

Linux Shell Scripting Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2011

Production Reference: 1200111

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-76-0

www.packtpub.com

Cover Image by Charwak A (charwak86@gmail.com)

Table of Contents
Preface	 1
Chapter 1: Shell Something Out	 7

Introduction	 7
Printing in the terminal	 9
Playing with variables and environment variables	 12
Doing math calculations with the shell	 17
Playing with file descriptors and redirection	 19
Arrays and associative arrays	 25
Visiting aliases	 27
Grabbing information about terminal	 29
Getting, setting dates, and delays	 30
Debugging the script	 33
Functions and arguments	 35
Reading the output of a sequence of commands	 38
Reading "n" characters without pressing Return	 40
Field separators and iterators	 41
Comparisons and tests	 44

Chapter 2: Have a Good Command	 49
Introduction	 50
Concatenating with cat	 50
Recording and playback of terminal sessions	 53
Finding files and file listing	 55
Playing with xargs	 63
Translating with tr	 69
Checksum and verification	 72
Sorting, unique and duplicates	 75
Temporary file naming and random numbers	 80
Splitting files and data	 81

ii

Table of Contents

Slicing file names based on extension	 84
Renaming and moving files in bulk	 86
Spell checking and dictionary manipulation	 89
Automating interactive input	 90

Chapter 3: File In, File Out	 95
Introduction	 96
Generating files of any size	 96
Intersection and set difference (A-B) on text files	 97
Finding and deleting duplicate files	 100
Making directories for a long path	 103
File permissions, ownership, and sticky bit	 104
Making files immutable	 109
Generating blank files in bulk	 110
Finding a symbolic link and its target	 111
Enumerating file type statistics	 113
Loopback files and mounting	 115
Creating ISO files, Hybrid ISO	 117
Finding difference between files, patching	 120
head and tail – printing the last or first 10 lines	 122
Listing only directories – alternative methods	 125
Fast command-line navigation using pushd and popd	 126
Counting number of lines, words, and characters in a file	 128
Printing directory tree	 129

Chapter 4: Texting and Driving	 131
Introduction	 132
Basic regular expression primer	 132
Searching and mining "text" inside a file with grep	 136
Column-wise cutting of a file with cut	 142
Frequency of words used in a given file	 146
Basic sed primer	 147
Basic awk primer	 150
Replacing strings from a text or file	 156
Compressing or decompressing JavaScript	 158
Iterating through lines, words, and characters in a file	 161
Merging multiple files as columns	 162
Printing the nth word or column in a file or line	 163
Printing text between line numbers or patterns	 164
Checking palindrome strings with a script	 165
Printing lines in the reverse order	 169
Parsing e-mail addresses and URLs from text	 171

iii

Table of Contents

Printing n lines before or after a pattern in a file	 172
Removing a sentence in a file containing a word	 174
Implementing head, tail, and tac with awk	 175
Text slicing and parameter operations	 177

Chapter 5: Tangled Web? Not At All!	 179
Introduction	 180
Downloading from a web page	 180
Downloading a web page as formatted plain text	 183
A primer on cURL	 183
Accessing Gmail from the command line	 188
Parsing data from a website	 189
Image crawler and downloader	 191
Web photo album generator	 193
Twitter command-line client	 195
define utility with Web backend	 197
Finding broken links in a website	 199
Tracking changes to a website	 200
Posting to a web page and reading response	 203

Chapter 6: The Backup Plan	 205
Introduction	 205
Archiving with tar	 206
Archiving with cpio	 211
Compressing with gunzip (gzip)	 212
Compressing with bunzip (bzip)	 215
Compressing with lzma	 217
Archiving and compressing with zip	 219
squashfs – the heavy compression filesystem	 220
Cryptographic tools and hashes	 222
Backup snapshots with rsync	 224
Version control based backup with Git	 227
Cloning hard drive and disks with dd	 230

Chapter 7: The Old-boy Network	 233
Introduction	 233
Basic networking primer	 234
Let's ping!	 241
Listing all the machines alive on a network	 243
Transferring files	 247
Setting up an Ethernet and wireless LAN with script	 250
Password-less auto-login with SSH	 253
Running commands on remote host with SSH	 255

iv

Table of Contents

Mounting a remote drive at a local mount point	 259
Multi-casting window messages on a network	 260
Network traffic and port analysis	 262

Chapter 8: Put on the Monitor's Cap	 265
Introduction	 266
Disk usage hacks	 266
Calculating execution time for a command	 272
Information about logged users, boot logs, and failure boot	 274
Printing the 10 most frequently-used commands	 276
Listing the top 10 CPU consuming process in a hour	 278
Monitoring command outputs with watch	 281
Logging access to files and directories	 282
Logfile management with logrotate	 283
Logging with syslog	 285
Monitoring user logins to find intruders	 286
Remote disk usage health monitor	 289
Finding out active user hours on a system	 292

Chapter 9: Administration Calls	 295
Introduction	 295
Gathering information about processes	 296
Killing processes and send or respond to signals	 304
which, whereis, file, whatis, and loadavg explained	 307
Sending messages to user terminals	 309
Gathering system information	 311
Using /proc – gathering information	 312
Scheduling with cron	 313
Writing and reading MySQL database from Bash	 316
User administration script	 321
Bulk image resizing and format conversion	 325

Index	 329

Preface
GNU/Linux is a remarkable operating system that comes with a complete development
environment that is stable, reliable, and extremely powerful. The shell, being the native
interface to communicate with the operating system, is capable of controlling the entire
operating system. An understanding of shell scripting helps you to have better awareness
of the operating system and helps you to automate most of the manual tasks with a few
lines of script, saving you an enormous amount of time. Shell scripts can work with many
external command-line utilities for tasks such as querying information, easy text manipulation,
scheduling task running times, preparing reports, sending mails, and so on. There are
numerous commands on the GNU/Linux shell, which are documented but hard to understand.
This book is a collection of essential command-line script recipes along with detailed
descriptions tuned with practical applications. It covers most of the important commands
in Linux with a variety of use cases, accompanied by plenty of examples. This book helps
you to perform complex data manipulations involving tasks such as text processing, file
management, backups, and more with the combination of few commands.

Do you want to become the command-line wizard who performs any complex text manipulation
task in a single line of code? Have you wanted to write shell scripts and reporting tools for fun or
serious system administration? This cookbook is for you. Start reading!.

What this book covers
Chapter 1, Shell Something Out, has a collection of recipes that covers the basic tasks such
as printing in the terminal, performing mathematical operations, arrays, operators, functions,
aliases, file redirection, and so on by using Bash scripting. This chapter is an introductory
chapter for understanding the basic concepts and features in Bash.

Chapter 2, Have a Good Command, shows various commands that are available with GNU/
Linux that come under practical usages in different circumstances. It introduces various
essential commands such as cat, md5sum, find, tr, sort, uniq, split, rename, look, and so on.
This chapter travels through different practical usage examples that users may come across
and that they could make use of.

Preface

2

Chapter 3, File In, File Out, contains a collection of task recipes related to files and file
systems. This chapter explains how to generate large size files, installing a file system on files
and mounting files, finding and removing duplicate files, counting lines in a file, creating ISO
images, collecting details about files, symbolic link manipulation, file permissions and file
attributes, and so on.

Chapter 4, Texting and Driving, has a collection of recipes that explains most of the command-
line text processing tools well under GNU/Linux with a number of task examples. It also has
supplementary recipes for giving a detailed overview of regular expressions and commands
such as sed and awk. This chapter goes through solutions to most of the frequently used text
processing tasks in a variety of recipes.

Chapter 5, Tangled Web? Not At All!, has a collection of shell-scripting recipes that are
adherent to the Internet and Web. This chapter is intended to help readers understand how to
interact with the web using shell scripts to automate tasks such as collecting and parsing data
from web pages, POST and GET to web pages, writing clients to web services, downloading
web pages, and so on.

Chapter 6, The Backup Plan, shows several commands used for performing data backup,
archiving, compression, and so on, and their usages with practical script examples. It
introduces commands such as tar, gzip, bunzip, cpio, lzma, dd, rsync, git, squashfs, and much
more. This chapter also walks through essential encryption techniques.

Chapter 7, The Old-boy Network, has a collection of recipes that talks about networking on
Linux and several commands useful to write network-based scripts. The chapter starts with
an introductory basic networking primer. Important tasks explained in the chapter include
password-less login with SSH, transferring files through network, listing alive machines on a
network, multi-cast messaging, and so on.

Chapter 8, Put on the Monitor's Cap, walks through several recipes related to monitoring
activities on the Linux system and tasks used for logging and reporting. The chapter explains
tasks such as calculating disk usage, monitoring user access, CPU usage, syslog, frequently
used commands, and much more.

Chapter 9, Administration Calls, has a collection of recipes for system administration. This
chapter explains different commands to collect details about the system, user management
using scripting, sending messages to users, bulk image resizing, accessing MySQL databases
from shell, and so on.

Preface

3

What you need for this book
Basic user experience with any GNU/Linux platform will help you easily follow the book.
We have tried to keep all the recipes in the book precise and as simple to follow as possible.
Your curiosity for learning with the Linux platform is the only prerequisite for the book.
Step-by-step explanations are provided for solving the scripting problems explained in the
book. In order to run and test the examples in the book, an Ubuntu Linux installation is
recommended, however, any other Linux distribution is enough for most of the tasks. You will
find the book to be a straightforward reference to essential shell scripting tasks as well as a
learning aid to code real-world efficient scripts.

Who this book is for
If you are a beginner or an intermediate user who wants to master the skill of quickly writing
scripts to perform various tasks without reading entire manpages, this book is for you. You can
start writing scripts and one-liners by simply looking at a similar recipe and its descriptions
without any working knowledge of shell scripting or Linux. Intermediate or advanced users
as well as system administrators or developers and programmers can use this book as a
reference when they face problems while coding.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can use formatted strings with printf."

A block of code is set as follows:

#!/bin/bash
#Filename: printf.sh

printf "%-5s %-10s %-4s\n" No Name Mark
printf "%-5s %-10s %-4.2f\n" 1 Sarath 80.3456
printf "%-5s %-10s %-4.2f\n" 2 James 90.9989
printf "%-5s %-10s %-4.2f\n" 3 Jeff 77.564

Any command-line input or output is written as follows:

$ chmod +s executable_file

chown root.root executable_file

chmod +s executable_file

$./executable_file

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Shell Something Out

In this chapter, we will cover:

ff Printing in the terminal

ff Playing with variables and environment variables

ff Doing Math calculations with the shell

ff Playing with file descriptors and redirection

ff Arrays and associative arrays

ff Visiting aliases

ff Grabbing information about the terminal

ff Getting, setting dates, and delays

ff Debugging the script

ff Functions and arguments

ff Reading output of a sequence of commands in a variable

ff Reading "n" characters without pressing Return

ff Field separators and iterators

ff Comparisons and tests

Introduction
UNIX-like systems are amazing operating system designs. Even after many decades, the
UNIX-style architecture for operating systems serves as one of the best designs. One of the
most important features of this architecture is the command-line interface or the shell. The
shell environment helps users to interact with and access core functions of the operating
system. The term scripting is more relevant in this context. Scripting is usually supported by
interpreter-based programming languages. Shell scripts are files in which we write a sequence
of commands that we need to perform. And the script file is executed using the shell utility.

Shell Something Out

8

In this book we are dealing with Bash (Bourne Again Shell), which is the default shell
environment for most GNU/Linux systems. Since GNU/Linux is the most prominent operating
system based on a UNIX-style architecture, most of the examples and discussions are written
by keeping Linux systems in mind.

The primary purpose of this chapter is to give readers an insight about the shell environment
and become familiar with the basic features that come around the shell. Commands are
typed and executed in a shell terminal. When opened, in a terminal, a prompt is available. It is
usually in the following format:

username@hostname$

Or:

root@hostname#

Or simply as $ or #.

$ represents regular users and # represents the administrative user root. Root is the most
privileged user in a Linux system.

A shell script is a text file that typically begins with a shebang, as follows:

#!/bin/bash

For any scripting language in a Linux environment, a script starts with a special line called
shebang. Shebang is a line for which #! is prefixed to the interpreter path. /bin/bash is
the interpreter command path for Bash.

Execution of a script can be done in two ways. Either we can run the script as a command-line
argument for sh or run a self executable with execution permission.

The script can be run with the filename as a command-line argument as follows:

$ sh script.sh # Assuming script is in the current directory.

Or:

$ sh /home/path/script.sh # Using full path of script.sh.

If a script is run as a command-line argument for sh, the shebang in the script is of no use.

In order to self execute a shell script, it requires executable permission. While running as a
self executable, it makes use of the shebang. It runs the script using the interpreter path that
is appended to #! in shebang. The execution permission for the script can be set as follows:

$ chmod a+x script.sh

Shell Something Out

10

echo puts a newline at the end of every invocation by default:

$ echo "Welcome to Bash"

Welcome to Bash

Simply using double-quoted text with the echo command prints the text in the terminal.
Similarly, text without double-quotes also gives the same output:

$ echo Welcome to Bash

Welcome to Bash

Another way to do the same task is by using single quotes:

$ echo 'text in quote'

These methods may look similar, but some of them have got a specific purpose and side
effects too. Consider the following command:

$ echo "cannot include exclamation - ! within double quotes"

This will return the following:

bash: !: event not found error

Hence, if you want to print !, do not use within double-quotes or you may escape the ! with a
special escape character (\) prefixed with it.

$ echo Hello world !

Or:

$ echo 'Hello world !'

Or:

$ echo "Hello world \!" #Escape character \ prefixed.

When using echo with double-quotes, you should add set +H before issuing echo so that you
can use !.

The side effects of each of the methods are as follows:

ff When using echo without quotes, we cannot use a semicolon as it acts as a delimiter
between commands in the bash shell.

ff echo hello;hello takes echo hello as one command and the second hello
as the second command.

ff When using echo with single quotes, the variables (for example, $var will not be
expanded) inside the quotes will not be interpreted by Bash, but will be displayed as is.

Chapter 1

11

This means:

$ echo '$var' will return $var

whereas

$ echo $var will return the value of the variable $var if defined or nothing at all if
it is not defined.

Another command for printing in the terminal is the printf command. printf uses the
same arguments as the printf command in the C programming language. For example:

$ printf "Hello world"

printf takes quoted text or arguments delimited by spaces. We can use formatted strings
with printf. We can specify string width, left or right alignment, and so on. By default,
printf does not have newline as in the echo command. We have to specify a newline when
required, as shown in the following script:

#!/bin/bash
#Filename: printf.sh

printf "%-5s %-10s %-4s\n" No Name Mark
printf "%-5s %-10s %-4.2f\n" 1 Sarath 80.3456
printf "%-5s %-10s %-4.2f\n" 2 James 90.9989
printf "%-5s %-10s %-4.2f\n" 3 Jeff 77.564

We will receive the formatted output:

No Name Mark

1 Sarath 80.35

2 James 91.00

3 Jeff 77.56

%s, %c, %d, and %f are format substitution characters for which an argument can be placed
after the quoted format string.

%-5s can be described as a string substitution with left alignment (- represents left
alignment) with width equal to 5. If - was not specified, the string would have been aligned to
the right. The width specifies the number of characters reserved for that variable. For Name,
the width reserved is 10. Hence, any name will reside within the 10-character width reserved
for it and the rest of the characters will be filled with space up to 10 characters in total.

For floating point numbers, we can pass additional parameters to round off the decimal places.

For marks, we have formatted the string as %-4.2f, where .2 specifies rounding off to two
decimal places. Note that for every line of the format string a \n newline is issued.

Chapter 1

13

Getting ready
Variables are named with usual naming constructs. When an application is executing, it will be
passed with a set of variables called environment variables. From the terminal, to view all the
environment variables related to that terminal process, issue the env command. For every
process, environment variables in its runtime can be viewed by:

cat /proc/$PID/environ

Set the PID with the process ID of the relevant process (PID is always an integer).

For example, assume that an application called gedit is running. We can obtain the process ID
of gedit with the pgrep command as follows:

$ pgrep gedit

12501

You can obtain the environment variables associated with the process by executing the
following command:

$ cat /proc/12501/environ

GDM_KEYBOARD_LAYOUT=usGNOME_KEYRING_PID=1560USER=slynuxHOME=/home/slynux

Note that many environment variables are stripped off for convenience. The actual output may
contain numerous variables.

The above mentioned command returns a list of environment variables and their values.
Each variable is represented as a name=value pair and are separated by a null character
(\0). If you can substitute the \0 character with \n, you can reformat the output to show
each variable=value pair in each line. Substitution can be made using the tr command
as follows:

$ cat /proc/12501/environ | tr '\0' '\n'

Now, let's see how to assign and manipulate variables and environment variables.

How to do it...
A variable can be assigned as follows:

var=value

var is the name of a variable and value is the value to be assigned. If value does not
contain any white space characters (like a space), it need not be enclosed in quotes, else it
must be enclosed in single or double quotes.

Shell Something Out

14

Note that var = value and var=value are different. It is a common mistake to write
var =value instead of var=value. The later is the assignment operation, whereas
the former is an equality operation.

Printing the contents of a variable is done using by prefixing $ with the variable name
as follows:

var="value" #Assignment of value to variable var.

echo $var

Or:

echo ${var}

The output is as follows:

value

We can use variable values inside printf or echo in double quotes.

#!/bin/bash
#Filename :variables.sh
fruit=apple
count=5
echo "We have $count ${fruit}(s)"

The output is as follows:

We have 5 apple(s)

Environment variables are variables that are not defined in the current process, but are
received from the parent processes. For example, HTTP_PROXY is an environment variable.
This variable defines which proxy server should be used for an Internet connection.

Usually, it is set as:

HTTP_PROXY=http://192.168.0.2:3128

export HTTP_PROXY

The export command is used to set the env variable. Now any application, executed from
the current shell script will receive this variable. We can export custom variables for our
own purposes in an application or shell script that is executed. There are many standard
environment variables that are available for the shell by default.

For example, PATH. A typical PATH variable will contain:

$ echo $PATH

/home/slynux/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin:/usr/games

Chapter 1

15

When given a command for execution, shell automatically searches for the executable in
the list of directories in the PATH environment variable (directory paths are delimited by
the ":" character). Usually, $PATH is defined in /etc/environment or /etc/profile or
~/.bashrc. When we need to add a new path to the PATH environment, we use:

export PATH="$PATH:/home/user/bin"

Or, alternately, we can use:

$ PATH="$PATH:/home/user/bin"

$ export PATH

$ echo $PATH

/home/slynux/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin:/usr/games:/home/user/bin

Here we have added /home/user/bin to PATH.

Some of the well-known environment variables are: HOME, PWD, USER, UID, SHELL, and so on.

There's more...
Let's see some more tips associated with regular and environment variables.

Finding length of string
Get the length of a variable value as follows:

length=${#var}

For example:

$ var=12345678901234567890

$ echo ${#var}

20

length is the number of characters in the string.

Identifying the current shell
Display the currently used shell as follows:

echo $SHELL

Or, you can also use:

echo $0

Shell Something Out

16

For example:

$ echo $SHELL

/bin/bash

$ echo $0

bash

Check for super user
UID is an important environment variable that can be used to check whether the current script
has been run as root user or regular user. For example:

if [$UID -ne 0]; then
echo Non root user. Please run as root.
else
echo "Root user"
fi

The UID for the root user is 0.

Modifying the Bash prompt string (username@hostname:~$)
When we open a terminal or run a shell, we see a prompt string like
user@hostname: /home/$. Different GNU/Linux distributions have slightly
different prompts and different colors. We can customize the prompt text using the
PS1 environment variable. The default prompt text for the shell is set using a line in the
~/.bashrc file.

ff We can list the line used to set the PS1 variable as follows:
$ cat ~/.bashrc | grep PS1

PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '

ff In order to set a custom prompt string, enter:
slynux@localhost: ~$ PS1="PROMPT>"

PROMPT> Type commands here # Prompt string changed.

ff We can use colored text by using the special escape sequences like \e[1;31 (refer
to the Printing in the terminal recipe of this chapter).

There are also certain special characters that expand to system parameters. For example,
\u expands to username, \h expands to hostname, and \w expands to the current
working directory.

Shell Something Out

18

Using $ prefix inside [] operators are legal, for example:
result=$[$no1 + 5]

(()) can also be used. $ prefixed with a variable name is used when the (())
operator is used, as follows:
result=$((no1 + 50))

expr can also be used for basic operations:
result=`expr 3 + 4`
result=$(expr $no1 + 5)

All of the above methods do not support floating point numbers, and operate on
integers only.

bc the precision calculator is an advanced utility for mathematical operations. It has
a wide range of options. We can perform floating point operations and use advanced
functions as follows:
echo "4 * 0.56" | bc
2.24

no=54;
result=`echo "$no * 1.5" | bc`
echo $result
81.0

Additional parameters can be passed to bc with prefixes to the operation with
semicolon as delimiters through stdin.

�� Specifying decimal precision (scale): In the following example the scale=2
parameter sets the number of decimal places to 2. Hence the output of bc
will contain a number with two decimal places:
echo "scale=2;3/8" | bc

0.37

�� Base conversion with bc: We can convert from one base number system to
another one. Let's convert from decimal to binary, and binary to octal:
#!/bin/bash
Description: Number conversion

no=100
echo "obase=2;$no" | bc
1100100
no=1100100
echo "obase=10;ibase=2;$no" | bc
100

Chapter 1

21

Sometimes the output may contain unnecessary information (such as debug messages).
If you don't want the output terminal burdened with the stderr details, then you should
redirect stderr output to /dev/null, which removes it completely. For example, consider
that we have three files a1, a2, and a3. However, a1 does not have read-write-execute
permission for the user. When you need to print the contents of files starting with a, you can
use the cat command.

Set up the test files as follows:

$ echo a1 > a1

$ cp a1 a2 ; cp a2 a3;

$ chmod 000 a1 #Deny all permissions

While displaying contents of the files using wildcards (a*), it will show an error message for file
a1 as it does not have the proper read permission:

$ cat a*

cat: a1: Permission denied

a1

a1

Here cat: a1: Permission denied belongs to stderr data. We can redirect stderr
data into a file, whereas stdout remains printed in the terminal. Consider the following code:

$ cat a* 2> err.txt #stderr is redirected to err.txt

a1

a1

$ cat err.txt

cat: a1: Permission denied

Take a look at the following code:

$ some_command 2> /dev/null

In this case, the stderr output is dumped to the /dev/null file. /dev/null is a special
device file where any data received by the file is discarded. The null device is often called the
bit bucket or black hole.

When redirection is performed for stderr or stdout, the redirected text flows into a file.
As the text has already been redirected and has gone into the file, no text remains to flow to
the next command through pipe (|), and it appears to the next set of command sequence
through stdin.

Shell Something Out

22

However, there is a tricky way to redirect data to a file as well as provide a copy of redirected
data as stdin for the next set of commands. This can be done using the tee command. For
example, to print the stdout in the terminal as well as redirect stdout into a file, the syntax
for tee is as follows:

command | tee FILE1 FILE2

In the following code, stdin data is received by the tee command. It writes a copy of stdout
to the file out.txt and sends another copy as stdin for the next command. The cat –n
command puts a line number for each line received from stdin and writes it into stdout:

$ cat a* | tee out.txt | cat -n

cat: a1: Permission denied

 1a1

 2a1

Examine the contents of out.txt as follows:

$ cat out.txt

a1

a1

Note that cat: a1: Permission denied does not appear because it belongs to stdin.
tee can read from stdin only.

By default, the tee command overwrites the file, but it can be used with appended options by
providing the -a option, for example:

$ cat a* | tee –a out.txt | cat –n.

Commands appear with arguments in the format: command FILE1 FILE2… or simply
command FILE.

We can use stdin as a command argument. It can be done by using – as the filename
argument for the command as follows:

$ cmd1 | cmd2 | cmd -

For example:

$ echo who is this | tee -

who is this

who is this

Alternately, we can use /dev/stdin as the output filename to use stdin.

Similarly, use /dev/stderr for standard error and /dev/stdout for standard output. These
are special device files that correspond to stdin, stderr, and stdout.

Chapter 1

23

There's more...
A command that reads stdin for input can receive data in multiple ways. Also, it is possible
to specify file descriptors of our own using cat and pipes, for example:

$ cat file | cmd

$ cmd1 | cmd2

Redirection from file to command
By using redirection, we can read data from a file as stdin as follows:

$ cmd < file

Redirecting from a text block enclosed within a script
Sometimes we need to redirect a block of text (multiple lines of text) as standard input.
Consider a particular case where the source text is placed within the shell script. A practical
usage example is writing a log file header data. It can be performed as follows:

#!/bin/bash

cat <<EOF>log.txt

LOG FILE HEADER

This is a test log file

Function: System statistics

EOF

The lines that appear between cat <<EOF >log.txt and the next EOF line will appear as
stdin data. Print the contents of log.txt as follows:

$ cat log.txt

LOG FILE HEADER

This is a test log file

Function: System statistics

Custom file descriptors
A file descriptor is an abstract indicator for accessing a file. Each file access is associated
with a special number called a file descriptor. 0, 1, and 2 are reserved descriptor numbers for
stdin, stdout, and stderr.

Shell Something Out

24

We can create our own custom file descriptors using the exec command. If you are already
familiar with file programming with any other programming languages, you might have noticed
modes for opening files. Usually, three modes are used:

ff Read mode

ff Write with truncate mode

ff Write with append mode

< is an operator used to read from the file to stdin. > is the operator used to write to a file with
truncation (data is written to the target file after truncating the contents). >> is an operator used
to write to a file with append (data is appended to the existing file contents and the contents of
the target file will not be lost). File descriptors can be created with one of the three modes.

Create a file descriptor for reading a file, as follows:

$ exec 3<input.txt # open for reading with descriptor number 3

We could use it as follows:

$ echo this is a test line > input.txt

$ exec 3<input.txt

Now you can use file descriptor 3 with commands. For example, cat <&3 as follows:

$ cat <&3

this is a test line

If a second read is required, we cannot reuse file descriptor 3. It is needed to reassign file
descriptor 3 for read using exec for making a second read.

Create a file descriptor for writing (truncate mode) as follows:

$ exec 4>output.txt # open for writing

For example:

$ exec 4>output.txt

$ echo newline >&4

$ cat output.txt

newline

Create a file descriptor for writing (append mode) as follows:

$ exec 5>>input.txt

Shell Something Out

26

Print the contents of an array at a given index using:

$ echo ${array_var[0]}

test1

index=5

$ echo ${array_var[$index]}

test6

Print all of the values in an array as a list using:

$ echo ${array_var[*]}

test1 test2 test3 test4 test5 test6

Alternately, you can use:

$ echo ${array_var[@]}

test1 test2 test3 test4 test5 test6

Print the length of an array (the number of elements in an array), as follows:

$ echo ${#array_var[*]}
6

There's more...
Associative arrays have been introduced to Bash from version 4.0. They are useful entities to
solve many problems using the hashing technique. Let's go into more details.

Defining associative arrays
In an associative array, we can use any text data as an array index. However, ordinary arrays
can only use integers for array indexing.

Initially, a declaration statement is required to declare a variable name as an associative
array. A declaration can be made as follows:

$ declare -A ass_array

After the declaration, elements can be added to the associative array using two methods,
as follows:

1.	 By using inline index-value list method, we can provide a list of index-value pairs:
$ ass_array=([index1]=val1 [index2]=val2)

Shell Something Out

28

How to do it...
An alias can be implemented as follows:

$ alias new_command='command sequence'

Giving a shortcut to the install command, apt-get install, can be done as follows:

$ alias install='sudo apt-get install'

Therefore, we can use install pidgin instead of sudo apt-get install pidgin.

The alias command is temporary; aliasing exists until we close the current terminal only.
In order to keep these shortcuts permanent, add this statement to the ~/.bashrc file.
Commands in ~/.bashrc are always executed when a new shell process is spawned.

$ echo 'alias cmd="command seq"' >> ~/.bashrc

To remove an alias, remove its entry from ~/.bashrc or use the unalias command.
Another method is to define a function with a new command name and write it in ~/.bashrc.

We can alias rm so that it will delete the original and keep a copy in a backup directory:

alias rm='cp $@ ~/backup; rm $@'

When you create an alias, if the item being aliased already exists, it will be replaced by this
newly aliased command for that user.

There's more...
There are situations when aliasing can also be a security breach. See how to identify them:

Escaping aliases
The alias command can be used to alias any important command, and you may not always
want to run the command using the alias. We can ignore any aliases currently defined by
escaping the command we want to run. For example:

$ \command

The \ character escapes the command, running it without any aliased changes. While running
privileged commands on an untrusted environment, it is always a good security practise to
ignore aliases by prefixing the command with \. The attacker might have aliased the privileged
command with his own custom command to steal the critical information that is provided to
the command by the user.

Chapter 1

31

Epoch is defined as the number of seconds that have elapsed since midnight proleptic
Coordinated Universal Time (UTC) of January 1, 1970, not counting leap seconds. Epoch time
is useful when you need to calculate the difference between two dates or time. You may find
out the epoch times for two given timestamps and take the difference between the epoch
values. Therefore, you can find out the total number of seconds between two dates.

We can find out epoch from a given formatted date string. You can use dates in multiple date
formats as input. Usually, you don't need to bother about the date string format that you use
if you are collecting the date from a system log or any standard application generated output.
You can convert a date string into epoch as follows:

$ date --date "Thu Nov 18 08:07:21 IST 2010" +%s

1290047841

The --date option is used to provide a date string as input. However, we can use any date
formatting options to print output. Feeding input date from a string can be used to find out the
weekday, given the date.

For example:

$ date --date "Jan 20 2001" +%A

Saturday

The date format strings are listed in the following table:

Date component Format
Weekday %a (for example:. Sat)

%A (for example: Saturday)

Month %b (for example: Nov)
%B (for example: November)

Day %d (for example: 31)
Date in format (mm/dd/yy) %D (for example: 10/18/10)
Year %y (for example: 10)

%Y (for example: 2010)
Hour %I or %H (for example: 08)
Minute %M (for example: 33)
Second %S (for example: 10)
Nano second %N (for example:695208515)

epoch UNIX time in seconds %s (for example: 1290049486)

Shell Something Out

32

Use a combination of format strings prefixed with + as an argument for the date command to
print the date in the format of your choice. For example:

$ date "+%d %B %Y"

20 May 2010

We can set the date and time as follows:

date -s "Formatted date string"

For example:

date -s "21 June 2009 11:01:22"

Sometimes we need to check the time taken by a set of commands. We can display it as follows:

#!/bin/bash
#Filename: time_take.sh
start=$(date +%s)
commands;
statements;

end=$(date +%s)
difference=$((end - start))
echo Time taken to execute commands is $difference seconds.

An alternate method would be to use timescriptpath to get the time that it took to execute
the script.

There's more...
Producing time intervals are essential when writing monitoring scripts that execute in a loop.
Let's see how to generate time delays.

Producing delays in a script
In order to delay execution in a script for some period of time, use sleep:
$ sleep no_of_seconds.

For example, the following script counts from 0 to 40 by using tput and sleep:

#!/bin/bash
#Filename: sleep.sh
echo -n Count:
tput sc

count=0;
while true;
do
if [$x -lt 40];

Shell Something Out

34

ff set –v: Displays input when they are read

ff set +v: Disables printing input

For example:

#!/bin/bash
#Filename: debug.sh
for i in {1..6}
do
set -x
echo $i
set +x
done
echo "Script executed"

In the above script, debug information for echo $i will only be printed as debugging is
restricted to that section using -x and +x.

The above debugging methods are provided by bash built-ins. But they always produce
debugging information in a fixed format. In many cases, we need debugging information in our
own format. We can set up such a debugging style by passing the _DEBUG environment variable.

Look at the following example code:

#!/bin/bash
function DEBUG()
{
["$_DEBUG" == "on"] && $@ || :
}

for i in {1..10}
do
DEBUG echo $i
done

We can run the above script with debugging set to "on" as follows:

$ _DEBUG=on ./script.sh

We prefix DEBUG before every statement where debug information is to be printed. If
_DEBUG=on is not passed to script, debug information will not be printed. In Bash the
command ':' tells the shell to do nothing.

There's more...
We can also use other convenient ways to debug scripts. We can make use of shebang in a
trickier way to debug scripts.

Chapter 1

37

Reading command return value (status)
We can get the return value of a command or function as follows:

cmd;

echo $?;

$? will give the return value of the command cmd.

The return value is called exit status. It can be used to analyze whether a command
completed its execution successfully or unsuccessfully. If the command exits successfully,
the exit status will be zero, else it will be non-zero.

We can check whether a command terminated successfully or not as follows:

#!/bin/bash
#Filename: success_test.sh
CMD="command" #Substitute with command for which you need to test exit
status
$CMD
if [$? –eq 0];
then
echo "$CMD executed successfully"
else
echo "$CMD terminated unsuccessfully"
fi

Passing arguments to commands
Arguments to commands can be passed in different formats. Suppose –p and -v are the
options available and -k NO is another option that takes a number. Also the command takes
a filename as argument. It can be executed in multiple ways as follows:

$ command -p -v -k 1 file

Or:

$ command -pv -k 1 file

Or:

$ command -vpk 1 file

Or:

$ command file -pvk 1

Chapter 1

39

Another method, called back-quotes can also be used to store the command output as follows:

cmd_output=`COMMANDS`

For example:

cmd_output=`ls | cat -n`

echo $cmd_output

Back quote is different from the single quote character. It is the character on the ~ button in
the keyboard.

There's more...
There are multiple ways of grouping commands. Let's go through few of them.

Spawning a separate process with subshell
Subshells are separate processes. A subshell can be defined using the ()operators as follows:

pwd;
(cd /bin; ls);
pwd;

When some commands are executed in a subshell none of the changes occur in the current
shell; changes are restricted to the subshell. For example, when the current directory in a
subshell is changed using the cd command, the directory change is not reflected in the main
shell environment.

The pwd command prints the path of the working directory.

The cd command changes the current directory to the given directory path.

Subshell quoting to preserve spacing and newline character
Suppose we are reading the output of a command to a variable using a subshell or the back-
quotes method, we always quote them in double-quotes to preserve the spacing and newline
character (\n). For example:

$ cat text.txt

1

2

3

$ out=$(cat text.txt)

$ echo $out

1 2 3 # Lost \n spacing in 1,2,3

Chapter 1

41

Read the input after a timeout as follows:

read -t timeout var

For example:

$ read -t 2 var

#Read the string that is typed within 2 seconds into variable var.

Use a delimiter character to end the input line as follows:

read -d delim_charvar

For example:

$ read -d ":" var

hello:#var is set to hello

Field separators and iterators
The Internal Field Separator is an important concept in shell scripting. It is very useful while
manipulating text data. We will now discuss delimiters that separate different data elements
from single data stream. An Internal Field Separator is a delimiter for a special purpose. An
Internal Field Separator (IFS) is an environment variable that stores delimiting characters. It
is the default delimiter string used by a running shell environment.

Consider the case where we need to iterate through words in a string or comma separated
values (CSV). In the first case we will use IFS=" " and in the second,IFS=",". Let's see
how to do it.

Getting ready
Consider the case of CSV data:

data="name,sex,rollno,location"
#To read each of the item in a variable, we can use IFS.
oldIFS=$IFS
IFS=, now,
for item in $data;
do
echo Item: $item
done

IFS=$oldIFS

Shell Something Out

42

The output is as follows:

Item: name

Item: sex

Item: rollno

Item: location

The default value of IFS is a space component (newline, tab, or a space character).

When IFS is set as "," the shell interprets the comma as a delimiter character, therefore, the
$item variable takes substrings separated by a comma as its value during the iteration.

If IFS were not set as "," then it would print the entire data as a single string.

How to do it...
Let's go through another example usage of IFS by taking /etc/passwd file into
consideration. In the /etc/passwd file, every line contains items delimited by ":". Each line
in the file corresponds to an attribute related to a user.

Consider the input:root:x:0:0:root:/root:/bin/bash. The last entry on each line
specifies the default shell for the user. In order to print users and their default shells, we
can use the IFS hack as follows:

#!/bin/bash
#Description: Illustration of IFS
line="root:x:0:0:root:/root:/bin/bash"
oldIFS=$IFS;
IFS=":"
count=0
for item in $line;
do

[$count -eq 0] && user=$item;
[$count -eq 6] && shell=$item;
let count++
done;
IFS=$oldIFS
echo $user\'s shell is $shell;

The output will be:

root's shell is /bin/bash

Loops are very useful in iterating through a sequence of values. Bash provides many types of
loops. Let's see how to use them.

Chapter 1

43

For loop:

for var in list;
do
commands; # use $var
done
list can be a string, or a sequence.

We can generate different sequences easily.

echo {1..50}can generate a list of numbers from 1 to 50

echo {a..z}or{A..Z} or we can generate partial list using {a..h}. Similarly, by combining
these we can concatenate data.

In the following code, in each iteration, the variable i will hold a character in the range a to z:

for i in {a..z}; do actions; done;

The for loop can also take the format of the for loop in C. For example:

for((i=0;i<10;i++))
{
commands; # Use $i
}

While loop:

while condition
do
commands;
done

For an infinite loop, use true as the condition.

Until loop:

A special loop called until is available with Bash. This executes the loop until the given
condition becomes true. For example:

x=0;
until [$x -eq 9]; # [$x -eq 9] is the condition
do let x++; echo $x;
done

Chapter 1

45

Performing mathematical conditions over variables or values can be done as follows:

[$var -eq 0] # It returns true when $var equal to 0.
[$var -ne 0] # It returns true when $var not equals 0

Other important operators are:

ff -gt: Greater than

ff -lt: Less than

ff -ge: Greater than or equal to

ff -le: Less than or equal to

Multiple test conditions can be combined as follows:

[$var1 -ne 0 -a $var2 -gt 2] # using AND -a
[$var -ne 0 -o var2 -gt 2] # OR -o

Filesystem related tests:

We can test different filesystem related attributes using different condition flags as follows:

ff [-f $file_var]: Returns true if the given variable holds a regular filepath or
filename.

ff [-x $var]: Returns true if the given variable holds a file path or filename which
is executable.

ff [-d $var]: Returns true if the given variable holds a directory path or directory
name.

ff [-e $var]: Returns true if the given variable holds an existing file.

ff [-c $var]: Returns true if the given variable holds path of a character device file.

ff [-b $var]: Returns true if the given variable holds path of a block device file.

ff [-w $var]: Returns true if the given variable holds path of a file which is writable.

ff [-r $var]: Returns true if the given variable holds path of a file which is
readable.

ff [-L $var]: Returns true if the given variable holds path of a symlink.

An example of the usage is as follows:

fpath="/etc/passwd"
if [-e $fpath]; then
echo File exists;
else
echo Does not exist;
fi

Chapter 1

47

The output is as follows:

str1 is non-empty and str2 is empty string.

The test command can be used for performing condition checks. It helps to avoid usage
of many braces. The same set of test conditions enclosed within [] can be used for the test
command.

For example:

if [$var -eq 0]; then echo "True"; fi
can be written as
if test $var -eq 0 ; then echo "True"; fi

2
Have a Good

Command

In this chapter, we will cover:

ff Concatenating with cat

ff Recording and playback of terminal sessions

ff Finding files and file listing

ff Command output as argument to a command (xargs)

ff Translating with tr

ff Checksum and verification

ff Sorting, unique and duplicates

ff Temporary file naming and random numbers

ff Splitting files and data

ff Slicing filenames based on extension

ff Renaming files in bulk with rename and mv

ff Spell check and dictionary manipulation

ff Automating interactive input

Chapter 2

51

How it works…
There are a lot of features that come along with cat. Let's walk through several usage
techniques that are possible with cat.

The cat command not only can read from files and concatenate the data, but also can read
the input from the standard input.

In order to read from the standard input, use a pipe operator as follows:

OUTPUT_FROM_SOME COMMANDS | cat

Similarly, we can concatenate content from input files along with standard input using cat.
Combine stdin and data from another file, as follows:

$ echo 'Text through stdin' | cat – file.txt

In this code - acts as filename for stdin text.

There's more...
The cat command has few other options for viewing files. Let's go through them.

Squeezing blank lines
Sometimes many empty lines in text need to be squeezed into one to make it readable or for
some other purpose. Squeeze adjacent blank lines in a text file by using the following syntax:

$ cat -s file

For example:

$ cat multi_blanks.txt

line 1

line2

line3

line4

$ cat -s multi_blanks.txt # Squeeze adjacent blank lines

line 1

line2

line3

Have a Good Command

52

line4

Alternately, we can remove all blank lines by using tr as follows:

$ cat multi_blanks.txt | tr -s '\n'

line 1

line2

line3

line4

In the above usage of tr, it squeezes adjacent '\n' characters into a single '\n'
(newline character).

Displaying tabs as ^I
It is hard to distinguish tabs and repeated space characters. While writing programs in
languages like Python, it keeps special meaning for tabs and spaces for indentation purposes.
They are treated differently. Therefore, the use of tab instead of spaces causes problems
in indentation. It may become difficult to track where the misplacement of the tab or space
occurred by looking through a text editor. cat has a feature that can highlight tabs. This is
very helpful in debugging indentation errors. Use the –T option with cat to highlight tab
characters as ^I. An example is as follows:

$ cat file.py

def function():

 var = 5

 next = 6

 third = 7

$ cat -T file.py

def function():

^Ivar = 5

 next = 6

^Ithird = 7^I

Line numbers
Using the –n flag for the cat command will output each line with a line number prefixed. It
is to be noted that the cat command never changes a file; instead it produces an output on
stdout with modifications to input according to the options provided. For example:

$ cat lines.txt

line

Have a Good Command

54

By using the two files, timing.log (stores timing information) and output.session (stores
command output information), we can replay the sequence of command execution as follows:

$ scriptreplay timing.log output.session

Plays the sequence of commands and output

How it works...
Usually, we record the desktop video to prepare tutorials. However, videos require good
amount of storage. But a terminal script file is just a text file. Therefore, it always has a file size
only in the order of Kilobytes.

You can share the files timing.log and output.session with anyone who wants to replay
a terminal session in their terminal.

The script command can also be used to set up a terminal session that can be broadcasted
to multiple users. It is a very interesting experience. Let's see how to do it.

Open two terminals, Terminal1 and Terminal2.

1.	 In Terminal1 enter the following command:
$ mkfifo scriptfifo

2.	 In Terminal2 enter the following command:
$ cat scriptfifo

3.	 Go back to Terminal1 and enter the following command:
$ script -f scriptfifo

$ commands;

When you need to end the session, type exit and press Return. It will show the message
"Script done, file is scriptfifo".

Now Terminal1 is the broadcaster and Terminal2 is the receiver.

When you type anything in real-time on Terminal1, it will be played on Terminal2 or any
terminal that supplies the following command:

cat scriptfifo

This method can be used when handling a tutorial session for many users in a computer lab
or over the Internet. It will save bandwidth as well as provide a real-time experience.

Have a Good Command

56

Search based on file name or regular expression match
The -name argument specifies a matching string for the filename. We can pass wildcards as
its argument text. *.txt matches all the filenames ending with .txt and prints them. The
–print option prints the filenames or file paths in the terminal that matches the conditions
(for example, –name) given as options to the find command.

$ find /home/slynux -name "*.txt" –print

The find command has an option –iname (ignore case), which is similar to -name. –iname
matches the name ignoring the case.

For example:

$ ls

example.txt EXAMPLE.txt file.txt

$ find . -iname "example*" -print

./example.txt

./EXAMPLE.txt

If we want to match either of the multiple criterions, we can use OR conditions as shown below:

$ ls

new.txt some.jpg text.pdf

$ find . \(-name "*.txt" -o -name "*.pdf" \) -print

./text.pdf

./new.txt

The previous code will print all of the .txt and .pdf files, since the find command
matches both .txt and .pdf files. \(and \) is used to treat -name "*.txt" -o -name
"*.pdf" as a single unit.

The -path argument can be used to match the file path for files that match the wildcards.
-name always matches using the given filename. However, -path matches the file path as a
whole. For example:

$ find /home/users -path "*slynux*" -print

This will match files as following paths.

/home/users/list/slynux.txt

/home/users/slynux/eg.css

The -regex argument is similar to -path, but -regex matches the file paths based on
regular expressions.

Chapter 2

57

Regular expressions are an advanced form of wildcard matching. It enables to specify a text
with patterns. By using the patterns, we can make matches to the text and print them. A
typical example of text matching using regular expressions is: parsing all e-mail addresses
from a given pool of text. An e-mail address takes the form name@host.root. So, it can be
generalized as [a-z0-9]+@[a-z0-9]+.[a-z0-9]+. The + signifies that the previous class
of characters can occur one or more times, repeatedly, in the characters that follow.

The following command matches .py or .sh files:

$ ls

new.PY next.jpg test.py

$ find . -regex ".*\(\.py\|\.sh\)$"

./test.py

Similarly, using -iregex ignores the case for the regular expressions that are available.
For example:

$ find . -iregex ".*\(\.py\|\.sh\)$"

./test.py

./new.PY

Negating arguments
find can also take negation of arguments using "!". For example:

$ find . ! -name "*.txt" -print

The above find construct matches all the file names, as long as the name does not end with
.txt. The following example shows the result of the command:

$ ls

list.txt new.PY new.txt next.jpg test.py

$ find . ! -name "*.txt" -print

.

./next.jpg

./test.py

./new.PY

Search based on the directory depth
When the find command is used it recursively walks through all the subdirectories as much
as possible until it reaches the leaf of the subdirectory tree. We can restrict the depth to which
the find command traverses using some depth parameters given to the find. -maxdepth
and -mindepth are the parameters.

Chapter 2

59

List only directories including descendants as follows:

$ find . -type d -print

It is hard to list directories and files separately. But find helps to do it. List only regular files
as follows:

$ find . -type f -print

List only symbolic links as follows:

$ find . -type l -print

You can use the type arguments from the following table to properly match the required
file type:

File type Type argument
Regular file f

Symbolic link l

Directory d

Character special device c

Block device b

Socket s

Fifo p

Search on up file times
UNIX/Linux file systems have three types of timestamp on each file. They are as follows:

ff Access time (-atime): This is the last timestamp of when the file was accessed
by some user

ff Modification time (-mtime): This is the last timestamp of when the file content
was modified

ff Change time (-ctime): This is the last timestamp of when the metadata for a file
(such as permissions or ownership) was modified

There is nothing called creation time in UNIX.

-atime, -mtime, -ctime are the time parameter options available with find. They can be
specified with integer values in "number of days". These integer values are often attached with
- or + signs. The - sign implies less than whereas the + implies greater than. For example:

ff Print all the files that were accessed within the last 7 days as follows:
$ find . -type f -atime -7 -print

Have a Good Command

60

ff Print all the files that are having access time exactly 7 days old as follows:
$ find . -type f -atime 7 -print

ff Print all the files that are having access time older than 7 days as follows:
$ find . -type f -atime +7 -print

Similarly, we can use the –mtime parameter for search files based on modification time and
-ctime for search based on change time.

-atime, -mtime, and –ctime are time-based parameters that use the time metric in days.
There are some other time-based parameters that use the time metric in minutes. These are
as follows:

ff -amin (access time)

ff -mmin (modification time)

ff -cmin (change time)

For example:

In order to print all the files that are having access time older than seven minutes, use the
following command:

$ find . -type f -amin +7 -print

Another nice feature available with find is the –newer parameter. By using -newer, we can
specify a reference file to compare with the timestamp. We can find all the files that are newer
(older modification time) than the specified file with the –newer parameter.

For example, find all the files that are having a modification time greater than that of the
modification time of a given file.txt file as follows:

$ find . -type f -newer file.txt -print

Timestamp manipulation flags for the find command are very useful for writing system
backup and maintenance scripts.

Search based on file size
Based on the file sizes of the files, a search can be performed as follows:

$ find . -type f -size +2k

Files having size greater than 2 kilobytes

$ find . -type f -size -2k

Files having size less than 2 kilobytes

$ find . -type f -size 2k

Files having size 2 kilobytes

Chapter 2

61

Instead of k we can use different size units as the following:

ff b – 512 byte blocks

ff c – bytes

ff w – two byte words

ff k – Kilobyte

ff M – Megabyte

ff G – Gigabyte

Deleting based on the file matches
The -delete flag can be used to remove files that are matched by find.

Remove all the .swp files from the current directory as follows:

$ find . -type f -name "*.swp" -delete

Match based on the file permissions and ownership
It is possible to match files based on the file permissions. We can list out the files having
specified file permission as follows:

$ find . -type f -perm 644 -print

Print files having permission 644

As an example usage case, we can consider the case of Apache web server. The PHP files in
the web server require proper permissions to execute. We can find out the PHP files that are
not having proper execute permissions as follows:

$ find . –type f –name "*.php" ! -perm 644 –print

We can also search files based on ownership of the files. The files owned by a specific user
can be found out using the -user USER option.

The USER argument can be a username or UID.

For example, to print the list of all files owned by the user slynux, you can use the
following command:

$ find . -type f -user slynux -print

Executing commands or actions with find
The find command can be coupled with many of the other commands using the -exec
option. -exec is one of the most powerful features that comes with find.

Let's see how to use the –exec option.

Chapter 2

63

-exec can be coupled with printf to produce a very useful output. For example:

$ find . -type f -name "*.txt" -exec printf "Text file: %s\n" {} \;

Skip specified directories from the find
Skipping certain subdirectories for a performance improvement is sometimes required while
doing a directory search and performing some action. For example, when programmers look
for particular files on a development source tree, which is under a version control system
such as Git, the source hierarchy will always contain the .git directory in each of the
subdirectories (.git stores version control related information for every directory). Since
version control related directories do not produce useful output, they should be excluded
from the search. The technique of excluding files and directories from the search is known as
pruning. It can be performed as follows:

$ find devel/source_path \(-name ".git" -prune \) -o \(-type f -print \)

Instead of \(-type -print \), use required filter.

The above command prints the name (path) of all the files that are not from the
.git directories.

Here, \(-name ".git" -prune \) is the exclude portion, which specifies that the .git
directory should be excluded and \(-type f -print \) specifies the action to be
performed. The actions to be performed are placed in the second block -type f –print
(the action specified here is to print the names and path of all the files).

Playing with xargs
We use pipes to redirect stdout (standard output) of a command to stdin (standard input)
of another command. For example:

cat foo.txt | grep "test"

But, some of the commands accept data as command-line arguments rather than a data
stream through stdin (standard input). In that case, we cannot use pipes to supply data
through command-line arguments.

We should go for alternate methods. xargs is a command that is very helpful in handling
standard input data to the command-line argument conversions. xargs can manipulate
stdin and convert to command-line arguments for the specified command. Also xargs
can convert any one line or multiple line text input into other formats, such as multiple lines
(specified number of columns) or a single line and vice versa.

Have a Good Command

64

All the Bash hackers love one-line commands. One-liners are command sequences that are
joined by using the pipe operator, but do not use the semi colon terminator (;) between the
commands used. Crafting one-line commands makes tasks efficient and simpler to solve. It
requires proper understanding and practise to formulate one-liners for solving text processing
problems. xargs is one of the important components for building one-liner commands.

Getting ready
The xargs command should always appear immediately after a pipe operator. xargs uses
standard input as the primary data stream source. It uses stdin and executes another
command by providing command-line arguments for that executing command using the stdin
data source. For example:

command | xargs

How to do it...
The xargs command can supply arguments to a command by reformatting the data received
through stdin.

xargs can act as a substitute that can perform similar actions as the -exec argument in
the case of the find command. Let's see a variety of hacks that can be performed using the
xargs command.

ff Converting multiple lines of input to a single line output:

Multiple line input can be converted simply by removing the new line character and
replacing with the " " (space) character. '\n' is interpreted as a newline, which is the
delimiter for the lines. By using xargs, we can ignore all the newlines with spaces so
that multiple lines can be converted into a single line text as follows:
$ cat example.txt # Example file

1 2 3 4 5 6

7 8 9 10

11 12

$ cat example.txt | xargs

1 2 3 4 5 6 7 8 9 10 11 12

ff Converting single line into multiple line output:

Given maximum no of arguments in a line = n, we can split any stdin (standard
input) text into lines of n arguments each. An argument is a piece of string delimited
by " " (space). Space is the default delimiter. A single line can be split into multiple
lines as follows:

Chapter 2

65

$ cat example.txt | xargs -n 3

1 2 3

4 5 6

7 8 9

10 11 12

How it works…
The xargs command is appropriate to be applied to many problem scenarios with its rich and
simple options. Let's see how these options can be used wisely to solve problems.

We can also use our own delimiter towards separating arguments. In order to specify a custom
delimiter for input, use the –d option as follows:

$ echo "splitXsplitXsplitXsplit" | xargs -d X

split split split split

In the above code, stdin contains a string consisting of multiple 'X' characters. We can use
'X' as the input delimiter by using it with –d. Here we have explicitly specified X as the input
delimiter, whereas in the default case xargs takes Internal Field Separator (space) as the
input delimiter.

By using –n along with the above command, we can split the input into multiple lines having
two words each as follows:

$ echo "splitXsplitXsplitXsplit" | xargs -d X -n 2

split split

split split

There's more...
We have learned how to format stdin to different output as arguments from the above
examples. Now let's learn how to supply these formatted output as arguments to commands.

Passing formatted arguments to a command by reading stdin
Write a small custom echo for better understanding of example usages with xargs to provide
command arguments.

#!/bin/bash
#Filename: cecho.sh

echo $*'#'

Have a Good Command

66

When arguments are passed to the cecho.sh, it will print the arguments terminated by the #
character. For example:

$./cecho.sh arg1 arg2

arg1 arg2 #

Let's have a look at a problem:

ff I have a list of arguments in a file (one argument in each line) to be provided to a
command (say cecho.sh). I need to provide arguments in two methods. In the first
method, I need to provide one argument each for the command as follows:
./cecho.sh arg1
./cecho.sh arg2
./cecho.sh arg3

Or, alternately, I need to provide two or three arguments each for each execution of
command. For two arguments each, it would be similar to the following:
./cecho.sh arg1 arg2
./cecho.sh arg3

ff In the second method, I need to provide all arguments at once to the command
as follows:
./cecho.sh arg1 arg2 arg3

Run the above commands and note down the output before going through the following section.

The above problems can be solved using xargs. We have the list of arguments in a file called
args.txt. The contents are as follows:

$ cat args.txt

arg1

arg2

arg3

For the first problem, we can execute the command multiple times with one argument per
execution, by using:

$ cat args.txt | xargs -n 1 ./cecho.sh

arg1 #

arg2 #

arg3 #

For executing a command with X arguments per each execution, use:

INPUT | xargs –n X

Chapter 2

67

For example:

$ cat args.txt | xargs -n 2 ./cecho.sh

arg1 arg2 #

arg3 #

For the second problem, we can execute the command at once with all the arguments, by using:

$ cat args.txt | xargs ./ccat.sh

arg1 arg2 arg3 #

In the above examples, we have supplied command-line arguments directly to a specific
command (for example, cecho.sh). We could only supply the arguments from the args.
txt file. However, in realtime, we may also need to add some constant parameter with
the command (for example, cecho.sh) along with the arguments taken from args.txt.
Consider the following example with the format:

./cecho.sh –p arg1 –l

In the above command execution arg1 is the only variable text. All others should remain
constant. We should read arguments from a file (args.txt) and supply it as:

./cecho.sh –p arg1 –l

./cecho.sh –p arg2 –l

./cecho.sh –p arg3 –l

To provide a command execution sequence as shown, xargs has an option –I. By using –I
we can specify a replacement string that will be replaced while xargs expands. When –I is
used with xargs, it will execute as one command execution per argument.

Let's do it as follows:

$ cat args.txt | xargs -I {} ./cecho.sh -p {} -l

-p arg1 -l #

-p arg2 -l #

-p arg3 -l #

-I {} specifies the replacement string. For each of the arguments supplied for the
command, the {} string will be replaced with arguments read through stdin. When used
with -I, the command is executed like in a loop. When there are three arguments the
command is executed three times along with the command {}. Each time {} is replaced with
arguments one by one.

Have a Good Command

68

Using xargs with find
xargs and find are best friends. They can be combined to perform tasks easily. Usually,
people combine them in a wrong way. For example:

$ find . -type f -name "*.txt" -print | xargs rm -f

This is dangerous. It may sometimes cause removal of unnecessary files. Here, we cannot
predict the delimiting character (whether it is '\n' or ' ') for the output of the find
command. Many of the filenames may contain a space character (' ') and hence xargs may
misinterpret it as a delimiter (for example, "hell text.txt" is misinterpreted by xargs as "hell"
and "text.txt").

Hence we must use -print0 along with find to produce an output with delimited character
null ('\0') whenever we use the find output as the xargs input.

Let's use find to match and list of all the .txt files and remove them using xargs:

$ find . -type f -name "*.txt" -print0 | xargs -0 rm -f

This removes all .txt files. xargs -0 interprets that the delimiting character is \0.

Counting number of lines of C code in a source code directory
over many C files.
This is a task most programmers do, that is, counting all C program files for LOC (Lines of
Code). The code for this task is as follows:

$ find source_code_dir_path -type f -name "*.c" -print0 | xargs -0 wc -l

While and subshell trick with stdin
xargs is restricted to provide arguments in limited ways to supply arguments. Also, xargs
cannot supply arguments to multiple set of commands. For executing commands with
collected arguments from standard input, we have a very flexible method. I call it a subshell
hack. A subshell with a while loop can be used to read arguments and execute commands in
a trickier way as follows:

$ cat files.txt | (while read arg; do cat $arg; done)

Equivalent to cat files.txt | xargs -I {} cat {}

Here, by replacing cat $arg with any number of commands using a while loop, we can
perform many command actions with same arguments. We can also pass the output to
other commands without using pipes. Subshell () tricks can be used in a variety of problem
environments. When enclosed within subshell operators, it acts as a single unit with multiple
commands inside.

$ cmd0 | (cmd1;cmd2;cmd3) | cmd4

If cmd1 is cd /, within the subshell, the path of the working directory changes. However, this
change resides inside the subshell only. cmd4 will not see the directory change.

Have a Good Command

70

How it works…
By using tr with the concept of sets, we can map characters from one set to another set easily.
Let's go through an example on how to use tr for encrypting and decrypting numeric characters:

$ echo 12345 | tr '0-9' '9876543210'

87654 #Encrypted

$ echo 87654 | tr '9876543210' '0-9'

12345 #Decrypted

Let's try another interesting example.

ROT13 is a well known encryption algorithm. In the ROT13 scheme, the same function is used
to encrypt and decrypt text. The ROT13 scheme performs alphabetic rotation of characters for
13 characters. Let's perform ROT13 using tr as follows:

$ echo "tr came, tr saw, tr conquered." | tr
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
'NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm'

The output will be:

ge pnzr, ge fnj, ge pbadhrerq.

By sending the encrypted text again to the same ROT13 function, we get:

$ echo ge pnzr, ge fnj, ge pbadhrerq. | tr
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
'NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm'

The output will be:

tr came, tr saw, tr conquered.

tr can be used to convert tab characters into space as follows:

$ cat text | tr '\t' ' '

There's more...

Deleting characters using tr
tr has an option -d to delete a set of characters that appear on stdin by using the specified
set of characters to be deleted as follows:

$ cat file.txt | tr -d '[set1]'
#Only set1 is used, not set2

Chapter 2

71

For example:

$ echo "Hello 123 world 456" | tr -d '0-9'

Hello world

Removes the numbers from stdin and print

Complementing character set
We can use a set complement to set1 by using the -c flag. -c [set] is equivalent to
specifying a set (complement-set) which contains complement characters of [set]:

tr -c [set1] [set2]

The complement of set1 means that it is the set having all the characters except for
characters in set1.

The best usage example is to delete all the characters from the input text except the ones
specified in the complement set. For example:

$ echo hello 1 char 2 next 4 | tr -d -c '0-9 \n'

 1 2 4

Here, the complement set is the set containing all numerals, the space character, and
newline. All other characters are removed since –d is used with tr.

Squeezing characters with tr
The tr command is very helpful in many text processing contexts. Repeated continuous
characters should be squeezed to a single character in many circumstances. Squeezing of
whitespace is a frequently occurring task.

tr provides the –s option to squeeze repeating characters from the input. It can be
performed as follows:

$ echo "GNU is not UNIX. Recursive right ?" | tr -s ' '

GNU is not UNIX. Recursive right ?

tr -s '[set]'

Let's use tr in a tricky way to add a given list of numbers from a file as follows:

$ cat sum.txt

1

2

3

4

5

$ cat sum.txt | echo $[$(tr '\n' '+') 0]

15

Have a Good Command

72

How does this hack work?

Here, the tr command is used to replace '\n' with the '+' character, hence we form the
string "1+2+3+..5+", but at the end of the string we have an extra + operator. In order to
nullify the effect of the + operator, 0 is appended.

$[operation] performs a numeric operation. Hence it forms the string as follows:

echo $[1+2+3+4+5+0]

If we use a loop to perform addition by reading numbers from a file, it would take few lines of
code. Here a one-liner does the trick. The skill of crafting one-liners is attained by practice.

Character classes
tr can use different character classes as sets. The different classes are as follows:

ff alnum: Alphanumeric characters

ff alpha: Alphabetic characters

ff cntrl: Control (non-printing) characters

ff digit: Numeric characters

ff graph: Graphic characters

ff lower: Lower-case alphabetic characters

ff print: Printable characters

ff punct: Punctuation characters

ff space: Whitespace characters

ff upper: Upper-case characters

ff xdigit: Hexadecimal characters

We can select the required classes and use them with as follows:

tr [:class:] [:class:]

For example:

tr '[:lower:]' '[:upper:]'

Checksum and verification
Checksum programs are used to generate checksum key strings from the files and verify
the integrity of the files later by using that checksum string. A file might be distributed over
the network or any storage media to different destinations. Due to many reasons, there are
chances for the file being corrupted due to a few bits missing during the data transfer. These
errors happen most often while downloading the files from the Internet, transferring through
the network, CD ROM damage, and so on.

Have a Good Command

74

The integrity of a file can be verified by using the generated file as follows:

$ md5sum -c file_sum.md5

It will output message whether checksum matches or not

Or, alternately, if we need to check all the files using all .md5 info available, use:

$ md5sum *.md5

SHA1 is another commonly used checksum algorithm like md5sum. It generates a
40-character hex code from a given input file. The command used for calculating a SHA1
string is sha1sum. Its usage is very similar to that of md5sum. Replace md5sum with sha1sum
in all the commands mentioned previously in this recipe. Instead of file_sum.md5, change
the output filename to file_sum.sha1.

Checksum verification is much useful to verify the integrity of files that we download from the
Internet. The ISO images that we download from the Internet are usually much more prone
to erroneous bits. Therefore, to check whether we received the file correctly, checksums are
widely used. For the same file data the checksum program will always produce the same
checksum string.

There's more...
Checksum are also useful when used with a number of files. Let's see how to apply checksum
to many files and verify correctness.

Checksum for directories
Checksums are calculated for files. Calculating the checksum for a directory would mean that
we will need to calculate the checksums for all the files in the directory, recursively.

It can be achieved by the command md5deep or sha1deep. Install the package md5deep to
make these commands available. An example of this command is as follows:

$ md5deep -rl directory_path > directory.md5

-r for enable recursive.

-l for using relative path. By default it writes absolute file path in
output

Alternately, combine it with find to calculate checksums recursively:

$ find directory_path -type f -print0 | xargs -0 md5sum >> directory.md5

To verify, use the following command:

$ md5sum -c directory.md5

Have a Good Command

76

A file can be tested whether sorted or not as follows:

#!/bin/bash
#Desc: Sort
sort -C file ;
if [$? -eq 0]; then
 echo Sorted;
else
 echo Unsorted;
fi

If we are checking numerical sort, it should be sort -nC

In order to merge two sorted files without sorting again, use:

$ sort -m sorted1 sorted2

There's more...

Sort according to the keys or columns
We use sort by column if we need to sort a text as follows:

$ cat data.txt

1 mac 2000

2 winxp 4000

3 bsd 1000

4 linux 1000

We can sort this in many ways; currently it is numeric sorted by serial number (the first
column). We can also sort by second column and third column.

-k specifies the key by which the sort is to be performed. Key is the column number by which
sort is to be done. -r specifies the sort command to sort in the reverse order. For example:

Sort reverse by column1

$ sort -nrk 1 data.txt

4	 linux		 1000

3	 bsd		 1000

2	 winxp		 4000

1	 mac		 2000

-nr means numeric and reverse

Sort by column 2

$ sort -k 2 data.txt

Have a Good Command

78

You can produce the unique lines (unique lines means that all lines in the input are printed,
but the duplicate lines are printed only once) from the given input data as follows:

$ cat sorted.txt

bash

foss

hack

hack

$ uniq sorted.txt

bash

foss

hack

Or:

$ sort unsorted.txt | uniq

Or:

$ sort -u unsorted.txt

Display only unique lines (the lines which are not repeated or duplicate in input file) as follows:

$ uniq -u sorted.txt

bash

foss

Or:

$ sort unsorted.txt | uniq -u

In order to count how many times each of the line appears in the file, use the following
command:

$ sort unsorted.txt | uniq -c

 1 bash

 1 foss

 2 hack

Find duplicate lines in the file as follows:

$ sort unsorted.txt | uniq -d

hack

Chapter 2

79

To specify keys, we can use the combination of -s and -w arguments.

ff -s specifies the number for the first N characters to be skipped

ff -w specifies the maximum number of characters to be compared

This comparison key is used as the index for the uniq operation as follows:

$ cat data.txt

u:01:gnu

d:04:linux

u:01:bash

u:01:hack

We need to use the highlighted characters as the uniqueness key. This is used to ignore the
first 2 characters (-s 2) and the max number of comparison characters is specified using the
–w option (-w 2):

$ sort data.txt | uniq -s 2 -w 2

d:04:linux

u:01:bash

While we use output from one command as input to the xargs command, it is always preferable
to use a zero byte terminator for each of the lines of the output, which acts as source for
xargs. While using the uniq commands output as the source for xargs, we should use a zero
terminated output. If a zero byte terminator is not used, space characters are by default taken
as delimiter to split the arguments in the xargs command. For example, a line with text "this
is a line" from stdin will be taken as four separate arguments by the xargs. But, actually, it
is a single line. When a zero byte terminator is used, \0 is used as the delimiter character and
hence, a single line including space is interpreted as a single argument.

Zero byte terminated output can be generated from the uniq command as follows:

$ uniq -z file.txt

The following command removes all the files, with filenames read from files.txt:

$ uniq –z file.txt | xargs -0 rm

If multiple line entries of filenames exist in the file, the uniq command writes the filename
only once to stdout.

Have a Good Command

80

String pattern generation with uniq
Here is an interesting question for you: We have a string containing repeated characters. How
can we find the number of times each of the character appears in the string and output a
string in the following format?

Input: ahebhaaa

Output: 4a1b1e2h

Each of the characters is repeated once, and each of them is prefixed with the number of
times they appear in the string. We can solve this using uniq and sort as follows:

INPUT= "ahebhaaa"
OUTPUT=` echo $INPUT | sed 's/[^\n]/&\n/g' | sed '/^$/d' | sort | uniq
-c | tr -d ' \n'`
echo $OUTPUT

In the above code, we can split each of the piped commands as follows:

echo $INPUT # Print the input to stdout
sed 's/./&\n/g'

Append a newline character to each of the characters so that only one character appears in
one line. This is done to make the characters sortable by using the sort command. The sort
command can take only items delimited by newline.

ff sed '/^$/d': Here the last character is replaced as character +\n. Hence an extra
newline is formed and it will form a blank line at the end. This command removes the
blank line from the end.

ff sort: Since each character appears in each line, it can be sorted so that it can serve
as input to uniq.

ff uniq –c: This command prints each of the line with how many times they got
repeated(count).

ff tr –d ' \n': This removes the space characters and newline characters from the
input so that output can be produced in the given format.

Temporary file naming and random numbers
While writing shell scripts, we use often require to store temporary data. The most suitable
location to store temporary data is /tmp (which will be cleaned out by the system on reboot).
We can use two methods to generate standard filenames for temporary data.

Have a Good Command

82

You can split files into smaller files by specifying the split size as follows:

$ split -b 10k data.file

$ ls

data.file xaa xab xac xad xae xaf xag xah xai xaj

It will split data.file into many files, each of a 10k chunk. The chunks will be named in
the manner xab, xac, xad, and so on. This means it will have alphabetic suffixes. To use the
numeric suffixes, use an additional -d argument. It is also possible to specify a suffix length
using -a length as follows:

$ split -b 10k data.file -d -a 4

$ ls

data.file x0009 x0019 x0029 x0039 x0049 x0059 x0069 x0079

Instead of the k (kilobyte) suffix we can use M for MB, G for GB, c for byte, w for word, and so on.

There's more…
The split command has more options. Let's go through them.

Specifying filename prefix for the split files
The above split files have a filename prefix "x". We can also use our own filename prefix by
providing a prefix filename. The last command argument for the split command is PREFIX. It
is in the format:

$ split [COMMAND_ARGS] PREFIX

Let's run the previous command with the prefix filename for split files:

$ split -b 10k data.file -d -a 4 split_file

$ ls

data.file split_file0002 split_file0005 split_file0008 strtok.c

split_file0000 split_file0003 split_file0006 split_file0009

split_file0001 split_file0004 split_file0007

In order to split files based on number of lines in each split rather than chunk size,
use -l no_of_lines as follows:

$ split -l 10 data.file

Splits into files of 10 lines each.

There is another interesting utility called csplit. It can be used to split log file-based
specified conditions and string match options. Let's see how to work with it.

Chapter 2

83

csplit is a variant of the split utility. The split utility can only split files based on chunk
size or based on the number of lines. csplit makes the split based on context based split. It
can be used to split files based on existence of a certain word or text content.

Look at the example log:

$ cat server.log

SERVER-1

[connection] 192.168.0.1 success

[connection] 192.168.0.2 failed

[disconnect] 192.168.0.3 pending

[connection] 192.168.0.4 success

SERVER-2

[connection] 192.168.0.1 failed

[connection] 192.168.0.2 failed

[disconnect] 192.168.0.3 success

[connection] 192.168.0.4 failed

SERVER-3

[connection] 192.168.0.1 pending

[connection] 192.168.0.2 pending

[disconnect] 192.168.0.3 pending

[connection] 192.168.0.4 failed

We may need to split the files into server1.log, server2.log, and server3.log from
the contents for each SERVER in each file. This can be done as follows:

 $ csplit server.log /SERVER/ -n 2 -s {*} -f server -b "%02d.log" ; rm
server00.log

$ ls

server01.log server02.log server03.log server.log

The details of the command are as follows:

ff /SERVER/ is the line used to match a line by which the split is to be carried out.

ff /[REGEX]/ is the format. It copies from current line (first line) upto the matching line
that contains "SERVER" excluding match line.

ff {*} is used to specify to repeat splitting based on match upto the end of the file. By
using {integer}, we can specify no of times it is to be continued.

ff -s is the flag to make the command silent rather than printing other messages.

ff -n is used to specify the number of digits to be used as suffix. 01, 02, 03, and so on.

Chapter 2

85

${VAR%.*} can be interpreted as:

ff Remove the string match from the $VARIABLE for the wildcard pattern that appears
to the right-hand side of % (.* in the previous example). Evaluating from the right to
the left direction should make the wildcard match.

ff Let VAR=sample.jpg. Therefore, the wildcard match for .* from right to left is
.jpg. Thus it is removed from the $VAR string and the output will be "sample".

% is a non-greedy operation. It finds the minimal match for the wildcard from the right to
left. There is an operator %%, which is similar to %. But it is greedy in nature. That means it
matches the maximal string for the wildcard.

For example, we have:

VAR=hack.fun.book.txt

By using the % operator, we have:

$ echo ${VAR%.*}

The output will be: hack.fun.book.

The operator % performs a non-greedy match for .* from right to left (.txt).

By using the %% operator, we have:

$ echo ${VAR%%.*}

The output will be: hack

The %% operator matches greedy match for .* from right to left (.fun.book.txt).

In the second task, we have used the # operator to extract the extension from the filename. It
is similar to %. But it evaluates from left to right.

${VAR#*.} can be interpreted as:

Remove the string match from the $VARIABLE for the wildcard pattern match appears right
side to the # (*. in the above example). Evaluating from the left to right direction should make
the wildcard match.

Similarly, as in the case of %%, we have another greedy operator for #, which is ##.

It makes greedy matches by evaluating from left to right and removes the match string from
the specified variable.

Let's use this example:

VAR=hack.fun.book.txt

Have a Good Command

88

for img in *.jpg *.png in the above code will be expanded as follows:

for img in hack.jpg new.jpg next.jpg

We have initialized a variable count=1 in order to keep track of the image number. The
next step is to rename the file using the mv command. The new name of the file should be
formulated for renaming. ${img##*.} in the script parses the extension of the filename
currently in the loop (see the Slicing file names based on extension recipe for interpretation of
${img##*.}).

let count++ is used to increment the file number for each execution of loop.

You can see that error redirection (stderr) to /dev/null is done for the mv command using
the 2> operator. This is to stop the error messages being printed into the terminal.

Since we use *.png and *.jpg, if atleast one image for a wildcard match is not present,
the shell will interpret the wildcard itself as a string. In the above output, you can see that
.png files are not present. Hence it will take *.png as yet another filename and execute
mv *.png image-X.png, which will cause an error. An if statement with [$? –eq 0]
is used to check the exit status ($?). The value of $? will be 0 if the last executed command
is successful, else it returns non-zero. When the mv command fails, it returns non-zero and,
therefore, the message "Renaming file" will not be shown to the user, as well as the count will
not be incremented.

There are a variety of other ways to perform rename operations. Let's walk through a few
of them.

Renaming *.JPG to *.jpg:

$ rename *.JPG *.jpg

Replace space in the filenames with the "_" character as follows:

$ rename 's/ /_/g' *

's/ /_/g' is the replacement part in the filename and * is the wildcard for the target
files. It can be *.txt or any other wildcard pattern.

You can convert any filename of files from uppercase to lowercase and vice versa as follows:

$ rename 'y/A-Z/a-z/' *

$ rename 'y/a-z/A-Z/' *

In order to recursively move all the.mp3 files to a given directory, use:

$ find path -type f -name "*.mp3" -exec mv {} target_dir \;

Recursively rename all the files by replacing space with "_" character as follows:

$ find path -type f -exec rename 's/ /_/g' {} \;

Have a Good Command

90

Or, alternately, we can use the spell check, aspell, to check whether a word is in a dictionary
or not as follows:

#!/bin/bash
#Filename: aspellcheck.sh
word=$1

output=`echo \"$word\" | aspell list`

if [-z $output]; then
 echo $word is a dictionary word;
else
 echo $word is not a dictionary word;
fi

The aspell list command returns output text when the given input is not a dictionary
word, and does not output anything when a dictionary word is the input. A -z check ensures
whether $output is an empty string or not.

List all words in a file starting with a given word as follows:

$ look word filepath

Or alternately, use:

$ grep "^word" filepath

By default, if the filename argument is not given to the look command, it uses the default
dictionary (/usr/share/dict/words) and returns an output.

$ look word

When used like this it takes default dictionary as file

For example:

$ look android

android

android's

androids

Automating interactive input
Automating interactive input for command-line utilities are extremely useful for writing
automation tools or testing tools. There will be many situations when we deal with commands
that read inputs interactively. Interactive input is the input typed by the user only when
the command asks for some input. An example for execution of a command and supply of
interactive input is as follows:

Have a Good Command

92

We have used echo -e to produce the input sequence. If the input is large we can use an
input file and redirection operator to supply input.

$ echo -e "1\nhello\n" > input.data

$ cat input.data

1

hello

You can also manually craft the input file without echo commands by hand typing. For
example:

$./interactive.sh < input.data

This redirects interactive input data from a file.

If you are a reverse engineer, you may have played with buffer overflow exploits. To exploit
them we need to redirect shellcode like "\xeb\x1a\x5e\x31\xc0\x88\x46", which is
written in hex. These characters cannot be typed directly through keyboard since, keys for
these characters are not present in the keyboard. Therefore we should use:

echo -e "\xeb\x1a\x5e\x31\xc0\x88\x46"

This will redirect shellcode to a vulnerable executable.

We have described a method to automate interactive input programs by redirecting expected
input text through stdin (standard input). We are sending the input without checking the
input the program asks for. We are sending the input by expecting the program to ask input
in a specific (static) order. If the program asks input randomly or in a changing order, or
sometimes certain inputs are never asked, the above method fails. It will send wrong inputs to
different input prompts by the program. In order to handle dynamic input supply and provide
input by checking the input requirements by the program on runtime, we have a great utility
called expect. The expect command supplies correct input for the correct input prompt by
the program. Let's see how to use expect.

There's more...
Automation of interactive input can also be done using other methods. Expect scripting is
another method for automation. Let's go through it.

Automating with expect
The expect utility does not come by default with most of the common Linux distributions. You
have to install the expect package manually using package manager.

expect expects for a particular input prompt and sends data by checking message
in the input prompt.

Chapter 2

93

#!/usr/bin/expect
#Filename: automate_expect.sh
spawn ./interactive .sh
expect "Enter number:"
send "1\n"
expect "Enter name:"
send "hello\n"
expect eof

Run as:

$./automate_expect.sh

In this script:

ff spawn parameter specifies which command is to be automated

ff expect parameter provides the expected message

ff send is the message to be sent.

ff expect eof defines the end of command interaction

3
File In, File Out

In this chapter, we will cover:

ff Generating files of any size

ff Intersection and set difference (A-B) on text files

ff Finding and deleting duplicate files

ff Making directories for a long path

ff File permissions, ownership and sticky bit

ff Making files immutable

ff Generating blank files in bulk

ff Finding symbolic links and its target

ff Enumerating file type statistics

ff Loopback files and mounting

ff Creating ISO files, Hybrid ISO

ff Finding difference between files, patching

ff head and tail - printing the last or first 10 lines

ff Listing only directories - alternative methods

ff Fast command line directory navigation using pushd and popd

ff Counting the number of lines, words, and characters in a file

ff Printing directory tree

File In, File Out

96

Introduction
UNIX treats every object in the operating system as a file. We can find the files associated with
every action performed and can make use of them for different system- or process-related
manipulations. For example, the command terminal that we use is associated with a device
file. We can write to the terminal by writing to the corresponding device file for that specific
terminal. Files take different forms such as directories, regular files, block devices, character
special devices, symbolic links, sockets, named pipes, and so on. Filename, size, file type,
modification time, access time, change time, inode, links associated, and the filesystem the
file is on are all attributes and properties that files can have. This chapter deals with recipes
that handle any of the operations or properties related to files.

Generating files of any size
For various reasons, you may need to generate a file filled with random data. It may be for
creating a test file to perform tests, such as an application efficiency test that uses a large file
as input, or to test the splitting of files into many, or to create loopback filesystems (loopback
files are files that can contain a filesystem itself and these files can be mounted similar to a
physical device using the mount command). It is hard to create such files by writing specific
programs. So we use general utilities.

How to do it...
The easiest way to create a large sized file with a given size is to use the dd command. The dd
command clones the given input and writes an exact copy to the output. Input can be stdin,
a device file, a regular file, or so on. Output can be stdout, a device file, a regular file, and so
on. An example of the dd command is as follows:

$ dd if=/dev/zero of=junk.data bs=1M count=1

1+0 records in

1+0 records out

1048576 bytes (1.0 MB) copied, 0.00767266 s, 137 MB/s

The above command will create a file called junk.data that is exactly 1MB in size. Let's go
through the parameters: if stands for – input file, of stands for – output file, bs stands for
BYTES for a block, and count stands for the number of blocks of bs specified to be copied.

Here we are only creating a file 1MB in size by specifying bs as 1MB with a count of 1. If bs
was set to 2M and a count to 2, the total file size would be 4MB.

File In, File Out

98

How to do it...
Note that comm takes sorted files as input. Take a look at the following example:

$ cat A.txt

apple

orange

gold

silver

steel

iron

$ cat B.txt

orange

gold

cookies

carrot

$ sort A.txt -o A.txt ; sort B.txt -o B.txt

$ comm A.txt B.txt

apple

 carrot

 cookies

 gold

iron

 orange

silver

steel

The first column of the output contains lines that are in A.txt excluding common lines in
two files. The second column contains lines that are in B.txt excluding common lines. The
third column contains the common lines from A.txt and B.txt. Each of the columns are
delimited by using the tab (\t) character.

Some options are available to format the output as per our requirement. For example:

ff -1 removes first column from output

ff -2 removes the second column

ff -3 removes the third column

Chapter 3

99

In order to print the intersection of two files, we need to remove the first and second columns
and print the third column only as follows:

$ comm A.txt B.txt -1 -2

gold

orange

Print lines that are uncommon in two files as follows:

$ comm A.txt B.txt -3

apple

 carrot

 cookies

iron

silver

steel

Using the -3 argument in the comm command removes the third column from the output.
But, it writes column-1 and column-2 to the output. The column-1 contains the lines in A.txt
excluding the lines in B.txt. Similarly, column-2 has the lines from B.txt excluding the lines
in A.txt. As the output is a two-column output, it is not that useful. Columns have their fields
blank for each of the unique lines. Hence both columns will not have the content on the same
line. Either one of the two columns will have the content. In order to make it in a usable output
text format, we need to remove the blank fields and make two columns into a single column
output as follows:

apple

carrot

cookies

iron

silver

steel

In order to produce such an output, we need to remove the \t character at the beginning of
the lines. We can remove the \t character from the start of each line and unify the columns
into one as follows:

$ comm A.txt B.txt -3 | sed 's/^\t//'

apple

carrot

cookies

iron

silver

steel

Chapter 3

101

How to do it...
Generate some test files as follows:

$ echo "hello" > test ; cp test test_copy1 ; cp test test_copy2;

$ echo "next" > other;

test_copy1 and test_copy2 are copy of test

The code for the script to remove the duplicate files is as follows:

#!/bin/bash
#Filename: remove_duplicates.sh
#Description: Find and remove duplicate files and keep one sample of
each file.

ls -lS | awk 'BEGIN {
getline;getline;
name1=$8; size=$5
 }
{ name2=$8;
if (size==$5)
{

"md5sum "name1 | getline; csum1=$1;
"md5sum "name2 | getline; csum2=$1;
if (csum1==csum2)
{print name1; print name2 }

};
size=$5; name1=name2;
 }' | sort -u > duplicate_files

cat duplicate_files | xargs -I {} md5sum {} | sort | uniq -w 32 | awk
'{ print "^"$2"$" }' | sort -u > duplicate_sample

echo Removing..
comm duplicate_files duplicate_sample -2 -3 | tee /dev/stderr | xargs
rm
echo Removed duplicates files successfully.

Run it as:

$./remove_duplicates.sh

File In, File Out

102

How it works...
The commands above will find the copies of same file in a directory and remove all except one
copy of the file. Let's go through the code and see how it works. ls -lS will list the details of
the files sorted by file size in the current directory. awk will read the output of ls -lS and
perform comparisons on columns and rows of the input text to find out the duplicate files.

The logic behind the previous code is as follows:

ff We list the files sorted by file size so that the similarly sized files will be grouped
together. The files having the same file size are identified as a first step to finding files
that are the same. Next, we calculate the checksum of the files. If the checksums
match, then the files are duplicates and one set of the duplicates are removed.

ff The BEGIN{} block of awk is executed first before lines are read from the file.
Reading of lines takes place in the {} block and after the end of reading and
processing all lines, the END{} block statements are executed. The output of ls
-lS is:
total 16

4 -rw-r--r-- 1 slynux slynux 5 2010-06-29 11:50 other

4 -rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test

4 -rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test_copy1

4 -rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test_copy2

ff The output of the first line tells us the total number of files, which in this case is not
useful. We use getline to read the first line and then dump it. We need to compare
each of the lines and the next line for sizes. For that we read the first line explicitly
using getline and store name and size (which are the eighth and fifth columns).
Hence a line is read ahead using getline. Now, when awk enters the {} block (in
which the rest of the lines are read) that block is executed for every read offline. It
compares size obtained from the current line and the previously stored size kept in
the size variable. If they are equal, it means two files are duplicates by size. Hence
they are to be further checked by md5sum.

We have played some tricky ways to reach the solution.

The external command output can be read inside awk as:

"cmd"| getline

Then we receive the output in line $0 and each column output can be received in
$1,$2,..$n, and so on. Here we read the md5sum of files in the csum1 and csum2
variables. Variables name1 and name2 are used to store consecutive file names. If the
checksums of two files are the same, they are confirmed to be duplicates and are printed.

Chapter 3

105

The user is the owner of the file. The group is the collection of users (as defined by the
system) that are permitted some access to the file. Others are any entity other than the user
or group owner of the file.

Permissions of a file can be listed by using the ls -l command:

-rw-r--r-- 1 slynux slynux 2497 2010-02-28 11:22 bot.py

-rw-r--r-- 1 slynux slynux 16237 2010-02-06 21:42 c9.php

drwxr-xr-x 2 slynux slynux 4096 2010-05-27 14:31a.py

-rw-r--r-- 1 slynux slynux 539 2010-02-10 09:11 cl.pl

The first column of output specifies the following. The first letter corresponds to:

ff "-"—if it is a regular file.

ff "d"—if it is a directory

ff "c"—for a character device

ff "b"—for a block device

ff "l"—if it is a symbolic link

ff "s"—for a socket

ff "p"—for a pipe

The rest of the portions can be divided into three groups of three letters each (------). The
first --- three characters correspond the permissions of the user (owner), the second set
of three characters correspond to the permissions of the group, and the third set of three
characters correspond to the permissions of others. Each character in the nine character
sequence (nine permissions) specifies whether a permission is set or unset. If the permission
is set, a character appears in the corresponding position, else a '-' character appears in that
position, which means that the corresponding permission is unset (unavailable).

Let's take a look at what each of these three character set means for the user, group,
and others.

User:

Permission string: rwx------

The first letter in the three letters specifies whether the user has read permission for the file.
If the read permission is set for the user, the character r will appear as the first character.
Similarly, the second character specifies write (modify) permission (w) and the third character
specifies whether the user has execute (x) permission (the permission to run the file). The
execute permission is usually set for executable files. User has one more special permission
called setuid (S), which appears in the position of execute (x). The setuid permission enables
an executable file to be executed effectively as its owner, even when the executable is run by
another user.

File In, File Out

106

An example for a file with setuid permission set is as follows:

-rwS------

The read, write, and execute permissions are also applied to the directories. However, the
interpretation of read, write, and execute permissions are slightly different in the context of
directories as follows:

ff Read permission (r) for the directories enables to read the list of files and sub-
directories in the directory

ff Write permission (w) for a directory enables to create or remove files and directories
from a directory

ff Execute permission (x) specifies whether the access to the files and directories in a
directory is possible or not

Group:

Permission string: ---rwx---

The second set of three characters specifies the group permissions. The interpretation of
permissions rwx is the same as the permissions for user. Instead of setuid, the group has
a setgid (S) bit. It enables to run an executable file with an effective group as the owner
group. But the group, which initiates the command, may be different. An example of group
permission is as follows:

----rwS---

Others:

Permission string: ------rwx

Other permissions appear as the last three character set in the permission string. Others have
the same read, write, and execute permissions as the user and group. But it does not have
permission S (like setuid and setgid).

Directories have a special permission called sticky bit. When a sticky bit is set for a directory,
the user who created the directory can only delete the files in the directory even if group and
others have write permissions. The sticky bit appears in the position of execute character (x)
in the others permission set. It is represented as character t or T. t appears in the position of
x if the execute permission is unset and the sticky bit is set. If the sticky bit and the execute
permission is set, character T appears in the position of x.

For example:

------rwt , ------rwT

A typical example of a directory with sticky bit turned on by default is /tmp. The sticky bit is a
type of write-protection.

Chapter 3

107

In each of the ls -l output line, the string slynux slynux corresponds to the owned user
and owned group. Here the first 'slynux' is the user and the second 'slynux' is the group owner.

How to do it...
In order to set permissions for files, we use the chmod command.

Assume that we need to set permission: rwx rw- r--

This could be set using chmod as follows:

$ chmod u=rwx g=rw o=r filename

Here:

ff u = specifies user permissions

ff g = specifies group permissions

ff o = specifies others permissions

In order to add additional permissions on the current file, use + to add permission to user,
group or others and use – to remove the permissions. Add the executable permission to a file,
which is already having the permission rwx rw- r-- as follows:

$ chmod o+x filename

This command adds the x permission for others.

Add the executable permission to all permission categories that is, for user, group, and others
as follows:

$ chmod a+x filename

Here a means all.

In order to remove any permission, use -. For example:

$ chmod a-x filename

Permissions can also be set using octal numbers. Permissions are denoted by three-digit octal
numbers in which each of the digit corresponds to user, group, and other in the order.

Read, write, and execute permissions have unique octal numbers as follows:

ff r-- = 4

ff -w- = 2

ff --x = 1

File In, File Out

108

We can get the required combination of permissions by adding the octal values for the
required permission sets. For example:

ff rw- = 4 + 2 = 6

ff r-x = 4 + 1 = 5

The permission rwx rw- r-- in numeric method is as follows:

ff rwx = 4 + 2 + 1 = 7

ff rw- = 4 + 2 = 6

ff r-- = 4

Therefore, rwx rw- r-- is equal to 764, and the command for setting the permissions
using octal values is:

$ chmod 764 filename

There's more...
Let's go through some additional tasks that can be performed for files and directories.

Changing ownership
In order to change ownership of files, use the chown command as follows:

$ chown user.group filename

For example:

$ chown slynux.slynux test.sh

Here, slynux is the user as well as the group.

Setting the sticky bit
The sticky bit is an interesting type of permission applied to directories. By setting the sticky
bit, it restricts only the user owning it to delete the files even though group and others have
sufficient permissions.

In order to set the sticky bit, +t is applied on a directory with chmod as follows:

$ chmod a+t directory_name

Applying permissions recursively to files
Sometimes it may be required to recursively change the permissions of all the files and
directories inside the current directory. This can be done as follows:

$ chmod 777 . –R

The -R option specifies to apply change permission recursively.

Chapter 3

109

We have used "." to specify the path as the current working directory. It is equivalent to:

$ chmod 777 "$(pwd)" –R.

Sarath Lakshman 7 January 2011 8:41 PM

Applying ownership recursively
We can apply the ownership recursively by using the -R flag with the chown command as
follows:

$ chown user.group . -R

Running an executable as a different user (setuid)
Some executables need to be executed as a different user (other than the current user that
initiates the execution of the file), effectively, whenever they are executed, by using the file
path, such as ./executable_name. A special permission attribute for files called setuid
permission enables to effectively execute as the file owner when any other user runs the
program.

First change the ownership to the user to which it needs to be executed every time and login
as the owner user. Then, run the following command:

$ chmod +s executable_file

chown root.root executable_file

chmod +s executable_file

$./executable_file

Now it executes effectively as the root user every time.

setuid is restricted such that setuid won't work for scripts, but only for Linux ELF binaries.
This is a fix for ensuring security.

Making files immutable
Files on extended type file systems, which are common in Linux (for example, ext2, ext3, ext4,
and so on) can be made immutable. Certain type of file attributes help to set the immutable
attribute to the file. When a file is made immutable, any user or super user cannot remove
the file until the immutable attribute is removed from the file. We can easily find out the file
system type of any mounted partition by looking at the /etc/mtab file. The first column of
the file specifies the partition device path (for example, /dev/sda5) and the third column
specifies the file system type (for example, ext3). Let's see how to make files immutable.

File In, File Out

112

For example:

$ ln –l -s /var/www/ ~/web

This creates a symbolic link (called "web") in the logged in user's home directory. The link
points to /var/www/. This is seen in the output of the following command:

$ ls web

lrwxrwxrwx 1 slynux slynux 8 2010-06-25 21:34 web -> /var/www

web -> /var/www specifies that web points to /var/www.

For every symbolic link, the permission notation block (lrwxrwxrwx) starts with letter "l",
which represents a symlink.

So, in order to print symbolic links in the current directory, use the following command:

$ ls -l | grep "^l" | awk '{ print $8 }'

grep will filter the lines from the ls -l output such that it displays only lines starting with l.
^ is the start marker for the string. awk is used to print the eighth column. Hence it prints the
eighth column, which is the filename.

Another way to print symbolic links is to use find as follows:

$ find . -type l -print

In the above command, in the find argument type we have specified "l", which will instruct
the find command to search only for symbolic link files. The –print option is used to print
the list of symbolic links to the standard output (stdout). The path from which the file search
should begin is given as '.', which means it is the current directory.

In order to print the target of a symbolic link use the following command:

$ ls -l web | awk '{ print $10 }'

/var/www

The ls –l command lists many details with each of the line corresponding to the details of
a file. ls –l web lists the details for the file called web, which is a symbolic link. The tenth
column in the output of ls –l contains the link to which the file points to (if the file is a
symbolic link). Hence in order to find the target associated with a symbolic link, we can use
awk to print the tenth column from the file details listing (the output from ls –l).

Or, alternately, we can use the standard way of reading the target path for a given symbolic link
using the command readlink. It is the most preferred method and can be used as follows:

$ readlink web

/var/www

File In, File Out

114

 ftype=`file -b "$line"`
 let statarray["$ftype"]++;

done< <(find $path -type f -print)

echo ============ File types and counts =============
for ftype in "${!statarray[@]}";
do
 echo $ftype : ${statarray["$ftype"]}
done

The usage is as follows:

$./filestat.sh /home/slynux/temp

A sample output is shown below:

$./filetype.sh /home/slynux/programs

============ File types and counts =============

Vim swap file : 1

ELF 32-bit LSB executable : 6

ASCII text : 2

ASCII C program text : 10

How it works...
Here an associative array named statarray is declared so that it can take file type as file
indices and store the count of each file type in the array. let is used to increment the count
each time when a file type is encountered. The find command is used to get the list of file
paths recursively. A while loop is used to iterate line by line through the find command's
output. The input line ftype=`file -b "$line"` in the previous script is used to find out
the file type using the file command. The –b option specifies file command to print only file
type (without filename in the output). The file type output consists of more details, such as
image encoding used and resolution (in the case of an image file). But we are not interested
in more details, we need only the basic information. Details are comma separated as in the
following example:

$ file a.out -b

ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.15, not stripped

We need to extract only the "ELF 32-bit LSB executable" from the above details. Hence we use
cut –d, -f1, which specifies to use "," as the delimiter and print only the first field.

File In, File Out

116

Now format the 1GB file using the mkfs command as follows:

mkfs.ext4 loopbackfile.img

This command formats it to ext4. Check the file type using the following command:

$ sudo file loopbackfile.img

loopbackfile.img: Linux rev 1.0 ext4 filesystem data, UUID=c9d56c42-f8e6-
4cbd-aeab-369d5056660a (extents) (large files) (huge files)

Now you can mount the loopback file as follows:

$ sudo mkdir /mnt/loopback

mount -o loop loopback.img /mnt/loopback

The -o loop additional option is used to mount any loopback file systems.

This is the shortcut method. We do not attach it to any devices. But internally it attaches to a
device called /dev/loop1 or loop2.

We can do it manually as follows:

losetup /dev/loop1 loopback.img

mount /dev/loop1 /mnt/loopback

The first method cannot be used in all circumstances. Suppose we want to create a hard disk
file, and then want to partition it and mount a sub partition, we cannot use mount -o loop.
We have to use the second method. Partition a zeros dumped file as follows:

losetup /dev/loop1 loopback.img

fdisk /dev/loop1

Create partitions in loopback.img in order to mount the first partition as follows:

losetup -o 32256 /dev/loop2 loopback.img

Now /dev/loop2 represents first partition.

-o is the offset flag. 32256 bytes are for a DOS partition scheme. The first partition starts
after an offset of 32256 bytes from the start of the hard disk.

We can set up the second partition by specifying the required offset. After mounting we can
perform all regular operations as we can on physical devices.

In order to umount, use the following syntax:

umount mount_point

Chapter 3

117

For example:

umount /mnt/sda1

Or, alternately, we can use device file path as an argument to the umount command as:

umount /dev/sda1

Note that umount command should be executed as a root user since it is a privileged command.

There's more...
Let's explore more about additional mount options.

Mounting ISO files as loopback
An ISO file is an archive of any optical media. We can mount ISO files in the same way that we
mount physical discs by using loopback mounting.

A mount point is just a directory, which is used as access path to contents of a device through
a filesystem. We can even use a non-empty directory as the mount path. Then the mount path
will contain data from the devices rather than original contents until the device is unmounted.
For example:

mkdir /mnt/iso

mount -o loop linux.iso /mnt/iso

Now perform operations using files from /mnt/iso. ISO is a read-only filesystem.

Flush changes immediately with sync
While making changes on a mounted device, they are not immediately written to the physical
devices. They are only written when the buffer is full. But we can force writing of changes
immediately by using the sync command as follows:

sync

You should execute the sync command as root.

Creating ISO files, Hybrid ISO
An ISO image is an archive format that stores the exact storage images of optical disks like
CD ROMs, DVD ROMs, and so on. It is a common use case that we burn ISO images to optical
disks. But what if you want to create an image of an optical disk? For that we need to create
an ISO image from an optical disk. Many people rely on third-party utilities to create an ISO
image from an optical disk. However, using the command line, it's just a single line job.

File In, File Out

118

Also, many people don't distinguish between bootable and non-bootable optical disks.
Bootable disks are capable of booting from themselves and also running an operating system
or another product. Non-bootable ISOs cannot do that. The practice that people usually follow
is to copy files from a bootable CD-ROM and paste it to another location for keeping the copy.
After that, they use the copied directory to burn a CD ROM. But then, it will lose its bootable
nature. To preserve the bootable nature, it should be copied as a disk image or an ISO file.

Nowadays, most people use devices such as flash drives or hard disks as a replacement for
optical disks. When we write a bootable ISO to a flash drive it will no longer be bootable unless
we use a special hybrid ISO image designed specifically for the purpose.

This recipe will give you an insight on ISO images and manipulations.

Getting ready
As we described many times in this book, UNIX handles everything as files. Every device is a
file. Hence what if we want to copy an exact image of a device? We need to read all data from
it and write to another file, right?

As we know, the cat command can be used to read any data and redirection can be used
to write to a file.

How to do it...
In order to create an ISO image from /dev/cdrom use the following command:

cat /dev/cdrom > image.iso

This will work, it will read all the bytes from the device and write an ISO image.

Using the cat command for creating an ISO image is a tricky way to do it. But the most
preferred way to create an ISO image is to use the dd utility.

dd if=/dev/cdrom of=image.iso

mkisofs is a command used to create ISO system. The output file of mkisofs can be written
to CD ROM or DVD ROM using utilities like cdrecord. We can use mkisofs to create an ISO
file using a directory containing all the required files that should appear as contents of an ISO
file as follows:

$ mkisofs -V "Label" -o image.iso source_dir/

The –o option in the mkisofs command specifies the ISO file path. The source_dir is the
path of the directory that should be used as source content for the ISO and the –V option
specifies the label that should be used for the ISO file.

Chapter 3

119

There's more...
Let's learn more commands and techniques related to ISO files.

Hybrid ISO that boots off flash drive or hard disk
Usually, bootable ISO files cannot be transferred or written to a USB storage device and boot
the OS from the USB key. But special type of ISO files called hybrid ISOs can be flashed and
they are capable of booting from such devices.

We can convert standard ISO files into hybrid ISOs with the isohybrid command. The
isohybrid command is a new utility and most Linux distros don't include this by default. You
can download the syslinux package from: http://syslinux.zytor.com.

Have a look at the following command:

isohybrid image.iso

Using this command, we will have a hybrid ISO with the file name image.iso and it can be
written to USB storage devices.

Write the ISO to a USB storage by using the following command:

dd if=image.iso of=/dev/sdb1

Use the appropriate device instead of sdb1.

Or, you can use cat as follows:

cat image.iso > /dev/sdb1

Burning an ISO from command line
The cdrecord command is used to burn an ISO file into a CD ROM or DVD ROM. It can be
used to burn the image to the CD ROM as follows:

cdrecord -v dev=/dev/cdrom image.iso

Some extra options are as follows:

ff We can specify the burning speed with the –speed option as follows:
-speed SPEED

For example:
cdrecord –v dev=/dev/cdrom image.iso –speed 8

The speed is 8x, which is specified as 8.

File In, File Out

120

ff A CD ROM can be burned in multisessions such that we can burn data multiple
times on a disk. Multisession burning can be performed using the –multi option as
follows:
cdrecord –v dev=/dev/cdrom image.iso -multi

Playing with CD Rom tray
Try the following commands and have fun:

ff $ eject

This command is used to eject the tray.

ff $ eject -t

This command is used to close the tray.

Try to write a loop that opens the tray and closes the tray for "N" number of times.

Finding difference between files, patching
When multiple versions of a file are available, it is very useful when we can find the
differences between files being highlighted rather than comparing two files manually by
looking through them. If the files are of 1000s of lines, they are practically very difficult and
time consuming to compare. This recipe illustrates how to generate differences between
files highlighted with line numbers. When working on large files by multiple developers, when
one of them has made changes and these changes need to be shown to the other, sending
the entire source code to other developers is costly in consumption of space and time to
manually check the changes. Sending a different file is helpful. It consists of only lines that
are changed, added, or removed and line numbers are attached with it. This difference file is
called a patch file. We can add the changes specified in the patch file to the original source
code by using the patch command. We can also revert the changes by patching again. Let's
see how to do this.

How to do it...
The diff command utility is used to generate difference files.

In order to generate difference information, create the following files:

ff File 1: version1.txt
this is the original text
line2
line3
line4
happy hacking !

Chapter 3

121

ff File 2: version2.txt
this is the original text
line2
line4
happy hacking !
GNU is not UNIX

Non-unified diff output (without the –u flag) will be as follows:

$ diff version1.txt version2.txt

3d2

<line3

6c5

> GNU is not UNIX

The unified diff output will be as follows::

$ diff -u version1.txt version2.txt

--- version1.txt	 2010-06-27 10:26:54.384884455 +0530

+++ version2.txt	 2010-06-27 10:27:28.782140889 +0530

@@ -1,5 +1,5 @@

this is the original text

line2

-line3

line4

happy hacking !

-

+GNU is not UNIX

The -u option is used to produce unified output. Everyone prefers unified output, as the
unified output is more readable and because it is easier to interpret the difference that is
being made between two files.

In unified diff, the lines starting with + are the newly added lines and the lines starting with
– are the removed lines.

A patch file can be generated by redirecting the diff output to a file, as follows:

$ diff -u version1.txt version2.txt > version.patch

Now using the patch command we can apply changes to any of the two files. When applied to
version1.txt, we get version2.txt file. When applied to version2.txt, we receive
version1.txt.

Chapter 3

123

Another use case is to print lines from n-th to m-th lines.

The commands head and tail can help us do this.

How to do it...
The head command always reads the header portion of the input file.

Print first 10 lines as follows:

$ head file

Read the data from stdin as follows:

$ cat text | head

Specify the number of first lines to be printed as follows:

$ head -n 4 file

This command prints four lines.

Print all lines excluding the last N lines as follows:

$ head -n -N file

Note that it is negative N.

For example, to print all the lines except the last 5 lines use the following code:

$ seq 11 | head -n -5

1

2

3

4

5

6

The following command will, however, print from 1 to 5:

$ seq 100 | head -n 5

Printing by excluding the last lines is a very important usage of head. But people always look
at some other complex methods to do the same.

Print the last 10 lines of a file as follows:

$ tail file

File In, File Out

124

In order to read from stdin, you can use the following code:

$ cat text | tail

Print the last 5 lines as follows:

$ tail -n 5 file

In order to print all lines excluding first N lines, use the following code:

$ tail -n +(N+1)

For example, to print all lines except the first 5 lines, N + 1 = 6, therefore the command will be
as follows:

$ seq 100 | tail -n +6

This will print from 6 to 100.

One of the important usages of tail is to read a constantly growing file. Since new lines are
constantly appended to the end of the file, tail can be used to display all new lines as they
are written to the file. When we run tail simply, it will read the last 10 lines and exit. However,
by that time, new lines would have been appended to the file by some process. In order to
constantly monitor the growth of file, tail has a special option -f or --follow, which enables
tail to follow the appended lines and keep being updated with the data growth:

$ tail -f growing_file

An example of such growing files are logfiles. The command to monitor the growth of the files
would be:

tail -f /var/log/messages

or

$ dmesg | tail -f

We frequently run dmesg to look at kernel ring buffer messages either to debug the USB
devices or to look at the sdX (X is the minor number for the sd device). The tail -f can
also add a sleep interval -s, so that we can set the interval during which the file updates are
monitored.

tail has the interesting property that allows it to terminate after a given process ID dies.

Suppose we are reading a growing file, and a process Foo is appending data to the file,
tail -f should be executed until process Foo dies.

$ PID=$(pidof Foo)

$ tail -f file --pid $PID

When the process Foo terminates, tail also terminates.

Chapter 3

127

View the stack contents by using the following command:

$ dirs

/usr/src /var/www ~ /usr/share /etc

0 1 2 3 4

When you want to switch to any path in the list, number each path from 0 to n, then use the
path number for which we need to switch, for example:

$ pushd +3

It will rotate the stack and switch to the directory /usr/share.

pushd will always add paths to the stack, to remove paths from the stack use popd.

Remove a last pushed path and change directory to the next directory by using:

$ popd

Suppose the stack is /usr/src /var/www ~ /usr/share /etc such that the current
directory is /usr/src, popd will change the stack to /var/www ~ /usr/share /etc and
change the directory to /var/www.

In order to remove a specific path from the list, use popd +no.

The no is counted as 0 to n from left to right.

There's more...
Let's go through essential directory navigation practices.

Most frequently used directory switching
pushd and popd can be used when there are more than three directory paths are used. But
when you use only two locations, there is an alternative and easier way. That is cd -.

If the current path is /var/www, perform the following:

/var/www $ cd /usr/src

/usr/src $ # do something

Now to switch back to /var/www, you don't have to type it out again, but just execute:

/usr/src $ cd -

Now you can switch to /usr/src as follows:

/var/www $ cd -

File In, File Out

130

The tree command comes with many interesting options, let us look at few of them.

Highlight only files matched by pattern as follows:

$ tree path -P PATTERN # Pattern should be wildcard

For example:

$ tree PATH -P "*.sh" # Replace PATH with a directory path

|-- home

| |-- pactpub

| | `-- automate.sh

Highlight only files excluding the match pattern by using:

$ tree path -I PATTERN

In order to print size along with files and directories use the -h option as follows:

$ tree -h

There's more...
Let's see an interesting option that is available with the tree command.

HTML output for tree
It is possible to generate HTML output from the tree command. For example, use the
following command to create an HTML file with tree output.

$ tree PATH -H http://localhost -o out.html

Replace http://localhost with the URL where you would like to host the file. Replace
PATH with a real path for the base directory. For the current directory use '.' as the PATH.

The web page generated from the directory listing will look as follows:

4
Texting and Driving

In this chapter, we will cover:

ff A basic regular expression primer

ff Searching and mining "text" inside a file with grep

ff Column-wise cutting of a file with cut

ff Determining the frequency of words used in a given file

ff A basic sed primer

ff A basic awk primer

ff Replacing strings from a text or file

ff Compressing or decompressing JavaScript

ff Iterating through lines, words, and characters in a file

ff Merging multiple files as columns

ff Printing the nth word or column in a file or line

ff Printing text between line numbers or patterns

ff Checking palindrome strings with a script

ff Printing lines in the reverse order

ff Parsing e-mail address and URLs from text

ff Printing a set number of lines before or after a pattern in a file

ff Removing a sentence in a file containing a word

ff Implementing head, tail, and tac with awk

ff Text slicing and parameter operations

Chapter 4

133

regex Description Example
^ The start of the line marker. ^tux matches a string that

starts the line with tux.
$ The end of the line marker. tux$ matches strings of a

line that ends with tux.
. Matches any one character. Hack. matches Hack1,

Hacki but not Hack12,
Hackil, only one additional
character matches.

[] Matches any one of the characters enclosed in
[chars].

coo[kl] matches cook or
cool.

[^] Matches any one of the characters EXCEPT those
that are enclosed in [^chars].

9[^01] matches 92, 93
but not 91 or 90.

[-] Matches any character within the range specified
in [].

[1-5] matches any digits
from 1 to 5.

? The preceding item must match one or zero times. colou?r matches
color or colour but not
colouur.

+ The preceding item must match one or more
times.

Rollno-9+ matches
Rollno-99, Rollno-9
but not Rollno-.

* The preceding item must match zero or more
times.

co*l matches cl, col,
coool.

() Creates a substring from the regex match. ma(tri)?x matches max
or matrix.

{n} The preceding item must match n times. [0-9]{3} matches any
three-digit number. [0-9]
{3} can be expanded as:

[0-9][0-9][0-9].
{n,} Minimum number of times that the preceding item

should match.
[0-9]{2,} matches any
number, that is, two digits or
more.

{n, m} Specifies the minimum and maximum number of
times the preceding item should match.

[0-9]{2,5} matches any
number that is having two
digits to five digits.

| Alternation—one of the items on either of sides of
| should match.

Oct (1st | 2nd)
matches Oct 1st or Oct
2nd.

\ The escape character for escaping any of the
special characters mentioned above.

a\.b matches a.b but
not ajb. It ignores special
meaning of .by prefexing \.

Texting and Driving

134

A POSIX character class is a special meta sequence of the form [:...:] that can be used to
match a range of specified characters. The POSIX classes are as follows:

Regex Description Example
[:alnum:] Alphanumeric character [[:alnum:]]+

[:alpha:] Alphabet character (lowercase and uppercase) [[:alpha:]]{4}

[:blank:] Space and tab [[:blank:]]*

[:digit:] Digit [[:digit:]]?

[:lower:] Lowercase alphabet [[:lower:]]{5,}

[:upper:] Uppercase alphabet ([[:upper:]]+)?

[:punct:] Punctuation [[:punct:]]

[:space:] All whitespace characters including newline,
carriage return, and so on.

[[:space:]]+

Meta characters are a type of Perl-style regular expression that is supported by a subset of
text processing utilities. Not all of the utilities will support the following notations. But the
above character classes and regular expression are universally accepted.

Regex Description Example
\b Word boundary \bcool\b matches only cool not

coolant.
\B Non-word boundary cool\B matches coolant and not cool.
\d Single digit character b\db matches b2b not bcb.
\D Single non-digit b\Db matches bcb not b2b.
\w Single word character(alnum and _) \w matches 1 or a not &.
\W Single non-word character \w matches & not 1 or a.
\n Newline \n Matches a new line.
\s Single whitespace x\sx matches xx not xx.
\S Single non-space x\Sx matches xkx not xx.
\r Carriage return \r matches carriage return.

How it works...
The tables seen in the previous section are the key element tables for regular expressions.
By using the suitable keys from the tables, we can construct any suitable regular expression
string to match text according to the context. regex is a generic language to match text.
Therefore, we are not introducing any tools in this recipe. However, it follows in the other
recipes in this chapter.

Chapter 4

135

Let's see a few examples of text matching:

ff In order to match all words in a given text, we can write the regex as:
(?[a-zA-Z]+ ?)

"?" is the notation for optional space that precedes and follows a word. The
[a-zA-Z]+ notation represents one or more alphabet characters (a-z and A-Z).

ff To match an IP address, we can write the regex as:
[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}

or
[[:digit:]]{1,3}\.[[:digit:]]{1,3}\.[[:digit:]]{1,3}\.[[:digit:]]
{1,3}

We know that an IP address is in the form 192.168.0.2. It is in the form of four
integers (each from 0-255) separated by dots (for example, 192.168.0.2).
[0-9]or[:digit:] represents a match for digits 0-9. {1,3} matches one to three
digits and \.matches ".".

There's more...
Let's see how the special meanings of certain characters are specified in the regular
expressions.

Treatment of special characters
Regular expressions use some characters such as $, ^, ., *, +, {, and } as special characters.
But what if we want to use these characters as non-special characters (a normal text
character)? Let's see an example.

regex: [a-z]*.[0-9]

How is this interpreted?

It can be zero or more [a-z] ([a-z]*), then any one character (.), and then one character in
the set[0-9] such that it matches abcdeO9.

It can also be interpreted as one of [a-z], then a character *, then a character . (period),
and a digit such that it matches x*.8.

In order to overcome this problem, we precede the character with a forward slash "\" (doing
this is called "escaping the character"). Characters such as * that have multiple meanings are
prefixed with "\" to make them into a special meaning or to make them non special. Whether
special characters or non-special characters are to be escaped varies depending on the tool
that you are using.

Chapter 4

137

$ grep -E "[a-z]+"

Or:

$ egrep "[a-z]+"

In order to output only the matching portion of text in a file, use the –o option as follows:

$ echo this is a line. | grep -o -E "[a-z]+\."

line

Or:

$ echo this is a line. | egrep -o "[a-z]+\."

line.

In order to print all of the lines, except the line containing match_pattern, use:

$ grep -v match_pattern file

The –v option added to grep inverts the match results.

Count the number of lines in which a matching string or regex match appears in a file or text
as follows:

$ grep -c "text" filename

10

It should be noted that -c counts only the number of matching lines, not the number of times
a match is made. For example:

$ echo -e "1 2 3 4\nhello\n5 6" | egrep -c "[0-9]"

2

Even though there are 6 matching items, it prints 2 since there are only 2 matching lines.
Multiple matches in a single line are counted only once.

In order to count the number of matching items in a file, use the following hack:

$ echo -e "1 2 3 4\nhello\n5 6" | egrep -o "[0-9]" | wc -l

6

Print the line number of the match string as follows:

$ cat sample1.txt

gnu is not unix

linux is fun

bash is art

$ cat sample2.txt

Texting and Driving

138

planetlinux

$ grep linux -n sample1.txt

2:linux is fun

Or:

$ cat sample1.txt | grep linux -n

If multiple files are used, it will also print the filename with the result as follows:

$ grep linux -n sample1.txt sample2.txt

sample1.txt:2:linux is fun

sample2.txt:2:planetlinux

Print the character or byte offset at which a pattern matches as follows:

$ echo gnu is not unix | grep -b -o "not"

7:not

The character offset for a string in a line is a counter from 0 starting with the first character. In
the above example, "not" is at the seventh offset position (that is, not starts from the seventh
character in the line (gnu is not unix).

The –b option is always used with –o.

To search over many files and find out in which of the files a certain text matches use:

$ grep -l linux sample1.txt sample2.txt

sample1.txt

sample2.txt

The inverse of the –l argument is –L. The -L argument returns a list of non-matching files.

There's more...
We have used the basic usage examples for the grep command. But the grep command
comes with rich features. Let's go through the different options available along with grep.

Recursively search many files
To recursively search for a text over many directories of descendants use:

$ grep "text" . -R -n

In this command "." specifies the current directory.

Texting and Driving

140

Include and exclude files (wild card pattern) in grep search
grep can include or exclude files in which to search. We can specify include files or exclude
files using wild card patterns.

To search only .c and .cpp files recursively in a directory by excluding all other file types, use:

$ grep "main()" . -r --include *.{c,cpp}

Note that some{string1,string2,string3} expands as somestring1 somestring2
somestring3.

Exclude all README files in the search as follows:

$ grep "main()" . -r –-exclude "README"

To exclude directories use the --exclude-dir option.

To read a list of files to exclude from a file use --exclude-from FILE.

Using grep with xargs with zero-byte suffix
The xargs command is often used to provide a list of file names as a command-line
argument to another command. When filenames are used as command-line arguments, it is
recommended to use a zero-byte terminator for the file names instead of a space terminator.
Some of the file names can contain a space character and it will be misinterpreted as a
terminator and a single file name may be broken into two file names (for example, New file.
txt can be interpreted as two filenames New and file.txt). This problem can be avoided
by using a zero-byte suffix. We use xargs so as to accept stdin text from commands like
grep, find, and so on. Such commands can output text to the stdout with a zero-byte
suffix. In order to specify that the input terminator for filenames is zero byte (\0), we should
use –0 with xargs.

Create some test files as follows:

$ echo "test" > file1

$ echo "cool" > file2

$ echo "test" > file3

In the following command sequence, grep outputs filenames with a zero byte terminator (\0).
It is specified by using the –Z option with grep. xargs -0 reads the input and separates file
names with a zero byte terminator:

$ grep "test" file* -lZ | xargs -0 rm

Usually, -Z is used along with -l.

Chapter 4

141

Silent output for grep
The previously mentioned usages of grep return output in different formats. There are
some cases when we need to know whether a file contains the specified text or not. We have
to perform a test condition that returns true or false. It can be performed using the quiet
condition (-q). In quiet mode, the grep command does not write any output to the standard
output. Instead it runs the command and returns exit status based on success or failure.

We know that a command returns 0 if success and non-zero if failure.

Let's go through a script that makes uses of grep in quiet mode for testing whether a match
text appears in a file or not.

#!/bin/bash
#Filename: silent_grep.sh
#Description: Testing whether a file contain a text or not

if [$# -ne 2];
then
echo "$0 match_text filename"
fi

match_text=$1
filename=$2

grep -q $match_text $filename

if [$? -eq 0];
then
echo "The text exists in the file"
else
echo "Text does not exist in the file"
fi

The silent_grep.sh script can be run as follows by providing a match word (Student) and
a filename (student_data.txt) as the command argument:

$./silent_grep.sh Student student_data.txt

The text exists in the file

Print lines before and after text matches
Context-based printing is a one of the nice features of grep. Suppose a matching line for a
given match text is found, grep usually prints only the matching lines. But we may need "n"
lines after the matching lines or "n" lines before the matching line or both. It can be performed
using context line control in grep. Let's see how to do it.

Texting and Driving

142

In order to print three lines after a match, use the -A option:

$ seq 10 | grep 5 -A 3

5

6

7

8

In order to print three lines before the match, use the -B option:

$ seq 10 | grep 5 -B 3

2

3

4

5

Print three lines after and before the match, use the -C option as follows:

$ seq 10 | grep 5 -C 3

2

3

4

5

6

7

8

If there are multiple matches, each section is delimited by a line "--":

$ echo -e "a\nb\nc\na\nb\nc" | grep a -A 1

a

b

--

a

b

Column-wise cutting of a file with cut
We may need to cut text by column rather than row. Let's assume that we have a text file
containing student reports with columns, such as No, Name, Mark, and Percentage. We
need to extract only the name of students to another file or any n-th column in the file or
extract two or more columns. This recipe will illustrate how to perform this task.

Texting and Driving

144

To print multiple columns, provide a list of column numbers separated by commas as
argument to -f.

We can also complement the extracted fields using the --complement option. Suppose you
have many fields and you want to print all the columns except the third column, use:

$ cut -f3 –-complement student_data.txt

No Name Percent

1 Sarath 90

2 Alex 98

3 Anu 90

To specify the delimiter character for the fields, use the -d option as follows:

$ cat delimited_data.txt

No;Name;Mark;Percent

1;Sarath;45;90

2;Alex;49;98

3;Anu;45;90

$ cut -f2 -d";" delimited_data.txt

Name

Sarath

Alex

Anu

There's more...
The cut command has more options to specify the character sequences to be displayed as
columns. Let's go through the additional options available with cut.

Specifying range of characters or bytes as fields
Suppose that we don't rely on delimiters, but we need to extract fields such that we need to
define a range of characters (counting from 0 as start of line) as a field, such extractions are
possible with cut.

Let's see what notations are possible:

N- from N-th byte, character or field, to end of line
N-M from N-th to M-th (included) byte, character or field
-M from first to M-th (included) byte, character or field

Chapter 4

145

We use the above notations to specify fields as range of bytes or characters with the following
options:

ff -b for bytes

ff -c for characters

ff -f for defining fields

For example:

$ cat range_fields.txt

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxy

You can print the first to fifth characters as follows:

$ cut -c1-5 range_fields.txt

abcde

abcde

abcde

abcde

The first two characters can be printed as follows:

$ cut range_fields.txt -c-2

ab

ab

ab

ab

Replace -c with -b to count in bytes.

We can specify output delimiter while using with -c, -f and -b as:

--output-delimiter "delimiter string"

When multiple fields are extracted with -b or -c, --output-delimiter is a must. Else, you
cannot distinguish between fields if it is not provided. For example:

$ cut range_fields.txt -c1-3,6-9 --output-delimiter ","

abc,fghi

abc,fghi

abc,fghi

abc,fghi

Texting and Driving

148

To save the changes along with the substitutions to the same file, use the -i option. Most of
the users follow multiple redirections to save the file after making a replacement as follows:

$ sed 's/text/replace/' file > newfile

$ mv newfile file

However, it can be done in just one line, for example:

$ sed -i 's/text/replace/' file

The previously seen sed commands will replace the first occurrence of the pattern in each line.
But in order to replace every occurrence, we need to add the g parameter at the end as follows:

$ sed 's/pattern/replace_string/g' file

The /g suffix means that it will substitute every occurrence. However, sometimes we need not
replace the first "N" occurrences, but only the rest of them. There is a built-in option to ignore
the first "N" occurrences and replace from the"N+1th"occurrence onwards.

Have a look at the following commands:

$ echo this thisthisthis | sed 's/this/THIS/2g'

thisTHISTHISTHIS

$ echo this thisthisthis | sed 's/this/THIS/3g'

thisthisTHISTHIS

$ echo this thisthisthis | sed 's/this/THIS/4g'

thisthisthisTHIS

Place /Ng when it needs to start the replacement from the N-th occurrence.

/ in sed is a delimiter character. We can use any delimiter characters as follows:

sed 's:text:replace:g'

sed 's|text|replace|g'

When the delimiter character appears inside the pattern, we have to escape it using \ prefix as:

sed 's|te\|xt|replace|g'

\| is a delimiter appearing in the pattern replaced with escape.

There's more...
The sed command comes with numerous options for text manipulation. By combining the
options available with sed in logical sequences, many complex problems can be solved in one
line. Let's see some different options available with sed.

Chapter 4

149

Removing blank lines
Removing blank lines is a simple technique using sed to remove blank lines. Blanks can be
matched with regular expression ^$:

$ sed '/^$/d' file

/pattern/d will remove lines matching the pattern.

For blank lines, the line end marker appears next to the line start marker.

Matched string notation (&)
In sed we can use & as the matched string for the substitution pattern such that we can use
the matched string in replacement string.

For example:

$ echo this is an example | sed 's/\w\+/[&]/g'

[this] [is] [an] [example]

Here the regex \w\+ matches every word. Then we replace it with [&]. & corresponds to the
word that is matched.

Substring match notation (\1)
& is a string which corresponds to match string for the given pattern. But we can also match
the substrings of the given pattern. Let's see how to do it.

$ echo this is digit 7 in a number | sed 's/digit \([0-9]\)/\1/'

this is 7 in a number

It replaces digit 7 with 7. The substring matched is 7. \(pattern\)is used to match the
substring. The pattern is enclosed in () and is escaped with slashes. For the first substring
match, the corresponding notation is \1, for the second it is \2, and so on. Go through the
following example with multiple matches:

$ echo seven EIGHT | sed 's/\([a-z]\+\) \([A-Z]\+\)/\2 \1/'

EIGHT seven

([a-z]\+\) matches the first word and \([A-Z]\+\)matches the second word. \1 and
\2 are used for referencing them. This type of referencing is called back referencing. In the
replacement part, their order is changed as \2 \1 and hence it appears in reverse order.

Combination of multiple expressions
The combination of multiple sed using a pipe can be replaced as follows:

sed 'expression' | sed 'expression'

Chapter 4

151

How it works…
The awk command works in the following manner:

1.	 Execute the statements in the BEGIN { commands }block.

2.	 Read one line from the file or stdin, and execute pattern { commands }.
Repeat this step until the end of the file is reached.

3.	 When the end of the input stream is reached, execute the END { commands } block.

The BEGIN block is executed before awk starts reading lines from the input stream. It is an
optional block. The statements such as variable initialization, printing the output header for
an output table, and so on are common statements that are written in the BEGIN block.

The END block is similar to the BEGIN block. The END block gets executed when awk has
completed reading all the lines from the input stream. The statements like printing results
after analyzing all the values calculated for all the lines or printing the conclusion are the
commonly-used statements in the END block (for example, after comparing all the lines, print
the maximum number from a file). This is an optional block.

The most important block is the common commands with the pattern block. This block is also
optional. If this block is not provided, by default { print } gets executed so as to print each
of the lines read. This block gets executed for each line read by awk.

It is like a while loop for line read with provided statements inside the body of the loop.

When a line is read, it checks whether the provided pattern matches the line. The pattern can
be a regular expression match, conditions, range of lines match, and so on. If the current read
line matches with the pattern, it executes the statements enclosed in { }.

The pattern is optional. If pattern is not used, all the lines are matched and statements inside
{ } are executed.

Let's go through the following example:

$ echo -e "line1\nline2" | awk 'BEGIN{ print "Start" } { print } END{
print "End" } '

Start

line1

line2

End

When print is used without an argument, it will print the current line. There are two
important things to be kept in mind about print. When the arguments of the print are
separated by commas, they are printed with a space delimiter. Double-quotes are used as the
concatenation operator in the context of print in awk.

Chapter 4

153

For example:

$ echo -e "line1 f2 f3\nline2 f4 f5\nline3 f6 f7" | \

awk '{

print "Line no:"NR",No of fields:"NF, "$0="$0, "$1="$1,"$2="$2,"$3="$3

}'

Line no:1,No of fields:3 $0=line1 f2 f3 $1=line1 $2=f2 $3=f3

Line no:2,No of fields:3 $0=line2 f4 f5 $1=line2 $2=f4 $3=f5

Line no:3,No of fields:3 $0=line3 f6 f7 $1=line3 $2=f6 $3=f7

We can print last field of a line as print $NF, last but second as $(NF-1)and so on.

awk provides the printf()function with same syntax as in C. We can also use that instead
of print.

Let's see some basic awk usage examples.

Print the second and third field of every line as follows:

$awk '{ print $3,$2 }' file

In order to count the number of lines in a file, use the following command:

$ awk 'END{ print NR }' file

Here we only use the END block. NR will be updated on entering each line by awk with its line
number. When it reaches the end line it will have the value of last line number. Hence, in the
END block NR will have the value of last line number.

You can sum up all the numbers from each line of field 1 as follows:

$ seq 5 | awk 'BEGIN{ sum=0; print "Summation:" }

{ print $1"+"; sum+=$1 } END { print "=="; print sum }'

Summation:

1+

2+

3+

4+

5+

==

15

Texting and Driving

154

Passing a variable value from outside to awk
By using the -v argument, we can pass external values (other than from stdin) to awk
as follows:

$ VAR=10000

$ echo | awk -v VARIABLE=$VAR'{ print VARIABLE }'

1

There is a flexible alternate method to pass many variable values from outside awk.
For example:

$ var1="Variable1" ; var2="Variable2"

$ echo | awk '{ print v1,v2 }' v1=$var1 v2=$var2

Variable1 Variable2

When input is given through a file rather than standard input, use:

$ awk '{ print v1,v2 }' v1=$var1 v2=$var2 filename

In the above method, variables are specified as key-value pairs separated by space
(v1=$var1 v2=$var2) as command arguments to awk soon after the BEGIN, { } and END
blocks.

Reading a line explicitly using getline
Usually, grep reads all lines in a file by default. If you want to read one specific line, you can
use the getline function. Sometimes we may need to read the first line from the BEGIN block.

The syntax is: getline var

The variable var will contain the content for the line.

If the getline is called without an argument, we can access the content of the line by using
$0, $1, and $2.

For example:

$ seq 5 | awk 'BEGIN { getline; print "Read ahead first line", $0 } {
print $0 }'

Read ahead first line 1

2

3

4

5

Chapter 4

155

Filtering lines processed by awk with filter patterns
We can specify some conditions for lines to be processed. For example:

$ awk 'NR < 5' # Line number less than 5

$ awk 'NR==1,NR==4' #Line numbers from 1-5

$ awk '/linux/' # Lines containing the pattern linux (we can specify
regex)

$ awk '!/linux/' # Lines not containing the pattern linux

Setting delimiter for fields
By default, the delimiter for fields is space. We can explicitly specify a delimiter using
-F "delimiter":

$ awk -F: '{ print $NF }' /etc/passwd

Or:

awk 'BEGIN { FS=":" } { print $NF }' /etc/passwd

We can set the output fields separator by setting OFS="delimiter" in the BEGIN block.

Reading command output from awk
In the following code, echo will produces a single blank line. The cmdout variable will contain
output of command grep root /etc/passwd and it will print the line containing root:

The syntax for reading out of the 'command' in a variable 'output' is as follows:

"command" | getline output ;

For example:

$ echo | awk '{ "grep root /etc/passwd" | getline cmdout ; print cmdout
}'

root:x:0:0:root:/root:/bin/bash

By using getline we can read the output of external shell commands in a variable
called cmdout.

awk supports associative arrays, which can use text as the index.

Using loop inside awk
A for loop is available in awk. It has the format:

for(i=0;i<10;i++) { print $i ; }

Or:

for(i in array) { print array[i]; }

Chapter 4

157

$ p=pattern

$ r=replaced

$ echo "line containing apattern" | sed "s/$p/$r/g"

line containing a replaced

We can also use it without g in sed.

$ sed 's/PATTEN/replace_text/' filename

Then it will replace the occurrence of PATTERN first time it appears only. /g stands for global.
That means, it will replace every occurrence of PATTERN in the file.

There's more...
We have seen basic text replacement with sed. Let's see how to save the replaced text in the
source file itself.

Making replacement saved in the file
When a filename is passed to sed, it's output will be available to stdout. Instead of sending
the output stream into stdout, to make changes saved in the file, use the –i option as
follows:

$ sed 's/PATTERN/replacement/' -i filename

For example, replace all three-digit numbers with another specified number in a file as follows:

$ cat sed_data.txt

11 abc 111 this 9 file contains 111 11 88 numbers 0000

$ cat sed_data.txt | sed 's/\b[0-9]\{3\}\b/NUMBER/g'

11 abc NUMBER this 9 file contains NUMBER 11 88 numbers 0000

The above one-liner replaces three-digit numbers only.\b[0-9]\{3\}\b is the regular
expression used to match three-digit numbers. [0-9] is the range of digits, that is, from 0 to 9.
{3} is used for matching the preceding character thrice. \ in \{3\} is used to give a special
meaning for { and }. \b is the word boundary marker.

See also
ff Basic sed primer, explains the sed command

Chapter 4

159

4.	 Replace the following with substitutions:

�� "{ " with "{"

�� " }" with "}"

�� " (" with "("

�� ") " with ")"

�� ", " with ","

�� " ; " with ";" (we need to remove all extra spaces)

To decompress or to make the JavaScript more readable, we can use the following tasks:

1.	 Replace ";" with ";\n".

2.	 Replace "{" with "{\n" and "}" with "\n}".

How it works...
Let's compress the JavaScript by performing these tasks:

1.	 Remove the'\n' and '\t' characters:
tr -d '\n\t'

2.	 Remove extra spaces:
tr -s ' ' or sed 's/[]\+/ /g'

3.	 Remove comments:
sed 's:/*.**/::g'

�� : is used as a sed delimiter to avoid the need of escaping / since we need to
use /* and */

�� * in the sed is escaped as *

�� .* is used to match all text in between /* and */

4.	 Remove all spaces preceding and suffixing the {,},(,),;,:, and comma.
sed 's/ \?\([{}();,:]\) \?/\1/g'

The above sed statement can be parsed as follows:

ff / \?\([{}();,:]\) \?/ in the sed code is the match part and /\1 /g is the
replacement part.

Texting and Driving

160

ff \([{}();,:]\) is used to match any one character in the set [{ }() ; , :]
(inserted spaces for readability). \(and \) are group operators used to memorize the
match and back reference in the replacement part. (and) are escaped to give them a
special meaning as a group operator. \? precedes and follows the group operators.
It is to match the space character that may precede or follow any of the characters in
the set.

ff In the replacement part, the match string (that is, the combination of : a space
(optional), a character from the set, and again optional space) is replaced with
the character matched. It uses a back reference to the character matched and
memorized using the group operator (). Back-referenced characters refer to a group
match by using the \1 symbol.

Combine the above tasks using a pipe as follows:

$ catsample.js | \

tr -d '\n\t' | tr -s ' ' \

| sed 's:/*.**/::g' \

| sed 's/ \?\([{}();,:]\) \?/\1/g'

The output is as follows:

functionsign_out(){$("#loading").show();$.get("log_
in",{logout:"True"},function(){window.location="";});}

Let's write a decompression script for making obfuscated code readable as follows:

$ cat obfuscated.txt | sed 's/;/;\n/g; s/{/{\n\n/g; s/}/\n\n}/g'

Or:

$ cat obfuscated.txt | sed 's/;/;\n/g' | sed 's/{/{\n\n/g' | sed 's/}/\n\
n}/g'

In the previous command:

ff s/;/;\n/g replaces ; with \n;

ff s/{/{\n\n/g replaces { with {\n\n

ff s/}/\n\n}/g replaces } with \n\n}

See also
ff Translating with tr of Chapter 2, explains the tr command

ff Basic sed primer, explains the sed command

Texting and Driving

166

How to do it...
sed can remember previously matched regular expression patterns, thereby we can identify
whether duplicates of a character exists in a string. This capability to remember and reference
previously matched patterns is called back-reference.

Let's see how we can apply back-referencing in a simpler manner to solve the problem. For
example:

$ sed -n '/\(.\)\1/p' filename

\(.\) corresponds to memorize the one sub string inside (). Here it is . (period) which is also
sed's single character wildcard character.

\1 corresponds to the memory of the first match inside (). \2 corresponds to the second
match. Hence we can memorize many blocks enclosed in (). () appears as \(\) to give (
and) special meaning rather than just a character.

The previous sed statement will print any pattern matching two exactly the same.

The structure of all palindrome words is as follows:

ff Even number of characters and a sequence of characters concatenated with same
characters in reverse order

ff Odd number of characters with a sequence of characters concatenated with reverse
of same characters, but a common character in between the first sequence and its
reverse

Therefore, for matching both, we can keep an optional character in between while writing the
regular expression.

A sed regex matching a three-letter palindrome word will look like the following:

'/\(.\).\1/p'

We can place an extra character (.) in between the character sequence and its reverse
sequence.

Let's write a script that can match a palindrome string of any length as follows:

#!/bin/bash
#Filename: match_palindrome.sh
#Description: Find out palindrome strings from a given file

if [$# -ne 2];
then
echo "Usage: $0 filename string_length"
exit -1
fi

Chapter 4

167

filename=$1 ;

basepattern='/^\(.\)'

count=$(($2 / 2))

for((i=1;i<$count;i++))
do
basepattern=$basepattern'\(.\)' ;
done

if [$(($2 % 2)) -ne 0];
then
basepattern=$basepattern'.' ;
fi

for((count;count>0;count--))
do
basepattern=$basepattern'\'"$count" ;
done

basepattern=$basepattern'$/p'
sed -n "$basepattern" $filename

Use the dictionary file as the input file to get a list of palindrome words of a given string length.
For example:

$./match_palindrome.sh /usr/share/dict/british-english 4

noon

peep

poop

sees

How it works...
The working of the above script is simple. Most of the work is done to generate the sed script
for a regular expression and a back-reference string generation.

Let's go through its working with the help of some worked out examples.

ff If you want to match the character and back-reference it, we use \(.\) to match one
character and \1 to reference it. Hence, in order match a two letter palindrome and
print it, we use:
sed '/\(.\)\1/p'

Now, to specify that match string from the beginning of the line, we add line-begin
market ^ so that it will become sed'/^\(.\)\1/p'. /p is used to print the match.

Texting and Driving

168

ff If we want to match four character palindrome, we use:
sed '/^\(.\)\(.\)\2\1/p'

We have used two \(.\) to match two characters and remember them. Anything
enclosed within \(and \) will be remembered by sed and can be back-referenced.
\2\1 is used to back-reference in the reverse order of the matched characters.

In the above script, we have a variable called basepattern, which contains the sed script.

The pattern is generated using a for loop based on the number of characters in the
palindrome string.

Initially, basepattern is initialized as basepattern='/^\(.\)', which corresponds to a one-
character match. A for loop is used to concatenate \(.\) with basepattern for half the
number of times of the length of palindrome string. Again a for loop is used to concatenate
back-references in the reverse order (like '\4\3\2\1') half the number of times the length
of palindrome string. Finally, in order to support palindrome strings with odd length an
optional character (.) is enclosed between match regex and back-references.

Thus the sed palindrome match pattern is crafted. This crafted string is used to find out the
palindrome strings from the dictionary file.

In the above script, we have used sed pattern generation using for loops. Actually there is no
need to generate pattern separately. The sed command has its own loop implementation using
labels and goto. sed is a vast language. Palindrome check can be done in a single line using a
complex sed script. It is hard to explain it from scratch. Just try out the following script:

$ word="malayalam"

$ echo $word | sed ':loop ; s/^\(.\)\(.*\)\1/\2/; t loop; /^.\?$/{ s/.*/
PALINDROME/ ; q; }; s/.*/NOT PALINDROME/ '

PALINDROME

If you are interested in deep scripting with sed, refer to the complete sed and awk reference
book: sed & awk, Second Edition by Dale Dougherty and Arnold Robbins.

Try to parse the above one-line sed script to test the palindrome using the book.

There's more...
Now let's see some other options, or possibly some pieces of general information that are
relevant to this task.

Simplest and direct method
The simplest method to check whether a string is a palindrome is by using the rev command.

The rev command takes a file or stdin as input and prints the reversed string of every line.

Chapter 4

173

$ cat actress_rankings.txt | head -n 20

1 Keira Knightley

2 Natalie Portman

3 Monica Bellucci

4 Bonnie Hunt

5 Cameron Diaz

6 Annie Potts

7 Liv Tyler

8 Julie Andrews

9 Lindsay Lohan

10 Catherine Zeta-Jones

11 CateBlanchett

12 Sarah Michelle Gellar

13 Carrie Fisher

14 Shannon Elizabeth

15 Julia Roberts

16 Sally Field

17 TéaLeoni

18 Kirsten Dunst

19 Rene Russo

20 JadaPinkett

In order to print three lines after the match "Cameron Diaz" along with the matching line, use
the following command:

$ grep -A 3 "Cameron Diaz" actress_rankings.txt

5 Cameron Diaz

6 Annie Potts

7 Liv Tyler

8 Julie Andrews

In order to print the matched line and the preceding three lines, use the following command:

$ grep -B 3 "Cameron Diaz" actress_rankings.txt

2 Natalie Portman

3 Monica Bellucci

4 Bonnie Hunt

5 Cameron Diaz

Print the matched line and the two lines before and after the matched line as follows:

$ grep -C 2 "Cameron Diaz" actress_rankings.txt

3 Monica Bellucci

4 Bonnie Hunt

Texting and Driving

176

How to do it...
Let's see how different commands can be emulated with different basic text processing
commands, such as head, tail, and tac.

The head command reads the first ten lines of a file and prints them out:

$ awk 'NR <=10' filename

The tail command prints the last ten lines of a file:

$ awk '{ buffer[NR % 10] = $0; } END { for(i=1;i<11;i++) { print
buffer[i%10] } }' filename

The tac command prints the lines of input file in reverse order:

$ awk '{ buffer[NR] = $0; } END { for(i=NR; i>0; i--) { print buffer[i] }
}' filename

How it works...
In the implementation of head using awk, we print the lines in the input stream having a line
number less than or equal to 10. The line number is available using the special variable NR.

In the implementation of the tail command a hashing technique is used. The buffer array
index is determined by a hashing function NR % 10, where NR is the variable that contains the
Linux number of current execution. $0 is the line in the text variable. Hence % maps all the lines
having the same remainder in the hash function to a particular index of an array. In the END{}
block, it can iterate through ten index values of an array and print the lines stored in a buffer.

In the tac command emulation, it simply stores all the lines in an array. When it appears in
the END{} block, NR will be holding the line number of the last line. Then it is decremented in
a for loop until it reaches 1 and it prints the lines stored in each iteration statement.

See also
ff Basic awk primer, explains the awk command

ff head and tail - printing the last or first 10 lines of Chapter 3, explains the commands
head and tail

ff Sorting, unique and duplicates of Chapter 2, explains the uniq command

ff Printing lines in reverse order, explains the tac command

5
Tangled Web?

Not At All!

In this chapter, we will cover:

ff Downloading from a web page

ff Downloading a web page as formatted plain text

ff A primer on cURL

ff Accessing unread Gmail mails from the command line

ff Parsing data from a website

ff Creating an image crawler and downloader

ff Creating a web photo album generator

ff Building a Twitter command-line client

ff Define utility with Web backend

ff Finding broken links in a website

ff Tracking changes to a website

ff Posting to a web page and reading response

Chapter 5

181

It is also possible to specify multiple download URLs as follows:

$ wget URL1 URL2 URL3 ..

A file can be downloaded using wget using the URL as:

$ wget ftp://example_domain.com/somefile.img

Usually, files are downloaded with the same filename as in the URL and the download log
information or progress is written to stdout.

You can specify the output file name with the -O option. If the file with the specified filename
already exists, it will be truncated first and the downloaded file will be written to the specified
file.

You can also specify a different logfile path rather than printing logs to stdout by using
the -o option as follows:

$ wget ftp://example_domain.com/somefile.img -O dloaded_file.img -o log

By using the above command, nothing will be printed on screen. The log or progress will be
written to log and the output file will be dloaded_file.img.

There is a chance that downloads might break due to unstable Internet connections. Then we
can use the number of tries as an argument so that once interrupted, the utility will retry the
download that many times before giving up.

In order to specify the number of tries, use the -t flag as follows:

$ wget -t 5 URL

There's more...
The wget utility has several additional options that can be used under different problem
domains. Let's go through a few of them.

Restricted with speed downloads
When we have a limited Internet downlink bandwidth and many applications sharing the
internet connection, if a large file is given for download, it will suck all the bandwidth and
may cause other process to starve for bandwidth. The wget command comes with a built-in
option to specify the maximum bandwidth limit the download job can possess. Hence all the
applications can simultaneously run smoothly.

We can restrict the speed of wget by using the --limit-rate argument as follows:

$ wget --limit-rate 20k http://example.com/file.iso

In this command k (kilobyte) and m (megabyte) specify the speed limit.

Tangled Web? Not At All!

182

We can also specify the maximum quota for the download. It will stop when the quota is
exceeded. It is useful when downloading multiple files limited by the total download size. This
is useful to prevent the download from accidently using too much disk space.

Use --quota or –Q as follows:

$ wget -Q 100m http://example.com/file1 http://example.com/file2

Resume downloading and continue
If a download using wget gets interrupted before it is completed, we can resume the
download where we left off by using the -c option as follows:

$ wget -c URL

Using cURL for download
cURL is another advanced command-line utility. It is much more powerful than wget.

cURL can be used to download as follows:

$ curl http://slynux.org > index.html

Unlike wget, curl writes the downloaded data into standard output (stdout) rather than to a
file. Therefore, we have to redirect the data from stdout to the file using a redirection operator.

Copying a complete website (mirroring)
wget has an option to download the complete website by recursively collecting all the URL
links in the web pages and downloading all of them like a crawler. Hence we can completely
download all the pages of a website.

In order to download the pages, use the --mirror option as follows:

$ wget --mirror exampledomain.com

Or use:

$ wget -r -N -l DEPTH URL

-l specifies the DEPTH of web pages as levels. That means it will traverse only that much
number of levels. It is used along with –r (recursive). The -N argument is used to enable time
stamping for the file. URL is the base URL for a website for which the download needs to be
initiated.

Accessing pages with HTTP or FTP authentication
Some web pages require authentication for HTTP or FTP URLs. This can be provided by using
the --user and --password arguments:

$ wget –-user username –-password pass URL

Chapter 5

185

There's more...
In the previous sections we have learned how to download files and dump HTML pages to the
terminal. There several advanced options that come along with cURL. Let's explore more
on cURL.

Continue/Resume downloading
cURL has advanced resume download features to continue at a given offset unlike wget. It
helps to download portions of files by specifying an offset.

$ curl URL/file -C offset

The offset is an integer value in bytes.

cURL doesn't require us to know the exact byte offset if we want to resume downloading a file.
If you want cURL to figure out the correct resume point, use the -C - option, like this:

$ curl -C - URL

cURL will automatically figure out where to restart the download of the specified file.

Set referer string with cURL
Referer is a string in the HTTP header used to identify the page from which the user reaches
the current web page. When a user clicks on a link from web page A and it reaches web page
B, the referer header string in the page B will contain a URL of page A.

Some dynamic pages check the referer string before returning HTML data. For example, a web
page shows a Google logo attached page when a user navigates to a website by searching on
Google, and shows a different page when they navigate to the web page by manually typing
the URL.

The web page can write a condition to return a Google page if the referer is www.google.com
or else return a different page.

You can use --referer with the curl command to specify the referer string as follows:

$ curl –-referer Referer_URL target_URL

For example:

$ curl –-referer http://google.com http://slynux.org

Cookies with cURL
Using curl we can specify as well as store cookies encountered during HTTP operations.

In order to specify cookies, use the --cookie "COOKIES" option.

Tangled Web? Not At All!

186

Cookies should be provided as name=value. Multiple cookies should be delimited by a
semicolon ";". For example:

$ curl http://example.com –-cookie "user=slynux;pass=hack"

In order to specify a file to which cookies encountered are to be stored, use the --cookie-
jar option. For example:

$ curl URL –-cookie-jar cookie_file

Setting a user agent string with cURL
Some web pages that check the user-agent won't work if there is no user-agent specified. You
may have noticed that certain websites work well only in Internet Explorer (IE). If a different
browser is used, the website will show a message that it will work only on IE. This is because
the website checks for a user agent. You can set the user agent as IE with curl and see that
it returns a different web page in this case.

Using cURL it can be set using --user-agent or –A as follows:

$ curl URL –-user-agent "Mozilla/5.0"

Additional headers can be passed with cURL. Use –H "Header" to pass multiple additional
headers. For example:

$ curl -H "Host: www.slynux.org" -H "Accept-language: en" URL

Specifying bandwidth limit on cURL
When the available bandwidth is limited and multiple users are sharing the Internet, in order
to perform the sharing of bandwidth smoothly, we can limit the download rate to a specified
limit from curl by using the --limit-rate option as follows:

$ curl URL --limit-rate 20k

In this command k (kilobyte) and m (megabyte) specify the download rate limit.

Specifying the maximum download size
The maximum download file size for cURL can be specified using the --max-filesize
option as follows:

$ curl URL --max-filesize bytes

It will return a non-zero exit code if the file size exceeds. It will return zero if it succeeds.

Authenticating with cURL
HTTP authentication or FTP authentication can be done using cURL with the -u argument.

Chapter 5

187

The username and password can be specified using -u username:password. It is possible
to not provide a password such that it will prompt for password while executing.

If you prefer to be prompted for the password, you can do that by using only -u username.
For example:

$ curl -u user:pass http://test_auth.com

In order to be prompted for the password use:

$ curl -u user http://test_auth.com

Printing response headers excluding data
It is useful to print only response headers to apply many checks or statistics. For example, to
check whether a page is reachable or not, we don't need to download the entire page contents.
Just reading the HTTP response header can be used to identify if a page is available or not.

An example usage case for checking the HTTP header is to check the file size before
downloading. We can check the Content-Length parameter in the HTTP header to find out
the length of a file before downloading. Also, several useful parameters can be retrieved from
the header. The Last-Modified parameter enables to know the last modification time for
the remote file.

Use the –I or –head option with curl to dump only HTTP headers without downloading the
remote file. For example:

$ curl -I http://slynux.org

HTTP/1.1 200 OK

Date: Sun, 01 Aug 2010 05:08:09 GMT

Server: Apache/1.3.42 (Unix) mod_gzip/1.3.26.1a mod_log_bytes/1.2
mod_bwlimited/1.4 mod_auth_passthrough/1.8 FrontPage/5.0.2.2635 mod_
ssl/2.8.31 OpenSSL/0.9.7a

Last-Modified: Thu, 19 Jul 2007 09:00:58 GMT

ETag: "17787f3-3bb0-469f284a"

Accept-Ranges: bytes

Content-Length: 15280

Connection: close

Content-Type: text/html

See also
ff Posting to a web page and reading response

Tangled Web? Not At All!

190

How to do it...
Let's go through the command sequence used to parse details of actresses from the website:

$ lynx -dump http://www.johntorres.net/BoxOfficefemaleList.html | \ grep
-o "Rank-.*" | \

sed 's/Rank-//; s/\[[0-9]\+\]//' | \

sort -nk 1 |\

 awk '

{

 for(i=3;i<=NF;i++){ $2=$2" "$i }

 printf "%-4s %s\n", $1,$2 ;

}' > actresslist.txt

The output will be as follows:

Only 3 entries shown. All others omitted due to space limits

1 Keira Knightley

2 Natalie Portman

3 Monica Bellucci

How it works...
Lynx is a command-line web browser; it can dump the text version of the website as we
would see in a web browser rather than showing us the raw code. Hence it avoids the job of
removing the HTML tags. We parse the lines starting with Rank, using sed as follows:

sed 's/Rank-//; s/\[[0-9]\+\]//'

These lines could be then sorted according to the ranks. awk is used here to keep the spacing
between rank and the name uniform by specifying the width. %-4s specifies a four-character
width. All the fields except the first field are concatenated to form a single string as $2.

See also
ff Basic sed primer of Chapter 4, explains the sed command

ff Basic awk primer of Chapter 4, explains the awk command

ff Downloading a web page as formatted plain text, explains the lynx command

Tangled Web? Not At All!

192

How it works...
The above image downloader script parses an HTML page, strips out all tags except ,
then parses src="URL" from the tag and downloads them to the specified directory.
This script accepts a web page URL and the destination directory path as command-line
arguments. The first part of the script is a tricky way to parse command-line arguments.
The [$# -ne 3] statement checks whether the total number of arguments to the script
is three, else it exits and returns a usage example.

If it is 3 arguments, then parse the URL and the destination directory. In order to do that a
tricky hack is used:

for i in {1..4}

do

 case $1 in

 -d) shift; directory=$1; shift ;;

 *) url=${url:-$1}; shift;;

esac

done

A for loop is iterated four times (there is no significance to the number four, it is just to iterate
a couple of times to run the case statement).

The case statement will evaluate the first argument ($1), and matches -d or any other
string arguments that are checked. We can place the -d argument anywhere in the format as
follows:

$./img_downloader.sh -d DIR URL

Or:

$./img_downloader.sh URL -d DIR

shift is used to shift arguments such that when shift is called $1 will be assigned with
$2, when again called $1=$3 and so on as it shifts $1 to the next arguments. Hence we can
evaluate all arguments through $1 itself.

When -d is matched (-d)), it is obvious that the next argument is the value for the
destination directory. *) corresponds to default match. It will match anything other than
-d. Hence while iteration $1="" or $1=URL in the default match, we need to take $1=URL
avoiding "" to overwrite. Hence we use the url=${url:-$1} trick. It will return a URL value
if already not "" else it will assign $1.

egrep -o "]*>" will print only the matching strings, which are the
tags including their attributes. [^>]* used to match all characters except the closing >, that
is, .

Tangled Web? Not At All!

194

How to do it...
Let's write a Bash script to generate a HTML album page:

#!/bin/bash
#Filename: generate_album.sh
#Description: Create a photo album using images in current directory

echo "Creating album.."
mkdir -p thumbs
cat <<EOF > index.html
<html>
<head>
<style>

body
{
 width:470px;
 margin:auto;
 border: 1px dashed grey;
 padding:10px;
}

img
{
 margin:5px;
 border: 1px solid black;

}
</style>
</head>
<body>
<center><h1> #Album title </h1></center>
<p>
EOF

for img in *.jpg;
do
 convert "$img" -resize "100x" "thumbs/$img"
 echo "
" >> index.html
done

cat <<EOF >> index.html

</p>
</body>
</html>
EOF

echo Album generated to index.html

Tangled Web? Not At All!

196

How to do it...
Let's write a Bash script using the curl command to manipulate twitter APIs:

#!/bin/bash
#Filename: tweets.sh
#Description: Basic twitter client

USERNAME="PUT_USERNAME_HERE"
PASSWORD="PUT_PASSWORD_HERE"
COUNT="PUT_NO_OF_TWEETS"

if [["$1" != "read"]] && [["$1" != "tweet"]];
then
 echo -e "Usage: $0 send status_message\n OR\n $0 read\n"
 exit -1;
fi

if [["$1" = "read"]];
then
 curl --silent -u $USERNAME:$PASSWORD http://twitter.com/statuses/
friends_timeline.rss | \
grep title | \
tail -n +2 | \
head -n $COUNT | \
 sed 's:.*<title>\([^<]*\).*:\n\1:'

elif [["$1" = "tweet"]];
then
 status=$(echo $@ | tr -d '"' | sed 's/.*tweet //')
 curl --silent -u $USERNAME:$PASSWORD -d status="$status" http://
twitter.com/statuses/update.xml > /dev/null
 echo 'Tweeted :)'
fi

Run the script as follows:

$./tweets.sh tweet Thinking of writing a X version of wall command
"#bash"

Tweeted :)

$./tweets.sh read

bot: A tweet line

t3rm1n4l: Thinking of writing a X version of wall command #bash

Tangled Web? Not At All!

198

fi

if ["$2" = "-n"];
then
 limit=$3;
 let limit++
fi

word=$1

lynx -dump http://www.google.co.in/search?q=define:$word | \
awk '/Defini/,/Find defini/' | head -n -1 | sed 's:*:\n*:; s:^[]*::'
| \
grep -v "[[0-9]]" | \
awk '{
if (substr($0,1,1) == "*")
{ sub("*",++count".") } ;
print
} ' > /tmp/$$.txt

echo

if [$limit -ge 1];
then

cat /tmp/$$.txt | sed -n "/^1\./, /${limit}/p" | head -n -1

else

cat /tmp/$$.txt;

fi

Run the script as follows:

$./define.sh hack -n 2

1. chop: cut with a hacking tool

2. one who works hard at boring tasks

How it works...
We will look into the core part of the definition parser. Lynx is used to obtain the plain text
version of the web page. http://www.google.co.in/search?q=define:$word is
the URL for the web definition web page. Then we reduce the text between "Definitions on
web" and "Find definitions". All the definitions are occurring in between these lines of text
(awk '/Defini/,/Find defini/').

Tangled Web? Not At All!

202

Let's look at the output of the track_changes.sh script when changes are made to the web
page and when the changes are not made to the page:

ff First run:
$./track_changes.sh http://web.sarathlakshman.info/test.html

[First run] Archiving..

ff Second Run:
$./track_changes.sh http://web.sarathlakshman.info/test.html

Website has no changes

ff Third run after making changes to the web page:
$./test.sh http://web.sarathlakshman.info/test_change/test.html

Changes:

--- last.html	2010-08-01 07:29:15.000000000 +0200

+++ recent.html	 2010-08-01 07:29:43.000000000 +0200

@@ -1,3 +1,4 @@

<html>

+added line :)

<p>data</p>

</html>

How it works...
The script checks whether the script is running for the first time using [! -e "last.html"
];. If last.html doesn't exist, that means it is the first time and hence the webpage must
be downloaded and copied as last.html.

If it is not the first time, it should download the new copy (recent.html) and check the
difference using the diff utility. If changes are there, it should print the changes and finally it
should copy recent.html to last.html.

See also
ff A primer on cURL, explains the curl command

6
The Backup Plan

In this chapter, we will cover:

ff Archiving with tar

ff Archiving with cpio

ff Compressing with gunzip (gzip)

ff Compressing with bunzip (bzip)

ff Compressing with lzma

ff Archiving and compressing with zip

ff Heavy compression squashfs fileystem

ff Encrypting files and folders (with standard algorithms)

ff Backup snapshots with rsync

ff Version controlled backups with git

ff Cloning disks with dd

Introduction
Taking snapshots and backups of data are regular tasks we come across. When it comes
to a server or large data storage systems, regular backups are important. It is possible
to automate backups via shell scripting. Archiving and compression seems to find usage
in the everyday life of a system admin or a regular user. There are various compression
formats that can be used in various ways so that best results can be obtained. Encryption is
another task that comes under frequent usage for protection of data. In order to reduce the
size of encrypted data, usually files are archived and compressed before encrypting. Many
standard encryption algorithms are available and it can be handled with shell utilities. This
chapter walks through different recipes for creating and maintaining files or folder archives,
compression formats, and encrypting techniques with shell. Let's go through the recipes.

Chapter 6

207

Append option: -r

In order to append a file into an already existing archive use:

$ tar -rvf original.tar new_file

List the files in an archive as follows:

$ tar -tf archive.tar

yy/lib64/

yy/lib64/libfakeroot/

yy/sbin/

In order to print more details while archiving or listing, use the -v or the –vv flag. These flags
are called verbose (v), which will enable to print more details on the terminal. For example,
by using verbose you could print more details, such as the file permissions, owner group,
modification date, and so on.

For example:

$ tar -tvvf archive.tar

drwxr-xr-x slynux/slynux 0 2010-08-06 09:31 yy/

drwxr-xr-x slynux/slynux 0 2010-08-06 09:39 yy/usr/

drwxr-xr-x slynux/slynux 0 2010-08-06 09:31 yy/usr/lib64/

Extracting files and folders from an archive
The following command extracts the contents of the archive to the current directory:

$ tar -xf archive.tar

The -x option stands for extract.

When –x is used, the tar command extracts the contents of the archive to the current
directory. We can also specify the directory where the files need to be extracted by using the
–C flag, as follows:

$ tar -xf archive.tar -C /path/to/extraction_directory

The command extracts the contents of an archive to insert image a specified directory. It
extracts the entire contents of the archive. We can also extract only a few files by specifying
them as command arguments:

$ tar -xvf file.tar file1 file4

The command above extracts only file1 and file4, and ignores other files in the archive.

The Backup Plan

208

stdin and stdout with tar
While archiving, we can specify stdout as the output file so that another command appearing
through a pipe can read it as stdin and then do some process or extract the archive.

This is helpful in order to transfer data through a Secure Shell (SSH) connection (while on a
network). For example:

$ mkdir ~/destination

$ tar -cf - file1 file2 file3 | tar -xvf - -C ~/destination

In the example above, file1, file2, and file3 are combined into a tarball and then
extracted to ~/destination. In this command:

ff -f specifies stdout as the file for archiving (when the -c option used)

ff -f specifies stdin as the file for extracting (when the -x option used)

Concatenating two archives
We can easily merge multiple tar files with the -A option.

Let's pretend we have two tarballs: file1.tar and file2.tar. We can merge the contents
of file2.tar to file1.tar as follows:

$ tar -Af file1.tar file2.tar

Verify it by listing the contents:

$ tar -tvf file1.tar

Updating files in an archive with timestamp check
The append option appends any given file to the archive. If the same file is inside the archive
is given to append, it will append that file and the archive will contain duplicates. We can
use the update option -u to specify only append files that are newer than the file inside the
archive with the same name.

$ tar -tf archive.tar

filea

fileb

filec

This command lists the files in the archive.

In order to append filea only if filea has newer modification time than filea inside
archive.tar, use:

$ tar -uvvf archive.tar filea

Chapter 6

209

Nothing happens if the version of filea outside the archive and the filea inside
archive.tar have the same timestamp.

Use the touch command to modify the file timestamp and then try the tar command again:

$ tar -uvvf archive.tar filea

-rw-r--r-- slynux/slynux 0 2010-08-14 17:53 filea

The file is appended since its timestamp is newer than the one inside the archive.

Comparing files in archive and file system
Sometimes it is useful to know whether a file in the archive and a file with the same filename
in the filesystem are the same or contain any differences. The –d flag can be used to print the
differences:

$ tar -df archive.tar filename1 filename2 ...

For example:

$ tar -df archive.tar afile bfile

afile: Mod time differs

afile: Size differs

Deleting files from archive
We can remove files from a given archive using the –delete option. For example:

$ tar -f archive.tar --delete file1 file2 ..

Let's see another example:

$ tar -tf archive.tar

filea

fileb

filec

Or, we can also use the following syntax:

$ tar --delete --file archive.tar [FILE LIST]

For example:

$ tar --delete --file archive.tar filea

$ tar -tf archive.tar

fileb

filec

Chapter 6

213

$ ls

filename.gz

Then it will remove the file and produce a compressed file called filename.gz.

Extract a gzip compressed file as follows:

$ gunzip filename.gz

It will remove filename.gz and produce an uncompressed version of filename.gz.

In order to list out the properties of a compressed file use:

$ gzip -l test.txt.gz

compressed uncompressed ratio uncompressed_name

 35 6 -33.3% test.txt

The gzip command can read a file from stdin and also write a compressed file into
stdout.

Read from stdin and out as stdout as follows:

$ cat file | gzip -c > file.gz

The -c option is used to specify output to stdout.

We can specify the compression level for gzip. Use --fast or the --best option to provide
low and high compression ratios, respectively.

There's more...
The gzip command is often used with other commands. It also has advanced options to
specify the compression ratio. Let's see how to work with these features.

Gzip with tarball
We usually use gzip with tarballs. A tarball can be compressed by using the –z option passed
to the tar command while archiving and extracting.

You can create gzipped tarballs using the following methods:

ff Method - 1
$ tar -czvvf archive.tar.gz [FILES]

Or:
$ tar -cavvf archive.tar.gz [FILES]

The -a option specifies that the compression format should automatically be
detected from the extension.

The Backup Plan

214

ff Method - 2

First, create a tarball:
$ tar -cvvf archive.tar [FILES]

Compress it after tarballing as follows:
$ gzip archive.tar

If many files (a few hundreds) are to be archived in a tarball and need to be compressed, we
use Method - 2 with few changes. The issue with giving many files as command arguments
to tar is that it can accept only a limited number of files from the command line. In order
to solve this issue, we can create a tar file by adding files one by one using a loop with an
append option (-r) as follows:

FILE_LIST="file1 file2 file3 file4 file5"

for f in $FILE_LIST;
do
tar -rvf archive.tar $f
done

gzip archive.tar

In order to extract a gzipped tarball, use the following:

ff -x for extraction

ff -z for gzip specification

Or:

$ tar -xavvf archive.tar.gz -C extract_directory

In the above command, the -a option is used to detect the compression format automatically.

zcat – reading gzipped files without extracting
zcat is a command that can be used to dump an extracted file from a .gz file to stdout
without manually extracting it. The .gz file remains as before but it will dump the extracted
file into stdout as follows:

$ ls

test.gz

$ zcat test.gz

A test file

file test contains a line "A test file"

$ ls

test.gz

The Backup Plan

216

We usually use bzip2 with tarballs. A tarball can be compressed by using the -j option
passed to the tar command while archiving and extracting.

Creating a bzipped tarball can be done by using the following methods:

ff Method - 1
$ tar -cjvvf archive.tar.bz2 [FILES]

Or:
$ tar -cavvf archive.tar.bz2 [FILES]

The -a option specifies to automatically detect compression format from the extension.

ff Method - 2

First create the tarball:
$ tar -cvvf archive.tar [FILES]

Compress it after tarballing:
$ bzip2 archive.tar

If we need to add hundreds of files to the archive, the above commands may fail. To fix that
issue, use a loop to append files to the archive one by one using the –r option. See the similar
section from the recipe, Compressing with gunzip (gzip).

Extract a bzipped tarball as follows:

$ tar -xjvvf archive.tar.bz2 -C extract_directory

In this command:

ff -x is used for extraction

ff -j is for bzip2 specification

ff -C is for specifying the directory to which the files are to be extracted

Or, you can use the following command:

$ tar -xavvf archive.tar.bz2 -C extract_directory

-a will automatically detect the compression format.

There's more...
bunzip has several additional options to carry out different functions. Let's go through few
of them.

Keeping input files without removing them
While using bzip2 or bunzip2, it will remove the input file and produce a compressed output
file. But we can prevent it from removing input files by using the –k option.

The Backup Plan

218

In order to read from stdin and read out as stdout use:

$ cat file | lzma -c > file.lzma

-c is used to specify output to stdout.

We usually use lzma with tarballs. A tarball can be compressed by using the --lzma option
passed to the tar command while archiving and extracting.

There are two methods to create a lzma tarball:

ff Method - 1
$ tar -cvvf --lzma archive.tar.lzma [FILES]

Or:
$ tar -cavvf archive.tar.lzma [FILES]

The -a option specifies to automatically detect the compression format from the
extension.

ff Method - 2

First, create the tarball:
$ tar -cvvf archive.tar [FILES]

Compress it after tarballing:
$ lzma archive.tar

If we need to add hundreds of files to the archive, the above commands may fail. To fix that
issue, use a loop to append files to the archive one by one using the –r option. See the
similar section from the recipe, Compressing with gunzip (gzip).

There's more...
Let's go through additional options associated with lzma utilities

Extracting an lzma tarball
In order to extract a tarball compressed with lzma compression to a specified directory, use:

$ tar -xvvf --lzma archive.tar.lzma -C extract_directory

In this command, -x is used for extraction. --lzma specifies the use of lzma to
decompress the resulting file.

Or, we could also use:

$ tar -xavvf archive.tar.lzma -C extract_directory

The -a option specifies to automatically detect the compression format from the extension.

The Backup Plan

220

Unlike lzma, gzip, or bzip2, zip won't remove the source file after archiving. zip is similar
to tar in that respect, but zip can compress files where tar does not. However, zip adds
compression too.

In order to extract files and folders in a ZIP file, use:

$ unzip file.zip

It will extract the files without removing filename.zip (unlike unlzma or gunzip).

In order to update files in the archive with newer files in the filesystem, use the -u flag:

$ zip file.zip -u newfile

Delete a file from a zipped archive, by using –d as follows:

$ zip -d arc.zip file.txt

In order to list the files in an archive use:

$ unzip -l archive.zip

squashfs – the heavy compression filesystem
squashfs is a heavy-compression based read-only filesystem that is capable of compressing
2 to 3GB of data onto a 700 MB file. Have you ever thought of how Linux Live CDs work?
When a Live CD is booted it loads a complete Linux environment. Linux Live CDs make use
of a read-only compressed filesystem called squashfs. It keeps the root filesystem on a
compressed filesystem file. It can be loopback mounted and files can be accessed. Thus when
some files are required by processes, they are decompressed and loaded onto the RAM and
used. Knowledge of squashfs can be useful when building a custom live OS or when required
to keep files heavily compressed and to access them without entirely extracting the files.
For extracting a large compressed file, it will take a long time. However, if a file is loopback
mounted, it will be very fast since the required portion of the compressed files are only
decompressed when the request for files appear. In regular decompression, all the data is
decompressed first. Let's see how we can use squashfs.

Getting ready
If you have an Ubuntu CD just locate a .squashfs file at CDRom ROOT/casper/
filesystem.squashfs. squashfs internally uses compression algorithms such as gzip
and lzma. squashfs support is available in all of the latest Linux distros. However, in order
to create squashfs files, an additional package squashfs-tools needs to be installed from
package manager.

Chapter 6

221

How to do it...
In order to create a squashfs file by adding source directories and files, use:

$ mksquashfs SOURCES compressedfs.squashfs

Sources can be wildcards, or file, or folder paths.

For example:

$ sudo mksquashfs /etc test.squashfs

Parallel mksquashfs: Using 2 processors

Creating 4.0 filesystem on test.squashfs, block size 131072.

[=======================================] 1867/1867 100%

More details will be printed on terminal. They are limited to save space

In order to mount the squashfs file to a mount point, use loopback mounting as follows:

mkdir /mnt/squash

mount -o loop compressedfs.squashfs /mnt/squash

You can copy contents by accessing /mnt/squashfs.

There's more...
The squashfs file system can be created by specifying additional parameters. Let's go
through the additional options.

Excluding files while creating a squashfs file
While creating a squashfs file, we can exclude a list of files or a file pattern specified using
wildcards.

Exclude a list of files specified as command-line arguments by using the -e option. For
example:

$ sudo mksquashfs /etc test.squashfs -e /etc/passwd /etc/shadow

The –e option is used to exclude passwd and shadow files.

It is also possible to specify a list of exclude files given in a file with –ef as follows:

$ cat excludelist

/etc/passwd

/etc/shadow

$ sudo mksquashfs /etc test.squashfs -ef excludelist

If we want to support wildcards in excludes lists, use -wildcard as an argument.

Chapter 6

223

In order to encode a binary file into Base64 format, use:
$ base64 filename > outputfile

Or:
$ cat file | base64 > outputfile

It can read from stdin.
Decode Base64 data as follows:
$ base64 -d file > outputfile

Or:
$ cat base64_file | base64 -d > outputfile

ff md5sum and sha1sum

md5sum and sha1sum are unidirectional hash algorithms, which cannot be reversed
to form the original data. These are usually used to verify the integrity of data or for
generating a unique key from a given data. For every file it generates a unique key by
analyzing its content.
$ md5sum file

8503063d5488c3080d4800ff50850dc9 file

$ sha1sum file

1ba02b66e2e557fede8f61b7df282cd0a27b816b file

These types of hashes are ideal for storing passwords. Passwords are stored as its
hashes. When a user wants to authenticate, the password is read and converted to
the hash. Then hash is compared to the one that is stored already. If they are same,
the password is authenticated and access is provided, else it is denied. Storing
original password strings is risky and poses a security risk of exposing the password.

ff Shadowlike hash (salted hash)

Let's see how to generate shadow like salted hash for passwords.
The user passwords in Linux are stored as its hashes in the /etc/shadow file. A
typical line in /etc/shadow will look like this:
test:6fG4eWdUi$ohTKOlEUzNk77.4S8MrYe07NTRV4M3LrJnZP9p.qc1bR5c.
EcOruzPXfEu1uloBFUa18ENRH7F70zhodas3cR.:14790:0:99999:7:::

In this line 6fG4eWdUi$ohTKOlEUzNk77.4S8MrYe07NTRV4M3LrJnZP9p.
qc1bR5c.EcOruzPXfEu1uloBFUa18ENRH7F70zhodas3cR is the shadow hash
corresponding to its password.
In some situations, we may need to write critical administration scripts that may need
to edit passwords or add users manually using a shell script. In that case we have to
generate a shadow password string and write a similar line as above to the shadow
file. Let's see how to generate a shadow password using openssl.

The Backup Plan

224

Shadow passwords are usually salted passwords. SALT is an extra string used to
obfuscate and make the encryption stronger. The salt consists of random bits that are
used as one of the inputs to a key derivation function that generates the salted hash
for the password.
For more details on salt, see the Wikipedia page http://en.wikipedia.org/
wiki/Salt_(cryptography).
$ openssl passwd -1 -salt SALT_STRING PASSWORD

1SALT_STRING$323VkWkSLHuhbt1zkSsUG.

Replace SALT_STRING with a random string and PASSWORD with the password you
want to use.

Backup snapshots with rsync
Backing up data is something that most sysadmins need to do regularly. We may need to
backup data in a web server or from remote locations. rsync is a command that can be
used to synchronize files and directories from one location to another while minimizing data
transfer using file difference calculations and compression. The advantage of rsync over the
cp command is that rsync uses strong difference algorithms. Also, it supports data transfer
across networks. While making copies, it compares the files in the original and destination
locations and will only copy the files that are newer. It also supports compression, encryption,
and a lot more. Let's see how we can work with rsync.

How to do it...
In order to copy a source directory to a destination (to create a mirror) use:

$ rsync -av source_path destination_path

In this command:

ff -a stands for archiving

ff -v (verbose) prints the details or progress on stdout

The above command will recursively copy all the files from the source path to the destination
path. We can specify paths as remote or localhost paths.

It can be in the format /home/slynux/data, slynux@192.168.0.6:/home/backups/
data, and so on.

/home/slynux/data specifies the absolute path in the machine in which the rsync
command is executed. slynux@192.168.0.6:/home/backups/data specifies that the
path is/home/backups/data in the machine with IP address 192.168.0.6 and is logged
in as user slynux.

The Backup Plan

226

This command copies the source (/home/test) to an existing folder called backups.

$ rsync -av /home/test /home/backups

This command copies the source (/home/test) to a directory named backups by creating
that directory.

There's more...
The rsync command has several additional functionalities that can be specified using its
command-line options. Let's go through them.

Excluding files while archiving with rsync
Some files need not be updated while archiving to a remote location. It is possible to tell rsync
to exclude certain files from the current operation. Files can be excluded by two options:

--exclude PATTERN

We can specify a wildcard pattern of files to be excluded. For example:

$ rsync -avz /home/code/some_code /mnt/disk/backup/code --exclude "*.txt"

This command excludes .txt files from backing up.

Or, we can specify a list of files to be excluded by providing a list file.

Use --exclude-from FILEPATH.

Deleting non-existent files while updating rsync backup
We archive files as tarball and transfer the tarball to the remote backup location. When we
need to update the backup data, we create a TAR file again and transfer the file to the backup
location. By default, rsync does not remove files from the destination if they no longer exist
at the source. In order to remove the files from the destination that do not exist at the source,
use the rsync --delete option:

$ rsync -avz SOURCE DESTINATION --delete

Scheduling backups at intervals
You can create a cron job to schedule backups at regular intervals.

A sample is as follows:

$ crontab -e

Add the following line:

0 */10 * * * rsync -avz /home/code user@IP_ADDRESS:/home/backups

The above crontab entry schedules the rsync to be executed every 10 hours.

Chapter 6

227

*/10 is the hour position of the crontab syntax. /10 specifies to execute the backup every
10 hours. If */10 is written in the minutes position, it will execute every 10 minutes.

Have a look at the Scheduling with cron recipe in Chapter 9 to understand how to configure
crontab.

Version control based backup with Git
People use different strategies in backing up data. Differential backups are more efficient
than making copies of the entire source directory to a target the backup directory with the
version number using date or time of a day. It causes wastage of space. We only need to
copy the changes that occurred to files from the second time that the backups occur. This is
called incremental backups. We can manually create incremental backups using tools like
rsync. But restoring this sort of backup can be difficult. The best way to maintain and restore
changes is to use version control systems. They are very much used in software development
and maintenance of code, since coding frequently undergoes changes. Git (GNU it) is a very
famous and is the most efficient version control systems available. Let's use Git for backup
of regular files in non-programming context. Git can be installed by your distro's package
manager. It was written by Linus Torvalds.

Getting ready
Here is the problem statement:

We have a directory that contains several files and subdirectories. We need to keep track of
changes occurring to the directory contents and back them up. If data becomes corrupted or
goes missing, we must be able to restore a previous copy of that data. We need to backup the
data at regular intervals to a remote machine. We also need to take the backup at different
locations in the same machine (localhost). Let's see how to implement it using Git.

How to do it...
In the directory which is to be backed up use:

$ cd /home/data/source

Let it be the directory source to be tracked.

Set up and initiate the remote backup directory. In the remote machine, create the backup
destination directory:

$ mkdir -p /home/backups/backup.git

$ cd /home/backups/backup.git

$ git init --bare

The Backup Plan

228

The following steps are to be performed in the source host machine:

1.	 Add user details to Git in the source host machine:
$ git config --global user.name "Sarath Lakshman"

#Set user name to "Sarath Lakshman"

$ git config --global user.email slynux@slynux.com

Set email to slynux@slynux.com

Initiate the source directory to backup from the host machine. In the source directory in
the host machine whose files are to be backed up, execute the following commands:
$ git init

Initialized empty Git repository in /home/backups/backup.git/

Initialize git repository

$ git commit --allow-empty -am "Init"

[master (root-commit) b595488] Init

2.	 In the source directory, execute the following command to add the remote git
directory and synchronize backup:
$ git remote add origin user@remotehost:/home/backups/backup.git

$ git push origin master

Counting objects: 2, done.

Writing objects: 100% (2/2), 153 bytes, done.

Total 2 (delta 0), reused 0 (delta 0)

To user@remotehost:/home/backups/backup.git

 * [new branch] master -> master

3.	 Add or remove files for Git tracking.

The following command adds all files and folders in the current directory to the
backup list:
$ git add *

We can conditionally add certain files only to the backup list as follows:
$ git add *.txt

$ git add *.py

We can remove the files and folders not required to be tracked by using:
$ git rm file

It can be a folder or even a wildcard as follows:
$ git rm *.txt

Chapter 6

229

4.	 Check-pointing or marking backup points.

We can mark checkpoints for the backup with a message using the following
command:
$ git commit -m "Commit Message"

We need to update the backup at the remote location at regular intervals. Hence, set
up a cron job (for example, backing up every five hours).
Create a file crontab entry with lines:
0 */5 * * * /home/data/backup.sh

Create a script /home/data/backup.sh as follows:
#!/bin/ bash
cd /home/data/source
git add .
git commit -am "Commit - @ $(date)"
git push

Now we have set up the backup system.

5.	 Restoring data with Git.

In order to view all backup versions use:
$ git log

Update the current directory to the last backup by ignoring any recent changes.
�� To revert back to any previous state or version, look into the commit ID,

which is a 32-character hex string. Use the commit ID with git checkout.

�� For commit ID 3131f9661ec1739f72c213ec5769bc0abefa85a9 it will be:
$ git checkout 3131f9661ec1739f72c213ec5769bc0abefa85a9

$ git commit -am "Restore @ $(date) commit ID:
3131f9661ec1739f72c213ec5769bc0abefa85a9"

$ git push

�� In order to view the details about versions again, use:
$ git log

If the working directory is broken due to some issues, we need to fix the directory with
the backup at the remote location.
Then we can recreate the contents from the backup at the remote location as follows:
$ git clone user@remotehost:/home/backups/backup.git

This will create a directory backup with all contents.

Chapter 6

231

By changing the device path /dev/sda1 to the appropriate device path, any disk can be
copied or restored.

In order to permanently delete all of the data in a partition, we can make dd to write zeros into
the partition by using the following command:

dd if=/dev/zero of=/dev/sda1

/dev/zero is a character device. It always returns infinite zero '\0' characters.

Clone one hard disk to another hard disk of the same size as follows:

dd if=/dev/sda of=/dev/sdb

Here /dev/sdb is the second hard disk.

In order to take the image of a CD ROM (ISO file) use:

dd if=/dev/cdrom of=cdrom.iso

There's more...
When a file system is created in a file which is generated using dd, we can mount it to a
mount point. Let's see how to work with it.

Mounting image files
Any file image created using dd can be mounted using the loopback method. Use the -o
loop with the mount command.

mkdir /mnt/mount_point

mount -o loop file.img /mnt/mount_point

Now we can access the contents of the image files through the location /mnt/mount_point.

See also
ff Creating ISO files, Hybrid ISO of Chapter 3, explains how to use dd to create an ISO

file from a CD

7
The Old-boy Network

In this chapter, we will cover:

ff Basic networking primer

ff Let's ping!

ff Listing all the machines alive on a network

ff Transferring files through network

ff Setting up an Ethernet and wireless LAN with script

ff Password-less auto-login with SSH

ff Running commands on remote host with SSH

ff Mounting remote drive at local mount point

ff Multi-casting window messages on a network

ff Network traffic and port analysis

Introduction
Networking is the act of interconnecting machines through a network and configuring the
nodes in the network with different specifications. We use TCP/IP as our networking stack
and all operations are based on it. Networks are an important part of every computer system.
Each node connected in the network is assigned a unique IP address for identification. There
are many parameters in networking, such as subnet mask, route, ports, DNS, and so on,
which require a basic understanding to follow.

Chapter 7

235

inet addr:127.0.0.1 Mask:255.0.0.0

inet6addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:6078 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6078 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

 RX bytes:634520 (634.5 KB) TX bytes:634520 (634.5 KB)

wlan0 Link encap:EthernetHWaddr 00:1c:bf:87:25:d2

inet addr:192.168.0.82 Bcast:192.168.3.255 Mask:255.255.252.0

inet6addr: fe80::21c:bfff:fe87:25d2/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:420917 errors:0 dropped:0 overruns:0 frame:0

 TX packets:86820 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

 RX bytes:98027420 (98.0 MB) TX bytes:22602672 (22.6 MB)

The left-most column in the ifconfig output lists the name of network interfaces and the
right-hand columns show the details related to the corresponding network interface.

There's more...
There are several additional commands that frequently come under usage for querying and
configuring the network. Let's go through the essential commands and usage.

Printing the list of network interfaces
Here is a one-liner command sequence to print the list of network interface available
on a system.

$ ifconfig | cut -c-10 | tr -d ' ' | tr -s '\n'

lo

wlan0

The first 10 characters of each line in the ifconfig output is reserved for writing the
name of the network interface. Hence we use cut to extract the first 10 characters of each
line. tr -d ' ' deletes every space character in each line. Now the \n newline character is
squeezed using tr -s '\n' to produce a list of interface names.

The Old-boy Network

236

Assigning and displaying IP addresses
The ifconfig command displays details of every network interface available on the system.
However, we can restrict it to a specific interface by using:

$ ifconfig iface_name

For example:

$ ifconfig wlan0

wlan0 Link encap:Ethernet HWaddr 00:1c:bf:87:25:d2

inet addr:192.168.0.82 Bcast:192.168.3.255

 Mask:255.255.252.0

From the outputs of the previously mentioned command, our interests lie in the IP address,
broadcast address, hardware address, and subnet mask. They are as follows:

ff HWaddr 00:1c:bf:87:25:d2 is the hardware address (MAC address)

ff inet addr:192.168.0.82 is the IP address

ff Bcast:192.168.3.255 is the broadcast address

ff Mask:255.255.252.0 is the subnet mask

In several scripting contexts, we may need to extract any of these addresses from the script
for further manipulations.

Extracting the IP address is a common task. In order to extract the IP address from the
ifconfig output use:

$ ifconfig wlan0 | egrep -o "inet addr:[^]*" | grep -o "[0-9.]*"

192.168.0.82

Here the first command egrep -o "inet addr:[^]*" will print inet
addr:192.168.0.82.

The pattern starts with inet addr: and ends with some non-space character sequence
(specified by [^]*). Now in the next pipe, it prints the character combination of digits and '.'.

In order to set the IP address for a network interface, use:

ifconfig wlan0 192.168.0.80

You will need to run the above command as root. 192.168.0.80 is the address to be set.

Set the subnet mask along with IP address as follows:

ifconfig wlan0 192.168.0.80 netmask 255.255.252.0

Chapter 7

237

Spoofing Hardware Address (MAC Address)
In certain circumstances where authentication or filtering of computers on a network is
provided by using the hardware address, we can use hardware address spoofing. The
hardware address appears in ifconfig output as HWaddr 00:1c:bf:87:25:d2.

We can spoof the hardware address at the software level as follows:

ifconfig eth0 hw ether 00:1c:bf:87:25:d5

In the above command, 00:1c:bf:87:25:d5 is the new MAC address to be assigned.

This can be useful when we need to access the Internet through MAC authenticated service
providers that provide access to the Internet for a single machine.

Name server and DNS (Domain Name Service)
The elementary addressing scheme for the Internet is IP addresses (dotted decimal form, for
example, 202.11.32.75). However, the resources on the Internet (for example, websites)
are accessed through a combination of ASCII characters called URLs or domain names. For
example, google.com is a domain name. It actually corresponds to an IP address. Typing the
IP address in the browser can also access the URL www.google.com.

This technique of abstracting IP addresses with symbolic names is called Domain Name Service
(DNS). When we enter google.com, the DNS servers configured with our network resolve the
domain name into the corresponding IP address. While on a local network, we setup the local
DNS for naming local machines on the network symbolically using their hostnames.

Name servers assigned to the current system can be viewed by reading /etc/resolv.conf.
For example:

$ cat /etc/resolv.conf

nameserver 8.8.8.8

We can add name servers manually as follows:

echo nameserver IP_ADDRESS >> /etc/resolv.conf

How can we obtain the IP address for a corresponding domain name?

The easiest method to obtain an IP address is by trying to ping the given domain name and
looking at the echo reply. For example:

$ ping google.com

PING google.com (64.233.181.106) 56(84) bytes of data.

Here 64.233.181.106 is the corresponding IP address.

A domain name can have multiple IP addresses assigned. In that case, the DNS server will
return one address among the list of IP addresses. To obtain all the addresses assigned to
the domain name, we should use a DNS lookup utility.

The Old-boy Network

238

DNS lookup
There are different DNS lookup utilities available from the command line. These will request a
DNS server for an IP address resolution. host and nslookup are two DNS lookup utilities.

When host is executed it will list out all of the IP addressed attached to the domain name.
nslookup is another command that is similar to host, which can be used to query details
related to DNS and resolving of names. For example:

$ host google.com

google.com has address 64.233.181.105

google.com has address 64.233.181.99

google.com has address 64.233.181.147

google.com has address 64.233.181.106

google.com has address 64.233.181.103

google.com has address 64.233.181.104

It may also list out DNS resource records like MX (Mail Exchanger) as follows:

$ nslookup google.com

Server: 8.8.8.8

Address: 8.8.8.8#53

Non-authoritative answer:

Name: google.com

Address: 64.233.181.105

Name: google.com

Address: 64.233.181.99

Name: google.com

Address: 64.233.181.147

Name: google.com

Address: 64.233.181.106

Name: google.com

Address: 64.233.181.103

Name: google.com

Address: 64.233.181.104

Server: 8.8.8.8

The last line above corresponds to the default nameserver used for DNS resolution.

Chapter 7

239

Without using the DNS server, it is possible to add a symbolic name to IP address resolution
just by adding entries into file /etc/hosts.

In order to add an entry, use the following syntax:

echo IP_ADDRESS symbolic_name >> /etc/hosts

For example:

echo 192.168.0.9 backupserver.com >> /etc/hosts

After adding this entry, whenever a resolution to backupserver.com occurs, it will resolve
to 192.168.0.9.

Setting default gateway, showing routing table information
When a local network is connected to another network, it needs to assign some machine
or network node through which an interconnection takes place. Hence the IP packets with
a destination exterior to the local network should be forwarded to the node machine, which
is interconnected to the external network. This special node machine, which is capable of
forwarding packets to the external network, is called a gateway. We set the gateway for every
node to make it possible to connect to an external network.

The operating system maintains a table called the routing table, which contains information
on how packets are to be forwarded and through which machine node in the network. The
routing table can be displayed as follows:

$ route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref UseIface

192.168.0.0 * 255.255.252.0 U 2 0 0wlan0

link-local * 255.255.0.0 U 1000 0 0wlan0

default p4.local 0.0.0.0 UG 0 0 0wlan0

Or, you can also use:

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.0.0 0.0.0.0 255.255.252.0 U 2 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 wlan0

0.0.0.0 192.168.0.4 0.0.0.0 UG 0 0 0 wlan0

Using -n specifies to display the numerical addresses. When -n is used it will display every
entry with a numerical IP addresses, else it will show symbolic host names instead of IP
addresses under the DNS entries for IP addresses that are available.

The Old-boy Network

240

A default gateway is set as follows:

route add default gw IP_ADDRESS INTERFACE_NAME

For example:

route add default gw 192.168.0.1 wlan0

Traceroute
When an application requests a service through the Internet, the server may be at a distant
location and connected through any number of gateways or device nodes. The packets
travel through several gateways and reach the destination. There is an interesting command
traceroute that displays the address of all intermediate gateways through which the
packet travelled to reach the destination. traceroute information helps us to understand
how many hops each packet should take in order reach the destination. The number of
intermediate gateways or routers gives a metric to measure the distance between two nodes
connected in a large network. An example of the output from traceroute is as follows:

$ traceroute google.com

traceroute to google.com (74.125.77.104), 30 hops max, 60 byte packets

1 gw-c6509.lxb.as5577.net (195.26.4.1) 0.313 ms 0.371 ms 0.457 ms

2 40g.lxb-fra.as5577.net (83.243.12.2) 4.684 ms 4.754 ms 4.823 ms

3 de-cix10.net.google.com (80.81.192.108) 5.312 ms 5.348 ms 5.327 ms

4 209.85.255.170 (209.85.255.170) 5.816 ms 5.791 ms 209.85.255.172
(209.85.255.172) 5.678 ms

5 209.85.250.140 (209.85.250.140) 10.126 ms 9.867 ms 10.754 ms

6 64.233.175.246 (64.233.175.246) 12.940 ms 72.14.233.114
(72.14.233.114) 13.736 ms 13.803 ms

7 72.14.239.199 (72.14.239.199) 14.618 ms 209.85.255.166
(209.85.255.166) 12.755 ms 209.85.255.143 (209.85.255.143) 13.803 ms

8 209.85.255.98 (209.85.255.98) 22.625 ms 209.85.255.110
(209.85.255.110) 14.122 ms

*

9 ew-in-f104.1e100.net (74.125.77.104) 13.061 ms 13.256 ms 13.484 ms

See also
ff Playing with variables and environment variables of Chapter 1, explains the PATH

variable

ff Searching and mining "text" inside a file with grep of Chapter 4, explains the grep
command

The Old-boy Network

242

ff When a host is unreachable the output will be similar to:
$ ping 192.168.0.99

PING 192.168.0.99 (192.168.0.99) 56(84) bytes of data.

From 192.168.0.82 icmp_seq=1 Destination Host Unreachable

From 192.168.0.82 icmp_seq=2 Destination Host Unreachable

Once the host is not reachable, the ping returns a Destination Host Unreachable
error message.

There's more
In addition to checking the connectivity between two points in a network, the ping command
can be used with additional options to get useful information. Let's go through the additional
options of ping.

Round trip time
The ping command can be used to find out the Round Trip Time (RTT) between two hosts on a
network. RTT is the time required for the packet to reach the destination host and come back to
the source host. The RTT in milliseconds can be obtained from ping. An example is as follows:

--- google.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4000ms

rtt min/avg/max/mdev = 118.012/206.630/347.186/77.713 ms

Here the minimum RTT is 118.012ms, the average RTT is 206.630ms, and the maximum RTT is
347.186ms. The mdev (77.713ms) parameter in the ping output stands for mean deviation.

Limiting number of packets to be sent
The ping command sends echo packets and waits for the reply of echo indefinitely until it is
stopped by pressing Ctrl + C. However, we can limit the count of echo packets to be sent by
using the -c flag.

The usage is as follows:

-c COUNT

For example:

$ ping 192.168.0.1 -c 2

PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.

64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.02 ms

64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1.03 ms

The Old-boy Network

244

ff Method 1:

We can write our own script using the ping command to query list of IP addresses
and check whether they are alive or not as follows:
#!/bin/bash
#Filename: ping.sh
Change base address 192.168.0 according to your network.

for ip in 192.168.0.{1..255} ;
do
 ping $ip -c 2 &> /dev/null ;

 if [$? -eq 0];
 then
 echo $ip is alive
 fi

done

The output is as follows:
$./ping.sh

192.168.0.1 is alive

192.168.0.90 is alive

ff Method 2:

We can use an existing command-line utility to query the status of machines on a
network as follows:
$ fping -a 192.160.1/24 -g 2> /dev/null

192.168.0.1

192.168.0.90

Or, use:
$ fping -a 192.168.0.1 192.168.0.255 -g

How it works...
In Method 1, we used the ping command to find out the alive machines on the network.
We used a for loop for iterating through the list of IP addresses. The list is generated as
192.168.0.{1..255}. The {start..end} notation will expand and will generate a list of
IP addresses, such as 192.168.0.1, 192.168.0.2, 192.168.0.3 till 192.168.0.255.

The Old-boy Network

246

Method 2 uses a different command called fping. It can ping a list of IP addresses
simultaneously and respond very quickly. The options available with fping are as follows:

ff The -a option with fping specifies to print all alive machine's IP addresses

ff The -u option with fping specifies to print all unreachable machines

ff The -g option specifies to generate a range of IP addresses from slash-subnet mask
notation specified as IP/mask or start and end IP addresses as:
$ fping -a 192.160.1/24 -g

Or
$ fping -a 192.160.1 192.168.0.255 -g

ff 2>/dev/null is used to dump error messages printed due to unreachable host to a
null device

It is also possible to manually specify a list of IP addresses as command-line arguments or as
a list through stdin. For example:

$ fping -a 192.168.0.1 192.168.0.5 192.168.0.6

Passes IP address as arguments

$ fping -a <ip.list

Passes a list of IP addresses from a file

There's more...
The fping command can be used for querying DNS data from a network. Let's see how to do it.

DNS lookup with fping
fping has an option -d that returns host names by using DNS lookup for each echo reply. It
will print out host names rather than IP addresses on ping replies.

$ cat ip.list

192.168.0.86

192.168.0.9

192.168.0.6

$ fping -a -d 2>/dev/null <ip.list

www.local

dnss.local

The Old-boy Network

248

ff To upload a file from the current directory, use put filename as follows:
lftp username@ftphost:~> put filename

ff An lftp session can be exited by using the quit command

Auto completion is supported in the lftp prompt.

There's more...
Let's go through some additional techniques and commands used for file transfer through a
network.

Automated FTP transfer
ftp is another command used for FTP-based file transfer. lftp is more flexible for usage.
lftp and the ftp command open an interactive session with user (it prompts for user input
by displaying messages). What if we want to automate a file transfer instead of using the
interactive mode? We can automate FTP file transfers by writing a shell script as follows:

#!/bin/bash
#Filename: ftp.sh
#Automated FTP transfer
HOST='domain.com'
USER='foo'
PASSWD='password'
ftp -i -n $HOST <<EOF
user ${USER} ${PASSWD}
binary
cd /home/slynux
puttestfile.jpg
getserverfile.jpg
quit
EOF

The above script has the following structure:

<<EOF
DATA
EOF

This is used to send data through stdin to the FTP command. The recipe, Playing with file
descriptors and redirection in Chapter 1, explains various methods for redirection into stdin.

The -i option of ftp turns off the interactive session with user. user ${USER} ${PASSWD}
sets the username and password. binary sets the file mode to binary.

Chapter 7

251

How to do it...
In order to connect to a network from a wired interface, execute the following script:

#!/bin/bash
#Filename: etherconnect.sh
#Description: Connect Ethernet

#Modify the parameters below according to your settings
######### PARAMETERS ###########

IFACE=eth0
IP_ADDR=192.168.0.5
SUBNET_MASK=255.255.255.0
GW=192.168.0.1
HW_ADDR='00:1c:bf:87:25:d2'
HW_ADDR is optional
#################################

if [$UID -ne 0];
then
 echo "Run as root"
 exit 1
fi

Turn the interface down before setting new config
/sbin/ifconfig $IFACE down

if [[-n $HW_ADDR]];
then
 /sbin/ifconfig hw ether $HW_ADDR
 echo Spoofed MAC ADDRESS to $HW_ADDR

fi

/sbin/ifconfig $IFACE $IP_ADDR netmask $SUBNET_MASK

route add default gw $GW $IFACE

echo Successfully configured $IFACE

The script for connecting to a wireless LAN with WEP is as follows:

#!/bin/bash
#Filename: wlan_connect.sh
#Description: Connect to Wireless LAN

#Modify the parameters below according to your settings
######### PARAMETERS ###########
IFACE=wlan0
IP_ADDR=192.168.1.5
SUBNET_MASK=255.255.255.0

The Old-boy Network

252

GW=192.168.1.1
HW_ADDR='00:1c:bf:87:25:d2'
#Comment above line if you don't want to spoof mac address

ESSID="homenet"
WEP_KEY=8b140b20e7
FREQ=2.462G
#################################

KEY_PART=""

if [[-n $WEP_KEY]];
then
 KEY_PART="key $WEP_KEY"
fi

Turn the interface down before setting new config
/sbin/ifconfig $IFACE down

if [$UID -ne 0];
then
 echo "Run as root"
 exit 1;
fi

if [[-n $HW_ADDR]];
then
 /sbin/ifconfig $IFACE hw ether $HW_ADDR
 echo Spoofed MAC ADDRESS to $HW_ADDR
fi

/sbin/iwconfig $IFACE essid $ESSID $KEY_PART freq $FREQ

/sbin/ifconfig $IFACE $IP_ADDR netmask $SUBNET_MASK

route add default gw $GW $IFACE

echo Successfully configured $IFACE

How it works...
The commands ifconfig, iwconfig, and route are to be run as root. Hence a check for
the root user is performed at the beginning of the scripts.

The Ethernet connection script is pretty straightforward and it uses the concepts explained in
the recipe, Basic networking primer. Let's go through the commands used for connecting to
the wireless LAN.

The Old-boy Network

254

How to do it...
The SSH uses public key-based and private key-based encryption techniques for automatic
authentication. An authentication key has two elements: a public key and a private key pair.
We can create an authentication key using the ssh-keygen command. For automating the
authentication, the public key must be placed at the server (by appending the public key to the
~/.ssh/authorized_keys file) and its private key file of the pair should be present at the
~/.ssh directory of the user at client machine, which is the computer you are logging in from.
Several configurations (for example, path and name of the authorized_keys file) regarding
the SSH can be configured by altering the configuration file /etc/ssh/sshd_config.

There are two steps towards the setup of automatic authentication with SSH. They are:

1.	 Creating the SSH key from the machine, which requires a login to a remote machine.

2.	 Transferring the public key generated to the remote host and appending it to
~/.ssh/authorized_keys file.

In order to create an SSH key, enter the ssh-keygen command with the encryption algorithm
type specified as RSA as follows:

$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/slynux/.ssh/id_rsa):

Created directory '/home/slynux/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/slynux/.ssh/id_rsa.

Your public key has been saved in /home/slynux/.ssh/id_rsa.pub.

The key fingerprint is:

f7:17:c6:4d:c9:ee:17:00:af:0f:b3:27:a6:9c:0a:05slynux@slynux-laptop

The key's randomart image is:

+--[RSA 2048]----+

| . |

| o . .|

| E o o.|

| ...oo |

| .S .+ +o.|

| . . .=....|

| .+.o...|

| . . + o. .|

| ..+ |

+-----------------+

The Old-boy Network

256

How to do it...
To connect to a remote host with the SSH server running, use:

$ ssh username@remote_host

In this command:

ff username is the user that exist at the remote host.

ff remote_host can be domain name or IP address.

For example:

$ ssh mec@192.168.0.1

The authenticity of host '192.168.0.1 (192.168.0.1)' can't be
established.

RSA key fingerprint is 2b:b4:90:79:49:0a:f1:b3:8a:db:9f:73:2d:75:d6:f9.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.1' (RSA) to the list of known
hosts.

Password:

Last login: Fri Sep 3 05:15:21 2010 from 192.168.0.82

mec@proxy-1:~$

It will interactively ask for a user password and upon successful authentication it will return
the shell for the user.

By default, the SSH server runs at Port 22. But certain servers run the SSH service at different
ports. In that case use -p port_no with the ssh command to specify the port.

In order to connect to an SSH server running at port 422, use:

$ ssh user@locahost -p 422

You can execute commands in the shell that corresponds to the remote host. Shell is an
interactive tool in which a user types and runs commands. However, in shell scripting contexts,
we do not need an interactive shell. We need to automate several tasks. We require to execute
several commands at the remote shell and display or store its output at localhost. Issuing a
password every time is not practical for an automated script, hence autologin for SSH should
be configured.

The recipe, Password-less auto-login with SSH, explains the SSH commands.

Make sure that auto-login is configured before running automated scripts that use SSH.

Chapter 7

257

To run a command on the remote host and display its output on the localhost shell, use the
following syntax:

$ ssh user@host 'COMMANDS'

For example:

$ ssh mec@192.168.0.1 'whoami'

Password:

mec

Multiple commands can be given by using semicolon delimiter in between the commands as:

$ ssh user@host 'command1 ; command2 ; command3'

Commands can be sent through stdin and the output of the commands will be available to
stdout.

The syntax will be as follows:

$ ssh user@remote_host "COMMANDS" > stdout.txt 2> errors.txt

The COMMANDS string should be quoted in order to prevent a semicolon character to act as
delimiter in the localhost shell. We can also pass any command sequence that involves piped
statements to the SSH command through stdin as follows:

$ echo "COMMANDS" | sshuser@remote_host> stdout.txt 2> errors.txt

For example:

$ ssh mec@192.168.0.1 "echo user: $(whoami);echo OS: $(uname)"

Password:

user: slynux

OS: Linux

In this example, the commands executed on the remote host are:

echo user: $(whoami);

echo OS: $(uname)

It can be generalized as:

COMMANDS="command1; command2; command3"

$ ssh user@hostname "$COMMANDS"

We can also pass a more complex subshell in the command sequence by using the ()
subshell operator.

The Old-boy Network

258

Let's write an SSH based shell script that collects the uptime of a list of remote hosts. Uptime
is the time for which the system is powered on. The uptime command is used to display how
long the system has been powered on.

It is assumed that all systems in the IP_LIST have a common user test.

#!/bin/bash

#Filename: uptime.sh

#Description: Uptime monitor

IP_LIST="192.168.0.1 192.168.0.5 192.168.0.9"

USER="test"

for IP in $IP_LIST;

do

 utime=$(ssh $USER@$IP uptime | awk '{ print $3 }')

 echo $IP uptime: $utime

done

The expected output is:

$./uptime.sh

192.168.0.1 uptime: 1:50,

192.168.0.5 uptime: 2:15,

192.168.0.9 uptime: 10:15,

There's more...
The ssh command can be executed with several additional options. Let's go through them.

SSH with compression
The SSH protocol also supports data transfer with compression, which comes in handy when
bandwidth is an issue. Use the -C option with the ssh command to enable compression as
follows:

$ ssh -C user@hostname COMMANDS

Redirecting data into stdin of remote host shell commands
Sometimes we need to redirect some data into stdin of remote shell commands. Let's see
how to do it. An example is as follows:

$ echo "text" | ssh user@remote_host 'cat >> list'

Chapter 7

261

Xserver uses a special environment variable, DISPLAY, to track the Xserver instance that is
running on the system.

We can manually set DISPLAY=:0 to instruct Xserver about the Xserver instance.

The previous SSH command can be rewritten as:

$ ssh username@remotehost 'export DISPLAY=:0 ; zenity --info --text "This
is a message"'

This statement will display a pop up at remotehost if the user with username has been
logged in any of the window managers.

In order to multicast the popup window to multiple remote hosts, write a shell script as follows:

#!/bin/bash
#Filename: multi_cast_window.sh
Description: Multi-cast window popups

IP_LIST="192.168.0.5 192.168.0.3 192.168.0.23"
USER="username"

COMMAND='export DISPLAY=:0 ;zenity --info --text "This is a message" '
for host in $IP_LIST;
do
 ssh $USER@$host "$COMMAND" &
done

How it works...
In the above script, we have a list of IP addresses to which the window should be popped up.
A loop is used to iterate through IP addresses and execute the SSH command.

In the SSH statement, at the end we have post fixed &. & will send an SSH statement to the
background. It is done to facilitate parallelization in the execution of several SSH statements.
If & was not used, it will start the SSH session, execute the zenity dialog, and wait for the user
to close that pop up window. Unless the user at the remote host closes the window, the next
SSH statement in the loop will not be executed. In order to move away from this blocking of
the loop from further execution by waiting for the SSH session to terminate, the & trick is used.

See also
ff Running commands on remote host with SSH, explains the ssh command.

Chapter 7

263

slynux-laptop.local:34395->192.168.0.2:3128 (ESTABLISHED)

In this output slynux-laptop.local:34395 corresponds to localhost part and
192.168.0.2:3128 corresponds to remote host.

34395 is the port opened from current machine, and 3128 is the port to which the service
connects at remote host.

In order to list out the opened ports from current machine, use:

$ lsof -i | grep ":[0-9]\+->" -o | grep "[0-9]\+" -o | sort | uniq

The :[0-9]\+-> regex for grep is used to extract the host port portion (:34395->) from the
lsof output. The next grep is used to extract the port number (which is numeric). Multiple
connections may occur through the same port and hence multiple entries of the same port may
occur. In order to display each port once, they are sorted and the unique ones are printed.

There's more...
Let's go through additional utilities that can be used for viewing the opened port and network
traffic related information.

Opened port and services using netstat
netstat is another command for network service analysis. Explaining all the features of
netstat is not in the scope of this recipe. We will now look at how to list services and port
numbers.

Use netstat -tnp to list opened ports and services as follows:

$ netstat -tnp
(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
tcp 0 0 192.168.0.82:38163 192.168.0.2:3128
ESTABLISHED 2261/firefox-bin
tcp 0 0 192.168.0.82:38164 192.168.0.2:3128 TIME_
WAIT -
tcp 0 0 192.168.0.82:40414 193.107.206.24:422
ESTABLISHED 3836/ssh
tcp 0 0 127.0.0.1:42486 127.0.0.1:32955
ESTABLISHED 4022/GoogleTalkPlug
tcp 0 0 192.168.0.82:38152 192.168.0.2:3128
ESTABLISHED 2261/firefox-bin
tcp6 0 0 ::1:22 ::1:39263
ESTABLISHED -
tcp6 0 0 ::1:39263 ::1:22
ESTABLISHED 3570/ssh

8
Put on the Monitor's

Cap

In this chapter, we will cover:

ff Disk usage hacks

ff Calculating the execution time for a command

ff Information about logged users, boot logs, failure boots

ff Printing the 10 most frequently-used commands

ff Listing the top 10 CPU consuming process in 1 hour

ff Monitoring command outputs with watch

ff Logging access to files and directories

ff Logfile management with logrotate

ff Logging with syslog

ff Monitoring user logins to find intruders

ff Remote disk usage health monitoring

ff Finding out active user hours on a system

Put on the Monitor’s Cap

268

Or:

du -h DIRECTORY

$ du -h hack/

16K hack/

Displaying the grand total sum of disk usage
Suppose we need to calculate the total size taken by all the files or directories, displaying
individual file sizes won't help. du has an option -c such that it will output the total disk usage
of all files and directories given as an argument. It appends a line SIZE total with the result.
The syntax is as follows:

$ du -c FILENAME1 FILENAME2..

For example:

du -c process_log.sh pcpu.sh

4 process_log.sh

4 pcpu.sh

8 total

Or:

$ du -c DIRECTORY

For example:

$ du -c test/

16 test/

16 total

Or:

$ du -c *.txt

Wildcards

-c can be used along with other options like -a and -h. It gives the same output as without
using -c. The only difference is that it appends an extra line containing the total size.

There is another option –s (summarize), which will print only the grand total as the output.
It will print the total sum, and flag -h can be used along with it to print in human readable
format. This command has frequent use in practice. The syntax is as follows:

$ du -s FILES(s)

$ du -sh DIRECTORY

Chapter 8

269

For example:

$ du -sh slynux

680K slynux

Printing files in specified units
We can force du to print the disk usage in specified units. For example:

ff Print size in bytes (by default) by using:
$ du -b FILE(s)

ff Print the size in kilobytes by using:
$ du -k FILE(s)

ff Print the size in megabytes by using:
$ du -m FILE(s)

ff Print size in given BLOCK size specified by using:
$ du -B BLOCK_SIZE FILE(s)

Here, BLOCK_SIZE is specified in bytes.

An example consisting of all the commands is as follows:

$ du pcpu.sh

4 pcpu.sh

$ du -b pcpu.sh

439	 pcpu.sh

$ du -k pcpu.sh

4 pcpu.sh

$ du -m pcpu.sh

1 pcpu.sh

$ du -B 4 pcpu.sh

1024 pcpu.sh

Excluding files from disk usage calculation
There are circumstances when we need to exclude certain files from disk usage calculation.
Such excluded files can be specified in two ways:

1.	 Wildcards

We can specify a wildcard as follows:

$ du --exclude "WILDCARD" DIRECTORY

Chapter 8

271

sort is used to perform numerical sort with column 1 and reverse it. head is used to parse
the first 10 lines from the output.

For example:

$ du -ak /home/slynux | sort -nrk 1 | head -n 4

50220 /home/slynux

43296 /home/slynux/.mozilla

43284 /home/slynux/.mozilla/firefox

43276 /home/slynux/.mozilla/firefox/8c22khxc.default

One of the drawbacks of the above one-liner is that it includes directories in the result.
However, when we need to find only the largest files and not directories we can improve the
one-liner to output only the large-size files as follows:

$ find . -type f -exec du -k {} \; | sort -nrk 1 | head

We used find to filter only files to du rather than allow du to traverse recursively by itself.

Disk free information
The du command provides information about the usage, whereas df provides information
about free disk space. It can be used with and without -h. When -h is issued with df it prints
the disk space in human readable format.

For example:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 9611492 2276840 6846412 25% /

none 508828 240 508588 1% /dev

none 513048 168 512880 1% /dev/shm

none 513048 88 512960 1% /var/run

none 513048 0 513048 0% /var/lock

none 513048 0 513048 0% /lib/init/rw

none 9611492 2276840 6846412 25% /var/lib/
ureadahead/debugfs

$ df -h

FilesystemSize Used Avail Use% Mounted on

/dev/sda1 9.2G 2.2G 6.6G 25% /

none 497M 240K 497M 1% /dev

none 502M 168K 501M 1% /dev/shm

Put on the Monitor’s Cap

272

none 502M 88K 501M 1% /var/run

none 502M 0 502M 0% /var/lock

none 502M 0 502M 0% /lib/init/rw

none 9.2G 2.2G 6.6G 25% /var/lib/ureadahead/debugfs

Calculating execution time for a command
While testing an application or comparing different algorithms for a given problem, execution
time taken by a program is very critical. A good algorithm should execute in minimum amount
of time. There are several situations in which we need to monitor the time taken for execution
by a program. For example, while learning about sorting algorithms, how do you practically
state which algorithm is faster? The answer to this is to calculate the execution time for the
same data set. Let's see how to do it.

How to do it...
time is a command that is available with any UNIX-like operating systems. You can prefix
time with the command you want to calculate execution time, for example:

$ time COMMAND

The command will execute and its output will be shown. Along with output, the time
command appends the time taken in stderr. An example is as follows:

$ time ls

test.txt

next.txt

real 0m0.008s

user 0m0.001s

sys 0m0.003s

It will show real, user, and system times for execution. The three different times can be
defined as follows:

ff Real is wall clock time—the time from start to finish of the call. This is all elapsed time
including time slices used by other processes and the time that the process spends
when blocked (for example, if it is waiting for I/O to complete).

ff User is the amount of CPU time spent in user-mode code (outside the kernel) within
the process. This is only the actual CPU time used in executing the process. Other
processes and the time that the process spends when blocked do not count towards
this figure.

Chapter 8

275

How to do it...
To obtain information about users currently logged in to the machine use:

$ who

slynux pts/0 2010-09-29 05:24 (slynuxs-macbook-pro.local)

slynux tty7 2010-09-29 07:08 (:0)

Or:

$ w

 07:09:05 up 1:45, 2 users, load average: 0.12, 0.06, 0.02

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

slynux pts/0 slynuxs 05:24 0.00s 0.65s 0.11s sshd: slynux

slynux tty7 :0 07:08 1:45m 3.28s 0.26s gnome-session

It will provide information about logged in users, the pseudo TTY used by the users, the
command that is currently executing from the pseudo terminal, and the IP address from
which the users have logged in. If it is localhost, it will show the hostname. who and w format
outputs with slight difference. The w command provides more detail than who.

TTY is the device file associated with a text terminal. When a terminal is newly spawned by
the user, a corresponding device is created in /dev/ (for example, /dev/pts/3). The device
path for the current terminal can be found out by typing and executing the command tty.

In order to list the users currently logged in to the machine, use:

$ users

Slynux slynux slynux hacker

If a user has opened multiple pseudo terminals, it will show that many entries for the same
user. In the above output, the user slynux has opened three pseudo terminals. The easiest
way to print unique users is to use sort and uniq to filter as follows:

$ users | tr ' ' '\n' | sort | uniq

slynux

hacker

We have used tr to replace ' ' with '\n'. Then combination of sort and uniq will produce
unique entries for each user.

In order to see how long the system has been powered on, use:

$ uptime

 21:44:33 up 3:17, 8 users, load average: 0.09, 0.14, 0.09

Chapter 8

279

How to do it...
Let's go through the following shell script for monitoring and calculating CPU usages in one hour:

#!/bin/bash
#Name: pcpu_usage.sh
#Description: Script to calculate cpu usage by processes for 1 hour

SECS=3600
UNIT_TIME=60

#Change the SECS to total seconds for which monitoring is to be
performed.
#UNIT_TIME is the interval in seconds between each sampling

STEPS=$(($SECS / $UNIT_TIME))

echo Watching CPU usage... ;

for((i=0;i<STEPS;i++))
do
 ps -eo comm,pcpu | tail -n +2 >> /tmp/cpu_usage.$$
 sleep $UNIT_TIME
done

echo
echo CPU eaters :

cat /tmp/cpu_usage.$$ | \
awk '
{ process[$1]+=$2; }
END{
 for(i in process)
 {
 printf("%-20s %s",i, process[i] ;
 }

 }' | sort -nrk 2 | head

rm /tmp/cpu_usage.$$
#Remove the temporary log file

A sample output is as follows:

$./pcpu_usage.sh

Watching CPU usage...

CPU eaters :

Xorg 20

Put on the Monitor’s Cap

280

firefox-bin 15

bash 3

evince 2

pulseaudio 1.0

pcpu.sh 0.3

wpa_supplicant 0

wnck-applet 0

watchdog/0 0

usb-storage 0

How it works...
In the above script, the major input source is ps -eocomm, pcpu. comm stands for
command name and pcpu stands for the CPU usage in percent. It will output all the process
names and the CPU usage in percent. For each process there exists a line in the output. Since
we need to monitor the CPU usage for one hour, we repeatedly take usage statistics using
ps -eo comm,pcpu | tail -n +2 and append to a file /tmp/cpu_usage.$$ running
inside a for loop with 60 seconds wait in each iteration. This wait is provided by sleep 60. It
will execute ps once in each minute.

tail -n +2 is used to strip off the header and COMMAND %CPU in the ps output.

$$ in cpu_usage.$$ signifies that it is the process ID of the current script. Suppose PID is
1345, during execution it will be replaced as /tmp/cpu_usage.1345. We place this file in /
tmp since it is a temporary file.

The statistics file will be ready after one hour and will contain 60 entries corresponding to
the process status for each minute. Then awk is used to sum the total CPU usage for each
process. An associative array process is used for the summation of CPU usages. It uses
the process name as an array index. Finally, it sorts the result with a numeric reverse sort
according to the total CPU usage and pass through head to obtain top 10 usage entries.

See also
ff Basic awk primer of Chapter 4, explains the awk command

ff head and tail - printing the last or first ten lines of Chapter 3, explains the tail
command

Chapter 8

283

Event Description
access When some read happens to a file.
modify When file contents are modified.
attrib When metadata is changed.
move When a file undergoes move operation.
create When a new file is created.
open When a file undergoes open operation.
close When a file undergoes close operation.
delete When a file is removed.

Logfile management with logrotate
Logfiles are essential components of a Linux system's maintenance. Logfiles help to keep
track of events happening on different services on the system. This helps the sysadmin
to debug issues and also provides statistics on events happening on the live machine.
Management of logfiles is required because as time passes the size of a logfile gets bigger
and bigger. Therefore, we use a technique called rotation to limit the size of the logfile and if
the logfile reaches a size beyond the limit, it will strip the logfile and store the older entries
from the logfile in an archive. Hence older logs can be stored and kept for future reference.
Let's see how to rotate logs and store them.

Getting ready
logrotate is a command every Linux system admin should know. It helps to restrict the size
of logfile to the given SIZE. In a logfile, the logger appends information to the log file. Hence
the recent information appears at the bottom of the log file. logrotate will scan specific
logfiles according to the configuration file. It will keep the last 100 kilobytes (for example,
specified SIZE = 100k) from the logfile and move rest of the data (older log data) to a new
file logfile_name.1 with older entries. When more entries occur in the logfile (logfile_
name.1) and it exceeds the SIZE, it updates the logfile with recent entries and creates
logfile_name.2 with older logs. This process can easily be configured with logrotate.
logrotate can also compress the older logs as logfile_name.1.gz, logfile_name2.
gz, and so on. The option for whether older log files are to be compressed or not is available
with the logrotate configuration.

How to do it...
logrotate has the configuration directory at /etc/logrotate.d. If you look at this
directory by listing contents, many other logfile configurations can be found.

Put on the Monitor’s Cap

284

We can write our custom configuration for our logfile (say /var/log/program.log) as follows:

$ cat /etc/logrotate.d/program

/var/log/program.log {

missingok

notifempty

size 30k

 compress

weekly

 rotate 5

create 0600 root root

}

Now the configuration is complete. /var/log/program.log in the configuration specifies
the logfile path. It will archive old logs in the same directory path. Let's see what each of these
parameters are:

Parameter Description
missingok Ignore if the logfile is missing and return without rotating the log.
notifempty Only rotate the log if the source logfile is not empty.
size 30k Limit the size of the logfile for which the rotation is to be made. It

can be 1M for 1MB.
compress Enable compression with gzip for older logs.
weekly Specify the interval at which the rotation is to be performed. It

can be weekly, yearly, or daily.
rotate 5 It is the number of older copies of logfile archives to be kept.

Since 5 is specified, there will be program.log.1.gz,
program.log.2.gz, and so on till program.log.5.gz.

create 0600 root root Specify the mode, user, and the group of the logfile archive to be
created.

The options specified in the table are optional; we can specify the required options only in
the logrotate configuration file. There are numerous options available with logrotate.
Please refer to the man pages (http://linux.die.net/man/8/logrotate) for more
information on logrotate.

Chapter 8

285

Logging with syslog
Logfiles are an important component of applications that provide services to the users. An
applications writes status information to its logfile while it is running. If any crash occurs or we
need to enquire some information about the service, we look into the logfile. You can find lots
of logfiles related to different daemons and applications in the /var/log directory. It is the
common directory for storing log files. If you read through a few lines of the logfiles, you can
see that lines in the log are in a common format. In Linux, creating and writing log information
to logfiles at /var/log are handled by a protocol called syslog. It is handled by the syslogd
daemon. Every standard application makes use of syslog for logging information. In this recipe,
we will discuss how to make use of syslogd for logging information from a shell script.

Getting ready
Logfiles are useful for helping you deduce what is going wrong with a system. Hence while
writing critical applications, it is always a good practice to log the progress of application with
messages into a logfile. We will learn the command logger to log into log files with syslogd.
Before getting to know how to write into logfiles, let's go through a list of important logfiles
used in Linux:

Log file Description
/var/log/boot.log Boot log information.
/var/log/httpd Apache web server log.
/var/log/messages Post boot kernel information.
/var/log/auth.log User authentication log.
/var/log/dmesg System boot up messages.
/var/log/mail.log Mail server log.
/var/log/Xorg.0.log X Server log.

How to do it...
In order to log to the syslog file /var/log/messages use:

$ logger LOG_MESSAGE

For example:

$ logger This is a test log line

$ tail -n 1 /var/log/messages

Sep 29 07:47:44 slynux-laptop slynux: This is a test log line

Chapter 8

289

Hence we should find all the lines with words "failed password". Now all the unique IP
addresses are to be found out for extracting all the log lines corresponding to each IP address.
The list of IP address is extracted by using a regular expression for IP address and the egrep
command. A for loop is used to iterate through IP address and the corresponding log lines
are found using grep and are written to a temporary file. The sixth word from the last word
in the log line is the user name (for example, bob1). The awk command is used to extract
the sixth word from the last word. NF returns the column number of the last word. Therefore,
NF-5 gives the column number of the sixth word from the last word. We use sort and uniq
commands to produce a list of users without duplication.

Now we should collect the failed login log lines containing the name of each users. A for loop
is used for reading the lines corresponding to each user and the lines are written to a temporary
file. The first 16 characters in each of the log lines is the timestamp. The cut command is used
to extract the timestamp. Once we have all the timestamps for failed login attempts for a user,
we should check the difference in time between the first attempt and the last attempt. The first
log line corresponds to the first attempt and last log line corresponds to last attempt. We have
used head -1 to extract the first line and tail -1 to extract the last line. Now we have a time
stamp for first (tstart) and last attempt (tends) in string format. Using the date command,
we can convert the date in string representation to total seconds in UNIX Epoch time (the recipe,
Getting, setting dates, and delays of Chapter 1, explains Epoch time).

The variables start and end have a time in seconds corresponding to the start and end
timestamps in the date string. Now, take the difference between them and check whether it
exceeds two minutes (120 seconds). Thus, the particular user is termed as an intruder and the
corresponding entry with details are to be produced as a log. IP addresses can be extracted
from the log by using a regular expression for IP address and the egrep command. The number
of attempts is the number of log lines for the user. The number of lines can be found out by
using the wc command. The host name mapping can be extracted from the output of the host
command by running with IP address as argument. The time range can be printed using the
timestamp we extracted. Finally, the temporary files used in the script are removed.

The above script is aimed only at illustrating a model for scanning the log and producing a
report from it. It has tried to make the script smaller and simpler to leave out the complexity.
Hence it has few bugs. You can improve the script by using better logic.

Remote disk usage health monitor
A network consists of several machines with different users. The network requires centralized
monitoring of disk usage of remote machines. The system administrator of the network
needs to log the disk usage of all the machines in the network every day. Each log line should
contain details such as the date, IP address of the machine, device, capacity of the device,
used space, free space, percentage usage, and health status. If the disk usage of any of the
partitions in any remote machine exceeds 80 percent, the health status should be set to
ALERT, else it should be set to SAFE. This recipe will illustrate how to write a monitoring script
that can collect details from remote machines in a network.

Chapter 8

293

 s=$(date -d $t +%s 2> /dev/null)
 let seconds=seconds+s
 done< <(cat /tmp/user.$$ | awk '{ print $NF }' | tr -d ')(')

 firstlog=$(tail -n 1 /tmp/user.$$ | awk '{ print $5,$6 }')
 nlogins=$(cat /tmp/user.$$ | wc -l)
 hours=$(echo "$seconds / 60.0" | bc)

 printf "%-10s %-10s %-6s %-8s\n" $user "$firstlog" $nlogins $hours
done< /tmp/users.$$

) | sort -nrk 4 | awk '{ printf("%-4s %s\n", NR, $0) }'
rm /tmp/users.$$ /tmp/user.$$ /tmp/ulog.$$

A sample output is as follows:

$./active_users.sh

Rank User Start Logins Usage hours

1 easyibaa Dec 11 531 11437311943

2 demoproj Dec 10 350 7538718253

3 kjayaram Dec 9 213 4587849555

4 cinenews Dec 11 85 1830831769

5 thebenga Dec 10 54 1163118745

6 gateway2 Dec 11 52 1120038550

7 soft132 Dec 12 49 1055420578

8 sarathla Nov 1 45 969268728

9 gtsminis Dec 11 41 883107030

10 agentcde Dec 13 39 840029414

How it works…
In the active_users.sh script, we can either provide the wtmp log file as a command-line
argument or it will use the defaulwtmp log file. The last –f command is used to print the
logfile contents. The first column in the logfile is the user name. By using cut we extract the
first column from the logfile. Then the unique users are found out by using the sort and
uniq commands. Now for each user, the log lines corresponding to their login sessions are
found out using grep and are written to a temporary file. The last column in the last log is the
duration for which the user logged a session. Hence in order to find out the total usage hours
for a user, the session durations are to be added. The usage duration is in (HOUR:SEC)
format and it is to be converted into seconds using the date command.

Put on the Monitor’s Cap

294

In order to extract the session hours for the users, we have used the awk command. For
removing the parenthesis, tr –d is used. The list of usage hour string is passed to the
standard input for the while loop using the <(COMMANDS) operator. It acts as a file input.
Each hour string, by using the date command, is converted into seconds and added to the
variable seconds. The first login time for a user is in the last line and it is extracted. The
number of login attempts is the number of log lines. In order to calculate the rank of each
user according to the total usage hours, the data record is to be sorted in the descending
order with usage hours as the key. For specifying the number reverse sort -nr option is used
along with the sort command. –k4 is used to specify the key column (usage hour). Finally,
the output of the sort is passed to awk. The awk command prefixes a line number to each of
the lines, which becomes the rank for each user.

9
Administration Calls

In this chapter, we will cover:

ff Gathering information about processes

ff Killing processes and send or respond to signals

ff Which, whereis, file, whatis, and loadavg explained

ff Sending messages to user terminals

ff Gathering system information

ff Using /proc – gathering information

ff Scheduling with cron

ff Writing and reading MySQL database from Bash

ff User administration script

ff Bulk image resizing and format conversion

Introduction
A GNU/Linux ecosystem consists of running programs, services, connected devices,
filesystems, users, and a lot more. Having an overview of the entire system and managing the
OS as a whole, according to the way we want, is the primary purpose of system administration.
One should be armed with the knowledge of commonly-used commands and proper usage
practices to gather system information and manage resources to write script and automation
tools that perform management tasks. This chapter will introduce several commands and
methods for gathering information about your system and make use of these commands to
write administration scripts.

Administration Calls

298

An example is as follows. Here, comm stands for COMMAND and pcpu is percent of CPU usage:

$ ps -eo comm,pcpu | head

COMMAND %CPU

init 0.0

kthreadd 0.0

migration/0 0.0

ksoftirqd/0 0.0

watchdog/0 0.0

events/0 0.0

cpuset 0.0

khelper 0.0

netns 0.0

The different parameters that can be used with the -o option and their descriptions are
as follows:

Parameter Description
pcpu Percentage of CPU
pid Process ID
ppid Parent Process ID
pmem Percentage of Memory
comm Executable file name
cmd Simple command
user The user who started process
nice The priority (niceness)
time Cumulative CPU time
etime Elapsed time since the process started
tty The associated TTY device
euid The effective user
stat Process state

There's more...
Let's go through additional usage examples of process manipulation commands.

top
top is a very important command for system administrators. The top command will, by
default, output a list of top CPU consuming processes. The command is used as follows:

$ top

It will display several parameters along with the top CPU consuming processes.

Chapter 9

299

Sorting ps output with respect to a parameter
Output of the ps command can be sorted according to specified columns with the --sort
parameter.

The ascending or descending order can be specified by using the + (ascending) or -
(descending) prefix to the parameter as follows:

$ ps [OPTIONS] --sort -paramter1,+parameter2,parameter3..

For example, to list the top 10 CPU consuming processes use:

$ ps -eo comm,pcpu --sort -pcpu | head

COMMAND %CPU

Xorg 0.1

hald-addon-stor 0.0

ata/0 0.0

scsi_eh_0 0.0

gnome-settings- 0.0

init 0.0

hald 0.0

pulseaudio 0.0

gdm-simple-gree 0.0

Here processes are sorted in descending order by percentage of CPU usage and head is
applied to extract the top 10 processes.

We can use grep to extract entries in the ps output related to a given process name or
another parameter. In order to find out entries about running bash processes use:

$ ps -eo comm,pid,pcpu,pmem | grep bash

bash 1255 0.0 0.3

bash 1680 5.5 0.3

Finding process ID when given command names
Suppose several instances of a command are being executed, we may need to identify the
process ID of the processes. This information can be found by using the ps or the pgrep
command. We can use ps as follows:

$ ps -C COMMAND_NAME

Or:

$ ps -C COMMAND_NAME -o pid=

Administration Calls

302

root 647 1 656 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 657 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 658 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 659 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 660 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 662 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 663 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

This command lists 10 processes with maximum number of threads.

Specifying output width and columns to be displayed
We can specify the columns to be displayed in the ps output using the user-defined output
format specifier -o. Another way to specify the output format is with "standard" options.
Practice them according to your usage style. Try these options:

ff -f ps –ef

ff u ps -e u

ff ps ps -e w (w stands for wide output)

Showing environment variables for a process
Understanding which environment variables a process is depended on is a very useful bit of
information we might need. Whether or not a process works might be heavily dependent on
the environmental variables set. We can debug and make use of environment data for fixing
several problems related to running of processes.

In order to list environment variables along with ps entries use:

$ ps -eo cmd e

For example:

$ ps -eo pid,cmd e | tail -n 3

 1162 hald-addon-acpi: listening on acpid socket /var/run/acpid.socket

 1172 sshd: slynux [priv]

 1237 sshd: slynux@pts/0

Chapter 9

303

 1238 -bash USER=slynux LOGNAME=slynux HOME=/home/slynux PATH=/usr/
local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
MAIL=/var/mail/slynux SHELL=/bin/bash SSH_CLIENT=10.211.55.2 49277 22
SSH_CONNECTION=10.211.55.2 49277 10.211.55.4 22 SSH_TTY=/dev/pts/0
TERM=xterm-color LANG=en_IN XDG_SESSION_COOKIE=d1e96f5cc8a7a3bc3a0a73e44c
95121a-1286499339.592429-1573657095

An example of where this type of environment tracing can come in handy is in tracing
problems with the apt-get package manager. If you use an HTTP proxy to connect to the
internet, you may need to set environment variables http_proxy=host:port. But
sometimes even when it is set, the apt-get command will not select the proxy and hence it
returns an error. Then you can actually look at an environment variable and track the issue.

We may need some applications to be run automatically with scheduling tools such as
crontab. But it might be dependent on some environment variables. Suppose we want
to open a GUI-windowed application at a given time. We schedule it using crontab at a
specified time. However, you will notice that the application will not start at a given time if an
entry like the following is given:

00 10 * * * /usr/bin/windowapp

This is because a windowed application always depends on the DISPLAY environment variable.
Environment variables need to be passed to the application.

First run windowapp manually, and then run ps -C windowapp -eo cmd e.

Find out the environment variables. Prefix them before a command name appears in
crontab. The issue will get resolved.

Modify the entry as follows:

00 10 * * * DISPLAY=:0 /usr/bin/windowapp

DISPLAY=:0 can be obtained from the ps output.

See also
ff Scheduling with cron, explains how to schedule tasks

Chapter 9

305

ff SIGKILL 9—signal used to force kill the process

ff SIGTERM -15—signal used to terminate a process by default

ff SIGTSTP 20—signal emitted when Ctrl + Z is pressed

We frequently use force kill for processes. In order to force kill a process, use:

$ kill -s SIGKILL PROCESS_ID

Or:

$ kill -9 PROCESS_ID

There's more...
Let's walk through additional commands used for terminating and signalling processes.

kill family of commands
The kill command takes the process ID as argument. There are also a few other commands in
the kill family that accept the command name as argument and send a signal to the process.

The killall command terminates the process by name as follows:

$ killall process_name

In order to send a signal to a process by name use:

$ killall -s SIGNAL process_name

In order to force kill process by name use:

$ killall -9 process_name

For example:

$ killall -9 gedit

Specify the process by name, which is specified by users who own it, by using:

$ killall -u USERNAME process_name

In order to ask interactively before killing processes, use the -i argument along with
killall.

The pkill command is similar to the kill command but it, by default, accepts a process
name instead of a process ID. For example:

$ pkill process_name

$ pkill -s SIGNAL process_name

Administration Calls

306

SIGNAL is the signal number. SIGNAL name is not supported with pkill.

It provides many of the same options that the kill command does. Check the pkill
manpages for more details.

Capturing and responding to signals
trap is a command used to assign signal handler to signals in a script. Once a function is
assigned to a signal using the trap command, while the script runs and it receives a signal,
this function is executed upon reception of a corresponding signal.

The syntax is as follows:

trap 'signal_handler_function_name' SIGNAL LIST

SIGNAL LIST is delimited by space. It can be a signal number or a signal name.

Let's write a shell script that responds to the SIGINT signal:

#/bin/bash
#Filename: sighandle.sh
#Description: Signal handler

function handler()
{
 echo Hey, received signal : SIGINT
}

echo My process ID is $$
$$ is a special variable that returns process ID of current process/
script
trap 'handler' SIGINT
#handler is the name of the signal handler function for SIGINT signal

while true;
do
 sleep 1
done

Run this script in a terminal. When the script is running, if you press Ctrl + C it will show the
message by executing the signal handler associated with it. Ctrl + C is a SIGINT signal.

The while loop is used to keep the process running without going to termination by using an
infinite loop. Thus the process is kept running infinitely so that it can respond to the signals
that are sent to the process asynchronously by another process. The loop that is used to keep
the process alive infinitely is often called as the event loop. If an infinite loop is not available,
the script will terminate after executing the statements. But for signal handler scripts, it has to
wait and respond to the signals.

We can send a signal to the script by using the kill command and the process ID of the script:

$ kill -s SIGINT PROCESS_ID

Administration Calls

310

Let's write a script for sending messages specifically to a given user's terminal:

#/bin/bash
#Filename: message_user.sh
#Description: Script to send message to specified user logged
terminals.
USER=$1

devices=`ls /dev/pts/* -l | awk '{ print $3,$9 }' | grep $USER | awk
'{ print $2 }'`
for dev in $devices;
do
 cat /dev/stdin > $dev
done

Run the script as:

./message_user.sh USERNAME < message.txt

Pass message through stdin and username as argument

The output will be as follows:

$ cat message.txt

A message to slynux. Happy Hacking!

./message_user.sh slynux < message.txt

Run message_user.sh as root since the message is to be send to a
specifc user.

Now, slynux's terminal will receive the message text.

How it works...
The /dev/pts directory will contain character devices corresponding to each of the logged
in terminals on the system. We can find out who logged into which terminal by looking at
the owner of the device files. The ls -l output will contain the owner name and the device
path. This information is extracted by using awk. Then it uses grep to extract the lines
corresponding to specified user only. The username is accepted as the first argument for the
script as stored as variable USER. Then a list of terminals for a given user is made. A for
loop is used to iterate through each device path. /dev/stdin will contain standard input
data passed to the current process. Therefore, by reading /dev/stdin, data is read and
redirected to the corresponding terminal (TTY) devices. Hence the message gets displayed.

Administration Calls

314

An asterisk (*) is used to specify that the command should be executed at every instance of
time. That is, if * is written in the hours field in the cron job, the command will be executed
for every hour. Similarly, if you would like to execute the command at multiple instances of
a particular time period, specify the time period separated by comma in the corresponding
time field (for example, for running the command at the fifth minute and tenth minute, enter
5,10 in the minutes field). We also have another nice option to run the command at particular
divisions of time. Use */5 in the minutes field for running the command at every five minutes.
We can apply this to any time field. A cron table entry can consist of one or more lines of cron
jobs. Each line in the cron table entry is a single job. For example:

ff Let's write a sample crontab entry for illustration:
02 * * * * /home/slynux/test.sh

This cron job will execute the test.sh script at the second minute of all hours on all
days.

ff In order to run the script at fifth, sixth, and seventh hours on all days, use:
00 5,6,7 * * /home/slynux/test.sh

ff Execute script.sh at every hour on Sundays as follows:
00 */12 * * 0 /home/slynux/script.sh

ff Shut down the computer at 2am everyday as follows:
00 02 * * * /sbin/shutdown -h

Now, let us see how to schedule a cron job. You can execute the crontab command in
multiple ways to schedule the scripts.

When you run the crontab manually, use the –e option to enter the cron job:

$ crontab –e

02 02 * * * /home/slynux/script.sh

When crontab –e is entered, the default text editor (usually vi) is opened up and the user
can type the cron job and save it. This cron job will be scheduled and executed at specified
time intervals.

There are two other methods we usually use when we invoke the crontab command inside a
script for scheduling tasks:

1.	 Create a text file (for example, task.cron) and write the cron job.

Then run the crontab with the filename as the command argument:
$ crontab task.cron

2.	 By using the next method we can specify the cron job inline without creating a
separate file. For example:

Chapter 9

315

crontab<<EOF
02 * * * * /home/slynux/script.sh
EOF

The cron job needs to be written in between crontab<<EOF and EOF.

Cron jobs are executed with privileges with which the crontab command is executed. If you
need to execute commands that require higher privileges, such as a command for shutting
down the computer, run the crontab command as root.

The commands specified in the cronjob are written with the full path to the command. This
is because the environment in which a cron job is executed is different from the one that we
execute on a terminal. Hence the PATH environment variable may not be set. If your command
requires certain environment variables to be set for running, you should explicitly set the
environment variables.

There's more…
The crontab command has more options. Let's see a few of them.

Specifying environment variables
Many of the commands require environment variables to be set properly for execution. We can
set environment variables by inserting a line with variable assignment statement in the cron
table of the user.

For example, if you are using a proxy server for connecting to the Internet, to schedule
a command that uses Internet you have to set the HTTP proxy environment variable
http_proxy. It can be done as follows:

crontab<<EOF
http_proxy=http://192.168.03:3128
00 * * * * /home/slynux/download.sh
EOF

Viewing the cron table
We can list the existing cronjobs using the –l option:

$ crontab –l

02 05 * * * /home/user/disklog.sh

The crontab –l lists the existing entries in the cron table for the current user.

We can also view the cron table for other users by specifying username with the –u option as
follows:

$ crontab –l –u slynux

09 10 * * * /home/slynux/test.sh

Chapter 9

317

Create the database and table script as follows:

#!/bin/bash
#Filename: create_db.sh
#Description: Create MySQL database and table

USER="user"
PASS="user"

mysql -u $USER -p$PASS <<EOF 2> /dev/null
CREATE DATABASE students;
EOF

[$? -eq 0] && echo Created DB || echo DB already exist

mysql -u $USER -p$PASS students <<EOF 2> /dev/null
CREATE TABLE students(
id int,
name varchar(100),
mark int,
dept varchar(4)
);
EOF

[$? -eq 0] && echo Created table students || echo Table students
already exist

mysql -u $USER -p$PASS students <<EOF
DELETE FROM students;
EOF

The script for inserting data into the table is as follows:

#!/bin/bash
#Filename: write_to_db.sh
#Description: Read from CSV and write to MySQLdb

USER="user"
PASS="user"

if [$# -ne 1];
then
 echo $0 DATAFILE
 echo
 exit 2
fi

data=$1

while read line;
do

 oldIFS=$IFS

Administration Calls

318

 IFS=,
 values=($line)
 values[1]="\"`echo ${values[1]} | tr ' ' '#' `\""
 values[3]="\"`echo ${values[3]}`\""

 query=`echo ${values[@]} | tr ' #' ', ' `
 IFS=$oldIFS

 mysql -u $USER -p$PASS students <<EOF
INSERT INTO students VALUES($query);
EOF

done< $data
echo Wrote data into DB

The script for the query from the database is as follows:

#!/bin/bash
#Filename: read_db.sh
#Description: Read from the database

USER="user"
PASS="user"

depts=`mysql -u $USER -p$PASS students <<EOF | tail -n +2
SELECT DISTINCT dept FROM students;
EOF`

for d in $depts;
do

echo Department : $d

result="`mysql -u $USER -p$PASS students <<EOF
SET @i:=0;
SELECT @i:=@i+1 as rank,name,mark FROM students WHERE dept="$d" ORDER
BY mark DESC;
EOF`"

echo "$result"
echo

done

The data for the input CSV file (studentdata.csv) is as follows:

1,Navin M,98,CS

2,Kavya N,70,CS

3,Nawaz O,80,CS

4,Hari S,80,EC

5,Alex M,50,EC

Chapter 9

319

6,Neenu J,70,EC

7,Bob A,30,EC

8,Anu M,90,AE

9,Sruthi,89,AE

10,Andrew,89,AE

Execute the scripts in the following sequence:

$./create_db.sh

Created DB

Created table students

$./write_to_db.sh studentdat.csv

Wrote data into DB

$./read_db.sh

Department : CS

rank name mark

1 Navin M 98

2 Nawaz O 80

3 Kavya N 70

Department : EC

rank name mark

1 Hari S 80

2 Neenu J 70

3 Alex M 50

4 Bob A 30

Department : AE

rank name mark

1 Anu M 90

2 Sruthi 89

3 Andrew 89

Administration Calls

320

How it works…
We will now see the explanation of the above scripts one by one. The first script create_db.sh
is used to create database called students and a table named students inside it. We need
the MySQL username and password to access or modify data in the DBMS. The variables USER
and PASS are used to store the username and password. The mysql command is used for
MySQL manipulations. The mysql command can specify the username by using –u and the
password by using –pPASSWORD. The other command argument for the mysql command is the
database name. If a database name is specified as an argument to the mysql command, it will
use that for database operations, else we have to explicitly specify in the SQL query about which
database is to be used with the use database_name query. The mysql command accepts
the queries to be executed through standard input (stdin). The convenient way of supplying
multiple lines through stdin is by using the <<EOF method. The text that appears in between
<<EOF and EOF is passed to mysql as standard input. In the CREATE DATABASE query, we
have redirected stderr to /dev/null in order to prevent displaying an error message. Also,
in the table creation query, we have redirected stderr to /dev/null to ignore any errors that
occur. Then we check the exit status for the mysql command by using the exit status variable
$? to know if a table or database already exists. If the database or table already exists, a
message is displayed to notify that. Else we will create them.

The next script write_to_db.sh accepts a filename of the student data CSV file. We read
each line of the CSV file by using the while loop. So in each iteration a line with comma
separated values will be received. We then need to formulate the values in the line to an SQL
query. For that, the easiest way to store data items in the comma separated line is by using
an array. We know that an array assignment is in the form array=(val1 val2 val3).
Here the space character is the Internal Field Separator (IFS). We have a line with comma
separated values, hence by changing the IFS to a comma, we can easily assign values to
the array (IFS=,). The data items in the comma separated line are id, name, mark, and
department. id and mark are integer values whereas name and dept are strings (strings
must be quoted). Also the name can contain space characters. Space can conflict with the
Internal Field Separator. Hence we should replace the space in the name with some character
(#) and replace it later after formulating the query. In order to quote the strings, the values in
the array are prefixed and suffixed with \". The tr is used to substitute space in the name to
#. Finally, the query is formed by replacing the space character with comma and replacing #
with space and this query is executed.

The third script read_db.sh is used to find out the department and print the rank list of
students for each department. The first query is used to find distinct names of departments.
We use a while loop to iterate through each department and run the query to display student
details in the order of highest marks. SET @i=0 is an SQL construct used to set the variable
i=0. On each row it is incremented and is displayed as the rank of the student.

Chapter 9

321

User administration script
GNU/Linux is a multi user operating system. Many users can log in and perform several
activities at a time. There are several administration tasks that are handled with user
management. The tasks includes setting the default shell for the user, disabling a user
account, disabling a shell account, adding new users, removing users, setting a password,
setting an expiry date for a user account, and so on. This recipe aims at writing a user
management tool that can handle all of these tasks.

How to do it…
Let's go through the user administration script:

#!/bin/bash
#Filename: user_adm.sh
#Description: A user administration tool

function usage()
{
 echo Usage:
 echo Add a new user
 echo $0 -adduser username password
 echo
 echo Remove an existing user
 echo $0 -deluser username
 echo
 echo Set the default shell for the user
 echo $0 -shell username SHELL_PATH
 echo
 echo Suspend a user account
 echo $0 -disable username
 echo
 echo Enable a suspended user account
 echo $0 -enable username
 echo
 echo Set expiry date for user account
 echo $0 -expiry DATE
 echo
 echo Change password for user account
 echo $0 -passwd username
 echo
 echo Create a new user group
 echo $0 -newgroup groupname
 echo

Administration Calls

322

 echo Remove an existing user group
 echo $0 -delgroup groupname
 echo
 echo Add a user to a group
 echo $0 -addgroup username groupname
 echo
 echo Show details about a user
 echo $0 -details username
 echo
 echo Show usage
 echo $0 -usage
 echo

 exit
}

if [$UID -ne 0];
then
 echo Run $0 as root.
 exit 2
fi

case $1 in

 -adduser) [$# -ne 3] && usage ; useradd $2 -p $3 -m ;;
 -deluser) [$# -ne 2] && usage ; deluser $2 --remove-all-files;;
 -shell) [$# -ne 3] && usage ; chsh $2 -s $3 ;;
 -disable) [$# -ne 2] && usage ; usermod -L $2 ;;
 -enable) [$# -ne 2] && usage ; usermod -U $2 ;;
 -expiry) [$# -ne 3] && usage ; chage $2 -E $3 ;;
 -passwd) [$# -ne 2] && usage ; passwd $2 ;;
 -newgroup) [$# -ne 2] && usage ; addgroup $2 ;;
 -delgroup) [$# -ne 2] && usage ; delgroup $2 ;;
 -addgroup) [$# -ne 3] && usage ; addgroup $2 $3 ;;
 -details) [$# -ne 2] && usage ; finger $2 ; chage -l $2 ;;
 -usage) usage ;;
 *) usage ;;
esac

A sample output is as follows:

./user_adm.sh -details test

Login: test Name:

Directory: /home/test Shell: /bin/sh

Last login Tue Dec 21 00:07 (IST) on pts/1 from localhost

No mail.

Chapter 9

323

No Plan.

Last password change : Dec 20, 2010

Password expires : never

Password inactive : never

Account expires : Oct 10, 2010

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

Number of days of warning before password expires : 7

How it works…
The user_adm.sh script can be used to perform many user management tasks. You can
follow the usage() text for the proper usage of the script. A function usage() is defined
to display how to execute the script with different options for the user when any of the
parameters given by user gets wrong or has run the –usage parameter. A case statement is
used to match the command arguments and execute the corresponding commands according
to that. The valid command options for the user_adm.sh script are: -adduser, -deluser,
-shell, -disable, -enable, -expiry, -passwd, -newgroup, -delgroup, -addgroup,
-details, and -usage. When the *) case is matched, it means its a wrong option and
hence usage() is invoked. For each match case, we have used [$# -ne 3] && usage.
It is used for checking number of arguments. If the number of command arguments are not
equal to required number, the usage() function is invoked and the script will exit without
executing further. In order to run the user management commands, the script needs to be
run as root. Hence a check for user ID 0 (the root has user ID 0) is performed. If the user has
a non-zero user ID, this means it is executing as non-root. Hence a message to run as root is
displayed and the script exits.

Let's explain each case one by one:

ff -useradd:

The useradd command can be used to create a new user. It has the syntax:
useradd USER –p PASSWORD

The -m option is used to create the home directory

It is also possible to provide the full name of the user by using the –c FULLNAME
option.

ff -deluser:

The deluser command can be used to remove the user. The syntax is:
deluser USER

--remove-all-files is used to remove all files associated with the user including
the home directory.

Administration Calls

324

ff -shell:

The chsh command is used to change the default shell for the user. The syntax is:
chsh USER –s SHELL

ff -disable and –enable:

The usermod command is used to manipulate several attributes related to user
accounts.

usermod –L USER locks the user account and usermod –U USER unlocks the
user account.

ff -expiry:

The chage command is used manipulate user account expiry information.
The syntax is:
chage –E DATE

There are additional options as follows:

�� -m MIN_DAYS (set the minimum number of days between password
changes to MIN_DAYS)

�� -M MAX_DAYS (set the maximum number of days during which a password
is valid)

�� -W WARN_DAYS (set the number of days of warning before a password
change is required)

ff -passwd:

The passwd command is used to change passwords for the users. The syntax is:
passwd USER

The command will prompt to enter new password.

ff -newgroup and addgroup:

The addgroup command will add a new usergroup to the system. The syntax is:
addgroup GROUP

In order to add an existing user to a group use:
addgroup USER GROUP

-delgroup

The delgroup command will remove a user group. The syntax is:

delgroup GROUP

ff -details:

The finger USER command will display the user information for the user, which
includes details such as user home directory path, last login time, default shell, and
so on. The chage –l command will display the user account expiry information.

Administration Calls

326

Resize the image by specifying the percentage scale factor as follows:

$ convert image.png -resize "50%" image.png

Let's see a script for image management:

#!/bin/bash
#Filename: image_help.sh
#Description: A script for image management

if [$# -ne 4 -a $# -ne 6 -a $# -ne 8];
then
 echo Incorrect number of arguments
 exit 2
fi

while [$# -ne 0];
do

 case $1 in
 -source) shift; source_dir=$1 ; shift ;;
 -scale) shift; scale=$1 ; shift ;;
 -percent) shift; percent=$1 ; shift ;;
 -dest) shift ; dest_dir=$1 ; shift ;;
 -ext) shift ; ext=$1 ; shift ;;
 *) echo Wrong parameters; exit 2 ;;
 esac;

done

for img in `echo $source_dir/*` ;
do
 source_file=$img
 if [[-n $ext]];
 then
 dest_file=${img%.*}.$ext
 else
 dest_file=$img
 fi

 if [[-n $dest_dir]];
 then
 dest_file=${dest_file##*/}
 dest_file="$dest_dir/$dest_file"
 fi

 if [[-n $scale]];
 then
 PARAM="-resize $scale"

Chapter 9

327

 elif [[-n $percent]];
 then
 PARAM="-resize $percent%"	
 fi

 echo Processing file : $source_file
 convert $source_file $PARAM $dest_file

done

The following is a sample output, to scale the images in the directory sample_dir to 20% size:

$./image_help.sh -source sample_dir -percent 20%

Processing file :sample/IMG_4455.JPG

Processing file :sample/IMG_4456.JPG

Processing file :sample/IMG_4457.JPG

Processing file :sample/IMG_4458.JPG

In order to scale the images to width 1024 use:

$./image_help.sh -source sample_dir –scale 1024x

Change the files to PNG format by adding –ext png along with the above commands.

Scale or convert files with specified destination directory as follows:

$./image_help.sh -source sample -scale 50% -ext png -dest newdir

newdir is the new destination directory

How it works…
The above image_help.sh script can accept several command-line arguments, such as
-source, -percent, -scale, –ext, and -dest. A brief explanation of each is as follows:

ff The -source parameter is used to specify the source directory for the images.

ff The –percent parameter is used to specify the scale percent and –scale is used to
specify scale width and height.

ff Either –percent or –scale is used. Both of them do not appear simultaneously.

ff The –ext parameter is used to specify the target file format. –ext is optional; if it is
not specified, format conversion is not performed.

ff The –dest parameter is used to specify the destination directory for scale or
conversion of image files. –dest is optional. If –dest is not specified, the destination
directory will be same as the source directory. As the first step in the script, it checks
whether the number of command arguments given to the script are correct. Either 4
or 6 or 8 parameters can appear.

Administration Calls

328

Now, by using a while loop and case statement, we will parse the command-line arguments
corresponding to variables. $# is a special variable that returns the number of arguments.
The shift command shifts the command arguments one position to left, so that on each
execution of shift, we can access command arguments one by one, by using the same $1
variable rather than using $1, $2, $3, and so on. The case statement matches the value of
$1. It is like a switch statement in the C programming language. When a case is matched, the
corresponding statements are executed. Each match case statement is terminated with ;;.
Once all the parameters are parsed in variables percent, scale, source_dir, ext, and
dest_dir, a for loop is used to iterate through path of each file in the source directory and
the corresponding action to convert file is performed.

If the variable ext is defined (if -ext is given in the command argument), the extension of the
destination file is changed from source_file.extension to source_file.$ext. In the
next statement it checks whether the -dest parameter is provided. If the destination directory
is specified, the destination file path is crafted by replacing the directory in source path with
destination directory by using file name slicing. In the next statement, it crafts the parameter to
the convert command for performing resize (-resize widthx or -resize perc%). After
the parameters are crafted, the convert command is executed with proper arguments.

See also
ff Slicing filenames based on extension of Chapter 2, explains how to extract portion

of file name

Index
Symbols
$RANDOM environment variable 81
-amin parameter 60
-atime parameter 59
-b option 77
^ character

tabs, displaying as 52
-cmin parameter 60
--complement option 144
%c parameter 274
%C parameter 274
-ctime parameter 59
-d argument 204
--date option 31
-delete flag 61
-delete option 209
-dest parameter 327
/dev/pts directory 310
/dev/zero 97
-d option 70, 77
%D parameter 274
-dump flag 183
-echo option 30
%E parameter 274
--exclude [PATTEN] 210
-exec parameter 61, 62
-ext parameter 327
 tag 193
-iname option 56
-iregex option 57
-k option 76
%k parameter 274
%K parameter 274
--limit-rate argument 181
-maxdepth parameter 57, 58

-max-filesize option 186
-mindepth parameter 57, 58
--mirror option 182
-mmin parameter 60
-mtime parameter 59
-name argument 56
-newer parameter 60
-n flag 52
-n option 77
-O option 181
-path argument 56
-percent parameter 327
-perm parameter 62
%P parameter 274
-print argument 55
/proc 312
--quota argument 182
-regex argument 56
-r option 76
-R option 108
--silent option 184
-s option 71
--sort parameter 299
-source parameter 327
-t flag 181
-T option 52
-traversal option 199
-type option 58
-u option 121
-wildcard argument 221
%w parameter 274
%W parameter 274
-x flag 33
%x parameter 274
%Z parameter 274

330

A
access event 283
active user hours, on system

determining 292, 293
addgroup command 324
alias command 28
aliases 27
apropos 308
archive

files, appending to 206
files, deleting from 209
files, extracing from 207
folders, extracing from 207

archiving 205
arguments

about 35
negating 57
passing, to commands 37

arithmetic operations 17, 18
array indexes

listing 27
arrays 25
aspell command 89
aspell list command 90
associative arrays 25, 26
attrib event 283
automated FTP transfer 248
awk command

about 50, 150, 289
example 151
for loop, using 155
special variables 152, 153
working 147, 151
string manipulation functions 156

B
backups

scheduling, at regular intervals 226
bandwidth limit

specifying, on cURL 186
Base64 222
Bash

about 8
arguments 35
arithmetic operations 17, 18
array indexes 27

arrays 25
associative arrays 25, 26
about 132
MySQL database, reading from 316-320
MySQL database, writing from 316-320
parameter expansion short hands 177
text replacement techniques 177
filesystem related tests 45
functions 35
mathematical comparisions 44
string comparisions 46
tests 44

Bash hackers 64
Bash prompt string

modifying 16
BEGIN{} block 102
blank files

generating, in bulk 110, 111
blank lines

removing, sed command used 149
squeezing, in text files 51, 52

Block Size (BS) 97
bootable ISO files 119
Bourne Again Shell. See Bash
broken links

searching, in website 199, 200
bunzip2

about 215
additional features 216
files, compressing with 215, 216

bytes
specifying, as fields 144, 145

C
case

ignoring, of pattern 139
cat command

about 50, 118
file content, concatenating with 50
options, for viewing files 51, 52
syntax 50
usage techniques 51

cd command 39, 126
cdrecord command 119
CD Rom tray

playing with 120
chage command 324

331

character classes, tr command
about 72
alnum 72
alpha 72
cntrl 72
digit 72
graph 72
lower 72
print 72
punct 72
space 72
upper 72
xdigit 72

characters
counting, in files 128
deleting, with tr command 70
squeezing, with tr command 71
translating, with tr command 69

character set
complementing 71

chattr 110
checksum

about 73, 100
benefits 73
calculating, for dircetories 74

checksum verification 74
chmod command

about 107
permissions, setting for files 107, 108

chown command
about 108
file ownership, modifying 108

chsh command 324
close event 283
cmd parameter 298
coloured output

producing, on terminal 12
columns

multiple files, merging as 162, 163
command line interface (CLI) 126
command-line navigation

performing, popd command used 126, 127
performing, pushd command used 126, 127

command-line Twitter client
writing 196, 197

command-line utilities
interactive input, automating for 90, 92

command outputs

monitoring, watch command used 281
reading, from awk 155

commands
about 8
arguments, passing to 37
about 50
executing, with find 61, 62
running, on remote host with SSH 255-258
return value, obtaining 37

comma separated values. See CSV data
comm command 97, 103
comm parameter 298
compression 205
compress parameter 284
Content-length parameter 187
context-based printing 141, 142
convert command 325
cookies

using, with cURL 185
cpio

about 211
files, archiving with 212
using 212

CPU 278
CPU consuming process

listing 278, 280
create 0600 root root parameter 284
create event 283
cron

scheduling with 313, 314
cron jobs 315
cron table

removing 316
crypt command 222
cryptographic tools

about 222
Base64 222
crypt 222
gpg 222
md5sum 223
salted hash 223
sha1sum 223

csplit utility 83
CSV data 41
cURL

about 182, 183
advanced resume download features 185

332

bandwidth limit, specifying on 186
cookies, using with 185
data, posting in 204
FTP authentication, performing with 186, 187
HTTP authentication, performing with 186,

187
maximum download size, specifying for 186
referer string, setting with 185
used, for downloading 182
user agent string, setting with 186
working 184

current shell
displaying 15, 16

cut command
about 143
files, column-wise cutting 142-144

D
data

parsing, from website 189, 190
posting, in cURL 204
posting, to web page 203, 204
posting, wget command used 204
redirecting, into stdin 258, 259

data items
locating 136-138
mining, grep command used 136-138
searching, grep command used 136-138

date command 289
date format strings 31
dates

working with 30-32
dd command

about 96, 230
disks, cloning with 230, 231
example 96
hard drive, cloning with 230, 231
large size file, creating with given size 96, 97
syntax 230
working 97

debugging 33
default gateway

setting 239
define utility

writing 197-199
define:WORD query 197

delay
producing, in scripts 32

delete event 283
delgroup command 324
delimiter

setting, for fields 155
deluser command 323
df command 266
dictionary files

about 89
using 89

diff command
about 120, 122, 201
generating, against directories 122

difference operation 97
dir command 125
directories

checksum, calculating for 74
creating, for long path 103, 104
listing 125

directory depth based search 57, 58
directory tree

printing 129
disks

cloning, with dd command 230, 231
disk space 266
disk usage

calculating 266
disk free information 271
displaying, in KB, MB, or GB 267
files, excluding 269, 270
files, printing in specified units 269
grand total sum, displaying 268
large-size files, searching from directory 270

disk usage, of remote machines
monitoring 289-291

DNS 237, 238
DNS lookup

with fping command 246
Domain Name Service. See DNS
du command 266
duplicate files

about 100
deleting 101-103
searching 101-103

333

E
echo command

about 9, 152
newline, escaping in 12

echo packet count
limiting 242, 243

egrep command 289
egrepregex pattern 171
e-mail address

parsing, from text 171, 172
encryption 205
END{} block 102
environment variables

about 12
displaying, for process 302, 303
specifying 315, 316

env variable 14
epoch 31
Ethernet

about 250
setting up 251, 252

etime parameter 298
euid parameter 298
executable

running, as different user 109
execution time, for command

calculating 272-274
expect command 92
expect package 92

F
fields

delimiters, setting for 155
file command 113, 308
file content

concatenating, with cat command 50
file descriptors

about 19, 23, 24
redirecting with 19-22
stderr 19-21
stdin 19-21
stdout 19-21

filename-based search 56
filename prefix

specifying, for split files 82, 83
file names

slicing, based on extension 84, 85, 86
file ownership 104
file permissions 104, 105
files

about 96
appending, to archive 206
archiving, with cpio 212
archiving, with tar command 206
archiving, with zip 219, 220
characters, counting in 128
column-wise cutting, cut command

used 142-144
compressing, with bunzip2 215, 216
compressing, with gzip 212, 213
compressing, with lzma 217, 218
compressing, with zip 219, 220
deleting, from archive 209
downloading 180, 181
excluding, from archiving 210
extracing, from archive 207
frequency of words, detecting in 146, 147
generating, with random data 96, 97
iteration, through characters 161
iteration, through lines 161
iteration, through words 161
large size file, creating with given size 96, 97
lines, counting in 128
listing 55
making, immutable 109, 110
matching, based on file permissions 61
matching, based on ownership 61
moving, in bulk 86, 87, 88
ownership, modifying 108
permissions 105
renaming 86, 87, 88
searching 55
searching, recursively 138, 139
splitting 81
transferring 247
updating, with timestamp check 208, 209
words, counting in 128

files, archiving
with cpio 212
with tar command 206
with zip 219, 220

files, compressing
with bunzip2 215, 216
with gzip 212, 213

334

with lzma 217, 218
with zip 219, 220

file sharing 247
files, in archive

comparing, with files in filesystem 209
file size based search 60
files ownership

modifying, chown command used 108
files timestamp based search 59, 60
filesystem related tests, Bash 45
File Transfer Protocol. See FTP
file type based search 58, 59
file type statistics

enumerating 113-115
find command

about 50, 55, 114
example 55

finger USER command 324
first ten lines

printing, example 122
flow control 44
folders

extracting, from archive 207
fork bomb 36
for loop 43
format

converting, for images 325, 327
formatted arguments

passing, to command by reading stdin 65-67
formatted plain text

web page, downloading as 183
fping command

about 246
DNS lookup 246

frequency of words
detecting, in file 146, 147

Frequency parameter 253
frequently-used commands

printing 276, 278
FTP 247
FTP authentication

performing, cURL used 186, 187
ftp command 248
functions

about 35
exporting 36
recursive function 36

G
getline

line, reading explicitly 154
GET request 203
Git

about 227
used, for version control based

backup 227-229
Gmail

about 188
accessing, from command line 188, 189

GNU/Linux ecosystem 295
GNU privacy guard. See gpg
gpg 222
grep command

about 50, 112, 136, 172
data items, mining 136-138
data items, searching in file 136-138
files, excluding for search 140
files, including for search 140
quiet condition 141
using, with xargs 140

group 105
group permissions 106
gzip

about 212
additional features 213, 214
files, compressing with 212, 213
using, with tarballs 213, 214

gzipped files
reading, without extracting 214

gzipped tarballs
creating 213

H
hard drive

cloning, with dd command 230, 231
head command

about 123, 176
example 123
implementing, with awk 175, 176

host command 287
HTML album page

generating 194, 195
HTML response

reading, from website 203, 204

335

HTTP authentication
performing, cURL used 186, 187

hyperlinks 199

I
ICMP 241
ifconfig command 234
image crawlers 191, 192
image downloader script 192
image files

mounting 231
Imagemagick 325
images

format, converting 325, 327
resizing 325, 327

incremental backups 227
information

gathering, through processes 296-298
obtaining, about terminal 29

inotify-tools package 282
inotifywait command 282
interactive input

automating, for command-line utilities 90, 92
Internal Field Separator (IFS) 41-43, 320
Internet Control Message Protocol. See ICMP
intersection operation

about 97
performing, on text files 97-100

intruder detection script
writing 287

intruders 286
intrusion detection system

designing 286
IP address

about 237
assigning 236
displaying 236
matching 135

ISO files 117
isohybrid command 119
ISO image

about 117
creating 118

iwconfig utility 250, 252
iwlist utility 250, 253

J
JavaScript

about 158
compressing 158, 159
decompressing 158, 160

K
killall command 305
kill command

about 305
using 304

L
lastb command 276
last command 276
Last-Modified parameter 187
last ten lines

printing, example 122
let command 17
lftp command 248
lines

counting, in files 128
filtering 155
printing, after pattern 172, 173
printing, before pattern 172, 173
printing, in reverse order 169, 170

load average 308
local mount point

remote driver, mounting 259
LOC (Lines of Code) 128
log events

access 283
attrib 283
close 283
create 283
delete 283
modify 283
move 283
open 283

logfiles
about 283
managing, logrotate command

used 283, 284
logfiles, in Linux

/var/log/auth.log 285

336

/var/log/boot.log 285
/var/log/dmesg 285
/var/log/httpd 285
/var/log/mail.log 285
/var/log/messages 285
/var/log/Xorg.0.log 285

logging information
with syslog 285, 286

logrotate command 283
logrotate configuration file

compress parameter 284
create 0600 root root parameter 284
missingok parameter 284
notifempty parameter 284
rotate 5 parameter 284
size 30k parameter 284
weekly parameter 284

loopback filesystems 115
ls -l command 105
Lynx 183, 190, 198
lzma

about 217
additional features 218, 219
files, compressing with 217, 218

lzma tarball
extracting 218

M
MAC address

spoofing 237
machine information

obtaining 274, 276
machines

availability, verifying 243-245
matched sentence

removing 174, 175
matched string notation (&) 149
mathematical comparisions, Bash 44
md5sum

about 73, 102, 223
syntax 73

messages
sending, to user terminals 309, 310

meta characters
about 134
\b 134
\B 134

\d 134
\D 134
\n 134
\r 134
\s 134
\S 134
\w 134
\W 134

missingok parameter 284
mkdir command

about 103
example 103

mkfs command 116
mkisofs command 118
modify event 283
monitoring script

writing, for collecting details from remote
machines 289-291

mount command 96, 231
mount point 117
move event 283
multiple commands

combining 38
multiple expressions

combining 149
multiple files

merging, as columns 162, 163
multiple patterns

specifying, for matching 139
multiple tar files

merging 208
MX (Mail Exchanger) 238
MySQL 316
MySQL database

reading, from Bash 316-320
writing, from Bash 316-320

N
name servers 237
n characters

reading, without pressing Return 40
netstat command 263
networking 233
network interfaces

about 234, 235
list, printing 235

network ports 262, 263

337

nice parameter 298
node 234
notifempty parameter 284
numeric characters

decrypting, tr command used 70
encrypting, tr command used 70

O
obfuscation tool 158
open event 283
ownership

applying, recursively to files 109

P
palindrome strings

verifying, with scripts 165-169
parameter expansion short hands 177
parameters, time command

%c 274
%C 274
%D 274
%E 274
%k 274
%K 274
%P 274
%w 274
%W 274
%x 274
%Z 274

passwd command 110, 324
paste command 162
patch

applying 122
patch file 120
pcpu parameter 298
Perl-style regular expressions 134
permissions

applying, recursively to files 108
permission strings

------rwx 106
---rwx--- 106
rwx------ 105

pgrep command 13, 296, 300
pid parameter 298
ping command

about 241, 244

echo packet count, limiting 242, 243
return status 243
RTT, finding 242
working 241

pipe operator 51
pkill command 305
pmem parameter 298
popd command

about 126
command-line navigation,

performing 126, 127
pop window

sending, with custom messages 260, 261
POSIX character class 134
POSIX classes

[:alnum:] 134
[:alpha:] 134
[:blank:] 134
[:digit:] 134
[:lower:] 134
[:punct:] 134
[:space:] 134
[:upper:] 134

POST request 203
ppid parameter 298
printf command 11
process

about 296
environment variables, displaying

for 302, 303
information, gathering through 296-298
termination 304

process ID
about 296
searching 299

process manipulation commands 298
process threads 301
ps command 278

about 296
filtering with 300
output, sorting 299
parameters 296-298
TTY filter 301

ps -eocomm,pcpu 280
pushd command

about 126
command-line navigation,

performing 126, 127

338

pwd command 39

Q
quiet mode 141

R
random data

files, generating with 96, 97
range of characters

specifying, as fields 144, 145
rcp 249
read command 40
real time 272
recursive function 36
redirection

using 23
referer string

about 185
setting, with cURL 185

regular expressions
about 57, 132
components 133
examples 132, 133
special characters 135

regular expressions, components
^ 133
? 133
. 133
() 133
[^] 133
[-] 133
[] 133
* 133
\ 133
+ 133
| 133
$ 133
{n,} 133
{n} 133
{n, m} 133

relevant columns
printing 163

relevant words
printing 163

remote copy tool. See rcp
remote drive

mounting, at local mount point 259
remote machines disk usage

monitoring 289-291
rename command 87
response headers

printing 187
rev command 168, 169
rm command 103
root 8
ROT13 70
rotate 5 parameter 284
Round Trip Time. See RTT
route command 252
routing table information

displaying 239
rsync command

about 224, 249
additional features 226
working with 224, 225

RTT 242

S
salted hash 223
SCP

about 249, 250
recursive copying 250

script command
about 53
working 54

scripting 7
scriptreplay command 53
scripts

debugging 33, 34
delays, producing in 32
executing, ways 8, 9
palindrome strings, verifying with 165-169

search
directory depth based 57, 58
file name based 56
file size based 60
files timestamp based 59, 60
file type based 58, 59

Secure FTP. See SFTP
Secure Shell (SSH) connection 208
sed command

about 50, 100, 147, 156, 165, 174
blank lines, removing 149

339

options 148, 149
set difference operation

about 97
performing, on text files 97-100

setuid permission
about 105, 109
example 106

SFTP 249
SHA1 74
sha1sum 223
Shadowlike hash. See salted hash
shebang 8, 35
Shell Scripting language 132
shell scripts 7, 8, 234
shift command 328
SIGNAL argument 304
signals

about 304
capturing 306
responding to 304, 306
sending 304

size 30k parameter 284
sort command

about 75, 289
usage techniques 75, 76

sorting
about 75
performing, according to columns 76, 77
performing, according to keys 76, 77

special characters
about 135
using, as non-special characters 135

spell checker
using, in scripts 89

split command 82
split files

filename prefix, specifying for 82, 83
squashfs file

about 220
additional features 221
creating 221
mounting 221

SSH
about 249, 253, 255
automate logins 254, 255
commands, running on remote host 255-258
compression, enabling 258

working 254, 255
ssh-keygen command 254
standard filenames

generating, for temporary data 80, 81
stat parameter 298
stdin

about 50
data, redirecting into 258, 259
using, with tar command 208

stdout
using, with tar command 208

sticky bit
about 106, 108
setting 108

stream editor. See sed command
string

length, calculating 15
string comparisions, Bash 46
string manipulation functions

about 156
gsub() 156
index() 156
length() 156
match() 156
split() 156
sub() 156
substr() 156

string pattern
generating, with uniq command 80

string replacement 156, 157
stty utility 29
subdirectories

skipping, for performance improvement 63
subshell 39
subshell trick 68
substring match notation (\1) 149
symbolic links

about 111
creating 111

syslog
about 285, 286
using, for logging information 285, 286

system information
gathering 311, 312

sys time 273

340

T
tabs

displaying, as ^ character 52
tac command

about 176
implementing, with awk 175, 176

tail command
about 124, 176
implementing, with awk 175, 176

tarballs
about 206, 210
gzip, using with 213, 214

tar command
about 206
additional features 206-211
arguments list 206
examples 206
files, archiving with 206
files, extracting from archive 207
stdin, using with 208
stdout, using with 208

tar flags 210
tee command 103
tempfile command 81
temporary data

standard filename, generating for 80, 81
terminal

colored output, producing on 12
text, printing on 9, 10, 11

terminal session
recording 53, 54

test_function() 139
text

printing, in terminal 9, 10, 11
e-mail address, parsing from 171, 172
printing, between line numbers 164, 165
printing, between patterns 164, 165
replacing, from variable 177
URLs, parsing from 171, 172
words, matching in 135

text files
blank lines, squeezing in 51, 52
intersection operation, performing on 97-100
set difference operation, performing

on 97-100
text matching

examples 135

text processing 132
text replacement techniques 177
time command

about 272
parameters 274

time delays
working with 30-32

time parameter 298
times

real time 272
sys time 273
user time 272

timestamp check
files, updating with 208, 209

top command 296, 298
touch command 110, 209
tput utility 29
traceroute

about 240
example 240

trap command 306
tr command

about 69
character classes 72
characters, deleting with 70
characters, squeezing with 71
character translations, performing with 69
numeric characters, decrypting 70
numeric characters, encrypting 70
using 52

tree command
about 129
HTML output, generating 130

TTY filter 301
tty parameter 298
Twitter 195

U
UID 16
umount command 116
uniq command 289

about 77
examples 78, 79
string pattern, generating with 80
usage techniques 75, 76

UNIX 96
UNIX-style architecture 7

341

until loop 43
URLs

parsing, from text 171, 172
user 105
user accesses

logging 282
useradd command 323
user administration script 321, 323, 324
user agent string

setting, with cURL 186
USER argument 61
user logins

monitoring, for intrusion detection 286-289
usermod command 324
user parameter 298
user terminals

messages, sending to 309, 310
user time 272

V
variables

about 12, 13
assigning 13-15
text, replacing from 177

verbose 207
version control based backup

with Git 227-229
version control directories

excluding 211

W
wait command 245
wall command 309
watch command 281
w command 275
wc utility 128
Web 180
web page

about 183
accessing, with FTP authentication 182
accessing, with HTTP authentication 182
data, posting to 203, 204
downloading 180, 181
downloading, as formatted plain text 183

web photo album generator 193

website
broken links, searching in 199, 200
changes, tracking to 200, 202
data, parsing from 189, 190
HTML response, reading from 203, 204
mirroring 182

weekly parameter 284
WEP 253
wget command

about 180
data, posting 204
file, downloading 180, 181
speed limits, restricting 181
web page, downloading 180, 181
website, mirroring 182

whatis command 308
whereis command 308
which command 307
while loop 43, 68, 114, 306
who command 275
wild card techniques 132
Wired Equivalent Protocol. See WEP
wireless LAN

about 250
setting up 251, 252

words
about 146
counting, in files 128
matching, in text 135

X
xargs command

about 63, 64, 140
using 64
using, with find command 68
working 65

Xserver 261

Z
zcat command 214
Zenity 260
zip

about 219
files, archiving with 219, 220
files, compressing with 219, 220

	Team rebOOk

