfiles (parameter files)

exporting data, 208-210

importing data, 214-216

upgrades, 388

partitioned tables, 314-316

partitions

hash partitioning, 315

list partitioning, 315

partitioned tables, 314-316

range partitioning, 315

raw partitions, 161, 359-360

swap partitions, 355

passwd command, 529

password statement (SQL), 129

passwords

changing, 129-131, 529

Intelligent Agents, 188-190

prompting for, 530

root passwords, 93

patches

applying, 109

checking, 90

defined, 374-375

downloading, 378

example, 382-385

installation CD patches, 378

installing

backups, 380

installation process, 381

patches directory, 379

post-patch steps, 381-382

README files, 378

preparation, 376-378

tips and recommendations,

391-392

when to use, 375-376

patches directory, 379

path loading

conventional, 229

direct, 229-232

PATH variable, 100

pctfree parameter, 160

pctincrease parameter, 160

pctused parameter, 160

Performance Manager, 199-200

performance tuning, 294.

See also problem solving

B/ESTAT script, 296-298

DBA (database administrator)

responsibilities, 14-15

file contention, 308-309

goals and approaches, 294-295

import and export parameters,

226-227

indexes, 318-320

locally managed tablespaces,

311-313

memory, 301

data dictionary cache, 304

database buffer cache,

302-303

disk sorts, 305

library cache, 303-304

ratios, 302

redo log buffer, 303

patches

applying, 109

checking, 90

defined, 374-375

downloading, 378

example, 382-385

installation CD patches, 378

installing, 378-382

preparation, 376-378

tips and recommendations,

391-392

when to use, 375-376

rollback segments, 305-306

batch jobs, 306-307

contention, 307

extends, 308

wraps, 308

STATSPACK script

gathering statistics, 299-300

generating reports, 300-301

installing, 298-299

tables

IOTs (Index Organized

Tables), 313-314

partitioned tables, 314-316

row chaining, 316-318

row migration, 316-318

UTLBSTAT script, 296-298

wait events, 309-311

permissions

changing, 526

default permissions, 101

Perpetual Technologies, 17, 514

pfile files, 74

PGA (Program Global Area), 48

physical backups, 240

pine command, 529

ping command, 275, 369-370

pinned memory blocks, 43

pipes, 223-225

PL/SQL, 424-425

PL/SQL Server Pages (PSPs),

471

planning databases

backups, 267-269

capacity planning, 67-68

disk drives, 69

memory, 69

operating system, 68-69

server costs, 70

system maintenance, 70-71

technologies and vendors,

71

migrations, 398

OFA (Optimal Fexible

Architecture), 71-72

benefits of, 72

minimum requirements, 72

/u01 directory, 73

recovery, 267-269

system architecture, 64-65

three-tier, 66-67

two-tier, 65-66

Plew, Ron, 152

PMON (Process Monitor),

53, 278

policies (paging), 172

pools (memory)

Java pool, 48-49

large pool, 48

shared pool, 46-47

sizing, 501

processes
575

Portal (Oracle), 418, 460, 471

Administer utility, 456

architecture, 439-440

benefits of, 438-439

Browse utility, 452-453

Build utility, 453, 456

installing

listener, 446-447

ORACLE_HOME variable,

440-441

root.sh script, 448

system requirements, 440

text-based installer, 441-447

user roles, 449-450

listener

installing, 446

starting and stopping,

450-451

login procedure, 451-452

Monitor utility, 457-459

Sites utility, 459

pre-installation setup

CPUs (central processing units),

92

disks and filesystems, 91-92

memory, 90

network information, 92

operating system and version,

88-90

swap space, 90

preparing for certification

exams, 517-518

principles of database

administration, 9

data availability, 11-12

data protection, 10-11

priorities (processes), 324

privileges

CREATE SESSION, 150

granting, 149-150

object privileges, 150

viewing, 150

problem solving, 21, 272.

See also performance tuning

applications, 280-281

architecture diagrams, 273-275

data files, 281

adding, 282

moving, 282-285

renaming, 282-285

sizing, 282

databases

alertSID.log file, 279

database locks, 279

init.ora file, 280

invalid objects, 279

listener processes, 278

log switches, 279

offline data files, 279

offline tablespaces, 279

PMON (Process Monitor),

278

rollback segment errors,

279, 290-291

startup, 144

tablespace free space, 279

tnsnames.ora file, 278

user sessions, 279

DBA (database administrator)

responsibilities, 15

disk contention, 81-85

error messages

not connected, 124

public synonym...does not

exist, 124

Snapshot too old, 279,

290-291

export command, 221-222

filesystems, 333-334

import command, 221-222

information gathering, 272-273

locks, 286-287

DDL (Data Definition

Language), 290

defined, 286

DML (Data Manipulation

Language), 287-290

Lock Manager, 287

TopSessions, 287-290

patches

applying, 109

checking, 90

defined, 374-375

downloading, 378

example, 382-385

installation CD patches, 378

installing, 378-382

preparation, 376-378

tips and recommendations,

391-392

when to use, 375-376

servers

boot messages, 276

command-line response

time, 276

full filesystems, 276

locked files, 276

missing processes, 276

ping command, 275

resource-intensive jobs, 276

uptime command, 276

Process Monitor (PMON),

53, 278

process tables, 324

processes, 49

ARCn (archiver), 56

background processes, 52-53

CKPT (checkpoint), 55

DBWn (Database Writer), 53-54

displaying, 529

Dnnn (dispatcher), 56

LGWR (Log Writer), 54

listener, 135-137, 278

PMON (Process Monitor),

53, 278

problem-solving, 276

QMNnn (queue monitor), 56

RECO (recovery), 56

server processes, 50-52

SMON (System Monitor), 53

Snnn (shared server), 56

SNPnn (job queue) processes, 56

terminating, 528

Unix, 323

creating, 326

initialized data, 325

multitasking, 323

parent processes, 326

processes
576

priorities, 324

process tables, 324

RT (Real Time), 324

scheduler process, 324

stack, 325

states, 325

SYS (System), 324

text area, 325

TS (Time Share), 324

viewing, 327

PROCESSES parameter, 500

/product directory, 73

.profile files, 137-138

Program Global Area (PGA), 48

programmers, 7, 24

program listings. See listings

programs. See applications;

scripts

prompting for passwords, 530

protecting data, 10-11

protocols

FTP (File Transfer Protocol),

379-380

IIOP (Internet Inter-Orb

Protocol), 433-435

ps command, 129, 278,

326-327, 363, 529

PSPs (PL/SQL Server Pages), 471

public synonym to be

dropped does not exist

(error message), 124

publish utility, 435

publishing Java programs, 432

Q-R
q! command (vi), 535

QMNnn (queue monitor), 56

query-based exports, 211

Quest TOAD, 200-201

queue monitor (QMNnn)

processes, 56

quotas (user), 151-152

RAC (Real Application

Clusters), 508

RAID (Redundant Array of

Inexpensive Disks), 357-359

range partitioning, 315

ratios (memory pools), 302

raw partitions, 161, 359-360

.RBO file extension, 41

.RBS file extension, 40

read-only tablespaces, 163

Real Application Clusters

(RAC), 508

Real Time (RT) processes, 324

rebuilding tables, 220

RECO (recovery) process, 56

recovery, 238

cold backups, 248

crashes, 255-256

DBA (database administrator)

responsibilities, 15

lost control files, 261-262

lost data files, 256-258

lost redo log files, 259-261

lost tablespaces, 258-259

multiple lost files, 262-266

planning, 267-269

testing, 269

recovery (RECO) process, 56

redo log files, 40-41

analyzing, 232-235

creating, 498-499

groups, 41

multiplexing, 244-245

redo log buffer, 47, 303

Redundant Array of

Inexpensive Disks (RAID),

357-359

referral incentives, 521

rehosting

compared to migration, 396

import/export command, 402

renaming data files, 282-285

reports

B/ESTAT script, 296-298

Oracle Discover, 470

Oracle Reports, 470

sar (System Activity Report),

361

STATSPACK, 300-301

UTLBSTAT script, 296-298

repositories, 185-186

requesting online chat

sessions, 530

resizing. See sizing

response time, 276

restoring files, 240. See also

recovery

restricted session mode, 145

rm command, 529

rmdir command, 529

roles (user), 151, 449-450

rollback data files, 38-40

rollback segments

performance tuning, 305-306

batch jobs, 306-307

contention, 307

extends, 308

wraps, 308

troubleshooting errors, 279,

290-291

rolling back transactions, 38

root passwords, 93

root.sh file, 107

row chaining, 316-318

row migration, 316-318

rows

counting, 221

locking, 286-287

DDL (Data Definition

Language), 290

defined, 286

DML (Data Manipulation

Language), 287-290

Lock Manager, 287

TopSessions, 287-290

row chaining, 316-318

row migration, 316-318

ROWS export parameter, 207

ROWS import parameter, 213

rpm command, 90, 529

RT (Real Time) processes, 324

run levels, 336

servers
577

Run state, 325

running

B/ESTAT, 297-298

cron, 166-167

database creation scripts, 124

Java programs, 432

multiple schemas, 157

UTLBSTAT, 297-298

run_hots.sql script, 542

S
S run level, 336

salaried employees, 521-522

sar command, 529

CPU usage statistics, 367

disk I/O monitoring, 361

SAs (system administrators),

7, 22-23

scalability of Web architecture,

467-468

sched (scheduler) process, 324

Schema Manager, 196

schemas

backing up, 216-217

migrating, 217-219

Oracle 9i server sample

schemas, 506-508

Schema Manager, 196

SCNs (System Change

Numbers), 34

scope of DBA (database

administrator)

responsibilities, 6

screen, clearing, 129, 526

script command, 529

scripts. See also commands

B/ESTAT, 296-298

catalog.sql, 382

catproc.sql, 382

catrep.sql, 382

compare_users.sql, 541

create_analyze_script.sql, 541

database creation scripts

advantages, 112-113

customizing, 121-123

directory location, 113

generating, 113, 115-120

running, 124

dbshut, 247

login.sql, 538

run_hots.sql, 542

show_dba_rollback_segs.sql, 539

show_filestat.sql, 539

show_index_depth.sql, 539

show_redo_logs.sql, 539

show_rollback_contention.sql,

540

show_segments.sql, 540

show_session_short.sql, 538

show_tablespaces.sql, 540-541

STATSPACK

gathering statistics, 299-

300

generating reports, 300-301

installing, 298-299

tail-alert, 541

upgrade scripts, 387

UTLBSTAT, 296-298

UTLESTAT, 296-298

searching files, 527

second extended filesystem

(ext2), 332

security

backups

cold backups, 248-250

fault tolerance, 243-247

hot backups, 250-255

importance of, 238

logical backups,

216-217, 239

media failure, 241-243

physical backups, 240

business archives, 217

data availability, 11-12

data protection, 10-11

file permissions

changing, 526

default permissions, 101

Oracle 9i server, 488-489

passwords

changing, 129-131

Intelligent Agents, 188-190

prompting for, 530

privileges, 149-150

quotas, 151-152

recovery, 238

cold backups, 248

crashes, 255-256

DBA (database

administrator)

responsibilities, 15

lost control files, 261-262

lost data files, 256-258

lost redo log files, 259-261

lost tablespaces, 258-259

multiple lost files, 262-266

planning, 267-269

testing, 269

root passwords, 93

Security Manager, 196-197

SYSTEM account, 126

user roles, 151

Security Manager, 196-197

sem.h file, 96

semaphores

monitoring, 345-346

removing, 348-349

ipcrm command, 353

ipcs command, 352-353

oradebug command, 350-352

sysresv command, 349-350

SEMMNS parameter, 345-346

SEMMSL parameter, 345

sequences, 152-154

Server Manager, 32

server parameter files.

See SPFILEs

server processe, 50-52

servers, 50

client/server architecture, 64-65

three-tier, 66-67

two-tier, 65-66

CORBA servers, 425, 435

costs, 70

dedicated servers, 50

servers
578

iAS. See iAS (Internet

Application Server)

MTS (Multi-Threaded Servers),

50-52, 423, 433-435

OAS (Oracle Application

Server), 418, 469

OMS (Oracle Management

Server), 178, 183-185

OPS (Oracle Parallel Server),

80, 508

Oracle servers. See databases

pre-installation setup

CPUs (central processing

units), 92

disks and filesytems, 91-92

memory, 90

network information, 92

operating system and

version, 88-90

swap space, 90

problem-solving, 275-276

system configuration, 92

disks and filesystems, 94-96

groups, 93-94

root passwords, 93

shared memory settings,

96-97

users, 94

Unix, monitoring, 342-343

CPUs, 362-367

disk I/O, 356-361

importance of, 342

memory, 354-356

network performance,

368-371

shared memory, 344-353

WebLogic, 466

servlets, 421

SGA (Shared Global Area),

42-45, 346-347

shared filesystems, 84

shared memory

configuring, 96-97

data dictionary cache, 46

displaying, 528

finding

ipcs command, 352-353

oradebug command, 350-

352

sysresv command, 349-350

ISM (Intimate Shared

Memory), 347-348

library cache, 46-47

monitoring

semaphores, 345-346

SHMMAX parameter, 344

SHMMIN parameter, 345

SHMMNI parameter, 345

SHMSEG parameter, 345

removing, 348-349, 528

oradebug command,

350-353

sysresv command, 349-350

SGA (Shared Global Area),

42-45, 346-347

sizing, 501

shared server (Snnn)

processes, 56

shared-everything architecture,

338

shared-nothing architecture,

340

SHARED_POOL_SIZE

parameter, 303-304, 500

shell programming, 97

shelling out, 194

SHMMAX parameter, 344

SHMMIN parameter, 345

SHMMNI parameter, 345

shmparam.h file, 96

SHMSEG parameter, 345

shop, 6

SHOW PARAMETER

command, 60

showrev command, 90

show_dba_rollback_segs.sql

script, 539

show_filestat.sql script, 539

show_index_depth.sql script,

539

show_redo_logs.sql script, 539

show_rollback_contention.sql

script, 540

show_segments.sql script, 540

show_session_short.sql script,

538

show_tablespaces.sql script,

540-541

shutdown process, 337

SHUTDOWN ABORT

statement, 147-148

shutdown command, 337

SHUTDOWN IMMEDIATE

statement, 147

shutdown state, 143

SHUTDOWN statement,

146-147

SHUTDOWN TRANSACTIONAL

statement, 147

shutting down databases,

143-145

SHUTDOWN ABORT

statement, 147-148

SHUTDOWN IMMEDIATE

statement, 147

SHUTDOWN statement,

146-147

SHUTDOWN

TRANSACTIONAL

statement, 147

Sites utility, 459

size of disks, 359

sizing

data files, 161, 282

shared pool, 501

systems. See capacity planning

Sleep state, 325

SMON (System Monitor), 53

SMP (symmetrical multi-

processor) machines, 338

Snapshot too old (error

message), 279, 290-291

Snnn (shared server)

processes, 56

SNPnn (job queue) processes,

56

statistics
579

soft links

creating, 528

init.ora file, 131-132

software installation files, 61-62

solving problems.

See problem solving

sorts, 305

SORT_AREA_SIZE parameter,

305

space management

dynamic space allocation, 159

fragmentation, 159

storage hierarchy, 157-160

storage parameters, 159-160

tablespaces, 160

adding data files to, 162

creating, 161

locally managed tablespaces,

162

offline tablespaces, 163

read-only tablespaces, 163

SPFILEs (server parameter

files), 490-494

backing up, 493

creating, 490

updating, 492-493

viewing, 491

SQL (Standard Query

Language)

DDL (Data Definition

Language), 290

DML (Data Manipulation

Language), 287-290

dynamic SQL, 128

PL/SQL, 424-425

scripts

compare_users.sql, 541

create_analyze_script.sql, 541

login.sql, 538

run_hots.sql, 542

show_dba_rollback_segs.sql,

539

show_filestat.sql, 539

show_index_depth.sql, 539

show_redo_logs.sql, 539

show_rollback_

contention.sql, 540

show_segments.sql, 540

show_session_short.sql, 538

show_tablespaces.sql,

540-541

tail-alert, 541

SQL*Loader, 227

conventional path loading,

229

direct path loading, 229-232

file types, 228

SQL*PLUS, 31, 194

CREATE USER statement,

149

SHOW PARAMETER

statement, 60

SHUTDOWN ABORT

statement, 147-148

SHUTDOWN IMMEDIATE

statement, 147

SHUTDOWN statement,

146-147

SHUTDOWN

TRANSACTIONAL

statement, 147

STARTUP RESTRICT state-

ment, 145

STARTUP statement, 143

SQL*Plus Worksheet, 194

SQL*Loader, 227

conventional path loading, 229

direct path loading, 229-232

file types, 228

SQL*PLUS, 31, 194

CREATE USER statement, 149

SHOW PARAMETER

statement, 60

SHUTDOWN ABORT

statement, 147-148

SHUTDOWN IMMEDIATE

statement, 147

SHUTDOWN statement,

146-147

SHUTDOWN

TRANSACTIONAL

statement, 147

STARTUP RESTRICT

statement, 145

STARTUP statement, 143

SQL*Plus Worksheet, 194

sqlnet.ora file, 62

stack, 325

standalone mode (OEM), 193

starting

Data Gatherer, 190

Database Configuration

Assistant, 113

databases

closed databases, 144

online database startup,

245-247

problem solving, 144

restricted session mode, 145

STARTUP RESTRICT state-

ment, 145

STARTUP statement, 143

Intelligent Agents, 187

Oracle Portal listener, 450-451

Unix

run levels, 336

sequence of events, 335-336

STARTUP RESTRICT statement,

145

STARTUP statement, 143

stateful beans, 421

stateless beans, 421

statements (SQL)

CREATE USER, 149

desc, 141

password, 129

SHOW PARAMETER, 60

SHUTDOWN, 146-147

SHUTDOWN ABORT, 147-148

SHUTDOWN IMMEDIATE, 147

SHUTDOWN

TRANSACTIONAL, 147

STARTUP, 143

STARTUP RESTRICT, 145

states, 142-143, 325

statistics.

See also monitoring system

CPU usage, 366-367

statistics
580

gathering

B/ESTAT script, 296-298

STATSPACK script, 298-301

UTLBSTAT script, 296-298

sar (System Activity Report),

361

STATSPACK script

gathering statistics, 299-300

generating reports, 300-301

installing, 298-299

Stevens, Ryan, 152

Stop state, 325

stopping

Data Gatherer, 190

Oracle Portal listener, 450-451

storage hierarchy, 157-160

Storage Manager, 197-198

storage parameters, 159-160

strings, connect strings, 32

striping disks, 358

Studio (DBA), 194

Instance Manager, 194-195

Schema Manager, 196

Security Manager, 196-197

Storage Manager, 197-198

source code listings.

See listings

su command, 530

Sun clusters, 338-339

support. See help

swap area, 328

swap command, 355

swap partitions

checking, 90

viewing, 355

swapping, 329-330

symmetrical multiprocessor

(SMP) machines, 338

synchronous I/O, 360

synonyns, 155-157

syntax listings. See listings

SYS (System) processes, 324

sysresv command, 349-353

System (SYS) processes, 324

SYSTEM account, 126

System Activity Report (sar),

361

system administrators (SAs),

7, 22-23

system architecture, 64-65

three-tier, 66-67

two-tier, 65-66

System Change Numbers

(SCNs), 34

system configuration, 92

disks and filesystems, 94-96

groups, 93-94

root passwords, 93

shared memory settings, 96-97

users, 94

system data files, 36

system maintenance, 70-71

System Monitor (SMON), 53

system monitoring.

See monitoring system

SYSTEM tablespace, 405-406

systems DBAs (database

administrators), 9, 522

systems designers, 8

T
tables

backing up, 216

creating, 152-154

exporting, 205

IOTs (Index Organized Tables),

313-314

locking, 286-287

DDL (Data Definition

Language), 290

defined, 286

DML (Data Manipulation

Language), 287-290

Lock Manager, 287

TopSessions, 287-290

partitioned tables, 314-316

performance tuning

IOTs (Index Organized

Tables), 313-314

partitioned tables, 314-316

row chaining, 316-318

row migration, 316-318

process tables (Unix), 324

rebuilding, 220

rows

counting, 221

row chaining, 316-318

row migration, 316-318

TABLES export parameter,

207, 209

tablespaces

adding data files to, 162

allocations, 165-166

creating, 161, 495-497

data files. See data files

free space, 279

locally managed tablespaces,

162, 311-313

lost tablespaces, 258-259

names, 219

offline tablespaces, 163, 279

read-only tablespaces, 163

SYSTEM, 405-406

undo tablespaces, 503-506

tail command, 279, 530

tail-alert script, 541

talk command, 530

tar command, 384, 530

Technet, 108

Technet Web site, 514

technical capacity-planning

issues

disk drives, 69

memory, 69

operating system, 68-69

technical problems

applications, 280-281

data files, 281

adding, 282

moving, 282-285

renaming, 282-285

sizing, 282

databases

alertSID.log file, 279

database locks, 279

Unix
581

init.ora file, 280

invalid objects, 279

listener processes, 278

log switches, 279

offline data files, 279

offline tablespaces, 279

PMON (Process Monitor),

278

rollback segment errors,

279, 290-291

tablespace free space, 279

tnsnames.ora file, 278

user sessions, 279

locks, 286-287

DDL (Data Definition

Language), 290

defined, 286

DML (Data Manipulation

Language), 287-290

Lock Manager, 287

TopSessions, 287-290

servers

boot messages, 276

command-line response

time, 276

full filesystems, 276

missing processes, 276

ping command, 275

resource-intensive jobs, 276

uptime command, 276

technical responsibilities of

database administration

application support, 14

backup and recovery, 15

performance tuning, 14-15

system activities, 12-14

troubleshooting, 15

technical support. See help

temp (temporary) data files, 38

temporary tablespaces,

258-259

terminals, dumb, 65

terminating. See stopping

testing

applications, 399-400

backups, 269

databases, 398-399

exports, 222

imports, 222

migrations, 400-401

recovery, 269

tests. See exams

text, editing, 534

text area (Unix processes), 325

text editors, vi, 534

thin clients, 65-66

thin drivers, 422

third-party Oracle classes, 514

thrashing, 329

threads, 328

three-tier client/server

architecture, 66-67

thresholds, 356

Time Share (TS) processes, 324

time/date, displaying, 527

tnsnames.ora file, 61,

133-134, 278

tnsping command, 369

TOAD, 200-201

tools. See commands; scripts

top command, 276,

364-365, 530

TopSessions, 198-199, 287-290

touch command, 530

TOUSER import parameter,

215

traditional education, 513

training, 512.

See also certification

CBT (Computer Based

Training), 514

colleges and universities, 513

continuing education, 21-22

emerging technologies, 515-516

independent learning, 514-515

on-the-job training, 8

Oracle University, 513-514

third-party Oracle classes, 514

transactions

DSS (Decision Support

Systems), 77-78

example, 57-59

OLTP (Online Transaction

Processing), 50, 76-77

rollback, 38

troubleshooting.

See problem-solving

truss command, 530

TS (Time Share) processes, 324

Tuning Pack, 200

tuning performance.

See performance tuning

two-tier client/server

architecture

clients, 65-66

servers, 66

Typical installation (Oracle), 104

U
/u01 directory

/admin subdirectory, 73-74

/local subdirectory, 74

/product subdirectory, 73

udump (user dump) files, 74

ufs filesystem, 332

UGA (User Global Area), 49

umask command, 101-102, 530

umount command, 333

uname command, 88, 530

uncompress command, 530

uncompressing files

gunzip command, 528

uncompress command, 530

undo tablespaces, 503-506

UNDO_MANAGEMENT

parameter, 503

UNDO_RETENTION parameter,

506

UNDO_SUPPRESS_ERRORS

parameter, 506

uninstalling Java, 429-430

uniprocessor machines, 337-338

university courses, 513

Unix, 322

clusters, 338-339

files, 334

Unix
582

filesystems

ext2, 332

free space, 332

iso9660, 333

mount points, 331

mounting, 331-332

nfs, 332

problem solving, 333-334

ufs, 332

unmounting, 333

vxfs, 333

I/O subsystem, 335

kernel, 322-323

memory

pages, 329

paging, 329-330

swap area, 328

swapping, 329-330

thrashing, 329

virtual memory, 328

monitoring, 342-343

CPUs, 362-367

disk I/O, 356-361

importance of, 342

memory, 354-356

network performance,

368-371

shared memory, 344-353

MPPs (Massively Parallel

Processors), 340

NUMAs (NonUniform Memory

Access), 340

processes, 323

creating, 326

initialized data, 325

multitasking, 323

parent processes, 326

priorities, 324

process tables, 324

RT (Real Time), 324

scheduler process, 324

stack, 325

states, 325

SYS (System), 324

text area, 325

TS (Time Share), 324

viewing, 327

shared-everything architecture,

338

shared-nothing architecture,

340

shutdown process, 337

SMP (symmetrical multiproces-

sor) machines, 338

startup process

run levels, 336

sequence of events, 335-336

uniprocessor machines, 337-338

unmounting filesystems, 333

updating SPFILEs (server

parameter files), 492-493

upgrades

defined, 374-375

example, 388-391

import/export commands, 402

installing, 386-388

ORACLE_HOME directory,

386-387

parameter files, 388

preparation, 385-386

tips and recommendations, 391-

392

upgrade scripts, 387

when to perform, 375-376

uptime command, 276,

365-366, 530

user dump (udump) files, 74

User Global Area (UGA), 49

user interfaces

Net8, 32-33

Server Manager, 32

SQL*Plus, 31

user-level exports, 205-206

useradd command, 94

USERID export parameter, 206

USERID import parameter, 212

users, 25

creating, 94, 149

groups

creating, 93-94

oinstall, 94

killing, 146, 367

logged-in users, displaying, 531

logging off, 527

MIGRATE, 406

OUTLN, 406

privileges, 149-150

quotas, 151-152

roles, 151, 449-450

USER_X view, 140

utilities. See commands; scripts

UTLBSTAT script, 296-298

UTLESTAT script, 296-298

V
V$ view, 140

V$SESSION_EVENT view,

310-311

V$SESSION_WAIT view, 311

V$SYSTEM_EVENT view, 310

/var/opt/oracle directory, 96

variables, environment

CLASSPATH, 100

DISPLAY, 100-101

displaying, 527

LD_LIBRARY_PATH, 99

NLS_LANG, 99

ORACLE_BASE, 99

ORACLE_HOME, 99

ORACLE_SID, 99

ORA_NLS33, 99

PATH, 100

vendors, capacity-planning

issues, 71

verifying

database instances, 125-127

databases and connectivity,

163-164

Intelligent Agents, 188

Oracle installation, 107-108

Veritas filesystem (vxfs), 333

vi editor, 534

viewing. See displaying

views, 140-141

obtaining descriptions of, 141

obtaining list of, 141

V$SESSION_EVENT, 310-311

Zombie state
583

V$SESSION_WAIT, 311

V$SYSTEM_EVENT, 310

virtual memory, 328

vmstat command, 355-356, 531

CPU usage statistics, 366

disk I/O monitoring, 361

vxfs (Veritas) filesystem, 333

W
w command, 535

wait events, 309-310

V$SESSION_EVENT view,

310-311

V$SESSION_WAIT view, 311

V$SYSTEM_EVENT view, 310

wall command, 531

wc command, 531

Web architecture, 464-466

availability, 468

clients, 465

database tier, 465

middle tier, 465

scalability, 467-468

technological design, 467

Web cache (iAS), 471-472

Web servers. See servers

Web sites

Java, 420

MetaLink, 378, 514

OCP (Oracle Certified

Professional) program, 517

Oracle University, 513

Perpetual Technologies, 17, 514

Technet, 514

WebDB. See Oracle Portal

WebLogic server, 466

which command, 531

who command, 531

word count, displaying, 531

wq command, 535

wraps (rollback segments), 308

X-Z
x command, 535

yy command, 535

Zombie state, 325

